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Abstract
Although many examples of multiple-use forest management may be found in tropical

smallholder systems, few studies provide empirical support for the integration of selective

timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia
excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species

extracted almost entirely from natural forests across the Amazon Basin. An obligate out-

crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard

round fruit that takes up to 14 months to mature. As many smallholders turn to the financial

security provided by timber, Brazil nut fruits are increasingly being harvested in logged for-

ests. We tested the influence of tree and stand-level covariates (distance to nearest cut

stump and local logging intensity) on total nut production at the individual tree level in five

recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios,

Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period

(January-April 2012 and January-April 2013) in order to collect data on fruit production.

Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study

were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid log-

ging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, dis-

tance to nearest cut stump and local logging intensity did not have a statistically significant

influence on Brazil nut production at the applied logging intensities (typically 1–2 timber

trees removed per ha). In one concession where at least 4 trees ha-1 were removed, how-

ever, the logging intensity covariate resulted in a marginally significant (0.09) P value,

highlighting a potential risk for a drop in nut production at higher intensities. While we do not

suggest that logging activities should be completely avoided in Brazil nut rich forests, when
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a buffer zone cannot be observed, low logging intensities should be implemented. The sus-

tainability of this integrated management system will ultimately depend on a complex series

of socioeconomic and ecological interactions. Yet we submit that our study provides an

important initial step in understanding the compatibility of timber harvesting with a high

value NTFP, potentially allowing for diversification of forest use strategies in Amazonian

Perù.

Introduction
Timber often overshadows other components of the tropical forest use continuum, due to its
high economic return (see [1–3]). Indeed, for several decades, the concept of sustainable forest
management (SFM) was dominated by the idea of timber as a principal product [4–8], a trend
possibly fueled by projected low net returns from non-timber forest products (NTFPs) in the
1990s (see [9–11]). Yet, many of the seminal papers on SFM focused on industrial logging,
rather than logging by smallholders in forest communities, where forest valuation can be diffi-
cult to assess [12]. Exclusively focusing on timber (particularly in the case of smallholder sys-
tems) fails to capture other important forest products and ecosystem services [13]. Multiple-
use forest management (see [14]) by contrast, recognizes the complex nature of diversified live-
lihood strategies and underscores the importance of looking beyond timber production as the
only management objective [15–18].

Smallholder livelihood strategies related to wood extraction, farming and NTFP extraction
have never been carried out in isolation [19–21]. Yet from a formal management standpoint,
the implementation of multiple forestry objectives remains elusive on the ground, due to often
acute tradeoffs among technical, socioeconomic, regulatory and normative aspects [22]. In par-
ticular, recent studies have highlighted both constraints and potential benefits for integrated
NTFP and timber extraction. In some cases, NTFP harvests are a relatively safe diversification
and risk management strategy in concert with timber removal (see [3, 23–27]. Especially as
timber volumes dwindle in community and smallholder forests, diversification of management
strategies at the landscape scale will be critical.

Among the thousands of NTFP species that exist in the Western Amazon, Bertholletia
excelsa (Humb. and Bonpl., Lecythidaceae), or Brazil nut, is currently one of the most economi-
cally valuable [28–29], contributing substantially to the annual gross domestic products
(GDPs) of Peru, Brazil, and Bolivia [30]. Indeed, it is one of the few tropical tree species to have
had a lasting impact on forest legislation across the region—it is illegal to fell Brazil nut trees in
Brazil, Bolivia, and Peru [18, 31–32]. Often touted as a keystone species for integrating sustain-
able development and conservation, Brazil nut has the distinction of being the only globally-
traded seed crop collected by forest-based extractivists [28, 31]. Many smallholders in Madre
de Dios (Perú), Acre (Brazil), and Pando (Bolivia), the so-called “MAP” region [33], have his-
torically depended on Brazil nut harvests and other NTFPs (e.g., rubber; Hevea brasiliensis,
Euphorbiaceae) to support their families [34–38].

Although recent papers have considered the integration of Brazil nut and selective timber
harvesting [18, 24, 26, 38–40], no research to-date has assessed B. excelsa fruit production in
selectively logged forests in order to inform sustainable use of these coexisting forest products.
Already, selective logging activities are known to alter inter-tree pollen flow, damage the soil
and the residual forest, as well as reduce soil moisture [6, 41–44]. Several of these examples
from the literature originate from forests where logging intensities are typically high (� 15 m3
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ha-1), yet at least physical damage to adult trees (including Brazil nut; see [45]) has been
observed in smallholder systems [45] and industrial concessions [24] at low logging intensities
(5–10 m3 ha-1). Alteration of tree fruiting patterns in selectively logged forests has also been
noted, yet almost solely within the context of conspecifics being physically removed [46–49].
In contrast, the impact of timber species removal on (tree-based) NTFP taxa fecundity has
rarely been studied (reviewed in [50]). Selective logging can stimulate the production of tree
fruit in neighboring individuals, possibly due to enhanced light conditions after tree harvesting
(e.g., [48, 51], but see [52]). Conversely, tree fruit production could decrease as effective popu-
lation sizes dwindle concurrently with disruptions in pollinator behavior (albeit depending on
pollinator species and spatial pattern of logging gaps), particularly in outcrossing species (e.g.,
[53]). In this paper we ask the following question: To what extent is Brazil nut production at
the individual level affected in a logged forest landscape? We frame this question based on
covariates related to the logging activities (i.e., distance of productive Brazil nut trees to both
nearest cut stump and local logging intensity) while controlling for tree-based variables known
to influence Brazil nut fruit production.

Materials and Methods

Study site
The study was conducted in five Brazil nut concessions (ranging from 290 to 1750 ha; Figs 1
and 2) in southeastern Peru, Tahuamanu and Las Piedras Provinces, Department of Madre de
Dios (11°30”30” -12°10’0” S and 69°56’0”-69°21’0”W), from January 2013 to April 2014. Per-
mission to work in the concessions was given by the five Brazil nut concessionaires (castañeros)
who hold title to the 40-year state-owned concessions (see [54]). Mean annual rainfall ranges
from 2500 to 3500 mm, with a pronounced rainy season from December to March [39, 55].
Mean annual temperature is 24°C, but it fluctuates within an extreme range for the neotropics
(10–38°C) [55]. The landscape is defined by acidic, well-drained soils of moderate to low fertil-
ity and gently undulating to flat topography. Vegetation along the Interoceánica Sur Highway
(IOS; connecting the Peruvian coastal ports with Brazil and Bolivia) is characterized by season-
ally moist terra firme lowland forest, often dominated by arborescent bamboo (Guadua sarco-
carpa Londoño and P.M. Peterson and G. weberbaueri Pilg., Poaceae; [56–58]). Forest
concessionaires associated with this study (see below) identified seven vegetation types located
in their particular concessions: palm forest (palmichal); bamboo forest (pacal), upland forest
(bosque colinoso), closed canopy forest (bosque alto), secondary forest (purma), moriche palm
(Mauritia flexuosa, Arecaceae) forest (aguajal), and abandoned pasture (potrero).

Approximately 30% (~ 2.6 million ha) of Madre de Dios is characterized by Brazil nut-rich
forests [39, 59], with an average reported density of 1.3–1.5 adult trees ha-1 [32]. Harvesting
entails collecting fallen fruits, removing the outer shell, then drying and shelling the seed (not a
true nut, as the common name would suggest; [54]). Brazil nut concessions (totaling about
1000 concessions and encompassing about 995,590 ha) were established in 2000 by the Peru-
vian Forestry and Wildlife Law no. 27308 as a way of formalizing traditional usufruct rights
[32, 39, 40, 54]. The size of a Brazil nut concession in Madre de Dios ranges from 39–3900 ha
(average: 850 ha). These management units are controlled by individuals or families who reside
in the concession only during the Brazil nut harvest season, from January to March. Several
researchers have noted low deforestation rates both around and within these Brazil nut conces-
sions, highlighting their conservation value [33, 60].

Like Brazil nut harvesting, timber has also been a major source of income in the region for
decades [32, 61– 62]. Presently, at least 80% of the timber in Madre de Dios is illegally har-
vested [63–64]. In recognition of the resource extraction activities that were already taking
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Fig 1. Location of study area (Madre de Dios, Peru). Dark green outline: Brazil nut concessions; Red outline: Participating Brazil nut concessions.

doi:10.1371/journal.pone.0135464.g001
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place on an informal basis, the government decreed in 2004 that timber could be legally har-
vested from Brazil nut concessions [32]. In order to log in their concessions, concessionaires
must register with the Regional Government of Madre de Dios, to whom they must submit a
separate management plan [(Plan Complementario para el Aprovechamiento de Madera
(PCM)]. Reported timber harvesting intensities in the concessions have remained low (1–2
trees ha-1; [32, 64]) since the implementation of the 2004 decree. Nonetheless, more commer-
cial timber volume is leaving Brazil nut concessions in comparison to designated industrial
timber concessions, likely due to less stringent fiscal and bureaucratic requirements in the for-
mer. In 2010, for example, official records showed a total of 9630 m3 of timber was harvested
from Brazil nut concessions in Madre de Dios, versus 3223 m3 from neighboring timber con-
cessions [32, 65]. Brazil nut concessionaires typically harvest timber in an opportunistic fash-
ion with multiple entries into the same harvest zone. Some of the more commonly exploited
species include tornillo (Cedrelinga catenaeformis, Fabaceae), sapote (Matisia sp., Malvaceae),
and lupuna (Ceiba pentandra, Malvaceae) [32]. Due to historical heavy exploitation, many
internationally valuable hardwood species[e.g., tahuari (Brazilian walnut, Tabebuia spp.,

Fig 2. Spatial distribution of Brazil nut trees� 40 cm DBH in five Brazil nut concessions (290–1750 ha), Madre de Dios, Peru. The 499 individual
trees included in the analysis were randomly selected from these populations. Brown circles: Brazil nut adult trees.

doi:10.1371/journal.pone.0135464.g002
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Bignoniaceae) and shihuahuaco (Brazilian teak, Dipteryx spp., Fabaceae)] are extremely rare in
Brazil nut concessions within close proximity to the IOS.

History of timber extraction varies amongst the five concessions, with at least one conces-
sionaire stating that she only started cutting timber fairly recently (in 2006) and now harvests
on a yearly basis. Another concessionaire started harvesting in 2007, did not harvest again until
2010, and now harvests on a yearly basis. All concessionaires claim to avoid Brazil nut groves
when engaging in logging activities, although in many cases it is often a tercero, or outside log-
ging crew, that is harvesting the timber, not the concessionaire. When concessionaires were
asked if they thought that the tala, or timber harvesting, had an impact on the Brazil nut trees,
all concessionaires mentioned the impacts in terms of benefits and disadvantages. Benefits
could include a quick release of nutrients for the Brazil nut trees, and while one respondent
mentioned that production levels might initially decrease as a result of the timber extraction,
production usually recovers within a short period of time. Three informants mentioned that
wind damage often occurs as a result of removing large-canopy trees from the forest.

Species description
Bertholletia excelsa is a long-lived canopy emergent, with some individuals estimated to be
500–1500 years old [66–69], reaching 60 m in height and 16 m in circumference [70–71] and
providing key resources for several animal species (see [72–74]). It is distributed across the
Amazon Basin most often in groves of 500–100 individuals in terra firme forests [75–77]. Evi-
dence suggests that the species’ basin-wide distribution is the product of deliberate anthropo-
genic intervention [77], although short-distance nut dispersal by caviomorph rodents also
plays a role [78]. Most estimates of the species’ density [diameter at breast height (DBH)� 10
cm] range from 1–3 stems ha-1 (e.g., [31, 76, 79–80]), although some estimates are as high as
23 individuals ha-1 [71].

B. excelsa is an allogamous, self-incompatible species with reportedly high levels of genetic
diversity and inter-tree pollen flow at the population level [81]. Its flowers are pollinated by
medium to large sized bees of different genera: Bombus [82], Euglossa [83], Eulaema [84], and
Xylocopa; the latter two being the most frequent flower visitors [84–86]. The large-bodied (10–
16 cm; [83]) fruit requires 14–15 months to mature [85] and contains 10–25 large seeds (2x5
cm [76]). Fruit production varies with DBH, degree of crown illumination, crown form and
crown diameter [87– 91], presence of vines [31, 92], and it also shows high interannual vari-
ability at the individual level [87, 90]. Seeds take a relatively long time (12–18 months) to ger-
minate, likely due to the impenetrable, woody nature of the pyxidium [77].

Sampling design
Brazil nut concessionaires were asked to participate with the project during meetings con-
ducted in October 2012 with concessionaire associations in the settlements of Alegría and
Alerta (Fig 1). Although a list of 12 association members was generated during these meetings,
the final number of interested concessionaires was reduced to five. This decision was primarily
based on concession accessibility, number of available field technicians (at least two to every
concession), and compatible schedules between the field team and Brazil nut harvesters, partic-
ularly during the peak of the Brazil nut harvest (January-April). Prior to the selection of the
five concessions, we had no information about the timber harvest intensities being applied
across these sites.

We did not employ the “logged/unlogged” design applied in most selective logging studies
(e.g., [6, 48]) for various reasons. First, few Brazil nut concessions close to the IOS are consid-
ered “unlogged” and thus suitable as control sites. Furthermore, the small size and narrow
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shape of some of the study concessions meant very few areas were independent of the influence
of selective timber harvesting impacts (Fig 1). Our previous observations across the study area
also showed that selective timber harvesting in Brazil nut concessions does not follow a polycy-
clic model (cf. [32]), in which a series of unlogged compartments remain undisturbed over the
course successive cuts. This trend was further confirmed when we examined a random sample
of officially-approved timber harvesting plans in these concessions. It was evident, however,
that the spatial extent of selective logging was highly heterogeneous across all concessions.

Spatial attributes
In order to measure the impact of selective logging on a particular biophysical response vari-
able (e.g., tree damage, tree growth rates), distance to origin of the logging disturbance is often
employed as an independent factor (see [45, 93]). As such, to characterize the logging mosaic
in each concession and assess the potential impact of selective logging on fruit production for a
given tree, distance to nearest logging gap (cut stump), and nearest local logging intensity
(trees removed ha-1) were measured. For each of the five concessions, we mapped all existing
logging gaps (� 5 years old) in the presence of the concessionaire, who confirmed the history
of each gap. Although we also mapped all skid trails onsite, given that change in canopy open-
ing (and thus, light availability) was more pronounced in the logging gaps, we determined that
distance to cut stump was the most appropriate covariate for inclusion in the analysis. All dis-
tance measurements were calculated using geo-referenced locations in ArcMap 10.1 (UTM
Zone 19S; distance to nearest conspecific neighbor� 40 cm DBH and distance to nearest cut
stump). All logging gaps (� 5 years old) were also geo-referenced in ArcMap 10.1. Local log-
ging intensity was calculated in ArcMap 10.1 by determining the number of cut stumps within
a 56.4 m (equivalent to 1 ha) radius around each individual cut stump. Distance to nearest con-
specific reproductive neighbor was also measured to account for potential variation in fruit
production, given that the species relies on pollen out-crossing for reproduction.

Fruit and nut production
The study comprised a random selection of 499 Brazil nut trees (� 40 cm DBH, the minimum
size visited by Brazil nut harvesters and minimum DBH for reproduction in closed-canopy for-
est; [90]) across the five concessions (comprising about 4000 ha of Brazil nut-rich forest; Fig 2).
The sample was obtained by generating a randomized sequence of integers, using the identifi-
cation number of each individual tree visited in all five concessions with the harvesters (total of
1443 trees). The total number of trees visited by our field team and Brazil nut harvesters was
not a 100% coverage of each concession, although we did attempt to include at least 100 trees
from each concession in the analysis, including those individuals that failed to produce fruit for
a particular year. Most of the trees were within close proximity of conspecific neighbors (see
Fig 2), as the Brazil nut harvesters with whom we were working often abandoned the harvest of
more isolated trees, especially in the larger concessions. Each individual tree was considered as
a replicate for the analysis and logging impacts on fruit production were assessed by measuring
the distance from a productive Brazil nut tree in our sample to the nearest logging gap and its
associated logging intensity (number of stumps ha-1).

Fruit and nut production of the selected trees was monitored in all five concessions during
the 2013 and 2014 harvest seasons (January-April). Individual Brazil nut trees were located
and geo-referenced with a Garmin GPSMap 62 handheld unit. They were subsequently mea-
sured for DBH at 1.3 m above the ground, using a fabric diameter tape. Our field team followed
Brazil nut harvesters as they collected fruits, dividing them accordingly on the ground under
the appropriate “mother” tree. Fruits were then counted for each tree, their outer shells cracked
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using a machete, and the nuts produced per tree were weighed with a spring balance before
being mixed with nuts from other trees in large sacks, or barricas. One barrica, the traditional
method for transporting the product to local middlemen, is the equivalent of approximately
70–80 kg. As nut weight is an important local measurement of Brazil nut productivity, we
chose to focus on total nut weight per tree as our dependent variable, similar to other Brazil
nut studies (see [31]). The size of fruit and number of seeds per fruit also varied considerably
among trees, leading us to believe that nut weight was a more consistent measurement of local
Brazil nut tree productivity than fruit count (see Fig 3). In a completely controlled experiment,
the ideal method for nut weight measurement would have been to subtract oven-dried weight
from the fresh weight measurements taken in the field. Since our field team was obliged to fol-
low local nut harvester protocol and process the nuts immediately before they were taken to
buyers for distribution, we took measurements directly in the field. While this method may
have resulted in a slight overestimation in weight measurements due to elevated moisture lev-
els, since nuts in all five concessions were harvested contemporaneously, the error would have
been consistent across the sites. We also attempted to reduce sampling error by passing by each
tree at least twice to search for fruit. As noted by Zuidema and Boot [90] and Staudhammer
et al. [94], the number of fruits collected from the ground does not reflect a 100% harvest, due
to predation and incomplete harvests. Indeed, remaining fruits in the crown of a tree will fall as
late as May or June, which is why the field team remained in the sites later than the nut harvest-
ers, verifying that there were no additional fruits on the ground.

Tree attributes
Recognizing that several key tree-based independent variables are already known to influence
fruit production, we measured tree crown diameter, crown position, crown form, trunk form,
assessment of damage, and liana load (see [31, 87, 94]). Tree crown diameter was determined
by measuring the longest spread and the longest cross-spread with a 50 m tape underneath the
crown of the tree. Average crown spread of the Brazil nut tree was then calculated for each tree
by adding the value of the longest spread with the value of the longest cross-spread, divided by
2. Crown position was determined using a modified Dawkins illumination index cited by Syn-
nott [95] andWadt et al. [31]: (1) dominant (full overhead and side light); (2) co-dominant
(full overhead light); (3) intermediate (some overhead and lateral light); (4)< 10% lateral light;
(5) suppressed (no direct light). Crown form was also adapted from the Dawkins method: (1)
complete circle; (2) irregular circle; (3) half-crown; (4) less than half crown; and (5) few
branches. Description of trunk form was established using methods developed by the field
team: (1) trunk well-formed, straight; (2) trunk leaning; (3) trunk damaged. Assessment of
damage was evaluated using binary categories: (0) no damage; and (2) damage. When it was
possible to determine that the damage was directly due to logging activity, this observation was
noted, but since we were unable to collect “before” data, we could not determine damage status
(from logging/other causes) with 100% certainty. As such, we did not make the distinction in
the analysis. Similarly, we used a binary categorization for liana and nail presence: (0) no liana/
nail; and (2) liana/nail. It is common lore amongst Brazil nut harvesters in the region that the
presence of a nail will cause an individual tree’s productivity to drop. Nails are often used to
secure tree tags to the trunk when conducting inventories, but this practice is becoming less
common as a result of this long-held belief.

Data analysis
A repeated measures general linear mixed effects model was used to evaluate effects of the fixed
independent factors (distance to nearest cut stump, local logging intensity, distance to nearest
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conspecific neighbor, DBH, crown diameter, crown position, crown form, trunk form, assess-
ment of damage, presence of liana, presence of nail) on total nut weight per tree in 2013 and
2014. Based on results from a long-term study in Acre, Brazil [31], as well as patterns deter-
mined from our own data set, DBH2 was included in the model to account for the quadratic
relationship between DBH and fruit production. Site was included in the models as a random
factor. Analyses were conducted using the lme4 package of the R 3.10 software platform [96].
Data were log 10 transformed to conform to assumptions of normality and homoscedasticity.
Results were considered statistically significant at P� 0.05.

Results

Stand-level and tree attributes
The total number of Brazil nut trees (� 40 cm DBH) in all five concessions was determined to
be 1741 trees (Alerta 1), 1051 (Alerta 2), 291 (Alegría 3), 547 (Alegría 4), and 576 (Alegría 5).
Local stem density for the same size class was calculated as 0.68 trees ha-1 (Alerta 1), 0.54 trees
ha-1 (Alerta 2), 0.75 trees ha-1 (Alegría 3), 0.57 trees ha-1 (Alegría 4), and 0.58 trees ha-1 (Ale-
gría 5). Mean distance between conspecific reproductive trees was calculated for the five con-
cessions: 56.9 m (Alerta 1), 70.7 m (Alerta 2), 58.1 m (Alegría 3), 60.5 m (Alegría 4), and 81.1
m (Alegría 5).

Average diameter (� 40 cm DBH) found in each of the five concessions (using data from
our sample of 499 Brazil nut trees) was 111.7 cm (Alerta 1), 122 cm (Alerta 2), 131 cm (Alegría
3), 129 cm (Alegría 4), and 132 cm (Alegría 5). In all 5 concessions, DBH ranged from 44.2 to
229.2 cm DBH (Fig 4). The relationship between crown diameter and DBH was significant, but

Fig 3. Scatter plot of relationship between total fruit count and total nut weight (kg), with best fit line and 95%CI. Circles represent 499 Brazil nut
trees (�40 cm DBH), color coded by site (concession).

doi:10.1371/journal.pone.0135464.g003
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not tightly correlated; that is, the crown size was not always a consistent predictor of DBH (Fig
5). Of the 499 trees included in this study, only 1% was� 50 cm DBH and just over 20% had a
diameter� 150 cm DBH. We found that a relatively low percentage of the Brazil nut individu-
als were characterized by a “perfect” crown form—34%. Yet, of the 499 trees, there were very

Fig 4. Density plot, or the estimation of the probability density function (Y) of diameter (DBH, X) of 499 Brazil nut trees (�40 cmDBH).

doi:10.1371/journal.pone.0135464.g004

Fig 5. Scatter plot of relationship between diameter at breast height (cm) and crown diameter (m), with best fit line and 95%CI.

doi:10.1371/journal.pone.0135464.g005
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few trees with poor crown quality (half a circle or less = 26). Slightly less than half (43%) of the
trees were determined to be of the dominant crown position category; only three individuals
were described as suppressed.

The logging landscape
Mean distance from a given Brazil nut individual included in the analysis to the nearest logging
gap was substantial: 364 m. Logging intensity varied strongly between the sites, with some con-
cessions centralizing their activities in selected areas, as opposed to an even distribution of log-
ging activity across landholdings. All concessions engaged in multiple tree ha-1 extraction.
However, we found this more intensive logging strategy to be a rare event in all five conces-
sions, with most extraction limited to 1–2 trees ha-1. Recently felled trees, logged� 5 years
prior to the study (2013), numbered 40 stumps in Alerta 1, 85 stumps in Alerta 2, 14 stumps in
Alegría 3, 39 stumps in Alegría 4, and 37 stumps in Alegría 5.

Fruit and nut production
Median fruit production per tree in 2013 was calculated as 159 fruits (Alerta 1), 216 fruits
(Alerta 2), 218 fruits (Alegría 3), 197 fruits (Alegría 4), and 316 fruits (Alegría 5) (Fig 6). Over-
all mean fruit production per tree calculated from all five concessions was 218.5 fruits per tree.
For those trees located more than 100 m away from the nearest conspecific (� 40 cm DBH),
the mean fruit count per tree was 232. 8. In 2014, the average count was the following: 108
fruits (Alerta 1), 201 fruits (Alerta 2), 175 fruits (Alegría 3), 179 fruits (Alegría 4), and 200 fruits
(Alegría 5), with the overall mean value per tree dropping to 163.3 in 2014 (Fig 6). Remote
trees (� 100 m from nearest conspecific) produced, on average, 165.6 fruits per tree. Only eight
trees in the study produced no fruits in 2013, while 48 were unproductive in 2014 (including
four of the unproductive trees from 2013). Of those unproductive trees in 2014, 46% were from
the Alegría 5 concession, and all had produced fruit the previous year. Median nut weight per
tree across the five concessions in 2013 was 29.03 kg (Alerta 1), 41.8 kg (Alerta 2), 40.4 kg (Ale-
gría 3), 35.05 kg (Alegría 4), and 55 kg (Alegría 5) (Fig 6). Overall nut weight per tree across
the five concessions in 2013 was determined to be 39.4 kg, while those trees labeled as remote
produced, on average, 28.5 kg per tree. In 2014, the mean nut weight per tree for the five con-
cessions was calculated as 18.3 kg (Alerta 1), 38.8 (Alerta 2), 34 kg (Alegría 3), 30.5 kg (Alegría
4), and 37.5 kg (Alegría 5), with a median value of 29.6 kg per tree for all five concessions (Fig
6). The mean nut weight per tree for remote trees in 2014 was 28.5 kg. Fruits were sometimes
smaller than 10 cm in circumference, compared to the more standard 10–16 cm, causing a con-
siderable amount of variability when comparing total nut weight with total fruit count (Fig 3).

Significant production variation was detected by year (P� 0.0001), a finding that remains
consistent with other studies from the region and information gathered from local Brazil nut
concessionaires. Additionally, the following independent variables were identified as strong
influences on total nut weight per tree: year, crown diameter, crown form, crown position, and
presence of liana (Table 1). Our logging-related covariates did not prove to be significant
sources of variation for total nut weight per tree [P = 0.54 (distance to nearest cut stump),
P = 0.09 (local logging intensity); Table 1, Fig 7]. However, we noticed that these effects were
more pronounced in one particular concession, Alegría 4. In contrast to the other concessions,
Alegría 4 demonstrated several instances of high logging intensities (3–4 trees ha-1). When the
data from this concession were analyzed independently of the other concessions we discovered
that distance to logging gap and local logging intensity had a negative influence on an individ-
ual tree’s total nut weight. We could not duplicate these results in other concessions, given the
low logging intensities.

Nut Production in Bertholletia excelsa across a Logged Forest Mosaic

PLOS ONE | DOI:10.1371/journal.pone.0135464 August 13, 2015 11 / 22



Discussion

Variation in total nut weight in relation to logging
Our study specifically targeted the influence of proximity to logging gaps on total nut weight of
Bertholletia individuals, taking into account both tree and stand level attributes. Across two
consecutive fruiting seasons, we saw no significant change in overall per tree nut weight mea-
surements with reference to distance to closest logging gap or logging intensity when data from
all five concessions were analyzed together. This result is not completely surprising, since 399
of the (randomly-selected) 499 Brazil nut trees included in this study were located more than
100 m away from the closest logging gap, suggesting that concessionaires (corroborated during
the interviews) are successfully avoiding Brazil nut trees when carrying out logging operations.
A very large proportion of Brazil nut trees in our sample had well-illuminated crowns (a requi-
site for commercially-viable reproduction in natural forest stands for this species; [90]). This
trend indicates that fruit production in these individuals might be insensitive to logging-medi-
ated canopy disturbances, especially when low intensity logging activities are conducted at least
50 m from the stem in question. And even though we are uncertain as to the source of damage
(given that we have no pre-logging data before 2013), damage levels were not significant to the
point of being an explanatory factor in fruit production.

Although low logging intensities (1–2 trees ha-1) are generally the norm in Madre de Dios
[32, 65], we did see evidence of multiple-tree logging gaps in the case of Alegría 4. Indeed,
when a logging crew reaches a particular part of the forest where several timber trees are
located, it is more economical to take all of these stems at once, rather than just one or two of

Fig 6. Distribution of total fruit count and nut weight (kg) per tree for 499 Brazil nut trees (�40 cmDBH).

doi:10.1371/journal.pone.0135464.g006
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Table 1. Linear repeatedmeasuresmixed effects model analysis with total nut weight per tree as dependent variable.

Estimate Standard error Z value Pr(>|z|)

(Intercept) 3.26 1.04 3.14 �0.01

DBH -0.00 0.01 -0.40 0.70

Log Dist. Logging Gap -0.10 0.17 -0.61 0.54

Year -0.54 0.07 -7.70 �0.0001**

Intensity 2 trees ha-1 -0.01 0.10 -0.07 0.94

Intensity 3 trees ha-1 -0.11 0.29 -0.37 0.72

Intensity 4 trees ha-1 -0.69 0.41 -1.69 0.09

Crown diameter 0.05 0.01 6.57 �0.0001**

Crown form (few branches) -1.28 0.57 -2.25 0.03*

Crown form (full circle) -0.73 0.41 -1.75 0.08

Crown form (half circle) -0.70 0.45 -1.55 0.13

Crown form (irregular circle) -0.83 0.42 -2.01 0.03*

Crown position (dominant) 0.04 0.12 0.36 0.72

Crown position (intermediate) -1.00 0.41 -2.42 0.05*

Crown position (suppressed) 0.04 0.48 0.08 0.94

Distance nearest neighbor -0.00 0.00 -1.17 0.24

Presence liana -0.40 0.15 -2.71 �0.01**

Presence nail 0.04 0.08 0.43 0.69

Presence damage 0.29 0.15 1.90 0.06

DBH*Log Dist. Gap 0.00 0.00 0.94 0.35

doi:10.1371/journal.pone.0135464.t001

Fig 7. Scatter plot of relationship between distance (m) to nearest logging gap (cut stump) and total nut weight (kg), with best fit line and 95%CI.

doi:10.1371/journal.pone.0135464.g007
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them. To recuperate the cost of the trees left behind, the logging crew needs to look for trees of
similar value in other parts of the forest, using up worker hours as well as fuel. This type of situ-
ation is typically characteristic of unplanned operations (see [6, 97]). While not statistically sig-
nificant, a P-value of 0.09 (see Table 1) for the logging intensity variable in this study might be
a call for forest managers to proceed with caution when harvesting at high intensities in Madre
de Dios. Indeed, when data from Alegría 4 were analyzed on their own, local logging intensity
was strongly linked to lower production levels. For example, when comparing the difference in
percent yield between Brazil nut trees associated with a local logging intensity of 1 tree ha-1 and
stems associated with an intensity of 4 trees ha-1, there was a 68% difference in the mean nut
weight values. Other studies have pointed to reduced soil moisture levels in large gaps [98] and
declines in inter-tree pollinator movement [52] due to large gap openings. Thus, it is possible
that increased harvest intensities could induce similar biophysical changes in these forests,
altering the process of fruit production in Bertholletia (see below).

Other explaining factors
Given Bertholletia’s self-incompatible reproductive system, we initially expected fruit produc-
tion to be influenced by distance to nearest conspecific neighbor, but this variable turned out to
be a poor predictor of total nut weight per tree (P = 0.24). Ghazoul et al. [53]’s study of Shorea
siamensis (Dipterocarpaceae), another insect pollinated, self-incompatible species, demon-
strated that fruit production declined once reproductive conspecifics become isolated due to
selective logging. In contrast, Brazil nut trees are protected from felling, and thus there is no
risk of reproductive individuals becoming isolated from their conspecific neighbors. Since the
average distance between reproductive conspecifics of Bertholletia across all five concessions
did not exceed 90 m, bee-mediated pollen flow is probably not constrained at our study sites.
Yet (even though Brazil nut's pollinators can fly over long distances; see [99]) a multiple tree
logging gap located within close proximity of a reproductive Brazil nut stem might alter inter-
tree, flower visitation rates. More complex analyses may be needed to better distinguish the
effect of tree population density (i.e., distance to groups of conspecific neighbors, rather than
distance to single neighbors) as well as extent of canopy disturbance, on fruit production. It is
quite possible that fruit set will be higher for those trees located in a cluster of neighbors, rather
than those with a single close neighbor.

It is important to note that fruit production is highly variable for many tropical forest tree
species (including Brazil nut; [90, 100]), and defining a “typical” year of production is con-
strained by lack of long-term production data. Accordingly, we saw a significant difference (P
�0.0001) in average total nut production per tree between 2013 and 2014. We also observed an
effect of site (concession) on total fruit production per tree. The Alerta 1 concession was con-
sistently the poorest fruit production in both 2013 and 2014 (Fig 5). One explanation is that
this concession is dominated by Guadua spp. (pers. obs.), an arborescent bamboo that is a pow-
erful competitor with even the largest canopy emergents [56–57]. These results confirm local
concessionaires' observations on geographic and temporal variability on tree fecundity, as well
as Brazil nut collectors across the Amazon Basin [29, 101], and other researchers [32, 87, 92].

Concurring with previous studies on Bertholletia fruit production (e.g., [32, 87, 90, 92, 101–
102]), tree size [crown diameter (P�0.0001)] is an important contributing factor to total nut
weight per tree. However, DBH was not an important variable in determining total nut weight
per tree. Although we would have expected a stronger relationship between DBH and total nut
weight, we know that the relationship between DBH and crown diameter in our site is not
completely linear (see Fig 5). Observing the spread of the data, one can see that while the largest
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crowns were consistently the largest producers, the same cannot be said of the DBH covariate,
which has a much weaker relationship with nut weight in our study sites (see Fig 8).

Of the four different crown position categories, only the intermediate one was a good pre-
dictor for total nut weight. While we would have expected the “suppressed” label to be a stron-
ger predictor than “intermediate”, this trend may be an artifact of the subjective nature of the
categories used in recording data, particularly among these two categories. While it is true that
very few trees were classified in these two categories (most of our trees were “dominant” or
“codominant”), thus creating an unbalanced data set, we submit that this issue is typical of
observational data sets. The generalized linear model function, as fitted by the R package lme4,
is particularly effective in dealing with this issue.

Presence of lianas (P�0.01) was also an important variable in explaining fruit production.
Studies from neighboring Acre, Brazil demonstrate strong evidence supporting the removal of
lianas in order to improve fruit production [32, 92]. All five of the concessionaires associated
with this study claim to clean their Brazil nut trees from lianas. Supporting that assertion, of
the 499 Brazil nut individuals included in this study, only 17%, or 86 trees, had lianas present.
Although we did not see an influence of logging damage (or for that matter, any type of dam-
age) to the trees in this study, it is strongly recommended that lianas also be removed in order
to avoid collateral damage to the Brazil nut trees during logging operations (see [103]).

Conclusions
The economic, ecological, and cultural importance of Brazil nut in the tri-frontier MAP region
cannot be overstated. Yet, the diverse values associated with this keystone species cannot deter
smallholders from selling their timber [20], despite potential risks that inevitably accompany
the removal of large trees from the forest. All five concession holders with whom we worked
during this study do not believe that logging has a long-term negative impact on Brazil nut pro-
duction. During our initial meetings, many concessionaires expressed opinions to the contrary,
but they nonetheless believed that the potential income generated from timber sales justified
the risk to their NTFP resource. The belief that logging can be managed sustainably and the
consistent cash flow provided by timber suggest that timber will maintain its status as a key
component of regional local livelihoods.

One constraint to our study was conducting the research in sites that have been consistently
logged for timber for at least three decades. But we posit that exploited and degraded forests
are increasingly the norm in the tropics [104], and that our design (i.e., distance to logging as
one of the principle explanatory variables) was the best compromise to account for possible
changes in production levels barring the presence of an undisturbed forest site (see [45, 93]).
And while we do concede that it is normally be ideal to work with a long-term data set, we have
a large sample size across an extensive geographical area, and results (with the exception of the
site where logging intensity was higher) were consistent across the different concessions during
both years of the study.

Given the results of our study, we suggest that under certain conditions, it is possible to
manage Brazil nut in concert with timber in this region as long as logging crews remain at least
100 m from reproductive Brazil nut trees, providing the basis for proximal compatibility of the
two livelihood strategies. Instituting a buffer zone (similar to those mandated for riparian areas
in forests managed for timber) around individual Brazil nut trees or groves would provide an
added layer of protection from both primary (e.g., direct damage to tree from harvesting activi-
ties) and secondary (e.g., windfall as a result of logging) impacts. Already in Madre de Dios,
such organizations as the Association for the Conservation of the Amazon Basin (ACCA) and
the Federation of Brazil Nut Producers of Madre de Dios (FEPROCAMD) engage in
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concession-scale inventories for reproductive Brazil nut trees. Yet calculating distances of Bra-
zil nut trees from commercial timber trees (in order to facilitate and plan logging operations) is
not yet mandated by the government. In contrast, in neighboring Pando, Bolivia, local NGOs
and the Forest and Land Authority are helping communities to create detailed inventories of
Brazil nut tree populations and their proximity to commercial timber species via the “Inte-
grated Forest Management Plans” [26].

Low logging intensities (1–2 trees ha-1) should always be observed, but especially when it is
necessary to enter the primary grove. Indeed, we recognize that it is unlikely that Brazil nut
concessionaires will consistently avoid areas of high concentration of Brazil nut trees when har-
vesting timber, especially as the demand for timber increases and as stocks deplete within the
concessions. As a comparison, logging intensity levels found in most of these sites is consider-
ably lower (approximately 5–10 m3 ha-1) than what is found in other Brazil nut-rich areas of
the Amazon (15–35 m3 ha-1; [45, 105–106]). Even though most smallholder forest income in
Madre de Dios is still derived from Brazil nuts [107], market demand for timber is increasing
across the Amazon Basin [108], thus limiting the ability of governments to propose and enforce
reduced logging intensities, a practice which would diminish short-term economic return. Risk
of damage to the forest is also increased when third-party loggers become involved, a common
practice in Madre de Dios and the rest of the Amazon (see [109–111]).

Perhaps one of the strongest incentives for forest smallholders (and even larger logging
operations) to keep Brazil nut trees is that the species in question is protected in Bolivia, Brazil,
and Peru. While this restriction may or may not be effective in terms of protecting the natural
resource base in cases of complete deforestation (see [112]), it may be serve as a safeguard for
Brazil nut groves during selective logging operations. There has also been a strong push for the
certification of both timber and Brazil nut in recent years (see [54, 113–114]). Despite varying
degrees of success of that effort, there is still potential for the inclusion of multiple use forest
management mandates in certification criteria, potentially boosting the value of products origi-
nating from these smallholder-managed forests.

The southwestern Amazon region provides an ideal landscape in which to study multiple-
use forestry, given the important roles that both Brazil nut and timber play in the regional
economy. Considering the results we have outlined in this paper, we contend that smallholders

Fig 8. Observed nut weight (kg) data across a range of diameter at breast height (cm) and crown diameter (m) values.

doi:10.1371/journal.pone.0135464.g008
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should precede with caution in regards to timber extraction in Brazil nut concessions. Our
results further provide a platform for discussion on the recently-approved Peruvian Forestry
Law, which states (in its article 57) that timber may be extracted from concessions destined to
NTFP extraction as long as the NTFP resource is maintained [115]. Yet the ability of Brazil nut
concessionaires to adhere to this regulation is limited by the lack of data in our study region.
While a logging permit is required, there is no procedure in place for generating timber inven-
tory data across a particular Brazil nut concession for sound, multiple use planning. This is a
common problem for smallholders not only in Madre de Dios but across the MAP region [18].
Ecological studies that focus on these smallholder systems are critical for generating informa-
tion that could allow forest managers to modify and improve their livelihood strategies. Yet,
there are still many factors missing, including technical and financial support for creating man-
agement plans, widespread implementation of reduced-impact logging methods, control of ille-
gal extraction, incorporation of local knowledge and preferences into government-mandated
forest plans, and promotion of dialogue between different stakeholders [3, 26, 40, 116]. If com-
plementary research efforts can be coordinated with NGOs, regional governments, and small-
holders, information can be generated to develop new management strategies that will help
forest managers pursue two profitable livelihood strategies simultaneously.
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