
For Peer Review

 

 

 
 

 

 

Incipient mixing by Marangoni effects in slow viscous flow 

of two immiscible fluid layers 
 

 

Journal: The IMA Journal of Applied Mathematics 

Manuscript ID: IMAMAT-2014-176.R1 

Manuscript Type: Original Papers 

Date Submitted by the Author: n/a 

Complete List of Authors: penfold, robert; institute of food research, food and health programme 
rickett, lydia; sainsbury laboratory,  
Blyth, Mark; University of East Anglia, Mathematics 
Purvis, Richard; University of East Anglia, School of Mathematics 
Cooker, Mark; University of East Anglia, Mathematics 

Keyword: 
liquid-liquid interface,  linear stability analysis, generalized eigenvalue 

problem, collocation method, avoided crossing, exceptional point 

  

 

 

 

http://mc.manuscriptcentral.com/imamat

Manuscripts submitted to (i)The IMA Journal of Applied Mathematics(/i)



For Peer Review

IMA Journal of Applied Mathematics (2014) Page 1 of 37
doi:10.1093/imamat/dri017

Incipient mixing by Marangoni effects in slow viscous flow of two
immiscible fluid layers

LYDIA RICKETT1,3 , ROBERT PENFOLD2 , MARK G. BLYTH1, RICHARD PURVIS1,
MARK J. COOKER1

1 School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK.
2 Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
3 The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.

[Received on October 28, 2014]

[Received on 28 October 2014]

Ignoring inertia, a deformable interface separating two fluid films is considered, subject to nonuniform
tension driven by the solutal Marangoni effect in the presence of a scalar concentration field. Detailed
description of adsorption kinetics is abrogated by a simple ansatz directly relating interfacial tension
and bulk solute concentration. Consequently, the formal mathematical treatment and some of the results
share features in common with the Rayleigh–Bénard–Marangoni thermocapillary problem. Normal mode
perturbation analysis in the limit of small interface deformations establishes the existence of unstable
response for low wavenumber excitation. In the classification of Cross and Hohenberg (1993, Rev.
Mod. Phys., 65, 851–1112), both Type-I and Type-II behaviour are observed. By considering the zero
wavenumber situation exactly, it is proved that all eigenvalues are purely imaginary with non-positive
imaginary part; hence, a Type-III instability is not possible. For characteristic timescales of mass dif-
fusion much shorter than the relaxation time of interfacial fluctuations (infinite crispation number): the
response growth rate is obtained explicitly; only a single excitation mode is available and a complete
stability diagram is constructed in terms of the relevant control parameters. Otherwise, from a quiescent
base state, an infinite discrete spectrum of modes is observed that exhibit avoided crossing and switching
phenomena, as well as exceptional points where stationary state pairs coalescence into a single oscilla-
tory standing wave pattern. A base state plane Poiseuille flow, driven by an external pressure gradient,
generally exaggerates the response: growth rates of instabilities are enhanced and stable decay is further
suppressed with increasing base flow speed; but the inherent symmetry breaking destroys stationary and
standing wave response. Results are obtained in this most general situation by implementing a numerical
Chebyshev collocation scheme. The model was motivated by hydrodynamic processes supposed to be
involved in gastric digestion of humans.

Keywords: liquid-liquid interface, Gibbs elasticity, Stokes flow, linear stability analysis, generalised
eigenvalue problem, collocation method, avoided crossing, exceptional point

1. Introduction

To understand the bio-availability and delivery of nutrients and medicines from processed foods and
pharmaceutical preparations, a detailed mechanistic model of digestion is needed. The human gastroin-
testinal tract, from the mouth to the anus, is a coupled sequence of specialized organs, each of which has
a distinctive digestive function. In particular, the stomach performs biochemical tasks involving com-
plex salts, strong mineral acid and proteolytic enzymes to produce chyme (soft solid, partially digested

c© The author 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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food) (Kong & Singh, 2008). The stomach also offers a prominent line of defense against pathogenic
microorganisms, but more importantly it is the primary site of mechanical action where ingested mate-
rial is subjected to a complicated unsteady shear flow, dominated by frictional dissipation rates with
relatively negligible inertial forces (Pal et al., 2007). For the purpose of developing a simple mathemat-
ical model of this action, we shall adopt here the following working definition: “digestion” means the
incipient mixing associated with the linear temporal instability of the interface between two immiscible
liquids. Agitated away from equilibrium, the morphological evolution of interfacial patterns and the
dynamics of viscous interfacial flow are driven by the physical mechanisms of heterogeneous mixing
(Pozrikidis, 1997). Despite the absence of inertia-driven turbulence, a combination of chaotic advection
and diffusion can promote mixing in Stokes flows (Thiffeault et al., 2011) that are governed by time-
reversible equations of motion. With deformable boundaries, a “geometric” mixing mechanism has also
been suggested exploiting anholonomy of the system so that flow variables do not recover their original
values on negotiating a closed loop in the parameter space (Cartwright et al., 2012).

Developed at the Institute of Food Research (UK), the Dynamic Gastric Model (DGM) is an in-vitro
system that automatically simulates human digestion for the first time from a realistic physiological
perspective by accounting for the physical, mechanical and biochemical environment experienced in the
stomach (Mercuri et al., 2011). To establish a reliable predictive relationship between DGM output and
physiological stomach behaviour, some quantitative analysis of the device function is required. Moti-
vated by this need, the present work establishes conditions relevant to the hydrodynamics of digestion
insofar as they may lead to mixing and may be a precursor for turbulence.

The application of Orr-Sommerfeld perturbation analysis (Drazin, 2002; Charru, 2011) for parallel
fluid flows has a rich, mature and growing literature. Linear response theory leads to a generalised
eigenvalue problem which has a nontrivial solution only if the temporal and spatial frequencies are
linked by a dispersion relation. In the most general problem, the large number of control parameters
(at least six) spawns a host of potentially unstable modes governed by diverse mechanisms of different
physical origin. The viscosity-induced interfacial mode instability of two superposed and bounded fluid
layers was first discussed by Yih (1967). Subsequently designated as “the thin-layer effect” (Hooper,
1985), a spatially confined film of more viscous fluid is unstable to long waves at all positive Reynolds
numbers. For the converse situation of a confined film of lower viscosity, the flow is stable in the
limit of weak interfacial tension (Renardy, 1987). The thin-layer effect is also observed for multiple
fluid layer configurations in plane Poiseuille flow (Anturkar et al., 1990). Neglecting interfacial tension
entirely, Charru & Hinch (2000) have neatly rationalised Yih’s small wavenumber analysis together with
a second instability at low Reynolds number and high frequency (Hooper & Boyd, 1983) that is present
between two shearing unbounded fluids. This latter phenomenon has been confirmed by numerical
volume-of-fluid studies in the nonlinear regime (Coward et al., 1997; Li & Renardy, 2000) and might be
regarded as a viscous analogue of the Kelvin-Helmholtz instability. Hinch (1984) proposed a detailed
mechanism and concluded that some small inertial contribution is necessary in order that advection by
the main shear flow can drive the disturbance vorticities in each fluid out-of-phase and so allow the
induced velocity fields to amplify the interfacial perturbation. By considering the energy budget in low
Reynolds number expansions, Albert & Charru (2000) have confirmed that interfacial instability arises
from inertia influencing disturbances, at both small and large wavenumber.

It is perhaps because of this conclusion that the stability of superposed liquid layers in strict Stokes
flow (at zero Reynolds number) has received far less attention. Pozrikidis (1997) has implemented
a boundary integral method to investigate the interfacial behaviour subject to finite amplitude pertur-
bations. He showed that sufficiently large amplitude disturbances cause permanent interfacial defor-
mation with a morphology that depends sensitively on the viscosity ratio. In a very recent study of
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Poiseuille flow of layered miscible fluids in the Stokes regime, Talon & Meiburg (2011) have reported
that diffusion has a destabilising effect very similar to that induced by inertia at finite Reynolds number.
Miscibility influences stability by extending the interface into a three dimensional domain with finite
width and is typically modelled (Sahu et al., 2009a,b) by a smooth viscosity distribution coupled to a
convective-diffusion equation for a scalar concentration field of “friction inducing solute”. Formally, this
is very similar to our present treatment of Marangoni effects (Johnson & Narayanan, 1997) where spatial
variations of interfacial tension are produced, for example, by a temperature field or by a nonuniform
distribution of surfactants. This artifice will simplify the differential geometry and obviate a detailed
chemical kinetic mechanism of the interfacial adsorption process (Palmer & Berg, 1972; Reichenbach
& Linde, 1981; Slavtchev et al., 1998, 2006) that is highly complicated in typical applications, notably
the digestion mechanism of the stomach. In consequence too, we note a formal correspondence between
this approach and the analysis of thermal Marangoni effects. As a rich example of spontaneous pattern
formation in nonequilibrium dynamical systems, the classical Rayleigh–Bénard convective instability
(Koschmieder, 1974) of a single fluid layer subject to a transverse temperature gradient has been long
studied (Normand et al., 1977) but continues to attract attention (Bodenschatz et al., 2000). By super-
posing a second layer of immiscible fluid, many new and qualitatively different phenomena arise from
the competition of individual layer instabilities (Andereck et al., 1998). By assuming “exchange of sta-
bilities” (Drazin & Reid, 2004), a linear stability analysis of the thermal Marangoni effect was tackled
by Zeren & Reynolds (1972), and subsequently extended by Zhao et al. (1995) to account for interfa-
cial deformation. Rasenat et al. (1989) completed a more general treatment to demonstrate that steady
convection could be driven either by buoyancy or by Marangoni forces.

Frenkel and Halpern (Frenkel & Halpern, 2002; Halpern & Frenkel, 2003) have identified a new
non-inertial interfacial instability which was investigated further by Blyth & Pozrikidis (2004a). This
is driven by the Marangoni traction that arises from the presence of adsorbed surfactant and velocity
shear in two-layer planar flows of Couette-Poiseuille type. A physical mechanism is also proposed
where the imbalance of interfacial tension drives flow from troughs to peaks and reinforces the defor-
mation. Notably, in contrast to the interfacial mode of inertial flows, a viscosity jump is not required
for instability. Moreover, explicit analytic expressions are obtained for the wave speed and growth rate.
Corresponding phenomena are also predicted for surfactant-laden interfaces in gravity driven flow on an
inclined plane (Gao & Lu, 2007; Blyth & Pozrikidis, 2004b) and for radially stratified films in concentric
two-fluid Taylor–Couette flow (Peng & Zhu, 2010), where there is a complicated interaction of insta-
bility mechanisms. The effect of inertia coupled with the Marangoni instability has also been studied
by normal-mode analysis (Frenkel & Halpern, 2005; Blyth & Pozrikidis, 2004c) and numerical meth-
ods (Pozrikidis, 2004) applicable beyond the linear regime. A wider range of unstable wavenumbers
is the chief consequence. After observing that linear analysis of Stokes flow has established insoluble
surfactant is unable to destabilise a sheared interface between two semi-infinite fluids, Pozrikidis & Hill
(2011) have recently questioned the necessity of a bounded fluid domain to realise the Marangoni insta-
bility. They concluded that one wall is required to engage the Marangoni mechanism, but the presence
of a second wall may stabilise the flow.

Section 2 sets out the physical arguments to establish the appropriate governing equations and
boundary conditions. A full mathematical treatment is developed in Section 3, culminating in a dis-
persion relation. Two special cases are considered in Section 4 before the general solution is presented
in Section 5. Results are collected and discussed in Section 6, and the paper concludes in Section 7 with
some perspective on applications and future work. Section 9 is an appendix containing comprehensive
mathematical details and formal proofs of some results in the text.
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2. Mathematical model specification

2.1 Coordinate frame, constitutive relation and nondimensionalisation

Under isothermal conditions, consider the unidirectional creeping flow of two incompressible Newto-
nian fluids (indexed by the labels j = 1, 2), driven by a constant axial pressure gradient −G̃p (with
G̃p > 0) through an infinite channel bounded by stationary parallel walls fixed at separation 2h̃. It
is natural to adopt a Cartesian system (x̃, ỹ, z̃) with the longitudinal coordinate −∞ < x̃ < ∞ and the
transverse coordinate −h̃ 6 ỹ 6 h̃. Unit vectors in each coordinate direction are denoted i, j and k,
respectively. Interfacial disturbances are supposed small and are manifest in two spatial dimensions
only so that all the relevant dynamical quantities are independent of the lateral coordinate z̃. The fluid
labelled 1 is confined between the lower wall at ỹ =−h̃ and the interface, whose flat equilibrium posi-
tion is ỹ = α̃ where α̃ is a constant. Each of the bulk fluids is characterised by a dynamic viscosity µ̃ j
and a diffusion coefficient D̃ j for solute species. We observe the Boussinesq approximation and sup-
pose that all µ̃ j and D̃ j are constant and remain unaffected by variations in bulk solute concentration.
Furthermore, there is no stratification in mass density ρ̃1 = ρ̃2 = ρ̃ and the system is assumed free of
external body forces, so buoyancy effects are neglected.

The deformable interface located at ỹ = η̃
(
x̃, t̃
)
, is a free material boundary with a Newtonian

response: explicit effects of interfacial rheology are neglected. Nevertheless, the associated equilib-
rium interfacial tension is a sensitive function of the local environment, with a complicated dependence
on temperature and the presence of solutes in either of the adjoining fluid phases. Spatial inhomo-
geneities of the interfacial tension can arise from fluctuations in the physical adsorption of surfactants
and advective interfacial transport, or from localised chemical activity at the interface. For simplicity,
we posit a scalar field χ̃ j = χ̃ j

(
x̃, ỹ, t̃

)
to represent the concentration of some surface active species

dissolved in fluid j, that is subject to advection and diffusion in the three-dimensional bulk phases only.
It is here that our ansatz deviates from other studies of the solutal Marangoni effect (Li & Pozrikidis,
1997; Frenkel & Halpern, 2002; Halpern & Frenkel, 2003; Frenkel & Halpern, 2005; Blyth & Pozrikidis,
2004a; Pozrikidis, 2004; Blyth & Pozrikidis, 2004c; Gao & Lu, 2007; Pozrikidis & Hill, 2011) where the
surfactant is assumed insoluble in bulk, confined strictly to the interface and governed by an appropriate
two-dimensional transport equation.

We undertake a temporal linear stability analysis of steady base state flow with a uniform interfacial
tension and concentration fields

χ̃
(0)
j = χ̃

(0)
j

(
ỹ
)
, j ∈ {1, 2} , (2.1)

that depend only on the transverse coordinate across the channel. For small perturbations of the base
state flow, the change in the interfacial tension is proportional to the induced departure of the bulk
concentration from χ̃

(0)
j , and proportional to a contribution that arises from displacement of the interface

within the static field. We adopt the linear interfacial equation of state

γ̃ = γ̃
(
x̃, ỹ, t̃

)
= γ̃0

1−Mg×

 χ̃ j
(
x̃, ỹ, t̃

)
− χ̃

(0)
j

(
α̃
)

χ̃
(0)
2

(
h̃
)
− χ̃

(0)
1

(
−h̃
)
 , (2.2)

with the understanding that physical meaning is attached to this field γ̃ only for ỹ = η̃ . The dimen-
sionless interaction parameter Mg measures the change in interfacial tension with respect to the local
concentration of surface active solutes and is related to the dilatational (Gibbs) elasticity that couples the
dynamic boundary conditions on interfacial stress and surfactant flux (Edwards et al., 1991). Typically
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Mg =
χ̃
(0)
2

(
h̃
)
− χ̃

(0)
1

(
−h̃
)

γ̃0

(
∂ γ̃

∂ χ j

)
Dilatational elasticity of interface

Cr =
µ̃1D̃1

h̃γ̃0
Crispation number

Eu =
h̃2G̃p

γ̃0
Euler number

∆χ =
h̃γ̃0

µ̃2
1

(
χ̃2
(
h̃
)
− χ̃1

(
−h̃
))

Overall solute concentration difference

λ =
µ̃2

µ̃1
Dynamic viscosity ratio

Λ =
D̃2

D̃1
Solute diffusivity ratio

δ =
h̃− α̃

h̃+ α̃
Fluid film thickness ratio

Table 1. The seven dimensionless control parameters that feature in this analysis.

Mg > 0 and the spontaneous physical adsorption of material at the interface will lower the surface free
energy relative to the bulk phases. We also interested, however, in the more complex situation where
changes of interfacial tension are driven by chemical activity. For example, denaturation, cross-linking
or gelation of proteins at the interface may lead to increases of tension compared with the bare sur-
face. Within the ansatz (2.2), this behaviour could be modelled by choosing Mg < 0, that is the solutal
analogue of the anomalous thermocapillary effect (Braverman et al., 2000).

To accommodate the analysis of a quiescent base state with a vanishing pressure gradient G̃p = 0,
suitable units of mass, length and time are

[M] =

(
h̃µ̃1
)2

γ̃0
, [L] = h̃ , [T ] =

h̃µ̃1

γ̃0
. (2.3)

Accordingly, the dynamics depends on at most seven dimensionless control parameters listed in Table 1.
From now on, all dimensionless quantities will be indicated by the absence of tilde decoration.

2.2 Governing equations

In the effective two-dimensional geometry, we have the Stokes stream functions ψ j = ψ j(x, y, t) satis-
fying biharmonic equations

∇
4
ψ j =

(
∂ 4

∂x4 +2
∂ 4

∂x2∂y2 +
∂ 4

∂y4

)
ψ j = 0 , (2.4)

that determine the velocity fields u j = u ji+ v jj with longitudinal and transverse components

u j =
∂ψ j

∂y
and v j =−

∂ψ j

∂x
. (2.5)
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Incorporating the pressure fields p j = p j(x, y, t), the Newtonian stress tensors are

σσσ j = σσσ j(x, y, t) =−p jI+λ j

(
∇u j +

(
∇u j

)T
)

, (2.6)

where λ1 = 1 and λ2 = λ . The concentration fields are subject to fluid advection and bulk diffusion,
described as (

∂

∂ t
+u j ·∇−CrΛ j∇

2
)

χ j = 0 , (2.7)

where Λ1 = 1 and Λ2 = Λ .
With the interface position at y = η(x, t), the field equations (2.4) and (2.7) are supplemented by

no-slip and kinematic boundary conditions:

u1(x, −1, t) = 0 , u2(x, 1, t) = 0 ,
(
no slip on walls

)
v1(x, −1, t) = 0 , v2(x, 1, t) = 0 ,

(
stationary walls

)
(
u1−u2

)
(x, η , t) = 0(

v1− v2
)
(x, η , t) = 0

}
,

(
flow continuity

on interface

)

∂η

∂ t
+u j(x, η , t)

∂η

∂x
− v j(x, η , t) = 0 .

(
moving material

interface

)
(2.8)

Given local orthogonal unit vectors perpendicular n̂ = n̂(x, η , t) (directed from fluid 2 into fluid 1) and
tangent t̂ = t̂(x, η , t) to the interface, the corresponding components of the dynamic stress balances
become, respectively:

n̂ ·
((

σσσ1−σσσ2
)
(x, η , t)

)
· n̂ =

(
1+
(

∂η

∂x

)2
)−3/2

∂ 2η

∂x2 γ(x, η , t) ,

t̂ ·
((

σσσ1−σσσ2
)
(x, η , t)

)
· n̂ =−

(
1+
(

∂η

∂x

)2
)−1/2(

∂γ

∂x
(x, η , t)+

∂η

∂x
∂γ

∂y
(x, η , t)

)
.

(2.9)

Finally, concentrations are prescribed on the walls, together with interfacial continuity conditions on the
χ j and the material flux according to:

χ1(x, −1, t) = 1

χ2(x, 1, t) = 1+∆χ

}
,

(
prescribed wall
concentration

)

(
χ1−χ2

)
(x, η , t) = 0 ,

(
concentration continuity

on interface

)
∂

∂y

(
χ1−Λ χ2

)
(x, η , t) = 0 .

(
concentration flux

continuity on interface

)
(2.10)
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3. General analysis of the mathematical model

3.1 Base (ground) state: unperturbed flow

For steady plane Poiseuille flow with a flat interface η(x) = α , we obtain the pressure fields

p(0)j = p(0)j (x) = p0−Eu x , (3.1)

where p0 is a constant background pressure and Eu is the Euler number (Table 1). Similarly, the velocity
fields are

u(0)1 (y) = u(0)α +
Eu
2
(α− y)

(
y− δ −λ

δ +λ

)
=

∂ψ
(0)
1

∂y
, v(0)1 = 0 , (−1 6 y 6 α) ,

u(0)2 (y) = u(0)α −
Eu
2λ

(y−α)

(
y− δ −λ

δ +λ

)
=

∂ψ
(0)
2

∂y
, v(0)2 = 0 , (α 6 y 6 1) ,

(3.2)

where the horizontal velocity at the interface is

u(0)α =
2δ Eu

(1+δ )(δ +λ )
. (3.3)

The steady concentration fields are

χ
(0)
1 (y) = χ

(0)
α −Gχ,1(α− y) , (−1 6 y 6 α) ,

χ
(0)
2 (y) = χ

(0)
α +Gχ,2(y−α) , (α 6 y 6 1) ,

(3.4)

where the unperturbed interfacial concentration and corresponding gradients are

χ
(0)
α =

δ +Λ
(
1+∆χ

)
δ +Λ

, Gχ,1 =
Λ(1+δ )∆χ

2(δ +Λ)
, Gχ,2 =

(1+δ )∆χ

2(δ +Λ)
=

Gχ,1

Λ
. (3.5)

3.2 Perturbed interface

We introduce a plane wave perturbation of the interface

y = η(x, t) = α + εℜ
(
A exp

(
i(kx−ωt)

))
, (3.6)

with a prescribed real and positive wavenumber k. Here, ℜ denotes the real part. The real order param-
eter ε > 0 is assumed small so we seek the linear response to the wave disturbance with amplitude
A = O(1). Evolution of the disturbance in time is governed by the imaginary part ℑ(ω) of the generally
complex temporal frequency ω . A stable response decays towards zero

(
ℑ(ω)< 0

)
while unbounded

growth
(
ℑ(ω)> 0

)
characterises an instability. All other dynamical variables Θ ∈

{
ψ j, u j, v j, p j, χ j

}
are supposed to develop similar fluctuations directly proportional to E so that

Θ =Θ(x, y, t) =Θ
(0)(y)+ εℜ

(
Θ

(1)(y)exp
(
i(kx−ωt)

))
. (3.7)

To simplify notation, we identify D ≡ d/dy with the differential operator and further adopt the following
definitions:

k− ≡ k(1−α) =
2kδ

1+δ
, k+ ≡ k(1+α) =

2k
1+δ

,
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cξ ≡ cosh(kξ ) , sξ ≡ sinh(kξ ) , (3.8)

where ξ is a dummy variable.
By virtue of the linear field equations (2.4), the stream function perturbations each satisfy(

D2− k2)2
ψ

(1)
j = 0 , (3.9)

with general solutions of the form

ψ
(1)
j =

(
Â j +Ĉ jy

)
cy +

(
B̂ j + D̂ jy

)
sy , (3.10)

where Â j, B̂ j, Ĉ j and D̂ j are constants to be determined. The linear advection-diffusion law (2.7) yields(
D2−

(
k2 +

i
CrΛ j

(
ku(0)j −ω

)))
χ
(1)
j +

ikGχ, j

CrΛ j
ψ

(1)
j = 0 . (3.11)

With constants F̂j and Ĝ j, the general solutions

χ
(1)
j = χ

(1)
j (y; ω) =

2∆χ

Mg

((
F̂jΨj + Ĝ jΦ j

)
− ik I j

)
, (3.12)

each comprise a complementary function of the independent homogeneous solutions Ψj =Ψj(y) and
Φ j = Φ j(y), together with a particular integral I j = I j

(
y;
[
ψ

(1)
j

])
. In this general formulation, the Ψj

and Φ j are unknown but will be determined explicitly for various cases discussed in Section 4. The I j
are obtained by the variation of parameters method and depend functionally on the flow perturbation:

I j = Â jI j
(
y;
[
cy
])

+ B̂ jI j
(
y;
[
sy
])

+Ĉ jI j
(
y;
[
ycy
])

+ D̂ jI j
(
y;
[
ysy
])

,

I j
(
y;
[
Ξ
])

=
Mg
Cr

(
Gχ, j

2∆χΛ j

)∫ y
Ξ(ξ )

(
Ψj(ξ )Φ j(y)−Ψj(y)Φ j(ξ )

W
(
Ψj(ξ ), Φ j(ξ )

) )
dξ ,

(3.13)

in which

W
(
Θ1(ξ1), Θ2(ξ2)

)
= det

(
Θ1
(
ξ1
)

DΘ1
(
ξ2
)

Θ2
(
ξ1
)

DΘ2
(
ξ2
)
)

, (3.14)

becomes the Wronskian of functions Θ1 and Θ2 in case ξ1 = ξ2. In general, the concentration perturba-
tions χ

(1)
j and the associated quantities in (3.12) will all depend parametrically on the unknown temporal

frequency ω .
Substitution of (3.7) into the boundary conditions (2.8), (2.9) and (2.10), followed by linearisation

to lowest order in ε obtains:

Dψ
(1)
1 (−1) = 0 , Dψ

(1)
2 (1) = 0 ,

(
no slip on walls

)
ψ

(1)
1 (−1) = 0 , ψ

(1)
2 (1) = 0 ,

(
stationary walls

)
D
(

ψ
(1)
1 −ψ

(1)
2

)
(α)+ JuA = 0

(
ψ

(1)
1 −ψ

(1)
2

)
(α) = 0

 ,

(
flow continuity

on interface

)
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kψ
(1)
j (α)+ JηA = 0 ,

(
moving material

interface

)

D
(
D2−3k2)(

ψ
(1)
1 −λψ

(1)
2

)
(α)−2k2J⊥σσσ A = 0 ,

(
normal stress

balance on interface

)
(
D2 + k2)(

ψ
(1)
1 −λψ

(1)
2

)
(α)+2k

(
i Mg

χ
(1)
2 (α)

2∆χ

+ J‖σσσ A

)
= 0 ,

(
tangential stress

balance on interface

)

χ
(1)
1 (−1) = 0 , χ

(1)
2 (1) = 0 ,

(
prescribed wall
concentration

)
(

χ
(1)
1 −χ

(1)
2

)
(α)+ JχA = 0 ,

(
concentration continuity

on interface

)

D
(

χ
(1)
1 −Λ χ

(1)
2

)
(α) = 0 ,

(
concentration flux

continuity on interface

)
(3.15)

where the “jump” terms proportional to the interfacial disturbance amplitude A are

Ju = D
(
u(0)1 −u(0)2

)
(α) = Eu

(1−λ )
(
λ −δ 2

)
λ (1+δ )(λ +δ )

,

Jη = ku(0)α −ω ,

J⊥σσσ =
ik
2

,

J‖σσσ = i Mg
Gχ,2

2∆χ

= i Mg
(1+δ )

4(δ +Λ)
,

Jχ = Gχ,1−Gχ,2 =
(1+δ )(Λ −1)∆χ

2(δ +Λ)
.

(3.16)

The homogeneous linear system (3.15) demands a singular coefficient matrix to deliver non-trivial solu-
tions. Lengthy but straightforward calculation of the determinant leads to the dispersion relation

Lk,α(Λ)
(
κuJu +κη Jη +κ⊥σσσ J⊥σσσ

)
+ΛLk,α(1)κ‖σσσ J‖σσσ = 0 , (3.17)

where the function Lk,α and the coefficients κu, κη and κ⊥σσσ all depend parametrically on ω as detailed
in Section 9.1. The relatively simple coefficient κ‖σσσ depends only on the wavenumber k and the geomet-
ric parameter δ . Further analysis requires solutions of the advection-diffusion equation (2.7) to evaluate
the integrals I j and to determine the functional form of Lk,α . As well as the most general case, notable
limiting situations are discussed in the following sections.
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4. Special cases from the general analysis

4.1 Case I: Cr→ ∞ with 0 < Λ < ∞

For large crispation number and 0 < Λ < ∞, solute diffusion in both films is effectively instantaneous
on the time scale of interfacial fluctuations. In this circumstance, the solute transport equation (2.7)
then reduces to Laplace’s equation and the perturbed concentration fields now satisfy a simple diffusion
equation (cf. (3.11)) (

D2− k2)
χ
(1)
j = 0 , (4.1)

regardless of any base state flow. Solutions of these homogeneous ODEs take the form (3.12) with

Ψj = cy and Φ j = sy , (4.2)

independent of ω , and the particular integrals vanish
(
I j = 0

)
. As a consequence, the concentration

fields are decoupled from the fluid flows and can be solved independently to yield:

χ
(1)
1 =−JχA

kΛc1−α s1+y

L
(0)

k,α (Λ)
, χ

(1)
2 = JχA

kc1+α s1−y

L
(0)

k,α (Λ)
, (4.3)

where
L

(0)
k,α (Λ) = k

(
Λc1−α s1+α + c1+α s1−α

)
> 0 , (4.4)

and the frequency parameter ω does not enter (see Section 9.1). In the case of identical mass diffusiv-
ities for both films, then Jχ = 0 so that χ

(1)
1 = χ

(1)
2 = 0 and the base state concentration fields χ

(0)
j are

maintained everywhere for all time regardless of perturbations to the fluid flows.
A dispersion relation of the form (3.17) is obtained:

κ
(0)
u Ju +κ

(0)
η Jη +κ

(0)
⊥σσσ

J⊥σσσ +

ΛL
(0)

k,α (1)

L
(0)

k,α (Λ)

 κ‖σσσ J‖σσσ = 0 , (4.5)

but where the κ(0)-coefficients are independent of the frequency parameter ω (see Section 9.1) that now
appears only in Jη (see (3.16)). Define the functions

gξ ≡ sinh2(kξ )− (kξ )2 , Dgξ ≡ sinh(2kξ )−2kξ , hξ ≡
gξ

Dgξ

, (4.6)

with a natural extension of our earlier subscript notation (3.8). From (4.5) the disturbance growth rate is

ℑ(ω) =
L

(0)
k,α (Λ)κ

(0)
⊥σσσ

ℑ
(
J⊥σσσ

)
+ΛL

(0)
k,α (1)κ‖σσσ ℑ

(
J‖σσσ
)

L
(0)

k,α (Λ)κ
(0)
η

=
kg1+α

4κ
(0)
η

(
Mg Mk,α(Λ)

(
λδ

2− g1−α

g1+α

)
−Dg1−α

(
λ +

h1−α

h1+α

))

=
kg1−α

4κ
(0)
η

λ

(
Mg Mk,α(Λ)δ 2

(
g1+α

g1−α

− 1
λδ 2

)
−Dg1+α

(
1
λ
+

h1+α

h1−α

))
,

(4.7)
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where

Mk,α(Λ) =
4kΛL

(0)
k,α (1)

(1+δ )(δ +Λ)L
(0)

k,α (Λ)
=

2k2
+Λs2(

k+Λ + k−
)(

c1−α s1+αΛ + c1+α s1−α

) > 0 , (4.8)

depends on the excitation wavenumber, the flow composition and the solute diffusivities, but is a mani-
festly positive quantity. Similarly, from (4.5) the real part of the temporal frequency is

ℜ(ω) = ku(0)α +
κ
(0)
u Ju

κ
(0)
η

=
Eu

κ
(0)
η (1+δ )(δ +λ )

(
1
2

(
k2
+Dg1−α + k2

−Dg1+α

)(
λ −δ

2)(λ −1)+2kκ
(0)
η δ

)
.

(4.9)

Consequences of these results are discussed in Section 6.1.

4.2 Case II: 0 < Cr < ∞ and Eu = 0

In the absence of a driving pressure gradient, the base state is quiescent (note especially that Ju = 0,
while Jη =−ω) and the governing equations for the concentration perturbations become

(
D2−K2

j (ω)
)

χ
(1)
j +

ikGχ, j

CrΛ j
ψ

(1)
j = 0 ,

where K2
j (ω) = k2 +K2

0 j(ω) with K2
0 j(ω) =− iω

CrΛ j
.

(4.10)

Following our earlier style, the notation is simplified by adopting the definitions:

C j,ξ ≡ cosh
(
K jξ

)
, S j,ξ ≡ sinh

(
K jξ

)
. (4.11)

Although the ODEs (4.10) are inhomogeneous, the coefficients K2
j are constant in space, so explicit

solutions are readily obtained. The complementary functions comprise

Ψj(y) =C j,y and Φ j(y) = S j,y , (4.12)

with the simple spatially uniform Wronskian W
(
Ψj(ξ ), Φ j(ξ )

)
= K j(ω). A lengthy but straightfor-

ward calculation of the particular integrals leads to the dispersion relation (see Section 9.2)

L
(1)

k,α (Λ)
(
−κ

(1)
η ω +κ

(1)
⊥σσσ

J⊥σσσ

)
+ΛL

(1)
k,α (1)κ‖σσσ J‖σσσ = 0 , (4.13)

where (cf. (4.4))
L

(1)
k,α (Λ) = K2ΛC2,1−α S1,1+α +K1C1,1+α S2,1−α . (4.14)

The result (4.13) follows the general form (3.17) but with the Poiseuille flow term absent. As the
frequency ω is now intimately incorporated into the arguments of transcendental functions, it is not
expedient to explicitly extract the growth rate ℑ(ω) or oscillation rate ℜ(ω) despite the ready availabil-
ity of (4.13). Nevertheless, implementation of (4.13) (MATLAB, 2013) provides a useful verification
tool for other numerical solution schemes (see Section 5.2).
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5. General solution

5.1 Case III: 0 < Cr < ∞ and Eu 6= 0

The governing equations for the concentration perturbations becomeD2−

K2
j (ω)+

iku(0)j

CrΛ j

χ
(1)
j +

ikGχ, j

CrΛ j
ψ

(1)
j = 0 , (5.1)

where u(0)j is quadratic in y as given by (3.2). In the base state, the parabolic velocity profiles of (3.2)
share a common symmetry axis located at

y = ȳ =
δ (1−λ )

(1+δ )(δ +λ )
. (5.2)

On applying the transformation

Y (y) =
(

2ik Eu
CrΛ j

)1/4(
y− ȳ

)
, (5.3)

the homogeneous equation corresponding to (5.1) is brought into the standard form(
d2

dY 2 +
( 1

4Y 2−ϒj(ω)
))

χ
(1)
j = 0 , (5.4)

where

ϒj(ω) =

K2
j (ω)+

ikū(0)j

CrΛ j

(2ik Eu
CrΛ j

)−1/2

, (5.5)

and we have the complementary solution in terms of a single parabolic cylinder (Weber) function
(Abramowitz & Stegun, 1965)

Ψj(y) =W
(
ϒj, y

)
and Φ j(y) =W

(
ϒj, −y

)
, (5.6)

with the constant Wronskian W = 1. These analytic solutions of the transport equations (5.1) lead
to a very complicated implicit dispersion relation involving transcendental functions. It appears very
difficult (if not impossible) to exactly solve this eigenvalue problem, or merely to establish precisely
how many response modes exist. Here we shall consider a numerical scheme instead, that will resolve
these issues.

5.2 A numerical scheme: Chebyshev collocation method

Recall the stream function perturbations ψ
(1)
j satisfy a biharmonic field equation (3.9), that is equivalent

to the Orr-Sommerfeld equation at vanishing Reynolds number, and explicit solutions are obtained in
the form (3.10). Following Gottleib & Orszag (1977), the set of orthogonal Chebyshev polynomials
Tn : [−1,1]→ [−1,1] provides an appropriate basis for the approximation space of χ

(1)
j and we write

the truncated expansions

χ
(1)
j (y) =

N j

∑
n=0

a jnTn
(
y j(y)

)
, (5.7)
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where the spanwise coordinate is linearly mapped onto the canonical domain:

y1(y) = (1+δ )y+δ , (−1 6 y 6 α) ,

y2(y) =
1
δ

(
(1+δ )y−1

)
, (α 6 y 6 1) ,

(5.8)

with the differential transformations,

Dy1 = 1+δ and Dy2 = 1+
1
δ

. (5.9)

The Gauss-Lobatto points,

y jn = cos
(

nπ

N j

)
,
(
n = 0, 1, 2, . . . , N j

)
. (5.10)

corresponding to the extrema of the highest order polynomial, are optimal for collocation (Schmid &
Henningson, 2001). Altogether with the linearised boundary conditions (3.15), this set of governing
equations is assembled into the system

Aw = ωBw , (5.11)

which we recognise as a generalised eigenvalue problem for the eigenvalue ω and the associated eigen-
vector

w =
(
a10 . . . a1N1 a20 . . . a2N2 Â1 B̂1 Ĉ1 D̂1 Â2 B̂2 Ĉ2 D̂2 A

)T
. (5.12)

These N1 +N2 +11 unknowns are determined by the 13 boundary conditions along with the field eval-
uations at the

(
N1−1

)
+
(
N2−1

)
“interior” collocation points corresponding to the turning points of

TN1 and TN2 . A Matlab code (MATLAB, 2013) has been implemented using the built-in routine eig to
solve the generalised eigenvalue problem. To consistently compare results across the wavenumber spec-
trum, the eigenvectors are uniformly scaled so that the disturbance amplitude of the interface becomes
A = 1 ∈ R.

5.3 The situation k = 0 and Eu > 0

At zero wavenumber, it turns out that a base state flow plays no role in the eigenvalue spectrum. The
governing equations (3.9) for the stream function perturbations reduce to

D4
ψ

(1)
j = 0 , (5.13)

with general solutions in the form of a cubic polynomial

ψ
(1)
j = Â jy3 + B̂ jy2 +Ĉ jy+ D̂ j . (5.14)

The concentration field perturbations are also determined by homogeneous ODEs(
D2−K2

0 j(ω)
)

χ
(1)
j = 0 , (5.15)

with general solutions (cf. (3.12))

χ
(1)
j =

2∆χ

Mg
(
F̂j C j,y + Ĝ j S j,y

)
. (5.16)
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Furthermore, the interfacial stress boundary conditions are simplified considerably: in particular the
tangential coupling between ψ

(1)
j and χ

(1)
j is broken so that the dispersion relation is easily recovered

ω L
(1)

0,α (Λ)

(
λ 2 +2δ

(
2δ 2 +3δ +2

)
λ +δ 4

(1+δ )4

)
= 0 , (5.17)

and the non-trivial modes are determined by (cf. (4.14))

L
(1)

0,α (Λ) = K0

(√
Λ cosh

(
K0h−

)
sinh

(
K0h+

)
+ cosh

(
K0h+

)
sinh

(
K0h−

))
= 0 , (5.18)

where

h− =
2δ

(1+δ )
√

Λ
=

1−α√
Λ

, h+ =
2

1+δ
= 1+α and K0 =

√
− iω

Cr
. (5.19)

6. Results and discussion

6.1 Instantaneous solute diffusion Cr→ ∞, 0 < Λ < ∞ (Case I)

Explicit expressions for the temporal frequency in Case I (4.7 and 4.9) permit detailed analysis of the
linear response. For all physical parameter values, the quantity κ

(0)
η is strictly positive (see Section 9.3).

It follows from (4.7) that the interface is generally stable (ℑ(ω)< 0) against large wavenumber pertur-
bations (k→ ∞). By considering the k-expansion

ℑ(ω) =
Mg
(
λ −δ 2

)
Λδ 2(

λ 2 +2δ
(
2+3δ +2δ 2

)
λ +δ 4

)
(Λ +δ )2

k2 +O
(
k4) , (6.1)

a region of instability exists for Mg > 0 provided λ > δ 2. Conversely, Mg < 0 requires λ < δ 2 for this
instability to appear. Hence, it is natural to define a pseudo-critical viscosity ratio λc = δ 2. It should
be emphasised here that this is a small wavenumber analysis that does not exclude the possibility of
instabilities where ℑ(ω) first becomes positive for some wavenumber kc > 0.

These response characteristics are confirmed by the family of dispersion curves plotted in Figure 1
where, given Mg = 100, panels a), b) and c) consistently exhibit a stable response for λ > δ 2, a marginal
state at λ = δ 2 and instability for λ < δ 2. Within the systematic classification scheme of Cross and
coworkers (Cross & Hohenberg, 1993; Cross & Greenside, 2009), this is a stationary instability of
Type-II universally characterised by a zero growth rate at k = 0 and maximum amplification rate at
intermediate wavenumber 0 < k < ∞. Figure 1 also demonstrates the stability criterion is independent
of the mass diffusivity ratio Λ . This is unsurprising in the limit (Cr→ ∞), since equilibration of the
concentration profile is fast compared with the flow dynamics: the interface moves in a concentration
field that is oblivious to the fluid flows. Despite this decoupling, the concentration field is perturbed
nevertheless (see (4.3)) by a stratification of the bulk mass diffusivity (Figure 1d). Throughout Fig-
ure 1 the analytic results (Section 4.1) show excellent agreement with the approximate results using the
collocation computations (Section 5.2).
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FIG. 1. Growth rate dispersion curves for Case I (Cr→ ∞) are displayed for parameter values Mg = 100, λ = 2 and ∆χ = 1 with
a) Λ = 0.1; b) Λ = 1 and c) Λ = 10. Results from the analytic expression (4.7), shown as lines, are compared with isolated point
calculations using the numerical collocation method (denoted by symbols) described in Section 5.2 with N1 = N2 = 32. Entirely
stable response is indicated by squares with the flow composition parameter δ set to 40(· · ·), 10(−−) and 2(·− ·). Circles identify
response curves with small wavenumber instability with δ set to 1(·− ·), 0.2(−−) and 0.05(· · ·). The marginally stable response
is plotted with asterisk symbols and a full line (—–) where δc =

√
λ =
√

2.
At the stability margin (λ = 2 and δ =

√
2 with Mg = 100, ∆χ = 1 and Λ = 2), panel d) shows a corresponding comparison of

concentration perturbation profiles across the slab where results from (4.3) are plotted as lines and collocation calculations are
denoted by symbols with wavenumbers k set to 0.1(◦), 2(5), 5(4), 10(2) and 20(3).

Page 15 of 77

http://mc.manuscriptcentral.com/imamat

Manuscripts submitted to (i)The IMA Journal of Applied Mathematics(/i)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16 of 37

FIG. 2. Stability diagram for Case I
(
Cr→ ∞ and 0 < Λ < ∞

)
. Typical marginal stability boundaries

(
ℑ(ω) = 0

)
projected

into the plane of viscosity ratio λ0 and Gibbs elasticity Mg0 appear as a rectangular hyperbola (—–). With varying excitation
wavenumber k, the asymptotes (·− ·) move about the plane but the centre C

(±)
k,α is confined to the unbounded rectangular region

indicated (−−). Provided λ0 < λc = δ 2, a domain of stability (shaded area) can be identified where all linear perturbations decay
in time.
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For arbitrary wavenumber, marginal stability relations
(
ℑ(ω) = 0

)
are obtained directly from (4.7),

and solving for the interfacial elasticity parameter yields

Mg0 =
g1+αDg1−α λ0 +g1−αDg1+α

Mk,α(Λ)
(
g1+α δ 2 λ0−g1−α

) =
g1+αDg1−α +g1−αDg1+α λ

−1
0

Mk,α(Λ)
(
g1+α δ 2−g1−α λ

−1
0

) , (6.2)

where Mg0 and λ0 are marginal values of the corresponding control parameters. Equations (6.2) describe
rectangular hyperbolae, centred on a point denoted C

(+)
k,α in the

(
λ0, Mg0

)
plane, or centred on C

(−)
k,α in

the
(
λ
−1
0 , Mg0

)
plane with coordinates

C
(+)
k,α =

(
1

δ 2

(
g1−α

g1+α

)
,

Dg1−α

δ 2Mk,α(Λ)

)
and C

(−)
k,α =

(
δ

2
(

g1+α

g1−α

)
, − Dg1+α

Mk,α(Λ)

)
. (6.3)

Since g is both positive and strictly increasing (see definitions (4.6)), it is easy to verify

0 < δ < 1 ⇒ 0 < α < 1 ⇒ δ
4 <

g1−α

g1+α

< 1 ,

1 < δ < ∞ ⇒ −1 < α < 0 ⇒ 1
δ 4 <

g1+α

g1−α

< 1

and lim
k→∞

Dg1±α

Mk,α(Λ)
exp
(
−2k±

)
= 0 ,

(6.4)

so that the positions C
(±)
k,α are restricted as shown in Figure 2. It follows that global temporal stabil-

ity is confined to the λ0 axis (where Mg0 = 0) and either the region
(
λ0, Mg0

)
∈
(
0, δ 2

)
× (0, ∞) for

0 < δ 6 1, or the region
(
λ
−1
0 , Mg0

)
∈
(
0, δ 2

)
× (−∞, 0) for 1 6 δ . This is consistent with the small

wavenumber analysis and confirms the critical viscosity ratio λc = δ 2. With a more conventional insol-
uble surfactant ansatz, the same result has been established in the small-k analysis of Frenkel & Halpern
(2002) and the lubrication-flow model of Blyth & Pozrikidis (2004a).

A mechanical interpretation of this small wavenumber instability is illustrated in Figure 3. Large
scale disturbances are suppressed by a destructive normal fluid velocity component with a π phase
shift (Figure 3a and 3b), while changes in γ remain in-phase with the interface profile. At the margin of
stability (Figure 3c and 3d) v(1)(y) swaps, on passing through the interface, from constructive in-phase to
destructive out-of-phase interference with the disturbance wave. An unstable response is characterised
by an in-phase normal velocity component that amplifies the interfacial disturbance (Figure 3e and 3f).
In steady Stokes flow, the vorticity

ϖϖϖ j = ∇×u j =

(
∂v j

∂x
−

∂u j

∂y

)
k =−∇

2
ψ j k , (6.5)

is harmonic ∇2ϖϖϖ j = 0 (cf. (2.4)) and closely related to the pressure so that λ j
(
∂ϖϖϖ j/∂x

)
=
(
∂ p j/∂y

)
k

and λ j
(
∂ϖϖϖ j/∂y

)
=
(
∂ p j/∂x

)
k. Consequently, the vorticity is discontinuous at the interface and the

phase of the perturbation Arg
(
ϖ (1)

)
changes abruptly at y = α from a π/2 lag in the more viscous

film to a π/2 lead in the less viscous layer (Figure 3b, d and f). It appears the pressure is always
destructively out of phase with the interface deformation over the whole fluid slab (data not shown).
Although four convection cells are evident in the marginal state (Figure 3c and 3d), only two cells
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FIG. 3. Flow fields calculated by the collocation method
(
N1 = N2 = 32

)
are shown for Case I with Cr→ ∞. Throughout, the

control parameter values Mg = 5, Eu = 0, λ = 2, Λ = 1, ∆χ = 1 are set.
Panels (a), (c) and (e): direction fields associated with the fluid velocity u(x, y) = u(x, y)i+ v(x, y)j are plotted. The superim-
posed lines indicate the quiescent interface position (−−) and a harmonic disturbance (—–) of arbitrary amplitude (ε = 0.1).
Panels (b), (d) and (f): show the corresponding principal arguments of the perturbed velocities and vorticity field
Θ ∈

{
u(1)(y), v(1)(y), ϖ (1)(y)

}
. The tangential u(1) and normal v(1) velocity components are denoted by (B) and (M), respec-

tively, and the phase of the vorticity ϖ (1) is indicated by◦. Again, the quiescent interface position is shown by (−−).
Each pair of panels indicates a stable situation (δ = 5, a and b); a marginal situation (δ =

√
2, c and d) and an unstable situation

(δ = 0.5, e and f).
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develop for states lying deep in either the stable (e.g., Figure 3a and 3b) or unstable (data not shown)
regimes. This contrasts with several studies of the analogous thermocapillary problem (Andereck et al.,
1998) that focussed on different flow patterns, but where four cells are always generated by imposing a
rigid undeformable interface.

In this special Case I, only a single response mode is excited that always remains completely decou-
pled from the base state flow: the growth rate ℑ(ω) given by (4.7) is independent of Eu. For a quiescent
base state flow the disturbance is, of course, stationary in space

(
ℜ(ω) = 0

)
, but if a pressure gradient

exists (Eu > 0) it can be deduced from (4.9) that ℜ(ω)> 0 (see Section 9.4) and a propagating wave
develops on the interface that travels downstream with the speed

ℜ(ω)

k
= u(0)α +

κ
(0)
u Ju

kκ
(0)
η

=
Eu

κ
(0)
η (1+δ )(δ +λ )

((
k2
+Dg1−α + k2

−Dg1+α

k++ k−

)(
λ −δ

2)(λ −1)+2κ
(0)
η δ

)
.

(6.6)

Further, by setting Eu = 1
2 (1+δ )(δ +λ )/δ , or equivalently demanding the horizontal fluid velocity

component satisfy u(0)α = 1, and also choosing δ = 1 before finally considering the limit k→ ∞, we
recover the dispersionless result

ℜ(ω)

k
= 1+

2(1−λ )2

λ 2 +14λ +1
, (6.7)

obtained by Yih (1967) for the plane Poiseuille flow in a finite channel of two superposed fluids with
equal depth and density, but different viscosities.

6.2 Comparable diffusion rates of matter and momentum 0 < Cr < ∞ (Case II)

At finite crispation numbers (Case II and III), the response behaviour is qualitatively very different (see
Figure 4 for example) from Case I (Section 6.1). Analysis of the k = 0 situation (see Section 9.5) shows
that the temporal frequency has zero real part

(
ℜ(ω) = 0

)
and non-positive imaginary part

(
ℑ(ω)6 0

)
.

Indeed, the dispersion relation (5.18) reduces to

√
Λ sin

(
h+

√
−ℑ(ω)

Cr

)
cos

(
h−

√
−ℑ(ω)

Cr

)
+ cos

(
h+

√
−ℑ(ω)

Cr

)
sin

(
h−

√
−ℑ(ω)

Cr

)
= 0 .

(6.8)
Formally, this defines the nodes of a wave with two harmonic components differing in both frequency
and amplitude described by

(√
Λ +1

)
sin

(
2

1+δ

(
1+

δ√
Λ

)√
−ℑ(ω)

Cr

)
+
(√

Λ −1
)

sin

(
2

1+δ

(
1− δ√

Λ

)√
−ℑ(ω)

Cr

)
= 0 .

(6.9)
A general closed form solution of (6.9) is intractable. If Λ = 1, however, the second term vanishes in
(6.9) and a simple expression, independent of δ , is obtained for the growth rate spectrum√

−ℑ(ω)

Cr
= m

π

2
, (m = 0, 1, 2, . . .) . (6.10)
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Similarly, if Λ = δ 2, then

1
1+δ

√
−ℑ(ω)

Cr
= m

π

4
, (m = 0, 1, 2, . . .) . (6.11)

In both these special situations, the mode spacing is proportional to (2m+1)Cr. More generally, expan-
sion of (6.9) to order Cr−3/2 demonstrates that the first harmonic (m = 1) is always shifted from the
fundamental (m = 0) by an amount proprtional to Cr. This is consistent with the finding from Case I
(Cr→ ∞) where only the single m = 0 response remains and all other modes have retreated to infinity.

Figure 4a compares Case II growth rate dispersion curves at control parameter values corresponding
to a stable Case I response: λ = 2 and δ =

√
40 >

√
λ with Mg = 100, Λ = 1 and ∆χ = 1 (Figure 1b).

For Cr > 1 the dominant mode is stable and qualitatively similar to the Case I situation. The most
obvious departure from Case I is the appearance of multiple lower lying modes whose character and
interactions sensitively depend on control parameters other than viscosity ratio λ and geometry δ . In
particular, at Cr = 1 an avoided crossing is evident between the fundamental and the first harmonic, but
for larger crispation number the two highest stationary modes pass through an exceptional point where
a pair of spatially propagating waves are excited that travel in opposite directions with phase veloci-
ties of equal magnitude. There is also evidence in Figure 4a of a second exceptional point at higher
wavenumber (k ≈ 4) where the superposed response splits back to two standing wave modes with dis-
tinct temporal decay rates. Moreover, at Cr = 50 (see inset of Figure 4a) the combined oscillatory
mode exhibits an instability of Type I in the classification Cross and coworkers (Cross & Hohenberg,
1993; Cross & Greenside, 2009). In contrast with Type-II behaviour, Type-I is characterised by the
onset of instability at a nonzero wavenumber. For standing wave modes, Figure 4a also includes direct
numerical solutions of the dispersion relation (4.13) obtained with the Matlab fsolve routine using
the Levenberg-Marquardt algorithm (Fan, 2003). The excellent agreement serves again to verify both
the analysis and the collocation method implementation. Conversely, at parameter values correspond-
ing to an unstable response in Case I, (λ = 2, δ = 1/

√
10, Mg = 20, Λ = 1, ∆χ = 1) increasing the

interfacial tension has a stabilising effect and reduces the maximum temporal growth rate as shown in
Figure 4b. The diversity of response behaviour is also apparent here with multiple splittings between
states having either monotone or oscillatory time dependence in the decay rate. Excitation of spatially
propagating waves is confirmed in Figure 4c where nonzero ℜ(ω) appears and coincides with the linear
superposition of two modes to form a stationary solution in space that oscillates in time. At very high
surface tension (Cr = 0.0002), an unstable oscillatory response can be observed as shown in Figure 4d.
An example of mode exchange is also apparent (k ≈ 3) where a single stationary mode emerges to
dominate a standing wave pair without passing through an exceptional point.

The previously noted (Figure 4a) avoided-crossing or level-repulsion phenomenom (Lax, 2007) is
linked with the likelihood that a given operator has eigenvalues with nontrivial algebraic multiplicity
(Betcke & Trefethen, 2004). Figure 5a examines the effect more closely where, at fixed interfacial
tension Cr = 0.1, growth rate dispersion curves are plotted for 5 6 Mg 6 100 with Eu = 0, δ = λ = 2,
Λ = 1 and ∆χ = 1. As the interfacial elasticity increases, two distinct avoiding modes approach more
and more closely at k ≈ 2, then merge at a single point near Mg = 7.35 that subsequently decomposes
into a pair of exceptional points at higher Mg.

Seyranian et al. (2005) have reported a theory of strong coupling between eigenvalues of a complex
valued matrix with respect to the smooth variation of parameters upon which the coefficients depend.
In a finite-dimensional vector space, an exceptional point (Kato, 1980) arises where two eigenvalues
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FIG. 4. Temporal frequency dispersion curves ω = ω(k) are shown for a fluid slab of uniform mass diffusivity (Λ = 1) and unit
concentration difference on the bounding walls

(
∆χ = 1

)
.

Panel a): at Mg = 100, the growth rate ℑ(ω) is compared between Case I (Cr→ ∞)(◦) and Case II (Eu = 0) with finite Cr
set to 1(2), 1.5(3) and 50(?), all obtained by the collocation method (Section 5.2). Other control parameters are λ = 2 and
δ =
√

40 >
√

λ corresponding to a stable response in Case I. Solid lines correspond to evaluation of the explicit result (4.7) in
Case I, and to numerical solutions of the dispersion relation (4.13) in Case II.
Panel b): at Mg = 20, the growth rate ℑ(ω) is compared between Case I (Cr→ ∞)(◦) and Case II (Eu = 0) with finite Cr
set to 0.1(2) and 0.01(3), all obtained by the collocation method (Section 5.2). Other control parameters are λ = 2 and
δ = 1/

√
10 <

√
λ corresponding to an unstable response in Case I. Modes are identified by number and oscillatory responses

are indicated by linear superposition of stationary states between a pair of exceptional points.
Panel c): the spatially propagating wave frequencies ℜ(ω) are shown, corresponding to the data of panel b) for Cr = 0.01. Modes
are identified as follows: 1 and 2 (−−); 3 and 4 (·− ·); and 5 (—–).
Panel d): shows the growth rate ℑ(ω) dispersion curves, obtained by the collocation method (Section 5.2), in a situation where
mass diffusion is extremely slow Cr = 0.0002. Other control parameters are set as in panel b). Modes are identified by number.
An unstable oscillatory state is observed (k < 1) as well as a dominant mode exchange crossing at k ≈ 3.
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FIG. 5. Collapse of avoided crossing between stationary modes to form oscillatory mode with increasing interfacial elasticity is
illustrated in panel a). Growth rate dispersion curves ℑ

(
ω(k)

)
are plotted for Mg set to 5(+), 7(2), 7.35(?), 10(×) and 100(3).

Other control parameters are Ca = 0.1, Eu = 0, δ = λ = 2, Λ = 1 and ∆χ = 1.
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coalesce to give an algebraic multiplicity of 2, but a smaller geometric multiplicity of 1. Thus, the
corresponding eigenvectors also merge, becoming linearly dependent and forming a nontrivial Jordan
block that renders the underlying matrix defective (not diagonalizable over C). In the situation where
only a single parameter is varied (the wavenumber k for example), the two eigenvalues collide with infi-
nite “speed” (the derivative with respect to the parameter is unbounded) and subsequently diverge in the
perpendicular direction with a complete loss of information on the relationship before and after strong
coupling (Seyranian et al., 2005). This phenomenon is entirely consistent with the observed behaviour
(Figure 4a with Cr = 1.5, for instance) of mode coupling between independent stationary and combined
oscillatory states. Furthermore, the theory of Seyranian et al. (2005) explains characteristic properties
of singularities in the surfaces representing complex resonance energy eigenvalues of quantum systems
(Hernández et al., 2003) that are manifest as level repulsion in the real and imaginary parts. It remains
unclear how the details of this analysis relate to avoided crossings and mode exchanges of ℑ(ω)(k) in
stationary states where ℜ(ω) = 0.

In the absence of a bulk buoyancy mechanism, and allowing for distortion of the interface, counter-
rotating fluid cells are consistently observed in the stationary states (see Figure 3, for example) but the
oscillatory standing wave state periodically changes the sense of rotation. The temporal evolution of
this pattern is illustrated in Figure 6 by snapshots of the fluid velocity direction field over one cycle.
The corresponding interfacial disturbance is also indicated and shows that the flow reversal is associated
with instants where the interface adopts its unperturbed flat profile. Note that, for clarity here, the
exponential decay of the disturbance in this stable response has been artifically suppressed where the
spatial amplitude would otherwise be damped out within a fraction of one temporal cycle.

6.3 Effect of base state flow Eu > 0 (Case III)

Figure 7a demonstrates the effect of a base state flow in a relatively simple situation with no mode
interaction (cf. Figure 4b). The growth rates of instabilities are enhanced with increasing Eu, while
a stable response is further suppressed. For the particular parameter set corresponding to Figure 4b,
which is unstable in Case I, with Cr = 0.1 it appears that the marginal stability boundary is not sensi-
tive to changes in base state flow. At the interface, a spatially propagating wave is excited that always
moves faster than the fluid ℜ(ω)/k > u(0)α . Interestingly, we note that the second stable mode travels
almost entirely without dispersion, at least over the wavenumber range 0 < k < 5. For a more compli-
cated situation involving mode interactions, Figure 7b shows that the symmetry-breaking base state flow
destroys the standing wave of the oscillatory state. The excited propagating waves are dispersive, and
the dominant mode response is always more slowly moving than the base state flow at the interface.

7. Conclusion

To investigate necessary conditions for the onset of turbulent mixing in a two-layer fluid system, the
present work considers the influence of a scalar concentration field on the linear stability of a fluid
interface subject to small deformations, as a means to study incipient mixing under the regime of Stokes
flow. The bulk concentration field is convected by the fluid flow and acts to nonuniformly alter the
interfacial tension that, in turn, induces flow by the solutal Marangoni mechanism. This treatment of
the solutal Marangoni effect is formally analogous to the thermocapillary effect, which arises when an
interface is exposed to a spatially-varying temperature field. In both scenarios, Marangoni tractions
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FIG. 6. Temporal evolution of flow pattern in the oscillatory state (identified in Figure 5 at parameter values, Cr = 0.1, Mg = 10,
Eu = 0, δ = 2, λ = 2, Λ = 1 and ∆χ = 1, at the excitation wavenumber k = 2. The direction field associated with the fluid velocity
u(x, y) = u(x, y)i+ v(x, y)j is plotted at time instants t expressed as fractions of the period T = 2π/|ℜ(ω)|. The superimposed
lines indicate the quiescent interface position (−−) and the corresponding harmonic disturbance (—–) of arbitrary amplitude
(ε = 0.1). For illustrative purposes, the exponential temporal decay of the disturbance has been suppressed, so that ℑ(ω) is
artificially set to zero. Axis labels have been discarded for clarity, though the abscissa ranges over 0 6 kx/π 6 2 and the ordinate
ranges over −1 6 y 6 1 throughout (cf. Figure 3).
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FIG. 7. Temporal frequency dispersion curves ω = ω(k) are shown for a fluid slab of uniform mass diffusivity (Λ = 1) and unit
concentration difference on the bounding walls

(
∆χ = 1

)
at crispation number Cr = 0.1.

Panel a): the growth rate ℑ(ω) is compared between Case II (Eu = 0)(+) and Case III with nonzero Eu set to 3(◦), 10(2)
and 30(3), all obtained by the collocation method (Section 5.2). The dominant mode (m = 1) is indicated by symbols alone,
while the secondary mode (m = 2) is denoted by symbols with solid lines. The inset shows the corresponding effective velocity
crel/k = ℜ(ω)− ku(0)α of the spatially propagating wave relative to the base state fluid speed on the interface. Other control
parameters are λ = 2 and δ = 1/

√
10 <

√
λ corresponding to an unstable response in Case I with Mg = 20 (cf. Figure 4b).

Panel b): a similar growth rate comparison between Case II (Eu = 0) (no symbols) and Case III (Eu = 50)(◦) is shown. The
dominant mode (m = 1) is indicated by solid lines (—–), while the dotted line (· · ·) refers to the secondary mode (m = 2). Other
control parameters are λ = δ = 2 (corresponding to a stable response in Case I) with Mg = 100 (cf. Figure 5).
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develop because of the local interfacial tension dependency on the strength of the ambient scalar field
through a suitable constitutive relation. Zeren & Reynolds (1972) presented a linear stability analysis for
the analogous thermocapillary problem, which also included the effect of buoyancy, but which assumed
that the deformation of the interface was negligible. Interfacial deformation has been accounted for in
more recent work by Tavener & Cliffe (2002) using a finite-element method. In the present work, three
distinct cases were studied, and we summarise these below.

In Case I, the solute diffusion is supposed to be instantaneous (crispation number Cr→ ∞), but a
finite Gibbs elasticity (0 < Mg < ∞) permits interfacial displacements to generate a solutal Marangoni
effect. Perturbations of the velocity and concentration fields are decoupled in this limit, so that the
dispersion relation ω = ω(k) between temporal response frequency ω and spatial excitation frequency
k is obtained analytically. Furthermore, the stability behaviour is not sensitive to the mass diffusivity
ratio Λ , effectively reducing the number of control parameters so that a complete stability diagram can
be established. Only a single response mode is allowed where the interface is always stable to large k
perturbations, but a region of unstable solutions exists at small wavenumber under certain conditions:
that is a Type II instability in the classification of Cross & Hohenberg (1993). The extent of these
regions is found to be independent of the base-state flow field. For Mg > 0, the interface is Type II
unstable when the viscosity ratio λ exceeds δ 2, where δ is the fluid film thickness ratio. Conversely,
for Mg > 0, unstable response is possible when λ < δ 2. By determining the marginal stability bounds
analytically, it is found that regions of global stability exist when Mg = 0; or when Mg > 0 and λ < δ 2;
or when Mg < 0 and 1/λ < 1/δ 2.

Case II permits sensible interfacial tension but insists on zero Euler number (Eu = 0), thereby
removing the external pressure gradient and imposing a quiescent base state. Again, the dispersion
relation is obtained, but the expression appears too cumbersome for analytic presentation of the stabil-
ity diagram. In this case, our treatment is formally analogous to the classical linear stability analysis
of the Rayleigh–Bérnard–Marangoni problem, but considers a realistic deformable interface leading
to more complicated boundary conditions. As with the thermocapillary problem, an extremely rich
discrete spectrum of modes is obtained, and several types of mode interaction are found. In partic-
ular, exceptional points exist between stationary and oscillatory standing wave solutions, but without
the additional coupling between concentration and bulk mass density (that is, the solutal equivalent of
the thermal buoyancy mechanism) there is no distinction between co-rotating and counter-rotating flow
cells. Rather, the oscillatory state cycles between a counter-rotating pattern of four convection cells
and a two-cell pattern. Furthermore, the merging of stationary states and their collapse into an avoided
crossing of modes is seen as a function of control parameters, as well as evidence of resonant energy
transfer and mode switching interactions between stationary and oscillatory states. Instabilities of both
Type II and Type I in the Cross & Hohenberg (1993) classification are observed.

Case III is most general in that both Cr and Eu are unrestricted. A Chebyshev collocation method is
implemented to solve the transport equations obeyed by the concentration perturbations. The presence
of a background flow is potentially interesting because its impact on the overall system stability is not
generally obvious. A surfactant induced instability such as that found in the work of Frenkel & Halpern
(2002), for instance, requires a base state shear component in order for unstable solutions to develop. In
our analysis, a base-state flow was neither required for unstable solutions to exist nor were the regions
of instability found to be extinguished by it. The evidence suggests that an external pressure gradient
driving a base state flow generally exaggerates the response: by increasing the base flow speed, unstable
growth rates are enhanced, and stable decay is suppressed. By breaking the isotropic symmetry of a
quiescent base state, however, standing wave solutions are no longer possible for Eu > 0.

At zero wavenumber, the general problem also yeilds to exact analysis where an infinite discrete
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spectrum of purely imaginary eigenvalues is determined and the response is proven to be always stable
in this limit. Consequently, Type-III instabilities (Cross & Hohenberg, 1993) are precluded in this
model. Furthermore, the mode spacing increases with crispation number so that only the single trivial
zero frequency mode survives in the limit Cr→ ∞, consistent with the Case I analysis.

Areas remaining open for further investigation include the following:

• the case of negligibly weak mass diffusion in both films where solute transport is entirely by fluid
convection (Cr→ 0, 0 < Λ < ∞) (intuition and evidence (e.g. Figure 4b) suggests that instabili-
ties are suppressed by boundary layers developing close to the interface – a matched asymptotic
analysis is required to handle change in order of the advection-diffusion equation in a non-regular
limit);

• for the analogous Rayleigh–Bénard–Marangoni thermocapillary problem, the occurrence of Hopf
bifurcations has been documented (Colinet & Legros, 1994) where time-dependent convection
appears in a narrow transition region between stationary states. Can corresponding marginally
stable bifurcation points be found in the present problem?

• what could be learned from an energy budget analysis to elucidate details of the instability mech-
anism (Boomkamp & Miesen, 1996; Albert & Charru, 2000; Yecko, 2008; Peng & Zhu, 2010)?

• what is the nature of the mechanism controlling the apparent transition between the appearance of
two convection cells and four (see Figure 3), and how does this phenomenon relate to interfacial
stability? We speculate that the interface deformation and the proximity of bounding walls are
involved as recently suggested by Pozrikidis & Hill (2011).

On-going research is applying this work to exploit the capability of the Dynamic Gastric Model as
a physiologically relevant screening tool for evaluating novel and existing foodstuffs, diets and pharma-
ceutical preparations (Rickett, 2013). This will also inform the development of more realistic prototype
machines.
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9. Appendix

9.1 General dispersion relation

In the result (3.17) the coefficients are given by

κu = κ
(0)
u + k2

+

((
αs1s1−α − k−sα

)
ΩA2(1)−

(
αc1s1−α − k−cα

)
ΩB2(1)

−
(
s1s1−α − k−sα

)
ΩC2(1)+

(
c1s1−α − k−cα

)
ΩD2(1)

)
Λ

− k2
−

((
αs1s1+α − k+sα

)
ΩA1(−1)+

(
αc1s1+α + k+cα

)
ΩB1(−1)

−
(
s1s1+α + k+sα

)
ΩC1(−1)−

(
c1s1+α − k+cα

)
ΩD1(−1)

)
λ ,
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κ⊥σσσ = κ
(0)
⊥σσσ

+
(
s2

1+α − k2
+

)((
αs1s1−α − k−sα

)
ΩA2(1)−

(
αc1s1−α − k−cα

)
ΩB2(1)

−
(
s1s1−α − k−sα

)
ΩC2(1)+

(
c1s1−α − k−cα

)
ΩD2(1)

)
Λ

−
(
s2

1−α − k2
−
)((

αs1s1+α − k+sα

)
ΩA1(−1)+

(
αc1s1+α + k+cα

)
ΩB1(−1)

−
(
s1s1+α + k+sα

)
ΩC1(−1)−

(
c1s1+α − k+cα

)
ΩD1(−1)

)
,

κ‖σσσ = k2
−
(
s2

1+α − k2
+

)
λ − k2

+

(
s2

1−α − k2
−
)

,

κη = κ
(0)
η +2

(
c1s1− k

)((
αs1s1−α + k−sα

)
ΩA1(−1)−

(
c1s1−α + k−cα

)
ΩD1(−1)

−
(
αs1s1+α + k+sα

)
ΛΩA2(1)−

(
c1s1+α + k+cα

)
ΛΩD2(1)

)
+2
(
c1s1 + k

)((
αc1s1−α + k−cα

)
ΩB1(−1)−

(
s1s1−α + k−sα

)
ΩC1(−1)

+
(
αc1s1+α − k+cα

)
ΛΩB2(1)+

(
s1s1+α − k+sα

)
ΛΩC2(1)

)
+(λ −1)

[
2
(
c1s1− k

)((
αs1s1−α + k−sα

)
ΩA1(−1)−

(
c1s1−α + k−cα

)
ΩD1(−1)

)
+2
(
c1s1 + k

)((
αc1s1−α + k−cα

)
ΩB1(−1)−

(
s1s1−α + k−sα

)
ΩC1(−1)

)
−
(
s2

1+α − k2
+

)((
αs1c1−α + k−cα

)
ΩA2(1)−

(
αc1c1−α + k−sα

)
ΩB2(1)

−
(
s1c1−α + k−cα

)
ΩC2(1)+

(
c1c1−α + k−sα

)
ΩD2(1)

)
Λ

−
(
s2

1−α − k2
−
)((

αs1c1+α − k+cα

)
ΩA1(−1)−

(
αc1c1+α + k+sα

)
ΩB1(−1)

−
(
s1c1+α + k+cα

)
ΩC1(−1)−

(
c1c1+α − k+sα

)
ΩD1(−1)

)]
, (9.1)

where the contributions independent of the chemical fields are:

κ
(0)
u =−

(
k2
+

(
c1−α s1−α − k−

)
+ k2
−
(
c1+α s1+α − k+

))
λ ,

κ
(0)
⊥σσσ

=−
((

s2
1+α − k2

+

)(
c1−α s1−α − k−

)
λ +

(
s2

1−α − k2
−
)(

c1+α s1+α − k+
))

,

κ
(0)
η = Ak,α(λ −1)2 +2Bk,α(λ −1)+Ck ,

Ak,α =
(
s2

1+α − k2
+

)(
c2

1−α + k2
−
)
,

Bk,α = Ak,α +
(
k+k−

)2
+

1
4

(
s2(1+α)s2(1−α)−

(
2k+
)(

2k−
))

,

Ck = s2
2− (2k)2 .

(9.2)
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Coupling terms between the flow and the chemical field involve the determinant-like functions

Lk,α(Λ) = det


det

(
Ψ1(−1) Ψ1(α)

Φ1(−1) Φ1(α)

)
det

(
Ψ2(1) Ψ2(α)

Φ2(1) Φ2(α)

)

W
(
Ψ1(−1), Φ1(α)

)
Λ W

(
Ψ2(1), Φ2(α)

)
 , (9.3)

with W defined by (3.14) and

ΩX j(y) =
k

Ψj(y)Lk,α(Λ)
det

(
Ψ3− j(−y) Ψ3− j(α)

Φ3− j(−y) Φ3− j(α)

)

×det


det

(
Ψj(y) Ψj(α)

IX j(y) IX j(α)

)
det

(
Ψj(y) Ψj(α)

Φ j(y) Φ j(α)

)

W
(
Ψj(y), IX j(α)

)
W
(
Ψj(y), Φ j(α)

)
 . (9.4)

9.2 Case II dispersion relation

In the result (4.13) the coefficients are given by:

κ
(1)
⊥σσσ

= κ
(0)
⊥σσσ
−Mg Cr

(1+δ )Λ

2(δ +Λ)

1

L
(1)

k,α (Λ)

(
k
ω

)2

×

×

(
S1,1+α

(
s2

1+α − k2
+

)(
K2k−

(
C2,1−α − c1−α

)
+
(

kS2,1−α s1−α −K2
(
C2,1−α c1−α −1

))
s1−α

)
Λ

−S2,1−α

(
s2

1−α − k2
−
)(

K1k+
(
C1,1+α − c1+α

)
+
(

kS1,1+α s1+α −K1
(
C1,1+α c1+α −1

))
s1+α

))
,

κ
(1)
η = κ

(0)
η −Mg

(1+δ )Λ

4(δ +Λ)

1

L
(1)

k,α (Λ)

(
1
ω

)
×

×

((
K1C1,1+α S2,1−α +K2C2,1−α S1,1+α

)(
k2
+s2

1−α − k2
−s2

1+α

)
i

+(λ −1)
(

2kS1,1+α S2,1−α

(
k2
+

(
c1−α s1−α + k−

)
+ k2
−
(
c1+α s1+α + k+

))
−
(
K1C1,1+α S2,1−α +K2C2,1−α S1,1+α

)
k2
−
(
s2

1+α − k2
+

))
i

)

−Mg Cr
(1+δ )Λ

2(δ +Λ)

1

L
(1)

k,α (Λ)

(
k

ω2

)
×

×

(
2K2S1,1+α

((
k
(
C2,1−α cα − c1

)
+K2S2,1−α sα

)(
c1s1+α + k+cα

)(
c1s1− k

)
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−
(

k
(
C2,1−α sα − s1

)
+K2S2,1−α cα

)(
s1s1+α − k+sα

)(
c1s1 + k

))
Λ

−2K1S2,1−α

((
k
(
C1,1+α cα − c1

)
−K1S1,1+α sα

)(
c1s1−α + k−cα

)(
c1s1− k

)
+
(

k
(
C1,1+α sα + s1

)
−K1S1,1+α cα

)(
s1s1−α + k−sα

)(
c1s1 + k

))

+(λ −1)
(

K2S1,1+α

(
s2

1+α − k2
+

)
×

×
((

kC2,1−α c1−α −K2S2,1−α s1−α − k
)
c1−α + k−

(
ks1−α −K2S2,1−α

))
Λ

+K1S2,1−α

(
s2

1−α − k2
−
)
×

×
((

kC1,1+α c1+α −K1S1,1+α s1+α − k
)
c1+α + k+

(
ks1+α −K1S1,1+α

))
+K1S2,1−α×

×
(

2k2k−
(
C1,1+α − c1+α

)
k+s1−α +

(
kC1,1+α c1−α +K1S1,1+α s1−α − kc2

)
k+s1−α

−
(
kC1,1+α c1+α −K1S1,1+α s1+α − k

)(
s2s1−α + k−s1+α

))))
. (9.5)

9.3 Proof κ
(0)
η > 0

First note the obvious fact, if a, b, c > 0 then aλ 2 +2bλ + c > 0 for all λ > 0. It follows that, if
b > a > 0 and a−2b+ c > 0 then

aλ
2 +2(b−a)λ +a−2b+ c = a(λ −1)2 +2b(λ −1)+ c > 0 for all λ > 0 . (9.6)

For the “jump” term Jη , the coefficient κ
(0)
η is a quadratic function of (λ −1) thus

κ
(0)
η = Ak,α(λ −1)2 +2Bk,α(λ −1)+Ck , (9.7)

where
Ak,α =

(
s2

1+α − k2
+

)(
c2

1−α + k2
−
)
,

Bk,α = Ak,α +
(
k+k−

)2
+

1
4

(
s2(1+α)s2(1−α)−

(
2k+
)(

2k−
))

,

Ck = s2
2− (2k)2 .

(9.8)

By virtue of the fact that ξ > 0 implies sinh(ξ )> ξ , we immediately observe

Bk,α > Ak,α > 0 , Ck > 0 , (9.9)
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for all physically relevant parameter values. Furthermore we find

Ak,α −2Bk,α +Ck =
(
c2

1+α + k2
+

)(
s2

1−α − k2
−
)
> 0 . (9.10)

So (9.7) satisfies the conditions for inequality (9.6). Hence, κ
(0)
η > 0 for all λ > 0 as claimed.

9.4 Proof in Case I ℜ(ω)> 0

The argument follows the same structure as Section 9.3. Recall, in case Cr→ ∞, the real part of the
temporal frequency may be written proportional to a quadratic function in (λ −1) thus

ℜ(ω) =
Eu

κ
(0)
η (1+δ )(δ +λ )

(
A ′

k,α(λ −1)2 +2B′k,α(λ −1)+C ′k

)
, (9.11)

where

A ′
k,α = Uk,α +2kδAk,α , B′k,α = 1

2

(
1−δ

2)Uk,α +2kδBk,α , C ′k = 2kδCk ,

with Uk,α = k2
+

(
c1−α s1−α − k−

)
+ k2
−
(
c1+α s1+α − k+

)
. (9.12)

Evidently, Uk,α > 0 and we find

k2
+

(
B′k,α −A ′

k,α
)
= k+k−

(
Uk,α +

(
k++ k−

)((
k+k−

)2
+
(
c1−α s1−α − k−

)(
c1+α s1+α − k+

)))
+
(
k+k−

)2(k++ k−
)(

k+− k−
)2

∞

∑
n=0

22n+1

(2n+1)!

2n

∑
m=0

k2n−m
+ km

−

> 0 , (9.13)

whence
B′k,α > A ′

k,α > 0 . (9.14)

Furthermore,
A ′

k,α −2B′k,α +C ′k = δ
2Uk,α +2kδ

(
Ak,α −2Bk,α +Ck

)
> 0 , (9.15)

where the result of Section 9.3 has been used. Hence, as claimed Eu > 0 implies ℜ(ω)> 0 for all
λ > 0, while ℜ(ω) = 0 if Eu = 0.

9.5 Proof k = 0 implies ℜ(ω) = 0 and ℑ(ω)6 0

From the dispersion relation (5.18), we will deduce restrictions on the temporal frequency ω in the
situation of vanishing wavenumber (k = 0). First recall the definitions (5.19):

h− =
2δ

(1+δ )
√

Λ
=

1−α√
Λ

> 0 ; h+ =
2

1+δ
= 1+α > 0

and K0 =
√
−iω/Cr = ℜ

(
K0
)
+ i ℑ

(
K0
)
∈ C

(9.16)

In particular,

ℜ
(
K0
)
=

√
|ω|+ℑ(ω)

2 Cr
, (9.17)
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so that

ℜ
(
K0
)
= 0 ⇒ |ω|+ℑ(ω) = 0

⇒ ℑ(ω)6 0 and
(
ℑ(ω)

)2
=
(
ℜ(ω)

)2
+
(
ℑ(ω)

)2 ⇒ ℜ(ω) = 0 ,
(9.18)

since |ω|> 0. Thus, it suffices to show that the dispersion relation (5.18) implies ℜ
(
K0
)
= 0.

For the sake of contradiction, suppose that ℜ
(
K0
)
6= 0 while (5.18) holds. Now define

L̂
(1)

0,α =
L

(1)
0,α

K0 cosh
(
ℜ(K0)h−

)
cosh

(
ℜ(K0)h+

) , (9.19)

so that
ℜ
(
L̂

(1)
0,α

)
= T−

(
c−c+− s−s+

√
Λ
)
+T+

(
c−c+

√
Λ − s−s+

)
,

ℑ
(
L̂

(1)
0,α

)
= T−T+

(
c+s−

√
Λ + c−s+

)
+
(
c−s+

√
Λ + c+s−

)
,

(9.20)

where
T± = tanh

(
ℜ(K0)h±

)
, c± = cos

(
ℑ(K0)h±

)
, s± = sin

(
ℑ(K0)h±

)
. (9.21)

Since ℜ(K0) 6= 0 implies T−T+ > 0, then L̂
(1)

0,α = 0 demands the bracketed terms in (9.20) either both
vanish or are non-zero with opposite sign, so that

ℜ
(
L̂

(1)
0,α

)
= 0 ⇒

(
c−c+− s−s+

√
Λ
)(

c−c+
√

Λ − s−s+
)
6 0 ,

⇒ 0 6

√
Λ

1+Λ

((
c−c+

)2
+
(
s−s+

)2
)
6 c−s−c+s+ , (9.22)

ℑ
(
L̂

(1)
0,α

)
= 0 ⇒

(
c+s−

√
Λ + c−s+

)(
c−s+

√
Λ + c+s−

)
6 0 ,

⇒ c−s−c+s+ 6−
√

Λ

1+Λ

((
c−s+

)2
+
(
c+s−

)2
)
6 0 . (9.23)

Together, the conditions (9.22) and (9.23) require

c−s−c+s+ = 0 . (9.24)

Now consider the magnitude∣∣L̂ (1)
0,α

∣∣2 = (c−c+
)2(T−+T+

√
Λ
)2

+
(
c−s+

)2(T−T++
√

Λ
)2

+
(
c+s−

)2(T−T+
√

Λ +1
)2

+
(
s−s+

)2(T−√Λ +T+
)2

,
(9.25)

where (9.24) has been used, and observe that
∣∣L̂ (1)

0,α

∣∣= 0 requires

c−c+ = c−s+ = c+s− = s−s+ = 0 , (9.26)

again because T−T+ > 0. Finally, define

∆ = ℑ
(
K0
) (

h+−h−
)
∈ R , (9.27)
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and deduce that
c−c+ = s−s+ = 0 ⇒ cos∆ = 0 ,

c−s+ = c+s− = 0 ⇒ sin∆ = 0 .
(9.28)

But there is no real number ∆ simultaneously satisfying both conditions (9.28). Hence, by contradiction,
we conclude ℜ

(
K0
)
= 0 as required.
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0.05(· · ·). The marginally stable response is plotted with asterisk symbols and a full line
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shows a corresponding comparison of concentration perturbation profiles across the slab
where results from (4.3) are plotted as lines and collocation calculations are denoted by
symbols with wavenumbers k set to 0.1(◦), 2(5), 5(4), 10(2) and 20(3). . . . . . . 15
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. Typical marginal stability bound-

aries
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ℑ(ω) = 0
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3 Flow fields calculated by the collocation method
(
N1 = N2 = 32

)
are shown for Case I

with Cr→ ∞. Throughout, the control parameter values Mg = 5, Eu = 0, λ = 2, Λ = 1,
∆χ = 1 are set.
Panels (a), (c) and (e): direction fields associated with the fluid velocity u(x, y) = u(x, y)i+ v(x, y)j
are plotted. The superimposed lines indicate the quiescent interface position (−−) and
a harmonic disturbance (—–) of arbitrary amplitude (ε = 0.1).
Panels (b), (d) and (f): show the corresponding principal arguments of the perturbed
velocities and vorticity field Θ ∈
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u(1)(y), v(1)(y), ϖ (1)(y)

}
. The tangential u(1) and

normal v(1) velocity components are denoted by (B) and (M), respectively, and the
phase of the vorticity ϖ (1) is indicated by ◦. Again, the quiescent interface position is
shown by (−−).
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√
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4 Temporal frequency dispersion curves ω = ω(k) are shown for a fluid slab of uni-
form mass diffusivity (Λ = 1) and unit concentration difference on the bounding walls(
∆χ = 1

)
.

Panel a): at Mg = 100, the growth rate ℑ(ω) is compared between Case I (Cr→ ∞)(◦)
and Case II (Eu = 0) with finite Cr set to 1(2), 1.5(3) and 50(?), all obtained by the
collocation method (Section 5.2). Other control parameters are λ = 2 and δ =

√
40 >

√
λ

corresponding to a stable response in Case I. Solid lines correspond to evaluation of the
explicit result (4.7) in Case I, and to numerical solutions of the dispersion relation (4.13)
in Case II.
Panel b): at Mg = 20, the growth rate ℑ(ω) is compared between Case I (Cr→ ∞)(◦)
and Case II (Eu = 0) with finite Cr set to 0.1(2) and 0.01(3), all obtained by the collo-
cation method (Section 5.2). Other control parameters are λ = 2 and δ = 1/

√
10 <

√
λ

corresponding to an unstable response in Case I. Modes are identified by number and
oscillatory responses are indicated by linear superposition of stationary states between
a pair of exceptional points.
Panel c): the spatially propagating wave frequencies ℜ(ω) are shown, corresponding to
the data of panel b) for Cr = 0.01. Modes are identified as follows: 1 and 2 (−−); 3 and
4 (·− ·); and 5 (—–).
Panel d): shows the growth rate ℑ(ω) dispersion curves, obtained by the collocation
method (Section 5.2), in a situation where mass diffusion is extremely slow Cr = 0.0002.
Other control parameters are set as in panel b). Modes are identified by number. An
unstable oscillatory state is observed (k < 1) as well as a dominant mode exchange
crossing at k ≈ 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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5 Collapse of avoided crossing between stationary modes to form oscillatory mode with
increasing interfacial elasticity is illustrated in panel a). Growth rate dispersion curves
ℑ
(
ω(k)

)
are plotted for Mg set to 5(+), 7(2), 7.35(?), 10(×) and 100(3). Other

control parameters are Ca = 0.1, Eu = 0, δ = λ = 2, Λ = 1 and ∆χ = 1. . . . . . . . 22
6 Temporal evolution of flow pattern in the oscillatory state (identified in Figure 5 at

parameter values, Cr = 0.1, Mg = 10, Eu = 0, δ = 2, λ = 2, Λ = 1 and ∆χ = 1, at
the excitation wavenumber k = 2. The direction field associated with the fluid veloc-
ity u(x, y) = u(x, y)i+ v(x, y)j is plotted at time instants t expressed as fractions of the
period T = 2π/|ℜ(ω)|. The superimposed lines indicate the quiescent interface posi-
tion (−−) and the corresponding harmonic disturbance (—–) of arbitrary amplitude
(ε = 0.1). For illustrative purposes, the exponential temporal decay of the disturbance
has been suppressed, so that ℑ(ω) is artificially set to zero. Axis labels have been dis-
carded for clarity, though the abscissa ranges over 0 6 kx/π 6 2 and the ordinate ranges
over −1 6 y 6 1 throughout (cf. Figure 3). . . . . . . . . . . . . . . . . . . . . . . . 24

7 Temporal frequency dispersion curves ω = ω(k) are shown for a fluid slab of uni-
form mass diffusivity (Λ = 1) and unit concentration difference on the bounding walls(
∆χ = 1

)
at crispation number Cr = 0.1.

Panel a): the growth rate ℑ(ω) is compared between Case II (Eu = 0)(+) and Case III
with nonzero Eu set to 3(◦), 10(2) and 30(3), all obtained by the collocation method
(Section 5.2). The dominant mode (m = 1) is indicated by symbols alone, while the sec-
ondary mode (m = 2) is denoted by symbols with solid lines. The inset shows the cor-
responding effective velocity crel/k = ℜ(ω)− ku(0)α of the spatially propagating wave
relative to the base state fluid speed on the interface. Other control parameters are λ = 2
and δ = 1/

√
10 <

√
λ corresponding to an unstable response in Case I with Mg = 20

(cf. Figure 4b).
Panel b): a similar growth rate comparison between Case II (Eu = 0) (no symbols) and
Case III (Eu = 50)(◦) is shown. The dominant mode (m = 1) is indicated by solid lines
(—–), while the dotted line (· · ·) refers to the secondary mode (m = 2). Other control
parameters are λ = δ = 2 (corresponding to a stable response in Case I) with Mg = 100
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Ignoring inertia, a deformable interface separating two fluid films is considered, subject to nonuniform
tension driven by the solutal Marangoni effect in the presence of a scalar concentration field. Detailed
description of adsorption kinetics is abrogated by a simple ansatz directly relating interfacial tension
and bulk solute concentration. Consequently, the formal mathematical treatment and some of the results
share features in common with the Rayleigh–Bénard–Marangoni thermocapillary problem. Normal mode
perturbation analysis in the limit of small interface deformations establishes the existence of unstable
response for low wavenumber excitation. In the classification of Cross and Hohenberg (1993, Rev.
Mod. Phys., 65, 851–1112), both Type-I and Type-II behaviour are observed. By considering the zero
wavenumber situation exactly, it is proved that all eigenvalues are purely imaginary with non-positive
imaginary part; hence, a Type-III instability is not possible. For characteristic timescales of mass dif-
fusion much shorter than the relaxation time of interfacial fluctuations (infinite crispation number): the
response growth rate is obtained explicitly; only a single excitation mode is available and a complete
stability diagram is constructed in terms of the relevant control parameters. Otherwise, from a quiescent
base state, an infinite discrete spectrum of modes is observed that exhibit avoided crossing and switching
phenomena, as well as exceptional points where stationary state pairs coalescence into a single oscilla-
tory standing wave pattern. A base state plane Poiseuille flow, driven by an external pressure gradient,
generally exaggerates the response: growth rates of instabilities are enhanced and stable decay is further
suppressed with increasing base flow speed; but the inherent symmetry breaking destroys stationary and
standing wave response. Results are obtained in this most general situation by implementing a numerical
Chebyshev collocation scheme. The model was motivated by hydrodynamic processes supposed to be
involved in gastric digestion of humans.

Keywords: liquid-liquid interface, Gibbs elasticity, Stokes flow, linear stability analysis, generalised
eigenvalue problem, collocation method, avoided crossing, exceptional point

1. Introduction

To understand the bioavailability and delivery of nutrients and medicines from processed foods and
pharmaceutical preparations, a detailed mechanistic model of digestion is needed. The human gastroin-
testinal tract, from the mouth to the anus, is a coupled sequence of specialized organs, each of which has
a distinctive digestive function. In particular, the stomach performs biochemical tasks involving com-
plex salts, strong mineral acid and proteolytic enzymes to produce chyme (soft solid, partially digested

c© The author 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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food) (Kong & Singh, 2008). The stomach also offers a prominent line of defense against pathogenic
microorganisms, but more importantly it is the primary site of mechanical action where ingested mate-
rial is subjected to a complicated unsteady shear flow, dominated by frictional dissipation rates with
relatively negligible inertial forces (Pal et al., 2007). For the purpose of developing a simple mathemat-
ical model of this action, we shall adopt here the following working definition: “digestion” means the
incipient mixing associated with the linear temporal instability of the interface between two immiscible
liquids. Agitated away from equilibrium, the morphological evolution of interfacial patterns and the
dynamics of viscous interfacial flow are driven by the physical mechanisms of heterogeneous mixing
(Pozrikidis, 1997). Despite the absence of inertia-driven turbulence, a combination of chaotic advection
and diffusion can promote mixing in Stokes flows (Thiffeault et al., 2011) that are governed by time-
reversible equations of motion. With deformable boundaries, a “geometric” mixing mechanism has also
been suggested exploiting anholonomy of the system so that flow variables do not recover their original
values on negotiating a closed loop in the parameter space (Cartwright et al., 2012).

Developed at the Institute of Food Research (UK), the Dynamic Gastric Model (DGM) is an in-vitro
system that automatically simulates human digestion for the first time from a realistic physiological
perspective by accounting for the physical, mechanical and biochemical environment experienced in
the stomach (Mercuri et al., 2011; Chessa et al., 2014). To establish a reliable predictive relationship
between DGM output and physiological stomach behaviour, some quantitative analysis of the device
function is required. Motivated by this need, the present work establishes conditions relevant to the
hydrodynamics of digestion insofar as they may lead to mixing and may be a precursor for turbulence.

The application of Orr-Sommerfeld perturbation analysis (Drazin, 2002; Charru, 2011) for parallel
fluid flows has a rich, mature and growing literature. Linear response theory leads to a generalised
eigenvalue problem, which has a nontrivial solution only if the temporal and spatial frequencies are
linked by a dispersion relation. In the most general problem, the large number of control parameters
(at least six) spawns a host of potentially unstable modes governed by diverse mechanisms of different
physical origin. The viscosity-induced interfacial mode instability of two superposed and bounded fluid
layers was first discussed by Yih (1967). Subsequently designated as “the thin-layer effect” (Hooper,
1985), a spatially confined film of more viscous fluid is unstable to long waves at all positive Reynolds
numbers. For the converse situation of a confined film of lower viscosity, the flow is stable in the
limit of weak interfacial tension (Renardy, 1987a). The thin-layer effect is also observed for multiple
fluid layer configurations in plane Poiseuille flow (Anturkar et al., 1990). Neglecting interfacial tension
entirely, Charru & Hinch (2000) have neatly rationalised Yih’s small wavenumber analysis together with
a second instability at low Reynolds number and high frequency (Hooper & Boyd, 1983) that is present
between two shearing unbounded fluids. This latter phenomenon has been confirmed by numerical
volume-of-fluid studies in the nonlinear regime (Coward et al., 1997; Li & Renardy, 2000) and might be
regarded as a viscous analogue of the Kelvin-Helmholtz instability. Hinch (1984) proposed a detailed
mechanism and concluded that some small inertial contribution is necessary in order that advection by
the main shear flow can drive the disturbance vorticities in each fluid out-of-phase and so allow the
induced velocity fields to amplify the interfacial perturbation. By considering the energy budget in low
Reynolds number expansions, Albert & Charru (2000) have confirmed that interfacial instability arises
from inertia influencing disturbances, at both small and large wavenumber.

It is perhaps because of this conclusion that the stability of superposed liquid layers in strict Stokes
flow (at zero Reynolds number) has received far less attention. Pozrikidis (1997) has implemented a
boundary integral method to investigate the interfacial behaviour subject to finite amplitude perturba-
tions. He showed that sufficiently large amplitude disturbances cause permanent interfacial deformation
with a morphology that depends sensitively on the viscosity ratio. In a very recent study of Poiseuille
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flow of layered miscible fluids in the Stokes regime, Talon & Meiburg (2011) have reported that diffu-
sion has a destabilising effect very similar to that induced by inertia at finite Reynolds number. Instead
of a macroscopically sharp discontinuity in fluid properties, partial bulk miscibility influences stability
by smearing the interface over a finite width (Anderson et al., 1998). This diffuse and inhomogeneous
transition zone is typically modelled (Sahu et al., 2009a,b) by a smooth viscosity distribution coupled
to a convective-diffusion equation for a scalar concentration field of “friction inducing solute”. For-
mally, this is very similar to our present treatment of Marangoni effects (Johnson & Narayanan, 1997)
where spatial variations of interfacial tension are produced, for example, by a temperature field or by
a nonuniform distribution of surfactants. This artifice will simplify the differential geometry and obvi-
ate a detailed chemical kinetic mechanism of the interfacial adsorption process (Palmer & Berg, 1972;
Reichenbach & Linde, 1981; Slavtchev et al., 1998, 2006) that is highly complicated in typical applica-
tions, notably the digestion mechanism of the stomach.

In consequence too, we note a formal correspondence between this approach and the analysis of
thermal Marangoni effects (Nepomnyashchy et al., 2006). As a rich example of spontaneous pattern
formation in nonequilibrium dynamical systems, the classical Rayleigh–Bénard convective instability
(Koschmieder, 1974) of a single fluid layer subject to a transverse temperature gradient has been long
studied (Normand et al., 1977) but continues to attract attention (Bodenschatz et al., 2000). For a strat-
ified superposition of several immiscible fluids, many new and qualitatively different phenomena arise
from the competition of individual layer instabilities (Andereck et al., 1998). By assuming “exchange
of stabilities” (Drazin & Reid, 2004), a linear stability analysis of the thermal Marangoni effect was
tackled by Zeren & Reynolds (1972), and subsequently extended by Zhao et al. (1995) to account for
interfacial deformation. Rasenat et al. (1989) completed a more general treatment to demonstrate that
steady convection could be driven either by buoyancy or by Marangoni forces. For thin film flows the
mathematical analysis exploits disparity in length scales to simplify the field equations, but microscopic
surface forces of van der Waals or electromagnetic origin can also become asymptotically important
(Oron et al., 1997; Craster & Matar, 2009). The nonlinear evolution of interfacial deformation arising
from a small wavenumber perturbation (the “long-wave” limit) is governed by a Cahn-Hilliard equation
that describes the (“phase”) transition between monotonic and stationary instabilities, in analogy with
thermodynamic spinodal decomposition (Merkt et al., 2005; Nepomnyashchy et al., 2006).

Frenkel and Halpern (Frenkel & Halpern, 2002; Halpern & Frenkel, 2003) have identified a new
non-inertial interfacial instability, which was investigated further by Blyth & Pozrikidis (2004a). This
is driven by the Marangoni traction that arises from the presence of adsorbed surfactant and velocity
shear in two-layer planar flows of Couette-Poiseuille type. A physical mechanism is also proposed
where the imbalance of interfacial tension drives flow from troughs to peaks and reinforces the defor-
mation. Notably, in contrast to the interfacial mode of inertial flows, a viscosity jump is not required
for instability. Moreover, explicit analytic expressions are obtained for the wave speed and growth rate.
Corresponding phenomena are also predicted for surfactant-laden interfaces in gravity driven flow on an
inclined plane (Gao & Lu, 2007; Blyth & Pozrikidis, 2004b) and for radially stratified films in concentric
two-fluid Taylor–Couette flow (Peng & Zhu, 2010), where there is a complicated interaction of insta-
bility mechanisms. The effect of inertia coupled with the Marangoni instability has also been studied
by normal-mode analysis (Frenkel & Halpern, 2005; Blyth & Pozrikidis, 2004c) and numerical meth-
ods (Pozrikidis, 2004) applicable beyond the linear regime. A wider range of unstable wavenumbers
is the chief consequence. After observing that linear analysis of Stokes flow has established insoluble
surfactant is unable to destabilise a sheared interface between two semi-infinite fluids, Pozrikidis & Hill
(2011) have recently questioned the necessity of a bounded fluid domain to realise the Marangoni insta-
bility. They concluded that one wall is required to engage the Marangoni mechanism, but the presence
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FIG. 1. Cartoon illustrating the modelling abstraction from the physical DGM device to the mathematical idealisation.

of a second wall may stabilise the flow.
Section 2 sets out the physical arguments to establish the appropriate governing equations and

boundary conditions. A full mathematical treatment is developed in Section 3, culminating in a dis-
persion relation. Two special cases are considered in Section 4 before the general solution is presented
in Section 5. Results are collected and discussed in Section 6, and the paper concludes in Section 7 with
some perspective on applications and future work. Section 9 is an appendix containing comprehensive
mathematical details and formal proofs of some results in the text.

2. Mathematical model specification

2.1 Physical situation: the Dynamic Gastric Model (DGM)

With its modular design, the DGM separates two primary anatomical features of the human stomach:
the proximal cardia/fundus/main-body that receives material from the oesophagus, and the distal pyloric
antrum where chyme is produced before discharge to the duodenum (Wickham et al., 2012). The
pseudo-main body comprises a thermally jacketted elastic cone, hydraulically driven by cyclic pumping
to generate a specific inhomogeneous mixing behaviour and hydration patterns that closely resemble
observations in-vivo (Marciani et al., 2001, 2006, 2009). A computer controlled feed-back loop moni-
tors temperature and pH in real time to govern the injection of surfactants, acids/bases and proteolytic
solutions that correspond to gastric secretions. An intervening valve regulates residence times before
partial emptying into a pseudo-antrum where digesta are subjected to periodic high shear fields that
force mechanical breakdown of the food structure.

In operation (Wickham et al., 2012), aqueous gastric solution enters the DGM fundus under gravity
from an annular distributor, suspended coaxially above the main body, and flows in a thin film down the
interior surface of the conical vessel (Figure 1). The main body is then charged with “ingested” material,
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typically a heterogeneous viscoelastic food product, but most simply with a Newtonian liquid. Gentle
deformations of the elastic main body wall are actuated by driven pressure variation of the external
thermal bath. The observed digestion process has the character of “onion peeling” where thin layers
of ingested material are progressively sloughed off to enter the lower antral chamber. The DGM main
body has geometric and material features in common with the intensively studied core-annular pipe
flow (Renardy, 1987b; Joseph et al., 1997) used for the efficient water lubricated transport of heavy
crude oils, emulsions or bitumen froths, but differs in the steeply converging tube arrangement with
weakly deformable walls and a much lower flow rate.

To simplify the problem, a general non-Newtonian food material of spatially inhomogeneous trans-
port properties is idealised as a discrete ternary mixture of uniform macroscopic phases. Further, the
main food bolus is regarded as effectively solid and suspended at neutral buoyancy in the main body
device. We assume the “onion-peeling” process is confined to a relatively thin sleeve of liquid material
that separates the bolus from the main body wall where most gastric chemistry takes place. This sleeve
is treated as a uniform slab confining two immisicible liquids that are possibly subject to a constant
longitudinal pressure gradient. Finally, a scalar material field is imposed that interacts with the tension
of the interface to represent the biological activity of gastric secretions including acids, enzymes and
surfactants. The solid food bolus and the main body wall are supposed porous to the solute material.
Although the DGM main body wall is actually impermeable, this last assumption is more realistic in
terms of the physiological organ and symmetrises the solute boundary conditions in our analysis. These
modelling abstractions are illustrated by the cartoon in Figure 1.

2.2 Coordinate frame, constitutive relation and nondimensionalisation

Under isothermal conditions, consider the unidirectional creeping flow of two incompressible Newto-
nian fluids (indexed by the labels j = 1, 2), driven by a constant axial pressure gradient −G̃p (with
G̃p > 0) through an infinite channel bounded by stationary parallel walls fixed at separation 2h̃ (see Fig-
ure 2). It is natural to adopt a Cartesian system (x̃, ỹ, z̃) with the longitudinal coordinate −∞ < x̃ < ∞

and the transverse coordinate −h̃ 6 ỹ 6 h̃. Unit vectors in each coordinate direction are denoted i, j and
k, respectively. Interfacial disturbances are supposed small and are manifest in two spatial dimensions
only, so that all the relevant dynamical quantities are independent of the lateral coordinate z̃. The fluid
labelled 1 is confined between the lower wall at ỹ =−h̃ and the interface, whose flat equilibrium posi-
tion is ỹ = α̃ where α̃ is a constant (see Figure 2). Each of the bulk fluids is characterised by a dynamic
viscosity µ̃ j and a diffusion coefficient D̃ j for solute species. We observe the Boussinesq approximation
and suppose that all µ̃ j and D̃ j are constant and remain unaffected by variations in bulk solute concen-
tration. Furthermore, there is no stratification in mass density ρ̃1 = ρ̃2 = ρ̃ and the system is assumed
free of external body forces, so buoyancy effects are neglected.

The deformable interface located at ỹ = η̃
(
x̃, t̃
)
, is a free material boundary with a Newtonian

response: explicit effects of interfacial rheology are neglected. Nevertheless, the associated equilib-
rium interfacial tension is a sensitive function of the local environment, with a complicated dependence
on temperature and the presence of solutes in either of the adjoining fluid phases. Spatial inhomo-
geneities of the interfacial tension can arise from fluctuations in the physical adsorption of surfactants
and advective interfacial transport, or from localised chemical activity at the interface. For simplicity,
we posit a scalar field χ̃ j = χ̃ j

(
x̃, ỹ, t̃

)
to represent the concentration of some surface active species

dissolved in fluid j, that is subject to advection and diffusion in the three-dimensional bulk phases only.
It is here that our ansatz deviates from other studies of the solutal Marangoni effect (Li & Pozrikidis,
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FIG. 2. The basic states of fluid flow and concentration distribution are shown with the geometry and coordinate variables defined
in the text.

1997; Frenkel & Halpern, 2002; Halpern & Frenkel, 2003; Frenkel & Halpern, 2005; Blyth & Pozrikidis,
2004a; Pozrikidis, 2004; Blyth & Pozrikidis, 2004c; Gao & Lu, 2007; Pozrikidis & Hill, 2011) where
the surfactant is assumed insoluble in bulk, confined strictly to the interface and governed by an appro-
priate two-dimensional transport equation. In accord with our DGM idealisation, Dirichlet conditions
are prescribed on χ̃ j at the bounding walls which, although stationary, support a diffusive flux of solute
material to adjacent “notional” phases. Thus, under the influence of a concentration gradient, the solute
is allowed to spread by Brownian motion but without advection into the food bolus and the gastric
mucosa that confine the fluid slab: the static walls are porous to solute but impermeable to solvent.

We undertake a temporal linear stability analysis of steady base state flow with a uniform interfacial
tension and concentration fields

χ̃
(0)
j = χ̃

(0)
j

(
ỹ
)
, j ∈ {1, 2} , (2.1)

that depend only on the transverse coordinate across the channel. For small perturbations of the base
state flow, the change in the interfacial tension is proportional to the induced departure of the bulk
concentration from χ̃

(0)
j , and proportional to a contribution that arises from displacement of the interface

within the static field. We adopt the linear interfacial equation of state

γ̃ = γ̃
(
x̃, ỹ, t̃

)
= γ̃0

1−Mg×

 χ̃ j
(
x̃, ỹ, t̃

)
− χ̃

(0)
j

(
α̃
)

χ̃
(0)
2

(
h̃
)
− χ̃

(0)
1

(
−h̃
)
 , (2.2)

with the understanding that physical meaning is attached to this field γ̃ only for ỹ = η̃ . The dimen-
sionless interaction parameter Mg measures the change in interfacial tension with respect to the local
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Mg =
χ̃
(0)
2

(
h̃
)
− χ̃

(0)
1

(
−h̃
)

γ̃0

(
∂ γ̃

∂ χ̃ j

)
Dilatational elasticity of interface

Cr =
µ̃1D̃1

h̃γ̃0
Crispation number

Eu =
h̃2G̃p

γ̃0
Euler number

∆χ =
h̃γ̃0

µ̃2
1

(
χ̃
(0)
2

(
h̃
)
− χ̃

(0)
1

(
−h̃
))

Overall solute concentration difference

λ =
µ̃2

µ̃1
Dynamic viscosity ratio

Λ =
D̃2

D̃1
Solute diffusivity ratio

δ =
1− α̃/h̃
1+ α̃/h̃

Fluid film thickness ratio

Table 1. The seven dimensionless control parameters that feature in this analysis.

concentration of surface active solutes and is related to the dilatational (Gibbs) elasticity that couples the
dynamic boundary conditions on interfacial stress and surfactant flux (Edwards et al., 1991). Typically
Mg > 0 and the spontaneous physical adsorption of material at the interface will lower the surface free
energy relative to the bulk phases. We are also interested, however, in the more complex situation where
changes of interfacial tension are driven by chemical activity. For example, denaturation, cross-linking
or gelation of proteins at the interface may lead to increases of tension compared with the bare sur-
face. Within the ansatz (2.2), this behaviour could be modelled by choosing Mg < 0, that is the solutal
analogue of the anomalous thermocapillary effect (Braverman et al., 2000).

To accommodate the analysis of a quiescent base state with a vanishing pressure gradient G̃p = 0,
suitable units of mass, length and time are

[
M̃
]
=

(
h̃µ̃1
)2

γ̃0
,
[
L̃
]
= h̃ ,

[
T̃
]
=

h̃µ̃1

γ̃0
. (2.3)

Accordingly, the dynamics depends on at most seven dimensionless control parameters listed in Table 1.
From now on, all dimensionless quantities will be indicated by the absence of tilde decoration.

2.3 Governing equations

In the effective two-dimensional geometry, we have the Stokes stream functions ψ j = ψ j(x, y, t) satis-
fying biharmonic equations

∇
4
ψ j =

(
∂ 4

∂x4 +2
∂ 4

∂x2∂y2 +
∂ 4

∂y4

)
ψ j = 0 , (2.4)

that determine the velocity fields u j = u ji+ v jj with longitudinal and transverse components

u j =
∂ψ j

∂y
and v j =−

∂ψ j

∂x
. (2.5)
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Incorporating the pressure fields p j = p j(x, y, t), the Newtonian stress tensors are

σσσ j = σσσ j(x, y, t) =−p jI+λ j

(
∇u j +

(
∇u j

)T
)

, (2.6)

where λ1 = 1 and λ2 = λ . The concentration fields are subject to fluid advection and bulk diffusion,
described as (

∂

∂ t
+u j ·∇−CrΛ j∇

2
)

χ j = 0 , (2.7)

where Λ1 = 1 and Λ2 = Λ .
With the interface position at y = η(x, t), the field equations (2.4) and (2.7) are supplemented by

no-slip and kinematic boundary conditions:

u1(x, −1, t) = 0 , u2(x, 1, t) = 0 ,
(
no slip on walls

)
v1(x, −1, t) = 0 , v2(x, 1, t) = 0 ,

(
stationary, solvent
impermeable walls

)
(
u1−u2

)
(x, η , t) = 0(

v1− v2
)
(x, η , t) = 0

}
,

(
flow continuity

on interface

)

∂η

∂ t
+u j(x, η , t)

∂η

∂x
− v j(x, η , t) = 0 .

(
moving material

interface

)
(2.8)

Given local orthogonal unit vectors perpendicular n̂ = n̂(x, η , t) (directed from fluid 2 into fluid 1) and
tangent t̂ = t̂(x, η , t) to the interface, the corresponding components of the dynamic stress balances
become, respectively:

n̂ ·
((

σσσ1−σσσ2
)
(x, η , t)

)
· n̂ =

(
1+
(

∂η

∂x

)2
)−3/2

∂ 2η

∂x2 γ(x, η , t) ,

t̂ ·
((

σσσ1−σσσ2
)
(x, η , t)

)
· n̂ =−

(
1+
(

∂η

∂x

)2
)−1/2(

∂γ

∂x
(x, η , t)+

∂η

∂x
∂γ

∂y
(x, η , t)

)
.

(2.9)

Finally, concentrations are prescribed on the walls, together with interfacial continuity conditions on the
χ j and the material flux according to:

χ1(x, −1, t) = 1

χ2(x, 1, t) = 1+∆χ

}
,

(
prescribed wall
concentration

)

(
χ1−χ2

)
(x, η , t) = 0 ,

(
concentration continuity

on interface

)
∂

∂y

(
χ1−Λ χ2

)
(x, η , t) = 0 .

(
concentration flux

continuity on interface

)
(2.10)
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3. General analysis of the mathematical model

3.1 Base (ground) state: unperturbed flow

For steady plane Poiseuille flow with a flat interface η(x) = α , we obtain the pressure fields

p(0)j = p(0)j (x) = p0−Eu x , (3.1)

where p0 is a constant background pressure and Eu is the Euler number (Table 1). Similarly, the velocity
fields are (see Figure 2)

u(0)1 (y) = u(0)α +
Eu
2
(α− y)

(
y− δ −λ

δ +λ

)
=

∂ψ
(0)
1

∂y
, v(0)1 = 0 , (−1 6 y 6 α) ,

u(0)2 (y) = u(0)α −
Eu
2λ

(y−α)

(
y− δ −λ

δ +λ

)
=

∂ψ
(0)
2

∂y
, v(0)2 = 0 , (α 6 y 6 1) ,

(3.2)

where the horizontal velocity at the interface is

u(0)α =
2δ Eu

(1+δ )(δ +λ )
. (3.3)

The steady concentration fields are (see Figure 2)

χ
(0)
1 (y) = χ

(0)
α −Gχ,1(α− y) , (−1 6 y 6 α) ,

χ
(0)
2 (y) = χ

(0)
α +Gχ,2(y−α) , (α 6 y 6 1) ,

(3.4)

where the unperturbed interfacial concentration and corresponding gradients are

χ
(0)
α =

δ +Λ
(
1+∆χ

)
δ +Λ

, Gχ,1 =
Λ(1+δ )∆χ

2(δ +Λ)
, Gχ,2 =

(1+δ )∆χ

2(δ +Λ)
=

Gχ,1

Λ
. (3.5)

3.2 Perturbed interface

We introduce a plane wave perturbation of the interface

y = η(x, t) = α + εℜ
(
A exp

(
i(kx−ωt)

))
, (3.6)

with a prescribed real and positive wavenumber k. Here, ℜ denotes the real part. The real order param-
eter ε > 0 is assumed small so we seek the linear response to the wave disturbance with amplitude
A = O(1). Evolution of the disturbance in time is governed by the imaginary part ℑ(ω) of the generally
complex temporal frequency ω . A stable response decays towards zero

(
ℑ(ω)< 0

)
while unbounded

growth
(
ℑ(ω)> 0

)
characterises an instability. All other dynamical variables Θ ∈

{
ψ j, u j, v j, p j, χ j

}
are supposed to develop similar fluctuations so that

Θ =Θ(x, y, t) =Θ
(0)(y)+ εℜ

(
Θ

(1)(y)exp
(
i(kx−ωt)

))
. (3.7)

To simplify notation, we identify D ≡ d/dy with the differential operator and further adopt the following
definitions:

k− ≡ k(1−α) =
2kδ

1+δ
, k+ ≡ k(1+α) =

2k
1+δ

,
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cξ ≡ cosh(kξ ) , sξ ≡ sinh(kξ ) , (3.8)

where ξ is a dummy variable.
By virtue of the linear field equations (2.4), the stream function perturbations each satisfy(

D2− k2)2
ψ

(1)
j = 0 , (3.9)

with general solutions of the form

ψ
(1)
j =

(
Â j +Ĉ jy

)
cy +

(
B̂ j + D̂ jy

)
sy , (3.10)

where Â j, B̂ j, Ĉ j and D̂ j are constants to be determined. The linear advection-diffusion law (2.7) yields(
D2−

(
k2 +

i
CrΛ j

(
ku(0)j −ω

)))
χ
(1)
j +

ikGχ, j

CrΛ j
ψ

(1)
j = 0 . (3.11)

With constants F̂j and Ĝ j, the general solutions

χ
(1)
j = χ

(1)
j (y; ω) =

2∆χ

Mg

((
F̂jΨj + Ĝ jΦ j

)
− ik I j

)
, (3.12)

each comprise a complementary function of the independent homogeneous solutions Ψj =Ψj(y) and
Φ j = Φ j(y), together with a particular integral I j = I j

(
y;
[
ψ

(1)
j

])
. In this general formulation, the Ψj

and Φ j are unknown but will be determined explicitly for various cases discussed in Section 4. The I j
are obtained by the variation of parameters method and depend functionally on the flow perturbation:

I j = Â jI j
(
y;
[
cy
])

+ B̂ jI j
(
y;
[
sy
])

+Ĉ jI j
(
y;
[
ycy
])

+ D̂ jI j
(
y;
[
ysy
])

,

I j
(
y;
[
Ξ
])

=
Mg
Cr

(
Gχ, j

2∆χΛ j

)∫ y
Ξ(ξ )

(
Ψj(ξ )Φ j(y)−Ψj(y)Φ j(ξ )

W
(
Ψj(ξ ), Φ j(ξ )

) )
dξ ,

(3.13)

in which

W
(
Θ1(ξ1), Θ2(ξ2)

)
= det

(
Θ1
(
ξ1
)

DΘ1
(
ξ2
)

Θ2
(
ξ1
)

DΘ2
(
ξ2
)
)

, (3.14)

becomes the Wronskian of functions Θ1 and Θ2 in case ξ1 = ξ2. In general, the concentration perturba-
tions χ

(1)
j and the associated quantities in (3.12) will all depend parametrically on the unknown temporal

frequency ω .
Substitution of (3.7) into the boundary conditions (2.8), (2.9) and (2.10), followed by linearisation

to lowest order in ε obtains:

Dψ
(1)
1 (−1) = 0 , Dψ

(1)
2 (1) = 0 ,

(
no slip on walls

)
ψ

(1)
1 (−1) = 0 , ψ

(1)
2 (1) = 0 ,

(
stationary, solvent
impermeable walls

)

D
(

ψ
(1)
1 −ψ

(1)
2

)
(α)+ JuA = 0

(
ψ

(1)
1 −ψ

(1)
2

)
(α) = 0

 ,

(
flow continuity

on interface

)
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kψ
(1)
j (α)+ JηA = 0 ,

(
moving material

interface

)

D
(
D2−3k2)(

ψ
(1)
1 −λψ

(1)
2

)
(α)−2k2J⊥σσσ A = 0 ,

(
normal stress

balance on interface

)
(
D2 + k2)(

ψ
(1)
1 −λψ

(1)
2

)
(α)+2k

(
i Mg

χ
(1)
2 (α)

2∆χ

+ J‖σσσ A

)
= 0 ,

(
tangential stress

balance on interface

)

χ
(1)
1 (−1) = 0 , χ

(1)
2 (1) = 0 ,

(
prescribed wall
concentration

)
(

χ
(1)
1 −χ

(1)
2

)
(α)+ JχA = 0 ,

(
concentration continuity

on interface

)

D
(

χ
(1)
1 −Λ χ

(1)
2

)
(α) = 0 ,

(
concentration flux

continuity on interface

)
(3.15)

where the “jump” terms proportional to the interfacial disturbance amplitude A are

Ju = D
(
u(0)1 −u(0)2

)
(α) = Eu

(1−λ )
(
λ −δ 2

)
λ (1+δ )(λ +δ )

,

Jη = ku(0)α −ω ,

J⊥σσσ =
ik
2

,

J‖σσσ = i Mg
Gχ,2

2∆χ

= i Mg
(1+δ )

4(δ +Λ)
,

Jχ = Gχ,1−Gχ,2 =
(1+δ )(Λ −1)∆χ

2(δ +Λ)
.

(3.16)

The homogeneous linear system (3.15) demands a singular coefficient matrix to deliver non-trivial solu-
tions. Lengthy but straightforward calculation of the determinant leads to the dispersion relation

Lk,α(Λ)
(
κuJu +κη Jη +κ⊥σσσ J⊥σσσ

)
+ΛLk,α(1)κ‖σσσ J‖σσσ = 0 , (3.17)

where the function Lk,α and the coefficients κu, κη and κ⊥σσσ all depend parametrically on ω as detailed
in the appendix (Section 9.1). The relatively simple coefficient κ‖σσσ depends only on the wavenumber
k and the geometric parameter δ . Further analysis requires solutions of the advection-diffusion equa-
tion (2.7) to evaluate the integrals I j and to determine the functional form of Lk,α . As well as the most
general case, notable limiting situations are discussed in the following sections.
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4. Special cases from the general analysis

4.1 Case I: Cr→ ∞ with 0 < Λ < ∞

For large crispation number and 0 < Λ < ∞, solute diffusion in both films is effectively instantaneous
on the time scale of interfacial fluctuations. In this circumstance, the solute transport equation (2.7)
then reduces to Laplace’s equation and the perturbed concentration fields now satisfy a simple diffusion
equation (cf. (3.11)) (

D2− k2)
χ
(1)
j = 0 , (4.1)

regardless of any base state flow. Solutions of these homogeneous ODEs take the form (3.12) with

Ψj = cy and Φ j = sy , (4.2)

independent of ω , and the particular integrals vanish
(
I j = 0

)
. As a consequence, the concentration

fields are decoupled from the fluid flows and can be solved independently to yield:

χ
(1)
1 =−JχA

kΛc1−α s1+y

L
(0)

k,α (Λ)
, χ

(1)
2 = JχA

kc1+α s1−y

L
(0)

k,α (Λ)
, (4.3)

where
L

(0)
k,α (Λ) = k

(
Λc1−α s1+α + c1+α s1−α

)
> 0 , (4.4)

and the frequency parameter ω does not enter (see the appendix Section 9.1). In the case of identical
mass diffusivities for both films, then Jχ = 0 so that χ

(1)
1 = χ

(1)
2 = 0 and the base state concentration

fields χ
(0)
j are maintained everywhere for all time regardless of perturbations to the fluid flows.

A dispersion relation of the form (3.17) is obtained:

κ
(0)
u Ju +κ

(0)
η Jη +κ

(0)
⊥σσσ

J⊥σσσ +

ΛL
(0)

k,α (1)

L
(0)

k,α (Λ)

 κ‖σσσ J‖σσσ = 0 , (4.5)

but where the κ(0)-coefficients are independent of the frequency parameter ω (see the appendix Sec-
tion 9.1) that now appears only in Jη (see (3.16)). Define the functions

gξ ≡ sinh2(kξ )− (kξ )2 , Dgξ ≡ sinh(2kξ )−2kξ , hξ ≡
gξ

Dgξ

, (4.6)

with a natural extension of our earlier subscript notation (3.8). From (4.5) the disturbance growth rate is

ℑ(ω) =
L

(0)
k,α (Λ)κ

(0)
⊥σσσ

ℑ
(
J⊥σσσ

)
+ΛL

(0)
k,α (1)κ‖σσσ ℑ

(
J‖σσσ
)

L
(0)

k,α (Λ)κ
(0)
η

=
kg1+α

4κ
(0)
η

(
Mg Mk,α(Λ)

(
λδ

2− g1−α

g1+α

)
−Dg1−α

(
λ +

h1−α

h1+α

))

=
kg1−α

4κ
(0)
η

λ

(
Mg Mk,α(Λ)δ 2

(
g1+α

g1−α

− 1
λδ 2

)
−Dg1+α

(
1
λ
+

h1+α

h1−α

))
,

(4.7)
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where

Mk,α(Λ) =
4kΛL

(0)
k,α (1)

(1+δ )(δ +Λ)L
(0)

k,α (Λ)
=

2k+s2Λ

(δ +Λ)
(
c1−α s1+αΛ + c1+α s1−α

) > 0 , (4.8)

depends on the excitation wavenumber, the flow composition and the solute diffusivities, but is a mani-
festly positive quantity. Similarly, from (4.5) the real part of the temporal frequency is

ℜ(ω) = ku(0)α +
κ
(0)
u Ju

κ
(0)
η

=
Eu

κ
(0)
η (1+δ )(δ +λ )

(
1
2

(
k2
+Dg1−α + k2

−Dg1+α

)(
λ −δ

2)(λ −1)+2kκ
(0)
η δ

)
.

(4.9)

Consequences of these results are discussed in Section 6.1.

4.2 Case II: 0 < Cr < ∞ and Eu = 0

In the absence of a driving pressure gradient, the base state is quiescent (note especially that Ju = 0,
while Jη =−ω) and the governing equations for the concentration perturbations become

(
D2−K2

j (ω)
)

χ
(1)
j +

ikGχ, j

CrΛ j
ψ

(1)
j = 0 ,

where K2
j (ω) = k2 +K2

0 j(ω) with K2
0 j(ω) =− iω

CrΛ j
.

(4.10)

Following our earlier style, the notation is simplified by adopting the definitions:

C j,ξ ≡ cosh
(
K jξ

)
, S j,ξ ≡ sinh

(
K jξ

)
. (4.11)

Although the ODEs (4.10) are inhomogeneous, the coefficients K2
j are constant in space, so explicit

solutions are readily obtained. The complementary functions comprise

Ψj(y) =C j,y and Φ j(y) = S j,y , (4.12)

with the simple spatially uniform Wronskian W
(
Ψj(ξ ), Φ j(ξ )

)
= K j(ω). A lengthy but straightfor-

ward calculation of the particular integrals leads to the dispersion relation (see the appendix Section 9.2)

L
(1)

k,α (Λ)
(
−κ

(1)
η ω +κ

(1)
⊥σσσ

J⊥σσσ

)
+ΛL

(1)
k,α (1)κ‖σσσ J‖σσσ = 0 , (4.13)

where (cf. (4.4))
L

(1)
k,α (Λ) = K2ΛC2,1−α S1,1+α +K1C1,1+α S2,1−α . (4.14)

The result (4.13) follows the general form (3.17) but with the Poiseuille flow term absent. As the
frequency ω is now intimately incorporated into the arguments of transcendental functions, it is not
expedient to explicitly extract the growth rate ℑ(ω) or oscillation rate ℜ(ω) despite the ready availabil-
ity of (4.13). Nevertheless, implementation of (4.13) (MATLAB, 2013) provides a useful verification
tool for other numerical solution schemes (see Section 5.2).
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5. General solution

5.1 Case III: 0 < Cr < ∞ and Eu 6= 0

The governing equations for the concentration perturbations becomeD2−

K2
j (ω)+

iku(0)j

CrΛ j

χ
(1)
j +

ikGχ, j

CrΛ j
ψ

(1)
j = 0 , (5.1)

where u(0)j is quadratic in y as given by (3.2). In the base state, the parabolic velocity profiles of (3.2)
share a common symmetry axis located at (see Figure 2)

y = ȳ =
δ (1−λ )

(1+δ )(δ +λ )
. (5.2)

On applying the transformation

Y (y) =
(

2ik Eu
CrΛ j

)1/4(
y− ȳ

)
, (5.3)

the homogeneous equation corresponding to (5.1) is brought into the standard form(
d2

dY 2 +
( 1

4Y 2−ϒj(ω)
))

χ
(1)
j = 0 , (5.4)

where

ϒj(ω) =

K2
j (ω)+

ikū(0)j

CrΛ j

(2ik Eu
CrΛ j

)−1/2

, (5.5)

and we have the complementary solution in terms of a single parabolic cylinder (Weber) function
(Abramowitz & Stegun, 1965)

Ψj(y) =W
(
ϒj, y

)
and Φ j(y) =W

(
ϒj, −y

)
, (5.6)

with the constant Wronskian W = 1. These analytic solutions of the transport equations (5.1) lead
to a very complicated implicit dispersion relation involving transcendental functions. It appears very
difficult (if not impossible) to exactly solve this eigenvalue problem, or merely to establish precisely
how many response modes exist. Here we shall consider a numerical scheme instead, that will resolve
these issues.

5.2 A numerical scheme: Chebyshev collocation method

Recall the stream function perturbations ψ
(1)
j satisfy a biharmonic field equation (3.9), that is equivalent

to the Orr-Sommerfeld equation at vanishing Reynolds number, and explicit solutions are obtained in
the form (3.10). Following Gottleib & Orszag (1977), the set of orthogonal Chebyshev polynomials
Tn : [−1,1]→ [−1,1] provides an appropriate basis for the approximation space of χ

(1)
j and we write

the truncated expansions

χ
(1)
j (y) =

N j

∑
n=0

a jnTn
(
y j(y)

)
, (5.7)
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where the spanwise coordinate is linearly mapped onto the canonical domain:

y1(y) = (1+δ )y+δ , (−1 6 y 6 α) ,

y2(y) =
1
δ

(
(1+δ )y−1

)
, (α 6 y 6 1) ,

(5.8)

with the differential transformations,

Dy1 = 1+δ and Dy2 = 1+
1
δ

. (5.9)

The Gauss-Lobatto points,

y jn = cos
(

nπ

N j

)
,
(
n = 0, 1, 2, . . . , N j

)
. (5.10)

corresponding to the extrema of the highest order polynomial, are optimal for collocation (Schmid &
Henningson, 2001). Altogether with the linearised boundary conditions (3.15), this set of governing
equations is assembled into the system

Aw = ωBw , (5.11)

which we recognise as a generalised eigenvalue problem for the eigenvalue ω and the associated eigen-
vector

w =
(
a10 . . . a1N1 a20 . . . a2N2 Â1 B̂1 Ĉ1 D̂1 Â2 B̂2 Ĉ2 D̂2 A

)T
. (5.12)

These N1 +N2 +11 unknowns are determined by the 13 boundary conditions along with the field eval-
uations at the

(
N1−1

)
+
(
N2−1

)
“interior” collocation points corresponding to the turning points of

TN1 and TN2 . A Matlab code (MATLAB, 2013) has been implemented using the built-in routine eig to
solve the generalised eigenvalue problem. To consistently compare results across the wavenumber spec-
trum, the eigenvectors are uniformly scaled so that the disturbance amplitude of the interface becomes
A = 1 ∈ R.

5.3 The situation k = 0 and Eu > 0

At zero wavenumber, it turns out that a base state flow plays no role in the eigenvalue spectrum. The
governing equations (3.9) for the stream function perturbations reduce to

D4
ψ

(1)
j = 0 , (5.13)

with general solutions in the form of a cubic polynomial

ψ
(1)
j = Â jy3 + B̂ jy2 +Ĉ jy+ D̂ j . (5.14)

The concentration field perturbations are also determined by homogeneous ODEs(
D2−K2

0 j(ω)
)

χ
(1)
j = 0 , (5.15)

with general solutions (cf. (3.12))

χ
(1)
j =

2∆χ

Mg
(
F̂j C j,y + Ĝ j S j,y

)
. (5.16)
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Furthermore, the interfacial stress boundary conditions are simplified considerably: in particular the
tangential coupling between ψ

(1)
j and χ

(1)
j is broken so that the dispersion relation is easily recovered

ω L
(1)

0,α (Λ)

(
λ 2 +2δ

(
2δ 2 +3δ +2

)
λ +δ 4

(1+δ )4

)
= 0 , (5.17)

and the non-trivial modes are determined by (cf. (4.14))

L
(1)

0,α (Λ) = K0

(√
Λ cosh

(
K0h−

)
sinh

(
K0h+

)
+ cosh

(
K0h+

)
sinh

(
K0h−

))
= 0 , (5.18)

where

h− =
2δ

(1+δ )
√

Λ
=

1−α√
Λ

, h+ =
2

1+δ
= 1+α and K0 =

√
− iω

Cr
. (5.19)

6. Results and discussion

6.1 Instantaneous solute diffusion Cr→ ∞, 0 < Λ < ∞ (Case I)

Explicit expressions for the temporal frequency in Case I (4.7 and 4.9) permit detailed analysis of
the linear response. For all physical parameter values, the quantity κ

(0)
η is strictly positive (see the

appendix Section 9.3). It follows from (4.7) that the interface is generally stable (ℑ(ω)< 0) against
large wavenumber perturbations (k→ ∞). By considering the k-expansion

ℑ(ω) =
Mg
(
λ −δ 2

)
Λδ 2(

λ 2 +2δ
(
2+3δ +2δ 2

)
λ +δ 4

)
(Λ +δ )2

k2 +O
(
k4) , (6.1)

a region of instability exists for Mg > 0 provided λ > δ 2. Conversely, Mg < 0 requires λ < δ 2 for this
instability to appear. Hence, it is natural to define a pseudo-critical viscosity ratio λc = δ 2. It should
be emphasised here that this is a small wavenumber analysis that does not exclude the possibility of
instabilities where ℑ(ω) first becomes positive for some wavenumber kc > 0.

These response characteristics are confirmed by the family of dispersion curves plotted in Figure 3
where, given Mg = 100, panels a), b) and c) consistently exhibit a stable response for λ > δ 2, a marginal
state at λ = δ 2 and instability for λ < δ 2. Within the systematic classification scheme of Cross and
coworkers (Cross & Hohenberg, 1993; Cross & Greenside, 2009), this is a stationary instability of
Type-II universally characterised by a zero growth rate at k = 0 and maximum amplification rate at
intermediate wavenumber 0 < k < ∞. Figure 3 also demonstrates the stability criterion is independent
of the mass diffusivity ratio Λ . This is unsurprising in the limit (Cr→ ∞), since equilibration of the
concentration profile is fast compared with the flow dynamics: the interface moves in a concentration
field that is oblivious to the fluid flows. Despite this decoupling, the concentration field is perturbed nev-
ertheless (see (4.3)) by a stratification of the bulk mass diffusivity (Figure 3d). Throughout Figure 3 the
analytic results (Section 4.1) show excellent agreement with the approximate collocation computations
(Section 5.2).
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FIG. 3. Growth rate dispersion curves for Case I (Cr→ ∞) are displayed for parameter values Mg = 100, λ = 2 and ∆χ = 1 with
a) Λ = 0.1; b) Λ = 1 and c) Λ = 10. Results from the analytic expression (4.7), shown as lines, are compared with isolated point
calculations using the numerical collocation method (denoted by symbols) described in Section 5.2 with N1 = N2 = 32. Entirely
stable response is indicated by squares with the flow composition parameter δ set to 40(· · ·), 10(−−) and 2(·− ·). Circles identify
response curves showing the small wavenumber instability with δ set to 1(·− ·), 0.2(−−) and 0.05(· · ·). The marginally stable
response is plotted with asterisk symbols and a full line (—–) where δc =

√
λ =
√

2.
At the stability margin (λ = 2 and δ =

√
2 with Mg = 100, ∆χ = 1 and Λ = 2), panel d) shows a corresponding comparison of

concentration perturbation profiles across the slab where results from (4.3) are plotted as lines and collocation calculations are
denoted by symbols with wavenumbers k set to 0.1(◦), 2(5), 5(4), 10(2) and 20(3).
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FIG. 4. Stability diagram for Case I
(
Cr→ ∞ and 0 < Λ < ∞

)
. Typical marginal stability boundaries

(
ℑ(ω) = 0

)
projected

into the plane of viscosity ratio λ0 and Gibbs elasticity Mg0 appear as a rectangular hyperbola (—–). With varying excitation
wavenumber k, the asymptotes (·− ·) move about the plane but the centre C

(±)
k,α is confined to the unbounded rectangular region

indicated (−−). Provided λ0 < λc = δ 2, a domain of stability (shaded area) can be identified where all linear perturbations decay
in time.
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For arbitrary wavenumber, marginal stability relations
(
ℑ(ω) = 0

)
are obtained directly from (4.7),

and solving for the interfacial elasticity parameter yields

Mg0 =
g1+αDg1−α λ0 +g1−αDg1+α

Mk,α(Λ)
(
g1+α δ 2 λ0−g1−α

) =
g1+αDg1−α +g1−αDg1+α λ

−1
0

Mk,α(Λ)
(
g1+α δ 2−g1−α λ

−1
0

) , (6.2)

where Mg0 and λ0 are marginal values of the corresponding control parameters. This is a special case
of the result first obtained by Smith (1966) (see the appendix, Section 9.4) for the analogous thermocap-
illary situation, but where a neutral stability criterion was imposed before solving the eigenvalue prob-
lem. Equations (6.2) describe rectangular hyperbolae, centred on a point denoted C

(+)
k,α in the

(
λ0, Mg0

)
plane, or centred on C

(−)
k,α in the

(
λ
−1
0 , Mg0

)
plane with coordinates

C
(+)
k,α =

(
1

δ 2

(
g1−α

g1+α

)
,

Dg1−α

δ 2Mk,α(Λ)

)
and C

(−)
k,α =

(
δ

2
(

g1+α

g1−α

)
, − Dg1+α

Mk,α(Λ)

)
. (6.3)

Since g is both positive and strictly increasing (see definitions (4.6)), it is easy to verify

0 < δ < 1 ⇒ 0 < α < 1 ⇒ δ
4 <

g1−α

g1+α

< 1 ,

1 < δ < ∞ ⇒ −1 < α < 0 ⇒ 1
δ 4 <

g1+α

g1−α

< 1

and lim
k→∞

Dg1±α

Mk,α(Λ)
exp
(
−2k±

)
= 0 ,

(6.4)

so that the positions C
(±)
k,α are restricted as shown in Figure 4. It follows that global temporal stabil-

ity is confined to the λ0 axis (where Mg0 = 0) and either the region
(
λ0, Mg0

)
∈
(
0, δ 2

)
× (0, ∞) for

0 < δ 6 1, or the region
(
λ
−1
0 , Mg0

)
∈
(
0, δ 2

)
× (−∞, 0) for 1 6 δ . This is consistent with the small

wavenumber analysis and confirms the critical viscosity ratio λc = δ 2. With a more conventional insol-
uble surfactant ansatz, the same result has been established in the small-k analysis of Frenkel & Halpern
(2002) and the lubrication-flow model of Blyth & Pozrikidis (2004a). A similar asymptotic analysis
reported by Merkt et al. (2005) has also obtained stability diagrams (their Figure 4) consistent with
Figure 4.

A mechanical interpretation of this small wavenumber instability is illustrated in Figure 5. Merkt
et al. (2005) have also discussed a similar mechanism in the context of competition between capil-
lary action and the Rayleigh-Taylor instability for systems with mass density stratification. Large scale
disturbances are suppressed by a destructive normal fluid velocity component with a π phase shift (Fig-
ure 5a and 5b), while changes in γ remain in-phase with the interface profile. At the margin of stability
(Figure 5c and 5d) v(1)(y) swaps, on passing through the interface, from constructive in-phase to destruc-
tive out-of-phase interference with the disturbance wave. An unstable response is characterised by an
in-phase normal velocity component that amplifies the interfacial disturbance (Figure 5e and 5f). In
steady Stokes flow, the vorticity

ϖϖϖ j = ∇×u j =

(
∂v j

∂x
−

∂u j

∂y

)
k =−∇

2
ψ j k , (6.5)
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FIG. 5. Flow fields calculated by the collocation method
(
N1 = N2 = 32

)
are shown for Case I with Cr→ ∞. Throughout, the

control parameter values Mg = 5, Eu = 0, λ = 2, Λ = 1, ∆χ = 1 are set.
Panels (a), (c) and (e): direction fields associated with the fluid velocity u(x, y) = u(x, y)i+ v(x, y)j are plotted. The superim-
posed lines indicate the quiescent interface position (−−) and a harmonic disturbance (—–) of arbitrary amplitude (ε = 0.1).
Panels (b), (d) and (f): show the corresponding principal arguments of the perturbed velocities and vorticity field
Θ ∈

{
u(1)(y), v(1)(y), ϖ (1)(y)

}
. The tangential u(1) and normal v(1) velocity components are denoted by (B) and (M), respec-

tively, and the phase of the vorticity ϖ (1) is indicated by◦. Again, the quiescent interface position is shown by (−−).
Each pair of panels indicates a stable situation (δ = 5, a and b); a marginal situation (δ =

√
2, c and d) and an unstable situation

(δ = 0.5, e and f).
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is harmonic ∇2ϖϖϖ j = 0 (cf. (2.4)) and closely related to the pressure so that λ j
(
∂ϖϖϖ j/∂x

)
=
(
∂ p j/∂y

)
k

and λ j
(
∂ϖϖϖ j/∂y

)
=
(
∂ p j/∂x

)
k. Consequently, the vorticity is discontinuous at the interface and the

phase of the perturbation Arg
(
ϖ (1)

)
changes abruptly at y = α from a π/2 lag in the more viscous

film to a π/2 lead in the less viscous layer (Figure 5b, d and f). It appears the pressure is always
destructively out of phase with the interface deformation over the whole fluid slab (data not shown).
Although four convection cells are evident in the marginal state (Figure 5c and 5d), only two cells
develop for states lying deep in either the stable (e.g., Figure 5a and 5b) or unstable (data not shown)
regimes. This contrasts with several studies of the analogous thermocapillary problem (Andereck et al.,
1998) that focussed on different flow patterns, but where four cells are always generated by imposing a
rigid undeformable interface.

In this special Case I, only a single response mode is excited that always remains completely decou-
pled from the base state flow: the growth rate ℑ(ω) given by (4.7) is independent of Eu. For a quiescent
base state flow the disturbance is, of course, stationary in space

(
ℜ(ω) = 0

)
, but if a pressure gradi-

ent exists (Eu > 0) it can be deduced from (4.9) that ℜ(ω)> 0 (see the appendix Section 9.5) and a
propagating wave develops on the interface that travels downstream with the speed

ℜ(ω)

k
= u(0)α +

κ
(0)
u Ju

kκ
(0)
η

=
Eu

κ
(0)
η (1+δ )(δ +λ )

((
k2
+Dg1−α + k2

−Dg1+α

k++ k−

)(
λ −δ

2)(λ −1)+2κ
(0)
η δ

)
.

(6.6)

Further, by setting Eu = 1
2 (1+δ )(δ +λ )/δ , or equivalently demanding the horizontal fluid velocity

component satisfy u(0)α = 1, and also choosing δ = 1 before finally considering the limit k→ ∞, we
recover the dispersionless result

ℜ(ω)

k
= 1+

2(1−λ )2

λ 2 +14λ +1
, (6.7)

obtained by Yih (1967) for the plane Poiseuille flow in a finite channel of two superposed fluids with
equal depth and density, but different viscosities.

6.2 Comparable diffusion rates of matter and momentum 0 < Cr < ∞ (Case II)

At finite crispation numbers (Case II and III), the response behaviour is qualitatively very different (see
Figure 6 for example) from Case I (Section 6.1). Analysis of the k = 0 situation (see the appendix Sec-
tion 9.6) shows that the temporal frequency has zero real part

(
ℜ(ω) = 0

)
and non-positive imaginary

part
(
ℑ(ω)6 0

)
. Indeed, the dispersion relation (5.18) reduces to

√
Λ sin

(
h+

√
−ℑ(ω)

Cr

)
cos

(
h−

√
−ℑ(ω)

Cr

)
+ cos

(
h+

√
−ℑ(ω)

Cr

)
sin

(
h−

√
−ℑ(ω)

Cr

)
= 0 .

(6.8)
Formally, this defines the nodes of a wave with two harmonic components differing in both frequency
and amplitude described by(√

Λ +1
)

sin

(
2

1+δ

(
1+

δ√
Λ

)√
−ℑ(ω)

Cr

)
+
(√

Λ −1
)

sin

(
2

1+δ

(
1− δ√

Λ

)√
−ℑ(ω)

Cr

)
= 0 .

(6.9)
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A general closed form solution of (6.9) is intractable. If Λ = 1, however, the second term vanishes in
(6.9) and a simple expression, independent of δ , is obtained for the growth rate spectrum√

−ℑ(ω)

Cr
= m

π

2
, (m = 0, 1, 2, . . .) . (6.10)

Similarly, if Λ = δ 2, then

1
1+δ

√
−ℑ(ω)

Cr
= m

π

4
, (m = 0, 1, 2, . . .) . (6.11)

In both these special situations, the mode spacing is proportional to (2m+1)Cr. More generally, expan-
sion of (6.9) to order Cr−3/2 demonstrates that the first harmonic (m = 1) is always shifted from the
fundamental (m = 0) by an amount proportional to Cr. This is consistent with the finding from Case I
(Cr→ ∞) where only the single m = 0 response remains and all other modes have retreated to infinity.

Figure 6a compares Case II growth rate dispersion curves at control parameter values corresponding
to a stable Case I response: λ = 2 and δ =

√
40 >

√
λ with Mg = 100, Λ = 1 and ∆χ = 1 (Figure 3b).

For Cr > 1 the dominant mode is stable and qualitatively similar to the Case I situation. The most
obvious departure from Case I is the appearance of multiple lower lying modes whose character and
interactions sensitively depend on control parameters other than viscosity ratio λ and geometry δ . In
particular, at Cr = 1 an avoided crossing is evident between the fundamental and the first harmonic, but
for larger crispation number the two highest stationary modes pass through an exceptional point where
a pair of spatially propagating waves are excited that travel in opposite directions with phase veloci-
ties of equal magnitude. There is also evidence in Figure 6a of a second exceptional point at higher
wavenumber (k ≈ 4) where the superposed response splits back to two standing wave modes with dis-
tinct temporal decay rates. Moreover, at Cr = 50 (see inset of Figure 6a) the combined oscillatory
mode exhibits an instability of Type I in the classification Cross and coworkers (Cross & Hohenberg,
1993; Cross & Greenside, 2009). In contrast with Type-II behaviour, Type-I is characterised by the
onset of instability at a nonzero wavenumber. For standing wave modes, Figure 6a also includes direct
numerical solutions of the dispersion relation (4.13) obtained with the Matlab fsolve routine using
the Levenberg-Marquardt algorithm (Fan, 2003). The excellent agreement serves again to verify both
the analysis and the collocation method implementation. Conversely, at parameter values correspond-
ing to an unstable response in Case I, (λ = 2, δ = 1/

√
10, Mg = 20, Λ = 1, ∆χ = 1) increasing the

interfacial tension has a stabilising effect and reduces the maximum temporal growth rate as shown in
Figure 6b. The diversity of response behaviour is also apparent here with multiple splittings between
states having either monotone or oscillatory time dependence in the decay rate. Excitation of spatially
propagating waves is confirmed in Figure 6c where nonzero ℜ(ω) appears and coincides with the linear
superposition of two modes to form a stationary solution in space that oscillates in time. At very high
surface tension (Cr = 0.0002), an unstable oscillatory response can be observed as shown in Figure 6d.
An example of mode exchange is also apparent (k ≈ 3) where a single stationary mode emerges to
dominate a standing wave pair without passing through an exceptional point.

The previously noted (Figure 6a) avoided-crossing or level-repulsion phenomenon (Lax, 2007) is
linked with the likelihood that a given operator has eigenvalues with nontrivial algebraic multiplicity
(Betcke & Trefethen, 2004). Figure 7a examines the effect more closely where, at fixed interfacial
tension Cr = 0.1, growth rate dispersion curves are plotted for 5 6 Mg 6 100 with Eu = 0, δ = λ = 2,
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FIG. 6. Temporal frequency dispersion curves ω = ω(k) are shown for a fluid slab of uniform mass diffusivity (Λ = 1) and unit
concentration difference on the bounding walls

(
∆χ = 1

)
.

Panel a): at Mg = 100, the growth rate ℑ(ω) is compared between Case I (Cr→ ∞)(◦) and Case II (Eu = 0) with finite Cr
set to 1(2), 1.5(3) and 50(?), all obtained by the collocation method (Section 5.2). Other control parameters are λ = 2 and
δ =
√

40 >
√

λ corresponding to a stable response in Case I. Solid lines correspond to evaluation of the explicit result (4.7) in
Case I, and to numerical solutions of the dispersion relation (4.13) in Case II.
Panel b): at Mg = 20, the growth rate ℑ(ω) is compared between Case I (Cr→ ∞)(◦) and Case II (Eu = 0) with finite Cr
set to 0.1(2) and 0.01(3), all obtained by the collocation method (Section 5.2). Other control parameters are λ = 2 and
δ = 1/

√
10 <

√
λ corresponding to an unstable response in Case I. Modes are identified by number and oscillatory responses

are indicated by linear superposition of stationary states between a pair of exceptional points.
Panel c): the spatially propagating wave frequencies ℜ(ω) are shown, corresponding to the data of panel b) for Cr = 0.01. Modes
are identified as follows: 1 and 2 (−−); 3 and 4 (·− ·); and 5 (—–).
Panel d): shows the growth rate ℑ(ω) dispersion curves, obtained by the collocation method (Section 5.2), in a situation where
mass diffusion is extremely slow Cr = 0.0002. Other control parameters are set as in panel b). Modes are identified by number.
An unstable oscillatory state is observed (k < 1) as well as a dominant mode exchange crossing at k ≈ 3.
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FIG. 7. Collapse of avoided crossing between stationary modes to form oscillatory mode with increasing interfacial elasticity is
illustrated. Growth rate dispersion curves ℑ

(
ω(k)

)
are plotted in panel a) for Mg set to 5(+), 7(2), and in panel b) for Mg set to

7.35(?), 10(×) and 100(3). Other control parameters are Ca = 0.1, Eu = 0, δ = λ = 2, Λ = 1 and ∆χ = 1.

Λ = 1 and ∆χ = 1. As the interfacial elasticity increases, two distinct avoiding modes approach more
and more closely at k ≈ 2, then merge at a single point near Mg = 7.35 that subsequently decomposes
into a pair of exceptional points at higher Mg.

Seyranian et al. (2005) have reported a theory of strong coupling between eigenvalues of a complex
valued matrix with respect to the smooth variation of parameters upon which the coefficients depend.
In a finite-dimensional vector space, an exceptional point (Kato, 1980) arises where two eigenvalues
coalesce to give an algebraic multiplicity of 2, but a smaller geometric multiplicity of 1. Thus, the
corresponding eigenvectors also merge, becoming linearly dependent and forming a nontrivial Jordan
block that renders the underlying matrix defective (not diagonalizable over C). In the situation where
only a single parameter is varied (the wavenumber k for example), the two eigenvalues collide with infi-
nite “speed” (the derivative with respect to the parameter is unbounded) and subsequently diverge in the
perpendicular direction with a complete loss of information on the relationship before and after strong
coupling (Seyranian et al., 2005). This phenomenon is entirely consistent with the observed behaviour
(Figure 6a with Cr = 1.5, for instance) of mode coupling between independent stationary and combined
oscillatory states. Furthermore, the theory of Seyranian et al. (2005) explains characteristic properties
of singularities in the surfaces representing complex resonance energy eigenvalues of quantum systems
(Hernández et al., 2003) that are manifest as level repulsion in the real and imaginary parts. It remains
unclear how the details of this analysis relate to avoided crossings and mode exchanges of ℑ(ω)(k) in
stationary states where ℜ(ω) = 0.

In the absence of a bulk buoyancy mechanism, and allowing for distortion of the interface, counter-
rotating fluid cells are consistently observed in the stationary states (see Figure 5, for example) but the
oscillatory standing wave state periodically changes the sense of rotation. The temporal evolution of
this pattern is illustrated in Figure 8 by snapshots of the fluid velocity direction field over one cycle.
The corresponding interfacial disturbance is also indicated and shows that the flow reversal is associated
with instants where the interface adopts its unperturbed flat profile. Note that, for clarity here, the
exponential decay of the disturbance in this stable response has been artificially suppressed where the
spatial amplitude would otherwise be damped out within a fraction of one temporal cycle.
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6.3 Effect of base state flow Eu > 0 (Case III)

Figure 9a demonstrates the effect of a base state flow in a relatively simple situation with no mode
interaction (cf. Figure 6b). The growth rates of instabilities are enhanced with increasing Eu, while
a stable response is further suppressed. For the particular parameter set corresponding to Figure 6b,
which is unstable in Case I, with Cr = 0.1 it appears that the marginal stability boundary is not sensi-
tive to changes in base state flow. At the interface, a spatially propagating wave is excited that always
moves faster than the fluid ℜ(ω)/k > u(0)α . Interestingly, we note that the second stable mode travels
almost entirely without dispersion, at least over the wavenumber range 0 < k < 5. For a more compli-
cated situation involving mode interactions, Figure 9b shows that the symmetry-breaking base state flow
destroys the standing wave of the oscillatory state. The excited propagating waves are dispersive, and
the dominant mode response is always more slowly moving than the base state flow at the interface.

7. Conclusions and Further Work

To investigate necessary conditions for the onset of turbulent mixing in a two-layer fluid system, the
present work considers the influence of a scalar concentration field on the linear stability of a fluid
interface subject to small deformations under the regime of Stokes flow. The bulk concentration field is
convected by the fluid flow and acts to nonuniformly alter the interfacial tension that, in turn, induces
flow by the solutal Marangoni mechanism. This treatment of the solutal Marangoni effect is formally
analogous to the thermocapillary effect, which arises when an interface is exposed to a spatially-varying
temperature field. In both scenarios, Marangoni tractions develop because of the local interfacial tension
dependency on the strength of the ambient scalar field through a suitable constitutive relation. Zeren
& Reynolds (1972) presented a linear stability analysis for the analogous thermocapillary problem,
which also included the effect of buoyancy, but which assumed that the deformation of the interface
was negligible. Interfacial deformation has been accounted for in more recent work by Tavener & Cliffe
(2002) using a finite-element method. In the present work, three distinct cases were studied, and we
summarise these below.

In Case I, the solute diffusion is supposed to be instantaneous (crispation number Cr→ ∞), but a
finite Gibbs elasticity (0 < Mg < ∞) permits interfacial displacements to generate a solutal Marangoni
effect. Perturbations of the velocity and concentration fields are decoupled in this limit, so that the
dispersion relation ω = ω(k) between temporal response frequency ω and spatial excitation frequency
k is obtained analytically. Furthermore, the stability behaviour is not sensitive to the mass diffusivity
ratio Λ , effectively reducing the number of control parameters so that a complete stability diagram can
be established. Only a single response mode is allowed where the interface is always stable to large k
perturbations, but a region of unstable solutions exists at small wavenumber under certain conditions:
that is a Type II instability in the classification of Cross & Hohenberg (1993). The extent of these
regions is found to be independent of the base-state flow field. For Mg > 0, the interface is Type II
unstable when the viscosity ratio λ exceeds δ 2, where δ is the fluid film thickness ratio. Conversely,
for Mg > 0, unstable response is possible when λ < δ 2. By determining the marginal stability bounds
analytically, it is found that regions of global stability exist when Mg = 0; or when Mg > 0 and λ < δ 2;
or when Mg < 0 and 1/λ < 1/δ 2.

Case II permits comparable diffusion rates of matter and momentum but insists on zero Euler number
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FIG. 8. Temporal evolution of flow pattern in the oscillatory state (identified in Figure 7 at parameter values, Cr = 0.1, Mg = 10,
Eu = 0, δ = 2, λ = 2, Λ = 1 and ∆χ = 1, at the excitation wavenumber k = 2. The direction field associated with the fluid velocity
u(x, y) = u(x, y)i+ v(x, y)j is plotted at time instants t expressed as fractions of the period T = 2π/|ℜ(ω)|. The superimposed
lines indicate the quiescent interface position (−−) and the corresponding harmonic disturbance (—–) of arbitrary amplitude
(ε = 0.1). For illustrative purposes, the exponential temporal decay of the disturbance has been suppressed, so that ℑ(ω) is
artificially set to zero. Axis labels have been discarded for clarity, though the abscissa ranges over 0 6 kx/π 6 2 and the ordinate
ranges over −1 6 y 6 1 throughout (cf. Figure 5).
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FIG. 9. Temporal frequency dispersion curves ω = ω(k) are shown for a fluid slab of uniform mass diffusivity (Λ = 1) and unit
concentration difference on the bounding walls

(
∆χ = 1

)
at crispation number Cr = 0.1.

Panel a): the growth rate ℑ(ω) is compared between Case II (Eu = 0)(+) and Case III with nonzero Eu set to 3(◦), 10(2)
and 30(3), all obtained by the collocation method (Section 5.2). The dominant mode (m = 1) is indicated by symbols alone,
while the secondary mode (m = 2) is denoted by symbols with solid lines. The inset shows the corresponding effective velocity
crel/k = ℜ(ω)− ku(0)α of the spatially propagating wave relative to the base state fluid speed on the interface. Other control
parameters are λ = 2 and δ = 1/

√
10 <

√
λ corresponding to an unstable response in Case I with Mg = 20 (cf. Figure 6b).

Panel b): a similar growth rate comparison between Case II (Eu = 0) (no symbols) and Case III (Eu = 50)(◦) is shown. The
dominant mode (m = 1) is indicated by solid lines (—–), while the dotted line (· · ·) refers to the secondary mode (m = 2). Other
control parameters are λ = δ = 2 (corresponding to a stable response in Case I) with Mg = 100 (cf. Figure 7).
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(Eu = 0), thereby removing the external pressure gradient and imposing a quiescent base state. Again,
the dispersion relation is obtained, but the expression appears too cumbersome for analytic presentation
of the stability diagram. In this case, our treatment is formally analogous to the classical linear stability
analysis of the Rayleigh–Bérnard–Marangoni problem, but considers a realistic deformable interface
leading to more complicated boundary conditions. As with the thermocapillary problem, an extremely
rich discrete spectrum of modes is obtained, and several types of mode interaction are found. In par-
ticular, exceptional points exist between stationary and oscillatory standing wave solutions, but without
the additional coupling between concentration and bulk mass density (that is, the solutal equivalent of
the thermal buoyancy mechanism) there is no distinction between co-rotating and counter-rotating flow
cells. Rather, the oscillatory state cycles between a counter-rotating pattern of four convection cells
and a two-cell pattern. Furthermore, the merging of stationary states and their collapse into an avoided
crossing of modes is seen as a function of control parameters, as well as evidence of resonant energy
transfer and mode switching interactions between stationary and oscillatory states. Instabilities of both
Type II and Type I in the Cross & Hohenberg (1993) classification are observed.

Case III is most general in that both Cr and Eu are unrestricted. A Chebyshev collocation method is
implemented to solve the transport equations obeyed by the concentration perturbations. The presence
of a background flow is potentially interesting because its impact on the overall system stability is not
generally obvious. A surfactant induced instability such as that found in the work of Frenkel & Halpern
(2002), for instance, requires a base state shear component in order for unstable solutions to develop. In
our analysis, a base-state flow was neither required for unstable solutions to exist nor were the regions
of instability found to be extinguished by it. The evidence suggests that an external pressure gradient
driving a base state flow generally exaggerates the response: by increasing the base flow speed, unstable
growth rates are enhanced, and stable decay is suppressed. By breaking the isotropic symmetry of a
quiescent base state, however, standing wave solutions are no longer possible for Eu > 0.

At zero wavenumber, the general problem also yields to exact analysis where an infinite discrete
spectrum of purely imaginary eigenvalues is determined and the response is proven to be always stable
in this limit. Consequently, Type-III instabilities (Cross & Hohenberg, 1993) are precluded in this
model. Furthermore, the mode spacing increases with crispation number so that only the single trivial
zero frequency mode survives in the limit Cr→ ∞, consistent with the Case I analysis.

Areas remaining open for further investigation include the following:

• the case of negligibly weak mass diffusion in both films where solute transport is entirely by fluid
convection (Cr→ 0, 0 < Λ < ∞) (intuition and evidence (e.g. Figure 6b) suggests that instabili-
ties are suppressed by boundary layers developing close to the interface – a matched asymptotic
analysis is required to handle the change in order of the advection-diffusion equation in a non-
regular limit);

• for the analogous Rayleigh–Bénard–Marangoni thermocapillary problem, the occurrence of Hopf
bifurcations has been documented (Colinet & Legros, 1994) where time-dependent convection
appears in a narrow transition region between stationary states. Can corresponding marginally
stable bifurcation points be found in the present problem?

• in a departure from the thermocapillary analogue, the solutal Marangoni problem can consider
the coupling of many scalar concentration fields, each with a distinct mass diffusivity in the bulk
phases and a different contribution to the dilatational elasticity of the interface – can stability be
modulated by tuning the adsorption of each solute type?
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• what could be learned from an energy budget analysis to elucidate details of the instability mech-
anism (Boomkamp & Miesen, 1996; Albert & Charru, 2000; Yecko, 2008; Peng & Zhu, 2010)?

• what is the nature of the mechanism controlling the apparent transition between the appearance of
two convection cells and four (see Figure 5), and how does this phenomenon relate to interfacial
stability? We speculate that the interface deformation and the proximity of bounding walls are
involved as recently suggested by Pozrikidis & Hill (2011).

On-going research is applying this work to exploit the capability of the Dynamic Gastric Model as
a physiologically relevant screening tool for evaluating novel and existing foodstuffs, diets and pharma-
ceutical preparations (Rickett, 2013). This will also inform the development of more realistic prototype
machines.
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9. Appendix

9.1 General dispersion relation

In the result (3.17) the coefficients are given by

κu = κ
(0)
u + k2

+

((
αs1s1−α − k−sα

)
ΩA2(1)−

(
αc1s1−α − k−cα

)
ΩB2(1)

−
(
s1s1−α − k−sα

)
ΩC2(1)+

(
c1s1−α − k−cα

)
ΩD2(1)

)
Λ

− k2
−

((
αs1s1+α − k+sα

)
ΩA1(−1)+

(
αc1s1+α + k+cα

)
ΩB1(−1)

−
(
s1s1+α + k+sα

)
ΩC1(−1)−

(
c1s1+α − k+cα

)
ΩD1(−1)

)
λ ,

κ⊥σσσ = κ
(0)
⊥σσσ

+
(
s2

1+α − k2
+

)((
αs1s1−α − k−sα

)
ΩA2(1)−

(
αc1s1−α − k−cα

)
ΩB2(1)

−
(
s1s1−α − k−sα

)
ΩC2(1)+

(
c1s1−α − k−cα

)
ΩD2(1)

)
Λ

−
(
s2

1−α − k2
−
)((

αs1s1+α − k+sα

)
ΩA1(−1)+

(
αc1s1+α + k+cα

)
ΩB1(−1)

−
(
s1s1+α + k+sα

)
ΩC1(−1)−

(
c1s1+α − k+cα

)
ΩD1(−1)

)
,

κ‖σσσ = k2
−
(
s2

1+α − k2
+

)
λ − k2

+

(
s2

1−α − k2
−
)

,

κη = κ
(0)
η +2

(
c1s1− k

)((
αs1s1−α + k−sα

)
ΩA1(−1)−

(
c1s1−α + k−cα

)
ΩD1(−1)

−
(
αs1s1+α + k+sα

)
ΛΩA2(1)−

(
c1s1+α + k+cα

)
ΛΩD2(1)

)
+2
(
c1s1 + k

)((
αc1s1−α + k−cα

)
ΩB1(−1)−

(
s1s1−α + k−sα

)
ΩC1(−1)
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+
(
αc1s1+α − k+cα

)
ΛΩB2(1)+

(
s1s1+α − k+sα

)
ΛΩC2(1)

)
+(λ −1)

[
2
(
c1s1− k

)((
αs1s1−α + k−sα

)
ΩA1(−1)−

(
c1s1−α + k−cα

)
ΩD1(−1)

)
+2
(
c1s1 + k

)((
αc1s1−α + k−cα

)
ΩB1(−1)−

(
s1s1−α + k−sα

)
ΩC1(−1)

)
−
(
s2

1+α − k2
+

)((
αs1c1−α + k−cα

)
ΩA2(1)−

(
αc1c1−α + k−sα

)
ΩB2(1)

−
(
s1c1−α + k−cα

)
ΩC2(1)+

(
c1c1−α + k−sα

)
ΩD2(1)

)
Λ

−
(
s2

1−α − k2
−
)((

αs1c1+α − k+cα

)
ΩA1(−1)−

(
αc1c1+α + k+sα

)
ΩB1(−1)

−
(
s1c1+α + k+cα

)
ΩC1(−1)−

(
c1c1+α − k+sα

)
ΩD1(−1)

)]
, (9.1)

where the contributions independent of the chemical fields are:

κ
(0)
u =−

(
k2
+

(
c1−α s1−α − k−

)
+ k2
−
(
c1+α s1+α − k+

))
λ ,

κ
(0)
⊥σσσ

=−
((

s2
1+α − k2

+

)(
c1−α s1−α − k−

)
λ +

(
s2

1−α − k2
−
)(

c1+α s1+α − k+
))

,

κ
(0)
η = Ak,α(λ −1)2 +2Bk,α(λ −1)+Ck ,

Ak,α =
(
s2

1+α − k2
+

)(
c2

1−α + k2
−
)
,

Bk,α = Ak,α +
(
k+k−

)2
+

1
4

(
s2(1+α)s2(1−α)−

(
2k+
)(

2k−
))

,

Ck = s2
2− (2k)2 .

(9.2)

Coupling terms between the flow and the chemical field involve the determinant-like functions

Lk,α(Λ) = det


det

(
Ψ1(−1) Ψ1(α)

Φ1(−1) Φ1(α)

)
det

(
Ψ2(1) Ψ2(α)

Φ2(1) Φ2(α)

)

W
(
Ψ1(−1), Φ1(α)

)
Λ W

(
Ψ2(1), Φ2(α)

)
 , (9.3)

with W defined by (3.14) and

ΩX j(y) =
k

Ψj(y)Lk,α(Λ)
det

(
Ψ3− j(−y) Ψ3− j(α)

Φ3− j(−y) Φ3− j(α)

)

×det


det

(
Ψj(y) Ψj(α)

IX j(y) IX j(α)

)
det

(
Ψj(y) Ψj(α)

Φ j(y) Φ j(α)

)

W
(
Ψj(y), IX j(α)

)
W
(
Ψj(y), Φ j(α)

)
 . (9.4)
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9.2 Case II dispersion relation

In the result (4.13) the coefficients are given by:

κ
(1)
⊥σσσ

= κ
(0)
⊥σσσ
−Mg Cr

(1+δ )Λ

2(δ +Λ)

1

L
(1)

k,α (Λ)

(
k
ω

)2

×

×

(
S1,1+α

(
s2

1+α − k2
+

)(
K2k−

(
C2,1−α − c1−α

)
+
(

kS2,1−α s1−α −K2
(
C2,1−α c1−α −1

))
s1−α

)
Λ

−S2,1−α

(
s2

1−α − k2
−
)(

K1k+
(
C1,1+α − c1+α

)
+
(

kS1,1+α s1+α −K1
(
C1,1+α c1+α −1

))
s1+α

))
,

κ
(1)
η = κ

(0)
η −Mg

(1+δ )Λ

4(δ +Λ)

1

L
(1)

k,α (Λ)

(
1
ω

)
×

×

((
K1C1,1+α S2,1−α +K2C2,1−α S1,1+α

)(
k2
+s2

1−α − k2
−s2

1+α

)
i

+(λ −1)
(

2kS1,1+α S2,1−α

(
k2
+

(
c1−α s1−α + k−

)
+ k2
−
(
c1+α s1+α + k+

))
−
(
K1C1,1+α S2,1−α +K2C2,1−α S1,1+α

)
k2
−
(
s2

1+α − k2
+

))
i

)

−Mg Cr
(1+δ )Λ

2(δ +Λ)

1

L
(1)

k,α (Λ)

(
k

ω2

)
×

×

(
2K2S1,1+α

((
k
(
C2,1−α cα − c1

)
+K2S2,1−α sα

)(
c1s1+α + k+cα

)(
c1s1− k

)
−
(

k
(
C2,1−α sα − s1

)
+K2S2,1−α cα

)(
s1s1+α − k+sα

)(
c1s1 + k

))
Λ

−2K1S2,1−α

((
k
(
C1,1+α cα − c1

)
−K1S1,1+α sα

)(
c1s1−α + k−cα

)(
c1s1− k

)
+
(

k
(
C1,1+α sα + s1

)
−K1S1,1+α cα

)(
s1s1−α + k−sα

)(
c1s1 + k

))

+(λ −1)
(

K2S1,1+α

(
s2

1+α − k2
+

)
×

×
((

kC2,1−α c1−α −K2S2,1−α s1−α − k
)
c1−α + k−

(
ks1−α −K2S2,1−α

))
Λ

+K1S2,1−α

(
s2

1−α − k2
−
)
×
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×
((

kC1,1+α c1+α −K1S1,1+α s1+α − k
)
c1+α + k+

(
ks1+α −K1S1,1+α

))
+K1S2,1−α×

×
(

2k2k−
(
C1,1+α − c1+α

)
k+s1−α +

(
kC1,1+α c1−α +K1S1,1+α s1−α − kc2

)
k+s1−α

−
(
kC1,1+α c1+α −K1S1,1+α s1+α − k

)(
s2s1−α + k−s1+α

))))
. (9.5)

9.3 Proof κ
(0)
η > 0

First note the obvious fact, if a, b, c > 0 then aλ 2 +2bλ + c > 0 for all λ > 0. It follows that, if
b > a > 0 and a−2b+ c > 0 then

aλ
2 +2(b−a)λ +a−2b+ c = a(λ −1)2 +2b(λ −1)+ c > 0 for all λ > 0 . (9.6)

For the “jump” term Jη , the coefficient κ
(0)
η is a quadratic function of (λ −1) thus

κ
(0)
η = Ak,α(λ −1)2 +2Bk,α(λ −1)+Ck , (9.7)

where
Ak,α =

(
s2

1+α − k2
+

)(
c2

1−α + k2
−
)
,

Bk,α = Ak,α +
(
k+k−

)2
+

1
4

(
s2(1+α)s2(1−α)−

(
2k+
)(

2k−
))

,

Ck = s2
2− (2k)2 .

(9.8)

By virtue of the fact that ξ > 0 implies sinh(ξ )> ξ , we immediately observe

Bk,α > Ak,α > 0 , Ck > 0 , (9.9)

for all physically relevant parameter values. Furthermore we find

Ak,α −2Bk,α +Ck =
(
c2

1+α + k2
+

)(
s2

1−α − k2
−
)
> 0 . (9.10)

So (9.7) satisfies the conditions for inequality (9.6). Hence, κ
(0)
η > 0 for all λ > 0 as claimed.

9.4 Equivalence of (6.2) with (23) of Smith (1966)

Re-casting Smith’s result (equation (23) of Smith (1966), see also equation (40) of Merkt et al. (2005)
and equation (2.37) of Nepomnyashchy et al. (2006)) in our notation obtains

−Mg0
Cr
×

4Gχ,1

(1+δ )2∆χ

[
1− 1

Λ

(
g1+α s1+α

(
k3
−c1−α − s3

1−α

)
g1−α s1−α

(
k3
+c1+α − s3

1+α

))
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− Cr(1+δ )3(
Bo+ k2

) ( k3
+c1+α s2

1+α

k3
+c1+α − s3

1+α

)(
1+

c1−α s1+α

c1+α s1−α

)(
1−λ0

g1+α s2
1−α

g1−α s2
1+α

−
(
1−λ0

)g1+α

s2
1+α

)]

=−4

(
k2
+c1+αDg1+α

k3
+c1+α − s3

1+α

)(
1+Λ

c1−α s1+α

c1+α s1−α

)(
1+λ0

g1+αDg1−α

g1−αDg1+α

)
, (9.11)

where Bo =
(
ρ̃1− ρ̃2

)
g̃h̃2/γ̃0 is the Bond number that measures the relative importance of capillary

and gravitational forces (with acceleration g̃). By ignoring mass density stratification to set Bo = 0 and
taking the limit Cr→ ∞ in accord with our Case I, then (9.11) becomes

Mg0×
4Gχ,1k+s2

(1+δ )∆χ

[
s2

1+α −g1+α +λ0g1+α

(
1−

s2
1−α

g1−α

)]
= Mg0×

2Λk+s2

(δ +Λ)

(
k2
+−λ0k2

−
g1+α

g1−α

)
=−k2

+Dg1+α

(
c1+α s1−α +Λc1−α s1+α

)(
1+λ0

g1+αDg1−α

g1−αDg1+α

)
, (9.12)

or

Mg0 =
(δ +Λ)

(
c1+α s1−α +Λc1−α s1+α

)
2Λk+s2

(
g1+αDg1−α λ0 +g1−αDg1+α

g1+α δ 2λ0−g1−α

)
, (9.13)

and using (4.8) recovers (6.2) as required.

9.5 Proof in Case I ℜ(ω)> 0

The argument follows the same structure as Section 9.3. Recall, in case Cr→ ∞, the real part of the
temporal frequency may be written proportional to a quadratic function in (λ −1) thus

ℜ(ω) =
Eu

κ
(0)
η (1+δ )(δ +λ )

(
A ′

k,α(λ −1)2 +2B′k,α(λ −1)+C ′k

)
, (9.14)

where

A ′
k,α = Uk,α +2kδAk,α , B′k,α = 1

2

(
1−δ

2)Uk,α +2kδBk,α , C ′k = 2kδCk ,

with Uk,α = k2
+

(
c1−α s1−α − k−

)
+ k2
−
(
c1+α s1+α − k+

)
. (9.15)

Evidently, Uk,α > 0 and we find

k2
+

(
B′k,α −A ′

k,α
)
= k+k−

(
Uk,α +

(
k++ k−

)((
k+k−

)2
+
(
c1−α s1−α − k−

)(
c1+α s1+α − k+

)))
+
(
k+k−

)2(k++ k−
)(

k+− k−
)2

∞

∑
n=0

22n+1

(2n+1)!

2n

∑
m=0

k2n−m
+ km

−

> 0 , (9.16)

whence
B′k,α > A ′

k,α > 0 . (9.17)

Furthermore,
A ′

k,α −2B′k,α +C ′k = δ
2Uk,α +2kδ

(
Ak,α −2Bk,α +Ck

)
> 0 , (9.18)

where the result of Section 9.3 has been used. Hence, as claimed Eu > 0 implies ℜ(ω)> 0 for all
λ > 0, while ℜ(ω) = 0 if Eu = 0.
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9.6 Proof k = 0 implies ℜ(ω) = 0 and ℑ(ω)6 0

From the dispersion relation (5.18), we will deduce restrictions on the temporal frequency ω in the
situation of vanishing wavenumber (k = 0). First recall the definitions (5.19):

h− =
2δ

(1+δ )
√

Λ
=

1−α√
Λ

> 0 ; h+ =
2

1+δ
= 1+α > 0

and K0 =
√
−iω/Cr = ℜ

(
K0
)
+ i ℑ

(
K0
)
∈ C

(9.19)

In particular,

ℜ
(
K0
)
=

√
|ω|+ℑ(ω)

2 Cr
, (9.20)

so that

ℜ
(
K0
)
= 0 ⇒ |ω|+ℑ(ω) = 0

⇒ ℑ(ω)6 0 and
(
ℑ(ω)

)2
=
(
ℜ(ω)

)2
+
(
ℑ(ω)

)2 ⇒ ℜ(ω) = 0 ,
(9.21)

since |ω|> 0. Thus, it suffices to show that the dispersion relation (5.18) implies ℜ
(
K0
)
= 0.

For the sake of contradiction, suppose that ℜ
(
K0
)
6= 0 while (5.18) holds. Now define

L̂
(1)

0,α =
L

(1)
0,α

K0 cosh
(
ℜ(K0)h−

)
cosh

(
ℜ(K0)h+

) , (9.22)

so that
ℜ
(
L̂

(1)
0,α

)
= T−

(
c−c+− s−s+

√
Λ
)
+T+

(
c−c+

√
Λ − s−s+

)
,

ℑ
(
L̂

(1)
0,α

)
= T−T+

(
c+s−

√
Λ + c−s+

)
+
(
c−s+

√
Λ + c+s−

)
,

(9.23)

where
T± = tanh

(
ℜ(K0)h±

)
, c± = cos

(
ℑ(K0)h±

)
, s± = sin

(
ℑ(K0)h±

)
. (9.24)

Since ℜ(K0) 6= 0 implies T−T+ > 0, then L̂
(1)

0,α = 0 demands the bracketed factors in (9.23) either both
vanish or are non-zero with opposite sign, so that

ℜ
(
L̂

(1)
0,α

)
= 0 ⇒

(
c−c+− s−s+

√
Λ
)(

c−c+
√

Λ − s−s+
)
6 0 ,

⇒ 0 6

√
Λ

1+Λ

((
c−c+

)2
+
(
s−s+

)2
)
6 c−s−c+s+ , (9.25)

ℑ
(
L̂

(1)
0,α

)
= 0 ⇒

(
c+s−

√
Λ + c−s+

)(
c−s+

√
Λ + c+s−

)
6 0 ,

⇒ c−s−c+s+ 6−
√

Λ

1+Λ

((
c−s+

)2
+
(
c+s−

)2
)
6 0 . (9.26)

Together, the conditions (9.25) and (9.26) require

c−s−c+s+ = 0 . (9.27)
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Now consider the magnitude∣∣L̂ (1)
0,α

∣∣2 = (c−c+
)2(T−+T+

√
Λ
)2

+
(
c−s+

)2(T−T++
√

Λ
)2

+
(
c+s−

)2(T−T+
√

Λ +1
)2

+
(
s−s+

)2(T−√Λ +T+
)2

,
(9.28)

where (9.27) has been used, and observe that
∣∣L̂ (1)

0,α

∣∣= 0 requires

c−c+ = c−s+ = c+s− = s−s+ = 0 , (9.29)

again because T−T+ > 0. Finally, define

∆ = ℑ
(
K0
) (

h+−h−
)
∈ R , (9.30)

and deduce that
c−c+ = s−s+ = 0 ⇒ cos∆ = 0 ,

c−s+ = c+s− = 0 ⇒ sin∆ = 0 .
(9.31)

But there is no real number ∆ simultaneously satisfying both conditions (9.31). Hence, by contradiction,
we conclude ℜ

(
K0
)
= 0 as required.
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