
Voicing classification of visual speech using convolutional neural networks

Thomas Le Cornu, Ben Milner

University of East Anglia
{t.le-cornu, b.milner}@uea.ac.uk

Abstract
The application of neural network and convolutional neural net-
work (CNN) architectures is explored for the tasks of voicing
classification (classifying frames as being either non-speech,
unvoiced, or voiced) and voice activity detection (VAD) of vi-
sual speech. Experiments are conducted for both speaker de-
pendent and speaker independent scenarios.

A Gaussian mixture model (GMM) baseline system is de-
veloped using standard image-based two-dimensional discrete
cosine transform (2D-DCT) visual speech features, achieving
speaker dependent accuracies of 79 % and 94 %, for voicing
classification and VAD respectively. Additionally, a single-
layer neural network system trained using the same visual fea-
tures achieves accuracies of 86 % and 97 %. A novel technique
using convolutional neural networks for visual speech feature
extraction and classification is presented. The voicing classifi-
cation and VAD results using the system are further improved
to 88 % and 98 % respectively.

The speaker independent results show the neural network
system to outperform both the GMM and CNN systems, achiev-
ing accuracies of 63 % for voicing classification, and 79 % for
voice activity detection.
Index Terms: convolutional neural networks, voicing classifi-
cation, visual speech

1. Introduction
The aim of this work is to explore using neural networks and
convolutional neural networks for voicing classification and
voice activity detection using visual speech features. Voicing
classification is the challenge of classifying frames of speech
(either audio, visual, or audiovisual) as being either non-speech,
unvoiced, or voiced. The task of voice activity detection can be
considered a more generalised version of the voicing classifi-
cation task, classifying frames as speech or non-speech. By
grouping the unvoiced and voiced classes together, the estima-
tion of speech and non-speech results. The aim is to learn a
function, f , to estimate the voicing class, ĉt, of the input visual
speech feature vector, vt, described by,

ĉt = f(vt), (1)

where ĉVC
t ∈ {ns, u, v} for voicing classification, and ĉVAD

t ∈
{ns, s} for voice activity detection.

Voice activity detection systems traditionally take audio
speech as input. Problems occur as the signal-to-noise ratio is
lowered due to increased background noise, with VAD accura-
cies decreasing as more non-speech frames become classified as
speech frames [1]. For human speech perception, visual speech
provides benefits by aiding with speaker localisation, providing
additional segmental speech information, and providing extra
place-of-articulation information that helps with the recognition

of audibly confusable phonemes [2]. Including visual speech
information to produce bimodal automatic speech recognition
systems has proved beneficial especially when the channel con-
ditions are less than satisfactory or significant amounts of audio
noise are present [3].

A number of VAD systems have been developed that ex-
ploit the independence of the visual modality to background
audio noise. In [4], visual speech features are extracted by ap-
plying principal component analysis to a matrix of pixel inten-
sities localised about the mouth of the speaker. The most signif-
icant information is retained and then appended with first-order
temporal derivatives, and modelled using two GMMs, one for
non-speech and one for speech. Similarly, [5] uses GMMs to
model visual speech information, using 2D-DCT visual speech
features with the addition of first- and second-order temporal
derivatives. Visual speech features obtained from active appear-
ance models are commonly used for visual speech tasks such as
lip reading, and are applied for voice activity detection in [6]
with hidden Markov models (HMM) used to model the tem-
poral information. The importance of temporal information is
further highlighted in [7], where it was found that there is lit-
tle lip-shape variation during periods of silence, and that the
variations during speech periods is much greater. The use of
optical flow visual speech features—describing the motion of
pixels across contiguous frames—are used in [8] to directly in-
corporate temporal information into the visual VAD system.

This work extends previous systems by firstly, using a neu-
ral network for voicing classification and voice activity detec-
tion of input 2D-DCT visual speech features, and secondly, to
explore the application of convolutional neural networks to the
same tasks. The primary difference between the two systems
is that the neural network takes visual speech features that have
already been extracted from an image of the mouth of a speaker
as input, whereas the CNN system processes the raw pixel in-
tensities of the image and attempts to discover its own visual
speech feature representation and then perform classification.

Recently, deep neural network (DNN) architectures (neu-
ral networks with greater than two hidden layers between the
input and output layers) have been shown to outperform previ-
ous state-of-the-art GMM-HMM systems for automatic speech
recognition [9]. The acoustic modelling capabilities are pro-
vided by the DNNs and the temporal variability is handled by
the HMMs. A number of new DNN training techniques have
further improved results [10]. Another neural network archi-
tecture, convolutional neural networks, have in recent years be-
come the state-of-the-art for many computer vision tasks includ-
ing large-scale image classification [11], and scene identifica-
tion of videos [12]. Their application to audio speech features is
applied in [13], showing improvements over DNN systems due
to their ability to better model local correlations of the inputs,
and translation variance of the acoustic speech existing due to
speaker differences. Use of a different audio speech representa-



tion is investigated in [14], where input features take the form
of spectrograms with information presented along the time and
frequency axes.

The remainder of the paper is organised as follows. In Sec-
tion 2 the use of neural networks for voicing classification is
discussed, including how to reduce overfitting of training data
and the architecture used. Convolutional neural networks are
explored in Section 3 for both visual speech feature extraction
and classification, including how to incorporate temporal infor-
mation. The baseline GMM system is reviewed in Section 4.
Data preprocessing and details of the speaker dependent and in-
dependent experiments is given in Section 5. Section 6 presents
the voicing classification and voice activity detection results
achieved for the baseline GMM, neural network, and CNN sys-
tems.

2. Neural network
Neural networks are learning algorithms where inputs are fed
through a series of layers comprised of units (also called neu-
rons), where each unit has a non-linear activation function. An
example fully-connected neural network, where the units in
layer m are connected to all of those in layer m − 1, is shown
in Figure 1a. The hidden layers perform feature extraction by
learning non-linear combinations of the inputs, where individu-
ally the features may not be particularly descriptive [15]. Care
must be taken when training neural networks as they are prone
to overfitting on the training set if there is a lack of training ma-
terial. In this section, the use of neural networks is described for
predicting voicing classification of input 2D-DCT visual speech
features. Two neural network models are trained, NN DCT for
static visual features, and NN DCT ∆ for visual features includ-
ing temporal information.

2.1. Architecture

The network architecture used consists of a fully-connected net-
work with a single hidden layer (consisting of 512 units) be-
tween the input layer and output softmax layer. A softmax
function is commonly used in the output layer for multiclass
classification problems to ensure the values from the final ac-
tivation functions lie in the range 0 to 1, and that the sum of
the values totals 1, giving a categorical probability distribution.
Using greater numbers of hidden layers—producing deep neu-
ral networks—did not improve results enough to warrant the
extra time required for training. The models are also relatively
robust to the number of hidden units used, with values of 256,
512, and 1024, all producing comparable results.

Typical non-linear activation functions used in neural net-
works are the tanh and sigmoid functions, which both saturate
given large input values. The Rectified Linear Unit (ReLU) is a
non-saturating activation function proposed by [16], and is cal-
culated as f(x) = max(0, x). The benefit of building neural
networks using ReLUs is that training concludes several times
faster [11].

2.2. Dropout

Dropout [17] is a technique used in neural network architectures
as a means to prevent overfitting of the training data. During
training, neurons are selected at random and dropped. That is,
the neuron and its connections are temporarily removed from
the network for that particular instance or set of training exam-
ples.

Figure 1a shows an example fully-connected neural net-
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Figure 1: A fully-connected network is shown in (a), and the
same network after dropout has been applied in (b).

work with a single hidden layer. Figure 1b shows the same net-
work after dropout has been applied. A probability of p = 0.5
is typically used for dropout applied to fully-connected hidden
layers, and a probability closer to zero for dropping input units.
The effect of applying dropout during training is to train a num-
ber of “thinned” models. For estimation, the classifications are
then taken from the average of all the thinned-out networks. The
effect is similar to training a large ensemble of models and av-
eraging the predictions of each model [18].

2.3. Training

The neural networks are trained using the resilient backpropa-
gation algorithm [19]. L2 regularization is applied with a value
of 0.001, and the learning rate is fixed at 0.001. The training
visual vectors are grouped into mini-batches of 5000 examples,
with z-score normalisation applied to the input 2D-DCT visual
features. Training is completed once validation scores converge.

3. Convolutional neural networks
Convolutional neural networks have shown application for myr-
iad computer-vision tasks such as handwritten digit recognition,
and are motivated by the function of the primary visual cor-
tex [15]. Convolutional layers differ from fully-connected lay-
ers (as shown in Figure 1a) in that the units in layer m are con-
nected to only a local subset (representing a “receptive field”)
of the units in layer m − 1. Outputs from convolutional lay-
ers are called feature maps, and are calculated by convolving
the inputs with multiple square matrices, which are analogous
to filter kernels as used for image edge detectors or blurring.
Weight sharing of the kernels ensures that they can extract fea-
tures independent of where they occur in the input.

Input Convolution ConvolutionDownsample Downsample Fully connected

Figure 2: Example convolutional neural network architecture
with two convolutional and downsampling layers, connected to
a final fully-connected output layer.

An example CNN architecture is shown in Figure 2. An
input image is convolved with four kernels producing four fea-
ture maps. A downsampling stage is performed following the
convolution stage to reduce the size (width and height) of the
feature maps. Max-pooling is used to perform this subsam-
pling, whereby the maximum output of a small square window
is taken. A further convolutional stage extracts eight feature
maps, and is subsequently followed by another downsampling



layer. The output of the final subsampled layer is then input to
a fully-connected layer. Using deeper convolutional and fully-
connected neural network architectures leads to the discovery
of higher-level global features [20].

3.1. Architecture and training

The architecture used for this work follows Figure 2 and con-
sists of two sets of convolutional–max-pooling–dropout layers,
followed by a fully-connected hidden layer, and a final output
softmax layer. The first convolutional layer consists of thirty-
two filters of size 3 × 3, and the second, sixty-four filters of
size 3 × 3. Non-overlapping max-pooling follows each convo-
lutional layer with square regions of size 2× 2. Dropout is then
applied to each max-pooled layer with probability p = 0.2. The
single fully-connected layer consists of 512 units, with dropout
applied having probability p = 0.5. Rectified Linear Units are
used throughout for activation functions.

Training is performed on an NVIDIA GRID K520 GPU
card and takes approximately 5 h for the speaker dependent task
and individual speaker independent runs. The visual frame pixel
intensities are scaled to be in the range of zero to one, and train-
ing is performed using mini-batches of size 50. The network is
trained using Nesterov’s Accelerated Gradient Descent. Learn-
ing rate annealing is performed, decreasing the value by 1 %
per epoch, and training is completed once validation scores con-
verge.

3.2. Temporal information

Deep neural networks, used for large-vocabulary speech recog-
nition, include temporal information through the simple con-
catenation of contiguous frames of audio features [9]. This ap-
proach cannot be used directly with convolutional neural net-
works at the input stage as the horizontal or vertical concatena-
tion of frames would introduce issues at the boundaries of the
images. An approach using early- and late-fusion for the inclu-
sion of temporal information has shown success in large-scale
video classification [12], and is applied here.

Single frame Early fusion Late fusion
Figure 3: Static frame, and early- and late-fusion CNN architec-
tures for including temporal information. Blue frames denote
those that have current interest.

Figure 3 shows the single frame, early-fusion, and late-
fusion architectures, including the convolutional and fully-
connected connections as shown in Figure 2. Early-fusion func-
tions at the first layer, extending the depth of the first con-
volutional layer filters to convolve across neighbouring video
frames, for the detection of local motion direction. Late-fusion
uses two separate convolutional columns for frames spaced a
specific distance apart whose output is combined at the fully
connected layers, therefore learning more global motion char-
acteristics. However, the late-fusion technique is liable to miss

the more fine-grained mouth movements important for the tran-
sitions between phones in the output audio speech. Experiments
are conducted using a single frame system, CNN STATIC, and
a system using the early-fusion technique to stack three neigh-
bouring frames together, called CNN STACK3.

4. GMM baseline system
In [5], GMMs are used to model visual feature vectors for voice
activity detection, and this forms the baseline to compare the
neural network and CNN systems against. Vectors are grouped
by class label and individual GMMs are trained—Φs for speech
frames and Φns for non-speech frames. Classification is per-
formed by taking the arg max of the probabilities produced by
each class GMM, Φl, given the input visual vector, vt,

ĉVAD
t = arg max

l

(
p(vt|Φl)

)
, (2)

where l ∈ {ns, s}. Applying the system to the task of voicing
classification requires the training of three GMMs, one each for
non-speech frames, unvoiced frames, and voiced frames, result-
ing in estimations given by,

ĉVC
t = arg max

l

(
p(vt|Φl)

)
, (3)

where l ∈ {ns, u, v}. Through experimentation it was found
that using sixteen clusters for each GMM gave the best per-
formance. The two GMM models are named GMM DCT and
GMM DCT ∆, for the static and temporal models respectively.

5. Experiment description
Experiments are conducted on three systems for voicing classi-
fication and voice activity detection. A baseline GMM system
(see Section 4), a neural network system (see Section 2), and
a novel convolutional neural network system (see Section 3).
For the speaker dependent scenarios, experiments are conducted
for all three systems with static features and when temporal in-
formation has been added. For the speaker independent sce-
nario, experiments are conducted on the GMM and neural net-
work systems using first-order temporal derivatives, and on both
CNN systems.

5.1. Dataset

The GRID audiovisual dataset [21] is used for the experiments.
The dataset includes video of thirty-four speakers each hav-
ing produced 1000 utterances. The videos are three seconds in
length with twenty-five frames per second, giving seventy-five
frames per video. The resolution of each frame is 576 × 720
pixels, and contains RGB channel information. Word time-
alignment files are included for each utterances that describes
the start and end points for each word of the utterance, as well
as periods of silence.

The speaker dependent task uses all visual data, totalling
approximately 50 minutes, for the speaker (speaker 6 in the
corpus), and is split with 80 % for training and 20 % for test-
ing. Data from nine speakers is used for the speaker indepen-
dent task. One hundred utterances are selected from each of
the nine speakers (speakers 1–7, 10, and 12), therefore ensur-
ing the training/testing data split is roughly equal for both the
speaker dependent and independent tasks. k-fold cross valida-
tion is used for the speaker independent experiments, segment-
ing the training data into that from eight of the speakers, and



then performing testing on the held-out speaker. This is re-
peated for all permutations, and the final accuracy results are
averaged.

5.2. Visual preprocessing

The video data is up-sampled to 100 Hz to match a typical audio
speech frame rate of 10 ms. The FFMPEG suite of multimedia
tools [22] is used to extract greyscale visual frames at the re-
quired rate. Images of size 96 × 96 pixels are extracted about
a centre-point of the mouth calculated from landmark data, and
resized to 64×64 pixels. Figure 5a shows an example extracted
mouth image.

Image-based visual speech features derived from a two-
dimensional discrete cosine transform are used for the neural
network and GMM systems. Features are extracted from a ma-
trix of pixel intensities that is centred on a tracked mouth centre
point. A 2D-DCT is applied to produce a coefficient matrix
from which a J-dimensional visual vector is obtained by ex-
tracting coefficients in a zigzag order from the lower coefficient
region of the matrix [23]. The first coefficient (the DC term) is
discarded and 35 coefficients are retained.

5.3. Voicing classification labels

To measure voicing classification and voice activity detection
accuracy, reference labels are required. Processing of the word
time-alignment files is performed to provide VAD data, that is,
the non-speech and speech classes.

cVAD
t =

{
s if x(t) is speech
ns otherwise

(4)

For the voicing classification task, labels are required
for each frame of speech, t, classifying each as either non-
speech, unvoiced, or voiced. The PEFAC pitch-extraction algo-
rithm [24] is used to provide a probability that a given frame of
speech is voiced. The voiced speech probabilities output from
PEFAC are thresholded, with frames of speech having probabil-
ity p(t) ≥ 0.5 labelled as voiced. Frames classified as speech
using the voice activity data, described by Equation 4, that are
not classified as voiced using PEFAC, are labelled as unvoiced.

cVC
t =


v if p(t) ≥ 0.5

u if speech and p(t) < 0.5

ns otherwise
(5)

Equation 5 describes the class labels assigned to each
frame. Median filtering is performed on the thresholded proba-
bilities to remove isolated values.

6. Evaluation
In this section, accuracy results are presented for voicing classi-
fication and voice activity detection of the three systems for the
speaker dependent and speaker independent scenarios. Accura-
cies are recorded for the multiclass voicing classification task,
and then by grouping the unvoiced and voiced estimations, the
VAD results are obtained. Lastly, intuition is given for the filter
kernels learnt by the CNN systems and the convolutions they
produce.

6.1. Speaker dependent results

Table 1 shows voicing classification and voice activity detection
accuracies for the speaker dependent task. The CNN STACK3

achieves the best accuracy for voicing classification, with a
score of 87.55 %. Accordingly, the same system outperforms
both the GMM and neural network systems for voice activ-
ity detection with an accuracy of 97.66 %. Surprisingly, the
CNN STATIC system is able to achieve 86.05 % voicing accu-
racy using static information. In comparison, the static GMM
and neural network systems achieve accuracies of 11.76 % and
6.44 % lower respectively. This suggests that by using convo-
lutional neural networks, suitably descriptive visual speech fea-
ture representations can be found.

Table 1: Speaker dependent VAD and voicing classification ac-
curacies in per cent.

Configuration Voicing accuracy VAD accuracy

GMM DCT 74.29 92.61

GMM DCT ∆ 78.99 94.34

NN DCT 79.61 96.00

NN DCT ∆ 86.35 96.80

CNN STATIC 86.05 96.99

CNN STACK3 87.55 97.66

Increased voicing classification accuracy by including tem-
poral information is readily apparent for both the neural net-
work and GMM systems. A classification accuracy increase of
4.7 % and 6.7 % is gained for the GMM and neural network re-
spectively. However, the same increase does not occur when
using the CNN. Interestingly, it appears that due to the only
slight increase in performance between the CNN STATIC and
CNN STACK3 systems of 1.5 %, using the early-fusion tech-
nique for including temporal information in the CNN architec-
ture is not ideal for this work, and that other techniques for tem-
poral fusion could result in a greater accuracy.

Table 2: Confusion matrix of per cent classification accuracy
using the CNN STACK3 speaker dependent model.

Non-speech Unvoiced Voiced
Non-speech 98.23 1.49 0.28

Unvoiced 5.91 66.84 27.25

Voiced 0.72 8.93 90.36

Table 2 shows a confusion matrix for classification accu-
racies for the speaker dependent CNN STACK3 model. The
majority of voicing classification errors occur with the misclas-
sification of unvoiced frames as voiced frames, with 27.25 %
doing so. The problem experienced with voicing classification
occurs when different voiced and unvoiced phonemes have the
same visual speech realisations. Phonemes sharing the same vi-
sual realisations can be grouped by phoneme equivalence class
(PEC), a generalisation of the viseme for the grouping of visu-
ally similar phonemes proposed by [25]. Regarding problems
of voicing classification, a PEC comprised of /s t z/ consists of
two unvoiced consonants, /s/ and /t/, and a voiced consonant,
/z/, for example. A PEC comprised of /f v/ has a voiced and
unvoiced consonant. The PECs described are taken from [26].
Voice activity detection errors can be seen where unvoiced or
voiced frames are classified as non-speech, and vice versa. The
problem in this case is that visual realisations of certain PECs
have a mouth shape that is very visually similar to the neutral.
For example, this is the case with the PEC comprised of the
phonemes /b m p/. The majority of errors occur when unvoiced
frames are misclassified as non-speech frames, happening for



5.91 % of unvoiced frames.

6.2. Speaker independent results

The speaker independent results are displayed in Table 3. The
NN DCT ∆ system achieves accuracies of 63.13 % and 78.69 %
for voicing classification and voice activity detection respec-
tively, outperforming the GMM DCT ∆ system by 11.02 % and
8.19 % for each task. The speaker independent results are con-
siderably worse than the speaker dependent results, suggest-
ing that greater attention needs to be spent on removing visual
speech feature differences existing between speakers.

Table 3: Speaker independent VAD and voicing classification
accuracies in per cent.

Configuration Voicing accuracy VAD accuracy

GMM DCT ∆ 52.11 70.50

NN DCT ∆ 63.13 78.69

CNN STATIC 59.02 74.07

CNN STACK3 59.02 74.68

The CNN systems do not perform as well for the speaker
independent scenario. The best system, CNN STACK3, us-
ing temporal information, achieves accuracies of 59.02 % and
74.68 % for voicing classification and VAD. There is also not
a noticeable difference between the static and temporal models,
which again suggests that other methods of including tempo-
ral information in the convolutional neural network architecture
would increase results.

Table 4: Confusion matrix of classification accuracies in per
cent for speaker one using the CNN STACK3 speaker indepen-
dent model.

Non-speech Unvoiced Voiced
Non-speech 90.58 8.94 0.47

Unvoiced 34.70 54.80 10.50

Voiced 14.58 43.98 41.44

Table 4 shows a confusion matrix for classification accura-
cies for speaker one trained on the other eight speakers using
the CNN STACK3 system. In comparison to Table 2, it can be
seen that the majority of voicing classification errors come from
an increase in voiced frames being misclassified as unvoiced,
and from unvoiced frames being misclassified as non-speech.
In terms of voice activity detection, there is a large increase in
the number of unvoiced and voiced frames that are misclassified
as non-speech.

6.3. Visualisation of learnt filters and convolutions

Visualisations of the thirty-two 3 × 3 filter kernels learnt by
the first convolutional layer are shown in Figure 4. The kernel
values have been resized (using cubic interpolation) and nor-
malised in the range of zero to one for display. A variety of
the learnt kernels show edge detection properties. For example,
kernels 17 and 32 highlight horizontal edges, whereas kernels
22 and 25 highlight diagonal edges.

As shown in Figure 2, the result of convolving an input im-
age with the filter kernels is to produce a number of feature
maps. Figure 5a shows an original mouth image as would be
input to the CNN, and a selection of feature maps after con-
volution with the kernels. Convolutions with kernels 2 and 32

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Figure 4: Thirty-two kernels learnt in the first convolutional
layer for the speaker dependent task. Blue values are lower,
red are higher.

(see Figures 5b and 5d) serve to highlight the area of the inner
mouth, effectively removing information of the skin and lips,
with kernel 2 exhibiting more blurring than kernel 32. The im-
age convolved with kernel 25 (see Figure 5c) shows how the
diagonal edges have been highlighted, as can be seen by the
greater pixel intensity on the upper-left edges of the teeth, and
in the lower-right corner of the inner mouth.

(a)

Original

(b)

2

(c)

25

(d)

32

Figure 5: Example original mouth image, and when convolved
with filter kernels 2, 25, and 32, as depicted in Figure 4.

7. Conclusion
For the speaker dependent scenario the novel convolutional neu-
ral network approach outperforms the baseline GMM and neu-
ral network systems for both voicing classification and voice
activity detection. The high accuracy achieved for the CNN us-
ing static information shows promise for their ability to discover
descriptive visual speech feature representations. As such, their
use in current audiovisual VADs for the visual stream should
prove beneficial. Similarly, their use in other applications, such
as lip reading and audiovisual automatic speech recognition,
could improve accuracy for speaker dependent scenarios. A
further increase in accuracy for voicing classification could be
attained by better incorporating temporal information into the
system.

The neural network outperforms both the GMM and CNN
systems for the speaker independent scenario, presumably
as the hidden layer feature extraction can better ignore the
between-speaker differences. Further work on removing the
differences between visual speech features of different speakers
would, therefore, likely increase the speaker independent results
achieved. Regarding the convolutional neural networks, explor-
ing different architectures in depth, the application of state-of-
the-art techniques, and a large increase in the amount of speaker
training data used, should all serve to increase accuracy.
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