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Abstract
RNA virus populations will undergo processes of mutation and selection resulting in a

mixed population of viral particles. High throughput sequencing of a viral population subse-

quently contains a mixed signal of the underlying clones. We would like to identify the under-

lying evolutionary structures. We utilize two sources of information to attempt this; within

segment linkage information, and mutation prevalence. We demonstrate that clone haplo-

types, their prevalence, and maximum parsimony reticulate evolutionary structures can be

identified, although the solutions may not be unique, even for complete sets of information.

This is applied to a chain of influenza infection, where we infer evolutionary structures,

including reassortment, and demonstrate some of the difficulties of interpretation that arise

from deep sequencing due to artifacts such as template switching during PCR amplification.

Author Summary

Any functional influenza virus particle is made up of eight distinct RNA segments. There
can be in the order of 106 such particles per mL of infected tissue. Furthermore, on aver-
age, each new virus particle has a single mutation distinguishing the virus from its parent
particle. The population of viruses thus contains a diverse mix of mutations. Modern
sequencing experiments produce a signal that represents this mixed population. Untan-
gling this signal to describe the evolutionary processes at work is an important part of
virus biology. Furthermore, if an individual is infected with two different strains that both
infect a single cell, new particles can form that contain a mixture of the two parents seg-
ments. This is known as reassortment and can result in the emergence of new virus strains.
These events are hard to identify from sequencing experiments. Here we introduce a statis-
tical method that can infer the evolutionary structure from a time series of sequencing
experiments, which can also detect reassortment events, thus providing a method to help
improve the understanding of within host evolution of viruses.
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Introduction
RNA viruses have evolutionary dynamics characterized by high turnover rates, large popula-
tion sizes and very high mutation rates [1, 2], resulting in a genetically diverse mixed viral pop-
ulation [1, 3–5]. Subpopulations in these mixtures containing specific sets of mutations are
referred to as clones and their corresponding mutation sets as haplotypes. Unveiling the diver-
sity, evolution and clonal composition of a viral population will be key to understanding factors
such as infectiousness, virulence and drug resistance [6].

High throughput sequencing technologies have resulted in the generation of rapid, cost-
effective, large sequencing datasets [7]. When applied to viruses, the set of reads obtained from
a deep sequencing experiment represents a sample of the viral population which can be used to
infer the underlying structure of that population at an unprecedented level of detail [1].

In this study, we aim to identify the haplotypes of clones and quantify their prevalence
within a viral population. The method also constructs evolutionary histories of the process con-
sistent with the data. Reconstructing the structure of a mixed viral population from sequencing
data is a challenging problem [8]. Only a few works address the issue of viral mixed population
haplotype reconstruction which infer both the genomes of sub-populations and their preva-
lence. Reviews of the methods and approaches dealing with these issues can be found in [1, 9–
11] and [12].

These works frequently make use of read graphs, which consist of a graph representation of
pairs of mutations linked into haplotypes [13]. Haplotypes then correspond to paths through
these graphs, although not every path will necessarily be realized as a genuine haplotype, which
can lead to over-calling haplotypes. Different formalizations of this problem has led to different
optimization problems in the literature [11], including minimum-cost flows [14], minimum
sets of paths [13, 15], probabilistic and statistical methods [8], network flow problems [3, 16],
minimum path cover problems [17], maximizing bandwidth [18], graph coloring problems
[19] or K-mean clustering approaches [13]. After the haplotypes are constructed, in many
cases an expectation-maximisation (EM) algorithm is used to estimate their prevalence in the
sampled population. Some other works [6, 20] use a probabilistic approach instead of a graph-
based method.

In this work we take an integrative approach to address both the genetic diversity and the
evolutionary trajectory of the viral population. The method presented is not read graph based
and constructs evolutionary trees and recombination networks weighted by clone prevalences.
This reduces the size of the solution set of haplotypes. The method does not rely exclusively on
reads physically linking mutations so is applicable to longer segments. The method will also be
shown to have particular utility with time series data and is highlighted on a chain of infections
by influenza (H3N8).

The question of the influenza genome diversity has been addressed in the literature largely
between strains or samples from different hosts, considering one single dominant genome for
each host [21]. Within-host evolution is a source of genetic diversity the understanding of
which may lead to the development of models that link different evolutionary scales [10]. Kur-
oda et al. [22] addressed the question of evolution within a single host of influenza extracted on
a patient who died of an A/H1N1/2009 infection, but with a focus on HA segment using a de-
novo approach. Our approach provides a method to further understand within host evolution
of such viruses.
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The next section highlights the approach with an overview of the methods used, examples
of the tree and network construction methods with simulated data, followed by an application
of the method to a daily sequence of real influenza data. The Methods section describes the
construction of the trees and networks in more detail.

Results

Overview
Here we provide a brief outline of our general approach, which is explained in more detail in
subsequent sections. The aim of our approach was twofold. Firstly, identify mutations arising
in an infection chain of viral hosts. Secondly, provide a phylogenetic tree or recombination net-
work that best explains the evolution structure of the most prevalent mutations. A flow chart of
the process is provided in Fig 1.

Fig 1. A flow chart describing the tree and network construction process.

doi:10.1371/journal.pcbi.1004344.g001
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The first step was to sequence a time series of virus samples. Next, we took the initial sample
in the time series (such as an inoculum, for example) and obtained the nucleotide with highest
prevalence at each position. This defined a reference (concensus) sequence, which was then
compared to the remaining samples enabling the identification of de novo mutations. The pro-
portion of reads containing each mutation then represented its prevalence in the viral popula-
tion (paired reads with identical start positions, end positions and sequences were counted
once in this process, being assumed to derive from a single PCR product). Mutations with a
prevalence above a (user defined) threshold (10%) on at least one sample were included for fur-
ther analysis. Next we attempted to construct an evolutionary tree consistent with the preva-
lence information and paired end linkage information across all samples. If no consistent tree
could be identified, we attempted to construct a recombination network with one reticulation
event. If this failed we iteratively increase the number of reticulation events permissable to find
a recombination network consistent with the data. Any solutions obtained were outputted in
either the Newick format (for trees) or the extended Newick format (for networks).

Our method used two main sources of information. Firstly, a pigeon hole principle was uti-
lized, restricting how different sub-populations of viruses, each containing a certain combina-
tion of mutations, can fit within a tree or network structure. Secondly, linkage information was
harnessed, describing how pairs of mutations co-exist in sub-populations. This information is
obtained from single paired-end reads (likely to derive from a single viral particle) that con-
tained two (or more) mutations.

The pigeon hole principle worked best with a set of mutation prevalences that vary signifi-
cantly across the samples collected. More specifically, a subset of mutations undergoing either
rapid selection or drift were found to provide the most informative datasets (RNA viruses
undergoing drug treatments, or the bottleneck arising when a small number of viral particles
infects an animal are examples of where this might happen). Mutations that have consistently
low or high prevalence contain information that is harder to leverage, and the underlying evo-
lutionary structures are harder to infer. Such mutations were not included in the analysis.
Slowly mutating viruses (DNA viruses for example) are also less likely to be sufficient muta-
genic for our approach.

The linkage information worked best when recombination events were relatively rare.
Viruses with high rates of recombination (such as HIV) will rapidly lose linkage information
making the evolutionary structure harder to identify.

We next outline the tree and network construction methods in more detail.

An Evolutionary Tree
Consider the pedagogic simulation in Fig 2, where we have a region of interest (such as an influ-
enza segment, for example) that has undergone mutational and selective processes encapsulated
by the evolution tree in Fig 2A. This tree contains five mutationsM1,M2,M3,M4,M5 that lie on
various branches of the tree. These combine into the six clones that are the leaves of the tree. For
example, the second leaf is labeled C11000, indicating a clone with haplotype consisting of muta-
tionsM1,M2 but notM3,M4,M5. Note that the path from the root of the tree to this leaf crosses
the two branches corresponding to mutationsM1 andM2. The number 20 at the leaf indicates
that this clone makes up 20% of the viral population, and is termed the prevalence.

Note that these prevalences form a conserved flow network through the tree [23]. For exam-
ple, the prevalence of mutationM1 is 55%, which accounts for the two haplotypes C11001 and
C11000, with prevalences 35% and 20%, respectively. In general, we find that the prevalence flow-
ing into a node of the tree must equal the sum of the exiting prevalences. This represents conser-
vation of the viral sub-populations. The total prevalence across all the leaves is therefore 100%.
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Fig 2. A super-tree sample. (A) A contrived evolution of a mixed viral population involving five mutations and six clones. Dotted lines indicate internal nodes
extended to a leaf. (B) A notional representation of sequencing across the region of interest, and the resulting Depth-Position graph. Paired reads bridge two
clusters of mutations. (C) Read count data obtained for the two clusters, with total depth x1000, along with artifacts †. (D) Evolutionary trees corresponding to
(Ci,ii). (E) Ordered list of mutations and population prevalences (%). (F) Reconstruction of original tree in (A).

doi:10.1371/journal.pcbi.1004344.g002
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In reality we are not privy to this information and perform a sequencing experiment to
investigate the structure. This takes the form of molecular sequencing, where we detect the five
mutations, which each have a different depth of sequencing, as portrayed in Fig 2B. We will
later see with real influenza data that percentage depth can be reasonably interpreted as preva-
lence. Furthermore, we can group mutations arising on individual sequencing reads into clus-
ters. For our example, mutationsM1,M2 andM3 are positioned such that there are paired end
reads (exemplified in Fig 2Bi) whereM1 andM2 will lie on the sequence at one end, andM3 in
the sequence at the other end of the read. MutationsM1,M2 andM3 thus form one cluster.
Similarly, mutationsM4 andM5 can be found at the two ends of paired reads and form a dis-
tinct cluster. We then find the mutations are grouped into two clusters, giving the two corre-
sponding haplotype tables in Fig 2C.

We first construct an evolution tree for each of these tables. Our approach is based upon
two sources of information; one utilizes mutation sequencing depth with a pigeon hole princi-
ple, the other utilizes linkage information from haplotype tables.

Now we have mutationM2 present in 80% of viruses and mutationM1 present in 55% of
viruses. If these mutations are not both simultaneously present in a sub population of viruses,
then the mutations are exclusive. This implies the two populations of size 80% and 55% do not
overlap. However, the total population of viruses containing either of these viruses would then
be greater than 100%< 80% + 55%. This is not possible, and the only explanation is that a sub-
population of viruses contain both mutations; the pigeon hole principle. The only tree-like evo-
lutionary structure possible is thatM1 is a descendant ofM2, as indicated by the rooted,
directed tree in Fig 2Di. Note that we have not utilized any haplotype information to infer this,
just the mutation prevalence of the two mutations and a pigeon hole principle.

MutationM3 has a prevalence that is too low to repeat a prevalence based argument. How-
ever, we have a second source of information; the paired read data that can link together muta-
tions into the haplotypes in Fig 2Ci. This table is based on three mutations, which group into
23 = 8 possible haplotypes. However, a tree structure with three mutations will only contain
four leaves [24] and we see that four of the halpotypes (emboldened) have notably larger counts
of reads and are likely to be genuine. The four haplotypes with a notably lower read counts are
likely to be the result of sequencing error at the mutant base positions, or template switching
from a cycle of rtPCR, and are ignored. The presence of genuine haplotypes C011 and C010, lead
us to conclude thatM3 is descendant fromM2 but notM1, resulting in the tree of Fig 2Di.

From the mutation prevalences 55%, 80% and 15% ofM1,M2 andM3, we can also use the
conserved network flow to measure the haplotypes prevalence. For example, the leaf descend-
ing fromM2(80%), but notM1(55%) orM3(15%) (clone C010 of Fig 2Di) must represent the
remaining 10% = 80% − 55% − 15% of the population.

This provides us with two sources of information (sequencing depth and linkage informa-
tion) we can utilize to reconstruct the clone haplotypes, prevalence, and evolution. However,
not all mutations can be connected by sequencing reads. They may be either separated by a dis-
tance beyond the library insert size, or may lie on distinct (unlinked) segments. Our approach is
then as follows. We first construct a tree for each cluster of linked mutations. This will be a sub-
tree of the full evolutionary structure. We then construct a supertree from this set of subtrees.

Now both of the trees in Fig 2D must be subtrees of a full evolutionary tree for the collective
mutation set so we need to construct a supertree of these two trees. We can do this recursively
as follows. We take the mutations and place them in decreasing order according to their preva-
lence, as given in Fig 2E. We then attach branches corresponding to these mutations to the
supertree in turn, checking firstly network flow conservation, and secondly that the haplotype
information in the subtrees is preserved. The steps for this example can be seen in Fig 2F. We
start with a single incoming edge with prevalence 100%; the entire viral population. We next
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place an edge corresponding toM2, the mutation with maximum prevalence of 80%. The next
mutation in the tree either descends from the root or this new node. Any descendants ofM2

must have a prevalence less than this 80%. Any other branches must descend from the top
node but can only account for up to 20% of the remaining population. These two values are the
capacities indicated in square brackets. The next value we place isM1 with prevalence 55%.
This is beyond the capacity 20% of the top node, soM1 is descendant toM2, accounting for
55% of the 80%, leaving 25%. We thus have a three node tree with capacities 20%, 25% and
55%. The third ordered mutationM5 has prevalence 35%, which can only be placed at the bot-
tom node with maximum capacity. Our next mutationM3 has a prevalence 15% that is less
than any of the four capacities available, and no useful information on the supertree structure
is obtained. This branch is the first to use haplotype information. We know from the first sub-
tree that the corresponding branch is a descendant ofM2 and notM1. The only node we can
use (in red) has capacity 25% and we place the branch. For the final branch corresponding to
mutationM4, the prevalence 15% is less than four available capacities. The second subtree tells
us thatM4 is not a descendant ofM5. This only rules out one of the four choices, and any of the
three (red) nodes will result in a tree consistent with the data. The top node selected results in a
tree equivalent to that in Fig 2A. To see this tree equivalence, the internal nodes in the last tree
of Fig 2F have additional leaves attached (dotted lines) to obtain Fig 2A.

We thus find that a single dataset can result in several trees that are consistent with the data.
However, having a time series of samples means a tree consistent with all days of data is
required, which will substantially reduces the solution space. Note that the prevalences of the
clones at the leaves of the tree results from this recursive process. We thus find that supertree
construction is relatively straightforward with the aid of prevalence.

However, trees do not always fit the data. This can be due to recombination occurring
within segments, or re-assortment occurring between segments. In the next section we con-
struct recombination networks to cater for this, although we will see that they cannot be con-
structed as efficiently as trees.

A Recombination Network
In Fig 3A we see another simulated evolution based upon the two segments in Fig 3Ci that accu-
mulate four mutations,M1,M2,M3 andM4. First we have mutationsM1 andM3. Then we
have the first of two recombination events, r1, where we have recombination within the first seg-
ment as described in Fig 3Cii. We then have mutationsM2 andM4, followed by the second
recombination event r2 in Fig 3Ciii, a re-assortment between the two segments. This results in
the seven clones given at the leaves of Fig 3A. The prevalences of the four mutations across five
time points are given in Fig 3E. Note that we no longer have the conservation of prevalence
observed in trees. For example, mutationsM1 andM3 are on distinct branches extending from
the root, yet their total prevalence is in excess of 100% (on Day 5 for example). This is due to
recombination r1 resulting in the presence of a clone containing both mutations. The use of the
prevalence to reconstruct this structure from observable data thus requires more care.

Now we see in Fig 3Ci that the four mutations cluster into two groups of mutations each
bridged by a set of paired reads, resulting in two tables of read counts in Fig 3Bi and 3Bii. We
would like to reconstruct the evolution in Fig 3A from these data.

Firstly, we need to decide which of the haplotypes in Fig 3B are real. The haplotypes with
consistently low entries are classified as artifact (in opaque). We next use a standard approach
(such as a canonical splits network [25]) to construct sub-networks from the real haplotypes in
each of these tables, such as those given in Fig 3Dii. We then build super-networks ensuring
that all sub-networks are contained as a sub-graph. There does not appear to be an efficient
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Fig 3. A super-network sample. (A) A pedagogic evolution recombination network with four mutations and two recombination events across two segments.
(B) Typical haplotype tables arising from (A). (Ci) Two clusters of mutations grouped by paired reads on two segments. (Cii) Clones C1000 andC0010 undergo
within segment recombination intoC1010, with a crossover site betweenM1 andM3. (Ciii) ClonesC1001 andC1110 undergo between segment recombination
(reassortment) intoC1111. (D) Recombination networks arising from the haplotype tables in (B). (E) The prevalence of the four mutations across five days. (F)
Phylogenetic network associated with (A). (G) Point and range prevalence estimates. (Hi) A network consistent with the two networks of (D). (Hii)
Incompatible prevalence conditions associated with (Hi).

doi:10.1371/journal.pcbi.1004344.g003
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way of doing this (such as ordering by prevalence which works so well with trees) so a brute
force approach is taken, where we construct all possible networks that contain four mutations
and the haplotypes observed in Fig 3Bi and 3Bii.

This results in many candidate super-networks. We now find that the prevalence informa-
tion can be used to reject many cases. For example, the super-network in Fig 3Hi contains both
sub-networks of Fig 3Di and 3Dii as subgraphs. Note that the root node, representing the entire
100% of the population, has daughter branches containing mutationsM4,M1 andM3. How-
ever, from the prevalences on Day 5 we see thatM4 has prevalence 66% andM1 andM3
(which recombine) have a collective prevalence (from clones C001, C100, C101, and C111 in Fig
3Bi) of 93%. This is in excess of the possible 100% available and the network is rejected.

Application of filtering by prevalence (see Methods section for full details) rejects all net-
works with one recombination event, so we try all networks with two recombination events,
resulting in just seven possible recombination networks. These all contain the same set of
clones, all of which correspond to the single phylogenetic network in Fig 3F. Although only
one recombination event is present across the subnetworks, all super-networks with one
recombination event were filtered out and two recombination events were required.

Lastly we require estimates of the prevalences of each of the seven clones. We would like to
match these to the prevalences in the tables of Fig 3B. This is a linear programming problem,
the full details of which are given in the Methods section. The resulting estimates are given in
Fig 3G where we see that some clones have point estimates, whereas others have ranges. For
example, we see that clone C0010 has a point estimate for each day. This is because it is the only
clone of the super-network that corresponds to clone C001 of Fig 3Bi and their prevalences can
be matched. Conversely, we see ranges for the prevalences of clones C1110 and C1111. This is
because both clones correspond to clone C111 of Fig 3Bi and prevalence estimates for each
clone cannot be uniquely specified.

Full details of this approach can be found in the Methods section. In the next section we
describe the results obtained when applying these methods to a time series of influenza samples.

Application to Influenza
The data used in this study were generated from a chain of horse infections with influenza A
H3N8 virus (sample processing details can be found in the methods section). An inoculum was
used to infect two horses labeled 2761 and 6652. These two animals then infected horses
labeled 6292 and 9476. This latter pair then infected 1420 and 6273. The chain continued and
daily samples were collected from the horses resulting in 50 samples in total. For the present
study we used 16 samples; the inoculum and hosts 2761 (days 2 to 6), 6652 (days 2, 3 and 5),
6292 (days 3 to 6) and 1420 (days 3, 5 and 6).

Influenza A virus is a member of the family Orthomyxoviridae which contains eight seg-
mented, negative-stranded genomic RNAs commonly referred to as segments and numbered
by their lengths from the longest 2341 to the shortest 890 bps [21], as summarized in Fig 4A.

Daily samples were collected from each host and paired end sequenced was performed with
Hi-seq and Mi-seq machines. The samples sequences were aligned with Bowtie2 [26] with
default parameters. We obtain for each sample a SAM file containing mapping information of
all the different reads in the sample. Any mapped read whose average Phred-quality per base
was less than 30 were discarded.

In order to identify mutations from real data we need a reference sequence to compare the
read sequences to. Consistent differences between the two can then be classified as a mutation.
We constructed a majority consensus sequence from the inoculum sample. This consensus
sequence was then used as a starting reference for the chain of infected animals.
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To produce DNA for sequencing, viral RNA was reverse-transcribed and amplified
(RT-PCR). The reverse transcription step can result in the introduction of artefact mutations
that in turn would be further amplified in the PCR step, resulting in different levels of amplifi-
cation and mutation. This in turn is likely to introduce significant differences between the
sequencing depth and prevalence. To combat this, all identical paired end reads (with equal
beginning and endpoints, and identical sequences) were grouped, classified as a single PCR
product, deriving from a single molecule and only counted once.

We tested this assumption by using the observed insert size distribution to randomly simu-
late reads with a number equal to the observed depth (*1.8e6 reads), assuming a single muta-
tion with prevalence of 50% exists, to determine how often two distinct events would produce
identical reads. This produced a surprisingly high figure of 7% which will get worse as the depth
of sequencing increases and some care is needed (see [27] for further discussion on these kind of
‘birthday paradoxes’). However, many reads contain more than one mutation making identical
sequences less likely and the real figure will be somewhat lower. The depth of sequencing with
these adjusted counts should then provide an improved measurement of the prevalence of viral
subpopulations. We compared an identical sample that was sequenced separately (following the
RT-PCR step), the results of which can be seen across two samples in Fig 4Bi, 4Bii, 4Ci and 4Cii.
Both the position and prevalence of mutations were reproducible to good accuracy suggesting
proportional sequencing depth is a good surrogate for prevalence. We note that although there
was variation in the depth of sequencing across the genome, the expected proportion of reads
containing any given mutation will not change, and the depth of sequencing will not be a large
source of bias on the estimated prevalence. However, we cannot rule out the possibility that
some mutations are preferentially amplified, which would cause some systematic bias. We thus
make the cautionary observation that some biases may exist in the prevalence, and that spike-in
experiments to systematically examine the strength of correlation between sequence depth and
viral prevalence are needed. Such experiments are beyond the scope of the present study and
proportional sequence depth was taken as a suitable proxy for proportional viral prevalence.

We then applied the methods to sets of high prevalence mutations in each of the eight seg-
ments individually, and also to a set of three mutations from distinct segments. The main
observations are below.

Fig 4. Flu segments. (A) Size and function of the eight flu segments. (B,C) Depth of mutations from segment 4 from host 2761 Day 4 and host 6292 Day 3,
respectively. (i,ii) Results from Hi-Seq and Mi-Seq experiments on separate libraries from the same samples.

doi:10.1371/journal.pcbi.1004344.g004
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Within Segment Evolution
For segments 1, 3, 5, 6, 7 and 8 we obtained tree like evolutions for the segments. In all cases
the mutations involved lay on distinct branches and were indicative of mutations arising in
independent clones. Segment 6 can be seen in Fig 5A, where we see five mutations on six
branches. We also see from the stacked bar chart in Fig 5B that many of the mutations arose
during different periods in the infection chain.

However, the evolution structure of mutations within segments did not always appear to be
tree like, with segment 2 containing one putative recombination event and seven mutations,
and segment 4 containing three putative recombination events and six mutations. This latter
case arose because we found three pairs of mutations in putative recombination. Using nucleo-
tide positions as labels, these were (431, 674), (431, 709) and (709, 1401). That is, we found sig-
nificant counts of all four combinations of mutations, labeled C00, C01, C10 and C11, lying on
paired reads. Examples of typical counts for three (out of sixteen) samples are given in the top
table in Fig 6B (see Supplementary Information for full details). If the evolution is tree-like,
reads from one of the types C01, C10 or C11 should only arise as an artifact. Note that we have
high read counts of all four categories, which is indicative of recombination.

However, various studies have shown that there is very little evidence of genuine recombina-
tion that occurs within segments of influenza [28–30], and these kind of observations can arise
from template switching across different copies of segments during the rtPCR sequencing cycle
[31]. We developed an analytic approach to consider this possibility in more detail.

Now if the true underlying structure is tree-like, it suggests that one of C11, C01 or C10 arises
purely from template switching (the wild type C00 is assumed to always occur). This gives us
the three models (labeled i-iii in Fig 6A and 6B) to consider (see also Template Switching sub-
section in Methods section). We let a, b and c be the population proportions of the three real
genotypes. We let n be the probability that a cycle of rtPCR causes template switching. We
then treat template switching as a continuous time three state random process. This allows us
to derive probabilities that genotypes C00, C01, C10 and C11 arise on paired end reads, as given
in Fig 6A (see Methods for derivations). The counts of the four classes of read then follow a
corresponding multinomial distribution. Maximum likelihood was used to estimate parame-
ters, obtain log-likelihood scores, and a chi-squared measure of fit was obtained for each of the
three models.

For the pair (431, 674) we found that the best log-likelihood, on all sixteen sampled days,
was Model 1 (Fig 6i), where reads of type C11 are artifacts arising from template switching
alone. The parameters obtained provided an almost perfect fit; the expected counts were almost
equal to the observed counts and the goodness of fit significance values were close to 1. Models

Fig 5. (A) Evolution tree arising from five mutations on segment 6. (B) Prevalences of the clones across the times series.

doi:10.1371/journal.pcbi.1004344.g005
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2 and 3 (Fig 6ii and 6iii) had substantially lower likelihoods and significantly bad fits. This tells
us that if the underlying structure is a tree, it involves the three genotypes C00, C01 and C10 and
mutations 431 and 674 lie on distinct branches.

For the pair (431, 709) we found that the best log-likelihood, over the sixteen sampled days,
was Model 3 (Fig 6iii), where reads of type C10 are artifacts. The parameters obtained provided
an almost perfect fit on most days with goodness of fit significance values close to 1. A couple
of days had relatively poor fits, but were not significant when multiple testing across all sixteen
days was considered. Model 1 (with C11 as an artifact, Fig 6i) had very similar likelihoods, but
the data exhibited significantly poor fits on multiple days. Model 2 (with C01 as an artifact, Fig
6ii) performed very badly. This tells us that if the underlying structure is a tree, it involves the
three genotypes C00, C01 and C11 and mutation 431 is a descendant of 709.

For the pair (709, 1401) we found that the best log-likelihood, on all sixteen sampled days,
was Model 2 (Fig 6ii), where reads of type C01 are artifacts. The parameters obtained provided
an almost perfect fit on all days with goodness of fit significance values close to 1. Models 1 and

Fig 6. (A) Three template switching models. (B) Fitted models for three pairs of linked mutations on segment 4.

doi:10.1371/journal.pcbi.1004344.g006
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3 (Fig 6i and 6iii) performed very badly. This tells us that if the underlying structure is a tree, it
involves the three genotypes C00, C10 and C11 and mutation 1401 is a descendant of 709.

Thus the three cases where data are indicative of recombination can be explained purely by
template switching during rtPCR. This is reinforced somewhat by the fact that the same model
emerged across all sampled days for each mutation pair. However, this does not definitively
rule out recombination, which could also exhibit these consistent patterns across sampled
days, and so care is needed when interpreting data. Furthermore, the rates of template switch-
ing required to explain the data without recombination were not always consistent. For exam-
ple, in the sample from host 2761 Day 4, the estimated template switching between mutations
(431,674) was 43.6% (95% c.i 38.2%—49.2%). Between mutations (431,709) it was 48.8% (95%
c.i 46.3%—51.4%), giving reasonable agreement. Between mutations (709, 1401) it was some-
what higher, at 58.6% (95% c.i 68.3%—78.7%), although this may be expected due to the
greater distance between the mutations. However, in sample 1420 Day 3, the template switch-
ing rate for the pair (431,674), at 99.6% (95% c.i 76.6%—99.3%), was notably higher than both
the mutation pair (431,709), at 43.2% (95% c.i 39.5%—47.1%), and mutation pair (709,1401),
at 49.3% (95% c.i 36.9%—64.1%). Although differences between samples (and so library prepa-
rations) may be expected, differences such as this in the same library are harder to explain
without implicating genuine recombination.

We thus have two explanations of the data; genuine recombination or template switching
artifacts. We consider both cases and then draw comparisons.

Firstly we consider segment 4 assuming recombination has taken place. The results can be
seen in Fig 7. The prevalences of six mutations of interest are given in Fig 7A. Reasonable link-
age information was available across the segment, including the two haplotype tables in Fig 7C.
The first is linkage information between mutations 709 and 1401, where all four combinations
of mutation occur to reasonable depth, implying recombination between the mutations. The
second is between mutations 1387 and 1401, where we see only three haplotypes occur to sig-
nificant depth, suggesting a tree like evolutionary structure between the two mutations. The
full set of tables is in Supplementary Information. Although the sequencing depth in the first
table is lower, due to the rarer occurrence of sufficiently large insert sizes, the information
gleaned is just as crucial. The most parsimonious evolution found involved three recombina-
tion events, resulting in the single cloneset contained in the phylogenetic network given in Fig
7D. There were 22 possible recombination networks that fit this phylogenetic network, one
example of which is given in Fig 7E. The relatively complete linkage information resulted in
point estimates for the clone prevalences (rather than ranges), as given in Fig 7B.

If we now assume that the recombination like events are template switching during rtPCR,
then from above, we observed that mutations 431 and 674 are on distinct branches, mutation
431 is a descendant of 709, and 1401 is also a descendant of 709. This resolves all three reticula-
tion events in the network of Fig 7E and we end up with the tree given in Fig 7F. However, this
structure still has two minor conflicts. Firstly, the tree like structure suggests that mutation 431
should have a lower prevalence than 1401, and on most days it does. However, the sample
from host 2761 Day 4 has prevalences 54.3% and 51.2% for mutations 431 and 1401, respec-
tively. Similarly, the samples from host 1420 Day 3 are 66.1% and 70.3%, respectively. Sec-
ondly, the four mutations 674, 709, 1013 and 1401 all descend from the root on separate
branches and should have a total prevalence that is less than 100% and on fifteen of sixteen
samples this is true. However, on sample 6292 Day 3 the prevalences are 9.9%, 52.8%, 18.0%
and 26.0%, which combine to 106.7%. Although the conflicts are relatively small, these differ-
ences are larger than would be expected from Poisson sampling of such deep data. However,
this is the most plausible tree structure we found.
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Detecting Reassortment
Re-assortments occur when progeny segments from distinct viral parents are partnered into
the same viral particle, resulting in a recombinant evolutionary network.

Now re-assortment is a form of recombination. This is usually possible to detect in diploid
species such as human because linkage information is available across a region of interest, such
as a chromosome, and recombination can be inferred. Furthermore human samples have dis-
tinct sequencing samples for each member of the species. Inferring re-assortment across dis-
tinct viral samples is more difficult because firstly we do not have linkage information across
distinct segments, and secondly, we have mixed populations within each sample.

However, we show that re-assortment can still be detected within mixed population viral
samples with the aid of information provided by prevalence. Consider Fig 8. We have three
mutations in segments 2, 3 and 4, along with their mutation nucleotide positions 2037, 201
and 709, respectively. We refer to the mutations as S2_2037, S3_201 and S4_709 accordingly.
We see in Fig 8A that S2_2037 and S3_201 have prevalences that alternate in magnitude
across the 16 days sampled. If we assume a tree like structure, these two mutations cannot lie

Fig 7. (A) Mutation prevalences of six mutations in segment 4. (B) Prevalences of the ten associated clones. (C) Two tables of linked mutations exhibiting
network like relationship of mutations 709 and 1401, and tree like relationship of 1387 and 1401. (D) The phylogenetic network of the single fitted cloneset.
(E) One of 22 possible recombination networks that arise from (D). (F) Probable tree structure from (E) after template switching is considered.

doi:10.1371/journal.pcbi.1004344.g007
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on a single branch, because one prevalence would have to be consistently lower than the
other; they must therefore lie on distinct branches. Now mutation S4_709 can; i) be on a dis-
tinct third branch, ii) be a descendant of S2_2037, iii) be a descendant of S3_201, iv) be an
ancestor of S2_2037, v) be an ancestor of S3_201, or vi) be an ancestor of both. We can rule
out all of these choices as follows.

Firstly we note that S4_709 has a prevalence that is consistently larger than that of S2_2037
or S3_201, so cannot be a descendant of either mutation, ruling out ii) and iii). We see from
sample 6292 Day 3 that S2_2037 and S3_201 have a total prevalence greater than S4_709,
meaning S4_709 cannot be an ancestor of both mutations, ruling out vi). In this sample, the
total prevalence of all three mutations is in excess of 100%, ruling out i). Now if S4_709 and
S2_2037 lie on distinct branches, we see from 2761 Day 4 that their combined prevalence is in
excess of 100%, ruling out v). Finally, if S4_709 and S3_201 lie on distinct branches, we see
from 6292 Day 4 that their combined prevalence is in excess of 100%, ruling out iv). No tree
structure is possible and we conclude the presence of re-assortment as the most likely
explanation.

In fact, application of the full method reveals that two re-assortment events are required to
explain the data. This results in 51 possible recombination networks, one such example is given
in Fig 8B. These correspond to the four clonesets given in Fig 8C, arising from two possible
phylogentic networks. The four clonesets have prevalences that could not be uniquely resolved;
their possible ranges are shown in Fig 8D. Although we cannot uniquely identify the network
or the prevalences, all solutions involved two re-assortments, one involving mutations S4_709
and S2_2037, the other involving S4_709 and S3_201. This observation was only possible
because of inferences made with the prevalence.

Discussion
We have introduced a methodology to analyze time series viral sequencing data. This has three
aims; to identify the presence of clones in mixed viral populations, to quantify the relative pop-
ulation sizes of the clones, and to describe underlying evolutionary structures, including reticu-
lated evolution.

We have demonstrated the applicability of these methods with paired end sequencing from
a chain of infections of the H3N8 influenza virus. Although we could identify underlying evo-
lutionary structures, some properties of the viruses and the resulting data make interpretation
difficult. In particular, template switching during the rtPCR cycle of sequencing an RNA virus
is known to occur, and can result in paired reads that imply the presence of recombination.
Although any underlying tree like evolutions can still be detected, these artifacts confound the
signal of any genuine recombination that may be taking place, making it harder to identify.
The prevalence of mutations, measured as sequencing depth proportion, offers an alternative
source of information that can help resolve these conflicts in theory, although more work is
needed to evaluate how robust this metric is in practice.

For example, although tree like evolutions were identified in six of the segments, in the two
remaining segments the approach found reticulated networks, with three distinct reticulated
nodes in the hemagglutinin segments network. Although each of these nodes were consistent
with template switching artifacts, the resultant tree structure could not quite be fitted to the
mutation prevalences. Although this conflict implies the original network is correct and recom-
bination has taken place, within segment recombination in influenza is rare [28–30] and other
explanations may be required. In particular, we note in Fig 4B that there are slight differences
between the prevalences obtained from independent Mi-seq and Hi-seq runs. Although some
of this will be due to Poisson variation of depth, there could be some biases in PCR over certain
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Fig 8. Threemutations between three segments that indicate two re-assortment events. (A) Mutation prevalences across time series. (B) One of 51
recombination networks that fit the data. (C) Two phylogenetic networks that fit the data ((i) and (ii)-(iv)), corresponding to four clonesets. (D) Prevalence
ranges for the four clonesets.

doi:10.1371/journal.pcbi.1004344.g008
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mutations, for example. The application of prevalence thus needs to be used with caution, and
further studies are needed to fine tune this type of approach.

When the approach was applied to mutations in distinct segments, two re-assortment
events were inferred. The differences in mutation prevalences were more marked in this case
suggesting the inference is more robust and re-assortment more likely to have taken place. This
is also biologically more plausible, with events such as this accounting for the emergence of
new strains. We note that although re-assortment may have genuinely taken place, only one of
the original clones (containing just mutation 709 on segment 4) survived the infection chain
and a longitudinal study would not have picked up such transient clonal activity.

These methods utilized paired end sequencing data and showed that even when paired
reads do not extend the full length of segments, or bridge distinct segments, we can still make
useful inferences on the underlying evolutionary structures. The two main sources of informa-
tion are the linkage offered by two or more mutations lying on the same paired reads, and the
prevalence information. We note, firstly, that utilising the full range of insert sizes produced in
the sequencing library provides linkage information that covered most distances across seg-
ments. Filtering paired reads to remove inserts with larger insert sizes can lose useful linkage
information. Indeed, it is likely to be profitable to produce libraries with different insert sizes.
Secondly, we note that it is by utilizing the variability of the prevalence in a time series dataset
that we can narrow down the predictions to a useful degree; application of this method to indi-
viduals days will likely result in too many predictions to be useful. Furthermore, this has great-
est application to mutations of higher prevalence; this places more restrictions on possible
evolutions consistent with the data. Subsequently, this kind of variability is most likely to mani-
fest itself under conditions of differing selectional forces. A stable population is less likely to
contain mutations moving to fixation under selective forces. Lower prevalence mutations will
result, meaning less predictive power. Simulations also suggest that although clone-sets may be
uniquely identified, prediction of the underlying reticulation network is difficult, with many
networks explaining the same dataset.

As we lower the minimum prevalence of analyzed mutations, their number will increase.
The number of networks will likely explode and raise significant challenges. Furthermore, sin-
gle strand RNA viruses such as influenza mutate quickly, suggesting a preponderance of low
prevalence mutations likely exist. This is further exacerbated by the fact that sequencing uses
rt-PCR, introducing point mutations and template switching artifacts that create noise in the
data. These processes are likely responsible for the grass-like distribution of low prevalence
mutations visible in Fig 4B and 4C. Thus as we consider lower prevalence mutations we are
likely to get a rapidly growing evolution structure of increasingly complex topology. The meth-
ods we have introduced, however, can provide useful information at the upper-portions of
these structures.

The software ViralNet is available at www.uea.ac.uk/computing/software. The raw data is
available from the NCBI (project accession number SRP044631). More detailed outputs from
the algorithm are available in Supplementary Information.

Methods
We now outline details of sample preparation, tree and network construction methods, a tem-
plate switching model, and method validation.

Sample Preparation
Viral RNA was isolated from 280 μl-aliquots of nasal swabs using the QIAamp viral RNA mini
kit (Qiagen) following the manufacturer’s instructions. To quantify virus shedding, a real-time
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RT-PCR as described in [5] and [32] was performed. Virus copy numbers are available in sup-
plementary information. Full genome amplification was performed as described in [33]. Each
DNA sample was then processed for paired end sequencing on both a Hi-Seq and Mi-Seq
machine, producing ends with 101 bases.

The reads from the innoculum sample were then used to construct a majority reference
sequence. Reads from samples further down the infection chain were compared against this
reference for variant calling. Paired reads with identical start and end reference points, and
identical sequences, were deemed to arise from a single PCR product. Duplicates were thus
removed and only one paired read is selected for the final dataset.

Tree Construction
The construction of phylogenetic trees is a well established area [24]. Trees are frequently con-
structed from tables of haplotypes of different species. However, we have two properties that
change the situation. Firstly, if we have a set of nmutations linked by reads, we can have up to
2n distinct haplotypes. However, a consistent set of splits from such a table should only have up
to n + 1 distinct haplotypes, in a split-compatible configuration [24]. To construct a phyloge-
netic tree we thus need to classify the genotypes as real or artifact. Secondly, we have prevalence
information, in the form of a conserved network flow through the tree. This can help us to
both decide which haplotypes to believe and to construct a corresponding tree.

To describe the algorithm we first introduce some notation. Now, the evolutionary structure
is represented by two types of rooted directed tree; one where each edge represents a mutation,
such as in Fig 2F, and one where all leaves represent clones in the population, such as in Fig 2A
and 2D. The first is a subtree of the latter. The latter has a conserved flow network. These will
be termed the Compact Prevalence Tree and Complete Prevalence Tree respectively.

Now to each edge e in the compact prevalence tree, we assign prevalence ρ(e). This repre-
sents the proportion of population containing the mutation represented by the edge e. The sin-
gle directed edge ein(v) pointing toward a vertex v (away from the root) represents a viral
population of prevalence ρ(ein(v)), all containing the mutation corresponding to edge ein(v),
along with its predecessor mutations. The set of daughter edges Eout(v) leading away from node
v represent populations containing subsequent mutations, each with prevalence ρ(e), e 2
Eout(v). The remaining population from ρ(ein(v)) contains just the original mutation set, having
a prevalence described by the capacity z(v). The conservation of prevalence satisfied by each
vertex v 2 T is then represented by the condition:

rðeinðvÞÞ ¼ zðvÞ þ
X

e2Eout ðvÞ
rðeðvÞÞ ð1Þ

The root node has total prevalence of 1, representing the entire population of interest.
This describes the mutation based trees such as that in Fig 2F. To obtain a complete tree

containing all the clones, we need to extend an edge from each internal node to represent the
associated clone (these are the dashed lines in Fig 2A). The prevalence of the additional edges
are equal to the capacities of the parental nodes.

We saw in Fig 2B that mutations can be clustered together, and evolution trees constructed
for each cluster. We define a cluster to be any subset of mutations with reference positions all
lying within the two sequences of individual paired end reads. We restricted clusters to cases
where the total number of paired end reads containing the mutation sites numbered at least
200 and greater reliability in the linkage information exists. The evolutionary tree correspond-
ing to each mutation cluster is referred to as a Subtree. We then look for a tree that contains all
such subtrees as a subset of edges. We refer to these as Supertrees.
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The algorithm is broken into two steps. The first calculates subtrees. The second calculates
supertrees.

Step 1 Subtree construction. Now, for nmutations we have 2n possible haplotypes, with
corresponding counts ni, i = 1, 2, . . ., 2n, and a tree with n + 1 haplotypes to fit. This implies
that 2n − n − 1 of those counts are artifacts. For example, in Fig 9D we see the simulated counts
for 23 haplotypes on 3 mutations. Now Cayley’s formula states that there are nn − 2 different
labeled trees that can be constructed on n vertices [34]. These are easily constructed with the
aid of Prüfer sequences [35], which are any integer sequence [p1, . . ., pn − 2] such that pi 2 {1, 2,
. . ., n}. The first few examples are given in Fig 9A.

To construct a tree we start with p = [p1, . . ., pn − 2] and the vector v = [1, 2, . . ., n]. At each
step we take the lowest entry of v not in p, and the lowest entry of p, and join the two corre-
sponding nodes together with an edge. For example in Fig 9B we start with v = [R, 1, 2, 3],
where the root node R is treated as the minimum value, along with Prüfer sequence p = [R, 3].
The smallest element of v not in p is 1. The corresponding node is then joined to the node for
the smallest element R of p, such as exemplified in Fig 9Biii. These two elements are removed
from p and v and the process repeated until we are left with two elements in v. Our example
leaves us with the two elements 2 and 3, the corresponding nodes of which are then joined by
an edge. The edges are then directed away from the root, resulting in the prevalence clonal tree
in Fig 9Cii. The corresponding complete prevalence tree is in Fig 9Ciii.

Once we have all the possible subtrees constructed, we use maximum likelihood to select the
most plausible tree. Consider, for example, the penultimate column of Fig 9D, which corre-
spond to the four haplotypes for the tree (�) in Fig 9A–9C. Note that the haplotype C110 with a
count 550 is an artifact for this tree. If each mutation artifact arises with probability �, then an
artifact read of type C110 contains two mutant bases and occurs with probability �2. We can
then construct log-likelihoods (summed across time points) for the artifact counts arising from
clones that do not belong to the putative tree being tested. We then assume Poisson distributed

Fig 9. (A) Cayley trees for 2, 3 and 4 vertices. (Bi) Vertex list v for example (*). (Bii) Prüfer sequence p. (Biii) Tree construction. (Ci) The graph directed away
from the root. (ii) The equivalent compact clonal tree. (iii) The corresponding complete clonal tree. (D) Alignment of trees * and † to haplotype tables.

doi:10.1371/journal.pcbi.1004344.g009
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counts and construct the following likelihood function for a given putative clonal tree T :

LðT Þ ¼
X

t

X
h=2T

logðPoiss
nðtÞ
j
ðnðtÞ�xðhÞÞÞ ð2Þ

Here t indexes the time point, n(t) and � = 0.003 are the total depth and the error rate,
respectively. The values x(h) represents the number of mutants in haplotype h. The tree with
maximum likelihood is selected. Although the use of a Poisson distribution may be approxi-
mate, this technique is a pragmatic way to identify plausible haplotypes/trees.

Step 2 Supertree construction. We next build supertrees of the evolution from the sub-
trees. As we saw in the example in Fig 2F, this involves ranking the subtree branches by preva-
lence, and adding mutations sequentially as in the example in Fig 2F, checking pairwise
ancestry relationships between mutations (from the subtrees), along with the capacity of preva-
lence available at each node (by checking Eq (1) for every time point).

Note that this algorithm may produce no trees. This implies there are no supertrees consis-
tent with the data, and recombination networks may be more suitable.

The Recombination Algorithm
We would like to use data such as Fig 3B to reconstruct the evolutionary structure. The splits
method [25] is used to construct phylogenetic networks such as Fig 3G. There are many recom-
bination networks that correspond to any given phylogenetic network. A standard method to
identify recombination networks is to look for an optimal path of trees across the recombina-
tion sites [36]. These methods generally have the full mutation profile of a set of species of
interest to compare. Our problem is exacerbated by missing data and the full haplotypes of dis-
tinct species (clones in our case) are not available. However, we have prevalence information
which can help identify structures consistent with the data.

We construct recombination networks in five steps; haplotype classification, super-network
construction, super-network filtering, prevalence maximum likelihood estimation, and preva-
lence range estimation. We describe these steps in detail.

Step 1 Haplotype classification. In order to distinguish the real and artifact haplotypes in

any table such as Fig 7C we do the following. For any count nðtÞ
h associated with haplotype h

and time point t, we calculate the probability it arises as an error using the Poisson distribution.
This gives a term of the form Poiss

nðtÞ
h
ðnðtÞ�xðhÞÞ, where n(t) is the total read depth from that time

point, x(h) is the number of mutations distinct from the wild type, and � is a user selected error
rate per base per read. We then take the combined log-likelihood L across all time points. All
log-likelihoods below a threshold L0 are classified as real. The values � = 0.003 and L0 ¼ �350

were used in implementation. An error rate of � = 0.003 is a conservative overestimate of the
true error rate [37]. The likelihood threshold was the value that misclassified the least number
(4%) of haplotypes (where ‘real’ haplotypes were defined to be those containing at least one
prevalence above 10%). This threshold can be lowered if the inclusion of lower prevalence hap-
lotypes is desirable, although more false positive haplotypes will subsequently be included.

Step 2 Super-network construction. This is a brute force approach where we construct all
possible recombination networks using r = 0, 1, 2, . . . reticulated nodes in turn. Any networks
that do not contain the real haplotypes of the individual haplotype tables of Step 1 are rejected.
The value of r selected is the smallest value with any valid networks after Steps 3 and 4 are
implemented.

Step 3 Filtering. We need to utilize the prevalence to identify and remove invalid net-
works. Each leaf c of the recombination graph represents a single clone of the mixed
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population. We let ρc denote the prevalences of that clone. We then have the conditions:
X

c

rc ¼ 1; rc � 0 ð3Þ

Now we have the estimated prevalence λm of each mutationm = 1, 2, . . .,M from the pro-
portional sequencing depth at the mutations position. If we let Cm denote the set of clones
from the super-network that contain mutationm, we have conditions of the form:

X
fc2Cmg

rc ¼ lm ð4Þ

We solve the linear programming problem defined by Eqs 3 and 4 with the simplex method.
If no solution exists on any day t the network is rejected. If a solution is found, it is the input to
the (more precise) calculation in Step 4. This step generally reduces the number of networks to
manageable levels.

Step 4 Prevalence point estimation. In reality λm is an estimate and we have more infor-

mation than just the depth of mutations. For each cluster of mutations we have the count nðtÞ
h

for each real genotype h (artifacts are ignored) and time points t in the corresponding table.
Conditioning on the total count n(t) of real genotypes results in a binomial log-likelihood of the
following form:

L ¼
X
h

nðtÞ
h logðnðtÞ

X
c2Ch

rðtÞ
c Þ

Here the sum is over the set Ch of clones that contain haplotype h. We then sum this over all
tables and time points and maximize for estimates of the clone prevalences rðtÞ

c . We use gradi-
ent descent to maximize, projecting each step onto the simplex in Eq 3. Projecting onto the
simplex is relatively straightforward, the updated prevalence vector ρ just becomes r

jjrjj1, where

negative components are set to zero.
Step 5 Range estimation. Step 4 does not always result in a unique estimate, because there

may be ranges of values rðtÞ
c on the simplex of Eq 3 that yield identical terms

P
c2s

rðtÞ
c . Then if r̂ðtÞ

c

are the estimates from the gradient descent, we use the simplex method to maximize�rðtÞ
c sub-

ject to Eq 3 and conditions of the form:
X
c2s

rðtÞ
c ¼

X
c2s

r̂ðtÞ
c

Valid clonesets with the maximum likelihood are then selected. This can be applied to any
putative network to either conclude that the network is not feasible, or produce a range of pos-
sible prevalences associated with the network.

Template Switching
Wemodel template switching during rtPCR as follows. Suppose we have two mutations of
interest and four possible genotypes, labeled C00, C01, C10 and C11. We have corresponding
read depth counts n00, n01, n10 and n11. Now, if tree like evolution exists, one of C01, C10 or C11

is an artifact arising from template switching during rtPCR (the wild type C00 is assumed to
always occur). We demonstrate the case where C01 is an artifact (model 2 in Fig 6Aii). The deri-
vation for the other two models is similar. Then we assume that the real clones C00, C10 and C11

have prevalences of a, b and c, respectively, so that a + b + c = 1.
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We model rtPCR as a time continuous three state process, where template switching occurs
at a rate λ, jumping to any of the three templates C00, C10 or C11 with probabilities a, b and c,
respectively. We also refer to the states as a, b and c. The template switching rate λ is taken to
be a constant, which is equivalent to assuming template switching occurs with uniform proba-
bility along the segments. Any sequence context effects along segments are ignored. We let
pa(t), pb(t) and pc(t) be the probabilities of occupying a copy of the corresponding templates at
position t. Then conditioning pa(t) over a time interval (t, t + dt) results in the following expres-
sion (see [38] for typical derivations):

paðt þ dtÞ ¼ paðtÞð1� ldtÞ þ paðtÞaldt þ pbðtÞaldt þ pcðtÞaldt

This gives us the following differential equation and solution:

dpa
dt

¼ lða� paÞ,paðtÞ ¼ aþ ðpað0Þ � aÞe�lt

We rescale time so that t = 1 represents one rtPCR cycle. We then have the following transi-
tion matrix between states:

T ¼

aþ ð1� aÞe�l b� be�l c� ce�l

a� ae�l bþ ð1� bÞe�l c� ce�l

a� ae�l b� be�l cþ ð1� cÞe�l

0
BBB@

1
CCCA

Probabilities for all types C00, C01, C10 and C11 can now be defined, which we demonstrate
for C10. Derivations for the other terms can be obtained in a similar manner. From Fig 6Aii we
see that to obtain a read of the form C10, we can start in either state b or c and end in either
state a or b. This gives us four terms to add:

PrðC10Þ ¼ bTba þ bTbb þ cTca þ cTcb ¼ bða� ae�l þ bþ ð1� bÞe�lÞ þ cða� ae�l þ b� be�lÞ ¼ bþ acn

Here n = 1 − e−λ is the probability a template switch occurs. The formulas in Fig 6A are
obtained similarly.

The counts n00, n01, n10 and n11 then follow a multinomial distribution, from which log-like-
lihoods can be derived. A chi-squared goodness of fit can then be obtained. We note that in
many cases, solutions for the four terms Pr(C00), Pr(C01), Pr(C10) and Pr(C11) in terms of a, b, c
and n can be obtained, resulting in a perfect fit. When this is not possible, one or more of the
three models can be rejected if the fit is sufficiently bad.

Note that none of these three models necessarily explain the data. In the last column of Fig
6D, for example, we have four artificial counts 50, 1000, 1000 and 1000 corresponding to geno-
types C00, C01, C10 and C11. All three models are a bad fit suggesting recombination is present.
However, this relies on small counts for C00, which were not observed in the real data that was
examined.

Note that template switching has no effect on the prevalence of individual mutations. For
example, considering Fig 5Ciii, if we add Pr(C01) and Pr(C11), we get b + c, which is precisely
the prevalence of mutationM2.

Validation and Simulation
The validation of the method is based upon simulated data. This will give some idea of the
reconstruction capabilities of the methods and allow benchmarking with other existing
approaches. In particular, we compared our tree construction algorithm to the benchmark
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software Shorah using the same simulation approaches as Zagordi et al [12, 15] and Astro-
vskaya et al. [16].

To measure the performance of the mixed population estimation, we computed the Preci-
sion, the Recall, and the Accuracy of prevalence estimation for the methods of interest. The
recall (or sensitivity) gives the ratio TP

TPþFN
of correctly reconstructed haplotypes to the total

number of true haplotypes, where we have true positives (TP), false negatives (FN) and false
positives (FP). The precision gives their ratio to the total number of generated haplotypes,
TP

TPþFP
.

The accuracy measures the ability of the method to recover the true mixture of haplotypes,
and was defined as measuring the mean absolute error of the prevalence estimate. Where a
range estimate is obtained for the prevalence, we calculate the shortest distance from the true
value to the range.

Comparison with Shorah was done on simulated deep sequencing data from a 1.5 kb-long
region of HIV-1. Simulated reads have been generated by MetaSim [39], a meta-genomic simu-
lator which generates collections of reads reproducing the error model of some given technolo-
gies such as Sanger and 454 Roche. It takes as input a set of genome sequences and an
abundancy profile and generates a collection of reads sampling the inputted genomic
population.

For up to 12 haplotypes and 3 reticulations we performed 100 runs as follows. We randomly
constructed a network by attaching each new branch to a random selected node. Reticulations
were also randomized. The prevalences of the resulting clones (at the leaves) were randomly
selected from a Dirichlet distribution. This is repeated for 10 time points of data. We used
MetaSim to generate a collection of 5,000 reads having an average length of 500bp and replicat-
ing the error process of Roche 454 sequencing. The methods were then applied to the resulting
data.

Shorah output can display mismatches or gaps in the outputted genomes, with increasing
frequency at the segment edges. We applied a modification on Shorah output by trimming the
edge and we then corrected one or two mismatches or gaps on all the genomes before address-
ing the comparison. Fig 10A–10C provide the comparison for recall, precision and error indi-
cators. We found slight improvements for recall, especially for tree like evolution. The
precision and error also had improved results. We acknowledge that the simulations were
based upon evolutionary structures that the models are designed to fit so such improvement
might be expected. Furthermore, Shorah likely have better performance on low prevalence
clones. However, these simulations demonstrate that reasonable results can be obtained from
the techniques we have introduced.

Fig 10. Validation profiles for a range of haplotype counts, including; (A) Recall, (B) Precision, and (C) Error. In all cases the solid line denotes the
algorithm preformance, the dashed line indicates Shorah performance.

doi:10.1371/journal.pcbi.1004344.g010
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