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Abstract 

China’s energy sector is under pressure to achieve secure and affordable supply and a clear 

decarbonisation path. We examine the longitudinal trajectory of the Chinese electricity 

supply security and model the near future supply security based on the 12th 5 year plan. Our 

deterministic approach combines Shannon-Wiener, Herfindahl-Hirschman and electricity 

import dependence indices for supply security appraisal. We find that electricity portfolio 

innovation allows China to provide secure energy supply despite increasing import 

dependence. It is argued that long-term aggressive deployment of renewable energy will 

unblock China’s coal-biased technological lock-in and increase supply security in all fronts. 

However, reduced supply diversity in China during the 1990s will not recover until after 

2020s due to the long-term coal lock-in that can threaten to hold China’s back from realising 

its full potential.     
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1. Introduction 

Access to energy is one of the most important aspects of modern and developed economies. 

Its importance extends wider than that of other commodities because without it they cannot 

be produced, delivered to the market, or used. Energy is used in all primary and secondary 

forms but during the last two decades the role of electricity has been rising [1]. This is not 

only a result of a proportional increase in energy consumption but also of a substitution of 

other energy carriers with electricity. For example this is taking place in buildings as 

electricity increasingly substitutes oil and gas for temperature control and cooking. It is also 

evident in rail and road transport with urban and intercity trains as well as private vehicles 

becoming electrically powered. Finally in industrial processes electricity substitutes steam 

driven processes [2,3,4,5,6]. 

 

Electricity is a flexible form of energy for not only consumers but also producers. As a 

secondary energy carrier electricity can be generated with the use of primary fuels or 

renewable energy resources. Therefore producers do not have to rely solely on a certain fuel. 
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When electricity is produced by renewable energy sources then it is the only form of energy 

with minimal environmental impact [1,7,8].  

 

Given the necessary role for energy and electricity in national security and economic 

development it is not a surprise that securing their supplies is implicitly or explicitly among 

the top priorities of every country. Following the definition for energy supply security by 

Grubb et al [9] it is essential to clarify that energy supply can be considered secure when its 

price does not disrupt the economy. At a national level, governments use a number of 

strategies to ensure supplies such as utilising indigenous resources, improving foreign 

relations with energy producing countries and facilitating efficient operation of energy 

markets [10,11,12].  

 

Diversity of production methods is a major strength for electricity supply security [13]. 

However, most of the energy security literature refers to primary energy resources and 

electricity tends to be under-represented in energy security research.  A main reason for this 

is that electricity does not rely on a single resource for its production since it is produced in 

numerous ways; thus it requires a broader understanding of the energy context in order to 

encompass existing and alternative generation scenarios as they impact stability of supply and 

price dynamics. Furthermore, in contrast to most other commodities, electricity is not easily 

stored in a financially viable way. Therefore storage is a missing link in electricity’s supply 

chain and this excludes solutions that would suggest buffering [14,15,16].        

 

On top of the difficulties that concern securing electricity supply, the electricity sector is a 

leading source of greenhouse gases (GHGs) in many developed and emerging economies. It 

also is the most concentrated sector in terms of emissions per source, and accounts for more 

emissions than any other sector [17,18,19]. At the same time potential reductions in the 

carbon intensity of the electricity sector can benefit other sectors, which can be partially 

electrified. For these reasons policies to reduce GHGs in most countries target primarily the 

electricity sector [20,21]. Reducing the carbon intensity of the electricity sector may include 

policies such as increased use of renewable energy sources and nuclear energy, substitution 

of coal with natural gas where possible, introduction of carbon capture and storage (CCS) 

technologies as well as efficiency improvements in existing power stations. Arguably, several 

of these substitutions, change the electricity sector’s fuel mix and as a result contribute to 

changes in the electricity supply security [22,23]. 

 

China is currently managing the largest programme of low carbon technologies in the world 

[24]. This includes unprecedented investment in nuclear energy and renewables, particularly 

hydro and wind energy. This is not driven by socially adjusted incentives [25] but rather of a 

dash for electricity generation. At the same time, the Chinese government’s 2012 Energy 

Policy [26] lists increased coal production amongst its top five key targets.  This is not a 

surprise because the Chinese electricity sector relies heavily on coal. Until 2009 coal used for 

electricity came almost exclusively from indigenous resources in China. However, gradual 

ore depletion, increasing direct coal consumption and rapidly growing electricity demand led 

China to become the world’s largest coal importer soon after it started importing [27]. In 
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parallel, the supply of nuclear fuel to China relies heavily on imports; it is forecast that by 

2020, 2/3rd of uranium sources will be imported, roughly half of all non-indigenous sources 

coming from foreign imports and half from Chinese overseas possessions [28,29]. The 

forecast increased energy demand (particularly fossil fuels) is one of the main reasons for 

which China has not subscribed to international agreements to control emissions of 

greenhouse gases. 

 

With regards to nuclear power China is leading the world in the second phase of what is often 

called the “nuclear renaissance” [30], referring to the post Chernobyl and Three Mile Island 

rapid development of nuclear energy that takes place mainly in Asia. The IAEA suggests that 

72% of the reactors currently under construction are found in five countries China (29 

including 2 at Taiwan); India (6); South Korea (5); Pakistan (2); and Russia (10) [31]. 

However, recent studies cast doubt on the uranium supply over the forthcoming decades 

[29,32].  

 

The role of status quo bias and decision making in the energy sector has been explored from a 

number of different angles. With a focus on strategic decision making and planning of energy 

investment, Wüstenhagen et al [33] suggested that the industry has to overcome its status quo 

bias and pathway dependency in order to contribute to renewable energy development. Pahle 

[34] found that the last decade’s “dash for coal” in Germany has partly been a result of status 

quo bias among the power market investors who did not take into account the governmental 

plans for further renewable energy investment. Goldthau and Sovacool [35] took this 

argument one step further to say that pathway dependency is a defining characteristic of 

energy policy and one that makes it distinct among other international policy areas. Pathway 

dependency is linked to lack of resilience in the energy sector. Strong pathway dependency 

reduces the ability to adopt abrupt changes, thus threatening the resilience of energy systems 

and energy supply security. One more link to energy supply security and pathway 

dependency was made by Vleuten and Lagendijk [36], who examined the European power 

blackout of 2006 [37]. They found electricity policy pathway dependencies to be one of the 

parameters determining which countries were affected by the event. 

 

The aim of this paper is to examine the status quo and potential future of electricity supply 

security in China. Even though China has a rapidly developing economy, the legacy of its 

electricity sector is taken into consideration in order to discuss potential pathway 

dependencies. Furthermore, the forthcoming Chinese climate and energy policies are 

reviewed to inform possible fuel mix futures and their respective impact on emissions and 

electricity supply security. 

 

This manuscript continues with a brief description of the case study i.e. the Chinese 

electricity sector and its specific challenges. Following that, in the third section we describe 

the methodological approaches used for assessing electricity supply security. In this section 

there is explicit reference to the data that was used for this study. The fourth section presents 

and discusses our results and finally the paper concludes with the implications beyond 

China’s borders of electricity security in China.  
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2. Electricity sector of China 

2.1 Status quo 

China’s electricity sector is the largest in the world, and electricity consumption in the 

country reached 5,322 TWh in 2013 [38], with demand expected to rise to 9,845 TWh by 

2030 [39] (Figure 1). China is the world’s largest consumer of coal and its electricity sector is 

the largest single source of coal demand consuming approximately half of the country’s coal 

[40]. 

 

 
Figure 1: Past and projected electricity generation and electricity generation capacity 

in China 

 

Increased concern about global warming from anthropogenic emissions has put major 

greenhouse gas (GHG) emitters under scrutiny by the international community.  China’s 

rapid development since its partial economic liberalization in 1978 has come at great 

environmental expense [41] and resulted in annual GHG emissions of 7,222 GtCO2e in 2010 

making it the world’s leading emitter. China’s electricity sector specifically has become a 

focal point, both because of its strain on global natural resource supplies and emission-intense 

nature.  Internationally the electricity sector accounts for 42% of annual GHG emissions from 

fossil fuels; nationally, China’s electricity sector accounts for over half of its total emissions 

[42].  

 

In addition to reducing carbon emissions, China urgently needs to combat air pollution. So 

far, this issue has been approached mostly on a regional and urban basis but as the European 

and North American experience suggests the most dangerous pollutants are easily transferred 

across borders [43]. Synergies between air pollution and carbon reduction are straight-
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forward in all the decarbonisation options, particularly those suggesting focusing on 

renewable energy sources and nuclear. 

 

Prior to economic liberalization in 1978, China’s electricity sector was operated by the 

Vertically Integrated State Owned Utility (VISOU), which has undergone significant 

transformations and is now privatized and dismantled [44]. The resulting competition 

increased the generation capacity that was needed to satisfy China’s growing demand, which 

comes primarily from the industrial sector; from 1980 to 2009, electricity demand grew 12-

fold and is projected to continue [45, 46]. Energy security concerns dictate that China meet its 

electricity needs with domestic resources, resulting in a system heavily reliant on coal.  Recent 

developments and national policy demonstrate China’s will to diversify its primary fuel mix in 

electricity generation. However, exploitation of coal resources is the top national energy priority 

[47]. 

 

Approximately 75% of China’s electricity demand comes from industrial base-load facilities, 

causing a relatively flat demand profile. This flat profile is conducive to China’s 

predominately inflexible base-load generation, however leads to integration problems for 

intermittent resources. China’s inflexible system may be increasingly inappropriate as the 

electricity demand profile becomes more volatile with anticipated increases in residential and 

commercial demand. 

 

Geographical diversity of resource location and demand centers is a major problem for China’s 

power sector, as coal is predominately found in the North and demand centers are located largely 

in the East. Some non-coal power sources face the same problem.  For example, hydropower is 

located predominately in the South, while wind resources are mostly located in the North and 

Northeast.  In the case of wind power, this causes frequent curtailment and also non-connected 

installed capacity rates of up to 25% in areas such as East Inner Mongolia that have received the 

bulk of China’s wind capacity buildup [48].  

 

While renewable energy plays only a small role in China’s electricity generation, it is worth 

noting that various legislations have been passed to encourage it. Notably, The Renewable 

Energy Law (REL) in 2005 requires non-hydro renewable power generation to account for 3% of 

the electricity generation by 2020.  This has succeeded in stimulating certain technologies; wind 

capacity grew from 0.3 GW in 2000 to 25.8 GW in 2010 [49]. Also, China’s 12th 5 Year Plan, 

discussed further below, suggests aggressive clean energy targets, including to increase the share 

of non-fossil fuel consumption of primary energy to 11.4% [50]. 

 

China’s electricity consumption continues to grow rapidly, reaching a growth rate of 7.2% in 

the first three quarters of 2013, while electricity production for the same period grew at 6.8% 

[51]. Given the dominate position of coal in the electricity production fuel mix (79% in 2011) 

it is natural that coal consumption will remain the major way that China will meet growth in 

electricity demand for the foreseeable future.  

 

2.2 China’s Historic Electricity Fuel Mix Development 
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China’s coal endowments are some of the largest in the world [52].  This abundant and cheap 

fuel supply facilitated China’s heavy industry development, which required continuous 

electricity supply and therefore coupled well with the base-load features of coal-fired power 

systems.  Coal thus became deeply embedded in China’s 20th century energy system.  

Between 1971 and 2011 (figures 2-6), coal-fired generation accounted for between 49% 

(1976) and 80% (2007) of total generation [53, 54].  

   

Coal’s moderate contribution to generation in the 1970’s and subsequent increase in relative 

importance in the electricity sector generation correlates with the development of China’s oil 

fields, which began to undergo commercial development in the 1960’s. By 1971, oil 

contributed 11% to total electricity generation and peaked in 1976 at 29% of total production.  

However, over the following two decades of economic liberalization and growth in vehicular 

demand, oil use in electricity generation declined steadily and by 2011 accounted for only 

0.3%.  

 

Hydropower’s significant role in China’s power generation portfolio has stayed relatively 

constant, accounting for between 24% (1974) and 15% (2003) throughout the period 1971 to 

2011.  Government targets to increase the installed capacity of China’s hydro power to 300 

GW by 2020 (from 219 GW in 2010) (figure 7) ensure that hydro will continue to make an 

important contribution to China electricity portfolio mix into the mid-term future.  

 

China’s nuclear power sector was launched in 1993, and has scaled by 2014 to have 21 plants 

in operation with 28 more under construction. China aims to generate 6% of its total 

electricity with nuclear power by 2020, up from 1.84% in 2011 [55].   

 

Natural gas was exported from China until 2007, and by 2012, imports met 29% China’s 

natural gas demand and is expected to grow. Natural gas plays a small but growing role in 

China’s power sector. With the first natural gas-powered generation coming online in 1980, 

its role in electricity generation has grown steadily to account for over 2% of China’s total 

electricity generation portfolio by 2011. China is increasing the role that gas will play in its 

energy mix by increasing production and by building the infrastructure needed to boost 

imports via pipeline and liquefied natural gas. However, the growth in the use of natural gas 

in power generation is not expected to maintain pace with the growth of electricity demand, 

and by 2020 official estimates predict that natural gas’s use in electricity generation will dip 

to 1.85% of total supply [56].  

 

Non-hydro renewable energy sources in China historically have not played a significant role 

in China’s fuel mix, but there is an attempt to ease the pressure on its coal-based generation 

by developing renewable electricity sources. Notably, China’s wind power has undergone 

rapid growth since 2006 when China published its Renewable Energy Law, which stimulated 

renewable electricity generation. By 2011, China generated 70,333 GWh of wind power, 

compared to 2,028 GWh in 2005 – an average annual growth rate of 75% during that period. 

Photovoltaic power has also experienced rapid growth, but is predicted to play a much less 

significant role in China’s overall generation mix. Biomass, geothermal, tidal and other forms 
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of renewable energy have not historically been significant sources of electricity, nor are they 

predicted to account for any substantial generation in China’s short and mid-term energy 

future. By 2011, photovoltaic electricity has produced 2,532 GWh. Biomass and geothermal 

generation similarly made only small contributions to China’s overall generation portfolio.       

 

 
Figure 2: Chinese electricity sector’s fuel mix in 1971 

 

 
Figure 3: Chinese electricity sector’s fuel mix in 1981 
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Figure 4: Chinese electricity sector’s fuel mix in 1991 

 

 
Figure 5: Chinese electricity sector’s fuel mix in 2001 
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Figure 6: Chinese electricity sector’s fuel mix in 2011 

 

 
Figure 7: Projected Chinese electricity sector’s fuel mix in 2020 

 

2.3 China’s Coal Consumption & Production 

Growth in China’s coal consumption is closely linked to growth in electricity generation. 

79% of its electricity was generated from coal in 2011 [53], and electricity production 

accounted for 49% of total coal consumption [54]. Growth in demand remains one of China’s 

largest obstacles in curbing its consumption of coal; average growth of electricity generation 

between 2002 and 2011 was 12.2% [53]. China’s State Grid Economic Research Institute 

(SGERI) projects high and low demand scenarios for the electricity sector in 2020 of 8,510 

TWh and 6,947 TWh respectively [39]. Non-coal energy targets are already aggressive.  

Growth in installed capacity of non-coal electricity generation is expected to rise from the 
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224 GW in 2009 to 586 GW in 2020, with the resulting 2,200 TWh of estimated output 

signifying an upper limit of what would be technically feasible in that timeframe [57]. 

Therefore, the differences in SERGI’s demand scenarios would include between 6,310 TWh 

and 4,747 TWh of predominantly coal-based sources from a 2009 baseline of 3,557 TWh 

coal generated electricity. This implies a large growth potential of coal consumption from 

China’s electricity sector, the extent of which is largely dependent on China’s ability to 

manage growth in its electricity demand. 

 

Given its large domestic coal endowments, China’s coal production has historically far 

exceeded its consumption. Looking specifically at coal used in electricity production, net 

bituminous coal exports peaked in 2001 at 68.6 Mt. China’s production of bituminous coal 

has grown rapidly in recent years, rising from 1.21 billion tons in 2000 to 2.77 billion tons in 

2011, with an average growth rate of 7.64% [53]. However, during that same period, China’s 

demand for coal grew even faster, and surpassed local supply; consumption of bituminous 

coal rose from 1.26 billion tons in 2000 to 2.93 billion tons in 2011 – an average growth rate 

of 7.80% for the same period. While bituminous coal imports only accounted for 0.61% of 

total steam coal consumption in 2000, by 2011 imports accounted for 3.87%, a six-fold 

increase in reliance on bituminous coal imports for electricity generation [53]. This supply 

and demand imbalance has been mirrored in other coal consumption sectors, and shifted 

China’s position as a significant coal exporter to the world’s number one importer in 2009; in 

that year China’s imported 126 Mt of net coal, which accounted for 15% of global coal trade, 

and accounted for 13.97% of its overall coal consumption. By 2011, China imported 196 

million tons of coal, accounting for just over 17% of global coal trade [53]. 

 

China’s dependence on coal imports is projected to continue, in part due to a national goal to 

limit coal production capacity to 4.1 billion tons during the Chinese 12th 5 Year Plan period 

of 2011-2015, according to government news sources [50]. Problems resulting from 

production and use of coal resources are well documented and the central government 

policies help to mitigate issues such as preserving indigenous supplies, limiting the strain on 

existing coal transportation infrastructure, and reigning-in environmental damage caused by 

coal mining [58]. China’s coal industry development plan for the 2011-2015 dictates that coal 

production not exceed at 3.9 billion tons annually, potentially contributing to increased 

reliance on imports [59]. 

 

Compounding China’s increasing reliance on coal imports is the trend towards electrification. 

The IEA estimates that electricity accounted for 6% of China’s final energy consumption in 

1990, and by 2007 had grown to 19%. IEA forecasts this figure to rise to 27% by 2020 as an 

increasing share of the energy it consumes comes in the form of electricity [60].   

 

China’s recent reliance on coal imports marks a turning point in China’s energy security, and 

more specifically its electricity security. Most research on China’s energy security focuses on 

the substantial gap between oil production and consumption. Indeed, China’s national energy 

strategy historically has been to rely on domestic resources, which until recently it has 

successfully done for all major energy sources other than oil [61,62,63]. However, a 
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predominant focus on oil overlooks the recent, and growing, production/consumption 

imbalance of coal, which plays a much larger role in China’s overall energy portfolio.  The 

implications for China’s electricity security and of its existing and future fuel mix scenarios 

have not been sufficiently explored by existing literature. 

 

3. Methodology 

Until recently researchers focused on defining energy security [64] and establishing 

theoretical or qualitative frameworks to conduct energy security analyses [65,66]. Energy 

policy studies are increasingly incorporating quantitative indicators serving as proxies for 

measurements of energy security [67,68,69,70]. The two most distinct quantitative 

approaches for energy supply security use measures of diversity or measures of energy 

dependence, both of which will be reviewed here. Other energy security indicators comprise 

of a combination of dependence, diversity, other macroeconomic indicators and stochastic 

approaches [71,72].  

 

The adopted approach is straight-forward and novel. It is straight-forward because we use the 

most established concepts to assess supply security; dependence and diversity. Both are 

estimated with straight-forward indices that were used before in the energy security literature. 

The novelty of our approach is that never before was the combination of these indices used to 

analyse the long-term past and mid-term future electricity supply security status of China. In 

the following sections the details of the quantified measures of dependence (3.1) and 

diversity (3.2) are provided. The data used is mainly available through International Energy 

Agency (IEA). 

 

3.1 Electricity supply dependence  

The concept of energy dependence may seem obvious with regards to reliance on primary 

fuels. However, further analysis by Frondel and Schmidt [73] resulted in an indicator 

assessing the specific risks associated with each primary fuel, taking into account information 

about the worldwide supply of that fuel and its importance for the country in question. 

Chalvatzis and Hooper [74] and Chalvatzis [22] provided a clear focus on electricity supply 

security. The authors suggested a new index that takes into account the direct electricity 

imports and imports of primary energy resources that are used to generate electricity. Hence: 

 

Dependence 𝐷 = 𝐷𝑒 + 𝐷𝑓 (1) 

 

Where: 

D = (%) electricity supply dependence  

De = (%) dependence on direct electricity imports  

Df = (%) dependence on primary fuel imports for electricity generation  

 

3.2 Electricity supply diversity 

There are several quantitative approaches on energy diversity. Cohen et al [75] proposed 

global and country-specific diversification indices for oil and gas supplies. Le Coq and 
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Paltseva [76] used energy import diversification, combined with measures of political risk, 

risks in energy transit and economic costs of supply disruption to define indices evaluating 

the risks of disrupting oil, gas and coal supplies in Europe. These quantitative measures of 

energy diversity generally focus on the use of Shannon-Wiener [9,13,77,78] and Herfindahl-

Hirschman indices [9,75,79,80].  

 

3.2.1 Shannon Wiener Index 

The Shannon-Wiener index was originally used in the disciplines of ecology and genetics in 

order to describe diversity in species populations and specific genomes. Stirling [13] 

introduced it first to energy supply diversity. According to Grubb et al [9], when the 

Shannon-Wiener index is below 1 it indicates a significant lack of diversity, whilst an index 

higher than 2 indicates a diverse fuel mix which means there is no overreliance on certain 

options. However, Hickey et al [77] acknowledge that one difficulty of using the Shannon-

Wiener index in energy diversity appraisal is that there is no “explicit range of values that 

would indicate excessive or insufficient fuel diversity”. For n number of fuels (options) 

available in the electricity fuel mix the Shannon-Wiener Index (SWI) is: 

 

𝑆𝑊𝐼 = − ∑ 𝑆𝑖 ∙  ln 𝑆𝑖

𝑛

𝑖=1

    (2) 

 

Where: 

Si = the share of fuel (option) i in total available electricity 

 

For the calculation of the SWI each fuel available in the electricity fuel mix represents one 

option. Each option’s share is expressed as a segment lower than one i.e. a share of 20% 

would be used in the calculations as 0.2. The SWI is minimised to zero when only one option 

is available and can be maximised with infinite options. 

 

3.2.2 Herfindahl-Hirschman Index 

The Herfindahl-Hirschman Index (HHI) is used widely in competition economics to measure 

market concentration, which is the opposite of diversity. It is also known as the Simpson 

Index in ecology. Unlike SWI, HHI is a measure of concentration rather than a measure of 

diversity. Therefore the higher the HHI, the higher the concentration; thus the lower the 

diversity. The HHI index is calculated as the aggregate of the squared share of each option.  

 

𝐻𝐻𝐼 = ∑ 𝑆𝑖
2      (3)

𝑛

𝑖=1

 

Where: 

Si = the proportion of option i expressed as a percentage 

 

Similar to the calculation of SWI, each fuel represents an option for HHI. The options’ shares 

are expressed as percentages i.e. a share of 20% would be used in the calculations as 20. The 

US Department of Justice [81] suggests that HHI lower than 1,500 indicates a competitive 
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marketplace and higher than 2,500 indicates a highly concentrated marketplace. Following 

this guidance Grubb et al [9] suggest that these values can be used to assess energy supply 

diversity.   

 

   

4. Results and discussion 

4.1 Electricity supply dependence 

Following the process described in section 3 we calculate the long-term import dependence 

of the Chinese electricity sector (Figure 8). China has been a net importer of oil and gas since 

the 1990s. However, these fuels played only a small role in electricity generation between 

1990 and 2011. In contrast, solid fuels were produced in China and their production 

consistently followed domestic demand; therefore it can be said that until 2008, China 

produced nearly all the fuels it required to generate power. Dependence on oil and gas 

imports increased rapidly since the 1990s reaching 78% and 34% respectively in 2011. The 

electricity sector’s total dependence was consistently below 1% until 2008 and reached 6% in 

2011. This sudden dependence growth can be attributed by nearly 59% to coal imports 

reaching 4.5% in 2011. In comparison approximately 11% is attributed to natural gas, 27% to 

nuclear and 2% to oil imports. In the near future, by 2020 the import dependence of the 

Chinese electricity sector is predicted to reach an unprecedented 32%.  

 

For several countries nuclear energy is considered to be a predominantly indigenous source. 

However, for China nuclear energy is heavily relying on uranium imports. China imported 

16,126 tons of uranium in 2011, not much less than the 17,135 tons it had imported in 2010, 

according to the General Administration of Customs [82]. The National Energy 

Administration predicts that imports will remain the same or be increased during 2012 and 

the World Nuclear Association predicts that they will reach 20,000 tons by 2020 [83]. 

Approximately 95% of uranium imports to China are coming from Kazakhstan, Uzbekistan, 

Namibia and Australia while China produced about 1000 tons in 2012. However, it is 

reported that China consumes less than 7,500 tons of natural uranium annually leading to 

conclusions that large amounts of imported uranium are used for stockpiling [84]. In addition 

to securing increased uranium imports, China needs to accelerate the development of uranium 

processing plants that will allow it to produce nuclear fuel rods [85].    
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Figure 8: Past and projected electricity supply dependence in China  

 

As it has been demonstrated all thermal power generation increases the import dependence of 

the Chinese electricity sector since it relies to some extend on imported fuels. Only renewable 

energy sources can potentially reduce electricity import dependence. By 2020 the official 

planning of the Chinese Government predicts a fuel mix that will have an increased role for 

wind energy, solar PV and bio-fuels by 2.03%, 0.36% and 0.39% (since 2011) respectively 

(Figure 7). However, this increased role for renewable energy sources will be shadowed by a 

reduction of 1.12% in hydropower which will results in a total 1.66% total increase of 

renewable energy sources. Clearly this is not adequate to control the impact of nuclear and 

coal energy on dependence.  

 

Specifically, as it has been discussed in section 2 China is bound by its own policies to 

increase coal imports rapidly since it will restrict indigenous coal production; therefore even 

though reliance on coal is reduced by 6.13% as a percentage of the total generation fuel 

portfolio between 2011-2020 coal import dependence will increase from 4.45% in 2011 to 

37% during the same period as the total consumed amount increases. At the same time the 

contribution of nuclear energy will increase significantly from 1.84% to 6.6%. 
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Figure 9: Past and projected coal and peat production in China with production cap 

 

4.2 Electricity supply diversity 

Import dependence is only one aspect of energy supply security. For a country like China that 

has enormous energy needs, diversity of energy resources is at least equally important. Due to 

lack of appropriate data we are not examining import diversity i.e. the diversity of countries, 

regions and sources that China imports its energy resources from. In fact it is often 

commented that China has adopted a long-term strategic approach on this issue including 

foreign acquisitions and stockpiling of energy resources [86, 87, 88]. Diversity is examined 

here in the context of the different resources used for electricity generation. Our approach is 

based on the actual contribution of each resource to the available electricity rather than on the 

installed capacity of different technologies. As mentioned in section 3 we have used two 

complimentary indices HHI (figure 10) and SWI (figure 11).  

 

Both indices are very sensitive to the total number of options used in the fuel mix; therefore 

they tend to show disproportionately large diversity increase even when an option with 

negligible contribution is introduced to the fuel mix [22]. To enhance the robustness of our 

approach against this over-sensitivity we estimate the respective indices 3 times; one that 

includes all options (even those with negligible contribution); one that includes all options 

with a contribution higher than 1% and one that only includes options with a contribution 

higher than 3%. It is clear that SWI is more sensitive than HHI to options with negligible 

contribution as it occurs from the significant difference between the 3 curves (figure 11). It is 

noteworthy that the number of fuel mix options that are taken into account in these 

calculations varies throughout the examined period (1971-2020) between 3 and 8 when 

accounting for all options, 3 and 5 when only accounting for options with a contribution 

higher than 1% and 2 and 3 when only accounting for options with a contribution higher than 

3%. The number of options considered follows an increasing trend when all options are 

considered (from 3 to 8) and a similar increasing trend when only options with a larger than 
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1% contribution are considered (from 3 to 5). Conversely, the number of options follows a 

decreasing trend (from 3 to 2) when only options with a larger than 3% contribution are 

considered.      

 

 
Figure 10: Past and projected HHI  

 

Despite the aforementioned sensitivity differences both indices show similar trends. It is 

reminded that HHI is a measure of concentration which is opposite to diversity and for this 

reason the two indices appear to mirror each other. The diversity of the Chinese electricity 

sector was increased between 1970 and 1980 as a result of the large role of oil and natural gas 

in the fuel mix (Figures 2 and 3). Following the 1980s diversity followed a downwards trend 

for 3 decades reflecting the dominance of solid fuels in the electricity sector’s fuel mix. As 

the contribution of non-coal energy resources in the fuel mix is predicted to increase the 

diversity is expected to improve significantly. Specifically, resources like nuclear, bio-fuels, 

wind and solar PV are projected to increase their share between 2011 and 2020 and make a 

positive contribution to diversity. However, it is important to notice that despite the 

projections for diversity improvement, diversity will not reach its 1970’s level until after 

2020 even if all fuel mix options are taken into consideration in its estimation.           
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Figure 11: Past and projected SWI 

 

4.3 Electricity sector decarbonisation  

Electricity sector decarbonisation is often perceived as a threat to energy supply security. 

That is based on a more traditional paradigm of energy security that puts emphasis on import 

independence and has been prominent in most countries until recently [89]. As it has been 

shown, China relied entirely on indigenous energy resources for electricity generation until 

very recently. It has done so at the expense of supply diversity and at the expense of the 

environment. Weak climate change policies and pathway dependence in the energy 

technologies used are the main reasons why China remains in a carbon lock-in trajectory 

[90]. It does so even though coal has to be imported and therefore does not support the energy 

security dogma of using indigenous resources. International trade and China’s role as the 

world’s main producing country explain partly the constantly increasing emissions [91].  

 

In theory, decarbonisation of the Chinese electricity sector could be assisted by a greater 

contribution of natural gas that would substitute coal. Since the emissions ratio between 

natural gas and coal is approximately 2 (subject to technologies used and fuel quality) it is 

fair to suggest that the potential of this substitution would be highly beneficial [23, 92]. 

However, demand for natural gas exceeds supply and therefore imports are required. At 

present China imports natural gas with pipelines from Myanmar [93], Turkmenistan, 

Uzbekistan and Kazakhstan [94]. There is also a proposed pipeline from the Russian Siberia 

and there are regular LNG shipments from Qatar, Australia and Malaysia [95]. According to 

IEA, China has huge unexploited reserves of coalbed methane but less so of conventional 

natural gas [96].  

 

However, following the ongoing conflict with Ukraine [97] and the subsequent political 

discourse to end the European reliance on Russian gas led Russia to sign a long-term gas 

supply agreement with China in 2014 [98]. For China that was an important energy deal 
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given the role that natural gas can play in decarbonisation both by substituting coal and by 

enabling gas turbines to balance the interment renewable energy supply. The US$400bn deal 

will supply 38bn m3/annum Russian gas to China for 30 years. Despite the fact that this is just 

20% of the gas that Russia exports to Europe, it will allow China valuable time to develop its 

own gas resources, support further integration of intermittent renewable and substitute coal 

and even consider investment in large scale compressed air energy storage systems [99].  

 

While progress in the Chinese nuclear sectors is underway, there are fuel supply limitations 

that need to be considered. However, the role of nuclear energy in improving energy supply 

security and contributing to a forward looking decarbonisation strategy is heavily contested. 

In addition to fuel supply uncertainty, the wisdom of decarbonising by investing in carbon-

intensive infrastructure building is questioned [100]. In spite of this view, emerging 

economies (more so than other, “established” nuclear countries), appear to internalise in their 

climate change policies the aggressive development of nuclear energy [101]. 

 

4.4 Pathway dependence and the risks for energy supply security  

Pathway dependence and status quo bias are common in the energy sector and typical of 

centrally planned economies. Reiche [102] and Chalvatzis [103] suggested that Eastern 

European countries had to fight against pathway dependencies in order to adapt to the EU’s 

energy and environmental policies. China’s main driver however, is not some higher level of 

political authority even though the global climate change regime often attempts to assume 

this role. Rapid economic development and endless thirst for energy resources have led 

China’s fuel mix changes.  

 

There is little doubt that the established, vertically integrated, from mining to power 

generation, coal sector of China acts as an inflexible incumbent in any fuel mix changes 

ordered by the Government. To this end the emergence of energy policy is typically 

deliberate only from the incumbent’s point of view and does not allow new entrants to form 

policy [104]. By highlighting the interests of the dominant, incumbent groups the debate 

about energy security is often focused on encountering short-terms shocks in supply caused 

by known tractable drivers. Indeed Berkes et al [105], Folke et al [106, 107], Gunderson, and 

Holling [108], Holling [109] and Stirling [110, 111] find that there is a consistent preference 

for control-based strategies in governance interventions that mitigate technological 

vulnerabilities. In Stirling’s taxonomy of vulnerability risks [111] this approach ignores the 

long-term stresses and those vulnerabilities the underlying cause of which is lesser 

identifiable or tractable.  

  

We find that the pursuit of secure energy supply in China appears to be leading its electricity 

sector away from the dominance of coal, towards a diversified fuel mix which includes 

renewable energy sources, natural gas and nuclear energy. At this stage this is only a gradual, 

incremental change that will not deliver a radically different fuel mix in less than a decade. It 

does, however, produce noticeable results in diversifying the electricity sector. Unfortunately, 

this comes at a cost for the sector’s import dependence but as we have shown this is partly 

because of China’s self-imposed coal production limits. Overall, the Government appears to 
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have the strength to control the development of the fuel mix against the incumbent interests 

who would dictate a large-scale and long-term coal lock-in.       

 

In resisting to the dominant coal interests the Chinese Government is supported by two more, 

often overlooked issues. Firstly, is the water-energy nexus; the interrelation of water and 

energy as crucial components of each other’s production. Chinese coal production is water 

intensive and this imposes productivity restrictions in a number of regions [112]. Conflict 

around water management is not limited to China’s coal production but is a regular issue in 

exploiting high altitude water resources in the Western Provinces of the country [113] 

Secondly, the regional disparities in energy and emissions efficiency and the availability of 

natural and human resources produce a complex environment for energy policy discourse 

development. As a result, policies do not always manage to prevent regional emission and 

economic activity leakage which exacerbates imbalances [114] In addition to envisioning 

economic growth and innovation the Chinese Government is also driven by these two factors. 

 

 

5. Conclusion 

China’s rapid growth rate presents a challenge as well as an opportunity for the country’s 

energy future. The challenge is to secure increasing energy supplies while maintaining a 

decarbonisation trajectory. In contrast, the opportunity lies in transforming the historical coal 

lock-in into a diversified and secure energy supply system that will fuel the Chinese economy 

for the years to come.  

 

We argue that the Chinese Government is stirring away from the monolithic coal-dominated 

fuel mix and increases the diversity of the electricity sector. Fuel mix innovation is an 

effective way of increasing supply security, especially when indigenous coal production 

cannot cope with demand. It is recommended that the Government continues to work towards 

two main objectives. First, increase the share of renewable energy sources in the fuel mix and 

as a result maintain high energy independence. Secondly, improve diversity in the fuel mix; if 

imports are necessary, prioritise non-coal fuels, such as nuclear fuels and natural gas. These 

two objectives will improve further electricity supply security while allowing China to 

decarbonise its economy.  

    

In optimising China’s technological substitution, policy makers must design a path that will 

be influenced by the international energy prices and the role of technological damping caused 

by China or other countries. In this process climate policy, its effect on energy prices and 

their subsequent consequences onto the well-being of the global economy will also need to be 

considered [115]. Our results strengthen those of Wu et al [116] who suggest that controlling 

emissions and improving energy supply security are not conflicting targets for China.  

 

The success of China’s decarbonisation trajectory is keenly observed by the international 

community. The capacity of the Chinese Government to commit to international emission 

targets is linked to its capacity to achieve these targets without compromising its energy 

supply security and development prospects. Further research on this issue should focus on the 
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regions of China, their specific energy supply requirements and their capacity to contribute to 

the Chinese energy demand. The national dependence and diversity assessment provided in 

this manuscript have to be complemented with regionally assessments in order to detail the 

most effective and secure decarbonisation policies.   
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