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Abstract 

High dietary consumption of anthocyanins has been associated with a reduced risk of 

cardiovascular disease (CVD), which is supported by evidence from human, animal and in 

vitro studies.  However, owing to anthocyanins’ poor bioavailability and extensive 

metabolism, it is likely their metabolites are responsible for their reported health effects; 

yet the bioactivity of anthocyanin metabolites remains largely unknown.  This thesis aimed 

to address this deficiency in current scientific literature by investigating the vascular and 

anti-inflammatory activity of cyanidin-3-glucoside (C3G), the most abundant anthocyanin in 

the UK diet, and 11 of its recently identified metabolites (including six synthetic 

metabolites) at physiological concentrations (0.1 – 10 µM) in a human endothelial cell 

model.  Here protein and mRNA levels were established using ELISA and RT-qPCR, 

superoxide levels were quantified by spectrophotometric measure of cytochrome c 

reduction and electron paramagnetic resonancespectroscopy, and nuclear factor kappa B 

(NF-κB) activation was established by flow cytometry. The data indicate that C3G, its A-ring 

degradant, phloroglucinaldehyde (PGA), and its phase II metabolite vanillic acid (VA) 

increased the basal expression of endothelial nitric oxide synthase (eNOS) by between 1.5-

to-3 fold (p<0.05).  In contrast, none of the compounds tested modulated angiotensin II 

(Ang II)-stimulated superoxide production and basal endothelin-1 expression in endothelial 

cells.  Anti-inflammatory activity of the treatments was characterised by their effects upon 

oxidised low density lipoprotein (oxLDL) and cluster of differentiation 40 ligand (CD40L) 

stimulated expression of vascular cell adhesion molecule-1 (VCAM-1) and interleukin-6 (IL-

6) in endothelial cells.  Here, significant bioactivity of C3G metabolites was observed, as 7 

out of 12 of the tested treatments reduced CD40L-induced VCAM-1 expression up to 65% 

(relative to control, p<0.05), eight compounds reduced CD40L-induced IL-6 production up 

to 95% (relative to control, p<0.05), and nine compounds reduced oxLDL-induced IL-6 

protein secretion up to 99% of control incubations (p<0.05).  Protocatechuic acid (PCA) and 

VA reduced VCAM-1 and IL-6 protein and mRNA levels under both stimulation conditions, 

and were therefore selected for further targeted investigation of transcription factor 

activity. Here IL-1β-induced activation of nuclear factor-kappa B (NF-κB) was significantly 

reduced by both PCA and VA (p<0.05).  Therefore, anthocyanin metabolites appear to exert 

their effects on inflammatory chemokines through attenuation of NF-κB p65 

phosphorylation in endothelial cells.  In summary, the beneficial effects of anthocyanins in 
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vivo may arise, in part, from the anti-inflammatory activity of their metabolites, as the 

metabolites displayed significant anti-inflammatory activity and are found in the circulation 

at considerably higher concentrations than their unmetabolised precursor structures, hence 

likely contributing to the observed vascular activity in humans.  These findings provide 

novel insight to bioactivity of anthocyanins and extend current knowledge in the field of 

anthocyanin research. 
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Chapter 1. Anthocyanins: review of the 
scientific literature 

1.1 Introduction 

There are six main anthocyanins, a subclass of flavonoid, commonly found within the 

plant kingdom, which differ according to their degree of hydroxy- and methoxylation of the 

B ring (Figure 1.1) (Wallace 2011).  They are considered to be secondary metabolites and are 

responsible for the dark red and purple colouration of many plants and commonly used as 

pigments in the food industry. However more recently, their potential health-related 

benefits (Cassidy, O'Reilly et al. 2010, Jennings, Welch et al. 2012, Cassidy, Mukamal et al. 

2013) have drawn the attention of researchers.  Epidemiological data suggest that 

anthocyanin consumption is associated with reduced incidence of cardiovascular disease 

(CVD) and particularly reduces the risk of hypertension, atherosclerosis and myocardial 

infarction (Mink, Scrafford et al. 2007, Cassidy, O'Reilly et al. 2010, Jennings, Welch et al. 

2012).   

Figure 1.1  Flavonoid skeleton and structures of anthocyanins 

9

10

8

5

7

6

2

3

O
1

4

1'

2'

6'

3'

5'

4'

A

B

C

Flavonoid Skeleton
  

Glu

9

10

8

5

7

6

O
+

1
2

4

3

1'

2'

6'

3'

5'

4'

OH

OH

R1

OH

R2

Anthocyanin
 

 
 
 
 
 
 
 
 
 

Glu, glucose. 

 

Anthocyanins are consumed in appreciable amounts as a part of healthy diet high in fruits 

and vegetables.  Anthocyanin consumption varies across populations and depends on the 

Anthocyanin R1 R2 

Cyanidin-3-glucoside (C3G) OH H 

Malvidin-3-glucoside (M3G) OCH3 OCH3 

Delphinidin-3-glucoside (D3G) OH OH 

Pelargonidin-3-glucoside (Pg3G) H H 

Petunidin-3-glucoside (Pt3G) OCH3 OH 

Peonidin-3-glucoside(Pn3G) OCH3 H 
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type of food consumed (Table 1.1) (Zamora-Ros, Andres-Lacueva et al. 2010, Zamora-Ros, 

Knaze et al. 2011).  For example, a single serving of berries and aubergine could provide up 

to several hundred milligrams of anthocyanins (Manach, Williamson et al. 2005, Zamora-Ros, 

Knaze et al. 2011).   

 

Table 1.1  Anthocyanin content in common berries, juices and vegetables (Zamora-Ros, 
Knaze et al. 2011) 

Foods 
Anthocyanidins (mg) per 100 gm of fresh weght 

Cyanidin Delphinidin Malvidin Pelargonidin Peonidin Petunidin Total 

Fruits        

 Elderberries, raw 758.48 - 61.35 1.13 - - 820.96 

 Chokeberry, raw 435.78 - - 1.44 - - 437.22 

 Bilberry, raw 112.59 161.93 54.37 - 51.01 51.01 430.91 

 Raspberries, black 323.47 - - 0.15 0.55 - 324.17 

 Blueberries, wild, raw 42.47 92.71 103.80 - 23.49 58.23 320.70 

Vegetables         

 Chicory red, raw 232.28 13.93 - - - - 246.21 

 Cabbage, red, raw 72.86 0.10 - 0.02 - - 72.98 

 Eggplant, raw 0.02 13.76 - 0.02 - - 13.80 

 Onions, red, raw 6.16 2.28 - 0.02 1.22 - 9.68 

Beverages         

 Crowberry juice 16.97 47.40 61.35 - 11.38 26.42 163.52 

 Cranberry juice, raw 41.81 7.66 0.31 - 42.10 - 91.88 

 Grapes, black, juice 1.18 3.17 58.0 0.02 6.14 2.81 72.12 

 Black Currant Juice 16.05 27.80 - 1.17 0.66 3.87 49.55 

 
 

A significant body of epidemiological evidence suggests that increased consumption of 

foods rich in flavonoids reduces the risk of CVD (Erdman, Balentine et al. 2007, Geleijnse and 

Hollman 2008, Grassi, Desideri et al. 2009, Jennings, Welch et al. 2012) but not all studies 

have shown this association (Curtis, Kroon et al. 2009, Wallace 2011).  A 16 year follow-up 

study involving 34,489 post-menopausal women showed a significant inverse relationship 

between increased dietary anthocyanin intake and coronary heart disease mortality (CHD) 

(Mink, Scrafford et al. 2007).  Data from more recent studies, for example a 14 year follow-

up study which involved participants from the Nurse’s Health Study (NHS) cross-sectional 

study, and a study involving 1898 women participants from the TwinsUK registry, both 

reported inverse association between the risk of hypertension and consumption of foods 

rich in anthocyanins (Cassidy, O'Reilly et al. 2010, Jennings, Welch et al. 2012); thereby 

suggesting that consumption of anthocyanin may reduce the relative risk of developing CVD. 
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Chemistry of anthocyanins.  Anthocyanins have a similar skeletal structure (C6-C3-C6) to 

other flavonoids, with the main difference being the presence of the unique flavylium cation 

on the C- ring (Figure 1.1) which is most stable in acidic conditions (Asenstorfer, Iland et al. 

2003, Fleschhut, Kratzer et al. 2006, Crozier, Jaganath et al. 2009).  More than 635 

anthocyanins have been reported, and vary depending on numbers and positions of hydroxyl 

groups, methoxy groups and degree of glycosylation (de Pascual-Teresa, Moreno et al. 2010, 

Wallace 2011).  The increased number of hydroxyl- and methoxy- groups increases the water 

solubility due to polarity change; however, it decreases their stability, for example, Pg3G (no 

hydroxyl group) is more stable compared to D3G (two hydroxyl groups) (Fleschhut, Kratzer 

et al. 2006, Crozier, Jaganath et al. 2009, Wallace 2011).  Anthocyanins are predominantly 

mono glycosylated at position three of the C-ring (3-O-glucoside); however, mono and 

diglycosides at other positions are also reported (de Pascual-Teresa, Moreno et al. 2010). 

 

The chemistry of anthocyanins is more complex when compared to the other flavonoid 

subclasses, owing to the presence of the flavylium cation.  The cation stabilises anthocyanins 

under acidic conditions, however, it is extremely unstable under physiological pH and 

degrades to form acid and aldehyde (Seeram, Bourquin et al. 2001, Fleschhut, Kratzer et al. 

2006, Castañeda-Ovando, Pacheco-Hernández et al. 2009).  Anthocyanins can be present in 

four different forms depending upon the pH of their environment (Figure 1.2) (Asenstorfer, 

Iland et al. 2003, Castañeda-Ovando, Pacheco-Hernández et al. 2009).  The flavylium cation 

(red colour) is the most stable form (stable at pH≤2) of the molecule under acidic conditions 

(Figure 1.2A) (McGhie and Walton 2007, Castañeda-Ovando, Pacheco-Hernández et al. 

2009).  However, as acidity decreases (pH 2-4) this form undergoes proton loss to give the 

quinonoid form (blue colour) (McGhie and Walton 2007).  Under neutral pH conditions, the 

hemiketal and chalcone forms are predominant (both forms are colourless)(Del Rio, Borges 

et al. 2010). 

1.2 Bioavailability of anthocyanins 

1.2.1 Absorption 

 

Anthocyanins are generally considered to have low human bioavailability and their 

absorption is poorly understood.  Previous studies have reported low recoveries of  

anthocyanins, where the total plasma concentration and urinary excretion ranges from 
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14nM – 120nM which is equivalent to 0.004% – 5.1% of the total intake (Table 1.2) (Milbury, 

Cao et al. 2002, Kay, Mazza et al. 2005, Manach, Williamson et al. 2005, McGhie and Walton 

2007, Milbury, Vita et al. 2010).  A possible reason for the low recovery of anthocyanins may 

be that the majority of bioavailability studies conducted to date have generally attempted to 

detect aglycones, or intact or conjugated anthocyanins (Felgines, Talavera et al. 2005, Kay, 

Mazza et al. 2005) and failed to identify lower molecular weight metabolites such as 

phenolic acids. 

 

Figure 1.2  pH dependent forms of anthocyanins and degradation products 

A. pH dependent form of anthocyanins 

 

A. Degradation products of 
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It has been hypothesized that the apparent low levels of anthocyanins in biological samples 

may be due to rapid degradation and metabolism of anthocyanins associated with pH 

changes within the gastrointestinal tract (GIT) (Kulling, Honig et al. 2001, Manach, 

Williamson et al. 2005, McGhie and Walton 2007).  In addition, the majority of the studies 

examining absorption and metabolism in vivo haveused anthocyanin rich extracts from 

fruits, which may have an influence on absorption, and production of degradants and 

metabolites in the body due to the complex mixture of various anthocyanins present 

(Crozier, Jaganath et al. 2009).  However, recently Czank et al (2013) reported a Cmax of 0.14 

µM for cyanidin-3-glucoside (C3G) at 1.8 hours following ingestion of a 13C isotope labelled 

C3G bolus (500 mg), in a study involving eight healthy participants where blood, urine, 

faeces and breath samples were collected at various time points up to 48 hours post bolus 

(Czank, Cassidy et al. 2013).   

 

Table 1.2  Concentrations of anthocyanins in plasma and urine reported in human studies 

Material 
consumed 

Anthocyanin 
dose (total 

intake) 

Plasma maximum 
concentration/Cmax 

Time to 
maximum 

Plasma 
concentration 

tmax(h) 

Urinary 
excretion % of 
total intake – 

(time of sample 
collection) 

References 

13
C isotope 

labelled C3G 
500 mg 0.14 µmol/L 1.8 5 (48h) 

(Czank, 
Cassidy et 
al. 2013) 

Chokeberry 
extract (7.1g) 

721mg 96.08±6.04nmol/L 2.8 0.001 (24h) 
(Kay, Mazza 
et al. 2005) 

Red wine (500mL) 68mg 1.4nmol/L 0.8 0.016 (6h)  

(Manach, 
Williamson 
et al. 2005) 

Red wine (300mL) 218mg   1.5-5.1 (12h) 

Black currant 
juice (330mL) 

1000mg 3.5-51nmol/L 1 0.0.032-0.046 

Red grape juice 
(500mL) 

Malvidin-3-
glucoside  

117mg 
2.8nmol/L 2 0.019 (6h) 

Cranberry extract 
(480mL) 

Cyanidin-3-
glucoside 
1.58mg 

0.93±1.04 nmol/L 1.1 0.007 (4h) 
(Milbury, 
Vita et al. 

2010) 

Red wine 
anthocyanins 
extract (12g) 

Peonidin-3-
glucoside 

15.2±1.5mg 
0.8±0.2nmol/L 1.4±0.8 0.05(24h) 

(Milbury, 
Cao et al. 

2002) 
 Red wine 

anthocyanins 
extract (12g) 

Malvidin-3-
glucoside 

80.2±3.1mg 
4.2±1.3nmol/L 1.8±0.6 0.05(24h) 

 
As anthocyanins have a similar structural configuration to other flavonoid subclasses, their 

overall absorption and metabolism may be similar to other flavonoids.  Current evidence 

suggests that flavonoids are fairly stable in the stomach and remain intact; owing to 
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attached glycoside groups.  Once flavonoids enter the small intestine there are two potential 

pathways by which they may be absorbed into epithelial cells.  Firstly, hydrolysis of 

flavonoids by lactase phloridizin hydrolase (LPH) on the brush border of the small intestine 

to produce aglycones, which then enter epithelial cells by passive diffusion (Kay 2006, He, 

Wallace et al. 2009, Del Rio, Borges et al. 2010).  Secondly, intact flavonoids enter epithelial 

cells via active transport systems such as the sodium-dependent glucose transporter (SGLT), 

where they may be hydrolysed by cytosolic β-glucosidase to produce aglycones (Figure 1.3) 

(Kay 2006, McGhie and Walton 2007, Wang and Ho 2009, Del Rio, Borges et al. 2010).   

 

Figure 1.3  Potential mechanisms of intestinal absorption of anthocyanins in humans 

 
Mechanism of intestinal absorption of anthocyanins in human, based on(Kay 2006, McGhie and Walton 2007, 
Del Rio, Borges et al. 2010).  SGLT, sodium-glucose transporter; LPH, lactase phloridizin hydrolase; CβG, 
cytosolic-β-glycosidase; MRP, multi-drug resistance protein 
 
 

It is possible that the absorption and metabolism pathways in the small intestine could 

become saturated, and the remaining flavonoids enter large intestine as intact glycosides 

(Kay 2006).  The degradation of anthocyanins has been reported at physiological pH resulting 

in formation of phenolic acids and aldehydes, which may then be absorbed in the small 

intestine or enter the large intestine where they may undergo further metabolism (Figure 

1.3) (Fleschhut, Kratzer et al. 2006).  For example, protocatechuic acid, which is a degradant 
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of C3G, has been identified as a metabolite present following consumption of red blood 

orange juice or 13C-C3Gby healthy volunteers (Vitaglione, Donnarumma et al. 2007, Czank, 

Cassidy et al. 2013). 

 

1.2.2 Metabolism 

 

The metabolism of anthocyanins may have a major role in explaining the reported 

low bioavailability of the parent compounds.  Recently, Czank et al(2013) reported 24 

metabolites identified from a 13C labelled C3G human feeding study, which included phase II 

conjugates of cyanidin and C3G, degradants of cyanidin [protocatechuic acid (PCA) and 

phloroglucinol aldehyde (PGA)], and phase II metabolites of PCA [including vanillic acid (VA), 

isovanillic acid (IVA), glucuronides and sulphates of PCA, and glucuronides and sulphates of 

VA and IVA] (Czank, Cassidy et al. 2013).  Furthermore, Czank et al also described elimination 

of C3G in detail, where ~5% of total 13C excretion was detected in urine, ~32% in faeces and 

~7% in breath over a 48 hour period; with a minimum bioavailability of 13C-C3G reaching 

~12% of total ingested dose (Czank, Cassidy et al. 2013).  Owing to structural similarities, the 

metabolism of flavonoids can also be extrapolated to anthocyanins, and may be divided into 

three stages.  Firstly, Phase II metabolism: conjugation reactions; secondly, Phase I 

metabolism: hydroxylation and demethylation reactions; and thirdly, colonic microfloral 

metabolism in the large intestine (Kay 2006, Wang and Ho 2009, Del Rio, Borges et al. 2010).  

The metabolism of anthocyanins begins following absorption in the small intestine where 

they undergo conjugation, catalysed by the enzymes catechol-O-methyltransferase, 

sulphotransferase and UDP-glucuronosyltransferase present in epithelial cells, to produce 

methylated, glucuronidated and sulphated products respectively (Kay 2006, McGhie and 

Walton 2007, Del Rio, Borges et al. 2010).  These conjugated metabolites then enter the 

hepatic portal circulation and ultimately the liver, where they are further metabolised.  

Intact anthocyanins and their conjugated metabolites which have reached the liver are 

subject to Phase I metabolism reactions such as hydroxylation and demethylation, resulting 

in mono- and di- hydroxyl metabolites.  Mono- and di- hydroxy metabolites of isoflavones 

have been reported as metabolic products of liver microsomes (Wang and Ho 2009).  

Anthocyanins which are not absorbed in the small intestine may enter the large intestine, 

where they may undergo Phase II metabolism as described above and catabolism by colonic 

microflora.  Colonic microflora may play a significant role in the metabolism of anthocyanins 
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(Williamson and Clifford 2010, Del Rio, Rodriguez-Mateos et al. 2013). A study involving 

human volunteers who had undergone ileostomy reported up to 85% of blueberry 

anthocyanins appearing in ileostomy bags depending on sugar moiety and attached methoxy 

groups (Kahle, Kraus et al. 2006).   

 

In a blood orange juice feeding study (Vitaglione, Donnarumma et al. 2007) PCA was 

reported as a major anthocyanin metabolite.  There is a potential for further metabolism of 

these metabolites, to produce hydroxybenzoic acids (Williamson and Clifford 2010).  Such 

hydroxybenzoic acids (4 hydroxybenzoic acid, PCA, vanillic acid and genistic acid) have been 

reported in a strawberry feeding study by Russel et al(Russell, Scobbie et al. 2009). Complete 

dehydroxylation of phenolic acids can occur, as benzoic acid has been reported as a 

dehydroxylated metabolite of quinic acid (Williamson and Clifford 2010).  Non-aromatic 

compounds can also be produced, such as oxaloacetate which is further metabolised to yield 

CO2.   

 

Phenolic acids and degradation products formed in the large intestine can be reabsorbed 

through the intestinal wall and undergo conjugation reactions, prior to excretion via urine 

(Kay 2006, Wang and Ho 2009).  For example, C3G degradation to PCA and PGA, and phase II 

conjugation of PCA resulting in the formation of VA, IVA and  glucuronic acid conjugates has 

been reported recently (Czank, Cassidy et al. 2013).  All of these metabolites may then 

undergo demethoxylation, dehydroxylation and deglucuronidation by colonic microflora as 

described above.   

1.3 Anthocyanins and cardiovascular disease 

Cardiovascular disease (CVD) is the predominant cause of mortality globally (WHO 2011), 

resulting in the death of approximately 17 million people annually and this number is 

expected to reach 23.6 million by 2030 (WHO 2011).  CVD includes hypertension (elevated 

blood pressure), coronary heart disease (CHD), cerebrovascular disease (stroke), peripheral 

artery disease, congenital heart disease, rheumatic heart disease, and heart failure (Wallace 

2011, WHO 2011).  An unhealthy diet, physical inactivity and smoking are believed to be the 

main causes of CVD (WHO 2011).  With regard to the role of a healthy diet, anthocyanins 

have been linked with reduced incidence of CVD (Erdman, Balentine et al. 2007, Mink, 

Scrafford et al. 2007, Cassidy, O'Reilly et al. 2010);for example Cassidy et al(2010) recently 
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reported on a prospective study involving 156,957 participants from the Nurse’s Health 

Society and Health Professionals Study and concluded that the relative risk of hypertension 

was reduced by 8% in the highest quintile of anthocyanin consumption compared to the 

lowest (Cassidy, O'Reilly et al. 2010).  Mink et al (2007) have also described a correlation 

between consumption of foods rich in anthocyanins and a reduced mortality rate due to 

CVD (Mink, Scrafford et al. 2007); although not all studies support this correlation (Curtis, 

Kroon et al. 2009).  Animal data support the hypothesis  that anthocyanins are beneficial in 

the prevention of CVD (Elks, Reed et al. 2011, Zhu, Xia et al. 2011), however, once believed 

to be primarily radical scavengers (Wang 1997, Zheng and Wang 2003), anthocyanins are 

now thought to influence cell signalling pathways to reduce the detrimental effects of 

oxidative stress and therefore prevent CVD.  Although several modes of action have been 

proposed and investigated in vitro (Xu, Ikeda et al. 2004a, Lazze, Pizzala et al. 2006), 

bioactivity of anthocyanins is still incompletely understood. 

 

1.3.1 Endothelial dysfunction 

Endothelial dysfunction is the hallmark of all conditions associated with CVD (Brunner, 

Cockcroft et al. 2005, Versari, Daghini et al. 2009).  Endothelium-derived relaxing factors 

(EDRFs) such as nitric oxide (NO), prostacyclin (PGI2) and endothelial hyperpolarising factors 

(EDHFs) are mainly responsible for endothelium-dependent vasorelaxation (Flammer and 

Luscher 2010).  These factors are released in response to increased calcium levels in 

endothelial cells due to shear stress and cause smooth muscle relaxation (Flammer and 

Luscher 2010).  Endothelium dependent vasorelaxation in response to stimuli is mainly 

driven by the generation of NO, which activates soluble guanyl cyclase to increase the 

production of cyclic guanosine monophosphate (cGMP) and subsequent relaxation of 

smooth muscle cells (Brunner, Cockcroft et al. 2005). NO is also responsible for maintaining 

endothelial homeostasis by inhibiting vascular smooth muscle cell proliferation, platelet 

adhesion/aggregation, neutrophil activation/adhesion, and expression of proinflammatory 

factors such as endothelial cell adhesion molecules and cytokines (Naseem 2005, Bian, 

Doursout et al. 2008).  The bioavailability of NO can be diminished by various factors 

including increased production of radical species [eg reactive oxygen species (ROS) and 

reactive nitrogen species (RNS)], smoking, dyslipidemia, diabetes and 

hyperhomocysteinaemia (Li, Yi et al. 2002, Brunner, Cockcroft et al. 2005, Versari, Daghini et 

al. 2009) which cause disruption in the homeostatic environment of endothelium to 
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promote endothelial dysfunction.  Flow mediated dilatation (FMD), a technique which 

measures NO-mediated brachial artery dilatation in response to endothelial shear stress, 

was significantly improved in a placebo controlled cross over study involving consumption of 

anthocyanins by 12 hypercholesterolemic volunteers (Zhu, Xia et al. 2011).  Animal data also 

support the beneficial effect of anthocyanins in spontaneously hypertensive rats (SHR), 

which showed decreases in glutathione peroxidise, an enzyme expressed in response to 

oxidative stress, and improved endothelial dependent relaxation when SHR were fed red 

wine polyphenols including cyanidin-3-glucoside, peonidin-3-glucoside and malvidin-3-

glucoside (Chan, Tabellion et al. 2008).  Anthocyanins appear to act upon NO mediated 

endothelial relaxation as confirmed recently when rat aortic rings showed no relaxation, in 

the presence of NO and cGMP inhibitors when treated with anthocyanins, but showed 

significant relaxation in the absence of these inhibitors (Zhu, Xia et al. 2011).  Anthocyanins 

may elicit this protective effect either by abolishing NAD(P)H oxidase (NOX) 

expression/activity hence reducing ROS production, or by increasing NO production [via 

endothelial nitric oxide synthase (eNOS), discussed later in section 1.4]. 

 

A. Endothelial nitric oxide synthase and anthocyanins 

 

Endothelial nitric oxide synthase (eNOS) is expressed in most endothelial cells and is 

activated by various factors such as growth factors, bradykinin, histamine, hormones and 

thrombin (Michel and P.M.Vanhoutte 2010).  The enzyme produces NO by oxidation of L-

arginine to L-citrulline, where the cofactor tetrahydrobiopterin (BH4) plays an important role 

(Michel and P.M.Vanhoutte 2010) by transferring the electrons to the guanidine nitrogen 

part of L-arginine to produce NO (Hobbs, Higgs et al. 1999, Michel and P.M.Vanhoutte 2010).  

In the absence of L-arginine or with reduced levels of cofactor BH4 due to increased oxidative 

stress, uncoupling of eNOS occurs and O2
.- and H2O2 are produced instead of NO (Figure 1.4) 

(Kawashima and Yokoyama 2004).  It is believed that if partial uncoupling of eNOS occurs 

owing to lack of BH4 then superoxide and NO both are produced, and as an outcome 

superoxide reacts with NO to produce ONOO- (Bonomini, Tengattini et al. 2008) which is a 

potent radical species and promotes endothelial dysfunction.  In addition, ROS-induced 

inhibition of dimethylarginine dimethylaminohydrolase [DDAH, an inhibitor of asymmetric 

dimethylarginine (ADMA)], causes increased endogenous ADMA levels, this in turn reduces 

NO bioavailabiity by inhibiting of eNOS. 
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Figure 1.4  Uncoupling of eNOS due to elevated oxidative stress 

 
eNOS with co-factor BH4 produces NO under normal physiological condition (1); however, elevated 
oxidative stress uncouples eNOS by reducing the levels of BH4 which results in O2

.-
 production and in turn 

increased production of OONO
- 
(2). ADMA, assymetric dimethylargenine; eNOS, endothelial nitric oxide 

synthase, NADPH, nicotinamide adenine dinucleotide phosphate; BH4, tetrahydrobiopterin. 
 

An increased NO-dependent vasorelaxation in response to anthocyanins has been shown in 

rat thoracic aortic and porcine coronary arterial rings (Bell and Gochenaur 2006, Ziberna, 

Lunder et al. 2010).   Cyanidin-3-glucoside has also been shown to increase eNOS expression 

and activity in bovine artery endothelial cells by phosphorylation of Src, ERK1/2 and eNOS at 

Ser1179 (Xu, Ikeda et al. 2004a, Xu, Ikeda et al. 2004b).  With regards to human cells, 

treatment of human umbilical vein endothelial cells (HUVECs) with 

anthocyaninsdemonstrated that anthocyanins  decrease the production of endothelin-1 

(Lazze, Pizzala et al. 2006) and induce eNOS expression (Lazze, Pizzala et al. 2006, 

Edirisinghe, Banaszewski et al. 2011).  Therefore, cyanidin-3-glucoside, and/or its 

degradation products and metabolites, may influence eNOS and NO levels to induce 

endothelial protective effects. 

 

B. NAD(P)H oxidase and anthocyanins 

The NAD(P)H oxidase (NOX) enzyme family is a major source of ROS in the vasculature 

(Griendling, Sorescu et al. 2000, Kuroda and Sadoshima 2010).  There are seven types of NOX 

reported to date, NOX1 to NOX5, DUOX1 and DUOX2 (dual oxidases) (Bedard and Krause 
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2007, Brandes, Weissmann et al. 2010).  Expression of NOX1, NOX2, NOX4 and NOX5 has 

been reported in the vasculature (Lyle and Griendling 2006, Brown and Griendling 2009).  

NOX1, NOX2 and NOX5 produce O2
.- whilst NOX4 predominantly produces H2O2(Brandes, 

Weissmann et al. 2010).  NOX1 and 2 require the transmembrane subunit p22phox for 

stabilisation, which then associates with the cytosolic subunit p47phox (Figure 1.5) 

(‘organiser’ subunit).  NOX2 then initiates association with the ‘activator’ subunit p67phox, 

followed by p40phox(Bedard and Krause 2007, Drummond, Selemidis et al. 2011).  With 

NOX1, association with p47phox initiates the translocation of NOXA1 towards the cell 

membrane, and associates with p47phox to activate the enzyme; however, NOX5 does not 

require cytosolic subunits for activity but rather is activated by Ca+2 in endothelial cells 

(Brown and Griendling 2009).  NOX4 requires p22phox to be stabilised and a substantial 

amount of evidences suggest that it is constitutively active, however, recently it has been 

suggested that NOX4 activity is regulated by polymerase δ-interacting protein 2 (POLDIP2) 

(Figure 1.5) (Drummond, Selemidis et al. 2011). 

 

Figure 1.5  NOX isoforms expressed in human endothelial cells 

 
NOX1, NOX2, NOX4 and NOX5 are expressed in endothelial cells.  NOX1, 2 and 4 require p22

phox
 to be 

stabilised.  NOX1 and 2 both produce O2
.-
 by employing organiser unit p47

phox
 which initiates the localisation of 

other cytosolic subunits such as NOXA1 (for NOX1) and p67
phox

and p40
phox

 (for NOX2) to the membrane.  
Polymerase δ-interacting protein 2 (POLDIP2) may activate NOX4 to produce H2O2 whilst only Ca

+2
 is required 

to activate NOX5 and produce O2
.-
.  Figure adapted from (Drummond, Selemidis et al. 2011) 

 
Whilst there are no reported studies involving NOX and anthocyanins, the structurally similar 

flavonoid -(-)epicatechin and its metabolites have been explored in angiotensin II (Ang II) 

stimulated HUVECs for effects on superoxide production and NOX activity, and showed 

significant reductions in superoxide production and the expression of NOX4 (Steffen, Schewe 

et al. 2007b, Steffen, Gruber et al. 2008).  Quercetin also induced decreased superoxide 

production and downregulation of p47phox in SHR and rat aortic rings (Sánchez, Galisteo et al. 

2006, Romero, Jiménez et al. 2009).  In addition, apocynin is a known vasoactive compound 

(Johnson, Schillinger et al. 2002) and has a similar structure to vanillic acid, a secondary 

O2
.-O2

.- O2
.- H2O2
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metabolite of C3G, thus these data indicate that anthocyanins and their degradants and 

metabolites may influence NOX activity to reduce oxidative stress and improve endothelial 

function. 

 
1.3.2 Atherosclerosis 

Atherosclerosis is one of the most common classes of cardiovascular disease (George 

and Johnson 2010).  It is characterised by arterial stiffening and plaque build-up of medium 

and large sized arteries, leading to plaque rapture which in turn can lead to myocardial 

infarction and stroke (Hirooka, Gotoh et al. 2001, Nishi, Nanto et al. 2001).  The formation of 

arterial plaques in atherosclerosis is more complex than simply accumulation of lipids on the 

arterial wall.   During endothelial dysfunction, alterations to the homeostatic properties of 

endothelium occurs leading it to exhibit procoagulant rather than anticoagulant properties 

as the permeability and adhesiveness towards inflammatory agents such as platelets, 

monocytes, leukocytes, cytokines, vasoactive molecules and growth factors increases (Figure 

1.6) (Ross 1999).  If the inflammatory response is not deactivated, it continues indefinitely 

leading to migration and proliferation of smooth muscle cells and formation of an 

intermediate lesion (Bonomini, Tengattini et al. 2008).  There are several factors that affect 

the process of continuous inflammatory response, including hypercholesterolemia, modified 

low density lipoprotein (LDL), hyperhomocysteinemia, hypertension and infection at the site 

of endothelial dysfunction (Eberhardt, Forgione et al. 2000).  Post lesion formation, the 

process of artery dilation, called remodelling, occurs in order to compensate for artery 

thickening and to prevent obstruction to the blood flow due to lesions and proliferation of 

smooth muscle cells (George and Johnson 2010).  At this stage the lesion is covered by a 

fibrous cap to protect it from rupturing and obstructing the lumen (Nishi, Nanto et al. 2001).  

Further inflammation leads to recruitment of increased numbers of macrophages and 

lymphocytes integrating within an intermediate lesion and produce high numbers of 

cytokines, chemokines, growth factors and hydrolytic enzymes.  This process converts 

intermediate lesions to more complex and advanced lesions called focal necrosis.  The 

vicious cycle of inflammatory response, migration and proliferation of smooth muscle cells 

leads to progression and restructuring of the focal necrosis to produce advanced and 

complex lesion covered by a fibrous cap (Gamkrelidze, Mamamtavrishvili et al. 2008).  After 

a certain point the artery wall can no longer compensate for this extensive chronic 

inflammation process and the complex lesion intrudes the lumen, obstructing the blood flow 
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(Figure 1.6).  The complex lesion is susceptible to rupture and causes complete blockage of 

the artery by formation of a thrombus or blood clot resulting in myocardial infarction and 

stroke (Hirooka, Gotoh et al. 2001, Nishi, Nanto et al. 2001). 

 

Figure 1.6  Pathogenesis of atherosclerosis 

 
The contribution of various inflammatory factors in the progression of lesion formation from initiation of cell 
adhesion (A) to development of a complex lesion which intrudes into the lumen (B) to obstruct blood flow and 
becomes susceptible to rupture which leads to complete blockage of the artery.  Figure adapted from (Ross 
1999) 

 

A. Vascular adhesion molecules and anthocyanins 

 
The expression of adhesion molecules for tethering, arrest and transmigration of leukocytes 

into endothelium is one of the earliest and most important events in the pathogenesis of 

chronic inflammation (Ross 1999, García-Lafuente, Guillamón et al. 2009).  This involvement 

of adhesion molecules occurs when endothelium is exposed to pro-atherogenic stimuli such 

as oxidised low density lipoprotein (oxLDL) and cluster of differentiation 40 ligand (CD40L) 

resulting in expression of selectins and cell adhesion molecules by endothelial cells 

(Pamukcu, Lip et al. 2011, Greig, Kennedy et al. 2012).  The selectins and cell adhesion 

molecules then ensure tethering of leukocytes (expressing L-selectins) to the surface of 

endothelial cells (via P- and E-selectins) followed by firm adhesion to the endothelial cells 

aided mainly  by intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion 

molecule-1 (VCAM-1) (Figure 1.7)(Blankenberg, Barbaux et al. 2003, Fotis, Giannakopoulos 

et al. 2012).  Platelet endothelial cellular adhesion molecule-1 (PECAM-1) and ICAM-1 

support transmigration of leukocytes across endothelium.  However, VCAM-1 plays an 

important role in the transmigration as it  interacts with integrin α4β1 resulting in NOX 

activation to produce superoxide which changes the shape of endothelial cells allowing 
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leukocytes to transmigrate (Figure 1.7) (Matheny, Deem et al. 2000).  The transmigration 

initiates chronic inflammation and eventually results in clinically significant events.  VCAM-1 

is a transmembrane glycoprotein member of the immunoglobulin superfamily and consists 6 

or 7 immunoglobulin particles. It is expressed by vascular endothelial cells when stimulated 

by pro-atherogenic stimuli and in the endothelium of the modula. However, other cell types 

such as fibroblast, chondrocytes, epithelial cells, pericytes, macrophages and dendritic cells 

also express VCAM-1.  In addition soluble VCAM-1 (sVCAM-1) has emerged as a biomarker of 

cardiovascular disease as it has been observed in high concentrations in blood serum of 

diabetic patients (Blankenberg, Barbaux et al. 2003).  However, it remains unclear that how 

sVCAM-1 is produced from membrane bound VCAM-1 as the contributing factors can be 

changes in mRNA stability, increased transcription of genes, changes in translation or most 

hypothesised –increased proteolytic cleavage of membrane bound VCAM-1 to produce 

sVCAM-1.Vedem et al., reported that amongst the cell adhesion molecules VCAM-1 has 

better correlation between sVCAM-1 and mRNA levels in HUVECs and therefore is preferred 

form when investigating modulation of VCAM-1in vitro and in vivo(Videm and Albrigtsen 

2008).  The consumption of anthocyanins has been associated with reduced plasma levels of 

VCAM-1.  For example, plasma levels of VCAM-1 were significantly reduced in subjects with 

hypercholesterolemia when 320 mg/day anthocyanins were consumed (Zhu, Ling et al. 

2013).  In addition, purple potato fed mice also showed significant reduction in plasma levels 

of VCAM-1 (Miyazaki, Makino et al. 2008).  In vitro studies also support these observations, 

as anthocyanins from black soy beans reduced VCAM-1 production in tumor necrosis factor–

α (TNF-α) induced HUVECs and bovine aortic endothelial cells (BAECs) (Kim, Tsoy et al. 2006, 

Nizamutdinova, Kim et al. 2009). Cyanidin-3-glucoside (C3G) at 1, 10 and 100µM, reduced 

VCAM-1 production in CD40L-stimulated HUVECs in a dose-dependent manner (Xia, Ling et 

al. 2009). 
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Figure 1.7  Diagram of leukocytes and endothelial interactions and roles of adhesion 
molecules during early stages of atherosclerosis 

 

 
ICAM, intercellular adhesion molecule; PECAM platelet endothelial cellular adhesion molecule; VCAM-1, 
vascular cell adhesion molecule-1.  Adapted from ((Blankenberg, Barbaux et al. 2003, Fotis, Giannakopoulos et 
al. 2012) 
 
 

B. Interleukin-6 and anthocyanins 

Pro-inflammatory mediators such as cytokines and chemokines play pivotal roles in 

pathogenesis of atherosclerosis (Ross 1999).  In response to chronic inflammation, 

macrophages and T-cells are activated and produce pro-inflammatory cytokines and 

chemokines such as TNF-α, interleukin-1β (IL-1β), IL-6 and monocyte chemoattractant 

protein-1 (MCP-1) (Baud and Karin 2001, García-Lafuente, Guillamón et al. 2009).  Post 

transmigration, these pro-inflammatory activators promote chronic inflammation by 

inducing proliferation of smooth muscle cells (García-Lafuente, Guillamón et al. 2009).  In 

addition, cytokines also activate pro-inflammatory signalling pathways including nuclear 

factor-κB (NF-κB) and mitogen activated protein kinases (MAPK) which as a result up-

regulate other pro-inflammatory mediators (Terasaka, Miyazaki et al. 2010) to promotea 

vicious cycle of chronic inflammation.  Recently, IL-6 has emerged as a key cytokine involved 

in chronic inflammation as it has been shown to contribute to the development of 

atherosclerotic plaques and their instability leading to critical clinical endpoints such as 

myocardial infarction and stroke (Schuett, Luchtefeld et al. 2009).  A significant association 

between IL-6 and coronary artery calcium (an indicator of plaque build-up) has been 
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reported in patients with type 2 diabetes (Saremi, Anderson et al. 2009). High levels of IL-6 

cause over-production of other pro-inflammatory cytokines, matrix metalloproteinase and 

oxidation of lipoprotein to propagate the inflammation further (Yudkin, Kumari et al. 2000, 

Song and Schindler 2004, Saremi, Anderson et al. 2009).  Anthocyanins have been reported 

to reduce the production of IL-6 both in vivo and in vitro (Xia, Ling et al. 2007, Karlsen, Paur 

et al. 2010, Edirisinghe, Banaszewski et al. 2011, Xie, Kang et al. 2011).  In randomised 

controlled trials Karlsen et alshowed that chronic (Karlsen, Paur et al. 2010, Kolehmainen, 

Mykkänen et al. 2012) and acute (Edirisinghe, Banaszewski et al. 2011) consumption of 

anthocyanin-containing juice reduced plasma levels of IL-6 significantly in subjects at 

elevated risk of CVD compared to the control group.  In addition, IL-6 expression was 

significantly lower in mice fed bilberry extract for 5 weeks compared to a control diet (Xie, 

Kang et al. 2011).  In vitro data have also demonstrated that C3G significantly reduced 

cluster of differentiation ligand (CD40L)-induced IL-6 production in endothelial cells (Xia, Ling 

et al. 2007).  

 

C. NF-κB and anthocyanins 

As described above, pro-inflammatory mediators such as VCAM-1 and IL-6 play a vital 

role in the progression of atherosclerosis and both VCAM-1 and IL-6 are regulated by the NF-

κB transcription factor; therefore, NF-κB is also crucial in the pathogenesis of atherosclerosis 

(Siomek 2012).  Under normal conditions, NF-κB resides in the cytoplasm bound to an 

inhibitory protein, NF-κB inhibitory protein (IκB).  Pro-atherogenic stimuli such as oxLDL and 

CD40L activate NF-κB by stimulating IκB kinase (IKK), which phosphorylates IκB.  The 

phosphorylated form of IκB then undergoes poly-ubiquitination, following which 

phosphorylation of NF-κB p65 and nuclear translocation occurs resulting in increased 

production of IL-6 and VCAM-1 (Figure 1. 8).  Anthocyanins have been shown to inhibit the 

activation of lipopolysaccharide- and CD40L-stimulated NF-κB activity (Xia, Ling et al. 2007, 

Min, Ryu et al. 2010, Xie, Kang et al. 2011).  In addition, C3G metabolites (namely PCA and 

VA) have also been reported to reduce NF-κB activation by blocking the translocation of the 

p65 subunit to the nucleus in ex vivo mouse models (Kim, Kim et al. 2010, Wang, Wei et al. 

2010, Kim, Kim et al. 2011, Wei, Chu et al. 2013). 
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Figure 1. 8  Schematic diagram of NF-κB activation following oxLDL and CD40L-stimulation 

 

CD40L, cluster of differentiation 40 ligand; IκB, inhibitory nuclear kappa B; IκK, IκB kinase; LOX-1, lectine-type 
oxidise LDL receptor-1; oxLDL, oxidised low density lipoprotein; TRAF-2, tumor necrosis factor receptor 
associated factor-2; VCAM-1, vascular cell adhesion molecule-1. Adapted from (Xia, Ling et al. 2007, Siomek 
2012) 
 
 

1.4 Concluding remarks 

 

Although evidence from epidemiological studies and randomised control trials suggest 

that a high intake of anthocyanins is associated with a reduced risk of CVD, and these data 

are supported by observations from animal and in vitro studies (Xu, Ikeda et al. 2004a, Bell 

and Gochenaur 2006, Mink, Scrafford et al. 2007, Cassidy, O'Reilly et al. 2010, Ziberna, 

Lunder et al. 2010), the lack of bioavailability of anthocyanins is a major obstacle in exploring 

their mechanisms of  bioactivity.  The apparent low bioavailability of anthocyanins may be 

attributed to their rapid degradation, resulting in the formation of corresponding phenolic 

acid and aldehyde counterparts.  In vitro studies investigating the beneficial effects of 
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anthocyanins reported to date have been performed using only parent compounds and very 

few studies have attempted to demonstrate bioactivity of metabolites of anthocyanins.  

Therefore, these metabolites should be used to explore their influence on the activity and 

expression of key vascular proteins such as eNOS, ET-1, NOX and inflammatory targets such 

as IL-6, VCAM-1 and NF-κB.   

1.5 Hypothesis and aims of current thesis 

It is postulated that the beneficial effects of anthocyanins may arise from their in vivo 

degradants and metabolites, which may act by modulating key vascular proteins and anti-

inflammatory activity.  Therefore the aims of the present thesis were to examine the effects 

of C3G and 11 recently identified metabolites (including six synthesised metabolites) at 

physiological concentrations (0.1, 1 and 10 µM) in endothelial cells on: 

1. Modulation of key vascular proteins such as up-regulation of basal eNOS production 

and Inhibition of stimulated superoxide and basal ET-1 production (Chapter 2) 

2. Expression of key inflammatory agents such as stimulated VCAM-1 and IL-6 (Chapters 

3 and 4) 

3. Modulation of stimulated NF-κB activation (Chapter 5). 

Up-regulation of eNOS, in conjunction with inhibition of superoxide production, can improve 

the bioavailability of NO and therefore maintain endothelial homeostasis (Chapter 2).  In 

addition, inhibition of pro-inflammatory mediators, VCAM-1 (Chapter 3) and IL-6 (Chapter 4) 

under pro-atherogenic conditions may retard the build-up of atherosclerotic plaques and 

therefore clinical events such as myocardial infarction.  Finally, the molecular and cellular 

mechanism of actions of metabolites can be explored by examining their effects on the key 

pro-inflammatory transcription factor NF-κB under stimulated conditions (Chapter 5). 
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Chapter 2. General Methods & Materials 

2.1 Methods and materials 

Standards and reagents. Cyanidin-3-glucoside was purchased from Extrasynthese 

(Genay Cedex, France). Protocatechuic acid (PCA), phloroglucinaldehyde (PGA), vanillic acid 

(VA), isovanillic acid (IVA), ferulic acid (FA), pyrogallol, catalase from bovine liver, superoxide 

dismutase, bovine heart cytochrome c, Medium 199, simvastatin and fibronectin were 

purchased from Sigma Aldrich (Paisley, UK).  Phase II conjugates of phenolic acids [PCA-3-

glucuronide (PCA-3-Gluc), PCA-4-glucuronide (PCA-4-Gluc), IVA-3-sulfate (IVA-3-Sulf), PCA-4-

sulfate (PCA-4-Sulf), VA-4-sulfate (VA-4-Sulf), PCA-3-sulfate (PCA-3-Sulf)] were synthesised 

by the University of St Andrews, St Andrews (Fife, UK) as described previously (Zhang, 

Raheem et al. 2012).  Human umbilical vein endothelial cells (HUVEC), large vessel 

endothelial cell growth medium, growth factors and antibiotic supplements (amphotericin 

B/gentamycin 1000x concentrated) were obtained from TCS Cell Works (Buckingham, UK) 

whilst 75 cm2 flasks, foetal bovine serum (FBS), glutamine and penicillin/streptomycin were 

from PAA [A&E Scientific of PAA Laboratories (Kent, UK)].  ELISA quantification was 

performed using an Omega BMG plate reader (BMG Labtech, Aylesbury, UK).  TRIzol® 

reagent, SuperScript® II Reverse Transcriptase, first strand buffer and dithiothreitol (DTT, 100 

mM) were purchased from Invitrogen (Paisley, UK). RiboLock, RNase inhibitor, DNase 

reaction buffer (with MgCl2), DNase I (RNase free), and EDTA (50 mM) were purchased from 

Fisher Scientific (Loughborough, UK). Chloroform (molecular biology grade), 

isopropanol/propan-2-ol and dNTP PCR mix (ready mixed 10 mM) were obtained from Fisher 

Scientific. Primers for real-time polymerase chain reaction (PCR), geNorm reference genes 

kit, and Real Time PCR master mix with SYBR® green were supplied by Primer Design 

(Southampton, UK); and oligo (dT) primers and nuclease-free DEPC-treated water were 

purchased from Ambion, Life Technologies (Paisley, UK). Quantitative PCR (qPCR) was 

performed using an ABIS7500 system (Life Technologies) using MicroAmp™ 96-well plates 

purchased from Applied Biosystems (Paisley, UK).  All other chemicals were from Sigma-

Aldrich.  Milli-Q grade (18.2 MΩ cm-1) water was used during all experiments except reverse 

transcription (RT)-qPCR. 
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Preparation of cell treatments.  C3G, PCA, PGA, VA, IVA, PCA-4-Gluc, PCA-3-Gluc, 

PCA-4-Sulf, PCA-3-Sulf, VA-4-Sulf, IVA-3-Sulf and FA were assessed at concentrations of 0.1, 1 

and 10 µM in cell culture media.  Standard solutions were initially prepared in 100% 

dimethyl sulfoxide (DMSO) at concentrations of 40 mM for C3G and 25 mM for all other 

metabolites. The standards were then diluted to their final concentrations immediately prior 

to application to cells. Final treatment concentration of DMSO was <0.05%.  

 

HUVEC Cell culture. Early-passage, cryo-preserved pooled HUVECs were used 

between passages two to four.  HUVECs were routinely cultured on fibronectin-coated (0.25 

µg/cm2) 75 cm2 flasks in large vessel endothelial cell growth medium.  Once confluent (90% - 

95%), HUVECs were sub-cultured using trypsin (0.025%) and 0.01% EDTA, and seeded in 

fibronectin-coated (0.25µg/cm2) 24-well plates (PAA) at 60,000 cells/well.  Cells were 

incubated for 24 hours at 37°C, 5% CO2 before treatment.  

 

 

RNA extraction and reverse transcription.  HUVEC cultured in 24-well plates were 

homogenised using TRIzol® (500 µL/well), and RNA extracted using chloroform (100 µL/well).  

After centrifugation (12000 × g for 15 minutes at 4°C), the aqueous layer was transferred 

into eppendorf tubes, where RNA was precipitated by incubating the aqueous layer with 

propan-2-ol (250 µL/well) for 10 minutes at room temperature.  Samples were then shaken 

vigorously and centrifuged (12000 × g for 10 minutes at 4°C) before supernatants were 

discarded. RNA pellets were allowed to air dry at room temperature and washed with 75% 

ethanol (500 µL/well) followed by air drying for 10 minutes before re-suspension in 20 µL of 

DEPC-treated nuclease-free water.  After quantification [by Nanodrop (Thermo Scientific)], 1 

µg of RNA was reverse transcribed by incubating RNA solution with DNase buffer (1 

µL/reaction) and DNase (1 µL/reaction) at 37°C for 30 minutes with RiboLock (0.25 

µL/reaction) to inhibit RNase activity and eliminate any genomic DNA contamination.  RNA 

solutions were then incubated with EDTA (50 mM, 1 µL/reaction), oligo (dT) primers (1 

µL/reaction) and dNTP PCR mix (1 µL/reaction) at 65°C for 10 minutes.  Annealing of oligo 

(dT) primers was performed during incubation of reaction mixtures with first strand buffer (4 

µL/reaction), RiboLock (1 µL/reaction) and DTT (100 mM, 1 µL/reaction) for 2 minutes at 

42°C.  Reverse transcription of mRNA was then initiated by addition of SuperScript® II (1 

µL/reaction) and incubation at 42°C for 50 minutes, followed by 15 minutes at 70°C to 
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inactivate SuperScript® II.  The resulting cDNA solutions were diluted in DEPC-treated 

nuclease-free water (1/10 dilution) and stored at 4°C until required for real-time PCR. 

 

Real-time PCR.  Five microliters (25 ng) of cDNA solution from each sample was used 

to perform real time PCR.  eNOS, VCAM-1 or IL-6 primers (1 µL/reaction), real time PCR 

master mix with SYBR® green (8.33 µL/reaction) and nuclease-free water (5.67 µL/reaction) 

were added to micro-plate wells containing cDNA solution to achieve a final reaction volume 

of 20 µL per well.  Real time PCR was performed using ABIS7500 (7500 software version 

2.0.5), with enzyme activation at 95°C for 10 minutes, followed by 50 cycles of denaturation 

for 15 s/cycle at 95°C and data collection for 1 minute/cycle at 60°C. 

 

Statistical Analysis.  Analysis of variance (ANOVA) with Tukey post-hoc tests were 

performed using SPSS software (IBM, New York, USA) version 18 for Windows.  Significance 

was determined at the level of 5%. Three biological replicates for each of the controls and 

treatments (plated in technical duplicates) were used for analysis unless otherwise stated, 

and means of biological replicates were represented graphically. Error bars in figures 

represent standard deviation. 
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Chapter 3. Relative vascular bioactivity of 
cyanidin-3-glucoside and its metabolites 
in human primary endothelial cells 

3.1 Introduction 

Endothelium-derived relaxing factors (EDRFs), including nitric oxide (NO), are 

responsible for mediating endothelium-dependent vasorelaxation (Flammer and Luscher 

2010).  In addition to inducing vasorelaxation, NO also has other key vasoprotective 

properties such as preventing aggregation of platelets, activation/adhesion of neutrophils, 

expression of cell adhesion molecules and oxidation of low density lipoprotein (oxLDL) 

(Naseem 2005, Bian, Doursout et al. 2008).  Nitric oxide is generated by endothelial nitric 

oxide synthase (eNOS), which is constitutively expressed by vascular endothelial cells, in 

response to shear stress or agonist stimulation (Fleming and Busse 2003).  Reduced NO 

bioavailability underlies the development of endothelial dysfunction, and a key factor 

limiting NO availability is increased production of superoxide anion (O2
.-) ;  which reacts with 

NO to produce the unstable radical and potent oxidant peroxynitrite (OONO.-) (Bonomini, 

Tengattini et al. 2008), which is a radical species that promotes endothelial dysfunction. 

 

Multiple anthocyanins have been shown to increase NO-dependent vasorelaxation in 

rat thoracic aortic and porcine coronary arterial ring models (Bell and Gochenaur 2006, 

Ziberna, Lunder et al. 2010) and cyanidin-3-glucoside (C3G) has been shown to increase 

eNOS expression and activity in bovine artery endothelial cells (Xu, Ikeda et al. 2004a, Xu, 

Ikeda et al. 2004b). In addition, anthocyanins have demonstrated similar activity in human 

endothelial cell models (Lazze, Pizzala et al. 2006, Edirisinghe, Banaszewski et al. 2011).  The 

flavanol epicatechin, which is structurally similar to cyanidin, has also been shown to reduce 

O2
.- production in endothelial cells, (Steffen, Schewe et al. 2007b, Steffen, Gruber et al. 

2008), thus preserving NO bioavailability in the vasculature (Cassidy, O'Reilly et al. 2010).  

The present study aims to establish if anthocyanin metabolites have similar effects on 

vascular function as reported previously for anthocyanins and flavanols.   
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In the present study, C3G and its recently identified phenolic metabolites (Czank, 

Cassidy et al. 2013) (Figure 3.1) were screened for their effects on the production of 

stimulated O2
.- and eNOS expression in human umbilical vein endothelial cells (HUVECs), to 

assess relative vascular bioactivity.  In addition, the activity of the selected treatment 

compounds on endothelin-1 (ET-1) expression was explored, as ET-1 is a known biomarker of 

endothelial dysfunction which elicits vasoconstriction thus counteracting the vasodilator 

activity of NO (Lazze, Pizzala et al. 2006).  The cytotoxicity of selected compounds was 

previously established in-house using WST-1 method at 0.05, 0.1, 10 and 100 µM (refer to 

Appendix 1 for cytotoxicity data). 

 

Figure 3.1  C3G and its phenolic metabolites screened for vascular activity1 

 
1
Recently identified C3G phenolic metabolites (Czank, Cassidy et al. 2013). 

3.2 Methods and materials 

Standards and reagents.  Angiotensin II was obtained from Tocris (Bristol, UK) and 

VAS2870 from Enzo Life Sciences [Exeter, United Kingdom (UK)].  Quantikine® enzyme-linked 

immunosorbent assay (ELISA) kits for eNOS (R&D, DEN000) and ET-1 (R&D DET100) were 
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purchased from R&D Systems (Abingdon, UK). ELISA quantification was performed using an 

Omega BMG plate reader (BMG Labtech, Aylesbury, UK).  CPH probe (1-hydroxy-3-carboxy- 

2,2,5,5-tetramethylpyrrolidine), electron spin resonance (ESR)-Krebs-HEPES buffer, chelators 

DF (deferoxamine methanesulfonate) and DETC (diethyldithiocarbamic acid sodium) were 

purchased from Noxygen (Elzach, Germany). 

 

Stimulated superoxide (O2
.-) production [cytochrome c assay, (Steffen, Gruber et al. 

2008)].  As described in methods chapter (chapter 2), HUVEC were cultured in fibronectin 

coated 24-well plates were stimulated with angiotensin II (Ang II; 0.1μM) and co-incubated 

with 0.1, 1 and 10µM of treatment compounds for 6 hours in medium 199.  Cytochrome c 

reduction by generated superoxide was established by parallel incubations with or without 

100U superoxide dismutase (SOD).  The specificity of the assay was confirmed by incubating 

HUVECs with 5 µM of VAS2870, a selective NOX inhibitor (Stielow, Catar et al. 2006, ten 

Freyhaus, Huntgeburth et al. 2006, Altenhofer, Kleikers et al. 2012).  Supernatants were 

transferred to 96-well plates and cytochrome c reduction was measured at 550 nm 

(reference wavelength 620 nm) using micro plate reader [Fluostar Omega or Polarstar 

Optima, BMG Labtech (Aylesbury, UK)].  Plates containing HUVECs were stored at -80°C until 

cell harvesting for protein quantification and normalisation of absorbance data The cells 

were thawed and incubated with 150μL lysis buffer  (1% IGEPAL® CA-630, 10% glycerol, 

150mM NaCl, and 20mM Tris, pH 8.0) for 30 minutes at 4°C. 

 

Thereafter, cells were removed from culture plates by scraping, and cell disruption 

performed  by oscillation with acid washed glass beads at 50Hz for 5 minutes (Qiagen Tissue 

Lyser) followed by centrifugation of lysates for 15 minutes (4°C, 13,000 rpm). Protein 

quantification of supernatants was performed using the Pierce BCA Protein Assay Kit 

according to the manufacturer’s instructions. 

 

Stimulated O2
- production (EPR probe assay).  Confluent HUVECs were incubated 

with HUVEC media (untreated) or treatment compounds (PCA or VA) at 0.1, 1 or 10 µM for 

24 hours in 24 well plates; followed by washing with chelators in ESR-Krebs-HEPES buffer 

solution.  HUVECs were then incubated with CPH probe and Ang II (0.1 µM), Ang II + SOD 

(100 U/mL), pyrogallol (400 µM) or pyrogallol + SOD for 30 minutes, after which 

supernatants were collected and centrifuged at 300 x g for 5 minutes before storage in liquid 



  Page 
38 

 
  

nitrogen.  All samples were shipped on dry ice to Prof Malcom Jackson’s Laboratory, at the 

Institute of Ageing and Chronic Disease, University of Liverpool (Liverpool, UK) and were 

analysed by electron paramagnetic resonance (EPR) spectroscopy (Bailey, Davies et al. 

2003)for measurement of superoxide radical production using E-Scan(Bruker, Coventry, UK) 

according to in-house procedures. 

 

Cell treatments for eNOS and ET-1 expression assay.  Confluent HUVECs, cultured on 

fibronectin (0.25µg/cm2) coated 24-well plates, were incubated with culture media 

(untreated), vehicle control (0.05% DMSO in cell media) or treatment compounds at 0.1, 1 or 

10 µM for 24 hours.  Supernatants were collected, and cells harvested in 500 µL of 

trypsin/EDTA:trypsin-blocking solution (1:1 ratio) before storage at -80°C until assay for ET-1 

or eNOS expression by ELISA.  Simvastatin was used as a positive control for ET-1 expression. 

 

eNOS enzyme-linked immunosorbent assay (ELISA). eNOS protein quantification in 

HUVEC lysates was performed with a commercially available ELISA (Quantikine, R&D 

Systems), using a microplate pre-coated with monoclonal anti-eNOS. Briefly, harvested 

HUVECs were thawed, prior to centrifugation at 10,000 rpm for 10 minutes and discarding of 

supernatants. Cells were then lysed at 2-8°C using assay lysis buffer, and centrifuged at 5000 

rpm for five minutes; the resulting supernatants were subsequently assayed in duplicate 

(100 µL/well). Assay diluent (100 µL) was added to each well, and plates incubated for two 

hours at room temperature with agitation (500 rpm). Polyclonal anti-eNOS (conjugated to 

horseradish peroxidase) was then added to each well (200 μL/well), and plates were 

incubated for a further two hours. Any unbound antibody was removed by washing; and 200 

μL/well substrate solution was added prior to a 30 minute incubation. After addition of 50 

μL/well stop solution, end-point absorbance was measured at 450 nm (reference 540 nm) 

with a micro plate reader [Fluostar Omega, BMG Labtech (Aylesbury, UK)]; and eNOS 

quantified based upon a standard curve generated using a recombinant human eNOS 

standard. The intra-assay coefficient of variation (CV) was 4.27% ± 1.15% [mean ± standard 

deviation (SD), n=3] and the inter-assay CV was 5.90% (n=3, refer to appendix 2 for standard 

curve). 

  

ET-1 ELISA. ET-1 protein production was quantified with a commercially available ELISA 

kit (Quantikine, R&D Systems), using a microplate pre-coated with rat monoclonal anti-ET-1. 
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Briefly, supernatants were thawed, prior to centrifugation at 10,000 rpm for 10 minutes, and 

then used as samples for ET-1 quantification. Assay diluent (150 µL) was added to each 

microplate well used, followed by samples (75 µL/well) of supernatants, and plates 

incubated for one hour at room temperature with agitation (500 rpm). Mouse monoclonal 

anti-ET-1 conjugate (conjugated to horseradish peroxidase) was added to each well (200 

μL/well), and plates incubated for a further three hours. Any unbound antibody was 

removed by washing; and 200 μL/well substrate solution was added prior to a 30 minute 

incubation. After addition of 50 μL/well stop solution, end-point absorbance  was measured 

at 450 nm (reference 540 nm) with a microplate reader [Fluostar Omega, BMG Labtech 

(Aylesbury, UK)]; and ET-1 quantified based upon a standard curve generated using a 

synthetic ET-1 standard. Simvastatin (20 ng/ml) was screened as a positive control for ET-1 

expression(Mraiche, Cena et al. 2005). The intra-assay CV was 5.15% ± 1.86% (n=3) and the 

inter-assay CV was 4.99% (n=3, refer to appendix 3 for standard curve).  

 

RT-qPCR reference gene validation. RT-qPCR method validation was conducted to 

establish the optimal endogenous reference genes for normalisation of Ct data for genes of 

interest using a geNormPLUS kit (PrimerDesign Ltd).  Primer sets for six stably expressed 

human reference genes used for this validation were designed (pre-validated) and provided 

by PrimerDesign Ltd.  RNA extraction and real-time PCR were performed as described in the 

general methods chapter. 

 

Confluent HUVECs were incubated with culture medium only (untreated), PCA, VA, 

PCA-3-Gluc or PCA-3-Sulf (at 10µM) for 24 hours.  Following RNA extraction and cDNA 

synthesis, real time PCR was utilised to evaluate reference gene expression.  Ct values 

generated by real time PCR were analysed using the geNorm function in qbasePLUS software 

(version 2.3, Biogazelle NV, Zwinaarde, Belgium) to examine the optimal number of 

reference genes, Table 3.1 and Figure 3.2) and stability of reference genes across various 

treatments (Figure 3.3) (Vandesompele, De Preter et al. 2002).  Based on geNorm V values 

(Figure 3.2) it was apparent that there was no additional benefit gained by using more than 

two reference genes, as the geNorm V value for using two reference genes or more was 

below 0.15.  UBE2D2 and PRDM4 were identified as the most stable reference genes (Figure 

3.3) and were used in the final methodology. 
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Table 3.1  List of geNorm reference genes evaluated for their relative stability 

Gene Description 

VIPAR VPS33B interacting protein 

TYW1 tRNA-γW synthesizing protein 1 homologue (S. Cerevisiae) 

UBE4A Ubiquitination factorE4A 

PIPA Peptidylprolyl isomerase A (cyclophilin A) 

UBE2D2 Ubiquitin-conjugating enzyme E2D 2 

PRDM4 PR domain containing 4 

 

Figure 3.2  Determination of optimal number of reference genes for untreated HUVECs. 

 

geNorm V chart demonstrating optimal number of reference genes. “V2/3” indicates comparison between use 
of 2 reference genes vs 3 reference genes (V3/4 indicates comparison between 3 and 4 genes, etc) across 
various treatments (unstimulated, or incubation with 10µM of PCA, VA, PCA-3-Gluc or PCA-3-Sulf).  geNorm V 
value below 0.15 (dotted line) indicates no additional benefit from  using a higher number of reference genes. 
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Figure 3.3  Average reference gene expression stability in untreated HUVECs or following 
incubation with phenolic metabolites for 24 hours 

 

geNorm M chart illustrating average stability of reference genes (y-axis – geNorm M value) following various 
cell treatments (unstimulated, or incubation with 10 µM of PCA, VA, PCA-3-Gluc or PCA-3-Sulf). 

 

The target gene (eNOS) was normalised against two geNorm reference genes, UBE2D2 

and PRDM4, validated based on their expression stability (as established above) following 

exposure to the treatment compounds used for screening.  Gene expression was quantified 

using the comparative Ct method (Schmittgen and Livak 2008) incorporating the geometric 

mean of reference genes as the normalisation factor. The forward and reverse primer 

sequences for eNOS were ACA AGA GTT ATA AGA TCC GCT TCA A and CCT GCA CTG TCT GTG 

TTA CTG respectively. 

 

3.3 Results 

Ang II-induced superoxide production in HUVECs 

Stimulation of HUVECs with Ang II did not produce quantifiable increases in O2
.- 

relative to basal un-stimulated cells (p=0.69, n=4, Figure 3.4A).  In addition, there was no 

significant difference observed between untreated and vehicle control (0.05% DMSO, 

102±3.1% relative to untreated control, p>0.05 – data not shown) HUVECs. However, when 

HUVECs were pre-incubated with VAS2870, an established NOX inhibitor (Stielow, Catar et 

al. 2006, Altenhofer, Kleikers et al. 2012), 80.5±3.2% of Ang IIstimulated O2
.- production was 
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decreased. None of the selected compounds were cytotoxic, as established previously in 

house, at any concentration tested (refer to Appendix 1). 

Figure 3.4  Production of superoxide measured by cytochrome c reduction in HUVECs 
following incubation with Ang II or Ang II and VAS2870 

A) 

 

B) 

 

Superoxide production in cultured HUVEC following incubation with cell media untreated (basal), Ang II 
(100 nM/mL), or Ang II + VAS2870 (5 µM) for 6 hours (A), and with Ang II + PCA or VA at 0.1, 1 and 10 
µM.  Supernatants were used to quantify reduction of cytochrome c by generated superoxide, using 
parallel incubations with or without SOD (100 U/mL). All data are expressed relative to Ang II-induced 
superoxide production as SOD-corrected mean OD ratio (n=4).  *p < 0.05 relative to Ang II control. Ang 
II, angiotensin II; PCA, protocatechuic acid, VA, vanillic acid 
 

The screened treatment compounds were unable to alter superoxide (O2
.-)levels 

following stimulation of HUVEC with Ang II (p=0.91, Figure 3.4B). A representative graph 

(Figure 3.4B) summarising effects of PCA and VA on Ang II-stimulated O2
.- shows no effect 

due to treatment compounds.In addition, Ang II-induced O2
- production was also measured 

through quantification of CP.ion, the direct oxidation product of the CPH probe by O2
.-, using 

electron paramagnetic resonance (EPR) spectroscopy. Again, no increase in O2
.-production 

was detected (p=0.81, n=4, Figure 3.5) following Ang II stimulation or vehicle control (0.05% 

DMSO+ESR-Krebs-HEPES buffer solution, 102±4.0% of untreated p>0.05 – data not shown).  
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The specificity of the assay was confirmed by using pyrogallol as an external oxidising agent 

(Bell and Gochenaur 2006)to generate CP ion, which resulted in ≈17 fold higher (42.2±1.3 

µM) levels of CP ion as compared to the Ang II-stimulated HUVECs (p<0.001, n=4, Figure 3.5). 

Therefore the absence of a discernible endothelial response to Ang II stimulation 

substantiates the lack of response by the screened treatments. 

 

Figure 3.5  Production of superoxide measured by EPR probe in HUVECs following 
incubation with Ang II or pyrogallol 

 

 

Superoxide production following incubation of 
HUVEC with Ang II (100 nM/mL) or pyrogallol 
(400 µM) and CPH probe for 30 minutes.  
Supernatants were used to quantify oxidation of 
CPH probe by measuring CP ion concentration. 
All data are expressed relative to Ang II-induced 
superoxide as mean concentration of CP (n=4).  
*p<0.05 relative to untreated. Ang II, 
angiotensin II. 

 

eNOS expression in HUVECs 

eNOS expression in vehicle control (0.05% DMSO, 98.4±3.1% of untreated, p>0.05, 

data not shown) was non-significant to the production in untreated HUVECs. Of the 12 

treatment compounds tested, 3 compounds significantly increased basal eNOS protein 

production [by >153.4±23.2% (p<0.001)] relative to untreated (basal) HUVEC, and 3 

significantly decreased eNOS levels by >51.4±4.3% of basal (p<0.001).  C3G, PGA and VA all 

increased eNOS expression, with the maximum increase elicited by VA (357.1±2.0%, 

p<0.001, Figure 3.6).  In contrast, PCA, PCA-4-Sulf and PCA-3-Sulf reduced eNOS protein 

expression, with the maximal observed reduction induced by PCA-3-Sulf (59.1±5.3%, 

p<0.001, Figure 3.6). 
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Figure 3.6  Effect of C3G and its metabolites on basal eNOS expression in HUVECs. 

 

HUVECs incubated with C3G or phenolic metabolites for 24 hours at 0.1, 1, 10 µM.  All data expressed as mean percentage (± SD, n=3) of untreated (basal) HUVECs.  
Absolute eNOS protein value in untreated HUVECs - 126.0 pg/mL, standard range: 62.5 – 4000 pg/mL. **p<0.001, *p<0.01 (ANOVA with Tukey post-hoc) relative to 
untreated control.C3G, cyanidin-3-glucoside; PCA, protocatechuic acid, PGA, phloroglucinaldehyde; FA, ferulic acid; VA, vanillic acid; IVA, isovanillic acid; PCA-4-
Gluc, PCA-4-glucuronide; PCA-3-Gluc, PCA-3-glucuronide; PCA-4-Sulf, PCA-4-sulfate; PCA-3-Sulf, PCA-3-sulfate; VA-4-Sulf, VA-4-sulfate; IVA-3-Sulf, IVA-3-sulfate. 
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eNOS mRNA levels in HUVECs 

Treatment compounds which altered basal eNOS protein concentrations in HUVECs 

were subsequently screened (at 10 µM) for their effects on eNOS mRNA levels.  PGA, VA and 

PCA-3-Sulf significantly reduced eNOS mRNA levels by >44.4±7% relative to basal (untreated) 

cells, with the greatest reduction elicited by PGA (69.3±15.2%, p<0.05, Figure 3.7). 

 

Figure 3.7  Effect of C3G and selected phenolic metabolites on basal eNOS mRNA levels in 
HUVECs 

 

Fold change in untreated (basal) levels of eNOS mRNA in HUVECs incubated with C3G or phenolic metabolites 
(at 10 µM) for 24 hours.  All data expressed graphically as mean fold change (± SD, n=3) relative to basal levels. 
*p<0.05 (ANOVA with Tukey post-hoc) relative to untreated control. C3G, cyanidin-3-glucoside; PCA, 
protocatechuic acid; PGA, phloroglucinaldehyde; VA, vanillic acid; PCA-4-Sulf, PCA-4-sulfate; PCA-3-Sulf, PCA-3-
sulfate. 
 

ET-1 expression in HUVECs 

ET-1 protein production in cultured HUVEC was not modulated following incubation 

with treatment compounds at 0.1, 1 or 10 µM (Table 3.2); however, simvastatin (10 µM) 

significantly reduced ET-1 protein levels relative to untreated HUVECs (49.1±6.8%, p<0.05), 

confirming the relevance of the assay. 

3.4 Discussion 

Increased consumption of dietary anthocyanins has been associated with reduced 

risk of cardiovascular disease (CVD) (Cassidy, O'Reilly et al. 2010, Cassidy, Mukamal et al. 

2013); however the mechanisms of bioactivity of anthocyanins remain relatively elusive. The 

majority of previous in vitro studies have explored the mechanisms of action of parent/un-

metabolised forms of anthocyanins, which hold limited physiological relevance, as they are 
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not found in the circulation at any appreciable concentration and have extremely short half-

lives. 

Table 3.2:  Endothelin-1 protein production in presence of treatment compounds 

Compound Concentration 
ET-1 

Mean±SD 

Vehicle Control  101±7.1 

C3G 
0.1 µM 102.4±4.0 
1 µM 121.3±1.5 

10 µM 106.5±13.2 

PCA 
0.1 µM 124.0±7.8 
1 µM 99.0±4.5 

10 µM 125.3±8.6 
 0.1 µM 120.8±1.8 

PGA 1 µM 130.5±4.3 
 10 µM 113.4±10.9 
 0.1 µM 109.1±3.4 

VA 1 µM 119.6±4.8 
 10 µM 117.9±3.2 
 0.1 µM 108.0±9.9 

IVA 1 µM 128.0±3.9 
 10 µM 119.9±10.0 
 0.1 µM 111.3±11.4 

PCA-4-gluc 1 µM 120.1±1.8 
 10 µM 107.5±2.1 
 0.1 µM 131.6±11.6 

PCA-3-gluc 1 µM 131.6±8.1 
 10 µM 115.5±5.4 
 0.1 µM 107.5±3.5 

PCA-4-sulfate 1 µM 115.9±22.0 
 10 µM 122.7±11.5 
 0.1 µM 115.1±6.5 

PCA-3-sulfate 1 µM 115.7±14.5 
 10 µM 115.6±5.6 
 0.1 µM 130.4±11.1 

VA-4-Sulf 1 µM 131.7±3.2 
 10 µM 127.1±5.3 
 0.1 µM 136.4±2.6 

IVA-3-Sulf 1 µM 127.4±4.8 
 10 µM 127.6±5.4 
 0.1 µM 129.1±9.0 

FA 1 µM 109.7±2.2 
 10 µM 115.9±5.7 

 
HUVECs incubated with C3G or phenolic metabolites for 24 hours at 0.1, 1, 10 µM.  All data expressed 
as mean percentage (± SD, n=3) of untreated  Absolute ET-1 protein value in untreated HUVECs –
13.1pg/mL, standard range: 0.33 – 250pg/mL. *p<0.05 (ANOVA with Tukey post-hoc) relative to vehicle 
control.C3G, cyanidin-3-glucoside; PCA, protocatechuic acid, PGA, phloroglucinaldehyde; FA, ferulic 
acid; VA, vanillic acid; IVA, isovanillic acid; PCA-4-Gluc, PCA-4-glucuronide; PCA-3-Gluc, PCA-3-
glucuronide; PCA-4-Sulf, PCA-4-sulfate; PCA-3-Sulf, PCA-3-sulfate; VA-4-Sulf, VA-4-sulfate; IVA-3-Sulf, 
IVA-3-sulfate. 
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Therefore the current study investigated the relative vascular bioactivity of newly identified 

anthocyanin metabolites, utilising novel pure synthetic sulfate and glucuronic acid phenolic 

conjugates (Zhang, Botting et al. 2011), with the aim of elucidating anthocyanins true in vivo 

biological activity. 

 

The major finding of the present study is that degradation and subsequent 

metabolism of C3G alters the bioactivity of the anthocyanin.  The eNOS screen indicated 

differential activity of phenolic metabolites relative to the parent compound. Comparative to 

unstimulated (basal) HUVECs, three of the 12 compounds tested increased eNOS levels and 

three compounds decreased eNOS (Figure 3.6), with the largest increase in eNOS protein 

elicited by the methylated form of PCA, VA.  Cyanidin-3-glucoside also increased eNOS 

expression which is in accordance with previously published studies (Xu, Ikeda et al. 2004a, 

Xu, Ikeda et al. 2004b).  Interestingly, the A-ring degradant of C3G, PGA, increased eNOS 

levels compared to untreated HUVECs, whereas the B-ring degradant PCA decreased eNOS 

expression; suggesting degradation of C3G resulting in a smaller phenolic acid with a 

catechol group has inhibitory effects on expression of eNOS.  Metabolism of PCA via 3ʹ-

methylation of the catechol group, generating VA, resulted in a significant elevation in 

HUVEC eNOS expression, although 4ʹ-methylation, producing IVA had no effect; suggesting 

activity is conjugation site specific (3ʹ vs 4ʹ).  Moreover, not all conjugates of the phenolic 

acid catechol resulted in increased bioactivity, as both forms of sulfated PCA decreased 

eNOS protein below basal levels and appeared to result in a biologically unfavourable 

transformation. 

 

In order to investigate the mechanisms by which bioactive metabolites of C3G 

potentially modulated eNOS expression, their effects on eNOS mRNA levels were examined.  

Interestingly, none of the compounds tested increased HUVEC eNOS mRNA levels following 

24 hour incubation; in fact, PGA, VA and PCA-4-Sulf decreased mRNA levels relative to basal 

(Figure 3.7).  The observed discrepancy between mRNA levels and protein concentrations 

may be due to a single time point measurement of mRNA levels, and the use of multiple 

and/or shorter time points may provide more insight to the correlation between mRNA and 

protein levels of eNOS. 

 

The present study also investigated the effects of C3G and its metabolites on Ang II-

stimulated O2
.- production in HUVECs.  The Ang II stimulation of HUVECs did not appear to 
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result in detectable O2
.- production as measured by reduction of cytochrome c.  In order to 

confirm if they assay system is responsive, the HUVECs were pre-incubated with VAS2870 

which attenuated O2
.- below basal levels confirming the involvement of NOX enzymes in 

reduction of cytochrome c reduction via O2
.- production.  Though, reduction of cytochrome c 

has previously been used to quantify Ang II-stimulated O2
.- production in HUVECs (Steffen, 

Schewe et al. 2007b), and therefore, in order to confirm the stimulatory effect of Ang II on 

HUVECs to produce O2
.-, an EPR method was employed which is considered a gold standard 

in analysing extremely unstable radicals including O2
.-(Dikalov, Kirilyuk et al. 2011).  The 

results from EPR experiment clearly suggest that there was no induction in O2
.- production 

achieved due to Ang II-stimulation and confirms the findings from cytochrome c assay in the 

present study that Ang II-stimulation does not yield O2
.- in present assay system. Ang II 

stimulates O2
.- production via AT1 receptor, however if Ang II interacts with AT2 receptor it 

functionally antagonises AT1 and it produces H2O2(Sohn, Raff et al. 2000). HUVECs express 

AT2 receptor and it can be hypothesised that the observed lack of effect of Ang II stimulation 

on HUVECs may be due to Ang II acting via AT2 receptor and therefore producing H2O2 

instead of O2
.-. However, further research is required to confirm this hypothesis, perhaps by 

blocking of AT1 and/or AT2 receptors (Candesartan and PD123319 - AT1 and AT2 blockers 

respectively)(Sohn, Raff et al. 2000). 

 

A limitation of the present investigation was the use of HUVECs, which are a well 

characterised cell type for endothelial research; however a different cell type such as human 

aortic endothelial cells could provide greater insight to the bioactivity of screened 

compounds.  Another limitation of the present study was that the 1 and 10 µM doses of C3G  

utilised were relatively high compared to the plasma levels of C3G previously reported (often 

less than 0.1 µM) (Manach, Williamson et al. 2005, McGhie and Walton 2007). Czank et 

al(2013) recently reported a maximal serum level of C3G around 0.14 µM following 

consumption of 500 mg of pure 13C-labelled C3G (Czank, Cassidy et al. 2013), thus bioactivity 

of C3G observed in the present study may not be biologically relevant. The levels of the 

phenolic acids used in the present study are more physiologically relevant as Czank et al 

described maximal serum concentrations of  phenolic metabolites up to 2.5 µM (Czank, 

Cassidy et al. 2013), and therefore the findings from this study for metabolites are 

physiologically more relevant.  Moreover, lack of correlations between protein and mRNA 

levels of eNOS may be a result of single time point examination of eNOS mRNA levels and 

time course may beprovide better correlation between eNOS mRNA and protein.  
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The bioactivity of phenolic metabolites of C3G reported in the current investigation 

appears to be specific for eNOS, as no effects were observed on endothelial production of 

the vasoconstrictor ET-1 at basal levels (Table 2.2), which is in contrast to existing data of 

C3G activity on basal ET-1 as Lazze et alreported that C3G decreased basal ET-1 levels 

however, the activity of C3G was noticed at supraphysiological concentration (50 and 100 

µM) whereas in the present study lower concentrations of C3G were investigated.  Although, 

ET-1 production in stimulated conditions, such as use of insulin (Yang and Li 2008), may 

provide better insights to the activity of selected compounds on ET-1.  In addition, there was 

no effect of the treatments on stimulated endothelial superoxide production, however the 

modulation of basal superoxide production by Ang II was not indicated using two different 

methodologies [reduction of cytochrome c and reduction of EPR sensitive CPH probe (Figure 

3.4 and Figure 3.5] suggesting using a different, more potent and physiologically relevant 

stimuli such as oxLDL should be considered (Heinloth, Heermeier et al. 2000).  In addition, if 

using HUVECs the use of AT2 receptor blocker should be considered to minimize H2O2 

production and therefore increasing selectivity of Ang II towards AT1 receptor and therefore 

superoxide production. Also use of arterial cell line such as human coronary artery 

endothelial cells (HCAECs) which may have better expression of NOX family of enzymes 

(Bonomini, Tengattini et al. 2008) could be considered.  In addition, a combine use of better 

stimuli (oxLDL) and cell type (HCAECs) may provide improved method for O2
.- stimulation in 

current model. It should also be considered that in vivo modulation of eNOS up-regulation 

and production of O2
.-are influenced by shear stress (Boo and Jo 2003, Hwang, Ing et al. 

2003, Hsiai, Hwang et al. 2007)and presence of many different types of cells such as smooth 

muscle cells, arterial cells, neutrophils.  Therefore, future research of vascular activity should 

focus on using co-culture models where two or more types of cells under laminar flow 

and/or shear stress to produce in vivo like conditions. 

 

In conclusion, the intact/un-metabolised anthocyanin (C3G), and its phenolic 

degradants and metabolites, have differential bioactivity towards eNOS expression and the 

activity of the metabolites appears to be regulated by conjugation of the B-ring catechol 

moiety; however, not all modifications elicited apparent biologically favourable vascular 

effects.  As some metabolites had stimulatory effects on eNOS expression while others 

inhibitory effects, the positive impact of anthocyanin consumption on vascular homeostasis 

as reported in the literature (human epidemiological and RCT studies) is likely the effects of 
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multiple metabolites acting on several enzyme systems. Further studies are needed to 

explore these activities. 
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Chapter 4. Effects of cyanidin-3-glucoside 
and its metabolites on VCAM-1 
expression in HUVECs 

4.1 Introduction 

Vascular cell adhesion molecule-1 (VCAM-1) is a transmembrane protein that is 

expressed by vascular endothelial cells following exposure to inflammatory stimuli (Fotis, 

Giannakopoulos et al. 2012), including oxidised low density lipoprotein (oxLDL) (Basyouni, 

Ahmed et al. 2012, Huang, Lin et al. 2013) and cluster of differentiation 40 ligand 

(CD40L)(Kotowicz, Dixon et al. 2000, Xia, Ling et al. 2009).  VCAM-1 plays a vital role in the 

pathogenesis of atherosclerosis, particularly during early stages, by facilitating the adhesion 

of monocytes and leucocytes to the endothelium (Cybulsky, Iiyama et al. 2001, Fotis, 

Giannakopoulos et al. 2012).  After rolling of the leucocytes, VCAM-1 ensures their firm 

attachment to the endothelial layer which leads to endothelial transmigration of leucocytes.  

This transmigration activates numerous downstream chronic inflammatory responses and 

therefore progression of atherosclerosis (Zheng, Qian et al. 2005, Preiss and Sattar 2007).  

The role of VCAM-1 in the progression of atherosclerosis has been demonstrated by Iiyama 

et al., where elevated levels of VCAM-1 were observed at atherosclerotic plaques and 

lesions prone to rupture in rabbit and mice models (Iiyama, Hajra et al. 1999).  In addition, 

the down-regulation of VCAM-1 mRNA levels in LDL receptor-/- and apolipoprotien E -/- (Apo 

E-/-) mice impaired the adhesion of monocytes to the endothelial layer, leading to a 

reduction in the development of atherosclerosis, thereby indicating the vital role of VCAM-1 

in the progression of this disease (Cybulsky, Iiyama et al. 2001, Dansky, Barlow et al. 2001).  

 

 The anti-inflammatory activities of anthocyanins, in an extract or a purified form, on 

VCAM-1 production have previously been reported where consumption of 320 mg/day 

anthocyanins for 24 weeks (Zhu, Ling et al. 2013) resulted in significantly lower plasma levels 

of VCAM-1.  Similarly, mice fed with purple potato also resulted in decreased plasma level of 

VCAM-1 compared to control group (Miyazaki, Makino et al. 2008).  In addition, various in 

vitrostudies also showed effect on VCAM-1 levels, for example, anthocyanins from black soy 

beans reduced VCAM-1 production in tumor necrosis factor – α (TNF-α) stimulated human 
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umbilical vein endothelial cells (HUVECs) and bovine aortic endothelial cells (BAECs) (Kim, 

Tsoy et al. 2006, Nizamutdinova, Kim et al. 2009). A pure anthocyanin, cyanidin-3-glucoside 

(C3G) at 1, 10 and 100µM, reduced VCAM-1 production in CD40L-stimulated HUVECs in a 

dose-dependent manner (Xia, Ling et al. 2009).  Given that anthocyanins degrade during 

passage through the gastro intestinal tract (GIT), such that very limited amounts of parent 

anthocyanins (if any) are seen in the blood (Czank, Cassidy et al. 2013), it is possible that the 

observed anti-inflammatory effects of anthocyanins may result from the action of their 

degradation products and subsequent metabolites of these degradation products rather 

than the parent compound alone.  Therefore the effects of anthocyanin metabolites on 

VCAM-1 expression need to be investigated and is the focus of the current chapter; where 

C3G and 11 of its recently identified metabolites (Figure 3.1) including 6 novel synthetic 

metabolites, were investigated for their effects on VCAM-1 production. Protocatechuic acid 

(PCA), the B-ring degradant of C3G, has been demonstrated to reduce VCAM-1 production in 

TNF-α-induced mouse aortic endothelial cells at 20 and 40µM (Wang, Wei et al. 2010).  

These initial in vitro studies indicate that C3G and its metabolites may elicit anti-

inflammatory activity, at least in part, by attenuating VCAM-1 production in endothelial cells. 

 

The present study investigated C3G, the most abundant dietary anthocyanins in the 

UK, and its 11 recently identified metabolites for their anti-inflammatory activity against 

VCAM-1 production in oxLDL- and CD40L-stimulated endothelial cells (HUVECs).  The final 

concentrations of compounds screened in the current study were 0.1, 1 and 10µM.  The 

soluble form of VCAM-1 is considered a representative marker to examine the expression of 

VCAM-1 production (Videm and Albrigtsen 2008), therefore soluble VCAM-1 production in 

oxLDL- and CD40L-stimulated HUVECs was quantified using commercially available enzyme-

linked immunosorbent assay (ELISA) and real time reverse transcription-quantitative 

polymerase chain reaction (RT-qPCR) was utilised to quantify VCAM-1 mRNA levels. 
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4.2 Methods and materials 

Standards and Materials.   

RPMI 1640 media, foetal bovine serum (FBS), glutamine and penicillin/streptomycin were 

from PAA (Kent, UK).  D1.1 cells (a sub-clone of Jurkat cell line constitutively expressing 

CD40L (Lederman, Yellin et al. 1992)) were generously provided by Dr. Maria O’Connell, 

Department of Pharmacy, University of East Anglia (Norwich, UK). Agarose and Cu2SO4 were 

purchased from Sigma-Aldrich (Dorset, UK).  Monoclonal antibody against CD40 was 

purchased from Enzo Bioscience (Cambridge, UK). LDL was purchased from Millipore (UK). 

DuoSet ELISA kits VCAM-1 (DY809)], flat bottom clear polystyrene 96-well ELISA plates 

(DY990) and reagent diluent (DY995) were purchased from R&D systems (Europe, UK). ELISA 

protein quantification was established using an Omega BMG plate reader (BMG Labtech, 

Aylesbury, UK).   

 

Cell culture – D1.1 Jurkat cells.  D1.1 cells were routinely cultured in 75cm2 flask in 

RPMI1640 media supplemented with 10% FBS, L-Glutamine (200mM) and antibiotics 

(penicillin/streptomycin, 100x concentrate).  The cell density throughout the culture was 

maintained between 6 x 105 and 1 x 106 cells/mL.   

 

OxLDL-induced VCAM-1 production in HUVECs.  HUVECs were cultured as described 

above. Human LDL (1 mg/mL) was oxidised by incubation with Cu2SO4 (18 mM) solution 

prepared in 1% phosphate buffer saline (PBS) at 37°C for at least 30 hrs.  The oxidation of 

LDL was confirmed by agarose gel electrophoresis as described previously (refer to appendix 

4). All treatment compounds were prepared in HUVEC supplemented media (500 μL/well) at 

final concentrations of 0.1, 1 and 10μM. Sub-confluent HUVECs (90 – 95%) were co-

incubated with oxLDL (5 μg/mL) and treatment compounds for 24 hrs.  Each experiment 

contained un-stimulated, LDL only and oxLDL only treated HUVECs as controls.  Supernatant 

was collected post 24 hrs incubation with treatment compounds in pre-labelled eppendorf 

tubes and stored at -80°C until utilised for ELISA. 

 

CD40L-induced VCAM-1 production in HUVECs.  CD40L expressing Jurkat D1.1 cells were 

utilised to stimulate HUVECs.  D1.1 and HUVECs were cultured as described above.  Sub-

confluent HUVECs (90 – 95%) were co-incubated with D1.1 cells (1 x 106 cells/well) and 
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treatment compounds for 24 hrs.  All treatment compounds were prepared as described 

above in HUVEC supplemented media (500 μL/well) at 0.1, 1 and 10μM.  Each experiment 

contained un-stimulated and CD40L-stimulated HUVECs as controls.  Anti-CD40L antibody (5 

μg/mL) was used to confirm the specificity of CD40L stimulation.  D1.1 cells were pre-

incubated with anti-CD40L antibody for 1hr before HUVEC stimulation. Supernatant was 

collected after 24 hrs co-incubation of HUVECs with D1.1 cells and treatment compounds; 

and stored in pre-labelled eppendorf tubes at -80°C until required for ELISA.  D1.1 cells were 

detached from HUVECs by washing 24-well plates with 1% warm PBS three times; and plates 

with HUVECs stored at -80°C until required for RT-qPCR. 

 

VCAM-1 ELISA.  Soluble form of VCAM-1 protein was quantified using ELISA as described 

in manufacturer’s protocol.  Once samples were thawed and shaken vigorously, 100 µL from 

each sample (in duplicate) was used to perform the ELISA.  All the samples from CD40L-

stimulated experiments were centrifuged for 10 mins at 4°C and 13000 rpm to pellet the 

D1.1 cells before supernatant was used to quantify VCAM-1 protein concentrations. Briefly, 

a flat bottomed 96-well ELISA plate was coated with monoclonal capture mouse anti-human 

VCAM-1 antibody (100 µL/well, 1/180 dilution with 1% PBS), for at least 16 hrs at room 

temperature. Excess and unbound primary antibody was removed by washing the 96-well 

plate with PBS washing buffer containing 0.05% Tween® 20 (PBST) at least three times (300 

µL/well each wash).  Unspecific binding of capture antibody was blocked by incubating the 

plate with reagent diluent (300 µL/well, 1/10 dilution with milli-Q water) for 1 hr at room 

temperature.  Once the plate was washed and dried, sample or standard (100 µL) was added 

to each well of micro plate and incubated at room temperature for 2 hrs with continuous 

rocking at 500 rpm followed by washing and incubation with sheep anti-human detection 

antibody (100 µL/well, 1/180 dilution with reagent diluent) for 2 hrs with continuous rocking 

(500 rpm).  After washing, the detection antibody was then conjugated by incubating the 

plate with horseradish-peroxidase (HRP) streptavidin (100 µL/well, 1/200 dilution with 

reagent diluent) for 30 mins at room temperature in dark, after which the plate was washed 

and then incubated with substrate reagent A and B (100 µL/well, 1/1 dilution of reagent A 

and B) for 30 mins in the dark.  Stop solution, 2N H2SO4 (50 µL/well), was then used to stop 

the reaction between streptavidin HRP and substrate reagent which resulted in the 

development of a bright yellow colour and was quantified at 450 nm and 570 nm (as 

reference wavelength) using a BMG plate reader.  Each ELISA plate contained recombinant 
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VCAM-1 standards (in duplicate) serial diluted in reagent diluent ranging from 1000 pg/mL – 

15.625 pg/mL and reagent diluent (in duplicate) as blank. The intra- and inter-assay 

coefficient of variance (CV) for VCAM-1 ELISA was 7.6 ± 2.2% (mean ± SD, n=33) and 0.69% 

(n=4) respectively (refer to appendix 5 for standard curve). 

 

CD40L-induced VCAM-1 mRNA levels.  RNA extraction and real-time PCR were carried 

out as described in general methods chapter.  Real time qPCR was performed using 

ABIS7500 (version 2.0.5), where the enzyme was activated at 95°C for 10 mins followed by 

50 cycles of denaturation for 15 sec/cycle at 95°C and data collection for 1 min/cycle at 60°C.  

The target gene (VCAM-1) was normalised against two geNorm reference genes, UBE2D2 

and PRDM4, validated based on their expression stability following exposure to the 

treatment compounds used for screening.  The specificity of amplification was confirmed by 

melt curves and the expression of the target gene was quantified by ΔΔCt, where ΔCt = Ct 

target gene / Ct meanCtofreference genes. The forward and reverse primer sequences for VCAM-1 were 

CAG GCT AAG TTA CAT ATT GAT GAC AT and GAG GAA GGG CTG ACC AAG AC respectively. 

 

4.3 Results 

Effect of oxLDL on VCAM-1 protein production in HUVECs.   

No increase in VCAM-1 protein production, as quantified by ELISA, was observed in 

HUVECs stimulated with oxLDL compared to un-stimulated HUVECs (p>0.05, n=3, Figure 4.1).  

The production of VCAM-1 in un-stimulated HUVECs was normalised to the production of 

VCAM-1 in oxLDL-stimulated HUVECs and was 105.7±18.1% (Figure 4.1). 

 

CD40L-induced VCAM-1 protein production in HUVECs.   

CD40L expressing D1.1 Jurkat cells and HUVECs were incubated with or without 

treatment compounds at 0.1, 1 and 10µM for 24 hrs.  Co-incubation of D1.1 cells with 

HUVECs resulted in a 13.5±1.3 fold increase in VCAM-1 protein production compared to un-

stimulated HUVECs (p<0.001, Figure 4.2). However, there was no significant effect observed 

in VCAM-1 production when HUVECs were treated with vehicle control (0.05% DMSO, 

100±1.7% of untreated, p>0.05 – data not shown). The stimulation of VCAM-1was 

significantly reduced by 11.8±0.4 fold when D1.1 cells were pre-incubated with anti-CD40L 
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antibody. Of the 12 compounds tested, 7 compounds reduced CD40L-induced VCAM-1 

protein production by >26.1±8.8% (p<0.05) relative to cells treated with CD40L alone (CD40L 

control), whereas 3 compounds significantly increased VCAM-1 protein production up to 

203.5±4.5% (p< 0.05). 

 

 

Figure 4.1 VCAM-1 protein production in oxLDL treated HUVECs 

 

VCAM-1 protein production relative to 
incubation with oxLDL alone. HUVECs were 
incubated with OxLDL (5 µg/mL) for 24hrs.  
Supernatants were used to quantify VCAM-1 
protein production using ELISA.All data 
expressed relative to oxLDL-induced VCAM-1 
protein concentrations as mean % ± SD (n=3) . 
Absolute VCAM-1 protein value in untreated 
HUVECs – 16.2 pg/mL, standard range 15.625 
– 1000 pg/mL. No significance  relative to 
oxLDL control. 
 

C3G, PCA, and PGA significantly reduced CD40L-induced VCAM-1 by >26.1± 8.8% (p<0.05) of 

the CD40L control (Figure 4.2B), while the metabolites of PCA, VA, IVA, PCA-4-sulfate and 

ferulic acid, reduced CD40L-induced VCAM-1 production by >30.3±4.5% (p<0.04), at one or 

more of the concentrations tested (Figure 4.3, Figure 4.4A and Figure 4.5). The maximum 

reduction was observed for ferulic acid (65.9±8.1%; p<0.001, Figure 4.5).  PCA-4-glucuronide, 

PCA-3-glucuronide and IVA-3-sulfate showed no activity against CD40L induced VCAM-1 

production (Figure 4.3B and Figure 4.4B). Trends were however observed for PCA-3-sulfate 

at 10 µM, (p= 0.07) and VA-4-sulfate at 1 µM (p=0.09, Figure 4.4A and B). 
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Figure 4.2  Effect of C3G, PCA and PGA on VCAM-1 production in CD40L-stimulated HUVECs. 

A)         B) 

 

CD40L-stimulated VCAM-1 protein production in HUVECs co-incubated with C3G, phenolic metabolites or CD40L controls for 24 hours. A, cells incubated with or 
without D1.1 cells (1 x 10

6
 cells/well); B, cells incubated with C3G, PCA or PGA at 0.1, 1, 10 µM and D1.1 cells (1 x 10

6
 cells/well).  All data expressed as mean 

percentage (± SD, n=3) of CD40L-induced controls. Absolute VCAM-1 protein value in unstimulated HUVECs - 15.7 pg/mL, standard range 15.625 – 1000 pg/mL. 
***p<0.001, **p<0.01, *p<0.05 (ANOVA with Tukey post-hoc) relative to CD40L-stimulated control.  C3G, cyanidin-3-glucoside; PCA, protocatechuic acid; PGA, 
phloroglucinaldehyde. 
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Figure 4.3  Effect of methylated and glucuronidated PCA on VCAM-1 production in CD40L-stimulated HUVECs. 

A)           B) 

 

CD40L-stimulated VCAM-1 protein production in HUVECs co-incubated with phenolic metabolites for 24 hours. A, cells incubated with VA or IVA at 0.1, 1, 10 µM 
and D1.1 cells (1 x 10

6
 cells/well); B, cells incubated with PCA-4-Gluc or PCA-3-Gluc at 0.1, 1, 10 µM and D1.1 cells (1 x 10

6
 cells/well).  All data expressed as mean 

percentage (± SD, n=3) of CD40L-induced controls. Absolute VCAM-1 protein value in unstimulated HUVECs - 15.7 pg/mL, standard range 15.625 – 1000 
pg/mL***p<0.001 (ANOVA with Tukey post-hoc) relative to CD40L-stimulated control.  VA, vanillic acid; IVA, isovanillic acid; PCA-4-Gluc, PCA-4-glucuronide; PCA-3-
Gluc, PCA-3-glucuronide. 
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Figure 4.4  Effect of sulfated and multiple-conjugated PCA on VCAM-1 production in CD40L-stimulated HUVECs. 

 

A)           B) 

 

CD40L-stimulated VCAM-1 protein production in HUVECs co-incubated with phenolic metabolites for 24 hours. A, cells incubated with PCA-4-Sulf or PCA-3-Sulf at 
0.1, 1, 10 µM and D1.1 cells (1 x 10

6
 cells/well); B, cells incubated with VA-4-Sulf or IVA-3-Sulf at 0.1, 1, 10 µM and D1.1 cells (1 x 10

6
 cells/well).  All data expressed 

as mean percentage (± SD, n=3) of CD40L-induced controls. Absolute VCAM-1 protein value in unstimulated HUVECs - 15.7 pg/mL, standard range 15.625 – 1000 
pg/mL. ***p<0.001, *p<0.05 (ANOVA with Tukey post-hoc) relative to CD40L-stimulated control. PCA-4-Sulf, protocatechuic acid-4-sulfate; PCA-3-Sulf, 
protocatechuic acid-3-sulfate; VA-4-Sulf, vanillic acid-4-sulfate; IVA-3-Sulf, isovanillic acid-3-sulfate. 
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Figure 4.5  Effect of ferulic acid on VCAM-1 production in CD40L-stimulated HUVECs.

 

 

CD40L-stimulated VCAM-1 protein production 
in HUVECs co-incubated with FA at 0.1, 1, 10 
µM and D1.1 cells (1 x 10

6
 cells/well) for 24 

hours..  All data expressed as mean percentage 
(± SD, n=3) of CD40L-induced controls. 
Absolute VCAM-1 protein value in 
unstimulated HUVECs - 15.7 pg/mL, standard 
range 15.625 – 1000 pg/mL. ***p<0.001 
(ANOVA with Tukey post-hoc) relative to 
CD40L-stimulated control.FA, ferulic acid. 
 

 

An increase in VCAM-1 protein production was observed when CD40L-induced HUVECs were 

co-incubated with PCA-4-sulfate (203.5±4.5% at 1 µM, p<0.001), PCA-3-sulfate (126.5±10.6% 

at 1 µM, p<0.04) and VA-4-sulfate (140.1± 10.8% at 0.1 µM and 180.3±2.2% at 10 µM, 

p<0.001) relative to CD40L-induced control (Figure 4.4A and B). 

 

Effects on CD40L-induced VCAM-1 mRNA levels.  

The seven compounds that displayed an ability to reduce CD40L-induced VCAM-1 protein 

concentrations (reported above) were investigated for their effects on CD40L-induced 

VCAM-1 mRNA levels.  Here, CD40L induction increased VCAM-1 mRNA levels by 130.2±46.1 

fold relative to untreated HUVECs (p<0.05, n=3, Figure 4.6) and this was reduced to 33.8±1.2 

fold by pre-incubating D1.1 cells with anti-CD40L antibody prior to their use to stimulate 

HUVECs (p<0.05, Figure 4.6). Of the 7 compounds tested, 4 reduced VCAM-1 mRNA levels in 

CD40L-induced HUVECs by >75.8±7.2% (p<0.05, Figure 4.6). The greatest reduction of VCAM-

1 mRNA levels was observed for VA which reduced CD40L-induced VCAM-1 by >99.9 ±0.01% 

of the CD40L control (p<0.04, Figure 4.6). 
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Figure 4.6  Effect of bioactive compounds at protein level on VCAM-1 mRNA levels in CD40L-stimulated HUVECs. 

 

Change in CD40L-stimulated VCAM-1 mRNA in HUVECs co-incubated with C3G and phenolic metabolites or CD40L controls for 24 hrs.  VCAM-1 mRNA fold 
change in cells co-incubated with C3G or phenolic metabolites (10 µM) with or without D1.1 cells (1 x 10

6
 cells/well). All data graphically expressed as mean fold 

change (± SD, n=3) relative to un-stimulated (basal) VCAM-1 mRNA levels. *p<0.05 (ANOVA with Tukey post-hoc) relative to CD40L-stimulated control. C3G, 
cyanidin-3-glucoside; PCA, protocatechuic acid; PGA, phloroglucinaldehyde; VA, vanillic acid; IVA, isovanillic acid; PCA-4-Sulf, PCA-4-sulfate; FA, ferulic acid. 

. 

 

0

50

100

150

200

250

300
F

o
ld

 c
h

a
n

g
e
 V

C
A

M
-1

 m
R

N
A

 l
e
v
e
ls

 

Treaatment (10µM) 

* 

* 

* 

* * 



  Page 
62 

 
  

4.4 Discussion 

High consumption of dietary anthocyanins is associated with reduced CVD risk 

(Cassidy, O'Reilly et al. 2010, Cassidy, Mukamal et al. 2013), however the mechanisms 

involved remain elusive, and the majority of previous animal and in vitro studies have 

explored the activity of parent/un-metabolised forms of anthocyanins.  The current study 

explored the anti-inflammatory activity of newly identified anthocyanin metabolites where, 

for the first time, novel pure synthetic sulfate and glucuronic acid phenolic conjugates were 

utilised. As anthocyanins have been shown to reduce oxLDL-induced apoptosis (Yi, Chen et 

al. 2010) and attenuate downstream effects of CD40L-CD40 interaction (Xia, Ling et al. 2007, 

Xia, Ling et al. 2009). The major finding of the present study is that degradation and 

subsequent metabolism of C3G does not reduce its bioactivity and it may in fact increase it.  

Therefore, C3G may exhibit anti-inflammatory activity via the ability of its metabolites to 

alter the protein and gene expression of VCAM-1, a key mediator of chronic inflammation, in 

endothelial cells.  VCAM-1 plays a pivotal role in the initiation of chronic inflammation by 

acting as a bridge between leukocytes and endothelium, and aids the internalisation of 

leukocytes in endothelial cells which triggers the release of other inflammatory mediators to 

propagate the inflammatory response(Fotis, Giannakopoulos et al. 2012).   

 

CD40L has been identified as a cardiovascular disease risk factor (Dominguez-

Rodriguez, Abreu-Gonzalez et al. 2009, Hassan, Merhi et al. 2012) and has been associated 

with the progression of atherosclerosis.  The CD40 ligation via CD40L is associated with 

increased production of VCAM-1 (Xia, Ling et al. 2009, Pamukcu, Lip et al. 2011).  However, 

previously very little was known of the effects of anthocyanin metabolites on CD40L-induced 

VCAM-1 expression.  The current study confirmed the involvement of CD40L in inducing 

VCAM-1 production in endothelial cells, as a significant increase in VCAM-1 production was 

observed upon CD40L-stimulation of HUVECs, which was attenuated by blocking CD40L 

using human anti-CD40L antibody.  No increase in VCAM-1 protein production was observed 

when HUVECs were stimulated with oxLDL (5 µg/mL) for 24 hrs, although oxLDL has 

previously been shown to induce VCAM-1 protein production in endothelial cells (Huang, Lin 

et al. 2013), where a concentration as high as 40 µg/mL of oxLDL was required to achieve a 

significant increase of VCAM-1 production in HUVECs.  This may explain why no significant 

increase in VCAM-1 protein production was observed following stimulation of HUVECs with 5 

µg/mL oxLDL in the present study.   
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In the present study, C3G and its metabolites significantly reduced CD40L-induced 

VCAM-1 production by as much as 65% of the CD40L control (Figure 4.5).  Earlier studies 

investigating structure-function activity have indicated that there is a positive correlation 

between the number of hydroxyl groups present on the B-ring of flavonoids and their anti-

inflammatory (Theoharides, Alexandrakis et al. 2001) and radical scavenging (Yi, Chen et al. 

2010) activity and their ability to reduce oxLDL-mediated cell apoptosis (Chang, Huang et al. 

2006). Moreover, flavonoids containing an ortho-dihydroxy (catechol) group on the B-ring 

have been previously shown to reduce the production of inflammatory mediators including 

interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) (Theoharides, Alexandrakis et al. 2001, 

Hou, Yanagita et al. 2005). In the present study, the investigated groups of metabolites were 

identified as B-ring metabolites of C3G and have either intact or conjugated/modified 

(methylated, glucuronidated and sulfated) catechol moieties, allowing for basic examination 

of structure-function relationships. 

 

In CD40L-stimulated HUVECs, 7 of 12 compounds tested, including C3G and both its 

degradation products, PCA and PGA (Figure 4.2B), significantly reduced VCAM-1 production 

(Figure 4.2 to Figure 4.5). Following CD40L stimulation, the largest reduction in VCAM-1 was 

observed for metabolites containing a methylated catechol group, with ferulic acid eliciting 

the greatest effect, followed by VA and IVA (Figure 4.3A and Figure 4.5). The effects of 

glucuronic acid and sulfate conjugation were less apparent (Figure 4.3B and Figure 4.4A). 

The findings from the present study suggest that anthocyanin metabolites possess anti-

inflammatory activity and the conjugation of the catechol group on the phenolic metabolites 

often leads to increased bioactivity, which has also been reported for conjugated forms of 

other flavonoids, such as methylated (-)-epicatechin and sulfated and glucuronidated 

quercetin (Steffen, Gruber et al. 2008, Lodi, Jimenez et al. 2009, Al-Shalmani, Suri et al. 

2011).Unexpectedly, sulfated PCA, VA and IVA increased CD40L-induced VCAM-1 production 

(Figure 4.3B and Figure 4.4) at several concentrations in HUVECs implying the sulfation may 

be unfavourable transformation of these metabolites for CD40L-induced VCAM-1 production 

in HUVECs.   This increased production of soluble VCAM-1 may be due to the effect of 

metabolites on proteolytic cleavage of VCAM-1 at cell membrane which leads to increased 

sVCAM-1 (Videm and Albrigtsen 2008, Fotis, Giannakopoulos et al. 2012). 

 

The potential mechanism by which C3G and its metabolites alter VCAM-1 protein 

production in CD40L-stimulated HUVECs was also investigated by examining their effects on 
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CD40L-induced VCAM-1 mRNA levels.  In most cases, compounds which reduced protein 

levels of CD40L-induced VCAM-1 also reduced VCAM-1 mRNA levels in the same model.  Of 

the 7 compounds that displayed bioactivity on VCAM-1 protein production, CD40L-induced 

VCAM-1 mRNA levels were reduced by PCA, PGA, VA and ferulic acid, indicating their 

bioactivity at the transcriptional level. While this evidence may explain the link between a 

significant alteration in gene expression and protein levels, several instances were noted 

where a reduction in protein concentrations (Figure 4.2 to Figure 4.5) was not correlated 

with a reduction in mRNA levels (Figure 4.6). Such divergence may be the result of post-

translational modification as proteolytic cleavage is required to release membrane bound 

VCAM-1 to produce soluble VCAM-1 (Videm and Albrigtsen 2008). 

 

To the best of my knowledge, this is the first in vitro study to examine the effects of 

metabolites of C3G on VCAM-1 in CD40L-stimulated endothelial cells. Though, the activity of 

C3G on CD40L-induced VCAM-1 protein production has previously been reported, where 

C3G significantly reduced CD40L-induced VCAM-1 in endothelial cells (Xia, Ling et al. 2009), 

the findings from the current study for C3G was in accordance with this previous work and 

provides additional evidence for C3G activity.  Nevertheless, not all studies have supported 

the activity of C3G on VCAM-1 expression as Hidalgo et al reported no effect of C3G on LPS-

INF-γ induced VCAM-1 in endothelial cells (Hidalgo, Martin-Santamaria et al. 2011).  This 

discrepancy could possibly be explained by the exposure time of the endothelial cells to C3G 

and the stimulant, as the stimulation time was only 6 hrs in the study conducted by Hidalgo 

et al., as opposed to 24 hrs in the current study.  The present study is the first in vitro study 

which investigated activity of PCA in CD40L-stimulated HVUECs however; previous studies 

using different in vitro models have reported the activity of PCA on VCAM-1.  For example, 

significant reductions in VCAM-1 protein production have been reported (Kim, Tsoy et al. 

2006, Min, Ryu et al. 2010) in LPS–induced RAW264.7 and TNF-α-induced bovine aortic 

endothelial cells co-incubated with PCA; which is in accordance with the present study 

where PCA reduced CD40L-induced VCAM-1 by greater than 26% of controls. However, Kim 

et al (Kim, Tsoy et al. 2006) reported the bioactivity of PCA at ≥20 µM as opposed to the 

present study where observed effects of PCA on VCAM-1 protein production at 

concentrations as low as 1 µM [a physiologically relevant concentration (Czank, Cassidy et al. 

2013)].   
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In the current study, the methylated forms of PCA, namely VA and IVA, reduced 

CD40L-induced VCAM-1 production in HUVECs.  In contrast to VA, diminished VCAM-1 

protein production caused by IVA was independent of its effect on VCAM-1 mRNA levels 

suggesting possible interference during post-translational modification of VCAM-1.  To the 

best of my knowledge, this is the first study that reports the potential inhibitory effects of VA 

and IVA on VCAM-1.  It is also apparent from the present study that methylation of PCA at 

either hydroxyl group on the B-ring increases the inhibitory effect of PCA towards VCAM-1 

protein production as VA (at 1 and 10µM) and IVA (at all concentrations) elicited greater 

reductions of VCAM-1 protein production (p<0.05) compared to any concentration of PCA.  

In addition to VA and IVA, FA – a propenoic acid derivative of VA - also reduced VCAM-1 

protein and gene expression at all concentrations tested, suggesting the mono-O-methylated 

catechol group may confer bioactivity towards VCAM-1 production.  This finding is in 

agreement with the study conducted by Hong et al using a different stimulus than utilised in 

the present study, where FA reduced γ-radiation-induced VCAM-1 production in HUVECs at 

concentrations of 5, 10 and 20µM (Ma, Hong et al. 2010). 

 

The investigation of glucuronide (PCA-3-Gluc and PCA-4-Gluc) and sulfate (PCA-4-Sulf 

and PCA-3-Sulf) derivatives of PCA revealed that both types of conjugations at either 3’ or 4’ 

–OH of PCA reduce their inhibitory effects towards VCAM-1 protein and mRNA levels.  With 

regards to the multiple-conjugated products (methylation and sulfation) of PCA, VA-4-Sulf 

increased VCAM-1 protein production by ≈2 fold at 0.1 and 10µM which was not associated 

with modification at mRNA levels, suggesting a potential interference with proteolytic 

cleavage of VCAM-1 to increase the production of soluble VCAM-1.  However, IVA-3-Sulf had 

no apparent effect on VCAM-1 protein production and mRNA levels, indicating that multiple-

conjugations of PCA also decrease the bioactivity potential of PCA towards VCAM-1 

production in endothelial cells.   

 

The observed effects of C3G and its metabolites at the translational level may be due 

to their ability to inhibit activation of key inflammatory proteins and transcription factors as 

anthocyanins can reduce the activation of CD40L induced c-Jun N-terminal kinases (JNK) (Xia, 

Ling et al. 2009) and NF-κB(Kim, Tsoy et al. 2006). C3G has also been reported to diminish 

CD40L signalling by restricting TNF receptor associated factor-2 (TRAF-2) translocation to the 

membrane bound CD40 receptor in endothelial cells (Xia, Ling et al. 2007).  
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Overall, the results from this study indicate that the B-ring degradant of C3G, PCA, 

has greater bioactivity potential than the parent compound or the A-ring degradant of C3G, 

PGA.  These data also highlight the impact of conjugation upon bioactivity of PCA, with 

methyl conjugates of PCA eliciting a greater reduction in VCAM-1 protein production than 

glucuronide, sulfate or multiple-conjugates of PCA.  The inhibitory effect of anthocyanin 

metabolites upon VCAM-1 protein production presented in this study, together with 

previous reports examining activity of phenolic acids and structurally similar compounds on 

VCAM-1 production in in vitro models; provide strong evidence that these compounds 

possess an inhibitory effect on VCAM-1 production.  Altogether, data from this study 

indicate that the reported anti-inflammatory effect of C3G may partially be attributed to its 

metabolites, and that degradation and subsequent metabolism of degradants does not 

inhibit its bioactivity; in fact in some cases it may increase it. In light of these data, further 

investigation is warranted to establish specific mechanisms of action by which metabolites of 

C3G may exhibit anti-inflammatory activity.  This may include investigating effect of 

bioactive compounds on correlation between membrane bound VCAM-1 versus sVCAM-1 in 

HUVECs, modulation of enzymes facilitating proteolytic cleavage of VCAM-1, interaction of 

VCAM-1/α4β1, CD40L/TRAF-2 and ultimately on transcription factor such as NF-κB. 
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Chapter 5. Effects of cyanidin-3-glucoside 
and its metabolites on endothelial IL-6 
expression 

5.1 Introduction 

Increased dietary consumption of anthocyanins may reduce the risk of cardiovascular 

disease (CVD) and related pathologies, including high blood pressure, atherosclerosis, 

myocardial infarction and coronary heart disease (Mink, Scrafford et al. 2007, Cassidy, 

Mukamal et al. 2013).  Cardiovascular disease is a direct result of a combination of vascular 

endothelial dysfunction and chronic inflammation, where the key cytokine interleukin-6 (IL-

6) and its signalling pathways play an important role in the latter process (Schuett, 

Luchtefeld et al. 2009).  Moreover, IL-6 signalling contributes to the development of 

atherosclerotic plaques and their instability, which leads to critical clinical endpoints such as 

myocardial infarction and stroke (Schuett, Luchtefeld et al. 2009).  High levels of IL-6 causes 

over-production of other pro-inflammatory cytokines, matrix metalloproteinase and 

oxidation of lipoprotein to propagate the inflammation further (Yudkin, Kumari et al. 2000, 

Song and Schindler 2004, Saremi, Anderson et al. 2009). 

 

Anthocyanins have been studied for their anti-inflammatory activity and shown to 

reduce the production of IL-6 both in vivo and in vitro(Albrecht, Yang et al. 2007, Karlsen, 

Paur et al. 2010, Edirisinghe, Banaszewski et al. 2011, Xie, Kang et al. 2011).  Plasma levels of 

IL-6 were significantly reduced following chronic (Karlsen, Paur et al. 2010, Kolehmainen, 

Mykkänen et al. 2012) and acute (Edirisinghe, Banaszewski et al. 2011) consumption of 

anthocyanin-containing juice in human participants at elevated risk of CVD.  Moreover, 

animal studies support the notion that anthocyanins possess anti-inflammatory activity, as 

IL-6 expression was significantly lower in mice fed bilberry extract for 5 weeks compared to a 

controlled diet (Xie, Kang et al. 2011).  In vitro data have also demonstrated that cyanidin-3-

glucoside (C3G) significantly reduced cluster of differentiation ligand (CD40L)-induced IL-6 

production in endothelial cells (Xia, Ling et al. 2007).  
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Despite promising evidence suggesting anti-inflammatory activity of anthocyanins, 

very limited information is available concerning the effects of their recently identified 

metabolites (Czank, Cassidy et al. 2013).  In the present study, C3G and 11 of its recently 

identified (of which 6 were synthesised) metabolites (Figure 3.1) were examined for their 

effect on IL-6 production under CD40L and oxidised low density lipoprotein (oxLDL) 

challenged conditions  

 

5.2 Methods and materials 

Standards and reagents.  DuoSet enzyme-linked immunosorbent assay (ELISA) kits IL-6 

(DY206), flat bottom clear polystyrene 96-well ELISA plates (DY990) and reagent diluent 

(DY995) were purchased from R&D Systems (Abingdon, UK). 

 

oxLDL-induced IL-6 production in HUVECs.  Human LDL (1 mg/mL) was oxidised by 

incubation with Cu2SO4 (18 mM) solution prepared in 1% phosphate-buffered saline (PBS) at 

37°C for at least 30 hrs.  The oxidation of LDL was confirmed by protein agarose 

electrophoresis as described previously (refer to appendix 4) (Autio, Jaakkola et al. 1990). 

HUVECs were cultured as described in general methods section. All treatment compounds 

were prepared in HUVEC supplemented media (500 μL/well) at 0.1, 1 and 10 μM final 

concentrations. Sub-confluent HUVECs (90-95%) were co-incubated with oxLDL (5 μg/mL) 

and treatment compounds for 24 hrs.  As controls, each experiment contained LDL and 

oxLDL-stimulated HUVECs as well as un-stimulated HUVECs.  The supernatants were 

collected 24 hrs post incubation with treatment compounds, and stored in eppendorf tubes 

at -80°C until utilised for ELISA.  Plates were then stored at -80°C until required for RT-qPCR. 

 

CD40L-induced IL-6 production in HUVECs.  Sub-confluent HUVECs (90-95%) were co-

incubated with D1.1 cells (1 x 106 cells/well, cultured as described in general methods 

section) and treatment compounds for 24 hrs.  All treatment compounds were prepared in 

HUVEC supplemented media (500 μL/well) at 0.1, 1 and 10 μM final concentrations.  Each 

experiment contained unstimulated and CD40L-stimulated HUVECs as controls.  Anti-CD40L 

antibody (5 μg/mL) was used to confirm the specificity of the assay, where D1.1 cells were 

pre-incubated with anti-CD40L antibody for 1 hr prior to stimulation of HUVECs. 
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Supernatants were collected after 24 hrs co-incubation of HUVECs with D1.1 cells with 

treatment compounds; and stored in pre-labelled eppendorf tubes at -80°C until required for 

ELISA.  D1.1 cells were removed by washing 24-well plates with 1% warm PBS three times, 

and plates were then stored at -80°C until required for RT-qPCR. 

 

IL-6 ELISA.  Production ofIL-6 protein was quantified using ELISA according to the 

manufacturer’s protocol, and as detailed previously for VCAM-1 (Chapter 3).  Briefly, 100 µL 

of each sample (in duplicate) was dispensed into separate wells of flat bottom plates coated 

with  monoclonal mouse anti-human IL-6 primary antibody (100 µL/well, 1/180 dilution with 

1% PBS).  After two hrs incubation with samples, ELISA plates were incubated with sheep 

anti-human detection antibody (100 µL/well, 1/180 dilution with reagent diluent) for a 

further two hrs.  Thereafter, plates were incubated with horseradish-peroxidase (HRP) 

streptavidin (100 µL/well, 1/200 dilution with reagent diluent) for 30 mins at room 

temperature in the dark, followed by incubation with substrate reagents A & B (100 µL/well, 

1/1 dilution of reagent A and B) for 30 mins in the dark at room temperature.  The reaction 

was then terminated using a stop solution (50 µL/well, 2N H2SO4) to develop a bright yellow 

colour and absorbance measured at 450 nm (reference wavelength 570 nm) using a BMG 

plate reader.  The IL-6 ELISA intra- and inter-assay coefficients of variation (CV) were 

4.3±1.3% and 1.49% respectively (mean±SD, n=4, refer to appendix 6 for standard curve).  

 

 

Real-time PCR.  Real-timePCR was performed as described previously (Chapter 2).  The 

target gene (IL-6) was normalised against two geNorm reference genes, UBE2D2 and 

PRDM4, validated based on stability of expression following incubation with the treatment 

compounds used for screening (chapter 2).  Gene expression was quantified using 

comparative Ct method (Schmittgen and Livak 2008) incorporating the geometric mean of 

reference genes as the normalisation factor.  The forward and reverse primer sequences for 

IL-6 were CAG GCT AAG TTA CAT ATT GAT GAC AT and GAG GAA GGG CTG ACC AAG AC 

respectively. 
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5.3 Results 

OxLDL-induced IL-6 protein production in HUVECs 

OxLDL-stimulation of HUVECs resulted in a 6.9±0.4 fold increase in IL-6 protein 

production relative to the un-stimulated control (p<0.001, Figure 5.1A), whereas only a 2.9 

fold increase in IL-6 protein production (p<0.05, Figure 5.1A) was observed in HUVECs 

treated with LDL alone.  In addition, no significant effect on IL-6 production was observed 

when HUVECs were treated with vehicle control (0.05% DMSO, 110±8.9% of untreated, 

p>0.05 – data not shown) IL-6 production was not altered when HUVECs were incubated 

with a vehicle control (VC) consisting of Cu2SO4 (5 µM) and 0.05% DMSO (p>0.05, Figure 

5.1A).  Of the 12 compounds tested, 9 reduced oxLDL-induced IL-6 production by >32% 

(p<0.05, Figure 5.1 to Figure 5.4) relative to the cells treated with oxLDL alone (oxLDL 

control), at one or more of the tested treatment concentrations (0.1, 1, 10 µM).  Cyanidin-3-

glucoside had no effect on oxLDL-induced IL-6 production, however its B-ring degradation 

product, PCA, reduced IL-6 production by >53.6±7.6% relative to the oxLDL control (p<0.001, 

Figure 5.1); whereas PGA had no effect. Among the methyl, glucuronide and sulphate 

conjugated metabolites of PCA, PCA glucuronides and PCA sulfates elicited the greatest 

reductions in oxLDL-induced IL-6 production (for all concentrations tested), with sulfate 

conjugates of PCA eliciting maximal decreases (99.1±0.1%, p<0.001, Figure 5.2 to Figure 

5.3A). In addition, VA-4-sulfate, IVA-3-sulfate and FA also displayed bioactivity against oxLDL-

induced IL-6 production, (between 54.1±4.4 and 98.2±0.2% reduction, p<0.05) relative to the 

oxLDL control (Figure 5.3B and Figure 5.4). The isomer of VA, IVA, showed no significant 

activity, though a trend was observed at 0.1 µM (p<0.09, Figure 5.3A). 

 

OxLDL-stimulated IL-6 mRNA expression  

The 9 compounds which elicited reductions in IL-6 protein production (reported 

above) were further investigated for their effects on IL-6 mRNA levels following incubation 

of HUVEC with 10 µM of treatment compounds for 24 hours. IL-6 mRNA expression was 

increased by 3.5±0.9 fold (p<0.05, Figure 5.5) in cells treated with oxLDL alone (oxLDL 

control) compared to unstimulated cells. All compounds except FA reduced oxLDL-induced 

IL-6 mRNA expression by >55.2±7.3% of the oxLDL control (p<0.006, Figure 5.5). VA elicited  
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Figure 5.1  Effect of various controls, C3G and its degradants on oxLDL-induced IL-6 protein production 

 

HUVECs co-incubated with C3G, PCA, PGA, or controls for 24 hours. A, cells incubated with or without LDL (5 µg/mL) or VC; B, cells incubated with C3G, PCA or PGA 
at 0.1, 1 and 10 µM and oxLDL. All data expressed as mean percentage (± SD, n=3) of oxLDL-induced controls (expressed as 100%). Absolute IL-6 protein value in 
unstimulated HUVECs - 37.2pg/mL, standard range 9.375 – 600pg/mL **p<0.001, *p<0.01 (ANOVA with Tukey post-hoc) relative to oxLDL-stimulated control cells. 
C3G, cyanidin-3-glucoside; PCA, protocatechuic acid; PGA, phloroglucinaldehyde; VC, vehicle control [Cu2SO4 (5 µM) + 0.05% DMSO].  
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Figure 5.2  Effect of methylated and glucuronidated phenolic metabolites of PCA on oxLDL-induced IL-6 protein production 

 

  

HUVECs co-incubated with VA, IVA, PCA-4-Gluc or PCA-3-Gluc for 24 hours. A, cells incubated with VA or IVA at 0.1, 1 and 10 µM and oxLDL (5 µg/mL); B, cells 
incubated with PCA-4-Gluc or PCA-3-Gluc at 0.1, 1 and 10 µM and oxLDL (5 µg/mL). All data expressed as mean percentage (± SD, n=3) of oxLDL-induced controls 
(expressed as 100%).Absolute IL-6 protein value in unstimulated HUVECs - 37.2 pg/mL, standard range 9.375 – 600 pg/mL. *p<0.001 (ANOVA with Tukey post-hoc) 
relative to oxLDL-stimulated control cells. %).VA, vanillic acid; IVA, isovanillic acid; PCA-4-Gluc, protocatechuic acid-4-glucuronide; PCA-3-Gluc, protocatechuic acid-
3-glucuronide. 
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Figure 5.3  Effect of sulfated and/or methylated phenolic metabolites of PCA on oxLDL-induced IL-6 protein production 

 

 

OxLDL-stimulated IL-6 protein production in HUVECs co-incubated with PCA-4-Sulf, PCA-3-Sulf, VA-4-Sulf or IVA-3-Sulf for 24 hours. A, cells incubated with PCA-4-
Sulf or PCA-3-Sulf at 0.1, 1 and 10 µM and oxLDL (5 µg/mL); B, cells incubated with VA-4-Sulf or IVA-3-Sulf at 0.1, 1 and 10 µM and oxLDL (5 µg/mL). All data 
expressed as mean percentage (± SD, n=3) of oxLDL-induced controls (expressed as 100%). Absolute IL-6 protein value in unstimulated HUVECs - 37.2 pg/mL, 
standard range 9.375 – 600 pg/mL. *p<0.001 (ANOVA with Tukey post-hoc) relative to oxLDL-stimulated control cells. PCA-4-Sulf, protocatechuic acid-4-sulfate; 
PCA-3-Sulf, protocatechuic acid-3-sulfate; VA-4-Sulf, vanillic acid-4-sulfate; IVA-3-Sulf, isovanillic acid-3-sulfate. 
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Figure 5.4  Effect of ferulic acid  metabolite on oxLDL-induced IL-6 protein production 

 

 

HUVECs co-incubated with FA at 0.1, 1, 10 µM 
and oxLDL (5 µg/mL) for 24 hours.  All data 
expressed as mean percentage (± SD, n=3) of 
oxLDL-induced controls. Absolute IL-6 protein 
value in unstimulated HUVECs - 37.2 pg/mL, 
standard range 9.375 – 600 pg/mL. 
***p<0.001, **p<0.01, *p<0.05 (ANOVA with 
Tukey post-hoc) relative to CD40L-stimulated 
control.  FA, ferulic acid. 

 

Figure 5.5 Modulation of oxLDL induced IL-6 mRNA levels in HUVECs co-incubated with 
bioactive metabolites of C3G. 

 

HUVECs were co-incubated with phenolic metabolites of C3G at 10 µM or oxLDL controls for 24 hours. All 
graphical data expressed as mean fold change (± SD, n=3) of un-stimulated (basal) IL-6 mRNA levels. *p<0.05 
(ANOVA with Tukey post-hoc) relative to oxLDL-stimulated control. PCA, protocatechuic acid; VA, vanillic acid; 
PCA-4-Gluc, PCA-4-glucuronide; PCA-3-Gluc, PCA-3-glucuronide; PCA-3-Sulf, PCA-3-sulfate; PCA-4-Sulf, PCA-4-
sulfate; VA-4-Sulf, VA-4-sulfate, IVA-3-Sulf, IVA-3-sulfate, FA, ferulic acid. 
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the greatest reduction in oxLDL-induced IL-6 mRNA expression of 82.9±10.4% relative to the 

oxLDL control (p<0.001). 

 

CD40L-stimulated IL-6 protein production  

The effect of C3G and its metabolites on CD40L-induced IL-6 protein production was 

explored by co-incubation of CD40L-expressing D1.1 cells with HUVECs. Here, IL-6 protein 

expression was significantly increased (3.2±1.5 fold) in CD40L-treated HUVECs, but reduced 

(by 44.4±1.7%) when D1.1 cells were pre-incubated with anti-CD40L antibody, confirming 

the role of CD40L in the production of IL-6 in the present model (Figure 5.6A). Of the 12 

compounds tested, 8 reduced CD40L-induced IL-6 protein production by >41.7±3.5%, 

relative to cells treated with CD40L alone (CD40L control) (p<0.03, Figure 5.6B to Figure 5.9). 

 

C3G and PCA both reduced CD40L-induced IL-6 protein production by >44.6±23.0% 

relative to the CD40L control (p<0.05, Figure 5.6B), whilst PGA was without effect. Six 

conjugated metabolites of PCA, namely VA, IVA, PCA-3-glucuronide, PCA-3-sulfate, PCA-4-

sulfate, and IVA-3-sulfate, reduced CD40L-induced IL-6 production by >41.7±3.5%(p<0.03) at 

one or more of the concentrations tested (Figure 5.7 and Figure 5.8), with a maximal 

reduction of 95.8±1.3% (p<0.001) observed for the sulfate conjugate of PCA, PCA-4-sulfate 

(Figure 5.8A).  PCA-4-glucuronide, VA-4-sulfate and ferulic acid showed no significant activity 

against CD40L induced IL-6 production (Figure 5.7B, Figure 5.8B and Figure 5.9). Trends were 

observed for C3G at 10 µM (p< 0.13, Figure 5.6B) and VA-4-sulfate at 0.1 µM (p<0.06, Figure 

5.8B). 

 

The 8 compounds which reduced CD40L-induced IL-6 production, as reported above, 

were further investigated for their effects on IL-6 mRNA levels following incubation of 

HUVEC with the treatment compounds at 10 µM for 24 hours. Co-incubation of HUVECs with 

CD40L increased IL-6 mRNA expression by 2.3±0.3 fold (p<0.05, Figure 5.10), while anti-

CD40L reduced IL-6 mRNA levels to below that observed in untreated HUVECs (0.2±0.1 fold, 

p<0.05). With the exception of IVA, all compounds reduced CD40L-induced IL-6 mRNA 

expression by >85.3 ±2.5% (p <0.01, Figure 5.10) relative to the CD40L-treated control. PCA 

elicited the greatest reduction in CD40L-induced IL-6 mRNA expression, where mRNA levels 

were reduced by 94.9±8.3% of the CD40L-induced control (p<0.001).   
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Figure 5.6  Effect of CD40L controls, C3G and its degradants on CD40L-induced IL-6 protein production 

  

HUVECs co-incubated with C3G, PCA, PGA or CD40L controls for 24 hours. A, cells incubated with or without D1.1 cells (1 x 10
6
 cells/well); B, cells incubated with C3G, PCA 

or PGA at 0.1, 1, 10 µM and D1.1 cells (1 x 10
6
 cells/well). All data expressed as mean percentage (± SD, n=3) of CD40L-induced controls. Absolute IL-6 protein value in 

unstimulated HUVECs - 30.3 pg/mL, standard range 9.375 – 600 pg/mL. **p<0.001, *p<0.01 (ANOVA with Tukey post-hoc) relative to CD40L-stimulated control.  C3G, 
cyanidin-3-glucoside; PCA, protocatechuic acid; PGA, phloroglucinaldehyde. 
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Figure 5.7  Effect of methylated and glucuronidated phenolic metabolites on CD40L-induced IL-6 protein production 

  

HUVECs co-incubated with VA, IVA, PCA-4-Gluc or PCA-3-Gluc for 24 hours. A, B, cells incubated with VA, IVA, PCA-4-Gluc or PCA-3-Gluc at 0.1, 1, 10 µM and D1.1 cells (1 x 
10

6
 cells/well). All data expressed as mean percentage (± SD, n=3) of CD40L-induced controls. Absolute IL-6 protein value in unstimulated HUVECs - 30.3 pg/mL, standard 

range 9.375 – 600 pg/mL. **p<0.001, *p<0.01 (ANOVA with Tukey post-hoc) relative to CD40L-stimulated control.  ; VA, vanillic acid; IVA, isovanillic acid; PCA-4-Gluc, 
protocatechuic acid-4-glucuronide; PCA-3-Gluc, protocatechuic acid-3-glucuronide. 
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Figure 5.8  Effect of sulfated and multiple conjugated phenolic metabolites on CD40L-induced IL-6 protein production 

   

HUVECs co-incubated with PCA-4-Sulf, PCA-3-Sulf, VA-4-Sulf or IVA-3-Sulf or for 24 hours. A, B, cells incubated with PCA-4-Sulf, PCA-3-Sulf, VA-4-Sulf or IVA-3-Sulf at 0.1, 1, 
10 µM and D1.1 cells (1 x 10

6
 cells/well). All data expressed as mean percentage (± SD, n=3) of CD40L-induced controls. Absolute IL-6 protein value in unstimulated HUVECs 

- 30.3 pg/mL, standard range 9.375 – 600 pg/mL. **p<0.001, *p<0.01 (ANOVA with Tukey post-hoc) relative to CD40L-stimulated control.  PCA-4-Sulf, protocatechuic acid-
4-sulfate; PCA-3-Sulf, protocatechuic acid-3-sulfate; VA-4-Sulf, vanillic acid-4-sulfate; IVA-3-Sulf, isovanillic acid-3-sulfate. 
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Figure 5.9  Effect of ferulic acid metabolite on CD40L-induced IL-6 protein production 

 

 

 

HUVECs co-incubated with FA at 0.1, 1, 10 
µM and D1.1 cells (1 x 10

6
 cells/well) for 24 

hours.  All data expressed as mean 
percentage (± SD, n=3) of oxLDL-induced 
controls. Absolute IL-6 protein value in 
unstimulated HUVECs - 30.3 pg/mL, 
standard range 9.375 – 600 pg/mL. 
***p<0.001 (ANOVA with Tukey post-hoc) 
relative to CD40L-stimulated control.  FA, 
ferulic acid. 
 

Figure 5.10  Effect of C3G and bioactive phenolic metabolites on CD40L-induced IL-6 mRNA 
expression. 

 

 

HUVECs co-incubated with C3G and phenolic metabolites at 10 µM or CD40L controls for 24 hours. All graphical 
data expressed as mean fold change (± SD, n=3) of un-stimulated (basal) IL-6 mRNA levels. *p<0.05 (ANOVA 
with Tukey post-hoc) relative to CD40L-stimulated control. C3G, cyanidin-3-glucoside; PCA, protocatechuic acid; 
VA, vanillic acid; IVA, isovanillic acid; PCA-3-Gluc, PCA-3-glucuronide; PCA-4-Sulf, PCA-4-sulfate; PCA-3-Sulf, 
PCA-3-sulfate; IVA-3-Sulf, IVA-3-sulfate. 
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5.4 Discussion 

Anthocyanin consumption is inversely associated with CVD risk (Cassidy, Mukamal et 

al. 2013), and most previous animal and in vitro studies have examined the activity of parent 

(un-metabolized) anthocyanins in models of inflammation, where they have been reported 

to have anti-inflammatory activity (Karlsen, Retterstøl et al. 2007, Xia, Ling et al. 2007, 

Edirisinghe, Banaszewski et al. 2011, Kolehmainen, Mykkänen et al. 2012). In the present 

study 11 in vivo metabolites of C3G (Czank, Cassidy et al. 2013) were explored for their 

activity on oxLDL- and CD40L-induced IL-6 expression in HUVECs.As discussed previously 

(Chapter 3), anthocyanins have been shown to reduce the effect of oxLDL (Yi, Chen et al. 

2010) and CD40L signaling (Xia, Ling et al. 2007) in endothelial cells.  The major finding of the 

present study is that anthocyanin degradation and subsequent metabolism of the 

degradation product PCA does not reduce the bioactivity of the derived metabolites but 

perhaps increases it. 

 

Oxidised LDL is a potent chronic inflammatory activator and established risk factor 

for CVD (Holvoet, Mertens et al. 2001), and has also been shown to increase levels of IL-6 in 

vascular endothelial cells (Lee, Ou et al. 2010). However, very little is known of the effects of 

physiologically relevant anthocyanin metabolites on oxLDL-mediated inflammation. Oxidised 

LDL is known to be pro-apoptotic at high concentrations (such as 100 µg/mL) in vascular 

endothelial cells (Galle, Schneider et al. 1999), thus the present study has utilized 

considerably lower concentrations (5 µg/mL) than previous in vitro investigations (Wahyudi 

and Sargowo 2007, Lee, Ou et al. 2010) in an attempt to create a more physiologically 

relevant model of vascular dysfunction. The levels of oxLDL utilized in the present 

investigation are comparable to those identified in the blood of patients with coronary 

artery disease (Holvoet, Mertens et al. 2001). Moreover, the present study is the first to 

investigate the effects of C3G metabolites on oxLDL-induced IL-6 production in vitro, and our 

findings suggests that anti-inflammatory effects of anthocyanins are not limited to the 

parent compounds themselves; as their lower molecular weight phenolic metabolites also 

displayed significant bioactivity, as observed by reductions in oxLDL-induced IL-6 protein 

production by as much as 99% relative to control cells (Figure 5.3).  This suggests 

anthocyanin degradation and conjugation of phenolic metabolites does not reduce biological 

activity, and may in fact result in greater efficacy of the metabolites relative to the parent 

structure. 
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As discussed previously (Chapter 3), the activation of CD40 via its ligand, CD40L, is 

also associated with promotion of chronic inflammation and the expression of pro-

inflammatory mediators, including IL-6 (Xia, Ling et al. 2007) and therefore plays a pivotal 

role in the development of CVD. Thus it is crucial to investigate the effect of C3G metabolites 

on CD40L-mediated inflammation. The current study again revealed increased bioactivity of 

lower molecular weight phenolic metabolites relative to the parent anthocyanin, as 

demonstrated by the reductions in CD40L-induced IL-6 protein production, by as much as 

95% (Figure 5.8A). The effects of C3G on CD40L-induced IL-6 expression have previously 

been reported by Xia et al. (Xia, Ling et al. 2007), where they observed a significant reduction 

in CD40L-induced IL-6 protein production following incubation of endothelial cells with C3G. 

The present findings are in accordance with this previous work and provide additional 

evidence for the activity of C3G.  

 

Previous structure-function studies have indicated that there is a positive correlation 

between the number of hydroxyl groups present on the B-ring of flavonoids and their anti-

inflammatory (Theoharides, Alexandrakis et al. 2001) and radical scavenging activity (Yi, 

Chen et al. 2010), and their ability to reduce oxLDL-mediated cell apoptosis (Chang, Huang et 

al. 2006). Moreover, compounds containing an ortho-dihydroxy (catechol) group on the B-

ring have been previously been shown to reduce the production of inflammatory mediators 

including IL-6 and cyclo-oxygenase (COX)-2 (Theoharides, Alexandrakis et al. 2001, Hou, 

Yanagita et al. 2005). The present study investigated groups of metabolites which have 

either intact or conjugated/modified (methylated, glucuronidated and sulfated) catechol 

moieties, allowing for examination of structure-function relationships. In oxLDL-stimulated 

HUVECs, IL-6 protein production was significantly decreased by 9 of 12 compounds tested 

(Figure 5.1 to Figure 5.4). Amongst these, one of the degradation products of C3G, PCA, 

reduced oxLDL-induced IL-6 production significantly, whereas C3G and PGA had no effect 

(Figure 5.1B); suggesting that the degradation of C3G to PCA may increase the bioactivity of 

the anthocyanin derivative. However, as both C3G and PCA have a catechol moiety, this 

group is unlikely to be the only structural requirement for biological activity under the 

culture conditions used in the present study. All PCA conjugates tested, except IVA, reduced 

oxLDL-induced IL-6 production significantly (32-99% reduction, Figure 5.2 to Figure 5.4) 

regardless of conjugation position; suggesting further metabolism does not result in 

decreased bioactivity. Sulfate conjugation at either hydroxyl (3ʹ or 4ʹ) reduced oxLDL-induced 

IL-6 production to the greatest extent (by as much as 99% of control levels), compared to 
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other conjugation reactions (methylation or glucuronidation), suggesting sulfation of PCA 

has the greatest impact on bioactivity in the present model. PCA-3-glucuronide and PCA-3-

sulfate elicited similar biological activities as their respective counterparts, suggesting there 

was no hierarchical activity for 3ʹ vs. 4ʹ conjugation of the catechol moiety of PCA with 

sulfate and glucuronic acid. However, this was not the case for methylation, as methylation 

at the 3ʹ position (VA) resulted in increased bioactivity while the 4ʹ-methyl conjugate (IVA) 

was inactive. The bioactivity of VA (the 3ʹ-methyl derivative of PCA) has previously been 

reported in in vitro models by Kim et al, 2011 (Kim, Kim et al. 2011), where VA reduced IL-6 

production in lipopolysaccharide (LPS)-induced mouse peritoneal macrophages. 

Furthermore, in the present study, VA reduced IL-6 production under both stimulation 

conditions (oxLDL and CD40L), suggesting significant anti-inflammatory activity. With regard 

to the other phase II conjugated derivatives of PCA tested (PCA-3-glucuronide, PCA-4-

glucuronide, PCA-3-sulfate, PCA-4-sulfate, VA-4-sulfate and IVA-3-sulfate) this is the first in 

vitro study to report their anti-inflammatory activity.  

 

In CD40L-stimulated HUVECs, eight of 12 compounds examined reduced IL-6 protein 

production at one or more concentrations (between 41-96% of CD40L control). Cyanidin-3-

glucoside and its B-ring degradation product, PCA, significantly reduced IL-6 production 

(Figure 5.6B), whilst PGA did not; again suggesting the catechol group imparts some anti-

inflammatory activity under CD40L-stimulated conditions. However, further metabolic 

conjugation of the catechol group does not appear to significantly reduce this activity. Of the 

conjugated metabolites of PCA tested, all compounds except PCA-4-glucuronide, VA-4-

sulfate and FA, reduced CD40L-induced IL-6 production, with a maximum reduction 

observed for PCA-4-sulfate (95.8% reduction relative to CD40L control), again indicating 

sulfate conjugation has the greatest impact on bioactivity. The structure-activity relationship 

of PCA conjugation relative to inhibition of CD40L-induced IL-6 production is less apparent 

than for oxLDL-stimulated conditions, as PCA-3-glucuronide, PCA-3-sulfate, PCA-4-sulfate 

and IVA-3-sulfate all significantly reduced CD40L-stimulated IL-6 protein production (Figure 

5.7andFigure 5.8). 

 

It must be noted that some of the metabolites elicited differential effects on IL-6 

production according to the stimulus applied to endothelial cells. For example, IVA reduced 

IL-6 protein production significantly in CD40L-stimulated HUVECs (by 56-73% of CD40L 

control, Figure 5.7A) but had no effect on oxLDL-challenged HUVECs (Figure 5.2A). Similarly, 
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FA significantly reduced oxLDL-induced IL-6 production (by 32-42% of oxLDL control, Figure 

5.4) but did not alter CD40L-stimulated IL-6 production (Figure 5.9). Considering the above, 

the anti-inflammatory activity of these metabolites appears to differ depending on the 

inflammatory stimulus present, suggesting that these compounds may act by targeting 

unique signalling pathways (i.e. unique to either CD40L or oxLDL signalling); potentially by 

acting on tumour necrosis factor alpha receptor associated factor-2 (TRAF-2) (Xia, Ling et al. 

2007) during CD40L signalling, and LOX-1 (oxLDL receptor) during oxLDL 

signalling(Morawietz 2007). Further research is necessary to establish the direct pathways 

affected. 

 

In most cases, metabolites which reduced protein levels of IL-6 also reduced IL-6 

mRNA levels. In oxLDL-stimulated HUVECs, all bioactive compounds, except FA, reduced IL-6 

mRNA levels by between 55-83% compared to the oxLDL control. Similarly, in CD40L-

stimulated HUVECs, all compounds, except IVA, reduced IL-6 mRNA levels (between 85-95% 

of the CD40L control), indicating that the effect of these metabolites on CD40L-induced IL-6 

mRNA levels may play a key role in reducing IL-6 protein production. Whilst this evidence 

may explain the association between a significant alteration in gene expression and protein 

levels, several instances were noted where a reduction in protein levels (Figure 5.4 and 

Figure 5.7A) was not correlated with a reduction in mRNA levels (Figure 5.5 and Figure 5.10). 

Such divergence may be the result of post-translational modification of IL-6, as it is subject 

to phosphorylation and glycosylation (Santhanam, Ghrayeb et al. 1989, Van Snick 1990, May 

and Sehgal 1992). 

 

A possible mechanism by which metabolites may alter IL-6 mRNA levels is by 

modulating the activation of NF-κB, which affects IL-6 production (Xia, Ling et al. 2007, 

Terasaka, Miyazaki et al. 2010).  Anthocyanin-enriched extracts have been demonstrated to 

inhibit the activation of NF-κB in in vitro studies using blueberries (Xie, Kang et al. 2011) and 

black rice extract (Min, Ryu et al. 2010).  Furthermore, PCA, VA, and FA have been 

demonstrated to inhibit NF-κB activation in various in vitro models (Ma, Hong et al. 2010, 

Wang, Wei et al. 2010, Kim, Kim et al. 2011). Cyanidin-3-glucoside has also been reported to 

attenuate NF-κB activity through impairing the translocation of TRAF-2 to lipid rafts (Xia, Ling 

et al. 2007).  The present study examined the effect of anthocyanin metabolites at three 

concentrations (0.1, 1 and 10 µM), and a non-linear dose responses were observed; which 

has previously been reported for other flavonoids such as quercetin and genistein, and may 
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have important biological implications (Kato, Horie et al. 2008, Chirumbolo, Marzotto et al. 

2010).  

 

While the present study provides novel insight into the anti-inflammatory activity of 

recently identified anthocyanin metabolites, there are certain limitations of this 

experimental approach. First, the measurement of IL-6 protein production under stimulated 

conditions was carried out at a single time point (after 24 hours stimulation), and the effects 

may differ following shorter periods of incubation. Further time course studies are required 

to establish peak effects. The present study also utilized a co-incubation model of activity, 

and effects of anthocyanin metabolites may differ according to their presence pre- or post-

stimulation (CD40L or oxLDL). In addition, even though HUVECs are a well-established model 

for endothelial cell research (Baudin, Bruneel et al. 2007), these results should be confirmed 

in a different cell type such as human coronary artery endothelial cells. Furthermore, the 

present study used D1.1 cells as a source of CD40L and the results should be confirmed using 

recombinant CD40L (soluble CD40L). This aside, the present study is a preliminary screen for 

the biological activity of anthocyanin metabolites, and provides future directions for 

anthocyanin research.  

 

It is apparent from the present study that C3G metabolites are bioactive at 

physiologically relevant concentrations, and are able to alter the production of IL-6 protein. 

Moreover, there is a relationship between anti-inflammatory activities of these metabolites 

and their structures.Further research is required to establish not only the underlying 

mechanisms involved, but also the physiological relevance of these findings in humans. The 

future studies to explore underlying mechanism may include effects of bioactive compounds 

on post-translation modification of IL-6, modulation of oxLDL/LOX-1 interaction in HUVECs, 

CD40/TRAF-2 interaction in HUVECs and on transcription factors such as NF-κB.  In order to 

establish human relevance, the bioactive compounds may be explore in atherosclerotic mice 

model as described before by Wang et al (Wang, Wei et al. 2010).The current study provides 

the first evidence that anthocyanin metabolites possess anti-inflammatory effects, which are 

likely to contribute to the reduced risk of CVD associated with the chronic consumption of 

anthocyanins, as reported by epidemiological studies (Mink, Scrafford et al. 2007, Cassidy, 

O'Reilly et al. 2010, Cassidy, Mukamal et al. 2013). 
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Chapter 6. Effects of phenolic metabolites 
of anthocyanins on activation of NF-κB 

6.1 Introduction 

Chronic consumption of anthocyanins has been associated with reduced risk of 

cardiovascular disease (CVD) (Mink, Scrafford et al. 2007, Wallace 2011, McCullough, 

Peterson et al. 2012), and potential cardioprotective effects of anthocyanins are also 

supported by data from randomised controlled trials (Karlsen, Paur et al. 2010, Zhu, Xia et al. 

2011), animal studies (Elks, Reed et al. 2011) and in vitro investigations (Lazze, Pizzala et al. 

2006, Xia, Ling et al. 2007, Xie, Kang et al. 2011).  These effects of anthocyanins may be 

attributable to their activity as anti-inflammatory agents, as described previously (Chapters 3 

and 4), where cyanidin-3-glucoside (C3G) and its lower molecular weight degradants and 

metabolites demonstrated anti-inflammatory activity in an endothelial cell model.  

Moreover, the majority of the phenolic metabolites tested significantly attenuated 

expression of vascular cell adhesion molecule-1 (VCAM-1) and interleukin-6 (IL-6) in 

stimulated human umbilical vein endothelial cells (HUVEC).  However, the mechanisms of 

action underlying the observed activity of phenolic metabolites remain largely unknown.  

Since VCAM-1 and IL-6 expression are up-regulated through the activity of the transcription 

factor NF-κB, and C3G has been shown to attenuate activation of NF-κB  in vitro (Karlsen, 

Retterstøl et al. 2007, Xia, Ling et al. 2007, Karlsen, Paur et al. 2010, Xie, Kang et al. 2011), 

the present study explored NF-κB activation as a potential mechanism by which C3G and its 

phenolic metabolites might exert anti-inflammatory activity.  Amongst the compounds 

previously screened for such activity (Chapters 3 and 4), protocatechuic acid (PCA) and 

vanillic acid (VA) (Figure 6.1) exhibited significant bioactivity across multiple assays and were 

therefore selected for the current investigation.  Both PCA and VA have been previously 

shown to reduce NF-κB activation by blocking the translocation of the p65 subunit to the 

nucleus  in ex vivo mouse models (Kim, Kim et al. 2010, Wang, Wei et al. 2010, Kim, Kim et 

al. 2011, Wei, Chu et al. 2013) which provides further support to the hypothesis that 

phenolic metabolites may modulate NF-κB signalling.  NF-κB p65 is a key subunit of NF-κB 

protein that, after translocation to the nucleus, binds to κB enhancer and stimulates gene 

expression through the transcriptional activation domain of NF-κB p65 (Huang, Yang et al. 
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2010). However, the effect of PCA and VA at physiologically relevant concentrations upon 

NF-κB activation is largely unknown, and the present study aimed to address this deficiency 

in current scientific knowledge.  In order to evaluate NF-κB activation, the phosphorylation 

of the p65 subunit was examined using a flow cytometry-based methodology. 

 

Figure 6.1  Chemical structures of PCA and VA 

 

 

 

Protocatechuic acid (PCA)  Vanillic Acid (VA) 

6.2 Methods and materials 

Standards and Materials.  Anti-human phospho-NF kappa B p65 (S529) eFluor® 660 

and Mouse IgG2a, K Isotype Control eFluor® 660 (Alexa Fluor® 647 replacement) were 

purchased from eBioscience (Hatfield, UK)  IL-1β was generous gift from Dr Rosemary 

Davidson, Senior Post Doctoral Research Associate, School of Biological Sciences (UEA, 

Norwich)  

 

Cell fixation, permeabilisation and staining. Cells were fixed and permeabilised using a 

protocol obtained from Beckman Coulter (High Wycombe, UK) for fixation and 

permeabilisation (protocol for Alexa Fluor® 488 conjugate, catalogue no: A88886). Briefly, 

once trypsinised and transferred into 1.5 mL eppendolf tubes, HUVECs were centrifuged at 

400 x g for 10 minutes at 4°C then re-suspended in ice-cold 4% methanol-free formaldehyde 

(500 µL/tube) and incubated for 10 minutes at 37°C. Cells were then permeabilised using ice-

cold 90% methanol (500 µL/tube) and stored at -20°C until used for staining.  Once thawed, 

HUVECs were washed with incubation buffer, 0.5 g of BSA per 100 mL of 1%phosphate 

buffered saline (PBS) (1.5 mL/tube, with centrifugation at 600 x g at 4°C for 10 minutes;, 

repeated three times) followed by blocking using incubation buffer (50 µL/tube) for 10 

minutes before staining with anti-human phospho-NF kappa B p65 (S529) eFluor® 660 (0.012 

µg/tube) and isotype control antibody mouse IgG2a, K Isotype Control eFluor® 660 (Alexa 

Fluor® 647 Replacement, 0.012 µg/tube) for 1 hour at room temperature.  Post-staining, 

excess antibodies were removed by washing as described above, and HUVECs were re-

OH

OH

O

OH

CH3O

OH

O

OH



  Page 
87 

 
  

suspended in 150 µL of 1% PBS followed by analysis using flow cytometery for phospho-NF-

κB p65 intensity measurement using BD Accuri™ C6 instrument (BD Biosciences, Oxford, UK) 

at 660 nm (excitation at 640 nm).  The sample was injected [at 62 µL/min (fast)] to collect a 

maximum of 5000 events in plot 1 [P1 (X-axis, forward scattered area; Y-axis side scattered 

area)].  P1 was structured to exclude cells debris, BSA particulates and cell doublets.  Data 

collected in P1 was then analysed using BD Accuri™ C6 software (version 1.0.264.21) to 

collect median FL4 (excitation 640 nm, emission 675/25) data of eFLuor 660A intensity (Y-

axis) against forward scatter (X-axis). 

 

NF-κB p65 phosphorylation Method Optimisation. 

Stimulation time optimisation. HUVECs and D1.1 cells were cultured as described in 

chapter 2. Oxidised LDL (oxLDL, 5 µg/mL), cluster of differentiation 40 ligand (CD40L) 

expressing D1.1 cells (1 x 106 cells/well) and interleukin-1 beta (IL-1β) (5 ng/mL) were utilised 

to induce phosphorylation of NF-κB p65 in HUVECs. Sub-confluent HUVECs (90 – 95%) were 

stimulated with oxLDL, D1.1 or IL-1β for 15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours 

and 4 hours.  Supernatants were discarded following cell stimulation, and cells were washed 

with warm 1% PBS (to remove D1.1 cells) before trypsinisation and collection in 1.5 mL tubes 

for fixation, permeabilisation and staining as described above.   

  

Preliminary data from optimisation of stimulation time for oxLDL and CD40L showed no 

significant increase in NF-κB p65 phosphorylation at any time point tested (p>0.05, n=1, 

Figure 6.2A and B); while IL-1β significantly increased phosphorylation of NF-κB p65 after 15 

minutes stimulation (p<0.001, n=1, Figure 6.2C), and hence this time point was selected as 

optimal to stimulate phosphorylation of NF-κB p65 in HUVEC using IL-1β in future 

experiments. 

 .  
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Figure 6.2  Time course for the effect of oxLDL (A), CD40L (B) and IL-1β (C) stimulation on phosphorylation of NF-κB p65 

 

  

 

Median fluorescent intensity (FL4-A) data measured by flow cytometry at 660nm for oxLDL (5 µg/mL), CD40L (1 x 10
6
 D1.1 cells/treatment) and IL-1β (5 ng/mL) stimulated 

HUVEC at 15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours and 4 hours post stimulation (n=1). OxLDL, oxidised low density lipoprotein; CD40L, cluster of differentiation 40 
ligand, IL-1β, interleukin-1 beta. 
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Final methodology.  HUVECs were incubated with or without treatment compounds 

(PCA and VA) at 0.1, 1 and 10µM for 24 hours.  Treatment media was then removed and cells 

were washed with warm 1% PBS, before stimulation with IL-1β (5 ng/mL) for 15 minutes.  

Post-stimulation, supernatants were discarded and cells were harvested with trypsin prior to 

fixation, permeabilisation and staining as described above.  For gating strategy refer to 

applendix 7. 

6.3 Results 

Stimulation of HUVECs by IL-1β (5 ng/mL) resulted in a ~2 fold increase in phospho-

NF-κB p65 compared to untreated HUVECs (p<0.001, Figure 6.3A).  However, there was no 

difference observed in phospho-NF-κB p65 in HUVECs treated with 0.05% DMSO (vehicle 

control, data not shown).  The IL-1β-stimulated phosphorylation of NF-κB p65 was 

attenuated by PCA and VA, between 27.4±2.8% and 40.5±4.5% (respectively) following pre-

incubation at one or more concentrations tested, relative to IL-1β control.  The greatest 

reduction in phosphorylation of NF-κB p65 was induced by VA, where 40.5±4.5% of IL-1β-

induced NF-κB p65 phosphorylation was inhibited (Figure 6.3A).   The effect of PCA and VA 

on phospho-NF-κB p65 was also evident  in intensity plots (Figure 6.3B) where a clear shift in 

eFluor intensity towards that recorded for untreated HUVECs suggested a decreasein NF-κB 

p65  phosphorylation following incubation with  PCA and VA prior to IL-1β stimulation 

(Figure 6.3B). 

6.4 Discussion 

 The anti-inflammatory activity of lower molecular weight degradants and 

metabolites of C3G has been described previously (Chapters 3 and 4), where treatment 

compounds significantly decreased endothelial mRNA and protein levels of  VCAM-1 and IL-6 

levels under stimulated conditions; however, the mechanisms of action underlying these 

observed effects are  mostly unknown.   
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Figure 6.3  Modulation of IL-1β-induced phosphorylation of NF-κB p65 in HUVECs by PCA 
and VA at 0.1 - 10µM, expressed as % of median intensity for IL1βtreated 
HUVECs (A) and as eFlour (660A) intensity plots for untreated (black), IL-1β 
(red), PCA (blue) and VA (green) HUVECs (B) 

A) 

 

B)  

 

 

Fluorescence intensity data for HUVECs pre-incubated with or without treatment compounds (PCA and VA) at 
0.1, 1 and 10 µM for 24 hours followed by IL-1β-stimulation for 15 minutes.  A) All data expressed as mean 
percentage (± SD, n=3) of median florescent intensity (measured by flow cytometer at 660 nm) relative to IL-
1β-induced controls. B) Median florescent intensity plot comparison of untreated, IL-1β stimulation and pre-
incubation with treatment compounds. *p<0.001 (ANOVA with Tukey post-hoc) relative to IL-1β-induced 
controls.  IL-1β, interleukin-1 beta; PCA, protocatechuic acid; VA, vanillic acid. 
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Since IL-6 and VCAM-1 are both regulated by the transcription factor NF-κB (Zheng, Qian et 

al. 2005, Schuett, Luchtefeld et al. 2009, Karlsen, Paur et al. 2010), the present study aimed 

to explore modulation of stimulated NF-κB activation by PCA and VA as a mechanism 

potentially underlying their observed anti-inflammatory activity against oxLDL- and CD40L-

stimulated IL-6 and VCAM-1 expression in HUVECs (Chapters 3 and 4).  The phosphorylation 

of NF-κB p65 was examined to investigate modulation of NF-κB activation (Nelson, Paraoan 

et al. 2002, Huang, Yang et al. 2010).  Of the degradants and metabolites of C3G 

investigated, PCA and VA reduced IL-6 and VCAM-1 expression under both stimulation 

conditions, and therefore were selected for the present study.  Whilst oxLDL and CD40L 

were used to stimulate phosphorylation of NF-κB p65, no induction was observed for both 

stimulus and therefore IL-1β, a known inducer of NF-κB p65 phosphorylation (Nelson, 

Paraoan et al. 2002) was used to stimulate NF-κB in the cultured HUVECs. 

  

The main finding of the current investigation was that both PCA and VA attenuated 

the phosphorylation of NF-κB p65, and were bioactive at concentration as low as 0.1µM, 

reflecting  their anti-inflammatory activity observed at the protein level (for IL-6 and VCAM-

1, Chapters 3 and 4). The maximum reduction in phosphorylation of NF-κB p65 was observed 

for VA at 0.1µM, where phospho-NF-κB p65 was reduced by 40.5±4.5% relative to IL-1β 

control (Figure 6.3A).  Although comparable reports are scarce, activity of PCA and VA 

against NF-κB activation has been described previously, and is accordance with the findings 

of the present study.  For example, Wang et al(2010) reported inhibition by PCA of TNF-α 

induced translocation of the p65 subunit of NF-κB in mice aortic endothelial cells (Wang, Wei 

et al. 2010).  In addition, Wei et al (2013) also observed decreased nuclear translocation of 

p65 in ovalbumin challenged mouse lung tissues co-incubated with PCA (Wei, Chu et al. 

2013).  However, this activity was observed at supra-physiological concentration of PCA (≥20 

µM), whereas in the present study the phosphorylation of NF-κB p65 was inhibited by PCA at 

physiologically relevant concentration as low as 0.1 µM.  Similarly, VA has also been shown 

to reduce activation of NF-κB p65 in colon tissue from dextran sulfate sodium-challenged 

mice (Kim, Kim et al. 2010) and LPS-challenged mouse peritoneal macrophages (Kim, Kim et 

al. 2011). Again, supra-physiological concentrations of VA (>200 mg/kg) were utilised in 

these studies, whereas the present study investigated physiologically relevant 

concentrations (Czank, Cassidy et al. 2013). 

  



  Page 
92 

 
  

Although the present study provides novel insights into potential mechanisms of PCA 

and VA anti-inflammatory activity at low concentrations, there are several limitations to this 

investigation.  For example, IL-1β is a potent inducer of phosphorylation of NF-κB p65 

(Albrecht, Yang et al. 2007), however only an ~2 fold increase in phosphorylation was 

observed in the current investigation; thus the use of immunoblotting methodology to 

quantify phospho-p65 protein levels could prove more sensitive.  Immunoblotting (Albrecht, 

Yang et al. 2007) or NF-κB reporter and NF-κB DNA binding activity assays (Xia, Ling et al. 

2007)may also be sufficiently sensitive  to observe activation of NF-κB following  stimulation 

by oxLDL and CD40L, which both are potent activators of NF-κB (Chen, Huang et al. 2006, 

Xia, Ling et al. 2007, Mazière and Mazière 2009).  A related limitation of the current assay 

was the use of IL-1β as a stimulus, as opposed to a more atherogenic stimuli such as oxLDL 

or CD40L, as both oxLDL (Huang, Lin et al. 2013) and CD40L (Xia, Ling et al. 2007) have 

previously been shown to activate  NF-κB, as confirmed by NF-κB reporter assay and NF-κB 

DNA binding activity and therefore; as mentioned earlier, employing NF-κB reporter and 

DNA binding activity assays may address this issue and allow the use of oxLDL and CD40L as 

stimulus.  Finally, the methodology employed in the present investigation does not provide 

insight into the translocation of phospho-NF-κB p65 to the nucleus, thus immunoblotting of 

nuclear fractions should be used in conjunction with flow cytometry analysis to elucidate 

molecular mechanisms more fully. 

  

In conclusion, the present study demonstrates that PCA and VA modulated 

phosphorylation of NF-κB p65 in IL-1β-stimulated HUVECs, suggesting a potential mechanism 

by which these phenolic acid metabolites could mediate the observed vascular activity of 

anthocyanins previously reported.  Considering the central role of NF-κB activation in chronic 

inflammation (Kaĭdashev 2012), including pathogenesis of endothelial dysfunction and the 

production of pro-inflammatory mediators, the findings from the present study indicate that 

anthocyanins may exert their beneficial effect on the vasculature indirectly by attenuating 

the activation of NF-κB and therefore improving vascular function, as the role of anthocyanin 

(namely, malvidin-3-glucoside) in attenuation of peroxinitrite-induced NF-κB activation has 

previously been reported to improve vascular function (Paixao, Dinis et al. 2012). In addition, 

these effects were seen at physiologically relevant concentrations, indicating that 

anthocyanin metabolites possess differential biological activities than those reported for 

their parent structures as often studied at supraphysiological concentrations in vitro. The 

bioactivity of these and other anthocyanin metabolites requires confirmation in future 
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animal and human interventions.  The activity of PCA and VA on NF-κB should be 

investigated using reporter assays to confirm the translocation of p65 subunit to the nucleus 

and also on other transcription factors such as JNK under stimulated conditions. Finally, it is 

also important to investigate synergic/additive effect of PCA and VA on NF-κB and JNK as 

these metabolites are likely to be present at the same time in vivo. 
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Chapter 7. Overview and future 
perspectives 

7.1 General Discussion 

High dietary consumption of anthocyanins has been associated with reduced risk of 

cardiovascular disease (CVD) and improved vascular function (Jennings, Welch et al. 2012, 

McCullough, Peterson et al. 2012, Cassidy, Mukamal et al. 2013).  The beneficial effects of 

anthocyanins have also been supported by randomised controlled trials, for example, in a 

trial conducted by Zhu et al(Zhu, Xia et al. 2011, Zhu, Ling et al.), hypercholesterolaemic 

volunteers ingested anthocyanins (320 mg/day) daily in short term (4 hrs) and long term (24 

weeks) interventions, which resulted in improved flow-mediated dilatation and lipid profile 

in peripheral blood serum.  In addition, randomised controlled trials investigating anti-

inflammatory activities of bilberry anthocyanins reported reduced inflammatory markers 

[interleukin-6 (IL-6)] in subjects with metabolic syndrome and at elevated risk of CVD 

(Karlsen, Paur et al. 2010, Kolehmainen, Mykkänen et al. 2012).  The bioactivity of 

anthocyanins has also been studied extensively in vitro to understand underlying 

mechanisms of action, and anthocyanins have been shown to up-regulate endothelial nitric 

oxide synthase (eNOS) (Xu, Ikeda et al. 2004a, Xu, Ikeda et al. 2004b) and attenuate 

expression of key inflammatory markers such as IL-6 and vascular cell adhesion molecule-1 

(VCAM-1) in HUVECs(Xia, Ling et al. 2007, Xia, Ling et al. 2009).  Though anthocyanins have 

been reported to possess bioactivity, their poor bioavailability and instability at physiological 

pH suggest that their reported bioactivity may come, at least in part, from their degradants 

and subsequent metabolites (Del Rio, Borges et al. 2010, Williamson and Clifford 2010). In 

fact, recently published human bioavailability studies report that degradants and 

metabolites of anthocyanins are present in much greater concentrations than their parent 

structures in the circulation (Azzini, Vitaglione et al. 2010, Czank, Cassidy et al. 2013).  

However, the bioactivity of these phenolic metabolites of anthocyanins remains relatively 

unknown.  The current thesis sought to address this discrepancy in scientific literature by 

investigating recently identified metabolites of cyanidin-3-glucoside (C3G) for their in vitro 

vascular and anti-inflammatory activity.  Moreover, the activity of metabolites was 
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investigated at physiologically relevant concentrations, namely 0.1, 1 and10 µM(Czank, 

Cassidy et al. 2013).   

 

A total of 12 compounds were screened for bioactivity (Figure 7.1), specifically the 

parent anthocyanin – C3G - and 11 of its metabolites.  The selection of metabolites was 

targeted to allow basic structure activity relationship examination.  For example, both 

degradants of C3G, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), were chosen 

to examine the effect of degradation on bioactivity.  The products of methyl, glucuronide 

and sulfatate conjugation of PCA were also included to investigate the effect of B-ring 

catechol modification via phase II metabolism on bioactivity.  Finally, ferulic acid (FA) was 

one of the common metabolites identified in 13C-C3G bioavailability study (Czank, Cassidy et 

al. 2013) and therefore included in the present investigation. 

 

Nitric oxide (NO) is a key mediator in maintaining endothelial homeostasis and its 

loss leads to endothelial dysfunction (Bian, Doursout et al. 2008).  The loss of NO could result 

from down regulation of eNOS, or over production of superoxide which reacts with NO to 

produce the extremely reactive species peroxynitrite.  Therefore, the vascular activity of C3G 

and selected metabolites was examined by investigating effects on basal eNOS up-regulation 

[Figure 7.1(1)].  

 

In these experiments three of the 12 compounds significantly up-regulated basal 

levels of eNOS [Chapter 2, p<0.05, C3G, PGA and vanillic acid (VA)], three compounds 

significantly reduced eNOS [p<0.05, PCA, PCA-3-sulfate (PCA-3-sulf) and PCA-4-sulfate (PCA-

4-sulf), Chapter 2], while 7 had no activity.  These experiments showed that degradation and 

subsequent metabolism of C3G has variable effects on eNOS regulation as some metabolites 

retained the activity of the parent structure, while other showed reduced activity. 

 



  Page 
96 

 
  

Figure 7.1 Experimental scheme for assessment of vascular and anti-inflammatory activity in vitro 
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In addition, there was no effect observed for any of the compounds screened on 

basal endothelin–1 (ET-1) expression in endothelial cells [Figure 7.1(1)], though perhaps a 

cell model of stimulated ET-1 expression may provide a better insight into the vasodilatory 

bioactivity of the selected metabolites.  Moreover, no effect was observed for any of the 

compounds tested on stimulated endothelial superoxide production [Figure 7.1(1)], owing to 

the lack of effect of the stimulus (angiotensin II) in the cell model utilised (HUVEC) as 

measured by reduction of cytochrome c (measured by spectrophotometry) and 1-hydroxy-3-

carboxy- 2,2,5,5-tetramethylpyrrolidine (CPH) probe [measured by electro paramagnetic 

resonance (EPR)].  Hence, a more potent stimulus such as oxidised low density lipoprotein 

(oxLDL) (Heinloth, Heermeier et al. 2000) may be required to stimulate superoxide 

production in HUVECs, or a different cell type such as human coronary arterial endothelial 

cells (HCAECs) or monocytes. In addition to the use of a more potent stimulus to stimulate 

superoxide production, a shear stress effect (laminar vs oscillatory) might also be employed 

to modulate endothelial superoxide production and eNOS expression (Boo and Jo 2003, 

Hwang, Ing et al. 2003, Hsiai, Hwang et al. 2007). 

 

Key inflammatory mediators such as VCAM-1 and IL-6 propagate the formation of 

atherosclerotic plaques which eventually result in significant clinical events (Cybulsky, Iiyama 

et al. 2001, Schuett, Luchtefeld et al. 2009). Therefore, all 12 compounds were also screened 

for their anti-inflammatory activity against VCAM-1 and IL-6 expression [Figure 7.1(2)] in 

response to two physiologically relevant stimuli, namely, oxLDL and cluster of differentiation 

40 – ligand (CD40L) (Ishigaki, Oka et al. 2009, Pamukcu, Lip et al. 2011). In this case the 

majority of the compounds tested reduced expression of VCAM-1 (Chapter 3) and IL-6 

(Chapter 4) under both stimulation conditions.  Of the 12 compounds tested, seven reduced 

CD40L-stimulated VCAM-1 production (Chapter 3), eight reduced CD40L-stimulated IL-6 

expression (Chapter 4), and nine compounds reduced oxLDL-stimulated IL-6 production in 

HUVECs (Chapter 4).  Alternatively, three compounds, increased CD40L-induced VCAM-1 

protein production in HUVECs, namely PCA-4-sulf, PCA-3-sulf and VA-4-sulf. In the present 

study soluble VCAM-1 was quantified, however proteolytic cleavage is required to produce 

the soluble form and an assay comparing levels of the soluble form of VCAM-1 and 

membrane bound VCAM-1 may provide more insight into the mechanistic activity of the 

phenolic metabolites.  The bioactive compounds in the current study showed greater effects 

onanti-inflammatory activity, as opposed to vascular activity, it is possible that anthocyanin 

metabolites elicit the majority of the perceived health effects of anthocyanin through anti-
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inflammatory activities.  Therefore, an understanding of the underlying mechanisms of 

action is crucial, and as such activation of a key inflammatory transcription factor, nuclear 

factor kappa-B (NF-κB), which up-regulates VCAM-1 and IL-6 expression, was investigated 

(Chapter 5).  As the aim was to investigate the underlying mechanisms of action for the most 

bioactive metabolites of C3G tested, PCA and VA were chosen as they attenuated both 

VCAM-1 and IL-6 expression under both stimulation conditions [Figure 7.1(3)].   

 

NF-κB activation was investigated by measuring phosphorylation of the p65 subunit of 

NF-κB (using flow cytometry), which results in translocation of NF-κB p65 to the nucleus and 

up-regulation of pro-inflammatory cytokines (Huang, Yang et al. 2010).  However, no 

increase in phosphorylation of NF-κB p65 was observed following oxLDL and CD40L 

stimulation of HUVECs. Therefore, to explore the activity of PCA and VA  on NF-κB p65 

phosphorylation,  HUVEC stimulation was performed using a more potent stimulus of p65 

physphorylation, namely, IL-1β (Nelson, Paraoan et al. 2002).  The results from this 

investigation indicated that both PCA and VA were capable of reducing the phosphorylation 

of NF-κB p65, and therefore, it can be postulated that this is one mechanism by which 

anthocyanin phenolic metabolites, exert their activity.  However, these observations should 

also be confirmed using methodologies such as an NF-κB reporter assay (luciferase assay) or 

an NF-κB DNA binding activity assay (Xia, Ling et al. 2007). 

7.2 Future perspectives 

 

 Elucidating the mechanisms of action underlying the in vitro activity of anthocyanins 

is key to understanding the reported health related benefits of anthocyanin consumption.  

One of the limitations of the present study is the use of HUVEC as an in vitro model. Whilst 

HUVEC represent a well characterised cell type for endothelial research, all bioactivity 

observed should be confirmed indifferent cell models of endothelial function in the context 

of atherosclerosis, such as HCAEC, which have better expression of key vascular proteins 

including NAD(P)H oxidase (NOX)-2, which is main source of superoxide in endothelial cells 

and over expression of NOX-2 results in endothelial dysfunction (Bonomini, Tengattini et al. 

2008). In addition, the effect of phenolic metabolites on eNOS expression and superoxide 

production in the endothelium should also be investigated under conditions of laminar and 

oscillatory stress, which modulates eNOS and NOX) expression (Boo and Jo 2003, Hwang, Ing 

et al. 2003, Hsiai, Hwang et al. 2007) and represents a more physiologically relevant model.  
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It is also important to investigate the effects of anthocyanin metabolites on stimulated 

endothelial superoxide production, as superoxide contributes significantly to endothelial 

dysfunction (Flammer and Luscher 2010). Therefore, the use of stimuli other than 

angiotensin II, such as oxLDL (Heinloth, Heermeier et al. 2000), in conjunction with HCAECs 

or co culture with neutrophils [which produce large amounts of superoxide (Segal 2006)], 

may be employed to address the issue of limited superoxide production observed in the 

present study. Furthermore, utilisation of the EPR probe CPH, is considered the ‘gold 

standard’ for quantifying superoxide levels (Dikalov, Kirilyuk et al. 2011) and should also be 

utilised in order to investigate the bioactivity of anthocyanins and their metabolites on NOX 

enzyme function and/or superoxide production.  The EPR probe CPH was utilised in the 

present study; however, as discussed earlier, due to lack of stimulation by angiotensin II no 

significant effect of selected compounds was observed and therefore, use of oxLDL with EPR 

probe CPH may be an ultimate method to provide insights to the vascular activity of phenolic 

metabolites. 

  

The major finding of the present study is that newly identified C3G metabolites 

possessanti-inflammatory activity in vitro under oxLDL- and CD40L-stimulated conditions, at 

physiologically relevant concentrations (i.e. 0.1 to 10 µM), however, future studies should 

explore the effect of the combination of all identified metabolites in equamolar 

concentrations on oxLDL- and CD40L-stimulated VCAM-1 and IL-6 in HUVECs to investigate 

synergic effects of metabolise.  Although preliminary investigations exploring underlying 

potential mechanism of action for reported anti-inflammatory activity suggest metabolites 

of C3G (namely PCA and VA) can modulate activation of NF-κB in HUVECs, other targets 

which may be affected by these metabolites and should be explored. One such example is 

the phosphorylation of mitogen activated protein kinases (MAPK) p38 and c-jun N-terminal 

kinase (JNK), as C3G has been shown to modulate these enzymes under CD40L-stimulated 

conditions in HUVECs (Xia, Ling et al. 2009).  In addition, cyclooxygenase-2 (COX-2), which is 

responsible for CD40L-induced IL-6 production in HUVECs (Dongari-Bagtzoglou, Thienel et al. 

2003), could be investigated as another potential mechanism for the modulation of IL-6 

production.  Furthermore, C3G has also been shown to diminish CD40L-CD40-induced 

inflammation by limiting tumour necrosis factor receptor associated factor – 2 (TRAF-2) 

translocation to lipid rafts via modulation of cholesterol distribution (Xia, Ling et al. 2007), 

hence the effect of bioactive metabolites on TRAF-2 translocation and cholesterol 

distribution should also be explored.  With regard to oxLDL-induced IL-6 expression, and 
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considering the magnitude of reduction in oxLDL-induced IL-6 production (up to 99% relative 

to control) elicited by nine of the 12 compounds tested, it can be postulated that the effects 

of anthocyanin metabolites on oxLDL signalling occur at the receptor level; and therefore the 

effect of bioactive metabolites on the interaction between oxLDL and its cell surface 

receptor, lectin-like receptor – 1 (LOX-1), which represents another target for future 

investigation (Mitra, Goyal et al. 2011)]. 

  

The findings from the present study show in vitro activity of newly identified 

metabolites of anthocyanin at physiological concentrations; however, it is vital to confirm 

their activity in animal disease models before any definitive conclusions are proposed.  For 

example, chronic consumption of PCA by diabetic mice (for 8 weeks) lowered plasma levels 

of glucose, IL-6 and tumour necrosis factor-alpha (TNF-α) (Lin, Huang et al. 2009) compared 

to a control group; whereas acute consumption of PCA (1 hour) prior to ovalbumin-

stimulation inhibited NF-κB activation in a mouse allergic asthma model (Wei, Chu et al. 

2013).  Though these animal disease models provide useful data, the activity of PCA and 

other bioactive metabolites should be tested in further disease models at more 

physiologically relevant concentrations; as the above studies used doses of up to 30 mg/kg 

per day PCA, whereas human consumption is approximately 500 mg/day per adult (Czank, 

Cassidy et al. 2013).  Based on the available data from animal models and considering the 

bioavailability of phenolic metabolites, human studies should be designed to investigate 

their bioactivity.  For example, Edirisinghe et al measured meal-induced postprandial 

inflammatory and insulin responses in overweight adult subjects given strawberry juice, and 

discovered significantly lower levels of IL-6 in the strawberry juice group compared to the 

control group (Edirisinghe, Banaszewski et al. 2011). Similarly, a human study feeding 

combinations of phenolic metabolites at physiologically relevant concentrations for short 

term (eg. Between 6-24 hours) and long term (eg. for 24 weeks) can be carried out to 

measure IL-6 production in meal-induced postprandial inflammation.  In addition, level of 

oxLDL and soluble VCAM-1 are considered as good biomarkers of CVD (Holvoet, Mertens et 

al. 2001, Videm and Albrigtsen 2008, Ishigaki, Oka et al. 2009) and therefore the effect of 

phenolic metabolites consumption on circulating oxLDL and soluble VCAM-1 in subjects at 

risk of CVD can be evaluated.  Moreover, in a long term human study, chronic consumption 

of recently identified metabolites by type-2 diabetes subjects on coronary artery calcium 

score (a non-invasive method to measure plaque build-up) may be an ultimate study to truly 

observe the effect of phenolic metabolites on plaque build-up and therefore on 
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pathogenesis of atherosclerosis in disease set-up.  Finally, as reported by Czank et al (2013) 

that multiple metabolites are present in circulation at the same time, an experimentwith all 

metabolites(combined in equimolar versusCmax concentrations)investigating their 

synergic/additive effect on vascular proteins, inflammatory markers and NF-κB should be 

investigated. 

 

In summary, the present thesis provides novel insights into the bioactivity of 

anthocyanins and potential mechanisms by which they may exert beneficial effects on the 

cardiovascular system.  The majority of reported in vitro studies focus on the activity of the 

parent/precursor unmetabolised anthocyanins, but considering their instability and the 

presence of  relatively high concentrations of degradation products and metabolites in the 

circulation of humans, it is important to understand the bioactivity of these metabolites and 

not only the parent anthocyanins.  The present study, to the best of the author’s knowledge, 

is the first study that has investigated newly identified metabolites of C3G and provides 

evidence that these metabolites may possess bioactivity and, at least in part, could 

contribute to the observed bioactivity of anthocyanins in humans. 
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Appendix 

1. Cell viability of HUVECs in presence of C3G and 11 of its metabolites (cytotoxicity data) 
 

Compound Concentration 
% of 

absorbance 

Mean±SD 

Vehicle 
Control  

0.05% DMSO 100.0±2.7 

Negative 
control 

1% PBS 2.6±7.2 

C3G 

0.05 µM 101.6±3.7 
1 µM 100.3±2.3 

10 µM 100.9±3.5 
100 µM 99.8±3.9 

PCA 

0.05 µM 100.6±5.6 
1 µM 97.2±2.0 

10 µM 100.0±4.8 
100 µM 96.2±4.8 
0.05 µM 102.2±3.1 

PGA 

1 µM 100.6±4.5 
10 µM 98.7±1.2 

100 µM 100.6±4.1 

VA 

0.05 µM 101.5±3.7 
1 µM 101.2±2.6 

10 µM 101.2±1.0 
100 µM 105.0±2.5 

IVA 

0.05 µM 102.8±2.9 
1 µM 104.1±2.4 

10 µM 102.2±0.5 
100 µM 100.7±0.9 

PCA-4-gluc 

0.05 µM 101.8±2.9 
1 µM 99.5±3.7 

10 µM 104.8±6.5 
100 µM 105.1±1.1 

PCA-3-gluc 

0.05 µM 100.4±5.3 
1 µM 103.7±4.2 

10 µM 97.4±0.7 
100 µM 99.1±2.4 

PCA-4-
sulfate 

0.05 µM 105.8±5.3 
1 µM 95.3±4.1 

10 µM 103.9±4.7 

100 µM 100.0±5.5 
PCA-3- 0.05 µM 101.7±1.7 

Compound Concentration 
% of 

absorbance 

Mean±SD 

sulfate 1 µM 98.8±3.2 
10 µM 101.5±2.4 

100 µM 100.1±0.8 

VA-4-Sulf 

0.05 µM 94.5±6.2 
1 µM 98.8±2.1 

10 µM 100.0±2.2 
100 µM 100.2±2.7 

IVA-3-Sulf 

0.05 µM 101.4±3.9 

1 µM 100.9±4.3 

10 µM 105.9±2.1 

100 µM 102.2±1.1 

FA 

0.05 µM 100.7±4.4 
1 µM 104.3±5.7 

10 µM 102.7±3.3 
100 µM 100.7±0.9 

 

HUVECs incubated with C3G or phenolic metabolites 
for 24 hours at 0.1, 1, 10 and 100 µM followed by 
incubation with WST reagent for 2 hrs. Viable cells 
convert WST reagent in to yellow dye which was 
measured at 440 nm. All data expressed as mean 
percentage (± SD, n=3) absorbance (440 nm) of 
vehicle control (0.05% DMSO treated HUVECs) 
*p≤0.05 (ANOVA with Tukey post-hoc) relative to 
vehicle control.  C3G, cyanidin-3-glucoside; PCA, 
protocatechuic acid, PGA, phloroglucinaldehyde; FA, 
ferulic acid; VA, vanillic acid; IVA, isovanillic acid; PCA-
4-Gluc, PCA-4-glucuronide; PCA-3-Gluc, PCA-3-
glucuronide; PCA-4-Sulf, PCA-4-sulfate; PCA-3-Sulf, 
PCA-3-sulfate; VA-4-Sulf, VA-4-sulfate; IVA-3-Sulf, 
IVA-3-sulfate
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2. Representative Standard Curve for eNOS ELISA 
 

 
 

ELISA plate contained recombinant eNOS standards (in duplicate) serial diluted in reagent diluent ranging 
from 4000pg/mL – 62.5pg/mL and reagent diluent (in duplicate) as blank 

 

3. Representative Standard Curve for ET-1 ELISA 
 

 
 

ELISA plate contained recombinant ET-1 standards (in duplicate) serial diluted in reagent diluent ranging 
from 250pg/mL – 0.33pg/mL and reagent diluent (in duplicate) as blank 
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4. Confirmation of LDL oxidation using agarose gel 
 

 

 

 

 

 

 

 

 

 

 
LDL was oxidised using Cu2SO4at least 30 hrs. Agarose gel was then ran to confirm the oxidation of LDL.The shift 
in oxLDL band below the native LDL confirms the oxidation of LDL.  The gel was imaged using Odyssey at 700 
nm, with a ratio of RoxLDL:RLDL of>1.1. 

 

5. Representative Standard Curves of VCAM-1 ELISA 

 

 
 

ELISA plate contained recombinant VCAM-1 standards (in duplicate) serial diluted in reagent diluent 
ranging from 1000 pg/mL – 15.625 pg/mL and reagent diluent (in duplicate) as blank 

 

LDL oxLDL 
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6. Representative Standard Curves of IL-6 ELISA 
 

 
 

ELISA plate contained recombinant IL-6 standards (in duplicate) serial diluted in reagent diluent ranging from 
600pg/mL – 9.375pg/mL and reagent diluent (in duplicate) as blank
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7. Gating Strategy for phospho-p65 NF-κB flow cytometry assay 
 

 
 

 


