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Abstract 
 
Winter annual Arabidopsis thaliana plants require a prolonged period of cold, known as 

vernalization, to ensure prompt floral transition occurs in spring. This thesis addresses the 

question of whether partial saturation of cold requirements might delay flowering under future 

climate scenarios. Laboratory experiments set up to parameterize a predictive model 

revealed a surprising optimal vernalizing temperature for the Swedish accession Lov-1. Field 

experiments in Northern Sweden support the theory that this optimum likely reflects 

adaptation to autumn, rather than winter temperatures.  

 

A chilling unit model incorporating empirically derived parameters forecast an overall increase 

in effective vernalizing days for A. thaliana in northern Sweden. This increase is the result of 

an overall reduction in sub-zero temperatures that are predicted for northerly latitudes by the 

end of the century. Reductions in the number of effective vernalizing days were predicted for 

England and Spain, however these are unlikely to counteract the forcing effects of increased 

spring temperatures at these locations.  

 

This thesis also presents a novel method that enables single RNA molecules to be visualized 

for the first time in plants. This method was used to determine cell-to-cell variation and sub-

cellular distribution of key vernalization gene transcripts before, during and after cold 

exposure. These results provide a unique insight into how plants perceive and integrate long-

term temperature cues at the cellular level. 

 

In summary, this thesis predicts the potential impact of climate change on A. thaliana 

vernalization across its species’ range. It also dissects transcriptional mechanisms that 

underlie long-term temperature integration. Modulation of these mechanisms is likely to be 

key for survival of some wild species and for maximizing crop yields under future climate 

scenarios. 
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Chapter 1 – Introduction 
 
 
 

1.1 Biogeography of Arabidopsis thaliana  

Arabidopsis thaliana (L.) Heyhn is a spring ephemeral weed commonly known as 

mouse ear cress or thale cress. The Arabidopsis genus belongs to the Brassicaceae 

family and comprises of nine species and eight sub-species (Al-Shehbaz and 

O’Kane 2002). Of all these species A. thaliana has the widest observed geographical 

distribution. It can be found growing in a variety of disturbed habitats and at a wide 

range of altitudes (Al-Shehbaz and O’Kane 2002).  

 

A. thaliana is thought to have originated from Central Asia and survived the last ice 

age by retreating to two refugia at the southern limit of its range. Following de-

glaciation it rapidly re-populated varied climatic regions across the Northern 

Hemisphere from near the equator to the Arctic Circle (see Figure 1.1) (Sharbel et 

al., 2000; Hoffmann 2002; Schmid et al., 2006; Nordborg et al., 2005; Françoiset al., 

2008). This rapid re-colonization, combined with the diverse range of niches now 

inhabited by this species demonstrates its ability to adapt to a variety of different 

biotic and abiotic conditions (Shindo et al., 2007).  

 

Although there is evidence of local adaptation to climate across A. thaliana genome 

(Hancock et al., 2011) the ease with which animals or humans can transport seeds 

make it unlikely that all catalogued lines have persisted long enough at a single 

location for local adaptation to have occurred. For this reason natural lines of A. 

thaliana are now referred to by the neutral word ‘accession’ rather than ‘ecotype’ as 

this removes the automatic implication of adaptation to conditions at the native 

collection site (Weigel, 2012). 
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Figure 1.1- Area of geographic distribution of Arabidopsis thaliana. (Adapted 
from Weigel and Mott 2009) 

 

1.2 Life history strategies in A. thaliana.  

Selective pressures created by unstable environmental conditions promote a range 

of traits that include high fecundity, small body size and short generation time 

(Promislow and Harvey, 1990). The monocarpic life history observed for natural A. 

thaliana populations suggests that this strategy maximizes fitness in areas 

characterized by harsh winters and/or dry summers.  

 

A. thaliana accessions can be classified as being either winter or summer annuals. 

Winter annual accessions germinate during wet conditions in autumn, persist through 

the winter in a vegetative state and then enter a final reproductive phase in spring. 

This strategy minimizes nutrient competition between seedlings and maximizes 

chances of reproductive success by aligning plant senescence, silique desiccation 

and seed maturation with warm, dry conditions (Boss et al., 2004; Henderson and 

Dean 2004). Many natural accessions of A. thaliana adapted to temperate climates 

have a summer annual/rapid-cycling habit (Nordborg et al., 2005; Shindo et al., 

2005). Without the need to over-winter, rapid-cycling accessions can often achieve 

multiple generations per year compared to winter annuals and this provides them 

with a significant fitness advantage in some locations. 
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Figure 1.2 – A simplified diagram showing how FLC regulation contributes to 
pathways controlling flowering time. 
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1.3 Multiple Pathways Control Flowering Time 

Flowering time studies in A. thaliana date back over seventy years (Laibach 1943, 

1951) and experiments over the intervening years have revealed more than 100 

genes to be involved in the control of this key developmental transition (Skikanth and 

Schmid 2011). These results have shown that environmental and endogenous cues 

are continually integrated within Arabidopsis plants via the pathways outlined in 

Figure 1.2 to control the timing of flowering. The essence of this network is that 

multiple input pathways converge on a common set of target genes (floral pathway 

integrator genes) that are quantitatively activated and switch the meristem to a floral 

fate once a threshold level has been reached. The gibberellin, light quality, 

photoperiod (involving CONSTANS (CO) and the circadian clock) and ambient 

temperature pathways activate expression of floral pathway integrators under long-

day photoperiod conditions. This activation is antagonized by a number of floral 

repressors including FLOWERING LOCUS C (FLC) (shown in purple in Figure 1.2). 

Many repressors have been found to act via an upregulation of FLC whilst many 

floral activators mediate a reduction of FLC (red and green in Figure 1.2, 

respectively). Several floral repressors also work independently of FLC to repress 

expression of floral pathway integrators. Examples not shown in Figure 1.2 include, 

TERMINAL FLOWER1 (TFL1), SHORT VEGETATIVE PHASE (SVP), TARGET OF 

EAT1, TARGET OF EAT2 (TOE1/2), EMBRYONIC FLOWER 1 (EMF1), 

SCHNARCHZAPFEN (SNZ) and SCHLAFMUTZE (SMZ) (Bradley et al., 1997; 

Hartmann et al., 2000; Aukerman and Sakai 2003; Yoshida et al 2001; Bradley et al. 

2007). 

 

Downstream of the floral pathway integrator genes SOC1, FT and LFY (LEAFY) are 

the floral meristem identity and homeotic genes APETALA1/2/3 (AP1/2/3), 

FRUITFUL (FUL), CAULIFLOWER (CAL), PISTILLATA (PI) and AGAMOUS (AG) 

that commit the shoot apical meristem progenitor cells to switch from a vegetative to 

a floral fate. Together this complex gene network ensures that plants switch to a 

reproductive phase of development when conditions are permissive for flower 

production and seed set (Boss et al., 2004, Henderson and Dean, 2004).  

 

My work has focused on the regulation of the major floral repressor gene FLC. This 

encodes a MADS box transcription factor that effectively prevents floral transition 
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through direct transcriptional repression of floral pathway integrator genes in 

response to prolonged cold (Deng et al., 2011). This response differs from cold 

acclimation where a short cold exposure (days rather than weeks), results in 

transcriptional changes that enable plants to survive freezing conditions (reviewed by 

Thomashow 1999).    

1.4 Activators of FLC Expression  

Extensive studies in yeast and mammals have revealed transcription elongation to 

be a complex process where many aspects of the chromatin environment determine 

whether an RNA polymerase binding event results in mRNA production. Many 

homologous genes involved in chromatin-modifying activities have been found to 

promote FLC expression, and thus delay floral transition (Crevillen and Dean 2011). 

These activating protein complexes are described below.  

1.4.1 PAF1 Complex 
The highly conserved RNA polymerase associated factor 1 complex (PAF1C) 

contributes to multiple aspects of RNA polymerase II (PolII) transcriptional regulation. 

The role of this complex remains unclear, but it is required for effective elongation, 

various histone modifications, chromatin remodeling and for recruiting 3’ end mRNA 

processing factors (Selth et al., 2010).  

 

High levels of tri-methylation (me3) of histone 3 lysine 4 residues (H3K4me3) across 

a gene are associated with transcriptional activity in eukaryotes (Schneider et al., 

2004). In Arabidopsis paf1c mutants displayed decreased H3K4me3 across FLC, 

lower levels of transcription and an early flowering phenotype. Consistent with 

diverse regulatory roles identified for PAF1C in other systems, many of these 

mutants also exhibited a range of other developmental defects in plants. (Zhang et 

al., 2002; Oh et al., 2004; Zhang et al., 2003; He et al., 2004; Yu and Michaels 2010; 

Park et al., 2010; Oh et al., 2008).  

1.4.2 RAD-BRE1  
Studies in yeast have shown that the RAD-BRE1 complex mono-ubiquitinates 

histone 2B (H2B). The PAF1 complex is required for this ubiquitination and this 

modification is required for H3K4me3 deposition (Wozniak and Strahl 2014). 

Arabidopsis has two genes homologous to the E3 ubiquitin ligase BRE1 (HUB1 and 

HUB2) and three homologues of the E2 carrier protein RAD (UBC1, UBC2 and 
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UBC3). Lesions in either HUB1 or HUB2 result in loss of H2B ubiquitination and 

reduced H3K4me3 in addition to reduced levels of another active chromatin mark 

H3K36me3. These chromatin changes have been associated with reduced FLC 

transcription and early flowering in addition to a range of other developmental 

defects. Similar phenotypes were also been reported for ubc1ubc2 double mutants 

(Cao et al., 2008; Xu et al., 2009; Gu et al., 2009; Lolas et al., 2010). The sensitivity 

of FLC expression to the ubiquitination status of H2B was further highlighted by the 

FLC misregulation and early flowering phenotype of ubp26 mutants that are unable 

to catalyze the H2Bub1 deubiquitination reaction (Schmitz et al., 2009).  

1.4.3 FACT Complex 
Mono-ubiquitination of H2B by the RAD-BRE1 complex is required for activating the 

removal of H2A/H2B dimers by the FAcilitates Chromatin Transcription (FACT) 

complex and is thought to enhance PolII transit through nucleosomes. Inhibited PolII 

transcription is considered the likely cause of FLC misregulation and the late 

flowering phenotype reported for FACT subunit mutants ssrp1 and spt16. 

Furthermore, the range of severe developmental phenotypes observed is indicative 

of global transcriptional disruption in these mutants (Lolas et al., 2010).   

1.4.4 COMPASS-LIKE Complex  
Histone methylation reactions are typically catalyzed by proteins that contain 

conserved SET domains originally identified in Drosophila: Su(var)3-9, ‘Enhancer of 

zeste’ and Trithorax proteins. The A. thaliana genome contains at least 29 genes that 

contain SET domains. In yeast SET1 is part of the multi-protein complex COMPASS 

(Complex proteins associated with SET) that physically associates with PAF1C to 

catalyse the methylation of H3K4 residues (Betz et al., 2002; Krogan et al., 2003). 

Consistent with this role, the late flowering Arabidopsis mutant of a homologous 

SET1 protein atxr7/sdg25 showed decreased H3K4me3 across FLC and associated 

up-regulated levels of expression. Similarly, late flowering was also observed in 

addition to reduced levels of H3K4me3 and H3K4me2 for atx1 and atx2 mutants 

respectively (Pien et al., 2008; Saleh et al., 2008; Tamada et al., 2009; Berr et al., 

2011). Further COMPASS-LIKE components identified in Arabidopsis include the 

methyltransferase AtWDR5a that is also required for H3K4me3 deposition at FLC 

and the SET2 homologue EFS/SDG8 that catalyzes H3K36me3 reactions that are 

also associated with active transcription (Zhao et al., 2005; Jiang et al., 2009). 



 
 

 19 

1.4.5 SWR1 Complex  
The SWR1 chromatin-modelling complex incorporates the histone variant H2AZ into 

nucleosomes. This affects chromatin stability and alters the ability of PolII to transit 

through associated nucleosomes. Mutations of genes within the SWR1 complex 

(ARP6, PIE1, ESD1/SEF/AtSW6C) result in the loss of H2AZ occupancy, reduced 

levels of FLC transcription and a late flowering phenotype. (Noh and Amasino 2003; 

Deal et al., 2005; Choi et al., 2005; Choi et al., 2007; Martin-Trillo et al., 2006; 

March-Diaz et al., 2007; Lazaro et al., 2008; Deal et al., 2007) 

1.4.6 FRIGIDA Complex 
Components of the FRIGIDA complex (FRIC) have been shown to mediate FLC 

transcriptional activation (Choi et al., 2011). These include FRIGIDA (FRI), FRIGIDA 

ESSENTIAL 1 (FES1), FRI-LIKE 1 (FRL1), FRI-LIKE 2 (FRL2), SUPPRESSOR OF 

FRIGIDA 4 (SUF4), FLC EXPRESSOR (FLX), FLOWERING LOCUS C 

EXPRESSOR-LIKE 4 (FLL4) (Schmitz et al., 2009; Michaels et al., 2004; Kim et al., 

2006; Andersson et al., 2008; Ding et al., 2013; Lee and Amasino 2013).  The 

mechanism by which FRI exerts its effects is unclear, but biochemical assays 

suggest it is a scaffolding protein that facilitates close association of FRIC 

components with the chromatin remodeling complex SWR1 (Choi et al., 2011). There 

is also evidence of FRI promoting the accumulation of FLC mRNA by interacting with 

nuclear cap-binding complexes (Geraldo et al., 2009).  

 

FRI is the most ecologically significant activator of FLC (Johansen et al., 2000), since 

a combination of dominant FLC and FRI alleles confers a requirement for 

vernalization, necessitating the plants to over-winter before flowering. Prior to cold 

exposure, high FLC levels prevent the floral transition in the presence of other 

reproductive cues (Michaels and Amasino 1999; Sheldon et al., 1999). During 

vernalization levels of FLC are quantitatively reduced in response to prolonged 

exposure to cold. Once FLC levels are low enough to no longer pose a barrier to the 

expression of downstream floral integrators, increased daylength and temperature 

can rapidly activate reproductive growth.  

 

Many rapid-cycling accessions of Arabidopsis carry FRI alleles with loss-of-function 

mutations (Johanson et al 2000; Shindo et al., 2005). These FRI null plants have 

evolved as the result of at least 20 independent mutational events from winter annual 
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ancestors that had a vernalization requirement (Shindo et al., 2005; Johanson et al., 

2000). This implies strong selection for loss of FRI function in some environmental 

contexts. Although FRI has been found to play a predominant role in determining the 

winter annual phenotype, other loci have also been shown to contribute to natural 

variation in flowering time (Salome et al., 2011, Srikanth and Schmid, 2011). These 

are discussed in more detail later in this chapter. 

1.5 Autonomous Repression of FLC 

The autonomous pathway functions to antagonize FLC expression (see Figure 1.2) 

and involves the following genes: LUMINIDEPENDENS (LD), FCA, FPA, FY, 

FLOWERING LOCUS D (FLD), FVE, FLOWERING LOCUS K (FLK), RELATIVE OF 

EARLY FLOWERING 6 (REF6), CstF77, CstF64, DICER-LIKE 4 (DCL4), CDKC2 

and PRP8 (Koornneef et al., 1991; Macknight et al., 1997; Schomburg et al., 2001; 

Lim et al., 2004; Noh et al., 2004; Simpson et al., 2003; Jiang et al., 2007, Wang et 

al., 2014; Liu et al., 2010; Marquardt et al., 2014; Liu et al., 2012) Together these 

components promote flowering via FLC down-regulation through a mechanism that 

links 3’ mRNA processing to chromatin modifications where a specific FLC antisense 

mRNA isoform represses H3K4me3 deposition across the gene and effectively 

dampens FLC transcriptional activity (Hornyik et al., 2010; Liu et al., 2007; Liu et al., 

2010).  

 

Functioning in parallel to the autonomous pathway is vernalization, the cold-induced 

repression of FLC. Key genes involved in this process include the cold inducible 

VERNALIZATION INSENSTIVE 3 (VIN3) in addition to VERNALIZATION 5 (VRN5), 

VERNALIZATION 1 (VRN1), LIKE-HETEROCHROMATIN PROTEIN 1 (LHP1) and 

VERNALIZATION 2 (VRN2). The distinctive roles these genes play in the cold 

induced reduction of FLC transcription are described in more detail below.  

1.6 Three stages of vernalization provide a memory of cold 

Vernalization is a classic epigenetic process that provides the plant with a molecular 

memory of cold through a cell-autonomous mechanism involving stable 

transcriptional silencing of FLC (Angel et al., 2011). Epigenetic regulation often 

involves heritable chromatin modifications that bring about a change in gene 

expression not determined by the underlying gene sequence. Winter annual 
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Arabidopsis plants are fully vernalized after experiencing a saturating period of cold 

exposure, during which FLC chromatin switches from an epigenetically active to an 

epigenetically silent state in the majority of cells of the plant (see Figure 1.3). 

Chromatin marks associated with the epigenetically silent state are propagated to 

daughter cells through cell division ensuring FLC silencing is mitotically stable.  

 

Exposure to low temperatures induces a quantitative reduction of FLC mRNA levels 

and this reduction has been shown to correlate with flowering time (Michaels and 

Amasino, 1999, Sheldon et al., 1999). However vernalization can still accelerate 

flowering in FLC null plants, so despite this gene playing a major role in permitting 

floral transition, FLC cannot be the only downstream target of vernalization (Michaels 

and Amasino 2001; Moon et al., 2005).  

 

In addition to activating FLC, many of the activating protein complexes described 

previously also activate expression of five FLC related MADS-Box proteins named 

MAF1 to 5 that share 53-87% identity (de Bodt et al., 2003; Ratcliffe et al., 2003). It 

has also been shown that the cold induced protein VIN3 is required to silence these 

FLC-like genes and ensure maximum acceleration of the flowering response (Kim 

and Sung 2013; Scortecci et al., 2003; Michaels and Amasino, 2001). There is also 

evidence to suggest that FLC-mediated floral repression requires direct interaction of 

these clade members (Gu et al., 2013).  

 

An additional role has been identified for MAF1 (also known as FLOWERING 

LOCUS M) in controlling flowering under ambient temperature growth conditions. 

Two isoforms FLMβ and FLMδ compete to bind SVP. In cool temperatures an 

increase in FLMβ production results in increased levels of FLMβ-SVP complex that 

actively repress flowering, whereas at higher temperatures FLMδ-SVP complexes 

predominate and activate a flowering response  (Pose et al., 2014; Lee et al., 2013)  

 

Two further genes, AGAMOUS-LIKE 24 (AGL24) and AGAMOUS-LIKE 19 (AGL19), 

have also been found to contribute toward the acceleration of flowering in an FLC 

independent manner following exposure to prolonged cold. VIN3 is required for the 

induction of these transcription factors that promote expression of floral identity 

genes (Schonrock et al 2006; Yu et al., 2002; Michaels et al., 2003; Alexandre and 

Hennig 2008). 
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Vernalization can be viewed as occurring in three steps. These are described below. 

1.6.1 Cold-induced transcriptional repression of FLC.  
FLC transcription decreases rapidly upon exposure to cold (Helliwell et al., 2015) and 

this decrease is associated with a significant increase in FLC anti-sense transcription 

(Swiezewski et al., 2007). Loss of this antisense transcription results in a slower 

decrease in FLC transcription during cold exposure (Csorba et al., 2014). The 

antisense transcription generates long non-coding transcripts, known as COOLAIR, 

which undergo alternative splicing and polyadenylation events to create two major 

sets of splice variants that have each been linked to altered chromatin states at FLC 

(Csorba et al., 2014, Ietswaart et al., 2012, Marquardt et al., 2014). When plants are 

growing in warm conditions COOLAIR transcription is inhibited by an R-loop located 

at the 3’ region of FLC in the COOLAIR promoter region. The R-loop is stabilized by 

a single stranded DNA binding protein AtNDX (Sun et al., 2013). How COOLAIR 

transcription/transcripts cause FLC transcriptional repression is unclear at present, 

but they stay associated with FLC chromatin (Csorba et al., 2014) and emerging 

evidence from RNA SHAPE (Selective 2’-hydroxyl acylation analyzed by primer 

extension) analysis suggests that COOLAIR secondary structure is an important 

aspect of this regulation (Sanbonmatsu, Hawkins et al., in prep). 

 

Induction of another non-coding FLC transcript called COLDAIR has also been 

reported that originates from within intron 1 of the sense sequence of FLC. COLDAIR 

expression peaks after 3 weeks of cold and transcripts have been reported to recruit 

the repressive PHD-PRC2 to the locus (Heo and Sung 2010). Analysis in 

Arabidopsis alpina (a cold requiring A. thaliana perennial relative) confirmed 

conservation of COOLAIR, but not COLDAIR induction during cold (Castaings et al., 

2014).  

 

The cold-induced reduction in FLC transcription and increase of COOLAIR 

transcription coincides with altered higher order chromatin structure at FLC. 

Chromosome Conformation Capture (3C) experiments showed the existence of a 5’ 

to 3’ loop at FLC when the gene is expressed (Crevillen et al., 2013). A recent study 

has also shown that BAF60 (a component of the SWI/SNF chromatin-modifying 

complex) is required for maintenance of this loop in the warm (Jegu et al., 2014). The 
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loss of this loop is not dependent on factors known to regulate FLC transcription in 

the warm. In addition, recovery of FLC expression levels observed when vin3 

mutants are returned to warm conditions was not associated with loop reformation 

(Crevillen et al., 2013).  

 

1.6.2 Nucleation of PHD-PRC2 at an intragenic site within FLC  
The second step of vernalization involves formation and nucleation of a modified 

Polycomb complex. This modified Polycomb complex is composed of the well-

conserved PRC2 with two homologous PHD domain-containing proteins, VRN5 (also 

known as VIL1 in the literature – Sung & Amasino 2006) and VIN3 (Greb et al., 2007, 

De Lucia et al., 2008). VIN3 expression is cold-dependent with maximal levels found 

after 40 days of cold. VIN3 heterodimerises with the constitutively expressed VRN5 

and these associate with the Polycomb Repressor Complex 2 (PRC2) complex 

already positioned across the FLC locus (De Lucia et al., 2008, Kim et al., 2010). 

The PHD proteins somehow ‘superactivate’ PRC2 activity and homologous 

complexes have been described in Drosophila (Nekrasov et al., 2007) and humans 

(Sarma et al., 2008). 

 

Polycomb-group proteins were first shown to play an important role in maintaining 

the repressed state of homeotic (Hox) genes in Drosophila melanogaster and they 

have since been implicated in imprinting, stell cell specification, cancer initiation and 

inactivation of X chromosomes in a range of organisms (Schuettengruber et al., 

2007; Schwartz and Pirrotta, 2008). In plants, a core conserved PRC2 consisting of 

VRN2 (a Su(z)12 homologue), SWINGER (an E(Z) histone methyl transferase 

homologue, FIE (an ESC homologue) and MSI1 (a p55 homologue) associates 

across the FLC locus in ambient temperatures. Exposure to cold allows the PHD 

proteins VIN3 and VRN5 to associate with PRC2 at a specific region in the first intron 

of FLC termed the nucleation region (De Lucia et al., 2008).  This PHD-PRC2 

generates a peak of tri-methylated lysine 27 residues on histone 3 (H3K27me3) in 

this localized region, concomitant with reduction in the antagonizing activating 

histone mark H3K36me3 (Angel et al., 2010; Yang et al., 2014). 

 

The nucleation event at FLC is correlated with a change in nuclear reorganization of 

the FLC locus. Cold exposure quantitatively increases the frequency of physical 
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clustering of FLC alleles and is maintained once plants are returned to warm 

conditions. This clustering response was shown to be dependent on the presence of 

Polycomb proteins (Rosa et al., 2013). 

1.6.3 Spreading of PHD-PRC2 across the whole FLC locus  
The last step in vernalization occurs when plants are returned to warm temperatures. 

The PHD-PRC2 complex spreads along the length of FLC resulting in high levels of 

H3K27me3 across the whole gene body (Angel et al., 2011; Yang et al 2014). The 

maintenance of this epigenetic mark requires the stabilizing activity of LHP1 (Mylne 

et al., 2006, Sung et al., 2006). A H3K27 demethylase ELF6 then resets FLC 

expression during embryogenesis to ensure that the next generation inherits a 

vernalization requirement (Crevillen et al., 2014). 

 

There are two explanations that can equally explain the changes in FLC H3K27me3 

observed during vernalization. The rising peak can either be the result of gradually 

increasing levels of chromatin modifications in every cell, or an increasing proportion 

of cells being flipped from a low to a high H3K27me3 nucleated state. Modelling and 

lab experiments support the second hypothesis and suggest that stochastic digital 

switching provides the plant with a quantitative biological measure of cold exposure 

(Figure 1.3) (Yang et al., 2014; Angel et al., 2010; Satake 2012; Angel et al., 2015). 

1.7 Molecular basis of natural variation in vernalization response 

Consistent with FLC acting as a major floral repressor, several Quantitative Trait Loci 

(QTL) studies have linked FLC and FRI variation to flowering time control (Kover et 

al., 2009, Shindo et al., 2005, Shindo et al., 2006, Strange et al 2011; Li et al., 2014). 

Other genes identified through this type of analysis include FT, FLM, FRI 

homologues FRL1 and FRL2 and FLC homologues FLM/MAF1 and MAF2 (Werner 

et al., 2005; Schlappi et al., 2006; Caciendo et al., 2009; Roslostski et al., 2006; 

Schwartz et al., 2009; Li et al., 2010; Huang et al., 2011; Salome et al., 2011; 

Strange et al., 2011).  
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Figure 1.3 – Vernalization provides a quantitative memory of cold  
Antagonistic chromatin marks either maintain the FLC allele in an active or silenced 
state. An increase in population of cells that have been silenced provides a 
quantitative memory of cold. (Figure adapted from Song et al., 2014) 
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Genome Wide Association (GWA) mapping is a powerful tool that allows single 

nucleotide polymorphisms (SNPs) to be associated with specific phenotypes without 

the need to generate a mapping population (Weigel et al., 2012). Unfortunately, 

population structure can create spurious associations in GWA studies and this can 

hamper identification of true associations when investigating complex adaptive traits 

in A. thaliana. Although statistical methods have been developed to remove false 

positives, these methods can create false negative results by reducing positive 

signals to a level below the significance threshold (Atwell et al., 2010). Despite these 

limitations this approach has associated genetic variation around FLC both with 

variation of flowering time observed under constant temperature treatments (Atwell 

et al., 2010) and semi-natural conditions where CERs were programmed to mimic 

natural temperatures and photoperiods (Li et al. 2010; Li et al., 2014).  

 

Surprisingly, despite partial vernalizing conditions being predicted by a model of A. 

thaliana field development (Wilzcek et al., 2009), genes associated with FLC 

regulation were not associated with variation in flowering time in a study that 

combined QTL with GWA analyses of plants grown under natural field conditions. 

Instead an FT homologue called TWIN SISTER OF FT (TSF) and a number of genes 

important to the regulation of the circadian clock including TOC1 and COL1 were 

identified (Brachi et al., 2010). Considering that laboratory growth conditions are 

significantly warmer and wetter compared to typical natural settings, these and other 

field studies results (e.g. Weinig et al., 2002) have led to some to question of the 

ecological significance of laboratory-derived phenotype data (Hoffman 2002; Weigel 

2012; Shindo et al., 2007).    

1.8 FLC haplotype groups account for the majority of variation in 

vernalization response  

Haplotype group refers to a group of individuals that share a set of single nucleotide 

polymorphisms (SNPs) within a defined chromosomal region. Analysis of SNP data 

across 1307 accessions identified 5 major FLC haplotype groups (Li et al., 2014). 

Strikingly, high quality sequencing of this region revealed no polymorphisms within 

the coding regions of FLC; all SNPs were identified within non-coding sequence. 

Further genetic and transgenic experiments confirmed these haplotypes to be 

functionally distinct with each exhibiting divergent FLC silencing dynamics. Collection 
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sites of four accessions (Ull2-5, Var2-6, Lov-1, Edi-0) that represent four of the 

haplotype groups are shown in Figure 1.4. 

 

Three of the major FLC haplotype groups contain representative accessions from 

Sweden (Li et al., 2014). Var2-6 and Ull2-5 have an obligate requirement for cold 

exposure before the reproductive transition can occur under inductive conditions. 

They originate from areas in the Skåne region in south of Sweden and were taken 

from coastal and field habitats, respectively. Ull2-5 has emerged as a representative 

member of a slow vernalizing FLC haplotype group with many members originating 

from southern Sweden. Fine mapping in F2 lines from a cross between Col-0 and 

Ull2-5 revealed QTL over FLC, FRI and FT (Shindo et al., 2006; Strange et al., 

2011). Despite Var2-6 being another slow vernalizing accession collected in south 

Sweden, sequence analysis indicates that it shares FLC sequence homology with 

many accessions collected from northern Sweden. Recent work has revealed that 

the slow vernalization phenotype of this haplotype is determined by a single intronic 

SNP that alters the splicing pattern of COOLAIR (Li et al., 2015). 

 

The Lov-1 accession originates from the Swedish High Coast, a world heritage site 

that is located around 300Km north of Stockholm. It is reported as one of two 

members of a rare slow vernalizing FLC haplotype group that also have an obligate 

cold requirement (Coustham et al., 2012). The significance of specific regions of FLC 

were tested in the Lov-1 accession through the generation of a set of transgenic lines 

that contained different sections of Lov-1 FLC substituted into the Col genome. 

Analysis of vernalization response in these plants indicate that sequence variation, 

specifically within the nucleation region of FLC, contributes most toward variation in 

the stability of FLC silencing between the two alleles (Coustham et al., 2012).  

 

An accession originating from the Botanical Gardens in Edinburgh called Edi-0 is a 

representative member of the fourth FLC haplotype group. It becomes resistant to 

FLC reactivation after only a short period of cold exposure and is therefore 

considered to be a rapidly responding accession (Li et al., 2014, Shindo et al., 2006, 

Strange et al., 2011). Edi-0 only requires six weeks of cold to fully saturate its 

vernalization requirement; this is in contrast to the relatively cold insensitive 

accessions Var-2-6, Ull-2-5 and Lov-1 that all require around twelve weeks of cold 

treatment to achieve similar acceleration of floral transition.  
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Col-0 is a representative of the fifth major FLC haplotype group. Since this accession 

lacks a functional FRI allele, an introgressed line that contains the FRI allele from the 

Spanish San Feliu 2 (Sf2) accession is commonly used in vernalization studies 

(Michaels and Amasino, 1999). Like Edi-0, this genotype also exhibits a rapidly 

responding phenotype. Extensive knowledge of rapid-cycling Columbia genetics 

allows it to be used effectively as a “control” when comparing the vernalization 

response of accessions that belong to different FLC haplotype groups.  

 

 

 

 
 
 
 
Figure 1.4 – Collection sites of representative accessions of major FLC 
haplotype groups 
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1.9 Vernalization and fitness 

Apart from delaying the flowering response, partial vernalization also impacts crop 

yield and quality (Campoli and von Korff 2014; Ami et al., 2013). This has provided 

an incentive for research to determine minimum, optimum and maximum vernalizing 

temperatures in economically important plant species (Byrne and Bacon 1992). 

Figure 1.5 presents examples of effective vernalizing temperatures where upper and 

lower thresholds have either been estimated from field data or by extrapolation of 

data beyond the temperature range tested. These ranges broadly reflect the 

conclusions of an early review of empirical data suggesting that vernalization 

typically occurs between 0oC and 14oC (Chouard, 1960). However notable 

exceptions exist in the literature such as the optimal response of blackcurrent (Ribes 

nigrum) at -5oC (Jones et al., 2014) and the effective (-3oC, 27oC) range reported for 

winter wheat (Craigon 1995). Reports of ornamental perennials similarly suggest that 

many species vernalize efficiently between Chouard’s general range of between 0oC 

and 14oC (Padhye and Cameron 2009, Padhye and Cameron 2008), although -2.5oC 

was found to activate an optimal response for Veronica spicata ‘Red Fox’ (Fausey 

and Cameron 2007).  

 

1.10 Phenotypic plasticity in a changing climate change  

Phenotypic plasticity can be described as the range of phenotypes a single genotype 

can express as a function of its environment (Nicotra et al., 2010). This phenotypic 

range is important in enabling plants to vary their phenotypes and is fundamental to 

survival under fluctuating environmental conditions. There is evidence that climate 

change has already caused a shift in the flowering time of annual plants (Franks and 

Weis, 2008) through a combination of rapid evolution and phenotypic plasticity 

(Nicotra et al., 2010). There is a general consensus that plasticity will be vital for 

plant populations over the coming century. This could determine whether populations 

persist long enough for rapid evolution to provide the novel genotypes required for 

long-term survival (Nicotra et al., 2010, Visser, 2008). 

 

Climate change has advanced flowering phenology for many plants (Fitter and Fitter, 

2002; Menzel et al., 2006; Willis et al., 2008). But a smaller group of non- responding 

and later flowering species have also been identified where warmer winters have 
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been suggested to be the result of insufficient vernalization (Cook et al., 2012). It has 

been speculated that as temperatures rise over the coming century, there will be an 

increase in both the number of affected species in this group and the extent of the 

phenological delay (Cook et al., 2012). At present these impacts are difficult to 

predict as little is known about either the effective vernalization temperature ranges 

of natural plant species and/or the phenotypic plasticity of this trait.  

 

 

 

Figure 1.5 – Published predictions of effective vernalization temperature for 
crop and ornamental species 
Upper and lower threshold temperatures are indicated by the ends of the blue boxes 
and predicted optimum temperatures are indicated by black bars.  

 

1.11 Thesis outline  

The aim of work presented in this thesis was to gain an insight into how climate 

change might affect vernalization over the coming century. Extensive molecular and 

ecological knowledge, in addition to the wide geographical and vernalization range, 

makes Arabidopsis thaliana an ideal plant in which to address this issue.  
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The majority of published Arabidopsis vernalization research reports response of 

plants that have been exposed to constant 4 or 5oC treatments for varying periods of 

time. This temperature preference dates back to early work published by Prof. Klaus 

Napp-Zinn that showed a late flowering Swedish accession called Stockholm 

vernalized efficiently between 2 and 4oC, but less well at lower temperatures (Napp-

Zinn 1957). So I decided to determine the extent of plasticity in the vernalization 

response in natural Arabidopsis accessions as a starting point to understand how 

this model plant might be affected by climate change. 

 

Chapter 2 reports results of laboratory experiments that were set up to determine 

the effective vernalization temperature range for representative accessions from the 

five major FLC haplotype groups. These revealed a surprising optimal response for 

Lov-1, at a temperature that exceeds the assumed effective vernalizing range for A. 

thaliana (Wilzcek et al., 2009; Chew et al., 2012). In addition the effect of vernalizing 

temperature was found to extend beyond enhanced acceleration of flowering to seed 

yield and dormancy. 

  

The genetic basis and potential adaptive significance of the Lov-1 temperature 

optimum is explored further in Chapter 3 where population life history and climate 

analyses led to a hypothesis that was tested during field experiments in northern 

Sweden.  

 

Vernalization responses activated under constant conditions were then used to 

validate parameter selection for the chilling unit model presented in Chapter 4. 

Predictions of temperature integration were then interrogated for all accessions by 

comparing expected with observed results from field experiments. The vernalization 

model was then used to predict the potential impact of future climate scenarios at 

locations that span the species’ latitudinal range.  

 

Results presented in chapters 2-4 highlighted that complex temperature integration is 

a key aspect of vernalization that is still poorly understood. Determining the 

molecular basis of the integration of long-term temperature trends still presents a 

major challenge. Complex molecular circuitry has evolved to effectively modulate 

FLC transcription rather than protein metabolism to control flowering. This makes 

experimental approaches that determine expression levels invaluable for 
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vernalization research. Reverse transcription quantitative polymerase chain reaction 

(RT-qPCR) is commonly used to achieve this aim, however this method lacks cellular 

resolution and potentially important information about cellular localization of mRNA. 

In Chapter 5 I report results of experiments that validate a novel single molecule 

fluorescent in situ hybridization (smFISH) method that enables mRNA to be 

quantified at the single cell level for the first time in plants.  

 

Results of smFISH experiments are then presented in Chapter 6 that address 

outstanding questions relating to memory of cold during vernalization. These results 

advance our current understanding of cold perception and could help inform future 

modelling efforts aiming to simulate complex temperature integration at the cellular 

level. 

 

In Chapter 7 the findings presented in each chapter are summarised and discussed 

in the context of related research. Finally, areas of development and future work are 

proposed.   
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Chapter 2 - Consequences of varying vernalization 
temperature for flowering time and seed yield 

 

 

Division of work – Kate Dziubinska and Man Yu helped with seed collection, Clare 

Lister and Amy Strange generated the near isogenic lines (John Innes Centre). 

Arthur Korte collected 0oC flowering time data at Gregor Mendel Institute, Vienna. 

 

 

2.1 Introduction 

The climate envelope for the population range of Arabidopsis thaliana is extensive 

(Hoffmann et al., 2002) so it is perhaps unsurprising that variation exists in the length 

of vernalization required by winter annual accessions. Much of the variation in 

flowering time measured after vernalization at ~4oC has been shown to be 

attributable to non-coding polymorphisms within FLC (Coustham et al., 2012; Li et 

al., 2014; Li et al., 2015), but less is known about vernalization at other 

temperatures. In addition to knowledge of temporal requirements for cold, it was 

clear that exploring the effective temperature range would be important for predicting 

future impacts of climate change on the vernalization process.  

 

Standard conditions traditionally used to study the vernalization process in A. 

thaliana date back to work published in 1957 that showed 4oC effectively accelerated 

flowering of a late flowering accession originating from Sweden (Napp-Zinn, 1957).  I 

have continued the analysis of northern A. thaliana accessions and here I report that 

vernalization is effective at temperatures significantly higher than 4oC. I also found 

that the temperature effects extended beyond flowering time to impact fecundity and 

seed germination. This work has been corroborated by studies on A. thaliana 

accessions collected in Spain (Wollenburg and Amasino, 2011). Together these 

findings have implications for modelling the life history impacts of vernalization 

temperature under future climate scenarios. 
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Figure 2.1–Testing the effectiveness of ColFRISf2 vernalization temperatures 

(A) The range of temperatures used to test the vernalization response for ColFRISf2. 
The flowering times observed for these experiments are shown in (B). NV = Non-
vernalized. n=12. Results shown are +SD. Student’s t-test results are reported for 
each treatment compared to NV. ****p≤0.0005, *** ≤ p<0.001, p>0.05 = ns, not 
significant.  
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Figure 2.2 – Determining the relative contributions of FLC, FRI and VIN3 to 
ColFRISf2 vernalization plasticity 
Days to flower recorded after 4 weeks vernalization at  a range of temperatures. 
Results are presented +SD. n=12. 
 

2.2 Temperatures between 0oC and 14oC accelerate ColFRISf2 flowering 

The effective vernalization temperature range was first determined in the reference 

genotype ColFRISf2. A schematic of the experimental approach taken is shown in 

Figure 2.1A. Briefly, plants were pre-grown for one week before being transferred 

into short-day temperatures ranging between 0oC and 20oC. Flowering time was 

scored as the number of days from transfer back to inductive conditions until floral 

buds were first visible. Results from this experiment revealed that ColFRISf2 flowered 

significantly earlier than non-vernalized plants following treatments ranging between 

2oC and 14oC (Figure 2.2B). Furthermore, 12oC was found to be a significantly more 

effective than either 14oC or 16oC (Student’s t-test, p<0.0001).   
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2.3 FLC, FRI and VIN3 synergistically contribute to ColFRISf2 

vernalization plasticity. 

Accelerated flowering following a 14oC treatment was unexpected since in flowering 

research this is generally considered an ambient rather than a chilling temperature. 

This finding prompted further experiments to explore the genetic basis of the 

phenotypic plasticity observed for ColFRISf2. Results from a flowering time 

experiment in a ColFRISf2 line lacking FLC (ColFRISf2 flc-2) showed a similar trend, 

but dampened response across the temperature range. In the absence of FLC, FRI 

delayed flowering times following treatments above 14oC. This was perhaps due to 

FRI mediated up regulation of FLC related MAF genes (Ratcliffe et al., 2003). 

Consistent with this hypothesis, the delay observed for treatments above 14oC was 

abolished in ColFRISf2 genotypes that lacked FRI (Col-0) or both FLC and FRI (Col-0 

flc-2) (Figure 2.2).   

 

The lack of response observed for the ColFRISf2 vin3 genotype confirms that VIN3 is 

a necessary component for vernalization, potentially as an early thermo-sensitive 

step (Figure 2.2). Together these results indicate that FLC, FRI and VIN3 are all 

required for the phenotypic plasticity of flowering time observed for ColFRISf2. 

2.4 VIN3 mediated FLC repression and subsequent FT up-regulation 

accelerates flowering across the effective temperature range 

Despite the confirmation that both FLC and FRI are necessary for the observed 

delay in flowering across the effective temperature range, it was still unclear whether 

the flowering plasticity could be attributed to variation in vernalization efficiency. To 

address this question both FLC and VIN3 expression levels were determined before, 

during and after cold treatments.  

 

These experiments revealed an opposing trend of expression where lower levels of 

FLC were generally associated with both higher VIN3 and subsequent FT levels. 

This relationship was less clear for FT expression after 12 week treatments. 

Although 5 and 8oC treatments resulted in the highest levels of VIN3 induction and 

FLC repression, 8 and 12oC treatments resulted in higher levels of FT expression 
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Figure 2.3 – Opposing trends of VIN3, FT and FLC expression observed for 
ColFRISf2 during and after vernalization 
Quantitative PCR results for FLC (A) and VIN3 (B) before, during and after cold. FT 
expression levels shown in (C) were determined 10 days after transfer to warm 
conditions, when induction of this gene first became apparent (FT expression was 
not detected for the other T0 timepoints shown, data not shown). Error bars = SD. 
NV = Non-vernalized, W = weeks, T10 = 10 days post-cold growth, n=3. 
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Figure 2.4 – FLC expression determined for ColFRISf2 after vernalization 
Quantitative PCR results for FLC expression for (A) 4 week, (B) 8 week and (C) 12 
week vernalization experiments carried out at a range of temperatures. Samples 
were collected at three time points: immediately after vernalization (T0), and 
following 10 days (T10) and 30 days (T30) post-cold growth. W = weeks. n=3. 
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post-cold (Figure 2.3). This may reflect saturation of the ColFRISf2 cold requirement 

with FT levels determined 10 days after 12 week treatments not accurately informing 

the effectiveness of preceding temperature (Figure 2.3C).  

 

In the Swedish accession Lov-1, reactivation of FLC expression occurs following 

exposure to standard vernalizing conditions. This reactivation is associated with 

reduced levels of the silencing chromatin modification H3K27me3 and a late 

flowering phenotype (Coustham et al., 2012). For ColFRISf2 a slight increase in FLC 

expression was observed following growth for four weeks at 14oC, but reactivation 

was not observed following 4, 8 or 12 weeks treatments for any other temperature 

(Figure 2.4). Together these results indicate that all temperatures achieved variable 

levels of stable epigenetic silencing at FLC and this variability mainly determined the 

flowering times observed across the effective temperature range. 

2.5 Natural variation in vernalization thermal sensitivity 

The impact of global temperature rises on plant chilling periods prompted us to 

investigate natural variation of vernalization thermal sensitivity (Cook et al., 2012). 

Although this variation had previously been explored in Spanish accessions 

(Wollenburg and Amasino, 2011) we decided to systematically test this trait in 

representative lines from 5 major FLC haplotype groups (Li et al., 2014) and include 

potentially vulnerable populations from northerly regions (see Chapter 1, Figure 1.4).  

 
Strikingly, all genotypes responded to the same effective temperature range 

identified for ColFRISf2 (2-14oC) with differing levels of plasticity. Both Edi-0 and Ull2-

5 flowered at similar times following treatments between 2-12oC, whereas Lov-1 and 

Var2-6 exhibited much more plasticity across this temperature range (Figure 2.5). 

The enhanced effect identified between 5-8oC for these lines was unexpected given 

that Lov-1 was collected from a location close to the northerly limit of the A. thaliana 

range and Var2-6 shares FLC sequence homology with the majority of northern 

Swedish accessions (Li et al., 2014.) This was surprising given that enhanced effects 

at lower temperatures are generally associated with adaptation to colder climates. 

Results from experiments that explore the ecological significance of enhanced 

effectiveness of higher vernalization temperatures are presented in Chapter 3.  



 
 

 40 

2.6 Vernalization temperatures impact seed yield 

Incomplete vernalization of crops delays the harvest dates and reduces crop yield 

(Rollins et al., 2013, Campoli and von Korff, 2014, Ami 2013), but little is known 

about the impact of vernalization on the fitness of natural plant species. To address 

this question seeds were collected from plants following vernalizing treatments 

between 2oC and 14oC and weighed to explore the potential impact of suboptimal 

vernalization on fitness.  

 

Consistent with agricultural data, vernalization mostly increased seed yield for 

facultative cold-requiring genotypes ColFRISf2 and Edi-0; only 12-week 2oC 

treatments failed to produce higher yield than non-vernalized plants for these 

genotypes (Figure 2.5). Rather than just being advantageous, vernalization is vital for 

the fitness of Var2-6, Ull2-5 and Lov-1 because these accessions do not flower 

without cold exposure. Interestingly, a negative correlation was observed for both 

Var2-6 and Ull2-5 across the temperature range indicating that increasing vernalizing 

temperatures progressively reduce fitness. Furthermore, a predominant impact of 

time, rather than temperature was clear for the fitness of Var2-6. Late flowering (~80 

days) was found to result in stunted inflorescence development, whereas faster 

flowering (~20 days) following 12 weeks vernalization visibly alleviated the dwarf 

phenotype (Figure 2.6). 

 

A striking inverse relationship was revealed between days to flower and seed yield 

for Lov-1 (Figure 2.5). But unlike for Var2-6 and Ull2-5 the small difference observed 

in flowering time between 8oC, and both 2oC and 14oC treatments, consistently 

resulted in significantly less seed production.  
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Figure 2.5 – Flowering time and seed yield recorded following a range of 
vernalization of treatments 
Days to flower are presented ±SD. Seed yield data are presented as box plots where 
green and grey boxes = median to 1st and 3rd quartiles, respectively. Upper and 
lower whiskers represent 1.5* Inter Quartile Range (IQR) or highest / lowest values. 
Blue crosses = outlier values greater than 1.5*IQR. Mann-Whitney U tests were 
carried for Lov-1 to determine the significance of each 8oC treatment. 
  * p≤0.05, ** p≤0.01, *** p ≤ 0.001, **** p ≤ 0.0001.  
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Figure 2.6 – Contribution of vernalization period on Var2-6 inflorescence 
architecture 
Photos were taken after 4 and 12 weeks vernalization at 5oC and 8oC. 

 

2.7 FLC contributes to Lov-1 vernalization temperature sensitivity and 

fecundity. 

Natural variation in vernalization temperature sensitivity was apparent from the 

flowering times observed (Figure 2.5) and Lov-1 was found to display the greatest 

degree of plasticity. In this accession 8oC treatments resulted in faster flowering than 

2oC, 5oC, 12oc and 14oC. Also vernalization at 5oC - 8oC resulted in higher levels of 

seed yield than 2oC, 12oC and 14oC. Four SNPs located within intron 1 were found 

previously to destabilize repression of Lov-1 FLC under standard vernalizing 

conditions (Coustham et al., 2012) so we considered whether these SNPs might also 

contribute to Lov-1 thermal sensitivity. The molecular basis of the observed 

differential flowering response was explored further with near isogenic lines (NILs). 

Replacement of the Lov-1 FLC loci in a ColFRISf2 background allowed genetic 

contributions to be tested (Figure 2.7A). As reported previously (Coustham et al., 

2012), NILs that contain Lov-1 FLC are very late flowering (Figure 2.7B and C), but 

vernalization at 5oC and 8oC revealed that the presence of a second locus on 

chromosome 5 was necessary, in addition to Lov-1 FLC, to recreate an enhanced 

flowering response at  8oC. (Figure 2.7C). 
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Figure 2.7 – FLC plus an additional Lov-1 locus are required for an enhanced 
vernalization response at 8oC  
(A) A genetic map showing two Lov-1 regions in three ColFRISf2 Near Isogenic Lines (NILs). 
One region containing FLC is outlined in green and an additional downstream region that 
contributes to vernalization temperature senstitivity is outlined in red. (B) Photograph showing 
NIL flowering phentypes. (C) Flowering times recorded for parent plants and NILs after 4 
weeks vernalziation at two temperatures. Error bars = SD. NV = Non-vernalized. Genetic 
markers used to generate this map listed in Appendix Table 1.  
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Further experiments were then carried out to determine the impact of constant 

vernalization temperature on seed yield for NIL1Lov-1 and NIL2Lov-1. The results 

obtained after 4 and 8 week treatments indicate a general negative correlation 

between temperature and seed yield. However 12 week treatments resulted in a 

differential effect between 2-14oC (Figure 2.8) that differed from the homogeneous 

response of Col FRI Sf2. This response appeared more similar to the results obtained 

for Lov-1 (Figure 2.5). Despite a smaller impact of temperature on flowering time, 

seed yield data for both NILs after 12 weeks vernalization suggest that the Lov-1 

FLC allele contributes to the levels of seed yield observed for this accession.  

2.8 Determining the impact of vernalization temperature on fecundity 

and dormancy 

The potential impact of vernalization temperature on fitness cannot be inferred from 

total seed yield alone since this measurement represents contributions from both 

seed size and number and overlooks potential impacts on viability. With this in mind, 

variations in seed yield were investigated further in ColFRISf2, Lov-1 and NIL1Lov-1.  

 

One thousand seed weight (i.e. the weight of 1000 seeds) is a seed size 

measurement that is commonly used to compare crop yields e.g. (Belle et al., 2014). 

To dissect whether differences observed in total seed weight for each accession 

were primarily due to differences in seed number or seed size one thousand seeds 

from each treatment group were weighed and these measurements were used to 

calculate approximate seed numbers. This resulted in a trend of seed yield across 

the temperature range that appeared similar to the seed number inferred by this 

calculation for each genotype. These results suggest that vernalization temperature 

has little impact on seed mass and indicates that higher fecundity underlies the 

increased seed yield observed for Lov-1 and NIL1Lov-1 plants vernalized at 8oC 

(Figure 2.9).  
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Figure 2.8 – Flowering time and seed yield recorded for NILs 
Days to flower and seed yield were determined for (A) NIL1Lov-1 and (B) NIL2Lov-1 

plants that had been vernalized at a range of temperatures. Seed yield data are 
presented as box plots where green and grey boxes = median to 1st and 3rd quartiles, 
respectively. Upper and lower whiskers represent 1.5* Inter Quartile Range (IQR) or 
highest / lowest values. Blue crosses = outlier values greater than 1.5*IQR. Mann-
Whitney U tests were carried to determine the significance of each 8oC treatment.  * 
p≤0.05, ** p≤0.01, *** p ≤ 0.001, **** p ≤ 0.0001. Error bars = ± SD. NV = Non-
vernalized.  
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Figure 2.9 – Determining fecundity for vernalized ColFRISf2, NIL1Lov-1 and Lov-1 
plants 
The seeds were collected from plants that had been vernalized for 12 weeks at a 
range of temperatures.  
 

 

Germination was then tested for the Col FRI SF2, Lov-1 and NIL1Lov-1 seeds that were 

collected from plants exposed to a range of vernalizing treatments. Despite a three 

day stratification treatment at 5oC to break dormancy, seeds produced by Col FRI SF2 

and NIL1Lov-1plants vernalized for 4 weeks at 8oC still exhibited an early delay of 

germination, however all seeds from the 4 week temperature treatments germinated 

successfully following exposure to 9 days of inductive conditions (Figure 2.10). All 

seeds from Lov-1 plants vernalized for either 8 or 12 weeks germinated after 9 days, 

regardless of treatment, although a similar early delay was observed for seeds 

originating from plants vernalized for 12 weeks at 8 and 5oC. Surprising results were 

obtained for seeds originating from plants that had been vernalized at higher 

temperatures for 12 weeks. Delayed germination followed by 100% seedling 

emergence was observed for NIL1Lov-1 seeds originating from 12 week 12oC treated 

plants, but 45% of similar Col FRI Sf2 seeds failed to germinate at all. Furthermore, 

less than 75% of Col FRI Sf2 and NIL1Lov-1 seeds also failed to germinate if the mother 

plant had been vernalized for 12 weeks at 14oC (Figure 2.10).  
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Figure 2.10 – Variable germination observed for ColFRISf2 and NIL1Lov-1 seeds 
originating from plants vernalized at a range of temperatures 
The number of weeks vernalization is indicated on each graph. The numbers in the legend 
refer to different temperature treatments (oC). 
 

 

 

2.9 Discussion 

The flowering response observed for all accessions was consistent with an effective 

0oC to 14oC vernalization range reported in an early review that summarized 

empirical data for a range of crops (Chouard, 1960). These findings are also 

consistent with a more recent study that reported effective acceleration of ColFRISf2 

flowering following vernalization at 13oC, but not 16oC. Although the authors 

concluded that 13oC represents the upper vernalization temperature threshold 

(Wollenberg and Amasino 2012), we suggest extending this upper limit to reflect the 

significant acceleration of flowering observed at 14oC (Figure 2.1).  

 

It was surprising to observe effective vernalization at 14oC since this is typically 

assumed to be an ambient, rather than a chilling temperature (Wigge 2013). 

However significant VIN3 induction associated with stable repression of FLC 

transcription and limited FT induction (Figure 2.3) are consistent with the hypothesis 
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that 14oC accelerates flowering via a limited vernalization response. In addition, the 

observation that the flowering time trend observed for ColFRISf2 (Figure 2.1) was 

abolished in lines lacking the key vernalization genes FLC, FRI or VIN3 (Figure 2.2) 

indicates that elevated FLC levels before cold are required for the efficacy of higher 

temperatures to become evident. It is therefore likely that the effectiveness of higher 

vernalization temperatures may have gone unnoticed because ambient temperature 

researchers typically assess effects in genotypes that lack functional FRI alleles. 

Natural variation studies of flowering time that typically include FRI+ and FRI- 

genotypes, have also been carried out under ambient, long day conditions. This mix 

of winter annual and rapid cycling accessions combined with long photoperiod 

conditions effectively masks not only the effectiveness of higher vernalizing 

temperatures, but also its genetic basis. However, consistent with our results, a 

genome-wide association study found SNPs around FLC to be most highly 

associated with flowering time of plants grown at 10oC (Atwell et al., 2010).  

 

Although the effective vernalizing range between 2-14oC identified for ColFRISf2 was 

shared by the other accessions tested, natural variation in temperature sensitivity 

was evident (Figure 2.4). Similar flowering times were recorded following 

vernalization of Edi-0 and Ull2-5 between 2-8oC, but increased plasticity was 

observed for the northern Swedish accession Lov-1 and the representative northern 

FLC haplotype accession Var2-6.  

 

A low optimal temperature response had been anticipated for Lov-1 as it had been 

collected from close to the northerly limit of the species range. But contrary to these 

expectations we found these plants consistently vernalized efficiently at 8oC (Figure 

2.4). Furthermore, an inverse relationship was observed between flowering and seed 

yield. Although it is necessary to exercise caution when inferring ecological 

significance from phenotypic data generated under laboratory conditions (Weigel, 

2012; Hoffman et al., 2002, Brachi et al., 2010, Weinig et al., 2002) this suggests 

fitness benefits are associated with vernalization temperatures that extend beyond 

the timing of floral initiation (Figure 2.4).  

 

In accordance with findings in crop species (Rollins et al., 2013, Campoli and von 

Korff, 2014), our seed yield data indicates that vernalization generally increases yield 

for cold requiring accessions. In general, a negative correlation was observed 
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between temperature and yield for treatments between 5oC and 14oC. Inconsistent 

results for yield observed after 2oC treatments may be the result of a positive 

vernalization effect being counteracted by a progressively negative impact on 

biomass accumulation during cold exposure. 

 

In addition to enabling an assessment of the impact of temperature on seed yield, 

our experiments allowed us to independently assess the impact of vernalization time 

on this trait. Longer treatments did not appear to significantly increase the seed yield 

of the faster flowering lines ColFRISf2 and Edi-0 (Figure 2.4), however significantly 

higher seed yield was observed after 12 week compared to after 4 week treatments 

for all the later flowering Swedish accessions (Wilcoxon Sum Rank Test: p < 0.005). 

The increase in yield over time was most apparent for Var2-6 and examination of 

inflorescence architecture indicate that this was due to incomplete vernalization 

inhibiting stem development, rather than the result of suboptimal growing conditions 

preventing the plants from achieving their reproductive potential (Figure 2.6).  

 

Variation in climate has contributed to the selection of divergent FLC haplotype 

groups that exhibit variation in temporal requirements for cold (Li et al., 2014). 

Detailed functional analyses have shown that two haplotype groups have 

independently evolved long vernalization requirements via subtle changes in non-

coding FLC sequence (Coustham et al., 2012; Li et al., 2015.) Results in Figure 2.7 

suggest that in addition to eliciting a temporal effect, Lov-1 FLC also contributes to a 

synergistic effect with another Lov-1 locus located downstream on chromosome 5 to 

further delay flowering. The anti-correlation observed between seed yield and 

flowering time for Lov-1 (Figure 2.4) was also evident for two near isogenic FLCLov-1 

lines after 12 week treatments (Figure 2.8) indicating that seed yield can be added to 

the growing list of life history traits affected by genetic variation at FLC (Chiang et al., 

2009). 

 

Recent work in FRI null genotypes has demonstrated that maternal growth 

temperature contributes to variation in seed dormancy (Chen et al., 2014). As in our 

experiment, they found that the preceding temperature exposure of the parent 

affected germination of the offspring, despite seed development and maturation 

occurring under standard inductive conditions. They showed that this variation was 

due to FT levels within the maternal silique tissue that affected biochemical 
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composition of the seed coat. This suggests that the variation observed in our 

germination assays might also reflect different levels of FT induction that occur 

following different temperature treatments (Figure 2.3). However, unless FT levels 

within the silique vasculature are different to those observed for homogenised plant 

samples, this does not sufficiently explain the delay in germination observed for 

seeds originating from ColFRISf2 plants vernalized for 12 weeks at 12oC and 14oC 

(Figure 2.9).  

 

The results presented in this chapter show that variation in vernalization time and 

temperature significantly effects flowering and seed yield for a range of natural 

accessions. Several of these intriguing findings have been followed up in this thesis. 

The molecular mechanisms that underlie the distinct Lov-1 vernalization temperature 

response and potential selecting environmental cues are discussed in Chapter 3. 

Chapter 4 explores how constant temperature responses relate to natural fluctuating 

field conditions and determines how informative threshold temperatures are for 

predicting responses in the real world. Together these results form the foundation for 

predictions about the future impact of climate change on A. thaliana vernalization. 
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2.10 Materials and Methods 

2.10.1 Plant growth conditions.  
For the daily averaging experiment seeds from each accession were sown onto 

Arabidopsis compost mix and stratified for 3 days at 5oC. Seedlings were pre-grown 

for 7 days (16 hours light, 100μmol m-2 s-1, 22oC) and vernalized for 4 weeks at 14oC, 

12oC, 10oC, 8oC (8 hours light) in cabinets (Sanyo MLR-351H), 5oC (walk-in 

vernalization room), 2oC (modified Liebherr KP3120) or 0oC (Johnson Controls).  All 

temperatures were recorded ± ≤1.5oC, 70% ± ≤10% RH. Low light (~30μmol m-2 s-1). 

Plants were then transferred to random locations in a controlled environment room 

(16 hours light, 100μmol m-2 s-1, 22oC ± 2oC) and flowering time was scored as the 

number of days of growth until floral buds became visible.  

2.10.2 RNA Extraction  
The RNA extraction was carried out using a similar protocol to that reported by Box 

and colleagues in 2011. ~200mg of above soil tissue was collected into 1.5mL micro-

centrifuge tubes (Eppendorf, Hamburg, Germany) and immediately frozen by 

immersion into liquid nitrogen. Samples were then placed into pre-cooled blocks and 

ground to a fine powder by 3mm tungsten-carbide beads (Qiagen, Venlo, 

Netherlands) using a 30 second 1200 rpm setting on a Geno/Grinder® 2010 bead 

mill (SpexSamplePrep, New Jersey, USA). The samples were then stored at -80oC.  

 

RNA extraction buffer (0.1M Tris pH8.0, 5nM EDTA pH 8.0, 0.1M NaCl, 0.5% SDS) 

was heated to 60oC and 300μL was added to each sample and mixed briefly before 

addition of 300μL 1:1 acidified phenol pH 4.3±0.2: Chloroform (Sigma-Aldrich, 

Missouri, USA). The tubes were mixed vigorously for 10 minutes and then spun 

down in a centrifuge at room temperature for 15 minutes at top speed. The 

supernatant was then carefully removed to fresh 1.5mL micro-centrifuge tubes 

containing 240μL of isopropanol (2-propanol) and 30μL of 3M sodium acetate (pH 

5.2). Nucleic-acids were left to precipitate at -80oC for a minimum of 15 minutes. The 

samples were then spun down again for 30 minutes in a centrifuge at 4oC. The 

supernatant was pipetted off and the pellets were then washed twice with 750μL of 

70% ethanol with a 5 minute maximum speed centrifugation step after each wash. 

Residual ethanol was then carefully removed and all pellets were left to dry for 15 

minutes before being fully re-suspended in 500μL RNase free water (Qiagen). 500μL 

4M LiCl was then added to each sample before being left overnight at 4oC. Samples 
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were then centrifuged at full speed for 30 minutes at 4oC to pellet the RNA. Genomic 

DNA was then removed along with the supernatant and the pellet was washed again 

twice with 750μL of 70% ethanol with a 5 minute maximum speed centrifugation step 

after each wash.  Residual ethanol was then carefully removed and the pellets were 

left to dry for 15 minutes before being re-suspended in 50μL RNase free water.  

 

Concentration and quality was determined for each RNA sample using a NanoDrop 

ND-1000 Spectrophotometer (NanoDrop Technologies Inc., Denver USA) and each 

sample was then diluted to 200ng/μL using RNase free water. 

2.10.3 Reverse Transcription  
Reverse transcription was carried out using reagents from Primerdesign 

(Southampton, UK) 

 

Reaction 1 

8μL RNase free water 

1μL Oligo (d)T primer 

5μL (1μg) Total RNA 

Samples were incubated for 5 minutes at 65oC then 

transferred onto ice before addition of the following: 

2μL 10X buffer 

1μL dNTP mix 

2μL DTT 

4μL PCR grade water 

1μL Reverse transcription 

enzyme 

Reaction 2  

55oC 20 minutes 

5oC 15 minutes 

Sample Dilution  

180μL PCR grade water 

 

 



 
 

 53 

2.10.4 Quantitative Polymerase Chain Reaction (qPCR) 
A LightCycler 480 II instrument (Roche Life Science, Penzberg, Germany) was used 

in conjunction with probes from the LightCycler 480 Universal Probes Library (UPL) 

range to determine expression levels. An EpiMotion (Eppendorf) robot was used to 

pipette triplicates of the following reaction mixes into in 384 well plates (Roche): 

 

6.5μL Reaction 

5μL Universal Probes Library master mix 

0.1μL Forward primer (200mM) 

0.1μL Reverse primer (200mM) 

0.4 μL Universal Probe Library Probe 

0.9μL PCR grade water 

 

 

Thermo-cycler program used to amplify the cDNA 

Step Temperature Time 

1 95oC 10 minutes 

2 95oC 10 seconds 

3 60oC 20 seconds 

4 72oC 1 second 

45 cycles repeating steps 2-4  

Cooling 40oC 10 seconds 

 

 

 

All mRNA levels were assayed using Roche Universal Probe Library (UPL) Probes 

using the primers shown below. 

 

FLC (At5g10140) 

sFLC_UPL_#65_F 5’-gtgggatcaaatgtcaaaaatg-3’ 

sFLC_UPL_#65_R 5’-ggagagggcagtctcaaggt-3’ 

UPL #65 5’-ctggagga-3’ 
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VIN3 (At5g57380) 

VIN3_UPL_#67_F 5’-cgcgtattgcggtaaagataa-3’ 

VIN3_UPL_#67_R 5’–tctctttcgccaccttcact-3’ 

UPL #67 5’-ctccagca-3’ 

 

FT (At1g65480) 

FT_UPL_#138_F 5’-ggtggagaagacctcaggaa-3’ 

FT_UPL_#138_R 5’-ggttgctaggacttggaacatc-3’ 

UPL #138 5’-tggtggat-3’ 

  

UBC (At5g25760) 

UBC_UPL_#9_F 5’-tcctcttaactgcgactcagg-3’ 

UBC_UPL_#9_R 5’-gcgaggcgtgtatacatttg-3’ 

UPL#9 5’-tggtgatg-3’ 

 

Relative levels of gene expression were calculated using the comparative Ct method 

(also known as the 2-[delta][delta]Ct method) (Schmittgen and Livak 2008) and 

statistical analysis of was performed using GraphPad Prism version 6 software for 

Mac (La Jolla, California, USA). 

2.10.5 Seed Yield 
Once plant dessication was evident, glassine bags (Global Polythene, Preston, UK) 

were placed over the plants and secured around the stem using tape.  Watering was 

then continued until senescence was considered complete. Plants were then left at 

22oC, 18 hour daylength, until completely dry. Seeds were collected from each plant 

and weighed. 

2.10.6 Seed Germination Assay 
100 seeds from each genotype were sown onto MS (minus glucose) 3cm media 

plates (Sterilin, Cheshire, UK) and stratified at 5oC for 3 days before being 

transferred to 22oC (18 hour light, 100μmol m-2 s-1, 70% humidity). Germination was 

scored on day 3 and day 9 of inductive growth. The experiment had to stopped on 

day 9 due to fungal growth around un-germinated seeds. 
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Chapter 3 - Seasonal shift in timing of vernalization as an 

adaptation to extreme winter 
 

 

Division of work: Svante Holm (Mid-Sweden University) collected field temperature 

data and set up the field experiments in Sweden. Arthur Korte (Gregor Mendel 

Institute, Vienna) scored flowering time after vernalizing plants at 0oC. Julia Questa 

(John Innes Centre) completed the ChIP experiments. Clare Lister and Amy Strange 

generated the near isogenic lines.  

 

 

3.1 Introduction 

Results in the previous chapter revealed that Lov-1, an accession that originates 

from close to northerly limit of the species range, vernalizes most effectively at 8oC 

and exhibits a significant vernalization response at temperatures as high as 14oC. In 

this chapter the underlying genetic cause of the differential temperature sensitivity 

and the potential adaptive significance of this 8oC optimum are explored further.  

3.2. Flowering Time 

A direct comparison of flowering time recorded following vernalization at a range of 

temperatures revealed natural variation in temperature sensitivity (Figure 3.1, also 

Chapter 2, Figure 2.5). Consistent with results obtained for the reference genotype 

ColFRISF2, all lines tested (Edi-0, Var2-6, Ull2-5 and Lov-1) showed limited 

vernalization after 4 and 6 weeks exposure to 0oC and vernalized more efficiently at 

all other temperatures. In contrast to the other three accessions however, Lov-1 

plants showed a differential response to temperature with 2 and 12oC consistently 

less effective than 5 and 8oC. The only temperature that resulted in flowering after 4 

weeks exposure was 8oC and, although this enhanced effect diminished over time, 

8oC treatments consistently resulted in the fastest flowering times (Figure 3.1). 

Results from further analyses also revealed that in addition to flowering time effects, 

vernalization temperature also impacts fecundity (Chapter 2, Figure 2.5).   
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Initial assessments of the temperature sensitivity trends observed for ColFRISf2 and 

Lov-1 were complicated by the large phenotypic variation in flowering time observed 

between the two lines. However, results from Ull2-5 vernalization experiments 

confirm that the enhanced temperature sensitivity across the 2-8oC range observed 

for Lov-1 is distinguishable from a later flowering phenotype (Figure 3.1). 

Conversely, results presented in Figure 3.2 confirm that this enhanced sensitivity had 

not been masked by a saturating cold treatment for the early flowering line ColFRISf2.  

 

3.2 Gene Expression 

The requirement for a longer period of cold for effective vernalization of Lov-1 has 

previously been shown to involve quantitative variation in epigenetic silencing of FLC 

(Coustham et al., 2012). Quantitative variation in the silencing of Col FRISf2 and Lov-

1 FLC alleles was determined after 4 weeks cold exposure at temperatures between 

2 and 14oC. In contrast to Col FRISf2, the Lov-1 allele re-activated 30 days later in the 

warm after vernalization at all the tested temperatures. However, the degree of re-

activation was significantly lower (p=0.0299) after vernalization at 8oC than at 5oC, 

consistent with the view of vernalization being most effective at this temperature 

(Figure 3.3). Further analysis after a 6 week treatment also revealed a similar pattern 

for FLC expression, with significantly higher reactivation observed for  5oC versus 

8oC treated plants both 10 and 30 days after return to warm conditions (p=0.0262 

and p=0.0216 respectively, unpaired Student’s t-tests, Figure 3.4A).  
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Figure 3.1 - Vernalization responses at a range of constant temperatures 
(Graphs represent re-plotted data previously shown in Figure 2.5) Days to flower 
were recorded after 4 weeks (red squares), 6 weeks (blue triangles) and 12 weeks 
(green circles) of vernalization at a range of temperatures. Error bars = ± SD. n ≥10. 
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Figure 3.2 - ColFRISf2 vernalization responses after two weeks of cold 
Days to flower were recorded after 2 week treatments (purple crosses). A black 
cross indicates the non-vernalized (NV) flowering time. Error bars = ± SD. n =12. 
 

 

For both genotypes, similar levels of VIN3 expression were observed following 5oC 

and 8oC treatments, but significantly lower levels were observed for 14oC treated 

plants (Figure 3.4B). The differences in flowering time made it more informative to 

compare FT expression for Lov-1 after 30 days post-cold growth with Col FRI Sf2 

following 10 days post-cold growth. Consistent with 8oC treatments being observed 

as most effective for accelerating Lov-1 flowering, this treatment also resulted in the 

highest level of FT induction (p=0.001 unpaired Student’s t-test, Figure 3.4C). 

 

3.4 Chromatin Immunoprecipitation Analysis 

Epigenetic silencing of FLC is associated with Polycomb silencing and accumulation 

of H3K27me3 over the gene body (Angel et al., 2011; Yang et al. 2014). In Lov-1 it 

takes longer to accumulate the H3K27me3, mainly due to lower starting levels 

(Coustham et al., 2012). Similar accumulation of gene body H3K27me3 was found 

across the Col FRISf2 FLC allele at 5, 8 or 14oC after six weeks treatment, but 

differential H3K27me3 accumulation across the Lov-1 allele. Vernalization at 8oC 

resulted in higher levels of H3K27me3 compared to 5 or 14oC (p <0.0001 Wilcoxon 

matched-pairs signed rank test, Figure 3.4D), suggesting that the Polycomb silencing 

is most effective at 8oC for the Lov-1 FLC allele. 
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Figure 3.3 - FLC expression determined before and after 4 weeks vernalization 
Quantitative PCR analysis showing non-vernalized (NV) FLC expression levels 
(hatched), after 4 weeks of cold (white) and after 10 days (grey) and 30 days (black) 
subsequent growth at 20oC.  * p < 0.05, two-tailed Student’s t-test. Error bars = SD. 
n=3. 
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Figure 3.4 - Changes in gene expression and accumulation of repressive 
chromatin modifications determined for ColFRISf2 and Lov-1 
Quantitative PCR analysis revealed changes in FLC (A), VIN3 (B) and (C) FT 
expression in samples collected immediately after 6 weeks of cold (T0) and again 
following 10 (T10) and 30 days (T30) subsequent growth at 20oC. * p < 0.05, ***p < 
0.005 n=3, two-tailed Student’s t-test (D) H3K27me3 levels over the FLC locus were 
significantly higher for Lov-1 after 6 weeks vernalization at 8oC than 14oC or 5oC 
(samples were harvested 30 days post cold.) Wilcoxon matched-pairs signed rank 
test, **** p≤0.0001, n=4. Error bars represent ± SD in (A), (B), (C) and ± SEM in (D). 
NV = Non-vernalized, and ns = not significant. 
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3.5 Lov-1 life history and climate analysis  

The relatively high effective temperature range identified for this northern Swedish 

accession was surprising given that flower buds appear within two weeks of 

snowmelt in April at its native Swedish site in Lövvik (Figure 3.5). It is likely that 

flowering this early limits herbivory and helps in the competition for nutrients, whilst 

maximizing the relatively short growing season dictated by recurrent annual snow 

cover (Akiyama and Agren, 2012, Kawagoe and Kudoh, 2010) (Figure 3.6). 

 

.  
 
 
Figure 3.5 - The Lov-1 natural population flowers rapidly after snow melt in 
spring  
(A) Photographs of representative Lov-1 rosettes taken before snow cover and (B) 
immediately after snow melt (green markers indicate rosette size). (C) Evidence of 
stem elongation apparent 16 days post snowmelt. These images and dates are 
representative of Lov-1 phenology over the last five years. (Images courtesy of 
Svante Holm). 
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Figure 3.6 - Snow consistently covers plants during winter in northern Sweden 
(A) Snow depth and (B) snow cover period recorded near Lövvik over 47 years. 
 

Such early flowering predicts that vernalization must have occurred before the end of 

November given the very low temperatures at the Lövvik site over the winter months 

(Figure 3.7A). Analysis of both hourly (Figure 3.C) and national (Figure 3.6B) data 

between the date of germination (1st August) until snow cover (~30th November) 

revealed average autumn temperatures around 8oC. An overall average of 8.86oC 

was calculated for average daily temperatures between 1961 and 2008 (S.D.=0.63) 

with over 86% of days falling within the range identified as being effective for Lov-1 

vernalization, >0oC - 14oC.  The agreement of average autumn temperatures with the 

effective vernalization temperatures identified for Lov-1 reinforced the view that 

epigenetic silencing of FLC must occur before snowfall 
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Figure 3.7 - Subzero winter temperatures are preceded by optimal vernalizing 
conditions  
(A) Air and soil temperatures collected hourly over winter. (B) Average autumn daily 
temperatures over 47 years and (C) hourly air temperatures collected over 6 years. 
Upper and lower dashed lines in (B) indicate upper and lower thresholds identified 
for Lov-1 vernalization. Shaded areas in (C) indicate the period between germination 
and snow cover. Green and grey boxes = median to 1st and 3rd quartiles, 
respectively. Upper and lower whiskers represent 1.5* Inter Quartile Range (IQR) or 
highest / lowest values. Blue crosses = outlier values greater than 1.5*IQR. 
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3.6 Testing the hypothesis of a seasonal shift in vernalization timing 

In addition to indirect evidence of the optimal vernalizing response matching average 

autumn temperatures, the effective temperature range identified for Lov-1 

contradicted the seasonal timing of vernalization predicted by model threshold 

parameters suggested for A. thaliana (Wilzcek et al., 2009; Chew et al., 2012; Chew 

2014).  To test the hypothesis of a seasonal shift in the timing of vernalization in 

northern Sweden directly, field experiments were set up close to the Lövvik site in 

autumn 2011 and 2012 (locations are shown in Figure 3.9).  

 

 

 

Figure 3.8 - An empirically derived temperature range predicts that Lov-1 
vernalization occurs before winter 
Hourly temperatures recorded throughout a Lov-1 life cycle. Shading indicates 
autumn or winter vernalization predicted by the 0-14oC or -3.5-6oC effective 
temperature ranges respectively.   
 

 

 

Seedlings were transplanted into the field at the beginning of September and then 

transferred to a warmed greenhouse at three time points during autumn (Figure 

3.10A and 3.11A). Although plants were sown later than observed flushes of 

germination of local populations, this enabled us to explicitly test whether twelve 

weeks of growth preceding winter would be sufficient to fully vernalize Lov-1.  

Flowering time of the different cohorts showed that vernalization was complete by 

the end of November in both 2011 (Figure 3.10B) and 2012 (Figure 3.11B). 

Furthermore, plants left to overwinter in the field flowered immediately at snowmelt, 

at the same time as native A. thaliana populations (Figure 3.12).  
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Figure 3.9 - Data collection locations and field sites in Sweden  
Map (Google, Geobasics) showing geographical locations: Lövvik – the collection 
site of Lov-1. Hourly temperature data presented Figures 3.7 and 3.8 were collected 
in Eden. Swedish climate data were calculated from Swedish Hydrological and 
Meteorological Institute weather stations located in Härnösand. 2011 and 2012 field 
experiments were carried out at Ramsta.  
  

3.8 Natural variation observed in field vernalization and subsequent 

seed yield  

The order in which the natural accessions flowered following vernalization in the field 

was broadly similar to the order observed under laboratory conditions (Figure 3.1, 

3.10B, 3.11B). And again, later flowering was associated with poor seed yield with 

increasing vernalization periods resulting in moderate increases (see Chapter 2 

Figure 2.4, Figure 3.10C).   

3.9 Contribution of the Lov-1 FLC allele to flowering time and seed yield  

In order to link the flowering time changes with the changed epigenetic silencing at 

FLC we included a near isogenic line carrying the Lov-1 FLC allele (NIL1Lov-1) in the 

genetic background of Col FRI Sf2 in the field experiments. This line was generated 

through six generations of introgression and had been genotyped with markers to 

define the introgressed segment (see Chapter 2, Figure 2.7).  
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Figure 3.10 - Field experiments reveal vernalization occurs in autumn in 
northern Sweden  
(A) The dates of sowing and of plant transfers to the greenhouse are shown with 
hourly soil surface temperatures recorded during autumn 2011. (B) Days to flower 
recorded after transfer to a warmed greenhouse, black bars = Transfer 1, grey bars = 
Transfer 2 and white bars = Transfer 3. n≥10. Error bars represent  ± SD. (C) Seed 
yield data are presented as box plots where boxes = 1st, median and 3rd quartiles. 
Upper and lower whiskers represent 1.5* Inter Quartile Range (IQR) or highest / 
lowest values. Blue crosses = outlier values greater than 1.5*IQR. Mann-Whitney U 
tests results: *** p ≤ 0.001, **** p ≤ 0.0001. ns= not significant (p > 0.05). 
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Figure 3.11 - 2012 field experiments confirm vernalization occurs during 
autumn in northern Sweden  
(A) The dates of sowing and plant transfers to the greenhouse are shown with hourly 
soil surface temperatures recorded during autumn 2012. (B) Days to flower recorded 
after transfer to a warmed greenhouse, black bars = Transfer 1, grey bars = Transfer 
2 and white bars = Transfer 3. n≥10. Error bars represent  ± SD. *** p ≤ 0.001, **** p 
≤ 0.0001 ***, ns = not significant (p > 0.05), Mann-Whitney U test. 
 

 

Both Lov-1 and NIL1Lov-1 took longer to flower than ColFRISf2 after all three transfers 

in both 2011 and 2012 (Figure 3-10B and 3-11B). The Lov-1 FLC allele also 

contributed to differences in seed yield. Faster flowering of ColFRISf2 after transfer 1 

resulted in significantly higher seed yield than for Lov-1 and NIL1Lov-1 (Figure 3.11C). 

These results indicate a clear contribution of the Lov-1 FLC allele to differential 

vernalization response under field conditions in addition to potential fitness 

consequences. 
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Figure 3.12 - Plants flowered synchronously with natural populations after 5 
months of continuous snow cover  
(A) Surface temperature recorded at Ramsta indicating that over wintered plants 
were continuously covered by snow during winter 2012. (B) Representative images 
of the overwintered cohort with floral buds visible. (C) Percentages of plants with 
visible buds on 26th April 2013, 5 days after snow melt and (D) Image of natural 
population taken 26th April 2013 (courtesy of Svante Holm).  
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Figure 3.13 - An enhanced initial vernalization response recorded for Lov-1 
coincided with higher field temperatures 
(A) A comparison of averaged vernalization responses recorded during field 
experiments carried out in 2011(red) and 2012 (green). (B) Box plots of hourly 
temperature data recorded between the sowing date and Transfer 1. Green and grey 
boxes = median to 1st and 3rd quartiles, respectively. Upper and lower whiskers 
represent 1.5* Inter Quartile Range (IQR) or highest / lowest values. Blue crosses = 
outlier values greater than 1.5*IQR. **** p < 0.0001, Mann-Whitney U test.   
 

3.2.7 Differential thermal sensitivity observed under field conditions 

An increased level of plasticity was observed for Lov-1 vernalization responses 

between 2oC-5oC compared to the other genotypes (Figure 3.1). We directly 

compared the flowering results over both years to see whether this plasticity had led 

to differential responses under field conditions. Lov-1 flowered later at transfer 1 in 

autumn 2012 compared to 2011, whereas Col FRISf2, Ull2-5 and Edi-0 plants 

flowered similarly both years (Figure 3.13A, p=0.0120 Mann Whitney Test, U=54). It 

was significantly colder between the sowing date and transfer 1 in 2012 compared to 

the previous year (Figure 3.13B) and plants were exposed a larger proportion of 

hours below 8oC in 2012 (55%) than in 2011 (38%). This suggests that reduced 

efficiency of vernalization in Lov-1 at lower constant temperatures had translated to a 

similar phenotype under natural field conditions.  
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Figure 3.14 - Lov-1 vernalization completes by the end of autumn in northern 
Sweden 
Comparison of the Lov-1 vernalization with daylength and temperatures throughout 
the growth season shows that vernalization saturates after the critical photoperiod 
has passed. This ensures that plants are prevented from flowering in autumn and 
must wait for permissive temperatures and daylength in the spring to flower.     

3.10 Discussion 

Extensive variation has been shown to exist in thermal sensitivities of many 

biological processes (Huey and Kingsolver 2011; Dell et al., 2011). Differences in 

thermal sensitivity and optimal temperature responses typically reflect adaptation to 

specific environmental conditions and are thought to be key determinants of survival 

and Darwinian fitness (Angiletta, 2009). Quantitative assessment of thermal 

sensitivity for vernalization across a range of A. thaliana accessions revealed 

variation in temperature responses within a shared effective range (Figure 3.1).  

 

The molecular basis of an unexpected flowering response observed for Lov-1 after 

four-weeks vernalization at 8oC was explored further in this chapter. Consistent with 

enhanced stability of epigenetic repression being achieved by 8oC vernalization, the 

lowest level of FLC reactivation was also observed following 4 and 6 week 

treatments that resulted in a significantly higher level of FT induction (Figures 3.3, 

3.4A). Furthermore, significantly higher H3K27me3 levels were also observed for 8oC 

versus 5oC treated plants 30 days after transfer to the warm. However the similar 

levels of VIN3 induction observed for 5oC and 8oC treatments suggest that an 

increased opportunity for PHD-PRC2 complex formation does not underlie this 

response (Figure 3.4B).     
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Four non-coding polymorphisms in FLC close to the nucleation site of the PHD-

PRC2 complex were previously defined as underpinning the molecular variation in 

FLC epigenetic silencing between Lov-1 and Col FRISf2 (Coustham et al., 2012). 

Genotyping of NIL1Lov-1 revealed that in addition to carrying the Lov-1 FLC allele it 

also carried an additional short segment of Lov-1 chromosome 5 (Chapter 2, Figure 

2.7). Under controlled conditions this segment provided maximal delay of flowering in 

addition to an enhanced 8oC response in the presence of a Lov-1 FLC allele, but did 

not delay flowering after vernalization in the presence of a Col FLC allele (Figure 

2.7C). The vernalization response of NIL1Lov-1 was also found to be more similar to 

Lov-1 following growth in the field than under comparable constant conditions 

(Figures 3.10B, 3.11B, 2.6C). Thus, it is likely that the changed vernalization 

temperature response of Lov-1 involves a complex interaction between FLC and 

gene products at linked loci that synergistically repress flowering in natural 

fluctuating temperatures.   

 

A combination of molecular and ecological approaches have been employed to 

demonstrate that adaptation to extreme winters at the northern limit of the A. thaliana 

species range has involved a seasonal shift in the timing of vernalization. Perhaps as 

a response to selection in these extreme conditions one northern Swedish 

accession, Lov-1, responds to temperatures within the range observed between 

August and November in that geographical region (Figure 3.7). Early germination 

enables vernalization to complete before snowfall and allows flowering to occur 

directly after snowmelt when the photoperiod and ambient temperatures increase 

(Figure 3.14). Although genotypes with a wide range of cold requirements were also 

found to vernalize effectively during autumn  (Figure 3.10B, Figure 3.11B), the low 

seed dormancy reported for Lov-1 (Atwell et al., 2010; Debieau et al., 2013) is 

consistent with this hypothesis. Furthermore, a reduced effectiveness identified for 

temperatures below 5oC (Figure 1A) was found to effectively buffer cool periods 

during early autumn (Figure 3.13). This perhaps is an extra mechanism that has 

evolved to ensure that unseasonal cooler periods at the end of summer do not leave 

plants susceptible to flowering in response to subsequent warm autumn 

temperatures and permissive day lengths.  
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Together the results presented in this chapter challenge the current dogma that 

plants vernalize during winter. We demonstrate that Lov-1 effectively integrates and 

remembers temperatures during autumn.  
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3.4 Materials and Methods 

3.4.1 Plant growth conditions.  
For the daily averaging experiment seeds were sown onto Arabidopsis mix compost 

and stratified for 3 days at 5oC. Seedlings were pre-grown for 7 days (16h light: 8h 

dark, 22oC) and vernalized for 4 weeks at either 14oC, 12oC, 10oC, 8oC (8h light: 16h 

dark) in cabinets (Sanyo MLR-351H), 5oC (walk-in vernalization room), 2oC (modified 

Liebherr KP3120) or 0oC (Johnson Controls).  All temperatures were recorded as ± 

≤1.5oC, 70% ± ≤10% RH. Low light (~30μmol m-2 s-1). Plants were then transferred to 

random locations in a controlled environment room (16h light: 8h dark 16, 22oC ± 

2oC) and flowering time was scored as the number of days of growth until floral buds 

became visible.  

 

3.4.2 Sweden Field Experiments  
Seeds were stratified for 4 days at ~5oC, sown into trays using a randomized block 

design and placed outside (62° 23.463´N, 17° 18.272´E). Seedlings were thinned to 

one plant per cell after seven days and then transferred to Ramsta (62° 50.988´N, 

18° 11.570´E) one week later. At each transfer date, plants were returned to a 

greenhouse in Mid-Sweden University, Sundsvall (16 hours light, 22oC ± 2oC) where 

flowering time was determined as the number of days growth until floral buds 

became visible. 

3.4.3 Climate Analysis  
Hourly temperatures were recorded using Tinytag data-loggers (Chichester, UK). 

Historical climate data were obtained from Swedish Meteorological and Hydrological 

Institute. Three temperature and snow-depth readings taken at 0600hr, 1200hr and 

1800hr were used to calculate daily means. Boxplots graphs were created using QI 

Macros add-ins for Excel (Denver, Colorado, USA). Statistical analyses of climate 

data were performed using GraphPad Prism version 6 software (La Jolla, California, 

USA).  

3.4.4 RNA extraction  
See Chapter 2 Materials and Methods section 2.10.2. 

3.4.5 Reverse Transcription  
See Chapter 3 section Materials and Methods section 2.10.3.  
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3.4.6 Quantitative Polymerase Chain Reaction (qPCR) 
See Chapter 3 section Materials and Methods section 2.10.4 Expression levels were 

determined using Roche Universal Probe Library (UPL) Probes and the primers 

shown below. 

 

FLC (At5g10140) 

sFLC_UPL_#65_F 5’-gtgggatcaaatgtcaaaaatg-3’ 

sFLC_UPL_#65_R 5’-ggagagggcagtctcaaggt-3’ 

UPL #65 5’-ctggagga-3’ 

  

VIN3 (At5g57380) 

VIN3_UPL_#67_F 5’-cgcgtattgcggtaaagataa-3’ 

VIN3_UPL_#67_R 5’–tctctttcgccaccttcact-3’ 

UPL #67 5’-ctccagca-3’ 

 

UBC (At5g25760) 

UBC_UPL_#9_F 5’-tcctcttaactgcgactcagg-3’ 

UBC_UPL_#9_R 5’-gcgaggcgtgtatacatttg-3’ 

UPL#9 5’-tggtgatg-3’ 

 

Gene expression was calculated relative to UBC levels using the comparative Ct 

method (Schmittgen and Livak 2008) and statistical analysis of was performed using 

GraphPad Prism version 6 software for Mac (La Jolla, California, USA). 

3.4.7 ChIP and RT-qPCR Analysis.  
The ChIP assays were performed by Julia Questa. The protocol uses H3K27me3 

and H3 antibodies (Abcam, Cambridge, UK) and was previously described by Sun et 

al., 2013. Primers used in this analysis are shown in Appendix Table 2. 

 

SHOOT MERISTEMLESS (STM) was used as the internal control and data are 

represented as the ratio of H3K27me3FLC/H3 FLC to H3K27me3 STM/H3 STM. 

Statistical analysis of ChIP data was performed using GraphPad Prism version 6 

software for Mac (La Jolla, California, USA.) 
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Chapter 4 - Predicting the impact of climate change on 
vernalization 

 
Division of work: Prof. Alastair Grant created the vernalization threshold models used 

in this chapter.  

4.1 Introduction 

The most recent Intergovernmental Panel on Climate Change (IPCC) report 

forecasts that average global temperatures will rise by 3oC by the end of the century, 

with greater increases anticipated if concerted efforts are not made to reduce 

greenhouse gas emissions (IPCC 2014, Figure 4.1). There is evidence that warmer 

winters have already contributed to delayed flowering in a subset of species but it is 

unknown how future temperature increases will affect vernalization over the coming 

century (Cook et al., 2012). This chapter reports results from a model that uses 

empirically derived upper and lower threshold temperatures for A. thaliana to predict 

the future impact of climate change on vernalization across the species’ range. 

4.2 Determining vernalization temperature parameters  

Significant progress has been made to model A. thaliana development under field 

conditions. A modified photothermal unit (MPTU) model incorporates parameters for 

major drivers of development: growth rate, vernalization and photoperiod to 

effectively predict flowering times at various European locations (Wilzcek et al., 

2009). The vernalization component of this model uses a lower threshold (Tmin) of 

0oC and an extrapolated upper threshold (Tmax) of 6oC to specify the effective 

vernalization temperature range (Wilzcek et al., 2009). As for classic agricultural 

chilling-unit models, the MPTU model uses these thresholds to calculate the 

summation of effective temperatures within this range over time. Based on laboratory 

data obtained for ColFRISf2 (Michaels and Amasino 1999), this model predicts 

vernalization to be saturated following the accumulation of 960 effective chilling 

hours i.e. 40 vernalizing days (Wilzcek et al., 2009). These parameters were 

maintained through subsequent iterations of the model since alterations did not 

significantly improve flowering time predictions for the genotypes tested (Wilzcek et 

al., 2009; Chew et al. 2012, Chew at al., 2014).  
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Figure 4.1 - IPCC global annual average temperature increases predicted over 
the coming century  
Figure taken from the most recent IPCC report (IPCC 2014). 
 
 
 

 

There is now evidence to suggest that existing MPTU parameters would be 

unsuitable for predicting the vernalization responses of later flowering accessions. 

The 960 hour (5.7 week) saturation threshold was based on the response of the 

reference genotype ColFRISf2 (Wilczek et al., 2009; Micheals and Amasino 1999), 

however there are many reported examples of natural accessions that exceed this 

requirement (Shindo et al., 2005; Li et al., 2014; Méndez-Vigo et al., 2011). 

Moreover, there is now clear evidence of the effectiveness of temperatures higher 

than 6oC in many accessions (Chapter 2, Figure 2.5) (Wollenberg and Amasino 

2012). The laboratory results presented in Chapter 3 and the field experiments 

presented in Chapter 4 enabled us to explicitly test threshold parameters in 

accessions that span the natural range of vernalization requirement.  
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Figure 4.2 - The accumulation of effective vernalizing hours during Swedish 
field experiments 
Temperatures recorded during Swedish field experiments carried out during (A) 2011 
and (B) 2012 were used to calculate the accumulation of hours within two ranges. 
The accumulation of daytime hours within the 0-6oC range are shown in blue and 
hours between 0-15oC calculated from both day and night temperatures are shown in 
green. The dotted lines and dashed lines represent Col FRI Sf2 and Lov-1 
vernalization accumulation requirements (960 and 2016 hours), respectively. 
Flowering time results presented in Chapter 3, Figure 3.1 were used to predict 
saturated vernalization (Sat. Vern.) responses for ColFRISf2 and Lov-1. 
 

4.2.1 Predictions based on the summation of hours within effective 
temperature ranges  

Flowering times recorded after vernalization at a range of constant temperatures 

validated the decision to maintain a Tmin of 0oC since prolonged periods at freezing 

point do not activate a significant response (Napp-Zinn 1957; Chapter 3, Figure 3.1). 

Extension of the range up to a Tmax of 15oC was suggested by the significant 

acceleration of flowering observed following vernalization at 14oC, but not at 16oC 

(Chapter 2, Figure 2.1).  

 

To test the (0oC, 6oC) and (0oC, 15oC) temperature ranges, hourly accumulations 

were calculated from temperature data collected during the Swedish field 

experiments in 2011 and 2012 (shown in Chapter 3, Figures 3.10 and 3.11). 

Accumulated time within both ranges was then used to predict the progress of 

vernalization observed under natural conditions.  
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Figure 4.3 –Accession specific predictions of vernalization progress  
Days to flower recorded after growth under field conditions in Sweden in 2011 and 
2012 (grey diamonds) are shown together with vernalization responses predicted by 
accession specific models (red dashed line). See text for details. 
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The MPTU model predicts that effective vernalization only occurs during daytime 

hours when the temperature is between 0 and 6oC (Wilzcek et al., 2009). But these 

conditions only predicted the equivalent of ~1.5 and ~2 weeks of effective cold 

accumulation by the end of the 2011 and 2012 field experiments, respectively 

(Figure 4.2). This contradicts ColFRISf2 and Lov-1 flowering time responses recorded 

after plants were transferred from the field to inductive conditions that show the 

vernalization requirements of both genotypes were saturated by the end of autumn 

(Chapter 3, Figure 3.10 and 3.11).  

 

Predictions were improved when both day and night hourly temperatures were taken 

into account, however vernalization was still under-estimated for both genotypes 

using the (0oC, 6oC) range (data not shown). Next, all hourly temperatures were 

considered effective between 0oC and 15oC. This extension of the effective 

temperature range correctly predicted that the number of vernalizing hours would 

exceed the ColFRISf2 threshold requirement during 2011 and 2012, however it 

underestimated the response observed for Lov-1 by 22% and 30% in the 2011 and 

2012 experiments, respectively (Figure 4.2).  

4.2.2 Predictions made using accession-specific chilling-unit models 
So far, the chilling-unit predictions presented in this chapter have used two 

temperature ranges to determine whether each hour (Figure 4.2) generates a 

maximal vernalization response. But this is inconsistent with results from constant 

temperature experiments that suggest a graded effect exists across the effective 

temperature range. It also ignores the variation in relative temperature 

responsiveness observed for different accessions (Chapter 2, Figure 2.5, Chapter 3, 

Figure 3.1).  

 

Peach producers identified a similar variation in chilling responsiveness and 

developed a model to take this into account. The Utah chilling-unit model predicts 

vernalization progress under field conditions through the summation of chilling units 

that reflect the relative effectiveness of each temperature. It also subtracts high 

temperature periods when de-vernalization is thought to occur (Byrne and Bacon 

1992). We took a similar approach for A. thaliana by calculating relative temperature 

response profiles for each accession (based on responses observed for constant 

temperature treatments) and used these to predict vernalization progress during the 
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2011 and 2012 Swedish field experiments (see Materials and Methods at the end of 

this chapter for details). Overall, these accession-specific models provided good 

predictions of ColFRISf2 and Edi-0 vernalization, but they over-estimated responses 

at earlier time points and under-estimated later responses for the Swedish lines 

(Figure 4.3).  

 

4.2.3 Predictions based the summation of average daily temperatures within 
effective temperature ranges  

Moderate chilling conditions were suggested by the 48% and 35% of hourly 

temperatures observed as higher than 5oC during the 2011 and 2012 field 

experiments respectively. Since average daily temperatures can provide better 

estimates of vernalization progress than hourly data in moderate chilling areas 

(Byrne and Bacon 1992) accumulations were repeated for both the (0oC, 6oC) and 

(0oC, 15oC) ranges using daily average temperatures. The (0oC, 6oC) range provided 

reasonable forecasts for vernalization saturation for ColFRISf2, but it did not 

accurately predict vernalization progress made by later flowering accessions (Figure 

4.4). Predictions were observed when the upper threshold of effective daily 

temperature range was raised from 6oC to 15oC. Apart from over-estimated 

responses at some early time points, this wider temperature range provided a good 

match between observed versus expected responses – especially for later flowering 

accessions. Strikingly, vernalization saturation was accurately predicted for all 

genotypes by the end of both the 2011 and 2012 field experiments (Figure 4.4). 

 

4.2.4 Predictions based on the effectiveness of cumulative average 
temperature 

Temperatures were then considered over time-scales longer than a day on the basis 

that monthly and seasonal mean temperatures are used by some commercial 

growers to estimate the suitability of low to moderate chilling locations for cold-

requiring cultivars (Byrne and Bacon 1992). Also, a maximal vernalization response 

was observed for Lov-1 at a constant temperature that matched the autumn 

seasonal average (Chapter 3, Figure 3.7). Furthermore, natural fluctuating 

temperatures within a proceeding six-week period were found to best predict FLC 

expression levels, and therefore vernalization progress, for the A. thaliana relative A. 

halleri (Aikawa et al., 2010).  
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So cumulative average temperature datasets were calculated for field temperatures 

where each value represented the average of all the hourly temperatures that 

preceded it. Predictions of flowering responses were then made by selecting results 

from constant laboratory experiments where the conditions most closely matched 

average temperature values (see Appendix Figure 1 for data selected). This 

approach provided remarkably accurate flowering time predictions for all accessions 

(Figure 4.5) suggesting that constant temperatures generate equivalent responses to 

temperatures that match the long-term average.   

 

4.3 Testing daily temperature integration 

The results presented in Figure 4.5 prompted a growth chamber experiment that 

aimed to determine whether day and night temperatures have an equal chilling effect 

over a four week period. All plants were exposed to 12 hours light and 12 hours dark 

each day and reciprocal regimes were set up: 14oC day and 8oC night; 8oC day and 

14oC night in addition to constant treatments of 14oC, 8oC and 11oC. This enabled 

the flowering response observed for both alternating regimes to be directly compared 

to the flowering responses following the 11oC treatment - a temperature that matched 

the average. 

  

As expected, 14oC and 8oC constant temperature treatments resulted in the latest 

and earliest flowering times respectively. 8oC day, 14oC night treated plants were 

also found to respond similarly to plants vernalized at 11oC, a constant temperature 

that matched the mean. However the plants grown at 14oC during the day and 8oC at 

night flowered later than expected, i.e. later than plants vernalized at 11oC. It was 

noticeable that these plants had grown larger than plants in the other alternating 

temperature treatment, however this difference was negligible after around seven 

days growth in warm conditions (Figure 4.6). 
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Figure 4.4 – Predictions of vernalization progress in the field based on 
accumulation of effective average daily temperatures 
Vernalization responses calculated from Swedish field experiments carried out in 
2011 and 2012 (grey diamonds) are shown along with responses predicted by (0oC, 
6oC) (red dashed line) and (0oC, 15oC) (green dashed line) effective temperature 
ranges. See text for details.  
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Figure 4.5 – Predictions of vernalization progress based on cumulative 
average temperatures.   
Days to flower recorded after growth under field conditions in Sweden in 2011 and 
2012 (grey diamonds). Days to flower were predicted by experiments where constant 
temperature conditions closely matched cumulative average field temperature (see 
Appendix Table 3 for data selection). 
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The similarity of flowering times observed following the 8oC day/14oC night and 11oC 

constant treatments suggest that it is possible for twelve hour periods of temperature 

to be evenly integrated. However the later flowering observed for plants vernalized at 

14oC during the day and 8oC at night (compared with 11oC treated plants) suggest 

that higher daytime temperatures might disproportionately dampen the vernalization 

response.  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.6 - Testing daily temperature integration 
Plants were vernalized by two alternating 14oC and 8oC day / night regimes, or at 
14oC, 11oC or 8oC constantly with a 12 hour photoperiod. Flowering time was then 
scored following transfer to constant 16hr 22oC LD conditions (n=12). 

4.4 Temperature integration is not dependent on declining 
temperatures or photoperiod  
 

Field experiments confirmed that twelve weeks of Swedish autumn temperatures 

fully vernalize a range of later flowering accessions (Chapter 3, Figures 3.10 and 

3.11). Although the temperatures differed between the two years, these experiments 

were repeated during the same season, so they do not inform on whether effective 

vernalization under natural conditions requires declining trends of temperature and/or 

photoperiod. So a common garden experiment was set up in Norwich to test the 
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importance of these environmental cues and also provide a more stringent test for 

the two effective vernalizing temperature ranges.  

 

Un-stratified seeds from all genotypes were sown directly onto bare soil during mid 

February in Norwich and left to germinate naturally. Over the subsequent weeks the 

seedlings were exposed to increases of both temperature and photoperiod, as 

opposed to the decreasing trends that naturally drive their growth during autumn. 

Edi-0 seeds did not germinate so vernalization progress could only be estimated for 

the remaining four genotypes, each of which had around 50 seedlings survive 

through to flowering (Figure 4.4A).  

 

A total of 88 days elapsed between the ColFRISf2 sowing date and observation of the 

first inflorescence. The average temperature over this period was 9.35oC and the 

summation of days with average daily temperatures between 0-6oC and 0-15oC 

ranges predicts totals of 11 and 77 days respectively. ColFRISf2 has a facultative 

requirement for cold so it is impossible to confirm whether this genotype had been 

forced to flower by strong environmental cues that overrode an outstanding ~30 day 

cold requirement or if flowering had been delayed until a permissive 15 hour 

photoperiod had been reached. But FLC expression levels determined 60 days after 

sowing supports the second hypothesis since the 57 effective vernalizing days 

predicted by the 0-15oC temperature range resulted in a similar  ~95% reduction that 

was observed after 56 days of growth at 5oC (Figure 4.7, Chapter 2, Figure 2.3). 

Phenology of the Swedish accessions also provided evidence supporting an effective 

(0oC, 15oC) temperature range.  

 

A total of 82 days elapsed between sowing and flowering of Var2-6, Ull2-5 and Lov-1 

plants. An overall average temperature of 9.57oC was recorded over this period and 

only 11 days were recorded with an average temperature between 0-6oC. For these 

obligate cold-requiring accessions it is unlikely that 11 effective days had permitted 

reproductive transition. These plants had however been exposed to a total of 72 

days within the 0-15oC range during this period - 12 days less than the 84 days 

required for vernalization saturation (Shindo et al., 2006).  
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Figure 4.7 - Vernalization in a field setting occurs independently of 
photoperiod and decreasing temperature trends  
(A) Sowing, germination and flowering dates are indicated along with average daily 
temperatures and daylength. (B) Reductions in FLC expression (relative to NV 
levels) were determined 60 days after the ColFRISf2 sowing date. (C) Average daily 
temperatures recorded during spring in Norwich, S. Sweden and N. Sweden. 
NV=Non-vernalized. 
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The synchronous flowering observed during this field experiment has hampered 

interpretation of the results. Relative differences in flowering enable comparisons to 

be made of vernalization progress, however the synchronous flowering observed 

could equally be explained by sufficient vernalization or conserved stress-related 

flowering pathways overriding any residual cold requirements. At the time of 

flowering the daylength matched that experienced during native flowering times in 

Sweden (~15.5 hours, see Chapter 3, Figure 3.14) and north and south Sweden 

would not have experienced similar temperatures until early June and mid May 

respectively (Figure 4.7). So it is likely that the environmental conditions in Norwich 

would have exerted forcing effects that could have overridden the 12 day cold 

discrepancy predicted by the daily average (0oC, 15oC) range for the Swedish 

accessions. Tracking changes in stress-related and floral pathway genes during this 

experiment may have helped to resolve this uncertainty. 

 

Together the results from the Norwich and Swedish field experiments support the 

assumption that average daily temperatures between 0 and 15oC provide reasonable 

estimates of vernalization progress, even in the absence of decreasing temperature 

and photoperiod cues.  

 

4.4 Vernalization threshold temperatures predict diverse outcomes 
under a changing climate. 
The extent to which winter annual A. thaliana accessions risk having their phenology 

disrupted by future climate change remains an open question. In order to address 

this, vernalization periods were predicted for the current climate and for the end of 

the century at three locations that cover the latitudinal extent of the species’ range: 

Sundsvall (Northern Sweden), Oxford (Central England) and Barcelona (Spain) 

(Figure 4.8A).  

 

Predicted future global temperature increases (Figure 4.1) reflect extensive 

geographical variation. Generally higher rises are predicted over landmasses versus 

the ocean and greatest increases are predicted for the Arctic region (IPCC, 2014). 

The most recent IPCC assessment report includes predictions for four possible 



 
 

 88 

climate futures* in different regions (IPCC, 2014). They forecast 2-6oC and 1-5oC 

increases in annual average temperature by the end of the century for Northern and 

Southern Europe, respectively (Figure 4.5B and C). So a 3oC rise was considered 

appropriate for predicting changes in effective vernalization periods at all locations. 

The use of a uniform temperature rise ensured that model outputs would reflect 

current distributions, rather than different magnitudes of temperature increase.  

 

 

 
 
Figure 4.8 - Annual temperature rises predicted by the end of the century 
(A) A map (Google, INEGI) showing locations selected to predict the impact of 
vernalization. Ranges of increases in annual temperature predicted under different 
representative concentration pathway scenarios for Northern (B) and Southern (C) 
regions of Europe. See footnote for explanation of scenarios (IPCC, 2014).  
 
 
Climate change literature often assumes equal effectiveness of all temperatures 

below a given threshold, including those below 0oC (Prentice 1992). Although 

freezing temperatures may be perceived and accumulated by certain species (Jones 

et al., 2013), direct evidence from laboratory experiments together with indirect 

ecological evidence identified for Lov-1 (Chapter 3, Figure 3.14) suggests that sub-

zero temperatures are ineffective for A. thaliana accessions. Therefore an Above 

                                            
* Four Representative Concentration Pathway (RCP) trajectories RCP2.6, RCP4.5, 
RCP6 and RCP8.5 relate to potential radiative forcing values in 2100 relative to pre-
industrial levels: +2.6, +4.5, +6.0, and +8.5 W/m2 respectively. 
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Zero Threshold (AZT) model was used to predict the number of effective vernalizing 

days in each location from the germination date through to flowering (see methods 

section for details). In accordance with improved Swedish field predictions, average 

daily, rather than hourly temperatures were considered at each location. 

 

 
 
 

 
 
 
 
Figure 4.9 - Upper temperature thresholds for vernalization predict diverse 
impacts of climate change 
The minimum vernalizing threshold temperature was set to 0oC and the effective 
vernalizing days per growing season were calculated for maximum threshold levels 
up to 15oC for Sundsvall and Oxford and 20oC for Barcelona. The upper panel shows 
present day results in blue and projected 2090-2099 climate results in red. The lower 
panel shows the percentage change expected in the quantity of vernalization by the 
end of the century at each location. 
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Data from the AZT model enabled impacts to be determined across a range of Tmax 

threshold temperatures (Figure 4.9). In addition to providing predictions for A. 

thaliana vernalization, this also allows the impact to be determined for many species 

that also require minimum average daily temperatures above 0oC to vernalize 

effectively (see Chapter 1, Figure 1.4).   

 

The maximum threshold temperature (Tmax) of a species was found to make a 

significant difference to the predicted impact of climate change on vernalization 

(Figure 4.9). An overall reduction in vernalizing days was predicted in both Oxford 

and Barcelona for the majority of maximum threshold temperatures. Although little 

change is predicted in Sundsvall for plants with a Tmax below 4oC, a striking increase 

in vernalizing days is predicted for plants with thresholds above this temperature 

(Figure 4.9).  Although initially counterintuitive, this prediction reflects a loss of days 

above these thresholds being exceeded by the number of days above 0oC moving 

into the effective temperature window. 
 

Next upper thresholds were applied to forecast the changes in the number of 

vernalizing days in these locations for A. thaliana over the coming century. The 15oC 

threshold was applied to both Sundsvall and Oxford data to reflect the accuracy of a 

0-15oC range in predicting field responses of British and Swedish accessions (Figure 

4.4). A threshold of 20oC was applied to the Barcelona data as 19oC was reported to 

mildly accelerate flowering in a significant number of Spanish accessions 

(Wollenburg and Amasino 2012). A reduction in the number of vernalizing days was 

predicted for both Oxford (26 days) and Barcelona (15 days). Despite these results 

representing a ~12% decrease in the effective vernalizing period at both these 

locations, this is unlikely to impact flowering time because the remaining 20 weeks of 

effective cold exceeds any reported vernalization requirement for A. thaliana (Shindo 

et al., 2005; Mendez-Vigo et al., 2011). 

 
The impact of climate change was next considered for Sundsvall. As suggested in 

Figure 4.9 an increase in effective vernalizing days was forecast near the northerly 

limit of the range for A. thaliana plants with a Tmax of 15oC. Early germinating plants 

are currently exposed to a total of 19 weeks of cold, but this period is predicted to 
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rise by ~10% at a rate of 0.23 days year-1 to reach a total of 22.2 weeks by the end 

of the century (Figure 4.10).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10 - Predicted changes in effective vernalizing days for A. thaliana 
during the 21st century  
Effective days were calculated as the number of days between 0oC and the  
maximum threshold temperature identified for accessions at each location to predict 
the impact on A. thaliana vernalization over the coming century. 
 
 

4.5 Discussion 

With very few exceptions (Aikawa et al., 2010), studies on vernalization responses 

are typically undertaken under standard, non-fluctuating laboratory conditions. 

Although these experiments have greatly improved our understanding of the 

molecular basis of chilling accumulation during exposure to constant temperature, 

much less is known about how these responses compare to those generated under 

natural conditions where daily temperatures can vary by ~1oC hour-1* (Chapter 3, 

Figure 3.7C).  

 

                                            
* Calculated from Swedish temperature data, see Materials and Methods 
section. 

100!

110!

120!

130!

140!

150!

160!

170!

180!

190!

200!

2000! 2020! 2040! 2060! 2080! 2100!

Ef
fe

ct
iv

e 
Ve

rn
al

iz
in

g 
D

ay
s 
!

Year!

Sundsvall! Oxford! Barcelona!



 
 

 92 

Determining an appropriate period of vernalization temperature integration was the 

first step toward accurate predictions being made about the impact of climate change 

on vernalization. To achieve this, iterative comparisons were made between 

laboratory results with those obtained under natural field conditions. These revealed 

that accumulation of hourly temperatures significantly underestimated vernalization 

responses for all temperature thresholds  (Figure 4.2 and other data not shown). A 

model that simulated different vernalization responses each day reflecting the 

effectiveness observed under constant temperature conditions also underestimated 

field responses for the Swedish accessions (Figure 4.3). But extension of the 

integration period significantly improved vernalization response estimates, perhaps 

because this disregards the minority of ineffective hours around midday and 

effectively extends the period of chilling perception. When maximum responses were 

considered for all average daily temperatures above 0oC, but below 6oC, reasonable 

predictions were made for ColFRISf2 and Edi-0 vernalization responses. But 

increasing the Tmax to 15oC significantly improved predictions for all accessions 

(Figure 4.4). Also averaging temperatures over progressively longer periods 

accurately predicted responses of all lines (Figure 4.5). The similarity of constant and 

long-term average temperature responses provides a potential explanation for how 

Lov-1 can exhibit an optimal vernalizing response at a constant temperature that 

matches the autumn seasonal average (Chapter 3, Figure 3.7).  

 

Results from an experiment designed to test for differential weighting of day and 

night temperatures suggested that warmer daytime temperatures might dampen an 

averaged vernalization response (Figure 4.4). From an ecological perspective, 

consistent higher daytime temperature cues may be indicative of late summer, 

therefore a tempered response may have evolved under these conditions to ensure 

vernalization does not complete until the critical photoperiod has passed. Consistent 

with this theory, daytime temperatures have also been shown to control the timing of 

orchid flowering (Blanchard and Runckle 2006). Differences observed in plant size 

suggest a potential mechanism for this inhibited response. At the end of the 

vernalization treatment plants grown at 14oC constantly and under 14oC day / 8oC 

night conditions were visibly larger than plants grown at 11oC or 8oC constantly or at 

8oC day/14oC night (Figure 4.6). Previous studies suggest that this may be due to the 

activity of SPATULA, a transcription factor that represses vegetative growth when 

plants are grown under cool daytime temperatures (Thingnaes et al. 2003; 
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Sideaway-Lee et al., 2013). Although mitosis is thought to be required for stable 

epigenetic silencing of FLC (Finnegan et al., 2007) every DNA replication event risks 

the loss of histone based memory of preceding environmental exposure (Dodd et al., 

2007, Angel et al., 2011, Angel et al., 2015). Therefore an increased rate of cell 

division achieved through relief of SPATULA repression during warm days, might 

have increased the probability of H3K27me3 nucleation loss at FLC compared to the 

plants grown at 11oC constantly or at 8oC during the day and 14oC at night.  

 

Increasing the maximum temperature threshold from 6oC to 15oC improved 

predictions of vernalization progress for later flowering accessions during the field 

experiment in Sweden, but this improvement was less obvious for ColFRISf2 (Figure 

4.4). An experiment carried out during spring in Norwich provided a more stringent 

test for these two thresholds because the plants where exposed to a much larger 

proportion of warmer temperatures and this increased the disparity between the 

estimates (Figure 4.7A). Although vernalization was assessed in the same way as 

during the Sweden experiment, observed flowering times and FLC expression 

validated the decision to extend the effective temperature range for A. thaliana from 

0-6oC to 0oC-15oC (Figure 4.7A, B). Additionally, the accuracy of responses 

predicted by constant temperature responses in CERs of responses under complex 

natural environments suggested vernalization temperatures are integrated on a daily 

basis, regardless of overall trends of temperature or photoperiod. 

 

Multiple climate models now predict that most locations across the globe will get 

hotter and experience fewer extreme cold temperatures by the end of the century. In 

addition, a retreat in permafrost and a reduction in snow cover in the northern 

hemisphere of between 7-25% is expected (IPCC, 2014). The extent to which both 

warmer autumn and winters will disrupt plant development and counteract the direct 

effects of warming has been identified as a key gap in our knowledge (Chuine et al., 

2010; Cook et al., 2012; Laube et al., 2013). In order to address this question an 

optimal combination of effective temperatures and time period of assessment 

needed to be identified. Long-term temperature averaging was found to provide good 

approximations of both early and late vernalization responses for all genotypes 

(Figure 4.5). But the long-term averaging method requires flowering time responses 

to be known for a range of constant temperature treatments to enable field 

responses to be estimated for each accession. This makes it ideal to address 
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questions relating to a limited number of accessions in specific locations, but limits its 

suitability for making species-wide predictions. An AZT (Above Zero Threshold) 

model was also used to sum effective daily average temperatures between 0 and 

15oC to successfully predict vernalization saturation under natural field conditions 

(Figures 4.4). This more general model was selected as it only requires existing 

knowledge of Tmax and vernalization requirements at 5oC to predict the impact of 

climate change for the vernalization of A. thaliana.  

 

The most striking AZT prediction was the increase in vernalization period at northerly 

latitudes by the end of the century. This increase is likely to be applicable to many 

species that do not vernalize below 0oC and have maximum threshold temperatures 

above 4oC (Chouard, 1960). An opposite effect would be predicted for this region by 

climate change models that apply only a maximum threshold value (Prentice et al., 

2010) because unlike AZT, they accumulate all temperatures below a threshold in 

present and future datasets and disregard the fact that sub-zero temperatures are 

ineffective for many species (Chouard, 1960).  For thresholds between 1oC and 15oC 

more intuitive reductions in effective days of 75% to 15% in Oxford and 85% to 10% 

in Barcelona are predicted. 

 

AZT predictions suggest that vernalization requirements of many A. thaliana 

accessions are likely to be met following a 3oC increase in average temperature 

across the species range (Figure 4.10). This in turn suggests that warmer spring 

temperatures will advance the phenology of this species over the coming century. 

This prediction is consistent with a recent report by Li and colleagues that showed 

three simulated future climates in Sweden and Spain all advanced flowering times for 

a global panel of accessions (Li et al., 2014). Although an assessment of relative 

accession fitness in field experiments revealed a lag in the adaptation of A. thaliana 

to warmer climates (Wilczek et al., 2014), the ability to advance flowering in 

response to warming bodes well for this species as this is associated with increased 

chance of survival under climate change (Willis et al., 2008). 

 

Results in this chapter suggest that climate change will not result in a delay of A. 

thaliana flowering over the next 85 years. However significant reductions in effective 

temperatures were predicted for plants in southern Europe that have lower 

vernalization thresholds (Figure 4.9). The manner in which impaired vernalization 
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affects the flowering, seed production and dormancy of these species will determine 

their chances of survival as average temperatures continue to increase over the 

coming century.  
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4.6 Material and Methods 

4.6.1 Plant material and growth conditions.  
For the daily averaging experiment seeds were sown in a randomized design in 

Arabidopsis mix and stratified for 3 days at 4oC. Seedlings were pre-grown for 7 days 

(16h light: 8h dark) at 22oC and then vernalized for 4 weeks (12h light: 12h dark) in 

cabinets (Sanyo MLR-351H) at constant 8oC, 11oC or 14oC settings or 14oC day/8oC 

night or 14oC night/ 8oC day, All temperatures were recorded as ± ≤1.5oC, 70% ± 

≤10% RH. Low light (~30μmol m-2 s-1). Plants were then transferred to random 

locations in a controlled environment room (16h light: 8h dark, 22oC ± 2oC) and 

flowering time was scored as the number of days of growth until floral buds became 

visible.  

4.6.2 Sweden Field Experiments  
See Chapter 3 Material and Methods section 3.4.2. 

4.6.3 Hourly chilling unit accumulation calculations 
In this model, effective vernalizing hours accumulate when the recorded temperature 

is above a minimum effective temperature, TMIN; but below the maximum effective 

temperature, TMAX. The rate of vernalization is zero or negligible for periods where the 

temperature is either above or below this specified effective temperature range and 

maximal during periods where the temperature is between TMIN and TMAX. Plant 

responses therefore depend on upon both the temperature and the treatment 

duration. (Craigon et al., 1995; Streck 2002; Streck and Schuh 2005). 

 

Data presented in Figure 4.2 uses two ranges to predict vernalization progress 

during the 2011 and 2012 field experiments 

 

Range 1:  TMIN = 0oC, TMAX = 6oC 

Range 2:  TMIN = 0oC, TMAX = 15oC  

 

The vernalization response was considered saturated (VSAT) when accumulated 

vernalizing hours reached the number of hours required to saturate the response 

under an optimal constant temperature treatment: 
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ColFRISF2 VSAT = 960 hours 

Lov-1 VSAT =  2016 hours 

 

4.6.4 Accession specific model 

 
Vernalization functions were determined by flowering time results recorded for 

constant temperature treatments (0oC, 2oC, 5oC, 8oC, 12oC and 14oC, see Chapter 2 

for details). Smooth curves were fitted to the temperature dependent rates using 

cubic splines in MATLAB (MathWorks Inc., Massachusetts, UK) constrained to zero 

at 0oC and 16oC. These splines were used to generate predicted rates between 

these extremes.  

 

 

The models were fitted as follows: 

 

Log10(mean days to flower-factor*fastest time to flower) 

=Log10(NV – factor*fastest time to flower) – b * weeks 

 

Where the values of b are the temperature dependent vernalization rates. 

 r2 values exclude 0oC data.  

 

 

Taking antilogs and rearranging gives: 

Mean days to flower = (NV- factor * fastest) *10-b weeks + factor * fastest 

 

b temperature  x duration  

 

Where b is the value of the rate for the temperature in that time period, and the 

duration is measured in weeks (so one day = 1/7 of a week). All values were then 

added together and to calculate: 

 

Mean days to flower = (NV- factor * fastest) *10-(sum of b x duration calculated above) + factor * 

fastest 
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ColFRISf2  

r2  = 0.978 

Non vernalized (NV) flowering time = 54.27 

Fastest time to flower = 13.9 

Factor = 0.97 

 

Edi-0 
 r2  = 0.973 

NV flowering time = 67.08 

Fastest time to flower = 16.08 

Factor = 0.85 
 

Ull2-5 

r2  = 0.845 

NV flowering time = 120 

Fastest time to flower = 23.25 

Factor = 0.85 

 

Var2-6  

r2  = 0.83 

NV flowering time = 140 

Fastest time to flower = 25.25 

Factor = 0.817 

 

Lov-1 

r2  = 0.848 

NV flowering time = 130 

Fastest time to flower = 20.27 

Factor = 0.85 
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4.6.5 Accumulation of effective daily average temperatures 
 
Rather than accumulating temperatures recorded every hour in the field (as 

described in 4.6.3), accumulations of average daily temperatures were made based 

on the following ranges: 

 

Range 1:  TMIN = 0oC, TMAX = 6oC 

Range 2:  TMIN = 0oC, TMAX = 15oC 

 

The following equation was used to calculate %Vernalization values shown in Figure 

4.4: 

 

% Vernalization = (OBSDTF – MINDTF) / (NVDTF - MINDTF)*100 = % un-vernalized 

 

100 - % un-vernalized = % vernalized 

 

Where: 

OBSDTF = Observed number of days to flower 

NVDTF = Days to flower recorded / assigned for non-vernalized plants 

MINDTF = Minimum number of days to flower observed  

   

 

4.6.6 Using cumulative average temperatures to predict vernalization 
responses under field conditions 

Field temperature data was assessed to determine dates in the field when 4, 6, 8 

and 12 weeks of effective average daily temperatures were accumulated based on 

Range 2 thresholds (TMIN = 0oC, TMAX = 15oC).  

 

For each of these dates cumulative average temperatures (TCA) were calculated 

where TCA = the mean of all preceding hourly temperatures since the sowing date. 

Flowering time data was then selected for each date that most closely matched the 

TCA. The selected data used to predict vernalization responses for all accessions 

during autumn 2011 and 2012 is shown on the next page.  
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2011 

Field Temperatures 

Weeks after 

sowing 
4 5 6 8 12 

TCA 12.48oC 10.82oC 9.72oC 8.40oC 6.42oC 

Selected Cabinet Data 

Weeks 

vernalization 
4 5 6 8 12 

Constant 

temperature 
12oC 10oC 8oC 8oC 5oC 

 
 

2012 

Field Temperatures 

Weeks after 

sowing 
4 6 8 12 

TCA 9.49oC 7.34oC 5.61oC 4.55oC 

Selected Cabinet Data 

Weeks 

vernalization 
4 6 8 12 

Constant 

temperature 
8oC 8oC 5oC 5oC 
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4.6.7 Norwich Field Experiment 
Seeds were sown liberally onto moist, weed-free soil (52o 62.83’N 1 o 29.67’E) and 

left to germinate naturally without prior stratification. The area was cordoned off with 

barrier tape to limit herbivory. Some weeding was carried out during the experiment 

to minimize competition from endogenous plants, but no watering. Growth was 

monitored a minimum of three times each week. Day length and daily average 

temperature data were taken from http://www.timeanddate.com and 

http://www.wunderground.com, respectively. 

4.6.8 RNA extraction  
See Chapter 2 Materials and Methods section 2.10.2. 

4.6.9 Reverse Transcription  
See Chapter 3 section Materials and Methods section 2.10.3.  

4.6.10 Quantitative Polymerase Chain Reaction (qPCR) 
See Chapter 3 section Materials and Methods section 2.10.4 Expression levels were 

determined using Roche Universal Probe Library (UPL) Probes and the primers 

shown on the next page. 

 

 

FLC (At5g10140) 

sFLC_UPL_#65_F 5’-gtgggatcaaatgtcaaaaatg-3’ 

sFLC_UPL_#65_R 5’-ggagagggcagtctcaaggt-3’ 

UPL #65 5’-ctggagga-3’ 

  

UBC (At5g25760) 

UBC_UPL_#9_F 5’-tcctcttaactgcgactcagg-3’ 

UBC_UPL_#9_R 5’-gcgaggcgtgtatacatttg-3’ 

UPL#9 5’-tggtgatg-3’ 

 

FLC gene expression was calculated relative to UBC levels using the comparative Ct 

method (also known as the 2-[delta][delta]Ct method) (Schmittgen and Livak 2008) 

and statistical analysis of was performed using GraphPad Prism version 6 software 

for Mac (La Jolla, California, USA). 
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4.6.11 Modelling present and future effective vernalizing days 
To examine changes in vernalization in Oxford we obtained simulated hourly 

temperature data for the current climate and for the 2090-2099 climate predicted for 

Oxford (51.8 °N 1.3 °W) from United Kingdom Climate Impacts Programme (UKCIP-

www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/). The magnitude of 

the predicted change in temperatures in the UKCIP data was assessed by fitting a 

linear regression to the relationship between hourly temperatures under the current 

climate sorted into ascending order and predicted future temperatures sorted in the 

same way. For current temperatures of 0oC, the predicted increase in Oxford is 

2.9oC.  To examine impacts for Spanish and Swedish accessions we obtained 

temperature data collected between 1973 to 2012 at Barcelona airport in Spain (41.4 

°N, 2.2 °E) from NOAA (www1.ncdc.noaa.gov) and between 1961 to 2011 at 

Sundsvall airport in Sweden (62.4 °N 17.2 °E) from the Swedish Meteorological and 

Hydrological Institute (www.smhi.se). Some data gaps of one or two hours in the 

Barcelona time series were filled by linear interpolation, and gaps of one day were 

filled by substituting the previous day’s data. To predict likely impacts of future 

climate change at Barcelona and Sundsvall, an increment of 3°C was added to all 

temperatures. For each chilling model, the total number of effective days was 

calculated between the predicted germination and flowering at each location. This 

corresponds approximately to 1st August until 1st May in Sundsvall, 1st September 

until 31st March in Oxford and 1st October to 15th March in Barcelona (Montesinos et 

al., 2009, Pico 2012). We used a range of threshold temperatures from 0 to 15 °C for 

UKCIP and Sundsvall projections and from 0 to 20 °C for Barcelona. The number of 

effective days in the warmer climate was expressed as a percentage of the value for 

the current climate.  All calculations were carried out using Mathematica 5.2 

(Wolfram Research Inc, Champaign, IL ) 
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Chapter 5 - Detecting RNA molecules in planta 
 

 

Division of work: Tjevlar Olsson and Matthew Hartley created the image analysis 

programme used to quantify mRNA levels. Stefanie Rosa helped to optimize tissue 

preparation.  

 

5.1 Introduction 

Understanding how vernalizing temperatures are perceived and remembered by 

plants at the molecular level has proved challenging (Song et al., 2013). Modelling 

approaches have fundamentally advanced this knowledge and correctly predicted 

that cold-induced cell autonomous switching of epigenetic states lies at the heart of 

vernalization (Angel et al., 2011; Angel et al., 2015; Satake 2012). Addressing the 

questions raised by these models is likely to be important to progress understanding 

of how fluctuating temperatures are integrated over time, but progress has been 

hampered by the lack of techniques that provide cellular resolution. 

 

Calculating relative changes in gene transcription by qRT-PCR overlooks 

potentially important information relating to cell-to-cell variation and sub-

cellular localization of RNA molecules. Single molecule RNA fluorescence in situ 

hybridization (smFISH) was developed to achieve these aims (Femino et al., 1998). 

This technique uses multiple, single-labeled oligonucleotide probes to bind target 

RNA and generate diffraction-limited signals that can be detected using a standard 

wide-field fluorescence microscope (Raj et al., 2008). Despite advances in many 

model systems (Castelnuovo et al., 2013, Neuert et al., 2013, Yang et al., 2014, Ji et 

al., 2013), this method has yet to be adapted for use in plants. We decided this 

would be an important technique for FLC analysis so I embarked on establishing it 

for A. thaliana. This chapter describes optimization and validation of this technique 

by determining mRNA levels of a housekeeping gene in the common Arabidopsis lab 

strain Columbia (Col-0).  
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5.2 Gene Selection 

At1G13320 is the A2 scaffolding A subunit of Protein Phosphatase2A (PP2A) (Lillo et 

al., 2014). This gene was selected for study using smFISH because, unlike several 

environmentally regulated phosphatase subunits, it exhibits mRNA levels that are 

relatively unperturbed by a range of abiotic and biotic stresses. Furthermore, this 

gene is transcribed evenly across many tissue types throughout development. These 

robust properties led to At1G13320 being identified as a superior gene for RT-qPCR 

normalization (Czechowski et al., 2005).  

5.2 Tissue selection  

Autofluorescence is inherent in many plant tissues so it occurs at higher levels in A. 

thaliana than normally observed for many other organisms. This autofluorescence 

has proved to be a significant barrier to the development of fluorescence microscopy 

techniques in plants (Frost, 1995). It was therefore essential to carry out an 

assessment of naturally occurring spectral emissions across all areas of the plant to 

determine the most suitable tissue for smFISH. Although significant levels of 

autofluorescence were detected everywhere, the root tip appeared to be the best 

tissue in which to attempt the smFISH technique. Closer observation of root cells 

prior to the application of probes revealed punctate autofluorescence signals in 

endoreduplicated nuclei in the transition zone and further up the root. This finding 

restricted analysis to the relatively undifferentiated diploid cell population in the root 

apical meristem (Figure 5.1). 

5.3 Sample Preparation 

Standard epi-fluorescence microscopy using a CCD camera has been recommended 

for smFISH rather than confocal microscopy (Raj et al., 2008). Since multi-layered 

plant tissue cannot be resolved using standard fluorescence microscopy, this meant 

that samples needed to be prepared in single cell layers.  

 

Researchers have traditionally used wax embedding and sectioning to produce thin 

layer tissue sections, but this process left samples with fluorescence levels that 

exceeded probe signals (data not shown). Cryosectioning was also attempted, but 

residual mounting media also inhibited signal detection (data not shown). It became 
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apparent that a novel method of sample preparation was required that would both 

preserve cellular architecture and minimize background fluorescence.  

 

 

 

Figure 5.1 – Arabidopsis root meristem cells are suitable for smFISH analysis 
Regions of growth are indicated along a longitudinal section of root (A). Cells from 
the apical meristem labeled with the nuclear stain DAPI (blue) exhibited low levels of 
autofluorescence at wavelengths that match probe emission maxima (A). Punctate 
signals observed in differentiated nuclei precluded them from further analysis. Details 
of probe excitation and emission spectra tested are included in Appendix Figure 1. 
Root image was adapted from Verbelen et al., 2006. 
 

5.4 Detection of PP2A mRNA  

Unlike other in situ techniques smFISH does not rely on signal amplification for 

detection. Instead each 20nt probe is conjugated to a single fluorophore and a set of 

probes hybridizing to a single RNA molecule generates a diffraction-limited spot that 

is detectable by a wide-field fluorescence microscope. A probe set of 48 probes (see 

Appendix Table 3) was labeled with Quasar©670 dye and designed to be 

complimentary to PP2A exons to enable detection of PP2A mRNA (Figure 5.2A).  

B 
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Figure 5.2 - Detecting PP2A RNA using multiplexed single molecule 
fluorescence In Situ hybridization  
(A) Unspliced and spliced PP2A probes sets designed to target intronic and exonic 
RNA sequences respectively. (B) Schematic representation of smFISH.  
 

 

After considerable optimization, a process was developed to produce meristematic 

root tissue samples suitable for smFISH analysis.  Details of the sample preparation 

are included in the Materials and Methods section at the end of this chapter. Briefly 

roots were fixed with paraformaldehyde and squashed onto slides before undergoing 

a freeze-thaw procedure to ensure tissue adherance. Ethanol was used to 

permeabilize the tissue before probes were left to hybridize to the target RNA 

overnight (Figure 5.2B). DAPI was added to each sample to label the nuclei before 

imaging. 

 

This method of sample preparation was found to yield several single cell-layers from 

each root in addition to many isolated cells that were also suitable for analysis 

(Figure 5.3 A-D). Weak probe signals were observed when the samples were 

imaged using a standard CCD camera (data not shown) however the enhanced 

sensitivity of an EMCCD camera greatly improved the signal-to-noise ratio. 

Consistent with other reports, smFISH probes enabled RNA molecules to be 

visualised as punctate signals approximately 0.5μm in diameter, homogeneously 

dispersed throughout the cell (Raj et al., 2008; Raj and Tyagi 2010) (Figure 5.3).  

These signals were no longer visible following RNase treatment (Appendix Figure 2). 

 

Prepare root samples!
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Hybridize probes !
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Fig 5.3 - PP2A mRNA observed in Col-0 root meristem cells  
Maximum projection images of cell files (A and B) and isolated cells (C and D). PP2A 
mRNA Quasar©570 probe signals are shown in red and nuclear stain DAPI in blue.  
Scale bar = 10μm. 
 

5.5 Detecting sites of PP2A transcription 

Advances in single molecule RNA labeling have revealed that transcription is not a 

smooth, continuous process; for some genes quiescent periods of gene inactivity are 

interspersed by bursts of transcriptional initiation (Golding et al., 2005; Chubb et al., 

2006; Raj et al., 2008). Nuclear signals observed in A. thaliana samples were 

indicative of the bursts identified in other organisms, with transcriptional events 

producing foci that were both larger and of higher intensity than mRNA observed in 

A!

C!

PP2A mRNA! PP2A mRNA + DAPI!

B!

D!
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the cytoplasm (Figure 5.4). They are likely the result of probes binding to RNA 

associated with multiple polymerases simultaneously transcribing PP2A. 

 

 

 

Figure 5.4 – Evidence of transcriptional bursting in Col-0 meristematic cells  
Red PP2A exon probe signals are observed both in nuclei (DAPI, blue) and in the 
cytoplasm (A). Magnification of the region outlined in (A) is shown in (B). The 
arrowhead indicates a burst of PP2A transcription. This signal is larger than the 
others in this image that are likely represent single mRNA molecules. Scale bar = 
10μm in (A), 2.5μm in (B). 
 

 

Intron chromosomal expression FISH (iceFISH) is a direct method to visualize sites 

of transcription by using probes complementary to intronic gene sequences 

(Levesque and Raj 2013). We designed a second set of 48 probes complimentary 

only to PP2A introns and labeled them with Quasar ©670 dye to allow iceFISH to be 

combined with standard smFISH (Figure 5.2A). As expected, putative sites of 

transcription were restricted to the nucleus and invariably co-localized with exonic 

probe signals (Figure 5.5). Consistent with transcription being halted during mitosis, 

no unspliced signals were observed at this stage of the cell cycle (Figure 5.6). mRNA 

observed in the cytoplasm of these cells was therefore likely to have been 

synthesized prior to chromosome condensation. 

5.5 Image analysis and quantification of RNA 

Quantification of RNA from smFISH images is typically achieved through automated 

image analysis. Two stages of processing were required for analyzing our images, 

cell segmentation and spot counting (Figure 5.7). Determining cell boundaries 

proved to be the most challenging aspect of the analysis, so annotated results were 

A! B!
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checked manually to ensure accurate segmentation. Details of the image analysis 

are provided in the Material and Methods section at the end of this chapter. 

 

 
 

Figure 5.5 – Multiplexed probe sets enable simultaneous detection of spliced 
and unspliced PP2A RNA in Col-0 meristematic cells 
A representative image of isolated meristem cell showing two sites of active 
transcription located within the nucleus that are both co-localized with PP2A mRNA 
signals. (A). (B) Magnified image of two mRNA signals, one co-localized with an 
unspliced PP2A. (C) Fluorescence intensity of these signals have been plotted 
against length (μm).  Scale bars = 5μm in A and 0.5μm in B. 
 

 

Image analysis results indicated that the numbers of PP2A mRNA per cell were not 

normally distributed. 71% of cells contained between 20 and 60 mRNA whilst the 

remaining 29% contained between 70 and 220 molecules (Figure 5.8A). It was 

notable that every cell analysed contained PP2A RNA with a minimum of 15 

transcripts observed (Figure 5.8A). An average of 74 mRNA were detected in each 
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cell (Figure 5.8B). Consistent with PP2A being considered a superior normalization 

gene (Czeweski et al., 2010) the signal from intronic probes showed the gene is 

expressed in over 80% of cells (Figure 5.8C). The cells being analysed were 

assessed to be diploid as two PP2A transcription foci were generally detected. 4% of 

cells had three foci and 10% had four, consistent with the proportion of cells that 

would have likely undergone DNA synthesis but had yet to divide. This suggests that 

expression occurs from alleles located on two sets of sister chromatids (Figure 5.9).  

 

 

 

 

Figure 5.6 – An absence of transcription during mitosis in Col-0 meristematic 
cells. Representative images of cells undergoing mitosis. Condensed DNA are 
labeled with DAPI (Blue), spliced PP2A RNA, Red and unspliced PP2A RNA, Green. 
Scale Bar =10 μm. 
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Figure 5.7 – Image analysis pipeline used to detect probe signals and 
generate counts of probes per cell A maximum intensity projection of the nuclear 
DAPI signal was used to determine cell boundaries and segment the image. Find 
edges and template matching commands identified the probe signals that were used 
generate annotated projected images. Details of image analysis can be found in the 
materials and methods section at the end of the chapter. Figure courtesy of Dr 
Matthew Hartely. 
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Figure 5.8 - Quantification of PP2A RNA in Col-0 meristematic cells 
Frequency distribution of RNA molecules per cell is shown in (A). The overall 
average RNA number per cell is shown in B and active sites of PP2A transcription 
are presented in (C). All error bars are +SEM, n=3. 
 
 
 
 

 
 
 
Figure 5.9 - Simultaneous PP2A transcription by sister chromatids 
A representative maximum projected image showing 4 sites of PP2A transcription. 
The nucleus is labeled with DAPI (Blue), spliced PP2A mRNA is red and unspliced 
PP2A RNA is shown in green. Scale Bar =10 μm. 
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5.6 Discussion 

The ability to quantify RNA at the cellular level has led to a greater understanding of 

transcriptional regulation in many organisms (Castelnuovo et al., 2013, Neuert et al., 

2013, Yang et al., 2014, Ji et al., 2013). The results presented in this chapter confirm 

that smFISH can now also be used to analyse transcript behaviour in A. thaliana.  

Analysis of the housekeeping gene PP2A revealed significant cell-to-cell variability 

with the number of transcripts per cell found to span one order of magnitude. There 

was also evidence that steady state mRNA levels are maintained by high levels of 

transcription (Figure 5.8).  

 

There are many advantages associated with using this single cell approach to 

quantify RNA. Not only does smFISH greatly improve the resolution offered 

compared to standard plant RNA in situs, it is also much faster than the traditional 

wax embedding and sectioning process (Drea et al., 2009). Report of a shorter 

version of this method, termed turboFISH, indicates that five minutes of hybridization 

followed by a three minute wash can be sufficient to produce images suitable for 

RNA quantification (Shaffer et al., 2013). It is likely that this protocol could also be 

shortened considerably; indeed reducing the hybridization step to 3 hours did not 

compromise PP2A signal intensity (data not shown). But a typical experiment 

requires 5 hours to image ~400 cells, so it was more convenient to split the protocol 

over two days.  

 

Indication of gene activity at a cellular resolution is typically achieved in plants by 

generating transgenic lines that contain protein-fusion constructs. However smFISH 

provides an insight into gene transcription from an endogenous locus and avoids 

misleading results that could be caused by random gene insertions in transgenic 

lines (Levesque and Raj 2013). Furthermore, sequence conservation between 

accessions means that one probe set can be used to determine natural variation in 

endogenous expression, although introns and exon lengths ultimately determine the 

suitability of genes for ice or smFISH respectively. 

 

In addition to quantifying mRNA and visualizing active sites of transcription at the 

single cell level, adapted probe sets have also been shown to successfully identify 

RNA derived from maternal and paternal gene copies that differ in as little as 12 
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base pairs (Hansen et al., 2013). Furthermore, combining targeted probe sets with 

masking oligonucleotides make it possible to detect RNA transcripts that differ by 

only a single nucleotide (Levesque et al., 2013). In addition to these applications, 

smFISH has also been used to detect and analyze the regulatory role of long non-

coding RNA (Maamar et al., 2013). Adaptation of smFISH for use in A. thaliana now 

opens up these exciting possibilities to members of the plant research community.  
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5.7 Materials and Methods 

5.7.1 Plant Growth Conditions 
Columbia (Col-0) seeds were sown onto MS media minus glucose in 10cm square 

plates (Sterilin Ltd, Cheshire, UK) and stratified for 3 days at 5oC. They were then 

transferred to a growth cabinet (Sanyo MLR-351) with the following settings: 16h 

light: 8h dark, 100μmol m-2 s-1, 22oC ± 1oC. 

5.7.2 smFISH Protocol 
N.B. Details of reagents highlighted in bold are listed at the end of the protocol. 

Seedlings were removed from the media and the root tips were cut using a razor 

blade and placed into glass wells containing 4% paraformaldehyde and fixed for 15 

minutes. They were then removed and washed twice with nuclease free 1X PBS 

(Thermo Scientific, Lutterworth, UK). Three roots were then arranged on each Poly-

L-Lysine slide (Thermo Scientific, Lutterworth, UK) and covered by 22mm x 22mm 

No.1 glass coverslips (Slaughter, Uppminster, UK). The meristems were then 

squashed before each slide was submerged (together with the coverslip) for 10 

seconds in liquid nitrogen. The coverslips were then flipped off the slides using a 

razor blade and the roots left to dry at room temperature for 30 minutes.  

 

Tissue permeabilization was achieved by immersing the samples in 70% ethanol for 

one hour. The ethanol was then left to evaporate away at room temperature for 5 

minutes before two washes were carried out with wash buffer, each wash was left 

on for 2 minutes.100μl of hybridization buffer containing probes at a final 

concentration of 250nM was then added to each slide.  Coverslips (Slaughter, 

Uppminster, UK) were carefully laid over the samples to prevent the evaporation of 

the buffer and the probes were left to hybridize at 37oC overnight in the dark.  

 

Unbound probes were pipetted off in the morning. Each sample was washed twice 

with wash buffer with the second wash left to incubate for 30 minutes at 37oC. 

100μL of the nuclear stain DAPI was then added to each slide and left to incubate at 

37oC for 30 minutes. The DAPI was removed and 100μl 2xSSC was added and then 

removed. 100μL GLOX buffer minus enzymes was added to the samples and left 

to equilibrate for 2 minutes. This was removed and replaced with 100μL of GLOX 

buffer containing enzymes. The samples were then covered by 22mm x 22mm 
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No.1 coverslips (Slaughter, Uppminster, UK), sealed with nail varnish and 

immediately imaged. 

 

5.7.3 Reagent preparation 

4%	  Paraformaldehyde	  (50mL)	  
150μL 1M NaOH was dissolved in 25mL H2O in a 100ml glass beaker before the 

addition of 2g prilled paraformaldehyde pellets. The solution was heated to 60oC and 

stirred continuously until the pellets fully dissolved. The beaker was then removed 

from the heat before 25mL 2 x PBS was added. ~50μl 1M H2SO4 was then also 

added to bring the pH up to pH7. The final solution was immediately chilled on ice 

until before being aliquoted and stored at -20oC. 

2X	  Saline-‐Sodium	  Citrate	  (SSC)	  (20mL)	  
2mL nuclease free 20 X SSC (Thermo Fisher Scientific, Paisley, UK) diluted up to 

final volume of 20mL with nuclease free water (Qiagen, Manchester, UK). 

Hybridization	  Buffer	  (10mL)	  
Final composition: 100mg/mL dextran sulfate and 10% formamide in 2X SSC 

1g dextran sulfate (Sigma-Aldrich, St Louis, USA) was dissolved in 1mL nuclease 

free 20X SCC, 1mL deionized formamide (Thermo Fisher Scientific, Paisley, UK) and 

nuclease free water up to 10mL final volume. 

Wash	  Buffer	  (50mL)	  
Final composition: 10% formamide in 2X SSC 

5mL nuclease free 20X SSC mixed with 5mL nuclease free deionized formamide and 

nuclease free water up to 50mL final volume.  

Nuclear	  stain:	  4’,6-‐diaidino-‐2-‐phenylindole	  (DAPI)	  (20mL)	  
Final composition 50ng/μL of 10% formamide in 2X SSC  

1mg DAPI dissolved in 20mL wash buffer 

Anti-‐fade	  GLOX	  buffer	  minus	  enzymes	  (1mL)	  
Final composition: 0.4%glucose in 10nM Tris, 2X SCC 

40μL 10% glucose in nuclease-free water, 10μL 1M Tris-HCl, pH 8.0 (Thermo Fisher 

Scientific, Paisley, UK) and 100μL 20X SCC was mixed with 850μL nuclease-free 

water. 
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Anti-‐fade	  GLOX	  buffer	  plus	  enzymes	  (100μL)	  
1μL glucose oxidase stock (3.7mg/mL in 50nM sodium acetate, pH5 (Sigma-Aldrich, 

St Louis, USA) and 1μL mildy vortexed catalase suspension added to 100μL GLOX 

minus enzyme solution. 

5.7.4 Imaging 
A Zeiss Elyra PS1 inverted super-resolution microscope was used for imaging. A 

100x oil-immersion objective (1.46NA) and cooled EM-CCD Andor ixon 897 camera 

(512 x 512 QE >90%) was used to obtain all images in the standard, rather than 

super-resolution mode. A 561nm laser was used to excite Quasar 570 probes and 

emission signals were detected between 570-640nm. A 642nm laser was used to 

excite Quasar 670 probes and emission signals were detected between 655-710nm. 

A 405nm laser was used to excite the DAPI and signals were detected between 420-

480nm. A series of ~ 30 of 0.2μm z-steps were collected for each sample.    

5.7.4 smFISH Image analysis  
The image analysis pipeline was created by Dr Matthew Hartley and Dr Tjelvar 

Olsson to find probe locations and generate counts on detected probes per cell. The 

pipeline uses code written specifically for the task of using the numerical Python 

libraries (van der Walt et al., 2011) and the Python image processing library scikit-

image (van der Walt et al., 2014).  

Splitting	  the	  confocal	  image	  into	  channels	  	  
Bioformats (Linkert et al., 2010) was used to separate the confocal images and 

generate a z-stack for each channel.  

Finding	  seeds	  from	  nuclei	  	  
From the DAPI channel z-stack the image intensity was normalized for each image in 

the stack before generating a maximum intensity projection. Contrast Limited 

Adaptive Histogram Equalization (CLAHE) (Pizer et al., 1987) was then used to 

adjust intensities across the image. A Sorbel filter was used to find edges in the 

image, and Otsu’s thresholding was used to find positions of the nuclei. The centroid 

of each detected nucleus was then used as a seed for segmentation. 

Cell	  Segmentation	  
A minimum intensity projection of the probe channel was used to capture the cell’s 

autofluorescence and CLAHE was used to adjust the intensity across the image. A 

Gaussian filter was used for smoothing and a Watershed algorithm was used with 

the seeds derived from the nuclear positions to segment the image.  
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Locating	  	  probe	  molecules	  
To locate the probe signals each image was normalized in the probe channel z-stack 

then a maximum intensity projection was taken and a Sobel filter used to find edges 

within the projection. A small disk shaped element (of a size appropriate to the 

diffraction radius of the confocal microscope used to take the image) was then used 

to apply fast, normalized cross-correlation based template matching. The best match 

located at this stage is then used as a template to repeat the matching process and 

determine probe locations within the image. 

Generating	  an	  annotated	  image	  
Cell segmentation is then combined with the probe locations to generate an 

annotated image showing outlined cells, a label for each cell centroid and a count to 

number of probes detected within each cell.  
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Chapter 6 – Using smFISH to analyse transcriptional 
regulation during vernalization 

 

 

Division of work: Tjevlar Olsson and Matthew Hartley created the image analysis 

programme used to quantify mRNA (see Chapter 5 materials and methods) and 

Stefanie Rosa helped with sample preparation. 

6.1 Introduction 

The natural variation observed in the length of cold requirement among Arabidopsis 

accessions suggests that variability exists in how plants measure cold duration. This 

type of measurement requires a quantitative memory system that can withstand high 

rates of histone turnover and multiple rounds of cell division (Dodd et al 2007; Angel 

et al., 2011; Angel et al., 2015; Satake 2012). A combination of modeling and 

experimental validation have shown that memory of vernalization is achieved by 

stochastic digital switching of epigenetic states at FLC with the proportion of stably 

silenced cells provides a biological measure of cold exposure (Yang et al., 2014; 

Angel et al., 2010; Satake 2012; Angel et al., 2015). 

 

Single molecule RNA FISH (smFISH) is an ideal method to complement other 

experimental strategies for analysis of the cell-autonomous epigenetic switching at 

FLC (Angel et al., 2011; Angel et al., 2015, Berry et al., 2015). My aim was to use 

smFISH to improve our understanding of cold perception and epigenetic memory and 

obtain data for modelling the integration of complex temperature cues. 

 

The questions addressed in this chapter using smFISH are: 

• How do FLC transcription and mRNA levels change during cold? 

• Can sense and antisense FLC transcription occur in the same cell? 

• Does cold-induced VIN3 expression reflect high transcription in a small 

population of cells or low transcription in all cells? 

• Does transcriptional reactivation of Lov-1 FLC alleles occur in a small 

population of cells or in all cells after a partial cold treatment? 
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6.3 Determining cell-to-cell variation of FLC mRNA during vernalization 
 

FLC mRNA molecules were visualized using at set of 38 probes designed to be 

complementary to RNA derived from exonic sequences (Figure 6.1A, Appendix 

Table 5). An automated image analysis pipeline was then used to quantify the 

number of transcripts within each cell (see Chapter 5, Figure 5.7 and Chapter 5 

Materials and Methods section). 

 

 

 

 
 
 
Figure 6.1 - Visualizing FLC mRNA in ColFRISf2 meristematic cells 
(A) A diagrammatic representation showing probe binding sites within FLC exons. 
(B) Representative maximum projected image showing FLC mRNA detected in non-
vernalized ColFRISf2 cells using a Quasar 670 probes. Scale bar = 10µm. 
 

 

(A) 
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Figure 6.2 - FLC mRNA levels decrease in a graded manner during 
vernalization in ColFRISf2 meristematic cells 
(A) Frequency of FLC mRNA per cell determined in non-vernalized plants before 
cold then after 1 (B), 2 (C), 3 (D), and 4 (E) weeks of cold exposure. NV = non-
vernalized. <n> = mean mRNA signals per cell. Error bars = SEM, n=3. 

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

0

20

40

60

Fr
eq

ue
nc

y 
(%

)

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

0

20

40

60
Fr

eq
ue

nc
y 

(%
)

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

0

20

40

60

Fr
eq

ue
nc

y 
(%

)

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

0

20

40

60

Fr
eq

ue
nc

y 
(%

)

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

0

20

40

60

Fr
eq

ue
nc

y 
(%

)

FLC mRNA signals per cell!

<n> = 43.35!

<n> = 39.66!

<n> = 25.09!

<n> = 6.10!

<n> = 16.11!

NV!

1 Week!

2 Week!

3 Week!

4 Week!

B!

A!

C!

D!

E!



 
 

 122 

Cell-to-cell variation was revealed in non-vernalized samples with an average of 43 

FLC mRNAs per cell calculated from a range that extended from 6 to 125 molecules 

per cell (Figure 6.2A).  Both the mean and the dynamic range of FLC mRNA reduced 

during 4 weeks cold exposure (Figure 6.2B-E), but there was clear evidence of PP2A 

transcription and abundant PP2A mRNA even after eight weeks vernalization (Figure 

6.3).   

 

 
Figure 6.3 – PP2A mRNA detected after eight weeks cold exposure  
Representative maximum projection image of cells hybridized with probe sets 
complimentary to PP2A mRNA (Quasar 570) and PP2A unspliced RNA (Quasar 
670). White arrows indicate putative sites of PP2A transcription. Scale bars = 10μm. 
 

 

Previous experiments had suggested that FLC transcripts have a long-half life in the 

cold (Csorba et al., 2014). There is evidence that environmental stress can result in 

certain transcripts being protected from RNA decay pathways and stored for future 

translation in processing bodies (P-bodies) (Brengues et al., 2005). We considered 

smFISH to be an ideal technique to monitor changes in cell-to-cell variation of FLC 

mRNA and determine whether FLC transcripts are found within specific 

particles/compartments during vernalization. However, contrary to this hypothesis, no 

evidence was found of FLC mRNA localization either before or during vernalization 

(Figure 6.1 and Figure 6.4). 

Co-ordinated sense and antisense FLC transcription is a rare event  
COOLAIR transcription peaks after ~2 weeks of cold exposure (Swiezewski et al., 

2010). Loss of COOLAIR attenuates the cold-induced transcriptional repression of 

FLC (Csorba et al., 2014). This raises the question of whether COOLAIR 

transcription is the cause of the reduction in FLC transcription, potentially either 

through transcriptional interference or an RNAi-type mechanism. Both mechanisms 

would require sense and antisense transcription from the same locus. With this 

question in mind smFISH probes were designed to enable sense and antisense 

DAPI! PP2A mRNA! Unspliced  PP2A RNA!

DAPI!
PP2A mRNA!
Unspliced PP2A RNA!
!
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transcripts to be visualized in both nascent and spliced forms (Figure 6.5, Appendix 

Tables 6-8). 

 

 
 
Figure 6.4 – FLC mRNA detected after three weeks cold exposure  
Representative maximum projection image showing cells labeled with Quasar 670 
probes complimentary to FLC mRNA 
 

 

 
 

Figure 6.5 - Multiplexed smFISH probe sets used to simultaneously detect 
sense and antisense FLC RNA  
Binding sites are shown for four probe sets. Together they enable spliced and 
unspliced sense FLC, spliced and unspliced antisense FLC transcripts to be 
visualized.  
 

 

Analysis of nascent RNA FISH showed that >70% of cells express FLC before cold 

(Figure 6.6D). This drops to around 1 in 5 cells after one week of cold exposure and 

to around 1 in 10 after three weeks.  In agreement with role of antisense FLC 

transcripts modulating sense transcription in the autonomous pathway (Ietswaart et 

al., 2012) low levels of nascent COOLAIR RNA were detected before vernalization 

(Figure 6.6A, D).  As anticipated, an increase in the frequency of cells expressing 

antisense transcription was observed during cold exposure with a peak of ~25% 

occurring at the two week time point (Figure 6.6D).  
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Figure 6.6 - FLC Sense and Antisense transcription occurs rarely in the same 
cell  
(A) Unspliced sense (S, red) and antisense (AS, green) transcripts detected in non-
vernalized samples. (B) Antisense transcripts detected using a spliced antisense 
probe set (green). (C) Representative maximum projected images of unspliced 
sense and antisense transcript signals detected after 2 weeks (2WT0) and 3 weeks 
(3WT0) cold. (D) Quantification of transcriptionally active cells from data obtained 
using multiplexed nascent sense and antisense FLC probe sets.  Blue = DAPI, 
nuclear stain.  NV = non-vernalized. Scale bars = 10µm. Error bars = SEM. n=3. 
 

A low probability of simultaneous sense and antisense FLC transcription was evident 

both before cold and this probability did not increase during vernalization (Figure 

6.6D). This finding does not support an RNAi-type mechanism and reinforces custom 

tiling array data that suggested antisense transcriptional interference is unlikely to be 

the primary mechanism reducing sense transcription because complimentary RNA 

transcripts are rarely exist in the same cell (Swiezewski et al., 2010; Csorba et al., 

2014).   
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In addition to the probes used to detect nascent antisense transcripts, another set 

was designed to detect spliced antisense mRNA. A set consisting of 48 probes is 

recommended for optimal detection of target RNA, but the length of the different 

spliced COOLAIR isoforms prevented each of them being targeted specifically.  

 

To maximise probe occupancy on each transcript, a set containing 37 probes was 

designed to be complimentary to all COOLAIR exons. It is unlikely that 20 probes 

would be produce sufficient signal for detection of the shorter proximal isoform, so 

essentially distal transcripts were being targeted that include all exons. (Figure 6.5). 

Cell fractionation assays have previously suggested that antisense transcripts are 

efficiently transported into the cytoplasm (Csorba et al., 2014), however signals from 

this spliced probe set were only ever detected in the nucleus (Figure 6.4B). The 

number, size and intensity of these signals suggested that these probes were 

binding nascent transcripts still attached to the locus.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.7 - COOLAIR associates in cis with FLC chromatin.  
ChIRP deep sequencing analysis data shows COOLAIR associates with FLC 
chromatin in two distinct regions. Locations of biotinylated DNA probes used for 
COOLAIR ChIRP are shown (dashed boxes). A schematic of the FLC locus is shown 
with the structure of the class I and class II COOLAIR transcripts. This figure was 
reproduced from Csorba et al., 2014. 
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During the peak of COOLAIR transcription, multiple foci with increased signal size 

were observed in many cells (Figure 6.6C). They were found to accumulate 

transiently and were only ever observed after two weeks of cold exposure. These are 

likely to include sites of high antisense transcriptional activity; consistent with this at 

least one of the foci co-localized with a nascent sense FLC transcript signal (Figure 

6.6C), but two foci could also represent the nuclear loci identified by Chromatin 

Isolation by RNA Purification (ChIRP), where antisense FLC transcripts were shown 

to physically associate with specific chromatin at FLC (Csorba et al., 2014, see 

Figure 6.7). A more intriguing explanation is that these foci represent nuclear 

paraspeckles. These are RNA/protein nuclear bodies that have been shown to 

sequestrate specific regulatory proteins to regulate gene expression in other 

organisms (Kawagutchi et al., 2015; Hirose et al., 2014).  

 

6.5 VIN3 induction occurs in a graded manner during vernalization 

VIN3 induction is an important cold-dependent step central to the vernalization 

mechanism (De Lucia et al., 2008). We were interested in the dynamics of the cold-

induction of VIN3. RT-qPCR assays show VIN3 transcription gradually increases 

during vernalization (Sung and Amasino 2004, Figure 6.8A, also see Chapter 2, 

Figure 2.3). This pattern could arise from two alternatives (see Figure 6.8B): Graded 

Induction, a homogeneous rise of the transcription level in all cells or Digital 

Induction, a population of cells that express VIN3 at high levels, whose fraction 

increases over time.  

 

Signals from transgenic plants carrying a VIN3::GFP transgene after 8 weeks of cold 

suggest that highest levels of expression occur in the root apical meristem and 

lateral roots (data not shown). These results were also confirmed by 

immunocytochemistry using anti-GFP and secondary antibodies conjugated to 

fluorophores (data not shown), but autofluorescence levels inhibited both direct and 

indirect methods of protein detection after shorter cold periods. We therefore used 

smFISH to provide the molecular resolution required to establish whether VIN3 up-

regulation was graded or digital. 
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Figure 6.8 – Induction of VIN3 mRNA can be equally explained by graded or 
digital increases  
(A) Quantitative PCR results for VIN3 expression determined before, during and after 
cold. (B) A diagram presenting two hypotheses to explain VIN3 induction. (C) 
Binding sites of smFISH probes used to visualize VIN3 mRNA. Error bars = ±SEM. 
n=3. 
 

 

 

Consistent with RT-qPCR assays, FISH signals from a set of 48 VIN3 mRNA probes 

(Figure 6.8C and Appendix Table 9) were first detected after two weeks of cold 

(Figure 6.9B and C). The average number of transcripts per cell increased over time 

(Figure 6.9A and B), supporting a graded induction during cold exposure. This was 

further supported by the presence of VIN3 mRNA in 93%, 95% and 97% of cells after 

2, 5, and 8 weeks of vernalization (Figure 6.9C).      

6.6 Post-cold reactivation of Lov-1 FLC occurs in a digital manner  

Previous work had shown that after non-saturating vernalization FLC re-activated in 

a proportion of cells after transfer of plants back to warm conditions (Angel et al., 

2010). This result helped to demonstrate that memory of cold is achieved through the 

cell-autonomous silencing of FLC (Angel et al., 2010). This experiment used the Col 

FLC allele, which is classified as a rapid-vernalizing FLC haplotype (Li et al., 2015). I 

wanted to analyse the pattern of FLC re-activation in a slow-vernalizing haplotype 

and selected the Lov-1 allele. Four SNPs at the 5’ end of the gene distinguish the 

Lov-1 and Col FLC alleles with respect to how much cold is required for full 
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epigenetic silencing (Coustham et al., 2012). RT-qPCR data shows Lov-1 FLC 

transcription is reduced to a similar level to Col FLC after 4 weeks cold (Figure 

6.10A), however, the Lov-1 FLC allele reactivates to pre-vernalized levels after a 

further 30d growth in the warm (Figure 6.10A, also see Shindo et al., 2006 and 

Coustham et al., 2012). This re-activation is associated with a drop in H3K27me3 

and an increase in H3K36me3 over the FLC gene body (J. Questa pers. comm.). 

 

 

 

 

 

 
 
 
 
Figure 6.9 – Graded induction of VIN3 mRNA  
(A) Representative images of VIN3 mRNA cellular distribution. (B) Quantification of 
VIN3 mRNA per cell and (C) frequency of VIN3 mRNA positive cells. NV = Non-
Vernalized, W = weeks cold exposure and T= days post-cold growth. Error bars = 
SD, n=3. 
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Figure 6.10 – Reactivation of FLC transcription in Lov-1 can be equally 
explained by graded or digital increases   
(A) Quantitative PCR data showing FLC expression of ColFRISf2 and Lov-1 after four 
and eight weeks cold treatment. (B) Schematic diagram showing potential 
hypotheses that explain the basis of Lov-1 FLC reactivation. Error bars = SEM, n=3. 
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reactivation apparent for Lov-1 after 8 weeks cold (Figure 6.10A) allows two 

hypotheses to be tested using smFISH. Graded reactivation of FLC would produce 

images with low numbers of mRNA observed in a high proportion of cells and digital 

reactivation would produce images with high transcript numbers occurring in a small 

subset of cells (see Figure 6.10B).  Results shown in Figure 6.11 support the second 

hypothesis of digital reactivation since only a small number of cells were found to 

contain FLC mRNA molecules following eight weeks vernalization. “On” cells were 
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found to either exist alone or in small patches that were consistent with ongoing 

propagation of the “on” state through division of a founder cell (Figure 6.11A).  

 
 
 
 
 
 
 
 

 
 
6.11 – Digital reactivation of Lov-1 FLC 
(A) Representative maximum projected images showing FLC mRNA before cold, 
after 8 weeks vernalization and after 30 days growth in warm conditions. (B) 
Quantification of cells containing unspliced FLC signals before, after 8 weeks 
vernalization and 30 days after return to warm conditions. (C) Representative 
maximum Z-projected image showing Lov-1 FLC reactivation. Scale bar = 10µm. NV 
= Non-Vernalized, W = weeks cold exposure and T = days of post-cold growth. Error 
bars = SEM, n=3. 
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6.7 Discussion 

Results of techniques such as RT-qPCR and ChIP average across large populations 

of cells so fail to reveal specific spatial regulation important for vernalization, or 

whether quantitative changes in expression are through a graded or digital 

mechanism. These issues are important in order to dissect how genetic variation can 

change perception and memory of cold exposure. 

 

During the first two weeks of vernalization, in addition to an upregulation of 

COOLAIR, cold temperatures may induce thermodynamic re-organization of the 

DNA polymer that favours shutdown of FLC transcription (Helliwell 2015). Consistent 

with the theory, smFISH analysis found no evidence of VIN3 induction but confirmed 

a significant reduction in FLC transcription after only two weeks of cold exposure 

(Figure 6.2). This reduction, in combination with the relatively long half-life observed 

for FLC mRNA, (Figure 6.2D; Csorba et al., 2014) effectively ensures that a reserve 

supply of mRNA is maintained whilst permitting the transcriptional shutdown required 

for effective epigenetic silencing. In a natural context, this mechanism might have 

evolved to help prevent precocious flowering in the event of a temperature rise after 

exposure to a short period of cold.   

 

Alternative spliced forms of antisense FLC RNA contribute to the starting level of 

FLC transcription in non-vernalized plants (Li et al., 2015; Ietswaart et al., 2013). In 

addition, antisense upregulation during the early stages of cold facilitates a reduction 

in sense transcription and mediates the switching of active to repressive chromatin 

marks (Csorba et al., 2014). The question of whether sense and antisense FLC 

transcripts exist in the same cell is fundamental to gaining mechanistic 

understanding of these diverse functions. A transcriptional interference mechanism 

was not supported by either smFISH or customtiled-array data (Figure 6.6; 

Swiezewski et al., 2009). Instead it suggests a system analogous to that reported for 

the PHO84 locus in yeast where sense and antisense transcripts are rarely found in 

the same cell (Castelnuovo et al., 2013).  
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Csorba and colleagues reported results from ChIRP assays that showed antisense 

FLC RNA located at both the sense and antisense promoter regions of the FLC locus 

after two weeks of cold (see Figure 6.7 taken from Csorba et al., 2014). The 

observation of several antisense nuclear foci after two weeks cold, some of which 

co-localized with nascent sense FLC transcripts (Figure 6.6) is consistent with an 

“ON” chromatin role predicted for COOLAIR. The idea that the other large foci might 

represent paraspeckles is an intriguing possibility. Recent data has shown that both 

the long non-coding RNA NEAT1 and the SWI/SNF chromatin-remodelling complex 

are required for formation of ribonucleoprotein subnuclear complexes known as 

paraspeckles (Kawaguchi et al., 2015). These bodies have previously been shown to 

regulate the expression of genes within developmental and stress related pathways 

via the sequestration of specific protein(s) and RNAs (Prasanth et al., 2005; Hirose 

et al., 2014; Imamura et al., 2014). Consistent with my observations for COOLAIR, it 

is the nascent NEAT1_2 RNA transcript, rather than the spliced and polyadenylated 

NEAT1_1 isoform that is incorporated within these foci. A recent report has also 

shown that the A. thaliana SWI/SNF subunit BAF60 is required for the maintenance 

of a 5’-3’ gene loop that exists at FLC before cold (Jegu et al., 2014). This loop is lost 

after around two weeks of cold exposure and is thought to be an early step in the 

switch from an expressed to an epigenetically silenced state (Crevillen et al., 2013; 

Zhu et al., 2014). The coincidence of COOLAIR foci with maximal loop disruption 

suggests a potential mechanism where COOLAIR acts to sequester BAF60 into 

paraspeckles to relieve loop maintenance. Experiments to determine co-localization 

of the observed COOLAIR foci with BAF60 and conserved paraspeckle proteins 

would be the first step to test this intriguing hypothesis. 

 

VIN3 induction is vital to the vernalization process as this protein is required for 

deposition of silencing chromatin marks at FLC during cold (De Lucia et al., 2008). 

smFISH images showed that VIN3 transcription is initiated at a low level in almost all 

cells and that transcript levels increase over time (Figure 6.9). The finding that VIN3 

transcription occurs in this graded manner rules it out as a digital signal that could 

contribute to quantitative changes in cell-autonomous silencing. However, the 

unusual predominance of VIN3 mRNA within the nucleus perhaps reflects a barrier 

to export that might act as a rate-limiting step during vernalization. This might also 

explain the difficulties associated with detecting GFP signals in VIN3 reporter lines. 
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Consistent with the theory that it is the cell-autonomous silencing of FLC expression 

that is central to the quantitative nature of vernalization, smFISH results confirmed 

digital post-cold reactivation of the Lov-1 FLC allele (Figure 6.11). Furthermore, 

evidence of transcriptional activity (intronic probe signals) in the absence of spliced 

FLC mRNA suggested that unproductive transcription may precede full reactivation 

(Figure 6.11C). These results are likely to direct future experiments aiming to dissect 

the complex interplay between non-coding gene sequence and epigenetic stability. 

 

In this chapter, smFISH has been demonstrated as a powerful approach to 

determine transcriptional changes of key vernalization genes during cold. Together, 

these data provide a unique insight into the molecular basis of cold perception and 

epigenetic memory at the cellular level.  
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6.8 Materials and Methods 

6.8.1 Plant growth conditions 
ColFRISf2 seeds were sown on MS media (minus glucose) in 10cm square plates 

(Sterilin Ltd, Cheshire, UK) and stratified for 3 days at 5oC before being transferred to 

a growth cabinet (Sanyo MLR-351, 16h light: 8h dark, 100μmol m-2 s-1, 22oC ± 1oC) 

for seven days pre-growth. They were then transferred to a walk-in vernalization 

chamber set at 5oC, 70% ± ≤10% RH, 8h light: 16h dark, 30μmol m-2 s-1. For post-

cold assays plants were returned to a growth cabinet  (Sanyo MLR-351, 16h light: 8h 

dark, 100μmol m-2 s-1, 22oC ± 1oC, 100μmol m-2 s-1, 22oC ± 2oC) before sampling.  

 

6.8.2 RNA extraction  
See Chapter 2 Materials and Methods section 2.10.2. 

6.8.3 Reverse Transcription (RT)  
See Chapter 3 section Materials and Methods section 2.10.3.  

6.8.4 Quantitative Polymerase Chain Reaction (qPCR) 
See Chapter 3 section Materials and Methods section 2.10.4 Expression levels were 

determined using Roche Universal Probe Library (UPL) Probes and the primers 

shown below. 

 

 

 

FLC (At5g10140) 

sFLC_UPL_#65_F 5’-gtgggatcaaatgtcaaaaatg-3’ 

sFLC_UPL_#65_R 5’-ggagagggcagtctcaaggt-3’ 

UPL #65 5’-ctggagga-3’ 

 

 

VIN3 (At5g57380) 

VIN3_UPL_#67_F 5’-cgcgtattgcggtaaagataa-3’ 

VIN3_UPL_#67_R 5’–tctctttcgccaccttcact-3’ 

UPL #67 5’-ctccagca-3’ 
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UBC (At5g25760) 

UBC_UPL_#9_F 5’-tcctcttaactgcgactcagg-3’ 

UBC_UPL_#9_R 5’-gcgaggcgtgtatacatttg-3’ 

UPL#9 5’-tggtgatg-3’ 

 

Gene expression was calculated relative to UBC levels using the comparative Ct 

method (also known as the 2-[delta][delta]Ct method) (Schmittgen and Livak 2008) 

and statistical analysis of was performed using GraphPad Prism version 6 software 

for Mac (La Jolla, California, USA). 

6.8.5 smFISH protocol  
See Chapter 5 Material and Methods sections 5.7.2 and 5.7.3. 

6.8.6 smFISH image analysis  
See Chapter 5 Material and Methods sections 5.7.4. 
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Chapter 7 - Discussion 
 
 

6.1 Introduction  

The ability of plants to align reproduction with favourable environmental conditions is 

key for survival as this is thought to maximise fitness potential. The impact of recent 

climate change on plant phenology has been well documented (e.g. Menzel et al., 

2006; Cleland et al., 2007; Miller-Rushing et al., 2008). Although earlier flowering has 

been reported for most species (Dech and Nosko 2004; Bertin 2008; Gordo and 

Sanz 2009), there is also evidence that some species have either maintained their 

flowering dates or have flowered progressively later over the last century (Cook et al. 

2010; Fitter and Fitter 2002). Unaltered and late flowering responses have been 

associated with phylogenetic patterns of species loss. This not only suggests that the 

ability to shift reproductive timing is shared between related species, but also 

indicates that advancing phenology is likely to be important for plant survival in the 

future (Willis et al., 2008).  

 

Winter annual A. thaliana populations typically flower early in spring. This is a 

strategy common in annual herbs that grow at northerly latitudes. Early flowering 

may be required for a bet-hedging germination strategy where exposure of the 

mother plant to a specific range of temperatures during seed set ensures that 

progeny develop with a range of dormancy states (Springthorpe and Penfield 2015). 

Late flowering would not only disrupt this alignment of reproduction with a specific 

temperature range but would also increase risks from herbivory and interspecific 

competition (Rathcke & Lacey 1985; Molau 1996). 

 

The central aim of this thesis was to explore vernalization responses in A. thaliana to 

determine whether climate change might impair vernalization and delay flowering by 

the end of the century.  

6.2 The potential ecological significance of effective vernalizing 
temperatures  

This thesis proposes that an effective vernalization temperature range of (0oC,14oC), 

combined with an optimal response at 8oC, represents adaptation specifically to 
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recurrent climate variables at the northerly limit of the Arabidopsis range. Field 

experiments also established that this 8oC optimal response was not necessary for 

other accession to vernalize during autumn in northern Sweden. 

 

The effective vernalizing temperature range of (0oC, 14oC) is shared by A. thalinana 

accessions with varied vernalization requirements (see Chapter 1 and Wollenburg 

and Amasino 2012). But contrary to the common perception that vernalization 

provides plants with memory of winter (Amasino 2004; Song et al., 2013) this range 

essentially precludes winter vernalization from occurring in many northerly locations 

where annual snow cover and freezing temperatures are commonplace. This 

effective temperature range suggests that vernalization is permitted during both 

winter and spring in many locations across Europe, however for the majority of winter 

annual accessions that germinate in autumn, average daily temperatures across 

Europe are likely to remove any FLC/FRI block to flowering by the end of this 

season. This is contrary to the view that vernalization has evolved to delay flowering 

per se, instead it suggests that the primary function of this cold requirement is to 

delay flowering until the temperature and photoperiod have reduced sufficiently to 

inhibit floral transition until spring. Consistent with this theory, 99.5% reduction in 

FLC mRNA is reported to occur between September and November in natural 

populations of the semi-perennial species A. halleri (Aikawa et al., 2010). The 

similarity observed between the seasonal timing of vernalization in A. thaliana and A. 

halleri, together with the conservation of the effective temperature range, merits 

experiments in other crop and wild species to explore autumn responses outside the 

Arabidopsis genus. (Chouard et al., 1960; also see Chapter 1, Figure 1.5).    

 

If three out of the four seasons are conducive for vernalization in temperate areas, 

this suggests that seed dormancy is a key determinant of life history strategy. 

Indeed, a predominant impact of germination date, rather than vernalization was 

observed for flowering recorded during a comprehensive A. thaliana field experiment. 

Wilczek and colleagues showed that establishment during autumn was required to 

reveal the late flowering phenotype associated with a functional FRI allele (Wilzcek 

et al., 2009). Consideration of these results in the context of this thesis suggests that 

saturated vernalization requirements could account for the small difference observed 

between Col-0 and ColFRISf2 flowering dates in spring cohorts. Although this range 

does not fully explain the responses observed for the plants germinated in summer, it 
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is possible that any remaining FRI/FLC block to flowering may have been overridden 

by an SOS type response triggered by a combination of high fluctuating 

temperatures and long photoperiods. This theory is consistent with accelerated 

flowering responses observed for plants grown under high temperature, long day 

conditions (Seaton et al., 2015; Pose et al., 2013; Lee et al 2013; Kumar et al 2012).  

 

Several field experiments have not observed associations between flowering time 

and natural genetic variation in well-studied flowering genes (Agren et al., 2013; 

Brachi et al., 2010; Weinig et al., 2002; Wilzcek et al., 2009). This has led some 

researchers to question the ecological significance of results from laboratory 

experiments that are conducted under wholly artificial conditions (Weigel et al., 2012; 

Shindo et al., 2007; Hoffman et al., 2002). Whilst large-scale field studies will remain 

the gold standard for determining the genetic basis of adaptive traits, this thesis 

argues that consideration of laboratory derived data, in the context of climate and life 

histories, can contribute to understanding of how genetic variation might contribute to 

fitness at specific locales. Although the analysis of phenotypes in a wide range of 

accessions enables conclusions to be drawn about the species as a whole, this 

thesis and other recent work (Springthorpe and Penfield 2015) demonstrate that a 

pared-down approach in the laboratory can successfully detect small phenotypic 

differences that have significant fitness and life-cycle implications.  

 

6.3 Exploring the molecular basis of vernalizing temperature 

effectiveness 

This thesis has demonstrated that vernalization responses elicited by naturally 

fluctuating conditions are equal to those generated by constant temperatures 

matching the field mean. Furthermore, the optimal vernalizing temperature for one 

accession was found to match the autumn average. The notion that a long-term 

averaging mechanism drives the vernalization process under natural conditions is 

further corroborated by a report by Aikawa and colleagues that showed 6-weeks of 

preceding temperatures to be required to accurately predict FLC levels in A. halleri 

(Aikawa et al., 2010). This type of long-term averaging is likely to have evolved to 

provide plants with a robust filtering mechanism that prevents short-term temperature 

fluctuations from triggering precocious flowering.  
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High-throughput methodologies have recently helped to bridge the gap between 

molecular biology and ecology in recent years by enabling time-series experiments 

to be carried out in natural environments (Nagano et al., 2012; Izawa 2012; Richards 

et al., 2012; Aikawa et al., 2010). This type of in natura approach would be ideal to 

dissect how plants are able to integrate complex temperatures cues in the wild 

(Kudoh and Nagano 2013). In addition to FLC expression, chromatin modifications 

also could be monitored for accessions throughout different seasons in different 

locations to help establish differences or similarities between field and laboratory 

responses. Also it would be informative to grow more established vernalization 

mutants and FLC NILs in the field, as complex environmental cues might expose 

novel phenotypes. Assessment of these data would help identify genetic components 

required specifically for this averaging process and help to identify how natural 

alleles have been modulated by evolution.  

 

Work by Camblong and colleagues showed that antisense RNA stabilization can 

induce transcriptional gene silencing in S. cerevisae under 4oC growth conditions 

(Camblong et al., 2007). This raises the intriguing possibility that non-coding FLC 

RNA may act as a key thermo-sensor during vernalization. Determining natural 

variation in COOLAIR induction and turnover rates at different temperatures would 

be a starting point for testing this hypothesis. Although a traditional RT-qPCR 

approach could be used to provide these data, the novel smFISH method presented 

in this thesis, could also reveal whether temperature-dependent changes in 

subcellular localisation occur. Also COOLAIR has previously been shown to bind to 

the FLC locus during cold exposure and this physical association may help to 

mediate the switching of chromatin states (Csorba et al., 2014). Further analyses to 

determine the thermo-dynamic impact of temperature on COOLAIR structure using 

SHAPE (Selective 2'-hydroxyl acylation analyzed by primer extension) analysis 
might reveal changes that could impede its ability to bind with the FLC locus and 

mediate this switch.  

6.4 The predicted impact of climate change on A. thaliana vernalization 

The ultimate aim of this thesis was to predict whether increasing temperatures over 

the coming century would be likely to contribute toward delayed phenology for this 

species. To achieve this, an effective temperature range suggested by laboratory 

studies was initially validated using data collected during field studies. A chilling unit 
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model that incorporated this range was then used to predict effective vernalization 

periods in three locations that span the latitudinal range inhabited by winter annual 

accessions.  

 

Assessments of present and future climates predicted a ~12% reduction in effective 

vernalizing days for Spanish accessions by the end of the century. This prediction 

was made using the extended (0oC, 18oC) range suggested by data presented in 

Chapter 4 and Wollenburg and Amasino findings for several Spanish accessions. 

Greater reductions were predicted for accessions with lower threshold temperatures. 

A similar ~12% reduction in effective vernalizing days was predicted for central 

England by the end of the century, however a ~10% increase in effective vernalizing 

days was predicted for northern Sweden.   

 

The most striking predictions were made for plants with low maximum threshold 

temperatures that grow in southern Europe. Almost no average daily temperatures 

are predicted to be lower than 5oC by the end of the century in Barcelona. Therefore 

plants with low maximum temperature threshold requirements might need to rely on 

phenotypic plasticity for short-term survival and a combination of adaptive evolution 

and pole-ward range shifts to persist over the coming century (Parmesan and Yohe, 

2003, Nicotra 2010). 

 

In central and northern Europe, vernalization requires are likely to be met or 

exceeded for A. thaliana and other plant species with a similar (0oC,15oC) effective 

temperature range, however the ability to advance phenology may also be required 

for future survival (Willis et al., 2008). Results reported by Li and colleagues suggest 

that this advance is possible. They grew over a thousand accessions in sophisticated 

growth cabinets under climate regimes programmed to simulate present and future 

climates in Spain and Sweden and found that almost all advanced their flowering 

dates in response to climate warming (Li et. al., 2014). 

 

The epigenetic basis of vernalization is well understood in A. thaliana, but these 

findings prompt more studies to be carried out to improve our limited understanding 

of the molecular mechanisms that control ambient temperature flowering responses. 

Work that aims to understand how temporal and thermal aspects of vernalization 
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interact to impact seed yield may prove valuable for optimizing crop production in the 

future.   

 

6.5 Concluding Remarks 

Rises in global temperature have already reduced vernalization periods to an extent 

that has impacted the phenology of a range of plant species (Fitter and Fitter, 2002, 

Cook et al. 2012). Although A. thaliana accessions are unlikely to be subject to 

phenological delay over the coming century, this thesis highlights the susceptibility of 

species with low maximum threshold vernalizing temperatures that grow in southern 

Europe. Existing vernalization temperature plasticity, in addition to the timescale over 

which this adaptive evolution can occur, will determine whether these populations will 

survive under future climate scenarios. 
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Appendix Figure 1 
Overlays of Quasar 570© and Quasar 670© probe dye absorption and 
emission spectra. Downloaded from: http://www.qpcrdesign.com/spectral-
overlay. 
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Appendix Figure 2 
Representative maximum projection images taken of samples with PP2A 
mRNA labeled with a Quasar 570© probe set and nascent PP2A RNA labeled 
with a Quasar 670© probe set, following 20 minute incubation with RNase. 
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Appendix Table 1 - Markers used to map the introgressed regions on 
Chromosome 5  

  
The positions correspond to AGI coordinates. Where the marker is a simple sequence 
length polymorphism (SSLP), the product size is shown for Col-0/Lov-1. Where the 
marker is a Cleaved Amplified Polymorphic sequence (CAPS), the enzyme required 
to digest the PCR product of the specified accession is given. 

 
 
Type Position 

(bp) 
Enzyme Product 

(bp) 
Digest Forward (5’-3’) Reverse (5’-3’) 

SSLP 3175482 - 472/442 - TATATGCACGTC
CGGGAGAT 

GAGGCACCAAAG
AAACAAGG 

CAPS 3199916 SacII 625 Col GACACCCGCGAT
TCATCAGTC 

GGGATCATCAGG
TAATCCGATA 

SSLP 4254762 - 249/<249 - CCCAGTCTAACC
ACGACCAC 

AATCCCAGTAAC
CAAACACACA 

SSLP 4618913 - 164/212 - TCACAAAGGCCT
AAGAACCAA 

TTTAGGACATGA
GTAATGTGCATC 

CAPS 5171185 AluI 310 Lov-1 AAACCTTGTGGA
TTACAACTCGAG
T 

TATGATGAAAGA
ATTCACCCTGCA
GC 

SSLP 5344505 - 100/<100 - AGGGGAAAAAGC
GGACTAGA 

TGCTCAGGCATA
AGAAGAGC 

 



 
 

 146 

 

Appendix Table 2 – Primers used for ChIP analysis  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Primers Sequence (5’-3’) 

-2429_F  
-2376_R  

ATCCAGAAAAGGGCAAGGAG  
CGAATCGATTGGGTGAATG  

-1708_F  
-1639_R  

TGGAGGGAACAACCTAATGC  
TCATTGGACCAAACCAAACC  

-501_F  
-381_R  

ACTATGTAGGCACGACTTTGGTAAC  
TGCAGAAAGAACCTCCACTCTAC  

-158_F 
-56_R  

GCCCGACGAAGAAAAAGTAG  
TCCTCAGGTTTGGGTTCAAG  

307_F  
393_R  

GGCGGATCTCTTGTTGTTTC  
CTTCTTCACGACATTGTTCTTCC  

543_F  
700_R  

CGTGCTCGATGTTGTTGAGT  
TCCCGTAAGTGCATTGCATA  

1424_F  
1561_R  

TTGACAATCCACAACCTCAATC 
TCAATTTCCTAGAGGCACCAA   

2356_F  
2451_R  

AGTTTGGCTTCCTCATACTTATGG  
CAATGAACCTTGAGGACAAGG  

3088_F  
3224_R  

GGGGCTGCGTTTACATTTTA  
GTGATAGCGCTGGCTTTGAT  

4213_F  
4360_R  

AGAACAACCGTGCTGCTTTT  
TGTGTGCAAGCTCGTTAAGC  

5030_F  
5135_R  

CCGGTTGTTGGACATAACTAGG  
CCAAACCCAGACTTAACCAGAC  

6768_F  
6838_R  

TTGTAAAGTCCGATGGAGACG  
ACTCGGCGAGAAAGTTTGTG  

STM exon F  
STM exon R  

GCCCATCATGACATCACATC  
GGGAACTACTTTGTTGGTGGTG  
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Appendix Table 3 – smFISH probe set used to detect PP2A mRNA 

 
 

PP2A Exon Probes 
 

Sequences (5’-3’) 
 

1 ccgagcgatctatcaatcag 
2 gacatcctcaccaaaactca 
3 tcgggtataaaggctcatca 
4 tagctcgtcgataagcacag 
5 ccaagagcacgagcaatgat 
6 atcaactcttttcttgtcct 
7 catcgtcattgttctcacta 
8 atagccaaaagcacctcatc 
9 atacagaataaaacccccca 

10 caagtttcctcaacagtgga 
11 tcatctgagcaccaattcta 
12 tagccagaggagtgaaatgc 
13 cattcaccagctgaaagtcg 
14 ggaaaatcccacatgctgat 
15 atattgatcttagctccgtc 
16 attggcatgtcatcttgaca 
17 aaattagttgctgcagctct 
18 gctgattcaattgtagcagc 
19 ccgaatcttgatcatcttgc 
20 caaccctcaacagccaataa 
21 ctccaacaatttcccaagag 
22 caaccatataacgcacacgc 
23 agtagacgagcatatgcagg 
24 gaacttctgcctcattatca 
25 cacagggaagaatgtgctgg 
26 tgacgtgctgagaagagtct 
27 cccattataactgatgccaa 
28 tggttcacttggtcaagttt 
29 tctacaatggctggcagtaa 
30 cgattatagccagacgtact 
31 gactggccaacaagggaata 
32 catcaaagaagcctacacct 
33 ttgcatgcaaagagcaccaa 
34 acggattgagtgaaccttgt 
35 cttcagattgtttgcagcag 
36 ggaccaaactcttcagcaag 
37 ggaactatatgctgcattgc 
38 gtgggttgttaatcatctct 
39 tgcacgaagaatcgtcatcc 
40 ttactggagcgagaagcga 
41 ctctgtctttagatgcagtt 
42 gaacatgtgatctcggatcc 
43 catcattttggccacgttaa 
44 cgtatcatgttctccacaac 
45 atcaacatctgggtcttcac 
46 ttggagagcttgatttgcga 
47 acacaattcgttgctgtctt 
48 cgcccaacgaacaaatcaca 
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Appendix Table 4 – smFISH probes used to detect nascent PP2A RNA 
 

PP2A Intron Probes 
 

Sequences (5’-3’) 
 

1 actattaccattcttagact 
2 gaactgaaactttgtgccgt 
3 tgacccattagcctctaaaa 
4 ctttaaactcaattccgcct 
5 tgcatacatagacaccatca 
6 gtaaaccagccttatctaac 
7 ttgacagagcatggaaagga 
8 tcttctgttttagtggctta 
9 acaattgacaaaggacccca 

10 gcatatttccaaactttggg 
11 acacctataaggggaacact 
12 acttcaacctaccaatttcc 
13 atgttctcttagatcaacca 
14 aaagagcgctaaagccagag 
15 tcacatacacaaccacaacc 
16 acctataccgaggtatgtat 
17 gcttaagtcggtttcacatt 
18 acacaatgacagtgttcagt 
19 cccataactaggcttgatga 
20 acttgcctattacacatcag 
21 tgttcaatgcagtaacccta 
22 gcttaacttcagctaatggt  
23 agctgagatgtagacaaccg 
24 ctttcccataaagctcatca 
25 agcagctcatacatatctgc 
26 aacttcaaccatcactgctt 
27 acctctgaagtcagtaatct 
28 catggacttccaagtaccaa 
29 cacactcttcttaagtgtgt 
30 tggtcctttgcataatatga 
31 cttagcaaacaccgacagta 
32 ctacgtgtagatttataggt 
33 atcggtttttaattctgctt 
34 gtattcatgatatgagaggc 
35 cactccaaactatagagcca 
36 atctttatctctaagatgct 
37 gatgacagtgactaggacga 
38 ccttccaggcacagttaaaa 
39 acatagtgaggttttcttat 
40 atgccaagttaaaagctgca 
41 gagtaacttggtcaatagca 
42 acccaatgtcgtacaaagag 
43 acagctcctttgaacatgtg 
44 tagtcattgacttgaccaaa 
45 ggacaaagaatttgctgtca 
46 ctggatgattcaatgaaggt 
47 ttcaagcagtagagacgaca 
48 actccaataaccaatagcta 
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Appendix Table 6 – smFISH probes used to detect nascent FLC RNA 
 

Sense FLC Intron 
Probes 

 
Sequences (5’-3’) 

 
1 gatccgccggaaaaaaacca 
2 catgtatctatcatggtcgc 
3 cacgacattgttcttcctta 
4 caacaacatcgagcacgcat 
5 ctctatagatctcccgtaag 
6 acattgttcagcattaaccc 
7 caatagctgcacaatgtggt 
8 aggtccacagcaaagatagg 
9 aggctgagttttttgaagct 

10 tgaagtagcatatgtgcggt 
11 gcacacgacgattgtgattc 
12 agaccagtttatgtacagca 
13 tttataaatctcccggacgt 
14 tcctttttaccattaacctc 
15 tttcccaattaatgtggctt 
16 gtgtaactgcaagagtggga 
17 attgaggttgtggattgtca 
18 ggttgtgtgattgtcgattt 
19 atttcctagaggcaccaaag 
20 tagatccgtaccaaagaggt 
21 tggagggttgtagtagacac 
22 gaccaacatggccaaactac 
23 atcaagtgagaatcggccag 
24 gacctaactaggggtgaaca 
25 tagtcaggtgtctcgacaat 
26 tccacgttctaaaaggcttc 
27 gctctttgcatcaacctaag 
28 gcccttgaagttacactaac 
29 cggtcttccattttgttatt 
30 tacatggaccgagtcttaga 
31 gtatgaggaagccaaactcc 
32 tgtggcggtaaccagataac 
33 gctagtattgatgacccata 
34 caaggttttttccagcgata 
35 ggtaacatcagctctttgtt 
36 aaacgcctctttcatgagtt 
37 cttttctttttgtatcccag 
38 acctatttaccctctatttt 
39 ccataccacaacttttagca 
40 agagattcagagcttccatt 
41 tagtggaagactgcttccaa 
42 ccaagtacacagactgagtc 
43 gccacaatgtgatgacatgg 
44 agccccaatcttaaatgcaa 
45 tccagattgtttctatgcat 
46 ccctaaacataagcctctac 
47 tagcgctggctttgattaac 
48 agcacatctgaatttccact 
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Appendix Table 5 – smFISH probe set used to detect FLC mRNA 
 

Sense FLC Exon 
Probes 

 
Sequences (5’-3’) 

 
1 ttttttttttccttttctcg 
2 actaagcgttttctctttct 
3 tcaggtttgggttcaagtcg 
4 gctttgtgccctaatttgat 
5 ctagtttttttcttcccatg 
6 ttgttctcaattcgcttgat 
7 gaaggtgacttgtcggctac 
8 tgagaccgttgcgacgtttg 
9 gaaagctgacgagctttctc 

10 gacggatgcgtcacagagaa 
11 gaggcggagacgacgagaag 
12 gaggagaagctgtagagctt 
13 aggatcttgaccaggttatc 
14 atgctgtttcccatatcgat 
15 ccaaggctttaagatcatca 
16 agttcagagcttttgactga 
17 agtagctcatagtgtgaacc 
18 aagcttgctatccacaagtt 
19 catttttgacatttgatccc 
20 ccagttgaacaagagcatcg 
21 agggcagtctcaaggtgttc 
22 tcttcttggctctagtcacg 
23 acaagcttcaacatgagttc 
24 gcattttctccttttcttta 
25 caaaacctggttctcttctt 
26 atccaaggaatatctggcta 
27 tcactttctctttttgtctt 
28 ctccatctgtacgataatca 
29 ctgctcccacatgatgatta 
30 aggtgacatctccatctcag 
31 agattgtcggagatttgtcc 
32 taagtagtgggagagtcacc 
33 tttcaaccgccgatttaagg 
34 cccttatcagcggaataatt 
35 ggccaaagagagagtattaa 
36 agtatcacacacaaagtctc 
37 agtattgacttagttccgtc 
38 gttcatcaaccttttgtctt 
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Appendix Table 7 – smFISH probe set: nascent antisense FLC RNA 

 
Antisense FLC Intron 

Probes 

 
Sequences (5’-3’) 

 
1 gtagtgctacttttacatgc 
2 ttccaactccaagtgtctag 
3 ttatggttaggtttggatcc 
4 gtttatggaccgattagttt 
5 agttaatcaccttttaacca 
6 ggttgtgtaaacgttgtcta 
7 gttcaatattggtttccttg 
8 tggtctggttcagtctagtt 
9 ttcttgattctctttcaggt 

10 tctgggtttggtagagattc 
11 gaaccttttatagtctggtt 
12 ggttttggttcatttggaga 
13 taggttttggttcttcttct 
14 aattccggttgttggacata 
15 acggctggttagagttaagg 
16 gggttagtgagattattact 
17 gttgttggtagtttggttta 
18 ttcttctcaagattagggca 
19 gtcttgtatagttgtattct 
20 cattcactagttagcacttt 
21 tatatagtcagtgcatttca 
22 acactcttatgcttgcagat 
23 atgtccatgtacatggacat 
24 aataagcactgcgtgttgtg 
25 acgaaagctacatttcctaa 
26 acgaaagctacatttcctaa 
27 attctgaagttgttaggttt 
28 cttcatatgttttggattcc 
29 gcttgcacacatatttgcaa 
30 ctctgttactttaagtctgc 
31 gatatatcctcttctgtgtt 
32 gctaccaattttattgtaca 
33 cgtgctgcttttgtttgttg 
34 ctgaattttgtttgctgaga 
35 atttcgtaatgtctactcct 
36 ctctccacctttgattacaa 
37 tcttctgtccctttttcatg 
38 ttcatagcccttgtctttta 
39 atgcattatgcataccgcaa 
40 taaaatgaggtggtggctcc 
41 actattagtttgccgagtga 
42 atggagttttataaggcgta 
43 aacattttgaatcttttccc 
44 attttttttgtcatctctcc 
45 agctagtagttttgatccta 
46 tttccagtggccttttcaag 
47 ggtgttctctcaatgtttca 
48 gttacgaatactagcgtgtt 
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Appendix Table 8 – smFISH probe set: spliced antisense FLC RNA 
 

Antisense FLC  
Exon Probes 

 
Sequences (5’-3’) 

 
1 attttgcaacagggacgtgg 
2 acagtgaagaagcctacggc 
3 gtcaaaaacttgtgtttgct 
4 gagtgtatgtgttcttcact 
5 tcgtgtgagaattgcatcga 
6 ggttgatgaactttgtacct 
7 gagactttgtgtgtgatact 
8 ttaatactctctctttggcc 
9 taagggcgagcgtttgtata 

10 agatatgtaattattccgct 
11 accttaaatcggcggttgaa 
12 gactctcccactacttaatt 
13 aaatctccgacaatcttccg 
14 tgagatggagatgtcacctg 
15 atcatcatgtgggagcagaa 
16 gattatcgtacagatggaga 
17 gtgaatagtgattttgacct 
18 tattccttggatagaagaca 
19 gttgttatttggtggtgtga 
20 accttctgtagtgtttttta 
21 tttactttttactgcttcca 
22 ccttttatcttctgttttgt 
23 acctgggttttcatttgttc 
24 gcgataagtacgccttttcc 
25 aagctctacagcttctcctc 
26 ttctgttctctgtgacgcat 
27 tcatcgagaaagctcgtcag 
28 ttctccaaacgtcgcaacgg 
29 caaaagtagccgacaagtca 
30 ggagagaagccatgggaaga 
31 caaattagggcacaaagccc 
32 acttgaacccaaacctgagg 
33 aaaacgcttagtatctccgg 
34 aaatatctggcccgacgaag 
35 ctcgtttacccccaaaaaaa 
36 tatttggtttttttgcatca 
37 cgtggcaatcttgtcttcaa 
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Appendix Table 9 – smFISH probe set used to detect VIN3 RNA 
 

VIN3 mRNA 
Probes 

 
Sequences (5’-3’) 

 
1 tctaaggaggaaaccctctg 
2 tttctgtgatggatggttct 
3 cttcgtgttcttcgtttttt 
4 cgaagcagcttgcatttttt 
5 ttaccatcgaaacgccagat 
6 agaatccatgttctctggac 
7 tctcctttcacttacattca 
8 ggttagacaatgcgtggatc 
9 tcaaaagctccgaagcttct 

10 ccatctcagcacatatgatc 
11 taagaccagtgtacttcctt 
12 gattctctatgagctttggt 
13 cggtcagaacaagaggtctc 
14 gtaaccgatcatcttcttct 
15 agcaagaacaccttctgcaa 
16 agccataaactaggatcctt 
17 agacgatccacaagcatcac 
18 tgcttcaaaccacattccaa 
19 cctaccatcaagatcatcac 
20 tatctttaccgcaatacgcg 
21 gttccaacagattccgatac 
22 aagtctattgacgatgcctc 
23 gagaacacagcttctggaca 
24 agattctgatggtgagacca 
25 gcttgaatctcttctactct 
26 tctactctcacagtgactga 
27 acctgtgatcttgttttgtg 
28 gtccttcgactttcgacaaa 
29 tgagacagaactcggtgtcg 
30 aagtcaccttcctcgttaaa 
31 atcatccttcaacgttgtga 
32 cttgagtttgtcaaagggct 
33 ttgctgcagcttttattgac 
34 actacagtgttcagtgttgt 
35 tctcttcttcaagctcagat 
36 gtttgctttcctctttacaa 
37 aagcaagtctcttccatcta 
38 aatatctctcttgcagggtg 
39 ttgaatcttttattccctcc 
40 ggcattattgatctcaggtt 
41 atgacccaagtctttatctc 
42 cttgtctatatgtccttctt 
43 tgtcaagaacctttccctaa 
44 caactcttacttctcggtga 
45 tcctccataaacgtctcaac 
46 caagctgttgtcccaaagaa 
47 caccatttgtcgatgatctc 
48 taatgccaaagcttgaggca 
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