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Exposure to childhood adversities (CA) is associated with subsequent alterations in regional brain grey matter
volume (GMV). Prior studies have focused mainly on severe neglect and maltreatment. The aim of this study
was to determine in currently healthy adolescents if exposure to more common forms of CA results in reduced
GMV. Effects on brain structure were investigated using voxel-based morphometry in a cross-sectional study
of youth recruited from a population-based longitudinal cohort. 58 participants (mean age = 18.4) with (n =
27) or without (n = 31) CA exposure measured retrospectively from maternal interview were included in the
study.Measures of recent negative life events (RNLE) recorded at 14 and 17 years, current depressive symptoms,
gender, participant/parental psychiatric history, current family functioning perception and 5-HTTLPR genotype
were covariates in analyses. A multivariate analysis of adversities demonstrated a general association with a
widespread distributed neural network consisting of cortical midline, lateral frontal, temporal, limbic, and cere-
bellar regions. Univariate analyses showed more specific associations between adversity measures and regional
GMV: CA specifically demonstrated reduced vermis GMV and past psychiatric history with reduced medial tem-
poral lobe volume. In contrast RNLE aged 14was associated with increased lateral cerebellar and anterior cingu-
lateGMV.We conclude that exposure tomoderate levels of childhood adversities occurring during childhood and
early adolescence exerts effects on thedeveloping adolescent brain. Reducing exposure to adverse social environ-
ments during early life may optimize typical brain development and reduce subsequent mental health risks in
adult life.

© 2014 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

It is well established that an adverse psychosocial environment in
the childhood years significantly increases the risk for later psychopa-
thology (Benjet et al., 2010; Conti et al., 2012; Gilbert et al., 2009;
Kessler et al., 2010; Norman et al., 2012; Rutter, 1999; Scott et al.,
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2012). Psychosocial risk factors can include: low socioeconomic status
(SES), poorer parental education, childhood maltreatment, parental
psychiatric disorder and exposure to proximal stressful negative life
events (Goodyer, 2002; Rutter, 1999). However, there are a number of
methodological challenges to consider when examining the effects of
exposure to an adverse psychosocial environment upon later behavioral
and biological outcome indices. Firstly, these psychosocial risks are
inter-correlated creating difficulty in delineating the specific contribu-
tion of particular factors in the etiologies of emerging psychopathol-
ogies and in their effects upon intermediate neurobiological correlates
such as greymatter volume (GMV) (Rutter, 2012a). Secondly, any asso-
ciations between psychosocial risks and GMVmay themselves be a con-
sequence of an ongoing mental illness or may represent residual effects
arising from prior psychopathology (Rohde et al., 1994; Wichers et al.,
2010). Finally, any effects of experiences occurring in childhood and ad-
olescence occur at a time when the brain is undergoing dramatic struc-
tural change (Mills et al., 2014), making it difficult to separate effects of
adverse psychosocial experiences from effects due to normative
development.
ved.
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To date the majority of studies investigating main effects of early
childhood adversities (CA) on brain structure and function have investi-
gated the impact of exposure to severe forms of physical, sexual or emo-
tional abuse (Hart and Rubia, 2012; McCrory et al., 2012; Northoff,
2013). Currently, five domains of CA have been identified that may ad-
versely impact ongoing mental health: physical abuse, sexual abuse,
psychological/emotional abuse, neglect and parental discord with ver-
bal and/or physical violence (Gilbert et al., 2009). Physical or sexual
abuse forms of CA are three times less common [UK prevalence rates
of around 16% (May-Chahal and Cawson, 2005)] than overt family dis-
cord [with prevalence rates of 41% (Dunn et al., 2011)] associated
with inter-parental violence and neglect of offspring. Whether the de-
veloping brain is sensitive to these more common, family-focused
forms of adversities is unclear (Belsky and de Haan, 2011).

Previous structural neuroimaging studies utilizing human and pri-
mate models of early-life stress/CA have broadly demonstrated total as
well as regional GMV reductions (De Bellis et al., 2002; Sheridan et al.,
2012). The main regional reductions have been in the frontal lobe
(Dannlowski et al., 2012; De Brito et al., 2013; Hanson et al., 2010), ante-
rior cingulate cortex (ACC) (Baker et al., 2013; Edmiston et al., 2011;
Kelly et al., 2013; van Harmelen et al., 2010), amygdala (Hoy et al.,
2012; Weniger et al., 2009; Yap et al., 2008), hippocampus (Frodl et al.,
2010; Rao et al., 2010; Teicher et al., 2012) and cerebellum (Baldacara
et al., 2011a; Bauer et al., 2009; De Bellis and Kuchibhatla, 2006).

The human studies have largely involved scanning young adults
with a retrospectively recalled self-report method assessing exposure
to prior CA. These associations may however be due to one of more
CA-correlated risks that have also shown GMV reductions. For example,
current mood/depressive symptoms (Dedovic et al., 2010; Schutter
et al., 2012), financial hardship and low SES (Butterworth et al., 2012;
Hanson et al., 2011; Noble et al., 2012), parental or familial psychiatric
history (Carballedo et al., 2012; Chen et al., 2010; Peterson et al.,
2009), previous participant psychiatric history (e.g. MDD, BPD or
PTSD) (Carrion et al., 2009; De Bellis et al., 1999; Vythilingam et al.,
2002), and recent negative life events (Ansell et al., 2012; Geller et al.,
2009; Papagni et al., 2011; Zannas et al., 2013) are all associated with
GMV reductions in these regions of interest described above. Studies
of early-life stress/CA have however also reported GMV increases or
null findings in the amygdala (Landre et al., 2010; Mehta et al., 2009;
Tottenham et al., 2010), prefrontal cortex (PFC) (Katz et al., 2009;
Richert et al., 2006; Spinelli et al., 2009), ACC (Benedetti et al., 2011;
Spinelli et al., 2009), hippocampus (De Bellis et al., 2010; De Brito
et al., 2013; Lyons et al., 2001) and cerebellum (Spinelli et al., 2009) re-
gions further complicating our understanding of putative distal CA ef-
fects. Additionally there is putative genetic moderation of the liability
for a neural effect of CA. Polymorphisms in the 5-HTTLPR genotype
have been the most investigated to date with effects reported in the
amygdala (Kobiella et al., 2011; Scherk et al., 2009), hippocampal
(Everaerd et al., 2012; Frodl et al., 2004), frontal lobe (Jedema et al.,
2010; Selvaraj et al., 2011), ACC (Canli et al., 2006; Pezawas et al.,
2005), and cerebellar (Canli et al., 2005; Jedema et al., 2010) regions, al-
though negative results have also been reported (Beevers et al., 2010;
Cole et al., 2011; Jackowski et al., 2011).

Within this context, it is unclear whether, at the neural systems
level, there is a general effect arising from a set of correlated psychoso-
cial risk factors occurring over the childhood and early adolescent years
and/or there are specific effects of particular adversities occurring at dif-
fering times in the first two decades of life at particular neural regions.
In this studywe set out to investigatewhether adverse psychosocial ex-
periences occurring during the childhood and early adolescent years are
associated with variations in GMV in participants now in their later
adolescent years. Using a multivariate approach we first tested for a
singular general effect of sequentially occurring but related adverse
psychosocial variables on later variation in GMV across distributed neu-
ral systems.We then tested for associations between specific psychoso-
cial variables and particular neural regions.
2. Methods and materials

2.1. Recruitment

Participants [N = 58; Mean (SD) age = 18.5 (0.7), range 17–
20 years; 35 females] were a subset from the ROOTS study (Total N =
1143), a longitudinal investigation of adolescent emotional development
(Goodyer et al., 2010). We generated a list of all potential participants
who were eligible based on 5-HTTLPR genotype and prior classification
of childhood adversity (CA) (see below). The selection and recruitment
process is described inmore detail inWalsh et al. (2012). Participants re-
cruited to the neuroimaging sub-study showed no significant selection
bias compared to the total ROOTS sample in terms of gender ratio or so-
cioeconomic status as assessed using the ACORN (A Classification Of Res-
idential Neighbourhoods) geodemographic measure (Morgan and
Chinn, 1983) (http://www.caci.co.uk). As a brief background, the
ACORN classification is built entirely using Census data and includes in-
formation on age, sex, marital status occupation, economic position, ed-
ucation, home ownership and car ownership. However, participants in
the neuroimaging study had lower levels of self-reported depressive
symptoms at the time of scanning relative to the overall ROOTS sample
(measured age 17).

The study was carried out in accordance with the Declaration of
Helsinki and Good Clinical Practice guidelines and approved by the
Cambridgeshire Research Ethics Committee. All participants provided
written informed consent. Inclusion criteria for the neuroimaging sub-
study were as follows: normal or corrected-to-normal vision; English
speaking; and of Northern European descent (to facilitate genetic allele
comparisons). Exclusion criteria were: any history of neurological trau-
ma resulting in loss of consciousness; current psychotropic medication
use; current neurological disorder; current DSM-IV Axis 1 disorder;
presence of metal in body; specific learning disability, and IQ b 85 on
the Weschler Abbreviated Scale of Intelligence (Wechsler, 1999).

2.2. Assessment of childhood adversities (0–11 years) — the Cambridge
Early Experiences Interview (CAMEEI)

This semi-structured interview is conductedwith the child's primary
caregiver and records family-focused adverse life experiences, child's
age at occurrence, duration, and an interviewer assessment of their
practical impact on the daily life of the family (see (Dunn et al., 2011)
for more information). The current investigation used information cov-
ering the first eleven years of life to classify adolescents into those ex-
posed (CA+, n = 27) and not exposed (CA−, n = 31) to early CA.
The first eleven years was covered in order to make our groups compa-
rable to the age limit for early maltreatment used in the maltreatment
studies by Caspi and colleagues (Caspi et al., 2002, 2003). Exposure to
an adverse family environmentwas defined as exposure to abuse (emo-
tional, physical or sexual) and/or significant family discord; occasional
physical violence, lack of affectionatewarmth, or severe lack of commu-
nication between family members. In summary, amongst the 27 CA+
participants, none had sexual abuse. For physical abuse, 2 (7%) were
classified as possibly being exposed, 1 (4%) was classified as yes/proba-
bly being exposed. For emotional abuse 4 (15%) were classified as yes/
probably being exposed. All 27 had been exposed tomoderate to severe
inter-parental discord. Exposurewas estimated to begin frombirthwith
the duration estimated as ranging from 5 through to 56 months (mean
30.8 (sd 26.1) months).

2.3. Description of participant psychiatric history

Participants were longitudinally assessed for a past psychiatric diag-
nosis through their participation in the ROOTS study (using the Kiddie
Schedule for Affective disorders and Schizophrenia for School-Age Chil-
dren (Kaufman et al., 1997) assessments). Retrospective inspection of
the ROOTS data-set revealed that 18 participants (31%) had prior

http://www.caci.co.uk)
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DSM-IV diagnoses and these are reported in Inline Supplementary
Table S1.

Inline Supplementary Table S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2014.01.001.

2.4. Assessment of parental psychiatric history

The MINI Mental State Examination (Sheehan et al., 1998) was em-
beddedwithin the CAMEEI assessment to assess parental mental illness
during the participant's childhood.We also recorded disorder in biolog-
ical parents prior to the birth of the participant and when living away
from the family. Thresholds for inclusion were set very high with clear
evidence of impairment essential for diagnosis. As most interviewees
were mothers, the information on maternal mental health is the most
reliable and valid and was corroborated using clinical notes. Parental
psychiatric diagnoses are reported in Inline Supplementary Table S2.

Inline Supplementary Table S2 can be found online at http://dx.doi.
org/10.1016/j.nicl.2014.01.001.

2.5. Genotyping for 5-HTTLPR

DNA was harvested from separate saliva samples (Qiagen, Crawley,
UK) and genotyped for 5-HTTLPR. The 5-HTTLPR region was amplified
using the primers 5-ATGCCAGCACCTAACCCCTAATGT-3 and 5-GGAC
CGCAAGGTGGGCGGGA-3, which generates a 419 bp and 375 bp prod-
uct for the “l” and “s” alleles respectively. The PCR reaction mixture
consisted of: 100 ng genomic DNA, 10 mM Tris–HCl (pH 9.0), 1.5 mM
MgCl2, 50 mM KCl, 0.1% Triton® X-100, 1.25 U Taq DNA polymerase,
200 μM dNTPs, 500 nM each of forward and reverse primer and 100
μM 7-Deaza-dGTP in a final reaction volume of 15 μL. The reaction con-
ditions were 98 °C for 7 min, followed by 40 cycles of 96 °C for 30 s,
61 °C for 30 s and 72 °C for 1 min with a final extension stage of 72 °C
for 10min. PCR products were electrophoresed on a 3700 DNA analyser
(Applied Biosystems) with semi-automated sizing and genotyping per-
formed using GENESCAN v3.7 and GENOTYPER v3.7 software (Applied
Biosystems). The 5-HTTLPR frequency in the ROOTS cohort as a whole
was in Hardy–Weinberg equilibrium (LL = n = 352; 30.3%; LS = n =
596; 51.3%; SS= n= 214; 18.4%), x2= 3.99, df = 2, p= .14. The neu-
roimaging sub-study was confined to participants with either the l/l or
s/s genotype in order to maximize potential statistical differences be-
tween alleles, as conducted in prior experimental neurogenetic studies
(Firk et al., 2013). Additionally, meta-analyses have often demonstrated
differences between l/l and s/s homozygotes on outcome variables [e.g.
cortisol reactivity (Miller et al., 2013), association with anxiety traits
(Minelli et al., 2011), and hypertension (Zhang et al., 2013)] but not dif-
ferences between heterozygotes (s/l participants) and l/l participants.
We also performed a secondary analysis classifying participants accord-
ing to the rs25531 SNP. For this analysis we collapsed the low-
expressing SS and LaLg variant participants (n = 32) and compared
against participants with the high-expressing LaLa variants (n = 26)
as performed in prior studies e.g. Hu et al. (2006) and Praschak-Rieder
et al. (2007).

2.6. Assessment of recent negative life events (RNLE) aged 13–14 & 16–17

At ages 14 and 17, participants in the ROOTS cohort had completed a
self-report measure of negative life events and difficulties [modified
from Goodyer et al. (2000)], occurring to them, their family or closest
friends over the preceding 12 months. Participants were asked to date
these experiences and rate their impact on themselves on a scale from
1= very pleasant/happy to 5 = very unpleasant/sad/painful. If partici-
pants rated either 4 or 5 theywere asked to indicate if they felt upset for
longer than 2 weeks. From these ratings, two separate summed totals
for positive and negative recent life events rated as occurring for longer
than 2 weeks were derived. The negative event ratings were used here.
2.7. Family Assessment Device — Global Functioning Subscale (FAD-GF)

The FAD-GF (Epstein et al., 1983;Miller et al., 2000) is a 12-item self-
report scale measuring overall health/pathology of the family. Six items
describe healthy functioning and the other six describe unhealthy func-
tioning. Each item is rated on a 4 point Likert scale (4= ‘strongly agree’,
3 = ‘agree’, 2 = ‘disagree’, 1 = ‘strongly disagree’). The higher the
score the worse the family functioning.

2.8. Assessment of current depressive symptoms at time of scanning

The Mood and Feelings Questionnaire (MFQ) (Angold et al., 1995)
was used to assess current depressive symptoms in the two weeks
prior to scanning. This assessment was administered on the day of the
scanning session.

2.9. Image acquisition and preprocessing

Structural MRI data were acquired using a 3-T Siemens Tim Trio
scanner at the MRC Cognition and Brain Sciences Unit, Cambridge, UK.
We acquired T1-weighted 3D magnetization-prepared rapid acquisi-
tion with gradient-echo images (voxel size = 1 × 1 × 1 mm, repetition
time = 2250 ms, echo time = 2.99 ms, inversion time = 900 ms, flip
angle = 9°). Total scanning time was 4 min 16 s.

Preprocessing for voxel-based morphometry (VBM) was performed
using SPM8 software (Welcome Trust Center for Neuroimaging,
London, UK, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Data
was first checked visually for scanner artifacts and gross anatomical ab-
normalities for each subject and the origin of all images was aligned
with the anterior commissure. Next, initial segmentation of images
into grey-matter (GM) and white-matter (WM) was implemented
using the ‘New Segment’ option in the SPM8 DARTEL toolbox
(Ashburner, 2007). These native space GM and WM images were then
aligned in an iterative fashion using the high-dimensional non-linear
diffeomorphic registration algorithm employed by DARTEL in order to
create a study-specific template (Ashburner, 2007). Non-linearwarping
parameters (i.e. flow fields) estimated from the template creation step
were then used to spatially normalize and modulate the data to stan-
dard space (Montreal Neurological Institute; MNI) in order to preserve
local volumetric information at the voxel-wise level. Finally, normalized
modulatedmaps were smoothed using a 4mmFWHMkernel. This ker-
nel was chosen to optimize further analyses to be sensitive to very small
localized differences in subcortical structures (e.g. amygdala). Further-
more because DARTEL achieves much more accurate registration than
previouswarping techniques (Klein et al., 2009), registration error is re-
duced and requires less smoothing for correction.

2.10. Data analytic strategy

2.10.1. Association of psychosocial variables in ROOTS and neuroimaging
subsample

In order to show that the neuroimaging sample was representative
of the larger population-level ROOTS cohort, we compared the associa-
tion of psychosocial variables in the ROOTS cohort and neuroimaging
sub-sample (CA, RNLE14, RNLE17, previous psychiatric history, parental
psychiatric history, FAD score, MFQ score). Mann–Whitney and Phi co-
efficient testswere run on the categorical and continuous level variables
described above.

2.10.2. Multivariate associations between adverse psychosocial experience
and brain GMV

In our first analysis we investigated whether the combination of ad-
verse psychosocial variables identified previously (CA, RNLE14, RNLE17,
previous psychiatric history, parental psychiatric history, FAD score,
MFQ score), was associated with whole-brain GMV. Here we used
partial-least squares (PLS) (McIntosh et al., 1996) analysis implemented

http://dx.doi.org/10.1016/j.nicl.2014.01.001
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using the PLSGUI software (http://www.rotman-baycrest.on.ca/pls/)
(Krishnan et al., 2011; McIntosh and Lobaugh, 2004; McIntosh and
Misic, 2013). A permutation test (1000 permutations) evaluated the sig-
nificance of latent brain–behavior pairs and 1000 bootstrap resamples
were used to assess the reliability of voxels with the strongest contribu-
tion to the pattern. For visualization of the most reliable voxels contrib-
uting to the patterns, we used a bootstrap ratio of 3 and an extent
threshold of 250 voxels. The bootstrap ratio can be viewed/interpreted
as a pseudo Z-statistic, since it is the ratio of a voxel's ‘salience’ (i.e. a la-
tent variable linear combination of the original variables) divided by the
standard error estimated from bootstrapping (McIntosh and Lobaugh,
2004). This bootstrap ratio allows us to infer which voxels were most
important and reliable to contributing to the overall pattern picked up
by PLS.

2.10.3. Specific psychosocial variable associations on regional GMV
We performed follow-up univariate analyses in SPM8. A 2-sample t-

test was run with CA as the dependent variable and the following vari-
ables as covariates: participant and parental psychiatric history,
RNLE14, RNLE17, current depressed mood, FAD score, 5-HTTLPR geno-
type, gender and total-intracranial volume (TIV). In Section 3.3 we first
report the CA effect and then any significant covariate effects. We per-
formed a whole-brain analysis in SPM and subsequently discuss only re-
gions surviving either stringent Family-Wise Error (FWE) correction at p
b 0.05 (Worsley et al., 1996) or using cluster-False Discovery Rate correc-
tion for multiple comparisons at q b 0.05 (Chumbley et al., 2010) while
using non-stationarity of smoothness correction (Hayasaka et al., 2004).

2.10.4. Commonality between the multivariate and univariate analyses
To demonstrate that the regions associated with CA+ (identified in

the univariate analysis) were the same regions identified in the multi-
variate analysis, we used a logical AND masking procedure on the
whole-brain-corrected resultsmaps to implement conjunction analyses
(Nichols et al., 2005).

3. Results

3.1. Participant characteristics

In Table 1 we report participant characteristics of the neuroimaging
subsample classified according to CA grouping. In the ROOTS total sam-
ple there were no significant differences of age, gender or 5-HTTLPR ge-
notype ratio on CA. However, the presence of childhood adversity
(CA+) in the total sample was associated with significantly lower
Table 1
Characteristics of the ROOTS and neuroimaging samples classified by childhood adversity (CA)

Variable Sample

ROOTS total

CA+

N= 292
Age at last assessment (Y/M) [Mean (SD)] 17.5 (0.3)
Gender (M/F) 139/153
⁎Socioeconomic status (ACORN measure) [N/%]
Wealthy/urban 144 (49%)
Comfortable 88 (30%)
Moderate means/hard-pressed 60 (21%)
5-HTTLPR genotype frequencies ss/sl/ll 54/134/92
IQ [Mean (SD)] –
⁎MFQ [Mean (SD)] 16.7 (12.9)
⁎,#Participant psychiatric history [present/non-present %] 28/72
⁎,#Parental psychiatric history [present/not-present %] 69/31
⁎,#FAD [Mean (SD)] 24.3 (6.5)
⁎RNLE14 [Mean (SD)] 0.7 (1.1)
RNLE17 [Mean (SD)] 0.9 (1.2)

⁎ Significant difference at p b 0.05 in ROOTS sample.
# Significant difference at p b 0.05 in neuroimaging sample.
familial SES (p b 0.001, r= −0.18), more lifetime diagnoses of psychi-
atric disorder (p b 0.001, r=−0.16), increased parental psychiatric dis-
order (p b 0.001, r = −0.31), more negative current perceptions of
family functioning (p b 0.001, r =−0.17), increased depressive symp-
toms at age 17 (p b 0.001, r=−0.13), and increased reporting of neg-
ative life events at age 14 (p b 0.05, r = −0.06).

In the neuroimaging sub-sample, the presence of childhood adversi-
ties (CA+)was associated with significantly more lifetime diagnoses of
psychiatric disorder (p b 0.05, r=−0.27), significantly higher parental
psychiatric disorder (p b 0.01, r=−0.27), and significantly higher neg-
ative current perceptions of family functioning, as assessed with the
FAD-GF (p b 0.05, r = −0.31) relative to the CA− groups.

3.2. Multivariate structural imaging analysis

PLS identified only one significant latent brain–behavior pair which
accounted for 47.70% of the covariance between GMV and adverse psy-
chosocial variables (d= 179.16, permutation p b 0.001). Fig. 1A shows
the PLS behavioral saliences (transformed into correlations for ease of
interpretation) and the error bars show the 95% confidence intervals es-
timated from bootstrapping. This shows negative associations between
a cluster of psychosocial variables (CA and previous psychiatric history,
increased RNLE17 exposure and higher depression scores) and GMV
across multiple brain regions. There was also one positive association
between RNLE14 and GMV.

Thebrain regionswhere this patternwasmost reliably identified can
be seen in Fig. 1B. The affected brain regions are widely distributed and
encompass the cerebellum, anterior, medial, lateral and orbital PFC,
ACC, subgenual ACC, medial parietal regions, amygdala, nucleus accum-
bens, superior temporal gyrus/sulcus and temporal pole (see Fig. 1B and
Table 2).

3.3. Univariate structural imaging analyses

3.3.1. Childhood adversities and cerebellum
In the first analysis, we tested for regions demonstrating reduced

GMV in individuals exposed to CA (CA+) compared to non-exposed in-
dividuals (CA−). This analysis was run whilst covarying for potential
confounds described above.

Whole-brain analysis showed that individuals exposed to CA (CA+)
compared to CA− individuals demonstrated significantly reduced GMV
mainly inmedial cerebellar lobes V and VI and vermis regions Crus II, VI,
VIIb and VIIIa (see blue voxels in Fig. 2 and Table 3). There were no
group.

Neuroimaging

CA− CA+ CA−

776 27 31
17.5 (0.3) 18.4 (0.6) 18.4 (0.7)
334/442 10/17 16/15

529 (68%) 17 (63%) 18 (58%)
164 (21%) 6 (22%) 10 (32%)
83 (11%) 3 (15%) 3 (10%)
134/394/225 11/0/16 14/0/17
– 107 (9) 106 (10)
13.4 (10.8) 11.7 (8.6) 8.5 (7.6)
13/87 56/44 19/81
34/66 30/70 35/65
21.9 (6.2) 25.4 (6.8) 21.5 (5.3)
0.5 (0.9) 0.3 (0.6) 0.5 (0.8)
0.8 (1.2) 1.3 (1.7) 0.6 (0.7)

http://www.rotman-baycrest.on.ca/pls/)


Fig. 1. PLS results. Panel A shows the PLS behavioural saliences transformed into correlations that depict each psychosocial variable's contribution and directionality to the overall multi-
variate effect of influence on GMV. Error bars are the 95% confidence intervals estimated from bootstrapping. Panel B shows the most reliable brain regions that contribute to the latent
brain–behavior pair identifiedby PLS. Abbreviations: CA, childhood adversity; PrevPsych;previouspsychiatric history; ParentalPsych, parental psychiatric history; RNLE14, recent negative
life events at 14 years old; RNLE17 recent negative life events at 17 years old; MFQ, Mood and Feelings Questionnaire; FAD, Family Assessment Device; RSC, retrosplenial cortex; Prec,
precuneus; SMA, supplementary motor area; MPFC, medial prefrontal cortex; ACC, anterior cingulate cortex; dMPFC, dorsomedial prefrontal cortex; arMPFC, anterior rostral medial pre-
frontal cortex; vMPFC, ventromedial prefrontal cortex; sgACC, subgenual anterior cingulate cortex; NAcc, nucleus accumbens; PCC, posterior cingulate cortex; aPFC, anterior prefrontal
cortex; PHG, parahippocampal gyrus; Amyg, amygdala; RTPJ, right temporo-parietal junction; pSTS, posterior superior temporal sulcus; IPL, inferior parietal lobule; DLPFC, dorsolateral
prefrontal cortex; aSTG, anterior superior temporal gyrus; OFC, orbitofrontal cortex; mSTS, mid superior temporal sulcus; TP, temporal pole; MOG, middle occipital gyrus; aSTS, anterior
superior temporal sulcus; PMv, ventral premotor cortex; vIns, ventral insula.
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regions demonstrating greater GMV in individuals exposed to CA com-
pared to non-exposed individuals.

Reduced cerebellar GMV was not associated with age of CA onset,
duration or severity of exposure.

3.3.2. Participant psychiatric history and medial temporal lobe
Participants with a lifetime history of psychiatric illness (see Inline

Supplementary Table S1) demonstrated reduced GMV in the right
uncus/parahippocampal region (p = 0.042 FWE, whole-brain correc-
tion) (see Table 3 and Fig. 3).

3.3.3. Recent negative life events aged 14 and cerebellar, cingulate and cor-
tical structures

Whole-brain analysis showed an association between recent nega-
tive life events recalled at 14 years of age for the previous 12 months
and increased GMV within cortical midline regions such as medial
prefrontal cortex, anterior, mid and posterior cingulate cortices, and
precuneus, as well as lateral cerebellar regions and right superior tem-
poral gyrus (see Table 3).

3.3.4. Other modeled covariates
There were no significant effects of parental psychiatric history, cur-

rent depressive symptoms, FAD score, RNLE17, or 5-HTTLPR genotype
(with the original biallelic or rs25531 classifications) upon adolescent
GMV at the whole-brain level.

3.4. Overlap between multivariate and univariate analyses

Using conjunction analysis we assessed whether the cerebellum
cluster identified in the univariate CA analysis corresponded to the cer-
ebellum cluster identified in themultivariate analysis. Overlap between
the two analyses was observed in the vermis and medial cerebellum



Table 2
Multivariate PLS results of relationships between adverse psychosocial variables on regional GMV.

Region Label Hemi MNI x MNI y MNI z Bootstrap Ratio Cluster Size (voxels)

Limbic vIns L −45 −3 −18 4.8993 348
sgACC/Nacc B 7.5 18 −16.5 3.9991 331
Amyg/SI L −27 0 −16.5 3.9912 584

Cerebellum Cerebellum B −18 −67.5 −24 6.2607 20835
Cerebellum R 34.5 −79.5 −49.5 5.6175 3877

Temporal STG/STS L −52.5 −7.5 −3 4.8502 338
MTG R 58.5 −31.5 1.5 4.7614 1115
TP R 19.5 9 −45 4.761 405
STG L −66 −3 16.5 4.6359 460

Lateral parietal/occipital SMG/IPL R 63 −42 42 5.1726 340
Ang/MOG R 45 −69 27 5.2282 1014
MOG L −48 −72 18 4.5995 419

Midline parietal Prec R 3 −58.5 46.5 4.0305 425
Prec R 6 −63 64.5 4.5303 670
RSC B 1.5 −54 12 4.2976 326

Midline prefrontal ACC B 1.5 21 31.5 5.805 7807
SMA R 9 −18 78 5.1199 651
dMPFC/ACC B −7.5 36 40.5 5.336 870
PMd/SMA L −16.5 −9 76.5 5.2981 1083

Lateral prefrontal aPFC L −24 55.5 15 4.3216 311
aPFC R 27 48 18 4.2848 258
plOFC/ATL R 33 27 −24 5.7124 2876
DLPFC/FO R 45 13.5 30 5.0425 736

Brain regions: ACC = anterior cingulate cortex; plOFC = posterior lateral orbitofrontal cortex; ATL = anterior temporal lobe; dMPFC = dorsomedial prefrontal cortex; PMd = dorsal
premotor cortex; SMA = supplementary motor area; Ang = angular gyrus; MOG= middle occipital gyrus; SMG = supramarginal gyrus; IPL = inferior parietal lobule; FO = frontal
operculum; DLPFC = dorsolateral prefrontal cortex; vIns = ventral insula; STG = superior temporal gyrus; STS = superior temporal sulcus; MTG = middle temporal gyrus; Prec =
precuneus; RSC = retrosplenial cortex; aRLPFC = anterior rostro-lateral prefrontal cortex; sgACC = subgenual ACC; NAcc = nucleus accumbens; Amyg = amygdala; SI = substantia
innominata.
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region (see Fig. 4A), providing confirmatory evidence that the cerebel-
lumcluster identified in the PLS analysiswas driven byCA.We then per-
formed a conjunction analysis between RNLE14 and the multivariate
results. Overlapwas observed between the two analyses predominantly
in the lateral cerebellum, cingulate/MPFC and right STS/STG (see
Fig. 4B), providing confirmatory evidence that these regions in the PLS
analysis were driven by RNLE14.
Fig. 2.Univariate results of CA and RNLE14 effects. This figure shows brain regions where the pr
increased recent negative life events at 14 years of age (RNLE14)was related to increased GMV
chosocial variables and are whole-brain corrected at a cluster-FDR of q b 0.05. Abbreviations:
dorsomedial prefrontal cortex; MPFC, medial prefrontal cortex; ACC, anterior cingulate corte
PMd, dorsal premotor cortex; PHG, parahippocampal gyrus; RTPJ, right temporo-parietal juncti
superior temporal gyrus.
4. Discussion

In a representative community sample of currently healthy adoles-
cents recruited from a larger longitudinal cohort study, we observed
that correlated adverse psychosocial factors occurring from childhood
through to mid adolescence are associated with GMV throughout dis-
tributed neural systems as measured in late adolescence. This result is
esence of childhood adversities (CA)was related to decreased GMV (blue voxels) orwhere
(orange voxels). These effects were found after partialling out variability due to other psy-
MCC, middle cingulate cortex; PCC, posterior cingulate cortex; Prec, precuneus; dMPFC,
x; sgACC, subgenual anterior cingulate cortex; vMPFC, ventromedial prefrontal cortex;
on; pSTS, posterior superior temporal sulcus; STS, superior temporal sulcus; aSTG, anterior



Table 3
Effects of childhood adversities (CA), participant psychiatric history, and recent negative life events aged 14 (RNLE14) on graymatter volume evident at the whole-brain level and surviving
either FWE at p b 0.05 (#) or cluster-FDR correction for multiple comparisons at q b 0.05 (*). Effects evident after controlling for other confounding variables: gender, current depressive
symptoms, 5-HTTLPR genotype variation, FAD questionnaire score, recent negative life events aged 17 and total intra-cranial volume. Abbreviations: SVC = Small Volume Corrected,
FWE= Family Wise Error Corrected for multiple comparisons, FDR = False Discovery Rate.

Contrast Region Cluster size (ke) T-score Z-score MNI X MNI Y MNI Z

CA− N CA+ Cerebellum⁎ 5078 4.86 4.36 3 −57 −12
No psych history N psych history Uncus# 1716 5.37 4.73 18 3 −36
Positive effect of RNLE14 Mid. temp. gyrus.⁎ 3676 6.06 5.20 60 −30 −5

Cerebellum⁎ 3183 5.11 4.54 33 −49 −50
Cerebellum⁎ 19573 4.99 4.45 30 −55 −29
Cerebellum⁎ 3486 4.83 4.34 −32 −63 −51
ACC⁎ 3131 4.81 4.32 −12 50 −2

⁎ Significant at q b 0.05 FDR.
# Significant at p b 0.05 FWE.

314 N.D. Walsh et al. / NeuroImage: Clinical 4 (2014) 308–318
consistent with past work demonstrating an association between ad-
verse psychosocial experiences and reduced GMV in the cerebellum.
However, as far as we know however, this is the first illustration of
such multivariate associations and increases in brain GMV in humans
following negative life events aged 14. Taken together the results are a
striking illustration of the influence and embedding of the effects of
the psychosocial environment on structural brain development.

Through subsequent univariate analyses we found that some vari-
ables are likely to exert a unique influence on particular brain structures.
Therefore, this study not only advances our understanding of how the
general psychosocial environment (composed of multiple adverse psy-
chosocial variables occurring over time) affects structural development
of large-scale neural systems, but also suggests specificity between an-
atomical regions and individual psychosocial factors.
Fig. 3.Whole-brain univariate results of participant psychiatric history. This figure shows the
demonstrated decreasedGMV compared to non-reporting participants. These effectswere foun
at p b 0.001.
4.1. Childhood adversity and the cerebellum

We found a clear association between CA and reduced GMV.We ob-
served reduced GMV in themidline cerebellum in both themultivariate
and univariate analyses with the conjunction analysis indicating the
variation to bemost apparent in the vermis and themidline cerebellum
(see Fig. 3). The finding suggests that relatively chronic exposure to
moderate childhood adversities may specifically reduce cerebellar
GMV but as these are cross-sectional findings antecedent differences
in cerebellar architecture prior to exposure cannot be ruled out.

The association is consistentwith prior studies demonstrating small-
er cerebellar vermis GMV in individuals exposed to severe maltreat-
ment, adversity and neglect (Baldacara et al., 2011a; Bauer et al.,
2009; Carrion et al., 2009; De Bellis and Kuchibhatla, 2006; Edmiston
right uncus/parahippocampal region whereby participants reporting a psychiatric history
d after partialling out variability due to other psychosocial variables. Activation thresholded



Fig. 4. A) Conjunction analysis of multivariate and CA regions identified in univariate analyses. Red= regions identified inmultivariate analysis; blue= CA regions in univariate analysis;
green= overlap. B) Conjunction analysis ofmultivariate and RNLE14 regions identified in univariate analyses. Red= regions identified inmultivariate analysis; blue= RNLE14 regions in
univariate analysis; purple = overlap.
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et al., 2011; Hanson et al., 2010; Kumari et al., 2013; Sheffield et al.,
2013). The present study uniquely extends such findings by showing
that this association occurs withmoderate but relatively chronic paren-
tal discord. Parental discord is a common trans-diagnostic risk factor for
many psychiatric disorders (Kessler et al., 2010) and smaller cerebellar
vermal GMV has been repeatedly reported in ADHD (Bledsoe et al.,
2009), affective disorder (Baldacara et al., 2011a; Shah et al., 1992), Au-
tism (Courchesne et al., 1988), bipolar disorder (Baldacara et al., 2011b),
conduct disorder (Fairchild et al., 2011) and schizophrenia (Ichimiya
et al., 2001; Loeber et al., 2001). A smaller cerebellar vermis may there-
fore be a trans-diagnostic neural marker of psychopathology.

The cerebellum is differentially susceptible to the rearing environment
and increased resting-blood flow in the cerebellum has been reported in
individuals exposed to abuse (Anderson et al., 2002). Long-term motor
skill training in animals and humans induces structural and functional
changes in the cerebellum (Hutchinson et al., 2003; Kleim et al., 2007).
From a psychosocial risk perspective, isolation reared rhesus monkeys
demonstrated altered morphology of cerebellar Purkinje cells compared
to colony reared primates (Floeter and Greenough, 1979) indicating neg-
ative effects of a depriving environment. The cerebellumvermis is also ac-
tivated during states of high autonomic cardiovascular arousal such as
exercise and mental stressor tasks (Critchley et al., 2000). Therefore a
sustained activation following exposure to CA may be adaptive in the
short-term but maladaptive over the long-term.

As the neonatal cerebellum contains the highest number of gluco-
corticoid receptors in the brain (Pavlik and Buresova, 1984; Sanchez
et al., 2000) it may be particularly sensitive to allostatic failure in the
presence of common family-focused CA (Wilkinson and Goodyer,
2011). However, we cannot rule out the possibility that smaller vermis
GMV is due to negative in utero influences thatmay co-occurwith CA or
indeed as a result of as yet unidentified genetic variants. Currently, it is
unclear what the functional implications of a smaller cerebellar vermis
are in terms of emotion, motivational and cognitive processing. Infants
with atypical neural development that involves congenital abnormali-
ties of the cerebellar vermis show a range of behavioral and cognitive
deficits (Pierce and Courchesne, 2001; Steinlin, 2008). Whether these
apply, at a more subtle level to typically developing human infants
who are exposed to a sub-optimal rearing environment is unclear.

4.2. Past psychiatric history and the medial temporal lobe

The finding of lower GMV in the right uncus/parahippocampal asso-
ciated specifically with participant's lifetime psychiatric history
suggests either 1) an effect whereby lower GMV in this region is a
neuroendophenotype risk for subsequent mental illness or 2) a prior
mental illness, most likely affective in nature, leads to reduced GMV,
in line with the neural scarring hypothesis (Dannlowski et al., 2012;
Wichers et al., 2010). Both are biologically plausible; and as we have
shown, clearly not a consequence of any other correlated liability mea-
sured in this study. Decreased medial temporal lobe volume is a com-
mon finding in cross-sectional and prospective stress studies in
healthy individuals (Gianaros et al., 2007; Papagni et al., 2011; Zannas
et al., 2013) and those with psychiatric diagnoses such as Affective Dis-
orders (Bora et al., 2012; Frodl et al., 2008), and Psychosis (Bodnar et al.,
2012). Such a decrease may be an adaptive consequence of prolonged
activity in this region during heightened states of anxiety (Osuch
et al., 2000). Prior studies attributing smaller MTL volume to CA may
have also failed to take subsequent episodes of mental illness into ac-
count (Moffitt et al., 2010; Rohde et al., 2013).

4.3. Recent negative life events and the adolescent brain

In contrast to the above findings, there was a significant and unex-
pected positive association of recent stressful life events recalled at
age 14, upon brain GMV in cortical midline PFC and parietal areas, supe-
rior temporal areas and lateral cerebellum (see Fig. 2). Previously, such
increases in these particular regions have been reported in prospective
primate studies of monkeys exposed to prior stressors (Katz et al.,
2009; Spinelli et al., 2009). The current findings in well individuals
clearly require replication in an independent sample. One working hy-
pothesis is that individuals exposed to this level of stressor at this earlier
age may reflect a “stress-inoculation” or “steeling” resilience effect on
neural development (Parker and Maestripieri, 2011; Parker et al.,
2004; Rutter, 2012b). Significantly increased volume of the PFC has
been reported in pediatric-PTSD samples compared to control children
(Carrion et al., 2009; Richert et al., 2006). Additionally in the Richert
et al. (2006) study those children with PTSD diagnoses and with the
greatest reported functional impairment, demonstrated the greatest
volume reduction in dorsal medial PFC, suggesting that it is the degree
to which stressors functional impair an individual that affects brain
GMV. We also found that there were no such effects for negative life
events reported at age 17 which were more proximal to the scanning
study. This was despite the frequency of reported events being higher
at this age compared to those reported at age 14. Therefore, at present,
we cannot give a definitive explanation of our opposing findings
concerning CA and RNLE14 effects upon GMV. One reason may have
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to do with the point at which exposure occurred during development,
with CA exposure earlier from birth to age 11, whereas RNLE14 oc-
curred later than this. Relatedly it may be due to exposure occurring
prior or after the onset of puberty in participants (CA occurring prior
to and RNLE14 occurring during/after puberty). Another reason may
be due to the severity of exposure, with RNLE14 exposure being rela-
tively low (compared to RNLE17). Another reason may be due to the
provider of information with CA information being reported by the par-
ent whereas RNLE14 information being reported by the participant.
However, due to the lack of effect due to RNLE17 exposure, this argues
against this interpretation of the results. Future studies are required to
clarify the effects these factors have upon GMV and further examine
the role of recent negative life events upon brain GMV and especially
type, duration, frequency and developmental timing of negative life
events.

Future studies would need to take into account normative variation
in developmental trajectories to make better sense of the impact of the
proximal as well as the distal social environment. Previous studies have
shown that the medial prefrontal cortex and posterior superior tempo-
ral sulcus are areas that show decreased thickness from 14 to 18 years
of age (Mills et al., 2014),while the cerebellum shows anupward trajec-
tory during this point in development (Tiemeier et al., 2010).

4.4. Adversities and the hippocampal and amygdala regions

Other notable regions of interest justified by past literature such as
the hippocampus and amygdala were not associated with any one spe-
cific psychosocial variable we investigated but were identified in the
multivariate analysis. This suggests that GMV measured in late adoles-
cence in these key regions involved in emotion processing are either an-
tecedent risks or sensitive to the chronic interplay of psychosocial
adversities over time rather than vulnerable to a specific type of
adversity.

4.5. 5HTTLPR, adversities and lower GMV

Finally, in contrast to previous studies in humans and animals (Canli
et al., 2006; Pezawas et al., 2005; Selvaraj et al., 2011), but in support of
recent larger-sampled studies (Cole et al., 2011) we did not find signif-
icant effects of 5-HTTLPR variation on GMV, either as a main effect or in
interaction with CA.

4.6. Limitations

The current findings are cross-sectional and prevent causal interpre-
tations beingmade; thuswhilstwe demonstrate amultivariate set of as-
sociationswith some demonstrable specificities, prospective studies are
required to test our hypothesis of differential effects of psychosocial ex-
periences on the developing brain. It is additionally important to ex-
clude potential antecedent differences arising from latent genetics,
congenital factors or other neutrally relevant toxins such as inflamma-
tion. A particular difficulty for this and many imaging studies is the ab-
sence of normative developmental brain map as a reference point for
interpreting differences in case–control studies. It would therefore
also be advantageous in future studies to have repeated neuroimaging
scans to dynamically understand themoderating effects of environmen-
tal variables over the life course. Other limitations include the use of re-
liance of information obtained from maternal interview using the
CAMEEI and the relatively high SES background of participants in this
study that may contrast with the SES of participants in other studies
who may have experienced more severe forms of abuse and adversity.

5. Conclusions

The findings show that moderate and chronic childhood adversities
characterized by inter-parental discord are associated with widespread
changes in GMV in the late adolescent brain. Further it was possible to
reveal putative specific effects for some of these correlated psychosocial
factors on regional changes in GMV. Thesefindings suggest that a small-
er cerebellar vermis may act as a trans-diagnostic marker for psychopa-
thology. There may also be developmentally mediated effects of
subsequent psychosocial risks on other later maturing brain areas
such as reduced medial temporal lobe GMV associated with a psychiat-
ric diagnosis and widespread increased GMV associated with negative
life events aged 14. This study demonstrates that the developing brain
may be sensitive to more common, moderate but chronic family-
focused forms of adversities, as well as severe forms of maltreatment.
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