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1. Data and Methods 24 
1.1. Crop Modelling 25 

 26 
Based on previous field experiments CERES-maize from DSSAT v. 3.5 27 

calibrations (Iglesias and Mínguez, 1995), data from field experiments (Maturano, 28 
2002; Gabriel and Quemada, 2011) and bulletins from technical services (the Instituto 29 
Técnico Agronómico Provincial de Albacete, ITAP), site-specific recalibration and 30 
validation of the version 4.5 of CERES-DSSAT was performed for both locations. Five 31 
and four years were used for recalibration for Aranjuez and Albacete respectively, and 32 
three and six years for validation. The recalibration was done for potential yield of 33 
irrigated maize. Calibration and validation were evaluated by the Root Mean Square 34 
Error (RMSE) and root mean square percentage error (RMSPE, i.e., RMSE normalized 35 
by the average of observed values). 36 

 37 

𝑅𝑀𝑆𝑃𝐸 =  
√

∑ (
𝑂𝑖−𝑆𝑖

𝑂𝑖
)

2
𝑁
𝑖=1

𝑁
∗ 100              𝑒𝑞. (1) 38 

 39 
where Oi represents the observed data, Si represents the simulated data and N is the 40 
number of  data. 41 

For all crop simulations, maize evapotranspiration (ET) was calculated by the 42 
Priestly-Taylor method (Priestly and Taylor, 1972). 43 
 44 
 45 
1.2. Observed and simulated climate datasets 46 
 47 
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 E-OBS v. 3.0 (Haylock et al., 2008) is a gridded data set, with the same spatial 48 
resolution as ENS, consisting of daily observations of temperature and precipitation 49 
from 2316 stations (ca. 50 for Spain) covering the whole of Europe for the period 1950–50 
2006 (last version spans up to 2014). The improvement introduced by bias correction in 51 
ENS-EOBS has been evaluated in terms of the probability distribution functions (PDFs) 52 
of temperature and precipitation in Dosio and Paruolo (2011) and an application of 53 
ENS-EOBS for hydrological impact assessment is shown in Rojas et al. (2012).  54 

Spain02 is an observational gridded data set for Spain for temperature and 55 
precipitation at similar resolution to E-OBS (0.2º for Spain02, 25 km for E-OBS) 56 
(Herrera et al., 2012), built with a network of ~2500 quality-controlled stations (~250 57 
for temperature, vs. ca. 50 stations of E-OBS in Spain; see Fig. 1 in Haylock et al., 58 
2008) from the Spanish Meteorological Agency (AEMET) spanning the period 1950 to 59 
2008.Spain02 has been validated against station data using cross-validation, obtaining a 60 
good performance for precipitation occurrence, accumulated amounts, variability and 61 
seasonality, and shows good performance in the reproduction of the intensity and spatial 62 
variability of extremes (Herrera et al., 2012). 63 
 64 
2.3. Techniques of bias correction and reduction 65 

Nonparametric estimation of the CDF requires the fitting of individual observed 66 
and modelled empirical distribution functions (Piani et al., 2010). To reduce the 67 
computational cost of this procedure, Dosio and Paruolo (2011) used a parametric 68 
transfer function (TF) as a function of up to four parameters. They compared both 69 
methods of estimating TF, concluding that parametric estimation of the TF gives 70 
satisfactory results. Also, it is much cheaper computationally than nonparametric 71 
estimation, which makes it more suitable for extensive applications. 72 

The choice of the TF depends on the variable to be corrected. For temperature, 73 
the TF proposed by Piani et al. (2010) was a linear equation, with two parameters. For 74 
precipitation, the TF was a set of three equations (linear, logarithmical and exponential). 75 
that can be seen as an exponential tendency to an asymptote defined by the linear 76 
equation where one of the four parameters is the rate at which the asymptote is 77 
approached. Details of the parameters are provided in Dosio and Paruolo (2011). These 78 
parameters are estimated by least squares on a monthly basis, so that monthly TFs are 79 
produced, and then interpolated into daily TFs using a smoothing technique. For the 80 
case of temperature, Piani et al. (2010b) calculated the daily temperature range (Trng, 81 
where Trng=Tmax – Tmin) and the daily temperature skewness (Tsk, where Tsk, = 82 
(Tmean − Tmin)/Trng). Then they proposed to bias correct Tmean, Trng and Tsk, and 83 
subsequently to invert the calculation obtaining the bias-corrected fields for Tmean, 84 
Tmin, Tmax. However, as Spain02 provides Tmin and Tmax but not Tmean, in this 85 
studybias correction was applied to Tmax and Tmin. 86 

Alternatively to bias correction, bias can be reduced by the use of a weather 87 
generator (WG); in our case the CRU WG (Kilsby et al., 2007). The WG is calibrated 88 
on observed station data and projection output is produced by perturbing the WG 89 
parameters with monthly change factors calculated from RCM present and future runs. 90 
In detail, the WG produces internally consistent series of “synthetic” meteorological 91 
variables including: rainfall, temperature, humidity, wind, sunshine, radiation (diffuse 92 
and direct), and a derivation of potential evapotranspiration. The system produces series 93 
at a daily time resolution, using two stochastic models in series: first, for rainfall 94 
(RainSim, Newcastle University, Kilsby et al., 2007) that produces an output series 95 
which is then used for a second model (CRU WG, Kilsby et al., 2007) generating the 96 
other variables dependent on rainfall (and for humidity and so on, dependent on rainfall 97 



and temperature). The steps required to produce rainfall are: 1) to calculate statistics 98 
from the observed time series, including mean, variance, probability of dry and auto-99 
correlation; 2) to fit the model to the statistics, and 3) to generate the precipitation 100 
output. Then, the output from the RainSim model is read in by the CRU WG along with 101 
the available observed climate variables (at least temperature data is required to run). If 102 
projection output is required, then the statistics output file generated in (1) needs to have 103 
the change factors applied. The model can then be re-fitted to generate the projection 104 
precipitation output. To perturb temperature, the changes in mean and variance are used.  105 

The coefficient of efficiency E (eq. 2) is the ratio of the mean square error 106 
between the measured and the simulated data to the variance in the observed data 107 
subtracted from unity. It varies from −∞ to 1. An E value of 1 corresponds to a perfect 108 
match of simulated data to the observations. An E value of zero (0) is obtained when 109 
simulation is as accurate as the mean of the observations. Negative E values indicate 110 
that the observed mean is a better predictor than the simulated data. 111 
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 114 
where Oi represents the observed data, Si represents the simulated data, Ō is the mean 115 
of the observed values and N is the number of data points of the compared datasets. 116 
 117 
2. Results 118 
2.1. Crop model calibration and validation 119 
 Crop model calibration and validation results were as follows: In Aranjuez, the 120 
RMSE was 569 kg ha-1 and the RMSPE was 5% for the calibration years, and 1181 kg 121 
ha-1 and 13% respectively for the validation years. In Albacete, the RMSE was 691 kg 122 
ha-1 and the RMSPE was 5% for the calibration, and 1577 kg ha-1 and 10% for the 123 
validation. 124 
 125 
2.2. Datasets of RCM projections with reduced bias: Efficiency Coefficient and 126 
Probability density functions (PDFs) 127 
 The E values, calculated for daily Tmax and Tmin at both locations, of the 128 
corrected datasets were all positive and similar. 129 
 The E coefficients for precipitation (Table S-4) were always negative for all 130 
datasets, indicating that for this variable the residual variance of all datasets was larger 131 
than the variance of observations. All datasets obtained similar E values with ENS-WG 132 
showing the minimum value at both locations. 133 
 These improvement introduced by bias correction in crop projections can be 134 
partially quantified by comparing the E coefficients, which were much closer to 0 (and 135 
also to 1, see Table S-4) for the corrected datasets than for ENS. Improvement in E 136 
values was more evident for crop simulations than for climate data, and together with 137 
biases may help to select the more suitable method for phenology simulation at each 138 
location: ENS-SPAIN02 for Aranjuez (only method with positive E values) and ENS-139 
WG for Albacete (method with phenological E values sum closest to 0). 140 

ENS-EOBS, ENS-SPAIN02, and ENS-WG datasets produced PDFs of summer 141 
Tmax closer than ENS to that of the AEMET data, as expected, for both locations. ENS 142 
showed an underestimation of the probability of median and an overestimation of the 143 
probability of lowest and highest temperatures (distribution tails). In both locations, 144 
ENS-SPAIN02 produced a PDF very close to that of AEMET, closer than that of ENS-145 
EOBS, which can be explained by the fact that SPAIN02 matched AEMET better than 146 



E-OBS, especially in Albacete (Figure S-2). At this location, the spread and tails of the 147 
Tmax corrected distributions matched those of AEMET, indicating a good 148 
representation of both the standard deviation and extreme events, respectively.  149 

ENS matched the AEMET PDF of winter Tmin in Aranjuez, and the ENS-150 
SPAIN02 PDF was the closest to AEMET of all the bias reduced datasets. ENS-EOBS, 151 
ENS-SPAIN02 and ENS-WG had improved PDFs of winter Tmin in Albacete, but a 152 
displacement towards warmer temperatures remained. In both locations, ENS-SPAIN02 153 
presented a small overestimation of the probability of the median temperatures. The 154 
observational gridded data sets showed an overestimation of temperatures and a higher 155 
probability peak, especially in Albacete; this overestimation was more important for E-156 
OBS (Figure S-2). 157 

The PDFs of spring and autumn precipitation showed similar features for both 158 
locations (Figure S-3). Both ENS-EOBS and ENS-SPAIN02 improved the simulation of 159 
the left tail of the distribution (for events equal or below 12 mm, Figure S-3), with ENS-160 
SPAIN02 closer to the AEMET curve in Albacete in autumn. ENS-WG also showed 161 
good agreement with observations, but with a displacement of the left tail to lower 162 
precipitation values at Aranjuez in spring (Figure S-3). 163 
 164 
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Supplemental Tables 200 

 201 

Table S-1. Cultivar name and phenology, management, soil type and depth used in the 
crop simulations conducted at each location. GDD, growing degree days, Tb, base 
temperature. References used for recalibration at each location. 

 Aranjuez Albacete 

Cultivar PR31G98 (FAO 700) Prisma (FAO 700) 

GDD from emergence to 
flowering (ºCd), Tb=8ºC 

390 280 

GDD from flowering to 
maturity (ºCd), Tb=8ºC 

770 789 

Sowing date EarlyApril Secondhalf of April 

Harvest date End of September/Early 
October 

November 

Soiltype TypicCalcixerept , 120 cm                                              Xerochrepts, 70 cm 

Soildepth (cm) 120 70 

References 
Gabriel and Quemada (2011) 

Iglesias and Mínguez(1995) 

Maturano (2002) 
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 204 

Table S-2. Institution, driving GCM and name of each RCM used for ENS and Delta. The 
corrected column indicates the 12 RCMs used for ENS-EOBS, ENS-SPAIN02, ENS-WG, 
ENS-EOBS-WG and ENS-SPAIN02-WG. 

Institution RCM Driving GCM Corrected 

C4I C4IRCA3 ECHAM5 No 

C4I C4IRCA3 HadCM3Q16 Yes 

CNRM CNRM-RM4.5 ARPEGE Yes 

DMI DMI-HIRHAM5 ARPEGE Yes 

DMI DMI-HIRHAM5 ECHAM5-r3 Yes 

DMI DMI-HIRHAM5 BCM Yes 

ETHZ ETHZ-CLM HadCM3Q0 Yes 

HC METO-HC_HadRM3Q0 HadCM3Q0 Yes 

HC METO-HC_HadRM3Q3 HadCM3Q3 No 

KNMI KNMI-RACMO2 ECHAM5-r3 Yes 

METNO METNOHIRHAM BCM No 

METNO METNOHIRHAM HadCM3Q0 No 

MPI MPI-M-REMO ECHAM5-r3 Yes 

SMHI SMHIRCA BCM Yes 

SMHI SMHIRCA ECHAM5-r3 Yes 

SMHI SMHIRCA HadCM3Q3 Yes 

UCLM UCLM-PROMES HadCM3Q0 No 
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Table S-3. Description of the ensembles of RCM projections built for this study: Name, 
number of members, post-processing technique used to build the ensemble and 
observational data set used as reference in the post-processing. 

Ensemble Name 
Number of 

members (RCMs) 
Post-processing 

technique 
Observational data 

set 

ENS 17 None - 

ENS-EOBS 12 Biascorrection E-OBS 

ENS-SPAIN02 12 Biascorrection Spain02 

ENS-WG 12 WeatherGenerator AEMET 

ENS-EOBS-WG 12 
Biascorrection 

+WeatherGenerator 
E-OBS,  AEMET 

ENS-SPAIN02-
WG 

12 
Biascorrection 

+WeatherGenerator 
Spain02, AEMET 

DELTA 17 Delta method AEMET 

 220 
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Table S-4. Evaluation of corrected ensembles: Coefficient of efficiency (E) of the 
ensembles ENS, ENS-EOBS, ENS-SPAIN02 and ENS-WG, when compared to 1) AEMET, 
for daily Tmax, Tmin and precipitation and 2) AEMET-driven crop simulations, for 
anthesis and maturity dates and crop yield. 

E coefficient 

Location Ensemble/Method Tmax Tmin Precipitation 
Anthesis 

date  
Maturity 

date  
Yield 

Aranjuez ENS 0,77 0,77 -0,11 -16,60 -6,12 -0,71 
 ENS-EOBS 0,79 0,75 -0,10 -2,03 -0,37 -1,24 
 ENS-SPAIN02 0,79 0,77 -0,15 0,28 0,43 -0,96 
 ENS-WG 0,65 0,54 -0,94 -1,39 -1,08 -1,11 

Albacete ENS 0,78 0,69 -0,06 -12,47 -4,07 -1,06 
 ENS-EOBS 0,79 0,72 -0,08 -2,42 -0,90 -0,25 
 ENS-SPAIN02 0,78 0,73 -0,08 -3,34 -1,50 -0,45 
 ENS-WG 0,61 0,49 -0,80 -0,96 -0,65 -0,75 
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Supplemental Figures 

 
 
Figure S-1. Locations where comparison of ensembles of climate and crop simulations were conducted. Altitude of Aranjuez (-3.716ºW, 40.30ºN) is around 
500 m a.s.l. and altitude of Albacete(-1.85ºW, 38.95ºN) is around 700 m a.s.l. 
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Figure S-2. Probability distribution function (PDF) of summer Tmax and winter Tmin for Aranjuez and Albacete for the period 1971-2000, for the 
observational datasets AEMET, E-OBS and SPAIN02, the uncorrected ensemble ENS, and the corrected ensembles ENS-EOBS, ENS-SPAIN02 and ENS-WG. 
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Figure S-3. As Figure S-2, but for spring and autumn precipitation. 

 


