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SUMMARY

Neuronal cortical circuitry comprises feedforward,
lateral, and feedback projections, each of which ter-
minates in distinct cortical layers [1–3]. In sensory
systems, feedforward processing transmits signals
from the external world into the cortex, whereas
feedback pathways signal the brain’s inference of
the world [4–11]. However, the integration of feedfor-
ward, lateral, and feedback inputs within each
cortical area impedes the investigation of feedback,
and to date, no technique has isolated the feedback
of visual scene information in distinct layers of
healthy human cortex. Wemasked feedforward input
to a region of V1 cortex and studied the remaining
internal processing. Using high-resolution functional
brain imaging (0.8 mm3) and multivoxel pattern infor-
mation techniques, we demonstrate that during
normal visual stimulation scene information peaks
in mid-layers. Conversely, we found that contextual
feedback information peaks in outer, superficial
layers. Further, we found that shifting the position
of the visual scene surrounding the mask parametri-
cally modulates feedback in superficial layers of V1.
Our results reveal the layered cortical organization
of external versus internal visual processing streams
during perception in healthy human subjects. We
provide empirical support for theoretical feedback
models such as predictive coding [10, 12] and
coherent infomax [13] and reveal the potential of
high-resolution fMRI to access internal processing
in sub-millimeter human cortex.

RESULTS

To isolate feedback processing, we exploited the retinotopic or-

ganization of the visual cortex and blocked informative feedfor-

ward activation by occluding visual scene input in a contiguous
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subregion of the visual field. Using retinotopy, we isolated voxels

that responded only to the occluded portion of the scene; in

these voxels, we recorded brain activity by high-resolution and

high-field fMRI and separated it into six different cortical depth

layers. Scene-specific information did not directly stimulate

the classical receptive fields of neurons in these voxels (i.e.,

through visual input), thus any scene responses are due to

contextual feedback stimulating non-classical receptive fields.

We studied multivariate activation patterns restricted to individ-

ual cortical depths to test for the presence of contextual scene

information.

In the first experiment, we presented three visual scenes

controlled for global luminance, contrast, and energy (‘‘car on

street,’’ ‘‘people at market,’’ and ‘‘ship in harbor,’’ as in [14]).

The visual scenes were either presented in full (as ‘‘feedforward’’

stimulation) or with the right lower visual field quadrant occluded

by a mask (‘‘feedback’’ condition; Figure 1A). Voxels responding

in the feedforward condition contained amixture of feedforward,

lateral, and feedback signals; however, for simplicity, we refer

to feedforward and feedback conditions. The second experi-

ment consisted of two one-quarter-occluded images (‘‘crowd

of people’’ and ‘‘vintage car’’; luminance, contrast, and energy

controlled), which were presented in the original space and in

two spatially shifted versions (2� and 8� visual angle). This shift-

ing of the surrounding context allowed us to test how a para-

metric change of contextual information modulates feedback.

We presented ‘‘target’’ and ‘‘surround’’ checkerboard mapping

stimuli in both experiments (Figure 1B) to isolate feedback-

receiving voxels and eliminate spill-over from feedforward-

stimulated regions (e.g., mediated by horizontal interactions

within V1) [14].

We recorded functional brain imaging data with gradient echo

(GE) and spin- and GE-based 3D-GRASE fMRI sequences at

0.8 mm3 resolution. We segmented the cortex using anatomic

MRI scans (bias-field-corrected T1 over PD normalized) [15]

and adjusted deep, inner, and superficial outer gray matter

boundaries along the local GE-image intensity values to elimi-

nate pial blood vessels and to correct for GE-EPI distortions.

We used relative cortical depth values to create Laplace-based

equipotential grid lines at six depths (from deep, inner [at the

gray-white matter boundary] to superficial, outer [next to pia]
uthors
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Figure 1. Experimental Procedure

(A) Example stimulus for the ‘‘feedback’’ condition, in which the lower right quadrant was occluded by a white mask (see [14]). The ‘‘feedforward’’ condition

comprised the full image (not shown).

(B) ‘‘Target’’ and ‘‘surround’’ checkerboards (presented individually during scanning) to locate voxels responding to the lower right visual field.

(C) Left hemisphere cortical reconstruction of subject 2 in experiment 1, overlaid with a contrast of target response greater than surround response (light blue V1

and V3; dark blue V2). The cortical grid mesh depicts reconstructed depth layers from deep/inner (purple; close to white matter) to superficial/outer (red; close to

the pial surface) cortical boundary.

(D) Corresponding regions of interest to (C) overlaid onto GE-EPI images.
90%, 74%, 58%, 42%, 26%, and 10% depths; Figures 1C and

1D). The depth grid lines covered the cortical representation of

the occluded image section in the lower right visual field quad-

rant of retinotopic areas V1d, V2d, and V3d (Figure 2), mapped

independently but also as part of each run.

In these ‘‘non-stimulated’’ patches of cortex, the GE-EPI data

showed stronger responses in the superficial depths (close to

the pial surface), whereas the 3D-GRASE data showed compa-

rable responses across all cortical depths [16]. The bias of GE

fMRI imaging to stronger responses in superficial cortical depths

is due to larger blood vessels that lie on the cortex pial surface

(Figure S1). Larger blood vessels could washout BOLD signal

from a wider cortical area, compromising its retinotopic speci-

ficity (but see [17]). However, by including only voxels that

respond retinotopically to the target and not the surround, we

were able to exclude voxels exhibiting non-specific signals

from draining veins. As a result, the filtered GE-fMRI responses

in the superficial depths were still present but less pronounced

and displayed constant retinotopic specificity across cortical

depths (Figure S1).

To map the information at different cortical depths, we per-

formed a multivoxel pattern analysis using two approaches:

(1) decoding based on support vector machine (SVM) classifica-

tion and (2) GLM-based encoding (Figure S2).

In decoding analyses, single-block SVM classification was

significant at each depth for each subject (permutation tested

at 5%; no corrections) during feedforward stimulation of V1.

The highest performance was at 80% correct classification

(chance 33%) at a cortical depth of 58% (third deepest depth;

Figure 3A). For the feedback condition (i.e., the occluded

images), only the superficial, outermost depth (10%) was sig-

nificant in all four subjects, second-most outer depth (26%)

was significant in three of four subjects, mid-depth (42%)

was significant in two of four, and no subjects showed signif-

icance at the 58% mid-level, where feedforward information

peaked. Deepest, inner depths (90% and 74%) were only sig-

nificant in one subject (subject 3). We tested for the main ef-

fects of signal (feedforward and feedback) and depth using a

2 (signal) 3 6 (depth) linear mixed model (see the Experimental

Procedures). We found main effects of signal and depth and
Current B
an interaction. For the feedforward signal, SVM accuracy

was significantly larger for depth 58% compared to depth

90% (t(15) = 4.6; p = 0.0003), whereas for the feedback signal,

SVM accuracy at depth 10% (i.e., the superficial layer) was

significantly larger than depth 58% (t(15) = 4.9; p = 0.0001),

depth 74% (t(15) = 3.0; p = 0.002), and depth 90% (t(15) =

5.5; p = 0.00005).

Within a classical hierarchical framework, it is reasonable to

assume that the white occluders elicit identical patterns of brain

activity. However, if lateral and feedback connections transmit

contextual information to the non-stimulated region of cortex

as shown by the decoding analysis, then we can also identify

the univariate effect of single voxels and investigate the spatial

extent in this informative structure. We addressed this in our en-

coding analysis. In brief, this involved a re-randomization anal-

ysis following the permutation of the explanatory variables in

the general linear model of induced responses. This enabled

us to evaluate the null distribution of the percent variance ex-

plained and associate the observed responses with a p value.

We found that informative voxels explained significantly more

variance for the original GLM (one predictor per scene)

compared to a permutation GLM (randomized condition assign-

ment). Subjects showed a J-function with some informative vox-

els in the deepest, innermost depth (90%), the least-informative

voxels in the second innermost depth (74%), and the strongest

peak in the superficial, outer depth (10%). We consistently found

the highest percentage of informative voxels in the outer depths

of V1 in all subjects (Figure S2).

Subsequent to the GE measurement, we scanned the same

four subjects again for four runs with identical trials but used

the 3D-GRASE sequence to acquire fMRI data that we expected

to be less sensitive to large draining veins [16]. The 3D-GRASE

sequence has reduced contrast to noise ratio, and we could

only cover V1 because of the small acquisition field of view.

For two subjects (1 and 3), feedforward stimulation did not

lead to consistent informative readout in any of the six depths.

For the other two subjects (2 and 4), classification based on

visual stimulation was clear and significant. In subjects 2

and 4, we also found significant feedback information, again in

the superficial depth of V1 (Figure 3C). Encoding analysis of
iology 25, 2690–2695, October 19, 2015 ª2015 The Authors 2691



Figure 2. Layer-Specific Regions of Interest

(A) For subject 1: surface reconstruction overlaid

with ‘‘target > surround’’ activity map (left); cortical

grid lines depicting depth layers (middle); regions

of interest in depth layers overlaid onto GE-EP

images (right).

(B) For subject 3: inflated surface reconstruction

overlaid with map of target responses outlined in

red (V1), green (V2), and white (V3); borders be-

tween visual areas V1 and V3 are shown by black

(dashed) lines (left); inflated surface reconstruction

overlaid with polar angle retinotopic mapping data

(middle); regions of interest colored in activity (top)

or depth overlaid onto GE-EP images (right).

(C) As in (B), but for subject 4. Note: The cortex

appears thicker when the slice plane cuts through

it at a shallow angle (right column).
3D-GRASE data confirmed the presence of more informative

voxels in the superficial, outer depth of V1 (Figure S2).

To investigate how feedback interacts with feedforward pro-

cessing, whether they carry different information content, and

whether they coexist in specific layers, we performed cross-layer

decoding. We trained an SVM algorithm on a given depth and a

given signal (i.e., either feedforward or feedback) and tested its

performance against the same or the other signal, across all

depths (Figure3D).We found that trainingon feedbackand testing

on feedforward leads to highest (FDRq<0.05) accuracy (FBxFF>

FFxFB t(575) = 4.67; >FBxFB t(575) = 6.85) except when testing

and training on feedforward (FFxFF). Training the model on the

coarser feedback information pattern leads to a more general

model that allows for accurate decoding of the finer feedforward

multivoxel pattern. However, the opposite is not true as themodel

built on specific feedforward informationcannot begeneralized to

decode the coarser feedback information content.

With the cross-layer cross-signal decoding, we can also

demonstrate the following general points: (1) the feedforward

signal is homogeneous across layers (i.e., training on depth layers

allows togeneralize tootherdepth layers) and (2) although feedfor-

ward and feedback activation are very different in amplitude, they

can share common information in their patterns of BOLD signal.

Up until now, we have described decoding analyses across

cortical depths in V1. We performed identical analyses in V2
2692 Current Biology 25, 2690–2695, October 19, 2015 ª2015 The Authors
and V3. The decoding analysis in V2 re-

vealed that contextual Information was

significant in the most inner depth (90%)

in two subjects (Figure S4; subjects S2

and S4), and in the most outer two depths

(10% or 26%) in another three subjects

(S1, S2, and S3). In V3, there was reduced

feedforward information compared to V1

and V2. All subjects had significant classi-

fication at mid-depth 58%, and three

subjects showed significant information

at least at two other depths. There was

no consistent pattern in the feedback

condition in V3 (Figure S4). We propose

that both the reduced size of area V3

and its reduced functional specialization
for static scene information might explain the decreased decod-

ing performance.

In the spatial shift experiment, we tested the precision of

feedback signals by shifting the contextual surround image.

We trained the classifier to discriminate two images and then

tested it on shifted versions of these two images. Consistent

with the first experiment, feedback was most prominent in the

outer layers. Furthermore, decoding was only significant when

cross-classifying across the smallest shift (2�) in the superficial

depth (10%) in subject 1, second and third outermost depths

(26% and 42%, respectively) for subject 2, and the two outer-

most depths (10% and 26%) in subjects 3 and 4 (Figure 4).

DISCUSSION

When primary visual cortex does not receive sensory input, it

nonethelesscommunicateswithother brain areas.Such internally

generated processing states are not sufficiently understood

[18, 19] but are an essential feature of the brain, accounting for

90% of overall energy consumption [20, 21]. We propose that

such internal communications include feedback sent across large

cortical networks, including back to sensory areas [22–24]. The

effects of feedback inputs on sensory neurons are uniquely chal-

lenging to studybecause it requires that feedback inputs besepa-

rated from externally induced (feedforward) processing. Access



Figure 3. Layer-Specific Information Decoding
(A) For V1 usingGE fMRI data, SVM classification performance for all four subjects during feedforward (red dashed) and feedback (green) processing, in individual

depths (color-coded purple to red). Chance decoding level was 33%, and significant classification is marked by circles.

(B) For V1, V2, and V3 averaged across subjects using GE fMRI data, SVM classification performance in cortical depths (from white matter 90% depth to su-

perficial depth 10%). Left panels show prediction of single trials in the left out run; right panel shows the averaged condition of the left out run. Significant dif-

ferences in decoding performance between depths are marked on subject-averaged single run plots (permutation tested); error bars represent SEM (across

subjects and leave-one-run-out folds).

(C) As in (A), but for subject 2 and 4’s 3D-GRASE fMRI data.

(D) We trained an SVM algorithm on a given cortical depth and a given signal (i.e., either feedforward or feedback) and tested its performance against the same or

the other signal across all depths. Asterisks indicate significance against theoretical chance level (FDR q < 0.05).

See also Figures S1–S4.
to feedback signals during human visual cognition will explicate

century-old theories of inferential brain processing [6]. Taking

advantage of the retinotopic organization of V1, we use a partial

occlusion paradigm whereby we can drive higher visual areas to

feed natural scene information back to regions of V1 that do not

receive feedforward scene inputs [14]. We propose that ultra-

high-field fMRI (7T) provides a means to investigate the presence

of such contextual feedback in distinct cortical layers.
Current B
We found contextual feedback information in the superficial

layers of V1. Several candidate regions could be sending contex-

tual information to V1, including extrastriate visual (V2–V7) and

more distant cortical and subcortical areas. We know from

studies of rodent cortex that long-distance cortical feedback

and associative thalamo-cortical interactions have dense projec-

tions to supragranular layer L1 [1]. Up to 90% of synaptical input

in layer 1 is from long-distance sources, with only 10% from local
iology 25, 2690–2695, October 19, 2015 ª2015 The Authors 2693



Figure 4. Feedback Sensitivity to Shifts of

the Surround

(A) Occluded stimuli used in experiment 2. We

shifted the original stimuli (0�) by 2� and 8�.
(B) Cortical depth layers shown in the sagittal plane

of subject 2, from deep, inner (purple) to superfi-

cial, outer (red).

(C) SVM decoding performance for different

depths of V1 when cross-classifying images of

different shifts, for all four subjects.
neurons [1, 2]. Larkumproposes a neuronalmechanism that inte-

grates the long-distance top-down projections with bottom-up

input, which involves layer 5 pyramidal cells that have distal tuft

dendrites in layer 1. David Mumford [10, 25] proposed a concep-

tual interpretation that cortical feedback from higher areas pre-

dicts themost likely feedforward input to the ‘‘active blackboard’’

of V1. The predictive coding framework describes neuronal com-

putations in cortex, which integrate the predictions carried

by cortical feedback with sensory inputs carried by feedforward

projections [4]. Predicted (or irrelevant) sensory inputs may be

dis-amplified by the inhibition of apical amplification [13]. In

such a functional architecture, feedback signals from regions

with larger receptive fields would code at a more abstract level

and at a coarser spatial scale. Consistent with this idea, we found

that the information in supragranular layers is similar even when

we shifted the surrounding visual context by 2� (visual angle).
Functional MRI is sensitive to neuronal energy consumption,

which includes dendritic activity and activity of inhibitory inter-

neurons [26]. The use of ultra-high-resolution fMRI allowed us

to focus on the information in activation patterns at different

cortical depths. Previous ultra-high-resolution layer-specific

fMRI focused on activation amplitude rather than information

[27–31]. Our design permits the sampling of top-down dendritic

activity that contains scene information in superficial layers of

human V1.
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