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Abstract

Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD),
where recall performance is impaired to the same extent as in Alzheimer’s disease (AD). While these deficits appear to be
mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated
across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC)
prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and
neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD
patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic
memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of
VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried
against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks.
Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD
and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC
was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent
prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing
neuropsychological measures.
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Introduction

Behavioural variant frontotemporal dementia (bvFTD) is the

second leading cause of early-onset dementia, after Alzheimer’s

disease (AD) [1,2]. Patients with bvFTD present with a range of

symptoms, notably decline in social behaviour and personal

conduct, ritualized activity, loss of empathy, emotional blunting

and executive dysfunction [3]. While episodic memory deficits are

a well-established early feature of AD [4], the diagnostic criteria

for bvFTD mandate a predominantly dysexecutive cognitive

profile, with relative sparing of episodic memory and visuospatial

skills [3]. Indeed, an amnestic presentation still remains an

exclusion criterion for diagnosis of bvFTD [3,5].

Increasing evidence, however, shows that a proportion of

bvFTD cases, including those with pathological confirmation, can

present with marked episodic memory deficits [6–9], and are

generally impaired on standard recall based memory tasks [10],

despite relatively intact recognition memory compared to age-

matched controls [11–13]. While some studies report greater

impairment on measures of memory recall in AD compared to

bvFTD [14–16], others have demonstrated that patients with

bvFTD show comparable deficits [17–20]. The reason for these

discrepant results is currently unclear, but may be due to various

factors, such as disease progression, types of memory measures and

the inclusion of the recently recognised non-progressive bvFTD

‘phenocopy’ patients [17].

Investigations into the underlying neural correlates of episodic

memory deficits usually focus on medial temporal lobe (MTL)

damage, particularly in the hippocampus. Episodic memory

impairments in AD have largely been attributed to hippocampal

atrophy [18,21]. Not surprisingly, in light of the recent memory

findings, bvFTD patients show similar degrees of hippocampal

atrophy during earlier disease stages compared to AD [18,22], and

this can be even more severe in bvFTD at post mortem [23].

Nevertheless, the extent to which the pervasive prefrontal cortex

atrophy in bvFTD contributes to their amnesia is unclear. Indeed,

evidence from visual atrophy rating [18], whole-brain voxel-based

morphometry (VBM) [24] and 18F-fluorodeoxyglucose positron

emission tomography (FDG-PET) [19] studies, in which the

degree of episodic memory deficits was covaried with brain

dysfunction, show that not only MTL but also prefrontal atrophy

contribute to the episodic memory deficits in bvFTD.
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The role of the prefrontal cortex (PFC) in episodic memory is

still controversial [25]. Current evidence from neuroimaging and

lesion studies suggests that the strategic aspects of episodic memory

recall are mediated by PFC structures [26,27], in particular the

dorsolateral PFC (DLPFC) [28,29]. Accordingly, it has been

proposed that episodic memory deficits in bvFTD may be related

to failure of strategic retrieval processes due to difficulties with

planning and organisation of information during encoding and/or

retrieval [30]. Further support for this arises from studies that have

demonstrated associations between impaired autobiographical

memory retrieval and executive dysfunction in bvFTD [31].

Executive dysfunction is also a prominent component of AD

[4,32], however, and is associated with memory deficits [33] and

PFC atrophy [34]. DLPFC atrophy is evident in both AD and

bvFTD and does not serve as a reliable marker to distinguish

between the two diseases [35]. This raises the question as to

whether other PFC regions might contribute to the memory

deficits seen in bvFTD.

The ventromedial prefrontal cortex (VMPFC) emerges as the

region which most likely influences episodic memory performance

in bvFTD because it is affected very early in the illness [35–37]

and shows strong connections with the MTL [38]. Very few

studies, however, have investigated the relative contribution of

VMPFC dysfunction to episodic memory recall in bvFTD. For

example, Pennington and colleagues [18] revealed that correla-

tions between PFC atrophy and episodic memory deficits were

strongest for the VMPFC and not DLPFC. Similarly, impaired

autobiographical memory recall appears to be related to VMPFC

dysfunction [39]. This is corroborated by functional imaging

studies in healthy participants, which have shown that contextual

information retrieval is associated with MTL-VMPFC interaction

[40,41]. Still, to date no study has directly contrasted the DLPFC

and VMPFC contributions to episodic memory deficits in bvFTD

and AD to reveal such a dissociation.

The current study set out to address this issue by directly

contrasting DLPFC and VMPFC functions and their contributions

to episodic memory in bvFTD and AD. In particular, we

employed neuropsychological measures typically tapping into

either DLPFC or VMPFC functions, to quantify the relationship

between performance on these tasks and measures of episodic

memory recall. We further sought to elucidate the prefrontal

neural substrates of these relationships using VBM covariate

analyses. Based on previous evidence we predicted that episodic

memory dysfunction in both patient groups would relate to

divergent patterns of prefrontally mediated task performance and

grey matter atrophy. Specifically, in bvFTD we hypothesised that

episodic memory impairment would be mainly related to

VMPFC-mediated tasks and atrophy. In contrast, we predicted

that episodic memory impairment in AD would be more

correlated with DLPFC-mediated tasks and atrophy.

Methods

Case Selection
A sample of 22 bvFTD and 32 AD patients and 35 age- and

education-matched controls were selected from the FRONTIER

database, resulting in a total of 89 participants. All bvFTD patients

fulfilled proposed criteria for possible bvFTD [3] as well as

consensus criteria for FTD [5], with insidious onset, decline in

social behaviour and personal conduct, emotional blunting and

loss of insight. All AD patients met NINCDS-ADRDA diagnostic

criteria for probable AD [4]. Disease duration was estimated as the

number of years elapsed since onset of symptoms. The age- and

education-matched healthy control group consisted of volunteers

or spouses/carers of patients (see Table 1 for demographic details).

To determine their overall level of cognitive functioning, all

participants underwent general cognitive screening using the

Addenbrooke’s Cognitive Examination-Revised (ACE-R) [42].

The Frontotemporal Dementia Rating Scale (FRS) [43] and

Clinical Dementia Rating Scale (CDR) [44] were used to

determine the disease severity in bvFTD and AD patients. In

addition, the Cambridge Behavioural Inventory revised (CBI-R)

[45] was used to quantify symptoms of behavioural disturbance

reported by the family or carer, with higher scores indicative of

more behavioural disturbance.

Ethics Statement
All participants provided written informed consent, and dual

consent was obtained from the carer for some participants. This

study was approved by the South Eastern Sydney and Illawarra

Area Health Service and the University of New South Wales ethics

committees.

Neuropsychological Measures
The Rey Auditory Verbal Learning Test (RAVLT) [46] was

administered as a measure of episodic memory recall for verbal

information. The RAVLT involves learning a list of 15 words (List

A), which is read aloud over five consecutive trials, each followed

by a free recall test. This is followed by presentation of an

interference list of 15 words (List B), with a free recall test for these

words. Participants are then required to recall words from List A

without further presentation of those words. Following a 30-

minute delay, recall of List A is re-assessed, followed by a

recognition test, containing all items from List A as well as words

from List B and 20 new words. The immediate recall following

interference trial (A6) score was included in our analyses.

Episodic memory recall for visual information was assessed

using the Rey-Osterrieth Complex Figure (RCF) test [47]. Three

minutes after copying a complex figure as accurately as possible,

participants were instructed to reproduce the figure from memory.

The 3-minute recall score was included in our analyses.

The following measures of prefrontal function were adminis-

tered: the Controlled Oral Word Association Test (COWAT) [48],

the Backwards Digit Span test [49], the Brixton Spatial

Anticipation Test and the Hayling Sentence Completion Test

[50], the Iowa Gambling Task (IGT) [51] and The Awareness of

Social Inference Test (TASIT) [52].

The COWAT is a timed task that involves generating a list of

words that begin with a specified letter (over 3 trials, for F, A or S).

The Backwards Digit Span is measure of working memory, where

participants are required to repeat series of numbers (which

increase in length over trials) in backwards order. In healthy

adults, performance on the COWAT is associated with DLPFC

grey matter volume [53] and activation of the DLPFC has been

demonstrated during the Backwards Digit Span task [54]. The

total correct scores were recorded for both the COWAT and

Backwards Digit Span tests.

The Brixton Spatial Anticipation Task involves rule attainment

and the use of feedback to guide future actions. In this task,

participants view several pages with an array of ten circles. In each

array, one of the ten circles is coloured blue and the position of the

blue circle varies from page to page in accordance with simple

rules. The participant is required to predict the location of the blue

circle on subsequent pages, based on its location in previous pages.

Although few studies have systematically examined the neural

correlates that underpin performance on the Brixton Test, one

study has found significantly impaired performance in patients

PFC Episodic Memory in bvFTD and AD
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with focal left lateral PFC lesions [55]. To allow comparison

between neuropsychological measures, the Brixton total error

score was converted to a total correct score.

The Hayling Test assesses the ability to inhibit prepotent verbal

responses on a sentence completion task. An initial baseline phase

requires completion of a sentence with a logical word as quickly as

possible; the second phase involves inhibition of an automatic

logical response, and rather, completion of the sentence with a

word that is semantically unrelated. Performance on the Hayling

Test is correlated with orbitofrontal cortex (OFC) atrophy in

bvFTD [56]. The total number of errors scored by each

participant on Section 2 of the test was subtracted from the

maximum possible error score to allow comparison between

neuropsychological measures, such that lower values indicate

greater impairment.

The IGT is a computer-administered task, which involves

selecting cards from four decks, each of which is associated with

varying degrees of monetary profit or loss. Overall, selecting cards

from decks A and B results in larger net loss, whereas selecting

cards from decks C and D leads to greater net profit. The total

number of cards chosen from each of the four decks was recorded,

from which a modified total net score (decks D – A) was calculated.

Positive scores indicate a dominance of advantageous deck

choices, whereas negative scores indicate a dominance of

disadvantageous deck choices. IGT task performance in bvFTD

is correlated with VMPFC atrophy [57]. To allow conversion of

IGT scores into percentages of the control mean for calculation of

composite scores, scores were linearly transformed to ensure all

scores were positive.

The Emotion Evaluation subtest from the TASIT evaluates

comprehension of basic emotion through 28 professionally enacted

video vignettes, portraying positive (happiness, surprise or neutral)

or negative (sadness, anger, anxiety or revulsion) emotions.

Participants are shown a response card listing each of the emotions

in a random order, and are required to state the emotion that is

being portrayed by the actor. In bvFTD patients, poor negative

emotion recognition is associated with OFC atrophy [58]. The

total number of correct responses was recorded.

Composite Scores
All neuropsychological test scores were converted into percent-

age of the control mean, before averaging to yield composite

scores. RAVLT and RCF recall scores were averaged to produce a

recall composite. Based on previous studies that demonstrate

associations between task performance and regional atrophy or

activation, prefrontal tasks were subdivided into DLPFC task and

VMPFC task composite scores. The DLPFC task composite

included scores from the COWAT, Backwards Digit Span and

Brixton Spatial Anticipation tasks. Scores from the Hayling

Sentence Completion Task, IGT and TASIT were included in

the VMPFC task composite score.

Statistics
Data were analysed using SPSS20.0 (SPSS Inc., Chicago, Ill.,

USA). Kolmogorov-Smirnov tests were used to check for

normality of distribution in the demographic data, neuropsycho-

logical measures and composite scores. Where the data were

normally distributed, scores were compared across the three

groups (bvFTD, AD and controls) using ANOVAs followed by

Bonferroni post-hoc tests. Data that were not normally distributed

were analysed using Kruskal-Wallis tests followed by post-hoc

Mann-Whitney U tests with Bonferroni correction for multiple

comparisons. A chi-square test was used to check for significant

gender differences across groups.

Table 1. Demographic characteristics and experimental composite scores across participant groupsa.

Controls bvFTD AD
Group
effect

bvFTD vs.
Control

AD vs.
Control

bvFTD vs.
AD

N 35 22 32

Sex (M/F) 19/16 14/8 20/12 n.s. . . .

Mean age (years) 64.20 (5.38) 61.23 (7.45) 63.53 (6.98) n.s. . . .

Education (years) 12.79 (2.60) 11.33 (2.51) 12.41 (3.28) n.s. . . .

Disease duration (years) . 3.82 (2.44) 3.20 (2.09) . . . n.s.

FRS Rasch score b . 20.37 (1.02) 0.25 (0.96) . . . n.s.

CDR sum of boxes [18]b 0.32 (0.46) 7.08 (2.86) 5.05 (2.68) *** *** *** **

ACE-R [100] 95.00 (3.3) 76.00 (10.47) 67.84 (17.75) *** *** *** n.s.

CBI-R total frequency score [180] 3.77 (4.57) 67.36 (34.72) 40.33 (26.48) *** *** *** n.s.

CBI-R selected subscores:

Memory/Orientation [32] 1.50 (2.68) 16.18 (6.95) 16.00 (7.27) *** *** *** n.s.

Everyday skills [20] 0.17 (0.389) 7.09 (5.49) 7.25 (5.599) *** *** *** n.s.

Abnormal behaviour [24] 0.25 (0.45) 9.18 (6.74) 2.08 (2.31) *** *** n.s. **

Stereotypic/motor behaviours [16] 0.58 (0.79) 7 (5.33) 1.5 (2.15) ** *** n.s. **

Recall composite 99.56 (21.1) 37.86 (28.76) 20.55 (18.69) *** *** *** n.s.

DLPFC task composite 99.53 (18.88) 54.60 (26.03) 57.39 (21.73) *** *** *** n.s.

VMPFC task composite 99.81 (7.95) 69.26 (17.19) 82.88 (15.03) *** *** *** ***

aStandard deviations in parentheses, maximum score for tests shown in brackets.
bAll patients had either FRS or CDR disease severity measures.
**p,.01, ***p,.001, n.s. = non-significant.
doi:10.1371/journal.pone.0087778.t001
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Image Acquisition and Voxel-based Morphometry (VBM)
Analysis
All patients and controls underwent the same imaging protocol

with whole-brain T1-weighted images using a 3T Phillips MRI

scanner with a standard quadrature head coil (8 channels). The 3D

T1-weighted sequences were acquired as follows: coronal orien-

tation, matrix 2566256, 200 slices, 161 mm2 in-plane resolution,

slice thickness 1 mm, TE/TR=2.6/5.8 ms. 3D T1-weighted

sequences were analysed using FSL-VBM, a voxel-based mor-

phometry analysis [59,60], which is part of the FLS software

package http://www.fmrib.ox.ac.uk/fsl/fslvbm/index.html [61].

Following brain extraction from the images, tissue segmentation

was carried out using FMRIB’s Automatic Segmentation Tool

(FAST) [62]. The resulting gray matter partial volume maps were

aligned to the Montreal Neurological Institute standard space

(MNI52) using the nonlinear registration approach with FNIRT

[63,64], which uses a b-spline representation of the registration

warp field [65]. To correct for local expansion or contraction, the

registered partial volume maps were modulated by dividing them

by the Jacobian of the warp field. The modulated images were

then smoothed with an isotropic Gaussian kernel with a standard

deviation of 3 mm (FWHM: 8 mm). Next, a voxelwise general

linear model (GLM) was applied and permutation-based non-

parametric testing (with 500 permutations per contrast) was used

to form clusters with the Threshold Free Cluster Enhancement

(TFCE) method [66]. Given our focus on the PFC and MTL

involvement in memory recall, the VBM analysis was limited to

the temporal and frontal lobes by creating a mask using the

Montreal Neurological Institute standard space (MNI152) atlas.

Based on the a priori hypothesis that performance on tasks

included in the DLPFC task composite is related to the integrity of

the DLPFC, VBM analysis of this composite score was performed

using a mask including this region. Similarly, VBM analysis of the

VMPFC task composite was limited to the VMPFC by using a

mask for this region.

Group comparisons and covariate analyses of the composite

data were tested for significance at p,.05, corrected for multiple

comparisons via Family-wise Error (FWE) correction across space.

Within patient groups, covariate analyses were conducted at

significance levels of p,.05, False Discovery Rate (FDR) corrected.

This increases sensitivity by controlling the expected proportion of

false positives among suprathreshold voxels only, rather than all

false positives across all voxels. Regions of significant atrophy were

superimposed on T1-weighted standard brain images for spatial

normalization and visual comparison with a brain atlas, allowing

localisation of areas of significant grey matter loss. A cluster

threshold of 50 contiguous voxels for significant atrophy clusters

was applied and regions of atrophy are reported in MNI

coordinates. To increase sensitivity, the cluster threshold was

lowered to 20 contiguous voxels for within patient group analyses.

Results

Demographics and Global Cognitive Functioning
Demographics and general cognitive scores can be seen in

Table 1. As a Bonferroni correction was applied, all post hoc group

comparisons are reported at a.0167 level of significance. Partic-

ipant groups did not differ in terms of age, sex or education

(p’s..1). The bvFTD and AD patient groups were matched for

disease duration (p..1). While disease severity did not differ

between patient groups on the FRS (p..05), the mean CDR sum

of boxes score was higher in bvFTD compared to AD patients

(p= .008). On the cognitive screening test (ACE-R), both patient

groups were significantly impaired in comparison to controls

(p,.001) but did not differ (p..1). Based on CBI-R scores, both

patient groups showed significantly more symptoms of overall

behavioural disturbance compared to age-matched controls

(p’s,.001), with a trend towards more severe symptoms in bvFTD

compared to AD patients, though this did not survive correction

for multiple comparisons (p= .039). Further analysis of selected

CBI-R subscales showed that although memory/orientation and

everyday skills (p’s..05) were equally impaired in both patient

groups, bvFTD patients showed more severe symptoms of

abnormal behaviour and stereotypic/motor behaviours (p’s,.01).

Neuropsychological Measures
The results of the neuropsychological measures are shown in

Table S1. Distributions across all measures were non-normal,

except for the COWAT. On measures of memory recall, both

patient groups were significantly impaired compared to controls

(p’s,.001). While RAVLT scores did not differ between patient

groups (p= .238), there was a trend for better RCF recall

performance in bvFTD compared to AD patients (p= .032),

though this did not survive correction for multiple comparisons.

On all measures of prefrontal function, both patient groups were

significantly impaired in comparison to controls (p’s,.0167).

However, bvFTD and AD patients only differed significantly on

the Hayling AB error score (p= .008), with bvFTD patients

making overall more errors.

Composite Scores
Results for the composite scores are shown in Table 1.

Distributions were normal for the DLPFC task and VMPFC task

composites but non-normal for the recall composite. Both patient

groups were significantly impaired across all composite scores, in

comparison to controls (p’s,.001). Although there was a trend for

worse recall performance in AD compared to bvFTD patients, this

did not survive correction for multiple comparisons (p= .025).

There were no significant differences between bvFTD and AD

patients in terms of DLPFC task composite scores (p..1). In

contrast, VMPFC task composite scores were significantly lower in

bvFTD patients compared to AD patients (p= .001).

Correlations between Composite Scores
Spearman rank correlations were used to quantify relationships

between the composite scores. Across all groups, the recall

composite was significantly correlated with both the DLPFC task

(rs = .589, p,.001) and VMPFC task (rs = .558, p,.001) compos-

ites. Correlations between composite scores failed to reach

statistical significance in either patient group, separately.

VBM Results
Group analysis. Participant groups were contrasted to reveal

patterns of brain atrophy in the frontal and temporal mask. In

comparison to controls, bvFTD patients showed widespread

atrophy in frontal polar, orbitofrontal, anterior temporal, hippo-

campal, paracingulate and insular regions (Figure S1A). For AD

patients, significant atrophy was found in comparison to controls,

encompassing hippocampal, temporal, paracingulate and frontal

regions (Figure S1B). Direct comparison of patient groups revealed

significantly greater atrophy of the prefrontal and anterior

temporal regions in bvFTD (Figure S1C). The reverse contrast

did not reveal any regions of significantly greater atrophy in AD

compared to bvFTD (Figure S1D).

Correlations with composite scores across all

participants. Composite scores were entered as covariates in

the design matrix of the VBM analysis. FWE corrected

PFC Episodic Memory in bvFTD and AD
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significance levels of p,.05 and a cluster threshold of 50

contiguous voxels was used for all significant atrophy clusters.

Across all participants, regions of atrophy that correlated with the

recall composite included the insular cortex, frontal operculum

cortex, middle and inferior temporal gyri, parahippocampal gyrus,

hippocampus, frontal pole and temporal fusiform gyrus (Figure 1A,

Table 2). The DLPFC task composite correlated with atrophy in

the pre- and post-central gyri and the inferior and middle frontal

gyri (Figure 1B, Table 2), whereas the VMPFC task composite was

correlated with frontal pole, frontal operculum cortex, orbitofron-

tal cortex, paracingulate gyrus and insular cortex atrophy

(Figure 1C, Table 2).

Correlations with composite scores within patient

groups. In further analyses, we investigated the correlations

between the composite scores and regions of atrophy for each

patient group. FDR corrected significance levels of p,.05 and a

cluster threshold of 20 contiguous voxels were used for all

significant atrophy clusters. In bvFTD patients, recall measures

were associated with atrophy in regions including the parahippo-

campal gyrus, hippocampus, temporal pole, paracingulate gyrus,

frontal pole, orbitofrontal gyrus, and superior and middle frontal

gyri (Figure 2A, Table 3). Scores on the DLPFC task composite

were related to atrophy in the middle and superior frontal gyrus,

precentral gyrus, supplementary motor cortex, postcentral gyrus

and posterior cingulate gyrus (Figure 2B, Table 3). In contrast, the

VMPFC task composite was associated with atrophy in the

orbitofrontal cortex, medial frontal cortex, anterior and para-

cingulate gyri, frontal pole and frontal operculum cortex

(Figure 2C, Table 3).

In AD patients, recall measures were correlated with atrophy in

the pre- and post-central gyri, middle temporal gyrus, supplemen-

tary motor cortex, middle and superior frontal gyrus, temporal

pole and frontal pole (Figure 3A, Table 4). Whereas the DLPFC

task composite scores were related to atrophy in the precentral

gyrus and inferior, middle and superior frontal gyri (Figure 3B,

Table 4), the VMPFC task composite was associated with atrophy

in the orbitofrontal cortex, frontal pole, supplementary motor

Figure 1. Grey matter atrophy correlates for recall, DLPFC task and VMPFC task performance across all participants. VBM analysis
showing brain regions in which grey matter intensity correlates with the A) recall composite, B) DLPFC task composite and C) VMPFC task composite.
Clusters are overlaid on the MNI standard brain. Coloured voxels show regions that were significant in the analysis for p,.05, corrected for multiple
comparisons via Family-wise Error correction across space, and a cluster threshold of 50 contiguous voxels.
doi:10.1371/journal.pone.0087778.g001
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cortex, paracingulate gyrus and cingulate gyrus (Figure 3C,

Table 4).

Prefrontal contributions to recall composite scores. A

partial correlation analysis further explored whether damage to

prefrontal regions could have explained the significant correlations

with the recall composite score. In bvFTD patients, both DLPFC

and VMPFC regions still correlated significantly (p’s,.01) with the

recall composite score when temporal lobe atrophy was taken into

account. In AD patients however, only DLPFC regions remained

significantly correlated (p,.05) with the recall composite score

once temporal lobe atrophy was taken into account.

Overlap in recall, DLPFC and VMPFC task atrophy

covariate regions. Finally, we explored whether atrophy

covariates of the memory recall composite overlapped with the

atrophy covariates of the DLPFC task and VMPFC task

composites. For all participants combined, atrophy patterns

showed significant overlap between the recall and VMPFC task

measures in the orbitofrontal cortex/insular cortex, paracingulate

gyrus and frontal pole (Figure 4 Table 5). Although a small region

of atrophy correlating with both recall and DLPFC task

composites was identified in the inferior frontal gyrus, this failed

to reach statistical significance (Table 5). Within bvFTD patients,

no regions of overlap were identified for the recall and DLPFC

task composites. Within AD patients however, a significant region

of overlap for recall and DLPFC task composites was identified in

the precentral gyrus (peak voxel: X=236, Y=224, Z =58).

While small regions of overlap for recall and VMPFC task

composites were identified within each patient group, these failed

to reach statistical significance.

Discussion

The current study investigated the PFC contributions to

episodic memory recall performance in bvFTD and AD.

Behaviourally, our results confirm that episodic memory recall

performance is strongly correlated with DLPFC and VMPFC task

performances. However, imaging analysis showed that impaired

recall performance is associated with divergent patterns of PFC

atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy

correlates for recall encompassed DLPFC, VMPFC and frontal

pole regions, only the DLPFC and frontal pole were implicated in

AD. Importantly, after controlling for temporal lobe atrophy, both

DLPFC and VMPFC regions remained significantly correlated

with recall performance in bvFTD, whereas only DLPFC atrophy

remained correlated with recall performance in AD.

On a behavioural level, the current findings provide further

support to a growing body of evidence, which suggests that bvFTD

and AD patients are impaired to a similar degree on standard

neuropsychological measures of episodic memory recall [17–

19,24]. Successful memory recall is multifaceted, however, and

poor performance may be due to the disturbance of different

underlying mechanisms. The current study aimed to compare the

contribution of DLPFC- and VMPFC-mediated processes to

episodic memory recall impairments in bvFTD and AD.

Consistent with previous findings [14,32,33], our results demon-

Table 2. Voxel-based morphometry results showing regions of significant grey matter intensity decrease that covary with
composite scores across all groups.

MNI Coordinates

Regions
Hemisphere
(L/R/B) X Y Z

Number of
voxels

T-score (peak
voxel)

Recall

Insula cortex/frontal operculum cortex L 238 20 0 395 2.96

Middle temporal gyrus R 58 232 24 292 2.96

Parahippocampal gyrus R 26 220 218 285 2.96

Hippocampus L 224 214 220 268 2.96

Frontal operculum cortex/insula cortex R 36 18 8 220 2.96

Frontal pole L 216 56 2 172 2.96

Temporal fusiform cortex/parahippocampal gyrus L 230 214 236 99 2.96

Inferior temporal gyrus R 50 242 218 58 2.46

DLPFC tasks

Postcentral gyrus/precentral gyrus L 248 210 30 52 2.96

Postcentral gyrus L 230 228 62 27 2.96

Middle frontal gyrus L 242 6 32 23 2.71

Inferior frontal gyrus L 242 30 22 22 2.71

VMPFC tasks

Frontal pole R 18 44 222 1260 2.96

Frontal operculum cortex/orbitofrontal cortex R 36 24 0 726 2.96

Paracingulate gyrus L 210 54 6 486 2.71

Paracingulate gyrus R 12 38 22 176 2.96

Insular cortex/orbitofrontal cortex L 232 26 2 102 2.71

Frontal pole/orbitofrontal cortex L 234 40 216 73 2.57

All results corrected at p,.05; only clusters with at least 50 contiguous voxels included.
doi:10.1371/journal.pone.0087778.t002
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strate that both patient groups are impaired on standard

neuropsychological measures that tap into DLPFC function. This

likely reflects the comparable severity of DLPFC atrophy found in

both patient groups [35]. In contrast, performance on VMPFC

tasks was significantly worse in bvFTD compared to AD patients,

consistent with the typical pattern of atrophy evident early in

bvFTD [35–37]. Correlations between the recall composite and

DLPFC or VMPFC task composite scores were significant across

all groups, however, this did not reach significance within patient

groups, likely due to a lack of statistical power. Another possible

explanation is the heterogeneity of DLPFC- and VMPFC-

mediated functions targeted by the measures included in our

composite scores. The use of composite scores did not allow

disentangling specific aspects of these prefrontal functions, which

may differentially contribute to recall performance and needs to be

addressed in future studies.

Our imaging findings support the notion that episodic memory

deficits in bvFTD and AD are mediated by different neural

mechanisms. Previous studies have demonstrated that divergent

patterns of atrophy and hypometabolism underlie the memory

deficits evident in both AD and bvFTD [19,24]. Whereas medio-

parietal and temporal regions are implicated in AD, neural

correlates of memory impairment in bvFTD include lateral and

medial frontal, frontal-subcortical and anterior temporal regions

[19,24]. Our imaging results support these previous findings by

showing that both frontal and temporal regions are correlated with

episodic memory recall across patient groups. Whilst previous

studies have contrasted the neural correlates of episodic memory

using whole brain approaches [19,24], we sought to further

elucidate specific prefrontal contributions to memory recall using a

combination of region-of-interest analyses and partial correlations,

which showed that divergent patterns of PFC atrophy are

associated with recall performance in bvFTD and AD. Crucially,

VMPFC regions were implicated in bvFTD only, whereas DLPFC

and frontal pole atrophy was correlated with recall performance in

both patient groups. These results are in line with earlier findings

that these regions are implicated in episodic memory deficits in

bvFTD [18,19,24]. Furthermore, the prefrontal regions remained

significantly correlated with recall performance even after

controlling for temporal lobe atrophy. This suggests that DLPFC

Figure 2. Grey matter atrophy correlates for recall, DLPFC task and VMPFC task performance within the bvFTD group. VBM analyses
showing brain regions in which grey matter intensity correlates with the A) recall composite, B) DLPFC task composite and C) VMPFC task composite
in bvFTD patients. Clusters are overlaid on the MNI standard brain. Coloured voxels show regions that were significant in the analyses for p,.05 FDR
corrected and a cluster threshold of 20 contiguous voxels.
doi:10.1371/journal.pone.0087778.g002
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atrophy independently contributes to the memory impairments in

both patient groups, with additional involvement of the VMPFC

in bvFTD only.

Previous studies have highlighted the role of the DLPFC in the

strategic aspects of episodic memory recall [28,29]. Together with

previous reports that bvFTD and AD patients show comparable

levels of DLPFC atrophy [35], our findings suggest that episodic

Table 3. Voxel-based morphometry results showing regions of significant grey matter intensity decrease that covary with
composite scores within the bvFTD group.

MNI Coordinates

Regions
Hemisphere
(L/R/B) X Y Z

Number
of voxels

T-score
(peak voxel)

Recall

Parahippocampal gyrus/hippocampus L 224 220 234 1068 3.23

Parahippocampal gyrus/hippocampus R 22 220 232 813 3.23

Temporal pole L 248 18 244 80 3.23

Paracingulate gyrus R 6 24 34 53 3.23

Frontal pole R 8 42 228 48 3.23

Orbitofrontal cortex L 232 22 226 38 3.23

Paracingulate gyrus R 18 50 4 31 3.23

Frontal pole R 42 60 6 29 3.23

Superior frontal gyrus L 222 8 72 27 3.23

Middle frontal gyrus R 32 30 22 24 3.23

Frontal pole/Orbitofrontal cortex L 228 36 224 24 3.23

DLPFC tasks

Precentral gyrus/Supplementary cortex R 6 214 58 502 3.23

Precentral gyrus/Postcentral gyrus L 248 210 28 108 3.23

Middle frontal gyrus R 34 8 58 69 3.23

Precentral gyrus R 16 228 40 43 2.93

Middle frontal gyrus L 234 14 62 33 2.93

Frontal pole/Middle frontal gyrus L 228 38 30 31 3.23

Precentral gyrus/Superior frontal gyrus L 220 214 56 29 3.23

Precentral gyrus L 245 210 32 28 2.52

Precentral gyrus/Middle frontal gyrus R 34 26 52 27 3.23

Precentral gyrus L 257 4 38 25 2.75

Precentral gyrus R 62 6 32 23 2.52

Superior frontal gyrus R 12 4 72 22 2.75

Cingulate gyrus (posterior) L 214 232 40 21 2.93

VMPFC tasks

Orbitofrontal cortex/Medial prefrontal cortex/Frontal pole B 12 24 226 5589 3.23

Frontal pole R 8 46 46 96 3.23

Anterior cingulate gyrus R 10 24 28 86 2.93

Paracingulate gyrus B 2 32 44 69 3.23

Frontal pole R 24 46 38 62 2.75

Frontal pole L 252 42 12 57 3.23

Frontal pole L 238 44 36 46 3.23

Frontal pole/Superior frontal gyrus L 224 38 48 40 2.3

Frontal operculum cortex/Orbitofrontal cortex L 234 26 2 33 2.36

Anterior cingulate gyrus L 28 214 38 28 2.93

Frontal pole L 212 52 44 25 2.52

Frontal pole L 226 38 28 24 2.3

Frontal pole L 218 64 26 22 2.3

Orbitofrontal cortex R 26 24 226 21 2.1

Results FDR corrected at p,.05; only clusters with at least 20 contiguous voxels included.
doi:10.1371/journal.pone.0087778.t003
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memory deficits in both patient groups are related to the

disruption of DLPFC-mediated strategic retrieval processes.

Previous studies investigating these processes using conventional

measures of executive function (e.g. COWAT and digit span

backwards) suggest that impaired performance on these tasks is not

specific to bvFTD, with AD patients also showing deficits [33,67].

Another potential explanation for the DLPFC involvement is that

it reflects an inherent bias towards the use of strategic retrieval

processes in standard neuropsychological measures of episodic

memory recall. It is therefore possible that current measures of

episodic memory recall lack sufficient specificity to distinguish

between the two patient groups because they target memory

processes that require the DLPFC, a region which is similarly

affected in bvFTD and AD [35]. By contrast, an association

between episodic memory performance and VMPFC integrity was

found in bvFTD patients only. The VMPFC has been shown to be

involved in various social-executive cognitive processes, including

theory of mind [68], self-referential processing and perspective

taking [69], emotion processing [70] and inhibition [71]. Not

surprisingly, bvFTD patients are known to be impaired on tasks

tapping into VMPFC functions [72,73]. We confirm this notion by

showing more impairment on VMPFC-mediated tasks in bvFTD

when compared to AD. Findings from our overlap analyses,

however, suggest that the atrophy correlates for recall, DLPFC

and VMPFC task performance show only minimal similarities.

This is likely due to the heterogeneity of measures included within

our prefrontal composite scores. It is also possible that these

measures quantify individual prefrontal mechanisms rather than

their contributions to episodic memory recall per se.

Taken together, our results indicate that performance on

measures tapping into VMPFC function can distinguish between

bvFTD and AD patients, and that there is greater involvement of

VMPFC regions in episodic memory recall in bvFTD. It may

therefore be worthwhile employing episodic memory tasks that tap

into VMPFC functions. One potential approach could involve the

self-reference effect on memory, where information that is

evaluated in reference to one’s self is better remembered than

information that is evaluated external to one’s self [74]. For

example, items that have been subjectively rated for pleasantness

are better remembered than items rated for similarity to

Figure 3. Grey matter atrophy correlates for recall, DLPFC task and VMPFC task performance within the AD group. VBM analyses
showing brain regions in which grey matter intensity correlates with the A) recall composite, B) DLPFC task composite and C) VMPFC task composite
in AD patients. Clusters are overlaid on the MNI standard brain. Coloured voxels show regions that were significant in the analyses for p,.05 FDR
corrected and a cluster threshold of 20 contiguous voxels.
doi:10.1371/journal.pone.0087778.g003
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background colour [41]. Importantly, retrieval of self-relevant

information is associated with the integrity [75] and activity [76] of

the medial PFC (MPFC). Similarly, Leshikar and Duarte [41]

demonstrated that activation of the MPFC during the self-

referential encoding of information is predictive of subsequent

accuracy in source memory retrieval. The incorporation of such

measures may therefore provide important insights into the role of

VMPFC regions in episodic memory retrieval in bvFTD.

From a clinical perspective, identifying differences in the

underlying mechanisms of episodic memory deficits in bvFTD

and AD may support differential diagnosis of these cohorts. Our

findings confirm that performance on verbal and visual episodic

memory recall tasks do not reliably distinguish between bvFTD

and AD patients. Given that memory impairment remains an

exclusion criterion, this may limit the sensitivity of current

diagnostic criteria for bvFTD [3]. One potential reason for the

limited sensitivity of current neuropsychological measures of

episodic memory recall is their reliance on DLPFC-mediated

strategic retrieval processes. Importantly, our findings also

demonstrate that both bvFTD and AD patients are impaired on

executive measures that tap into DLPFC function. While current

diagnostic criteria for bvFTD describes a predominantly dysex-

ecutive profile [3], revised criteria for AD also allow for

nonamnestic presentations, with prominent executive dysfunction

Table 4. Voxel-based morphometry results showing regions of significant grey matter intensity decrease that covary with
composite scores within the AD group.

MNI Coordinates

Regions
Hemisphere
(L/R/B) X Y Z

Number
of voxels

T-score
(peak voxel)

Recall

Precentral gyrus L 242 214 46 559 3.11

Precentral gyrus/postcentral gyrus R 40 224 58 182 3.11

Middle temporal gyrus (temporo-occipital part) R 66 258 6 120 3.11

Supplementary motor cortex B 2 0 54 116 3.11

Middle temporal gyrus (posterior) R 70 26 226 108 3.11

Superior frontal gyrus R 22 22 52 89 3.11

Temporal pole R 48 8 252 69 3.11

Postcentral gyrus L 264 220 38 52 3.11

Frontal pole L 210 76 12 44 3.11

Frontal pole R 60 42 22 44 3.11

Middle frontal gyrus L 252 22 30 42 3.11

Frontal pole R 44 60 218 35 3.11

Frontal pole L 216 62 38 33 3.11

Middle frontal gyrus R 32 24 26 33 3.11

Supramarginal gyrus/Middle temporal gyrus (temporo-occipital part) L 252 250 12 32 3.11

DLPFC tasks

Precentral gyrus/Superior frontal gyrus L 224 228 52 480 3.11

Middle frontal gyrus L 228 24 38 113 2.83

Precentral gyrus R 12 216 72 27 2.55

Precentral gyrus R 22 216 64 26 2.83

Superior frontal gyrus L 218 26 56 26 2.67

Inferior frontal gyrus L 232 14 26 23 3.11

VMPFC tasks

Orbitofrontal cortex/Frontal pole L 224 22 226 2130 3.11

Orbitofrontal cortex/Frontal pole R 24 20 226 2101 3.11

Paracingulate gyrus/Cingulate gyrus B 212 50 18 621 3.11

Frontal pole R 12 62 22 124 3.11

Frontal pole R 38 56 10 63 3.11

Paracingulate gyrus R 12 48 24 51 2.55

Frontal pole L 222 68 22 47 2.67

Supplementary motor cortex R 10 2 46 41 2.83

Frontal pole L 24 70 2 31 2.67

Paracingulate gyrus R 12 16 44 26 2.67

Results FDR corrected at p,.05; only clusters with at least 20 contiguous voxels included.
doi:10.1371/journal.pone.0087778.t004
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[77]. As such, the inclusion of measures that tap into VMPFC-

mediated social-executive functions appears to be a promising

approach. Accordingly, previous studies that have compared

DLPFC- and VMPFC-mediated executive functions in low and

high functioning bvFTD patients showed that VMPFC-mediated

functions were affected in both the low and high functioning

patient groups, whereas impairments on DLPFC-mediated tasks

were evident in low functioning patients only [72,73]. This

supports the notion that VMPFC- rather than DLPFC-mediated

tasks are more sensitive to the earliest neuropathological changes

in bvFTD, which occur in the VMPFC before progressing to the

DLPFC [37,72,73]. Therefore, incorporation of these measures

into standard clinical assessments would likely contribute to earlier

diagnosis and treatment. Nonetheless further exploration of the

divergent neural mechanisms underlying episodic memory deficits

in bvFTD and AD is warranted.

There are a number of caveats to consider. Firstly, despite the

significant hippocampal atrophy identified in AD patients

compared to controls, hippocampal atrophy correlates for recall

performance failed to meet our criteria for statistical significance.

While it is possible that regions not included in our frontal and

temporal lobe mask show stronger correlations with recall

performance in AD, this finding is difficult to explain. Similarly,

the involvement of pre- and postcentral gyrus and supplementary

motor cortex atrophy in recall performance in AD was an

unexpected finding. However, precentral gyrus atrophy [35] and

correlations between recall performance and pre- and post-central

gyrus atrophy [24] have previously been reported. There is also

some evidence to suggest that these motor and premotor regions

are involved in the maintenance of verbal or visual information in

working memory [78,79]. Given that atrophy in these regions

were also correlated with DLPFC task performance, it is likely that

deficits in working memory contribute to poor episodic memory

recall. Nevertheless, replication of our results using specific

measures of working memory rather than a composite of

DLPFC-mediated tasks represents an important area of future

inquiry. Finally, the impact of prefrontal grey matter atrophy on

underlying white matter tracts remains to be elucidated. Given

that the hippocampus shares reciprocal connections with both the

DLPFC and VMPFC [38,80], future studies should explore the

prefrontal white matter contributions to episodic memory deficits.

A number of methodological issues warrant discussion. Firstly,

neuropathological confirmation of the patients’ clinical diagnoses

were not available, given that the majority of our sample had not

Figure 4. Overlapping regions of grey matter atrophy for the recall and VMPFC task composites across all participants. VBM analyses
showing overlap in brain regions in which grey matter intensity correlates with recall and VMPFC task composites across all participants. Coloured
voxels show regions that were significant in the analyses for p,.05 FDR corrected and a cluster threshold of 20 contiguous voxels.
doi:10.1371/journal.pone.0087778.g004

Table 5. Voxel-based morphometry results showing regions of significant grey matter intensity decrease that correlate with recall
performance and overlap with those which correlate with DLPFC or VMPFC task performance (across all groups).

MNI Coordinates

Regions
Hemisphere
(L/R/B) X Y Z

Number of
voxels

T-score (peak
voxel)

Recall and DLPFC task

Inferior frontal gyrus L 234 30 0 1* 1.67

Recall and VMPFC task

Insular cortex/Orbitofrontal cortex L 232 26 2 43 2.49

Paracingulate gyrus L 212 52 24 25 2.15

Frontal pole R 16 46 220 21 2.15

All results FDR corrected at p,.05; only clusters with at least 20 contiguous voxels included.
*Non-significant.
doi:10.1371/journal.pone.0087778.t005
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yet come to autopsy. Although we cannot exclude the possibility

that some bvFTD patients had underlying AD pathology, our

findings are consistent with previous reports of memory impair-

ment in pathologically confirmed bvFTD cases [8,9,17]. Secondly,

the patient groups were matched on the FRS but not CDR sum of

boxes. This is unsurprising, given that the two measures emphasize

different aspects of disease severity. The FRS encompasses

everyday cognition and functional dependence, whereas the

CDR is more cognitive and memory oriented. Nonetheless, the

use of dementia-specific clinical disease severity staging tools to

compare across dementia types remains controversial. Further-

more, the use of composite measures to probe episodic memory

recall and DLPFC- or VMPFC-mediated functions did not allow

the dissection of specific aspects of these functions. Heterogeneity

in memory recall test administration should also be taken into

account, given that the RAVLT involves incremental and explicit

learning, whereas the RCF test is based on one-trial incidental

learning. Nonetheless, our findings help elucidate the PFC

correlates of general episodic memory recall dysfunction in

different neurodegenerative conditions.

To our knowledge, this is the first study to explore specifically

the prefrontal neural correlates of episodic memory recall deficits

in bvFTD and AD. The behavioural results of our study call into

question the specificity of memory recall impairment in discrim-

inating between the neurodegenerative conditions. Taken togeth-

er, our behavioural and imaging findings suggest that although

divergent prefrontal mechanisms may underlie episodic memory

deficits in bvFTD and AD, these are not adequately captured by

existing neuropsychological measures. Thus, development of tests

that specifically target VMPFC contributions to memory recall

would likely further elucidate differences in the nature of memory

impairment in bvFTD and AD.

Supporting Information

Figure S1 Grey matter atrophy comparisons between
groups. VBM analyses showing brain areas of decreased grey

matter intensity in A) bvFTD patients in comparison with

Controls, B) AD patients in comparison with Controls, C) bvFTD

patients in comparison with AD patients, and D) AD patients in

comparison with bvFTD patients. Patient and control group

comparisons corrected for multiple comparisons (FWE) with

voxel-based thresholding at p,.05. Comparisons between patient

groups corrected for multiple comparisons (FWE) with threshold-

free cluster enhancement at p,.025. Clusters are overlaid on the

MNI standard brain.
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controls on neuropsychological measures.
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