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Abstract  

Legume plants have evolved the ability to form a mutualistic symbiosis with nitrogen-fixing 

bacteria known as rhizobia. Studies using mutant Medicago truncatula and Lotus 

japonicus have identified many genes that are necessary for this mutualism. Some of 

these genes have also been shown to be necessary for symbiosis with arbuscular 

mycorrhiza fungi (AMF). These common genes make up part of a signalling pathway 

known as the common symbiosis pathway (CSP) which serves to prepare the plant for the 

entry of the symbiont into the root.  Although the core members of this signalling pathway 

are known there are still large gaps, and many of the genes involved in the infection 

process haven’t yet been identified. Using the Medicago Gene Expression Atlas (MtGEA) 

and in-house gene expression data three family Receptor-like Cytoplasmic Kinase (RLCK) 

genes were identified in M. truncatula which were differentially regulated during rhizobial 

and AMF colonisation. Analysis of Tnt1 insertion mutants for the one of these genes, 

named RLCK3 due to similarity to the rice gene family RLCK-OS3, revealed an apparently 

novel mycorrhizal phenotype with stunted arbuscule development. However, segregation 

analysis showed the phenotype was not linked to RLCK3; as such the locus was named 

SCOOBY. The other genes identified were similar to the rice gene family RLCK-XV and 

so named RLCK1 and RLCK2. Both RLCK1 and RLCK2 encode soluble RD kinases with 

high homology to each other. Promoter-GUS analysis showed RLCK1 and RLCK2 

expression associated with entry and accommodation of the symbionts. rlck1 and rlck2 

mutants had a low level of arbusculation and misshaped arbuscules. rlck1 was 

hyperinfected by rhizobia and had a significant reduction in nodule number.  RNAi 

knockdown of rlck1/rlck2 had a significantly reduced nodule number compared to the 

empty vector control. RLCK1 and RLCK2 possibly have partially redundant or synergistic 

roles during rhizobial and arbuscular mycorrhizal symbioses. 
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Chapter 1: Introduction 
The sessile nature of plant life can make the necessary issue of finding nutrition and water 

a challenge. Plants can only make use of nutrients that are within the rhizosphere, which 

are sometimes obtained through the uptake of water such as mineral ions like potassium 

(K+) and ammonia (NH3) (Taiz and Zeiger, 1998). However, if the nutrients the plant 

requires are not within the rhizosphere, or not in such an accessible form, then the plant 

employs different strategies to obtain the nutrients it requires. One method which the plant 

uses is extended root growth, either through the lengthening of the tap root or increased 

branching, to increase the size of the rhizosphere. Plants also exude organic acids into 

the soil in order to free nutrients which are otherwise bound in salts; Phosphorous (P) is 

rarely found in a free (ionic) state in soil, tending to be in a salt on the surface of rocks and 

stones (Taiz and Zeiger, 1998). Despite all the strategies that plants have evolved to cope 

with these problems on their own, plants can still find themselves in environments where 

they are not able to find adequate nutrition or water. This is when beneficial symbiosis, or 

mutualism, becomes advantageous for the plant (Taiz and Zeiger, 1998). 

 The earliest evidence of a mutualistic symbiosis by a plant with a fungus is a fossil 

from the Rhynie Chert containing  examples of the plant-mycorrhiza symbiosis from ~450 

million years ago (mya) (Remy et al., 1994). It is thought that the symbiosis with 

mycorrhizal fungi was important in the colonisation of land by plants (Harrison, 2005). The 

first land plants did not have an extensive root system like higher plants. Ancient sea-

dwelling plants did not need an extensive root system as the nutrients were dissolved in 

the water which was all around them. They did have a small root like structure (rhizoid) 

but this was more for anchorage than nutrient acquisition (Jones and Dolan, 2012). Early 

diverging lineages of plants, such as the hornworts and liverworts, are restricted to watery 

areas of land. The mycorrhizal fungi would have acted like a surrogate root system to the 

early land plants as they do to hornworts and liverworts today (Parniske, 2008). In 

exchange for providing water and nutrients for the plants, the mycorrhizal fungi receive a 

supply of carbon in the form of sugars made by the plant during photosynthesis. This 

symbiosis is present in ~70-90 % of modern day plants (Peterson et al., 2004; Parniske, 

2008). It is believed that root nodule symbiosis (RNS), a symbiosis between plants in the 

Eurosid I clade, including Fabales, Fagales, Cucurbitales and Rosales, and Gram-

negative soil bacteria collectively known as rhizobia, evolved from the earlier mycorrhizal 

fungi-plant symbiosis ~60 mya (Kistner and Parniske, 2002). It is believed that a Whole 

Genome Duplication (WGD) event at ~58 mya might have led to the recruitment of genes 

involved in the mycorrhizal symbiosis into the emerging symbiosis with nitrogen fixing 

bacteria (Parniske, 2000; Cannon et al., 2006; Parniske, 2008; Young et al., 2011). 
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1.1 Legume Endosymbiosis 

Legumes (Fabaceae) are able to form symbioses with both arbuscular mycorrhizal fungi 

(AMF) and rhizobia within their root cortical cells. Model legumes Medicago truncatula 

(Medicago) and Lotus japonicus (Lotus), as well as other legumes such as Glycine max 

(soybean) and Pisum sativum (pea) and non-nodulating plants such as Oryza sativa (rice) 

and Petunia hybrida (petunia), have been used to investigate these root symbioses in 

more detail. Unless otherwise stated gene names used will be from M. truncatula with L. 

japonicus following in square brackets.  

Before the symbionts come into physical contact they communicate via a chemical 

dialogue through the rhizosphere. Plants exude flavonoid or strigalactone signals, 

attracting symbionts towards the plant roots where the rhizobia attach to the growing root 

hair and the AMF form hyphopodia, a specialised, lobed hypha that attaches the fungus to 

the root surface (Firmin et al., 1986; Redmond et al., 1986; Besserer et al., 2006; Peck et 

al., 2006). The symbionts exude lipo-chitooligosaccharides, Nod Factors (NF) or Myc 

Factors (myc-LCOs), which are perceived by the plants and alerts them of a nearby 

symbiotic partner (Denarie et al., 1996; Maillet et al., 2011). AMF also exude tetra- and 

pentameric chitin oligomers (COs) that act as symbiosis signalling compounds (Genre et 

al., 2013). NFs are perceived at the root epidermis by the LysM Receptor-like Kinases 

(LysM-RLKs) NFP [NFR5] and LYK3 [NFR1] (Limpens et al., 2003; Madsen et al., 2003; 

Radutoiu et al., 2003; Radutoiu et al., 2007). The Myc Factor receptor has not yet been 

identified. There is some evidence that a LysM receptor might be required for Myc Factor 

perception; Op den Camp et al. (2011) showed that a knockdown of the MtNFP 

orthologue in the non-legume Parasponia abndersonii (PaNFP) inhibited colonisation of 

roots by both AMF and rhizobia. Perception of these symbiont signals initiates a signalling 

cascade within the epidermal cell that results in the expression of symbiotic specific 

genes.  

1.1.1 The Common Symbiosis Pathway and symbiotic gene expression 

Genetic studies in M. truncatula and L. japonicus have identified a set of genes that are 

required for both RNS and arbuscular mycorrhization that are downstream of the NF 

receptors in the signalling cascade.  A leucine-rich repeat-RLK Does Not Make Infections 

(DMI) 2 [SYMRK] (Endre et al., 2002; Stracke et al., 2002), a nuclear envelope-localised 

cation channel DMI1 [POLLUX] (Ané et al., 2004; Imaizumi-Anraku et al., 2005; 

Charpentier et al., 2008; Capoen et al., 2011), a calcium and calmodulin dependent 

kinase DMI3 [CCaMK] and Interacting protein of DMI3 (IPD3) [CYCLOPS]   (Catoira et al., 

2000; Lévy et al., 2004; Mitra et al., 2004; Messinese et al., 2007; Horváth et al., 2011) 
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are the core components of the common symbiosis pathway (CSP) with homologues 

being identified in both M. truncatula and L. japonicus. In L. japonicus nucleoporins 

NUP85, NUP133 and NENA (Kanamori et al., 2006; Saito et al., 2007; Groth et al., 2010), 

and cation channel CASTOR (Imaizumi-Anraku et al., 2005) have been shown to be part 

of the CSP, however their orthologues in M. truncatula have not yet been identified. 

 The CSP transfers the signal received at the cell surface to the nucleus to initiate 

calcium oscillations known as calcium spiking (Ehrhardt et al., 1996; Sieberer et al., 2009; 

Maillet et al., 2011). NF, Myc-LCOs and Myc-COs elicit distinct calcium spiking patterns 

(Denarie et al., 1996; Maillet et al., 2011; Genre et al., 2013). DMI2, DMI1 [POLLUX], 

CASTOR and the nucleoporins have all been shown to be required for spiking (Wais et 

al., 2000; Kanamori et al., 2006; Saito et al., 2007; Charpentier et al., 2008; Groth et al., 

2010).  It is widely believed that DMI3 [CCaMK] decodes the calcium spiking  (Miller et al., 

2013). dmi3 and ccamk mutants retain calcium spiking but are not able to form symbioses 

(Wais et al., 2000). Gain-of-function mutations in DMI3  (dmi3*/ccamk*) are capable of 

producing nodule structures in the absence of rhizobia (Gleason et al., 2006; Tirichine et 

al., 2007) and results in the expression of mycorrhizal specific markers in the absence of 

AMF (Takeda et al., 2012). Recent evidence from Singh et al. (2014) show that 

CYCLOPS is able to activate nodule organogenesis independently from the CSP when 

serines 50 and 154 are replaced with aspartic acids (CYCLOPS-DD) adding to the 

evidence that IPD3/CYCLOPS may work with DMI3 in the decoding of the calcium 

spiking. 

Several transcription factors act downstream of the CSP. Nodule inception (NIN), 

ERF required for nodulation 1 and 2 (ERN1/ERN2), and Nodulation signalling pathway 1 

and 2 (NSP1/NSP2) have been shown to be required for nodulation (Oldroyd and Long, 

2003; Kaló et al., 2005; Smit et al., 2005; Heckmann et al., 2006; Andriankaja et al., 2007; 

Middleton et al., 2007). NSP1 and NSP2 have been shown to form a DNA binding 

complex that is able to bind to the promoter of symbiosis reporter gene Early Nodulin 11 

(ENOD11) (Hirsch et al., 2009). Required for Arbuscular Mycorrhization 1 (RAM1) has 

been shown to be required for mycorrhization and RAM1 has been shown to interact with 

NSP2 (Gobbato et al., 2012). There is also some evidence that NSP1 and NSP2 may 

have a role in strigolactone synthesis  (Liu et al., 2011). This may explain the mycorrhizal 

phenotype seen in the nsp2 mutant (Maillet et al., 2011). 

There are a number of genes that have been shown to be required for both RNS 

and mycorrhization that have not been shown to be part of the CSP and as such are 

known as common symbiosis genes. It is possible that 3-hydroxy-3-methylglutaryl 
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coenzyme A reductase 1 (HMGR1) is a part of the CSP but as yet is not confirmed. There 

is some evidence that HMGR1 interacts with DMI2 and RNAi knockdown of HMGR1 

expression causes inhibition of RNS and calcium spiking (Kevei et al., 2007) and 

unpublished evidence from the Ané Lab (presented on a poster at Plant Biology 2011, 

Minneapolis, Minnesota) suggests that HMGR1 is also required for colonisation by, and 

calcium spiking in response to, AMF (Jayaraman, 2011). However, no stable mutant data 

for HMGR1 have been published to date. Vapyrin, a gene encoding an N-terminal VAMP-

associated protein (VAP)/major sperm protein (MSP) domain with a C-terminal ankyrin-

repeat domain, appears to be involved in infection stages of both RNS and mycorrhizal 

symbiosis and acts downstream of the CSP (Feddermann et al., 2010; Pumplin et al., 

2010; Murray et al., 2011). It is likely that other components of the CSP exist. 

1.1.2 Early stages of Rhizobial and AMF colonisation of Legume roots 

For RNS, the perception of NF initiates two spatially and temporally co-ordinated 

developmental processes, one which allows the entry of the rhizobia into the plant root 

(infection), and the other creation of the nodule that will house the endosymbiotic nitrogen-

fixing bacteria (nodule organogenesis) (Murray, 2011; Oldroyd et al., 2011). For 

mycorrhization, colonisation of the root by AMF can be separated into three stages; 

precontact, intraradical development, and arbuscule development (Gutjahr and Parniske, 

2013). Although the plant does not make specialist organs for AMF colonisation it has 

been shown that perception of diffusible signals from the germinating AMF spores by the 

plant stimulates lateral root formation, increasing the root area available for AMF 

colonisation (Oláh et al., 2005; Maillet et al., 2011; Gutjahr and Paszkowski, 2013). 

Although the infection of the root by rhizobia and AMF are morphologically distinct they 

bear striking similarities at the subcellular level (Kistner and Parniske, 2002).  

1.1.2.1 Rhizobial infection and Infection thread formation 

On the perception of NF legume root hairs switch from symmetrical polar growth to 

growth towards the source of the NF, sometimes including root hair swelling and 

branching (Esseling et al., 2003). The growing root hair cell curls around attached NF-

producing rhizobium trapping it within an infection pocket (Geurts and Bisseling, 2002). 

The rhizobia within the infection pocket divide to form a microcolony or infection focus. 

The nucleus of the curling root hair cell moves up to the infection focus and the 

cytoskeleton aligns along the shaft of the hair forming a bridge through the cytoplasm 

(Fournier et al., 2008) .  

An invagination of the plant cell wall and plasma membrane occurs at the infection 

focus growing inwardly through the root hair cell, following the migrating nucleus along the 

cytoplasmic bridge down towards the base of the cell creating the infection thread (IT). An 
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influx of calcium ions seen at the root hair tip which is accompanied by the generation of 

reactive oxygen species (ROS) is associated with the change of polar growth at the 

infection foci from an outward to an inward growth (Miwa et al., 2006; Murray, 2011; 

Oldroyd et al., 2011). The IT is a tube filled with a glycoprotein matrix, which is still 

technically external to the root hair cell, through the root hair along which the rhizobia 

grow and divide (Brewin, 1998). As the IT reaches the base of the root hair cell, the 

nucleus in the outer cortical cell directly below the progressing thread moves to the upper 

plasma membrane and guides the formation of  the preinfection thread (PIT) (Van Brussel 

et al., 1992; Timmers et al., 1999; Niwa et al., 2001) which is very similar to what occurs in 

the root hair during infection. The formation of PITs and ITs continue in this way, ramifying 

and guiding the bacteria through the cell layers of the root, until it reaches the inner 

cortical cells comprising the nodule where the bacteria are released and begin to fix 

nitrogen (Timmers et al., 1999). Several mutants have been identified that are impaired in 

IT formation, creating arrested, lumpy or misshaped ITs, including lyk3, vapyrin, ern1, 

ern2, a remorin symrem1, lumpy infections (lin), and the knockdown mutants of flotillins 

flot2 and flot4 (Kuppusamy et al., 2004; Andriankaja et al., 2007; Middleton et al., 2007; 

Smit et al., 2007; Haney and Long, 2010; Lefebvre et al., 2010; Murray et al., 2011; Tóth 

et al., 2012). 

1.1.2.2 AMF infection and PPA formation 

AMF enter the plant root via atrichoblasts rather than root hair cells; despite this 

difference the changes within the epidermal cells that allow symbiont entry are very 

similar. Upon perception of mycorrhizal specific diffusible signals, myc-LCOs and 

hyphopodia formation on the root surface, the epidermal cell undergoes differential gene 

expression and cytoskeletal changes (Genre et al., 2005). The nucleus moves first to the 

top of the cell directly beneath the fungal hyphopodia, then moves down through the plant 

cell forming the pre-penetration apparatus (PPA) a tunnel of cytoskeleton and 

endoplasmic reticulum (similar to the PIT) through which the AMF hyphae can grow 

(Genre et al., 2005). The PPA guides the invagination of the plant cell wall creating a tube, 

like the rhizobial IT but larger, through which the AMF penetrate (Genre et al., 2005). As in 

rhizobial infection, this process is controlled by the plant and the AMF remains technically 

external to the plant cell. Once through the epidermal cell the hyphae either travels 

through the cell directly below the epidermal cell, which has already formed a PPA, or can 

travel intercellularly until it reaches the root inner cortex, but the AMF must pass 

intracelluarly through at least one plant cell before it is able to form arbuscules 

(Demchenko et al., 2004). 
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1.1.3 Nodule development in Legumes 

Whilst the root hairs at the epidermis are forming ITs to allow the entry of the rhizobial 

symbiont into the root, the nodule has already started to develop in the root cortex 

(Oldroyd and Downie, 2008). There are two types of legume root nodule: determinate, as 

seen on L. japonicus root, and indeterminate, as seen on M. truncatula roots. Determinate 

root nodules develop from the outer cortical cells, grow to a predetermined size and are 

normally round in shape. Indeterminate root nodules develop from the inner cortical cells 

and maintain an apical meristem causing them to be more elongated in shape (Sprent, 

2001). I shall be referring to indeterminate root nodules unless otherwise stated. 

 To develop the nodule organ the cortical cells directly below the developing 

infection thread divide (Oldroyd and Downie, 2008). As the proliferation of cortical cells 

continues they eventually break through the epidermis causing the characteristic 

outgrowth, or bump, of the nodule primordia. The growing infection thread ramifies 

through the nodule primordia distributing the rhizobia across the nodule. When the 

rhizobia reach the cortical cells they are taken up via a process very similar to 

endocytosis, such that each bacterial cell is surrounded by a plant derived membrane 

known as the peribacteroid membrane (Udvardi and Day, 1997). At this stage the rhizobia 

irreversibly differentiate into bacteroids that are completely dependent on the plant 

(Mergaert et al., 2006). Plant derived leghaemoglobin binds to oxygen to support 

respiration of the bacteroids and protect the nitrogenase allowing the bacteroids to fix 

nitrogen and giving the nodule its pink colour (Appleby, 1984; Starker et al., 2006).  

 Mature indeterminate nodules contain five zones that progress from the nodule tip 

to the base (fig. 1.1.3.1) (Vasse et al., 1990; Foucher and Kondorosi, 2000; Timmers et 

al., 2000). Zone I is the meristem of the nodule. These cells continue to divide and 

elongate the nodule. Cells that remain in Zone I are never colonised by rhizobia. Zone II is 

the infection zone. The rhizobia continue to colonise this zone throughout the life of the 

nodule through ramifying infection threads which can be clearly seen on root nodule 

sections. Zone III is the nitrogen fixation zone where the cells are packed full of 

bacteroids. Zone IV is the senescent zone where the bacteria and leghaemoglobin are 

degraded, often a green-ish yellow in colour. In some nodules a zone between II and III, 

called the interzone (IZ) or Zone II-III, can be seen where cells undergo many symbiotic 

specific cell changes (Vasse et al., 1990; Foucher and Kondorosi, 2000). Timmers et al. 

(2000) showed that Zone V comprises a saprophytic zone at the very base of the nodule. 

Cells start their life in Zone I and progress into Zone V as the nodule grows and matures, 

Zones III to V may not be seen in young developing nodules.  
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Figure 1.1.3.1. The Zones of an indeterminate nodule 

A diagram to demonstrate the zones observed during indeterminate nodule development. 

Zone I is the nodule meristem. Zone II is the infection zone. Zone III is the fixation zone. 

Zone IV is the senescence zone. Zone V is the saprophytic zone. 

 

1.1.4 Arbuscule development and genetic regulation in root cortical cells 

AMF form arbuscules in the inner cortical cells of the plant root. Arbuscules are highly 

branched, tree-like structures that are the site of nutrient exchange between the AMF and 

the plant. The arbuscules are the defining structures of, and give their name to, the AMF. 

The arbuscule is surrounded by a plant derived membrane called the periarbuscular 

membrane (PAM), which is continuous with the plasma membrane, and an interfacial 

glycoprotein-rich matrix known as the periarbuscular space (PAS) made up of AMF and 

plant cell wall material (Parniske, 2008; Balestrini and Bonfante, 2014). The PAM contains 

nutrient transporters such as the phosphate transporter MtPT4 (Javot et al., 2007; Yang et 

al., 2012). 

The formation of an arbuscule in a plant inner cortical cell can be genetically 

divided into 5 stages: 1) PPA formation or pre-arbuscule stage, 2) fungal entry/arbuscule 

trunk formation, 3) birdsfoot stage, 4) hyphal branching/mature arbuscule and 5) 

arbuscule collapse/senescence (fig.1.1.4.1) (Gutjahr and Parniske, 2013). The first stage 

of arbusculation is very similar to the PPA formation in epidermal cells prior to hyphal 

entry into the plant root. Laser capture microdissection shows that cortical cells ahead of 

the advancing intraradical mycorrhizal hyphae have differential gene expression 

compared to cortical cells on non-mycorrhized plants, showing these cells are preparing to 

receive the AMF (Gomez et al., 2009; Hogekamp et al., 2011; Gaude et al., 2012). The 
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CSP mutants do not complete stage one of arbuscule formation, although a gain-of-

function DMI3 (CCaMK) mutant can induce the gene expression patterns seen in stage 

one (Takeda et al., 2012). In stage 2, the fungal hypha enters the cell forming the 

unbranched arbuscule trunk. Mutants such as vapyrin in Medicago or penetration and 

arbuscule morphogenesis1 (pam1) in petunia occasionally show the formation of 

arbuscule trunks but do not progress to the birdsfoot stage of arbuscule development 

(Reddy D. M. R et al., 2007; Feddermann et al., 2010; Murray et al., 2011). 

 The third stage of arbuscule development initiates the hyphal branching. This 

stage is referred to as the birdsfoot stage due to the resemblance of the hyphae to the 

toes on a bird’s foot (Gutjahr and Parniske, 2013). Mutants in two half-ABC transporter 

genes in Medicago, Stunted arbuscule (str and str2), progress only to the birds foot stage 

of arbusculation (Zhang et al., 2010b). The Medicago mutant of Required for Arbuscular 

Mycorrhization (RAM) 2 occasionally forms birdsfoot arbuscules when the AMF does get 

through to the cortex (Wang et al., 2012). In addition, overexpression of KP1106 (protease 

inhibitor), knockdown of SCP1 (serine carboxypeptide 1) or ERF1 (Ethylene response 

factor 1) all result in the birdsfoot type arbuscules in Medicago inner cortical cells (Devers 

et al., 2013; Rech et al., 2013). Stage four of arbuscule development is the ramification of 

the AMF hyphae to form the highly branched, tree-like mature arbuscules. Live cell 

imaging in rice (Oryza sativa) determined the average life span of an arbuscule was on 

average 2 to 3 days but could be as little as one day (Kobae and Hata, 2010). MtPT4 and 

its rice homologue OsPT11 have been shown to be required for the maintenance of the 

mature arbuscules in mutant studies when nutrients other than phosphate were readily 

available (Javot et al., 2007; Yang et al., 2012). However, the pt4 phenotype was 

supressed when Medicago plants were nitrogen starved, yet not when starved of sulphate 

(Javot et al., 2011), suggesting a complex system of regulation for arbuscule maintenance 

that is dependent on nitrogen and phosphate availability. 
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Figure 1.1.4.1. Stages of arbuscule development. 

A diagram to demonstrate the stages of arbuscule development. Stage I is PPA 

development. Stage II is the entry of the hyphae into the cell. Stage III is the birdsfoot 

stage showing a few larger hyphal ramifications. Stage IV is the hyphal branching/mature 

arbuscule. Stage V is the collapsed/senescing arbuscule. 

Figure adapted from Gutjahr and Parniske (2013). Annual Review of Cell and 

Developmental Biology. 29: 593-617. 
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1.2 Similarities between symbiosis and pathogenesis of plants 

There have been many reviews highlighting the similarities between the mutualisms of 

rhizobia and AMF, and the pathogenesis by fungi, oomycetes and nematodes with plants 

(Ausubel and Bisseling, 1999; Parniske, 2000; Kogel et al., 2006; Paszkowski, 2006; Rey 

and Schornack, 2013). Mutualism and pathogenesis are very different in terms of cost and 

gain for the plant, but they can also be seen as a sliding scale of biotrophism, with 

mutualism at one end and plant pathogens at the other with lots of examples in between. 

For example, Kiers et al. (2011) demonstrated that two Glomus species and Rhizophagus 

irregularis (nee. G. intraradices) acquire differential amounts of carbon from the plant as 

well as differing in the amount of phosphorus they give in exchange. In fact G. 

aggregatum had almost double the carbon cost per phosphorus molecule than R 

irregularis (Kiers et al., 2011), it could then be argued that G. aggregatum is less 

mutualistic and more parasitic than R. irregularis to the host plant M. truncatula. Another 

example of the blurred lines between friend and foe is the fungal endophyte Epichlöe 

festucae and its host ryegrass Lolium perenne. A mutation in the NoxA gene in E. 

festucae is enough to switch it to a pathogen that causes great damage to L. perenne 

(Tanaka et al., 2006).  

Many aspects of plant colonisation by beneficial symbionts are similar to those 

seen in plant-pathogen interactions. For example, the Root Knot Nematode (RKN) 

Meliodogyne incognita causes root hair deformation and nuclear movement similar to that 

seen with NF application and successful cortical colonisation by RKN is dependent on the 

CSP member DMI2 (Weerasinghe et al., 2005). Damiani et al. (2012) showed an overlap 

in gene expression in response to rhizobia in Zone II and RKN Giant Cells both of which 

are responsible for the accommodation of the microbe. NFP, a gene regarded as specific 

to Nod Factor perception, has been shown to play a role in resistance of M. truncatula to 

Aphanomyces euteiches, a pathogenic root oomycete (Rey et al., 2013). Chitin oligomers, 

which are thought to play a positive role in AMF colonisation of the root (Genre et al., 

2013) also activate plant defence through the chitin receptor CERK1 in A. thaliana and 

rice (Petutschnig et al., 2010; Shimizu et al., 2010). However, as A. thaliana does not form 

a mutualistic relationship with AMF, plants that have co-evolved with AMF  and/or rhizobia 

presumably have evolved a way of distinguishing the chitin signals through the mixture of 

chitin oligomers or a suite of receptors that modulate the response, for instance M. 

truncatula has a greatly expanded set of LysM RLKs (Arrighi et al., 2006; Petutschnig et 

al., 2010; Genre et al., 2013; Rey and Schornack, 2013). It has also been shown through 

M. truncatula mutant  ram2 that cutin C16 monomers are required for the formation of 

both AMF hyphopodia and oomycete appresoria on the root surface (Wang et al., 2012). 
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The nuclear movement and cytoskeletal rearrangements seen during AMF 

infection can also be seen during oomycete and fungal infection, with the nucleus moving 

directly beneath the contact site. If the plant is resistant to the oomycete, the plant locally 

thickens the cell wall before the nucleus moves away. If the oomycete continues to invade 

the cell the association of the nucleus with the haustorium persists until hypersensitive cell 

death occurs. In susceptible cells, the nucleus does not move toward the oomycete 

(Guest, 1984; Guest, 1986; Freytag et al., 1994; Daniel and Guest, 2005).  During fungal 

pathogenic infection the nucleus moves to the site of infection in both resistant and 

susceptible cells. If the fungus successfully enters the cell the nucleus moves away again, 

and cell death occurs if the plant is resistant. If the fungus is not able to penetrate the 

nucleus remains at the contact site (Heath et al., 1997). The receptor-like MLO has been 

shown to interfere with the polarisation of the actin cytoskeleton during infection (Opalski 

et al., 2005). Interestingly, the barley mlo mutant is more resistant to the biotrophic fungal 

pathogen Blumeria graminis in leaves but is also less able to form arbuscules in the roots 

(Ruiz-Lozano et al., 1999; Bhat et al., 2005; Opalski et al., 2005). 

1.3 Plant Receptor-like Kinases 

The ability to perceive and respond to information at the cell surface via receptors at the 

cell surface is a basic property for all living organisms (Stone and Walker, 1995). The 

ability to transfer that signal to the nucleus requires a signalling cascade through the 

cytoplasm. The phosphorylation and de-phosphorylation of proteins have been shown to 

play a central role in signal transduction from the cell surface (Stone and Walker, 1995). 

Protein kinases catalyse the transfer of the terminal phosphate group from ATP to the side 

chains of serine, threonine, tyrosine or histidine in a protein (Grebe and Stock, 1999; 

Alberts, 2002). De-phosphorylation is achieved through the action of protein 

phosphatases (Alberts, 2002). Approximately 1-3% of a eukaryotic genome is predicted to 

encode protein kinases, suggesting that they are important in many cellular processes 

(Stone and Walker, 1995). 

In plants, the largest kinase superfamily is the receptor-like kinases (RLKs) (Shiu 

and Bleecker, 2001a), the first being discovered in Zea mays (Maize) by Walker and 

Zhang (1990). Generally plant RLKs are made up of a signal sequence, an external 

amino-terminal domain with a transmembrane region and an internal carboxy-terminal 

kinase domain, similar to the structure of animal receptor tyrosine kinases (RTKs), 

although the majority of plant RLKs are serine/threonine kinases (Walker, 1994; Shiu and 

Bleecker, 2001a; Shiu and Bleecker, 2001b; Shiu and Bleecker, 2003). In A. thaliana a 

predicted 610 genes belong to the RLK super family, making up approximately 2.5% of 
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the protein-coding genes within the genome (Shiu and Bleecker, 2001a). Nearly twice the 

number of RLKs of A. thaliana has been predicted in the rice (O. indica) genome (Shiu 

and Bleecker, 2003; Shiu et al., 2004). Based on their extracellular domains there are 16 

families of RLK: C-type Lectin, Crinkly4-like, CrRLK1-like, DUF26, Extensin, Legume 

Lectin, LRK10-like, Leucine-rich repeat (LRR), Lysin-motif (LysM), URK I, PERK-like, 

RKF3-like, S-Domain, Thaumatin, WAK-like and receptor-like cytoplasmic kinases 

(RLCKs) (Shiu and Bleecker, 2001a).  

RLCKs are different from most of the RLKs as they lack the external receptor 

domain, and are similar in structure to the animal non-receptor tyrosine kinases (Shiu and 

Bleecker, 2001b; Shiu and Bleecker, 2003). Approximately 25% of plant RLKs are RLCKs 

and can be divided into 19 to 23 subfamilies, with rice having 4 more subfamilies than A. 

thaliana (Shiu et al., 2004). RLCKs can also be organised into different types of kinase; 

more than 70% of rice RLCKs having only a kinase domain, but the other 30% contain 

domains that are normally found in the extracellular domains of RLKs such as LRRs, 

Lectin, DUF, U box and LysM as well as PPR, ECH, USP, UBQ, SPERM and JACALIN 

(Vij et al., 2008). 

RD kinases have an arginine adjacent to an aspartate in the active site of the 

kinase which can interact with a tyrosine, serine or threonine further down the active site 

when the aspartate is in a non-phosphorylated. In this inactive state the protein is folded 

by the amino acid interaction with the active site hidden inside the fold. When the 

aspartate is phosphorylated the interaction with the tyrosine, serine or threonine is broken 

and the protein is able to unfold opening up the active site of the kinase. In this activated 

state RD kinases are then able to phosphorylate other proteins. Therefore RD need to be 

activated by another kinases before they can function. RLKs can be broadly classified into 

two groups: The first controlling plant growth and development, such as CLAVATA1 

(meristem control) (Clark et al., 1997) and the second involved in plant-microbe 

interactions, both mutualistic and pathogenic, such as FLS2 (flagellin perception) (Gómez-

Gómez and Boller, 2000) and SYMRK (symbiont perception) (Stracke et al., 2002). 

Typically the RLKs that recognise pathogenic signals are non-RD kinases, but those 

involved in the recognition of a broad range of pathogens are often RD kinases. In 

contrast, most RLKs involved in developmental processes are often of the RD class of 

kinases. However, many non-RD RLKs associate with cytoplasmic RD kinases for signal 

transduction (Schwessinger and Ronald, 2012). The signalling pathways of plant growth 

via brassinosteroid signalling and plant defence through the FLS2 have been well studied 

in A. thaliana. Both of these signalling pathways (fig. 1.3.1) contain RLKs at the cell 
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surface and RLCKs, both RD and non-RD, and share similarities with the CSP, providing 

useful examples to compare with plant symbiosis signalling. 

1.3.1 The brassinosteroid signalling pathway  

Brassinosteroid (BR) is a plant hormone that regulates plant growth. Plants that cannot 

sense BR are dwarfed in height. The BR signalling pathway, characterised through mutant 

studies in A. thaliana and rice, is a signalling cascade from perception of BR at the cell 

surface through to regulation of gene expression (Kim and Wang, 2010). An RD, LRR-

RLK, BRI1 (BR insensitive 1) is able to bind BR extracellularly which causes 

autoactivation of the internal kinase domain (Russinova et al., 2004; Wang et al., 2005b). 

BRI1 is found in the plasma membrane in homodimeric receptor complexes or in a 

heterodimer with another LRR-RLK BAK1 (BRI1-Associated receptor kinase 1) (Li et al., 

2002; Nam and Li, 2002; Russinova et al., 2004; Wang et al., 2005b). The addition of BR 

was found to increase the levels of homo- and heterodimerisation of BRI1 (Wang et al., 

2005a; Wang et al., 2008).  

BRI1 kinase inhibitor protein (BKI1) is able to inhibit BRI1 by associating with the 

kinase domain of BRI1 in the absence of BR (Wang and Chory, 2006). When BR binds to 

BRI1, BKI1 is phosphorylated and dissociates from BRI1 and the plasma membrane 

enabling access to BRI1 for BAK1 (Wang and Chory, 2006). Modified BKI with an N-

terminal myristoylation site stays associated with BRI1 even with BR application and 

causes the same dwarfed phenotype as the bri1 mutants (Wang and Chory, 2006). BR 

signalling kinases (BSKs), RLCKs of the RLCK-XII subfamily, also interact with BRI1 at 

the plasma membrane. BSKs are phosphorylated upon BR treatment and then dissociate 

from the membrane (Tang et al., 2008). Overexpression of the BSKs was able to rescue 

the strong bri1 phenotype (Tang et al., 2008), suggesting that these RLCKs are the next 

step in the signal cascade after the membrane bound RLKs.  

 BIN2 (Brassinosteroid insensitive 2) is a Gibberellin Signalling Kinase (GSK)-like 

protein that was identified as part of the BR signalling pathway though a semi-dominant 

mutation bin2 that displayed a dwarf phenotype like bri1 (Li et al., 2001). Therefore BIN2 

plays a negative role on BR signalling. BIN2 phosphorylates the transcription factors 

BZR1 (Brassinole resistant 1) and BZR2/BES1 (bri1-EMS suppressor 1) (He et al., 2002; 

He et al., 2005) leading to their interaction with 14-3-3 proteins and ultimately proteasomal 

degradation (Yin et al., 2002; Yin et al., 2005; Vert and Chory, 2006; Gampala et al., 

2007). The phosphorylation and association with 14-3-3 proteins stop BZR1 and BZR2 

from entering the nucleus where they act (Vert and Chory, 2006; Gampala et al., 2007). 

BZR1 and BZR2 are dephosphorylated under treatment with BR (He et al., 2002). Wang 
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et al. (2011) showed that phosphorylated BKI1 is able to bind 14-3-3 proteins and 

competes with BZR2 for the interaction. It is possible that this acts as another layer of 

BZR activation upon BR perception by BRI1. 

 BIN2 is dephosphorylated upon BR treatment by phosphatase BSU1. The 

dephosphorylated BIN2 is then subject to proteasomal degradation (Mora-García et al., 

2004; Kim et al., 2009). Over expression of BSU1 is able to rescue the bri1 phenotype 

whilst knockdown of BSU1 causes a severe dwarf phenotype (Mora-García et al., 2004). 

BSU1 is located mostly in the nucleus but also at the plasma membrane in the absence of 

BR (Mora-García et al., 2004; Kim et al., 2009). It has been shown that BSU1 interacts 

with the BSKs at the plasma membrane (Kim et al., 2009). Recently constitutive 

differential growth 1 (CDG1), an RLCK VII-subfamily member, has been shown to interact 

with BRI1 and BSU1 suggesting multiple levels of BSU1 regulation (Muto et al., 2004; Kim 

et al., 2011). The BR signalling pathway is believed to be one of the more completely 

understood plant signalling pathways and has been used as the basis of understanding 

other plant signalling pathways (fig. 1.3.1). 
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Figure 1.3.1. BR and flagellin signalling pathways 

A schematic showing the BR (left), flagellin (middle) and nodulation (right) signalling 

pathways upon activation by BR, flg22 or NF. Complexes of BAK1 with either BRI1 or 

FLS2 at the plasma membrane (PM) activate RLCKs BSKs/CDG1 or BIK1. In the absence 

of BR, BIN2 phosphorylates BZR1/2 which is targeted for degradation by interacting with 

protein 14-3-3. In flagellin signalling, BIK1 interacts with RbohD producing a ROS burst. 

MAP kinases carry the flagellin triggered signal through the cytoplasm. Perception of NF 

is at the cell surface by a receptor complex possibly consisting of NFP, LYK3 and DMI2. 

Activation of DMI1 at the nuclear membrane lead to calcium spiking in the nucleus which 

is decoded by the DMI3/IPD3 complex and activates symbiosis specific transcription 

factors. All 3 pathways lead to regulation of gene expression. 
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1.3.2 The flagellin defence signalling pathway 

Plant pathogen recognition is controlled on several levels by RLKs both at the plasma 

membrane and in the cytoplasm. Pathogens are recognised by molecules that are 

essential to the life of the pathogen known as microbe-associated molecular patterns 

(MAMPs) or pathogen-associated molecular patterns (PAMPs) such as bacterial flagellin 

(Felix et al., 1999), as well as the broader danger-associated molecular patterns (DAMPs) 

that can be found on more than one type of pathogen such as chitin or peptidoglycan. 

These patterns trigger defence signalling cascades and gene expression regulation 

involved in PAMP-triggered immunity (PTI) (Jones and Dangl, 2006; Schwessinger and 

Ronald, 2012).  

The flagellin signalling pathway has been well studied however it is currently not 

as complete as the BR signalling pathway. The LRR-RLK FLS2 is able to recognise 

flagellin peptides including flg22, flg15 (in tomato) and a 28-amino acid region in the C-

terminal end of the protein flgII-28, as well as full length flagellin (Gómez-Gómez and 

Boller, 2000; Bauer et al., 2001; Zipfel et al., 2004; Robatzek et al., 2007; Takai et al., 

2008; Cai et al., 2011). FLS2 forms a receptor complex at the plasma membrane with 

BAK1 and the RLCK Botrytis-induced kinase 1 (BIK1) (Veronese et al., 2006; Chinchilla et 

al., 2007; Lu et al., 2010; Zhang et al., 2010a; Roux et al., 2011; Schwessinger et al., 

2011). BIK1 is a PBS-like, RD kinase of the RLCK-VII subfamily (Zhang et al., 2010a). 

BIK1 and PBL1 (also an RLCK-VII member) have both been shown to be required for full 

immune responses to Pseudomonas syringae and could act partially redundantly in the 

signalling pathway (Zhang et al., 2010a). flg22 application decreases the association 

between BIK1 and FLS2, suggesting that BIK1 dissociates from the complex upon 

activation (Zhang et al., 2010a). Evidence from Lu et al. (2010) and Schulze et al. (2010) 

suggests that rapid transphosphorylation occurs between FLS2, BAK1 and BIK1 upon 

flg22 perception. Mitogen-activated protein (MAP) kinases have been shown to act 

downstream of the FLS2 receptor complex (Nühse et al., 2000; Asai et al., 2002; Suarez-

Rodriguez et al., 2007). However, it is not yet known how they are linked to the receptors 

(fig.1.3.1).  

 Recent research by Li et al. (2014) has shown that an NAPDH oxidase RbohD 

interacts with BIK1 and FLS2 and is activated upon flg22 perception. PTI has been shown 

to initiate a transient influx of calcium ions into the cytosol followed by a transient burst of 

ROS leading to the closure of stomata and callose deposition to strengthen the cell wall 

(Blume et al., 2000; Lecourieux et al., 2002; Nühse et al., 2007; Zhang et al., 2007). This 

research has given some insight into the mechanism controlling pathogen-activated ROS 

generation. There has been increasing evidence of cross-talk between the BR and flg22 
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signalling pathways. For example, BIK1 has been shown to interact with BRI1 and the 

BSKs with FLS2 (Lin et al., 2013; Shi et al., 2013b). Brassinosteroids are known to inhibit 

the FLS2 signalling pathway and flg22 inhibits plant growth (Bethke et al., 2009; Albrecht 

et al., 2012). It is possible that the activity of RLCKs could holistically modulate the activity 

of signalling pathways within the cell (Laluk et al., 2011). 

1.3.3 Comparison of the CSP with BR and flg22 signalling 

Parallels can be drawn between these two signalling pathways and the signalling cascade 

downstream of the symbiosis RLKs. In the BR and flagellin signalling pathways RLCKs 

transfer the signal from receptor complexes at the cell surface onto downstream signalling 

components that ultimately leads to transcriptional changes. It is likely that the receptors 

NFP, LYK3, and DMI2 may sit in complexes at the plasma membrane along with 

cytoplasmic components such as a remorin (SYMREM1) and an E3 ubiquitin ligase 

(PUB1) (Lefebvre et al., 2010; Mbengue et al., 2010; Tóth et al., 2012). It is possible that 

MAP kinases perform signal transduction from the receptors to the nucleus (Chen et al., 

2012). It is also conceivable that RLCKs may act as the next step in the signal relay 

between the RLKs and the MAP kinases. In symbiosis there are known transient influxes 

of calcium and ROS in response to NF and during nodule development (Miwa et al., 2006; 

Pauly et al., 2006). It is possible that currently unknown RLCKs may interact with NFP, 

LYK3 or DMI2 to regulate the ROS machinery as BIK1 does in flg22 signalling (Peleg-

Grossman et al., 2012; Li et al., 2014). RLCKs may also play a role in parallel to the CSP, 

co-ordinating developmental and defence signalling pathways during symbiosis (Peleg-

Grossman et al., 2012). 

In this study, three RLCK genes were selected using the Medicago Gene Atlas 

(MtGEA) and in-house microarray data. These genes were investigated for their roles in 

both RNS and mycorrhizal symbiosis through mutant studies and RNAi. Resources for 

RLCK protein interaction were also made. 
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Chapter 2: Materials and methods 

2.1. Plant material 

Medicago truncatula lines used are listed in table 2.1.1. Homozygous Tnt1 mutants were 

identified in the lab by PCR. A homozygous EMS mutant was identified by sequencing of 

PCR products. See appendix I for primers.  Nicotiana benthamiana plants were cultivated 

by Horticultural services and used for infiltration from 3 weeks post sewing. 

Line Background Description Mutation Source 
R108 R108 Wild type WT Hoffmann et 

al. (1997) 

A17 A17 Wild type WT Van den 
Bosch and 

Stacy (2003) 

 NF12390 
(rlck1-1) 

R108 Tnt1 insertion at position 
447 (genomic) in 

RLCK1/SPK1 

Tnt1 Samuel 
Roberts Noble 
Foundation, 

USA 

NF10796 
(rlck1-2) 

R108 Tnt1 insertion at position 
621 (genomic) in 

RLCK1/SPK1 

Tnt1 Samuel 
Roberts Noble 
Foundation, 

USA 

NF11296 
(rlck1-3) 

R108 Tnt1 insertion at position 
878 (genomic) in 

RLCK1/SPK1 

Tnt1 Samuel 
Roberts Noble 
Foundation, 

USA 

NF9810 
(rlck2-1) 

R108 Tnt1 insertion at position 
1342 (genomic) in 

RLCK2 

Tnt1 Samuel 
Roberts Noble 
Foundation, 

USA 

NF7569 
(rlck2-2) 

A17 Single base pair 
mutation C to T at 

position 1523 (genomic) 
of RLCK2 

EMS 
mutagenesis 

RevGenUK, 
Norwich, UK 

NF5270 
(rlck3-

1/Scooby) 

R108 Tnt1 insertion line. 
Scooby phenotype. 

Tnt1 Samuel 
Roberts Noble 
Foundation, 

USA 

Table 2.1.1. Plant material. 

2.1.1 Seed preparation 

Mature seed pods were collected by hand from dry M. truncatula plants. They were then 

placed at 37°C for 4-7 days to dry further. Pods were then opened using wooden blocks 

covered in corrugated rubber to access the seeds. For germination, seeds were scarified 

using sand paper. The seeds were then treated with 12.5% bleach for 2 minutes and then 

a series of five 2 minute washes with dH2O, until all the bleach was no longer present – 

tested using indicator blue tissue. Seeds were then immersed in water to imbibe for at 

least 1 hour before plating out onto Distilled Water Agar (DWA) plates and inverting. 

Seeds were placed into the dark at 4°C for 3 days for stratification or 7 to 14 days for 

vernalisation.  
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2.2 Bacterial and Yeast strains 

All bacterial strains used are in table 2.2.1.  

Strain Resistance Species Description 

DH5α - Escherichia coli E. coli strain for plasmid 
amplification 

DB3.1 - E. coli E.coli strain resistant to the 
ccdB cassette 

AR1193 Rif & Carb Agrobacterium 
rhizogenes 

For transformation of M. 
truncatula roots 

GV3101 Rif & Gen Agrobacterium 
tumefaciens 

For transformation of N. 
benthamiana 

AH109 - Sacchromyces 
cerevisiae 

For yeast 2-hybrid analysis 

Sm1021 Tet Sinorhizobium 
meliloti 

Rhizobial symbiont of M. 
truncatula 

 

Table 2.2.1. Bacterial and yeast strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

2.3 Growth Media 

The composition of the media used for plant, bacterial and yeast growth are given in table 

2.3.1. 

Media Composition for 1L 

Rhizobium 
complete 
medium (TY) 

5 g Difco tryptone, 3 g Difco yeast extract, 1.325 g CaCl2 
(containing 15 g agar for solid growth medium). 

Lennox (L) 10 g tryptone, 5 g yeast extract, 5 g NaCl, 1 g D-Glucose 
(containing 10 g agar for solid growth medium).  

SOC 20 g tryptone, 5 g yeast extract, 0.58 g NaCl, 0.19 g KCl, 2.03 
g MgCL2, 2.46 g MgSO4 7H2O, 3.6 g D-Glucose. 

Distilled Water 
Agar (DWA) 

1.5 % w/v Bacto agar, pH 5.7 (adjusted with KOH) 

Fahraeus plant 
medium (FP) 

0.1 g CaCl2. 2H2O, 0.12 g MgSO4, 0.01g KHPO4, 0.150 g 
NaHPO4.12H2O, 5 mg ferric citrate, 2.86 g H3BO3, 2.03 g 
MnSO4, 0.22 g ZnSO4.7H2O, 0.08 g CuSO4.5H2O, 0.08 g 
H2MoO4.4H2O, pH 6.3-6.7. For solid medium 0.5% (w/v) LabM 
No. 1 agar was added.  
 

Modified FP FP medium containing 0.5 mM NH4NO3  
 

SD+-LW 1.9g Yeast Nitrogen Base without Ammonium Sulphate and 
Amino Acids, 5g (NH4)SO4, 20g D-Glucose, 20g Formedium 
agar, 380mg Leucine, 76mg Tryptophan. pH 5.8 

SD+-AHLW 1.9g Yeast Nitrogen Base without Ammonium Sulphate and 
Amino Acids, 5g (NH4)SO4, 20g D-Glucose, 20g Formedium 
agar, 380mg Leucine, 76mg Tryptophan, 76mg Alanine, 76mg 
Histidine. pH 5.8 

Medicago mix 
(compost) 

6:6:1 Mix of Levington F2 compost, John Innes No. 2 compost 
and 4 mm grit.  
 

50:50 mix 
Terragreen:Sand 

1:1 mix of terragreen (Oil-dry UK ltd, UK) and sharp sand (BB 
Minerals, UK)  
 

 

Table 2.3.1. Media used for plant, bacterial and yeast growth. 

 

2.4 Agrobacterium transformation, growth and plant transformation  

2.4.1 Agrobacterum rhizogenes ‘Hairy root’ transformation of M. truncatula 

Agrobacterium rhizogenes strain AR1193 was transformed with constructs via 

electroporation at 200Ω and 2.5V. The A. rhizogenes was then shaken at 28°C for 1 hour 

with SOC medium. The Agrobacterium was plated onto selection plates and left for 3 days 

at 28°C to grow. Colonies were then grown overnight in liquid culture at 28°C with 

antibiotic selection and shaking, 600µl were plated out onto selection and left to grown for 

3 days on antibiotic selection LB plates to form a thick layer of A. rhizogenes. The 
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transformed rhizogenes was then used to inoculate 1 day old A17 seedlings. 3mm of root 

tip were removed from the seedlings using a scalpel, then the seedling dipped into the    

A. rhizogenes and placed onto square Modified FP (ModFP) plates, poured at a slant and 

covered in a sterile filter paper. The bottom half of the plates were then covered in black 

plastic to block out the light and placed in growth chambers at 20°C/15°C day/night 

temperature with 16 hour days. After 1 week the seedlings were transferred to fresh 

ModFP plates and the non-transformed roots, identified by fluorescence microscopy, were 

removed. 

2.4.2 Agrobacterium tumefaciens transformation of Nicotiana benthamiana 

Agrobacterium tumefaciens strain GV3101 was transformed with constructs via 

electroporation at 200Ω and 2.5V. The A. tumefaciens was then shaken at 28°C for 1 hour 

with SOC medium and plated onto antibiotic selection plates and grown for 3 days at 

28°C. A colony was grown overnight in liquid culture at 28°C with shaking and antibiotic 

selection. The liquid culture was spun down and the supernatant removed. The bacteria 

were resuspended in dH2O. The A. tumefaciens was infiltrated into the leaf by pressure 

infiltration using a 1ml syringe. dH2O was used as a mock treatment. 

2.5 Image capture and microscopy 

Light microscopy was performed on either a Nikon Eclipse E800 with a Pixera Pro 600ES 

camera or a Zeiss Axiophot with a Retiga-2000R Fast 1394 Color camera, QImaging. 

Fluorescence microscopy was performed on a Zeiss Axiophot with a Retiga-2000R Fast 

1394 Color camera, QImaging, or a Leica MZFLIII Fluorescence stereoscope. Confocal 

microscopy was performed on a Zeiss 780 LSM. Scale bars were added to the images 

either using the QCapture Pro software (QImaging) or the Image J software. 

2.6 DNA amplification, purification and sequencing  

All DNA extraction was carried out using a Qiagen DNeasy Plant Kit by Richard Goram, 

Norwich. All plasmid extraction was carried out using Qiagen Mini-prep spin columns as 

per manufacturer’s instructions. 

2.6.1 Standard Polymerase Chain Reaction (PCR) 

GoTaq® Green Master Mix (Promega) was used as the standard Taq polymerase for 

genotyping and colony PCR following the manufacturer’s instructions for a 25µl reaction 

volume using cycling parameters 95°C 30s (10 minutes if for colony PCR), [94°C 30s, Tm-

3°C 30s, 72°C 30s/kb]x28 - 35, 72°C 2- 10 minutes. Phusion High-Fidelity Taq 

polymerase (New England Biolabs Ltd) was used for cloning PCRs following 

manufacturer’s instructions for a 20µl or 50µl reaction volume using cycling parameters 
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98°C 30s, [98°C 10s, Tm°C 20s, 72°C 1min/kb]x35, 72°C 2- 10 minutes. All PCRs were 

cooled to 10°C after cycling and stored at 4°C or chilled on ice if to be used directly. All 

PCR amplifications were performed using a G-Storm GS1 thermal cycler (Gene 

Technologies Ltd). See appendix I for primers. 

2.6.2 Restriction Digest 

Purified plasmids were digested using restriction enzymes. Digests were performs as per 

the manufacturer’s instructions (Life Technologies or New England Biolabs), using 1U of 

enzyme to a 10µl or 20µl reaction with an incubation time of 1 hour at 37°C. 

2.6.3 Sequencing 

DNA sequencing was carried out by performing the BigDye® reaction with either purified 

PCR product or plasmid according to manufacturer’s protocol and then completed by The 

Genome Analysis Centre (TGAC), Norwich or Eurofins (MWG Operon), UK. Purified 

plasmid of Golden Gate constructs was sent for Next Generation Sequencing by IMGM 

Laboratory, Germany. 

2.7 qRT-PCR 

Root material was ground on liquid nitrogen using a pestle and mortar and RNA was 

extracted using a QIAGEN® RNeasy mini kit. The RLT buffer was pre-warmed to 50°C 

and the elution volume was reduced to 30µl. RNA was then treated with Turbo DNAse 

(Life Technologies™) to remove the DNA. The quality of the DNA was tested on a 1% 

Agarose gel containing ethidium bromide and the quantity was tested on a NanoDrop 

(Thermo Fisher Scientific). cDNA was synthesised using SuperScript®II Reverse 

Transcriptase (Life Technologies™). The input RNA was normalised to the lowest sample 

with a lower threshold of 400ng/ total RNA. 

qRT-PCR was carried put on a CFX96 Touch™ c1000 thermal cycler (Bio-Rad) using 

SYBR™ Green JumpStart Taq ReadyMix (without MgCl2) in a 96 well plate. Each well 

contained the following: 2.6µl MgCl2; 5µl SYBR Green, 2µl diluted cDNA, 1.6µl each 

20µM primers to give a total of 10µl. The primer efficiencies were calculated using a serial 

dilution of control cDNA. The following parameters: 95°C 30s, [94°C 30s, 60°C 30s, 72°C 

30s]x49. Melt curve 65°C to 95°C in 0.5°C increments in 5s. 

The efficiency of all primer pairs was calculated using a dilution series and linear 

regression of the resulting Ct data points. Ubiquitin, EF1α and TIP41-like protein were 

determined to be the most stable references.  Normalized relative quantities were 

calculated using the qBase model (Hellemans et al., 2007), which allows for multiple 

housekeeping genes and primer specific efficiencies. Values based on 3 technical reps 
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per sample. The expression was then calculated relative to the control. Standard error 

was calculated as relative standard error to the control.  See Appendix I for primers. 

2.8 Cloning 

2.8.1 Gateway® Cloning, Invitrogen 

The desired gene or promoter region was amplified via PCR using Phusion High Fidelity 

Polymerase, New England Biolabs. The primers were designed to contain the attB site 

required for the Gateway® BP, for recombination of the PCR fragment into pDONR207 

(Karimi et al., 2002). The donor plasmid was then propagated in E.coli strain DH5α and 

correct colonies were identified by PCR. A Gateway® LR reaction facilitates 

recombination from the donor vector to the destination vector. The destination plasmid 

was then propagated in E.coli strain DH5α and potentially correct colonies were identified 

by PCR and verified by sequencing. 

2.8.2 TOPO® Cloning, Life technologies 

The desired gene or promoter region was amplified via PCR using Phusion High-fidelity 

Polymerase, New England Biolabs. The primers were designed to contain a CACC 5’ 

extension compatible with TOPO® cloning, Life Technologies. The PCR fragments were 

cloned into pENTR-D entry vector following the TOPO manual; the only difference was the 

incubation at room temperature of the vector, the insert and the clonase was overnight 

rather than the recommended 5 to 30 minutes. The inserts in the pENTR-D entry vector 

were then transferred to the compatible Gateway® vector using the LR reaction as 

described above. 

2.8.3 Golden Gate Cloning 

Golden Gate cloning was carried out as described in Engler et al. (2008) and Weber et al. 

(2011), using compatible sites with the Engineering Nitrogen Symbiosis for Africa (ENSA) 

project, see below (Oldroyd, communications). Level 0 modules were synthesised by Life 

Technologies GeneArt® Gene Synthesis. Level 1 modules and level 2 constructs were 

assembled in the lab.  Level 0 modules and Level 1 End linkers are Spec resistant. All 

Level 1 modules, except the End linkers, are Amp resistant. Level 2 constructs are 

Kanamycin resistant. After assembly each level was propagated in E.coli strain DH5α. 

Level 1 modules were checked by colony PCR before being sequenced. Level 2 

constructs were checked by restriction digest before being sent for next generation 

sequencing. 
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2.9 Nodulation Phenotyping 

Medicago truncatula seeds were germinated on DWA and then planted in a 50:50 mix 

terragreen and sand. Plants were left to grow in the mix for one week before inoculation. 

Sinorhizobia meliloti 1021 LacZ was grown overnight in 10ml TY plus Tetracycline to an 

OD600 absorbance between 0.2 and 0.5. The rhizobia were diluted to an OD600 

absorbance between 0.05 and 0.001 with water. 2ml of this diluted rhizobia was pipetted 

at the base of each plant. After 21 days the plants were removed from the soil, washed 

and the numbers of white and pink nodules per plant were counted. 

2.9.1 Histochemical staining procedure 

Root material was submerged in 2.5% glutaraldehyde and placed under a vacuum for 15 

minutes. The glutaraldehyde was removed and fresh glutaraldehyde was added before 

leaving at room temperature for a minimum of 1 hour. The fixed material was then washed 

with Z buffer with one 5 minute wash followed by a 1 hour wash. Fresh LacZ staining 

solution was made according to the following: 1mM  5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-gal) or 5-bromo-6-chloro-3-indolyl-β-D-galactopyranoside (Magenta-

gal); 0.1M sodium phosphate; 10mM Potassium chloride; 1mM Magnesium Sulphate; 

5mM Potassium Ferricyanide; 5mM Potassium Ferrocyanide.30 to 40µm longitudinal 

sections of the nodule were made on a Vibratome. 

2.10 Mycorrhizal Phenotyping 

2.10.1 Growth media and inoculation 

Several sources of AMF inoculum were used in the course of this study. Seedlings were 

planted directly into one of the following inoculums. 

Chive inoculum: Rhizophagus irregularis was grown in a 50:50 mix with chive plants. 

Inoculum was made by chopping up the root mass and soil containing R. irregularis. A 

50:50 mix of terragreen and sand was made and then mixed with the chive root inoculum 

at a ratio of 1:20 inoculum : sand mix. 

PlantWorks inoculum: A commercial inoculum was obtained from PlantWorks, UK, and 

mixed with the 50:50 sand mix at a ratio of 1:10 inoculum : sand mix. 

Symplanta inoculum: Another commercial inoculum was obtained from Symplanta, 

Munich, 10,000 spores/ml of Rhizophagus irregularis (syn: Glomus irregulare) 

SYMPLANTA-001 research grade. For a more concentrated inoculum, 750 spores/plant 

was use. For a less concentrated inoculum, 500 spores/plant was used. 
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For mutant colonisation assays extra R108 WT plants were included in each experiment 

and level of WT colonisation was checked weekly from 5 weeks post-inoculation until a 

minimum level of colonisation of 50% was achieved. Once sufficient WT colonisation was 

achieved all plants were then ready for staining and scoring.  

2.10.2 Mycorrhizal staining and scoring 

Root material was first washed in fresh 10% KOH at 95°C for 15 minutes, then rinsed in 

water before being transferred to a 95°C ink and acetic acid solution (5% ink, 5% acetic 

acid) for 6 minutes. The roots were then left in water over night to de-stain. Colonisation of 

the root by AMF was scored using the grid method as described by Giovannetti and 

Mosse (1980) 

Alternatively, the AMF was stained using WGA-AlexaFluor549. Roots were placed in 50% 

ethanol overnight before being transferred to 20%KOH for 2-3 days at room temperature. 

Roots were rinsed with dH2O and submerged in 0.1M HCl for 1-2 hours. After another 

rinse with dH2O, and again with phosphate buffered saline (PBS) solution, the roots were 

submerged in PBS/WGA-AF549 (final concentration of 0.2µg/ml) and kept in the dark at 

room temperature overnight. 

2.11 Gene silencing – RNA interference 

2.11.1 Constructs 

The double knockdown construct was obtained from Myriam Charpentier. It was designed 

against the RLCK1 CDS and subsequently shown to knockdown both RLCK1 and RLCK2. 

The vector used was pK7GW|WG2D(II)R modified from pK7GW|WG2D(II) (Karimi et al., 

2002; Capoen et al., 2011). 

The RLCK2 knockdown construct was designed against the RLCK2 5’ UTR region. It 

covers 161bp upstream of the start codon. It was cloned into pENTR-D TOPO entry 

vector using the CACC overhang on the forward primer. It was then cloned into the 

destination vector pK7GW|WG2D(II)R using GATEWAY® LR reaction, Invitrogen. See 

Appendix I for sequencing primers. 

2.11.2 Transformation of RNAi constructs 

A. rhizogenes transformation was carried out as described in 2.4.1.  Two weeks after the 

plate transfer, the plants were then transferred to sterilised 50:50 mix in small greenhouse 

boxes (Sigma) to keep the humidity high. The lid was slowly removed over several days to 

reduce the humidity without shocking the plants.  
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2.11.3 Rhizobial Inoculation and scoring 

After one week in the pots the plants were inoculated with Sm1021 as described above for 

nodulation phenotyping. Plants were checked for nodules at 21dpi. Only transformed roots 

displaying the dsRED transformation marker were included in the count. The transformed 

roots were then removed from the plants, frozen using liquid nitrogen and stored at -80°C 

for qRT-PCR. 

2.12 Gene expression analysis 

2.12.1 In silico gene expression analysis (MtGEA) 

In silico gene expression analysis was carried out using the Medicago Gene Expression 

Atlas (MtGEA) Database (Benedito et al., 2008; He et al., 2009), Samuel Roberts Nobel 

Foundation. Probesets were identified using the BLAST function using the CDS 

sequence. 

2.12.2 Promoter-GUS analysis 

RLCK1 promoter:GUS construct (pRLCK1:GUS) was obtained from Nicolas Pauly, INRA 

France (Andrio et al., 2013). The RLCK2 promoter:GUS (pRLCK2:GUS) construct was 

made by cloning the 2328bp region upstream of the RLCK2 start codon into pDONR207. 

The promoter region was amplified by PCR and confirmed by sequencing. The primers 

contained overhangs compatible for the Gateway® BP reaction. An LR reaction was then 

performed to clone the promoter region into the pKGWFS2 promoter:GUS vector. The 

Lotus japonicus Ubiquitin1 (LjUB1) promoter:GUS construct was used as a positive 

control for the staining. See Appendix I for primers. 

Plants were transformed with the constructs using A. rhizogenes transformation. Plants 

were inoculated with either LacZ containing Sm1021 and checked at 4, 7, 14d and 21dpi 

or R. irregularis (chive inoculum) and checked at 5, 10 and 20dpi.  

GUS staining solution was freshly made according to the following: 2mM 5-bromo-4-

chloro-3-indolyl-β-glucuronic acid (X-GlcA); 10mM Na-EDTA; 1mM potassium 

ferricyanide; 0.1 M sodium phosphate; 0.1% V/V Triton X-100. 

The plant roots were immersed in the GUS staining solution and incubated at 37°C and 

removed when the level of staining seemed appropriate – approximately 5 hours. The 

GUS stained roots were then either counterstained with a Wheat Germ Agglutinin (WGA) 

Alexa Fluor® 594 dye (Life Technologies) for AMF colonisation or fixed and 

counterstained with magenta-gal for rhizobial colonisation. 
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2.13 Phylogenetic Analysis 

The protein sequences of MtRLCK1 and MtRLCK2 were used as queries for BLASTP 

searches against the predicted protein sequence databases of the genomes of Amborella 

trichopoda, Arabidopsis lyrata, A. thaliana, Brachypodium distachyon, Brassica rapa, 

Chlamydomonas reinhardtii, Glycine max, L. japonicus, M. truncatula, N. benthamiana, 

Oryza brachyantha, Oryza glaberrima, Oryza indica, O. sativa, Panicum virgatum, 

Phaseolus vulgaris, Physcomitrella patens, Populus trichocarpa, Selaginella 

moellendorffii, Setaria italica, Solanum lycopersicum, Solanum tuberosum, Sorghum 

bicolor, Triticum aestivum, Vitis vinifera and Zea mays using Geneious. The top 50 blast 

hits for each of these genomes were taken forward and aligned with the queries using 

ClustalW with the default parameters.  The resultant alignment was used to construct 

trees using the Neighbour-joining tree algorithm implemented in Geneious with 1000 

bootstrap replicates and default values for the other parameters. From the resulting tree, 

the RLCK1 and RLCK2 branches were extracted and the proteins were realigned as 

described above to give the final tree. 

2.14 Protein Analysis 

2.14.1 In silico protein analysis 

Proteins were analysed in silico using InterProScan4 (Hunter et al., 2012) and the 

ExPASy Bioinformatics Portal (Artimo et al., 2012) in 2011. In 2014 proteins were 

analysed in silico using InterProScan5 (Jones et al., 2014) and the Calmodulin target 

database (http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html). 

2.14.2 Protein localisation constructs 

Protein localisation constructs were created by PCR fusion of RLCK1 and RLCK2 to 

mCherry using successive PCR to splice PCR products together. The first PCR (PCR1) 

amplified RLCK1 and RLCK2 CDS with overhanging attB site at the 5’ end and 

complementary sequence to mCherry at the 3’ end. mCherry was also amplified with a 5’ 

overhang that was complementary to RLCK1 or RLCK2 CDS and 3’ attB. The second 

PCR (PCR2) takes place in two steps. Step a combines the products from PCR1 as the 

complementary overhangs act as primers for the polymerase to create the fused product. 

Step b has the addition of 5’ and 3’ primers for the full length fused product 

RLCK1:mCherry or RLCK2:mCherry. See appendix I for primers. 

PCR1: Composition: 0.05U Phusion Taq, 1x GC buffer, 1µM dNTP, 0.25µM Forward 

Primer, 0.25µM Reverse Primer, 50-100ng Template DNA. Cycling parameters: 98°C 30s, 

[98°C 10s, 55°C 20s, 72°C 2m]x35, 72°C 4m. 

http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html
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PCR2a: Composition: 0.05U Phusion Taq, 1x GC buffer, 0.8µM dNTP, 50-100ng Gene 

CDS, 50-1—ng mCherry CDS. Cycling parameters: 98°C 30s, [98°C 10s, 50°C 20s, 72°C 

2m30s]x10, 72°C 5m. 

PCR2b: Add to PCR2a reaction tubes: 0.1µM Forward Primer and 0.1µM Reverse Primer. 

Cycling parameters:  98°C 30s, [98°C 10s, 60°C 20s, 72°C 5m]x28, 72°C 10m. 

The fused fragments were cloned into pDONR207 by a BP reaction. They were then put 

into the pUB-GW-GFP via an LR reaction (Maekawa et al., 2008). Constructs were 

checked by sequencing, see appendix I for primers. Constructs were transformed into N. 

benthamiana leaves by A. tumefaciens infiltration and localisation was checked in leaf 

discs using a confocal microscope at 1, 2 and 3dpi. 

2.14.3 Yeast 2-Hybrid 

RLCK1 and RLCK2 CDS were amplified using Phusion High-Fidelity Taq polymerase and 

cloned into pENTR-D using TOPO® cloning. The CDS was then transferred by LR 

reaction into pGADT7 and pGBKT7 Gateway® vectors for expression of RLCK1 and 

RLCK2 proteins as bait and prey respectively. AH109 yeast strain was transformed using 

the lithium acetate method (Daniel Gietz and Woods, 2002).The yeast was grown at 28°C 

for 3 days on SD+ agar minus leucine and tryptophan (SD+-LW) or SD+ agar minus 

alanine, histidine, leucine, and tryptophan (SD+-AHLW) for interaction selection. 

2.15 Co-Immunoprecipitation 

Cloning was performed using the Golden Gate system to make Level 2 constructs 

encoding myc-tagged RLCK1 or RLCK2 and GFP-tagged MtNFP, MtLYK3, MtHMGR1 

and MtDMI2. See Appendix I for construct details and plasmid maps. Constructs were 

transformed into N. benthamiana leaves by A. tumefaciens infiltration. 

2.15.1 Protein Extraction 

Leaf discs were taken at 1, 2 and 3dpi, frozen in liquid nitrogen and stored in a -80°C 

freezer. Samples were ground either using a pestle and mortar chilled using liquid 

nitrogen, or a tissue lyser using 3mm tungsten carbide beads (Qiagen). The protein was 

extracted by one of two methods, the first added warm buffer (65°C) to the ground sample 

[100mM Tris-HCl pH 7.4, 150mM NaCl, 5mM EDTA, 10mM DTT 5% SDS, 4M Urea + 

Roche protease inhibitor cocktail], incubated at 90°C for 10 minutes, centrifuge maximum 

speed for 2 minutes, collect supernatant and mix with SDS sample buffer. The second 

method was as described by (Waadt et al., 2008). Protein extract produced by either 

method was mixed with SDS sample buffer 4x Laemmli sample buffer (Bio-Rad), heated 
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at 90°C for 5 minutes, loaded into a 10x SDS-PAGE Gel and ran at 150V for 1 hour 25 

minutes. 

2.15.2 Western Blot 

Proteins were transferred to the membrane at 100V for ~1 hour. The membrane was 

blocked using 5% milk in TBS-T [10mM Tris-HCl pH7.4, 150mM NaCl, 0.1% Tween 20] 

for 1 hour. The membrane was washed in TBS-T and incubated overnight at 4°C with the 

primary antibody. The membrane was washed in TBS-T before incubation with the 

secondary antibody for 1 hour at room temperature. The membrane was washed in TBS-T 

3 times for 10 minutes before treating with enhanced chemiluminescence (ECL) solution 

and exposing to an X-ray film for times between 30 seconds and 30 minutes. Total protein 

levels loaded were determined by Coomassie staining of protein gels or by Ponceau 

staining of the membranes used in the blot. 
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Chapter 3: Characterisation and expression of Receptor-Like 

Cytoplasmic Kinase 1 and 2  
 

3.1 Introduction 

Medicago truncatula (alongside Lotus japonicus and Glycine max) is one of the model 

plants used to study the legume symbioses with rhizobia and AMF. Transformation of 

Medicago by floral dip transformation as previously performed in Arabidopsis is not 

possible on a large scale (Bechtold and Pelletier, 1998)  . T-DNA mutagenesis is not 

suitable for generating a large mutant collection due to the relative difficulty in 

transforming M. truncatula compared to Arabidopsis. D'Erfurth et al. (2003) used the long 

terminal repeats (LTR) retrotransposon Tnt1 from tobacco (Nicotiana tabacum) 

(Grandbastien et al., 1989) to transform the M. truncatula R108 ecotype. They showed 

that during regeneration from tissue culture the Tnt1 retrotransposon transposes at a 

higher frequency into transcriptionally active euchromatin than non-coding euchromatin 

regions and that they are stable during the life cycle of the plant. The retrotransposon can 

also be re-activated by tissue culture to generate more mutations. The Tnt1 retrotranspon 

uses a “copy and paste” system leaving the transposon in the original position whilst a 

copy of the transposon is inserted somewhere else in the genome, usually far away from 

the original. Tnt1 is 5.3 kb long and creates a 5 bp duplication at each end upon insertion. 

Each Tnt1 line is estimated to contain between 6 and 59 new insertions (Tadege et al., 

2008). This means that in the case of reverse genetic studies, within a single line there 

can be many insertions additional to the one in the gene of interest. Hemizygous 

insertions that arise in the initial generation (R0) segregate in subsequent generations 

(R1, R2 etc.) and so can be randomly lost or fixed as homozygous as the material is 

advanced, resulting in genotypically distinct sibling lines at later generations.  

At the Samuel Roberts Noble Foundation a Tnt1 insertion mutant collection has 

been generated that in 2011 was estimated to cover 85% of the M. truncatula genome 

(D'Erfurth et al., 2003; Tadege et al., 2005; Tadege et al., 2008; Cheng et al., 2011). A 

Flanking Sequence Tag (FST) database, which was generated by TAIL-PCR showing the 

sequences surrounding Tnt1 insertions in each line, can be BLAST searched using the 

genomic sequence of a gene of interest to find useful Tnt1 lines. The Tnt1 collection can 

also be reverse screened via PCR using gene-specific primers if an FST cannot be found.  

In this way, this collection can be used to identify mutant lines segregating for a desired 

mutation. 
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Another extremely useful resource open to the Medicago research community is 

the Medicago Gene Expression Atlas (MtGEA). It is compiled by the Samuel Roberts 

Noble Foundation and collates data from Affymetrix Medicago Gene Chip® experiments 

for M. truncatula under a variety of biological and chemical conditions (Benedito et al., 

2008; He et al., 2009; Hogekamp et al., 2011; Czaja et al., 2012; Gaude et al., 2012; 

Seabra et al., 2012). Based on interesting expression profiles that show gene expression 

during, and induced by, the presence of symbiotic partners, and a high sequence 

homology to each other (76 % at the nucleotide level and 69 % at the amino acid level), 

two kinase genes were selected for investigation. Based on their lack of transmembrane 

domains and close homology to a member of the Rice Receptor-like cytoplasmic Kinase 

Family XV (Jung et al., 2010) these genes were named Receptor-like Cytoplasmic Kinase 

1 (RLCK1) and RLCK2. 

RLCKs have been shown to interact with membrane bound receptor kinases and 

phosphorylate downstream signalling components in the PAMP-triggered immunity and 

brassinosteriod signalling pathways (Tang et al., 2008; Kim et al., 2009; Lu et al., 2010; 

Zhang et al., 2010a; Shi et al., 2013a). There are several RLKs required for symbiosis and 

currently for the symbiosis signalling pathways we do not know how the signal travels 

from the plasma membrane to the nuclear envelope to activate DMI1. It is possible that 

RLCKs are part of the signal relay. 

During the course of this study, Damiani et al. (2012) published that in M. 

truncatula expression of RLCK1 was in nodule zones I and II as part of their study into the 

similarities between the development of a nodule and a pathogenic nematode gall. Andrio 

et al. (2013) later identified RLCK1 as part of their transcriptome analysis investigating the 

role of reactive oxygen species (ROS) in nodulation, naming it MtSpk1 (Symbiotic Protein 

Kinase 1). They showed that RLCK1 was upregulated both in response to NF and 

hydrogen peroxide treatment. Using promoter-GUS analysis they showed that RLCK1 

was expressed throughout rhizobial infection, early nodule development and in the nodule 

infection zone (Zone II) confirming the earlier study (Damiani et al., 2012). Andrio et al. 

(2013) used an artificial micro-RNA (amiRNA) to reduce the gene expression of RLCK1 to 

an average of 40% of the control expression and was able to see a significant reduction of 

2 nodules/plant on the knock-down plant roots. They also had a preliminary look at the 

expression of known symbiotic genes in the amiRNA roots and saw a reduction in the 

expression of transcription factors MtNIN and NF-YC1 (formerly MtHap2.1). However, 

Andrio et al. (2013) did not have any stable mutants for RLCK1 and RNAi silencing can be 

subject to off-target gene silencing. I discuss the limitations of RNAi in more detail in 

Chapter 4. They also did not look at RLCK2 which has a 76% nucleotide sequence 
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homology with RLCK1. Here I show that my work on the RLCKs is complimentary to and 

expands upon the work already published using stable mutants to characterise the mutant 

phenotypes. 

3.2 Identification of Mutants for RLCK1 and RLCK2 

Using the tools available on the Medicago Insertion Database FSTs were identified for 

insertions in the second intron (447 bp genomic), third exon (621 bp genomic) and third 

intron (878 bp genomic) of RLCK1 in Tnt1 insertion lines NF12390 (rlck1-1), NF10796 

(rlck1-2) and NF11296 (rlck1-3) respectively. R1 generation seeds were obtained from the 

Samuel Roberts Noble Foundation and homozygote mutants for each insertion were 

identified using gene specific primers #1 and #3 and primers #1 and #10 for Tnt1 

identification (see appendix I)  (fig. 3.2.1a). rlck1-3 produced a very low number of viable 

seed and so was not studied further. The expression of RLCK1 in the rlck1-1 and rlck1-2 

alleles was tested using semi-quantitative PCR on cDNA generated from 21dpi nodulated 

root tissue (fig. 3.2.1b). RLCK1 expression was detected in rlck1-1 but not in rlck1-2 at 28 

cycles. The amplified cDNA band for RLCK1 in rlck1-1 was sequenced and was not 

different from WT (R108). This allele was not used for further investigation.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1. Allele identification for RLCK1. 

(a) RLCK1 comprises of 4 exons (blue) and 3 introns. Tnt1 insertion alleles at nucleotides 

447 (rlck1-1), 621 (rlck1-2), 878 (rlck1-3) of the genomic sequence. Gene specific (solid 

arrows) and Tnt1 specific (dashed arrows) primer positions shown beneath the gene 

structure. (b) Semi-quantitative RT-PCR of RLCK1 and EF1α (positive control) in 21 dpi 

nodulated root. RLCK1 band is 1122bp. EF1α is a 100 bp fragment. 28 cycles.  
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 For RLCK2, an FST was identified in the fourth exon (1342 bp genomic) in line 

NF5270 and the allele was designated rlck2-1. Homozygous mutants for rlck2-1 were 

identified by PCR using the gene-specific primers #4 and 6 and primers #4 and #10 for 

the Tnt1 identification (See Appendix I). A second allele, designated rlck2-2, was identified 

by TILLING (RevGen UK, Norwich). The mutation is a C to T change at base pair 1407 

(genomic) causing a Q to STOP change at amino acid 269, creating a premature stop 

codon at the protein level (fig. 3.2.2). RLCK2 expression was tested using semi-

quantitative PCR on cDNA generated from 21dpi nodulated root tissue (fig. 3.2.2b). Some 

rlck2-1 individuals had some detectable expression at 28 cycles, but the band detected 

contained a 147bp deletion (478-625) within the cDNA which was confirmed by 

sequencing of the cDNA. This could occur by the splicing out of the Tnt1 transcript from 

the rlck2-1 mRNA removing some of the RLCK2 sequence in the process. The resulting 

protein from the mis-spliced mRNA would have a missense amino acid sequence 

resulting in a missing RD domain and a premature stop codon that would remove the 

majority of the kinase domain. rlck2-2 still has detectable levels of RLCK2 expression at 

28 cycles, however the C to T mutation was confirmed by sequencing at base pair 805 in 

the cDNA. rlck2-1 is in the R108 background and rlck2-2 is in the A7 background. 

 

 

 

 

 

 

 

 

 

Figure 3.2.2. Allele identification for RLCK2. 

(a)RLCK2 comprises of 4 exons (blue) and 3 introns. rlck2-1 is an exonic Tnt1 insertion at  

1342 bp (genomic). rlck2-2 is a single base pair mutation at 1407 bp (genomic) causing a 

premature stop codon. Gene specific (solid arrows) and Tnt1 specific (dashed arrows) 

primer positions shown beneath the gene structure. (b) Semi-quantitative RT-PCR for 

RLCK2 and EF1α in A17 and rlck2 mutants in 21 dpi nodulated root. rlck2-1 bands (963 

bp) are 147 bp smaller than WT (1110 bp). rlck2-2 has a full length cDNA and WT 

expression but contains a premature stop codon. EF1α is a 100 bp fragment. 28 cycles. 
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3.3 Nodulation phenotypes of rlck1 and rlck2 

3.3.1 Rhizobial Infection 

To score the numbers of infection events rlck1 and rlck2 mutant seedlings alongside WT 

R108 and A17 were inoculated with LacZ-expressing Sm1021. Plants were scored for the 

number of microcolonies, infection threads (ITs) and nodule primordia at 6 dpi. rlck1-2 

was found to have a signfificantly higher number of microcolonies than WT (R108) 

(p=0.029 and p=1.59x10-6 respectively) (fig. 3.3.1.1). The infection threads in the rlck1-2 

mutants sometimes appeared to be thicker than WT (fig. 3.3.1.2a,c,e) but progressed to 

the nodule primordia as normal (fig. 3.3.1.2f).  

The rlck 2-1 mutant is not significantly different from WT (R108) for any of the 

infection events (fig. 3.3.1.1) and the infection threads and nodule primordia look normal 

(fig. 3.3.1.3a). However, rlck2-2 had significantly fewer infection events at all stages 

compared to WT (A17) – microcolonies (p=3.53x10-5), ITs (p=2.19x10-6) and fewer nodule 

primordia (p=7.38x10-7) (fig. 3.3.1.1). The root hairs on the rlck2-2 mutant appeared 

shorter and infection threads (where viewed) appeared thicker and misshapen compared 

to WT (A17) (fig. 3.3.1.3b). 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1.1. The number of infection events per plant in the rlck mutants and WT.   

Plants were harvested at 6dpi Infections were visualised by LacZ-expressing S. meliloti 

1021 (Sm1021). The subscript next to each allele refers to the background of the allele. A 

2-tailed t-test was used to compare means between each allele and their respective 

control. The data is an average of 16 to 20 individual plants with the bars representing 

standard error. *p<0.05 ***p<0.001 
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Figure 3.3.1.2.  Differences between rlck1 and WT (R108) infection threads.  

The infection threads in rlck1-2 (a) appear thicker and less regular in shape than WT (c). 

The rlck1-2 mutants are also hyper-infected, infection threads are indicated by 

arrowheads (b) compared to WT (R108) (c). Infection threads in the rlck1-2 mutants are 

able to progress to the nodule primordia (d). Infections were visualised by using LacZ-

expressing S. meliloti 1021. Scale bars in (a) is 50µm, all other scale bars are 100 µm. 

Images taken at 6 dpi. 

 

 

 

 

 

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1.3. Differences between rlck2 and WT (R108 and A17) infection threads.  

The infection threads (arrows) in rlck2-1 mutant (a) are normal compared to WT (R108) 

(c), however the rlck2-2 mutant (b) has shorter root hairs and deformed infections 

compared to their WT (A17) control (d). Very few threads at 6 dpi progressed to nodule 

primordia in the rlck2-2 mutant. Infections were visualised by using LacZ-expressing S. 

meliloti. Scale bars in (a) and (c) are 100 µm, scale bars in (b) and (d) are 50 µm. Images 

taken at 6 dpi. 
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3.3.2 Nodule formation 

rlck1-2 and rlck2 mutants were tested for their ability for form nodules at 21 dpi  with S. 

meliloti strain Sm1021 using R108 and A17 as controls. rlck1-2 had significantly fewer 

nodules than WT (R108) (p=0.038) with a specific reduction in the number of pink nodules 

(p=0.015) (fig. 3.3.2.1a). rlck2-1 had significantly more nodules than WT (R108) (p=0.048) 

with more white nodules (p=0.044). rlck2-2 had significantly fewer nodules than WT (A17) 

(p=6.11x10-5) with significantly fewer pink nodules (p=3.22x10-6) (fig. 3.3.2.1b). 

To more closely examine the symbiotic phenotype, mature pink nodules were 

sectioned. Nodule sections showed that in rlck1-2 mutants the bacteria are able to be 

released into the cortical cells of the nodule. In younger nodules the infection threads 

within the infection zone (Zone 2) are clearly visible in both the rlck1-2 mutants and in WT 

(R108) (fig. 3.3.2.2 a-d). However, as the nodule matures, this zone becomes diminished 

in the WT (R108) nodules but stays prominent in rlck1-2 with ITs seeming to reach into 

zone I (fig. 3.3.2.2e-f). This, along with the hyper-infected phenotype of the rlck1-2 mutant 

at the early stages of nodulation, suggests a role for RLCK1 during infection.  

Nodule sections of rlck2 mutants show that the bacteria were able to be released 

into the cortical cells of the nodules. rlck2-1 nodules look as WT (R108) (fig. 3.3.2.3a-d). 

At 28 dpi rlck2-2 had only produced small nodules compared to WT (A17) but zones I, II 

and II-III were visible and normal in appearance (fig. 3.3.2.3e-f). 
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Figure 3.3.2.1. Nodulation in WT and rlck mutants.  

(a) Number of nodules for the rlck1 mutant alleles and WT (R108). The data are averages 

of 13 to 19 individual plants with error bars displaying the standard error. (b) Number of 

nodules for the rlck2 mutant alleles and respective control WT (R108 and A17).  A 2-tailed 

t-test was used to compare the means of each allele to their corresponding control. The 

data are averages of 12 - 20 plants. Bars display standard error. *p<0.05. 
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Figure 3.3.2.2. Nodule sections of rlck1 mutants and R108 WT at different developmental 

stages.  

In young nodules infection threads (arrows) can be seen in the apex of the nodule in both 

R108 WT (a and c) and in the rlck1-2 mutant (b and d). However the infection threads can 

still be seen in mature rlck1-2 mutant nodules (f) but not in the mature nodules of R108 

WT (e). Images (g) and (h) are computationally magnified from images (e) and (f) 

respectively.  Infections were visualised by using LacZ-expressing S. meliloti. Sections 

were taken at 28 dpi. 3 nodules sectioned per genotype. Scale bars are 100 µm. 
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Figure 3.3.2.3 Nodule sections of rlck2 mutants and WT (R108 and A17).  

rlck2-1 nodules (b and d) appear normal compared to WT (R108) (a and c). rlck2-2 only 

produced small nodules (f and h) compared to WT (A17) (e and g) but these were 

colonised normally. Infections were visualised by using LacZ-expressing S. meliloti 1021. 

Sections were taken at 28 dpi. Scale bars are 100 µm. 
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3.4 Mycorrhizal phenotyping of rlck1 and rlck2 

rlck1 and rlck2 mutants were tested for their ability to be colonised by AMF 

Rhizophagus irregularis alongside WT R108 and A17. Colonisation was scored using the 

grid method (Giovannetti and Mosse, 1980) once WT colonisation was more than or equal 

to 50% (see materials and methods).  

rlck1-2 was found to be reduced in mycorrhizal colonisation compared to WT 

(R108). rlck1-2 mutants show a significant reduction in internal hyphae (p=4.89x10-5), 

vesicles (p=5.12x10-7) and arbuscules (p=7.38x10-7) (fig. 3.4.1a). Arbuscules in rlck1-2 

were small and did not fill the plant inner cortical cell as in WT (R108) (fig. 3.4.2).  

rlck2-1 and rlck2-2 were also reduced in mycorrhizal colonisation compared to 

their respective WT controls (R108 and A17). The rlck2 mutants were significantly 

reduced in internal hyphae (p=3.16x10-8 and p=0.006, rlck2-1 and rlck2-2 respectively), 

vesicles (p=1.07x10-5 and p=0.004, rlck2-1 and rlck2-2 respectively) and arbuscules 

(p=1.62x10-7 and p=0.009, rlck2-1 and rlck2-2 respectively) (fig. 3.4.1b). Arbuscules in 

rlck2-1 appear smaller and do not fill the plant inner cortical cells as in WT (R108). 

However, in rlck2-2 arbuscules, although fewer in number, fill the plant inner cortical cell 

as seen in WT (A17) (fig. 3.4.3). 
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Figure 3.4.1. AMF (R. irregularis) colonisation is reduced in rlck mutants. 

(a) Percentage AMF colonisation for the rlck1 mutant alleles and WT (R108). The data are 

averages of 18 – 25 individual plants. (b) Percentage of AMF colonisation of the rlck2 

alleles and WT (R108 and A17). The data are averages of 13- 25 plants.  Plants were 

scored when WT (R108) plants reached ≥50% colonisation (see materials and methods). 

Bars display standard error. A 2-tailed t-test was used to compare the means of each 

allele to their corresponding control. **p<0.01 ***p<0.001 
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Figure 3.4.2. AMF colonisation phenotypes of rlck1 mutants and WT (R108).  

R108 (a, b) and rlck1-2 (c, d) mutant roots colonised by R. irregularis. Arbuscules in rlck1-

2 were smaller, and did not fill the inner cortical cells (d). AMF is stained by ink. 

Phenotypes were scored when WT (R108) was colonised >50 % by AMF. Scale bars on 

(a) and (c) are 100 µm. Scale bars on (b) and (d) are 25µm. 
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Figure 3.4.3. AMF colonisation phenotypes of rlck2 mutants and WT plants. 

(a,b) R108 and A17 (c,d) WT and (e,f) rlck2-1 and (g,h) rlck2-2 mutant roots colonised by 

R. irregularis. Arbuscules in rlck2-1 did not fill the plant inner cortical cell as occurred in 

WT (R108). Arbuscules appeared normal in rlck2-2 compared to WT (A17). AMF is 

stained by ink. Plants were scored when WT (R108 and A17) were colonised >50 % by 

AMF. Scale bars on (a), (c), (e) and (g) are 100 µm. Scale bars on (b), (d), (f) and (h) are 

50 µm. 
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3.5 Expression of RLCK1 and RLCK2 

3.5.1 Expression of RLCK1 and RLCK2 by Microarray 

The Medicago Gene Expression Atlas (MtGEA) was used to survey expression data for 

RLCK1 and RLCK2 under varying biological and chemical conditions. RLCK1 expression 

is recorded via probe set Mtr.16214.1.S1_at (fig. 3.5.1.1). RLCK1 expression is 

upregulated just 6 hours after inoculation with Nod Factors and AM “Myc Factors” S-LCOs 

or NS-LCOs (unpublished data). RLCK1 expression is also high in young nodules (3, 4 

and 6 dpi) and during AM infection. This upregulation at the early stages of both 

symbioses supports the rlck1 phenotype seen during infection processes. Expression data 

acquired using laser capture of the AM colonised roots (Hogekamp et al., 2011) shows 

that RLCK1 expression is higher in the cortical cells adjacent to the arbusculated cortical 

cells than in the cells that contain arbuscules. These adjacent cells are potentially 

preparing for AM colonisation which fits with the infection related expression of RLCK1 

seen at earlier time-points. Unpublished microarray data show that RLCK1 is upregulated 

in root hairs of rhizobially infected plant at 3 and 5 dpi, the former time point 

corresponding to microcolony formation and the latter to when the infection thread is 

progressing through the root hair (Murray Lab)(fig. 3.5.1.2). The microarray data also 

suggests that the expression of RLCK1 in response to Nod Factor is dependent on NFP, 

DMI1 and DMI3. RLCK1 expression seems to be lower than WT in the transcription factor 

mutants nsp1, nsp2, ern1 and nin at 6 hours post inoculation (hpi) with NF. At 24 hpi with 

NF RLCK1 expression is dependant also on NSP1 and NSP2, but not ERN1 or NIN 

(Oldroyd Lab). 

RLCK2 expression is recorded via probe set Mtr.24207.1.S1_at.  RLCK2 has a 

constitutive expression in root tissue and is upregulated in response to rhizobia or 

mycorrhization (fig. 3.5.1.3). RLCK2 expression is upregulated in young nodules (3, 4 and 

6 dpi) and during AM infection. Laser capture of the AM colonised roots (Hogekamp et al., 

2011) shows that RLCK2 is expressed higher in the root cortical cells that contain 

arbuscules than other cortical cells. Unpublished microarray data (fig. 3.5.1.4) shows that 

RLCK2 has some constitutive expression in root hairs and is upregulated at 3 and 5 dpi 

(Murray Lab). It also shows that RLCK2 upregulation in response to NF is dependent on 

NFP, DMI1, DMI3, NSP2, ERN1 and NIN (Oldroyd Lab). These differing expression 

profiles suggest the two RLCKs could have differing but overlapping roles, or be working 

synergistically, during symbiosis and that the regulation their expression is under different 

genetic control. 
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Figure 3.5.1.1. Medicago Gene Expression Atlas (MtGEA) data for RLCK1.  

RLCK1 expression across a number of different experimental conditions. RLCK1 is highly 

expressed during early stages of both symbioses – nodulation (4dpi) and mycorrhizal 

infection. RLCK1 is also upregulated quickly after treatment with bacterial and mycorrhizal 

LCOs (NF and myc-LCOs). Laser capture dissection of AMF colonised roots (Root LCM) 

show that RLCK1 expression is higher in plant inner cortical cells neighbouring 

arbusculated cells than the arbusculated cells. 

   



58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.1.2.  Unpublished Medicago Gene Expression Atlas data for RLCK1. 

Affymetrix Medicago Gene Chip® data for RLCK1 in symbiosis mutants and in response 

to various conditions. RLCK1 is up regulated in root hairs during rhiziobial. Early 

upregulation of RLCK1 in response to NF is dependent on the symbiosis genes NFP, 

DMI1 and DMI3. RLCK1 is not upregulated in response to P. infestans. 
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Figure 3.5.1.3 Medicago Gene Expression Atlas (MtGEA) data for RLCK2.  

RLCK2 expression in a number of different tissues and experimental conditions. RLCK2 is 

constitutively expressed in root tissue.  Expression of RLCK2 is strongly upregulated 

during both symbioses – nodulation and mycorrhization. RLCK2 is also upregulated after 

treatment with bacterial LCOs (Nod factor) but not with mycorrhizal LCOs.  Laser capture 

dissection of AMF colonised roots (Root LCM) show that RLCK2 expression is higher in 

arbusculated plant inner cortical cells than neighbouring cells. 
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Figure 3.5.1.4. Unpublished Medicago Gene Expression Atlas data for RLCK2. 

Affymetrix Medicago Gene Chip® data for RLCK2 in symbiosis mutants and in response 

to various conditions. RLCK2 is up regulated in root hairs during rhiziobial infection. Early 

upregulation of RLCK2 in response to NF is dependent on the symbiosis genes NFP and 

DMI3. RLCK2 is not upregulated in response to P. infestans. 
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3.5.2 Symbiotically enhanced expression of RLCK1 and RLCK2 

The MtRLCK1 promoter-GUS construct (pRLCK1:GUS) was obtained from Nicolas Pauly 

(SPK1) (Andrio et al., 2013) and was transformed into M. truncatula R108 via A. 

rhizogenes. Roots were checked at 4, 7, 10, and 14 dpi with LacZ-expressing Sm1021. 

The GUS expression was visualised using X-GlcA staining and the bacteria were 

counterstained using Magenta-Gal.  Expression was confirmed for RLCK1 in infected root 

hairs, nodule primordia and in developing nodules as previously shown by Andrio et al. 

(2013). There was some non-symbiotic expression of RLCK1 in the root tips and lateral 

root primordia (fig. 3.5.2.1). Roots were also checked at 5, 10, 15 and 20 dpi with R. 

irregularis (Chive inoculum). The GUS expression was visualised using X-GlcA staining 

and the AMF was visualised by WGA staining. RLCK1 is expressed in the early stages of 

mycorrhizal infection with GUS expression visible in cells surrounding AMF penetration. 

RLCK1 is expressed at later stages of mycorrhizal infection, with GUS visible in the plant 

inner cortical cells surrounding AMF progression through the root (fig. 3.5.2.2). 

To compare the expression of RLCK2 to RLCK1 an RLCK2 promoter-GUS 

(pRLCK2:GUS) construct was made by PCR amplifying 2.3kb of the promoter region and 

cloning via Gateway into vector pKGWFS7 (Karimi et al., 2002). The construct was 

transformed into M. truncatula R108 via A. rhizogenes. Roots were checked at 4, 7, 10, 

and 14 dpi with LacZ-expressing Sm1021 and was visualised as described above. RLCK2 

was expressed throughout the root during the early stages of rhizobial symbiosis and at 

later stages in the developing nodule (fig. 3.5.2.3a-c). Roots were also checked at 5, 10, 

15 and 20 dpi with R. irregularis (Chive inoculum) as described above.  RLCK2 was 

expressed throughout the root during the early stages of AM symbiosis and it was strongly 

expressed in the inner plant cortical cells that contain arbuscules (fig. 3.5.2.3e-f). 
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Figure 3.5.2.1. pMtRLCK1:GUS expression during rhizobial symbiosis.  

The GUS activity (stained in blue) shows that RLCK1 is expressed in infected root hairs 

and cortical cells (a), and in nodules (b) as well as in root tips (c) and lateral root primordia 

(d). Scale bars in (a), (c) and (d) are 100 µm and 500 µm in (b). 
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Figure 3.5.2.2. pRLCK1:GUS expression during mycorrhizal symbiosis. 

GUS activity (stained blue) shows that RLCK1 is expressed during the early stages of 

mycorrhizal infection (a), (c) and (e), and in cortical cells surrounding mycorrhizal 

progression through the root (b), (d) and (f). The AMF is stained in red with WGA, shown 

in red in images (c) to (f). Scale bars are 60 µm in (a), (c) and (e), and 200 µm in (b), (d) 

and (f). 
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Figure 3.5.2.3. pRLCK2:GUS expression during rhizobial and mycorrhizal symbioses.  

The GUS expression (shown in blue) shows that RLCK2 is expressed throughout the root 

during the early stages of rhizobial (4 dpi) (a) and (b) and mycorrhizal symbiosis (10 dpi) 

(d). During the later stages of rhizobial symbiosis RLCK2 expression is can be seen in the 

nodule (14 dpi) (c). RLCK2 expression remains in the cortical cells at later stages of 

mycorrhizal symbiosis and is higher in arbusculated cells (starred) (e) to (g). The AMF is 

stained with WGA, shown in red in images (f) and (g). Scale bars are 100 µm in (a) and 

(b), 200 µm in (c) and (d), and 25 µm in (e), (f) and (g). 
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3.6 Phylogenetic analysis of RLCK1 and RLCK2 proteins 

It has been shown that legumes have undergone several Whole Genome Duplication 

(WGD) events (Cannon et al., 2006; Young et al., 2011); many of these gene duplicates 

have been retained, and some have been recruited into the legume-rhizobia symbiosis. 

The high homology between RLCK1 and RLCK2 could be due to the WGD in M. 

truncatula or it is possible that these two genes evolved much earlier in plant evolution. In 

order to determine the evolutionary history of RLCK1 and RLCK2 a phylogenetic analysis 

of RLCK1 and RLCK2 amino acid sequence was carried out identifying orthologues in a 

variety of different species across the plant kingdom (fig. 3.6.1). 

RLCK1 and RLCK2 have representatives in legumes (fig. 3.6.1 in blue) such as 

soybean and chickpea, and in monocots (fig. 3.6.1 in light brown) such as rice, 

switchgrass and maize known to symbiose with AMF.  Interestingly orthologues are 

present in ancient species such as Selaginella mollendorffii (spikemoss) and 

Physcomitrella patens (moss), and the basal angiosperm Amborella trichopoda. It is also 

important to note that the non-symbiotic species Arabidopsis thaliana does not have 

orthologues of the RLCKs. The presence of both RLCK1 and RLCK2 in such diverse plant 

species suggests that RLCK1 and RLCK2 evolved before the WGD event in legumes. The 

fact that there seems to be at least one copy each of RLCK1 and RLCK2 in most species 

supports the phenotypic evidence that they are both required for properly functional 

symbiosis. 

 

 

 

 

 

 

 

Figure 3.6.1. Phylogenetic tree for RLCK1 and RLCK2 proteins. 

RLCK1 and RLCK2 are closely related proteins but have their own distinct subclades 

across a wide variety of plants including Soybean (Glycine max), Rice (Oryza sativa and 

Oryza indica), Poplar (Populus trichocarpa), and Amborella trichopoda. The tree is rooted 

using the moss (Physcomitrella patens) orthologues. There are no Arabidopsis 

orthologues for either RLCK1 or RLCK2. Legumes are coloured blue, monocots are 

coloured in light brown, and mosses are coloured in green. Figure over leaf. 
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3.7 Discussion 

Evidence of RLCK1 and RLCK2 in ancient and basal land plants, such as mosses and 

Amborella, shows that these proteins evolved from an early gene duplication event. The 

persistence of these proteins in symbiotic plant species, and the lack of them in non-

mycorrhizal plants such as A. thaliana, suggests that both RLCK1 and RLCK2 play an 

important role during plant-microbe symbiosis. Based upon available gene expression 

data, expression of RLCK1 and RLCK2 is increased during both rhizobial and AMF 

symbiosis and this increase in expression may be dependent upon NF perception and 

calcium spiking. RLCK2 has some constitutive expression in the Medicago root which 

suggests RLCK2 might have a role during root growth and that it has been recruited for 

symbiotic interactions. The constitutive expression RLCK2 could also indicate that it is 

required for the very early stages of symbiosis and thus its expression may be required 

prior to signalling, an example of this is the Nod Factor receptors NFP and LYK3 (Amor et 

al., 2003; Smit et al., 2007). 

 Stable Tnt1 insertion mutants for rlck1 and rlck2 were isolated and found to have a 

reduction in AMF colonisation. Both rlck1-2 and rlck2-1 alleles had smaller, misshapen 

arbuscules compared to WT R108. The smaller arbuscules were not evident on the EMS 

generated rlck2-2 allele. The small arbuscules seen are similar to those seen on Mtpt4 

and Mt-ha1 (Javot et al., 2007; Krajinski et al., 2014; Wang et al., 2014).  It is unclear if 

this phenotype is due to stunted development of arbuscules or premature senescence. A 

time course looking at arbuscule development will be able to differentiate these two 

things. 

The reduction in nodulation with the rlck1-2 allele agrees with the effects reported 

for RNAi knockdown against RLCK1 carried out by Andrio et al. (2013). RLCK1 does 

appear to have a role in rhizobial infection with the rlck1-2 mutants showing a hyper 

infected phenotype which is sometimes seen on mutants that have a reduced nodule 

number (Murray et al., 2011). Promoter-GUS analysis showed RLCK1 expression in 

infected root hairs which contributes to the evidence of a role for RLCK1 during rhizobial 

infection.  

The rlck2-1 allele had an increased number of mature nodules compared to the 

WT (R108) control while in contrast the rlck2-2 allele showed a decreased number of 

infection events and fewer mature nodules compared to the WT (A17) control. The 

insertion in the rlck2-1 allele produces a cDNA that is missing 147bp from the middle of 

the sequence which encodes the RD domain, and results in a tract of missense amino 

acid sequence and a premature stop codon removing the majority of the kinase domain. 
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rlck2-2 originated from a mutant population generated by EMS mutagenesis (RevGen, 

UK). The seeds obtained were 5th generation after mutagenesis (M5) and by this time 

many mutations would be fixed through self-pollination. It seems likely that background 

mutations in rlck2-2 are contributing to the severe nodulation phenotype. A backcross of 

the rlck2-2 allele would reduce the number of background mutations and would help to 

clarify the rlck2 phenotypes. The promoter-GUS analysis for RLCK2 revealed expression 

in developing nodules, however the constitutive expression of RLCK2 in the root makes it 

hard to distinguish any symbiotically induced increases of expression in the root hairs and 

during early stages of rhizobial infection. However, the symbiotic induction of RLCK2 

expression is clear from available microarray data. 

The discrepancy between the different rlck2 alleles makes it difficult to conclude 

about the role of this gene in the symbioses. Further alleles or complementation of the 

rlck1 and rlck2 mutants are needed to better define their roles in symbiosis, however this 

study has shown that they both have a positive role in mycorrhizal symbiosis. 
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Chapter 4: Double Knockdown of RLCK1 and RLCK2 

4.1 Introduction 

Prokaryotes and eukaryotes contain many classes of RNAs with varying cellular functions, 

such as messenger RNAs (mRNA) and structural features within ribosomes (rRNAs). 

Eukaryotes contain a class of single-stranded small RNAs involved in endogenous gene 

silencing and post-transcriptional regulation of mRNA as well as protection from viral 

genomes by the destruction of viral RNA (Bazin et al., 2012). These single-stranded small 

RNAs are referred to as silencing RNAs (sRNAs). Two classes of sRNAs are microRNA 

(miRNA) and short interfering RNA (siRNA) (Hannon, 2002; Molnar et al., 2005; Ossowski 

et al., 2008). 

miRNAs are derived from longer RNA transcripts that contain imperfect 

complementary sequences that cause fold backs in the RNA. miRNA create the 

accumulation of a unique sRNA that tends to bind to one specific target sequence 

(Ossowski et al., 2008). siRNAs are derived from long strands of RNA that contain 

perfectly complementary sequences separated by an intronic region. This creates a 

hairpin RNA (hpRNA) with a long region of double stranded RNA (dsRNA) (Chuang and 

Meyerowitz, 2000; Wesley et al., 2001). siRNA generate several species of sRNA that can 

bind to many different sequences of mRNA. For both miRNA and siRNA the double 

stranded RNA is processed by a member of the DICER family of RNases that cut the 

dsRNA into short pieces of dsRNA between 20 and 30 bp long with 5’ and 3’ overhangs 

(Depicker and Van Montagu, 1997; Zamore et al., 2000; Bernstein et al., 2001; Elbashir et 

al., 2001). The sRNAs act as part of the RNA-induced silencing complexes (RISCs) 

providing the target specificity for the Argonaute catalytic subunit (Hammond et al., 2000; 

Bernstein et al., 2001; Baumberger and Baulcombe, 2005). It has been shown that siRNA 

in plants can also cause transcriptional gene silencing (TGS) by interacting with matching 

DNA, and recruiting DNA- and histone-modifying proteins to put the locus into a silent 

chromatin state (Hamilton, 2002; Xie et al., 2004).  

Jackson et al. (2003) showed in mammalian cells that siRNAs could affect the 

transcripts with partially complementary sequences as well as the intended target. This is 

known as off-target silencing. It is thought to be due to the way that Dicer and Dicer-like 

proteins process the hairpin RNA transcripts, and the generation of multiple different 

sRNAs. It was also shown by Palatnik et al. (2003) that miRNAs in Arabidopsis could have 

up to 5 mismatches with a target sequence and still be able to cause degradation. Off-

target degradation is useful if trying to knockdown homologues or gene families, but is 

something to be mindful of when designing specific silencing constructs. The 
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effectiveness of silencing constructs can vary greatly, the reason for which is not greatly 

understood, but could be due to positive feedback systems where transcription rates 

increase due to the reduced levels of mRNA. 

The best way of studying genes that are potentially functionally redundant is to 

cross stable single mutants to produce a double mutant. However, this is not always 

possible for example if the genes are closely linked on a chromosome or in cases where 

the double mutant is inviable. As an alternative, methods such as RNA interference 

(RNAi) can be used to investigate the double mutant phenotype. Despite many attempts 

to cross rlck1-2 and rlck2-1, in both directions, a viable seed was not produced.  In this 

chapter I describe use of two different RNAi approaches to observe the nodulation 

phenotype of the rlck1/rlck2 double mutant. 

 

4.2 Strategy 1: RNAi double knockdown  

In the first approach an RNAi construct was designed to target the RLCK1 mRNA using 

99 bp at the 3’ end of the RLCK1 CDS (fig.4.2.1) (see appendix I for construct map) was 

provided by Myriam Charpentier, John Innes Centre. It was made by TOPO® and 

Gateway® cloning of the fragment into a modified destination vector of pK7GW|WG2D(II) 

(Karimi et al., 2002) in which the eGFP has been replaced with dsRED as a plant marker - 

the new backbone is called pK7GW|WG2D(II)R (Capoen et al., 2011). This construct is 

named pK7GW|WG2D(II)R RLCK1 RNAi. 

WT (R108) roots were transformed with the RNAi construct pK7GW|WG2D(II)R 

RLCK1 RNAi via Agrobacterium rhizogenes-mediated hairy root transformation (Boisson-

Dernier et al., 2001). The transformed roots were inoculated with Sm1021 and examined 

at 21 dpi. The knockdown roots showed a significant reduction in the number of nodules 

at 21 dpi (p=0.019) compared to the empty vector controls (fig. 4.2.2a). qRT-PCR was 

used to determine the efficiency of the knockdown of the RLCK1 and RLCK2 transcripts. 

The construct knocks down RLCK1 by ~90% (p=0.030) compared to the empty vector 

control (fig. 4.2.2b). The construct also causes a reduction of RLCK2 expression 

compared to the empty vector control (p=0.13) (fig. 4.2.2b), this could be due to off-target 

gene silencing as the RLCK2 CDS has a  76% sequence homology to the RLCK1 CDS at 

the nucleotide level.  
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Figure 4.2.1. Clustal Omega alignment of RLCK1 and RLCK2 CDS with 5’ and 3’ UTR. 

Continued over page. 
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Figure 4.2.1. Clustal Omega alignment of RLCK1 and RLCK2 CDS with 5’ and 3’ UTR. 

RLCK1 and RLCK2 transcripts aligned using Clustal Omega. Estimated 5’ UTR 161 bp 

upstream of start codon and 3’ UTR 100 bp downstream of stop codon. 

pK7GW|WG2D(II)R RLCK1 RNAi target region highlighted in blue. pK7GW|WG2D(II)R 

RLCK2 RNAi target region highlighted in yellow. Asterisks signify matching alignment. 
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Figure 4.2.2. pK7GW|WG2D(II)R RLCK1 RNAi nodule number and fold change of 

expression of RLCK1 and RLCK2 relative to empty vector controls. 

(a) Knockdown plants show on average a significant reduction in the number of nodules 

compared to the empty vector control. Bars represent standard error. (b) RLCK1 and 

RLCK2 expression in the empty vector and RLCK1 knockdown roots was analysed by 

qRT-PCR. Knockdown plants have a reduced expression of RLCK1 and RLCK2 by 

approximately 90%. Bars represent relative standard error. Averages are composed of 10 

to 11 transformed roots. Data shown is representative of 2 experiments. A 2-tailed t-test 

was used to compare the means to the empty vector control * = p < 0.05 



74 
 

4.3 Strategy 2: RLCK2 knockdown in the RLCK1-2 mutant 

In order to confirm if the phenotype seen with pK7GW|WG2D(II)R RLCK1 RNAi was due 

to the rlck1/rlck2 knockdown and not due to off-target silencing of an alternative gene, a 

new RNAi construct was made using a 161 bp region of the estimated 5’ UTR of RLCK2 

immediately upstream of the start codon (fig. 4.2.1). This construct was designed to be 

more specific to RLCK2 and named pK7GW|WG2D(II)R RLCK2 RNAi (see appendix I for 

plasmid map). As a stable Tnt1 mutant for RLCK1 was available, construct 

pK7GW|WG2D(II)R RLCK2 RNAi alongside an empty vector control, was transformed into 

WT (R108) and rlck1-2 roots via A. rhizogenes-mediated transfer (Boisson-Dernier et al., 

2001). Plants were inoculated with Sm1021 and roots observed at 14 dpi. 

rlck1-2 empty vector (EV rlck1-2) roots had significantly (p=0.04) fewer nodules 

than the R108 empty vector control (EV R108) (fig. 4.3.1a). This is consistent with the 

nodule phenotype seen previously for rlck1-2 (fig.3.3.2.1). RLCK2 knockdown roots (RNAi 

R108) resulted in a significant reduction in the number of nodules compared to EV R108 

(p=0.007). Knockdown of RLCK2 in rlck1-2 roots (RNAi rlck1-2) have a significant 

reduction in nodule number compared to EV R108 (p=3.57x10-6), but also a further 

reduction in nodule number compared to EV rlck1-2 (p=0.002) and RNAi R108 (p=0.05) 

(fig. 4.3.1a).The RLCK2 specific RNAi construct significantly reduces the expression of 

RLCK2 in both the R108 and rlck1-2 backgrounds by an average of approximately 50% 

(p=0.03 for both) (fig. 4.3.1b).  
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Figure 4.3.1. pK7GW|WG2D(II)R RLCK2 RNAi nodule number and relative expression of 

RLCK2 in RLCK2-specific knockdown roots. 

(a) WT (R108) or rlck1-2 roots transformed with empty vector (EV) or RLCK2 RNAi 

knockdown (RNAi) constructs. Roots transformed with the RLCK2 knockdown construct 

had a significantly reduced nodule number compared to their EV control. Nodulation 

scored at 14 dpi. Bars represent standard error. (b) RLCK2 expression was analysed by 

qRT-PCR. RLCK2 expression was significantly reduced in in the knockdown roots. Bars 

represent relative standard error. Averages are from of 7 to 14 transformed roots. Data 

shown is representative of 2 experiments.  A 2-tailed t-test was used to compare the 

means to the R108 empty vector control *p < 0.05, **p<0.01 ***p<0.001 
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4.4 Discussion 

A stable rlck1/rlck2 double knockout mutant would be the best material to determine 

quantitative symbiotic phenotypes. In the absence of a stable double mutant, the effect of 

an rlck1/rlck2 double mutant on rhizobial symbiosis was investigated using RNAi. 

pK7GW|WG2D(II)R RLCK1 RNAi  creates a hairpin RNA that is identical in sequence to a 

region of to RLCK1 mRNA and highly similar to RLCK2 mRNA. pK7GW|WG2D(II)R 

RLCK1 RNAi was designed to work via PTGS to directly reduce the level of RLCK1 

transcript and to reduce the levels of RLCK2 transcript by off-target gene silencing. The 

second construct pK7GW|WG2D(II)R RLCK2 RNAi  was designed to be more specific to  

RLCK2, creating a hairpin RNA identical to the 5’ UTR of RLCK2 immediately upstream of 

the start codon.  

Both RNAi constructs caused a reduction of RLCK2 expression, however  

pK7GW|WG2D(II)R RLCK2 RNAi is less effective in reducing RLCK2 transcript levels 

than pK7GW|WG2D(II)R RLCK1 RNAi; This could be due to the 5’UTR being AT rich and 

thus less efficient at binding the target transcript. When levels of RLCK1 and RLCK2 

expression were simultaneously reduced, either by double knockdown or by selective 

targeting of RLCK2 in the rlck1 mutant, transformed roots showed a near complete 

reduction in the number of nodules. 

 The strong reduction in nodulation in the RNAi-mediated double knockdown roots 

supports the idea that RLCK1 and RLCK2 may have partially overlapping or synergistic 

functions during symbiotic interactions. rlck1 and rlck2 single mutants had relatively 

stronger phenotypes during AMF interactions than with rhizobial interactions, therefore it 

would be interesting to see how the double knockdown roots interact with AMF. I would 

expect that in the absence of RLCK1 and RLCK2 arbuscular mycorrhization would be 

massively reduced compared to WT and single mutants.  
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Chapter 5: Work towards identification of interacting partners of 

RLCK1 and RLCK2 Proteins 

5.1 Introduction 

In PAMP triggered immunity and brassinosteroid signalling cytoplasmic kinases have 

been shown to interact with RLKs at the plasma membrane and relay the signal through 

the cytoplasm to activate gene expression in the nucleus (Tang et al., 2008; Zhang et al., 

2010a; Kim et al., 2011; Shi et al., 2013a; Shi et al., 2013b; Wang et al., 2013). As RLCK1 

and RLCK2 are predicted to be cytoplasmic kinases and are expressed during both 

symbioses it is possible that they interact with the other kinases of the CSP such as NFP, 

LYK3, DMI2 or DMI3 or themselves (Stracke et al., 2002; Lévy et al., 2004; Mitra et al., 

2004). Potential interactions could be tested through yeast-2-hybrid assays and co-

immunoprecipitation (Co-IP) experiments. In addition, fluorescent fusions of these proteins 

could be used for co-localization studies and to determine their subcellular localization. 

Towards accomplishing these goals a large suite of constructs were made using different 

epitope tags and fusions that could be used for localization, yeast-2-hybrid and Co-IP 

approach to find interacting partners. In order to make the large set of multigene 

constructs needed for Co-IP a more advanced cloning approach was taken using the new 

Golden Gate cloning system (Engler et al., 2008; Engler et al., 2009; Weber et al., 2011). 

Traditionally molecular cloning was a long process comprised of multiple steps, 

cutting and sticking DNA with restriction enzymes and ligases until the desired construct 

was complete. Many attempts have been made to streamline the process of molecular 

cloning and make DNA construction a standardised process. In 1996 Rebatchouk et al  

published the NOMAD strategy where modules could be combined sequentially using the 

StyI restriction enzyme to form a composite module that can then be subcloned into 

alternate preconstructed expression vectors (Rebatchouk et al., 1996). Knight (2003) 

proposed the BioBrick standard of assembly where each biological part (promoter, gene, 

tag etc.) is sequentially combined using restriction enzymes, such that when two or more 

pieces are joined there is still the same restriction sites on the ends as before making the 

basic and composite parts idempotent. The beauty of the BioBrick system was that any of 

the basic or composite parts could be joined to any other and an ever growing library of 

parts was available (Shetty et al., 2008). The Gateway® cloning system by Invitrogen™ 

remains a popular cloning system, using recombination sites rather than restriction 

enzymes, to place fragments of interest into destination vectors in frame with tags or 

signals already present in the destination vector (Hartley et al., 2000; Karimi et al., 2002). 

This reduces the cloning process to 3 steps; amplification, BP reaction and LR reaction. 

The compatibility between entry and destination vectors means that the same cloned 
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fragment within an entry vector can be inserted into multiple different destination vectors 

reducing the time taken to create new constructs. However, there are limitations with all of 

these cloning systems. For NOMAD and BioBrick the limitations lie in only being able to 

assemble fragments in single sequential steps. In Gateway® the limits are the limited 

number of destination vectors available, the maximum size of the vector and the creation 

of unavoidable linker nucleotides at the recombination site. 

 The Golden Gate cloning system allows directional multi-fragment assembly in one 

reaction (Engler et al., 2008; Engler et al., 2009). Golden Gate cloning is based on Type 

IIS restriction enzymes which cleave outside of their recognition site. This allows the 

creation of many different cleavage sites and when the recognition sites are placed 

flanking a DNA fragment of interest the cleavage sites are removed from the ligated 

product. The design of the cleavage sites can be such that the pieces can be ligated 

without additional nucleotides or linkage sequences i.e. the restriction enzyme cut and 

ligation sequence can be the last base pair of the CDS sequence and the first 3 bases of 

a tag allowing for the seamless ligation of CDS to tag  (Engler et al., 2008; Engler et al., 

2009; Weber et al., 2011). 

 The Golden Gate system works by having 3 levels of construction. Level 0 

modules (L0) are the basic components, such as promoters, signal peptides, 5’UTRs 

Terminators, 3’ Tags, and CDSs. These modules can be plasmid inserts, PCR amplicons 

or synthesised double stranded DNA. Each type of component would be flanked by the 

same cleavage sites and these sites would be compatible with the flanking module. For 

example, all promoter sequences would have a 5’ overhang of GGAG and 3’ overhang of 

TACT, all 5’ UTR sequences have 5’ overhangs of TACT and 3’ overhangs of AATG, and 

so on. In this way any combination of basic modules from the L0 library can be used as 

long as the overhangs match up. The combined L0 constructs combine using the Type IIS 

restriction enzyme BsaI and a T4 DNA ligase to create a Level 1 (L1) module which is a 

complete transcriptional unit. Multiple L1 modules can then be combined using a different 

Type IIS restriction enzyme BpiI and a T4 DNA ligase to create multigene constructs. Up 

to 7 L1 modules can be combined into Level 2 (L2) constructs (Engler et al., 2008; Engler 

et al., 2009; Weber et al., 2011). If an L2 construct is required with more than 7 

transcriptional units, an additional reaction can be performed using the L2i destination 

vector which can then accommodate an extra 6 constructs (13 transcriptional units in 

total), as demonstrated by Weber et al. (2011). 
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 In this chapter I have used both the Gateway® and Golden Gate systems to create 

a suite of destination vectors that can be used for subcellular localisation and biochemical 

analysis of RLCK1 and RLCK2 using a yeast 2-hybrid and Co-IP approach. 

5.2 In silico analysis of RLCK1 and RLCK2 proteins 

The 373 and 374 amino acid sequences of RLCK1 and RLCK2 were analysed for 

potential protein domains initially using InterProScan4 (Hunter et al., 2012) and the 

ExPASy Bioinformatics Portal (Artimo et al., 2012) (accessed in 2011) and then again 

later using InterProScan5 (Jones et al., 2014) and the Calmodulin target database 

(http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html) (accessed in 2014) .  

 Initial predictions suggested that RLCK1 and RLCK2 were predominantly kinase 

domain with an ATP binding site and an RD active site. A Concanavalin A-like lectin 

domain and a calmodulin binding domain at the N-terminal region of the protein before the 

RD active site were identified using the updated protein prediction software (table 5.2.1). 

No signal sequences or transmembrane domains are predicted suggesting cytoplasmic 

localisation. Therefore the full length proteins can be used in the yeast 2-hybrid system as 

they are suggested to be soluble proteins. 

Domain Amino acid 

position in 

RLCK1 

Amino acid 

position in 

RLCK2 

Concanavalin A-

like Lectin domain 

12-54 27-59 

Calmodulin 

binding domain 

55-119 60-124 

ATP binding 

domain 

48-71 53-75 

RD active site 164-176 169-181 

Kinase domain 23-313 31-329 

 

Table 5.2.1. Positions of predicted protein domains in RLCK1 and RLCK2. 
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5.3 Preliminary Yeast 2-Hybrid Analysis 

A preliminary yeast 2-hybrid experiment was conducted testing RLCK1 and RLCK2 for 

interactions with symbiosis pathway kinases DMI2 and DMI3, as well as with themselves 

and each other. Yeast 2-hybrid constructs were made for RLCK1 and RLCK2 by the 

TOPO® and Gateway® cloning systems into both bait (pGADT7) and prey (pGBKT7) 

vectors. DMI2 and DMI3 constructs were obtained from the lab construct library. 

Interactions with AD-T or BD-53 were used as negative controls and the AD-T/BD-53 

interaction was used as a positive control. When grown on the selection plate only the 

positive control yeast grew (fig. 5.3.1). These preliminary results suggest that the RLCKs 

do not interact with these components of the Nod factor signalling pathway. This approach 

was not pursued further. 

 

 

 

 

 

 

 

Figure 5.3.1. Yeast 2-Hybrid assay for RLCK1 and RLCK2 protein interactions. 

RLCK1 and RLCK2 were tested for interactions with RLCK1, RLCK2, DMI2 and DMI3.  

(a)  AD-DMI2, BD-RLCK1, (b) AD-DMI2, BD-RLCK2, (c) AD-DMI2, BD-53, (d) AD-DMI3, 

BD-RLCK1, (e) AD-DMI3 BD-RLCK2, (f) AD-DMI3, BD-53, (g) AD-T, BD-RLCK1, (h) AD-

T, BD-RLCK2, (i) AD-T, BD-53 (positive control), (j) AD-RLCK1, BD-RLCK1, (k) AD-

RLCK1, BD-RLCK2, (l) AD-RLCK1, BD-DMI2, (m) AD-RLCK1, BD-DMI3, (n) AD-RLCK1, 

BD-53, (o) AD-RLCK2, BD-RLCK1, (p) AD-RLCK2, BD-RLCK2, (q) AD-RLCK2, BD-DMI2, 

(r) AD-RLCK2, BD-DMI3, (s) AD-RLCK2, BD-53. 
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5.4 Protein localisation 

Protein localisation constructs were made by cloning the CDS of RLCK1 and RLCK2 

fused to mCherry behind the Ubiquitin promoter. RLCK1 and RLCK2 were fused at the 5’ 

end to mCherry  through PCR and then cloned into vector pUB-GW-GFP (Maekawa et al., 

2008) by the Gateway® cloning system. This destination vector contains a constitutively 

expressed GFP to allow the easy identification of transgenic roots. To check that the 

fused proteins were expressed the constructs were infiltrated into N. benthamiana leaves. 

Leaf discs were taken at 1, 2 and 3 dpi and checked on a confocal microscope for protein 

localisation. No mCherry expression was seen. GFP expression was seen at 2 dpi which 

suggests that the constructs were transformed into N. benthamiana. The lack of mCherry 

fluorescence suggests that the constructs are not correctly expressing the fusion protein 

or that the fusion protein was being degraded. Due to uncertainty over the functionality of 

the constructs they were not transformed into M. truncatula roots. 

5.5 Construction of Golden Gate constructs for future protein 

interaction studies 

Using the Golden Gate cloning system constructs were made that can be used to look for 

interaction partners by Co-IP in Medicago roots or targeted interactions in N. benthamiana 

(table 5.5.1; more detail in appendix 1). Interactions of the RLCKs would help us elucidate 

a role for these proteins during symbiosis. N. benthamiana leaves were infiltrated with A. 

tumefaciens transformed with the constructs and leaf discs were taken at 1, 2 and 3 dpi. 

Proteins were detected using Western blots and α-myc or α-eGFP antibodies. Expected 

protein sizes are listed in table 5.5.2. 

C-terminally myc tagged RLCK1 and RLCK2 were detectable at 2 and 3 dpi with most 

constructs with the exception of constructs EC67044 to EC67047.  N-terminally tagged 

RLCK1 was detectable at 1, 2 and 3 dpi for most constructs but myc-RLCK2 was not very 

well expressed and was only detectable with the EC67035 construct at 1 and 3 dpi. Out of 

all the eGFP tagged proteins MtHMGR1-GFP was the easiest to detect via Western Blot 

and was expressed with all its respective constructs being detectable at 2 and 3 dpi. 

Otherwise MtDMI2-GFP was weakly detected at 2dpi with construct EC67022 (fig. 5.5.1). 
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Construct Protein 1 Protein 2 

EC67007 RLCK1-myc - 

EC67008 RLCK2-myc - 

EC67014 RLCK1-myc MtNFP-eGFP 

EC67015 RLCK1-myc MtLYK3-eGFP 

EC67016 RLCK1-myc MtHMGR-eGFP 

EC67017 RLCK1-myc MtDMI2-eGFP 

EC67018 RLCK1-myc RLCK2-eGFP 

EC67019 RLCK2-myc MtNFP-eGFP 

EC67020 RLCK2-myc MtLYK3-eGFP 

EC67021 RLCK2-myc MtHMGR-eGFP 

EC67022 RLCK2-myc MtDMI2-eGFP 

EC67034 myc-RLCK1 - 

EC67035 myc-RLCK2 - 

EC67038 myc-RLCK1 MtNFP-eGFP 

EC67039 myc-RLCK1 MtLYK3-eGFP 

EC67040 myc-RLCK1 MtHMGR-eGFP 

EC67041 myc-RLCK1 MtDMI2-eGFP 

EC67042 myc-RLCK1 RLCK2-eGFP 

EC67043 myc-RLCK1 eGFP-RLCK2 

EC67044 myc-RLCK2 MtNFP-eGFP 

EC67045 myc-RLCK2 MtLYK3-eGFP 

EC67046 myc-RLCK2 MtHMGR-eGFP 

EC67047 myc-RLCK2 MtDMI2-eGFP 

Table 5.5.1. A list of Golden Gate constructs and the proteins they express. 
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Protein Size 

(kD) 

RLCK1-myc 45.37 

RLCK2-myc 45.75 

myc-RLCK1 45.37 

myc-RLCK2 45.75 

MtNFP-eGFP 93.03 

MtLYK3-eGFP 95.58 

MtHMGR-eGFP 86.03 

MtDMI2-eGFP 131.18 

RLCK2-eGFP 68.99 

eGFP-RLCK2 68.99 

eGFP 26.9 

myc 3.67 

Table 5.5.2. Expected protein sizes for the proteins expressed by the Golden Gate 

constructs. 
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Figure 5.5.1. continued overleaf 
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Figure 5.5.1. Expression of Proteins in N. benthamiana from the Golden Gate constructs. 

Expression of tagged proteins in N. benthamiana infiltrated with Golden Gate constructs 

using A. tumefaciens was checked at 1, 2 and 3 dpi by Western blot. RLCK1-myc and 

RLCK2-myc bands could be detected at 2 and 3 dpi (~45kD). myc-RLCK1 can be seen 

with some constructs at 1, 2 and 3 dpi. myc-RLCK2 could only be detected with one 

construct (EC67035) at 1 and 3 dpi. HMGR-GFP could be detected at 2 or 3 dpi (~86kD). 

DMI2-GFP was weakly detected at 2 dpi with construct EC67022 (~131.18kD). See table 

5.4.1 for construct details and table 5.4.2 for protein sizes. Protein levels were checked 

using Coomassie (blue) or Ponceau (Red) staining; Rubisco bands shown beneath the 

western blot. 
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5.6 Discussion 

An attempt was made to visualise protein localisation using mCherry tagged 

overexpressed RLCK1 and RLCK2. In preliminary experiments in N. benthamiana no 

mCherry fluorescence was seen in the leaf discs under the confocal microscope at 1, 2 or 

3 dpi. A Western blot is needed to be sure that the proteins are being properly expressed. 

It may be that no mCherry was seen because expression was being suppressed in the N. 

benthamiana leaves. Co-infiltration with a silencing suppressor plasmid such as p19 

would improve expression of the tagged proteins in N. benthamiana (Voinnet et al., 2003). 

Ideally localisation of the RLCKs would be best performed in M. truncatula roots where 

these proteins are naturally expressed. Alternate constructs using the ubiquitin and the 

native promoters in combination with the genomic and CDS sequences could be used to 

maximise the construct expression in Planta. It would also be good to check the 

localisation of the RLCKs with and without rhizobia and AMF in M. truncatula roots as the 

localisation may be different upon interaction with symbiotic partners. 

 Based on the expression patterns of RLCK1 and RLCK2 and the symbiotic 

phenotypes observed, members of the Nod factor signalling pathway were chosen to be 

investigated as possible interacting partners. Yeast 2-hybrid constructs have been made 

for RLCK1 and RLCK2. The yeast 2-hybrid constructs described here can be used in the 

future with a yeast 2-hybrid library to screen for interacting partners. A western blot should 

be performed to check that the proteins were correctly expressed in yeast. Yeast 2-hybrid 

uses the soluble regions of proteins, so for transmembrane proteins such as MtNFP1 and 

MtLYK3 and MtDMI2 this may not be the best method to use for the receptor kinases as 

they may require the full length protein for activation, or activation by a ligand such as Nod 

Factor, before they are able to interact. For this reason interaction studies of PAMP RKs 

and RLKs such as FLS2 tend to be investigated using a Co-IP method in N. benthamiana 

leaves. 

Several constructs have been made for expressing RLCK1 and RLCK2 tagged to 

a myc tag, at either N or C termini, on their own or in combination with GFP tagged 

components of the symbiosis pathway. Preliminary analysis showed that only a handful of 

these constructs have given clearly expressed tagged proteins of the correct size on the 

Western blots. The proteins which were detected by Western blot analysis were the 

RLCKs and MtHMGR1. The RLCK proteins are smaller and are predicted to be localised 

within the cytoplasm which would make them easier to extract from the plant material than 

the larger membrane bound proteins. Further testing is needed to optimize expression of 

these constructs. Once expression is confirmed, these constructs can be used for a 

targeted Co-IP to see if RLCK1 and RLCK2 interact with MtNFP, MtLYK3, MtHMGR1 or 
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MtDMI2 in N. benthamiana. They can also be transformed into M. truncatula roots by A. 

rhizogenes-mediated hairy root transformation to look for interacting partners in planta 

and to confirm any positive interactions observed in N. benthamiana. 

Additionally in the analysis of RLCK1 and RLCK2 is to look at the protein functions 

and to discover interacting partners. RLCK1 and RLCK2 are predicted to contain a 

Concanavalin A lectin or lectin-like domain. Lectins have been shown to bind sugars and 

oligosaccharides. It would be worth testing these proteins with a carbohydrate-chip to 

attempt to determine their potential carbohydrate substrate(s) (Houseman and Mrksich, 

2002; Park et al., 2004).  
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Chapter 6: Identification of a mycorrhizal phenotype in M. 

truncatula Tnt1 insertion line NF5270 

6.1 Introduction 

Alongside the main project of RLCK1 and RLCK2, Tnt1 insertion seeds were obtained 

from the Samuel Roberts Noble Foundation for a third predicted kinase, the gene 

Medtr7g116650. The protein was predicted to contain a transmembrane domain and a 

cytoplasmic kinase domain, but have no extracellular domain, and as such the gene was 

named  receptor-like cytoplasmic kinase 3  RLCK3. The MtGEA profile for RLCK3 showed 

that it was upregulated during AMF colonisation and during nodule senescence, though 

interestingly not during nodule development (fig. 6.2.1) (Benedito et al., 2008; He et al., 

2009; Hogekamp et al., 2011; Czaja et al., 2012; Gaude et al., 2012; Seabra et al., 2012). 

It was possible that RLCK3 could provide insight to, and play a role in, the differentiation 

between rhizobial and mycorrhizal symbiosis. 

6.2 Identification of the RLCK3 mutant and Characterization of its 

Nodulation and Mycorrhizal Phenotypes 

A gene of interest was selected based on the expression profile of probe set 

Mtr.20292.1.S1_at on the Medicago Gene Expression Atlas (MtGEA) (Benedito et al., 

2008; He et al., 2009; Hogekamp et al., 2011; Czaja et al., 2012; Gaude et al., 2012; 

Seabra et al., 2012). The gene named as RLCK3 (Medtr7g116650) is up-regulated in later 

stages in nodulation and in nodules treated with phophinothricin (PPT), a glutamine 

synthetase inhibitor. It is also up-regulated during mycorrhizal infection by R. irregularis 

and in root inner cortical cells that contain arbuscules (fig. 6.2.1). To study this gene a 

Tnt1 line NF5270 was identified that contained a Tnt1 insertion in the second exon of 

RLCK3 at 1238 bp. This allele was named rlck3-1 (fig. 6.2.2 a).  R1 generation seeds 

were obtained from the Samuel Roberts Noble Foundation and homozygote mutants for 

rlck3-1 were identified by PCR using the gene specific primers #11 and #12 and primers 

#10 and #11 for Tnt1 identification within RLCK3  (fig. 6.2.2b and 7.2.2c). See Appendix 1 

for primer details. 
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Figure 6.2.1. Medicago Gene Expression Atlas data for RLCK3. 

The graph shows the expression level of RLCK3 under a number of different experimental 

conditions. Expression of RLCK3 is highly induced at later stages of nodulation and 

mycorrhization. RLCK3 is specifically upregulated in arbusculated inner cortical cells 

during AMF colonisation and in nodules treated with a source nitrogen or a Glutamine 

synthetase (GS) inhibitor (Phosphinothricin (PPT)). 
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6.2.1 Preliminary Nodulation and Mycorrhizal phenotypes of rlck3-1 

Two homozygous mutant sibling lines 9_NF5270 and 15_NF5270 were chosen for further 

study (fig 6.2.2). Preliminary nodulation and mycorrhizal phenotypes were examined in the 

progeny of these lines (fig. 6.2.3). Plant were inoculated with Sm1021 and examined at 21 

dpi.   Unexpectedly, line 15_NF5270 has significantly fewer nodules than WT (R108) 

(p=0.002) at 21 dpi, however only 5 plants were scored and so requires confirmation. Line 

9_NF5270 was not significantly different from WT (R108) (p=0.3) (fig. 6.2.3a).  

Plants were inoculated with the PlantWorks mycorrhizal inoculum and scored for 

percentage arbusculation at 8 wpi. A few progeny for 9_NF5270 was checked whilst 

seeds for 9_NF5270 and 15_NF5270 were being bulked for further phenotypic analysis. 

rlck3-1 line 9_NF5270 has significantly fewer arbuscules at 8wpi than WT (R108) 

(p=3.43x10-5) (fig. 6.2.3b). 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.2. Identification of RLCK3 Tnt1 insertion mutants in line NF5270. 

(a) Gene structure for RLCK3. Arrows represent exons. The position of the Tnt1 insertion 

is show as rlck3-1.  Gel electrophoresis image showing (b) WT RLCK3 and (c) Tnt1 

insertions amplified by PCR using DNA from individual NF5270 R1 plants. WT (R108) 

DNA was used as a control. Plants number 9 and 15 were selected as homozygote 

mutants and plant number 14 was chosen as a heterozygote for further study. 
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Figure 6.2.3. Preliminary nodulation and AMF colonisation phenotypes of rlck3-1 

(a) The NF5270 Tnt1 sibling line 15 has fewer nodules than line 9 and WT (R108). Data is 

an average of 5 - 10 plants. Plants were scored at 21 dpi.  A 2-tailed t-test was used to 

compare the means of each line and the WT (R108) (p<0.01). (b) Percentage of the root 

with arbuscules at 8 wpi with the PlantWorks inoculum. The 9_NF5270 line has 

significantly fewer arbuscules than WT (R108). Data is an average of 11 (R108) and 17 

(NF5270) plants.  A 2-tailed t-test was used to compare the means (p<0.001). Bars are 

standard error. 
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6.2.2 Segregation population of rlck3-1 

To test whether the mutation in RLCK3 cosegregated with the mycorrhizal phenotype 

observed in 9_NF5270, progeny from an rlck3-1 heterozygote sibling line 14 (14_NF5270) 

was used to generate a segregating population. The rlck3/rlck3 plants were not 

significantly different from the RLCK3/RLCK3 plants for levels of arbusculation in the root 

(Fig. 6.2.4).  

These results strongly suggest that the symbiotic phenotypes observed in NF5270 were 

not due to the insertion in RLCK3, and instead resulted from alternative mutations arising 

in the original R0 NF5270 Tnt1 insertion mutant line. It also indicates that the gene 

responsible for the mycorrhizal phenotype present in 9_NF5270, is not in the sibling line 

14_NF5270 used to generate the segregating population for rlck3-1, and that the gene 

responsible for the mycorrhizal phenotype was segregating in the parental generation 

(R2). The unknown gene conferring the strong mycorrhizal phenotype was named 

SCOOBY. 
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Figure 6.2.4. AMF colonisation of progeny for different genotypic classes from the 

14_NF5270 segregating population for rlck3-1.  

(a) Average percentage of arbusculation in the rlck3-1 segregating population generated 

from plant 14_NF5270. Roots were scored at 3 wpi with the Symplanta inoculum (see 

materials and methods). The data are averages of 11, 20 and 12 plants respectively. The 

means were not significantly different from each other (2-tailed t-test, p>0.05). The bars 

represent standard error. (b) A box plot to show the distribution of arbusculation in each 

rlck3-1 genotype. 
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6.3 scooby mycorrhizal phenotype 

A further investigation into the scooby mycorrhizal phenotype was carried out. Lines 

9_NF5270 and 15_NF5270 were grown with AMF chive inoculum for 5 weeks, until the 

WT colonisation was ≥ 50%. Both the 9_NF5270 and 15_NF5270 line showed a reduced 

percentage of root that contained arbuscules, with a mean average of 7.2% and 5.2% 

respectively compared to WT (R108) mean average of 81.4% and 77.33% respectively. A 

2-tailed t-test shows the colonization in both lines was significant (P=1.08x10-13 and 

P=4.92x10-16 for 15_NF5270 and 9_NF5270 respectively) (fig. 6.3.1). Microscopic 

examination of the scooby roots shows that as well as having a reduced number of 

arbuscules in the inner cortical cells, the arbuscules that were formed did not fill the cells 

and were misshapen (fig. 6.3.2). The AMF was able to penetrate the root, grow 

intracellular hyphae and form vesicles in the scooby mutant as in WT (R108). 

 

 

 

 

 

 

 

 

Figure 6.3.1.  AMF colonisation of NF5270 Tnt1 lines 

(a) Percentage of the root with arbuscules with the chive inoculum when colonisation of 

WT (R108) is >50%. Both 9_NF5270 and 15_NF5270 have significantly fewer arbuscules 

than WT (R108). Data is an average of 5 15_NF5270, 5 9_NF5270 and 9 and 10 WT 

(R108) plants respectively. A 2-tailed t-test was used to compare the means of the mutant 

to the WT (R108) control (p<0.001). 
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Figure 6.3.2. Mycorrhizal phenotypes of scooby and WT (R108).  

Light microscope images of (a, c) scooby mutant and (b, d) WT (R108) roots colonised by 

R. irregularis.  AMF hyphae are able penetrate and grow through the root cortex of 

NF5270 (a) and form vesicles (black arrowhead) as the WT (R108) (white arrowhead). 

Although the mutant can form structures resembling arbuscules (asterisks) they are much 

fewer in number and are misshapen compared to WT (R108) (b and d, starred). Images 

were taken at 5wpi. Scale bars are 200µm (a), 100µm (b) and 50µm (c and d).  
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6.4 Discussion  

The regeneration of M. truncatula containing the Tnt1 retrotransposon can cause many 

insertion mutations (Tadege et al., 2008). When taking a reverse genetics approach, the 

phenotype seen in one of the Tnt1 mutant lines may not necessarily be caused by the 

gene of interest but by a different background mutation. The Samuel Roberts Noble 

Foundation lists the mutant population by generating FSTs which show the genomic 

regions around the Tnt1 insertion. However, due to the possible number of insertions and 

limitations to the approach not all FSTs in a regeneration line are identified.  

 In the case of the mutant line NF5270, it was selected based on a known FST for 

the gene RLCK3 (Medtr7g116650), a predicted cytoplasmic kinase. Initial phenotyping in 

a sibling line homozygous for this gene showed a strong mycorrhizal phenotype. However 

a segregating population for rlck3-1, which was generated from a heterozygote sibling line 

(14_NF5270), showed that the mycorrhizal phenotype was not caused by the rlck3 

mutation. It also indicates that the mutation responsible for the mycorrhizal phenotype 

seen in 9_NF5270 and 15_NF5270 (scooby), was hemizygous at R0 and was segregating 

at R2 (fig. 6.4.1). 
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Figure 6.4.1. Tnt1 insertion line NF5270 

A diagram of the Tnt1 insertion line NF520. Generation R0 are hemizygous for many Tnt1 

insertions. Seeds from generation R1 are obtained and generation R2 plants which were 

genotyped  (fig 6.2.2) – green are WT,  blue are homozygous mutants and purple are 

heterozygous for the rlck3-1 Tnt1 insertion. Another insertion mutation in the line 

responsible for reduced mycorrhization, symbolised by the yellow circles, is also 

segregating in the R2 population and is homozygous in plant 9 and 15 but WT in plant 14.  
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As the mycorrhizal phenotype, scooby, is strong in the two sibling lines 9_NF5270 and 

15_NF5270, and is sustained over generations, it is worthy of further investigation. The 

gene, or genes, responsible for the phenotype can be investigated through genetic 

mapping and additional TAIL-PCR to look for more FSTs. Single base pair mutations, 

deletions and frame-shift mutations can also occur during the regeneration process. 

Whole genome sequencing such as Illumina sequencing, or transcriptome sequencing via 

RNA-seq could be used to identify these mutations. 

 Further characterisation of the scooby mycorrhizal phenotype should be carried 

out.  A time-course following AMF colonisation of mutant roots overtime could help to 

establish at which stage the AMF is inhibited. Lack of arbusculation could be caused by 

inhibition of the AMF at the epidermis or at a cortical level. Growth with nurse plants would 

establish if 9_NF5270 and 15_NF5270 are missing signalling molecules causing the 

scooby phenotype. Differential gene regulation and genetic markers could shed light on 

the function or position of SCOOBY relative to the symbiosis pathway. 

SCOOBY may prove to be a mycorrhizal specific gene, of which there are only a 

few currently known for M. truncatula including a GRAS-type transcription factor (RAM1), 

a glycerol-3-phosphate acyltransferase (RAM2) an H+-ATPase (Mt-HA1), and a 

phosphate transporter (MtPT4) (Javot et al., 2011; Gobbato et al., 2012; Wang et al., 

2012; Krajinski et al., 2014; Wang et al., 2014). In ram1 AMF is inhibited at the epidermal 

level (Gobbato et al., 2012). In ram2, the AMF appears to be inhibited at the epidermal 

level through a lack of hyphopodia formation; however with increased AMF levels some 

arbuscules can be seen (Wang et al., 2012). mt-ha1 and mtpt4 have similar phenotypes, 

allowing epidermal entry of AMF but have premature senescence of the arbuscules 

resulting in fewer arbuscules visible in the root cortex (Javot et al., 2011; Wang et al., 

2014). To confirm that SCOOBY is not caused by RAM2, Mt-HA1 or MtPT4 these genes 

could be checked for Tnt1 insertions by PCR. Alternatively complementation of the scooby 

phenotype could be checked by transformation of 9_NF5270 and 15_NF5270 root with 

WT RAM2, Mt-HA1 or MtPT4. 
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Chapter 7: Discussion 

Mutant studies have provided insight into many of the genetic components required for the 

establishment and maintenance of the plant-microbe symbioses. However, many of the 

genetic aspects of the plant-rhizobial and plant-mycorrhizal symbioses remain to be 

identified. It is as yet unknown how the signalling is transduced from the RLKs at the 

plasma membrane to the nucleus through the CSP, or how parallel signalling pathways 

help to modulate each symbiosis.  It also remains unclear how the plant is able to 

establish the difference between friend and foe when both carry microbe-associated 

molecular patterns (MAMPs) that activate plant defence. The control of ROS levels during 

development and defence are tightly controlled, and whilst there is some evidence to 

suggest roles for ROS during symbiosis, it is not yet known how ROS levels are regulated 

during symbiosis. We are at an exciting time in the study of mycorrhizal symbiosis with the 

genome of R. irregularis being recently published (Tisserant et al., 2013). This will provide 

the community with better tools to study this symbiosis in the future. 

 

scooby is a novel mycorrhizal mutant in M. truncatula 

The scooby mutant appears to be a novel mycorrhizal mutant in M. truncatula. scooby 

plants had fewer arbuscules (fig. 6.3.1) that appeared to be arrested between the 

birdsfoot stage and full arbuscule development. Arbuscules are smaller in scooby than 

WT (R108) and do not fully fill the cortical cell (fig. 6.3.2). However, the branches of the 

arbuscules are well defined and appear different than the early senescent arbuscules 

seen in Mtpt4 or Mt-ha1 (Javot et al., 2007; Krajinski et al., 2014; Wang et al., 2014). AMF 

are able to penetrate the scooby roots as normal, which rules out ram1 and ram2 as these 

mutants are blocked at the epidermis, and scooby has a large amount of intraradical 

hyphae seen which is different to the phenotypes of Mt-HA1  (Gobbato et al., 2012; Wang 

et al., 2012; Krajinski et al., 2014; Wang et al., 2014). Mutation or down regulation in the 

half –ABC transporters STR and STR2 have been identified in M. truncatula, rice and L.  

japonicus (Zhang et al., 2010b; Gutjahr et al., 2012; Kojima et al., 2014), however they 

have a lower total level of AMF colonisation compared to scooby despite similar stunted 

arbuscules in these mutants. Groth et al. (2013) recently described two mycorrhizal 

mutants in L. japonicus, SL0181-N mutant had two arbuscule phenotypes (type I and II). 

Type II arbuscules were severely stunted and appeared similar to the scooby phenotype. 

However segregation analysis revealed that the severe arbuscule stunting is likely to 

result from the combination of two distinct loci.  
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 Further analysis of the mycorrhizal phenotype is needed to fully characterise the 

scooby mutant. A time-course following AMF colonisation of mutant roots over time could 

help to establish at which stage the AMF is inhibited. The phenotypes of some mycorrhizal 

mutants that are inhibited at the early stages of mycorrhization, such as pre-mycorrhizal 

infection 1 (PMI1) in tomato, are able to be rescued when grown alongside WT “nurse” 

plants in the presence of AMF (David-Schwartz et al., 2001). In cases such as that of 

Mtpt4 and Mt-ha1, nurse plants are unable to rescue the shrunken arbuscule phenotype, 

however the number of these type of arbuscules seen per root is increased (Javot et al., 

2007; Wang et al., 2014); this is possibly due to the AMF being provided a source of 

carbon from the nurse plants and as such AMF growth is not inhibited as it would be with 

the Mtpt4 and Mt-ha1 mutants alone.  Growth with nurse plants would establish if 

9_NF5270 and 15_NF5270 are missing signalling molecules, such has been 

hypothesised for pmi1 or are lacking in nutrient exchange as in Mtpt4 or Mt-ha.  Single 

base pair mutations, deletions and frame-shift mutations can also occur during the 

regeneration process and could be identified by whole genome sequencing, such as 

Illumina sequencing, or transcriptome sequencing via RNA-seq. 

 

Two Receptor-like kinases required for nodulation and mycorrhization 

RLCK2 is a novel symbiotic gene 

RLCK2 encodes a putative receptor-like cytoplasmic kinase expressed constitutively in 

root tissue with up-regulation during symbiosis. rlck2 mutants were significantly reduced in 

AMF colonisation (fig. 3.4.1) with smaller arbuscules that are similar in morphology to 

those seen in M. truncatula mutants Mtpt4 and Mt-ha1 (fig. 3.4.3) (Javot et al., 2007; 

Wang et al., 2014). RLCK2 may have a nodulation phenotype, however due to 

disagreeing allelic phenotypes it is not clear if lack of RLCK2 results in an increased 

(rlck2-1), or decreased (rlck2-2), nodule number compared to WT (fig. 3.3.2.1). On the 

other hand, due to the relative positions of the premature stop codons, it is more likely that 

rlck2-1 is the stronger allele and thus it could be argued has the more reliable phenotype. 

The EMS mutagenesis method used to generate the rlck2-2 allele is likely to have created 

mutations at many sites in the genome; one of these alternate mutations could be 

responsible for the nodulation phenotype. Complementation, backcrossing the two alleles 

or a third allele will be needed to confirm which the correct rlck2 nodulation phenotype is.  
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RLCK1/SPK1 is required for correct mycorrhizal development as well as nodulation 

in M. truncatula 

RLCK1/SPK1 has shown by Damiani et al. (2012) and Andrio et al. (2013)  to be 

expressed during nodulation and upon ROS application. Andrio et al. (2013) showed via 

RNAi that a reduction of RLCK1/SPK1 expression leads to a reduction in nodule number. 

Using a stable Tnt1 insertion mutant, this study has confirmed that the absence of 

RLCK1/SPK1 does lead to a reduction in the number of nodules. Additionally, the 

rlck1/spk1 mutant had an increased number of infection events (fig. 3.3.1.1), with infection 

threads being misshaped compared to WT (R108) (fig. 3.3.1.2).  This study also found 

that in mature nodules of the rlck1/spk1 mutant, the infection threads that would normally 

be advancing only into the infection zone (Zone II ) were advancing into the meristematic 

zone (Zone I) (fig. 3.3.2.2). There is a delicate balance between carbon provision and N 

acquisition which the plant controls by regulating the number of successful infections 

leading to nodule organogenesis. The fewer nodules on the rlck1/spk1 plants may be a 

consequence of a feedback loop driven by the hyper-infection of root hairs and within 

Zone II of the nodule. 

 In addition to the nodulation phenotypes demonstrated, rlck1/spk1 mutants had a 

significantly reduced level of colonisation by the AMF R. irregularis compared to WT 

(R108) (fig. 3.4.1). The arbuscules on rlck1/spk1 were smaller and were similar in 

morphology to Mtpt4 and Mt-ha1 (Javot et al., 2007; Wang et al., 2014), suggesting that 

they may be senescing early. A time course checking the progression of the AMF through 

the root and the speed of the advancement of the mycorrhizal symbiosis is needed to 

determine if the arbuscules are stunted in growth or are prematurely senescing. This 

could be achieved by checking plant roots at earlier time points for the number of the 

arbuscules at each stage of development. If the mycorrhiza do not form mature 

arbuscules then this would suggest they are stunted before reaching maturity, however if 

mature arbuscules are seen at these early time points then this would suggest the 

arbuscules are collapsed and prematurely senescing. 

 

RLCK1 and RLCK2 are partially redundant during symbiosis 

RLCK1/SPK1 and RLCK2 have overlapping expression patterns in the root which was 

visualised using promoter-GUS analysis. RLCK2 was constitutively expressed in the root 

and was further upregulated upon symbiotic interactions (figs. 3.5.1.3, 3.5.1.4, and 

3.5.2.3). Promoter-GUS analysis and MtGEA data shows that RLCK1/SPK1 expression is 

more symbiosis specific than RLCK2 with expression being highly upregulated upon 
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interaction with a symbiont or NF application (figs. 3.5.1.1, 3.5.1.2, and 3.5.2.1). 

rlck1/spk1 and rlck2 single mutants had very similar mycorrhizal phenotypes (fig. 3.4.1 to 

fig. 3.4.3).  Knocking down RLCK1/SPK1 and RLCK2 by RNAi in M. truncatula roots 

results in a large reduction in the nodule number compared to the empty vector control 

(figs. 4.2.2 and 4.3.1).  

Despite their high level of homology, orthologues of RLCK1 and RLCK2 are 

present in species across the plant kingdom, including ancient plant lineages such as 

moss and Amborella. Given the similarities of these two genes at both nucleotide and 

amino acid level, it is possible that RLCK1 and RLCK2 have partially redundant or 

synergistic roles during symbiotic development. In the single mutants, one RLCK may be 

able to partially compensate for the lack of the other. Considering the ubiquitous 

expression levels of RLCK2 in the root, RLCK2 could be required for a more general 

developmental process and is recruited during symbiosis whilst the expression and role of 

RLCK1/SPK1 could be symbiosis specific. However, such a housekeeping role is 

contradicted by the loss of these genes in the Brassicaceae. It is also possible that 

RLCK2 is required at the very early stages of symbiont perception, when a response is 

needed faster than there is time for new protein synthesis. An example of two genes being 

required partially redundantly whilst having overlapping yet different expression patterns is 

ERN1 and ERN2, two gene encoding nodulation expressed transcription factors. ERN1 

and ERN2 can independently activate symbiosis marker gene ENOD11 (Andriankaja et 

al., 2007; Cerri et al., 2012) but the ern1 single mutant is still able to form misshaped 

infection threads, and nodules which can be complemented by ERN2 expressed under 

the ERN1 promoter  (Middleton et al., 2007).  Symbiotic gene DMI3 has been shown to 

have different roles in cortical cells and epidermal cells when it’s expression is driven via 

tissue specific promoters in a dmi3 mutant (Rival et al., 2012). It is possible that RLCK1 

and RLCK2 have tissue specific roles during symbiosis. 

Numerous attempts to cross pollinate rlck1-2 and rlck2-1 mutants have not 

produced any seed. It is possible that RLCK1 and RLCK2 also play redundant roles in 

seed development. Related to this, a rice gene belonging to the same subfamily as 

RLCK1/2 (RLCK-XV) Os06g07070 has been shown to be upregulated in embryo and 

endosperm development (Gao and Xue, 2011). The ram2 mycorrhizal mutant produces 

seeds with a dark seed coat that can be permeated by dyes (Wang et al., 2012), 

demonstrating a link between the two developmental processes. Examples of mutants 

that are involved in both developmental and symbiotic processes are sickle (skl) an 

ethylene insensitive mutant named after the sickle shape of the hypocotyl, and super 

numeric nodules (sunn) a long-distance auxin transport mutant of M. truncatula that are 
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both hyper-nodulating and have root architecture phenotypes (Penmetsa and Cook, 1997; 

Prayitno et al., 2006; van Noorden et al., 2006). A review from Evangelisti et al. (2014) 

highlights the extensive cross-talk that exists between developmental processes and 

plant-microbe interactions. 

 

Possible roles of RLCK1/RLCK2 in symbiosis 

RLCK1 and RLCK2 are part of the RLCK-XV subfamily of the receptor-like cytoplasmic 

kinases. This subfamily does not have representatives in A. thaliana but is present in the 

model legumes M. truncatula, L. japonicus and G. max, as well as many species known to 

interact with AMF (e.g. rice and tomato). This suggests that this subfamily of RLCKs is 

required for symbiotic interactions. The RLCK-XV sub-family has not been widely studied. 

The subfamilies RLCK-V and RLCK-VI that display roles in PAMP and BR signalling, have 

led to these two subfamilies being relatively well studied. I am now going discuss three 

possible roles for RLCKs in symbiotic interactions that are not necessarily exclusive: as 

part of NF signal transduction, as regulators helping to distinguish pathogen from 

symbiont, and as regulators of ROS mediated development. 

Part of the NF signalling cascade 

The PTI signalling pathway through FLS2 and the BR signalling pathway through BRI1 

have been well studied. Both of these pathways recognise signalling molecules (flg22 and 

BR) at the cell surface through binding of the signal with RLK complexes. Both FLS2 and 

BRI1 associate with BAK1 and the RLCKs BIK1, BSKs, and CDG1 (Veronese et al., 2006; 

Lu et al., 2010; Zhang et al., 2010a; Kim et al., 2011; Sreeramulu et al., 2013). 

Recognition of the signalling molecules causes phosphorylation of the RLCKs by the 

RLKs. The RLCKs then phosphorylate targets such as phosphatase BSU1 or the NADPH 

oxidase RbohD (Mora-García et al., 2004; Li et al., 2014). There is also some evidence 

that RLCKs BIK1 and BSKs are involved in the cross-talk between PTI and plant 

development (Lin et al., 2013; Shi et al., 2013a; Shi et al., 2013b).  

Currently it is not known in the CSP how the cell surface localised RLKs, NFP and 

LYK3, pass on the signal to the other RLK DMI2. It is also not known how the signal 

travels from the plasma membrane to the nucleus. There is some evidence showing the 

interaction of a MAP kinase with DMI2 (Chen et al., 2012). MAP kinases, a class of 

RLCKs, are often involved in signal transduction during defence ultimately leading to gene 

expression (Nühse et al., 2000; Asai et al., 2002; Suarez-Rodriguez et al., 2007; Zhang et 

al., 2007). Using the PTI and BR signalling pathways as a guide, possible roles for the 
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RLCKs studied here could be the transactivation of the RLKs NFP and LYK3, and/or 

DMI2. Data from Antolín-Llovera et al. (2014) shows that L. japonicus SYMRK (MtDMI2) is 

able to interact with LjNFR5 (MtNFP) in N. benthamiana when the extracellular malectin-

like domain (MLD) is cleaved (SYMRK- ΔMLD). SYMRK-ΔMLD is similar in structure to 

BAK1, which interacts with BRI1 and FLS2 to form receptor complexes in the BR and 

flagellin signalling pathways. However, the interaction between SYMRK-ΔMLD and NFR5 

is able to occur without a ligand. The SYMRK-ΔMLD protein undergoes rapid endocytosis 

and degradation but low levels can still be detected in planta (Antolín-Llovera et al., 2014). 

It is possible that the SYMRK-ΔMLD/NFR5 complex in planta binds to an RLCK similar to 

BIK1 or BSK1 which continues the signal transduction. 

 The proteins required for NF perception and fast responses to NF have a 

constitutive level of expression in the roots. Other genes, such as Nodule inception (NIN) 

are required for the early stages of symbiosis and are up regulated quickly upon NF 

perception (Schauser et al., 1999). RLCK2 has constitutive expression in M. truncatula 

roots and both RLCK1/SPK1 and RLCK2 are quickly up-regulated upon NF application. 

The tagged protein constructs made during this study (Chapter 5) can be used to test 

RLCK1/SPK1 and RLCK2 for interaction with the known CSP components to identify if 

RLCK1/SPK1 and/or RLCK2 could be the RLCKs involved in the signal transduction 

during symbiosis. The non-symbiotic expression of RLCK2 is much higher than 

RLCK1/SPK1. This would suggest that if these proteins are involved in any initial signal 

transduction through the CSP that this would initially depend more on RLCK2, while 

RLCK1/SPK1 may serve mainly to amplify the signal as the infection progresses. On the 

other hand, our results suggest that in the absence of RLCK2, RLCK1 may still 

compensate and vice versa, suggesting that sufficient levels of RLCK1 are present to 

support signalling through the CSP. The available transcriptomics data from mutants 

suggests that inductions of both genes are CCaMK, and therefore CSP, dependent, so 

successful signalling through the CSP in either single mutant would lead to induction of 

the remaining RLCK and fulfil most of the signalling role. This model could be tested by 

monitoring the onset of calcium oscillations (typically 10 minutes from time of NF 

application) in roots of the rlck1, rlck2 and double knockdown roots and checking for 

delays in expression of early nodulation genes such as ENOD11 and NIN. 

Alternately the RLCKs may act in pathways that occur in parallel to the CSP that 

also require NF perception and enable the plant to accommodate the symbionts (Murray, 

2011). For example, root hair growth/curling that follows rhizobial attachment in response 

to NF can still occur in dmi2 and other downstream CSP mutants. Interestingly, root hair 

growth is associated with ROS production (Foreman et al., 2003). 
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Differentiating between Pathogen and Symbiosis 

Rhizobia and AMF, although symbiotic partners of plants, carry MAMPs that activate PTI 

such as flagellin and chitin. It has long been under discussion as to how plants are able to 

distinguish between friend and foe (Ausubel and Bisseling, 1999; Parniske, 2000; Kogel et 

al., 2006; Paszkowski, 2006; Rey and Schornack, 2013). In both PTI and symbiosis there 

is an oxidative burst upon PAMP recognition (Alvarez et al., 1998; Ramu et al., 2002). In 

PTI the levels of ROS species, such as •O2
- and H2O2, stay high whereas in symbiosis 

there is a gradual decline of ROS levels (Shaw and Long, 2003). Studies have shown that 

PTI activated roots then treated with NF also show a decrease in ROS levels (Shaw and 

Long, 2003). ROS in PTI leads to the strengthening of cell walls through cross-linking and 

plays a central role in programmed cell death (Levine et al., 1994). Contrastingly, ROS 

production induced by NF has been shown to be relatively short lived (Ramu et al., 2002). 

ROS can also be found to be increased 12 hours after NF or rhizobial treatment of 

Medicago roots (Shaw and Long, 2003), which is likely to be due to the induction of 

developmental processes. Interestingly, Medicago roots inoculated with a mutant rhizobia 

strain that is unable to produce NFs, the ROS response of the plant is the same as that 

seen in PTI (Bueno et al., 2001).  

 The defence pathways that are triggered by the MAMPs carried by rhizobia and 

AMF must be supressed before the plant is able to accommodate a symbiotic partner. It 

takes 20 to 30 minutes after NF application until ROS levels in the root begin to decrease, 

suggesting that new proteins need to be synthesised first (Shaw and Long, 2003). RLCKs 

like BIK1 and the BSKs have been shown to act as cross-talk mediators between PTI and 

BR signalling (Lin et al., 2013; Shi et al., 2013a; Shi et al., 2013b). It is possible that 

RLCKs play a similar function between PTI and symbiosis signalling. Andrio et al. (2013) 

showed that RLCK1/SPK1 is upregulated upon H2O2 treatment and is expressed in 

nodule zones that also contain high levels of H2O2. It is possible that RLCK1/SPK1 and 

RLCK2 play a role in the differentiation between pathogen and symbiont, possibly 

regulating ROS levels to enable infection by rhizobia and AMF. To test this hypothesis the 

response of RLCK2 to ROS application should be investigated; it would be interesting to 

see if RLCK2 responds similarly to RLCK1/SPK1. However, RLCK2 was not identified by 

Andrio et al. (2013) in their microarray experiments.  

 RNAi knockdown rlck1/rlck2 mutants produced almost no nodules (Chapter 4). 

This may be due to higher than normal ROS levels in the mutant than WT. ROS levels 

should be checked in the single mutants and in the double knockdown roots, this could be 

achieved through nitro blue tetrazolium (NBT) staining for •O2
- or a ROS sensitive dye 
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such as HyPer probe for H2O2 could be used to track dynamic changes during infection 

(Belousov et al., 2006). 

The regulation of genes known to be induced during PTI should be checked in the 

rlck1 and rlck2 mutants and the rlck1/rlck2 knockdown roots after treatment with a 

symbiont such as AMF and a pathogen such as P. infestans. Good candidates for this 

analysis are PR4 (Medtr1g080800) and PR5 (Medtr5g010635) which are pathogen-

responsive genes which are repressed by NF and during infection by rhizobia, are initially 

induced and then repressed (Murray lab unpublished results). 

 

Regulation of developmental processes by ROS 

Data by Andrio et al. (2013) showing that RLCK1/SPK1 is upregulated within one hour of 

H2O2 application to the root, may suggest a role for RLCK1/SPK1 in the regulation of ROS 

during symbiosis promoting the correct development of symbiotic structures. Promoter-

GUS analysis showed that RLCK1/SPK1 expression was correlated with rhizobial entry 

through the infection thread, in nodule primordia and in Zones I and II of the nodule. 

pRLCK2:GUS expression shows that RLCK2 is higher in arbusculated cortical cells. All of 

the regions that promoter-GUS expression was seen for both RLCK1/SPK1 and RLCK2 

have been previously identified as being rich in ROS. Misregulation of ROS, which is 

finely controlled in many plant processes, could cause disruption to the development of 

plant-microbe symbioses. 

  During symbiosis the plant undergoes many different developmental processes 

which require changes in hormone and ROS levels. During rhizobial symbiosis root hair 

cells change the direction of growth to grow towards the source of NF (Esseling et al., 

2003). ROS production is required for apical growth of root hairs (Foreman et al., 2003). It 

is believed that ROS generation drives a calcium influx into the tip of the root hair creating 

a calcium gradient (Foreman et al., 2003). This calcium gradient is thought to give 

direction to tip growth by regulating exocytosis at the plasma membrane and actin 

reorganisation (Rato et al., 2004; He et al., 2006). Several ROS regulatory proteins such 

as NADPH oxidase, ROP GTPases and RopGEFs have been identified to be essential for 

correct root hair tip growth (Foreman et al., 2003; Craddock et al., 2012). This tip growth 

machinery is thought to be altered to enable the typical curling of the root hair around the 

rhizobia, which is supported by recent data from  Shailes (2014) that showed a RopGAP 

mutants (gap1) with a decreased number of ITs, which were thicker than wildtype and 

sometimes ramified, and had abnormal root hair curling.  The formation of the IT in the 

root hair during rhizobial infection could be thought of as an internally directed version of 
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polar tip growth (Oldroyd et al., 2011). ROS has also been shown to be present in ITs 

(Santos et al., 2001; Ramu et al., 2002; Nanda et al., 2010). ROS in this case could be 

acting in two roles. Firstly ROS is required for the cross-linking of cell wall material 

(Gapper and Dolan, 2006) and could make the IT structure more rigid, creating a clear 

route for the rhizobia. Secondly, it could act as another layer of defence whilst letting the 

rhizobia into the root; rhizobia that are mutant in catalase and superoxide dismutase 

genes, that convert ROS into H2O and O2, are unable to successfully traverse the 

infection threads (Santos et al., 2000; Jamet et al., 2003). Interestingly, the 

overexpression of the rhizobial catalase gene KatB also leads to compromised infection 

(Jamet et al., 2007), which could be due to a lower level of ROS in the IT suggesting that 

a balance of ROS is needed for symbiotic infection. In the rlck1/spk1 mutant the infection 

threads are misshaped; it is possible that this could be caused by lower levels of ROS 

present in the IT. 

PIT and PPA formation are very similar developmental processes and the 

progression of the AMF through the root surrounded by a plant derived tube is much like 

the passage of rhizobia through ITs. It is possible that the regulation of ROS during 

mycorrhizal colonisation is as crucial for this process as for the correct development of the 

IT (Balestrini and Bonfante, 2014; Rich et al., 2014). H2O2 has also been shown to 

accumulate in arbuscule cells (Fester and Hause, 2005). Again ROS could be involved in 

the hardening of cell wall material in the matrix surrounding the arbuscule, preventing the 

AMF from diverting from the plant determined route into the cell. Alternatively, ROS 

accumulation, and especially ROS transfer into the arbuscule, correlates with arbuscule 

senescence (Fester and Hause, 2005). In rlck1/spk1 and rlck2 mutants the arbuscules 

appear to be senescing early. 

During rhizobial colonisation cortical cells must switch from their differentiated 

state and restart cell division to create the nodule, and in indeterminate nodules a 

meristem must be created to drive the growth of the nodule. ROS production has been 

seen in cortical cells after inoculation with S. meliloti (Peleg-Grossman et al., 2007; Nanda 

et al., 2010). ROS may be acting to strengthen the new cell walls after cell division. 

Alternatively, ROS gradients are seen in growing root tips with ROS levels being the 

highest at root meristems (Tsukagoshi et al., 2010; Wells et al., 2010); it is possible that 

there is a ROS gradient from the nodule meristem, as in root meristems, which 

determines the differentiation of the nodule cells. ROS have been found in Zone II, or 

infection zone, of the nodule (Andrio et al., 2013). RLCK1/SPK1 promoter-GUS analysis 

shows RLCK1/SPK1 expression in Zone I and II of the nodule and could be contributing to 

the regulation of ROS in these zones.  
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The phenotypes seen in the rlck1 mutant - early senescent arbuscules, a large 

number of infection events and the progress of ITs into Zone I of the nodule - suggest that 

in the absence of RLCK1/SPK1 the plant is progressing through the symbiosis faster than 

it would in WT. It is possible that this faster progression is due to misregulation of ROS in 

these developmental processes. 

Future Work 

This study has provided some insight into the expression and requirement of 

RLCK1/SPK1 and RLCK2 during rhizobial and mycorrhizal symbioses.  It has also created 

several expression constructs that can be used to identify interaction partners of 

RLCK1/SPK1 and RLCK2 in yeast and in planta. As the RNAi knock down rlck1/rlck2 

roots had a significant reduction in the number of nodules, the effect of the double 

knockdown should be investigated with AMF to help determine the role of these genes 

during symbiosis. Given that RLCK1/SPK1 expression is induced by H2O2, the expression 

of RLCK2 in response to ROS should be investigated in order to identify if this is a shared 

response of the two RLCKs. Also the levels of ROS in the rlck single mutants and the 

double knockdown roots should be investigated both with and without symbiotic 

interactions to see if they are part of the ROS regulatory machinery. Localisation of the 

RLCK1/SPK1 and RLCK2 proteins via fluorescent fusions would also help to define their 

role during symbiosis. These constructs can also be used to visualise co-localisation of 

the RLCK proteins with potential interaction partners. The recent suggestion from protein 

prediction software of a lectin-like domain and a putative calmodulin binding domain at the 

N-terminal end of the proteins would also be worthy of further investigation; this could be 

achieved via a carbohydrate chip to determine possible ligands, and an assay to confirm 

the calmodulin binding ability of the RLCKs with and without the presence of calcium – the 

existing expression constructs for the RLCKs could be used for this.  

Conclusion 

SCOOBY is a novel mycorrhizal mutant phenotype in M. truncatula with stunted arbuscule 

growth; further investigation could provide additional insight into the plant-mycorrhizal 

symbiosis. RLCK1/SPK1 and RLCK2 have a high nucleotide and amino acid similarity, 

and possibly have partially redundant or synergistic functions. Severe symbiotic defects 

are not evident in the single mutants and the full effect of RLCK1/SPK1 and RLCK2 

mutations on symbiotic processes within the plant may only be evident in the absence of 

both proteins. This is supported by the extremely low nodule number on the double 

knockdown RNAi roots whilst the single mutants can still make nitrogen fixing nodules. 

They may be acting together, or redundantly, to control ROS during NF signalling, 
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potential PTI responses or symbiotic developmental processes such as nodule, IT or 

arbuscule formation. 
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Appendix I 

Primers 

Primer 

Number 

Sequence Description 

1 ATGGGATCTTCCTTGAGTTG RLCK1 forward start codon 

2 CACCATGGGATCTTCCTTGAGTTG RLCK1 forward with TOPO 

directional overhang (bold) 

3 TTAGCCAATTTTCTTGTAAGG RLCK1 reverse with stop 

codon 

4 ATGCCCTTGAAATGTTTATGTTG RLCK2 forward start codon 

5 CACCATGCCCTTGAAATGTTTATGTT

G 

RLCK2 forward with TOPO 

directional overhang (bold) 

6 TCATCTCATTTTGCGCCTATC RLCK2 reverse with stop 

codon 

7 GGGGACAAGTTTGTACAAAAAAGC

AGGCTTCGTGGAGTGAGTTGGGCA

AGC 

RLCK2 promoter forwards 

with attB recombination site 

(bold) 

8 GGGGACCACTTTGTACAAGAAAGC

TGGGTCATTTCTTTTGTGATAGAATC

TCTAACTAAC 

RLCK2 promoter reverse  

with attB recombination site 

(bold) 

9 TCCTTGTTGGATTGGTAGCC Tnt1 Forward 

10 CAGTGAACGAGCAGAACCTGTG Tnt1 Reverse 

11 ATGCCTTTTGGTGAATGTGGGG 
 

RLCK3 forward start condon 

12 TCAGTTAGAGCTAGATGTTG RLCK3 reverse with stop 

codon 

13 GGGGACAAGTTTGTACAAAAAAGC
AGGCTTCATGCCCTTGAAATGTTTAT
GTTG 

RLCK2 CDS with pDONR207 

overhang (bold) 

14 GGGGACAAGTTTGTACAAAAAAGC
AGGCTTCATGGGATCTTCCTTGAGT
TGT 

RLCK1 CDS with pDONR207 

overhang (bold) 

15 AAGTGACAATGATAGGCGCAATGGT
GAGCAAGGGCGAG 

RLCK2 CDS 3’ with mCherry 

overhang (bold) 

16 CTCGCCCTTGCTCACCATTGCGCCT
ATCATTGTCACTT 

mCherry 5’ complementary 

with RLCK2 3’ 

complementary overhang 

(bold) 

17 GATGAAAGATCCTTACAAGAAAATT
GGATGGTGAGCAAGGGCGAG 

RLCK1 CDS 3’ with mCherry 

overhang (bold) 

18 CTCGCCCTTGCTCACCATCCAATTT
TCTTGTAAGGATCTTTCATC 

mCherry 5’ complementary 

with RLCK1 3’ 

complementary overhang 

(bold) 

Table A1. List of PCR primers for cloning or genotyping 
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Primer 

Number 

Sequence Description 

19 CTTTGCTTGGTGCTGTTTAGATGG EF1 α forward qPCR  

20 ATTCCAAAGGCGGCTGCATA EF1 α reverse qPCR  

21 ACTGGCACTTGATCAACCTAGTGATG RLCK1 forwards qPCR  

22 TTAGCCAATTTTCTTGTAAGGAT RLCK1 reverse qPCR 

23 GTGGTGGAATGGCTTAAGGA RLCK2 forward qPCR 

24 TCATTTTGCGCCTATCATTG RLCK2 reverse qPCR 

25 GCCGGAAAACAGCTAGAAGA Ubiquitin forward qPCR 

26 GGAGACGGAGAACAAGGTGA Ubiquitin reverse qPCR 

27 GCTTTGCCACCTGTTGAAGT Tip41 forwards qPCR 

28 AGCACCGCTTCCACAATAAG Tip41 reverse qPCR 

Table A2. List of primers for qPCR 

 

Primer 

Number 

Sequence Description 

29 GTAAAACGACGGCCAG M13 forward 

30 CAGGAAACAGCTATGAC M13 reverse 

31 TCGCGTTAACGCTAGCATGGATCTC pDONR207 forward flanking 

insert region 

32 GTAACACATCAGAGATTTTGAGACA
C 

pDONR207 reverse flanking 

insert region 

33 GGAGTGAGTTGGGCAAGCTA PromoterRLCK2 forward 

sequencing primer 1 

34 AAGGGAATGTGGTCGTTCAG PromoterRLCK2 forward 

sequencing primer 2 

35 TGAATACAACTACAACAGTACAAAA
GG 

PromoterRLCK2 forward 

sequencing primer 3 

36 TTAGGCCAAAAGCCCTCATT PromoterRLCK2 forward 

sequencing primer 4 

37 TTGTTAATTATTGTGTCACCGTCT PromoterRLCK2 forward 

sequencing primer 5 

38 TCATGCACCCATTAGATAGCA PromoterRLCK2 reverse 

sequencing primer 1 

39 CCGGAGCAAACATGCTCTTA PromoterRLCK2 reverse 

sequencing primer 2 

40 CGTTCTGAATTCAAGGCGTTA PromoterRLCK2 reverse 

sequencing primer 3 

41 CCATCAACAAAAGTTGATAGAGGTT PromoterRLCK2 reverse 

sequencing primer 4 

42 TGGAGGTGAGTGTAGAGTTGGA PromoterRLCK2 reverse 

sequencing primer 5 

43 TTGACCCTTATTTTCTCTCTCCTC PromoterRLCK2 reverse 

sequencing primer 6 

44 CATAACTCAGCACACCAGAG pK7GW|WG2D(II)R hairpin 

intron  
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Primer 
Number 

Sequence  Description 

45 TTCCCTTATCTGGGAACTACTCAC pK7GW|WG2D(II)R T35S 

reverse 

46 CGTTGTGGCTGTTGTAGTTGT eGFP reverse 

47 ACAACTACAACAGCCACAACG eGFP forwards 

48 GTGAGTAGTTCCCAGATAAGGGAA T35S forwards 

49 AGACCAGAGTGTCGTGCTCC 35S (short) Promoter reverse 

50 TCGTTCAAACATTTGGCAAT TNOS forwards 

51 GAGAAGCGATATGAACAAGAATTG LjUB1 reverse 

52 CCCGCCAATATATCCTGTC Golden Gate 3 

53 GCGGACGTTTTTAATGTACTG Golden Gate 4 

54 ACCAGCAGGTGTAAGCCATC TILLING 7569 forwards 

55 TTAAGCCATTCCACCACCTC TILLING 7569 reverse 

56 TGCTATGTGGGGTAAGGTTTC TILLING 7925 forwards 

57 TTTTCTTCATCATGTCCCTTATTG TILLING 7925 reverse 

58 CAATTGCTAAACCGAAATCG pUB-GW-GFP upstream of 

insert forward 

59 TGGTGATGATCCGGTACCTAGGC pUB-GW-GFP downstream 

of insert reverse 

60 CGGTCTGGGTGCCCTCGTAG mCherry internal reverse 

61 AGACCACCTACAAGGCCAAGAAGC mCherry internal forward 

Table A3. List of sequencing primers 
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RNAi Plasmid Maps 

 

 

 

Figure A1. pK7GW|WG2D(II)R RLCK1 RNAi – RNAi vector designed on RLCK1. 

The vector map for RNAi Construct 1 designed on a 99bp region of RLCK1. The vector 

was made by TOPO® and Gateway® cloning. Destination vector modified from 

pK7GW|WG2D(II). 
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Figure A2. pK7GW|WG2D(II)R RLCK2 RNAi – RNAi vector designed on the 5’ UTR 

region of RLCK2. 

The vector map for RNAi Construct 2 designed on the 5’ UTR region of RLCK2. The 

vector was made by TOPO® and Gateway® cloning. Destination vector modified from 

pK7GW|WG2D(II). 
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Golden Gate constructs 

ENSA ID ENSA Standard name 

EC67001 pL0M-SC1-MtRLCK1-67001 

EC67002 pL0M-SC1-MtRLCK2-67002 

EC67003 pL0M-SC1-MtNFP-67003 

EC67004 pL0M-SC1-MtLYK3-67004 

EC67005 pL0M-SC1-MtHMGR-67005 

EC67006 pL0M-SC1-MtDMI2-67006 

EC67030 pL0M-C-MtRLCK1-67030 

EC67031 pL0M-C-MtRLCK2-67031 

EC67032 pL0M-PU-pMtRLCK1-67032 

EC67033 pL0M-PU-pMtRLCK2-67033 
Table A4. List of Level 0 Golden gate modules 

 

ENSA ID ENSA Standard name Backbone 

EC67007 pL1M-R1-p35S-MtRLCK1-3xMyc-T35S-67007 EC47802 pL1V-R1 

EC67008 pL1M-R1-p35S-MtRLCK2-3xMyc-T35S-67008 EC47802 pL1V-R1 

EC67009 pL1M-R2-pLjUBI1-MtNFP-eGFP-tNOS-67009 EC47811 pL1V-R2 

EC67010 pL1M-R2-pLjUBI1-MtLYK3-eGFP-tNOS-67010 EC47811 pL1V-R2 

EC67011 pL1M-R2-pLjUBI1-MtHMGR-eGFP-tNOS-67011 EC47811 pL1V-R2 

EC67012 pL1M-R2-pLjUBI1-MtDMI2-eGFP-tNOS-67012 EC47811 pL1V-R2 

EC67013 pL1M-R2-pLjUBI1-RLCK2-eGFP-tNOS-67013 EC47811 pL1V-R2 

EC67034 pL1M-R1-p35S-3xMyc-MtRLCK1-T35S-67034 EC47802 pL1V-R1 

EC67035 pL1M-R1-p35S-3xMyc-MtRLCK2-T35S-67035 EC47802 pL1V-R1 

EC67036 pL1M-R2-pLjUBI1-eGFP-RLCK2-tNOS-67036 EC47811 pL1V-R2 

EC67037 pL1M-R2-pLjUBI1-eGFP-RLCK1-tNOS-67037 EC47811 pL1V-R2 
Table A5. List of Level 1 Golden Gate modules 
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ENSA ID ENSA Standard name Backbone vector 

EC67014 pL2V-MtRLCK1-3xMyc-MtNFP-eGFP-67014 EC50505 pL2V-1 

EC67015 pL2V-MtRLCK1-3xMyc-MtLYK3-eGFP-67015 EC50505 pL2V-1 

EC67016 pL2V-MtRLCK1-3xMyc-MtHMGR-eGFP-67016 EC50505 pL2V-1 

EC67017 pL2V-MtRLCK1-3xMyc-MtDMI2-eGFP-67017 EC50505 pL2V-1 

EC67018 pL2V-MtRLCK1-3xMyc-MtRLCK2-eGFP-67018 EC50505 pL2V-1 

EC67019 pL2V-MtRLCK2-3xMyc-MtNFP-eGFP-67019 EC50505 pL2V-1 

EC67020 pL2V-MtRLCK2-3xMyc-MtLYK3-eGFP-67020 EC50505 pL2V-1 

EC67021 pL2V-MtRLCK2-3xMyc-MtHMGR-eGFP-67021 EC50505 pL2V-1 

EC67022 pL2V-MtRLCK2-3xMyc-MtDMI2-eGFP-67022 EC50505 pL2V-1 

EC67038 pL2V-3xMyc-MtRLCK1-MtNFP-eGFP-67038 EC50505 pL2V-1 

EC67039 pL2V-3xMyc-MtRLCK1-MtLYK3-eGFP-67039 EC50505 pL2V-1 

EC67040 pL2V-3xMyc-MtRLCK1-MtHMGR-eGFP-67040 EC50505 pL2V-1 

EC67041 pL2V-3xMyc-MtRLCK1-MtDMI2-eGFP-67041 EC50505 pL2V-1 

EC67042 pL2V-3xMyc-MtRLCK1-MtRLCK2-eGFP-67042 EC50505 pL2V-1 

EC67043 pL2V-3xMyc-MtRLCK1-eGFP-MtRLCK2-67043 EC50505 pL2V-1 

EC67044 pL2V-3xMyc-MtRLCK2-MtNFP-eGFP-67044 EC50505 pL2V-1 

EC67045 pL2V-3xMyc-MtRLCK2-MtLYK3-eGFP-67045 EC50505 pL2V-1 

EC67046 pL2V-3xMyc-MtRLCK2-MtHMGR-eGFP-67046 EC50505 pL2V-1 

EC67047 pL2V-3xMyc-MtRLCK2-MtDMI2-eGFP-67047 EC50505 pL2V-1 
Table A6. List of Level 2 Golden Gate constructs 
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Golden Gate Plasmid Maps 

 

 

 

Figure A3. EC67001 plasmid map 

Level 0 Golden Gate SC1 construct. Contains RLCK1 CDS with no stop codon.  
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Figure A4. EC67002 plasmid map 

Level 0 Golden Gate SC1 construct. Contains RLCK2 CDS with no stop codon. 
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Figure A5. EC67003 plasmid map 

Level 0 Golden Gate SC1 construct. Contains MtNFP CDS with no stop codon. 
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Figure A6. EC67004 plasmid map 

Level 0 Golden Gate SC1 construct. Contains MtLYK3 CDS with no stop codon. 
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Figure A7. EC67005 plasmid map 

Level 0 Golden Gate SC1 construct. Contains MtHMGR1 CDS with no stop codon. 
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Figure A8. EC67006 plasmid map 

Level 0 Golden Gate SC1 construct. Contains MtDMI2 CDS with no stop codon. 
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Figure A9. EC67007 plasmid map 

Level 1 module Golden Gate construct. 35S Promoter, RLCK1 CDS, 3x myc c-terminal 

tag, 35S terminator. Compatible with position R1 of Golden Gate Level 2 constructs. 
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Figure A10. EC67008 plasmid map 

Level 1 module Golden Gate construct. 35S Promoter, RLCK2 CDS, 3x myc C-terminal 

tag, 35S terminator. Compatible with position R1 of Golden Gate Level 2 constructs. 
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Figure A11. EC67009 plasmid map 

Level 1 module Golden Gate construct. L. japonicus Ubiquitin Promoter, MtNFP CDS, C-

terminal GFP  tag, NOS terminator. Compatible with position R2 of Golden Gate Level 2 

constructs. 
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Figure A11. EC67009 plasmid map 

Level 1 module Golden Gate construct. L. japonicus Ubiquitin Promoter, MtNFP CDS, C-

terminal GFP  tag, NOS terminator. Compatible with position R2 of Golden Gate Level 2 

constructs. 
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Figure A13. EC67011 plasmid map 

Level 1 module Golden Gate construct. L. japonicus Ubiquitin Promoter, MtHMGR1 CDS, 

C-terminal GFP tag, NOS terminator. Compatible with position R2 of Golden Gate Level 2 

constructs. 
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Figure A14. EC67012 plasmid map 

Level 1 module Golden Gate construct. L. japonicus Ubiquitin Promoter, MtDMI2 CDS, C-

terminal GFP tag, NOS terminator. Compatible with position R2 of Golden Gate Level 2 

constructs. 
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Figure A15. EC67013 plasmid map 

Level 1 module Golden Gate construct. L. japonicus Ubiquitin Promoter, MtRLCK2 CDS, 

C-terminal GFP tag, NOS terminator. Compatible with position R2 of Golden Gate Level 2 

constructs. 
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Figure A16. EC67014 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, RLCK1 CDS, 3x myc c-

terminal tag, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtNFP CDS, 

C-terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A17. EC67015 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, RLCK1 CDS, 3x myc c-

terminal tag, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtLYK3 

CDS, C-terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A18. EC67016 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, RLCK1 CDS, 3x myc c-

terminal tag, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtHMGR1 

CDS, C-terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A19. EC67017 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, RLCK1 CDS, 3x myc c-

terminal tag, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtDMI21 

CDS, C-terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A20. EC67018 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, RLCK1 CDS, 3x myc c-

terminal tag, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, RLCK2 CDS, 

C-terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A21. EC67019 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, RLCK2 CDS, 3x myc c-

terminal tag, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtNFP CDS, 

C-terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 

 

  



136 
 

 

 

Figure A22. EC67020 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, RLCK2 CDS, 3x myc c-

terminal tag, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtLYK3 

CDS, C-terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A23. EC67021 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, RLCK2 CDS, 3x myc c-

terminal tag, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtHMGR1 

CDS, C-terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A23. EC67021 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, RLCK2 CDS, 3x myc c-

terminal tag, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtHMGR1 

CDS, C-terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A25. EC67030 plasmid map 

Level 0 Golden Gate C construct. Contains RLCK1 CDS with a stop codon.  
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Figure A26. EC67031 plasmid map 

Level 0 Golden Gate C construct. Contains RLCK2 CDS with a stop codon.  
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Figure A27. EC67032 plasmid map 

Level 0 Golden Gate PU construct. Contains RLCK1 promoter region.  
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Figure A28. EC67033 plasmid map 

Level 0 Golden Gate PU construct. Contains RLCK2 promoter region.  
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Figure A29. EC67034 plasmid map 

Level 1 module Golden Gate construct. 35S Promoter, 3x myc N-terminal tag RLCK1 

CDS, 35S terminator. Compatible with position R1 of Golden Gate Level 2 constructs. 
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Figure A30. EC67035 plasmid map 

Level 1 module Golden Gate construct. 35S Promoter, 3x myc N-terminal tag RLCK2 

CDS, 35S terminator. Compatible with position R1 of Golden Gate Level 2 constructs. 
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Figure A31. EC67036 plasmid map 

Level 1 module Golden Gate construct. L. japonicus Ubiquitin Promoter, N-terminal GFP 

tag RLCK2 CDS, NOS terminator. Compatible with position R2 of Golden Gate Level 2 

constructs. 
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Figure A32. EC67037 plasmid map 

Level 1 module Golden Gate construct. L. japonicus Ubiquitin Promoter, N-terminal GFP 

tag RLCK1 CDS, NOS terminator. Compatible with position R2 of Golden Gate Level 2 

constructs. 
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Figure A33. EC67038 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, 3x myc N-terminal tag RLCK1 

CDS, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtNFP CDS, C-

terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A34. EC67039 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, 3x myc N-terminal tag RLCK1 

CDS, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtLYK3 CDS, C-

terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A35. EC67040 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, 3x myc N-terminal tag RLCK1 

CDS, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtHMGR2 CDS, C-

terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A36. EC67041 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, 3x myc N-terminal tag RLCK1 

CDS, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtDMI2 CDS, C-

terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A37. EC67042 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, 3x myc N-terminal tag RLCK1 

CDS, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, RLCK2 CDS, C-

terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A38. EC67043 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, 3x myc N-terminal tag RLCK2 

CDS, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, N-terminal GFP tag, 

RLCK2 CDS, NOS terminator. Endlinker 2 in position F3. 
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Figure A39. EC67044 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, 3x myc N-terminal tag RLCK2 

CDS, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtNFP CDS, C-

terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A40. EC67045 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, 3x myc N-terminal tag RLCK2 

CDS, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtLYK3 CDS, C-

terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A41. EC67046 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, 3x myc N-terminal tag RLCK2 

CDS, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtHMGR1 CDS, C-

terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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Figure A42. EC67047 plasmid map 

Level 2 Golden Gate vector. In position R1: 35S Promoter, 3x myc N-terminal tag RLCK2 

CDS, 35S terminator. In position R2: L. japonicus Ubiquitin Promoter, MtDMI2 CDS, C-

terminal GFP tag, NOS terminator. Endlinker 2 in position F3. 
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