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Potential impacts of industrial structure on energy consumption and 

CO2 emission: A case study of Beijing 

 

Abstract：An optimization model is developed based on the Input-Output model to assess the 

potential impacts of industrial structure on the energy consumption and CO2 emission. The 

method is applied to a case study of industrial structure adjustment in Beijing, China. Results 

demonstrate that industrial structure adjustment has great potential of energy conservation and 

carbon reduction. When the average annual growth rate of GDP is 8.29% from 2010 to 2020, 

industrial structure adjustment can save energy by 39.42% (50.06 million tons of standard coal 

equivalent), and reduce CO2 emission by 46.06% (96.31 million tons) in Beijing in 2020. Second, 

Beijing had better strive to develop several low energy intensive and low carbon intensive sectors, 

such as information transmission, computer service and software, and finance. Third, energy 

intensity is possible to decrease without negatively affecting economic growth by reasonable 

industrial structure adjustment. Four, compared to “intensity targets”, “total amount targets” are 

more effective on the energy conservation and carbon reduction, but have much greater negative 

effects on economic growth. Therefore, it needs to be balanced between “total amount targets” and 

“intensity targets”. 

Keywords: industrial structure, energy consumption, CO2 emission, input-output, 

optimization model 

1. Introduction 

With the rapid development of the world economy, energy supply and environmental 

problems become increasingly severe (Cong, 2013; IPCC, 2013; Nanduri and Saavedra-Antolínez, 

2013; Quadrelli and Peterson, 2007). In the past several decades, China economy enjoyed a rapid 

development. The average growth rate of China’s gross domestic product (GDP) was over 10% 

from 1990 to 2011 (NBS, 2012).  However, energy shortage and climate change issues have 

greatly influenced China’s economy(Wei et al., 2013a, b). In order to reduce energy consumption 

and mitigate climate change, Chinese government has set the target to cut energy consumption per 

unit of GDP by 16% and cut carbon dioxide (CO2) emission per unit of GDP by 17% during the 

period of 2011 to 2015 (State Council, 2011b). 

Industrial structure is one of main factors which determine the energy consumption and CO2 

emission (Adom et al., 2012; Wei et al., 2009). Uchiyama (2002) investigated the past and future 

trends of energy demand and supply in Japan. The results showed that recent growth of the energy 

demand in Japan was getting stable because of industrial structure from materials and heavy 



industries to service industries. Liou (2010) revealed that Taiwan’s industrial structure which had a 

great bias towards manufacture industry was one of the main reasons for the relatively high energy 

consumption and greenhouse gas emission. He considered that Taiwan’s industrial structure 

should be adjusted urgently. Moreover, researchers usually take industrial structural effect into 

consideration, when identifying the factors which influence the level of energy consumption and 

CO2 emission (Kim and Worrell, 2002; Liaskas et al., 2000).  

In fact, industrial structure in China needs to be improved in order to save energy and reduce 

CO2 emission (Jin, 2012; Zhao and Niu, 2013). Compared to the developed countries whose 

tertiary industries are highly developed, China’s economy is more dependent on secondary 

industries which are energy intensive and carbon intensive. In 2010, the proportion of tertiary 

industry in China was 43.19% which was less than that of most developed countries (Fig. 1). Liao et al. 

(2007) decomposed China’s energy intensity changes between 1997 and 2002 into sectoral 

structural effects and efficiency effects. The results showed that in this period, efficiency effects 

possibly contributed to a majority of the decline of energy intensity, while the contribution from 

structural effects was less. In future, structural effects in energy conservation should be enhanced. 

 

Fig. 1. The proportions of tertiary industry in different countries in 2010. 

(Data sources: World bank database) 

Industrial structure adjustment is an optimization problem where the proportions of various 

types of industry are adjusted to satisfy one or more goals. Over the past decades, many 

optimization methods were used to adjust industrial structure. Bisdorff and Laurent (1995) utilized 

constraint logic programming (CLP) method to solve the constrained decision problems in the 

industrial production scheduling. This model aimed to solve a mixed linear multicriteria selection 

problem and a linear integer multicriteria location problem. Wei et al. (2004) developed a 

nonlinear goal programming model to research the coordinated development of population, 



resources, environment, and economy. Kravanja and Zula (2010) applied the mixed-integer 

non-linear programming (MINLP) approach to present the simultaneous cost, topology and 

standard cross-section optimization of single-storey industrial steel building structures. Zhou 

(2012) developed an inexact fuzzy multi-objective programming model (IFMOP) for dealing with 

industrial structure optimization problems under uncertainty, and used this model to optimize the 

industrial structure of South Four Lake watershed in Shandong province, China. Cong and Shen 

(2014) developed a renewable power optimization model (RPOM) to assess the optimal 

development paths of renewable in a cost-effective way. The results showed that the rise of 

on-grid ratio of renewable power will first promoted the development of wind power and then 

solar power and biomass power. 

In this study, an optimization model is developed based on the Input-Output model to assess 

the potential impacts of industrial structure on the energy consumption and CO2 emission. The 

method is applied to a case study of industrial structure adjustment in Beijing, China. The rest of 

the paper is organized as follows. Section 2 introduces the methodology. Section 3 shows the 

investigation and data. Section 4 presents the results, while Section 5 provides some concluding 

remarks. 

2. Methodology 

2.1 Research framework 

An optimization model is developed based on the Input-Output model in this paper. The 

adjusted industrial structures of Beijing in 2020 are obtained by the model. The initial industrial 

structure in 2010 is chosen as baseline as usual (BAU). The potential impacts of industrial 

structure are assessed by the comparisons between the adjusted structures and initial structure. Fig. 

2 demonstrates the research framework. 

 

Fig. 2. The research framework. 

2.2 Objectives of the optimization model 

The objectives are of great importance in optimization models. As for industrial structure 

planning, multiple objectives need to be taken into consideration including economic objectives, 

energy objectives, and carbon emission objectives. In this model, maximization of GDP is chosen 

as economic objective, minimization of energy intensity (energy consumption per unit GDP) and 



minimization of energy consumption are chosen as energy objectives, and minimization of carbon 

intensity (CO2 emission per unit GDP) and minimization of CO2 emission are chosen as carbon 

emission objectives. 

Objective 1: Maximization of GDP 
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Objective 2: Minimization of energy intensity 
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Objective 3: Minimization of energy consumption 
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Objective 4: Minimization of carbon intensity 
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Objective 5: Minimization of CO2 emission 
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where G is the GDP in the target year; vi is the added value of sector i in the target year; n is the 

number of sectors; E is the total energy consumption in the target year; bi is the sectoral energy 

intensity (energy consumption per unit added value) of sector i; C is the total CO2 emission in the 

target year; and di is the sectoral carbon intensity (CO2 emission per unit added value) of sector i.  

2.3 Constraints of the optimization model 

2.3.1 Constraints of basic linear equations of Input-Output model 

The Input-Output (I-O) model is an analytical framework developed by Wassily Leontief in 

the late 1930s (Leontief, 1936). The main purpose of the I-O model is to establish a tessellated I-O 

table and a system of linear equations. An I-O table shows monetary interactions or exchanges 

between the economic sectors and therefore their interdependence. The rows of an I-O table 

describe the distribution of a sector’s output throughout the economy, while the columns describe 

the inputs required by a particular sector to produce its output (Miller and Blair, 1985). The basic 

linear equations of this system are 
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where (suppose there are n sectors in the economy) X is the total output vector in the target year 

with n dimensions whose element xj is the output of sector j; Y is the final demand vector in the 



target year with n dimensions whose element yj is the final demand of sector j (final demand 

consists of consumption, capital formation, and net export); V is the added value vector in the 

target year with n dimensions whose element vj is the added value of sector j; I is the nn 

dimension identity matrix; A is the direct requirement matrix with nn dimensions whose element 

aij denotes the direct requirement of sector i for per unit output of sector j; aij is obtained through 
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where xij is the monetary value from sector i to sector j; and Ac is obtained through 
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2.3.2 Economic development constraints 

Energy saving and emission reduction both possibly have negative impacts on economic 

development. In order to guarantee stable social and economic development, it is constrained that 

the average annual growth rate of GDP is greater than . 
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where G is the GDP in the target year; G0 is the GDP in the basic year; t is the number of years 

between the base year and the target year;  is an exogenous parameter.  

2.3.3 Energy consumption constraints 

The development of economy is supported by energy resources, especially fossil energy. For 

most areas, however, energy supply is limited. In order to control the energy consumption, it is 

constrained that the average annual growth rate of total energy consumption is less than 1, and 

the energy intensity is reduced by over 2 from the basic year to the target year. 
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where E is the total energy consumption in the target year; E0 is the total energy consumption in 

the basic year; bi is the sectoral energy intensity of sector i; 1 and 2 are exogenous parameters.  

2.3.4 CO2 emission constraints 



CO2 emission from energy consumption is one of the main reasons for global warming. Most 

countries have taken measures to reduce CO2 emission or control the growth rate of CO2 emission. 

For instance, Chinese government has set the target to cut CO2 emission per unit of GDP by 17% 

in the period of 2011 to 2015. Therefore, it is constrained that the average annual growth rate of 

total CO2 emission is less than 1, and the carbon intensity is reduced by over 2 from the basic 

year to the target year. 
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where C is the total CO2 emission in the target year; C0 is the total CO2 emission in the basic year; 

di is the sectoral carbon intensity of sector i; 1 and 2 are exogenous parameters.  

2.3.5 Employment constraints 

Employment is one of the most important issues in macroeconomic planning. Beijing has set 

the target that the urban unemployment rate is less than 3.5% in 2015. In order to control the 

unemployment rate, it is constrained that the average annual growth rate of employment 

opportunities is more than  from the basic year to the target year. 
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where P is the total employment opportunities in the target year; P0 is the total employment 

opportunities in the basic year; qi is the employment opportunities per unit added value for sector i; 

 is an exogenous parameter. 

2.3.6 Industry diversity constraints 

In an area, we cannot only develop a/few economic sector(s). Diverse industries should be 

developed so as to satisfy local social request. In addition, the industrial structure cannot be 

adjusted freely within a period of time. Therefore, the lower limit and upper limit of the 

proportions of sectoral added value are constrained in the model.  
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where vi is the added value in the target year of sector i; v0i is the added value in the basic year of 

sector i; i and i are exogenous parameters.  

2.3.7 Consumption and investment constraints 



Final demand consists of consumption, capital formation, and net export,  

    ( 1,2,..., )i i i iy r f h i n                                                (22) 

where yi, ri, fi, and hi are the final demand, consumption, capital formation, and net export in the 

target year of sector i, respectively. 

For every sector, the proportions of consumption, capital formation, and net export are 

assumed to be constant.  
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where y0i, r0i, f0i, and h0i are the final demand, consumption, capital formation, and net export in 

the basic year of sector i, respectively. 

Eq. (26) and (27) gives the lower limit and upper limit of consumption rate. In order to 

satisfy the household and government consumption request, the adjusted industrial structure 

should provide basic consumption. Therefore, it is constrained that the ratio of consumption of 

sector i between the target year and the basic year is greater than i. 
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where 1, 2, and i are exogenous parameters.  

2.3.8 Nonnegative constraints 

In the economy, the total output and added value should be positive.  
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3. Case study 

3.1 The study area 

Beijing, the capital of China, is the political and cultural center (Fig. 3)Beijing has adjusted 

its industrial structure greatly in the past several decades. In 1978, Beijing depended on the 

secondary industry which occupied 71.1% of GDP. Then, Beijing made great efforts to develop 

the tertiary industry. As a result, Beijing’s tertiary industry accounted for 76.1% of GDP in 2011, 

which was much greater than the proportion of secondary industry (23.1%). 



In recent years, Beijing's economy developed rapidly, and the average annual growth rate of 

GDP is 16.04% in the period of 2000 to 2011.Accordingly, Beijing's energy consumption 

increased at a rate of 4.88% during this period. In 2011, the total energy consumption of Beijing 

has reached to 69.95 million tons of standard coal equivalent (Mtce). In order to reduce energy 

consumption and mitigate climate change, Beijing government has set the target to cut energy 

consumption per unit of GDP by 17% during the period of 2011 to 2015 (State Council, 2011a).  

 

Fig. 3. Location of Beijing.  

(Note: It is a schematic map and does NOT implicate the definite boundaries.) 

3.2 Data sources 

In this case, we use the data of Beijing in 2010 to assess the potential impacts of industrial 

structure on energy consumption and CO2 emission in 2020. The data of I-O table are derived 

from Beijing Input-Output Table 2010 (Beijing Municipal Bureau of Statistics, 2011a), and other 

data are derived from Beijing Statistical Yearbook 2011 (Beijing Municipal Bureau of Statistics, 

2011b). The economic activity of Beijing is divided into 42 sectors in the Input-Output table. The 

codes and names of sectors are listed in Table 1. 

Table 1 Sector full names and their codes 

Code Full name of sector Code Full name of sector 

S1 Farming, Forestry, Animal Husbandry and Fishery S22 Scrap and Waste 

S2 Mining and Washing of Coal S23 
Production and Supply of Electric 

Power and Heat Power 

S3 Extraction of Petroleum and Natural Gas S24 Production and Distribution of Gas 

S4 Mining of Metal Ores S25 Production and Distribution of Water 

S5 Mining and Processing of Nonmetal Ores S26 Construction 

S6 Manufacture of Foods and Tobacco S27 Transportation and Storage 

S7 Manufacture of Textile S28 Posts and Telecommunications 



S8 
Manufacture of Textile Wearing Apparel, Footwear, 

Caps, Leather, Fur, Feather (Down) and Its products 
S29 

Information Transmission, Computer 

Service and Software 

S9 Processing of Timbers and Manufacture of Furniture S30 Wholesale Trade and Retail Trade 

S10 
Papermaking, Printing and Manufacture of Articles for 

Culture, Education and Sports Activities 
S31 Hotel and Restaurants 

S11 
Processing of Petroleum, Coking, Processing of 

Nuclear Fuel  
S32 Finance 

S12 Chemical Industry S33 Real Estate Trade 

S13 Manufacture of Nonmetallic Mineral Products S34 Tenancy and Commercial Service 

S14 Smelting and Rolling of Metals S35 Research and Development Service 

S15 Manufacture of Metal Products S36 Compositive Technical Service 

S16 
Manufacture of General Purpose and Special Purpose 

Machinery  
S37 

Water, Environment and Municipal 

Engineering Conservancy 

S17 Manufacture of Transport Equipment S38 Resident Services and Other Services 

S18 Manufacture of Electrical Machinery and Equipment  S39 Education 

S19 
Manufacture of Communication Equipment, Computer 

and Other Electronic Equipment 
S40 

Health Care, Social Security and 

Social Welfare 

S20 
Manufacture of Measuring Instrument and Machinery 

for Cultural Activity and Office Work 
S41 Culture, Art, Sports and Recreation 

S21 Manufacture of Artwork, Other Manufacture S42 
Public Manage and Social 

Organization 

3.3 Exogenous parameters in the model 

When setting the exogenous parameters, we reference government plans including  

comprehensive work plan for energy conservation and emission reduction during the Twelfth 

Five-Year Plan period (State Council, 2011a) and the Twelfth Five-Year Plan for the national 

economic and social development of Beijing (Beijing Municipal Commission of Developement 

and Reform, 2011). Table 2 shows the settings of all exogenous parameters in the model. 

Table 2 The settings of exogenous parameters in the model 

Parameter Meaning of parameter Setting Assumption and explanation 

 The lower limit of the 

average annual growth rate of 

GDP 

0.07 The average annual growth rate of GDP is over 

8% from 2011 to 2015 (government plans).  

The average annual growth rate of GDP is over 

6% from 2016 to 2020 (growth rate slows 

down). 



1 The upper limit of the 

average annual growth rate of 

total energy consumption 

0.03 The average annual growth rate of total energy 

consumption is less than 3% (according to 

historical data, the average annual growth rate 

was 3.8% from 2006 to 2010). 

2 The energy intensity 

reduction target 

0.29 The energy intensity is reduced by over 17% 

from 2011 to 2015 (government plans). 

The energy intensity is reduced by over 15% 

from 2016 to 2020 (government plans). 

1 The upper limit of the 

average annual growth rate of 

CO2 emission 

0.025 According to the upper limit of the average 

annual growth rate of total energy consumption 

(1). 

2 The carbon intensity 

reduction target 

0.35 According to the energy intensity reduction 

target (2). 

 The lower limit of the 

average annual growth rate of 

employment opportunities 

0.06 The average annual growth rate of employment 

opportunities is larger than 6% (according to 

historical data, the average annual growth rate 

was 5.7% from 2001 to 2010). 

i The lower limit of the 

adjustment of the proportion 

of sector i’s added value 

-0.5 From 2001 to 2010, most of the change rates of 

sector’s proportions were greater than -50%. 

i The upper limit of the 

adjustment of the proportion 

of sector i’s added value 

1.5 From 2001 to 2010, most of the change rates 

of sector’s proportions were less than 150%. 

1 The lower limit of the 

consumption rate 

0.6 In 2015, the consumption rate is greater than 

60% (government plans). 

2 The upper limit of 

consumption rate 

0.85 In 2011, the consumption rate was 83.4%. 

i The lower limit of the ratio of 

consumption of sector i 

between the target year and 

the basic year 

1 For every sector, the consumption in 2020 is 

greater than that in 2010. 

4. Result analysis and discussions 

Based on the optimization model, the adjusted structures of Beijing with the five objectives 

in 2020 are obtained. In addition, the initial industrial structure in 2010 is chosen as baseline as 



usual (BAU). In BAU scenario, it is supposed that the GDP is the same as Objective 1 

(maximization of GDP). Fig. 4 shows the results of adjusted structures and initial structure in 2020 

in Beijing. 

 

Fig. 4. Comparisons of adjusted structures and initial structure in 2020 in Beijing. 

(Note: GDP, Energy consumption, and CO2 emission are measured by left coordinate axis. Energy 

intensity and carbon intensity are measured by right coordinate axis.) 

4.1 Industrial structure adjustment saves energy and reduce CO2 emission remarkably 

The energy intensity and carbon intensity in Beijing both decline considerably through 

industrial structure adjustment. Compared to initial industrial structure (BAU), the energy 

intensity and carbon intensity of adjusted structures (Objective 1-5) are much smaller. In objective 

1, the GDP of Beijing rises from 1,411 billion RMB in 2010 to 3,131 billion RMB in 2020 with an 

average annual growth rate of 8.29%. The energy consumption and CO2 emission are 112.79 Mtce 

and 76.93 Mt, respectively. With initial industrial structure, however, Beijing will consume 209.11 

Mtce and produce 126.99 Mt CO2 emission to get the same GDP (3,131 billion RMB). Therefore, 

industrial structure adjustment can save energy by 39.42% (50.06 Mtce), and reduce CO2 emission 

by 46.06% (96.31 Mt). 

4.2 Sectors which are low energy intensive and low carbon intensive develop fast 

Fig. 5 shows the sectoral added value in 2010 and 2020, sectoral energy intensity, and 

sectoral carbon intensity in Beijing. It can be seen that added value of all sectors increases. On the 

one hand, sectors which are low energy intensive and low carbon intensive develop fast. S32 

(Finance) is the fastest developing sector with an average annual growth rate of 18.69%. The 

added value of S32 is 1,033 billion RMB which accounts for 33.01% of GDP in 2020. In fact, the 

S32’s energy intensity (0.0023 Mtce/Billion RMB) and carbon intensity (0.0007 Mt/Billion RMB) 



are much lower compared to other sectors in Beijing. S29 (Information Transmission, Computer 

Service and Software) and S20 (Manufacture of Measuring Instrument and Machinery for Cultural 

Activity and Office Work) also develop fast with average annual growth rates of 16.23% and 

15.39%, respectively. On the other hand, sectors which are high energy intensive and high carbon 

intensive develop slow. S22 (Scrap and Waste) is the slowest developing sector with an average 

annual growth rate of 1.04%. The added value of S22 occupies 0.0067% of GDP which is the 

smallest proportion. In fact, S22’s energy intensity (0.1971 Mtce/Billion RMB) and carbon 

intensity (0.2049 Mtce/Billion RMB) are much higher than those of other sectors in Beijing. S7 

(Manufacture of Textile) and S24 (Production and Distribution of Gas) also develop slow. 

 

Fig. 5. Added value in 2010 and 2020, energy intensity, and carbon intensity. 

The proportion of tertiary industry increases, while the proportion of secondary industry 

decreases. To be specific, proportion of tertiary industry goes up from 75.11% in 2010 to 85.90% 

in 2020 with a growth rate of 14.37% (Fig. 6). On the contrary, the proportion of secondary 

industry declines from 24.01% to 13.53% during the same period. This change is beneficial for 

energy conservation and emission reduction, because the average energy intensity and carbon 

intensity of tertiary industry are both less than those of secondary industry in Beijing. 

 



 

Fig. 6. The proportions of primary industry, secondary industry, and tertiary industry. 

4.3 Energy intensity is possible to decrease without negatively affecting economic growth 

According to Fig. 4, the results of objective 1 (maximization of GDP) and objective 2 

(minimization of energy intensity) are the same. In other words, energy intensity reaches the 

minimum when GDP reaches the maximum. On the one hand, energy intensity is possible to 

decrease without negatively affecting economic growth by reasonable industrial structure 

adjustment. On the other hand, the rapid growth of economy may be beneficial to reduce energy 

intensity. From 2010 to 2020, energy intensity declines by 37.87% when the average annual 

growth rate of GDP is 7% (objective 5), energy intensity declines by 39.10% when the average 

annual growth rate of GDP is 8.22% (objective 4), and energy intensity declines by 39.35% when 

the average annual growth rate of GDP is 8.29% (objective 1). 

4.4 Total amount targets are more effective on the energy conservation and carbon reduction 

than intensity targets 

There are two kinds of targets for energy conservation and carbon reduction including total 

amount targets and intensity targets. Total amount targets mean to control energy consumption and 

CO2 emission, while intensity targets mean to control energy intensity and carbon intensity. In the 

model, objective 3 (minimization of energy consumption) and objective 5 (minimization of CO2 

emission) are total amount targets, while objective 2 (minimization of energy intensity) and 

objective 4 (minimization of carbon intensity) are intensity targets.  

Total amount targets are more effective on the energy conservation and carbon reduction than 

intensity targets. First, energy consumption of intensity target (objective 2) increases by 34.29%, 

while energy consumption of total amount target (objective 3) only increases by 21.38%. Second, 

CO2 emission of intensity target (objective 4) increases by 18.58%, while CO2 emission of total 



amount target (objective 5) only increases by 7.30%.  

However, total amount targets have greater negative effects on economic growth than 

intensity targets. Beijing’s GDP of total amount targets (objective 3 and objective 5) is 2,776 

billion RMB in 2020, while GDP of intensity targets (objective 2 and objective 4) is 3,130 and 

3,109 billion RMB, respectively. In addition, carbon emission trading (CET) market is an effective 

way to realize total amount targets. It works by first giving participants a limit on emission 

permits, and then allowing them to buy or sell permits in the market (Pizer, 2002). The CET 

market increases enterprise’s production cost. For instance, if China implements CET to 

reduce CO2 emissions, the average electricity price may be increased by 12% (Cong and Wei, 

2010). 

5. Conclusions 

An optimization model is developed based on the Input-Output model to assess the potential 

impacts of industrial structure on the energy consumption and CO2 emission. The method is 

applied to a case study of industrial structure adjustment in Beijing, China. According to the 

results, several conclusions can be gained. 

(1) Industrial structure adjustment has great potential of energy conservation and carbon 

reduction. When the average annual growth rate of GDP is 8.29% from 2010 to 2020, industrial 

structure adjustment can save energy by 39.42% (50.06 Mtce), and reduce CO2 emission by 

46.06% (96.31 Mt) in Beijing in 2020. As a result, the energy intensity and carbon intensity 

decline considerably through industrial structure adjustment. 

(2) Raising the proportion of sectors which are low energy intensive and low carbon intensive 

is an effective method to save energy and reduce carbon emission. To be specific, Beijing had 

better strive to develop several low energy intensive and low carbon intensive sectors including 

S32 (Finance), S29 (Information Transmission, Computer Service and Software), and S20 

(Manufacture of Measuring Instrument and Machinery for Cultural Activity and Office Work). On 

the contrary, the development of several high energy intensive and high carbon intensive sectors 

had better be strictly controlled including S22 (Scrap and Waste), S7 (Manufacture of Textile) and 

S24 (Production and Distribution of Gas).  

(3) Energy intensity is possible to decrease without negatively affecting economic growth by 

reasonable industrial structure adjustment. Moreover, the rapid growth of economy may be 

beneficial to reduce energy intensity.  

(4) Compared to intensity targets, total amount targets are more effective on the energy 

conservation and carbon reduction, but have much greater negative effects on economic growth. 

Therefore, it needs to be balanced between total amount targets and intensity targets.  
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