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Abstract

We present a computer vision tool that analyses video from a CCTV system installed
on fishing trawlers to monitor discarded fish catch. The system aims to support expert
observers who review the footage and verify numbers, species and sizes of discarded
fish. The operational environment presents a significant challenge for these tasks. Fish
are processed below deck under fluorescent lights, they are randomly oriented and there
are multiple occlusions. The scene is unstructured and complicated by the presence of
fishermen processing the catch. We describe an approach to segmenting the scene and
counting fish that exploits the N*-Fields algorithm. We performed extensive tests of the
algorithm on a data set comprising 443 frames from 6 belts. Results indicate the relative
count error (for individual fish) ranges from 2% to 16%. We believe this is the first
system that is able to handle footage from operational trawlers.

1 Introduction

This paper describes an ongoing development of a computer vision tool that augments an
existing CCTV system that is installed on board fishing trawlers and whose purpose is the
monitoring of the fish catch discard. We describe the regulatory environment and the motiva-
tion for this project in more detail in Section 2. A key element of the system is a video camera
overlooking a conveyor belt, where the fish are processed and at the end of which only the
fish to be discarded remain (see Fig. 1, left column). Currently, the footage is analysed by
human experts who manually count the discarded fish, measure their size and identify their
species. The objective of the project is to reduce the viewers’ workload as much as possible
by automating this tedious and expensive procedure.

An initial requirement leading to the above objective is to detect and count fish entering
the discard shoot The operational environment presents significant challenges for this task
and while in Section 3 we review a body of previous work, no current systems can deal
with the multiple occlusions that arise during periods of high throughput. Our approach to
fish segmentation and counting utilises convolutional neural networks (CNNs) [21, 28, 38]
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and comprises the following steps. The first step involves foreground segmentation (fish vs.
non-fish). The output of this step requires further refinement as many frames contain a large
number of overlapping fish. Therefore, the output from the first step is further segmented
by a CNN-based edge detector followed by the Watershed algorithm [7]. The CNNs in both
steps are based on the N*-Fields approach [21]. The details of the fish segmentation and
counting algorithm are described in Section 5.

We present extensive tests of the algorithm in Section 6. The fish relative count error
ranges from 2% to 16%, which is a promising result in this ongoing work as the required
figure for this task is 10%.

2 Motivation

The EU Common Fisheries Policy aims to ensure the exploitation of living aquatic resources
is constrained to provide sustainable economic, environmental and social conditions. The
annual setting of total allowable catch (TAC) quota has been a key feature of fishing controls
over the last decade [16]. Mismatches between the TAC and estimates of the actual catch
taken have prompted regulatory bodies to incentivise fishermen to document [12, 27] and be
accountable for total catches, including discards, with exemption from certain regulations
and increased quotas. This is accomplished through remote electronic monitoring (REM).
Vessels that adopt the Catch Quota Monitoring System (CQMS) are fitted with camera and
telemetry systems that provide a record of fishing activity. Pilot studies in the UK concluded
that use of REM technology for CQMS is feasible; and this view is supported by experiences
in the US, Canada and New Zealand [9, 30, 32, 34].

A significant proportion of the Scottish demersal fishing fleet are equipped with REM
technology. A CCTV system developed by Archipelago Marine Research ! logs video from
four cameras continuously during fishing trips lasting about a week. Fishing nets are emp-
tied into a hopper and moved by conveyor to a sorting area. Non-viable fish (e.g. small
specimens, non-commercial species) and debris are left on the belt and returned via a dis-
card chute. A view of the belt near the discard area is critical to CQMS. A sample of video
frames is shown in Fig. 1, left column. The environment is challenging with long periods of
inactivity punctuated by high throughput. The fish are randomly oriented and often occluded
by other fish and debris. Fishermen are reluctant to adopt mechanical arrangements that dis-
tribute specimens more evenly as they fear this will affect throughput. Hands and arms of
crew members are evident in many frames.

A team of Marine Scotland compliance officers monitor the accuracy of documented
numbers, sizes and species of fish caught by sampling each vessel’s record [33]. Manually
reviewing the video footage to classify, count and measure the catch is a tedious and costly
task that represents a bottleneck in CQMS.

3 Background
The first attempts to automatically grade and sort fish were reported in the 1980s by Tayama

et al. [43], who used shape descriptors derived from binary silhouettes to discriminate be-
tween 9 fish species with 90% accuracy. Further work refined approaches for classification

'http://www.archipelago.ca
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of species using primarily shape and colour features [4, 24, 25, 40, 41, 44]. All these systems
require fish to be presented individually and engineer solutions that enforce this constraint.

Our approach is inspired by contemporary work using machine learning as recent re-
search has delivered impressive results on object recognition and localization, driven by the
availability of very large labelled data sets such as LabelMe [36] and ImageNet [13]. We
focus particularly on convolutional neural networks (CNNs), since these have produced state
of the art image classification results [23, 26, 28, 38, 45]. CNNs demonstrate a large learning
capacity and can easily be trained using currently available parallel GPU architectures and
open source tools [5, 6, 14].

A good overview of approaches for counting objects in images can be found in [29].
They tend to fall within four categories: counting by detection and localization; counting
by regression; counting by segmentation; and finally approaches that exploit density func-
tions. Many of these approaches are not currently suitable for our problem as they operate on
single images, with no current avenue for tracking the movement of individual objects in a
video. Segmentation methods are often broadly based on pixel classification, edge detection
or super-pixel based approaches. The former, (e.g. [10]) classify a pixel given its surround-
ing patch. The resulting pixel classes are used to divide the image into labelled regions.
Traditional CNN-based pixel classifiers extract one patch per pixel at training and prediction
time. This is computationally wasteful since the convolutional nature of the layers of a CNN
mean that many redundant computations will be performed. This is addressed in [22] where
complete images are processed in one go resulting in a significant speed-up. Edge detectors
generate an edge probability (and sometimes direction) map that can be used to divide the
image into regions. Superpixel algorithms such as SLIC [3] group pixels into small contin-
uous regions called superpixels, that can be merged into regions using algorithms such as
Normalized Cuts [37] or CNN based approaches [18]. Accurate full segmentation appears to
be the most promising avenue for addressing the project requirement of isolating individuals
for classification and measurement.

4 The Dataset

Our training and testing footage was captured at VGA resolution from an analogue camera
and recorded digitally. It consists of 52 videos from 12 different conveyor belts. Footage
from 6 belts was unusable due to permanent structures occluding large portions of the belt,
having insufficient field of view or having the camera lens frequently clouded by spatter.
A segmented dataset was required in order to train and evaluate the segmentation system.
It consists of still frames extracted from segments of video where the belt was moving in
order to avoid acquiring multiple frames with nearly identical content. Ground truth seg-
mentations were prepared manually using a browser-based image labelling tool hat allows
the user to annotate images with polygonal labels. Our tool can operate as both a plugin for
IPython Notebook [35] or within a website and is available as an open-source project [2].
The resulting dataset is described in Table 1.

Fixed camera positioning results in the belt occupying a constant region in the footage.
This region, along with an estimate of its physical size were used to derive a perspective
transformation that was used to transform these regions into rectilinear space with a constant
physical size to pixel ratio. The resulting images were used for training as described in
Section 5.
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Belt [ #frames | Resolution in rectilinear space | Total fish identified [ # empty frames
A 83 280x210 524 7

B 42 197x158 373 3

C 44 443x256 733 0

D 84 187x175 509 8

E 147 329x224 1010 54

F 43 273x186 462 3

Table 1: The Dataset

S Approach

Our segmentation pipeline consists of two steps: firstly, foreground segmentation is used
to separate salient regions of fish from background and non-salient objects (conveyor belt,
detritus, occlusions from people, etc.). Then continuous regions of foreground pixels, often
comprising several fish, are separated from one another so that they can be properly counted
and classified in later stages. The most promising approaches for foreground segmentation
were CNN-based approaches, in particular the N*-Fields [21] image transformation algo-
rithm. Rather than operating as a classifier or a regressor that directly generates a result for
each pixel in the output image, it uses the CNN to generate codeword vectors for the output
image at a reduced resolution (half resolution in [21]). These codewords are used to select
small output image patches from the training set that are averaged together to produce the
predicted output image. In [21] this approach is used for both edge detection with the Berke-
ley Segmentation Dataset [31] (we use its edge detection capabilities in the fish separation
phase described below) and pixel prediction with the DRIVE dataset [39].

The N*-Fields training procedure is as follows. (1) Extract overlapping patches from
the output images in the training set (segmentation masks for foreground segmentation). As
in [21] we use 16x16 patches, however we use a stride of 4. (2) Apply PCA to reduce the
dimensionality; as in [21] we retain 16 dimensions. These PCA codewords act as a proxy
for the output patch. (3) Train a CNN based regressor to map input patches — whose size
depends on the CNN architecture; 48x48 for our network — to the PCA codeword of the
output map that resides at the centre of the input patch. (4) Run the input patches from the
training set through the CNN to get its approximation of the PCA codewords and build a
dictionary that maps them to the corresponding output patches. The steps for transforming
an image are as follows. (1) Create an output image of the appropriate size initialised to
zero. (2) extract overlapping patches from the input image and apply the CNN to generate
a codeword vector for each input patch. (3) Use a nearest neighbours algorithm to select N
closest output patches from the dictionary generated in training step 4 (N = 25 for foreground
segmentation). (4) Cumulatively add the output patches to the output image and scale as
appropriate so that each output pixel is the mean of the corresponding pixels within the
output patches that cover it.

Our N*-Fields based foreground segmenter is trained to map input patches to foreground
masks. It generates a real valued output image that gives the probability that each pixel
is a foreground (fish) pixel. This probability map is smoothed with a Gaussian filter with
o = 4.5, after which the pixels whose values are > 0.5 are marked as foreground pixels. We
used N*-Fields in preference to a pixel classifier as it was slightly more accurate.

Once we have isolated foreground objects we use the N*-Fields algorithm again, this time
to predict edge maps. Asin [21], we use the alternative encoding that was inspired by [15], in
which the output vector whose dimensionality is reduced by PCA is a bit-vector of pairwise
pixel differences obtained from a label map rather than an edge map. For each predicted
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codeword feature vector, the 64 nearest neighbours are selected from the codeword-patch
dictionary and are blended with their contributions weighted by inverse distance.

Our separation segmentation process steps are: (1) predict an edge map using the above
and smooth it with a Gaussian filter with o = 2. (2) The foreground mask generated by the
foreground segmenter is split by discarding pixels whose edge strengths are above the edge
threshold with r = 0.045. The remaining foreground regions are assigned unique labels.
(3) The Watershed [7] algorithm is applied to the edge strength map to spread the region
labels to their boundaries. (4) Regions with area smaller than 100 pixels are discarded; those
remaining are the predicted individual fish.

We tested a variety of neural network architectures for both segmentation by pixel classi-
fier and N*-Fields. We found that deep architectures that use small convolution kernels tend
to perform better, as suggested in [38]. Our system was implemented using the Lasagne deep
neural network library [14] and Theano [5, 6], running on the Anaconda Python distribution

[1].

6 Evaluation

Figure 1: Segmentation results. Columns from left to right: original image, coloured predicted labels, predicted edge map, accuracy.
In the accuracy images, red: false negative in foreground segmentation; purple: false positive in foreground segmentation, green:
overlap between matching predicted and ground truth label pair, blue: no match between predicted and ground truth labels but
agreement in foreground segmentation. Rows are from belts E, F, and C, respectively. Row 1 shows a successfully segmented
frame. Rows 2-3 show more challenging frames in which the fish are mixed with guts, mostly obscuring the belt.

Our evaluation approach is the result of adapting the one used in the PASCAL VOC
challenge [17] so we evaluate the accuracy of the foreground segmenter with precision-recall
curves (Fig. 2). The images for each belt were treated as separate datasets and split into 5
folds for 5-fold cross validation. For each split, 4 folds were used as training data, while the
5th was split in half to be used as validation and test data. Example segmentation results can
be seen in Fig. 1. Table 2 shows values for accuracy and intersection-over-union (IU) [17].
An evaluation of the accuracy of individual fish prediction is presented in Table 3. It is worth
noting that the relative error was computed using the aggregate count in GT and prediction
for all the images from a belt; the relative error rates for individual images are higher.
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Precision-recall curves per belt (test) Precision-recall curves

Belts Accuracy (%) 1U (%)

Val. Test Val. Test
93.03 | 9198 | 6443 | 60.44
88.85 | 85.67 | 6534 | 63.84
86.32 | 86.19 | 62.56 | 68.20
91.52 | 92.3 62.70 | 65.69
97.02 | 97.70 | 74.52 | 67.33
88.89 | 88.49 | 6553 | 67.56
vg 90.94 | 90.39 | 65.85 | 65.51

Belt A
BeltB
Belt C
BeltD
20 — BeltE
Belt F

Recall (%)
Recall (%)

Validation
20 —  Test

20 a0 60 80 100 20 a0 60 80 100
Precision (%) Precision (%)

() (b)

== = 2| O =] >

Figure 2: Foreground segmentation precision-recall curves; (a)  Table 2: Foregound segmentation accuracy and IU.
individual belts; (b) all belts

Belt | # fish # fish rel err (%) Label IU (%) Area IU (%)
Val Test Val Test Val Test Val Test

A 292 232 19.18 | 3.02 49.53 | 50.67 | 63.26 | 59.08
B 178 195 7.87 3.59 5026 | 45.73 | 50.93 | 50.95
C 340 393 5.29 11.20 45.52 | 4531 50.49 | 53.56
D 243 266 12.35 15.79 54.17 | 57.26 | 56.99 | 62.52
E 544 466 0.0 6.65 76.63 | 81.52 | 80.18 | 83.54
F 222 240 2.25 2.5 50.70 | 45.47 | 58.76 | 47.87
Avg | 303.17 | 298.67 | 7.82 7.13 54.47 | 5433 | 60.10 | 59.59

Table 3: Fish separation results. The first pair of columns (# fish) gives the GT value for the number of fish in the dataset. The # fish
rel err column gives the relative error in the predicted number of fish across all images from the given belt; this was the discrepancy
between the GT and predicted counts (number of fish found by segmentation) divided by the GT count. The final two pairs of
columns evaluate the accuracy of the segmentation by correspondence between predicted and GT fish labels. This is performed by
matching predicted and GT fish that overlap in a greedy pairwise fashion according to their area of overlap; the fish with the greatest
overlap area are matched, then the remaining fish are matched in the same way until no more matches can be made. The results in

the Label IU column pair show the ITU measure; in this case % where M is the set of matched fish labels, P is the set of

predicted fish and G is the set of GT fish. The values for Area IU are calculated as Wipt
[Pp[+]Gp[—Mp]

matched fish labels intersect and G, and P, are the set of GT and predicted pixels respectively.

where M, is the set of pixels where

7 Conclusions

We have presented results obtained from a computer vision system for automatically quan-
tifying fish in fisheries CCTV video. As far as we are aware, this is the first such system
that attempts to operate on footage obtained in an unstructured operating environment; prior
systems have required the installation of bespoke equipment to constrain the video acqui-
sition thereby simplifying processing. The aggregate fish counts obtained were sufficiently
accurate to meet the project requirements for 3 out of 6 belts; belts A, C and D which yielded
high count errors presented particularly challenging conditions. The use of aggregation con-
tributed to the good accuracy figures since errors in individual frames cancel one another
out.
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