
Atmos. Chem. Phys., 10, 10691–10704, 2010
www.atmos-chem-phys.net/10/10691/2010/
doi:10.5194/acp-10-10691-2010
© Author(s) 2010. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

CO2, δO2/N2 and APO: observations from the Lutjewad, Mace Head
and F3 platform flask sampling network

I. T. van der Laan-Luijkx 1,** , U. Karstens2, J. Steinbach2, C. Gerbig2, C. Sirignano1,*, R. E. M. Neubert1,
S. van der Laan1,** , and H. A. J. Meijer1

1Centre for Isotope Research (CIO), University of Groningen, Groningen, the Netherlands
2Max Planck Institute for Biogeochemistry, Jena, Germany
* currently at: CIRCE, Department of Environmental Sciences, Second University of Napels, Caserta, Italy
** currently at: Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland

Received: 5 March 2010 – Published in Atmos. Chem. Phys. Discuss.: 21 May 2010
Revised: 6 October 2010 – Accepted: 10 November 2010 – Published: 12 November 2010

Abstract. We report results from our atmospheric flask
sampling network for three European sites: Lutjewad in
the Netherlands, Mace Head in Ireland and the North Sea
F3 platform. The air samples from these stations are an-
alyzed for their CO2 and O2 concentrations. In this paper
we present the CO2 and O2 data series from these sites be-
tween 1998 and 2009, as well as the atmospheric potential
oxygen (APO). The seasonal pattern and long term trends
agree to a large extent between our three measurement loca-
tions. We however find a changing gradient between Mace
Head and Lutjewad, both for CO2 and O2. To explain the po-
tential contribution of fossil fuel emissions to this changing
gradient we use an atmospheric transport model in combina-
tion with CO2 emission data and information on the fossil
fuel mix per region. Using the APO trend from Mace Head
we obtain an estimate for the global oceanic CO2 uptake of
1.8±0.8 PgC/year.

1 Introduction

Climate change and its causes and effects have been a sub-
ject of intensive research during the past decades. Climate
change is primarily induced by changes in the atmosphere’s
composition, specifically the rapid increase in the concen-
trations of the greenhouse gases CO2, CH4, N2O and halo-
carbons (e.g. IPCC, 2007). Anthropogenic carbon dioxide is
the most significant contributor to climate change, therefore
a thorough comprehension of the global carbon cycle and the
main processes involving CO2 is essential.
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Combined atmospheric O2 and CO2 measurements yield
valuable information about carbon cycle processes, that can-
not be acquired from measurements of CO2 concentrations
alone (e.g. Bender et al., 1996; Keeling and Garcia, 2002;
Keeling et al., 1993; Keeling and Shertz, 1992; Machta,
1980; Manning and Keeling, 2006). Most processes show
an inverse relationship between O2 and CO2 (e.g. fossil fuel
combustion, photosynthesis and respiration), but in the ex-
change between the ocean and the atmosphere O2 and CO2
are uncoupled. Marine CO2 uptake leads to a chemical re-
action with the ocean water, leading to a CO2 buffer ef-
fect. The uptake of O2 does not have this effect, as O2
merely dissolves in water and this is independent of the CO2
uptake process. Combined measurements of atmospheric
O2 and CO2 can therefore be used to partition land and
ocean CO2 uptake (e.g. Battle et al., 2000; Bender et al.,
2005; Keeling and Shertz, 1992; Langenfelds et al., 1999;
Manning and Keeling, 2006).

Since changes in the atmospheric O2 concentration are in
most processes directly related to changes in the CO2 con-
centrations, they occur in the same order of magnitude. How-
ever, the changes in O2 are harder to detect as they are to
be measured against a much larger background. High pre-
cision measurements of atmospheric O2 have begun in 1988
when R. F. Keeling developed an instrument based on in-
terferometry (Keeling, 1988a, b). Since then other meth-
ods have been developed to enable atmospheric O2 mea-
surements at the required precision of 1:106 (WMO, 2009).
Current techniques include mass-spectrometry (Bender et al.,
1994), paramagnetic analyzers (Manning et al., 1999), vac-
uum ultraviolet absorption (Stephens, 1999; Stephens et al.,
2003), gas chromatography (Tohjima, 2000) and fuel cells
(Patecki and Manning, 2007; Stephens et al., 2007; Thomp-
son et al., 2007). Each of these techniques has its specific
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advantages and disadvantages, not only related to the O2 sen-
sor obtaining the required precision, but also to the possibil-
ity to run the instrument automatically, remotely or in harsh
conditions, e.g. on moving platforms, like ships or aircrafts.

The first systematic measurements of atmospheric O2
were performed by Keeling and Shertz (1992) at three
measurement sites from north to south: Alert (82.5◦ N,
62.3◦ W), La Jolla (32.9◦ N, 117.3◦ W) and Cape Grim
(40.7◦ S, 114.7◦ E), showing seasonal patterns and interan-
nual O2 variations in different environments on both hemi-
spheres. Since then the amount of sampling sites has in-
creased during the past two decades from these three to over
20, including both stations where flasks are sampled as well
as those with continuous monitoring of atmospheric O2 (e.g.
Battle et al., 2006; Kozlova et al., 2008; Manning and Keel-
ing, 2006; Popa et al., 2009; Thompson et al., 2009; To-
hjima et al., 2008). In this paper we will contribute new
observations from the flask sampling stations Lutjewad in
the Netherlands (2005–2009), Mace Head in Ireland (2005–
2009 and winter 1998/1999) and the F3 North Sea platform
(2006–2009), extending earlier work presented by Sirignano
et al. (2010). For the F3 North Sea platform we also combine
the flask samples with the first continuous onsite measure-
ments (van der Laan-Luijkx et al., 2010).

In this paper we first describe the measurement stations
(Sect. 2), and continue with the flask sampling strategies
and measurement methods (Sect. 3.1). Sections 3.2 and
3.3 give background information on the O2 calculations and
Atmospheric Potential Oxygen (APO). The regional model
REMO, which we use to investigate the influence of regional
differences in the fossil fuel oxidative ratio is described in
Sect. 3.4. In Sect. 4 we present our observations of CO2,
O2 and APO at the three stations and discuss their variabil-
ity, trends and gradients. Finally, we give an estimate for
global marine CO2 uptake based on the observations from
Mace Head.

2 Descriptions of the measurement stations

Figure 1 shows the locations of our three monitoring sta-
tions. The Lutjewad atmospheric monitoring station is situ-
ated on the northern coast of the Netherlands, at 53◦24′ N,
6◦21′ E, 1 m a.s.l, alongside the Wadden Sea. The sta-
tion comprises a 60 m high tower as well as a laboratory
with an automated flask sampler and instruments for in-
situ measurements. Several atmospheric gases and other
characteristics are measured at Lutjewad including contin-
uous measurements of CO2, CH4, CO, N2O, SF6, 222Rn
and biweekly integrated sampling of114C, as presented
by van der Laan et al. (2009a, 2010). Basic meteo-
rological conditions are monitored at all sites, including
wind speed and direction, temperature, atmospheric pres-
sure and relative humidity. The main wind direction is
between southwest and west (van der Laan et al., 2009b),
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Figure 1: Location of the three stations from which the flasks have been sampled:
Lutjewad, Mace Head and F3. Also shown are the locations of other European
measurements which are used for comparison. These are: Ochsenkopf (OXK),
Bialystok (BIK), Shetland Islands (SIS), Zotino (ZOT), Puy de Dôme (PUY) and
Jungfraujoch (JFJ).

Fig. 1. Location of the three stations from which the flasks have
been sampled: Lutjewad, Mace Head and F3. Also shown are the
locations of other European measurements which are used for com-
parison. These are: Ochsenkopf (OXK), Bialystok (BIK), Shetland
Islands (SIS), Zotino (ZOT), Puy de Dôme (PUY) and Jungfrau-
joch (JFJ).

which implies a continental contribution with the main wind
direction.

Mace Head atmospheric research station (53◦20′ N,
9◦54′ W) is located on the west coast of Ireland. With the
prevalent wind direction from the western section, the sta-
tion is ideal for sampling background air masses originating
from the Atlantic Ocean (e.g. Derwent et al., 2002). Further
details on Mace Head atmospheric research station are pro-
vided by e.g. Derwent et al. (2002) and Jennings et al. (1993).
At Mace Head air samples were collected from 35 m a.s.l.
during restricted baseline conditions (Bousquet et al., 1996).

The sea based measurement station F3 is situated on a
North Sea oil and gas platform (54◦51′ N, 4◦44′ E), 200 km
north of the Dutch coast. The platform produces oil and gas
and is operated by Gaz de France (GdF Suez). The F3 sta-
tion contains an automated flask sampler similar to that at
Lutjewad, as well as a set-up for continuous monitoring of at-
mospheric CO2 and O2 concentrations (van der Laan-Luijkx
et al., 2010). The continuous measurements of O2 are per-
formed with an Oxzilla II instrument (fuel cells) and CO2
is measured using infrared absorption (CarboCaps, Vaisala).
The air inlets of both the flask autosampler and the continu-
ous measurement setup are situated on the top deck at 46 m
a.s.l. The depth of the North Sea at this location is 44 m and
the prevalent wind direction at F3 is southwest. Flasks are
filled when the wind direction is between south and west.
We thereby sample mainly the coastal marine section of the
north-western part of the European continent.
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3 Methods

3.1 Flask sampling and measurement techniques

Since the end of 2000 weekly air samples are taken at Lut-
jewad from the air inlet at the top of the tower (60 m) using
a remotely controlled flask sampler (Neubert et al., 2004).
This sampler fills 2.5 l flasks with dried air at a specified
time interval and accommodates the possibility to fill up to
20 flasks. The sampler consists of a manifold with valves
to select the individual flasks for filling and a cryocooler for
air drying. The automated air drying system is described by
Neubert et al. (2004) with additional information given by
van der Laan-Luijkx et al. (2010). Each flask is flushed with
dried air for 60 min before the automated system closes the
flask and continues to the next flask. At F3 the same system
is used, but due to space limitations a maximum of 10 flasks
is connected to the system at a time. The glass flasks used
have glass valves from Louwers (Hapert, the Netherlands)
with viton o-rings and ball and cup joint connections (Ro-
tulex). The valves are operated using electric valve actuators
designed at the Centre for Isotope Research (CIO, Gronin-
gen, the Netherlands). At Mace Head, identical flasks are
manually filled in pairs every week. The cryogenically dried
air is sucked in the flasks which are filled to atmospheric
pressure.

All flasks are analyzed in the CIO laboratory for their con-
centrations1 of CO2, CH4 and CO, as well as forδO2/N2,
δ13CO2, δCO18O and114CO2. δO2/N2 is measured using a
Micromass Optima dual inlet isotope ratio mass spectrome-
ter (DI-IRMS), in a similar manner as Bender et al. (1994).
The concentrations of CO2, CH4 and CO are measured us-
ing a Hewlett-Packard gas chromatograph (GC), model 6890,
comparable to the setup described by Worthy et al. (2003).
More details on the measurement instruments are presented
by Sirignano et al. (2010).

3.2 O2/N2 calculations and calibration

Changes in the atmospheric O2 concentration are usually re-
ported as the changes in the ratio of O2 to N2. As the atmo-
spheric N2 concentration is much less variable, the changes
in the O2/N2 ratio mainly represent changes in the O2 con-
centration. Unlike the O2 concentration, the O2/N2 ratio is
insensitive to the changes in other atmospheric gases, such as
CO2. Changes in the O2/N2 ratio of a sample are expressed
as relative deviations from a known reference gas, as shown
in Eq. (1) (Keeling and Shertz, 1992).

δ(O2/N2) =
(O2/N2)sample

(O2/N2)reference
−1 (1)

For natural air, theδO2/N2 values are relatively small and
are therefore multiplied with 106 and expressed in per meg.

1In this paper the more correct term mixing ratio has been substituted by concen-
tration to avoid confusion with the term O2/N2 ratio.

While mass spectrometers measureδO2/N2 directly, other
methods measure the O2 concentration. When measuring
the O2 concentration directly, dilution by changes in the
CO2 concentration requires a correction and therefore si-
multaneous measurements of the CO2 concentration. Equa-
tion (2) (Kozlova et al., 2008; Stephens et al., 2003) shows
the relationship between changes in the O2 concentration and
changes inδO2/N2.

δ(O2/N2) =
δXO2+(1CO2 ·SO2)

(1−SO2) ·SO2

(in per meg) (2)

Here, SO2 = 0.20946 (Machta and Hughes, 1970) represents
the standard mole fraction of O2 in air andδXO2, 1CO2 and
δO2/N2 are the changes in the O2 mole fraction, the CO2
concentration and the O2/N2 ratio, respectively. A change of
1 ppm in the O2 mole fraction without any concurrent change
in CO2 therefore causes a change of 6.04 per meg inδO2/N2.
However, in case 1 ppm of O2 molecules is removed from
an air package while the same amount of CO2 molecules is
added this causes a change of 4.77 per meg inδO2/N2.

Earlier work by Sirignano et al. (2010) showed the atmo-
spheric O2 concentrations from Lutjewad and Mace Head
presented on the internally used CIO scale, stating the need
for an adaptation to an internationally used scale for inter-
comparison of the measurement accuracy as well as data
comparison. The complete data series was recalibrated using
three cylinders spanning from−805 to−258 per meg pur-
chased from the Scripps Institution of Oceanography (SIO).
The mass spectrometer measures each sample twice against a
machine reference gas – i.e. the reference in Eq. (1). Besides
the samples, working gas cylinders were measured following
an identical procedure as for the samples. Each measure-
ment gives the difference between the sample or working
gas and the machine reference gas. The calibration proce-
dure included a drift correction of this difference based on
the measurements of a suite of working cylinders against the
machine reference gas. The amount of working gas cylin-
ders used has increased over time from one cylinder to four,
which makes the latest data more accurate than the earlier
data. During the start-up phase of the measurements, the ma-
chine reference gas has been changed several times, requiring
a scale conversion for each change. The SIO primary cylin-
ders were measured only against the current machine refer-
ence gas, which makes the data of samples measured (i.e.
not necessarily sampled) after 2006 the most accurate. The
combined uncertainty in the measurements of the flask sam-
ples varies between 6 per meg for the latest measurements
to 15 per meg in the initial measurement periods. The used
procedures and further details on each measurement period
are extensively described in van der Laan-Luijkx (2010).

For the CO2 concentration, each flask is measured at least
two times on our GC in order to enhance the measure-
ment precision. A working standard is measured after ev-
ery second sample measurement, and the measurement se-
quence includes a target cylinder for quality control. The GC
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measurements are calibrated with a suite of standards pur-
chased from the Earth System Research Laboratory (ESRL)
of the National Oceanic and Atmospheric Administration
(NOAA). The final CO2 concentrations of the flask samples
is expressed in ppm on the World Meteorological Organiza-
tion (WMO) X2007 scale.

3.3 Atmospheric Potential Oxygen (APO) and APO∗

Stephens et al. (1998) have defined the tracer Atmospheric
Potential Oxygen (APO), as shown in Eq. (3).

δAPO = δO2/N2+
1.1·(CO2−350)

SO2

(per meg) (3)

APO is the sum ofδO2/N2 plus 1.1 times the CO2 concen-
tration, with 1.1 being the global average stoichiometric ra-
tio (αB) between O2 and CO2 in photo-synthesis and res-
piration processes (Severinghaus, 1995). SO2 is the stan-
dard mole fraction of O2 in air. An arbitrary reference of
350 ppm is subtracted from the CO2 concentration, as used
on the SIO per meg scale for APO (Manning and Keeling,
2006). The definition implies that APO is unaffected by ac-
tivity of land biota and is therefore sensitive principally to
ocean-atmosphere exchange of O2 and CO2, but also still
partly to fossil fuel combustion and its specific oxidation ra-
tio (OR =−1O2 / 1CO2). The global average OR for fossil
fuel is αF = 1.4 (Keeling, 1988b). Therefore the APO on av-
erage still includes 0.3 times the fossil fuel combustion con-
tribution, which can be seen from the global budgets for CO2,
O2 and APO (in moles) in Eq. (4) through (6) (Manning and
Keeling, 2006).

1CO2 = F−B−O (4)

1O2 = −αFF+αBB+Z (5)

1APO= 1O2+αB1CO2 = (αB −αF)F−αBO+Z (6)

Here, 1CO2 and1O2 are the changes in the atmospheric
concentration of CO2 and O2 respectively, expressed in
moles. F is the CO2 emission to the atmosphere originating
from fossil fuel combustion and cement manufacture. B is
the net uptake of CO2 from the atmosphere by the terrestrial
biosphere. O is marine CO2 uptake and Z is the net marine
O2 exchange (where a positive sign indicates addition of O2
to the atmosphere). As both the CO2 fossil fuel source and
the terrestrial biospheric CO2 sink are directly coupled to the
changes in the O2 concentration, they are included in the re-
lationship for O2 with their respective molar exchange ratios
(αB andαF respectively). The marine processes involving
CO2 and O2 are not coupled, and they are therefore repre-
sented by different symbols (O and Z). The relationship for
APO as represented in (6) shows that APO is unaffected by
terrestrial biosphere activity.

As APO is defined to estimate marine CO2 uptake, the
remaining influence of fossil fuel combustion should be ac-
counted for. Sirignano et al. (2010) therefore suggest the use

of a modified version of APO, named APO∗, which is defined
in Eq. (7) and is truly only sensitive to ocean-atmosphere ex-
change.

1APO∗
= 1APO−(αB −αF)F (7)

The oxidative ratio for fossil fuel combustion (αF) varies over
the globe, depending on the types of fossil fuels that are used
in each country. The oxidative ratios for the individual fossil
fuel types are: 1.17 for coal, 1.44 for oil and 1.95 for natural
gas (Keeling, 1988a). Biofuels have the lowest OR, around
1.1, which is identical to the ratio for terrestrial biospheric
release. Therefore combustion of biofuels is also removed
from the APO signal like the terrestrial biosphere. In the
Netherlands the fossil fuel OR is higher than average (around
1.7 Sirignano et al., 2010), because of the high share of nat-
ural gas. The use of natural gas varies significantly within
the different seasons and is especially high in winter as it is
mainly used for heating purposes. We have used a modelling
study to estimate the influence of regional deviations from
the global average OR for fossil fuel for our three measure-
ment locations, which is described in the following section.

3.4 REMO

The REgional MOdel (REMO) (Chevillard et al., 2002;
Langmann, 2000) is an atmospheric transport model cov-
ering in this study the area north of 30◦ N, which in-
cludes the European continent. The model’s grid resolu-
tion is 0.5◦

× 0.5◦ in a rotated spherical coordinate sys-
tem, corresponding to a grid cell resolution of approximately
55× 55 km. The atmosphere is divided in 20 vertical lev-
els, of which we use the lowest level between 0 and 65 m,
corresponding to the height of our sampling sites. The ini-
tial and lateral boundary conditions for the meteorology were
based on the ECMWF (European Centre for Medium-Range
Weather Forecasts) analysis and for CO2 and APO the TM3
global transport model was used. The surface fluxes for the
oceanic APO were calculated from TM3 inversion of at-
mospheric CO2 and O2 concentrations (R̈odenbeck et al.,
2008). For the fossil fuel part of APO, hourly fluxes of
CO2 emissions and O2 uptake from the CO2 release and
Oxygen uptake from Fossil Fuel Emissions Estimate (COF-
FEE) dataset (Steinbach et al., 2010) were used as input
for the model. This dataset combines CO2 emissions from
the Emission Database for Global Atmospheric Research
(EDGAR) inventory version 3.2 (Olivier and Berdowski,
2001) extrapolated to 2006 using BP fossil fuel consump-
tion data at national level (available at:http://www.bp.com/
statisticalreview) with fossil fuel type specific oxidative ra-
tios derived from fuel consumption data from the UN energy
statistics (http://data.un.org). Seasonal and diurnal variations
of the emissions were included based on time profiles avail-
able in the EDGAR database. Figure 2a shows the global
distribution of the oxidative ratios from fossil fuel combus-
tion for 2006 and Fig. 2b shows the region of our sampling
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Fig. 2. The global distribution of the oxidative ratios from fossil
fuel combustion(a) and the regional distribution at our sampling
locations in more detail(b) (Steinbach et al., 2010). These are the
emissions based fossil fuel ORs per grid cell and are used as an
input in the used regional model study. White grid cells indicate
that no data is available in the EDGAR database. For Lutjewad
the average of the two grid cells just below the actual position has
therefore been used in this paper.

locations in more detail (Steinbach et al., 2010). The ox-
idative ratios obtained from these datasets for the fossil fuel
emissions at the locations of our sites, averaged over 2006,
are: 1.64 for Lutjewad, 1.49 for Mace Head and 1.44 for F3.
As Lutjewad is located in a grid cell with no data available
in the EDGAR database, we have used the average of the
data from the two grid cells south of the actual location (the
cells to the north represent shipping routes in EDGAR and
are therefore less representative). These oxidative ratios are
based on the emission information in the specific grid cell of
the described datasets, and are not necessarily the same as
the observed atmospheric O2/CO2 ratios, which are subject
to atmospheric transport and mixing. The influence of trans-
port and mixing is taking into account in this study by us-
ing the O2/CO2 ratio resulting from the REMO simulations,
hereinafter referred to as perceived OR.

4 Results

4.1 CO2 and O2

Flasks have been filled with air at Lutjewad since October
2000, at Mace Head since December 1998 and at the F3
North Sea platform since June 2006. The data series for the
atmospheric concentrations of O2 and CO2 from flask sam-
ples between 2000 and 2005 from Lutjewad and Mace Head
have been presented by Sirignano et al. (2010). In this section
we present the follow-up of this work with extended data se-
ries until 2009. In addition, for F3 half-hourly averaged con-
tinuous measurements are available from September 2008 to
June 2009 as described by van der Laan-Luijkx et al. (2010).
The continuous O2 record presented in that paper has also
been converted to the internationally used Scripps scale – as
the flask data – to be able to make a direct comparison.

Flasks which were suspected to have been contaminated
(e.g. by leaks in the sampling or measurement system or due
to long storage of the flasks; Sturm et al., 2004) have been re-
moved from the data set, as well as those flasks which were
marked as locally influenced samples or samples with a con-
tinental trajectory. At Lutjewad these samples were identi-
fied using the concentration of222Rn, which has been mea-
sured simultaneously at Lutjewad since 2005.222Rn is a
radioactive noble gas emanating from soils. The emissions
of 222Rn from oceans is very small, therefore these char-
acteristics can be used to determine whether the air masses
have been influenced by continental emissions. Therefore,
all flasks with a222Rn concentration higher than 3 Bq/m3 are
disregarded as they represent air with continental influences
and are not background air. As we did not measure222Rn be-
fore 2005 at Lutjewad, the222Rn concentrations have been
correlated with the CO concentrations at Lutjewad, leading
to an exclusion of the flask samples containing CO concen-
tration higher than 200 ppb. We subsequently used this crite-
rion for the exclusion of flask samples at Mace Head and F3.
For Mace Head only a small amount of flasks were excluded
as they were sampled during restricted baseline conditions.

For both O2 and CO2 the data have been filtered, based
on a fit through the data points. The used fit is a lin-
ear combination of a three harmonic seasonal component
and a linear trend. Data points with residuals larger than
2.5 times the standard deviation from the original fit have
been excluded. This process has been iterated until no fur-
ther outliers were identified. For F3 we have used the data
from both the flasks and the continuous measurements to im-
prove the quality of the fit (compared to fitting flask data
only). On average around 10% of the data was excluded
by applying the filtering procedure to each of the data se-
ries. Our fitting strategy is slightly different from that used
in Sirignano et al. (2010) in that we have chosen a linear
trend fit instead of a Loess trend fit (Cleveland and De-
vlin, 1988). The Loess trend fit is very sensitive to un-
evenly time-distributed data. As our data series have several
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Figure 3: Observations of the atmospheric O2 (lighter circles) and CO2 (darker
squares) concentrations at station Lutjewad (a), Mace Head (b) and F3 (c) during
2000-2009, based on flask measurements. The fits through the data points are a
combination of a three harmonic function and a linear trend.

a

b

c

Fig. 3. Observations of the atmospheric O2 (lighter circles) and
CO2 (darker squares) concentrations at station Lutjewad(a), Mace
Head(b) and F3(c) during 1998–2009, based on flask measure-
ments (and continuous measurements for F3). The fits through the
data points are a combination of a three harmonic function and a
linear trend.

gaps and more (not-excluded) flask samples in certain peri-
ods, the Loess fit does not provide valid information on the
trend variability.

Figure 3 shows the observations from each station for CO2
and O2 respectively. The expected seasonal patterns are clear
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Figure 4: Trend fits of CO2 (a) and O2 (b) at Lutjewad (solid black line), Mace Head
(dashed black line) and F3 (solid blue line) during 2000-2009, based on flask
measurements (and continuous measurements for F3). The fits are a linear
combination of a three harmonic function and a linear trend through the data points
(in Fig. 3). The CO2 trends of the three measurement locations are shown in
comparison to the CO2 background reference concentration according to
GLOBALVIEW-CO2 (2008) (solid grey line) at latitude 53°N. The increasing
gradients between Mace Head and Lutjewad are visible for both CO2 and δO2/N2.
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Fig. 4. Trend fits of CO2 (a) and O2 (b) at Lutjewad (solid black
line), Mace Head (dashed black line) and F3 (solid blue line) during
1998–2009, based on flask measurements (and continuous measure-
ments for F3). The fits are a linear combination of a three harmonic
function and a linear trend through the data points (in Fig. 3). The
CO2 trends of the three measurement locations are shown in com-
parison to the CO2 background reference concentration according
to GLOBALVIEW-CO2 (2008) (solid grey line) at latitude 53◦ N.
The increasing gradients between Mace Head and Lutjewad are vis-
ible for both CO2 andδO2/N2.

in the data series of all three sites as well as the long term
trends, slowly increasing for CO2 and a concurrent decreas-
ing trend for O2. The observed signals for O2 and CO2
from Lutjewad and also F3 show a higher degree of vari-
ability compared to Mace Head. These stations are more
influenced by local and regional sources and sinks of CO2
and O2 (e.g. terrestrial biosphere and fossil fuel emissions)
and the sampling and filtering procedures do not adequately
exclude these disturbances. The regional influence at Lut-
jewad has been presented by van der Laan et al. (2010)
and is used to estimate national fossil fuel CO2 emissions.
The observations from our three stations have been fitted and
an overview of the obtained fit parameters for the respec-
tive complete sampling periods is presented in Table 1. A
comparison of the obtained fit results of our three measure-
ment locations is shown in Fig. 4. The three harmonic fits of
the detrended seasonal cycles for both CO2 andδO2/N2 are
shown in Fig. 5.
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Table 1. CO2 and O2 trend and seasonality based on the fit of the data sets from each measurement site: Lutjewad, Mace Head and F3. The
used fit is a linear combination of a linear trend and a 3-harmonic seasonal component.

Lutjewad Mace Head F3

Trend CO2 (ppm/year) 1.97±0.07 1.90±0.04 2.11±0.04
TrendδO2/N2 (per meg/year) −21.0±0.9 −18.5±0.7 −27.1±0.6
Trend APO (per meg/year) −10.6±0.7 −8.4±0.7 −13.2±0.5
Amplitude CO2 (ppm) 12.0± 0.6 14.0± 0.3 15.2± 0.1
AmplitudeδO2/N2 (per meg) 114±8 142±6 144±2
Amplitude APO (per meg) 64±6 74±6 111±2
Day of maximum CO2 72 (13 Mar) 107 (17 Apr) 84 (25 Mar)
Day of minimum CO2 229 (17 Aug) 242 (30 Aug) 240 (28 Aug)
Day of minimumδO2/N2 90 (31 Mar) 42 (12 Feb) 49 (19 Feb)
Day of maximumδO2/N2 252 (9 Sep) 243 (31 Aug) 263 (19 Sep)
Day of minimum APO 84 (25 Mar) 40 (10 Feb) 15 (16 Jan)
Day of maximum APO 255 (12 Sep) 243 (31 Aug) 171 (20 Jun)

- 30 -

Figure 5: The de-trended seasonal patterns of CO2 and O2 at station Lutjewad (black
solid line), Mace Head (black dashed line) and F3 (blue solid line) during 2000-2009,
based on flask measurements (and continuous measurements for F3).

Fig. 5. The de-trended seasonal patterns of CO2 and O2 at station
Lutjewad (black solid line), Mace Head (black dashed line) and F3
(blue solid line) during 1998–2009, based on flask measurements
(and continuous measurements for F3).

The long term trend in the Lutjewad CO2 concentration
(Fig. 3a) is estimated at 1.97±0.07 ppm/year for CO2 and
−21.0± 0.9 per meg/year forδO2/N2. At Mace Head the
long term trend is found to be 1.90± 0.04 ppm/year for
CO2 and−18.5±0.7 per meg/year forδO2/N2. Since the
data series at the F3 platform is only 3 years the long term
trends cannot provide as accurate information on the trends,
which are estimated at 2.11± 0.04 ppm/year for CO2 and
−27.1±0.6 per meg/year forδO2/N2 (the errors given are
the fit errors and because of the short length of the record
they do not necessarily reflect the total error including sys-
tematic and measurement errors). Thanks to the longer sam-
pling period, our trend estimates are now much more accu-
rate than those presented by Sirignano et al. (2010), but the
results correspond well to each other within the uncertainty

range. The long-term trends for CO2 andδO2/N2 for other
European sites are included in Table 2. Their locations are
included in Fig. 1 using abbreviated station names. The CO2
trends at all sites are close to each other at about 2 ppm/year,
except for Puy de D̂ome. The trends forδO2/N2 are all close
to −20 per meg/year, except for Jungfraujoch.

For Lutjewad we find a seasonal (peak-trough) amplitude
of 12.0±0.6 ppm for CO2 and 114±8 per meg forδO2/N2.
For Mace Head we find a seasonal amplitude of 14.0±0.3 for
CO2 and 142±6 per meg forδO2/N2. For F3 we find a sea-
sonal amplitude of 15.2±0.1 ppm for CO2 and 144±2 per
meg forδO2/N2. Even though the record at F3 is still short,
the quality of the seasonal component in the fit is consider-
ably higher here, thanks to the continuous data. Figure 4a
shows a comparison of the fits of CO2 from our three mea-
surement locations to the marine background layer reference
from the GLOBALVIEW-CO2 (2008) database for the same
latitude (53◦ N). From this figure we can conclude that the
fits of the Lutjewad, Mace Head and F3 data correspond well
to the GLOBALVIEW-CO2 signal when comparing the tim-
ing of the growing season. The sharp decrease marking the
uptake of CO2 by the land biota and the slower increase in-
dicating the end of the growing season are clearly reflected
in all fits and compare well to that of GLOBALVIEW-CO2.
The CO2 signal from Lutjewad follows the GLOBALVIEW-
CO2 signal well, except for the depth of the troughs in the
growing season. Also in comparison to previous studies, the
amplitude of the signal from Lutjewad is likely estimated too
low based on our record. Sirignano et al. (2010) found a
seasonal amplitude of 16.1± 0.4 ppm and van der Laan et
al. (2009a) obtained 14 ppm from continuous observations.
Our obtained seasonal amplitude for Mace Head does corre-
spond well to that in Sirignano et al. (2010). The fact that our
obtained amplitude for Lutjewad is lower than in both other
studies and the GLOBALVIEW-CO2 background reference
is likely caused by inadequate representation of the seasonal
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Table 2. CO2, δO2/N2 and APO trend and seasonality from Lutjewad and Mace Head flask samples and for F3 from a combination of
flask samples and continuous observations in comparison to observations from other European measurement locations. The error bars for
the trends and amplitudes presented in this work are given in Table 1.

Trend (per year) Amplitude Measurement Period

CO2 O2/N2 APO CO2 O2/N2 APO (Flasks or Continuous)
Location (ppm) (per meg) (ppm) (per meg) Reference

Lutjewad 1.97 −21.0 −10.6 12.0 114 64 2000–2009 (F)
53◦24′ N, 6◦21′ E (this work)
Mace Head 1.90 −18.5 −8.4 14.0 142 74 1998–2009 (F)
53◦20′ N, 9◦54′ W (this work)
F3 2.11 −27 −13 15.2 144 111 2006–2009 (C and F)
54◦51′ N, 4◦44′ E (this work)
Ochsenkopf 1.6 −16 −9.7 15.5 135 43 2006–2008 (C)
50◦02′ N, 11◦48′ E Thompson et al. (2009)
Bialystok 2.0 −23 x 25 161 43 2005–2008 (C)
53◦13′ N, 23◦01′ E Popa et al. (2009)
Shetland Islands 2.2 −19 −7.2 15.4 163 95 2004–2008 (F)
60◦17′ N, 1◦17′ W Kozlova et al. (2008)
ZOTTO 2.0 x x 26.6 134 51 2005–2007 (C)
60◦48′ N, 89◦21′ E Kozlova et al. (2008)
Puy de D̂ome 1.2 −17 x 16.1 118 45 2004–2008 (F)
45◦46′ N, 2◦58′ E Uglietti (2009)
Jungfraujoch 1.8 −13 −5 to−22 9.9 76 21 2006–2008 (F)
46◦33′ N, 7◦59′ E Uglietti (2009)

cycle in the fit. Figure 3a shows that several data points indi-
cate a lower summer CO2 value for Lutjewad which are not
well reflected in the fit due to a too low sampling frequency
in the narrow trough periods. The seasonal amplitude at Lut-
jewad as estimated from the fit is therefore likely to be higher
than that presented in Table 1. Since the period with the low-
est yearly CO2 values is relatively short, a higher sampling
frequency is recommendable for this period during summer.
Figure 5 shows more clearly than Fig. 3 that the start of the
growing season is observed earlier at Lutjewad (and also at
F3) than at Mace Head, showing that the influence of the land
biota is more visible in the Lutjewad signal. As Lutjewad is
influenced by continental air masses with southern and east-
ern winds, the signal is frequently influenced by local (or
continental) anthropogenic sources, concealing the terrestrial
biosphere signal. Figure 4b shows the same comparison be-
tween the fit results of the data from the three locations for
δO2/N2 (a δO2/N2 GLOBALVIEW background reference is
currently not available).

The seasonal amplitudes for CO2 andδO2/N2 from other
stations within Europe are presented in Table 2. It can be
seen that the highest seasonal amplitudes for CO2 are found
at the eastern continental sites Bialystok and ZOTTO. The
seasonal cycles from Mace Head, F3 and Lutjewad (when
taking into account that the estimate of 12.0 is likely to be
too low) compare best to observations from Ochsenkopf and
the Shetland Islands. The Ochsenkopf amplitudes are given

from the highest level in the tower (163 m) which is generally
above the boundary layer, which decreases local influences.
Jungfraujoch has a significantly lower CO2 seasonal ampli-
tude due to its high altitude of 3580 m a.s.l. which causes
it to be far above the planetary boundary layer and thereby
sampling European background air masses. The amplitudes
of the seasonal cycles ofδO2/N2 from our three sites vary
more than for CO2. Again, the seasonal amplitude of Lut-
jewad is probably underestimated; therefore Lutjewad com-
pares best to Ochsenkopf and ZOTTO regarding their sea-
sonal amplitudes. The seasonal amplitudes at Mace Head
and F3 are slightly higher, 142 and 144 per meg, with both
stations sampling only the marine sectors. The seasonal am-
plitude at Jungfraujoch is again much lower due to the sam-
pled background air masses.

4.2 APO

For each measurement site, the atmospheric potential oxy-
gen (APO) has been calculated using the observed CO2 and
O2 concentrations and Eq. (3). The results for APO are
shown in Fig. 6 for Lutjewad (a), Mace Head (b) and F3 (c)
and are fitted with a linear combination of a three harmonic
function and a linear trend, like for CO2 and δO2/N2 (the
fit parameters are shown in Table 1). The seasonal ampli-
tudes of APO are roughly half of that ofδO2/N2, as ex-
pected. The amplitudes for our three measurement sites are:
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Figure 6: Observations of the Atmospheric Potential Oxygen (APO) at station
Lutjewad (a), Mace Head (b) and F3 (c) during 2000-2009, based on flask
measurements. The fits through the data points are a combination of a three
harmonic function and a linear trend.

a

b

c

Fig. 6. Observations of the Atmospheric Potential Oxygen (APO)
at station Lutjewad(a), Mace Head(b) and F3(c) during 1998–
2009, based on flask measurements (and continuous measurements
for F3). The fits through the data points are a combination of a three
harmonic function and a linear trend.

64±6 per meg for Lutjewad, 74±6 per meg for Mace Head
and 111± 2 per meg for F3. The annual long term trend
for each site is:−10.6±0.7 per meg/year for Lutjewad and
−8.4± 0.7 per meg/year for Mace Head. The data series
for F3 is not long enough yet to provide precise information
on the trend, which is roughly estimated at−13.2±0.5 per

meg/year (again, the errors given are the fit errors and are
higher when considering the total error). The APO fit can
also be calculated using the respective CO2 andδO2/N2 fits,
this does not yield significantly different results.

For comparison, the seasonal amplitudes and annual trends
for APO from other European stations are shown in Table 2.
The seasonal amplitudes at our sampling sites are higher than
those from most other continental European stations. As
APO primarily reflects the oceanic signal, the difference be-
tween the continental sites and the coastal marine sites is ex-
pected. The APO signal at the Shetland Islands also shows a
higher amplitude. The long-term trends are not available for
all sites, mainly because of the short time series.

4.3 Mace Head – Lutjewad gradient

From the observed CO2 and O2 signals and their trend fits
as presented in the previous sections we find an offset be-
tween Mace Head and Lutjewad. The offset for CO2 and
O2 are changing over time during the course of our observa-
tional period. A calibration problem to explain the difference
in these trends is excluded based on the fact that flask sam-
ples from both locations are measured on the same instru-
ment in the same laboratory. The Mace Head signal is also
showing a significant offset from the marine background sig-
nal GLOBALVIEW-CO2, especially during winter. The CO2
excess at Lutjewad compared to Mace Head increases with
0.5 ppm during 2001–2008. Ramonet et al. (2010) present
the difference between the CO2 concentration at Mace Head
and nine other measurement stations in continental Europe.
During the period 2000–2005 they observe an upward trend
in 1CO2 (i.e. [CO2]measurement site– [CO2]Mace Head). Com-
pared to 1995–2000 they obtained an increase in1CO2 by up
to 2 ppm. Our calculated increase in the CO2 excess at Lut-
jewad of 0.5 ppm fits well into the general picture presented
by Ramonet et al. (2010).

Additionally, we obtained a change in the difference be-
tween Mace Head and Lutjewad for O2. The O2 deficit at
Lutjewad compared to Mace Head increases by 20 per meg
over the period of our observations (2001–2008). Consis-
tently with the obtained increasing CO2 excess and O2 deficit
at Lutjewad compared to Mace Head, the APO deficit also
increases. As the terrestrial biosphere is removed from the
APO signal and the fact that the gradient in O2 is still present
in APO, this implies a relation with either the ocean, fossil
fuel combustion or general atmospheric conditions.

Ramonet et al. (2010) attributed their obtained increase
in 1CO2 to a combination of a shallower boundary layer
height over the continent and regional changes in fossil fuel
emissions. Based on our obtained increase in CO2 excess of
0.5 ppm at Lutjewad and the global average fossil fuel ox-
idative ratio of 1.4, an increase of the O2 deficit of 3.4 per
meg would be expected. The large difference with our ob-
served increasing O2 deficit implies other major contribu-
tions to these changes.
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Figure 7: Fit of the modelled data of fossil fuel CO2 and O2 for 2006 expressed as
the perceived fossil fuel oxidative ratio (OR) for our three measurement locations
using REMO. The fit shows the seasonal variability in the average OR for each
location during the course of the year as well as the spatial variability between the
three sites. The OR at all sites differs significantly from the global mean OR of 1.4 as
well as from its local emission based OR (EDGAR) as shown in Fig. 2a.

Fig. 7. Fit of the modelled data of fossil fuel CO2 and O2 for 2006
expressed as the perceived fossil fuel oxidative ratio (OR) for our
three measurement locations using REMO. The fit shows the sea-
sonal variability in the average OR for each location during the
course of the year as well as the spatial variability between the three
sites. The OR at all sites differs significantly from the global mean
OR of 1.4 as well as from its local emission based OR (EDGAR) as
shown in Fig. 2a.

Another possible contribution to the increasing CO2 ex-
cess and O2 deficit at Lutjewad compared to Mace Head
could also originate from changes in the CO2 uptake by the
North Atlantic. Oceanographic research has shown that the
North Atlantic CO2 sink has varied substantially over the
past years, and has also decreased during certain periods (e.g.
Corbìere et al., 2007; Schuster and Watson, 2007; Watson
et al., 2009). Furthermore Hamme and Keeling (2008) and
Rödenbeck et al. (2008) have shown that air-sea fluxes of
O2 and CO2 show significant interannual variations. These
changes in ocean ventilation are present for both O2 and
CO2, however in the atmosphere they are much more quickly
observed for O2 than for CO2, due to the ocean’s CO2 buffer
effect.

The final contribution to changing gradients can be found
in fossil fuel emission changes. Due to the average fossil
fuel oxidative ratio (ORff ) of 1.4, increasing fossil fuel con-
sumption over the continent causes a larger increase in the
O2 deficit than in the CO2 excess. Also regional changes in
the OR could cause changing gradients. An increasing share
of natural gas in the fossil fuel mix over the continent would
give a higher increase in the O2 deficit compared to the CO2
excess. That possible influence of the gradient in ORff be-
tween Mace Head and Lutjewad has been studied using the
regional transport model REMO.

REMO simulations were performed for the year 2006, us-
ing the CO2 emission data and the fuel mix specific ORs for
the fossil fuel related O2 sink, as described in Sect. 3.4. The
data in Fig. 2 are used as an input for REMO. The results
from REMO simulations yield the local CO2 and O2 con-
centrations at our three sampling locations. The modelled

CO2 and O2 signals consist of separate signals for the bio-
sphere, ocean and fossil fuel component. Since REMO is a
regional model, the perceived fossil fuel OR (i.e. the result-
ing1O2/1CO2 ratio after atmospheric transport and mixing)
can be calculated directly as the ratio of the resulting atmo-
spheric O2 and CO2 concentrations within a certain grid cell.
For 2006 this yielded a seasonal signal for the perceived ORff
(as simulated by REMO) for each of our three measurement
locations as shown in Fig. 7. The perceived ORff at our three
locations is structurally higher than the global average ORff
of 1.4. The deviation is more pronounced in the simulations
for Lutjewad and F3 than for Mace Head. The obtained av-
erage perceived ORff is 1.49 for Lutjewad, 1.46 for Mace
Head and 1.48 for F3. The OR of the fossil fuel emissions in
the Netherlands is highly influenced by the high natural gas
share in the fossil fuel mix (as shown in Fig. 2) and this eleva-
tion continues to exist after atmospheric transport and mixing
in the perceived ORff . As the CO2 emissions and APO are
transported by the model, the mixing with emissions from
surrounding countries decreases the perceived fossil fuel OR
at Lutjewad in comparison to the actual local emissions. The
same mixing occurs at the other two sites and is obvious for
F3, since the local emissions in the F3 area (according to the
EDGAR database) are only influenced by international ship-
ping, the mixing with the emissions from e.g. the Nether-
lands increases the ORff signal. Furthermore, the ORff of
all three sites clearly shows a seasonal pattern, which has its
maximum in winter, when the share of natural gas in the fos-
sil fuel use is higher as it is the main source for (domestic)
heating purposes.

The continuous difference in the oxidative ratio of the lo-
cal fossil fuel emissions between the Netherlands and other
countries leads to an O2 deficit in this area which is counter-
acted by atmospheric transport and mixing. Therefore the
magnitude of the deficit is dependent on the (interannual)
variability of both the fossil fuel OR and atmospheric trans-
port and mixing. From our study we observe that during the
period of our observations this deficit has not been eliminated
by transport of O2 from adjacent regions and that the deficit
at Lutjewad compared to Mace Head has increased. On the
short term the fossil fuel variability influences the gradient
between both locations, however it is expected that this gra-
dient will cancel out in the long term.

4.4 Estimating global marine CO2 uptake

We estimate the global marine CO2 uptake using the defi-
nitions presented in Manning and Keeling (2006). The net
global oceanic CO2 uptake is calculated as shown in Eq. (8).

O=

[
(−1(δAPO)×10−6

·SO2 ·Mair ·MC)+(αB −αF)F+

(
Zeff

MC

)]
·

1

αB
(8)

Where1(δAPO) is the observed annual change inδAPO
(in per meg), SO2 = 0.20946 is the standard mole fraction
of O2 (Machta and Hughes, 1970), Mair = 1.769×1020 mol
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is the number of moles of dry air in the total atmosphere
and MC = 12.01 g/mol is the molar mass of carbon. The
net oceanic outgassing of O2 is represented as Zeff. We use
Zeff = 0.48 PgC/year from Manning and Keeling (2006). The
global average molar stoichiometric ratiosαB andαF are 1.1
and 1.4, respectively. For the fossil fuel emissions F we use
the average annual emission, which is 7.7 PgC/year during
the period 2000–2009 and 7.5 PgC/year during 1998–2009
(Boden et al., 2009).

To estimate the global marine CO2 uptake we use the APO
trend obtained for Mace Head, which is the station with the
longest atmospheric O2 record in Europe. During the mea-
surement period the APO trend was−8.4±0.7 per meg/year.
As the flasks at Mace Head are sampled during restricted
baseline conditions, they represent well the background sit-
uation. The trend therefore represents the global average
trend, and compares well with that obtained for other regions
around the globe presented in other studies (e.g. Hamme
and Keeling, 2008; Manning and Keeling, 2006). Using the
global average OR of 1.4, the APO trend at Mace Head gives
a global oceanic CO2 uptake of 1.8±0.8 PgC/year.

Our estimation of the global oceanic CO2 uptake of 1.8±

0.8 PgC/year over the period 1998–2009 agrees within the
error bars with e.g. Manning and Keeling (2006). Based
on the observations from La Jolla (California, USA), Alert
(Canada) and Cape Grim (Australia), they found a global
oceanic CO2 uptake of 1.9± 0.6 PgC/year over the period
1990–2000 and 2.2± 0.6 PgC/year over the period 1993–
2003. Longer time series of observations at Mace Head
should be able to identify whether our lower estimate is valid
and whether it is an indication of a decreasing oceanic CO2
sink. The combination of the trend observed at Mace Head
and longer term trends from other European background sta-
tions as well as the combination with long term continuous
observations will give more information on the spatial and
temporal variability of the global marine CO2 uptake.

The APO trend obtained from the flasks sampled at Lut-
jewad is−10.6±0.7 per meg/year during the period 2000–
2008, which is significantly higher (i.e. more negative) than
the trend obtained for Mace Head. For this period it is not
possible to use the obtained trend for Lutjewad in global bud-
get studies as it is to a high degree affected by regional influ-
ences. We expect that the signal at Lutjewad is heavily influ-
enced by changes in the continent during the sampling period
and that the APO trend therefore does not completely follow
the global average trend. On the long term these local influ-
ences are expected to be balanced by atmospheric transport
and mixing.

As discussed in Sect. 4.3 one of the possible influencing
factors on the gradient between Mace Head and Lutjewad is
the (difference in) the fossil fuel OR. The influence of the
used ORff in the global budget calculations is high. Us-
ing the global average ORff of 1.4 and the APO trend ob-
served at Mace Head we found a global marine CO2 uptake
of 1.8±0.8 PgC/year. However, using the obtained perceived

ORff of 1.46 as obtained from the REMO simulations for
2006, would yield an uptake of 1.4±0.8 PgC/year. It is there-
fore essential that future studies focus on precisely determin-
ing the global average OR as well as its annual variability.
Additionally, regional gradients such as illustrated by our ob-
servations are key to assessing regional variability in sources
and sinks and therefore are a valuable input to (inverse) mod-
elling efforts.

5 Conclusions

In this paper we have presented the CO2, δO2/N2 and APO
data series of the flask sample measurements from Lutjewad
atmospheric monitoring station in the Netherlands, Mace
Head atmospheric research station in Ireland and the F3 plat-
form in the Dutch part of the North Sea together with con-
tinuous measurements from F3. With this work and that of
colleagues combined, the density of the (European)δO2/N2
observational network is increasing gradually. These obser-
vations can be used in model efforts (both forward and in-
verse) to provide additional insights into the carbon cycle,
also in a quantitative sense.

The records from Lutjewad and Mace Head have been
used to construct the gradient in CO2 and O2 between Lut-
jewad and Mace Head. The obtained gradient fits well with
the gradients observed between Mace Head and other Eu-
ropean stations. The observed change in the CO2 excess at
Lutjewad compared to Mace Head is 0.5 ppm over the pre-
sented sampling period. We have also presented theδO2/N2
gradient between Lutjewad and Mace Head. The O2 deficit
at Lutjewad compared to Mace Head is gradually increasing
the sampling period with 20 per meg over the total period
2001–2008. The effect on O2 is much stronger than on CO2,
which is reflected by the fact that APO shows an increased
deficit at Lutjewad as well.

We have estimated the global oceanic CO2 uptake based
on the Mace Head APO trend to be 1.8± 0.8 PgC/year.
Longer data series will further improve the quality of the
annual trends and the oceanic uptake. Using long-term ob-
servations of multiple locations spread around the globe will
further improve the APO trend estimation and thereby im-
prove the accuracy of the global marine CO2 uptake estimate
and its variability. It is also of importance that model ef-
forts focus on independently transporting CO2 and O2 (in-
stead of APO) yielding improved model based OR estimates
for longer time periods.

The collection of flask samples at Lutjewad, Mace Head
and F3 will be continued in the future as well as the continu-
ous measurements at F3. For the Lutjewad atmospheric mon-
itoring station continuous CO2 data is available since 2006
(van der Laan et al., 2009a). In the near future, combined
continuous measurements ofδO2/N2 and CO2 will also be
available at Lutjewad.
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Steinbach, J., Gerbig, C., Rödenbeck, C., Karstens, U., Minejima,
C., and Mukai, H.: The CO2 release and Oxygen uptake from
Fossil Fuel Emission Estimate (COFFEE) dataset: Effects from
varying oxidative ratios, in preparation, 2010.

Stephens, B. B.: Field-based Atmospheric Oxygen Measurements
and the Ocean Carbon Cycle, PhD Thesis, Scripps Institution

of Oceanography, University of California, San Diego, 222 pp.,
1999.

Stephens, B. B., Bakwin, P. S., Tans, P. P., Teclaw, R. M., and
Baumann, D. D.: Application of a differential fuel-cell analyzer
for measuring atmospheric oxygen variations, J. Atmos. Ocean.
Tech., 24, 82–94, doi:10.1175/JTECH1959.1, 2007.

Stephens, B. B., Keeling, R. F., Heimann, M., Six, K. D.,
Murnane, R., and Caldeira, K.: Testing global ocean car-
bon cycle models using measurements of atmospheric O2 and
CO2 concentration, Global Biogeochem. Cy., 12, 213–230,
doi:10.1029/97GB03500, 1998.

Stephens, B. B., Keeling, R. F., and Paplawsky, W. J.: Ship-
board measurements of atmospheric oxygen using a vacuum-
ultraviolet absorption technique, Tellus B, 55, 857–878,
doi:10.1046/j.1435-6935.2003.00075.x, 2003.

Sturm, P., Leuenberger, M., Sirignano, C., Neubert, R. E. M., Mei-
jer, H. A. J., Langenfelds, R., Brand, W. A., and Tohjima, Y.: Per-
meation of atmospheric gases through polymer O-rings used in
flasks for air sampling, J. Geophys. Res.-Atmos., 109, D04309,
doi:10.1029/2003JD004073, 2004.

Thompson, R. L., Manning, A. C., Gloor, E., Schultz, U., Seifert,
T., Hänsel, F., Jordan, A., and Heimann, M.: In-situ measure-
ments of oxygen, carbon monoxide and greenhouse gases from
Ochsenkopf tall tower in Germany, Atmos. Meas. Tech., 2, 573–
591, doi:10.5194/amt-2-573-2009, 2009.

Thompson, R. L., Manning, A. C., Lowe, D. C., and Weather-
burn, D. C.: A ship-based methodology for high precision atmo-
spheric oxygen measurements and its application in the South-
ern Ocean region, Tellus B, 59, 643–653, doi:10.1111/j.1600-
0889.2007.00292.x, 2007.

Tohjima, Y.: Method for measuring changes in the atmospheric
O2/N2 ratio by a gas chromatograph equipped with a thermal
conductivity detector, J. Geophys. Res.-Atmos., 105, 14575–
14584, doi:10.1029/2000JD900057, 2000.

Tohjima, Y., Mukai, H., Nojiri, Y., Yamagishi, H., and Machida, T.:
Atmospheric O2/N2 measurements at two Japanese sites: estima-
tion of global oceanic and land biotic carbon sinks and analysis
of the variations in atmospheric potential oxygen (APO), Tellus
B, 60, 213–225, doi:10.1111/j.1600-0889.2007.00334.x, 2008.

Uglietti, C.: Understanding the Carbon Cycle through Atmospheric
Carbon Dioxide and Oxygen Observations, PhD Thesis, Cli-
mate and Environmental Physics, Physics Institute, University
of Bern, Bern, Switzerland, 159 pp., 2009.

van der Laan, S., Neubert, R. E. M., Karstens, U., van der Laan-
Luijkx, I. T., and Meijer, H. A. J.: Fossil fuel based CO2 emis-
sions in the Netherlands based on ambient measurements and
an improved222Radon flux method, Tellus B, 62(5), 389–402,
doi:10.1111/j.1600-0889.2010.00493.x, 2010.

van der Laan, S., Neubert, R. E. M., and Meijer, H. A. J.: A single
gas chromatograph for accurate atmospheric mixing ratio mea-
surements of CO2, CH4, N2O, SF6 and CO, Atmos. Meas. Tech.,
2, 549–559, doi:10.5194/amt-2-549-2009, 2009a.

van der Laan, S., Neubert, R. E. M., and Meijer, H. A. J.: Methane
and nitrous oxide emissions in The Netherlands: ambient mea-
surements support the national inventories, Atmos. Chem. Phys.,
9, 9369–9379, doi:10.5194/acp-9-9369-2009, 2009b.

van der Laan-Luijkx, I. T.: Atmospheric oxygen and the global
carbon cycle. Observations from the new F3 North Sea plat-
form monitoring station and 6 additional locations in Europe and

www.atmos-chem-phys.net/10/10691/2010/ Atmos. Chem. Phys., 10, 10691–10704, 2010



10704 I. T. van der Laan-Luijkx et al.: CO2, δO2/N2 and APO observations from Lutjewad, Mace Head and F3

Siberia, PhD Thesis, Centre for Isotope Research, University of
Groningen, Groningen, the Netherlands, 191 pp., 2010.

van der Laan-Luijkx, I. T., Neubert, R. E. M., van der Laan, S.,
and Meijer, H. A. J.: Continuous measurements of atmospheric
oxygen and carbon dioxide on a North Sea gas platform, Atmos.
Meas. Tech., 3, 113–125, doi:10.5194/amt-3-113-2010, 2010.

Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Cor-
biere, A., Gonzalez-Davila, M., Friedrich, T., Hauck, J., Heinze,
C., Johannessen, T., Kortzinger, A., Metzl, N., Olafsson, J.,
Olsen, A., Oschlies, A., Padin, X. A., Pfeil, B., Santana-Casiano,
J. M., Steinhoff, T., Telszewski, M., Rios, A. F., Wallace, D.
W. R., and Wanninkhof, R.: tracking the Variable North At-
lantic Sink for Atmospheric CO2, Science, 326, 1391–1393,
doi:10.1126/science.1177394, 2009.

WMO: Report of the 14th WMO/IAEA Meeting of Experts on Car-
bon Dioxide Concentration and Related Tracers Measurement
Techniques, Helsinki, Finland, 10–13 September 2007, World
Meteorological Organization, Geneva, Switzerland, 2009.

Worthy, D. E. J., Platt, A., Kessler, R., Ernst, M., and Racki, S.:
Measurement Procedures and Data Quality, Canadian Baseline
Program; Summary of progress to 2002, Meteorological Service
of Canada, 97–120, 2003.

Atmos. Chem. Phys., 10, 10691–10704, 2010 www.atmos-chem-phys.net/10/10691/2010/


