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Summary

1. Bee populations and other pollinators face multiple, synergistically acting threats, which have led to popula-

tion declines, loss of local species richness and pollination services, and extinctions. However, our understanding

of the degree, distribution and causes of declines is patchy, in part due to inadequate monitoring systems, with

the challenge of taxonomic identification posing amajor logistical barrier. Pollinator conservation would benefit

from a high-throughput identification pipeline.

2. We show that the metagenomic mining and resequencing of mitochondrial genomes (mitogenomics) can be

applied successfully to bulk samples of wild bees. We assembled the mitogenomes of 48UK bee species and then

shotgun-sequenced total DNA extracted from 204 whole bees that had been collected in 10 pan-trap samples

from farms in England and been identified morphologically to 33 species. Each sample data set was mapped

against the 48 referencemitogenomes.

3. Themorphological andmitogenomic data sets were highly congruent. Out of 63 total species detections in the

morphological data set, themitogenomic data setmade 59 correct detections (93!7%detection rate) and detected

six more species (putative false positives). Direct inspection and an analysis with species-specific primers sug-

gested that these putative false positives were most likely due to incorrect morphological IDs. Read frequency

significantly predicted species biomass frequency (R2 = 24!9%). Species lists, biomass frequencies, extrapolated

species richness and community structure were recovered with less error than in ametabarcoding pipeline.

4. Mitogenomics automates the onerous task of taxonomic identification, even for cryptic species, allowing the

tracking of changes in species richness and distributions. A mitogenomic pipeline should thus be able to contain

costs, maintain consistently high-quality data over long time series, incorporate retrospective taxonomic revi-

sions and provide an auditable evidence trail. Mitogenomic data sets also provide estimates of species counts

within samples and thus have potential for tracking population trajectories.
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genome skimming, Hymenoptera, metabarcoding, metagenomics, mitogenomes, neonicotinoids,
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Introduction

Safeguarding wild bee populations and their pollination ser-

vices is a policy priority (DEFRA 2014; Gilbert 2014) because

wild bees play a keystone role in the pollination of wild plants

and cultivated crops and thereby help to maintain biodiversity

and food production (Breeze et al. 2011; Garibaldi et al.

2013).However, pollinators are threatened by habitat loss, pes-

ticides, climate change and disease (Potts et al. 2010; Goulson

et al. 2015), and evidence exists of declines in wild pollinators

and insect-pollinated plants (Biesmeijer et al. 2006; Cameron

et al. 2011; Burkle, Marlin & Knight 2013; Ollerton et al.

2014), but these analyses use historical records, which suffer

fromunequal survey effort and geographical bias.

Our understanding of bee population trajectories and

responses to conservation interventions could be improved

with systematic, comprehensive and auditable monitoring

methods (Goulson et al. 2015). An important motivation for
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this work is Lebuhn et al.’s (2012) calculation that 200 sam-

pling sites are needed to have a > 90% chance to detect an

annual population decline of ≥2% over a 5-year span. Lebuhn

et al. estimated that each site would generate 3120 bees per

year (pooling 26 biweekly collections), resulting in

3120beesx200sitesx2yrs1&5 = 1!25 million bees that need to be

identified to species. The total cost was estimated to be US$2

million, assuming that the bees could be identified at a rate of

<2 min per specimen. This assumption is possibly heroic, given

that wild bee species richness ranges from hundreds to thou-

sands of species per country, many of them difficult to separate

morphologically (Schmidt et al. 2015).

A large-scale bee monitoring programme would therefore

benefit from a high-throughput identification pipeline that

produces reliable species-level identifications and estimates of

species abundances, is able to add taxa and to incorporate

taxonomic revisions (including to already-processed samples),

is robust to sample contamination and staff turnover and is

auditable by independent parties. A pipeline that uses high-

throughput DNA sequencing can in principle meet these

requirements.

It is now feasible to assemble large numbers of mito-

chondrial genomes (mitogenomes), even from species pools

(Gillett et al. 2014; Tang et al. 2014; And!ujar et al. 2015;

Crampton-Platt et al. 2015; G!omez-Rodr!ıguez et al. 2015).

Mitogenomes can be thought of as super-DNA-barcodes,

opening the possibility of ‘mitogenomics’, which we define

as the application of bacterial metagenomic methods to

the former bacteria now living symbiotically inside eukary-

otes. We present a mitogenomics pipeline that shotgun-

sequences total DNA from bulk-bee samples and conducts

taxonomic binning against a reference library of bee mitog-

enomes (Fig. 1). In our study, bees were first identified

morphologically, allowing us to conduct three tests. We

asked (1) whether the morphological and mitogenomic

data sets detected the same bee species and (2) whether

read frequencies could estimate species biomass frequencies.

(3) We also conducted community analyses and asked

whether the two data sets clustered samples similarly and

extrapolated similar estimates of overall bee diversity. We

compare and contrast with the output from a metabarcod-

ing pipeline, and finally, we discuss the relative merits of

mitogenomics, metabarcoding, quantitative PCR and indi-

vidual barcoding.

Materials andmethods

SAMPLING

Bees were collected as part of a study assessing the effectiveness of agri-

environment schemes for pollinators. Sampling took place in four land-

scapes in southern England: Chilterns North, Chilterns South, Hamp-

shire Downs and Low Weald. Three farms per landscape were

sampled, each in a different agri-environment scheme. ‘Entry-Level

Stewardship’ is a government-funded agri-environment scheme and

covered 65% of England’s agricultural land in October 2013 (Natural

England 2012). ‘Conservation Grade’ is a land-sparing protocol allo-

cating at least 10% per farm area to wildlife habitat, but allowing some

chemical inputs (www.conservationgrade.org, accessed 19 January
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Fig. 1. Mitogenomic resequencing pipeline. (1) Reference mitogenomes were assembled from 48 bee species. (2). The 204 bee individuals in 10 bulk
samples were morphologically identified to 33 bee species. (3) Total DNA from the same 10 samples was shotgun-sequenced (the ‘resequencing’
step), and the reads were bioinformatically mapped to the reference mitogenomes, generating Table 1. Note that the vast majority of the output in
step 3 was nuclear genome reads, whichwere discarded.
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2015). ‘Organic’ is a land-sharing approach, with bans on synthetic

chemicals. There were three sampling rounds between 30 April and 23

August 2012. Pan-trap sampling was used because it is considered the

most effective method for sampling bee diversity in European agricul-

tural and grassland habitats and has particular advantages for solitary

bees (Westphal, Bommarco & Carr!e 2008). Pan traps were plastic

bowls painted with UV paint to form triplicate sets of blue, white and

yellow. Each pan trap was half-filled with water to which a couple

drops of liquid dish soap were added to reduce surface tension. Pan

trapswere left for 24 h, after which bees were collected and frozen. Bees

were defrosted, dried and pinned, then identified to species using the

keys of Else (2000) for solitary bees and Prŷs-Jones &Corbet (2011) for

bumblebees. After identification, the bees were returned to the freezer.

One individual from each of the 48 most abundant bee species (half the

total species richness of 97 species) and the ten largest samples (3–11
species and 13–51 bees per sample) were selected for mitogenomic

analysis and shipped in alcohol-filled tubes to the Kunming Institute of

Zoology, China. In one of the ten samples, a single individual of a rare

species,Bombus rupestris, was present, but sincewe did notmake its ref-

erence mitogenome, we omitted this individual from further analysis.

All other species in the samples were included in the 48 reference spe-

cies. For each of the 48 reference bee species, a female not used tomake

the reference mitogenome was measured for its intertegular (between

wing plate) distances, which is correlated with thorax volume, and thus

with biomass (Cane 1987).

MITOGENOME ASSEMBLY

Genomic DNA was extracted from the thorax and legs of each of the

48 reference species following Ivanova, deWaard & Hebert (2006),

avoiding the rest of the body tominimise bacterialDNA.A librarywith

an insert size of 200 bp was prepared from each specimen following

manufacturer’s instruction and sequenced at 2!5 Gb depth and 100 bp

PE on an Illumina HiSeq2000 at BGI-Shenzhen, China. Raw reads

were filtered with a Perl script that removes reads containing adaptor

contamination (with >15 bp matched to the adaptor sequence), poly-

Ns (>5 bpNs) or >1% error rate (>10 bp bases with quality score <20)
following Zhou et al. (2013) and Tang et al. (2014).De novo assemblies

for each bee were generated using SOAPdenovo-Trans (-K 61) (Xie

et al. 2014), and scaffolds encoding mitochondrial proteins (mitoscaf-

folds) were annotated using a custom Perl script described by Zhou

et al. (2013)with a 774 species reference data base of arthropodmitoge-

nomes (Tang et al. 2014), allowing us to remove nuclear mitochondrial

insertions (numts). Mitoscaffolds were used to construct bee mitoge-

nome references, which were manually corrected and checked follow-

ing Tang et al. (2014). Each of the 13 mitochondrial protein-coding

genes extracted from themitoscaffolds, together with reference protein-

coding gene sequences from 6 bees (Apis cerana, Apis florea, Apismellif-

era, Bombus ignitus, Bombus hypocrite sapporensis and Melipona bico-

lor), was globally aligned with CLUSTALW 2.1 (Thompson, Higgins &

Gibson 1994) and ensured for correct translation frames with MEGA6

(Tamura et al. 2013), allowing us to correct the number of Ns gener-

ated during scaffolding of the paired-end reads. The original reads were

thenmapped onto the mitoscaffolds with BWA 0.6.2 (Li &Durbin 2009)

to identify regions with exceptionally low or zero coverage relative to

adjacent regions, and these problematic sites were confirmed or cor-

rected using the mpileup command of SAMTOOLS 0.1.19 (Li et al. 2009).

Five bee species (Bombus pratorum, Lasioglossum laevigatum, L. lativ-

entre, L. xanthopus and L. leucozonium) with relatively poorly assem-

bled mitogenomes were selected for additional sequencing of the

remaining limited genomic DNA to improve their assemblies. We

pooled the 5 species, prepared a single library of insert size of 500 bp,

and sequenced at 2 Gb depth and 300 bp PE on a MiSeq at the Kun-

ming Institute of Zoology. Metagenomic mitoscaffolds from four bee

species were assembled as previously described for the HiSeq mitoge-

nome assembly and recovered by BLAST against their HiSeq mitoscaf-

folds (L. laevigatum sequences were not found), and the longest

mitoscaffolds matching by at least 98% identity were used to improve

the assemblies.

MITOGENOMIC RESEQUENCING

From each of the 10 bulk samples, the bees were homogenised in a

FastPrep-24 (MP Biomedicals, Santa Ana, CA, USA), total DNAwas

extracted using Qiagen DNeasy Blood & Tissue Kits (Hilden, Ger-

many), and 5 lg was used for 250-bp insert-size library construction

and sequenced at 5–6 Gb depth and 100 bp PE on a HiSeq2000 at

BGI-Shenzhen, China. After data filtering, clean reads from each sam-

ple were uniquely mapped using BWA onto the 48 reference mitoge-

nomes at high stringency: 100% read coverage at 99% identity.

For species with incomplete mitogenomes, the number of mapped

reads per species and sample was divided by (achieved_mitoge-

nome_length/16000 bp) to derive a normalised read number. Finally,

because each reference bee species had been separately sequenced, we

could calculate the percentage of reads that were mitochondrial in

origin, and we divided the read number per species per sample by this

percentage to try to correct for species-level differences in mitonuclear

ratio.

PCR-BASED METABARCODING

Weused aliquots of the sameDNA extracted from the 10 bulk samples

for mitogenomic resequencing and amplified from each a 319-bp COI

fragment, a subunit of the standard COI barcode region. The forward

primer was LepF (50 ATTCAACCAATCATAAAGATATTGG 30),

and the reverse primer (mlCOIintBeeR, 50 GGDGGRTA-

WANDGTTCANCCHGTHCC 30) was modified from mlCOIintR

(Leray et al. 2013), based on 160 bee COI reference sequences down-

loaded from GenBank. To build Illumina-ready PCR amplicons, we

attached the standard Illumina HP10 or HP11 sequencing primers, an

8-bp index sequence, a 0- to 5-bp ‘heterogeneity spacer’ to the 50 end of

LepF, and mlCOIintBeeR (Fig. S3), following Fadrosh et al. (2014).

Each sample was amplified in three independent reactions and pooled.

PCRs were performed in 20 lL reaction volumes containing 2 lL of

10X buffer, 1!5 mMMgCl2, 0!2 mM dNTPs, 0!2 lM each primer, 0!6
U Hot Start Taq DNA polymerase (TaKaRa Biosystems, Dalian,

China) and approximately 60 ng of genomic DNA.We used a thermo-

cycling profile of 94°C for 3 min: 35 cycles of 94°C for 1 min, 46°C for

1 min and 72°C for 90 s; with a final extension of 72°C for 7 min. PCR

products were visualised on 2%agarose gels, gel-purified using theQia-

genQIAquick PCRpurification kit, quantified using theQuantiT Pico-

Green dsDNAAssay kit (Invitrogen, Grand Island, NewYork, USA),

pooled and sequenced on a 300-bp PE IlluminaMiSeq run at the Kun-

ming Institute of Zoology. The raw reads were denoised with BLUE

1.1.2 (-k 25 -g 370) (Greenfield et al. 2014), and paired reads were

merged in FLASH 1.2.10 (-m 10 -M 300) (Mago"c & Salzberg 2011). The

merged reads were split by sample, and the primer sequences and low-

quality reads were removed in the QIIME 1.8.0 environment (Caporaso

et al. 2010) with the script split_libraries.py (-l 330 -L 400 -H 9 -M4 -b 8

-r -z truncate_remove -t –reverse_primer_mismatches 4). Only merged

reads with a length of 319 bp were retained, using USEARCH’S 7.0.1090

(Edgar 2010) sortbylength command (-minseqlength 319 -maxseqlength

319). These retained reads were clustered into unique sequences in
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USEARCH with the derep_fulllength command, and USEARCH’s

UCHIME function (Edgar et al. 2011) was used to perform de novo

and reference-based chimera detection and removal, the latter method

using the COI sequences of the 48 reference mitogenomes. The remain-

ing sequences were clustered at 98% similarity in CROP 1.33 (Hao, Jiang

& Chen 2011), producing 468 OTUs, which were assigned taxonomies

using the naïve Bayesian classifier (Wang et al. 2007) against the 48

COI sequences from the mitogenome data set, using a cut-off value of

0!8. RDP assigned species-level taxonomies to 288 of the OTUs, with

232 assigned at a confidence level >0!9. We merged OTUs assigned to

the same species and discarded those not assigned to species.

ANALYSIS

To test whether read number can estimate bee biomasses, we first z-

transformed the normalised read numbers (see Mitogenomic rese-

quencing) and the summed biomasses per sample and then ran a linear

regression between read numbers and summed biomasses by species

and sample in R’s 3.1.2 (R Core Team 2015) base package. Error vari-

ance increased with read number, so we re-analysed using generalised

least squares regression in the R package nlme 3.1-118 (Pinheiro et al.

2014), and an exponential covariate term (varExp) for the biomass

frequencies largely removed the heteroscedasticity.

To compare bee communities in the morphological, mitogenomic

andmetabarcode data sets, we conducted non-metricmultidimensional

(NMDS) analyses using metaMDS() in the R package vegan 2.2-0

(Oksanen et al. 2014). Community dissimilarities were calculated

with the vegdist(method=‘Jaccard’) function from presence/absence

(binary=TRUE) and quantitative (binary=FALSE) data (read and

biomass frequencies). Finally, community correlation was estimated

with vegan’s Procrustes test: protest(symmetric=TRUE).We also used

vegan’s specpool() function to extrapolate total species richness.

Results

MITOGENOME ASSEMBLY

Mitochondrial reads accounted for 0!005–1!319% of each spe-

cies’ total reads. Of the 48 mitogenomes, 40 were completely

assembled with all 13 expected protein-coding genes, and the

other 8 contained 11 or 12 protein-coding genes (Fig. S1).

Mean coverage across all mitogenomes was 224X (range

18!6X-1855!3X).

SPECIES DETECTION

A total of 204 bees were morphologically identified to 33 spe-

cies (Table 1). Read coverage per mitogenome was bimodally

distributed (Fig. 2), and within mitogenomes, reads mapped

approximately evenly (Fig. 2 inset). In order to calculate spe-

cies-detection statistics, we classified species as present if read

coverage was greater than 10% (see Fig. 2). Using this thresh-

old, mitogenomic resequencing successfully made 59 correct

detections out of the 63 species-sample combinations in the

morphological data set (93!7% detection rate for ‘true posi-

tives’, mean read coverage 86!7%, range 14!0–100%) and cor-

rectly designated 411 species-sample combinations as absent

(‘true negatives’, mean 0!4%, range 0–7!7%) (Table 1). Four

species-sample combinations in the morphological data set

were not detected by mitogenomics (putative ‘false negatives’,

mean 0!15% read coverage, range 0–0!6%), and 6 species-sam-

ple combinations were detected that were not in the morpho-

logical data set (putative ‘false positives’, mean 56!5%, range

Table 1. Bee counts, biomasses and mitogenomic resequencing read numbers subdivided by sample (columns) and bee species (rows). To facilitate
comparison of samples across the three data sets, each sample (column) is formatted so that the largest number is reddest, descending to light pink.
Discrepancies between the morphological data sets (bee counts and biomasses) and the mitogenomic data set are indicated in green (possible false
negatives) and blue (possible false positives) in themitogenomic data set. See Table S3 for themetabarcoding results

4 False negatives and 6 false positives

Andrena angustior
Andrena bicolor 2 22·4 721

Andrena chrysosceles 5 51·5 10835
Andrena cineraria 1 2 23·8 47·6 5325 43950

Andrena dorsata 1 11·9 7490
Andrena flavipes 5 90·7 13998
Andrena fulvago

Andrena haemorrhoa 1 1 1 5 19·8 19·8 19·8 99·0 2458 6361 1759 30111
Andrena labiata

Andrena minutula 9 2 4 41·5 9·2 18·4 1304 108 1699
Andrena nigroaenea 3 1 4 2 2 81·3 27·1 108·4 54·2 54·2 20343 951 13581 18485 6850

Andrena nitida 1 3 3 2 29·4 88·3 88·3 58·9 6082 17746 31492 47750
Andrena semilaevis 1 4·7 2279
Andrena subopaca 2 1 10·0 5·0

Apis mellifera 1 1 1 1 36·4 36·4 36·4 36·4 297 8291 396 4291
Bombus hortorum 1 137·1 1586

Bombus lapidarius 1 113·9 43518
Bombus lucorum 2210 7173

Bombus pascuorum 1 73·1 869
Bombus pratorum 1 76·5 6548
Bombus sylvestris
Bombus terrestris 2 2 4 314·3 314·3 628·5 7389 709 5142

Halictus rubicundus 2 23·8 3056
Halictus tumulorum 1 4·9 1297

Hylaeus confusus
Hylaeus dilatatus

Lasioglossum calceatum 1 10 10 2 13 15 5 8·1 81·4 81·4 16·3 105·8 122·1 40·7 4504 5061 66 2819 12064 1031
Lasioglossum fulvicorne

Lasioglossum laevigatum
Lasioglossum lativentre
Lasioglossum leucopus 2 2 5·0 5·0 49 169

Lasioglossum leucozonium 1 10·3 19 19
Lasioglossum malachurum 10 4 62·7 25·1 616 3677 5029

Lasioglossum minutissimum 4 6·0 247 50
Lasioglossum morio

Lasioglossum parvulum 14 6 46·4 19·9 896 34 1192
Lasioglossum pauxillum 5 2 3 14·3 5·7 8·6 765 1707 568

Lasioglossum punctatissimum 1 3·6
Lasioglossum villosulum
Lasioglossum xanthopus

Nomada fabriciana 1 5·9 82
Nomada flava

Nomada flavoguttata
Nomada goodeniana 1 14·0 240

Nomada ruficornis 1 7·9 300
Osmia bicornis

Sphecodes ephippius 3 1 16·3 5·4 1490 536
Sphecodes miniatus 4 7·4 1703

Species count 11 11 7 6 3 6 5 4 5 5 11 11 7 6 3 6 5 4 5 5 10 11 7 6 3 7 5 4 5 7

Bee counts Estimated bee biomasses (mg) Mitogenome resequencing read numbers
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12!9–89!9%). Profiling success was 97!9% = (59 + 411)/

(59 + 411 + 4+6) (G!omez-Rodr!ıguez et al. 2015).

PCR-based metabarcoding was more error-prone, with

11 false negatives and 49 false positives, compared to 53

true positives (Table S2). Profiling success was 87!5%.

Many of the false positives in the metabarcode data set

were represented by low read numbers, but the distributions

of false-positive and true-positive read numbers overlapped

(Table S2).

BIOMASS FREQUENCY VS. READ FREQUENCY

A priori, larger bees should make up a larger fraction of the

total DNA in a sample, and therefore, each species’ mito-

chondrial-read frequency should correlate positively with its

biomass frequency. We normalised read number per species

and sample by each species’ mitogenome size and ratio of

mitochondrial to nuclear DNA, which were obtained from

our 48 reference bee specimens. Both a linear model and a gen-

eralised least squares model to correct for heteroscedasticity

indeed found that read-number frequencies could predict

biomass frequencies (P < 0!001, R2 = 24!9%, statistical

details in Fig. 3). Not correcting for mitogenome size and/or

mitonuclear ratio reduced explained variance by a few

percentage points (R2 = 21!0% for uncorrected reads; R2 =
21!2% for reads corrected only for mitogenome size). PCR-

based metabarcoding failed to find a biomass–read–number

relationship (P = 0!237; Fig. S4).

COMMUNITY ANALYSIS

Comparisons of the morphological and mitogenomic data sets

resulted in highly significantly correlated site clusters (statisti-

cal details in Fig. 4), with clear groupings by site and region. In

contrast, the morphological and metabarcoding ordinations

were less similar, and for the presence/absence data, non-sig-

nificantly correlated (Fig. S5).

The Chao2 estimator extrapolated similar total species

diversities from the two data sets (morphological: 56!3 " 15!9
SE; mitogenome: 47!9 " 11!8 SE; Welch’s t-test, td.f.=16!6 =
0!42, P = 0!68). The metabarcoding data set extrapolated a

lower total species diversity (36!0 " 7!6 SE) due to a lower

incidence of singleton species from the many false positives,

although given the large standard errors, this extrapolation

was also non-significantly different from the morphological

data set (td.f.=12!9 = 1!15,P = 0!27).

0·0

0·2

0·4

0·6

0·8

0 25 50 75 100
% coverage

F
re

qu
en

ci
es

True negatives

True positives

Fig. 2. Frequency histograms of read coverages from the true-negative and true-positive detections in themitogenomics pipeline. The dashed line at
10% is the threshold used to calculate species-detection statistics. Inset: A map of read coverages on the 48 mitogenomes from sample HD_CG_1,
showing the 6 true positives (Bombus pascuorum, B. terrestris, Lasioglossum calceatum, L. leucopus, L. leucozonium and L. malachurum) plus Bom-
bus lucorum, a putative false positive that was confirmed by species-specific PCR (Fig. S6).
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Fig. 4. Community analyses. Lines connect samples from the same farm. In the left hand column are the results using the morphological data set
(Bee biomass frequencies). In the right-hand column are the results using the mitogenomic data set (Read frequencies). The top row uses presence/
absence. The bottom row uses biomass and read frequencies (quantitative). In general, themorphological andmitogenomic data sets (comparing left
with right) organise the samples highly similarly (procrustes rpresence/absence = 0!981, P = 0!001; rquantitative = 0!966, P = 0!001; 9999 permutations).
Samples from the same farm and locations tend to cluster together. CN =ChilternsNorth; CS =Chilterns South, HD =HampshireDowns, and LW
=LowWeald. CG =ConservationGrade farm; OELS =Organic+Entry-Level-Stewardship farm; ELS =Entry-Level-Stewardship farm. See Fig. S5
for themetabarcoding result.
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© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
Methods in Ecology and Evolution, 6, 1034–1043

PCR-free bee soup 1039



SOURCES OF ERROR IN SPECIES DETECTION

Inspection of themitogenome data set (Table 1) suggested that

all but one of the 10 putative false positives and negatives could

reasonably be ascribed to errors in themorphological data set.

Mitogenomic resequencing detected Bombus lucorum in two

samples (HD_CG_1 and LW_ELS_1, Table 1), but morphol-

ogy did not. In those samples, Bombus terrestris had also been

detected by both morphology and mitogenomes, and the

workers of these two species are very difficult to tell apart. We

designed B. lucorum-specific PCR primers and successfully

detected B. lucorum in both samples, and we did not detect

B. lucorum in any other sample (Fig. S6), which suggests that

B. lucorum in the mitogenomic data set was not a false posi-

tive.

We were unable to design PCR tests for the other discrepan-

cies, but in the case of Andrena subopaca, which mitogenomics

did not detect in two samples (CN_CG_1 and CN_CG_2,

green cells, Table 1), multiple individuals of other Andrena

species were in the same samples. Similarly, mitogenomics did

not detect two Lasioglossum species in two samples

(CN_CG_2 and LW_ELS_1, green cells, Table 1), but both

samples had other Lasioglossum species that were not detected

in the morphological data set (blue cells). Lasioglossum species

can be difficult to differentiate on the basis of morphology.

Finally, in CN_CG_2, the morphological data set contained

only oneLasioglossum bee (L. calceatum), but themitogenome

data set detected two Lasioglossum species. In this case, either

mitogenomics truly threw up a false positive, or DNA from

twoLasioglossum species was in the sample, andmitogenomics

detected them both.

Discussion

We show that mitogenomic resequencing of bulk samples and

mapping against a reference data base provides a reliable and

high-throughput method for identifying bee species (Table 1).

The output is very suitable for community analysis (Fig. 4)

and occupancymodelling, whichwill allow tracking of changes

in species richness and distributions, two of Lebuhn et al.’s

(2012) three proposed metrics. We note that a higher detection

threshold than the 10%we used would have little effect on our

classification success, as all ‘true positive’ detections but one

had coverages ≥29% (Fig. 2).

Mitogenomic resequencing also successfully recovers quan-

titative information on biomass frequencies (Zhou et al. 2013;

G!omez-Rodr!ıguez et al. 2015; Paula et al. 2015; Srivathsan

et al. 2015), although currently, the biomass–read relationship

is heteroscedastic and noisy (Fig. 3). Sources of noise include

measurement error, bee biomasses that vary across individuals

of the same species, especially in social species with workers

and queens (Richards & Packer 1996); mitochondrial DNA

densities that vary across individuals, tissues within individu-

als, life spans (Veltri, Espiritu & Singh 1990) and species (this

study); and noise introduced during DNA extraction, library

construction, sequencing, quality control and read matching.

Finally, with an incomplete reference data base, small numbers

of reads could be matched to an incorrect species, even when

only uniquemappings are accepted, as we did.

Nonetheless, even a noisy relationship can be used for track-

ing the population trajectories of hundreds of bee species at a

time. A sample’s total bee biomass can be measured before

DNA extraction, and after sequencing, the biomass frequen-

cies per species can be converted to absolute biomasses, which

can then be converted to counts using species-specific estimates

of biomass per worker bee. Count data produced by mitoge-

nomics will thus contain non-process (observation) error (Hil-

born &Mangel 1997), and the cost of this error is the need for

more samples to achieve the same statistical power in detecting

population declines. We note that Lebuhn et al.’s (2012) simu-

lation did not model taxonomic identification error, which

would add a similar sort of error.

In the future, when we have sufficient bee mitogenomes to

act as an unbiased reference set, capture-enrichment tech-

niques (Avila-Arcos et al. 2011) could be employed to increase

the proportion of raw mitochondrial reads from the current

~1% to >40% (thus using more of the sequencer output), and

we hypothesise that this will reduce heteroscedasticity and

increase explained variance in the biomass–read relationship

(Fig. 3), by ensuring that high-biomass species in a sample are

represented accordingly. Importantly, low-biomass species are

more reliably represented by fewer reads (Fig. 3), which sug-

gests that low-abundance species will be identified as such. This

is of particular importance, given that low-abundance species

are arguably of greater conservation concern.

In sum, mitogenomics has high potential for allowing moni-

toring programmes (DEFRA2014) to track pollinator popula-

tions and to assess and target appropriate conservation

interventions. Mitogenomics pipelines possess institutional

advantages desired in an identification pipeline. Automated

taxonomic identification, even for cryptic species, should con-

tain cost inflation, maintain consistently high quality data over

long time series and provide an auditable evidence trail, since

data sets can be independently analysed at any stage of the bio-

informatic pipeline, and, at extra cost, parallel samples can be

taken and processed independently. Moreover, taxonomic

revisions and new taxa, such as pests, their predators and other

pollinators, can be incorporated at any time by (re-)mapping

old and new sequencing data sets against new reference data

sets. The mitogenomic pipeline is scalable to more species and

larger samples, as we are relying on software and sequencers

designed for whole-genome scale resequencing. The skills

needed to carry out a mitogenomics pipeline (non-destructive

DNA extraction, running bioinformatic scripts) are easily

learned, with the other steps able to be outsourced to sequenc-

ing centres.

A key advantage of mitogenomics is the opportunity to do

away with PCR, which reduces laboratory workload, sequence

error and contamination risk and therefore results in lower

rates of false-positive and false-negative species detections rela-

tive to metabarcoding (Table 1 vs. Table S2). We observe that

despite the fact that the bees in this study were handled for

morphological identification and were thus exposed to more

cross-contamination than would be the case in a pure molecu-
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lar study, read-coverage values of the true negatives and true

positives did not overlap in the mitogenomic data set (Fig. 2),

but they did overlap in the metabarcoding data set (Table S2).

We conclude that contaminants are inherently easier to detect

and omit in a mitogenomic pipeline than in a metabarcoding

pipeline. This is a crucial feature in a large-scale, long-term

monitoring programme where it is impossible to guarantee

that collecting and sorting apparatus has always been correctly

cleaned between samples.

It is worth emphasising that our 48-species reference data set

deliberately included species that were abundant overall in the

landscape but not present in our ten-sample morphological

data set, and thus, we did not expect to detect these species.

With the exception of Bombus lucorum, which our PCR test

suggests was indeed present, these non-expected species were

not detected. This suggests that a synoptic reference data base

per sewill not produce false positives.

It is even possible to run a mitogenomics pipeline without

whole mitogenomes. G!omez-Rodr!ıguez et al. (2015) have

shown it possible to map against a reference data base of only

standard, 50-end COI DNA barcodes. However, the advanta-

ges of mitogenomes are that the larger target makes resequenc-

ing more efficient (Zhou et al. 2013; Tang et al. 2014; G!omez-

Rodr!ıguez et al. 2015; Paula et al. 2015), and mitogenomes

provide more resolved phylogenetic information (Gillett et al.

2014; And!ujar et al. 2015; Crampton-Platt et al. 2015). Map-

ping to mitogenomes also increases detection confidence,

because only species that are truly present in a sample will pro-

duce DNA reads that map across the whole mitogenome

(Fig. 2 inset), but any stray PCR amplicons will only map to a

single locus. Themany thousands of bee species that have been

collected for standard DNA barcoding can therefore be used

for resequencing, and in the future, these specimens can be

used asDNA sources formitogenome assembly.

ALTERNATIVE PIPEL INES

Metabarcoding

The big advantage of metabarcoding is that, with appropriate

controls and filtering, it can estimate beta and alpha diversity

from bulk samples in which taxa are not well characterised and

there is no reference data base, such as withmeiofauna (Fonse-

ca et al. 2010), environmental DNA (Yoccoz et al. 2012) and

novel locations (Ji et al. 2013). The cost is that PCR endpoint

read numbers are not reliable estimates of starting DNA con-

centrations (Fig. S4) (Amend, Seifert & Bruns 2010; Yu et al.

2012), due to inherent stochasticity and since each nucleotide

mismatch between primer and primer region can result in a

ten-fold drop in amplification (Pi~nol et al. 2014). Amplifica-

tion bias is what makes it difficult to identify contaminants,

because contaminant tissue might match primers better than

some of the truly present taxa. We think this is why some of

our false-positive read numbers are greater than some of the

true-positive read numbers (Table S2). Stochasticity in end-

point PCR read numbers can also play a role in amplifying

contaminants.

Another challenge for metabarcoding is primer design.

We used fusion primers with heterogeneity spacers to make

a separate library for each sample, which prevents tag

jumping (Schnell, Bohmann & Gilbert 2015) and to increase

sequence entropy, which improves sequence quality, but

fusion primers are longer and thus somewhat less likely to

amplify species, which might have contributed to the greater

number of false negatives relative to the mitogenomics data

set.

qPCR/ddPCR

qPCR (quantitative PCR) and ddPCR (droplet-digital PCR)

can quantify species-specific DNA concentrations (Doi et al.

2015), given properly designed primers and probes, and sam-

ples and primer sets can be multiplexed. However, these sys-

tems have not yet, to our knowledge, been applied to bulk

samples (although they are widely used for environmental

DNA (Ficetola et al. 2015)), and it remains unclear whether

this approach can be scaled up to hundreds or thousands of

species. Moreover, adding taxa would require re-amplification

of all samples.

Massively parallel barcoding

Surprisingly, the most competitive alternative to mitogenom-

ics could be individual-based DNA barcoding, in which (por-

tions of) individual bees are separately extracted, amplified

and sequenced in parallel using tagged amplicons on Illumina

sequencers, at an estimated cost of ≤US$1!5 per specimen

(Meier et al. 2015; Shokralla et al. 2015). Clearly, this method

would generate the best count data. However, following Sho-

kralla et al.’s (2015) estimate of seven hands-on hours per

1000 specimens, the 1!25 million bees estimated by Lebuhn

et al. (2012) would require ~50 person-months. With mitoge-

nomics, we estimate that 500 samples can be extracted per

person-month, meaning that (26weeks 9 200sites 9 2yrs1&5=)
10 400 samples would require ~21 person-months before

sending to a sequencing centre for library prep and sequenc-

ing. In the more seasonal UK, 16 weeks of sampling in 200

sites might generate around 192 000 bees (CQ Tang, pers.

comm.), amounting to ~7!7 person-months for barcoding and

~12!9 person-months for mitogenomics.

However, barcoding costs scale with specimen number, but

mitogenomic costs scale with sample number. Thus, if we

include non-bee taxa (e.g. flies, mites), the mitogenomics work-

load would not increase, except for the one-time cost of assem-

bling additional mitogenomes, whereas the individual-

barcoding workload could increasemany-fold.

In conclusion, a mitogenomics approach provides reliable

species detection and information on abundance from bulk

samples and also provides important institutional advantages:

robustness to contamination, the ability to add taxa cheaply

and retrospectively, a low skills requirement from staff and the

ability to audit samples. Other DNA-based pipelines do have

their advantages, and the choice of which to use will depend on

study scale, on-going improvements in genomics technology,
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the number of samples that can be pooled per library and the

importance of accuracy in specimen counts.
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Figure S1. The 48 reference mitogenomes, color-coded for the 13 protein-coding genes and the rDNA+Control Region. Bolded genomes were supplemented 
with MiSeq data.

 



Figure S2. Mapping of reads (red line segments) on reference mitogenomes (black lines). Sample shown is CN_CG_1. All ten true positive detections were 
indicated by a uniform distribution of reads along the corresponding reference mitogenome, with coverage ≥ 40.4%. All true negatives were indicated by low 
coverage (<5.3%). The one putative false negative (Andrena subopaca) was matched by no reads.  

 



Figure S3.  Metabarcoding primers.  
	 5’	HP10/HP11	+	index	+	spacer	+	LepF/	mlCOIintBeeR	
LepF-index1	 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	TCAGTGCG	ATTCAACCAATCATAAAGATATTGG	
LepF-index2	 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	GTAGCAGA	T	ATTCAACCAATCATAAAGATATTGG	
LepF-index3	 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	ATTCACAG	GT	ATTCAACCAATCATAAAGATATTGG	
LepF-index4	 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	ATTCCATA	CGA	ATTCAACCAATCATAAAGATATTGG	
LepF-index5	 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	TGGCCGAT	ATGA	ATTCAACCAATCATAAAGATATTGG	
LepF-index6	 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT	ATGCATAC	TGCGA	ATTCAACCAATCATAAAGATATTGG	
mlCOIintBeeR-index1	 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT	TCAGTGCG	GGDGGRTAWANDGTTCANCCHGTHCC	
mlCOIintBeeR-index2	 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT	GTAGCAGA	T	GGDGGRTAWANDGTTCANCCHGTHCC	
mlCOIintBeeR-index3	 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT	ATTCACAG	GT	GGDGGRTAWANDGTTCANCCHGTHCC	
mlCOIintBeeR-index4	 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT	ATTCCATA	CGA	GGDGGRTAWANDGTTCANCCHGTHCC	
mlCOIintBeeR-index5	 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT	TGGCCGAT	ATGA	GGDGGRTAWANDGTTCANCCHGTHCC	
mlCOIintBeeR-index6	 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT	ATGCATAC	TGCGA	GGDGGRTAWANDGTTCANCCHGTHCC	

 



Table S4. Bee counts, biomasses, and metabarcoding read numbers, subdivided by sample (columns) and bee species (rows). To facilitate comparison of 
samples across the three datasets, each sample (column) is formatted so that the largest number is reddest, descending to light pink. Discrepancies between 
the morphological (Bee counts and Biomass) datasets and the mitogenomic dataset are indicated in green (possible false negatives) and blue (possible false 
positives) in the mitogenomic dataset.  

 

11 False negatives and 49 false positives (CROP OTU de novo clustering)

Bee species CN_CG_1 CN_CG_2 CN_CG_3 CS_OELS_1 CS_OELS_2 HD_CG_1 HD_CG_2 HD_CG_3 LW_CG_1 LW_ELS_1 CN_CG_1 CN_CG_2 CN_CG_3 CS_OELS_1 CS_OELS_2 HD_CG_1 HD_CG_2 HD_CG_3 LW_CG_1 LW_ELS_1 CN_CG_1 CN_CG_2 CN_CG_3 CS_OELS_1 CS_OELS_2 HD_CG_1 HD_CG_2 HD_CG_3 LW_CG_1 LW_ELS_1

Andrena angustior
Andrena bicolor 2 22.4 124

Andrena chrysosceles 5 51.5 6392 2
Andrena cineraria 1 2 23.8 47.6 8 138

Andrena dorsata 1 11.9 100
Andrena flavipes 5 90.7 2 76 2 141703
Andrena fulvago

Andrena haemorrhoa 1 1 1 5 19.8 19.8 19.8 99.0 255 811 282 11808 2
Andrena labiata

Andrena minutula 9 2 4 41.5 9.2 18.4 4257 25 3 1685
Andrena nigroaenea 3 1 4 2 2 81.3 27.1 108.4 54.2 54.2 161089 1221 119699 140690 225 61 119397 100 162 150

Andrena nitida 1 3 3 2 29.4 88.3 88.3 58.9 7346 4671 11686 113468 8 33 7 285 2
Andrena semilaevis 1 4.7 13 2 31912 40
Andrena subopaca 2 1 10.0 5.0

Apis mellifera 1 1 1 1 36.4 36.4 36.4 36.4 4 828 43997 1 39 30 104 19 4239 91524
Bombus hortorum 1 137.1

Bombus lapidarius 1 113.9 74 224169 64 271 15 4 34
Bombus lucorum 2 2 8 142

Bombus pascuorum 1 73.1 2
Bombus pratorum 1 76.5
Bombus sylvestris
Bombus terrestris 2 2 4 314.3 314.3 628.5 88 84 4 2 2 857

Halictus rubicundus 2 23.8 880
Halictus tumulorum 1 4.9 1085

Hylaeus confusus
Hylaeus dilatatus

Lasioglossum calceatum 1 10 10 2 13 15 5 8.1 81.4 81.4 16.3 105.8 122.1 40.7 14 123 1492 10256 58 8809 141597 242 2175
Lasioglossum fulvicorne

Lasioglossum laevigatum
Lasioglossum lativentre
Lasioglossum leucopus 2 2 5.0 5.0 146

Lasioglossum leucozonium 1 10.3 3 226
Lasioglossum malachurum 10 4 62.7 25.1 7 126 57 3 12171 2 147412 192 2

Lasioglossum minutissimum 4 6.0
Lasioglossum morio

Lasioglossum parvulum 14 6 46.4 19.9
Lasioglossum pauxillum 5 2 3 14.3 5.7 8.6 2 2

Lasioglossum punctatissimum 1 3.6
Lasioglossum villosulum
Lasioglossum xanthopus

Nomada fabriciana 1 5.9 58
Nomada flava

Nomada flavoguttata
Nomada goodeniana 1 14.0 132

Nomada ruficornis 1 7.9 36
Osmia bicornis

Sphecodes ephippius 3 1 16.3 5.4 8 2
Sphecodes miniatus 4 7.4 87

Species count 11 11 7 6 3 6 5 4 5 5 11 11 7 6 3 6 5 4 5 5 12 11 11 8 8 11 10 9 12 9

Bee counts Estimated bee biomasses (mg) Metabarcoding read numbers



Figure S5. Scatterplot of Biomasses versus Metabarcoding Read numbers. Each data point is one bee species in one sample. Colours indicate the 10 
samples. The biomass and read numbers were z-transformed to correct for different sample sizes. The dashed line is the 1:1 line. If all points were on this 
line, there would be no error in converting from reads to biomass, and thus from biomass to counts (given a species-typical biomass). The solid line is the 
non-significant Generalised Least Squares (GLS) regression (p=0.237). 
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Figure S6. Community analyses. Lines connect samples from the same farm. In the left hand column are the results using the morphological dataset (Bee 
biomass frequencies). In the right-hand column are the results using the metabarcoding dataset (Read frequencies). The top row uses Presence/Absence data. 
The bottom row uses biomass and read frequencies (Quantitative). The morphological and metabarcoding datasets (comparing left with right) do not 
organise the samples similarly in the presence/absence datasets (Procrustes rpresence/absence= 0.424, p= 0.39, 9999 permutations) but do show a correlation with 
the quantitative datasets, which is due to true positive detections being having higher numbers of reads, in general (Table S1; rquantitative= 0.889, p=0.001). 
Samples from the same farm (connected with line segments) and geographic locations tend to cluster together. Codes for geographic locations are: CN = 
Chilterns North; CS = Chilterns South, HD = Hampshire Downs, and LW = Low Weald. Codes for farm management are: CG = Conservation Grade farm; 
OELS = Organic + Entry-Level-Scheme farm; ELS = Entry-Level-Scheme farm.  
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Figure S7. The mt-genome sequences of 48 reference bee species were used to design specific primers 
for Bombus lucorum (LucorumF: 5’ GGTTCATCAATAAGTTTAC 3’ and LucorumR: 5’ 
TATGCTCGTGTATCTACA 3’). The target fragment length is 787 bp (not including primers). The 33 
UK bee species that were detected in the mitogenome dataset (including Bombus lucorum) and the 10 
mixed samples were tested with the B. lucorum-specific primers. PCRs were performed in 30 µL reaction 
volumes containing 3 µL of 10× buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.2 µM each primer, 0.9 U 
ExTaq DNA polymerase (TaKaRa Biosystems, Dalian, China) and approximately 10 ng of genomic 
DNA. We used a thermocycling profile of 95 °C for 2 min; 35 cycles of 95 °C for 15 sec, 52 °C for 15 
sec, 72 °C for 1 min; and a final extension of 72 °C for 10 min. PCR products were visualized on 2% 
agarose gels.  
 
The two samples for which the mitogenomic dataset detected Bombus lucorum are coded here as M6 and 
M7, and these two samples are the only two that produced PCR product.  
 
Gel figures of the PCR products: 

 
 
Label key: 
1 - Lasioglossum calceatum 
2 - Lasioglossum malachurum 
3 - Andrena nitida 
4 - Andrena nigroaenea 
5 - Andrena cineraria 
6 - Andrena haemorrhoa 



7 - Andrena bicolor 
8 - Andrena minutula 
10 - Bombus lapidarius 
11 - Lasioglossum leucopus 
12 - Andrena dorsata 
13 - Bombus pascuorum 
15 - Andrena chrysosceles 
16 - Lasioglossum pauxillum 
17 - Lasioglossum parvulum 
18 - Bombus hortorum 
19 - Andrena flavipes 
21 - Halictus rubicundus 
23 - Lasioglossum minutissimum 
24 - Bombus terrestris 
25 - Sphecodes ephippius 
26 - Halictus tumulorum 
27 - Nomada goodeniana 
28 - Nomada ruficornis 
29 - Bombus lucorum 
30 - Bombus pratorum 
31 - Andrena subopaca 
32 - Andrena semilaevis 
40 - Nomada fabriciana 
43 - Lasioglossum leucozonium 
44 - Sphecodes miniatus 
45 - Lasioglossum punctatissimum 
48 - Apis mellifera 
M1 – CN_CG_1 
M2 – CN_CG_2 
M3 – CN_CG_3 
M4 – CS_OELS_1 
M5 – CS_OELS_2 
M6 – LW_ELS_1 (working code: LW_ELS_3A_2) 
M7 – HD_CG_1 (working code: HD_CG_1A_2) 
M8 – HD_CG_2 
M9 – HD_CG_3 
M10 – LW_CG_1 
NC – negative control 
M – DL2000 marker (TaKaRa Biosystems, Dalian, China) 



	


