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Abstract 19 

 20 

Assessment of climate change impacts on crops in regions of complex orography such as the 21 
Iberian Peninsula (IP) requires climate model output which is able to describe accurately the 22 
observed climate. The high resolution of output provided by Regional Climate Models (RCMs) 23 
is expected to be a suitable tool to describe regional and local climatic features, although their 24 
simulation results may still present biases. For these reasons, we compared several post-25 
processing methods to correct or reduce the biases of RCM simulations from the ENSEMBLES 26 
project for the IP. The bias-corrected datasets were also evaluated in terms of their applicability 27 
and consequences in improving the results of a crop model to simulate maize growth and 28 
development at two IP locations, using this crop as a reference for summer cropping systems in 29 
the region. The use of bias-corrected climate runs improved crop phenology and yield 30 
simulation overall and reduced the inter-model variability and thus the uncertainty. The number 31 
of observational stations underlying each reference observational dataset used to correct the bias 32 
affected the correction performance. Although no single technique showed to be the best one, 33 
some methods proved to be more adequate for small initial biases, while others were useful 34 
when initial biases were so large as to prevent data application for impact studies. An initial 35 
evaluation of the climate data, the bias correction/reduction method and the consequences for 36 
impact assessment would be needed to design the most robust, reduced uncertainty ensemble for 37 
a specific combination of location, crop, and crop management.  38 
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1. Introduction 44 

Assessment of agricultural impacts of climate change at regional or local level requires 45 
accurate and high resolution climate projections (Mearns et al., 2003), as even small biases in 46 
the climate variables can have significant consequences when physical and/or biological 47 
thresholds are critical for crop growth and development. For instance, some climate models 48 
overestimate the occurrence of freezing temperatures in southern Europe (Kjellström et al., 49 
2010; Domínguez et al., 2013), which can lead to unrealistic estimates of freezing damage to 50 
crops. Also, overestimation in maximum temperatures (in particular the number of days above 51 
35ºC, Ruiz-Ramos et al., 2011) can lead to overestimation of yield loss due to heat stress during 52 
flowering and grain filling for summer crops in the Iberian Peninsula (IP). Besides, crop models 53 
simulate crop development by accumulating daily mean temperature above a base temperature. 54 
For these reasons, when using the results of climate models as an input for impact assessment, 55 
the biases should be carefully evaluated and where necessary reduced (Wood et al., 2004; 56 
Baigorria et al., 2007; and Teutschbein and Seibert, 2010). 57 

Global Climate Models (GCMs) generate the variables needed for impact assessment at a 58 
spatial resolution generally considered too coarse for most impact studies. One of the 59 
downscaling approaches consists of a Regional Climate Model (RCM) forced by boundary and 60 
initial conditions generated by a GCM (Giorgi, 1990; Wang et al., 2004). RCMs improve the 61 
representation of spatial variability in comparison to GCMs and the simulation of extreme 62 
events (Sánchez et al., 2004, 2011; Domínguez et al., 2013). RCMs are generally considered to 63 
improve the applicability of simulated climate for impact assessment, especially in regions of 64 
complex orography such as the IP (Mínguez et al. 2007 for IP). 65 

However, climate output from RCMs still presents biases, i.e. systematic deviations of 66 
simulated values from the observed values (Christensen et al., 2008), or just a slight 67 
improvement on fine-scale geographic features, unable to compensate the GCM biases (Glotter 68 
et al., 2014). Some of these biases are inherited from the driving GCM, while others are 69 
intrinsic to the RCM (Kjellström et al., 2010; Nikulin et al., 2011). Comparisons with 70 
observations may also be hampered by uncertainties in the observations themselves. The 71 
variables presenting large biases vary regionally; for instance, for the RCM ensemble produced 72 
in the framework of the ENSEMBLES EU Framework Program Project (van der Linden and 73 
Mitchell, 2009): A warm bias was reported for the IP, where summer bias can be related to a 74 
combination of incomplete representation of cloud cover and soil moisture (Maraun, 2012), 75 
while an underestimation of precipitation was reported for some RCMs (Christensen et al., 76 
2008; Domínguez et al., 2013). Bias reduction has consequences also for climate projections 77 
(e.g. Dosio et al., 2012; Bosshard et al., 2013). For instance, when a warm bias in summer in the 78 
Mediterranean was reduced, projections of future were found to decrease by up to one degree in 79 
the ensemble mean (i.e., by up to 10-20% of the unadjusted projected change) (Boberg and 80 
Christensen, 2012).  81 

Biases can be reduced by several techniques, e.g. the delta change method, which imposes 82 
the climate change signal from GCMs or RCMs on observations without changing the higher 83 
moments of the distribution. By using a transfer function (TF), Piani et al., (2010a,b) corrected 84 
precipitation and temperature biases from a RCM and a GCM showing good performance not 85 
only for means but also for time dependent statistical properties. Their method was adapted by 86 
Dosio and Paruolo (2011) and Dosio et al. (2012) to reduce the bias in the ENSEMBLES RCM 87 
ensemble, using the observational dataset E-OBS (Haylock et al., 2008) as the reference. This 88 
bias correction approach has also been applied for improving crop yield prediction(Ines and 89 
Hansen 2006; Oettli et al., 2011), although a debate on the consequences and convenience of 90 



bias correcting or not currently exists (e.g. Liu et al., 2014). Bias can also be reduced by using a 91 
weather generator (Jones et al., 2011). The above-mentioned studies apply a single post-92 
processing technique; few studies have inter-compared the effect of different bias reduction 93 
options on impact projections (see the review by Teutschbein and Seibert,2012, and Ruffault et 94 
al., 2014, for hydrological impacts). 95 

 In this study we have compared several post-processing methods to correct the biases of 96 
ENSEMBLES RCM simulation for IP. The bias corrected results were first evaluated over the 97 
present climate 1971-2000. The corrected datasets were also evaluated in terms of their 98 
applicability in crop impact studies for the near (2021-2050) and far future (2071-2100). 99 

 100 

 101 

2. Data and Methods 102 
 103 

2.1. Crop Modelling 104 

 105 

CERES-maize (Jones and Kiniry, 1986) is a crop model that includes ecophysiological 106 
relationships driving crop growth and development, and simulates the effects of temperature and 107 
CO2 changes on crop photosynthesis and transpiration rates. CERES uses a daily time step and 108 
daily data of maximum and minimum temperature (Tmax, Tmin), precipitation and radiation. 109 
Crop development is computed using the sum of mean daily temperature (growing degree days, 110 
GDD) above a base temperature. This model has been extensively applied to climate impact 111 
assessment (Mínguez et al., 2007 for the IP; Bassu et al., 2014).  112 

Maize was chosen because it provides a reference for summer crops in the IP, as it 113 
comprises 11% of the Spanish irrigated cropping area (which in turn is the 22% of the cropping 114 
land in Spain) and more than a third of the irrigated cereal area (MAGRAMA, 2014). Two 115 
locations were selected, Aranjuez and Albacete (location map in supplemental material Fig.S-1), 116 
because of their availability of referenced field data and their different temperature regimes and 117 
orographic conditions. Calibration and validation was done based on previous field experiments 118 
using cultivars, management, and specific soil information for each location (see supplemental 119 
material, text and Table S-1).  120 

 121 

2.2. Observed and simulated climate datasets 122 

 123 

Observed data from the Spanish Meteorological Agency (AEMET) stations span 1961-124 
2010 in Aranjuez and 1971-2010 in Albacete. From both stations, daily Tmax, Tmin, 125 
precipitation and radiation were used to evaluate the performance of the simulated datasets 126 
described below under present climate. 127 

In this study, the original set of 17 high resolution climate change projections generated 128 
in the framework of the EU FP6 project ENSEMBLES, was used (hereafter referred to as ENS, 129 
see the specific RCMs runs in supplemental material Table S-2) (van der Linden and Mitchell, 130 
2009). Simulations forced with the SRES A1B climate change scenario (Nakicenovic and 131 
Swart, 2000) spanned the period 1961-2050 (or 1960-2100 in some cases), at a resolution of 132 
around 25 km.  133 



 The second dataset, hereafter referred to as ENS-EOBS, was produced by bias 134 
correcting a subset of the ENS dataset (12 RCMs) using the E-OBS version 3.0 observational 135 
dataset as a reference (Haylock et al., 2008; see description in supplemental material) for the 136 
1961-1990 climate (Dosio and Paruolo, 2011; Dosio et al., 2012), adapting the Piani et al. 137 
(2010a, b) technique.  138 

Spain02 (Herrera et al., 2012) is an observational dataset for Spain with higher density 139 
of underlying stations than E-OBS. This means that using Spain02 rather than E-OBS as 140 
reference could improve bias reduction in Spain. Thus here, we also adapt the bias correction 141 
technique used by Dosio and Paruolo (2011) to correct the ENS with respect to theSpain02 142 
reference, generating the hereafter so called ENS-SPAIN02 dataset. 143 

The third dataset was generated by perturbing the CRU weather generator (WG) (Kilsby 144 
et al., 2007) with monthly change factors calculated from present and future projections of every 145 
RCM of the ENS dataset, generating the hereafter-named ENS-WG dataset. This method was 146 
also applied to the ENS-EOBS and ENS-SPAIN02 datasets, obtaining two additional datasets 147 
that combine bias correction with use of the WG, ENS-EOBS-WG and ENS-SPAIN02-WG 148 
respectively. 149 

The last dataset consists of scenarios generated by the simple delta change method, one 150 
of the most commonly used techniques (e.g. Rötter et al., 2013). This is referred to hereafter as 151 
the DELTA dataset and was obtained by applying monthly change factors projected by 152 
individual ENS RCMs to AEMET data. 153 

Correspondence between gridded datasets and AEMET stations was done by the nearest 154 
neighbour method. Crop simulations were replicated with all datasets (see summary of RCM-155 
based datasets in supplemental material Table S-3) for the period 1971-2000 and for the near 156 
(2021-2050) and far future (2071-2100). 157 

 158 

2.3. Techniques of bias correction and reduction 159 

 160 

The bias correction technique used in this study has been extensively described in Piani 161 
et al. (2010a, b; Dosio and Paruolo 2011; Dosio et al., 2012). Briefly, it is based on the 162 
calculation of a parametric transfer function (TF) which, when applied to model output, delivers 163 
corrected output with a marginal cumulative distribution function (CDF) which matches that of 164 
the observed measurement. The TF depends on the variable to be corrected. For temperature, 165 
the TF proposed by Piani et al. (2010b) was a linear equation, with two parameters. For 166 
precipitation, the TF was a set of three equations (linear, logarithmical and exponential) with 167 
four parameters (adaptation of this method to our case is described in the supplemental 168 
material).  169 

Also, bias can be reduced by the use of a weather generator (WG); in our case the CRU 170 
WG (Kilsby et al., 2007). The WG is calibrated on observed station data and projection output 171 
is produced by perturbing the WG parameters with monthly change factors calculated from 172 
RCM present and future runs. The system produces series at a daily time resolution, using two 173 
stochastic models in series, RainSim and CRU WG (Kilsby et al., 2007), generating the other 174 
variables dependent on rainfall (and for humidity and so on, dependent on rainfall and 175 
temperature; details are in the supplemental material). For projection of future climate, the 176 
procedure includes applying the change factors. 177 

A delta change-based ensemble of future projections was generated by applying mean 178 
monthly change factors from individual RCM present and future projections to observed station 179 



data (AEMET). This method only reflects changes in mean conditions and does not change the 180 
future variability. The WG used in this study can be considered as a more sophisticated delta 181 
change approach as higher-order statistics are adjusted using RCM-derived change factors. 182 

Comparing the three methods, bias correction has the advantage of correcting not only 183 
means but also distribution tails. WG method assures consistency among the variables, while 184 
delta method is very simple and easy to implement. 185 

The Nash–Sutcliffe coefficient of model efficiency (E, described in supplemental 186 
material, Nash and Sutcliffe, 1970) was calculated for comparing: 1) AEMET vs. every dataset; 187 
and 2) AEMET-derived crop simulation vs. every dataset-derived crop simulation.

 

188 

 189 

3. Results 190 
 191 

3.1. Bias analysis of climate variables for the period 1971-2000 192 

 193 

3.1.1. Uncorrected biases: ENS 194 

 195 

The monthly Tmax from the ENS ensemble mean presented biases with respect to 196 
observations (AEMET) that ranged from 0.5 to 2ºC in Aranjuez, being higher in winter. The 197 
bias was close to 0ºC in summer (Figure 1a). For Albacete, the biases in mean monthly Tmax 198 
were small all the year (Figure 1d). For both locations, the amplitude of the annual cycle of 199 
variance was smaller than observed (Figure 1g, j), leading to an underestimation of the variance 200 
in autumn and to an overestimation in summer. 201 

Biases of monthly Tmin were close to 0ºC in Aranjuez (Figure 2a), and the variance 202 
was well simulated except in summer, when it was overestimated (Figure 2g). In Albacete 203 
(Figure 2d), monthly Tmin was overestimated in winter and summer, while its variance (Figure 204 
2j), was underestimated throughout the year. 205 

Monthly precipitation in Aranjuez (Figure 3a) showed an overestimation in winter (up 206 
to ca. 20 mm per month), and an underestimation in May, with the same pattern for variance 207 
(Figure 3g). A similar pattern was found in Albacete (Figure 3d, j). 208 

 209 

3.1.2. Datasets of RCM projections with reduced bias 210 

 211 

Temperatures from the corrected ensemble means presented biases with respect to 212 
observations (AEMET) close to 0ºC in both locations (Figures 1, 2). The only exception was 213 
winter and summer Tmin from ENS-OBS for which biases of ca. 1ºC remained, especially in 214 
Albacete (Figure 2a, d). 215 

However, the bias reduction did not improve the simulation of Tmax variance although 216 
ENS-SPAIN02 was the dataset that better matched the observed variance (Figure1h, k). This 217 
maybe explained because SPAIN02 matches better AEMET variance than E-OBS, especially in 218 
Albacete. In the case of ENS-WG, the WG shows an annual cycle of variance parallel to that of 219 
the observations (AEMET), but with lower values. All datasets underestimated spring and 220 
autumn Tmax variance for both locations (Figure 1, lower two rows). The simulation of Tmin 221 
variance improved for some seasons and worsened for others (Figure 2, lower two rows). 222 



 Biases in monthly precipitation were reduced by both ENS-EOBS and ENS-SPAIN02 223 
in Aranjuez throughout the year, and for late autumn and winter also by ENS-WG (Figure 3, 224 
first row). The variance simulation was similar to that of ENS (Figure 3, third row). In Albacete, 225 
the three adjusted datasets simulated better the annual cycle for both mean and variances, but 226 
precipitation was slightly underestimated throughout the year, except for ENS-WG which 227 
overestimated both mean and variance in summer (Figure 3, third row for mean and last row for 228 
variance). 229 

The inter-model variability for each dataset showed similar results for both locations 230 
(Figures 1 to 3): EOBS and ENS-SPAIN02 showed a smaller spread (ca. half) than ENS for 231 
Tmax, Tmin and precipitation. The spread of the mean was smaller than that of the variance for 232 
both Tmax and Tmin and all datasets. The spreads were higher for late winter and spring 233 
corrected temperatures than for other seasons. Corrected precipitation showed higher spread 234 
than temperatures, especially in autumn and spring. Some peaks of spread appeared for some 235 
months, corrected variables and locations; some of which were due to a single model, as for 236 
instance the high precipitation variance at Albacete in October (Figure 3k). 237 

In summary, biases of mean Tmax and Tmin were close to 0ºC for the bias reduced 238 
datasets and precipitation bias was decreased. Temperature variances were not improved and 239 
precipitation variance was only improved for one location. The inter-model spreads of the bias 240 
reduced datasets were smaller than that of the uncorrected one. ENS-SPAIN02 showed a 241 
slightly better performance with respect to AEMET than the other datasets. 242 

Two additional analyses, the calculation of the efficiency coefficient E and the 243 
comparison of probability distribution functions (PDFs) for the variables and seasons that are 244 
more limiting to crop production in the IP, confirmed these results (see supplementary material 245 
text and Table S-4, Figs. S-2, S-3). 246 

	247 

3.2. Comparison of datasets’ performance for crop impact assessment 248 

 249 

 The differences between the crop simulation outputs obtained with the datasets 250 
described in section 2.2 compared with maize simulations run with AEMET for the period 251 
1971-2000 are referred to hereafter as biases in crop phenology and in yield (Table 1).  252 

 The projected dates for the relevant crop phenological stages (Table 1) may help to 253 
highlight the differences between the climate datasets’ results, as well as to understand the 254 
consequences of their biases. This is because these dates are computed by the crop model using 255 
the sum of projected temperatures over a base temperature (8ºC for maize). All post-processing 256 
methods improved the simulation of anthesis, maturity dates and grain filling duration (which is 257 
relevant for yield formation) in present-day climate, in both locations (Table1) (these 258 
improvements can be partially quantified by comparing the E coefficients, see supplemental 259 
material Table S-4). 260 

Bias correction resulted in a different yield response for both locations: yield simulation 261 
improved in Albacete but biases increased in Aranjuez. This result may be related to the 262 
remaining biases in temperatures at Aranjuez, small for the mean but large for the variance. In 263 
turn, these remaining biases maybe related to deviations from AEMET of the observational 264 
datasets that were used as reference to reduce the ENS biases, as for instance for SPAIN02 265 
Tmin at Aranjuez in winter (Figure 2). Nevertheless, absolute yield biases from ENS-EOBS 266 
were larger than from ENS-SPAIN02 at both locations (Table 1). Yield simulated with any 267 
dataset in combination with the WG showed a very small bias as expected, as these data are 268 
pretty much constrained to reproduce the observed mean climate values. 269 



ENS presented higher inter-annual variability than ENS-EOBS and ENS-SPAIN02 at 270 
both locations (measured by the coefficient of variation YCT, Table 1). When considering WG 271 
derived datasets, both locations presented contrasting results. ENS presented higher spread (the 272 
coefficient of variation YCS, Table 1) than ENS-EOBS and ENS-SPAIN02 for both locations, 273 
in agreement with the results found for the climate variables (Figures 1 to 3). 274 

3.3. Future projections of climate change impacts 275 

 276 

Phenological and yield projections for near (2021-2050) and far (2070-2100) future (NF 277 
and FF, respectively, Table 2) periods obtained with the seven datasets described in section 2.2 278 
were compared to evaluate the consequences for climate change impact assessment when using 279 
different post-processing techniques. All projected changes are considered with respect to 1971-280 
2000. 281 

Phenological projections indicated earlier anthesis and maturity dates and shorter grain 282 
filling than those of the 1971-2000 period for both locations, as expected (Ruiz-Ramos et al., 283 
2011). The crop simulations driven by ENS presented later phenological dates than those driven 284 
by the bias reduced datasets, especially in Aranjuez. The spread of projections across all 285 
datasets was reduced when ENS was excluded, so bias reduction implied a convergence of 286 
results. The ensemble spread across datasets also diminished in FF compared to NF, especially 287 
in Aranjuez. 288 

The projections indicated similar yield decrease in both locations, ranging from 9% to 289 
17% for NF and from 24 to 33% for FF (Table 2). The delta change method projected maximum 290 
changes in yield at Aranjuez in both periods and at Albacete for FF. Projections were similar 291 
whatever the applied post-processing technique for both locations, with differences among 292 
methods equal to or lower than 8% and 10% in NF and FF (Table 2), respectively. Differences 293 
among yield projections obtained with ENS-EOBS, ENS-SPAIN02 and ENS-WG were even 294 
smaller. In general, post-processing methods increased the projected yield changes. 295 

 296 

 297 

4. Discussion 298 
 299 

Our results show that post-processing techniques can help to reduce uncertainty due to a 300 
poor representation of present-day local climate in some locations, providing more realistic 301 
results in terms of means of simulated crop phenology and yield, in agreement with Oettli et al. 302 
(2011) and Michelangeli et al. (2009). However, the spread found among observational datasets 303 
reveals an uncertainty not attributable to RCMs, and highlights the sensitivity to the 304 
observational dataset chosen as reference for bias reduction. 305 

The comparison of the different post-processing techniques revealed that an 306 
overestimation of grain filling duration resulted in an overestimation of crop yield. The 307 
differences among simulated yields were temperature-driven because maize was irrigated. The 308 
bias reduction of the grain filling length simulation, through correction of temperatures, was 309 
enough to improve ENS yield bias in Albacete where the initial bias was small. However, this 310 
was not enough to reduce yield bias in Aranjuez, where the ENS bias in grain filling duration 311 
was still ca. two weeks, and the remaining biases in temperatures of the bias-reduced datasets 312 
were larger than in Albacete. Besides, other factors also affect yield such as the diurnal 313 
temperature range (Tmax-Tmin) in specific periods. For this reason, similar phenological dates 314 
may result in different crop biomass and yield. This may help to explain the different response 315 



in Aranjuez in spite of the improvement in the simulation of phenology.  316 

These contrasting effects on phenological and yield biases and ensemble spread for both 317 
locations suggest that not only an initial evaluation of the local climate data is needed, but also 318 
an evaluation of the effects of these techniques on the impact results. This way, the impact 319 
model becomes a tool for evaluating climate models (Stéfanon, et al., 2015). Our results 320 
indicated that about 10% of variation in yield projections was due to the latter effects. In case of 321 
rainfed crops, this value is expected to increase since much higher uncertainty has been reported 322 
for precipitation related variables (e.g. Ruffault et al. (2014) reports 45 % uncertainty in drought 323 
intensity anomalies linked to bias correction). This variation should be added to the estimated 324 
uncertainty of the modelling chain, i.e. the climate modelling-post-processing-impact modelling 325 
chain, along which uncertainty is accumulated. These findings are in agreement with Liu et al. 326 
(2014) who reported different effect of bias correction depending on the location and impact 327 
variable. 328 

We conclude that there would not be a “best” post-processing technique, in agreement 329 
with Räisänen and Räty (2013) and Räty et al. (2014). When a decision has to be made about 330 
choosing a technique, if an initial climate-impact evaluation can be done as we recommend 331 
here, bias correction offers opportunity for improvement for those locations with small initial 332 
biases. For locations where remaining biases after correction are still large, the use of a weather 333 
generator, alone or in combination with bias correction, may be particularly useful, probably 334 
because WGs, in contrast to the bias-correction techniques used here, do not correct temperature 335 
independently of precipitation, and other variables such as radiation are also adjusted in a 336 
consistent way. Such a combined approach may be particularly useful for rainfed simulations in 337 
sites where the monthly precipitation bias is still large after bias reduction. Another possible 338 
approach for these cases would be to consider several post-processing methods in parallel (in 339 
agreement with Räty et al., 2014). The main limitation is the large number of possible 340 
simulations to be run. However, there are sampling methods that can be used to reduce the 341 
number of simulations needed (Asseng et al., 2013). Also, bias correction could be applied to 342 
the GCM, driving a RCM with a bias-corrected GCM output (Glotter et al., 2014). And an 343 
alternative approach to bias reduction would be the selection of the RCM the most consistent 344 
with an impact model (Stéfanon et al., 2015), or a reduced ensemble of climate and crop model 345 
combinations meeting this criterion. 346 

The simulation of interannual variability remains challenging. Oettli et al. (2011) and 347 
Michelangeli et al. (2009) report that this difficulty is transmitted to the simulation of yield 348 
variability. On the other hand, the simulation of some relevant extremes was improved here, as 349 
in the case of Tmax in Albacete, which is a hazardous event for maize flowering at that location. 350 
In our study, a small improvement in the simulation of the annual cycle of precipitation was 351 
accomplished by reducing RCM bias using SPAIN02. Also, biases in the mean can be different 352 
to biases for the high quantiles (Maraun, 2012; Christensen et al., 2008); our results show that 353 
post-processing methods and especially bias correction with regard to a high resolution 354 
observational dataset (SPAIN02) improved the distributions of the simulated climate variables, 355 
in terms of both peak and tails. 356 

The mentioned limitations stress that bias reduction remains a temporary solution while 357 
model improvement is undertaken. In the meanwhile, further steps may include the correction of 358 
other variables such as radiation and multivariate correction (Hoffmann and Rath, 2012; and 359 
Piani and Haerter, 2012). For this purpose, reliable reference datasets including radiation data 360 
would be needed (E-OBS and Spain02 do not include it). 361 

 362 

 363 



 364 

5. Conclusions 365 
 366 

 The objective of this study was to evaluate the potential of post-processing techniques 367 
(in particular, bias correction, a WG combined with RCM-derived change factors, and a very 368 
simple delta change method) for improving the quality of crop impact projections. 369 

 The use of the different post-processing techniques resulted in a difference among crop 370 
projections of 10% or less. The added value of these techniques becomes evident in 1) the 371 
improvement of crop phenology which is valuable for improving crop simulations and also for 372 
cultivar and species suitability studies, 2) the improvement of yield projections, and 3) the 373 
reduction of uncertainty because the inter-model (ensemble) spread of the climate models used 374 
is reduced. For these improvements, the density of observation stations used to create each 375 
reference observational dataset affected the correction performance. 376 

The improvement was not the same for both locations and all techniques studied, and no 377 
single technique proved to be the best one. We recommend undertaking an initial evaluation of 378 
the observed and simulated climate data, their post-processing and implications for impact 379 
modelling, as an assessment of climate and crop projection biases may help to select the most 380 
robust techniques to build a tailored ensemble, locally designed for a specific crop and its 381 
management. Rainfed crop simulations in particular could benefit from this approach. Although 382 
this kind of procedure complicates the modelling chain, it is desirable when the objective is to 383 
go a step further in the reliability of impact projections. 384 

 385 
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Table 1. Evaluation of the modelling chain climate‐crop for Aranjuez and Albacete in present climate 
(1971‐2000): Comparison of crop phenology. Sowing date (SD), anthesis(AD) and maturity (MD) 
dates (Julian days, DOY), and grain filling duration (GF, days), yield (YI, kg ha‐1) with itsinterannual 
variability (coefficient of variation YCT, %) and ensemble spread (coefficient of variation YCS, %), 
simulated with observed climate (AEMET), with the uncorrected ensemble (ENS) and with the five 
bias‐reduced datasets (ENS‐EOBS, ENS‐SPAIN02, ENS‐WG, ENS‐EOBS‐WG, ENS‐SPAIN02‐WG). Yield 
bias (differences in projected yields regarding simulation conducted with AEMET data, 
YB).Phenological bias (differencesin projected phenological dates regarding simulation conducted 
with AEMET data):anthesis date bias (ADB, days), maturity date bias (MDB, days), and grain filling 
duration bias (GFB, days). 

Ensemble/ 
Method 

SD  AD  MD  GF  ADB  MDB  GFB  YI  YCT  YCS  YB 

Maize 1971‐2000 

Aranjuez 

AEMET  105  210  260  49  n/a  n/a  n/a  9437  15,6  0  n/a 

ENS  107  218  281  64  7  22  15  10039  32,8  27,6  602 

ENS‐DELTA  105  210  260  49  0  0  0  9437  15,6  0  0 

ENS‐EOBS  105  213  266  53  3  7  4  10966  16,2  5,2  1529 

ENS‐SPAIN02  105  211  263  52  0  3  3  10813  13,6  5,7  1376 

ENS‐WG  107  207  254  47  ‐4  ‐5  ‐2  9898  13,2  0  461 

ENS‐EOBS‐WG  107  207  254  47  ‐4  ‐5  ‐2  9898  13,2  0  461 

ENS‐SPAIN02‐WG  107  207  254  47  ‐4  ‐5  ‐2  9898  13,2  0  461 

Albacete 

AEMET  105  204  256  52  n/a  n/a  n/a  11155  11  0  n/a 
ENS  109  206  264  58  2  7  6  10561  33,1  15,7  ‐593 
ENS‐DELTA  105  204  256  52  0  0  0  11155  11  0  0 
ENS‐EOBS  108  202  251  50  ‐2  ‐5  ‐3  10735  17,9  14,3  ‐420 
ENS‐SPAIN02  108  201  251  50  ‐3  ‐5  ‐3  10769  17,9  6,7  ‐385 
ENS‐WG  106  200  250  50  ‐3  ‐6  ‐3  11238  8  0  84 
ENS‐EOBS‐WG  106  200  250  50  ‐3  ‐6  ‐3  11238  8  0  84 
ENS‐SPAIN02‐WG  106  200  250  50  ‐3  ‐6  ‐3  11238  8  0  84 
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Table 2. Crop projectionsfor Aranjuez and Albacete:sowingdate (SD, Julian days, DOY), phenology 
anthesis date (AD) and maturity date (MD) in Julian days (DOY) and grain filling duration (GF), days) 
and maize yield (kg ha‐1) with its interannual variability (coefficient of variation YCT, %) and 
ensemble spread (coefficient of variationYCS, %), simulated with the uncorrected ensemble (ENS) 
and with the five bias‐reduced datasets(ENS‐EOBS, ENS‐SPAIN02, ENS‐WG, ENS‐EOBS‐WG, ENS‐
SPAIN02‐WG), for the near future (NF, 2021‐2050) and for the far future (FF, 2071‐2100), under 
the A1B scenarios. Mean changes of the anthesis date (ADC), maturity date (MDC) grain filling 
duration (GFC) and yield (YC) are calculated regarding the corresponding 1971‐2000 (present 
climate) projections, as difference (A1B‐present, days) for phenology and as percentages for yield 
((A1B‐present)*100/present). 

Ensemble/ 
Method 

SD  AD  ADC  MD  MDC  GF  GFC  YI  YC  YCT  YCS 

Maize 2021‐2050 

Aranjuez 

AEMET  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a 
ENS  108  208  ‐10  257  ‐24  49  ‐15  8638  ‐11  35,1  35,4 
ENS‐DELTA  106  203  ‐7  245  ‐15  41  ‐8  7870  ‐17  15,0  6,3 
ENS‐EOBS  106  205  ‐8  249  ‐17  44  ‐9  9486  ‐13  16,2  4,2 
ENS‐SPAIN02  105  203  ‐8  246  ‐17  43  ‐9  9171  ‐15  13,1  4,3 
ENS‐WG  105  201  ‐6  242  ‐12  41  ‐7  8148  ‐14  12,5  6,7 
ENS‐EOBS‐WG  105  202  ‐5  242  ‐12  41  ‐7  8232  ‐13  11,4  8,1 

ENS‐SPAIN02‐WG  105  202  ‐5  243  ‐11  41  ‐6  8238  ‐13  14,8  7,4 

Albacete 

AEMET  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a 
ENS  109  197  ‐9  243  ‐20  46  ‐12  8956  ‐13  37,1  30,8 
ENS‐DELTA  106  196  ‐8  241  ‐16  45  ‐8  9868  ‐12  10,1  6,0 
ENS‐EOBS  108  195  ‐6  239  ‐12  44  ‐6  9679  ‐10  19,2  9,5 
ENS‐SPAIN02  108  195  ‐7  238  ‐13  44  ‐6  9411  ‐12  21,7  3,0 
ENS‐WG  106  194  ‐7  237  ‐13  44  ‐6  9460  ‐15  9,4  4,4 
ENS‐EOBS‐WG  107  195  ‐6  239  ‐11  44  ‐5  9714  ‐13  8,1  6,8 
ENS‐SPAIN02‐WG  106  194  ‐7  238  ‐12  44  ‐6  9427  ‐15  10,3  6,1 

Maize 2071‐2100 

Aranjuez 

AEMET  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a 
ENS  107  196  ‐22  234  ‐47  39  ‐25  6064  ‐31  46,4  38,4 
ENS‐DELTA  106  193  ‐18  229  ‐31  36  ‐13  5972  ‐37  19,5  10,6 
ENS‐EOBS  107  194  ‐19  231  ‐36  36  ‐17  7369  ‐33  27,5  12,6 
ENS‐SPAIN02  105  192  ‐19  229  ‐34  37  ‐15  7167  ‐34  19,0  9,7 
ENS‐WG  106  191  ‐16  227  ‐27  36  ‐11  6506  ‐31  18,5  9,5 
ENS‐EOBS‐WG  105  191  ‐16  228  ‐26  37  ‐11  6656  ‐29  18,8  10,2 
ENS‐SPAIN02‐WG  106  191  ‐16  228  ‐26  37  ‐11  6716  ‐29  21,0  11,2 

Albacete 

AEMET  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a  n/a 
ENS  108  186  ‐20  225  ‐39  39  ‐19  6913  ‐30  43,2  31,3 
ENS‐DELTA  106  186  ‐18  225  ‐32  39  ‐13  7608  ‐32  24,5  10,5 
ENS‐EOBS  109  187  ‐15  225  ‐26  38  ‐11  7882  ‐26  34,1  13,6 
ENS‐SPAIN02  108  185  ‐16  224  ‐27  39  ‐11  7519  ‐30  34,1  14,7 
ENS‐WG  106  185  ‐16  223  ‐26  39  ‐11  7822  ‐30  18,8  10,0 
ENS‐EOBS‐WG  107  186  ‐15  226  ‐24  40  ‐9  8148  ‐27  19,1  8,1 
ENS‐SPAIN02‐WG  107  185  ‐16  224  ‐25  40  ‐10  8089  ‐27  16,5  9,7 
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