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Abstract

Background: A frequently used statistic for testing homogeneity in a
meta-analysis of K independent studies is Cochran's ). For a standard test of
homogeneity the @ statistic is referred to a chi-square distribution with K — 1
degrees of freedom. For the situation in which the effects of the studies are
logarithms of odds ratios, the chi-square distribution is much too conservative for
moderate size studies, although it may be asymptotically correct as the individual
studies become large.

Methods: Using a mixture of theoretical results and simulations, we provide
formulas to estimate the shape and scale parameters of a gamma distribution to
fit the distribution of Q.

Results: Simulation studies show that the gamma distribution is a good
approximation to the distribution for Q.

Conclusions: : Use of the gamma distribution instead of the chi-square
distribution for @ should eliminate inaccurate inferences in assessing homogeneity
in a meta-analysis. (A computer program for implementing this test is provided.)
This hypothesis test is competitive with the Breslow-Day test both in accuracy of
level and in power.

Keywords: meta-analysis; 2 x 2 tables; heterogeneity test; interaction test; fixed
effect model; random effects model

Content

1 Background

The combination of the results of several similar studies has many applications
in statistical practice, notably in the meta-analysis of medical and social science
studies and also in multi-center medical trials. An important first step in such a
combination is to decide whether the several studies are sufficiently similar. This
decision is often accomplished via a so-called test of homogeneity. The outcomes of
the studies may be expressed in a variety of effect measures, such as: sample means;
odds ratios, relative risks or risk differences arising from 2 x 2 tables; standardized
mean differences of two arms of the studies; and many more. A variety of statistics
for use in tests of homogeneity have been proposed; some are specific to the type
of effect measure, and some are applicable to several measures.

This paper has its main focus on the test statistic first introduced by Cochran
[1] and [2] and its application to testing homogeneity when the effects of interest
are odds ratios arising from experiments with dichotomous outcomes in treatment
and control arms. Cochran’s @ statistic is defined by @ = ", @Z(@ — gw)Q where
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@- is the effect estimator of the ith study, @,, =, @Z@/ >, Ww; is the weighted
average of the estimators of the effects, and the weight w; is the inverse of the
variance estimator of ith effect estimator. The use of inverse variance weights has
the appealing feature of weighting larger and more accurate studies more heavily
in the weighted mean §w and in the statistic (). This statistic was investigated for
the case that the study effects are normally distributed sample means by Cochran
and also by Welch [3] and James [4]. Perhaps the first application of the @ statistic
to testing homogeneity of the logarithm of odds ratios is due to Woolf in 1955
[5]. DerSimonian and Laird [6] extended the use of @ for studies with binomial
outcomes to difference of proportions as well as to log odds ratios in the context
of the random effects model in which the studies are assumed to be sampled from
a hypothetical population of potential studies. However, the use of @) in a test of
homogeneity is the same whether a random effects or fixed effects model is used.

Under fairly general conditions, in the absence of heterogeneity, @@ will follow
asymptotically (as the individual studies become large) the chi-square distribution
with K — 1 degrees of freedom where K is the number of studies. It is common
practice to assume that @ has this null distribution, regardless of the sizes of the
individual studies or the effect measure. But this null distribution is inaccurate
(except asymptotically), and its use causes inferences based on @ to be inaccurate.
This conclusion of inaccuracy should also apply to inferences based on any statistics
which are derived from @, such as the I? statistic (see [7] and [8]). Little is known
of a theoretical nature about the null distribution of () under non-asymptotic con-
ditions. In our previous work, together with Bjgrkestgl, we have provided improved
approximations to the null distribution of Q when the effect measure of interest is
the standardized mean difference [9] and the risk difference [10]. In this paper we
use a combination of theoretical and simulation results to estimate the mean and
variance of @) when the effects are logarithms of odds ratios. We use these estimated
moments to approximate the null distribution of @) by a gamma distribution and
then apply that distribution in a homogeneity test based on @ (to be denoted @Q-)
that is substantially more accurate than the use of the chi-square distribution. We
also compare the accuracy and power of this test with those of other homogeneity
tests, such as that of Breslow and Day [11]. Briefly, both the accuracy and the power
of our test are comparable to those of the Breslow-Day test (see Sections 3.1 and
3.2).

After introducing notation and the main assumptions in Section 2.1, we proceed
to our study of the moments of @ for log odds ratios in Section 2.2 and to their
estimation in Section 2.3. Results of our simulations of the achieved level and power
of the standard @ test, the Breslow-Day test and the proposed improved test of
homogeneity based on ) are given in Sections 3.1 and 3.2. Section 3.3 contains an
example from the medical literature to illustrate our results and to compare them
to other tests. Section 4 contains a discussion and summary of our conclusions. We
provide information on the design of our simulations in the Appendix; and more
results of the simulations for various sample sizes, including unbalanced designs and
unequal effects, are contained in the accompanying ‘Further Appendices’, together
with additional information about the derivation of our procedures. Our R program
for calculation of the @~ test of homogeneity can be downloaded from the Journal
website.
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2 Methods

2.1 Notation and assumptions

We assume that there are K studies each with two arms, which we call ‘treatment’
and ‘control’ and use the subscripts T and C. The sizes of the arms of the ith
study are np; and ney; let N; = np; + ne; and let ¢; = nei/N;. Data in the arms
have binomial distributions with probabilities pr; and pc;. The effect of interest is
the logarithm of the odds ratio 6; = log[pr:/(1 — pri)] — log[pci/(1 — pei)]. The
null hypothesis to be tested is the equality of the odds ratios (or equivalently their
logarithms) across the several studies, i.e., 6y =--- =0k := 0.

To estimate 6;, we follow Gart, Pettigrew and Thomas [12] who showed that if
successes occur from the binomial distribution Bin(n;p), then among the estimators
of log[p/(1—p)] given by Ly (z) = log[(z+a)/(n—x+a)], the estimator with a = 1/2
has minimum asymptotic bias; and indeed, this is the only choice of a for which all
terms for the bias in the expansion of L,(z) having order O(1/n) vanish. Gart et
al. [12] also show that

1 (1+ 2p)?
np(l—p)  2n2p%(1—p)?

Var[Ly 5] = +0(1/n?) (1)

and suggest the use of the following unbiased estimator of the variance: (z+1/2)~ 1+
(n—2+1/2)71. Accordingly, if 7; and y; are the number of successes in the treatment
and control arms of the ith study, we estimate 6; by 0; = Ly/a(xi) — Lyj2(y:). We
estimate the variance of 6; by

1 1 1 1
»’Ci+1/2+ﬂTi—$i+1/2+yi+1/2+ncz‘—yi+1/2'

Var[d,] = (2)

A weight w; is assigned to the ith study as the inverse of the variance of @-, and
the weight is estimated by w; = \//a\r[@]*l. The weighted average of the log odds
ratio effects is given by @U => @Z@ />, w;. Then Cochran’s @ statistic is defined
as the weighted sum of the squared deviations of the individual effects from the
average; that is,

Q= Z@-(@- —8,)% (3)

The “standard” version of the @ statistic, denoted Qstana does not add 1/2 to the
number of events in both arms when calculating log-odds unless this is required to
define their variances.

The distribution of @ under the null hypothesis of equality of the effects 8; depends
on the value of the common effect #, the number of studies K and the sample
sizes np; and ng;. However additional information is needed to specify a unique
distribution for Q. For example, the common effect § = 0 (that is, the probabilities
for the treatment and control arms are equal), could arise with all probabilities equal
to 1/2 (in both arms of all studies) or with some of the studies having probabilities
of 1/4 in both arms and others having probabilities of 1/3 in both arms. To uniquely
specify a distribution for ), we need to introduce a ‘nuisance’ parameter (; for each
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study. It is convenient to take ¢; = log[pci/(1 — pc:)] to be the log odds for the
control arm of the ith study and to estimate it as described above, i.e., {; = L1 /2(y;).

2.2 The mean and variance of )

The @ statistic has long been known to behave asymptotically, as the sample sizes
become large, as a chi-square distributed random variable with mean K — 1 and
variance, which is necessarily twice the mean, 2( K —1). However, the choice of effect
(e.g., log odds ratio, sample mean, standardized mean difference) has a substantial
impact on the distribution of ) for small to moderate sample sizes, which in turn
affects the use of ) as a statistic for a test of homogeneity. For this section, we shall
use the notation Qgjys for @@ when the effect is a normally distributed sample mean
and Qror when the effect is the logarithm of the odds ratio.

Assuming that the data from the studies are distributed N(u,0?), Welch [3] and
James [4] first studied the moments of Qgps under the null hypothesis of homo-
geneity; using the normality properties, they calculated asymptotic expansions for
the mean and variance of Qgjys, and Welch matched these moments to those of a
re-scaled F-distribution to create a homogeneity test now known as the Welch test.
It is useful, for comparison with Qror, to examine Welch’s mean and variance for
Qsar- Omitting terms of order 1/ nf and smaller, Welch found

E[Qsm] = (K -1 +221_1_/ Woi) (4)

Var[Qsar] = 2(K — 1) +14Zl_1_/ WU) (5)

where W is the sum of the “theoretical”weights n;/o?. Notice the following facts
about these moments. 1) They converge to the chi-square moments as the sam-
ple sizes increase. 2) Both moments are larger than the corresponding chi-square
moments. We shall call the difference between the moments of () and the corre-
sponding chi-square moments: ‘corrections’. 3) The variance is more than twice the
mean. 4) The moments depend on the nuisance parameters o2, which are estimated
independently of the effects of interest (the sample means).

Based on a combination of theoretical expansions and extensive simulations, we
have determined that, when the effect entering into the definition of @ is the log
odds ratio, the mean and variance of Qror (under the null hypothesis of equal odds
ratios) have the following properties. 1) They each converge to the corresponding
chi-square moments of K — 1 and 2(K — 1) as the sample sizes increase. 2) Both
moments are less than the corresponding chi-square moments. That is, the ‘correc-
tions’ are negative rather than positive as for Qgas. 3) The variance is not only
less than the chi-square variance, it is less than twice the mean. 4) The moments
depend on nuisance parameters, which are not independent of the effects.

The two plots of Figure 1 show the relation of the variance of Qropr to its mean
for a representative set of simulations. (See Appendix A for a complete description
of the simulations conducted.) The two plots have identical data, but the points are
colored according to the value of IV in the left plot and according to the value of K
in the right plot. The mean and variance of QQor have been divided by K — 1 in
order to place the data on the same scale. The main message of the right plot (and
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a key finding of our simulations) is that this re-scaling is effective—the different
values of K (5, 10, 20 and 40) are fairly uniformly distributed throughout the plot,
indicating that after this re-scaling the moments of Q;or have little dependence
on the number of studies.

In the plots, we see that the mean of Qrog is less than K — 1, that the variance
of Qror is less than 2(K — 1), and that the variance is less than twice the mean.
We also see in the left plot that the departure of the mean and variance from the
chi-square values of K — 1 and 2(K — 1) (that is, the ‘corrections’) are greater for
the study size N = 90 (i.e., 45 in each arm) than for the study size N = 150. It is
not evident from the graphs, but the ‘corrections’ needed are also greater when the
binomial probabilities pz and pc are more distant from the central value of 1/2.

2.3 Estimating the moments and distribution of Qror

In this section, we outline a method for estimating the mean and variance of Qrog.
The method involves fairly complicated formulas, but in the Appendix we provide
more details and a link to a program in R for carrying out the calculations.

Kulinskaya, et al. [10] presented a very general expansion for the mean of @ for
arbitrary effect measures in terms of the first four central moments of the effect
and nuisance parameters as well as the weight function expressed in terms of these
parameters. Necessary formulas for the application of this expansion to the first
moment of Qror can be found in Appendix B.3. The resulting expansion provides
an approximation to the mean of Qror, which we will denote E;,[Qror] where the
subscript ‘th’ indicates that this expectation is entirely theoretical. It depends on
the number of studies K, the sample sizes of the separate arms of the studies, the
estimated values of the nuisance parameters a-, the values of the estimated weights
and the estimated value of the effect @ under the null hypothesis.

When we compared E,[Qror] with the simulated values for the mean of Qror,
we found that it does an excellent job of identifying the situations where ‘corrections’
are needed to the chi-square moment, but that it over-estimates the size of the
‘correction’ by a constant percentage of slightly more than 1/3 (R* = 97.0%). More
precisely, denoting the mean of Qror by E[Qror], we have the relation

(K —1) = E[Qror] = 0.687[(K — 1) — Esn[Qror]]- (6)

Although this equation is based partly on theoretical calculations and partly on the
results of simulations (the “0.687” factor), we note that after deciding on the use
of the “0.687” factor we conducted new simulations to verify that it was not just
a random consequence of the original simulations. More details on our simulations
for this formula can be found in Appendix B.2.

Kulinskaya et al. [10] also deduced a very general theoretical expansion for the
second moment of @), but when we applied this expansion to Qror and compared
it to our simulations, we found that the expansion is much too inaccurate to be of
any use. We conjecture that this inaccuracy is due to non-uniform convergence of
the expansions with respect to both the number of studies K and the values of the
binomial parameters. Accordingly we have chosen to estimate the variance of Qror
using a quadratic regression formula from our simulations, as seen in Figure 1, but
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using more complete data than shown in those plots. As in the regression for the
mean of Qror we fitted a formula for the variance and then checked it against
additional simulations. (See the Appendix B.2 for more details on our procedures.)
Our formula for estimating Var[Qror] is

Var[Qrogr] = 4.74(K — 1) — 12.17E[Qror] + 9.42E[QLor)? /(K — 1) (7)

The quadratic regression fit, using 487 of our more than 1400 simulations, had an
R? value of 98.5%. In using this equation, we first need to calculate E[QLor] using
Equation 6. This quadratic regression is depicted by the black curve on the right
plot of Figure 1.

Although we do not have a theoretical justification for using a quadratic relation
between the mean and variance of @), such a functional relation between the mean
and the variance of @ is often found under various conditions. For examples, in the
asymptotic chi-square distribution of @, the variance (twice the mean) is a linear
function of the mean; and in the normally distributed sample mean situation of
Equations (4) and (5), a little algebra shows that again the variance is a linear
function of the mean. Further, in a common one-way random effects model, [13]
show that the variance of () is a quadratic function of the mean.

Our simulations show that the family of gamma distributions fits the distribution
of Qror quite well. By matching the mean and variance of Qo with the mean and
variance of a gamma distribution, we arrive at an approximation for the distribution
of Qrogr which can be used to conduct a test of homogeneity for the equality of log
odds ratios using Qror as the test statistic. (The shape parameter « of the gamma
distribution is estimated by a = E[Qror]?/Var|Qror], and the scale parameter 3
is estimated by 5 = Var|Qror]/E[QLor].) The accuracy of this test statistic and
a comparison with other test statistics are discussed in the next section.

3 Results

3.1 Accuracy of the level of the homogeneity test

In this section we present the results of extensive simulations designed to analyze
the accuracy of the levels of the test of homogeneity of log odds ratios using the
Q statistic together with the gamma distribution estimated from the data by the
methods of Section 2.3. We denote this test by Q. The use of simulations to de-
termine the accuracy of various different tests of homogeneity of log odds ratios
has often been discussed in the literature. See, for example, Schmidt, et al. [14],
Bhaumik, et al. [15], Bagheri, et al. [16], Lui and Chang [17], Gavaghan, et al. [18],
Reis, et al. [19], Paul and Donner [20], [21], and Jones, et al. [22]. Our simulations
included comparisons with some of the tests proposed by these authors. The com-
parisons of ours confirmed (as several of the above authors also discovered) that the
Breslow-Day [11] (denoted by BD) is often the best available among the previously
considered tests.

The Breslow-Day test for homogeneity of odds-ratios is based on the statistic
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where z;, X J(zﬁ) and Var(a:jh[)) denote the observed number, the expected number
and the asymptotic variance of the number of events in the treatment arm of the
jth study given the overall Mantel-Haenszel odds ratio ’(/AJ, respectively. Its distri-
bution is approximated by the x? distribution with K — 1 degrees of freedom. We
found that using the Tarone [23] correction to the Breslow-Day test had such small
differences from BD that the two were virtually equivalent. In addition to the BD
and Tarone tests, we simulated proposals by Lui and Chang [17] for testing the ho-
mogeneity of log odds ratios based on the normal approximation to the distribution
of the z-, square-root and log-transformed Qgtqnq statistic. The log-transformation
was also suggested by Bhaumik, et al. [15]. We do not report these results due
to our conclusion that none were superior to BD. Accordingly, in our compara-
tive graphs below, we compare our ) test with BD and with the commonly used
test (denoted @,2), which uses the standard statistic Qstana (calculated without
adding 1/2 to the numbers of events when calculating log-odds) together with the
chi-square distribution.

Our simulations for testing the null hypothesis of equal odds ratios (all conducted
subsequent to the adoption of the regressions of Equations 6 and 7) are of two
types. For the first type, the parameters of all studies are identical; these simulations
include the following parameters: number of studies K = 5, 10, 20 and 40; total
study sizes N = 90, 150, and 210; proportion of the study size in the control arm
q = 1/3, 1/2, 2/3; null hypothesis value of the log odds ratio § = 0, 0.5, 1, 1.5, 2,
and 3; and the log odds of the control arm ¢ = 2.2 (pc = 0.1), -1.4 (pc = 0.2)
and —0.4 (pc = 0.4). The second type of simulation fixes the null hypothesis values
of equal log odds ratio at § = 0, 0.5, 1, 1.5, 2, and 3, but the individual studies
are quite heterogeneous concerning all other parameters. For example, for a null
value of 8 = 0.5 and K = 5 studies, one configuration with an average study size
of 150 has different sample sizes of 96, 108, 114, 120, 312, each divided equally
between the two arms (¢ = 1/2) and different control arm probabilities pc of 0.15,
0.3, 0.45, 0.6, and 0.75; note that the condition # = 0.5 when used with the five
different control arm probabilities then uniquely specifies five probabilities pr for
the treatment arms. A complete description of the heterogeneous simulations can
be found in Appendix A. When K = 5, 10 and 20, all simulations were replicated
10,000 times and thus approximate 95% confidence intervals for the achieved levels
are £0.004; but when K = 40, the simulations were replicated only 1,000 times,
giving approximate 95% confidence intervals for the levels of +0.014.

The first panel of graphs (see Figure 2) shows the achieved levels, at the nominal
level of 0.05, for the three tests plotted against the different null values of 6 in the
range 0 to 3 under the configuration in which all K studies have identical parameters
and the study sizes are N = 90 with the subjects split equally between the two arms
(¢ = 1/2). The twelve graphs in the panel use K = 5, 10, 20 and 40; and pc = 0.1,
0.2, and 0.4. Note that the achieved levels for both BD and @ are almost always
in the range 0.04 to 0.06, with BD slightly better for many situations, but with
Q) occasionally slightly better. The test @, is almost always inferior; and when
pc = 0.1, it is much too conservative (not rejecting the null hypothesis frequently
enough); indeed, when 6 = 0, the achieved levels for Q,2 are less than 0.01. In the
four right graphs, when pc = 0.4, we see that all three tests perform well when
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0 < 0 < 1.5; these parameters correspond to ppr = 0.4, 0.52, 0.64 and 0.75. We
also note that in the fairly extreme situation when 6 = 3 and pc = 0.4 (and hence
pr = 0.93) the quality of all the tests worsens, however BD performs best here and
Q2 performs very badly.

These results for the test @, are perhaps more easily understood when expressed
in terms of the natural parameters, the binomial probabilities po and pr, rather
than the log odds ratio . We see that @, is extremely conservative whenever either
binomial parameter is far from the central values of 0.5, but that its performance is
reasonable when the binomial parameters are relatively close to the central values
of 0.5.

Figure 2 is representative of a number of additional panels of graphs for equal
study sizes which can be found in Appendix B.1, Figures 9 and 10. There we have
included panels of graphs first for balanced arms with study sizes of 150 and 210.
These panels are quite similar to the one presented in Figure 2 except that all
levels become closer to the nominal level of 0.05 as the study size increases from 90
to 150 to 210. This behavior is consistent with the known fact that the tests are
asymptotically correct as the study sizes tend to co. However, we note that even
when N = 210, the test @, is still quite conservative when pc = 0.1.

Appendix B.1 contains two additional panels of graphs (Figures 11 and 12) which
are analogous to the panel in Figure 2 except that the two arms of each study are
unbalanced. In the first of these, all studies have twice the number of subjects in
the treatment arm (¢ = 1/3) and the second is reversed with all studies having
twice the number of subjects in the control arm (¢ = 2/3). The results are similar
to those of Figure 2 with the following modified conclusions. When ¢ = 1/3 and
pe = 0.1, the Q,» test is particularly conservative, rejecting the null hypothesis less
than 1% of the time, independent of the number of studies K. Generally both the
BD test and the @) tests are reasonably close to nominal level, but the BD test is
mostly (but not always) somewhat better than the @~ test. When 6 = 3, all tests
experience a decline in accuracy, with the BD test mostly superior.

Figure 3 is a typical example showing the achieved levels for one set of configura-
tions in which all the studies are distinct. Here the studies are of average size 150.
When K = 5, the total study sizes are 96, 108, 114, 120, 312; in selecting these
sizes, we have followed a suggestion of Sdnchez-Meca and Marin-Martinez [24] who
selected study sizes having the skewness 1.464, which they considered typical for
meta-analyses in behavioral and health sciences. For a given 6 the five studies had
different values for the control arm and treatment arm probabilities (see Appendix A
for details). For K = 10, 20 and 40, the parameters for K = 5 were repeated 2, 4
and 8 times respectively. We see that BD and @), are fairly close in outcome with
achieved levels almost always between 0.045 and 0.055, while the levels for Q-
mostly cluster around 0.04. Note that the performance of @, is somewhat better
than seen in Figure 2 for two reasons. First, the study sizes are larger (average of
150 rather than all having size 90); and second, because the binomial parameters
vary among the different studies, many of them are closer to the central values of
0.5 where we have seen that the performance of the (),2 test improves.

It is worth noting that when we conducted simulations for the average sample size
of 90 for the same scenario (so that the sample sizes were 36, 48, 54, 60, 252), we
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discovered that the Breslow-Day test does not perform well and may even not be
defined for large numbers of studies K due to the sparsity of the data. This is the
reason that, for comparative purposes, we use larger sample sizes in Figure 3 than
used in Figure 2.

3.2 Power of the homogeneity test

In this section we report on the results from our (limited) simulations of power
of the three tests: the @, BD and Q,2 tests. Power comparisons are not really
appropriate when the levels are inaccurate and differ across the tests. Unfortunately
it is impossible to equalize the levels or adjust for the differences. Nevertheless we
consider power comparisons at a nominal level of 0.05 to be important to inform
the practice. We have performed simulations only for the case of K identical studies
with balanced sample sizes (¢ = 1/2). The values for the total study sizes N, the
number of studies K, control arm probabilities pc and the common log-odds ratio
# were identical to those used in simulating the levels for the identical studies given
in Section 3.1. For each combination of N, K, pc, 6, according to the random
effects model of meta-analysis, we simulated K within-studies log odds ratios 6;
from the N(6,72) distribution for the values of the heterogeneity parameter 7 from
0 to 0.9 in the increments of 0.1. Given the values of pc and 6;, we next calculated
the probabilities in the treatment groups pr; and simulated the numbers of the
study outcomes from the binomial distributions Bin(n;,pc) and Bin(n,, pr;) for
1=1,---, K. All simulations were replicated 1000 times.

The first panel of graphs (see Figure 4) shows the power for the three tests when
6 = 0 plotted against the different values of heterogeneity parameter 7 in the range
0 to 0.9 under the configuration in which all K studies have identical parameters,
the study sizes are N = 90 with the subjects split equally between the two arms
(¢ = 1/2). The twelve graphs in the panel use K = 5, 10, 20 and 40; and pc = 0.1,
0.2, and 0.4.

Note that the power for both BD and @, are almost always higher than for Q,:,
with the difference being especially pronounced for pc = 0.1. The inferiority of
Q> is due to its conservativeness noted in the Section 3.1. There is no clear-cut
winner between the BD and the @, with BD slightly better for some situations,
but slightly worse for others. In the three right graphs, when pc = 0.4, we see that
all three tests perform equally well.

The second panel of graphs (see Figure 5) shows the power for the three tests
when 6 = 3. The power of the (),» test is still the lowest of the three tests. But
here the power of the Q) test appears to be somewhat higher then for the BD when
pc = 0.1, about the same when pc = 0.2, and noticeably lower in the extreme
situation when pc = 0.4. These differences in power between the BD and @ tests
are both the consequences of the fact that the @ test is somewhat liberal for
pc = 0.1 and somewhat conservative for pc = 0.4, as can be seen from Figure 2.
The BD test is the closest to the nominal level in these circumstances.

3.3 Example: a meta-analysis of Stead et al. (2013)

This section illustrates the theory of Sections 2.2 and 2.3 and gives an indication
of the improvement in accuracy of the homogeneity test. The calculations can be
performed using our computer program.
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We use the data from the review by Stead et al. [25] of clinical trials on the use of
physician advice for smoking cessation. Comparison 03.01.04 [25, p.65] considered
the subgroup of interventions involving only one visit. We use odds ratio in our
analysis below although relative risk was used in the original review. The first
version of the review was published in 2001. Update 2, published in 2004, included
17 studies for this comparison. Summary data and the results from the standard
analysis of these 17 trials are found in Figure 6, produced by the R package meta
[26]. Note that meta does not add 1/2 to the number of events in calculation of
the log-odds, and therefore calculates the standard statistic Qstqnq for the test of
homogeneity.

The value of Cochran’s () statistic is 25.023. The standard chi-square approx-
imation with 16 df yields the p-value of 0.069 for the test for homogeneity. The
estimated mean E.,[Q] of the null distribution of @ is 14.18 and the corrected
mean using Equation 6 is E[Q] = 14.75. The estimated variance calculated from
Equation 7 is 24.43. The parameters of the approximating gamma distribution are
a = 8.90 and S = 1.66. The p-value using this gamma distribution is 0.037. The
Breslow-Day statistic value is 26.22 and the p-value is 0.051; the Tarone correction
provides the same values to 4 decimal places. To evaluate the correctness of these
p-values, we simulated one million values of @) from the fixed null distribution with
each study having the null value 6,, = 1.58 for the odds ratio together with the
original individual values for the control parameters pc;. The conclusion, based on
the empirical results, is that the p-value should be 0.0330. Thus for this example,
the gamma distribution result is closest to that given by the simulations and the
standard chi-square value is furthest.

The most current version of the review (Update 4) contains only one more trial by
Unrod (2007) for this comparison. The values are eventy = 28, evente = 18, ny =
237, nc = 228. With the addition of these data, the test of heterogeneity results
in @ = 25.023, and the p-value of 0.094 is obtained by the standard chi-square
approximation with 17 df. Our method results in E;,[Q] = 15.14, and the corrected
value E[Q] = 15.72, Var[Q] = 26.22, with the gamma distribution parameters o =
9.43 and 8 = 1.67. The p-value from the gamma approximation is 0.055. The
BD test statistic is 26.22 and its p-value is 0.071; the Tarone correction, once more,
results in the same values to 4 decimal places. Another set of one million simulations
from the null distribution yielded the empirical p-value of 0.0497.

For the data in these two examples, the gamma approximation results in lower
and more accurate p-values than the p-values of both the standard chi-square ap-
proximation and the Breslow-Day test. However, in our more extensive simulations
there were cases in which the Breslow-Day test was superior. Note that this example
has fairly low numbers of events (between 1% and 5% for many studies), which, as
mentioned at the end of Section 3.1, is a situation where the Breslow-Day test may
struggle.

Figures 7 and 8 provide a comparison which indicates the excellence of the fit of
our gamma approximation to the entire distribution of () and the poor fit of the chi-
square approximation. Using the data of Stead et al. with 17 studies, we simulated
10,000 values of @ to provide an empirical distribution of Q. Figure 7 shows the
fit of our estimated gamma distribution (o« = 8.90 and 8 = 1.66). Note that the
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fit is quite good throughout the entire empirical distribution. On the other hand,
Figure 8 shows that the empirical distribution of ) departs substantially from the
chi-square distribution with 16 df, again throughout the entire distribution.

4 Conclusions and discussion

Cochran’s @ statistic is a popular choice for conducting a homogeneity test in meta-
analysis and in multi-center trials. However users must be cautious in referring @
to a chi-square distribution when the study sizes are small or moderate. Here we
have studied the distribution of @ when the effects of interest are (the logarithms
of) odds ratios between two arms of the individual studies. We have shown that the
distribution of () in these circumstances does not follow a chi-square distribution,
especially if the binomial probability in at least one of the two arms is far from the
central value of 0.5, say outside the interval [0.3,0.7]. Further, the convergence of the
distribution of ) to the asymptotically correct chi-square distribution is relatively
slow as the sizes of the studies increase.

The mean and variance of @ (when the effects are log odds ratios and under the
null hypothesis of homogeneity) are often substantially less than the corresponding
chi-square values. We have provided formulas for estimating these moments and
have found that matching these moments to those of a gamma distribution provides
a good fit to the distribution of . The use of this distribution for @ yields a
reasonably good test of homogeneity (denoted (),) which is competitive with the
well known Breslow-Day test both in accuracy of level and in power. However, this
Q- test does not seem to be superior (either in accuracy of level or in power) to the
Breslow-Day test. Accordingly we recommend that the Breslow-Day test be used
routinely for testing the homogeneity of odds ratios.

We note that when the data are very sparse, the Breslow-Day test does not per-
form well and may even not be defined. We have met this difficulty in our unequal
simulations described in Section 3.1. The @, test is always well defined and is
recommended for use in such situations.

In our study of the moments of @Q for log odds ratios, we found that the variance
of @@ can be well approximated by a function of the mean of (). Thus when fitting a
gamma distribution to @, at least approximately, the resulting distribution comes
from a one parameter sub-family of the gamma family of distributions. The chi-
square distributions also form a one parameter sub-family of the gamma family,
but our conclusion is that it is the wrong sub-family to apply to @Q. Intuitively, one
would expect that a two parameter family of distributions would be needed because
two independent binomial parameters (pr and pc) for each study enter into the
definition of Q. Thus it would be of interest to have a theoretical explanation of
this property of Q, but we have been unable to provide this explanation.

The @ statistic with its distribution approximated by the chi-square distribution
is widely used not only for testing homogeneity, but perhaps a more widespread and
more important use is its application to estimate the random variance component 72
in a random effects model. Numerous moment-based estimation techniques, such as
the very popular DerSimonian-Laird [6, 27] and Mandel-Paule [28, 29] methods use
the first moment (K — 1) and the chi-square percentiles applied to the distribution
of @ to provide, respectively, point and interval estimation of 72. The latter is
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achieved through ‘profiling’ the distribution of @Q, i.e., inverting the @ test (see
Viechtbauer [27]). From our previous work with Bjgrkestgl on the homogeneity test
for standardized mean differences [9] and for the risk differences [10], it is clear that
the non-asymptotic distribution of @) strongly depends on the effect of interest. This
conclusion is confirmed here for Q when the effects are log odds ratios. The use of
the correct moments and improved approximations to the distribution of @ for the
point and interval estimation of 72 for a variety of different effect measures may
provide greatly improved estimators, especially for small values of heterogeneity
and will be the subject of our further work.

5 List of abbreviations used
LOR: log-odds ratio

BD: the Breslow-Day test

Appendix A: Information about the simulations

All of our simulations for assessing the accuracy of the levels and the power of var-
ious homogeneity tests used K studies with K = 5, 10, 20 and 40. All simulations
were replicated 10,000 times for K = 5, 10 and 20, and (due to time considerations)
only 1000 times for K = 40, unless stated otherwise. The set of simulations with
all studies having identical parameters were as follows: study size N = 90, 150 and
210; proportion of each study in the control arm ¢= 1/2, 1/3 and 2/3; log odds
ratio (null hypothesis) § = 0, 0.5, 1.0, 1.5, 2.0 and 3.0; and binomial probabilities in
the control arm pc = 0.1, 0.2 and 0.4. It is easier and more intuitive to select values
of pc than to select values of the actual nuisance parameter ¢ = log(pc)—log(1—pc).

For the simulations using unequal parameters among the various studies, the
parameter choices can be described as follows. For K = 5, we use three vectors
of study sizes: < N >=< 36,48,54,60,252 >; < 96,108,114,120,312 >; and <
163,173,178,184,352 >. These three vectors have average study sizes 90, 150 and
210 respectively, which corresponds to the study sizes of the equal simulations. The
null hypothesis values of the log odds ratio 8 are 0, 0.5, 1.0, 1.5, 2 and 3. For each
fixed value of 6, we chose five values of pc with the goal of keeping pr away from
1.0 (see below for these values). Denote the vector of these values of pc by < P >
and the vector of the same values but in reverse order by <~ P >. From 6 and
< P >, it is easy to calculate the corresponding values of pr; although these are
not needed here, we include the approximate range of pr for information purposes.

0=0 < P >=<0.1,0.3,0.5,0.7,0.9 > the range of pr is [0.1, 0.9]

=05 < P>=<0.15,0.3,0.45,0.6,0.75 >  the range of pr is [0.22, 0.83]
=10 < P>=<0.1,0.25,0.4,0.55,0.7 > the range of pr is [0.23, 0.86]
=15 <P >=<0.1,0.25,0.4,0.55,0.7 > the range of pr is [0.33, 0.91]
=2 <P >=<0.1,0.2,0.3,0.4,0.5 > the range of pr is [0.45, 0.88]

0=3 < P >=<0.1,0.17,0.24,0.31,0.38 >  the range of pr is [0.69, 0.92]
For K = 5, we conducted simulations for each value of 6 pairing the first value

of < N > with the first value of < P >, etc. which we denote ‘order = 1’, and
then we pair the first value of < N > with the first value of <~ P >, etc, which
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we denote ‘order = 2’. By reversing the orders, we first pair the largest study size
with the largest binomial probability and then pair the largest study size with the
smallest binomial probability. We used balanced studies for these simulations (i.e.,
g =1/2). For K = 10, we repeat these pairings twice, and for K = 20 and K = 40
the vectors of study sizes and control arm probabilities are repeated 4 and 8 times
respectively.

We conducted many additional simulations with unequal size studies, some with
all control probabilities equal except for 20% of the studies which had different
control probabilities, and some with one or more of the studies being unbalanced
(g = 1/3 and g = 2/3). These simulations did not add substantial information to
our conclusions, so they are not reported here.

For the power simulations we only considered the case of K studies with the
above identical parameters (including the values of the common log odds ratio 6)
and balanced sample sizes (¢ = 1/2). For each combination of N, K, p¢, 6, accord-
ing to the random effects model of meta-analysis, we simulated K within-studies
log odds ratios 6; from the N (6, 72) distribution for the values of the heterogeneity
parameter 7 from 0 to 0.9 in the increments of 0.1. Given the values of po and
0;, we next calculated the probabilities in the treatment groups pr; and simulated
the numbers of the study outcomes from the binomial distributions Bin(n,, pc) and
Bin(n;,pr;) for i =1,---, K. All simulations were replicated 1000 times.
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Appendix B

B.1 Additional graphs for accuracy of level and for power

The first two figures of this Appendix are similar to Figure 2 of the main article
with the change being that the study sizes are 150 (instead of 90) in Figure 9 and
210 in Figure 10. These panels are quite similar to the one presented in Figure 2
except that all levels become closer to the nominal level of 0.05 as the study size
increases from 90 to 150 to 210. This behavior is consistent with the known fact that
the tests are asymptotically correct as the study sizes tend to co. However, we note
that even when N = 210, the test @, is still quite conservative when pc = 0.1.

Figures 11 and 12 contain additional panels of graphs analogous to that in Fig-
ure 2 of the main article with the exception that the two arms of each study are
unbalanced. In the first of these, all studies have twice the number of subjects in
the treatment arm (¢ = 1/3) and the second is reversed with all studies having
twice the number of subjects in the control arm. The results are similar to those of
Figure 2 with the following modified conclusions. When ¢ = 1/3 and pc = 0.1, the
Q2 test is particularly conservative, rejecting the null hypothesis less than 1% of
the time, independent of the number of studies K. Generally both the BD test and
the @) test are reasonably close to nominal level, but the BD test is mostly (but
not always) somewhat better than the @) test. When 6 = 3, all tests experience a
decline in accuracy, with the BD test mostly superior.

The final two figures in this appendix are analogous to Figures 4 and 5 in the
main article, comparing the power of the three tests ), BD and Q,> when the log
odds ratio is 0 and 3 respectively. The panels here (Figures 13 and 14) differ in that
the sample sizes have been increased from N = 90 to N = 150. Qualitatively the
plots here are quite similar to those in the main article, with the main difference,
as would be expected, being that the power when N = 150 is somewhat greater
than when N = 90. As before, (), and BD have similar power while @Q,> is most
inferior in the two cases: § = 0 and pc = 0.1; and 8 = 3 and pc = 0.4. These two
cases share the property that one or both of the binomial probabilities is far from
the central value of 0.5; in the first case, pc = pr = 0.1 and in the second case,
pr = 0.93.
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B.2 Information about formulas for mean and variance of Qror
In this appendix we present additional information concerning the data and methods
that entered into Equations 6 and 7 which provide formulas for estimating the mean
and variance of Q,or under the null hypothesis of equal odds ratios. The data for
Equation 6 include 648 parameter combinations in which all K studies had identical
parameters. The parameters are: K = 5, 10, 20, 40; N = 90, 150, 210; ¢ = 1/3, 1/2,
2/3; pc=0.1, 0.2, 0.4; and 6 = 0, 0.5, 1, 1.5, 2, 3. The simulations for K = 40 were
replicated 1,000 times, and the other simulations were replicated 10,000 times.
For each combination of parameters, we calculated an estimate of the mean of
Qror (to be denoted simply @ in this section) using the theoretical expansion of
Kulinskaya, et al., [10]. We denote this quantity by E:;[Q]. For each parameter
combination, we also found the mean of () from the simulations, which we denote
by Qbar. These two quantities were then divided by K — 1 to place the data on
a scale common for all K. A scatter plot with a fitted line is found in Figure 15.
Note that the fitted line (which has an R? value of 97.0%) essentially goes through
the point (1,1); the importance of the fitted line going through (1,1) is that both
estimates agree when there is zero ‘correction’ from the re-scaled chi-square mo-
ment. Thus we subtracted 1 from both variables in Figure 15 and fit a regression
through the origin, yielding a relation which we use to adjust the ‘corrections’ to
the chi-square first moments K — 1 which are given by the the expansion E;,[Q].
This relation is found in Equation 6 of the main paper. (The four outliers in the
lower left of Figure 15 belong to the extreme parameter values § = 3, N = 90,
q = 2/3, pr = 0.93, pc = 0.4 and for the four values of K = 5, 10, 20 and 40;
omitting them made very little difference in the regression, so they were included
in the analysis.) Simulations for all of the parameter configurations that entered
into Equation 6 of the main paper were redone, and these new simulations were the
ones used in analyzing the accuracy of our test Q.

To arrive at the relation in Equation 7, we used simulations for 486 parameter
combinations in which all K studies have the same parameters: K = 5, 10, 20; N =
90, 150, 210; ¢ = 1/3, 1/2, 2/3; pc = 0.1, 0.2, 0.4; and § = 0, 0.5, 1, 1.5, 2, 3, each
replicated 10,000 times. For each parameter combination, let Qbar be the mean of
the 10,000 values of @ and VarQbar be the variance of these 10,000 values of @,
and re-scale these values by dividing by K — 1. Figure 16 contains a scatter plot
of these data together with a quadratic function fit. The quadratic fit has an R?
value of 98.5%. We have used this regression in Equation 7 of the main article. We
note again that simulations for all of the parameter configurations that entered into
Equation 7 of the main paper were redone, and these new simulations were the ones
used in analyzing the accuracy of our test Q).

B.3 The general expansion for the first moment of @ applied to Qror

The general expansion for the first moment of @ (denoted E;,[Q] in Section 2.3) as
found in Kulinskaya, et al. [10] is reproduced at the end of this appendix. In the
formulas below, we use the notation ©; = @ —0; and Z; = Zl — (;; also, we express
the weight estimators as functions of the parameter estimators w; = fz(é\l, @) The
theoretical weights under the null hypothesis are then w; = f;(6, (;). For the weights
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as defined in Equation 2 of the main artlcle, some algebra produces the formula for
the weight function

~ -~ -~ _1
(1 + efitci)? N (1+ei)?

Bi = fi(6:,G;) = . —
(np; + Defit6  (ng; + 1)es

(®)

The formulas below require that the central moments of 52 and EZ satisfy the fol-
lowing order conditions: O(E[©;]) = 1/n?, O(E[0?]) = 1/n;, O(E[0?]) = 1/n? and
O(E[0©%]) = 1/n? and similar conditions for the central moments of ZZ These order
conditions for the specific case of the estimators of the log odds ratio (as defined
in Section 2.1) follow from the work of Gart, et al. [12]. However, instead of using
the approximations for the central moments given by Gart, et al., our R-program
calculates these exactly.

The derivation of the expansion is a straightforward application of the delta
method in which @ is first expanded in a multivariate Taylor series centered at
the null hypothesis and then expectations are taken of the resulting expansion,
keeping only those terms of order O(1) and O(1/n). For the Taylor expansion of @,
we consider () as a function of the estimators of the effect and nuisance parameters
as follows:

Q = > @0 —0,)*=Q0,....0k @1, ... 0K

Q[é\lr"aé\Kafl(é\lel)v'"afK(§K7ZK)]'

Under the null hypothesis all the effect parameter values are equal; that is, 6; =
-+ = 0k, and we denote this common value by 6. The desired Taylor expansion of
Q is centered at 6 := @,...,0,¢,. ., Ck)-

BulQ) = % > 82%2‘7) o+ 5 ? T+ %Z ZZ?{;?E[@fZi] ()
- 24 A 8365)4 o) é z 37+ iz g;%(gm@fzf]
i Z Z 802692 ol ; 2 556,58, 09, agae agj E16. 21116, 2]
i ZZ 69269 agj OuE ;Z 8928 2 B2 + 0 <nl )

For the derivatives of @ needed in the above expansion. we use the notation
W = Zi w; and U; = 1 — w;/W and evaluate all derivatives at the null hypothesis.
All multi-index derivatives assume inequality of the indices ¢ and j.
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Figure 1 Variance vs mean of Q This scatter plot of Var[Q]/(K — 1) vs. E[Q]/(K — 1) contains
the results of simulations of the moments of Qor for the 144 configurations of parameters:

K =5, 10, 20, 40; N = 90, 150, divided equally into the two arms; log odds ratios: 0, 0.5, 1, 1.5,
2, 3; and control probabilities: 0.1, 0.2, 0.4. The studies in each simulation all have the same
parameters. The simulations for each configuration were replicated 10,000 times. The grey
reference line (Var[Q] = 2E[Q]) indicates the relation that would be expected if Q followed a
chi-square distribution. Left: N = 90 black and N = 150 red. Right: K =5 (black), K =10
(red), K = 20 (blue) and K = 40 (green). The black curve corresponds to the fitted quadratic
equation Var[Qror|/(K — 1) = 4.74 — 12.17E[Qror]/(K — 1) + 9.42[E[Qror]/(K — 1)]2.




Kulinskaya and Dollinger

01 W0, 605, K=5,pC=04
g
>
14
[
>,
0
T T T T T T T T T T T T T T T T T T
w 05 w 5 u Kl o 05 10 15 0 3 [l 05 uw 15 u K
] [} ]
0,08, =20, 1001 N5, =20, =02 0,208, =20, =04
5°
>
0

00,005, K240, pC=01 140,005, K=40,pC =02

lever
lever
lever

Figure 2 Achieved levels for homogeneous studies, N = 90 Comparison of achieved levels, at
the nominal level of 0.05, for the three tests Q- (solid line), BD (dot-dash), and Q, 2 (dash)
plotted against the log odds ratio 6. Here all studies have the same parameters: 90 subjects in
each study with equal arms of 45 each (N =90 and ¢ = 1/2).
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Figure 3 Achieved levels for heterogeneous studies, N = 150 Comparison of achieved levels, at
the nominal level of 0.05, for the three tests Qy (solid line), BD (dot-dash), and Q, 2 (dash)
plotted against the log odds ratio 0 for heterogeneous studies. Here the studies have average size
150 divided equally between arms, but the study sizes and the binomial parameters vary for each

study. In the left graphs, the smallest control probabilities are paired with the smallest study sizes.
In the right graphs, the smallest control probabilities are paired with the largest study sizes.
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Figure 4 Power when the log odds ratio 8 = 0 Comparison of power for the three tests Q-
(solid line), BD (dot-dash), and Q, 2 (dash) plotted against 7, the square root of the random
variance component 72. Here all studies have the parameters: 90 subjects in each study with
equal arms of 45 each (N = 90 and ¢ = 1/2) and the log odds ratio 6 = 0.
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Figure 5 Power when the log odds ratio 8 = 3 Comparison of power for the three tests Q-
(solid line), BD (dot-dash), and Q, 2 (dash) plotted against 7, the square root of the random
variance component 72. Here all studies have the parameters: 90 subjects in each study with
equal arms of 45 each (N = 90 and ¢ = 1/2) and the log odds ratio 6 = 3.
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Figure 6 Forest plot of the meta-analysis by Stead et al. [25]. Forest plot of the meta-analysis
by Stead et al. (2013) including 17 pre-2004 studies only, produced by the R package meta [26].
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Figure 7 Quality of fit of the gamma approximation Quality of fit of the gamma approximation
(e =8.90 and B = 1.66) to the empirical distribution of @ using the data of Stead et al. (2013)
with 17 studies, produced by the R package fitdistrplus [30].
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Figure 8 Quality of fit of the chi-square approximation Quality of fit of the chi-square (16
degrees of freedom) approximation to the empirical distribution of Q) using the data of Stead et
al. (2013) with 17 studies, produced by the R package fitdistrplus [30].
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Figure 9 Achieved levels for homogeneous studies, N = 150 Achieved levels for the three tests
Q~ (solid line), BD (dot-dash), and Q, 2 (dash) plotted against the log odds ratio 0. Here all
studies have the same parameters: 150 subjects in each study with equal arms of 75 each
(N =150 and ¢ = 1/2).
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Figure 10 Achieved levels for homogeneous studies, N = 210 Achieved levels for the three
tests @~ (solid line), BD (dot-dash), and @, 2 (dash) plotted against the log odds ratio 6. Here
all studies have the same parameters: 210 subjects in each study with equal arms of 105 each
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Figure 11 Achieved levels for homogeneous studies, N = 90, q = 1/3 Achieved levels for the
three tests Q0 (solid line), BD (dot-dash), and Q2 (d:a\sh) plotted against the log odds ratio 0.
Here all studies have the same parameters: 90 subjects in each study with unequal arms with 60 in
the treatment arm (N = 90 and ¢ = 1/3).
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Figure 12 Achieved levels for homogeneous studies, N = 90, q = 2/3 Achieved levels for the
three tests Q (solid line), BD (dot-dash), and Q.2 (dash) plotted against the log odds ratio 6.
Here all studies have the same parameters: 90 subjects in each study with unequal arms with 30 in
the treatment arm (N = 90 and ¢ = 2/3).
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Figure 13 Power when the log odds ratio & = 0 and N = 150 Power for the three tests (0
(solid line), BD (dot-dash), and Q, 2 (dash) plotted against 7, the square root of the random
effect variance. Here all studies have the parameters: 150 subjects in each study with equal arms
of 75 each (N = 150 and ¢ = 1/2) and the log odds ratio § = 0.
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Figure 14 Power when the log odds ratio & = 3 and N = 150 Power for the three tests (0
(solid line), BD (dot-dash), and Q, 2 (dash) plotted against 7, the square root of the random
effect variance. Here all studies have the parameters: 150 subjects in each study with equal arms
of 75 each (N = 150 and ¢ = 1/2) and the log odds ratio § = 3.
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Figure 15 Fitted line plot for the first moment of Q Fitted line plot of the relative first moment
of @ based on studies with equal parameters. The horizontal coordinate is the first moment
(divided by K—1) as estimated using a theoretical expansion, and the vertical coordinate is the
first moment (divided by K-1) as found from the simulations.




Kulinskaya and Dollinger

Var(Q)/(K—1)

F—rrr 1T 111 1T 1T 1T T T T T T T T T T"I
081 083 0.85 087 0.89 091 0.93 0.9 097 099

EQNK-1)

Figure 16 Quadratic fit between the variance and the mean of Q. Quadratic fit for the relation
between the variance of @Q and the mean of Q. The studies for differing values of K are depicted
as: K = 5 black circles; K = 10 red squares; K = 20 blue diamonds; K = 40 green triangles.
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