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Abstract

We characterize the realized ecological niches of 133 phytoplankton taxa in the open ocean based on

observations from the MAREDAT initiative and a statistical species distribution model (MaxEnt). The models

find that the physical conditions (mixed layer depth, temperature, light) govern large-scale patterns in phyto-

plankton biogeography over nutrient availability. Strongest differences in the realized niche centers were

found between diatoms and coccolithophores. Diatoms (87 species) occur in habitats with significantly lower

temperatures, light intensity and salinity, with deeper mixed layers, and with higher nitrate and silicate con-

centrations than coccolithophores (40 species). However, we could not statistically separate the realized

niches of coccolithophores from those of diazotrophs (two genera) and picophytoplankton (two genera).

Phaeocystis (two species) niches only clearly differed from diatom niches for temperature. While the realized

niches of diatoms cover the majority of niche space, the niches of picophytoplankton and coccolithophores

spread across an intermediate fraction and diazotroph and colonial Phaeocystis niches only occur within a rel-

atively confined range of environmental conditions in the open ocean. Our estimates of the realized niches

roughly match the predictions of Reynolds’ C-S-R model for the global ocean, namely that taxa classified as

nutrient stress tolerant have niches at lower nutrient and higher irradiance conditions than light stress toler-

ant taxa. Yet, there is considerable within-class variability in niche centers, and many taxa occupy broad

niches, suggesting that more complex approaches may be necessary to capture all aspects of phytoplankton

ecology.

Introduction

Marine phytoplankton ubiquitously inhabit the illumi-

nated upper layers of the world’s oceans, but their fate has

consequences that reach far beyond the local mixed layer.

Marine phytoplankton generate roughly half of the Earth’s

net primary production (Field et al. 1998) and make signifi-

cant contributions to the global biogeochemical cycles of

many biologically relevant elements such as carbon, nitro-

gen, phosphorus, and silicon (Falkowski 1994; Boyd and

Doney 2003; Sarmiento and Gruber 2006). Phytoplankton

are highly diverse, with representatives playing various roles

in biogeochemistry (Falkowski et al. 2004; Le Qu�er�e et al.

2005) and showing different distribution patterns (Boyd

et al. 2010). Understanding the underlying mechanisms

which shape phytoplankton biogeography and cause its cur-

rent changes (e.g., Poloczanska et al. 2013) is, therefore, an

important question but a complex one.

The ecological niche is a concept that has contributed

greatly to our comprehension of patterns in the large-scale

biogeography of taxa (Colwell and Rangel 2009). The funda-

mental ecological niche is the environment that permits sus-

tained growth of a species (Hutchinson 1957), that is, it is a

hypervolume in environmental space defined by favorable

conditions in critical physical and chemical factors such as

temperature, nutrients, and light. A species’ realized niche

(the conditions under which it can be observed) is usually a

subset of its fundamental niche. The realized niche may be

restricted by dispersal ability, interspecific competition or*Correspondence: pgbr@aqua.dtu.dk
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predation. One important strength of the concept of the eco-

logical niche is that the favorable ranges in environmental

conditions can be quantified based on laboratory experi-

ments and field observations (Colwell and Rangel 2009).

In the past decades, a multitude of methods to quantify

realized ecological niches based on field data have been

developed. Phytoplankton ecological niches have been inves-

tigated with ordinal methods, such as the Outlying Mean

Index, which compare habitat conditions of a species to

mean habitat conditions of a sampling area (Dol�edec et al.

2000; Gr€uner et al. 2011). However, these methods typically

rely on abundance data from systematically sampled sur-

veys—a condition rarely met in the open ocean.

Species distribution models (SDMs) have been shown to

represent a powerful alternative with lower requirements to

the extent of observational data. SDMs represent a family of

statistical tools that are used to analyze and predict geo-

graphical ranges of species occurrence based on approxima-

tions of the realized ecological niche (Guisan and

Zimmermann 2000; Elith and Leathwick 2009). Most SDM-

based studies have been performed in terrestrial systems and

only recently have SDMs been used in the marine realm

(Robinson et al. 2011). In marine systems phytoplankton

belong to the groups that received the least attention with

the notable exception of Irwin et al. (2012) who used an

SDM approach to characterize the realized ecological niches

of diatoms and dinoflagellates in the North Atlantic.

In the field, nutrients (nitrate, phosphate, silicate, and

iron), irradiance intensity (i.e., light), and temperature have

been shown to be critical factors for phytoplankton ecologi-

cal niches (reviewed in Boyd et al. 2010). However, the

degree to which these factors control plankton biogeography

is still poorly understood on the global scale (Buitenhuis

et al. 2013; Luo et al. 2014). Observational data of phyto-

plankton distribution and abundance are very limited in the

open ocean and often restricted to a few key species (Hood

et al. 2006; Buitenhuis et al. 2013).

Different concepts exist to aggregate the roughly 20,000

species of phytoplankton (Falkowski et al. 2004) into few

“manageable” groups. Two well established concepts are (i)

plankton functional types (PFTs) (Iglesias-Rodr�ıguez et al.

2002; Le Qu�er�e et al. 2005; Hood et al. 2006), and the Reyn-

olds’ C-S-R model (Reynolds 1988, 2006), which builds on

Margalef’s “mandala” model (Margalef 1978).

The concept of PFTs involves the aggregation of plankton

species into groups that share the ability to perform specific

biogeochemical functions, such as silicification (diatoms) or

calcification (coccolithophores), or fill a similar role due to

their size, contribution to primary production, or trophic

level (e.g., picophytoplankton, microzooplankton, mesozoo-

plankton, and macrozooplankton) (Iglesias-Rodr�ıguez et al.

2002; Le Qu�er�e et al. 2005). This concept has been adopted

widely in the marine modeling community, especially to

represent lower trophic levels of marine ecosystems to inves-

tigate the impact of climate change on marine ecosystems,

and to quantify potential feedbacks of marine ecosystems to

global biogeochemical cycles (e.g., Moore et al. 2002; Ander-

son et al. 2010; Buitenhuis et al. 2010).

In the concept of Reynolds’ C-S-R model the occurrence

of phytoplankton is linked to two environmental factors,

nutrient accessibility, and light availability (Fig. 1), which

are assumed to be the major dimensions of their ecological

niches. Three major survival strategies for phytoplankton are

defined based on a set of physiological and morphological

traits, and these survival strategies are linked to distinct eco-

logical niches. Concretely, the following groups are distin-

guished: Colonist taxa (C-strategists) are fast growing, round,

and rather small. C-strategists include many forms of nano-

planktonic flagellates but also some diatom genera. They

mainly grow in coastal areas, where both factors, nutrients

and light, are richly available. Nutrient stress tolerant species

(S-strategists) are abundant in the open ocean. They consist

of rather large species that grow slowly and have a high

nutrient affinity (Fig. 1). Some S-strategists have additional

adaptations to nutrient-poor conditions, for example, diazo-

trophy or mixotropy. S-strategists comprise the nitrogen-

fixing cyanobacteria Trichodesmium, the coccolithophores

and some diatoms but also the subgroup of chronic nutrient

stress tolerant species (SS) such as the picoplanktonic cyano-

bacteria Prochlorococcus. Finally, light stress tolerant organ-

isms (R-strategists) are groups of relatively large, but fast

growing taxa. R-strategists typically have elongated body-

shapes as a morphological adaptation to efficient light har-

vesting. Many diatom genera show R-strategist adaptations.

Reynolds’ C-S-R model has been used to study freshwater

Fig. 1. Predicted distribution of phytoplankton groups in nutrient
accessibility versus light availability space after Smayda and Reynolds

(2001) and Reynolds (2006).
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phytoplankton (Reynolds 1988) and harmful algal blooms

(Smayda and Reynolds 2001) but a large number of open

ocean phytoplankton taxa have also been classified (Reyn-

olds 2006). However, this classification is mainly derived

from laboratory investigations and qualitative information

about distributions (Smayda and Reynolds 2001).

Whether or not Reynolds C-S-R model has skill in pre-

dicting ecological niches of the classified taxa in the open

ocean has never been thoroughly validated in the field. The

legitimation of upscaling Reynolds’ model to the open

ocean may in fact be doubted because the relationship

between environmental drivers and species occurrence is

scale dependent (Elith and Leathwick 2009). Identifying

light and nutrients as key drivers for phytoplankton succes-

sion in freshwater or regional marine systems does not

mean they also govern global-scale patterns of species distri-

butions. The importance of other limiting abiotic factors

(Boyd et al. 2010) as well as biotic interactions such as graz-

ing pressure may render the use of Reynolds’ C-S-R model

marginal on global scales.

In this article, we aim to challenge these categorization

concepts by exploiting a novel database that contains

observations for diverse plankton taxa on the global scale.

The recently published MARine Ecosystem DATa (MARE-

DAT) initiative contains approximately 500,000 georefer-

enced global plankton abundance and biomass

measurements collected from numerous field studies for 11

PFTs (Buitenhuis et al. 2013). While most observations are

resolved to the species level, phytoplankton data in MARE-

DAT are grouped into five PFTs: coccolithophores, diatoms,

diazotrophs, Phaeocystis, and picophytoplankton (Le Qu�er�e

et al. 2005). We use the MAREDAT database to characterize

the realized niches of 133 phytoplankton species and gen-

era in the open ocean by applying the SDM (MaxEnt) (Phil-

lips et al. 2004, 2006). We investigate two overarching

questions: First, we analyze which environmental factors

show the highest predictive power for large-scale phyto-

plankton distributions. Second, we assess whether PFTs and

a priori classified S- and R-strategists encompass taxa with

similar ecological niches.

Methods

Presence data

The MAREDAT initiative includes observational biomass

and abundance data for 11 PFTs (Buitenhuis et al. 2013).

Five of them describe autotrophic organisms and are investi-

gated in this study. These include coccolithophores (O’Brien

et al. 2013), diatoms (Leblanc et al. 2012), diazotrophs (Luo

et al. 2012), Phaeocystis (Vogt et al. 2012), and picophyto-

plankton (Buitenhuis et al. 2012). The number of raw obser-

vations within the investigated PFTs ranges from 3527 for

Phaeocystis to 90,648 for the diatoms (Table 1). Most phyto-

plankton taxa in the MAREDAT dataset lack confirmed

absence observations (diatoms, picophytoplankton). To have

consistent data we remove all zero abundance observations.

We furthermore discard biomass information and consider

presence-only as the most comparable and robust piece of

information in the dataset. Taxonomic information is not

available for all PFTs to the same degree: full species-level

taxonomic resolution is available for some coccolithophore,

diatom, and Phaeocystis observations (68%, 75%, and 71%,

respectively). Diazotrophs and picophytoplankton are

resolved to the genus level at best (100% and 99%,

respectively).

Environmental variables

Phytoplankton presence cells are matched up with envi-

ronmental variables that have either been shown to be of

physiological or ecological importance in the field or labora-

tory (e.g., Boyd et al. 2010). Since only a very limited num-

ber of colocated observations of such variables exist in

MAREDAT, we matched phytoplankton observations with

monthly data from climatological datasets. The environmen-

tal variables considered include mixed layer depth (MLD, m)

(de Boyer Mont�egut 2004), as well as temperature (T, �C),

salinity (S) and the concentrations of nitrate (NO2
3 ), phos-

phate (PO32
4 ), and silicate (SiðOHÞ4; all nutrients in units of

lmoles L21) from the World Ocean Atlas 2009 (Antonov

et al. 2010; Garcia et al. 2010; Locarnini et al. 2010). We

average monthly climatological values of T, S, and nutrients

over the climatological mixed layer. Furthermore, we use

Table 1. Observational data for different PFTs: Only taxa with more than 15 observations are included. Presence cells have been
aggregated 1� 3 1� cells and masked for open ocean conditions and full environmental data coverage.

PFT Coccos* Diatoms Diazos* Phaeos* Picos*

MAREDAT observations 11,702 90,648 3841 3527 40,946

Taxonomic resolution Species Species Genus Species Genus

Grid cells with presence data 3771 4075 641 123 1609

Number of taxa 40 87 2 2 2

Grid cells per taxon 15-748 15-216 137-504 44-79 620-967

C-S-R classifications 40 S 4 S, 30 R 1 S N/C† 1 SS

Reference O’Brien et al. 2013 Leblanc et al. 2012 Luo et al. 2012 Vogt et al. 2012 Buitenhuis et al. 2013

*Coccos, coccolithophores; Diazos, diazotrophs; Phaeos, Phaeocystis; Picos, picophytoplankton.
†N/C, not classified.
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modeled iron fields from the Community Earth System

Model (Hurrell et al. 2013) and the Pelagic Interaction

Scheme for Carbon and Ecosystem Studies (Aumont and

Bopp 2006).

Finally, we consider mean photosynthetically active radia-

tion in the mixed layer (MLPAR) estimated as

MLPAR5
1

MLD

ðz5MLD

0

PAR 3 e2Kextdz5
PAR

KextMLD
ð12e2KextMLDÞ

The integration variable z represents depth (m), and PAR

is photosynthetically active radiation at the surface

(lmoles m22 s21). The light attenuation coefficient Kext

(Morel 1988) in this equation is a function of chlorophyll

concentration (CHL, lg L21) and includes the effect of sea

water attenuation

Kext50:121 3 CHL0:428;

where we assume CHL to be homogeneous within the mixed

layer. Data for the variables CHL and PAR were obtained

from climatologies derived from Sea-viewing Wide Field-of-

view Sensor data (SeaWiFS; www.oceancolor.gsfc.nasa.gov).

Data treatment

Observations are aggregated into 1� 3 1� cells to reduce

spatial biases, as numerous observations can occur within

the same pixel. For each month and each taxon, cells with

at least one (presence) observation within the local mixed

layer are thereby defined as “presence cells” (22,138 cells in

total). Presence cells from the same taxon can thus overlap

geographically if observations were made in the same area

but during different months. We aggregate data within the

local MLD, which we assume to be of homogenous physico-

chemical conditions as a result of physical mixing.

We restrict our study of phytoplankton ecological niches

to the “open ocean” to avoid coastal effects that cannot be

resolved by the coarse environmental data, we use to con-

struct the statistical models. The open ocean is defined as

the region having a water depth of more than 200 m as indi-

cated by the ETOPO1 Global Relief Model (Amante and

Eakins, 2009) and having a minimum sea surface salinity of

30. We furthermore confine the investigated area to cells

that have corresponding data for all environmental variables

used in our models. Missing data is primarily a problem for

MLD values in the high latitudes. These restrictions lead to

the omission of 43% of data-containing grid cells, predomi-

nantly in coastal areas.

Taxa that are present in fewer than 15 grid cells are

removed to ensure a good performance of the MaxEnt mod-

els. A lower number would lead to a loss of model skill,

while 15 presence cells have been shown to produce distribu-

tion predictions of a useful accuracy in terrestrial systems

(Hernandez et al. 2006). The final number of grid cells used

in this study is 11,212.

Final size of analyzed categories

The final sets of taxa resolved vary from 87 for diatoms to

only two for diazotrophs, Phaeocystis, and picophytoplankton

(see Tables 1, 2). Of the investigated 133 taxa, 73 were classi-

fied previously as S-strategists or R-strategists by Reynolds

(2006) according to his C-S-R model. In our data, S-strategists

represent the larger group including the 40 coccolithophore

species, four diatom species and the diazotroph genus Tricho-

desmium while the related group of SS-strategists is represented

by the picophytoplankton genus Prochlorococcus. R-strategists

are represented by 27 diatom species (Table 1). A detailed list

of the investigated taxa is given in Table 2. We do not test

C-strategists here, since they only play a minor role in the

open ocean.

Selection of investigated environmental variables

We explored the explanatory potential of all considered

predictor variables in a preliminary run of our analysis.

This led to the exclusion of iron from an in depth consid-

eration here, despite its potentially important role in limit-

ing phytoplankton growth (Boyd et al. 2010). The main

reason for exclusion is the poor data coverage on the

global scale (see also Palacz et al. 2013). Modeled iron con-

centrations predict phytoplankton distributions well, but

differences between the two modeled iron fields are large

(Pearson correlation coefficient (r) of 0.75 across the inves-

tigated area).

Similarly, a range of spatial and temporal gradients of the

different variables were tested but did not improve the statis-

tical model, therefore, none were included in our final set of

predictor variables. We tested the spatial gradients of NO2
3 ,

salinity, and temperature at the surface and in 200 m depth

and the temporal change of surface temperature, NO2
3 ,

PO32
4 , and MLD. The obtained univariate model performan-

ces as measured by the area under the receiver operating

characteristic curve (see section “Model performance” below)

was between 0.66 (spatial gradients of NO2
3 and temperature

at the surface) and 0.56 (temporal gradient of PO32
4 ) for all

investigated taxa.

A correlation analysis applied to the remaining variables

reveals strong correlations between NO2
3 and PO32

4 (r 5 0.96).

Strong correlations can lead to misleading attribution of

variable importance in SDM (Phillips et al. 2004; Dormann

et al. 2012; Irwin et al. 2012). Therefore, we excluded PO32
4 ,

but included P*, a variable that reflects the excess (or defi-

ciency) of PO32
4 versus NO2

3 (Deutsch et al. 2007), defined as

P�5 PO32
4

� �
—

1

16
3 ½NO2

3 �

P* is closely related to N* (Gruber and Sarmiento 1997), and

is potentially important as it could define the habitats of

Brun et al. Niches of open ocean phytoplankton
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Table 2. Taxa included in the analyses, and their C-S-R classification according to Reynolds (2006).

Coccolithophores

strategists

Acanthoica acanthifera Acanthoica quattrospina Algirosphaera robusta

Anacanthoica acanthos Calcidiscus leptoporus Calciopappus rigidus

Calciosolenia brasiliensis Calciosolenia murrayi Coccolithus pelagicus

Coronosphaera mediterranea Discosphaera tubifera Emiliania huxleyi

Florisphaera profunda var. profunda Gephyrocapsa ericsonii Gephyrocapsa oceanica

Gephyrocapsa ornata Gladiolithus flabellatus Helicosphaera carteri

Helladosphaera cornifera Holococcolithophora sphaeroidea Michaelsarsia adriaticus

Michaelsarsia elegans Oolithotus antillarum Oolithotus fragilis

Ophiaster hydroideus Palusphaera vandelii Reticulofenestra parvula

Reticulofenestra sessilis Rhabdosphaera clavigera Rhabdosphaera hispida

Rhabdosphaera xiphos Syracosphaera molischii Syracosphaera prolongata

Syracosphaera pulchra Syracosphaera pulchra holococcolithophore Turrilithus latericioides

Umbellosphaera irregularis Umbellosphaera tenuis Umbilicosphaera hulburtiana

Umbilicosphaera sibogae

Diatoms

C-strategists

Cerataulina pelagica Coscinodiscus oculus-iridis Coscinodiscus radiatus

R-strategists

Chaetoceros affinis Chaetoceros atlanticus Chaetoceros bulbosum

Chaetoceros compressus Chaetoceros concavicornis Chaetoceros convolutus

Chaetoceros curvisetus Chaetoceros dadayi Chaetoceros debilis

Chaetoceros decipiens Chaetoceros dichaeta Chaetoceros didymus

Chaetoceros hyalochaetae Chaetoceros lorenzianus Chaetoceros peruvianus

Chaetoceros phaeoceros Chaetoceros socialis Chaetoceros tetrastichon

Thalassiosira angulata Thalassiosira anguste-lineata Thalassiosira gravida

Thalassiosira rotula Thalassiosira subtilis Leptocylindrus danicus

Leptocylindrus mediterraneus Leptocylindrus minimus Skeletonema costatum

S-strategists

Hemiaulus hauckii Hemiaulus sinensis Pseudosolenia calcar-avis

Rhizosolenia styliformis

Unclassified diatom species

Asterionellopsis glacialis Bacteriastrum delicatulum Bacteriastrum furcatum

Climacodium frauenfeldianum Corethron criophilum Cylindrotheca closterium

Dactyliosolen antarcticus Dactyliosolen fragilissimus Detonula pumila

Ditylum brightwellii Eucampia antarctica Eucampia cornuta

Eucampia zodiacus Fragilariopsis kerguelensis Fragilariopsis obliquecostata

Fragilariopsis oceanica Fragilariopsis rhombica Guinardia cylindrus

Guinardia delicatula Guinardia flaccida Guinardia striata

Lauderia annulata Lioloma delicatulum Lioloma pacificum

Meuniera membranacea Navicula planamembranacea Nitzschia bicapitata

Nitzschia closterium Nitzschia delicatissima Nitzschia longissima

Nitzschia seriata Nitzschia tenuirostris Paralia sulcata

Planktoniella sol Proboscia alata Proboscia gracillima

Proboscia indica Pseudo-nitzschia delicatissima Pseudo-nitzschia heimii

Pseudo-nitzschia pungens Pseudo-nitzschia seriata Rhizosolenia bergonii

Rhizosolenia chunii Rhizosolenia delicatula Rhizosolenia hebetata f. hebetata

Rhizosolenia hebetata f. semispina Rhizosolenia imbricata Rhizosolenia setigera

Roperia tesselata Thalassionema bacillare Thalassionema frauenfeldii

Thalassionema nitzschioides Thalassiothrix longissima
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diazotrophic organisms (Deutsch et al. 2007). P* is only very

weakly correlated with NO2
3 (r 5 0.07).

We chose to keep NO2
3 , SiðOHÞ4 and T, despite NO2

3

and SiðOHÞ4 showing a correlation coefficient of r 5 0.74

and NO2
3 and T showing an r of 20.85 which is higher

than the frequently used correlation threshold of |r| 5 0.7

(Dormann et al. 2012). However, these variables are of

high ecological importance for phytoplankton growth

and distribution (Boyd et al. 2010) and we use the

models only to analyze ecological niches and not for

applications where high correlations are particularly

problematic such as making predictions for other geo-

graphic areas or time periods (Dormann et al. 2012). We,

therefore, believe this exception is justified. Furthermore,

a sensitivity analysis revealed that the high level of corre-

lation for these variables did not lead to distorted permu-

tation importance estimates: the relative permutation

importance of the remaining variables did not change

when either of the variables was left out of the model

(data not shown).

The SDM MaxEnt

The MaxEnt SDM (Phillips et al. 2004, 2006) is one of the

most widely used species distribution/environmental niche

models with well over 1000 published applications (Merow

et al. 2013). Species distributions are derived from presence-

only data, by contrasting environmental conditions that pre-

vail at all locations where a given species was observed with

those conditions typical for the entire global ocean

(“background” conditions). Strengths of MaxEnt are its high

performance in comparison to other SDMs (Elith et al.

2006), its ability to characterize species’ distributions and

their realized niches comparably well even when the obser-

vational data are very limited (Hernandez et al. 2006) and its

ability to generate response curves of an ecologically realistic

shape (i.e., not overly complex) (Irwin et al. 2012). MaxEnt

is a probabilistic method that approximates the probability

of presence of a species as a function of environmental con-

ditions. Probability functions that depend on the range of

the input variables (e.g., temperature, nutrient concentra-

tions, etc.) are then used to predict species distributions. We

use MaxEnt software 3.3.3e (www.cs.princeton.edu/

�schapire/maxent/) to fit MaxEnt models and to obtain

model-related statistics. We disable threshold features to

restrict the fitted functions to a moderate level of complex-

ity, and we represent background conditions by 1000 ran-

dom grid cells in the open ocean for each month (12,000 in

total).

Model performance

We evaluate the receiver operating characteristic (ROC)

metric (Swets 1988; Manel et al. 2001) to quantify the pre-

dictive quality of MaxEnt models. The ROC metric is based

on a large number of probability thresholds that are used

to divide the continuous probabilistic output of MaxEnt

models into binary presence/absence predictions. In an

ROC plot, the proportions of correctly predicted presences

are plotted against the proportion of wrongly predicted

presences for each of the threshold-dependent presence/

absence predictions. A good model maximizes the propor-

tion of true presences for all thresholds, while minimizing

the proportion of false presences. The ROC plot can be

summarized by the “AUC,” the area under the ROC curve.

An AUC of 1 means perfect discrimination and an AUC of

0.5 is the value expected by an unbiased random presence/

absence generator. For each taxon, the AUC is reported as

the mean of five cross-validation replicates, both for a

MaxEnt model including all variables (multivariate model)

as well as for MaxEnt models that only consider one vari-

able at a time (univariate models). Additionally we per-

form Student’s t-tests to determine whether the five AUC

replicates perform significantly better than random

(AUC 5 0.5) at the 95% significance level, which we use as

quality criterion for estimated univariate niches (see

below).

TABLE 2. Continued

Diazotrophs

S-strategists

Trichodesmium

Unclassified diazotroph genera

Richelia

Phaeocystis

Unclassified Phaeocystis species

Phaeocystis antarctica Phaeocystis pouchetii

Picophytoplankton

SS-strategists

Prochlorococcus

Unclassified picophytoplankton genera

Synechococcus

Brun et al. Niches of open ocean phytoplankton
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Variable importance

The permutation importance as implemented in the Max-

Ent software allows for the quantification of the contribution

of a variable to the performance of a multivariate model. It

is estimated by randomly permuting the values of one vari-

able and measuring how much the performance of the fitted

model drops compared to a model fitted with the original

values. A variable with a high permutation importance

causes a relatively high drop in model quality when its val-

ues are permuted and thus contributes much to the quality

of the multivariate model. We calculate the permutation

importance for each taxon as the average of a fivefold cross-

validation.

Univariate niche parametrization

We characterize realized niches based on the response

curves derived from univariate models. Response curves are

diagrams showing the probabilistic output of MaxEnt as a

function of an environmental variable. Multivariate MaxEnt

models are not appropriate for response curve analysis

because MaxEnt discards a fraction of parameters in the ini-

tial model design based on statistical performance as a mea-

sure to avoid over fitting. This can lead to models not

considering certain input variables and corresponding flat

response curves despite existing patterns.

We follow Irwin et al. (2012) and summarize the response

curves by two parameters, that is, the univariate niche center

(median) and the univariate niche breadth (interquartile

range). The latter gives an estimate of the tolerance range of

the taxon for a particular factor. Specialist taxa will have

small niche breadth, whereas the niches of generalist taxa

are broad. Note that this estimate of niche breadth is mainly

suitable as a relative measure to compare different taxa. The

estimates of the latter two parameters depend on the consid-

ered range of environmental conditions. To optimize the

accuracy of the parameter estimates, the integration range of

the response curves was defined by the 0.05 and the 99.5

percentiles of the open ocean conditions. Five hundred repli-

cates of model estimates for each univariate niche center

and breadth are created by resampling with the bootstrap-

ping method as implemented in the MaxEnt software. A pre-

liminary sensitivity analysis (data not shown) showed that

500 bootstrapping replicates allow a reliable estimation of

90% confidence intervals for the derived niche parameters.

We only analyze niche center and breadth for univariate

models that perform better than random, that is, which

have an AUC significantly larger than 0.5 as indicated by a

Student’s t-test applied to the five cross-validation replicates.

Results

Model performance

Model performance

Based on the AUC scores, the multivariate MaxEnt models

estimate the realized niches of marine phytoplankton very

well using the available set of predictor variables (Table 3).

The AUC for the multivariate models ranges from 0.78 to

1.00 for 132 investigated taxa (only the model for the dia-

tom Nitzschia bicapitata has a lower AUC of 0.70). The mean

AUC is near 0.90 for all PFTs except picophytoplankton, for

Table 3. Average AUC for fitted univariate and multivariate MaxEnt models. Percentages in brackets show the ratio of species for
which fitted models predict significantly better than random. The first column (“All”) represents averages over all investigated taxa.

All Coccos Diatoms Diazos Phaeos Picos

Multivariate models

0.91 0.9 0.91 0.89 0.99 0.83

Univariate models

MLD 0.73 0.77 0.71 0.73 0.67 0.64

(95%) (100%) (92%) (100%) (100%) (100%)

Temperature (T) 0.73 0.69 0.74 0.74 0.96 0.62

(92%) (95%) (90%) (100%) (100%) (100%)

NO2
3 0.71 0.69 0.73 0.74 0.88 0.62

(90%) (92%) (89%) (100%) (100%) (100%)

Average light (MLPAR) 0.7 0.72 0.68 0.7 0.78 0.56

(88%) (92%) (85%) (100%) (100%) (100%)

Salinity (S) 0.69 0.68 0.69 0.72 0.85 0.73

(83%) (78%) (85%) (100%) (100%) (100%)

SiðOHÞ4 0.67 0.71 0.65 0.62 0.86 0.64

(84%) (93%) (79%) (100%) (100%) (100%)

P* 0.66 0.68 0.65 0.73 0.67 0.61

(72%) (72%) (70%) (100%) (100%) (100%)
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which it is lower (0.83), and Phaeocystis for which very accu-

rate predictions are possible (0.99).

Useful univariate models are found for between 72% and

95% of taxa, depending on the environmental factor (see

values in brackets in Table 3). The best model performances

are found for univariate models for T and MLD, with an

average AUC of 0.73 in both cases (Table 3). The lowest

AUC scores are obtained for P* only models (0.66), which

show lowest performance scores for all PFTs except

diazotrophs.

Variable performance

The relative permutation importance measure, that is, the

ranking of the predictive performance of the different envi-

ronmental variables, reveals MLD is the most important vari-

able for predicting the presence of the different

phytoplankton taxa, significantly superior to all other varia-

bles (Tukey honest significant difference [HSD] test, Fig. 2,

Panel F). The climate variables temperature and MLPAR are

of similar permutation importance, forming a group of sec-

ond best predictors ahead of the group containing NO2
3 ,

SiðOHÞ4, and salinity. Similar to the performance of the cor-

responding univariate models (Table 3), the permutation

importance of P* is low.

When the permutation importance is averaged over PFT

subsets, the patterns are more variable. MLD has the high-

est importance for coccolithophores, diatoms, diazotrophs,

and picophytoplankton (approximately 30%). The second

most important variables are less consistent among the

investigated PFTs. In the case of coccolithophores and diaz-

otrophs it is NO2
3 (16% and 22%), while for diatoms it is

MLPAR (21%), and for picophytoplankton salinity (18%). A

completely different pattern is found for Phaeocystis, for

which temperature plays by far the most important role

with a permutation importance of 84% followed by NO2
3

with 9%.

Univariate niches of phytoplankton

Most taxa investigated here have a niche center at tem-

peratures between 10�C and 20�C (Fig. 3, Panel A). The mid-

point of this range roughly corresponds to the mean

temperature in the open ocean. The two Phaeocystis species

considered have the lowest temperature niche centers (1�C

on average), significantly lower than for any other PFT

(p�0.01; Table 4). Diatom niche centers occur across a wide

range of temperatures, between 1�C and 26�C, but are signif-

icantly lower than those of coccolithophores and diazo-

trophs (p�0.001 and p�0.01, respectively), which have

average niche centers of 21�C and 24�C, respectively. Pico-

phytoplankton occupy broad temperature niches with an

average niche center of 17�C.

The majority of the MLD niche centers are located at

rather shallow mixed layers of less than 100 m, correspond-

ing to the prevailing MLDs in the open ocean (Fig. 3, Panel

B). Diazotrophs and coccolithophores occur at the shallowest

mixed layers, on average, with average MLD niche centers of

39 m and 50 m, respectively. Mean MLD niche centers of

both diatoms and Phaeocystis are significantly deeper than

those of coccolithophores (Table 4) but vary between 23 m

and 250 m. Approximately half of the taxa considered for

those PFTs, as well as the two picophytoplankton taxa, have

MLD niche centers between 100 m and 250 m depth, condi-

tions which occur infrequently in the open ocean (Fig. 3,

Panel B).

In terms of NO2
3 , most taxa have niche centers at elevated

levels of 5 lmoles L21 to 15 lmoles L21; conditions which

are quite rare in the open ocean (Fig. 3, Panel C). The nitrate

niches of diazotrophs and coccolithophores are closest to the

oligotrophic conditions that prevail in the open ocean, with

average niche centers of 2 lmoles L21 and 5 lmoles L21,

respectively. The niche centers of these two PFTs are distinct

from those of diatoms (p�0.1 and p�0.001, respectively)

Fig. 2. Boxplots showing permutation importance of environmental variables for each PFT (A–E), central vertical lines indicate median values, boxes
indicate interquartile ranges and error bars indicate 5th and 95th percentiles; barplot indicating mean permutation importance for all taxa (F). Permu-
tation importance of variables with different letters are significantly different (p � 0.05) based on a Tukey HSD test.
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Fig. 3. Univariate niches of phytoplankton in temperature (A), MLD (B), NO2
3 (C), MLPAR (D), salinity (E) and P* (F). Points and error bars indicate

univariate niche centers (median) and breadths (inter quartile range), respectively. Points labeled by letters represent niches of well-known taxa. Only

univariate niches of models that perform significantly better than random are illustrated, hence not all labeled taxa are shown in each panel. The histo-
grams in the bottom plots indicate the frequency distribution of values of the environmental factor in the open ocean. Corresponding frequency distri-

butions are estimated from the background points in the fitting procedure of MaxEnt models.



and Phaeocystis (p�0.05; Table 4) which have average niche

centers of 11 lmoles L21 and 14 lmoles L21, respectively.

The latter PFTs, however, show high within-PFT variability

in niche centers (ranges are 3-24 lmoles L21 and

5-23 lmoles L21, respectively). Picophytoplankton occur at

intermediate conditions in the statistical model (average

niche center 5 7 lmoles L21).

The niche centers in MLPAR occur predominantly between

150 lmoles m22 s21 and 300 lmoles m22 s21, which is slightly

biased toward high values compared to the average conditions in

the open ocean. MLPAR niches of PFTs can be separated into two

significantly distinct groups (Table 4). The niches of Phaeocystis

and diatoms occur at low irradiance intensities (average niche

centers at 98 lmoles m22 s21 and 186 lmoles m22 s21, res-

pectively) while coccolithophores, diazotrophs, and picophyto-

plankton have niche centers at comparatively high

irradiance intensities (averages are 294 lmoles m22 s21, 346

lmoles m22 s21, and 305 lmoles m22 s21, respectively).

Interestingly, most taxa have niche centers at rather high

salinities relative to the frequency of open ocean conditions,

with niche centers between 35 and 37 (Fig. 3, Panel E).

Phaeocystis have niche centers at comparably low salinities

(average is 34.2) whereas the realized niches of diatoms

cover the whole range of possible salinities in the open

ocean. Coccolithophore niche centers occur at significantly

higher salinities, with an average of 36.2 (p�0.01; Table 4).

More than 50% of the open ocean area has a SiðOHÞ4 con-

centration below 5 lmoles L21 but niche centers for most

taxa are at elevated levels of 5 lmoles L21 to 15 lmoles L21.

Coccolithophore niche centers are found at significantly

lower SiðOHÞ4 concentrations than those of diatoms and

Phaeocystis (p�0.01; Table 4).

Finally, the diagnosed niche centers for P* are biased

toward high values of 0.320.7 lmoles L21, representing rare

conditions that indicate clear surpluses of PO32
4 compared to

NO2
3 concentration with respect to the Redfield ratio (values

are larger than zero; Fig. 3, Panel F). No significant differen-

ces are apparent between PFTs for P* niche centers (Table 4;

p>0.05).

Realized niches in most environmental variables tend to

be broader when the niche center is located at moderate

conditions, whereas niches at the high or low end of the

range of possible conditions tend to be narrower (Fig. 4). For

instance, the temperature niches of Phaeocystis and diazo-

trophs are both rather narrow, while being located at the

lower and upper end of the range of possible temperatures

in the open ocean, respectively (Fig. 4, Panel A). Conversely,

the temperature niches of picophytoplankton are broad and

centered at moderate temperatures. MLD niches, however,

do not become narrower if centers are located in deep mixed

layers (Fig. 4, Panel B). This indicates that among the investi-

gated taxa no “deep mixed layer specialists” exist. Instead,

taxa occurring in deep mixed layers are rather generalists

with a high tolerance of changing MLD. Differences in niche

breadths also exist between PFTs: integrated over all investi-

gated niche dimensions, diatoms and picophytoplankton

tend be generalists with broad niches, whereas coccolitho-

phores, diazotrophs, and Phaeocystis have narrower niches

typical of specialist taxa.

Nitrate-light niches

Of the 133 phytoplankton taxa investigated in this study,

73 have previously been classified by Reynolds (2006) either

as S-, SS-, or R-strategists based on morphological and physi-

ological traits. This classification also includes an assumption

about the ecological niches of taxa in terms of nutrient

availability and light level. Here, we use our observation-

based, univariate niche estimates to test these predicted

Table 4. Differences in univariate niche centers for PFTs and between S- and R-strategists. Depicted are significance levels of p-val-
ues for statistical tests comparing the niche centers in the environmental factors MLD, temperature, MLPAR, NO2

3 , salinity and P*. No
significance is symbolized with ns, “.” means significance at a level of p � 0.1, * means significance at a level of p � 0.05, ** means
significance at a level of p � 0.01 and *** means significance at a level of p � 0.001. Tukey HSD tests were used to compare PFTs
while t-tests were used for the comparison of S-strategists with R-strategists.

lMLD lT lMLPAR lNO3 lS lSi(OH)4 lP*

Diatoms - Coccos *** *** *** *** ** *** ns

Diazos - Coccos ns ns ns ns ns ns ns

Phaeos - Coccos ** *** *** * * ** ns

Picos - Coccos ns ns ns ns ns ns ns

Diazos - Diatoms ns ** ** . ns ns ns

Phaeos - Diatoms ns ** ns ns ns ns ns

Picos - Diatoms ns ns * ns ns ns ns

Phaeos - Diazos . *** *** * ns ns ns

Picos - Diazos ns ns ns ns ns ns ns

Picos - Phaeos ns ** ** ns ns ns ns

S – R ** *** *** *** ** ** ns
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ecological niches. We use NO2
3 concentration to simulate

general nutrient availability, as this factor is strongly corre-

lated with other important nutrients such as PO32
4 and

SiðOHÞ4 (see section “Selection of investigated environmental

variables” above). Light level is represented by MLPAR (Fig.

5).

A quick comparison of Fig. 5, Panel A with the idealized

scheme in the introduction (Fig. 1) indicates that our data

do not include taxa with niches located in the upper left cor-

ner of the scheme, where conditions are simultaneously rich

in nutrients and light availability. Such conditions are

mainly expected to occur in coastal areas and are absent in

the environmental data used to describe open ocean condi-

tions in this study (frequency of considered open ocean con-

ditions is illustrated by shading of background in Fig. 5,

Panel A). Reynolds’ scheme considers the area in the lower

right corner, which is characterized by both poor nutrient

and irradiance availability, to be unfavorable for phytoplank-

ton growth (“void” area in Fig. 1). In contrast, we identify

niches for some taxa (diatoms and Phaeocystis) under rela-

tively poor light and nutrient availability (Fig. 5, Panel A).

The very lower right corner in Fig. 5 Panel A, however, is

not occupied by phytoplankton niches, and the relatively

dark colored background there indicates that such condi-

tions are frequent in the open ocean. These conditions are

mostly located in temperate latitudes during winter months,

and do not sustain phytoplankton growth due to low light

and nutrient availability.

In agreement with Reynolds’ predictions, we generally

find taxa categorized as S-strategists to occur at lower NO2
3

concentrations and higher MLPAR intensities than those

categorized as R-strategists (p�0.001; Fig. 5, Panel B; Table

4). In addition, our results indicate that the S-strategists are

significantly different from R-strategists, with the S-

strategists having niches at shallower mixed layers, at higher

temperatures, salinities and silicate concentration (Table 4).

Fig. 4. centers (ls) and breadths (rs) of univariate niches for temperature (A), MLD (B), NO2
3 (C), MLPAR (D), S (E), and P* (F). Horizontal and verti-

cal lines associated with points indicate 90% confidence intervals based on bootstrap resampling. Univariate models which did not perform signifi-

cantly better than random (AUC 5 0.5) are not shown.
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However, there are also taxa for which the predictions do

not correspond to our findings. The diatom Chaetoceros

dadayi, for instance, is classified as R-strategist but we find it

to have an S-strategist niche with a niche center of

3 lmoles L21 in nitrate and 352 lmoles m22 s21 in MLPAR.

Furthermore, Reynolds predicted the picophytoplankton Pro-

chlorococcus to be a specialist for chronic nutrient stress (SS-

strategist, Reynolds 2006). Our results suggest these organ-

isms to have a relatively broad niche (breadth ranges from

167 lmoles m22 s21 to 436 lmoles m22 s21 for MLPAR and

from 2 lmoles L21 to 7 lmoles L21 for NO2
3 concentration),

and we cannot distinguish it from the regular S-strategists

characterized in this study (purple “p” in Fig. 5, Panel B and

corresponding purple cross in Fig. 5, Panel A).

Discussion

Importance of environmental variables

We find MLD to be the environmental variable with the

highest permutation importance. This is in agreement with

previous findings for diatoms and dinoflagellates in the

North Atlantic (Irwin et al. 2012) and indicates that MLD

may also be a key driver for the distributions of phytoplank-

ton taxa in the global open ocean. The high importance of

MLD for phytoplankton occurrence is established in various

other contexts such as seasonal succession on the local scale

(e.g., Margalef 1978) or productivity on the global scale (e.g.,

Boyce et al. 2010). MLD regimes and associated conditions

appear to impose a major pressure for phytoplankton to

which they have to adapt. The importance of MLD may

stem from it being an ideal proxy for the joint influence of

numerous important processes driving phytoplankton

growth and distribution patterns: among these are grazing

pressure, entrainment of nutrient-rich deep water, light

availability, temperature, and short-term environmental vari-

ability (Evans and Parslow 1985; Behrenfeld 2010; Irwin

et al. 2012).

The climatic variables temperature and MLPAR were of

second-highest importance, with a permutation importance

of 17-18%. Temperature and irradiance intensity are key var-

iables that have been shown to control the distributions of

phytoplankton in many ocean areas (reviewed in Boyd et al.

2010). The physiological effects of these factors are well stud-

ied for numerous phytoplankton groups and described by

temperature and light sensitivities and optima (Litchman

and Klausmeier 2008; Thomas et al. 2012). Furthermore, cli-

matic variables tend to vary along large-scale gradients and

on the global scale such variables have been shown to be the

best predictors of species distributions in terrestrial systems

(Elith and Leathwick 2009). The combination of the direct

physiological effect on phytoplankton and the large-scale

patterns of variation are likely to be responsible for the high

Fig. 5. (A) Niche centers (median) for NO2
3 and MLPAR for each taxon for which meaningful niches were found in both factors. In the background a

kernel density estimate of open ocean conditions is shown: black indicates very frequent conditions in the open ocean whereas white colored combi-
nations of NO2

3 concentration and MLPAR do not occur. Error bars indicate niche breadths (interquartile range). Colors represent different PFTs; green:

coccolithophores; blue: diatoms; red: diazotrophs; orange: Phaeocystis; purple: picophytoplankton. (B) Niche centers labeled with predicted niche
position according to Reynolds (2006). The same color code as in Panel A is used to represent PFTs in Panel B. The axes of MLPAR are reversed to be

consistent with the axis in Reynolds scheme shown in Fig. 1.
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predictive performance of temperature and MLPAR in this

study.

The solute variables NO2
3 , SiðOHÞ4, and salinity have been

found to be significantly less important than most of the

other tested variables (permutation importance of 11%, 11%,

and 8%, respectively). The relatively low importance of NO2
3

is surprising, since it is perhaps the single most important

variable controlling phytoplankton growth in the ocean,

either directly (Boyd et al. 2010) or indirectly through the

promotion or inhibition of competitors as in the case of

diazotrophs (Weber and Deutsch 2010).

One explanation for this conundrum is that in contrast to

the other controlling variables, phytoplankton also strongly

influence the NO2
3 and, in the case of diatoms, SiðOHÞ4 con-

centration in the mixed layer through rapid consumption of

these resources. Resupply of nutrients happens through ver-

tical mixing processes at small scales and mesoscales which

bring up nutrient-rich deeper waters (Falkowski et al. 1991;

McGillicuddy et al. 2007; L�evy 2008). The interplay between

mixing and consumption largely determines the conditions

experienced by phytoplankton and leads to habitat varia-

tions at small scales (d’Ovidio et al. 2010), which cannot be

resolved by the available climatological nutrient data. The

identified nitrate and silicate niches, therefore, mainly reflect

coarse-scale nutrient regimes which are correlated with tem-

perature, in particular in the case of NO2
3 (r 5 20.86). The

case is similar for the predictive quality of PO32
4 climatolo-

gies (not shown sensitivity analysis of this study; Irwin et al.

2012). Despite the unarguably major impact of nutrient

availability on phytoplankton growth, nutrient variables

that are averaged over hundreds of kilometers and months

are of limited predictive quality for phytoplankton distribu-

tion, as the interaction between phytoplankton and

nutrients is likely to happen on spatiotemporal scales that

cannot be resolved in our analysis. In essence, many phyto-

plankton taxa are present in relatively low-nutrient regimes

and wait for a nutrient pulse to enhance their growth and to

become abundant.

Salinity affects phytoplankton cells directly via differences

in osmotic potential. In the salinity range of the open ocean

(30-40) the direct effect of salinity on phytoplankton repro-

duction rate, however, is relatively small (Brand 1984). The

moderate predictive quality of salinity is, therefore, likely to

arise from indirect effects such as salinity-induced stratifica-

tion (Beaugrand et al. 2013), correlated evaporation/precipi-

tation regimes (Hosoda et al. 2009), or the influence of rivers

or sea ice in the high latitudes.

The relative excess of PO32
4 in comparison to NO2

3 , P*,

was the variable with the lowest permutation importance in

this study (3% on average; Fig. 2). This is not surprising, as

the ratio of nutrients matters only in areas where a colimita-

tion of both nutrients exists for phytoplankton. For diazo-

trophs and coccolithophores, which primarily occur in low

nutrient areas, the importance of P* was highest, although

still relatively low (8.5% and 7.1%, respectively). In addition

to only being relevant in limited ocean areas, this factor is

affected by the combined uncertainty of two nutrient varia-

bles, which further constrains its accuracy and makes P* a

relatively poor predictor variable.

In conclusion, large-scale patterns of phytoplankton dis-

tribution can be predicted well and are most clearly linked

to climate regimes. The tight link between climatic condi-

tions and phytoplankton distributions further emphasizes

the susceptibility of phytoplankton biogeography to climate

change (Poloczanska et al. 2013). Based on these findings,

we see two major promising directions for further research

involving SDM of phytoplankton.

First, the characterized realized ecological niches could be

used as a quantitative basis to estimate how distributions of

different phytoplankton taxa may change in the future. Phy-

toplankton have several properties that correspond the

assumptions of correlative SDMs comparably well: phyto-

plankton are far less limited by dispersal ability than terres-

trial organisms. Shifts of phytoplankton distribution occur

with rates that are high enough to track observed changes in

sea surface temperature (Poloczanska et al. 2013). Moreover,

phytoplankton are immediately affected by the state of the

environment since they almost exclusively rely on abiotic

resources, their body temperature, and metabolic rates are

directly determined by the surrounding temperature and

they have limited behavioral capabilities to evade the condi-

tions they are exposed to (Robinson et al. 2011; McManus

and Woodson 2012). However, some phytoplankton groups

also have properties that hamper the identification of one

single realized ecological niche for all of its life forms. For

example, the ubiquitous distribution of single Phaeocystis

cells contrasts with the occurrence patterns of Phaeocystis

colonies, which were investigated in this study (Vogt et al.

2012). Furthermore, our results indicate that it is not cur-

rently possible to characterize the whole complexity of phy-

toplankton ecological niches due to the limited resolution of

in situ environmental variables, and the scarcity of biological

observations (discussed in further detail below). Similarly, it

is currently unclear to which degree phytoplankton is able

to physiologically and genetically adapt to changing climatic

conditions (Colwell and Rangel 2009). Thus, further investi-

gations are needed to determine the reliability of SDM-based

predictions of phytoplankton biogeography.

Second, SDMs could be used to improve the monitoring

of phytoplankton biogeography. Other indirect variables

similar to MLD, such as ambient chlorophyll a concentra-

tion, may be explored as potential proxies to predict and

monitor phytoplankton biogeography on the global scale.

Chlorophyll in combination with other environmental varia-

bles derived from remote sensing (sea surface temperature

and salinity) could potentially lead to better resolved esti-

mates of phytoplankton biogeography. In addition to moni-

toring, such estimates could be used for the evaluation of
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satellite algorithms which estimate the distribution of phyto-

plankton groups based on optical properties of the sea sur-

face (e.g., Brewin et al. 2011; Hirata et al. 2011).

Plankton functional types

For the PFTs with relatively large numbers of investigated

taxa, diatoms, and coccolithophores (87 taxa and 40 taxa,

respectively), we found the strongest distinction of realized

ecological niches (Table 4). Compared to diatoms, coccolitho-

phores occurred in significantly warmer and saltier areas with

shallower mixed layers, a higher irradiance, and lower nitrate

and silicate concentration (p�0.01). These findings are simi-

lar to the conclusions of extensive review studies (Balch 2004;

Boyd et al. 2010). However, for the remaining PFTs investi-

gated in this study differences in univariate niche centers were

not as clearly distinct. Our results indicated that the simulated

niche centers allow us to distinguish between two major

groupings of PFTs: coccolithophores, diazotrophs, and pico-

phytoplankton occur at higher MLPAR and temperatures than

diatoms and Phaeocystis. Furthermore, coccolithophores and

diazotrophs occur at significantly lower NO2
3 concentrations

than diatoms and Phaeocystis (p�0.05, except for the margin-

ally significant difference between diatoms and diazotrophs of

p�0.1) and coccolithophores inhabit significantly more

saline areas than diatoms and Phaeocystis (p�0.05; Table 4).

The niche centers within these groupings could not be statisti-

cally separated except for the significantly lower MLPAR niche

centers of Phaeocystis in comparison to those of diatoms

(p�0.05). A part of the lack in statistically significant separa-

tion of the PFTs contained within the two groupings could

result from the smaller number of taxa included for the diazo-

trophs, picophytoplankton and Phaeocystis: each of these PFTs

was only represented by two taxa. Thus, for those groups abso-

lute differences in univariate niche centers had to be larger to

achieve statistical significance in a Tukey HSD test.

To which degree a similar analysis based on a larger num-

ber of taxa would lead to more distinct differences between

the PFTs, however, is unclear. Whereas we expect additional

diazotroph taxa to occur under habitat conditions similar to

those of the taxa investigated here (Luo et al. 2012), we

believe that the preferred habitat conditions of the Phaeocys-

tis PFT are more diverse than our results suggest: the third

major bloom forming Phaeocystis species, Phaeocystis globosa,

was not included in this study due to scarcity of observatio-

nal data, but is known to also occur in tropical areas (Schoe-

mann et al. 2005).

In conclusion, we have shown that there are systematic

differences in phytoplankton realized niches between PFTs,

but at the same time we found a broad range of preferred

habitat conditions within many PFTs. These results may act

as cornerstones for the validation of marine ecosystem mod-

els and remote sensing approaches which currently show

considerable uncertainties about the distribution and domi-

nance patterns of different PFTs in the global ocean (e.g.,

Brewin et al. 2011; M. Vogt pers. comm.). Yet, comparisons

of estimated niches and distributions have to be made with

caution: marine ecosystem models are designed to capture

the majority of the biomass and hence productivity of a PFT.

Based on our approach, we are not able to make any infer-

ence as to how abundant the PFTs are in the different parts

of their occupied niche space. However, although we only

included two taxa for several PFTs, the most prevalent taxa

of all PFTs are represented and, therefore, our results can be

seen as an indication that some PFTs may be more easily

parameterized using large scale environmental variables in

global marine ecosystem models, as they group species with

similar biogeographic and niche characteristics (e.g., diazo-

trophs, colonial Phaeocystis) while other groups consist of

species with more diverse environmental preferences, and

may be more challenging to implement as a single PFT in

coarse-scale global marine biogeochemistry and climate

models (e.g., diatoms).

Niches in Reynolds’ space

We used our approximations of realized niche centers and

breadths to test whether the predictions Reynolds’ C-S-R

model are meaningful when upscaled to the global ocean.

The expected niches of R-strategists and S-strategists could

be reproduced, but the simulated niches were much broader

and more overlapping than suggested by the Reynolds model

(Smayda and Reynolds 2001). In agreement with the theory,

niche centers of S-strategists prevailed in nutrient-poor con-

ditions, whereas the niche centers of the R-strategists were

predominantly located in areas with low light intensity.

However, our data also showed that phytoplankton taxa are

often not restricted to a narrow window of suitable condi-

tions in light and nutrient concentrations but can be found

across a large fraction of the available open ocean conditions

of the two parameters. Prochlorococcus—the only representa-

tive of organisms tolerant to chronic nutrient scarcity (SS-

strategists; Reynolds 2006)—, for instance, was found to

occur in nutrient scarce conditions with high light intensity,

in agreement with its demonstrated biomass dominance in

nutrient-deficient areas such as the subtropical gyres (Hirata

et al. 2011). But its simulated niche also encompasses ele-

vated nutrient concentrations and lower light intensity, in

agreement with the findings of Johnson et al. (2006) who

found Prochlorococcus at marginal light levels at depths of

150 m or more, far below the local mixed layer which

formed the vertical boundary in this study. In contrast to

the assumption in Reynolds’ model (Smayda and Reynolds

2001), the shapes of our simulated niches, therefore, indicate

that on the global scale phytoplankton occurrence is not

only determined by the accessibility of major nutrient con-

centrations and light intensity. Other factors including tem-

perature, micronutrients such as iron, carbon dioxide, or

grazing pressure may play an important role as well (Boyd

et al. 2010).
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The results of the variable importance analysis strengthen

this case. On the global scale our proxies for nutrient acces-

sibility and light availability (NO2
3 and MLPAR) did not

prove to be the major niche dimensions for phytoplankton.

For 16% of the preclassified taxa, no preferences could be

found in at least one of the factors NO2
3 and MLPAR based

on the analyzed distributional patterns (no meaningful Max-

Ent model could be fitted). Furthermore, averaged over all

taxa, we found the latter two variables to be of intermediate

permutation importance compared to the other investigated

environmental factors, especially MLD. Nevertheless, the

univariate model performance of both factors is relatively

high (0.71 and 0.7, respectively) and MLD, according to our

results the most important variable on the global scale, is

related to nutrient supply rates and irradiance intensity.

Therefore, across all open ocean areas and on monthly

time-scales, we confirm the significance of nutrient accessi-

bility and light availability, but we cannot capture their pre-

dicted overarching importance (Smayda and Reynolds 2001)

by the NO2
3 and MLPAR climatologies used in this study.

However, better resolved light and in particular nutrient

data may lead to different conclusions about the relative

importance of these two factors for phytoplankton ecologi-

cal niches.

Reynolds’ C-S-R classification comprises key traits for

phytoplankton survival, but not in all cases do the

assumed impacts and importance of the traits match the

views of the more recent literature. According to Reynolds

(2006), the main traits that separate R-strategists from S-

strategists are their higher growth rate, lower nutrient

affinity and more elongated body shapes. Furthermore, R-

strategists tend to be smaller than S-strategists. Growth

rate and nutrient affinity are broadly recognized as key

traits for the competitive success of phytoplankton (Litch-

man and Klausmeier 2008; Edwards et al. 2012a) and are

used to parameterize phytoplankton in many ecosystem

models (e.g., Buitenhuis et al. 2010). Organism size is rec-

ognized to strongly influence the competitive success of

phytoplankton under different environmental conditions

(Litchman and Klausmeier 2008), but many studies indi-

cate that nutrient affinity decreases with body size (e.g.,

Edwards et al. 2012b) suggesting that nutrient specialists

should be small, as opposed to the predicted large size of

S-strategists by Reynolds. The reason for this seeming con-

tradiction is that many S-strategists occur in colonies, for

example Trichodesmium, with rather large aggregate sizes

(Reynolds 2006). The role of body shape, and in particular

elongation, as a trait determining light affinity has been

demonstrated in multiple studies (Reynolds 2006; Naselli-

Flores et al. 2007). However, the effect is somewhat dis-

torted due to the high plasticity of the body shape of

many phytoplankton taxa (Litchman and Klausmeier

2008).

Finally, the link between phytoplankton traits and real-

ized ecological niches, as defined by Reynolds, is of descrip-

tive nature and assigns broad ranges of possible trait values

to the different strategists without the definition of distinct

thresholds. It is thus not possible to assign a clear strategy to

phytoplankton with certain trait combinations. For instance

slow growing phytoplankton cells with a volume of 1032104

lm3 could be either S-strategists or R-strategists unless they

are perfectly round or have strongly elongated body shapes

(Reynolds 2006).

In summary, we find that the predicted niches of S- and

R-strategists in the Reynolds model are supported by global-

scale observations. Yet, the relatively broad and overlapping

niches and the moderate importance of our proxies for

nutrients and light suggest that phytoplankton realized

niches, as many aspects in ecology, may be influenced by

several factors and can only partly be explained by a simple

model. Future extensions may link traits in a more extensive

and mechanistic way to realized ecological niches, to pro-

duce more accruate models of the relationship between phy-

toplankton traits and realized ecological niches.

Strengths and weaknesses of data and method

In this study, we investigated the realized ecological

niches of marine phytoplankton on a global scale, based on

an extensive set of field data. We statistically modeled the

niches of 133 taxa and consistently achieved high perform-

ance scores and realistic niche distributions. However, there

are also a number of limitations associated with this study,

which will be discussed below.

The available phytoplankton observations were biased

toward high abundances as a result of more frequent sam-

pling in high biomass regions and seasons, while there were

many areas that were severely undersampled (Buitenhuis

et al. 2013). We attempted to reduce the impact of an over-

representation of frequently sampled areas on our results by

binning the data to monthly 1� 3 1� cells, but there are

many regions without any observations (e.g., South Pacific).

A sensitivity analysis showed that a random reduction of

sample size down to our limit of 15 presence cells does not

greatly reduce AUC, but leaving out observations from whole

ocean basins can cause distinct drops in model performance.

Furthermore, estimates of niche centers may be biased and

niche breadths may be estimated too narrow. However, cur-

rently we are not able to assess the degree of such limitations

as we lack independent validation datasets with high spatial

coverage.

One possibility to increase the size of the dataset would

be to include richly available observations from coastal areas.

Such observations were left out in this study to avoid biases

in ecological niche estimates due to river input, atmospheric

deposition of nutrients, nutrient resupply due to sediment

interactions, or anthropogenic sources of pollution. Further

studies are necessary to assess the optimal trade-off between
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more representative niche simulations due to the addition of

further observations and biases due to coastal effects.

Furthermore, the taxonomic resolution of the data is

biased toward certain groups and in some cases only genus

level classifications were available. Diatoms represent 65% of

the investigated taxa and coccolithophores 30%. This does

not represent the diversity of phytoplankton in the open

ocean, and even of the latter two PFTs we considered only a

minor fraction of the known diversity (Falkowski et al.

2004). The classification of diazotrophs and picophytoplank-

ton to the genus level is coarse and could lead to realized

niche estimates of limited accuracy, for instance in the case

of Prochlorococcus with its numerous distinct ecotypes (John-

son et al. 2006). Additionally, the investigated genus Richelia

represents heterocystous diazotrophs (Luo et al. 2012). Heter-

ocystous diazotrophs live in association with diatom species

and their ecological niches may, thus, be influenced by these

tight interactions. Our results show, however, that the

niches of the two investigated diazotroph taxa are very simi-

lar in all niche dimensions except for salinity, indicating

that no obvious expansion or contraction of Richelia niches

results from this association. This observation suggests that

the diazotrophs profit in some other way from the associa-

tion, for example, through enhanced growth rate (Foster

et al. 2011).

More generally, phytoplankton taxonomy is a con-

stantly changing field, which makes working with histori-

cal datasets challenging. Phytoplankton classifications are

predominantly based on morphological characteristics.

With the increasing use of molecular methods, cryptic spe-

ciation (i.e., the evolution of genetically distinct species

with very similar morphology) has been found to occur

within many phytoplankton taxa (e.g., Smayda 2011;

Degerlund et al. 2012). Thus, species previously considered

to be cosmopolitan were found to comprise multiple

genetically distinct cryptic species, each occupying a nar-

rower ecological niche (e.g., Degerlund et al. 2012). An

updated and more extensive set of phytoplankton observa-

tions will become available with the next release of MARE-

DAT, hopefully improving some of these issues. For an

optimal performance of SDMs, a revised version of MARE-

DAT furthermore should include both presence–absence

and biomass information, and aim to resolve all included

groups to the species level.

Additionally, the environmental variables used to

model the realized ecological niches do not include all

critical factors. We characterize the realized ecological

niches of the phytoplankton only using bottom-up fac-

tors and do not explicitly include biotic interactions.

Grazing rates or grazer abundance, for instance, may act

as a strong control on phytoplankton communities

(Litchman and Klausmeier 2008; Prowe et al. 2012). Graz-

ing, however, mainly controls phytoplankton biomass but

by itself it is unlikely to lead to the complete exclusion

of a phytoplankton taxon from a certain area. The

impact of grazing on the shape of the realized niches

may, thus, be limited. Furthermore, by including MLD

we account for part of the effects of grazing indirectly

(Behrenfeld 2010). Further abiotic factors such as iron

concentration have previously been shown to be impor-

tant for phytoplankton niches, in particular in high-

nitrate, low-chlorophyll (HNLC) regions (Boyd et al.

2010). This could not be further investigated in this

study due to the lack of existing climatologies.

Last but not least, the spatial and temporal resolution of

the environmental data we used is relatively coarse in

comparison to nutrient consumption rates (Litchman and

Klausmeier 2008) and to the patchiness of phytoplankton

distribution (d’Ovidio et al. 2010). Match-ups of phyto-

plankton observations and environmental data will thus

deviate from the conditions that the organisms actually

experienced at the time of sampling. Our findings are,

therefore, limited to the effects of broad gradients in envi-

ronmental conditions of phytoplankton distribution. How-

ever, the high model performance scores indicate that our

explanatory variables explain a large fraction of the spatial

patterns of the investigated observations. This is in agree-

ment with the notion of Robinson et al. (2011) that cli-

mate variables and coarse-scale SDMs are suitable for

widely distributed species in environments which show

comparatively small fine-scale variations, such as the

pelagic realm.

Despite these limitations, our approach represents an

important missing link between observation-based studies

(e.g., Irwin et al. 2012), which are typically of limited spa-

tial extent, and global-scale studies using ecosystem mod-

els and remote sensing (e.g., Buitenhuis et al. 2010, Hirata

et al. 2011) which have a coarse resolution of phytoplank-

ton diversity. This allowed us to test how well the realized

niches of phytoplankton taxa can be summarized using

idealized categories such as PFTs and Reynolds’ C-S-R

model. We characterized the realized niches of five PFTs

based on rich quantitative data, in particular for the dia-

toms and coccolithophores. These results may help to

improve the parameterization of PFTs in marine ecosystem

models. Moreover, we tested open ocean predictions of

Reynolds’ C-S-R model for numerous taxa and found that

taxa described as S- and R-strategists indeed occupy differ-

ent light and nutrient niches. Yet, the variability of the

characterized niches and the moderate permutation impor-

tance of our proxies for the environmental variables in

Reynolds’ model suggest that the relationship between

phytoplankton traits and ecological niches may be more

complex than assumed by this model. Finally, we found

temperature, light and particularly MLD to be more impor-

tant environmental drivers of the distribution of the inves-

tigated phytoplankton taxa than large-scale patterns in

nutrient concentrations.
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