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Summary
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that typically manifests clinically as a relatively isolated amnestic deficit which evolves into a characteristic dementia syndrome as the disease progresses. Advances in neuroimaging research allow mapping diverse molecular, functional, and structural aspects of AD pathology in ever increasing temporal and regional detail. There is accumulating evidence that the distinct types of AD-related imaging abnormalities follow a rather consistent trajectory during AD pathogenesis, and that first alterations may be detected years before the disease manifests clinically. These observations have fueled clinical interest in using AD-specific imaging markers to predict future development of dementia in at-risk subjects. This article summarizes current knowledge regarding the pathological validity and potential clinical utility of the best investigated imaging markers for AD. It further discusses the necessity of additional work before promising imaging markers may be successfully translated from research settings into clinical practice in routine care.



1. Introduction
According to diagnostic criteria, such as National Institute of Neurological Communicative Disorders and Stroke and the Alzheimer Disease and Related Disorders Association (NINCDS-ADRDA) Criteria, as well as recommendations from National Institute on Aging-Alzheimer's Association (NIA-AA) workgroups on diagnostic guidelines for Alzheimer's disease, clinically early stages of AD include subjects with AD dementia as well as prodromal AD, i.e. non-demented subjects with episodic memory impairment or mild cognitive impairment (MCI) and positive imaging or neurochemical biomarkers of disease.1, 2 A more detailed outline of the concept of MCI and its subcategories can be found in the supplemental material section. While these concepts were originally designed for research purposes, they have already now begun to influence clinical practice. MCI patients who consult a specialized memory clinic are already informed about a probably underlying AD pathology and probable short term dementia development if diagnostics reveals a combined positivity of an Aβ biomarker and a biomarker of neuronal injury.2 In our view, this practice requires careful individual counselling of MCI patients at a memory clinic prior to the performance of any further diagnostic procedure. The Alzheimer’s Association goes even beyond the use of such markers in specialized care by stating: “Core clinical diagnostic criteria spelled out in the guidelines for Alzheimer's dementia and MCI due to Alzheimer's can be used now in general practice.” (http://www.alz.org/research/diagnostic_criteria/#use) Here we respond to these developments by critically summarizing current evidence for the use of imaging as a diagnostic or prognostic biomarker for both research and care settings. For the potential prognostic use of CSF markers, we refer the interested reader to recent overviews, such as provided by3, 4.
A diagnostic AD biomarker should reflect AD pathomechanisms in the presence of clinical symptoms of dementia, while a prognostic biomarker focuses primarily on the prediction of cognitive decline and dementia in prodromal stages of AD, especially amnestic MCI. Developing a valid imaging biomarker is a multi-step process which starts with methodological studies and progresses through studies involving selected samples towards studies in a real world care setting. Evidence is already available on the utility of imaging biomarkers in highly selected samples. The final proof of usefulness, however, will be the utility of imaging biomarkers in supporting a diagnosis of AD in unselected subjects from routine care, and their potential to provide cost-effective, clinically relevant outcome improvements in real world care systems. We therefore explore whether the use of novel imaging biomarkers for the detection of dementia and prodromal stages of AD, including its use to predict short to midterm conversion to dementia within one to two years, in well-defined research settings can be translated in the foreseeable future into a useful tool for improving the care of patients and their families. 

2. Imaging markers of Alzheimer’s disease used in a research setting 
The most widely used imaging modalities for the assessment of AD-related brain changes in the research setting are PET-based amyloid markers, which detect AD-specific molecular pathology, and neuronal injury markers, including structural MRI, FDG-PET, and diffusion tensor imaging (DTI), which are more robustly associated with clinical symptoms as quantified by psychometric tests compared to amyloid imaging but are only indirectly linked to the underlying molecular pathology.5 Functional MRI techniques are geared towards detecting pathological or compensatory alterations of functional network organization that may occur even before alterations in local injury markers become evident.6 
Studies in selected samples have shown that AD-specific imaging abnormalities, such as cortical amyloid deposition,7 grey matter atrophy,8 hypometabolism,9 and structural10 and functional6 cortical disconnection can reliably be used to differentiate AD patients at mild to moderate dementia stages both from normal aging and from other neurodegenerative dementias. It may even be possible, using imaging assessments of the individual’s brain pathological state, to predict the risk of future development of AD dementia in a person with MCI. The suitability of imaging markers to predict conversion to AD from MCI is currently being explored in clinically highly selected samples, while the actual utility of these imaging markers in routine care will be an important topic of future research (see section 4). 
The validity of an imaging biomarker can be assessed according to two principal criteria: Firstly, its pathological validity, i.e. whether or not it actually measures the pathology we expect it to measure; secondly, its clinical validity, i.e. the accuracy with which it can actually predict an individual clinical outcome. Reporting levels of diagnostic or prognostic accuracy needs to be further developed where the majority of studies does not use methods of cross-validation to assess the precision of parameters of accuracy, recommended in the statistical learning literature 11.
The following section will look at the most commonly used imaging techniques in light of current knowledge regarding their pathological validity and their value for predicting conversion to AD dementia in subjects with MCI. This encompasses advanced techniques that have some evidence of being able to reflect relevant pathogenetic events in AD and that are at least on the verge of being implemented in large multicenter diagnostic studies, such as ADNI12, AddNeuroMed13 or the European multicenter PET study14, and/or treatment trials, such as NCT01953601 (“Efficacy and Safety Trial of MK-8931 in Participants With Prodromal Alzheimer's Disease”, the APECS trial),, NCT01767311 (“A Study to Evaluate Safety, Tolerability, and Efficacy of BAN2401 in Subjects With Early Alzheimer's Disease”) or NCT01677572 (“Multiple Dose Study of BIIB037 in Participants With Prodromal or Mild Alzheimer's Disease”), available at clincialtrials.gov. We do not discuss other promising imaging technologies, such as Tau-PET (for a recent review on this technology see 15), as these techniques are undergoing dynamic development, but are not yet on the verge of major multicentre trials.

Amyloid imaging 
Visual analysis of amyloid-PET data provides binary information on the presence or absence of brain amyloid load (Figure 1).16 Whether or not in clinical applications quantitative approaches will have added value relative to qualitative visual analysis is still not clear. This would be the case if, for example, high amyloid levels (beyond a mere threshold of positivity), or certain regional patterns of amyloid load turned out to predict faster cognitive decline.17, 18 In multi-centre settings, the reliability of amyloid-PET binary reads across sites was found to be quite high.19 In addition, the Centiloid project aims at unifying the quantitative outcome parameters for direct comparisons between different amyloid-PET tracers.20
11C-labeled Pittsburgh compound B (PIB) and 18F-labeled amyloid-PET tracers bind with high affinity to the beta-sheets of fibrillar amyloid. They are specific in their binding to amyloid aggregates, and do not bind to other pathological proteins associated with neurodegenerative disorders, such as tau or alpha-synuclein.21
In a sample of 15 end-of-life dementia and non-dementia cases, a binary read of PIB reached a pooled sensitivity of 73% and pooled specificity of 100% in relation to the histopathological presence or absence of amyloid.22-28 
PIB uptake in vivo yielded a mean (over all PIB publications available in the literature) correlation coefficient of r = 0.88±0.04 with the number of amyloid plaques upon autopsy.29-31 The 18F-labeled amyloid-PET tracers had a pooled sensitivity and specificity in 252 cases of as high as 92% and 95%, respectively,32-37 in their detection of amyloid aggregates. These cases covered end-of-life dementia and non-dementia individuals in which in vivo PET imaging was compared to post mortem histopathology, as well as normal hydrocephalus patients scheduled for shunt surgery in which in vivo PET imaging was compared to ex vivo histopathology of the respective biopsy specimens. Association analyses between tracer uptake and histopathology revealed a mean (over all 18F-labeled amyloid-PET tracer publications available in the literature) correlation coefficient of r = 0.69±0.07.16, 35 One reason for this correlation being less close than in the case of PIB might be the higher unspecific white matter uptake of 18F-labeled tracers, which in turn could cause spillover effects that compromise the evaluation of grey matter amyloid load.
In most of the above studies, PET imaging was carried out in an end-of-life situation, i.e. in a scenario which might compromise the ability of PET tracers to determine brain amyloid load due to advanced brain atrophy and blood circulation impairments. Nevertheless, the amyloid-PET tracer validity data currently available are deemed satisfactory by the scientific community and the regulatory authorities.38

Potential for clinical application
According to Johnson et al. (Panel 1),39 the main role of amyloid-PET in clinical routine is in the early stages of dementia. One particularly attractive approach would be to use amyloid-PET imaging to predict, on an individual basis, the risk of conversion to AD in subjects with MCI. Current knowledge about the capacity of amyloid-PET in this regard is summarised in Table 1. While early data suggest that amyloid-PET might be useful for predicting conversion to AD at the MCI stage, it is arguable, whether the speed of possible conversion to AD in case of MCI is adequately addressable by amyloid-PET alone. As amyloid accumulation presumably represents an early event in the amyloid cascade model and precedes cognitive decline, it may have already reached a plateau in many subjects with MCI. For predicting the speed of conversion, then, neuronal injury biomarkers such as MRI, FDG-PET or CSF tau would seem to be more powerful. Studies into amyloid-PET use in primary care still need to be carried out.

FDG-PET
FDG-PET detects patterns of altered regional glucose metabolism associated with various dementing disorders. FDG-PET results are highly reproducible between different scanners, centers and readers. As demonstrated in a recent study including 50 PET centers with 15 different scanner models, specific filtering and smoothing procedures may contribute to a further reduction of inter-scanner differences in the FDG-PET data.40 Diagnostic interpretations are commonly performed by visual inspection. The use of semi-quantitative, statistical mapping analyses has been shown to improve differential diagnostic accuracy41 and the detection of subtle metabolic changes in early AD or MCI (Figure 2).42
The cellular mechanisms of glucose consumption by neurons have been the subject of a number of investigations. One working model considers glucose metabolism in the context of capillary-glia-neuron coupling at glutamate synapses.43 Reduced synaptic metabolism of glucose (and FDG uptake) coincides with the synaptic vulnerability seen in early AD, e.g. in predicting conversion to AD in MCI patients (see Table 1). 
	Several retrospective investigations have employed autopsy confirmation of FDG-PET findings: FDG-PET reached a sensitivity of 84% to 96% and a specificity of 73% to 74% in the prediction of AD pathology upon autopsy in two studies involving more than 100 cases with AD, more than 25 cases with other forms of neurodegeneration and more than 20 cases without neurodegeneration (all examined clinically and neuropathologically).44, 45 On the basis of autopsy diagnosis, FDG-PET could be shown to have clearly outperformed the initial clinical diagnosis: For example, whereas the clinical diagnosis of AD was associated with a 70% probability of detecting AD pathology it increased to 84% with a positive PET-scan and decreased to 31% with a negative PET-scan.38 

Potential for clinical application
Key studies into the use of FDG-PET to predict conversion to AD among MCI patients are listed in Table 1. A meta-analysis involving six studies demonstrated sensitivity and specificity of 89% and 85%, respectively, in predicting conversion. As compared to structural MRI, FDG-PET performed statistically better in positive likelihood ratio and odds ratio.46 Another meta-analysis involving seven studies demonstrated sensitivity and specificity of 77% and 74%, respectively, for FDG-PET, in comparison to 93% and 56%, respectively, for amyloid-PET.47 In a multi-modal imaging study, a direct comparison between FDG-PET, PIB-PET and structural MRI was performed in a group of MCI patients monitored longitudinally for conversion to AD. This study demonstrated FDG-PET to be more sensitive and more specific than MRI hippocampus volumetry and at least as accurate as amyloid-PET.48 These data support the notion that FDG-PET might be useful as a predictor of short term cognitive decline in clinical studies and experimental settings, but FDG-PET is still at the stage of being implemented into clinical routine, and studies in a real routine care setting are scarce (see sections 4.1 and 4.2, below). 

Structural MRI 
Structural MRI is a widely established method to measure regional and global brain volumes in vivo. Volumetric MRI measurements are sensitive to variations in image contrast and resolution caused by differences in scanner settings across multiple sites. However, the multicentre variability can be effectively reduced by the use of phantom-based standardization, where a physical object with fixed geometry is scanned at each site and the imaging outcomes serve to calibrate the acquisition protocols across sites. A further step to reduce multicentre variability is the use of uniform post-acquisition image processing tools to correct for most commonly encountered image artifacts.
Brain atrophy as seen with structural MRI can, in principle, reflect the loss of tissue components, such as neurons, synapses, dendrites, as well as of glial cells and vessels. Declining hippocampal volumes in AD as determined antemortem using MRI strongly correlate with histopathological estimates of total neuron numbers upon autopsy.49 However, cell loss is not necessarily the only cause of the volumetric changes seen with MRI. The cortical thinning of the frontotemporal neocortex observed in normal aging, for instance, has been found to be primarily due to alterations in cell morphology and dendritic architecture, rather than neuronal loss.50 While medial temporal lobe atrophy on MRI is not specific for AD pathology,51, 52 the differential pattern of brain-wide atrophy can accurately separate pathologically-confirmed AD patients from healthy controls (sensitivity: 97%, specificity: 94%)53 as well as from dementias with other underlying pathologies, including frontotemporal lobar degeneration and Lewy-body disease (sensitivity: 91%, specificity: 84%)8  

Potential for clinical application
Initial quantitative evaluations of structural MRI for predicting AD conversion in MCI subjects have used visual scoring scales54 or manual volume measurements of hippocampus or entorhinal cortex (Table 1), (Figure 3).55 The volumetric methods have achieved promising prediction accuracies for AD in MCI of around 80% in controlled monocentre studies. Novel computational image processing algorithms permit the automated segmentation of hippocampus volumes in MRI images with high anatomic accuracy and in a time-efficient manner.76 The application of these methods to large multicentre MRI data sets yielded somewhat lower prediction accuracies of 65% to 70% (see Table 1). Markers of hippocampal atrophy do not take into account the overall pattern of brain atrophy in AD. For this reason, more comprehensive quantitative metrics of AD-typical brain damage have been developed which use composite measures across several AD-susceptible brain regions56 or advanced machine learning algorithms to detect multivariate patterns of brain atrophy.57 These methods achieved accuracies ranging from 65% to 80% correct group separations between MCI converters and non-converters in large-scale multicentre datasets (see Table 1). A major determinant of the prediction accuracy achieved appears to be the time to conversion of the sample analysed.58 Atrophy-based classification models can detect MCI subjects on the verge of converting to AD dementia (e.g. within the year following the MRI scan) with higher accuracy than those who will convert to AD dementia within three years or more.
Although the degree of accuracy currently achieved in predicting AD dementia in subjects with MCI has not yet reached clinically acceptable levels, MRI-based sequences may provide the clinician with complementary information of a patient’s AD risk.59 While volumetric measures on MRI may not be superior over detailed clinical evaluations in predicting progression from MCI to AD dementia,60 highest prediction accuracies are being achieved when the two types of information are combined.59, 61 

DTI and rs-fMRI
Histopathological studies of AD point to demyelination and axonal damage to white matter fibre tracts, which may result in functionally relevant disconnections between brain areas in addition to localized grey matter deficits.62 DTI techniques measure the directionality of water diffusion and may detect microstructural damage to white matter fibre connections through changes in specific diffusion metrics.63 Determining the most robust acquisition parameters and processing strategies for DTI is still an active area of research, and initial clinical and physical phantom data, i.e. scans obtained from a volunteer as well as a physical object with defined diffusion properties, suggest that the variability of DTI-based diffusion metrics across a range of MRI scanners is at least 50% higher than that of volumetric measures in a direct comparison between modalities.64 
As well as being traceable via assessments of structural connectivity, breakdown in functional connectivity can be measured using resting-state functional MRI (rs-fMRI) techniques.6  Rs-fMRI analyses temporal correlations in spontaneous BOLD (blood oxygenation level dependent) signal fluctuations originating in spatially segregated regions of the brain. Reproducible correlation patterns of spontaneous low-frequency fluctuations in the signal between distant brain areas determine distinct sets of what are known as intrinsic connectivity networks. While these networks show robust reproducibility within-subject over time and across multiple scanners,65 methods that would permit the precise quantification of connectivity changes and thus the design of AD biomarkers are still being explored, such as in ADNI66 or DIAN.67 
Clinicopathological correlation studies have provided initial evidence of the validity of DTI metrics in depicting distinct white matter alterations in neurodegenerative conditions.68 Data from experimental animal models indicate that alterations in specific diffusion metrics may, in principle, even allow inferences to be made about the specific nature of fibre damage, such as myelin degeneration or axonal damage caused by Wallerian degeneration.63 
The precise nature of functional connectivity at rest is not well understood, but the intrinsic connectivity networks thus obtained appear to reflect the repertoire of co-activated functional networks that are engaged under task conditions. Furthermore, simultaneous assessment of neuronal activity using electrophysiological recordings has provided evidence that the coordinated rs-fMRI signal fluctuations do indeed represent the synchronous neuronal firing of distant brain regions rather than effects from imaging artifact.69

Potential for clinical application
Meta-analytical studies show that DTI measurements of limbic regions discriminate between healthy controls and AD or even MCI patients, with effect sizes comparable to hippocampus atrophy (Figure 4).70 DTI has recently entered the phase of large-scale multicentre studies, but its clinical utility in predicting progression from MCI to AD has only been assessed in a few monocentre studies so far (Table 1). Though promising, the high multicentre variability of this complex imaging technique may impose important constraints on its application in the wider clinical context.
The intrinsic connectivity network most intensively studied in AD is the default mode network (Figure 5),6 which consists of regions that show a striking resemblance to typical predilection sites of AD pathology. These include the posterior cingulate, medial temporal, temporoparietal and medial prefrontal cortex. Although numerous rs-fMRI studies have demonstrated that a specific disconnection between default mode network components occurs early in AD, only very limited evidence of the clinical utility of rs-fMRI in predicting AD conversion in MCI subjects is available to date, stemming from relatively small monocentre studies (Table 1).

3. Multimodal imaging assessments 
Multimodal imaging studies may have a number of advantages over single modality studies (Figure 6):
1) They allow the temporal and topographical relationships between a number of pathological parameters to be investigated and thus improve our understanding of pathophysiological interactions in vivo. 
2) They permit direct comparisons of the diagnostic power of different imaging modalities in identical patient samples. 
3) [bookmark: _GoBack]They potentially offer the advantage of combining the complementary strengths of single imaging modalities thus improving diagnostic accuracy compared to single imaging tests. 
However, multimodal imaging studies also present a methodological challenge due to the high number of candidate features they provide for predicting conversion. This leads to two related problems: first, with an increasing number of features the risk of overfitting the data increases, a phenomenon known since the early 1960ies as “the curse of dimensionality”.71  To overcome this problem, strict procedures of separate training and test set evaluation need to be adopted, as outlined in the statistical learning literature.72 Such approaches typically use different effect size estimates for feature selection.73 Secondly, a related issue is the problem of collinearity among predictor variables that becomes more severe with a higher number of features. Overcoming this problem, unless strict a priori selection of features can be performed, is far from trivial. Advances of statistical learning techniques such as regularized regression,74 recently adopted to the setting of multimodal imaging-based AD prediction,75 may provide a viable alternative to derive a parsimonious prediction model from a large number of collinear features. 
From a neurobiological perspective, the dominating model of disease progression in AD – the amyloid cascade hypothesis – proposes that amyloid pathology is the first step in a cascade of events leading to synaptic dysfunction, a build-up of neurofibrillary tangles, neuronal injury and loss, and finally cognitive decline.76 A number of multimodal imaging studies support this disease model in that they demonstrate that amyloid-deposition is: a) found in mutation carriers with autosomal-dominant AD at a young presymptomatic stage and in normal individuals with no evidence of cognitive change or neuronal injury,77 b) associated with increased rates of atrophy and conversion to MCI and AD,78 and c) regionally/quantitatively associated with the progression of hypometabolism in AD.79 
The concept of sequential biomarkers has recently made its way into diagnostic research criteria.2 This concept is based on the principle that the higher the number of positive biomarkers (amyloid pathology, neuronal injury), the higher the likelihood that the patient is suffering from AD. Several questions remain unresolved with regard to the practical application of these guidelines, however - the first being what to do when biomarkers come up with conflicting results (e.g. a negative amyloid biomarker and a positive biomarker of neuronal injury or vice versa). If no amyloid pathology was present, we would assume that any neuronal injury detected was a result not of underlying AD but rather of a different pathology. Several studies, however, indicate that AD-typical markers of neuronal injury may appear in asymptomatic subjects who do not present biomarker evidence of amyloid pathology80 and that the short-term rate of conversion to MCI and AD dementia was similar in these individuals to that observed in subjects with typical AD biomarker patterns.81 Unexpectedly, these individuals had no signs of a non-AD neurodegenerative pathology.82 This has led to the proposal of alternative hypotheses which accept that amyloid and neurodegeneration biomarkers may, to some extent, appear independently rather than sequentially in the course of AD.83
Secondly, the categorization of FDG-PET and structural MRI as equally sensitive biomarkers of neuronal injury in recent guidelines1, 2 may not be fully appropriate. From a pathophysiological point of view, synaptic dysfunction (as made accessible by FDG-PET) is expected to occur ahead of structural loss (i.e. neuronal death) and the usually higher diagnostic sensitivity reported for FDG-PET confirms this notion.46 Further studies are required to resolve these issues and to define the validity of the proposed sequence of biomarkers with regard to AD pathogenesis.

Potential clinical usefulness 
Various studies have assessed the relative and combined accuracy of different neuroimaging techniques to predict conversion to AD in patients with MCI (Table 1). FDG-PET and amyloid-PET both appear to be superior to structural MRI in predicting conversion from MCI to AD as demonstrated in directly comparative multimodal studies46, 84 as well as in a metaanalysis.85 Studies comparing FDG- to amyloid-PET imaging suggest that the two markers separately show similar overall levels of predictive accuracy.48, 86 Amyloid-PET displays slightly higher sensitivity, and FDG-PET slightly higher specificity and greater short term predictive value than the respective other biomarker.87 This may be due to the phenomenon that amyloid load seems to rise a long time ahead of the onset of cognitive symptoms and to plateau and decouple from cognitive decline in later disease stages. In contrast, FDG-PET seems to show more linear correlation with disease progression.88 Structural MRI appears to correlate with current cognitive state and may permit a better estimation of time to conversion in amyloid-positive subjects than the amyloid level itself.89
One conclusion among the summarized multimodal studies in our view is that combinations of neuroimaging biomarkers (MRI + PET or FDG + amyloid-PET) are more accurate in predicting conversion from MCI to AD than any single marker, indicating that they provide complementary rather than redundant information. Novel integrated PET/MR technology may allow to combine complementary PET and MRI procedures, potentially leading to more accurate prediction. Functional MRI methods (e.g. rs-fMRI) or dynamic assessment of amyloid-PET imaging data may bear the potential to substitute FDG-PET in the future but there is not yet enough evidence available supporting such an approach in a clinical setting. 

4. Potential application of multimodal imaging markers of Alzheimer’s disease in the clinic 
4.1. Prodromal and early dementia diagnosis in specialized care                                                                                     
Identifying the risk of conversion to AD dementia in subjects with MCI is currently becoming part of the diagnostic work-up in specialized care, particularly in memory clinic settings. Using imaging biomarkers to predict AD dementia in patients with MCI based on the concept of “prodromal AD”, i.e. cases with a syndrome of MCI and a positive imaging or biomarker finding1, 2 has been applied in highly selected subject groups, but its utility in samples from specialized care settings such as memory clinics has yet to be investigated (Table 2).                                                                                                                                       
In MCI subjects that have been attending a memory clinic, MRI-based measurement of medial temporal lobe atrophy (MTA) yielded moderate to high specificity compared to memory testing alone, at varying levels of sensitivity.90, 91 The high levels of specificity suggest that MTA and particularly molecular imaging with PET could be successfully employed to exclude non-AD cases from treatment intended for prodromal AD. Studies evaluating the diagnostic accuracy of FDG-PET using clinical diagnosis as gold standard may not allow systematic conclusions,92 because clinical diagnosis itself may not reflect the underlying pathology correctly and  FDG-PET may  likely not replace but rather complement clinical diagnosis in health care settings.  In general, the continuously improving access to PET-imaging facilities and the relatively low cost of the tracer are factors which may facilitate the efficient utilization of FDG-PET also outside of maximum care settings.

4.2. Prodromal and early dementia diagnosis in primary care
The ideal dementia diagnostic biomarker in primary care should: (i) have a sensitivity of well over 90% in dementia detection; (ii) have a specificity of near 100%; (iii) be reliable; (iv) detect one or more fundamental features of the relevant neuropathology; (v) be non-invasive; (vi) be easy and time-efficient to perform; (vii) be inexpensive.93 In prodromal dementia, the prognostic property of a biomarker becomes additionally relevant, i.e. its ability to predict the time course of the clinical symptoms within the next couple of years. So far, none of the imaging (and indeed non-imaging) biomarkers currently available has been tested with regard to these criteria in a primary care setting. As it is commonly the first point of contact, primary care provides a unique opportunity for early dementia diagnosis. Evidence suggests, however, that only a small proportion of subjects with dementia or cognitive impairment are recognized in this setting.94, 95 Moreover, diagnostic instruments in primary care so far lack the specificity to establish a valid diagnosis of dementia, and add little to clinically relevant differential diagnoses.96 
The utility of imaging biomarkers in a clinical setting would be to improve diagnostic accuracy in symptomatic patients seeking support. However, no information is available on the likely costs of candidate biomarkers in primary care. Cost, however, will certainly be a driver for use in the primary care setting.  Insurers or universal healthcare systems such as the NHS may only be willing to re-imburse when cost effectiveness has been evaluated. Hence, cost effectiveness will need to be evaluated after clinical utility has been proven. 

4.3. Strategy for the implementation of clinical markers into routine care              
A multidisciplinary task force has proposed a roadmap to translate diagnostic AD biomarkers from research into routine clinical practice. This framework is organized in five conceptual phases:97 Phase 1 identifies and prioritizes leads for potentially useful biomarkers. Phase 2 estimates true and false positive rates for distinguishing subjects with and without the disease. Both phases are already widely achieved for AD imaging markers, including Standard Operating Procedures for image data acquisition in expert centers (Table 3). Phase 3, aiming to evaluate a biomarkers’ capacity to detect prodromal disease and define criteria for a biomarker positive test, has only partly been achieved (Table 3); Phase 4, aiming to determine the operating characteristics of the biomarker-based test in a tertiary and primary care population, has yet to be achieved. To date, only preliminary assessments of the effects of biomarker testing on costs and mortality associated with the disease have been developed, such as data on the association of fluorinated PET amyloid ligands with lower use of health care resources.98 Similarly, the final Phase 5, aiming to estimate the reductions in disease-associated mortality, morbidity, and disability afforded by biomarker testing, has not yet been investigated in the field of AD research. The time frame for completion of phases 3 to 5 will be strictly related to results obtained in each previous phase and it will also dependent on financial resources to develop each phase.  
The framework proposes a network of “Biomarker Qualified” memory clinics to be set up in order to implement Phase 4 studies in tertiary and primary care samples. These studies will serve to fine-tune clinical guidelines according to a target population for imaging assessment in clinical care. Patient burden and acceptability, as well as minimization of radiation exposure will also be considered in the Clinical Guidelines. Cost scenarios, currently determined only in highly selected samples will be investigated in phases 4 and 5. In phase 5, national plans for sustainable access to biomarker-based diagnosis will be developed for those subjects who will likely benefit from early diagnosis. Here, imaging markers will be implemented on a large-scale across all national health service-run memory services. 
This framework describes potential steps to bring advances in diagnostic imaging from research settings to clinical practice. It aims to balance patient needs, costs of care and non-medical factors for selection of diagnostic imaging (such as qualification, scanner availability) and allows adjustments, for each phase, based on empirical evidence and expert consensus. Non-medical factors will play an important role for the use of an imaging technique in clinical routine as well, but are not the focus of this paper; a panel summarizing these factors is shown in Panel 2.  

5. Conclusions and future directions 
Multimodal imaging, if implemented in clinical practice in the future, can help the clinician to make a diagnosis and decide about potential therapies.  Individual imaging modalities are far advanced in their technical development, but the stage of assessment of their medical relevance varies greatly between modalities. In the case of FDG-PET and structural MRI, the level of development is at multicentre studies resembling the conditions in real-world clinical settings, amyloid-PET is approaching this stage. Functional MRI and DTI are still in the phase of single centre studies that serve as an initial proxy for an assessment of their potential clinical utility. Consequently, structural MRI and FDG-PET have already become part of clinical trials and diagnostic algorithms in tertiary care. None of these techniques has shown its usefulness in a sample drawn from primary care thus far. 
Sufficient information is not yet available about the selection of imaging modalities or their combinations for different clinical stages of AD and different care settings. As far as the existing data can be interpreted, FDG-PET seems to be a very well-established tool for the prognosis of dementia in MCI and may be recommended particularly if a reliable short-term prediction of cognitive decline is required. Structural MRI may provide a more widely available, albeit possibly less sensitive, alternative that further serves staging of neuronal loss, particularly when using quantitative analysis methods. Amyloid imaging may be preferable if very early (highly sensitive) information on the underlying neuropathology is most relevant (e.g. confirmation of presence of the drug target for therapy trials), but not prediction of dementia in a short time frame.
A third aspect is the integration of other sources of information into a diagnostic algorithm. Positive imaging markers for AD will be placed on the second step in a sequential diagnostic process, where low-cost and widely available screening tests, such as blood tests and neuropsychological tests, with high sensitivity will help to select those subjects that will undergo a more expensive and specific imaging protocol. 
Another situation where a decision needs to be reached on the optimal combination of markers is the sequential use of imaging modalities, in which the selection of an individual imaging modality is guided not only by the evidence of its medical relevance, but also by availability, costs, patient burden, and imager expertise. These systemic factors beyond medical relevance are entering the discussion in the field of neuropsychiatric imaging, but as of yet there has been no data basis to resolve these issues. The move from sequential to parallel multimodal imaging, available with new generation hardware, such as integrated PET/MR systems that allow acquisition of both types of imaging data within one session, may provide solutions to these systemic factors. PET/MR requires expertise to be developed for more than one imaging technology, but it may help reduce costs below the costs of sequential imaging.
In respect to prediction of clinical progression speed on an individual level, multimodal imaging may be an important step forward. Rather than only identifying subjects with molecular evidence of disease, parallel information on neuronal function and structural integrity might help discriminate subjects facing imminent cognitive decline from those who will only experience late onset cognitive decline and those who will experience no cognitive decline at all. This question will become relevant for evaluating disease-modifying treatments of AD and, eventually, for deciding if a single subject would benefit from such treatments, once they may become available.
Only few studies so far have addressed the implementation of imaging biomarker techniques in real world care settings. Primary care research platforms such as the DelpHi study99 in the process of being set up will provide access to less selected samples in primary care and give access to empirical data concerning the real world clinical utility and cost-effectiveness of AD imaging biomarkers. 

Search strategy and selection criteria
[References for this Review were identified by searches of PubMed between 2006 and April, 2015, and clincialtrials.gov, and references from relevant articles. The search terms “amyloid PET” AND [“Alzheimer” OR “mild cognitive impairment”] were used for section 2.1, “FDG PET” AND [“Alzheimer” OR “mild cognitive impairment”] for section 2.2, [“structural MRI”] AND [“Alzheimer” OR “mild cognitive impairment”] for section 2.3, [“Diffusion Tensor Imaging” AND “Alzheimer”] for section 2.4 (DTI part), [“resting state correlations” OR “resting state connectivity” OR “intrinsic connectivity” OR “functional  connectivity”] AND “Alzheimer” for section 2.4 (resting state part),  ["mild cognitive impairment" AND MCI AND ALZHEIMERS AND (MRI AND PET) OR (PET AND FDG AND AMYLOID] for section 2.5, [“specialized care” OR “memory clinic” OR “primary care”] AND “Imaging” AND [“Mild cognitive impairment” OR “Alzheimer” or “dementia”] for sections 3.1. and 3.2. There were no language restrictions. The final reference list was generated on the basis of relevance to the topics covered in this Review.
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Panel 1: Current criteria for the appropriateness and non-appropriateness of clinical routine use of amyloid-PET according to39

	Amyloid-PET use appropriate
	Amyloid-PET use not appropriate

	· Persistent or progressive unexplained memory problems and impairments demonstrated by standard medical exams 
	· In patients who are 65 years or older and meet standard definitions and tests for AD 

	· Unusual clinical presentation
	· Without clinical confirmation of cognitive impairment 

	· Atypically early age of onset
	· To determine dementia severity 

	
	· If requested solely on the basis of a family history of dementia or the presence of APOE e4

	
	· As a substitute for genotyping 

	
	· For non-medical reasons  




Table 1. Potential of imaging markers to predict conversion from MCI to AD dementia


	Studies
	Marker
	Conversion from MCI to AD dementia
	Comments

	
	Amyloid-PET 
	
	

	Zhang et al100
	Quantitative analysis
	Pooled sensitivity: 96% [95% CI: 87-99%]
Median specificity: 58%
Follow-up: 1.5 to 3 years
	Meta-analysis of 274 MCI cases in 9 studies

	Ma et al101
	Visual read and quantitative analysis
	Pooled sensitivity: 95% [95% CI: 90-98%]
Pooled specificity: 57% [95% CI: 50-64%]
Follow-up: 1.5 to 4 years
	Meta-analysis of 352 MCI cases in 11 studies; specificity increased with increasing follow-up duration

	
	FDG-PET
	
	

	Mosconi et al102
	SPM99
Global normalization
Voxel-based / ROI
	Accuracy: 84% for the entire group; 94% for APOE4+ group 
Follow-up: one year
	MCI n=37

	Drzezga et al103
	NEUROSTAT/3D-SSP
Global / Pons normalization
Voxel-based / ROI
	Sensitivity: 92%
Specificity: 89%
PPV: 85%
NPV: 94% 
Follow-up: 16 months
	MCI n=30
Combination with APOE genotypes further increased diagnostic accuracy

	Landau et al84
	SPM5
Cerebellum / pons normalization 
Predefined ROI 
	Sensitivity: 82%
Specificity: 70%
Accuracy: 76%
PPV: 41%
NPV: 79% 
Follow-up: 2 years
	MCI n=85 from ADNI data

	Brück et al48
	SPM99
Pons normalization
Predefined ROI 
	Sensitivity: 78%
Specificity: 87%
Follow-up: 2 years
	MCI n=22

	Arbizu et al104
	SPM8
Pons normalization
Voxel-based 
	Sensitivity: 92%
Specificity: 62% 
PPV: 51%
NPV: 95% 
Follow-up: 1.5 to 2 years
	MCI n=121 from ADNI data;
additional sample of n=27 MCI for cross-validation.
Addition of PET to MMSE and ApoE4 increased accuracy for conversion from 74 to 80%. 
Accuracy even higher in the validation sample.

	
	Structural MRI
	
	

	Korf et al54
Duara et al105
Clerx et al106
Westman et al107
Bresciani et al108
Ridha et al109
	Visual rating of MTL volume

	Monocentre studies
HR: 1.6 - 3.1 
Follow-up: 1-3 years
Multicentre studies
Accuracy: 65%-68%
Follow-up: 1-2 years
	Easy to carry out in clinical routine; good correlation with hippocampus volume; not sensitive for longitudinal rates of change

	Devanand et al61
Dickerson et al110
Ferrarini et al111
Clerx et al106
Devanand et al112
Boutet et al113
	Manual Volumetry of MTL structures
	Monocentre studies
hippocampus (Hippo) and entorhinal cortex (ERC) 
Accuracy: 78% - 84%
Follow-up: 1-4 years
Subregional Hippo shape 
Accuracy: 80% 
Follow-up: 1.5 years

Multicentre studies:
Hippo volume
Accuracy: 71% 
Follow-up: 2 years
	ERC volumes slightly superior to Hippo volumes. 
MTL volumes provide added value to prediction models based on variables of cognition and everyday function. Subregional change in shape was superior to Hippo and ERC volumes in combined prediction models. 
Superior to visual rating scales for detecting subtle atrophic changes and for predicting conversion to AD. Manual delineations limited to anatomical boundaries and labor-intensive; not suitable for large scale multicentre data. 

	Clerx et al106
Chupin et al114
Ewers et al115
Costafreda et al116
Dickerson et al56
Leung et al117
	Automated assessment of MTL and cortical summary ROIs
	Hippo and ERC volumes Accuracy: 65% -71%
Follow-up:   1.5 - 3 years                    

Subregional Hippo shape 
Accuracy: 80%
Follow-up: 1 year 
(post-hoc probability) 

Summary metric of cortical ROIs 
OR: 2.7 (1 year) - 1.9 (3 years) 
	Automatic segmentations of Hippo show high anatomical overlap with manual delineations (>80%). Permits volume extraction in large data sets and from ROIs not amenable to manual delineation.
Single anatomic measurements or summary metrics of distributed ROIs do not account for differential atrophy pattern across the entire brain.

	Eskilden et al58
Liu et al59
Wee et al118
Aguilar et al119
Lebedev120
	Multi-ROI pattern classifiers 
	AD-typical atrophy pattern 
Accuracy: 70% - 80%, Follow-up: 6 months to 3 years
	AD-typical atrophy pattern across several ROIs are learned using independent training datasets. Multi ROI pattern classifiers complement information from MTL atrophy with information from other brain regions. Optimal settings for ROI and structural metric selection not clear and probably stage-dependent. Performance depends on training data and the statistical model chosen.

	Cho et al121
Gaser et al122
Lebedev120
Moradi et al123

	Whole-brain voxel-based pattern classifiers
	AD-typical atrophy pattern
Accuracy: 70% - 80%
Follow-up: 1 – 3 years
	Advantage over multi ROI-based pattern classifiers not clear. Whole-brain voxel-based classifiers are better at detecting AD-typical atrophy patterns independently of anatomical boundaries, but are also more sensitive to noise.

	
	DTI
	
	

	Mielke et al124
Douaud et al125
Selnes et al126
Scola et al127
Fellgiebel et al128
	Regional measures of white matter integrity
	Diffusion metrics of limbic white matter (fornix, posterior cingulum, parahippocampal gyrus)
Accuracy: 77% - 95%
Follow-up: 2 - 3 years

	Diffusion metrics better predictors than volumetric measurements in some studies. 
Mean Diffusivity seems to be the best diffusion metric for prediction of conversion. 
Only monocentric studies with limited sample sizes (N < 64). 

	Haller et al129
	Whole-brain voxel-based pattern classifiers (FA, MD, AxD, RaD)
	AD-typical atrophy patterns throughout the brain for classification into stable or progressive MCI
Accuracy: 98% 
Follow-up: 1 year
	Progressive MCI defined as “significant cognitive and clinical decline” over 1 year follow-up. Only 26% of progressive MCI received diagnosis of (AD) dementia. The method's performance in multicentre settings has yet to be shown.

	
	Resting-state fMRI 
	
	

	Bai et al130
	Connectivity of hippocampal regions
	Disconnection between hippocampal subfields and posterior cingulate cortex Accuracy: 90%           Follow-up: 20 months
	Relatively small monocentre sample with relatively short follow-up interval (20 months)

	Petrella et al131
	Dysfunction of Default Mode Network (DMN)
	Index of individual coactivation of the DMN regression analysis predicts conversion to AD                  Follow-up: 2 -  3 years
	Spatial index of DMN expression (Goodness of fit) promising functional marker. Accuracy rates for group separation and HR for conversion not reported.

	
	Multimodal Imaging
	
	

	Zhang et al47
	FDG-PET and structural MRI
	ADNI-dataset
Application of a multi-kernel
support vector machine
and a longitudinal feature selection method 
Accuracy: baseline data only: 72.7%, including longitudinal data: 78.4%
Follow-up: 2  years
	Combined model with FDG-PET, structural MRI and cognitive testing data resulted in superior prediction as compared to any of the single methods.
The complex statistical approach and the inclusion of longitudinal data may not be easily transferable to a clinical routine setting.

	Yuan et al46
	
	Metaanalysis in 1,112 patients.
Balanced Accuracy: MRI: 76.9%, FDG-PET:  86.9 % 
Follow-up: 12-60 months
	Superior predictive performance of FDG-PET versus MRI, but no direct multimodal comparison of different methods in the same sample. Highly variable follow-up intervals in the different studies. 

	Schaffer et al132
	
	ADNI-dataset
Evaluation of the prognostic value of MRI, FDG-PET, and CSF data and of several combinations thereof.
Accuracy: FDG-PET added the most prognostic information (Area under the curve (AUC) 0.87), compared with MRI (0.74) and CSF (0.70). A combination of all markers resulted in an AUC of 0.92
Follow-up:  31.5±10 months
	The model with the highest efficiency includes only clinical tests and FDG-PET, suggesting that the benefit of additional diagnostic tests is
questionable.

	Landau et al84
	
	ADNI-dataset 
Multivariate analysis including structural MRI and FDG-PET, CSF markers and cognitive tests
Hazard-ratio FDG-PET: 2.72
Follow up:  1.9 ± 0.4 years
	Only FDG-PET and impaired episodic memory predicted conversion to AD. 
Hippocampal volume was not associated with either risk for cognitive decline or for conversion to manifest dementia

	Young et al133
	
	ADNI-dataset
Gaussian process classification was used to integrate multimodal data. Balanced Accuracy:
MRI: 61,1%, FDG-PET:  69,4 %, Multimodal combination of MRI, PET and CSF/APOE genotype:  72,2%
Follow-up: 36  months
	CSF was demonstrated to have inferior predictive value as compared to imaging.

	Chen et al134
	
	ADNI-Dataset
Extent and magnitude of hypometabolism in FDG-PET were assessed across the entire brain by definition of a „hypometabolic index“.
HR: 
FDG-PET/Hypometabolic index: 7.38, MRI hippocampal volume: 6.34
Combination of both: 36.72
Follow up:  18 months
	The „hypometabolic index“ may include some effects of atrophy due to partial volume effects.

	Vandenberghe et al135
	Amyloid-PET and structural MRI
	Support vector machine classifiers on amyloid-PET and structural MRI data
Sensitivity/Specificity Amyloid-PET: 89%/82%
MRI: 78%/36%
Follow up:  2 years
	Using a support vector machine, the amyloid-PET (18F-flutemetamol) based classifier distinguished more reliably between converters and non-converters than the grey matter-based classifier.
The small sample size (n= 11 MCI non converters and n= 9 MCI converters) limits the generalizability of these results. 

	Jack et al89
	
	ADNI-dataset
Endpoint was time to conversion 
HR: 
In amyloid-positive MCI, hippocampal atrophy predicted shorter time-to-progression (HR 2.0) while Aβ-load did not (HR 1.2). Among all (amyloid-positive and -negative) subjects, hippocampal atrophy and Aβ-load were comparable (HR 2.6).
Follow up:  1.7 years
	Aβ-load reached a ceiling and was decoupled from risk of progression at high levels. Hippocampal atrophy showed a more linear profile along the neurodegenerative path.

	Hatashita et al86
	FDG-PET and Amyloid-PET
	ROI-based evaluation (manually drawn) of PiB-PET and FDG-PET data
Balanced accuracy: PiB-PET: 69,4 %, FDG-PET: 58,5%, combination of both: 59,1%
Follow up:  19.2±7.1 months
	Reported specificity values are unusually low (down to 18.1 %). This raises some questions about the consistency of the applied methods with other studies.
Specificities were found to be higher in subjects aged > 75 years.



	Zhang et al87
	

	Metaanalysis 492 patients
Balanced accuracy: PiB-PET: 74,9 %, FDG-PET: 76,4%
Follow-up: 12-36 months
	The data suggest a higher sensitivity of [11C]PiB but a higher specificity of [18F]FDG. This supports the notion that hypometabolic abnormalities maybe closer related to short-term prognosis.

	Trzepacz et al136
	FDG-PET, Amyloid-PET and structural MRI 
	ADNI-dataset
Multivariate modelling.
Accuracy: 
A higher accuracy was found for a combination of MRI and amyloid-PET (PiB) as compared to any single biomarker (MRI 67%, PiB-PET 66% and FDG-PET 62%).
Follow-up: 2 years
	The study was funded by Eli Lilly and  most authors report affiliations with this company (Eli/Lilly is involved in  the marketing of an amyloid-PET-tracer)

Results are somewhat contradicting to other ADNI-studies, particularly regarding the unusually low sensitivity values reported (e.g. FDG-PET: 10%). This raises some questions about the consistency of the applied methods with other studies.

	Brück et al48
	
	Multi-ROI-based models and voxel-based pattern classifiers. 
Accuracy:  PIB 70%, FDG 82 % (no significant difference). Both methods superior to assessment of hippocampal volumes in predicting conversion to AD. Follow-up: 2 years
	Prospective study, but small sample (n=22 subjects with MCI) reveals comparable performance of amyloid-PET and FDG-PET, but unusually low performance of structural MRI.

	Prestia et al.137
	
	FDG-PET and hippocampus volumetry and CSF-based assessment of Abeta42.
Accuracy: FDG 84%, Hippocampus volume 68%; 
	Prospective study on medium size sample of 73 subjects with MCI from three memory clincis, followed on average between 2 and 3 years. FDG-PET was the best single performing marker, yielding high sensitivity and specificity (80% and higher).




	SUVR						
	standard uptake value ratio; ratio of the tracer retention in the target region to the tracer retention in a reference region (typically cerebellum) 

	SPM99/SPM5/SPM8	
	statistical parametric mapping software; subsequent versions provide updated algorithms for stereotactical normalisation of brain scans (http://www.fil.ion.ucl.ac.uk/spm)

	NEUROSTAT/3D-SSP	
	Software for PET quantitative analysis that uses three-dimensional stereotactic surface projection (3D-SSP) to account for inter-individual differences in cortical anatomy (http://www.rad.washington.edu/research/Research/groups/nbl/neurostat-3d-ssp)

	ROI							
	Region of interest; manually drawn or automatically defined brain region that serves as reference for normalization or as target region for analysis

	ADNI					
	Alzheimer’s Disease Neuroimaging Initiative; (http://adni.loni.usc.edu)

	OR						
	Odds ratio; i.e. the ratio between the odds that a subject that has an abnormal imaging finding converts to AD to the odds that a subject that does not have an abnormal imaging finding converts to AD

	HR					
	Hazard ratio; the chance of conversion in the subjects with an abnormal imaging finding divided by the chance of conversion in the subjects without an abnormal imaging finding.

	PPV/NPV			
	Positive/negative predictive value; number of converters (non-converters) relative to all subjects with a positive (negative) imaging finding; value depends on the prevalence of the endpoint conversion in the sample. 

	MTL		
	medial temporal lobe volume

	Hippo			
	Hippocampus

	ERC			
	entorhinal cortex

	FA			
	fractional anisotropy

	MD			
	mean diffusivity

	AxD			
	axial diffusivity

	RaD			
	radial diffusivity

	DMN			
	Default mode network

	CSF			
	cerebrospinal fluid

	AUC		
	Area under the receiver operating characteristics curve; measure of accuracy in a binary forced choice decision (e.g. conversion vs. non- conversion)





Table 2: Imaging markers for prodromal AD used in a specialized care setting
	Studies
	Study sample
	Outcomes
	Marker
	Result

	Bouwman et al90
	65 MCI
	Converted into AD vs. stable
	MTL (MRI) + memory
	91% specificity, 27% sensitivity  for conversion into AD.
Memory alone: 54% specificity, 80% sensitivity

	Galluzzi et al91
	90 MCI
	Converted into AD vs. converted into non-AD vs. stable
	MTL (MRI), FDG-PET, CSF
	MTL: 100% sensitivity, 52% specificity for AD
FDG-PET: 70% sensitivity and 50% specificity
CSF: 100% sensitivity, 65% specificity for AD

	Ossenkoppele et al138
	16 MCI
	AD vs. non-AD vs. normal vs. other
	FDG-PET, PIB-PET
	FDG-PET: 71% sensitivity, 100% specificity 
PIB-PET: 86% sensitivity, 100% specificity 

	Panegyres et al92
	102 subjects with early onset dementia
	AD vs. non AD dementias
	FDG-PET (vs. diagnostic work-up according to dementia guidelines)
	FDG-PET yielded sensitivity of 78% and specificity of 81% for AD relative to clinical diagnosis



MTL		 medial temporal lobe volume
CSF		cerebrospinal fluid
 
Table 3: General framework for the stepwise development of biomarkers for case finding: application to the pre-dementia diagnosis of Alzheimer’s disease (adapted from97) 
	
	General statement
	Translation to Alzheimer’s 

	Phase 1—Exploratory Studies
	Primary Aims: To identify leads for potentially useful biomarkers and prioritize identified leads.
	Neurobiological studies show that plaques contain Aβ42; neurofibrillary tangles contain hyperphosphorylated tau; neuronal loss in the hippocampus; and glucose being the primary metabolic substrate of synaptic function.


	Phase 2—Clinical Assay Development for Clinical Disease
	Primary Aim: to estimate the true and false positive rates for distinguishing subjects with and without the disease.
	Case-control studies show that AD biomarkers separate AD dementia patients from older healthy volunteers. The standard of truth should be the pathological diagnosis of AD.

	
	Secondary Aims
1)  To optimize procedures for performing the assay and to assess the reproducibility of the assay within and between laboratories. 
	Development of SOPs for AD imaging data collection , e.g. ADNI or EDSD sequences for high-resolution volumetric MR, EADC-ADNI harmonized protocol for manual hippocampal segmentation,
the CENTILOID project for signal acquisition and interpretation of fluorinated PET amyloid ligands,
FDG-PET: NEST-DD

	
	2)  To determine the relationship between biomarker tissue measurements made on tissue (phase 1) and the biomarker measurements made on the noninvasive clinical specimen (phase 2). 
	Correlation between: hippocampal volume on MR in vivo and neurodegenerative changes on pathology; uptake of fluorinated PET amyloid ligands in vivo and senile plaque density on pathology; and glucose consumption in association cortex in vivo and neurodegenerative changes on pathology.


	
	3)  To assess factors (e.g. sex, age, etc.), associated with biomarker status or level in control subjects. If such factors affect the biomarker, thresholds for test positivity may need to be defined separately for target subpopulations.
	Correlation between hippocampal and intracranial volume in healthy persons.

	
	4)  To assess factors associated with biomarker status or level in diseased subjects—in particular, disease characteristics.
	Effect size of most core biomarkers varies by age at onset. 

	Phase 3—Retrospective Longitudinal Repository Studies on prodromal disease
	Primary Aims: to evaluate the capacity of the biomarker to detect prodromal disease and define criteria for a biomarker positive test in preparation for phase 4
	Predictivity of incident AD dementia in MCI patients and healthy older volunteers by individual biomarkers and combinations. 

	
	Secondary Aims
1)  To explore the impact of covariates on the discriminatory abilities of the biomarker before clinical diagnosis. 
	Preliminary evidence on association of age at onset with predictivity of core biomarkers.

	
	2)  To compare markers with a view to selecting those that are most promising. 
	Preliminary evidence on association of two or more core biomarkers.

	
	3)  To develop algorithms for positivity based on combinations of markers.  
	Preliminary evidence on association of CSF Aβ42, FDG-PET, and hippocampal atrophy.

	
	4)  To determine a biomarker testing interval for phase 4 if repeated testing is of interest.
	Not assessed.

	
	Secondary Aims
1)  To obtain information about the costs of biomarker testing and treatment and the cost per life saved or per quality-adjusted life year.
	Not assessed.

	
	2)  To evaluate compliance with testing and work-up in a diverse range of settings
	Not assessed.

	
	3)  To compare different biomarker testing protocols and/or to compare different approaches to treating test positive subjects in regard to effects on mortality and costs.
	Not assessed.



Abbreviations:
ADNI			-	Alzheimer’s Disease Neuroimaging Initiative
EADC			-	European Alzheimer’s Disease Consortium
EDSD			-	European DTI Study on Dementia
CENTILOID	-	proposed unit of measure on a unified scale for amyloid-β PET tracers 
Nest-DD		-	Network for Efficiency and Standardisation of Dementia Diagnosis

Panel 2: Non-medical factors that likely influence the use of an imaging technique in clinical applications
	Factor
	Comment

	Economic factors
	

	Costs 
	High costs for new innovations, such as combined PET/MRI or 7T MRI scanners, limit their broad application unless a distinct medical and/or economic advantage justifies usage in at least one clinical indication.

	Reimbursement
	Reimbursement is related to potential cost savings through early diagnosis and/or early initiation of effective treatments. For instance, the perceived lack of disease-modifying treatments for AD limits the willingness of health care insurance to reimburse costs of novel PET tracers.

	Societal factors
	

	Availability
	Availability of PET and MRI scanners varies greatly between countries (http://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT), and depends among others on economic resources of a health care system, and the relevance of a particular technique for applications outside of dementia (such as cancer for PET). 

	
	

	Regulatory requirements
	

	Certification and standardization
	Many brain imaging techniques are highly standardized. This allows direct comparison of results obtained by different imaging systems. This requires large normative datasets to establish reference standards and appropriate cutoffs of normality

	Physician’s attitude
	

	Education
	With the increased use of brain imaging as AD biomarker, education is a major challenge to the imaging community which needs to be addressed with educational programs and recommendations for the correct use of imaging markers. 

	Personal bias
	Cultural background (e.g. attitude towards radiation exposure or CSF sampling), perception of treatment efficacy, local tradition, and remuneration are important co-factors beyond a latent factor of personal attitude.

	Patient/Caregiver’s attitude
	

	Safety, 
patient/caregiver burden, radiation exposure
	Safety, patient burden and caregiver concerns on cumulative radiation dose become particularly relevant with diagnosis being moved forwards in time so that the effect of early diagnosis on the well-being of an individual patient is not clear in absence of disease-modifying treatments.

	Self-insight
	Brain imaging, as a potential advantage over other AD biomarkers, allows the patients to obtain direct insight into their own body, by that simplifying disease understanding and therapy/care planning.  





Figure legend
Figure 1: Cortical amyloid accumulation as evidenced by 18F-Florbetaben-PET
Representative amyloid PET images of an AD patient and a healthy control as obtained by the 18F-labeled tracer florbetaben. Unspecific white matter binding in case of the healthy control, which spreads to the neocortical grey matter in the AD patient as a sign of cortical beta-amyloid load.

Figure 2: Cortical hypometabolism as evidenced by 18FDG-PET
Three-dimensional surface projections (3DSSP’s) of typical FDG-PET findings in a patient with AD. Top row: Glucose metabolism, color-coded: yellow/red= high metabolism, green = hypometabolism, detected in bilateral temporoparietal and frontal cortex and in the posterior cingulate cortex (mesial aspects). Bottom row: Statistical comparison of the patient’s PET-scan with a healthy control population. Significant deviations (Z-scores) are displayed (green/yellow = high deviation, black/blue = no/low deviation).

Figure 3: Hippocampus atrophy as evidenced by high-resolution structural MRI scans
The figure shows coronal sections of high-resolution structural MRI scans depicting the head of the hippocampus (labeled in red) in an AD patient (left) and a healthy elderly control (right). Severe atrophy of the hippocampus in the AD patient is evident by visual comparison to the healthy control subject.

Figure 4: Reduced functional connectivity as evidenced by resting-state functional MRI
The figure illustrates functional connectivity profiles of a seed region in the posterior cingulate cortex (yellow star) as evidenced by resting-state fMRI in a healthy elderly subject (top) and an AD patient (bottom). Functional connectivity strength is defined as the degree of correlation between resting activity fluctuations in spatially segregated brain regions and is depicted as color-coded regression coefficients in each voxel of the brain’s grey matter. In the healthy subject resting activity in the posterior cingulate seed region is correlated with activity in inferior parietal and medial frontal regions, together representing the so-called default mode network. In the AD patient the long-range functional connectivity of the posterior cingulate seed region is drastically reduced, particularly with respect to the medial frontal cortex. Note that resting-state fMRI data was spatially normalized for functional connectivity analysis and functional connectivity profiles are projected onto a sagittal and an axial section of a standard space template. 

Figure 5. Reduced fiber tract integrity as evidenced by diffusion tensor imaging
The figure shows DTI-derived fractional anisotropy (FA) maps for a healthy elderly subject (top) and an AD patient (bottom) overlaid on corresponding structural MRI scans. Fractional anisotropy is an index of the directionality of water diffusion, being characterized by small values in regions of undirected water diffusion, such as in the brain’s grey matter and CSF spaces, and high values in white matter fiber tracts where water diffusion preferentially follows the orientation of the axonal bundles. Microstructural damage to fiber tracts results in decreased FA values. In Alzheimer’s disease reductions in FA are typically most pronounced in limbic fiber tracts, such as the fornix (red arrow in sagittal sections) and fiber tracts traversing the temporal lobe (red box on coronal sections).

Figure 6: Multimodal signature of Alzheimer’s disease
Illustration of typical regional patterns of increased amyloid accumulation (row 1), cortical metabolic decline (row 2), grey matter atrophy (row 3), decline of white matter microstructural integrity (row 4), and decline of cortical functional connectivity (row 5), in early clinical stages of AD. The multimodal imaging analysis uses converging effects from several imaging modalities to test the pathogenetic model of AD disease progression in vivo. The regions of significant amyloid accumulation in amyloid-PET, for instance, overlap only partly with brain regions showing metabolic decline or regional atrophy, pointing to a specific sequence of pathogenetic events over the course of preclinical and prodromal AD. From a clinical perspective, the complementary effects of multiple imaging modalities may usefully be employed to obtain more accurate predictions of cognitive decline than is possible through single modality imaging or clinical diagnosis alone. 
Please note that these figures are scaled for illustration purposes, and do not necessarily reflect actual statistical maps




