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Abstract 

Episodic memory dysfunction represents one of the most prominent and characteristic 

clinical features of patients with Alzheimer’s disease (AD), attributable to the degeneration of 

medial temporal and posterior parietal regions of the brain. Recent studies have demonstrated 

marked impairments in the ability to envisage personally relevant events in the future in AD. 

It remains unclear, however, whether AD patients can imagine fictitious scenes free from 

temporal constraints, a process that is proposed to rely fundamentally upon the integrity of 

the hippocampus. The objective of the present study was to investigate the capacity for 

atemporal scene construction, and its associated neural substrates, in AD. Fourteen AD 

patients were tested on the scene construction task and their performance was contrasted with 

14 age- and education-matched healthy older Control participants. Scene construction 

performance was strikingly compromised in the AD group, with significant impairments 

evident for provision of contextual details, spatial coherence, and the overall richness of the 

imagined experience. Voxel-based morphometry analyses based on structural MRI revealed 

significant associations between scene construction capacity and atrophy in posterior parietal 

and lateral temporal brain structures in AD. In contrast, scene construction performance in 

Controls was related to integrity of frontal, parietal, and medial temporal structures, including 

the parahippocampal gyrus and posterior hippocampus. The posterior cingulate cortex 

emerged as the common region implicated for scene construction performance across 

participant groups. Our study highlights the importance of regions specialised for spatial and 

contextual processing for the construction of atemporal scenes. Damage to these regions in 

AD compromises the ability to construct novel scenes, leading to the recapitulation of content 

from previously experienced events. 
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1. Introduction 

Episodic memory facilitates the recollection of richly detailed and evocative experiences 

from the past, located within a unique spatiotemporal framework (Tulving, 2002). The 

retrieval of multifaceted past events involves multi-modal sensory-perceptual details 

(Conway, 2001), semantic representations (Irish and Piguet, 2013), emotional connotations 

(Holland and Kensinger, 2010) and visual imagery (Greenberg and Rubin, 2003), integrated 

within a personally relevant setting (Conway et al., 2004). Neuroimaging studies consistently 

identify a distributed set of brain regions which support the retrieval of episodic memories 

from the past (Cabeza and St Jacques, 2007; Maguire, 2001; Svoboda et al., 2006). This 

“core network” comprises the medial temporal lobes including the hippocampus, as well as 

frontopolar, lateral temporal, posterior parietal, and occipital cortices (Spreng et al., 2009). 

Of particular interest in this regard, is the well-established view that episodic memory is a 

constructive rather than reproductive endeavour (Bartlett, 1932; Schacter et al., 1998). 

Functional neuroimaging studies in healthy individuals have revealed striking similarities 

between the recruitment of brain regions supporting episodic retrieval and those implicated in 

future-oriented thinking (Addis et al., 2007; Botzung et al., 2008; Szpunar et al., 2007) 

suggestive of a common neural substrate subtending past and future modes of thought 

(Schacter et al., 2007). Interestingly, the same neural network has also been shown to 

robustly activate when healthy individuals construct fictitious scenes devoid of temporal 

connotations in their mind’s eye (Hassabis et al., 2007a; Summerfield et al., 2010). 

The study of patients with AD affords a compelling view of the cognitive architecture of the 

brain when distinct neurocognitive processes begin to degrade in a systematic and 

coordinated manner (Irish et al., 2012c). Episodic memory dysfunction represents a hallmark 

feature of this patient group, in light of the characteristic medial temporal lobe degeneration 
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evident from an early stage in the pathological process (Braak and Braak, 1991). An amnestic 

profile predominates whereby AD patients exhibit anterograde episodic memory difficulties 

concerning the encoding and retrieval of recent experiences, irrespective of task modality (de 

Toledo-Morrell et al., 2000; McKhann et al., 2011). Retrograde memory impairments are also 

prominent, manifesting in pronounced autobiographical memory dysfunction (Barnabe et al., 

2012; Irish et al., 2011a; Irish et al., 2011b), which is significantly associated with the degree 

of medial and lateral temporal lobe atrophy (Gilboa et al., 2005). In parallel with these 

characteristic impairments in episodic and autobiographical memory, patients with AD 

display marked difficulties with spatial navigation and orientation, attributable to the 

degeneration of the posterior hippocampus and retrosplenial/posterior cingulate cortex 

(Pengas et al., 2012; Tu et al., 2015). 

While episodic dysfunction for the past represents the prototypical cognitive complaint in 

AD, converging evidence points to profound disturbances when AD patients attempt to 

envisage the future (Addis et al., 2009; El Haj et al., 2015; Irish et al., 2012a, b; reviewed by 

Irish and Piolino, 2015). Importantly, parallel deficits across past and future contexts have 

been observed, encompassing not only the provision of contextual details but also the 

subjective phenomenological experience (El Haj et al., 2015; Irish et al., 2012b). Similarly, 

the number of self-defining memories and the quality of the autonoetic experience appears 

comparably affected across past and future contexts in AD (El Haj et al., 2015). Atrophy in 

the posterior cingulate cortex has been shown to correlate strongly with impairments in 

autobiographical retrieval of the past and the capacity to simulate the future in AD (Irish et 

al., 2012a; Irish et al., 2013). As such, similarities in performance across past and future 

contexts in AD is reflected on the neuroanatomical level.  
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One area that has not been investigated to date concerns the capacity for patients with AD to 

imagine fictitious scenes that are devoid of temporal connotations. Scene construction refers 

to the process of mentally generating and maintaining a coherent and complex scene, the 

product of which can later be manipulated and visualised (Hassabis and Maguire, 2007), and 

depends critically upon the integrity of a “core” network comprising the medial temporal 

lobes, including the hippocampus and parahippocampal cortex, as well as posterior parietal 

regions such as the retrosplenial cortex and precuneus (Hassabis et al., 2007a; Hassabis et al., 

2007b; Summerfield et al., 2010). Scene construction is argued to provide the essential 

foundation to support an array of complex higher-order processes including autobiographical 

memory, future thinking, spatial navigation, and potentially dreaming and mind-wandering 

(Hassabis and Maguire, 2007; Mullally and Maguire, 2014).  

Studies of scene construction in clinical populations have proved particularly illuminating in 

this regard. Hassabis and colleagues demonstrated that patients with selective bilateral 

hippocampal damage are unable to construct fictitious atemporal scenes, with the spatial 

coherence of the imagined scenes severely compromised (Hassabis et al., 2007b). Subsequent 

studies have replicated this finding of imagination deficits in cohorts with medial temporal 

lobe damage (Andelman et al., 2010; Mullally et al., 2012b; Race et al., 2011; but see Squire 

et al., 2010), with the observation that integrity of the right hippocampus may be critical for 

mental simulation and future thinking (Mullally et al., 2012a; Mullally et al., 2014).  

While a central role has been ascribed to the hippocampus in supporting scene construction, 

mounting evidence also points to the fundamental contribution of posterior parietal regions. 

Functional neuroimaging studies reliably implicate the retrosplenial cortex, posterior 

cingulate cortex, and precuneus when healthy individuals mentally construct atemporal 

scenes (Hassabis et al., 2007a; Summerfield et al., 2010). Moreover, a recent fMRI study in 

the developmental amnesic patient Jon reveals that he can construct fictitious scenes by 



 8 

engaging many of the core regions of the scene construction network, including the 

retrosplenial and posterior cingulate cortices (Mullally et al., 2014). The importance of the 

posterior regions for atemporal imagination is underscored by the finding of grossly impaired 

scene construction in patients with posterior parietal lesions (Berryhill et al., 2010). As such, 

it appears that damage to any of the key nodes of the scene construction network precludes 

the capacity to construct spatially contiguous scenes.  

To date, no study to our knowledge, has investigated the capacity to construct fictitious 

scenes devoid of temporal constraints in AD. This lack of research is somewhat surprising, 

given that key medial temporal and posterior parietal regions of the core network mediating 

scene construction are known to harbour significant pathology from early in the disease 

course in AD (Buckner et al., 2005). The objectives of the present study were twofold. 

Firstly, we sought to investigate the capacity for scene construction in a well-characterised 

cohort of AD patients, to determine whether deficits in imagination extend to atemporal 

forms. Secondly, we wished to elucidate the neural correlates of scene construction 

impairments in AD, to clarify which regions of the brain must be functional to support 

atemporal forms of imagination. We predicted that atemporal scene construction would be 

significantly compromised in AD relative to healthy older Controls, attributable primarily to 

hippocampal and posterior parietal degeneration characteristic of this disease.  

 

2. Materials and Methods 

2.1 Participants 

Fourteen patients with Alzheimer’s disease (AD) and 14 age- and education-matched healthy 

controls were recruited through FRONTIER at Neuroscience Research Australia (NeuRA), 

Sydney. All dementia patients met the relevant clinical diagnostic criteria for AD, displaying 
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significant episodic memory loss, cognitive dysfunction in at least one additional domain, 

and evidence of functional decline (McKhann et al., 2011). Clinical diagnoses were 

established by multidisciplinary consensus among a senior neurologist, clinical 

neuropsychologist, and occupational therapist based on extensive clinical investigations, 

cognitive assessment, informant report of activities of daily living, and structural 

neuroimaging.  

Healthy controls were recruited from the NeuRA research volunteer panel and local 

community clubs. All controls scored 0 on the Clinical Dementia Rating scale (CDR) 

(Morris, 1997), and 88 or above on the Addenbrooke’s Cognitive Examination-Revised 

(ACE-R) (Mioshi et al., 2006). Exclusion criteria for all participants included prior history of 

mental illness, significant head injury, movement disorders, cerebrovascular disease, alcohol 

and other drug abuse, and limited English proficiency.  

The study was conducted in accordance with the Declaration of Helsinki. Ethical approval 

was obtained from the Human Research Ethics Committee of the South Eastern Sydney and 

Illawarra Area Health Service and the University of New South Wales Human Research 

Ethics Advisory panel D. All participants, or their person responsible, provided written 

informed consent. Participants volunteered their time and were reimbursed for travel costs. 

 

2.2 Behavioural testing 

2.2.1 General cognitive screening 

Participants completed a comprehensive battery of neuropsychological tests. The ACE-R was 

administered as a general measure of global cognitive functioning, Episodic memory was 

assessed using the Rey Auditory Verbal Learning Test (RAVLT) (Schmidt, 1996) to measure 
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delayed verbal episodic recall; 3 minute recall of the Rey Complex Figure (RCF) (Rey, 1941) 

as an index of non-verbal episodic retrieval; Part A of the Doors and People Test (Baddeley 

et al., 1994) to measure non-verbal episodic recognition. Executive function was assessed 

using the Trail Making Test (Parts B-A) (Reitan, 1958) and the Digit Span task (Wechsler, 

1997). Finally, verbal semantic processing was measured using letter fluency (F, A, S) 

(Strauss et al., 2006), and the Naming and Comprehension subtests from the Sydney 

Language Battery (SydBat) (Savage et al., 2013). 

 

2.3 Assessment of scene construction 

The capacity to imagine fictitious scenes was measured using the Scene Construction task 

developed by Hassabis et al. (2007b). To avoid fatigue in the AD participants, we shortened 

the test by constraining our focus to seven atemporal scenes (Beach, Museum, Pub, Ship, 

Market, Forest, Castle). In keeping with the original test protocol, the requirements of the 

scene construction task were explained to participants and examples were provided. A short 

description of each scenario was then read aloud and participants were instructed to imagine 

and describe the scenario in as much detail as possible. The scenario description was printed 

on a card and placed in front of participants to act as a reminder, if necessary. Importantly, 

participants were instructed not to recount an actual memory, but rather were required to 

construct something new. Participants provided their description of each scene uninterrupted 

until they reached a natural end to their narrative. Then, general probes were provided to 

elicit further details. Following the description of each scene, participants rated their 

constructions in terms of perceived salience, sense of presence, difficulty, and the degree to 

which the imagined scene resembled a past memory. Further, participants were required to 

indicate which qualitative statements accurately described the spatial properties of their 
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construction (Spatial Coherence). The test session lasted approximately 40 minutes. All 

interviews were digitally recorded for subsequent transcription and scoring. 

The original scoring protocol developed by Hassabis et al. (2007b) was used to segment the 

scene construction narratives into a set of content statements. Content statements were then 

assigned to one of four categories; Entities Present, Spatial References, Sensory Descriptions, 

and Thoughts/Emotions/Actions. The scoring for each content category was capped at 7 

points, leading to a maximum Total Content score of 28. The Spatial Coherence index 

reflected the degree to which participants rated their imagined scene as spatially contiguous 

and ranged from -6 (completely fragmented) to +6 (completely integrated). An objective 

quality judgement was conferred by the scorer to indicate how well the description of the 

scene evoked a vivid mental picture in their mind’s eye, ranging from 0 (no mental image) to 

10 (extremely vivid mental picture). SH scored all scene construction data and was blind to 

group membership and study objectives. To ensure consistency in scoring, an independent 

rater (MI) scored a subset of constructed scenes (4 AD and 4 Controls x 7 scenes per person 

= 56 scenes). Overall, inter-rater reliability was very high for Total Content (Cronbach’s 

alpha = .979) and the quality judgment (Cronbach’s alpha = .923). 

A composite score, the Experiential Index, was generated from the four subcomponents of 

the scene construction task: Total Content, Participant Ratings (sense of presence, perceived 

salience), Spatial Coherence index, and objective Quality Judgment (see Hassabis et al., 

2007b). The Experiential Index reflects the richness of the imagined experience ranging from 

0 (not experienced at all) to 60 (extremely richly experienced).  

 

2.4 Statistical analyses 
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Cognitive data were analysed using IBM SPSS Statistics (Version 21.0). Multivariate 

analyses of variance (MANOVA) were used to explore main effects of Group (Controls, AD) 

for all general cognitive tests and performance on the Scene Construction task. Chi-squared 

tests (X2), based on the frequency patterns of dichotomous variables (e.g., sex), were also 

used. Finally, Spearman rank correlations were run to investigate the relationship between 

performance on the scene construction task and neuropsychological variables of interest.  

 

2.5 Image acquisition 

Participants underwent whole-brain T1-weighted images using a 3T Philips MRI scanner 

with standard quadrature head coil (8 channels). The 3D T1-weighted images were acquired 

using the following sequences: coronal orientation, matrix 256 x 256, 200 slices, 1 x 1 mm 

in-plane resolution, slice thickness 1 mm, echo time/repetition time = 2.6/5.8ms, flip angle ɑ 

= 19º. MRI structural scans were not available for 1 Control participant. 

 

2.6 Voxel-based morphometry analysis 

Three-dimensional T1-weighted sequences were analysed with FSL-VBM, a voxel-based 

morphometry analysis (Ashburner and Friston, 2000; Mechelli et al., 2005) using the FSL-

VBM toolbox from the FMRIB software package 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM/UserGuide) (Smith et al., 2004). The VBM 

technique was used to identify grey matter density changes across groups on a voxel-by-

voxel basis. Briefly, structural MR images were extracted using the brain extraction tool 

(BET) (Smith, 2002), following which, tissue segmentation was carried out using FMRIB’s 

Automatic Segmentation Tool (FAST) (Zhang et al., 2001). The FMRIB non-linear 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM/UserGuide
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registration approach (FNIRT) (Andersson et al., 2007a, 2007b) was then used to align the 

resulting grey matter partial volumes to the Montreal Neurological Institute standard space 

(MNI152), using a b-spline representation of the registration warp field (Rueckert et al., 

1999). A study-specific template was created using the resulting images, to which the native 

grey matter images were re-registered nonlinearly. To correct for local expansion or 

contraction, the registered partial volume maps were modulated by dividing by the Jacobian 

of the warp field. Finally, the modulated segmented images were smoothed with an isotropic 

Gaussian kernel with a sigma of 3mm.  

An unbiased whole-brain general linear model was employed to investigate grey matter 

intensity differences via permutation-based non-parametric testing (Nichols and Holmes, 

2002) with 10,000 permutations per contrast. Differences in cortical grey matter intensities 

between AD patients and Controls were assessed using regression models with separate 

directional contrasts (i.e., t-tests). Age was included as a nuisance variable in the atrophy 

analysis. Clusters were extracted using the threshold-free cluster enhancement and corrected 

for False Discovery Rate at p < .05.  

Next, correlations between the Experiential Index of the scene construction task and regions 

of grey matter intensity were investigated in each participant group separately. The 

Experiential Index was chosen as the key outcome measure as it reflects the overall richness 

and coherence of the constructed scene (Hassabis et al., 2007b). For additional statistical 

power, a covariate-only statistical model was employed. A positive t-contrast was used in the 

covariate model, providing an index of association between grey matter volume and scene 

construction scores. Anatomical locations of significant results were overlaid on the MNI 

standard brain, with maximum coordinates provided in MNI stereotaxic space. Anatomical 

labels were determined with reference to the Harvard-Oxford probabilistic cortical atlas. For 

all covariate analyses, clusters were corrected for False Discovery Rate at p < .05. To further 
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reduce the potential for false positive results, a cluster threshold of 50 contiguous voxels was 

employed. For illustrative purposes, correlations were run between the Experiential Index and 

grey matter intensity for key regions of interest to emerge as significant from the covariate 

analyses in each participant group.  

Finally, an overlap analysis was conducted using the results from the covariate analyses to 

identify common grey matter regions implicated in scene construction performance across the 

groups. The scaled contrasts of the statistical maps generated from the AD and Control 

covariate analyses were multiplied to create an inclusive, or overlap, mask across groups. 

 

3. Results 

3.1 Demographics 

Participants were matched for age (F(1, 26) = 1.182, p = .287) and years in education (F(1, 

26) = 3.016, p = .094). Chi-squared tests revealed no difference in sex distribution between 

the groups (p = .445) (Table 1).  

 

3.2 General cognitive functioning 

Neuropsychological testing revealed a characteristic profile of deficits in the AD group 

relative to Controls (Table 1). AD patients showed global cognitive impairment on the ACE-

R screening tool (F(1, 26) = 20.049, p < .0001), and presented in the mild to moderate stages 

of the disease (ACE-R total score range: 89-62). Prominent impairments in episodic memory 

were evident in the AD group for recall of verbal (RAVLT: F(1, 24) = 225.238, p < .0001) 

and non-verbal (RCF: F(1, 23) = 33.970, p < .0001) information, as well as visual episodic 
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recognition (Doors A: F(1, 20) = 46.342, p < .0001). Further deficits in semantic processing 

(Naming: F(1, 24) = 19.592, p = .001; Comprehension: F(1, 23) = 16.835, p < .0001) and 

verbal fluency (F(1, 20) = 10.757, p = .004) were observed. Finally, AD patients displayed 

significant executive dysfunction relative to Controls (Digit span total: F(1,25) = 23.568, p < 

.0001; Trails B-A F(1, 20) = 6.258, p =.021). 

 

***INSERT TABLE 1 AROUND HERE*** 

 

3.3 Scene Construction Performance 

3.3.1 Experiential Index  

The key result, illustrated in Figure 1, was that AD patients displayed marked impairments in 

the ability to imagine spatially coherent scenes on the scene construction task relative to 

Controls. Firstly, the overall ability to imagine new experiences was ascertained using the 

Experiential Index, a composite score of all subcomponents of the scene construction task. 

AD patients scored significantly lower than controls on the Experiential Index (F(1, 26) = 

71.420, p < .0001), indicating that the capacity to imagine new experiences in rich detail is 

grossly impaired in AD.  

 

***INSERT FIGURE 1 AROUND HERE***. 

 

3.3.2 Total Content 
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Looking at each of the main subcomponents of the scene construction task in turn revealed 

important group differences (Table 2). AD patients displayed marked deficits in the provision 

of contextual details for the imagined scenes (Total Content: F(1, 26) = 43.839; p < .0001). 

This disruption of content occurred irrespective of detail subcategory, with AD patients 

providing significantly lower levels of detail for Spatial References (p < .0001), Entities 

Present (p < .0001), Sensory Descriptions (p = .001) and Thought/Emotions/Actions (p < 

.0001) (see Figure 2 for representative examples of scene construction narratives).  

 

***INSERT FIGURE 2 AROUND HERE***. 

 

3.3.3 Spatial Coherence 

Analysis of the Spatial Coherence index, which represents the degree to which the imagined 

experiences are bound within a coherent spatial context, also revealed a significant group 

effect (F(1, 26) = 7.819, p = .010). This group difference reflected the fact that AD patients 

rated their imagined scenarios as fragmented and lacking in coherence, resembling a 

collection of disparate images rather than a fully integrated visual scene.  

 

3.3.4 Quality Judgment 

The Quality Judgment provides an objective measure of the overall quality of the imagined 

scenes. AD patients’ constructions were judged to be significantly poorer in quality than 

those of Controls (F(1, 26) = 221.663, p < .0001) failing to evoke a rich visual image in the 

mind’s eye of the rater.  
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***INSERT TABLE 2 AROUND HERE***. 

 

3.3.5 Participant ratings 

Interestingly, the subjective experiential ratings failed to discriminate between the two 

participant groups. AD patients did not differ from Controls in terms of their subjective 

feeling of presence in the imagined scene (p = .387) or their perceived salience of the 

imagined experiences (p = .323) (see Table 2). Importantly, AD patients did not judge the 

scene construction task to be more difficult than Controls (AD mean = 2.3; Control mean = 

2.1; p = .349).  

Finally, the degree to which the imagined new experiences resembled previously experienced 

events was explored. A significant group difference was found for ratings of similarity to past 

memories (F(1, 26) = 22.403, p < .0001) with AD patients tending to rate their imagined 

experiences as “similar to past memories” (AD mean = 2.4) whereas Controls rated their 

experiences as only reminding them of elements of a few memories (Control mean = 3.2).  

 

3.3.6 Relationship between scene construction performance and neuropsychological tests 

Spearman rank correlations were run to investigate the potential relationship between scene 

construction performance and the domains of episodic memory, semantic processing, 

attention/executive function, and language. No significant associations were found between 

Experiential Index scores on the scene construction task and performance across each of the 
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background neuropsychological tests for AD patients or Control participants (all p values > 

.1, Table 3). 

 

***INSERT TABLE 3 AROUND HERE*** 

 

Finally, to ensure that scene construction deficits were not primarily attributable to a general 

decline in language, we conducted an analysis of covariance (ANCOVA) with letter fluency 

and ACE-R Language subscales scores as covariates. Significant group differences persisted 

for the Experiential Index (F(1, 18) = 22.718, p < .0001) indicating that a broader language 

impairment cannot account for the marked impairments in scene construction demonstrated 

by AD patients. 

 

3.4 Voxel-based morphometry analyses 

3.4.1 Atrophy analyses 

Compared to Controls, AD patients displayed significant grey matter intensity decrease in a 

distributed set of frontal, lateral and medial temporal, and posterior parietal brain regions. 

Significant atrophy was evident in medial temporal lobe regions including the bilateral 

hippocampi, amygdalae, and parahippocampal gyri, extending to the left lateral temporal 

cortices. The bilateral frontal poles, inferior frontal gyri, and medial prefrontal cortices were 

also affected, as were posterior regions including the bilateral angular gyri, bilateral 

supramarginal gyri, and bilateral lateral occipital cortices (Table 4). These patterns of atrophy 

are consistent with previous reports in AD (Karas et al., 2010). 
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***INSERT TABLE 4 AROUND HERE***. 

 

3.4.2 Grey matter correlates of scene construction performance 

Figure 3 displays the results from the covariate analyses investigating the association 

between Experiential Index scores and grey matter intensity in the brain in each participant 

group.  

For AD patients, the capacity to envisage spatially coherent atemporal scenes was 

significantly associated with integrity of the left posterior cingulate cortex and precuneus, the 

left inferior temporal gyrus, and the right supramarginal gyrus (Figure 3, Table 5). In 

contrast, for healthy older Controls, Experiential Index scores were significantly associated 

with integrity of a distributed network including the bilateral parahippocampal gyri, left 

posterior hippocampus, left posterior cingulate and precuneus, the left supramarginal and 

angular gyrus, the left superior frontal gyrus, left frontal pole, and left medial prefrontal 

cortex (Figure 3, Table 5).  

 

***INSERT FIGURE 3 AROUND HERE***. 

***INSERT TABLE 5 AROUND HERE***. 

 

Finally, grey matter intensity values for each participant were extracted at the peak 

coordinate for key regions to emerge as significant from the covariate analyses (posterior 

cingulate cortex; parahippocampal gyrus/hippocampus). The relationship between grey 

matter integrity of these regions and scene construction performance were explored using 

Spearman rank correlations. The r correlation coefficients were then converted to z scores 

using Fisher’s transformation to compare the magnitude of the relationship between these key 

brain regions and scene construction performance between the groups. Integrity of the 
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posterior cingulate cortex correlated with Experiential Index scores in the AD (r = .586, p = 

.03) and Control (r = .791; p = .002) groups (Figure 4A) with no difference in the magnitude 

of this correlation between the groups (z = 0.92, p = .358). In contrast, integrity of the left 

parahippocampal gyrus/hippocampus was found to correlate robustly with scene construction 

performance in Controls (r = .861, p < .001), yet this relationship was absent in the AD group 

(r = -.269, p =.346) (z = 3.6; p < .001) (Figure 4B).  

 

***INSERT FIGURE 4 AROUND HERE***. 

 

Finally, to identify the regions significantly associated with scene construction performance 

in both the AD and Control groups, we conducted an overlap analysis based on the statistical 

maps generated from the covariate analyses. This analysis revealed that the common structure 

implicated in scene construction performance across AD and Control groups was the 

posterior cingulate cortex (MNI coordinates: x = -2, y = -38, z = 24; Figure 5). 

 

***INSERT FIGURE 5 AROUND HERE***. 

 

 

4. Discussion 

This study represents the first investigation of atemporal scene construction, and its 

associated neural correlates, in Alzheimer’s disease (AD). Marked impairments in the 

capacity to construct spatially coherent scenes were evident in AD, attributable to damage to 

posterior parietal and lateral temporal regions in the brain. In contrast, integrity of a 

distributed network comprising frontal, parietal, and medial temporal lobe structures 

including the parahippocampal gyrus and posterior hippocampus were associated with intact 
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performance in Controls. An overlap analysis revealed that the posterior cingulate cortex was 

commonly implicated in scene construction performance in both AD and Control groups. 

Here we discuss the implications of our findings for current models of memory and 

imagination, as well as in the context of the characteristic deficits typically observed in AD.  

 

The most important finding arising from this study is the observation of striking alterations in 

scene construction processes in AD, converging with previous reports of imagination 

difficulties in patients with medial temporal lobe damage (Andelman et al., 2010; Hassabis et 

al., 2007b; Klein et al., 2002; Race et al., 2011). Importantly, these deficits encompassed not 

only the provision of contextual details but also the ability to integrate these details into a 

spatially coherent whole in the mind’s eye. As such, AD patients tended to provide 

overgeneral fragmented descriptions which largely recapitulated events that had previously 

transpired. Given the cross-sectional nature of this study, it remains difficult to disentangle 

the interplay between impaired scene construction performance and overall episodic memory 

integrity in AD. Our correlation analyses failed to reveal a significant relationship between 

scene construction performance and standard neuropsychological tests of episodic memory 

retrieval however, our relatively small sample size may have limited our power to detect 

significant associations in this regard. Notably, in a previous study we documented a 

significant relationship between episodic memory integrity and the ability to envisage 

plausible future events in AD (Irish et al., 2012a), in line with current theories emphasising a 

fundamental role for episodic memory in the constructive simulation of future events 

(Schacter et al., 2007). It may be that traditional lab-based episodic memory paradigms fail to 

capture the complexity of the type of contextual recall that is essential for performance on the 

scene construction task. Given that AD patients tended to draw upon overgeneral memories 

from their past, it would be interesting to explore the potential relationship between 
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semanticized aspects of autobiographical memory retrieval and the provision of content 

during scene construction.  

 

Neuroimaging covariate analyses revealed that the degeneration of posterior parietal and 

lateral temporal structures underpins scene construction impairments in AD. Indeed, the 

posterior cingulate cortex (PCC) emerged as the sole region common to scene construction 

performance in AD patients and healthy Controls. Our finding of significant posterior 

cingulate/precuneus involvement in the construction of atemporal scenes in AD converges 

with previous studies investigating lab-based episodic memory (Irish et al., 2014), 

autobiographical memory and episodic future thinking (Irish et al., 2012a; Irish et al., 2013) 

in this syndrome. The posterior cingulate cortex represents a particularly interesting 

convergence zone in the brain as it occupies a crucial node in the core autobiographical 

memory network (Svoboda et al., 2006), and represents a “hub” within the brain’s default 

mode network (Andrews-Hanna et al., 2010). Moreover, the PCC has been implicated across 

an array of memory-based construction/simulation functions such as autobiographical 

memory, episodic future thinking, and scene construction (Andrews-Hanna et al., 2010). 

Damage to the PCC in AD most likely reflects the degeneration of a broader posteromedial 

network, in which functional connectivity between the PCC and hippocampus is 

compromised (La Joie et al., 2014). Of note, a recent resting-state functional connectivity 

study points to disrupted connectivity between the PCC and MTL in medial temporal lobe 

amnesics (Hayes et al., 2012) suggesting that, in addition to structural anomalies in the MTL, 

functional aberrations across large-scale brain networks likely modulate memory-based 

construction/simulation deficits in these syndromes.  
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The PCC is implicated across a wide spectrum of cognitive processes and may support scene 

construction in a variety of ways. For example, this region has been implicated in the 

generation of visuospatial imagery (Cavanna and Trimble, 2006), the recollective aspect of 

episodic memory retrieval (Wagner et al., 2005), and in the invoking of self-referential 

processes when envisaging oneself across past and future contexts (Abraham et al., 2008; 

Northoff and Bermpohl, 2004). Functional neuroimaging studies of scene construction in 

healthy individuals have revealed that the precuneus and posterior cingulate cortex are 

differentially recruited during retrieval of real versus imaginary memories (Hassabis et al., 

2007a), a finding which may reflect greater familiarity for the visual context for real 

memories versus more novel imaginary events (Hassabis and Maguire, 2009). Recruitment of 

midline posterior structures has been hypothesised to reflect the reactivation of familiar 

visuospatial contexts which facilitates the generation of a plausible future image (Szpunar et 

al., 2007). This position is supported by the finding that AD patients tend to recapitulate 

previously experienced events during future simulation rather than creating genuinely novel 

events (Irish et al., 2012b). In the context of scene construction, AD patients may rely upon a 

limited pool of overgeneral gist-based memories, which remain relatively intact in the early 

stages of the disease (Gallo et al., 2006) and serve as the most accessible form of information 

that is relevant to the event of interest (El Haj et al., 2015). In this vein, the degeneration of 

posterior parietal structures may disrupt the capacity for old/new detection, leading to the 

recasting of content from previously experienced events.  

 

The left lateral temporal cortex was also implicated in scene construction performance in AD. 

This finding is notable given the well-established role of the left temporal cortices in 

semantic processing (Visser et al., 2010). Mounting evidence now points to the fundamental 

contribution of semantic memory for a range of constructive endeavours including 
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remembering the past (Greenberg and Verfaellie, 2010) and imagining the future (Duval et 

al., 2012; Irish et al., 2012a). In the context of atemporal scene construction, it has been 

suggested that intact semantic memory may facilitate the construction of scenes in patients 

with developmental amnesia (Hurley et al., 2011) and paediatric patients with hippocampal 

damage (Cooper et al., 2011). Semantic memory represents a suitable conduit for 

constructive endeavours given that it provides undifferentiated conceptual information that 

can be generalised across a range of contexts (Binder and Desai, 2011; Irish and Piguet, 

2013). In particular, semantic memory may be critically required where novel scenes or 

events must be constructed, as evidence from patients with semantic dementia suggests that 

the loss of semantic memory disproportionally disrupts the novelty of future simulations 

(Irish et al., 2012a, b). While we did not find a relationship between neuropsychological 

assessments of semantic memory and scene construction performance in AD, our 

neuroimaging findings support current theories emphasising the importance of the semantic 

memory system in mediating complex constructive endeavours (Binder and Desai, 2011; 

Irish and Piguet, 2013; Mullally and Maguire, 2014). It may be that the lab-based tests of 

semantic processing used here do not adequately capture the specific mechanisms of 

semantic memory required for successful scene construction, and we suggest that future 

studies will be important to tease apart the contribution of semantic memory in this regard.  

 

Turning our attention towards the healthy Control group, our neuroimaging findings revealed 

significant associations between a distributed network of regions comprising medial temporal 

structures, including the bilateral parahippocampal gyrus and left posterior hippocampus, 

along with prefrontal and posterior parietal regions such as the supramarginal and angular 

gyrus and performance on the scene construction task. We draw attention to the fact that 

these findings represent associations between scene construction scores and grey matter 
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intensity in the brain rather than functional activations in response to task performance. In 

addition, we note that our Controls performed almost at ceiling on this task, potentially 

reflecting the capped nature of the content scoring system. These caveats aside, the regions to 

emerge from our VBM analyses converge remarkably well with subregions of the 

construction system of the brain, a core network of regions that activates during the recall of 

recent episodic memories, recollection of previously imagined experiences, and the 

construction of novel scenarios (Hassabis et al., 2007a; Hassabis and Maguire, 2009). Our 

finding of significant left posterior hippocampal involvement in the construction of atemporal 

scenes resonates with functional neuroimaging studies in which the centrality of the 

hippocampus, albeit particularly on the right hand side, has been emphasised (Hassabis et al., 

2007a; Mullally et al., 2012a; Mullally et al., 2014; Summerfield et al., 2010). Accordingly, it 

has been proposed that a unique contribution of the hippocampus is to provide a coherent 

spatial context as the foundation for an array of constructive endeavours including 

autobiographical memory, simulation of future events, spatial navigation, and prediction of 

the upcoming environment (reviewed by Mullally and Maguire, 2014). The fact that our 

analyses exclusively implicated the posterior hippocampus is noteworthy and likely reflects a 

functional subdivision in the hippocampus, by which the posterior portion is differentially 

involved in the retrieval of spatial information and the reinstatement of spatial contexts 

(reviewed by Nadel et al., 2013). It has been suggested that the posterior hippocampus 

provides the requisite spatial “backdrop” for the constructed scenes (Mullally et al., 2012a). 

In addition, the posterior hippocampus is densely connected to posterior midline regions via 

the retrosplenial cortex, and it has been proposed that the retrosplenial cortex makes a 

fundamental contribution to the processing of scenes by translating allocentric 

(hippocampally-mediated) representations into those that are egocentric (parietal cortically-

based) (Vann et al., 2009). Finally, our finding of significant bilateral posterior 
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parahippocampal involvement underscores the fundamental contribution of this region to the 

construction of scenes, potentially by coding for the presence of space (Mullally and 

Maguire, 2011; Zeidman et al., 2012) or the processing of contextual associations (Aminoff 

et al., 2013). 

 

In addition to the contribution of medial temporal structures, our study reveals the importance 

of lateral parietal regions including the left angular gyrus and left supramarginal gyrus in 

supporting the construction of fictitious scenes. Posterior parietal activation during scene 

construction in healthy individuals has been previously documented (Hassabis et al., 2007a; 

Summerfield et al., 2010) and damage to posterior parietal cortices has been shown to 

manifest in scene construction impairments (Berryhill et al., 2010). The angular gyrus, in 

particular, has been proposed to represent a cross-modal integrative hub that is well 

positioned to subserve the convergence of multisensory information and to impart meaning to 

events within contextualised environments (Seghier, 2013). This region has further been 

posited to occupy a core node of a posterior medial cortical system which facilitates the 

construction and deployment of a “situation model” in which relationships between entities, 

outcomes and actions are represented (Ranganath and Ritchey, 2012). Finally, we observed 

significant associations between scene construction performance in Controls and grey matter 

integrity in frontal regions, including the superior frontal gyrus, frontal pole, and medial 

prefrontal cortex. Of particular relevance here is the medial prefrontal cortex, which has been 

proposed to represent an ancillary region that is co-opted into the core construction network 

contingent on task demands (Hassabis et al., 2007a). In this vein, recruitment of medial 

prefrontal regions may reflect demands placed upon self-referential processes as individuals 

attempt to distinguish between real and fictitious memories and to evaluate the “realness” of 

constructed scenes (Hassabis and Maguire, 2009; Summerfield et al., 2010). 
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A number of methodological limitations warrant consideration. While we have demonstrated 

that scene construction is markedly impaired in AD it remains unclear whether this represents 

the primary mechanism underlying a host of phenotypic impairments in this disorder. 

Moreover, given the co-occurrence of significant scene construction and episodic memory 

impairments in our AD sample, it is difficult to ascertain the relationship between these 

processes, leading to the proverbial “chicken and egg” problem. As such, whether scene 

construction deficits emerge secondary to, or in parallel with, changes in episodic memory 

remains to be elucidated. Related to this point, it is clear that the content of the scenes created 

by AD patients resemble previously experienced autobiographical events, suggesting that 

patients harness overgeneral gist-based memory to populate their constructions. It will 

therefore be important for future studies to tease apart the potential role of overgeneral 

autobiographical memories to the overall process of scene construction in AD. We suggest 

that future studies which differentially stress the construction of novel scenes (e.g., walking 

on the moon, swimming in Antarctica) will prove particularly interesting in this context, 

compelling participants to move beyond the provision of potentially routinized scripts or 

overgeneral autobiographical memories from the past. Within the limits of the current study, 

it was not possible to investigate how scene construction performance relates to other 

cognitive functions, such as autobiographical memory, future thinking, or spatial navigation, 

processes which have been proposed to hinge upon the capacity to construct spatially 

coherent scenes (Hassabis and Maguire, 2009; Mullally and Maguire, 2014) and to rely upon 

the integrity of a common core brain network (Spreng et al., 2009). Accordingly, it will be 

important for future studies to explore the potential interplay between scene construction 

deficits and the prototypical impairments of autobiographical and spatial memory, seen in 

AD. The contribution of mental imagery to scene construction deficits in AD also warrants 
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further study, given that patients with AD display significant difficulties on complex spatial 

mental imagery tasks, in the context of relatively preserved basic forms of mental imagery 

(Hussey et al., 2012). Similarly, we did not investigate the general narrative capacity of the 

AD cohort. Conflicting evidence exists regarding the relationship between constructive 

processes and general narrative ability (Gaesser et al., 2011; Race et al., 2011). Further, 

marked heterogeneity has been observed in the discourse patterns produced by AD patients, 

with one study revealing that over half of AD patients score at Control levels for discourse 

production related to picture-supported narratives (Duong et al., 2005). As such, it will be 

important for future studies to clarify the relationship between scene construction 

performance and narrative discourse in AD. Finally, our AD patients were in the mild to 

moderate stages of the disease and it remains unclear at what stage of the pathological 

process difficulties in scene construction manifest. To address this issue, we suggest that 

studies targeting the prodromal stage of Mild Cognitive Impairment, characterised by 

circumscribed MTL pathology, will provide important insights into the origin and evolution 

of scene construction dysfunction, and will serve to clarify the neurocognitive mechanisms 

driving such deficits. Functional activation studies of scene construction performance in 

healthy aging, MCI and AD will prove particularly informative in this regard, bridging voxel-

based morphometry findings in patient populations with the extant fMRI literature in healthy 

individuals. 

 

Conclusions 

In conclusion, this study represents the first investigation of scene construction in patients 

with Alzheimer’s disease. Our findings are notable in two respects. Firstly, we have 

confirmed that the capacity to construct spatially coherent scenes is grossly compromised in 

AD. Secondly, our neuroimaging analyses support current influential theories emphasising 
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the importance of the posterior hippocampus and neighbouring retrosplenial/posterior 

cingulate cortical regions in the generation of spatially coherent scenes (Mullally and 

Maguire, 2014; Vann et al., 2009). A question of paramount importance to address is whether 

scene construction dysfunction represents the core mechanism underlying a host of 

phenotypic impairments displayed by patients with AD and amnestic Mild Cognitive 

Impairment. We suggest that future studies investigating the potential relationship between 

scene construction processes and disparate cognitive functions essential for everyday 

adaptive functioning will prove particularly illuminating in this regard. 
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Figure Legends 

Figure 1. Experiential Index scores on the scene construction task for Alzheimer’s disease 

and Control participants. Error bars represent the standard error of the mean.  

Figure 2. Representative excerpts from (A) an Alzheimer’s disease patient and (B) a Control 

participant describing the “Museum” scene on the scene construction task. Experimenter 

prompts are provided in italics. 

Figure 3. Voxel-based morphometry analyses showing brain areas in which grey matter 

intensity correlates significantly with Experiential Index scores on the scene construction task 

for AD (green) and Control (red) participants. Coloured voxels show regions that were 

significant in the analyses at p < .05 corrected for False Discovery Rate with a cluster 

threshold of 50 contiguous voxels. All clusters reported t > 3.8. Clusters are overlaid on the 

Montreal Neurological Institute standard brain. L = Left.  

Figure 4. Scatterplots showing relationship between grey matter intensity in: (A) left 

posterior cingulate cortex, and (B) left parahippocampal gyrus/posterior hippocampus for 

scene construction performance in Alzheimer’s disease and Control participants. 

Figure 5. Inclusive masking results showing overlap in brain regions associated with scene 

construction performance in Alzheimer’s disease patients and Control participants. Clusters 

are overlaid on the Montreal Neurological Institute standard brain. L = Left. MNI 

coordinates: x = -2, y = -38, z = 24. 


