Advanced electrodynamic mechanisms for the nanoscale control of light by light

Andrews, David, Leeder, Jamie and Bradshaw, David (2015) Advanced electrodynamic mechanisms for the nanoscale control of light by light. Proceedings of SPIE, 9546. ISSN 0277-786X

[img]
Preview
PDF (95460O) - Published Version
Download (1MB) | Preview

Abstract

The laser-induced intermolecular force that exists between two or more particles subjected to a moderately intense laser beam is termed ‘optical binding’. Completely distinct from the single-particle forces that give rise to optical trapping, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In conjunction with optical trapping, the optomechanical forces in optical binding afford means for the manipulation and fabrication of optically bound matter. The Casimir-Polder potential that is intrinsic to all matter can be overridden by the optical binding force in cases where the laser beam is of sufficient intensity. Chiral discrimination can arise when the laser input has a circular polarization, if the particles are themselves chiral. Then, it emerges that the interaction between particles with a particular handedness is responsive to the left- or right-handedness of the light. The present analysis, which expands upon previous studies of chiral discrimination in optical binding, identifies a novel mechanism that others have previously overlooked, signifying that the discriminatory effect is much more prominent than originally thought. The new theory leads to results for freely-tumbling chiral particles subjected to circularly polarized light. Rigorous conditions are established for the energy shifts to be non-zero and display discriminatory effects with respect to the handedness of the incident beam. Detailed calculations indicate that the energy shift is larger than those previously reported by three orders of magnitude.

Item Type: Article
Faculty \ School: Faculty of Science > School of Chemistry
Related URLs:
Depositing User: Pure Connector
Date Deposited: 09 Oct 2015 10:00
Last Modified: 22 Jul 2020 00:23
URI: https://ueaeprints.uea.ac.uk/id/eprint/54205
DOI: 10.1117/12.2190191

Actions (login required)

View Item View Item