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Abstract 

  

 Sulfur deficiency is a relatively new problem in Europe and the studies on sulfur use 

efficiency are still lagging behind those on the other major nutrients such as nitrogen or 

phosphorus. Therefore, the main aim of this work was to improve the understanding of the 

sulfate assimilation pathway, its regulation and interaction with other elements. In the course 

of this project natural variation was used to characterise further the regulation of the pathway 

and to identify new regulatory components. This analysis revealed that the first two enzymes 

involved in sulfate reduction – ATP sulfurylase and APS reductase – are nearly equally involved 

in its control but through different mechanisms. Moreover, a Genome-Wide Association Study 

was conducted on the accumulation of nitrate, phosphate, and sulfate in more than 200 

arabidopsis accessions. This analysis resulted in identification of new functions of already 

known genes which were not previously related to plant nutrition. Additionally, previously 

undescribed genes were identified disruption of which results in changes in the anion 

accumulation phenotype.  

 To characterise arabidopsis response to sulfate and/or nitrate deficiency a collection of 

genetically divergent accessions grown under different nutrition regimes was examined for a 

number of morphological and metabolic traits. This analysis resulted in dissection of four 

different patterns of plant response to sulfate availability. Individual accessions were 

characterised as best adapted to nutrient deficiency. Traits such as biomass allocation or root 

architecture were suggested as potential targets in the process of developing new crop 

varieties. This analysis is unique since, to my knowledge, it is the first one which provides the 

characterisation of arabidopsis response to nutrient availability based on the analysis of such a 

large number (25) of natural accessions. The results described here provided new insight into 

sulfate metabolism and can be used to develop new breeding strategies and improve crop 

yield and quality. 
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1.1 Sulfur nutrition 

 Plants are autotrophic organisms and as such they are able to assimilate mineral 

nutrients from the environment (White & Brown 2010). They can also convert the non-mineral 

nutrients – oxygen, carbon, and hydrogen – into sugars during photosynthesis. Additionally, for 

sufficient nutrition plants require at least 14 mineral elements that can be acquired from the 

soil. Six of them – nitrogen, phosphorus, potassium, calcium, magnesium and sulfur – are 

required in large amounts and these are called macronutrients. The requirement for the rest of 

them – chlorine, boron, iron, manganese, copper, zinc, nickel, and molybdenum – is much 

lower and these are called micronutrients. In case of deficiency of essential nutrients in the 

soil, they can be supplied to plants as fertilizers to increase plant yield and quality. This 

practice applies mainly to crop production (White & Brown 2010). However, it needs to be 

used carefully in agriculture as inappropriate application of fertilisers may disturb the mineral 

balance of the soil solution which may cause inhibition of plant growth and reduction of crop 

yield (White & Brown 2010).  

 Adequate sulfur supply is required for proper growth and health of all living organisms 

(Takahashi et al. 2011). Sulfur is cycled in the global ecosystem and can be converted to its 

organic compounds by photosynthetic organisms and microorganisms. Plants, most bacteria 

and fungi use inorganic sulfate as a source of sulfur. Plants can also use atmospheric sulfur in 

form of sulfur dioxide and hydrogen sulfide (Durenkamp & De Kok 2004). In contrast, animals 

and humans need to obtain organic sulfur compounds e.g. methionine with their food (Nimni 

et al. 2007). The most common form of sulfur in nature is sulfate (SO4
2-) – the most oxidized 

form in which sulfur is in the +VI redox state. Sulfate is taken up from the soil and reduced to 

sulfide in an energy-dependent reduction pathway. Sulfide can be incorporated into O-

acetylserine to form cysteine which is the first stable form of bound reduced sulfur in plants. 

 Reduced sulfur is present in a wide variety of metabolites with specific biological 

functions (Takahashi et al. 2011). Apart from cysteine, sulfur is present in methionine, peptides 

and proteins (in sulfur containing amino acids or in iron-sulfur clusters), and other metabolites. 

Moreover, a number of molecules such as sulfolipids, sulfated hormones i.e. phytosulfokines 

or polysaccharides contain sulfur in its oxidised form. Sulfate also plays a crucial role in 

stabilising protein structure and functions (disulfude bonds between the sulfur containing 

amino acids). Since it can be found in a number of coenzymes and other catalytic biomolecules 

it also has an important catalytic function. Glutathione (GSH), which is the second main 

product of the sulfate reduction pathway, has a crucial role in the control of redox state of 
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plant cells and the elimination of reactive oxygen species (Hawkesford & De Kok 2006, Leustek 

et al. 2000). Sulfur is also present in vitamins and cofactors such as coenzyme A, thiamine and 

biotin (Hell et al. 2002). Sulfur containing secondary metabolites have important functions in 

defence against biotic stress (Halkier & Gershenzon 2006). The breakdown products of alliins 

and glucosinolates deter plant pests and are responsible for characteristic smell and taste of 

many vegetables  (Halkier & Gershenzon 2006). Both of these classes of natural products are 

also very beneficial for human health. Alliins, found in large amounts in garlic, have 

antimicrobial properties (Chung 2006), and glucosinolate degradation products induce 

enzymes that prevent tumour formation in humans (Wu et al. 2009).  

 It has been reported that sulfur availability is continuously decreasing in many areas of 

Europe mainly because of the changes in fertiliser practice and strong decrease of sulfur inputs 

from atmospheric deposition due to reduction in the emission of sulfur dioxide (Blake-Kalff et 

al. 2001, McGrath et al. 1996, Zhao et al. 1996). Moreover, intensive agriculture programmes 

and optimisation of plant breeding strategies led to increase in plant demands (Abdallah et al. 

2010). Sulfur deficiency in crop plants not only reduces the yield but has also a very negative 

effect on the crop quality which results in a decrease of the nutritional value of food and 

affects human health.  This is particularly important in case of wheat breeding and the 

maintenance of baking quality (Shahsavani & Gholami 2008). The protein fraction is known to 

play an essential role in bread-making quality of wheat. The gluten proteins, gliadins and 

glutenins, represent about 80-85% of total flour protein. These are responsible for elasticity 

and extensibility that are essential for functionality of wheat flours (Hussain et al. 2012, 

Kuktaite et al. 2004). However, in sulfur limited conditions the synthesis of sulfur-poor storage 

proteins such as ω-gliadin and the high molecular weight subunits of glutenin is favoured at 

the expense of sulfur-rich proteins, which may cause unpredictable and unwanted variations in 

wheat quality (Flæte et al. 2005, Moss et al. 1981). Another problem, discovered relatively 

recently, is the formation of acrylamide during high-temperature processing of potato and 

wheat (Tareke et al. 2002). Acrylamide is potentially carcinogenic to humans. It also has 

negative neurological and reproductive effects (Friedman 2003). The major determinant of 

acrylamide forming potential is the concentration of free asparagine (Curtis et al. 2010). The 

accumulation of free asparagine in wheat grain during severe sulfur deprivation may be 30-

fold greater level than in sulfur sufficient conditions, which makes asparagine up to 50% of the 

total free amino acid pool. For that reason, even very small amounts of such grain entering the 

food chain could have a significant effect on acrylamide formation, which makes the 

application of sulfur fertilizers very important (Halford et al. 2012).  
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 Studies on model species provide an important tool for exploring metabolic processes 

mainly because of a large amount of publically available information (genomic, metabolic, 

transcriptomic) and the rapid life cycle of the plants. The knowledge obtained from research 

on model plants can subsequently be transferred to crops and used for improving crop 

breeding strategies. For these reasons the work described in this thesis is focused on sulfur 

metabolism in model plant Arabidopsis thaliana (L.) Heynh. 

1.2 Sulfate transport 

 Sulfate uptake from the soil is the first stage of plant sulfate metabolism (Takahashi et 

al. 2011). After entry into plants, sulfate needs to be delivered to the plastids for assimilation 

or to the vacuoles for storage. The cell-to-cell transport as well as long-distance transport 

between organs required to fulfil the source/sink demands during plant growth involve specific 

sulfate transporter proteins (Buchner et al. 2004b). Genes encoding these proteins belong to 

the sulfate transporter gene family and are divided into five groups (Figure 1.1; Hawkesford 

2003). Members of different groups vary in their kinetics of transport and in expression 

pattern indicating different functions in the process of sulfate uptake and distribution. 

 The influx of sulfate through the plasma membrane is well characterised at the 

physiological and functional level. Plants essentially use a proton/sulfate co-transport system 

to mediate sulfate flux (Lass & Ullrich-Eberius 1984). A proton gradient is generated by a 

plasma membrane proton ATPase (Saito 2004) and the transport process is pH dependent with 

3H+/ sulfate stoichiometry (Hawkesford et al. 1993, Smith et al. 1995a). Products encoded by 

sulfate transporter genes usually possess 12 putative membrane-spanning domains and belong 

to a large family of cation/solute co-transporters (Saito 2000). Additionally, the analysis of the 

C-terminal region of these transporters revealed the presence of STAS (sulfate transporters 

and antisigma factor antagonists) domains (Aravind & Koonin 2000). It was shown that 

deletion of the STAS domain affects the localization of transporters to the membrane 

(Shibagaki & Grossman 2004) and results in a loss of sulfate transport activity (Rouached et al. 

2005).  
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Unrooted phylogenetic tree of the Arabidopsis thaliana members of the sulfate transporter family 
was drawn using MEGA5.1 software. Different colours represent different subfamilies (groups). 

 

1.2.1 Functions of sulfate transporters in Arabidopsis thaliana 

 The first sulfate transporter was identified by functional complementation of a sulfate 

transporter-deficient yeast mutant (Smith et al. 1995a, Smith et al. 1995b). Subsequently, 

yeast deletion mutants became the main tool for functional characterisation of sulfate 

transporters. Up to date a number of sulfate transporters from a variety of plant species have 

been described (Buchner et al. 2004a, Howarth et al. 2003, Vidmar et al. 2000, Yoshimoto et al. 

2003, Yoshimoto et al. 2002). The availability of fully sequenced genomes of Arabidopsis 

thaliana and rice has enabled analyses which led to identification of 14 putative sulfate 

transporter genes in each genome.  

 The analysis of the first isolated sulfate transporters identified high and low-affinity 

transport patterns (Smith et al. 1995a). More detailed analysis revealed that the high-affinity 

components facilitate uptake of sulfate into the plant root (Barberon et al. 2008, Yoshimoto et 

al. 2007). In Arabidopsis thaliana the high-affinity sulfate transporters comprise 3 genes 

(SULTR1;1-3) and belong to the clade which forms group 1 of sulfate transporters (Figure 1.1). 

The primary sulfate acquisition in roots is mediated by two of them: SULTR1;1 and SULTR1;2 

(Figure 1.2). Various studies confirmed the expression of these two genes in root hairs, root 

epidermal and root cortical cells (Rae & Smith 2002, Takahashi et al. 2000, Yoshimoto et al. 

2002) suggesting the capacity of these tissues for high-affinity sulfate influx into the symplast. 

Figure 1.1 Sulfate transporter family 
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SULTR1;3 appears to be an exception in this group because it is located only in the phloem in 

both roots and cotyledons (Yoshimoto et al. 2003). SULTR1;2 mediates sulfate uptake in 

normal conditions and in sulfur deficiency. Its expression is relatively independent of sulfate 

supply. In contrast, SULTR1;1 is strongly induced by sulfate limitation, but almost absent under 

sufficient sulfur supply (Clarkson et al. 1983, Howarth et al. 2003, Yoshimoto et al. 2002). 

Another study showed that in mutants deficient in SULTR1;2 the expression of SULTR1;1 is 

slightly up-regulated, however reduced growth of sultr1;2 mutants (relative to WT plants) 

suggests that the SULTR1;1 is not able to compensate for the missing SULTR1;2. This might 

indicate that SULTR1;2 is the major component for sulfate acquisition (Maruyama-Nakashita et 

al. 2003).  

 Sulfate taken up by the epidermis cells needs to be transferred across the root cells to 

the xylem (Figure 1.2; Takahashi et al. 2011). This step is necessary to deliver it to the target 

cells in shoot organs for reduction or storage in the vacuole. The horizontal sulfate transfer 

from the epidermis to the central cylinder cells may occur via plasmodesmata. This is the likely 

strategy to cross the barrier of the Casparian strip at the endodermal cell layers. During this 

process sulfate may leak from the symplast to apoplast. This mechanism seems to be passive, 

but has not yet been characterised (Takahashi et al. 2011). The transporter for efflux of sulfate 

into the xylem vessels is still unknown. However, the expression patterns of arabidopsis low-

affinity sulfate transporters from group 2 (Figure 1.1) in the central cylinder cells suggest that 

they may contribute to long distance sulfate transport (Figure 1.2). In roots SULTR2;1 is 

expressed in the xylem parenchyma and pericycle cells whereas SULTR2;2 is restricted to the 

root phloem. In contrast, in leaves SULTR2;1 is expressed in xylem parenchyma and phloem 

cells and SULTR2;2 in the cells surrounding the xylem vessels (Takahashi et al. 2000). 

Additionally, SULTR2;1 was assumed to be involved in sulfate transport into developing seeds 

(Awazuhara et al. 2005). Localization of SULTR2;2 suggests its role in sulfate transport via the 

phloem. The efflux of sulfate to the apoplast of the root vascular tissue leads to a high sulfate 

concentration. SULTR2;1 expressed in the xylem parenchyma cells can reabsorb it, regulating 

the amount of sulfate which is transported to the shoots (Buchner et al. 2004a). In the leaf, the 

expression of SULTR2;2 in the closest cells to the xylem vessels suggests its role in sulfate 

uptake from the vessels. Subsequently, sulfate is probably transferred to cells where it will be 

assimilated (Figure 1.2). The expression of SULTR2;1 in the phloem suggests its role in sulfate 

transfer to other organs, and in xylem parenchyma – reabsorption for further xylem transport 

(Buchner et al. 2004b). Taken together, it seems that sulfate transporters from group 2 are 
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involved in the balancing of the sulfate flux through the plant under changing sulfate 

availability (Takahashi et al. 2000).  

 

Blue shapes and labels indicate sulfate transporters (SULTRs) mediating transport across plasma 
membranes. Dashed arrows indicate yet unknown transport pathways. Figure is based on 

Takahashi et al. 2011. 
 

 Plastids are the final destination for sulfate where it is metabolised (Figure 1.2; 

Takahashi et al. 2011). A chloroplast sulfate transporter SULTR3;1 has been characterised only 

recently (Cao et al. 2013). Its chloroplast subcellular localization was confirmed with the 

analysis of plants expressing SULTR3;1-GFP constructs and the sulfate transport functionality 

with a validated in organello assay. However, chloroplast sulfate uptake did not change despite 

the disruption of SULTR3;1 suggesting the existence of other chloroplast sulfate transporters. 

Figure 1.2 Sulfate transport system in Arabidopsis thaliana 
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The analysis of other members of SULTR3 subfamily revealed that SULTR3;2, SULTR3;3, 

SULTR3;4, but not SULTR3;5 might be also chloroplast sulfate transporters (Cao et al. 2013). 

These results are consistent with those of Kataoka et al. (2004a) who have shown an essential 

role for SULTR3;5 in the vascular root-to-shoot transport. 

 Alternatively, sulfate can also be transported to the vacuoles, which play the role as 

sulfate reservoirs in cells (Figure 1.2; Takahashi et al. 2011). It was shown that vacuoles 

isolated from the arabidopsis sultr4;1/sultr4;2 double mutant contain more sulfate than the 

wild type suggesting that the efflux of sulfate from the vacuole is mediated by sulfate 

transporters from group 4. Moreover, enhanced expression of these two genes under sulfur 

stress conditions indicates that sulfate is released from vacuole in response to sulfur demands 

in the cells (Kataoka et al. 2004b). The vacuole influx transporters have not yet been identified.  

 Members of group 5 differ significantly from the other groups (Figure 1.1; Takahashi et 

al. 2011). This group contains two isoforms which are also dissimilar to each other. SULTR5;2 

was described to be involved in molybdenum transport (Baxter et al. 2008, Tomatsu et al. 

2007) and renamed as a MOT1 (Molybdenum transporter 1) transporter. Tomatsu et al. (2007) 

have localised this transporter to the endomembrane system and plasma membrane whereas 

Baxter et al. (2008) suggest its localization in the mitochondrial membrane. This discrepancy 

might be explained by different sites of GFP fusion, either to the N-terminal end of MOT1 

(Tomatsu et al. 2007) or to its C-terminus (Baxter et al. 2008). Nevertheless, the exact location 

of MOT1 requires further investigation.  SULTR5;1 was shown to be expressed in most plant 

tissues, but it was not affected by sulfate supply (Shinmachi et al. 2010). Its function in the 

export of molybdate from the vacuole was shown only recently and it was renamed as MOT2 

(Gasber et al. 2011). As there are no reports indicating sulfate transport function of these two 

transporters and because of the absence of the STAS domain which is present in all other 

sulfate transporters it could be considered to exclude these two genes from the sulfate 

transporter family. 

1.3 Sulfate assimilation and metabolism in Arabidopsis thaliana 

 In nature sulfur occurs in many oxidation states in inorganic, organic and bioorganic 

compounds (Takahashi et al. 2011). Various organisms such as algae, bacteria, plants and fungi 

are able to reduce sulfate and incorporate it into amino acids in the assimilatory sulfate 

reduction pathway. This process is very well described on both biochemical and molecular 

levels. In photosynthetic organisms it occurs in plastids (Brunold & Suter 1989). The only 
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exception is Euglena gracilis where sulfate reduction takes place in mitochondria (Brunold & 

Schiff 1976).    

 Because of a very low oxidation/reduction potential of sulfate compared to other 

cellular reductants it needs to be activated before it can enter the reduction pathway (Figure 

1.3; Takahashi et al. 2011). In the activation reaction a high energy anhydride bond is produced 

between inorganic sulfate and phosphate delivered from ATP. It yields adenosine 5’-

phosphosulfate (APS) and releases pyrophosphate. This reaction is catalysed by ATP sulfurylase 

(ATPS; EC: 2.7.7.4; Schmidt & Jager 1992) and is the first step of sulfur assimilation. Moreover, 

it is the only step of the pathway which is common to primary and secondary sulfate 

metabolism. APS forms a branching point in the sulfate reduction pathway (Figure 1.3). It can 

be directly reduced to sulfite by APS reductase (APR; EC: 1.8.99.2) or phosphorylated by APS 

kinase (APK; EC: 2.7.1.25) to form 3’-phosphoadenosine 5’-phosphosulfate (PAPS) which serves 

as a donor of activated sulfate for various cellular reactions modifying proteins, saccharides or 

synthesis of secondary metabolites including glucosinolates. This process is called sulfation and 

it is important in regulation of plant growth and development. However, sulfate reduction is a 

dominant route for assimilation (Leustek et al. 2000) and it is fulfilled in two steps. In the first 

step APR transfers two electrons to APS to produce sulfite. The electrons are derived from 

glutathione (GSH; Bick et al. 1998).  Subsequently, sulfite is reduced to sulfide by ferredoxin 

dependent sulfite reductase (SiR; EC: 1.8.7.1). This reaction requires a transfer of six electrons 

from ferredoxin to sulfite. Sulfide is then incorporated into the amino acid skeleton of O-

acetylserine (OAS) to form cysteine. This reaction is catalysed by OAS thiol-lyase (OAS-TL; EC: 

2.5.1.47; Kopriva 2006, Leustek et al. 2000, Takahashi et al. 2011). A detailed description of 

isoform 1 of ATPS and isoform 2 of APR, and the characterisation of their regulatory functions 

over the sulfate assimilation pathway are the subject of Chapter 3 of this thesis. 

 APK catalyses the transfer of phosphate from ATP to APS leading to the formation of 

PAPS (Mugford et al. 2009). In arabidopsis APK is encoded by four genes, all located on 

different chromosomes and with a high level of similarity. Three of the isoforms contain 

chloroplast transit peptides at the N-termini and these have been confirmed to be localized in 

plastids. The APK3 isoform does not contain the N-terminal extension and it is likely to be 

responsible for cytosolic activity. Little is known about the biochemistry and the functions of 

the individual plant APKs. However, they have a significant effect on sulfur metabolism. It was 

shown that apk1apk2 double mutant has a dramatically low glucosinolate concentration and 

also substantially higher concentration of cysteine and glutathione than wild type plants 

(Mugford et al. 2009). This suggests a compensation of low glucosinolate concentration by an 
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increase in cysteine and glutathione. This might indicate that primary sulfate metabolism is up-

regulated in this mutant implying an important role of APK in controlling sulfur distribution in 

plants (Kopriva et al. 2012, Mugford et al. 2009). 

 

Enzymes and transporters are indicated in purple characters. Abbreviations of enzymes and 
transporters: ATPS, ATP sulfurylase; APK, APS kinase; APR, APS reductase; SiR, sulfite reductase; 
OAS-TL, OAS(thiol)lyase; SAT, serine acetyltransferase; CGS, cystathionine γ-synthase; CBL, 
cystathionine β-lyase; TS, threonine synthase; MS, methionine synthase; SAM, S-
adenosylmethionine synthetase; γ-ECS, γ-glutamylcysteine synthetase; GSHS, glutathione 
synthetase; CLT, thiol transporter; GST, glutathione-S-transferase; MRP, multidrug resistance-
associated protein; GGT, γ-glutamyltransferase; SOT, sulfotransferase; SULTR, sulfate transporter; 
PAPST1, plastidic PAPS transporter. Abbreviations of metabolites: APS, adenosine 5’-
phosphosulfate; Cys, cysteine; Cyst, cystathionine; Hcy, homocysteine; OPH, O-
phosphohomoserine; Thr, threonine; Met, methionine; SAM, S-adenosylmethionine; SAH, S-
adenosylhomocysteine; γ-GluCys, γ-glutamylcysteine; GSH, glutathione; GS-X, glutathione 
conjugate; Glu, glutamate; X-CysGyl, cysteinylglycine conjugate; Ser, serine; OAS, O-acetylserine; 
PAPS, 3’-phosphoadenosine 5’-phosphosulfate; R-OH, hydroxylated precursor. Figure is based on 

Takahashi et al. 2011. 

 

Figure 1.3 Cellular organization of sulfate metabolism in Arabidopsis thaliana 
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 The six electron reduction of sulfite to sulfide is catalysed by sulfite reductase (SiR) in 

plastids (Nakayama et al. 2000). Plant SiR is a 65 kDa monomer. It requires the presence of 

siroheme and iron-sulfur cluster as cofactors, and ferredoxin as an electron donor. In contrast 

to other enzymes of the sulfur metabolism pathway, SiR is encoded by a single gene in 

arabidopsis.  The amino acid sequence and protein structure are very similar to nitrite 

reductase (NiR) which catalyses a six electron reduction of nitrite to ammonia in the nitrate 

assimilation pathway.  

1.3.1 Cysteine biosynthesis 

 Cysteine is the key sulfur containing compound in plants (Takahashi et al. 2011). It is 

synthesised by incorporation of sulfide into the β-position of the serine carbon skeleton in the 

terminal step of sulfur assimilation (Saito 2004). Before the incorporation of sulfide, serine 

needs to be activated to O-acetylserine (OAS). This process occurs by acetyl transfer from 

acetyl coenzyme A which is catalysed by serine acetyltransferase (SAT; Serat; EC 2.1.3.30). 

Subsequently, OAS and sulfide are the substrates for O-acetylserine (thiol) lyase (OAS-TL; EC: 

2.5.1.47) which catalyses the β-replacement reaction (Hell & Wirtz 2011, Takahashi et al. 

2011). The enzymes involved in the cysteine biosynthesis process, SAT and OAS-TL, are 

localized in plastids, mitochondria and cytosol (Figure 1.3; Saito 2000).  

 The analysis of whole plant protein extracts showed that SAT activity is always 

associated with OAS-TL, and that an excess of free active OAS-TL is present (Hell & Wirtz 2011). 

This and other results indicate that these two enzymes form a hetero-oligomeric cysteine 

synthase complex (Hell & Wirtz 2008, Hell & Wirtz 2011, Saito 2004, Takahashi et al. 2011, 

Wirtz et al. 2001, Wirtz & Hell 2006). The binding of OAS-TL to SAT stabilizes SAT. In the 

complex, SAT is the only active enzyme. The product OAS causes the release of OAS-TL from 

the complex which enables the conversion of OAS to cysteine by the free enzyme and reduces 

the rate of OAS formation (Hesse et al. 2004b). Therefore, formation of the cysteine synthase 

complex appears to be the main regulatory step in cysteine synthesis in arabidopsis (Hell & 

Wirtz 2008).  

 The crystallisation of the SAT protein revealed that it is a hexamer composed from 29 

kDa subunits (Olsen et al. 2004). It is folded in a left-handed parallel β-helix which is 

characteristic for this protein family. The SAT gene family includes five members in arabidopsis 

two of which were recognized only recently (Hell & Wirtz 2008, Kawashima et al. 2005). 

Among the five SAT proteins three of them, SAT2, 4, and 5 (Serat 3.1, 3.2, and 1.1 respectively) 
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are located in the cytosol whereas SAT1 (Serat 2.1) was found in plastids and SAT3 (Serat 2.2) 

in mitochondria. 

 OAS-TL belongs to the β-replacement enzyme family which requires pyridoxal-5’-

phosphate as a cofactor (Hell & Wirtz 2008). The protein is a homodimer composed of two 35 

kDa subunits. The arabidopsis gene family contains nine members which encode eight 

functionally transcribed proteins. Three of them, called OAS-TL A, B, and C, are thought to be 

the main OAS-TL proteins in plant cells. Similarly to SAT they are localised in the cytosol, 

plastids and mitochondria, respectively (Wirtz et al. 2004). OAS-TL proteins seem to have a 

wide range of functions. It is likely that apart from cysteine synthesis they are also responsible 

for other processes such as sulfide and cyanide detoxification in mitochondria (Alvarez et al. 

2012) or determination of antioxidative capacity in the cytosol (López-Martín et al. 2008). They 

also seem to be involved in the synthesis of secondary metabolites in various plant species. 

 A recent study of SAT and OAS-TL mutants suggests the cytosol as the main cell 

compartment for cysteine production and mitochondria as the main place for OAS synthesis 

(Figure 1.3; Haas et al. 2008, Krueger et al. 2009, Watanabe et al. 2008). Plants with decreased 

mitochondrial SAT activity show strongly reduced OAS levels and reduced flux into cysteine 

and glutathione (Haas et al. 2008). The analyses of OAS concentration and SAT activity in non-

aqueous gradients showed the largest amount of OAS in mitochondria and the smallest in 

plastids, whereas the OAS-TL activity was localised in the cytosol and plastids (Krueger et al. 

2009). OAS can, however, be transferred between all three compartments. Additionally, the 

analysis of compartment-specific OAS-TL mutants revealed reduced cysteine concentration 

only in a mutant lacking the cytosolic OAS-TL isoform (Haas et al. 2008, Watanabe et al. 2008). 

Consequently, OAS has to be transported from mitochondria to the cytosol for efficient 

cysteine biosynthesis. Taking into account that plastids are the main compartment for sulfide 

production, the presence of sulfide in cytosol also requires transport across chloroplast 

envelope membrane.  Taken together, the very low SAT activity in plastids, the presence of 

sulfide in the cytosol and the cytosolic localisation of cysteine strongly suggest the cytosol as 

the main cellular compartment for cysteine biosynthesis in arabidopsis (Krueger et al. 2009). 

1.3.2 Glutathione biosynthesis and functions 

 Formation of cysteine is the terminal step of the sulfate assimilation pathway and the 

starting point for production of methionine, glutathione and many other sulfur-containing 

compounds (Figure 1.3; Takahashi et al. 2011,). Glutathione (GSH) is the main thiol-containing 

molecule in plant cells and it is present in much higher concentrations than cysteine (Noctor et 
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al. 2012). It has a broad range of functions which include removal of reactive oxygen species 

(ROS), detoxification of heavy metals and xenobiotics, sulfur donation, transport and storage 

(in catalytic reactions), redox signalling and many others. It is synthesised from glutamate, 

cysteine, and glycine by two enzymes: γ-glutamylcysteine synthetase (γ-ECS; EC: 6.3.2.2) and 

glutathione synthetase (GSHS; EC: 6.3.2.3). The reaction consumes two ATP molecules. The 

enzyme that catalyses the first step of GSH biosynthesis – γ-ECS – is redox sensitive; its 

oxidised form has high activity, whereas activity of the reduced form is much lower. The 

increase in γ-ECS transcript abundance in response to various environmental changes suggests 

its role as regulatory factor (Xiang & Oliver 1998). It has been shown that γ-ECS is also inhibited 

by higher concentrations of GSH.  

 Synthesis of GSH is regulated by cysteine availability (Noctor et al. 2002). In 

arabidopsis GSH is synthesised in cytosol and plastids where γ-ECS is localised to plastids only 

and GSHS activity is distributed between plastids and cytosol (Figure 1.3). GSH from leaves is 

transported to roots, seeds and fruits via the phloem (Leustek et al. 2000) consistent with its 

important role as a sulfur donor. Therefore, GSH degradation is a very important process in 

plants; however, the mechanism is not well understood. The main enzymes responsible for 

GSH degradation include glutathione reductase, γ-glutamyltransferase (GGT EC: 2.3.2.2), 

glutathione S-transferase (GST), and glutaredoxin. It seems that GSH turnover in cells is 

maintained mainly by GGT activities (Takahashi et al. 2011). However, it also has been shown 

that the intracellular degradation of GSH is initiated by γ-glutamylcyclotransferase (Ohkama-

Ohtsu et al. 2008). 

1.3.3 Methionine biosynthesis 

 Methionine is a sulfur-containing amino acid that belongs to the aspartate family of 

amino acids together with lysine, threonine, leucine and isoleucine (Ravanel et al. 2004). It is 

an essential amino acid for mammals and must be delivered entirely from the diet. Plants are 

able to synthesise it de novo from cysteine or homocysteine. Methionine plays an important 

role as a protein component and it is involved in initiation of translation. S-

adenosylmethionine (SAM) which is produced from methionine is a methyl-group donor and 

precursor of important secondary metabolites. It was shown that 80% of methionine is used 

for SAM synthesis whereas 20% is incorporated into proteins (Giovanelli et al. 1985). Synthesis 

of methionine requires products of three metabolic pathways: the carbon skeleton originates 

from aspartate, the sulfur atom from cysteine, and the methyl group from serine (Ravanel et 

al. 1998).  
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 In higher plants methionine synthesis starts from a γ-replacement reaction catalysed 

by cystathionine γ-synthase (CGS) leading to formation of cystathionine from cysteine and O-

phosphohomoserine (OPH; Figure 1.3). Cystathionine is converted to homocysteine by α,β-

elimination catalysed by cystathionine β-lyase. The final step includes the transfer of methyl 

group from N5-methyl-tetrahydrofolate to homocysteine which in plants is catalysed by 

methionine synthase (MS; Hesse et al. 2004a, Ravanel et al. 1998). In arabidopsis three MS 

isoforms are known. Two of them are in the cytosol and the third is located in plastids (Ravanel 

et al. 2004). Subsequently, methionine is converted to SAM by SAM synthetase which requires 

ATP. It was shown that accumulation of SAM inhibits the enzyme activity (Ravanel et al. 1998). 

When SAM is used for synthesis of ethylene or polyamines, methylthioadenosine (MTA) is 

produced as intermediate. MTA can be used for synthesis of another methionine molecule 

increasing SAM availability as a methyl-group donor (Burstenbinder et al. 2007). 

1.4 Secondary sulfate metabolism 

 Sulfur is also present in plant metabolites as sulfo-groups modifying carbohydrates, 

proteins, and many natural products. Many sulfated metabolites play distinct roles in plant 

defence against biotic and abiotic stresses.  

1.4.1 Glucosinolates 

 Glucosinolates are the best known group of secondary sulfate containing compounds 

(Halkier & Gershenzon 2006). They play an important role in protection against herbivores. 

They are also responsible for taste and flavour of many Brassica vegetables (e.g. cabbage, 

broccoli). Products of glucosinolate degradation, isothiocyanates, possess an anticarcinogenic 

activity in mammalian cells (Mithen et al. 2003).  

 In general, glucosinolates are synthesised in a three-phase pathway (Figure 1.4; Halkier 

& Gershenzon 2006). The elongation of certain amino acids which are the precursors of 

aliphatic or aromatic glucosinolates by sequential insertions of few (up to nine) methylene 

groups into the side chain is the first phase of the process. Subsequently, the amino acid 

moiety elongated or not, is converted to form the core structure. The biosynthesis of 

glucosinolate structure involves intermediates common to all glucosinolates. In this process 

sulfur from cysteine is incorporated into the structure via a yet unknown enzyme. The final 

block concerns various modifications, such as hydroxylation, O-methylation, desaturation, 

acylation and others, which leads to formation of a broad range of structures (Halkier & 

Gershenzon 2006). To date, more than 140 different glucosinolates have been described 
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(Fahey et al. 2001). In arabidopsis nearly 30 different glucosinolates have been found in most 

organs, at various developmental stages (Brown et al. 2003). The chemical structure of most of 

them consists of a β-D-thioglucose group linked to a (Z)-N-hydroximinosulfate ester via a single 

sulfur atom (Halkier & Gershenzon 2006).  

 Although knowledge about glucosinolate biosynthesis is important, it is their 

degradation products that are responsible for most of their biological functions (Figure 1.4; 

Halkier & Gershenzon 2006). The process of hydrolysis begins with breakdown of the 

thioglucoside bond, which leads to the formation of glucose and unstable aglycone. The latter 

can then isomerise to different products depending on the structure of side chain and 

availability of various cofactors. The initiation process is catalysed by myrosinase (EC: 3.2.3.1) 

and has been investigated in a number of biochemical and molecular studies. Myrosinase is 

separated from glucosinolates in idioblast cells to avoid unnecessary glucosinolate hydrolysis. 

These two components however, mix very quickly after the loss of cellular integrity as a result 

of wounding or insect or pathogen attack, to activate the binary glucosinolate – myrosinase 

system leading to the generation of glucosinolate hydrolysis products which serve as plant 

defence molecules (Renwick 2001). The system however seems to work in two ways: it deters 

usual pathogens but it may also attract some specialized herbivores. Many of them use 

glucosinolates as a food or use glucosinolate-containing plants for oviposition (Halkier & 

Gershenzon 2006).   

 

Schematic representation of glucosinolate hydrolysis (middle) including examples of aliphatic, 
aromatic and indolic glucosinolates (left) and most common degradation products (right). Figure is 
based on Dinkova-Kostova & Kostov 2012. 

Figure 1.4  Glucosinolate metabolism 
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1.4.2 Phytosulfokines 

 Phytosulfokines (PSK) are other sulfur-containing metabolites of great importance to 

plant growth and health (Chen et al. 2000). They promote various stages of plant growth such 

as somatic embryogenesis, adventitious bud, root formation, and pollen germination (Chen et 

al. 2000, Kobayashi et al. 1999, Matsubayashi & Sakagami 1996, Matsubayashi et al. 1997, 

Yamakawa et al. 1998). PSK-α was the first sulfated peptide found in plants (Matsubayashi & 

Sakagami 1996). It has been shown to strongly promote cell proliferation at low concentrations 

(Matsubayashi et al. 1997). PSK-α is universally distributed in the plant kingdom (Yang et al. 

2000). PSK is synthesised from an ~80 amino acid precursor peptide (PP-PSK) which has a 22-

amino acid hydrophobic secretion signal at the N-terminus (Yang et al. 1999). Predicted 

mature form of PSK-α is a peptide of 67 amino acids (Yang et al. 1999). The sulfation of PP-PSK 

is crucial for its biological activity (Matsubayashi & Sakagami 1996). Tyrosine is the only amino 

acid which has been shown to undergo sulfation and sulfated tyrosines are usually surrounded 

by acidic residues (Dorner & Kaufman 1990, Yang et al. 2000). There are two such tyrosines 

(surrounded by acidic residues) in PP-PSK (Yang et al. 2000). It has been suggested that both of 

them undergo sulfation (Yang et al. 1999). The analysis of a synthetic PP-PSK oligopeptide 

revealed that the acidic amino acid residues are crucial for the sulfation reaction and that the 

reaction is catalysed by tyrosylprotein sulfotransferase (Hanai et al. 2000) – an enzyme 

homologous to that found in human (Ouyang et al. 1998).  

 In arabidopsis four genes encoding the precursor peptide have been identified, and 

two of them characterised in detail (Yang et al. 2001). The expression of PSK genes in 

arabidopsis is not limited to tissues characterised by active cell division and differentiation. It 

has been detected in most plant organs including mature leaves, stems, roots, and callises 

which indicate that it is not a simple mitogen or differentiation initiator. PSK precursor 

overexpression causes no apparent changes in plant growth or development under normal 

growth conditions (Matsubayashi & Sakagami 2006).  
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1.5 Regulation of sulfate assimilation 

 Understanding the tight regulation of the sulfate assimilation pathway is extremely 

important for two reasons: the essential role of sulfur for plant growth and crops quality, and 

the potential cytotoxicity of sulfite and sulfide, which are intermediates in sulfate assimilation. 

Various stages of the assimilatory pathway are regulated in both positive and negative 

feedback mechanisms in a demand-driven manner (Figure 1.5).  

 

Black arrows indicate positive regulation (induction or accumulation) and red arrows indicate 
negative regulation (repression). The grey circles correspond to the key regulatory factors of the 
pathway; grey boxes correspond to all the other components involved in regulation. Blue colour 
indicates processes, red – genes and proteins, green – metabolites. Abbreviations: APR, APS 
reductase, MYB, MYB transcription factors; APK, APS kinase; SLIM1; Sulfur Limiting factor 1; 
SULTRs, sulfate transporters; SAT; serine acetyltransferase; ATPS, ATP sulfurylase; OAS-TL, 
OAS(thiol)lyase; OAS, O-acetylserine; CSC, cysteine synthase complex. The figure is based on the 
information described in section 1.5. 

 

1.5.1 Regulation on the level of sulfate uptake and transport 

 The efficient acquisition of sulfate from the soil and its distribution in the plant is of 

great importance especially under sulfur limiting conditions (Takahashi et al. 2011). In a 

number of molecular biological studies it was shown that the rate of sulfate transport during 

Figure 1.5 Complete network of regulation of sulfate metabolism in Arabidopsis thaliana 
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low sulfate supply is driven mainly by regulation of the two high-affinity sulfate transporter 

genes, SULTR1;1 and SULTR1;2 (Shibagaki et al. 2002, Takahashi et al. 2000, Vidmar et al. 2000, 

Yoshimoto et al. 2002). The study of promoter-reporter constructs indicated that both of them 

are regulated in response to sulfate nutrition (Maruyama-Nakashita et al. 2004a; see below). 

Further studies led to the identification of SLIM1 (sulfur limitation 1) transcription factor which 

is responsible for regulation of sulfate uptake and metabolism during insufficient sulfur supply 

(Maruyama-Nakashita et al. 2006; Figure 1.5). The SLIM1 transcription factor belongs to the 

family of ethylene insensitive-like (EIL) transcription factors. EIL3 is the only member of the 

family which has a specific function in regulation of sulfate uptake and metabolism 

(Maruyama-Nakashita et al. 2006). Further analysis revealed that EIL3 is able to restore the 

wild type phenotype of slim1 mutants suggesting that EIL3 is in fact SLIM1 (Maruyama-

Nakashita et al. 2006). Slim1 mutants showed about 30% reduction in root lengths and 60% 

decrease of sulfate uptake rates in sulfur-limiting conditions. SLIM1 regulates the expression of 

the majority of sulfate-limitation responsive genes in the pathway which suggests a hub-like 

function in the regulation system. Interestingly, APR which is the key enzyme of sulfur 

metabolism seems not to be subjected to the control of SLIM1 (Maruyama-Nakashita et al. 

2006).  

 Sulfur-responsive cis-acting element (SURE) is another factor involved in both negative 

and positive regulation of the sulfate reduction pathway (Maruyama-Nakashita et al. 2005). It 

was first identified in the sequence of the promoter of the SULTR1;1 sulfate transporter gene. 

SURE is a 7 nucleotide long specific sequence localised in the 5’-region of SULTR1;1. This 

sequence contains the core sequence of the auxin response factor (ARF; Hagen & Guilfoyle 

2002). However, SURE is sulfur specific and is not involved in auxin signalling. The analysis of 

sulfur limitation inducible expression of SULTR1;1 revealed that the SURE element was an 

essential target for sulfur-limitation response in arabidopsis roots (Maruyama-Nakashita et al. 

2005). Interestingly, SURE was identified in SULTR1;1 but not in SULTR1;2 suggesting different 

mechanisms of regulation of these two transporters (Maruyama-Nakashita et al. 2005). 

Indeed, SULTR1;1 is known to be controlled more specifically by sulfur limitation whereas the 

control of SULTR1;2 is more dependent on metabolic demand (Rouached et al. 2008). The in 

silico promoter analysis with GeneChip microarrays of 15 genes which are known to be up-

regulated by sulfur limitation revealed the presence of a SURE core sequence (GAGAC or 

GTCTC) in the promoters of all of these genes. Similar sequences are present in the NIT3 

nitrilase (Kutz et al. 2002) and β-conglycinin β-subunit (Awazuhara et al. 2002). Therefore it 

was concluded that the SURE core sequences are conserved in promoters activated by sulfate 
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limitation and may play a key role in the induction of the sulfur starvation response. However, 

a number of genes regulated by sulfur starvation do not have a SURE element (Maruyama-

Nakashita et al. 2005). Despite the important role of SURE elements in the sulfur-limitation 

inducible response there are still many gaps in our knowledge. Many important questions, 

such as specific SURE-binding candidates, still require further investigation. 

 Sulfur metabolism is also controlled post-transcriptionally (Takahashi et al. 2011). The 

main player in post-transcriptional regulation is microRNA395 (miR395; Figure 1.5). MiRNAs 

are a group of small RNAs which are formed from noncoding double-stranded RNA precursors. 

They are able to negatively regulate their target genes by cleavage or by binding to 

complementary messenger RNA sequence of their targets repressing their translation (Bartel 

2004). Analysis of the arabidopsis genome revealed the low-affinity sulfate transporter 

SULTR2;1 and ATPS1 and ATPS4 isoforms of ATPS as target genes for miR395 (Jones-Rhoades & 

Bartel 2004). The accumulation of miR395 increases during sulfate starvation and this process 

is dependent on SLIM1 (Kawashima et al. 2011). Further studies revealed that miR395 

regulates sulfate accumulation in shoots by cleavage of ATPS1 and ATPS4 mRNA during sulfate 

starvation (Kawashima et al. 2009). It has been shown that in arabidopsis lines overexpressing 

miR395, the mRNA abundance of ATPS4 strongly decreased under sulfate deficiency 

suggesting a canonical regulation of ATPS4 by miR395 (Kawashima et al. 2011).  

 MiR395 was also shown to play a role in sulfate translocation between roots and 

shoots by targeting SULTR2;1 (Liang et al. 2010). It has been shown that the mRNA abundance 

of SULTR2;1 in roots increase during sulfate starvation and its expression is limited to the 

xylem parenchyma cells (Kawashima et al. 2011, Kawashima et al. 2009). The increase in 

SULTR2;1 expression in the xylem parenchyma and reduction of flux through sulfate 

assimilation in the roots caused by miR395 indicate the importance of the SLIM1 dependent 

induction of miR395 for the increased translocation of sulfate to the shoots when sulfate is 

limited. More efficient translocation of sulfate between roots and shoots which is a result of 

increased expression of SULTR2;1 might improve the efficiency of sulfate assimilation in leaves 

(Kawashima et al. 2011). Very recently Matthewman et al. (2012) have shown that the 

complex regulation of miR395 is linked not only to SLIM1-dependent regulation during sulfate 

starvation, but also to glutathione and more generally thiol levels and/or cell redox state. 

Increased expression of miR395 in mutants affected in sulfate accumulation, fou8 and sultr1;2 

suggests that miRNA395 is regulated by internal sulfate level irrespective of external sulfate 

availability (Lee et al. 2012). All these results confirm that the miR395 is an integral component 

of the sulfate assimilation regulatory network and complex regulation mechanism.  
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1.5.2 Regulation of sulfate assimilation pathway 

 Sulfate assimilation is tightly regulated in response to sulfate demands and 

environmental changes (Davidian & Kopriva 2010). The control mechanisms are on different 

steps of the pathway and involve regulation of specific enzymes. Additionally, the whole 

pathway may be controlled as a process.  Experiments focused on the first step of the pathway 

revealed that the expression of ATPS is regulated by sulfate availability (Logan et al. 1996). It 

was also shown that ATPS activity is inhibited by glutathione. However, a number of studies 

revealed that the key regulatory step is sulfate reduction by APR (Figure 1.5) as it is strongly 

affected by various treatments and environmental changes (Hesse et al. 2003, Koprivova et al. 

2008, Vauclare et al. 2002). The application of GSH to the root culture medium decreases APR 

expression and activity indicating that GSH rather than cysteine (which is the final product of 

the pathway) is involved in the regulation of sulfate assimilation pathway (Vauclare et al. 

2002). They also estimated the flux control coefficient for APR as 0.57 considering that the 

coefficient of all enzymes in the sulfate uptake and reduction pathway adds up to 1 which 

confirms the importance of APR in control of flux through sulfate assimilation pathway. The 

quantitative trait loci (QTL) analysis of a recombinant inbred line (RIL) population derived from 

the cross between two wild type arabidopsis accessions – Bay-0 and Sha – led to the 

identification of a single nucleotide polymorphism in the gene encoding the isoform 2 of APR. 

The substitution of alanine with glutamate in a conserved domain of the APR2 protein resulted 

in significant differences in enzyme activity leading to sulfate accumulation (Loudet et al. 

2007). Additionally, reduction of APR activity and mRNA accumulation under low nitrogen 

availability shown in this study confirmed an interconnection of the two assimilatory pathways 

(Loudet et al. 2007).  

 Overexpression of APR2 leads to accumulation of sulfite and thiosulfate which are 

toxic for plants and strongly affect plant health (Martin et al. 2005). Such an effect is not 

observed when overexpressing other enzymes of sulfate reduction pathway suggesting that 

APR regulation affects the entire pathway.  APR activity increases during the day and decreases 

during the night which shows that it has a diurnal rhythm (Kopriva et al. 1999). A recently 

discovered transcription factor, Long Hypocotyl 5 (HY5) seems to be responsible for APR 

regulation by light (Lee et al. 2011). In the dark adapted arabidopsis seedlings a rapid increase 

in the transcript  abundance of all three APR isoforms was observed to different extents. 

Transcript accumulation of the APR2 isoform was 12-fold higher after 90 minutes of 

illumination than in control plants kept in the dark. However, in hy5 mutant seedlings no light 

induction was observed for APR1, and APR3 induction was lower. Further analysis also 
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revealed that HY5 is involved in APR regulation by OAS and nitrogen deficiency which alter the 

demand for reduced sulfur (Lee et al. 2011). Interestingly, the analysis of the sulfite reductase 

mutant sir1-1 revealed the downregulation of genes encoding ATPS4, APR2, and SULTR2;1 

relative to the wild type plants (Khan et al. 2010). The most likely reason for the 

downregulation of these genes, especially ATPS4 and APR2, is to avoid the accumulation of 

toxic sulfite which cannot be incorporated into cysteine as a result of reduced SiR activity in 

the mutant. These results suggest that SiR can contribute to the control of sulfate reduction 

pathway (Kutz et al. 2002). 

1.5.3 Regulation of cysteine synthesis – protein-protein interactions 

 Cysteine synthesis plays an important role in the regulation of sulfate metabolism (Hell 

& Writz 2011). The regulation of SAT and OAS-TL, the main enzymes in cysteine biosynthesis, is 

mainly due to a protein-protein interaction in the cysteine synthase complex (CSC; Figure 1.5). 

As mentioned before, SAT is strongly activated by OAS-TL which, however, is inactive in the 

complex and has only a regulatory role (Droux et al. 1998). Formation of the complex is 

strongly dependent on the availability of OAS and sulfide. When SAT is bound to OAS-TL, the 

access of OAS to the complex is strongly inhibited (Francois et al. 2006). OAS which cannot be 

bound to the complex is released and metabolised by free OAS-TL dimers.  During sulfur 

deficiency there is not enough sulfide for cysteine synthesis and therefore OAS accumulates in 

cells. Accumulated OAS dissociates from the CSC complex, which rapidly decreases SAT activity 

(Hell & Wirtz 2008). High OAS concentration increases the expression of genes encoding 

sulfate transporters, APR, SAT, and OAS-TL. This leads to increased sulfate uptake and 

reduction and equilibrates the system (Hopkins et al. 2005, Koprivova et al. 2000, Smith et al. 

1997). Hubberten et al. (2012b) have shown recently that OAS may serve as a signalling 

molecule and change the transcription levels of specific genes irrespective of the sulfur status 

in the plant.  

 The feedback inhibition of the cytosolic isoform of SAT by cysteine concentration 

serves as another form of regulation in arabidopsis. It is important to notice that in arabidopsis 

plastidial and mitochondrial isoforms of SAT remain mostly insensitive to changes in cysteine 

concentration (Noji et al. 1998). Cytosolic SAT activity may be considered as important for 

control of OAS concentration. The cysteine insensitive SAT isoforms in organelles may allow 

independent formation of cysteine (Noji et al. 1998). Although the regulation of cysteine 

biosynthesis is very important for sulfur homeostasis in plants and therefore it has been 
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intensively studied over the past few years, many important aspects such as the role of CSC in 

the regulation of OAS inducible genes still require further investigation. 

1.5.4 Control of methionine biosynthesis – posttranscriptional regulation 

 Methionine biosynthesis undergoes a complex regulation (Ravanel et al. 2004). The 

whole pathway is controlled by feedback inhibition of aspartate kinase by lysine, threonine or 

lysine together with SAM. It seems that the competition between CGS and threonine synthase 

(TS) for their common substrate, O-phosphohomoserine, has an important regulatory role in 

the flux of carbon into methionine (Hesse et al. 2004a). It has been shown that the Km values of 

activated TS are 250-500 fold lower than those of CGS (Ravanel et al. 2004). Therefore, when 

methionine levels are high the carbon flux is directed towards threonine synthesis. A recent 

study of arabidopsis mto1 mutants (with disabled CGS at the MTO1 region which results in the 

overaccumulation of methionine – see below) provided evidence that the regulation of 

methionine biosynthesis also occurs at the posttranscriptional level (Chiba et al. 1999, Chiba et 

al. 2003). The analysis of this process is focused on the MTO1 region in exon 1 of CGS (Suzuki 

et al. 2001). The MTO1 mRNA region may act in cis and destabilize CGS mRNA in response to 

high concentrations of methionine or SAM (Chiba et al. 1999, Chiba et al. 2003, Lambein et al. 

2003). Computational analysis revealed the possible formation of a stable stem-loop structure 

in the MTO1 region which could support the posttranscriptional mechanism of regulation 

(Amir et al. 2002). More recently the presence of a truncated form of CGS transcript in 

arabidopsis was shown (Hacham et al. 2006). This transcript lacks about 90 nucleotides from 

the first exon. Overexpression of this CGS transcript causes an even higher level of methionine 

than the overexpression of full-length CGS. This may suggest that this truncated transcript is 

not subject to feedback regulation by methionine (Hacham et al. 2006). 

1.5.5 Control of glucosinolate biosynthesis – MYB transcription factors 

 Glucosinolate biosynthesis is highly regulated by a network of transcription factors in 

response to biotic and abiotic stress (Figure 1.5; Gigolashvili et al. 2007, Gigolashvili et al. 2008, 

Sønderby et al. 2007). They belong to two groups of the R2R3-MYB family of transcription 

factors. The first group consists of three members: MYB28, MYB76 and MYB29, and is involved 

in the control of aliphatic glucosinolate biosynthesis (Gigolashvili et al. 2008). The second 

group consists of MYB34, MYB51, and MYB122 and is involved in the control of the 

biosynthesis of indolic glucosinolates (Celenza et al. 2005, Malitsky et al. 2008). T-DNA 

insertions, RNAi or overexpression of these transcription factors affects the expression of 
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genes encoding glucosinolate biosynthesis enzymes and, consequently the level of 

glucosinolates (Gigolashvili et al. 2007, Gigolashvili et al. 2008). 

 Studies on MYB28, MYB29 and MYB76 showed that they are able to transactivate each 

other in control of biosynthesis of aliphatic glucosinolates (Hirai et al. 2007, Gigolashvili et al. 

2008). Analysis of MYB28 and MYB29 revealed that MYB28 is essential for the synthesis of 

aliphatic glucosinolates whereas MYB29 induces biosynthetic genes in response to plant 

hormone methyl jasmonate (Hirai et al. 2007). They were also shown to downregulate the 

expression of genes encoding enzymes involved in the synthesis of indolic glucosinolates 

(Gigolashvili et al. 2008). MYB34, MYB51 and MYB122 have different functions in regulation of 

the pathway (Gigolashvili et al. 2007). Although all of them can up-regulate the genes from the 

biosynthesis pathway, MYB34 and MYB122 also function as stimulators of auxin biosynthesis 

whereas MYB51 additionally activates the glucosinolate biosynthesis pathway (Gigolashvili et 

al. 2007). Maruyama-Nakashita et al. (2006) showed that mutation of SLIM1 additionally 

affects the expression of MYB34, suggesting that this factor may be negatively controlled by 

SLIM1 in response to sulfur deficiency. More recently it was indicated that MYB factors are 

involved not only in the regulation of the glucosinolate biosynthesis genes, but also other 

genes in the sulfur reduction pathway. Yatusevitch et al. (2010) concluded that APR1 and APR3 

are under control of all MYB factors whereas APR2 is regulated only by some of them. They 

also suggested that APK1 and APK2 are a part of the glucosinolate synthesis network 

controlled by MYB factors, whereas APK3 and APK4 have much lower input to the network.  

1.5.6 Regulation by hormone signals 

 Metabolic regulation is not the only way to control metabolic pathways. Plant 

hormones play very important roles in many developmental processes.  Recent studies show 

involvement of plant hormones in regulation of different nutrient metabolic pathways (Figure 

1.5).  

 Cytokinins are adenine derived plant hormones which are responsible for regulation of 

cell division and differentiation in plants together with auxin (Sakakibara 2006). The best 

known example of regulation of the sulfate reduction pathway by cytokinin is the 

downregulation of genes encoding high-affinity transporters SULTR1;1 and SULTR1;2 

(Maruyama-Nakashita et al. 2004b). Addition of cytokinins to wild type plants decreases 

sulfate uptake and mRNA  abundance for the two transporters. It is interesting that SULTR1;2 

is much more responsive to the cytokinins than SULTR1;1. It was suggested that in this 

regulation the cytokinin response 1 (CRE1)/wooden leg (WOL)/arabidopsis histidine kinase 4 
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(AHK4) cytokinin receptor is involved. The arabidopsis cre1-1 mutant was unable to regulate 

the high-affinity sulfate transporters in response to cytokinins (Maruyama-Nakashita et al. 

2004b). These results suggest the independent regulation of high-affinity sulfate transporters 

by cytokinin (repression) and by sulfate (induction). In contrast, Ohkama et al. (2002) have 

shown that sulfur responsive genes APR1 and SULTR2;2 were upregulated by cytokinin. The 

authors have concluded that this regulation depends on an increase in sucrose concentration 

in plant tissues. 

 Auxin-dependent signalling in the regulation of sulfate assimilation may be connected 

to the response to sulfate deficiency by indole glucosinolate hydrolysis (Kutz et al. 2002). 

During sulfate deficiency the aglycone is released from indole glucosinolates. Indole acetic acid 

(IAA) is generated from the remaining indole acetonitrile, catalysed by nitrilase NIT3. IAA 

stimulates root growth (Hell & Hillebrand 2001). Indeed, increase in length and numbers of 

lateral roots is a common phenotype of sulfur deficient plants. Additionally, various studies 

indicate positive regulation of auxin-responsive genes during sulfate starvation (Maruyama-

Nakashita et al. 2003, Nikiforova et al. 2003). Decrease in cysteine production leads to 

accumulation of OAS and its precursor serine and sulfate deficiency induces tryptophan 

synthase. Both of these events result in increased tryptophan biosynthesis as in plants it is 

synthesized from indole and serine through the activity of the tryptophan synthase β-subunit 

(Nikiforova et al. 2003). In consequence increased biosynthesis of tryptophan increases 

production of auxin. 

 Jasmonic acid (JA) is another plant hormone which participates in regulation of sulfate 

metabolism (Xiang & Oliver 1998). JA is involved in response to oxidative stress and synthesis 

of defence molecules. The cellular GSH concentration rapidly decreases during sulfur 

deficiency and this may lead to oxidative stress in cells. It was shown however, that JA 

increases the expression of glutathione synthesis pathway enzymes (Xiang & Oliver 1998). 

Additionally microarray studies showed induced expression of genes encoding enzymes 

involved in jasmonate biosynthesis during sulfur limitation and in sultr1;2 mutants (Maruyama-

Nakashita et al. 2003, Nikiforova et al. 2003). JA was also shown to induce the expression of 

the genes involved in glucosinolate biosynthesis (Brader et al. 2001, Doughty et al. 1995). JA-

deficient mutants showed normal responses to sulfur limitation, e.g. sulfate transporters and 

APR were induced and glucosinolate biosynthesis genes were repressed under sulfur 

starvation (Takahashi & Saito 2008). JA significantly induced gene expression and protein 

activity of APR, mainly isoforms 1 and 3 (Koprivova et al. 2008). In overview, JA promotes the 

synthesis of both antioxidants and glucosinolates and has important general role in plant 
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pathogen defence and detoxification. It also co-ordinately induces multiple genes of sulfate 

assimilation suggesting its positive effect on sulfur homeostasis in plants (Jost et al. 2005). 

1.6 The aims of the project 

 Since sulfur deficiency in Europe appeared relatively recently, the understanding of 

sulfur use efficiency still lags behind that of the other major nutrients. Many research projects 

have been focused on investigation of sulfur assimilation and the regulation of sulfur 

metabolism in recent years. However, there are still many gaps in our knowledge especially in 

terms of regulation of sulfate assimilation and plant response to sulfate limitation. Moreover, 

there is increasing interest in investigation of the interconnection between different elements 

since it has been shown that the disruption of homeostasis of one nutrient may result in a 

decrease in use efficiency of other nutrient(s). Therefore, in the course of my PhD project I 

investigated different aspects of sulfate metabolism in Arabidopsis thaliana  (L.)Heynh. 

•  First, I was interested in the investigation of natural variation in plant response to low 

sulfur supply. Through collaboration with two other research groups an experiment was 

conducted in which 25 arabidopsis accessions were analysed in their response to sulfate 

deficiency, nitrate deficiency, and sulfate/nitrate double deficiency. Results of this work are 

described in Chapter 4. 

 

•  I used natural variation among worldwide population of Arabidopsis thaliana to look 

for new genes and regulatory factors that contribute to homeostasis and regulation of 

nitrate, phosphate, and sulfate metabolism. Results of Genome-Wide Association Studies 

(GWAS) which delivered a number of candidate genes potentially involved in the control of 

these three metabolic pathways are described in Chapter 5. 

 

• Together with members of the Kopriva group and different collaborators I used natural 

variation among Arabidopsis thaliana and various biochemical and molecular techniques to 

get a better understanding of regulatory functions of already known enzymes of the sulfur 

reduction pathway which is described in Chapter 3.  

 

• My contribution to the functional characterisation of a previously undescribed gene 

delivered by GWAS on nitrate and sulfate accumulation data is described in Chapter 6. 
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Antibiotic Final concentration Solvent Targets

Ampicillin 100 µg ml-1 H2O gram-negative bacteria

Carbenicillin 100 µg ml-1 H2O bacteria, fungi, plants

Kanamycin 50 µg ml-1 H2O bacteria, fungi, plants

Rifampicin 50 µg ml-1 methanol bacteria

Hygromycin B 25 µg ml-1 H2O bacteria, fungi, plants

Spectinomycin 100 µg ml-1 H2O bacteria

Strain

Antibiotic 

resistance Properties

Source and 

Reference Comment

DH5α

F- φ80lacZΔM15 Δ (lacZYA-

argF)U169 recA1 endA1 

hsdR17(rk-, mk+) phoA 

supE44 thi-1 gyrA96 relA1 Hanahan, 1983
Generaly used for plasmid 

propagation and construction

TOP10 Streptomycin

F- mcrA (mrr-hsdRMS-mcrBC) 

80lacZM15 lacX74 recA1 

ara139 (ara-leu)7697 galU 

galK rpsL (StrR) endA1 nupG Invitrogen
Generaly used for plasmid 

propagation and construction

AGL-1

Rifampicin 

Carbenicillin
pTiBo542DT-DNA, genes for 

succinamopine biosynthesis -

Infiltration of N. benthamiana and 

transformation of                            

A. thaliana

Escherichia coli

Agrobacterium tumefaciens

2.1 Materials  

 This chapter describes general materials and methods that were used for the 

laboratory experiments. It includes the general methods of molecular biology (e.g. DNA 

extraction, PCR reaction, restriction digestion) as well as the principal methods for 

investigation of the traits related to sulfur metabolism. Other chapters include a Materials and 

Methods section with plant growth conditions, experimental design, and techniques specific 

for the analyses described in that chapter. 

2.1.1 Bacterial strains  

 

   

 

 

 

 

 

 

 

 

 

2.1.2 Antibiotics  

 

 

Table 2.2 Concentration and usage of antibiotics 

Table 2.1 Bacterial strains 
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Vactor Resistance Description

pCR8/GW/TOPO TA Spectinomycin

Vector for cloning of DNA fragments with                                          

terminal 3’ A-overhangs (Invitrogen)

pGWB2
Kanamycin, 

Hygromycin

GATEWAY Binary vector for the expression of proteins in 

plants driven by the 35S promoter (Research Institute of 

Molecular Genetics, Shimane University, Japan)

pK7FWG2,0
Chloramphenicol 

Kanamycin

GATEWAY C-terminal GFP vector under                                                                      

the control of 35S promoter (Invitrogen)

Medium Composition

Murashige and Skoog (MS)

½ MS plant salt mixture (Duchefa Biochemie, Ipswich, UK); 166 

mg l-1 CaCl2, 85 mg l-1 KH2PO4, 950 mg l-1 KNO3, 90 mg l-1 MgSO4, 

825 mg l-1 NH4NO3, 0.0125 mg l-1 CoCl2.6H2O, 0.0125 mg l-1, 

CuSO4.5H2O, 18 mg l-1 FeNaEDTA, 3 mg l-1 H3BO3, 0.4 mg l-1 KI, 8 

mg l-1 MnSO4.H2O, 0.125 mg l-1 Na2MoO4.2H2O, 4 mg l-1 

ZnSO4.7H2O, 50 mg l
-1

 myo-inositol, 0.5 mg l
-1

 thiamine, 0.25 mg l
-

1
 pyroxidine, 0.25 mg l

-1
 nicotinic acid, 0.25 g l

-1
 2-[N-morpholino]-

ethanesulphonic acid (MES), 0.8% (w/v) agar (ForMedium 

AGA03), where stated 3% sucrose (w/v), pH 5.7 (with 1 M KOH)

Luria-Bertani Broth (LB)

10 g l-1 tryptone, 5 g l-1 yeast extract, 10 g l-1 NaCl, pH 7.0, agar 

was added for solid medium (final concentration 1.5% (w/v); 

Formedium AGA03)

Super Optimal broth with 

Catabolite repression (SOC)

20 g l
-1

 tryptone, 5 g l
-1

 yeast extract, 0.5 g l
-1

 NaCl, 0.186 g l
-1

 KCl, 

pH 7.0. The medium was autoclaved before addition of glucose at 

a final concentration of 20 mM and MgCl2 at a final concentration 

of 2 mM

Plant growth medium

Bacteria growth medium

2.1.3 Plasmids 

 

 

 

2.1.4 Growth media 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.5 Oligonucleotides 

 All oligonucleotides were obtained from Sigma-Aldrich Ltd (Haverhill, UK). The 

sequences were obtained by using T-DNA Express, Quant Prime software (for qPCR primers), 

or they were designed by me. All primers were re-suspended in dH2O in the amount 

appropriate to obtain 100 µM stock solution according to manufacturer’s instruction. The 

sequences of particular primers are listed in the Materials and Methods sections specific for 

each chapter. 

Table 2.3 Cloning vectors 

Table 2.4 Composition of growth media for plants and bacteria 
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2.2 Methods 

2.2.1 Plant growth on plates 

 Dry seeds were surface sterilised for up to four hours in a vacuum desiccator using 

chlorine gas which was generated by mixing 125 ml of sodium hypochlorite with 2.5 ml of 12 

M HCl. Seeds were then mixed with 0.1% sterile agarose (Sigma Aldrich 

www.sigmaaldrich.com) and seeded along the edge of square plastic plates (10 cm x 10 cm; R 

& L Slaughter, Essex, UK) with appropriate medium (depending on the experiment – see 

Materials and Method section of particular chapters) using pipette. Subsequently, plates were 

stored in 4°C in the dark for three days. After that time they were transferred to a CER at 22°C 

under 16-h-light/8-h-dark cycles where they were grown vertically for up to three weeks with 

the photon flux density 140 µmol m-2 s-1. The plants were grown on the surface of the agar. 

Exact growth conditions for particular experiments including the media composition, growth 

period, and experimental design are described in the Material and Methods section of 

following chapters. 

2.2.2 Plant growth in the soil 

 Dry seeds were surface sterilised for up to four hours in a vacuum desiccator using 

chlorine gas which was generated by mixing 125 ml of sodium hypochlorite with 2.5 ml of 12 

M HCl. Seeds were then mixed with 0.1% sterile agarose (Sigma Aldrich) and seeded on square 

plates (10 cm x 10 cm) with MS medium divided for nine little squares. Subsequently, plates 

were stored in 4°C in the dark for three days. After that time they were transferred to a CER at 

22°C under 16-h-light/8-h-dark cycles where they were left to germinate – up to one week 

(horizontally). One week old seedlings were transferred from plates to the 40-cell tray 

(21x35cm) with Levington Horticulture soil mix and grown for another four weeks in CER 10-h-

light/14-h-dark cycles at constant temperature 22°C, 60% relative humidity, and light intensity 

of 160 µE s-1 m-2. Exact growth conditions for particular experiments including the media 

composition, growth period, and experimental design are described in the Material and 

Methods section of following chapters. 

2.2.3 Homogenization of plant material 

 Unless stated differently plants were usually frozen immediately after harvesting in 

liquid nitrogen and stored at -80°C for further analysis as fresh matter. Before analysis plant 

material was either homogenised in the extraction buffer by using disposable pestles (for 

example for RNA isolation) or ground into a fine powder in 2 ml microcentrifuge tubes 
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containing 4 mm diameter stainless steel ball (Bearing Supplies; www.bearing-supplies.co.uk) 

by using a Genogrinder (SPEX Sample Prep, Metuchen, USA). For the dry matter analyses 

plants were freeze dried and homogenized to fine powder using stainless steel balls.  

2.2.4 DNA isolation from plant samples 

 Unless stated differently, DNA was isolated from one leaf using Edwards buffer (200 

mM Tris HCl, pH 7.5, 250 mM NaCl, 25 mM ethylenediaminetetraacetic acid EDTA, 0.5% (w/w) 

SDS). For large numbers of extractions, DNA isolation was carried out in 96-well racks 

containing strips of 8-well collection tubes (Qiagen, http://www.qiagen.com/). Plant tissue was 

harvested into the tubes which contained a 4 mm diameter stainless steel ball. The racks were 

frozen at -80°C. The tissue was then homogenised by shaking the racks in a Genogrinder at 200 

strokes per minute for 30 s. Homogenised tissue was resuspended in 300 μl of Edwards buffer. 

Cell debris was pelleted by centrifugation at 4000 g for 10 min at room temperature. The 

supernatant (250 μl) was transferred into new tubes containing 250 μl of isopropanol (Sigma 

Aldrich; http://www.sigmaaldrich.com/united-kingdom.html). The tubes were inverted several 

times, incubated at room temperature for 2 min and centrifuged at 4000 g for 10 min at room 

temperature. The DNA pellet was washed in 300 μl 70% (v/v) ethanol and re-pelleted using the 

same centrifugation conditions. The tubed with pellet were left under the laminar flow hood 

for 20 min to let the pellet dry. Subsequently, the pellet was resuspended in 50 μl dH2O. For 

the extraction of a smaller number of samples, DNA was extracted in Eppendorf 

microcentrifuge tubes (http://www.eppendorf.com/UK-en/). The same volume of Edwards 

buffer was used (300 μl), but centrifugation was carried out at 14,000 g in a microcentrifuge 10 

min as stated above.  

2.2.5 Isolation of plasmid DNA 

 The Escherichia coli plasmid DNA was isolated from up to 10 ml of liquid overnight 

bacterial culture grown in LB medium (see section 2.1.4) at 37°C in a shaking incubator. The 

plasmid DNA was isolated using the QIAprep Spin Miniprep Kit (Qiagen) according to the 

manufacturer’s instruction. The DNA was eluted from the spin column using 30 µl of dH2O and 

its quality and quantity were assessed using the NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies, http://www.nanodrop.com/). 

2.2.6 Polymerase chain reaction  

 For colony PCR and genotyping the GoTaq Flexi Kit (Promega; Southampton, UK) was 

used for PCR. For cloning, Platinum™ High-Fidelity DNA polymerase (Invitrogen; Paisley, UK) 
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Enzyme Concentration Source

EcoRI 5 U/µl Roche Diagnostics

BspHI 10 U/µl New England Biolabs

ClaI 10 U/µl Roche Diagnostics

BglI 10 U/µl New England Biolabs

was used. PCR reactions contained 50-500 ng of gDNA or 1 pg - 50 ng plasmid DNA as 

template, 1x polymerase reaction buffer, 0.1 U of GoTaq polymerase (or 0.05 U of Platinum™ 

High-Fidelity DNA polymerase), 0.4 μM of each primer and 500 μM dNTPs. PCR amplifications 

were carried out in a DYAD Thermal Cycler (Biorad, Hertfordshire, UK) or Mastercycler Pro 

(Eppendorf). The standard PCR amplification protocol with GoTaq Polymerase included initial 

denaturation step of 95°C for 2 min, followed by 35 cycles of: 94°C for 30 s, 50-60°C (Primer 

Tm-3°C) for 30 s, 72°C for 1 min for each 1kb of target DNA product and a final elongation step 

at 72°C for 10 min. The reaction was carried out in 10 µl total volume. For reactions containing 

Platinum™ High-Fidelity DNA polymerase, the initial denaturation step was carried out for 1 

min at 94°C, followed by 25-35 cycles of 94°C for 30 s, 50-60°C (Primer Tm-3°C) for 20 s, 68°C 

for 1 min for each 1kb of target DNA product and 68°C for 10 min. The reaction was carried out 

in 50 µl total volume. For colony PCR, GoTaq polymerase was used and instead of DNA 

template, parts of a bacterial colony were added with a pipette tip to the PCR mix. The PCR 

products were separated by agarose gel electrophoresis using 1% gel. 

2.2.7 Restriction digestion 

 The restriction digestion for confirmation of successful candidates was carried out 

overnight according to the enzyme manufacturer’s instructions (Roche Diagnostics, West 

Sussex, UK; New England Biolabs, Herts, UK). Usually, the reactions were carried out in 10 µl 

final volume using 500 ng of DNA and 1 U of enzyme, the restriction buffer and bovine serum 

albumin (BSA) if required according to manufacturer’s instruction. The restriction enzymes 

used most often are listed in Table 2.5.  

 

 

 

 

2.2.8 Agarose gel electrophoresis 

 PCR DNA fragments or the DNA after restriction digestion were mixed with 5 x loading 

dye (50% (v/v) glycerol, 0.05% (w/v) Orange G) and separated on 1% (w/v) agarose gels, 

prepared using TAE buffer (40 mM Tris-HCl, 20 mM acetic acid, 1 mM EDTA, pH 8.0) containing 

0.01% (v/v) ethidium bromide. The DNA separated on the gel was visualised through 

Table 2.5 Restriction enzymes 
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fluorescence of the ethidium bromide-DNA complex when exposed to ultraviolet (UV) light 

from a transilluminator and photographed using a Gel Doc 1000 system (Bio-Rad). 

2.2.9 LR reaction 

 Recombination between sequences within attL and attR sites was catalysed by LR 

clonase enyzme (Invitrogen). The reaction was performed according to the manufacturer’s 

instruction. For the reaction, 4 µl of the pCR8 plasmid containing the fragment of interest were 

mixed with the same amount of destination vector and 2 μl LR clonase. Samples were 

incubated at room temperature overnight. Subsequently, the reaction was terminated by 

addition of 0.5 μl proteinase K solution (Invitrogen) and incubation at 37°C for 10 min. 

Subsequently, E.coli TOP10 or DH5α cells were transformed with 3 μl of the reaction mix (see 

section 2.2.8). 

2.2.10 Transformation of Escherichia coli 

 The Escherichia coli cells were transformed by heat shock. Chemically competent cells 

(30 µl), stored at -80°C were thawed on ice and 3 μl of the LR reaction mix (see section 2.2.7) 

were added and the mix was incubated on ice for 30 min. For the heat shock, the cells were 

heated to 42°C for 30 s and immediately transferred to ice. After 2 min, 1 ml of SOC medium 

(see section 2.1.4) was added and bacteria grown for one hour at 37°C with gentle shaking. 

Subsequently, they were plated on LB agar containing the appropriate antibiotics. Plates were 

incubated upside down at 37°C overnight. The single colonies were screened by colony PCR to 

identify successful transformants or they were used to set up the liquid culture for isolation of 

plasmid DNA. 

2.2.11 Transformation of Agrobacterium tumefaciens  

 The Agrobacterium tumefaciens was transformed via electroporation or heat shock. 

The MicroPulser Electroporator (Biorad) was set at 125V. The liquid suspension of electro-

competent Agrobacterium cells (50 µl) was transferred to sterile electroporation cuvette with 

1 mm electrode gap width, dried and placed in the machine. The voltage was passed through 

for 5 s. Immediately after that 1 ml of LB medium was added to the cuvette and entire mix was 

transferred to a screw cap tube. Bacteria were grown in 28°C for 3 h. Subsequently, they were 

spread on plates with LB medium containing appropriate antibiotics. Successful transformants 

were used for transformation of arabidopsis or infiltration of Nicotiana benthamiana. 

 Alternatively, 5 μl of plasmid DNA isolated from Escherichia coli was added to the 

frozen chemically competent agrobacterium cells. The bacteria were incubated in a water bath 
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in 37°C for 5 min. After that time 1 ml of LB medium was added and the bacteria were grown 

at 28°C for 3 h. Subsequently, they were spread on plates with LB medium containing 

appropriate antibiotics. Successful transformants were used for transformation of arabidopsis 

or infiltration of Nicotiana  benthamiana. 

2.2.12 Transformation of Arabidopsis thaliana 

 Plants were grown in a controlled environment room (CER) until flowering and 

production of secondary inflorescences. Agrobacterium tumefaciens cells transformed with the 

desired plasmid (see section 2.2.9) were grown overnight at 28°C in 500 ml LB medium 

containing the appropriate antibiotics. Cells were pelleted by centrifugation at room 

temperature at 5,000 g for 15 min and then re-suspended in 500 ml infiltration medium (5% 

(w/v) sucrose, 0.05% Silwet® L-77 (http://www.siliconeforbuilding.com/; GE silicones),  3 mM 

MES, 0.1 mM acetosyringone, pH 5.5). Plant inflorescences were dipped into an agrobacterium 

suspension in a beaker for 2 min, then placed into clear plastic bags and shaded for 24 h. 

Subsequently, they were removed from the bags and grown in the glasshouse under ambient 

light conditions with supplemental lightning as required to obtain a 16 h photoperiod. 

Transformants were selected by growing seeds on plates supplemented with hygromycin (see 

section 2.1.8). 

2.2.13 Transient transformation of Nicotiana benthamiana epidermal cells 

 Nicotiana benthamiana plants were grown in the glasshouse under ambient light 

conditions with supplemental lightning as required to obtain a 16 h photoperiod. 

Agrobacterium tumefaciens cells transformed with the desired plasmid (see section 2.2.9) 

were grown overnight at 28°C in 50 ml LB medium containing the appropriate antibiotics. 

Subsequently, the cells were pelleted by centrifugation at room temperature at 5,000 g for 15 

min and then re-suspended in 5 ml of 10 mM MgCl2 to give an OD600 of 0.8. The final dilutions 

were kept in the dark for 30 min at room temperature. After that, a Nicotiana benthamiana 

leaf was pricked with a needle and the bacterial suspension was infiltrated into the leaf using a 

syringe. The infiltrated area of the leaf was marked and the plants were grown for three days 

in the glass house. Subsequently, discs from the infiltrated area of the leaf were looked at 

under the confocal microscope Leica SP5 (II).  

2.2.14 HPLC analysis of concentration of nitrate, phosphate and sulfate 

 Around 25 mg of washed and ground polyvinylpolypirrolidone (PVPP; Sigma Aldrich) 

was soaked with 1 ml of sterile water overnight at 4°C to remove the phenols from the plant 
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samples. Subsequently, 30-50 mg of frozen plant tissue or up to 10 mg of freeze dried tissue 

(for anion measurements described in Chapter 4) was homogenised fine powder by using the 

Genogrinder as described in section 2.2.3. Water incubated with PVPP (200 µl) was added to 

the plant sample and shaken vigorously to suspend the tissue powder. The whole extract was 

then returned to the tube with PVPP and shaken for approximately 1 h at 4°C. The extracts 

were then incubated at 95°C for 15 min, then centrifuged for 15 min at 4°C at 14,000 g. Anions 

were separated by High-Performance Liquid Chromatography (HPLC; Waters 2695 separation 

module and conductivity detector Waters 432) using the IC-Pak Anion HO 4.6 x 75 mm column 

with the suitable guard column and isocratic method with 0.8ml/min flow rate for 16 – 20 min. 

Solvent was composed of 120 ml of acetonitrile, 20 ml 50 x lithium gluconate/borate and 860 

ml of dH2O. Each set of samples (maximum 117) included 0.5 mM, 1 mM and 2 mM standards 

for nitrate, phosphate and sulfate. 

 Alternatively, for some measurements described in Chapter 4 the 0.1 M HCl extracts 

used for the low molecular weight thiols analysis (section 2.2.13) were diluted 1:50 (v/v) using 

dH2O to avoid overloading the column with chloride ions from HCl, centrifuged 15 min at 4°C 

at 14,000 g and transferred to HPLC vials. The anions were subsequently separated and 

detected as described above. 

2.2.15 HPLC analysis of low molecular weight thiols 

 Low molecular weight thiols, cysteine and glutathione, were analysed as previously 

described (Koprivova et al. 2008). Frozen or freeze dried tissue (for thiol measurements 

described in Chapter 4) was homogenized as described above and extracted with up to 50-fold 

volume of 0.1 M HCl (depending on the sample weight). To remove cell debris, the extract was 

centrifuged at 14,000 g for 10 min at 4°C. Subsequently, 25 µl of the supernatant was 

neutralised by 25 µl of 0.1 M NaOH. To reduce disulfides, the neutralised extract was 

incubated with 1 µl of 100 mM dithiothreitol (DTT) at 37°C for 15 min in the dark. 

Subsequently, 35 µl water, 10 µl 1 M Tris/HCl pH 8.0, and 5 µl of 100 mM monobromobimane 

(MBB; Thiolyte® MB, Calbiochem) were added and the samples were incubated in the dark at  

37°C for 15 min to allow the derivatization of thiols. The reaction was stopped and the 

conjugates stabilized by the addition of 100 µl of 9% acetic acid. Bimane conjugates were 

separated by HPLC using the fluorescence detector (Waters 474) with excitation at a 

wavelength of 390 nm and emission at 480 nm, reverse-phase column (SpherisorbTM ODS2, 

250 x 4.6 mm, 5 μm) and following solvents: 



   Materials and methods                                                                                                             Chapter 2 
 

35 
 

• 10% (v/v) methanol, 0.25% (v/v) acetic acid (pH 3.9) as solvent A and 90% (v/v) 

methanol, 0.25% (v/v) acetic acid (pH 9.3) as solvent B or, 

• 100% (v/v) acetonitrile as solvent B and 0.25% (v/v) acetic acid (pH 9.3), 0.05% (v/v) 

3M KOH as solvent C. 

The elution protocol employed a linear gradient of the two solvents from 96% to 82% within 

20 minutes with a constant flow rate of 1ml/min. Each set of samples (maximum 117) involved 

0.025 mM, 0.0625 mM,, and 0.125 mM standards for GSH and cysteine.  

2.2.16 The activity assay of adenosine 5’-phosphosulfate reductase (APR)  

 Adenosine 5’-phosphosulfate (APS) reductase (APR) activity was measured as the 

formation of [35S]sulfite from [35S]APS and dithiothreitol (DTT; Brunold & Suter 1991) with a 

modification of procedure described by Kopriva et al. (1999). The plant material was 

homogenized as described above (section 2.2.1) using disposable pestles and extraction buffer 

containing 50 mM Na/KPO4 pH 8.0, 30 mM Na2SO3, 500 µM 5’-monophosphate (AMP), and 10 

mM DTT. To remove the cell debris, the extracts were centrifuged 1 min at 8,000 g. 

Subsequently, 10 µl of extract was added to a 1.5 ml tube without a lid containing 240 µl of 

reaction assay mix (Table 2.6), mixed, and incubated in a water bath at 37°C for 30 min. After 

that time, 100 µl of 1 M Na2SO3 was added and the tubes were mixed and transferred to 20 ml 

scintillation vials filled with 1 ml of 1 M triethanolamine (TEA) solution. Subsequently, 200 µl of 

1 M H2SO4 was added to the tubes. The scintillation vials were closed immediately and 

incubated over night at room temperature. The acidification of the reaction mix causes the 

formation of [35S]SO2 which is trapped in the TEA solution. Next day the bottoms of the tubes 

were washed from outside with 200 µl of H2O and they were removed from the scintillation 

vials. The radioactivity was measured in each vial in the scintillation counter (Perkin Elmer Tri-

Carb 2910 TR) after addition of 2.5 ml of Optiphase HiSafe3 scintillation cocktail (Perkin Elmer, 

Bucks, UK). 
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Concentration Component Volume/240 µl

1 M Tris/HCl pH 9.0 25 µl

2 M MgSO4 100 µl

0.2 M DTT 10 µl

3.75 mM [35S]APS with specific activity 1 kBq/10µl 5 µl

100 µl for shoots

85 µl for roots

10 µl for shoots

25 µl for roots

H2O-

plant extract-  

 The concentration of protein in the extract was determined by using the Bio-Rad 

protein assay kit (Bio-Rad Laboratories, München, Germany) based on the method described 

by Bradford (1976). Each sample was composed of 5 µl of plant extract, 200 µl of Bio-Rad 

protein assay, and 795 µl of dH2O (1 ml total volume). The mixture was incubated for 15 min at 

room temperature. The protein concentration was measured as absorbance at 595 nm using a 

UV-VIS spectrophotometer (Lambda Bio, Bucks, UK). Bovine serum albumin was used as a 

protein standard.  

The APR activity was calculated as nmol min-1 mg-1 of protein according to the formula: 

 

 

 where: 

cpmAPS – specific activity (counts per minute) of APS   

Cprot – protein concentration in the extract (mg ml-1) 

VE – volume of extract in the assay (ml) 

t – incubation time (min) 

2.2.17 The activity assay of ATP sulfurylase (ATPS) 

 The activity of ATPS was measured in reverse reaction as the formation of ATP 

dependent on APS and pyrophosphate as described previously (Cumming et al. 2007). One leaf 

was homogenized as described above (section 2.2.1) using the disposable pestles in 1:20 (w/v) 

of the extraction buffer containing 50 mM Na/K phosphate buffer pH 8.0, 30 mM Na2SO3, 0.5 

mM 5’-AMP, and 10 mM DTT. The homogenate was subsequently centrifuged for 30 s at 2,000 

g to remove cell debris and the protein concentration was determined using the Bio-Rad 

Table 2.6 APR activity reaction assay 
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Concentration Component Volume/230 µl

1 M Tris/HCl pH 8.0 15 µl

100 mM MgCl2 15 µl

100 mM D-glucose 15 µl

6 mM β-nicotinamide adenine dinucleotide hydrate (NAD+) 15 µl

3.75 mM adenosine 5'-phosphosulfate sodium salt (APS) 7.5 µl

1u µl
-1

Hexokinase from S. cerevisiae, Type III (HK) 5 µl

1u µl-1 Glucose-6-phosphate dehydrogenase (g-6-PDH) 5 µl

- dH2O 152.5 µl

protein assay with bovine serum albumin as a standard as described above (section 2.2.14). To 

measure the activity, 40 µl of protein extract was combined with 230 µl of reaction assay mix 

(Table 2.7) in a flat bottom 96-well polystyrene microplate (Greiner Bio-One). Production of 

NADH was measured at 340 nm using a SpectraMax 340PC384 microplate spectrophotometer. 

The background absorbance was measured for 3 min before the reaction was initiated by the 

addition of 30 µl of 10 mM sodium pyrophosphate. Progress of the reaction was measured for 

a further 3 min at 340 nm. Activity was calculated as nmol min-1 mg-1 of protein. 

 

 

 

 

2.2.18 Determination of [
35

S]sulfate incorporation in sulfate, thiols, and proteins 

 The uptake of [35S]sulfate and its incorporation into sulfate, thiols, and proteins was 

measured as described previously (Kopriva et al. 1999, Vauclare et al. 2002). Briefly, 

arabidopsis plants grown on plates for 2.5-3 weeks were transferred into 24-well plates 

containing 1 ml of nutrient solution adjusted to sulfate concentration of 0.2 mM (Table 2.8) 

and supplemented with [35S]sulfuric acid solution to obtain ca. 70,000 dpm/10 µl. Only roots 

were submerged in the solution. Plants were incubated for four hours in light at room 

temperature. After that time seedlings were washed in water and carefully blotted with paper 

towel. Roots and shoots were weighed separately in 1.5 ml tubes and frozen immediately in 

liquid nitrogen. Subsequently, plant tissue was homogenized as described above (section 2.2.1) 

with disposable pestles and extracted 1:10 (w/v) in 0.1 M HCl. 

 To determine sulfate uptake, 10 µl of plant extract was mixed with 1 ml of Optiphase 

HiSafe3 scintillation cocktail (Perkin Elmer) and the radioactivity was measured in a scintillation 

counter (Perkin Elmer Tri-Carb 2910 TR). 

Table 2.7 ATPS activity reaction assay 
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Component Final concentration

Ca(NO3)2  4H2O 1.5 mM

KNO3 1 mM

KH2PO4 0.75 mM

MgSO4  7H2O 0.2 mM

Fe-EDTA 0.1 mM

pH adjusted to 6 with KOH

 

 

  

 

 

 

 To measure incorporation of [35S]sulfate in proteins, total protein in 50 µl of plant 

extract was precipitated with 12.5 µl of 100% trichloroacetic acid (TCA) on ice as described 

previously (Kopriva et al. 1999). After that time the precipitate was collected by centrifugation 

for 10 min at 14,000 g and washed once in 100 µl of 1% TCA and once in 200 µl of 100% EtOH. 

The precipitate was subsequently dissolved in 100 µl of 0.1 M NaOH and the radioactivity was 

determined after addition of 1 ml of scintillation cocktail (Perkin Elmer) in a scintillation 

counter (Perkin Elmer Tri-Carb 2910 TR). 

 To determine the radioactivity in thiols, 50 µl of plant extract was mixed with 50 µl of 

0.1 M NaOH and 1 µl of DTT, and incubated in the dark at 37°C for 15 min. Subsequently, 11.5 

µl of 1M Tris/HCl pH 8.0 and 5 µl of 100 mM monobromobimane (MBB; Invitrogen) was added, 

and the samples were mixed and incubated in the dark at 37°C for 15 min. After this 

incubation the reaction was stopped by adding 11.5 µl of 50% acetic acid. Subsequently, 

samples were centrifuged for 15 min at 14,000 g. Standard thiols analysis was performed as 

described previously (section 2.2.13) with an injection volume of 100 µl. The HPLC was 

connected to a fraction collector (Frac-920, Amersham Biosciences, Buckinghamshire, UK) and 

fractions of 0.8 ml were collected in 6 ml scintillation vials. The radioactivity in each fraction 

was detected after addition of 2.5 ml of Optiphase HiSafe3 scintillation cocktail (Perkin Elmer) 

in a scintillation counter (Perkin Elmer Tri-Carb 2910 TR). 

 

 

Table 2.8  Macroelement nutrient solution 
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3 ATPS1 and APR2 – Two Consecutive 

Enzymes Contributing to Control of the 

Sulfate Reduction Pathway  
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3.1 Introduction 

Sulfate is taken up by the plant from the soil solution via sulfate transporters SULTR1;1 

and SULTR1;2 (Buchner et al. 2004). Most of the sulfate taken up by the root is transported to 

the shoot where it enters the reduction pathway as described in Chapter 1, being incorporated 

into cysteine in the final step of the process (Chapter 1; Takahashi et al. 2011). The remaining 

sulfate, not entering the assimilation pathway, is stored in the vacuole – the main reservoir of 

sulfate in plant cells (Martinoia et al. 2000). The pool of sulfate stored in the vacuole can be 

remobilized across the tonoplast membrane and enter the assimilation pathway (Kataoka et al. 

2004b). The efficiency of sulfate remobilisation is of great importance especially during sulfur 

deficiency. The large variation in this process depends on the environmental conditions 

(Hawkesford 2000) and differs between species as well as within species (Durenkamp et al. 

2007, Koralewska et al. 2007). Kataoka et al. (2004b) in their study on vacuolar sulfate 

transporters characterised differences in their mRNA accumulation depending on sulfate 

availability in the soil. They revealed that the expression of SULTR4;1 is independent of the 

sulfur supply whereas the expression of SULTR4;2 increases during sulfate deficiency. On the 

other hand, the mobilisation of the vacuolar pool in some species such as Brassica napus is 

known to be slower than in other species (Blake-Kalff et al. 1998). Moreover, sulfate stored in 

the vacuoles can buffer or optimize the flux of sulfate through the plant, balancing sulfate 

homeostasis at the whole plant level (Kataoka et al. 2004b). Despite the importance of sulfate 

remobilisation, very little is known about its control (see Chapter 1). Crop plants that 

accumulate high concentrations of sulfate such as Brassica napus often require sulfate 

fertilisation. In fact, the production of one tonne of wheat grain requires 2-3 kg of sulfur (Zhao 

et al. 1999), whereas production of one tonne of oilseed rape seeds requires 16 kg of sulfur 

(McGrath et al. 1996).  Therefore, the investigation of control of plant sulfate homeostasis at 

the genetic level is of great importance. 

Sulfate is chemically very stable and therefore it requires activation before it can be 

reduced. ATP sulfurylase (ATPS; EC: 2.7.7.4) activates sulfate by adenylation to adenosine 5’-

phosphosulfate (APS). Plant ATPS is a homotetramer composed from 52-54 kDa polypeptides 

(Murillo & Leustek 1995). Most ATPS is plastid localised, where it is responsible for sulfate 

activation for further reduction.  However, its activity was also detected in the cytosol (Lunn et 

al. 1990, Renosto et al. 1993, Rotte & Leustek 2000). During arabidopsis development ATPS 

activity in chloroplasts declines whereas it increases in the cytosol (Rotte & Leustek 2000). The 

reduction in total ATPS activity in leaves is not dependent on the leaf age since it was shown to 

decrease proportionally in all leaves in the plant (Rotte & Leustek 2000). ATPS is encoded by a 
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small multigene family. Most plant species possess two ATPS isoforms. However, a four-

member gene family was identified in arabidopsis, which may indicate some level of genetic 

redundancy (Kopriva et al. 2009). Surprisingly, all of them contain a predicted chloroplast 

transit peptide (Hatzfeld et al. 2000, Murillo & Leustek 1995). The most likely explanation for 

the existence of a cytosolic ATPS isoform in arabidopsis is possible use of an alternate 

translational start codon for one of the genes, so that the transit peptide is not translated 

(Hatzfeld et al. 2000). However, this hypothesis remains to be investigated. 

In the next step of sulfate assimilation, APS is either reduced to sulfite or 

phosphorylated to form 3’-phosphoadenosine-5’-phosphosulfate (PAPS). However, in plants 

reduction is the dominant route for assimilation (Leustek et al. 2000). APS reductase (APR) 

catalyses the reduction by transfer of two electrons delivered from glutathione (GSH) to APS to 

form sulfite. APR (EC: 1.8.99.2) is a key enzyme of the sulfur assimilation pathway. The 

expression of the APR2 gene as well as protein activity are regulated by various environmental 

factors and signalling molecules (Kopriva 2006, Koprivova et al. 2008). Similarly to ATPS, APR is 

encoded by a small multigene family and three isoforms are known in arabidopsis. It was 

shown in various studies that APR1 and APR3 are co-regulated on the level of transcription and 

share the highest sequence similarity. However, the expression of APR2 responds differently to 

hormone treatments (Koprivova et al. 2008) which indicate specific functions of particular APR 

isoforms. The amino acid sequence of APR suggests a multidomain structure. Its precursor is 

synthesized with an N-terminal plastid transit peptide. In the mature protein the N-terminal 

domain is similar in predicted amino acid sequence to PAPS reductase (PAPR) from bacteria 

and the C-terminal domain to thioredoxin (Trx). Because of the lack of a C-terminal domain, 

bacterial PAPR requires thioredoxin or glutaredoxin as a cofactor (Kopriva et al. 2007). This 

may suggest the role of the C-terminal domain of APR as redox cofactor (Leustek et al. 2000). 

arabidopsis APR is a dimer of 45 kDa subunits (Kopriva & Koprivova 2004) binding a [Fe4S4] 

iron-sulfur cluster (Kopriva et al. 2001). Bacterial PAPR consists of two 28 kDa subunits without 

any prosthetic groups. A single conserved cysteine residue is responsible for its activity and 

dimerization. 

Various studies have revealed that APR is the crucial regulatory step in the sulfate 

reduction pathway (Hesse et al. 2003, Koprivova et al. 2008, Vauclare et al. 2002). The 

expression of the APR2 gene and the activity of APR protein vary strongly in response to 

environmental fluctuations. Evidence for its importance in controlling sulfate accumulation 

comes from studies of the Recombinant Inbred Lines (RIL) population derived from the cross 

between two wild arabidopsis accessions Bay-0 and Shahdara (Sha) which differ in sulfate 



   ATPS1 and APR2                                                                                                                         Chapter 3 
 

42 
 

accumulation (Loudet et al. 2007). The Quantitative Trait Loci (QTL) analysis of RILs led to the 

identification of two major and several minor QTLs responsible for the variation in the sulfate 

accumulation within the population. The cloning of one of the major QTLs revealed that the 

underlying gene encoded the APR2 isoform of APS reductase (Loudet et al. 2007). The analysis 

of APR2 in both Bay-0 and Sha revealed a single nucleotide polymorphism (SNP) which leads to 

a substitution of alanine (Ala399) with glutamate (Glu399) in a thioredoxin active site of the 

protein. Due to this amino acid change Sha lost over 99% of APR2 enzymatic activity compared 

to Bay-0. This loss of sulfate reduction capacity led to sulfate accumulation, particularly under 

nitrogen limitation (Loudet et al. 2007). 

Further evidence of the importance of APR2 comes from David E. Salt (University of 

Aberdeen) who investigated the leaf ionome of 349 arabidopsis accessions collected from 

across the species range. This analysis revealed a large variation in the elemental composition 

among the population. All the data obtained in these experiments have been deposited on the 

iHUB (Baxter et al. 2007; www.ionomicshub.org) and are publically available. In this analysis 

the Hod accession collected in the Czech Republic near to Hodonín showed the highest total 

sulfur concentration among entire collection. The causal locus was mapped to a region on the 

long arm of chromosome 1, containing 30 genes (Chao et al. 2014). This region includes the 

gene encoding isoform 2 of APS reductase (APR2) which was thus a strong candidate for the 

causal gene of the high total sulfur concentration in Hod accession. The analysis of three 

independent T-DNA insertion lines and transgenic complementation confirmed the hypothesis 

that APR2 is the causal locus for the high total sulfur concentration in Hod (Chao et al. 2014). 

However, Hod did not share the amino acid change which was responsible for the loss of 

function in Sha. 

In this chapter I describe further analyses of the molecular basis of sulfur homeostasis 

in arabidopsis. Using biochemical analysis of the enzyme as well as protein haplotype analysis 

it was established that the natural variation in leaf sulfate concentration is controlled by 

several rare APR2 alleles across the species range. Additionally, in a paper on which I am a co-

author, it has been established recently that the gene underlying the second major QTL 

revealed in the analysis of Bay-0 x Sha RIL population encodes the ATPS1 isoform of ATP 

sulfurylase (Koprivova et al. 2013). In contribution to these studies I investigated the natural 

variation in ATPS1 and have established that it was due to differences in expression of the 

gene. Results described here indicate that the differences in expression are linked to the two 

deletions in the ATPS1 common for several arabidopsis accessions. The experiments on ATPS1 

were performed together with Marco Giovannetti from University of Turin. 
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3.2 Materials and Methods 

3.2.1 Plant material and growth conditions 

Three independent T-DNA lines: GABI_108G02 (apr2-1), SALK_119683 (apr2-2), and 

SALK_035546 (apr2-3) as well as transgenic lines expressing APR2 genomic fragment from Col-

0 introduced into Hod were kindly provided by Dai-Yin Chao (University of Aberdeen). The apr1 

mutant and the apr1apr2 double mutant were obtained in the laboratory of Stanislav Kopriva 

at the John Innes Centre.  These lines as well as the wild type Sha and Hod accessions were 

grown on vertical plates with Murashige Skoog media without sucrose (MS) supplemented 

with 0.8% agarose (section 2.2.1). The plates were placed in a controlled environment room at 

20°C under 16-h-light/8-h-dark cycles for two weeks. Plants used for the measurement of APR 

activity and sulfate concentration as well as sulfate flux through the pathway in the analysis of 

Hod related genotypes were provided to me as frozen samples. 

The seeds of natural arabidopsis accessions used for the investigation of the effect of 

natural variation on the function and activity of APR2 and ATPS1 were either provided to the 

laboratory of Stanislav Kopriva by David E. Salt (University of Aberdeen) or obtained from the 

Nottingham Arabidopsis Stock Centre (NASC). Dry seeds were surface sterilised for up to four 

hours in a vacuum desiccator using chlorine gas which was generated by mixing 125 ml of 

sodium hypochlorite with 2.5 ml of 12 M HCl. Seeds were then mixed with 0.1% sterile agarose 

(Sigma) and sown on plates with MS medium (section 2.2.2). Subsequently, plates were stored 

in 4°C in the dark for three days. After that time they were transferred to a CER at 22°C under 

16-h-light/8-h-dark cycles where they were left to germinate – up to one week (horizontally). 

One week old seedlings were transferred from plates to the 40-cell tray (21x35cm) with 

Levington Horticulture soil mix (Figure 5.2) and grown for another four weeks in CER 10-h-

light/14-h-dark cycles at constant temperature 22°C, 60% relative humidity, and light intensity 

of 160 µE s-1 m-2.    

3.2.2 RNA extraction and expression analysis 

Total RNA was isolated from leaves of five week old plants by the extraction with 

phenol : chloroform : isoamylalcohol mix (in proportion 25:24:1 units respectively) and LiCl 

precipitation (Sambrook et al. 1989). Each sample was homogenized as described in Chapter 2 

with 500 µl of extraction buffer (80 mM Tris pH 9.0; 5% SDS; 150 mM LiCl; 50 mM EDTA). 

Subsequently an equal amount of phenol mix was added and the sample was mixed for 15 sec. 

All samples were then centrifuged 25 min at 14,000 g. The supernatant was transferred to new 

tubes and 500 µl µl of the phenol mix was added. The sample was mixed for 15 sec and 
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gene 5' primer 3' primer

TIP41 GTGAAAACTGTTGGAGAGAAGCA TCAACTGGATACCCTTTCGC

ATPS1 CACTCGGAGGTTTCATGAGAG AGACGTAGCGAGTTAAAATGAAGAG

APR2 AAAAGAGCTCCACGGGCTAT CGACATGAGTGAATCAACATCTC

centrifuged again for 20 min at 14,000 g. The extraction step was repeated one more time. 

Subsequently 130 µl of 8 M LiCl was added to the supernatant and the sample was placed at -

20°C overnight. The next day all samples were centrifuged at 4°C at 14,000 g. The supernatant 

was discarded and 300 µl of water was added to the sample. The pellet was re-dissolved by 

incubation at 65°C for 10 min. Subsequently 100 µl of 8 M LiCl was added and the samples 

were placed at -20°C overnight. The next day all the samples were centrifuged at 4°C at 14,000 

g and the pellet was washed with 400 µl of 70% ETOH. The samples were then centrifuged for 

5 min at 14,000 g, the supernatant was discarded and the pellet was dried for 5 min under the 

laminar flow hub. Subsequently 30 µl of water was added to the samples and the pellet was re-

dissolved by incubation at 65°C for 10 min. Afterwards, 5 µl of RNA was mixed with 500 µl of 

RNAse free water and the concentration was measured by the Lambda Bio spectrophotometer 

(Perkin Elmer) with the quartz cuvette and originally installed settings for measurement of 

RNA concentration. The first-strand complementary DNA (cDNA) was synthesised from 1 µg of 

RNA using the QuantiTect Reverse Transcription Kit (Qiagen) according to the manufacturer’s 

instruction. This kit includes the DNase treatment necessary to remove DNA contamination. 

Transcript abundance was analysed by real-time quantitative RT-PCR (qPCR), using the 

fluorescent intercalating dye SYBR Green (Applied Biosystems) in a DNA engine OPTICON2 

continuous fluorescence detector (Bio-Rad). The qPCR was performed using gene specific 

primers and the results were normalised to the TIP41 gene (Table 3.1M). The qPCR was 

performed in duplicate for each of three independent samples. 

 

 

 

 

 

3.2.3 Statistical analysis 

 The statistical analysis of the data presented in this chapter was performed using the 

DSAADTAT (http://accounts.unipg.it/~onofri/DSAASTAT/DSAASTAT.htm), a Microsoft Excel 

(2010) VBA MACRO for basic statistical analyses released by Andrea Onofri.    

Table 3.1M Sequences of primers used for the analysis of transcript abundance by qPCR 
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3.3 Results 

3.3.1 The link between sulfate concentration and APR activity 

My contribution to the collaborative analysis of the high sulfur phenotype in Hod was 

biochemical analysis of sulfate assimilation. Since the results delivered by Dai-Yin Chao 

(University of Aberdeen) and the data deposited on the iHUB concerned total sulfur 

concentration, I first investigated the sulfate concentration in the accessions and mutants as 

well as the link between sulfate concentration and APR activity. I analysed the three 

independent T-DNA lines with the insertion in the 4th exon of APR2 (apr2-1, GABI_108G02), 

and 169 bp (apr2-2, SALK_119683) and 116 bp (apr2-3, SALK_035546) upstream of the APR2 

translation start site. Additionally, I analysed the transgenic lines expressing the APR2 genomic 

fragment from Col-0 (including a 1.5 kb promoter region, the gene body and 896 bp 

downstream sequences) introduced into the Hod accession. The apr2 T-DNA lines and the 

transgenic lines listed above were provided by Dai-Yin Chao. Additionally, I analysed the wild 

type Sha and Hod accessions using Col-0 as a control. To explore further the contribution of 

different APR isoforms to the total activity and possible natural variation in isoforms I also 

analysed the apr1 mutant, obtained previously in the Kopriva’s laboratory by TILLING (Kopriva 

et al. 2009), as well as a double mutant apr1apr2 which was generated by crossing the apr1 

TILLING line and apr2-1 T-DNA line. All of these plant materials were provided to me as frozen 

samples on which I performed the analysis of sulfate concentration and the biochemical 

analysis of APR activity. 

 The analysis of two week old seedlings revealed a robust negative link between sulfate 

concentration and APR activity. In the apr2-1 mutant I observed 80% reduction in APR activity 

and an increase in sulfate concentration of about 60% compared to Col-0 (Figure 3.1). The 

apr2-2 and apr2-3 mutants with the T-DNA insertion in the APR2 promoter also showed a 

decrease in APR activity, but to a much lesser extent than in apr2-1 which was previously 

determined as a loss-of-function allele (Loudet et al. 2007). The qPCR analysis revealed a 

complete loss of transcript in apr2-1 as expected and partial loss in apr2-2 and apr2-3 (Chao et 

al. 2014). Sha showed 90% lower APR activity than Col-0 and no difference in sulfate 

concentration compared to Col-0 which is consistent with the observation of Loudet et al. 

(2007). Similarly, the Hod accession showed 70% reduction in APR activity compared to Col-0 

suggesting that it carries a loss-of-function APR2 allele (Figure 3.1A). Interestingly, the 

expression of APR2 in Hod was indistinguishable from this ebserved in Col-0 (Chao et al. 2014). 

These data confirm that the low APR activity in Hod is not caused by the low expression of the 
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gene, but is probably driven by other changes in the APR2 gene sequence. However, in 

contrast to the apr2-1 mutant I did not observe higher sulfate concentration in Hod accession 

compared to Col-0 (Figure 3.1B). It was observed in Kopriva’s laboratory previously that the 

differences in sulfate concentration are more pronounced in older plants. Therefore, the lack 

of difference in sulfate accumulation in Hod accession might be due to the developmental 

stage of the plants. Moreover, complementation of the Hod accession with the APR2 allele 

from Col-0 resulted in a significant increase in APR activity and sulfate concentration 

comparable to Col-0 (Figure 3.1) confirming further that variation in APR2 gene is responsible 

for the variation in enzyme activity and subsequent sulfate accumulation. All these results 

indicate that high sulfate phenotype in Hod is due to variation in ARP2 gene. This is in 

agreement with the findings of Chao et al. (2014) who showed that the high total sulfur 

concentration in Hod is due to variation in the APR2 gene.  

The T-DNA insertion in APR1 did not result in a significant decrease in APR activity 

(Figure 3.1A). The sulfate concentration in that line was also comparable with Col-0 (Figure 

3.1B). Additionally, the APR activity in an apr1xapr2 double mutant was strongly reduced and 

sulfate concentration was elevated to similar extent as in the apr2 mutants. These results 

indicate that the APR2 isoform of APR contributes much more to total APR activity than the 

APR1 isoform as established previously (Loudet et al. 2007).  
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APR activity (A) and sulfate concentration (B) in the arabidopsis accessions, mutants in APR1 and 
APR2 and Hod lines complemented with APR2Col-0 allele. All data except Hod lines complemented 
with APR2Col-0 (Hod_comp) represent the mean values of 3 biological replicates ± standard error. 
The data for Hod line complemented with APRCol-0 represent mean value of three independent lines 
± standard error. Letters above each bar indicate statistically significant groups using one-way 
ANOVA with Newman-Keuls multiple range test using 95% confidence interval.  

 

3.3.2 Sulfate uptake and flux through the reduction pathway 

To understand the link between a low APR activity and leaf sulfate concentration I 

performed an experiment on two week old seedlings of accessions and mutants with changes 

in APR2 (relative to Col-0) including Hod, Sha, apr1, apr2-1, apr2-2, apr2-3, and Hod 

complemented with APR2
Col-0 using Col-0 as a control. These seedlings were incubated with 

[35S] sulfate for four hours before harvesting (see Chapter2, section 2.2.18). The concentration 

of radioactive sulfate in plant extracts is referred to as sulfate uptake and was determined 

essentially as described by Mugford et al. (2011). Sulfur flux through sulfate assimilation 

pathway was measured as incorporation of 35S from [35S]sulfate to thiols and proteins. The 

incorporation of radioactive sulfate into thiols and proteins (expressed as concentration) were 

measured essentially as described by Kopriva et al. (1999) and Vauclare et al. (2002). The 

percentage of the radioactivity detected in thiols and proteins together (relative to the total 

radioactivity detected in plant extracts) is referred to as relative sulfate flux through the 

assimilation pathway. It should be stressed that these traits are expressed as concentrations 

(Chao et al. 2014) and therefore should be interpreted with caution. The analysis revealed a 

significantly lower relative sulfate flux (lower percentage of [35S] incorporated into thiols and 

Figure 3.1 Analysis of the link between APR activity and sulfate concentration 
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proteins) in Hod and Sha compared to Col-0. Similarly, relative sulfate flux was also lower in 

the apr2 mutants, but higher than in the two accessions (Hod and Sha). The apr1apr2 double 

mutant showed the lowest relative sulfate flux (Figure 3.2A) suggesting a link between APR 

activity and relative sulfate flux. Indeed, the APR activity showed a strong positive correlation 

(r2=0.7) with relative sulfate flux (Figure 3.2B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative sulfate flux through assimilation pathway (A) in the arabidopsis accessions and mutants 
with a weak APR2 allele shown as a mean value of 3 biological replicates ± standard error. The 
letters indicate significantly different groups using one-way ANOVA with Newman-Keuls multiple 
range test using 95% confidence interval. (B) Correlation between APR activity and relative sulfate 
flux. Data points correspond to values from individual plants of all genotypes analysed.  
 

 
Sulfate uptake is known to be strongly up-regulated in response to sulfate starvation 

(Davidian & Kopriva 2010) and this response is mediated by the concentration of cysteine and 

glutathione (Datko & Mudd 1984, Vauclare et al. 2002).  Therefore, I measured sulfate uptake 

and GSH concentration in all accessions and mutants with APR2 allele different than in Col-0 to 

examine whether increased sulfate accumulation may lead to the induction of a sulfate 

Figure 3.2 Analysis of sulfate flux through the assimilation pathway 
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starvation response in these plants (Figure 3.3). The apr2-1 mutant and apr1xapr2 double 

mutant showed the greatest concentration of [35S]sulfate (sulfate uptake) among all the lines 

tested (Figure 3.3A), and Hod and Sha showed the smallest sulfate uptake among all lines 

tested. No other lines were different from Col-0 in sulfate uptake. Both Sha and Hod had a low 

GSH concentration (Figure 3.3B) which most likely is caused by the low sulfate uptake (Figure 

3.3A), low APR activity (Figure 3.1A), and low incorporation of sulfate into thiols and proteins 

(Figure 3.2A) observed in these two accessions. Interestingly, the GSH concentration in apr2-1 

mutant was comparable with Col-0 whereas it was lower in the apr1xapr2 double mutant than 

in Col-0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sulfate uptake (A) and leaf GSH concentration (B) in arabidopsis accessions and mutants with weak 
APR2 allele. Data represent the mean values of three biological replicates ± standard error. Letters 
above each bar indicate statistically significant groups using one-way ANOVA with Newman-Keuls 
multiple range test using 95% confidence interval. 

 

Figure 3.3 Analysis of sulfate uptake and concentration of glutathione (GSH) 
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Position 5 16 21 24 40 56 58 65 107 111 155 182 216 242 265 343 349 385 399 427

Col-0 Val Ser Gly Ser Thr - Ser Thr Arg Gln Ala Gly Gly Asp Phe Asn Lys Ile Ala Pro 8.91

ICE61 Ala Ser Gly Ser Thr - Ser Thr Arg Gln Val Gly Gly Asp Phe Asn Arg Ile Ala Pro 6.27

Lc-0 Val Ser Arg Ala Asn - Thr Thr Lys Glu Ala Asp Gly Asp Phe Asn Arg Ile Ala Pro 9.06

Qar-8a Val Ser Gly Ser Thr - Ser Thr Arg Gln Ala Gly Gly Gly Phe Ser Arg Ile Ala Pro 12.24

Lov-1 Val Ser Gly Ser Thr - Ser Thr Arg Gln Ala Gly Gly Asp Ser Asn Arg Ile Ala Pro 0.95

Lov-5 Val Ser Gly Ser Thr - Ser Thr Arg Gln Ala Gly Gly Asp Ser Asn Arg Ile Ala Pro 0.71

Fäl-1 Val Ser Gly Ser Thr - Ser Thr Arg Gln Ala Gly Gly Asp Ser Asn Arg Ile Ala Pro 0.81

Tfa-08 Val Ser Gly Ser Thr - Ser Thr Arg Gln Ala Gly Gly Asp Ser Asn Arg Ile Ala Pro 0.98

Sei-0 Val Ser Gly Ser Thr - Ser Thr Arg Gln Ala Gly Gly Asp Phe Asn Arg Ile Ala Ser 8.22

Sha Val Ser Gly Ser Thr - Ser Thr Arg Gln Ala Gly Gly Asp Phe Asn Arg Val Glu Pro 1.67

Hod Val Thr Gly Ser Asn Ser Thr Leu Lys Glu Ala Gly Arg Asp Phe Asn Arg Val Ala Pro 0.96

APR 

activity

PAPS reductase domain Trx-like domain

3.3.3 Rare APR2 alleles with a strong effect on the enzymatic activity of the protein 

The severe loss of APR activity in Sha is caused by a single amino acid substitution of 

Ala399 with Glu399 (Loudet et al. 2007). In Hod, Gly216 localised in the conserved Arg-loop in the 

central region of the APR2 protein is changed to an Arg. This polymorphism was suggested to 

cause the low APR activity in this accession (Chao et al. 2014). Moreover, the analysis of 855 

APR2 protein haplotypes for which sequences were obtained as a part of the 1001 genomes 

project (www.1001genomes.org) did not reveal any other accessions with the Sha or Hod APR2 

alleles confirming that these two alleles are very rare in a global Arabidopsis thaliana 

population.  In order to examine whether there is a more general link between APR2 and 

sulfate accumulation two groups of accessions were selected as candidates. The first group 

comprised the four accessions with the highest shoot total sulfur concentration from the 

collection of 349 accessions screened by David E. Salt and Dai-Yin Chao from Aberdeen 

excluding Hod: LAC-5, Tamm-2, Oy-0, and CS28332 (publically available at 

www.ionomicshub.org). The second group comprised eight accessions with non-synonymous 

substitutions in the APR2 coding region (Table 3.1). They were selected based on the sequence 

analysis of the 855 accessions re-sequenced within 1001 genomes project. Since the 

differences in sulfate accumulation are more pronounced in older plants, I grew these 12 

accessions in a controlled environment room (CER) for five weeks to maximise the chances of 

observing differences. I analysed the shoots for sulfate concentration and APR activity. 

Table 3.1 Non-synonymous amino acid substitutions in APR2 coding region 

Amino acid changes in various accessions are highlighted in dark grey. The residues in box with the 
positions between 107 and 265 are localised in the PAPS reductase domain and those between 
positions 385 and 427 – in thioredoxin-like domain. APR activity unit is nmol min-1 mg protein-1. 
Data obtained from 1001 Genomes database. 
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APR activity (A) and sulfate concentration (B) in arabidopsis accessions. Data represent the mean 
values of four biological replicates ± standard error. Letters above each bar indicate statistically 
significant groups using one-way ANOVA with Newman-Keuls multiple range test using 95% 
confidence interval. 

 

The analysis of five week old plants again revealed a very low APR activity in Hod 

accession. I also observed 55% higher shoot sulfate concentration in Hod than in Col-0 (Figure 

3.4). These results confirm that the differences in sulfate accumulation between accessions 

might not be noticeable in seedlings, but they are more pronounced in mature plants. Apart 

from Hod five other accessions showed lower APR activity compared to Col-0. Four of them: 

Lov-1, Lov-5, Fäl-1, and Tfa-08; were collected in western Sweden and share the same amino 

acid substitution of Phe265 to Ser265 in the conserved PAPS reductase domain of the APR2 

enzyme (Table 3.1). Similarly to Hod, I observed about 86% lower APR activity for all the 

Swedish accessions compared to Col-0 (Figure 3.4A). Furthermore, three of them: Lov-1, Lov-5 

Figure 3.4 Analysis of the natural variation in APR activity and sulfate concentration 
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and Fäl-1 showed two-fold higher sulfate concentration compared to Col-0 (Figure 3.4B). 

Surprisingly, the sulfate concentration in Tfa-08 accession was much less elevated than in the 

other Swedish accessions even though they share the same amino acid substitution. The ICE61 

accession, collected in south western Russia, was the fifth accession for which I observed lower 

APR activity. However it was not so strongly pronounced as in Hod and the Swedish accessions 

(30%; Figure 3.4A). Sulfate concentration in this accession was about 60% higher compared to 

Col-0 (Figure 3.4B). ICE61 represents a singleton haplotype which has an amino acid change of 

Ala155 to Val155, also localised in the PAPS reductase domain (Table 3.1). Interestingly, the Qar-

8a accession, collected from Lebanon, with the substitution of Asp242 to Gly242 in the PAPS 

reductase domain showed higher APR activity than Col-0. Moreover, this accession also had 

over 60% more sulfate than Col-0. There were no significant differences in APR activity in the 

following accessions with high sulfate concentration: LAC-5, Tamm-2, Oy-0, and CS28332, 

compared to Col-0, suggesting that the mechanism underlying the high sulfur phenotype in 

these accessions is independent from APR activity (Figure 3.4). 

3.3.4 Natural variation in the ATPS1 gene 

As mentioned before, ATPS1 was identified as a gene underlying the second major QTL 

responsible for the variation in sulfate accumulation revealed in the analysis of the Bay-0 x Sha 

RIL population (Koprivova et al. 2013, Loudet et al. 2007). To confirm that ATPS1 contributes to 

the variation in sulfate concentration between Bay-0 and Sha, Koprivova et al. (2013) analysed 

Col-0, Sha and Bay-0 as well as the atps1 mutant for sulfate concentration, ATPS activity and 

expression of ATPS1 (Figure 3.5). The atps1 mutant in the Col-0 background had significantly 

higher sulfate concentration compared to all the wild accessions tested (Figure 3.5A), as shown 

previously (Kawashima et al. 2011, Liang et al. 2010). Additionally, Bay-0 had greater sulfate 

concentration compared to Col-0 and Sha. ATPS activity was about 60% lower in the mutant 

and about 40% lower in Bay-0 compared to both Col-0 and Sha (Figure 3.5B). The analysis of 

ATPS1 mRNA transcript (Figure 3.5C) confirmed a loss-of-function phenotype in the  apts1 

mutant and revealed approximately 30% lower transcript abundance in Bay-0 compared to 

Col-0 (Koprivova et al. 2013). This suggests that the differences in ATPS activity between Bay-0 

and Sha are more likely to be due to differences in expression rather than kinetics of the 

enzyme. Indeed, the sequencing of the ATPS1 gene from Bay-0 and Sha did not reveal any 

amino acid differences. However, two deletions and various nucleotide substitutions were 

observed in the Bay-0 ATPS1 gene, compared to the Sha and Col-0 backgrounds (Figure S3.1).  
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 (A) Sulfate concentration, (B) ATPS activity, and (C) ATPS1 transcript level shown as relative to Col-
0 for which the value was set to 1. All measurements were carried out on five week old plants. 
Results are presented as means from three individual plants ± standard error. The transcript 
accumulation were analysed in duplicate. Letters above each bar indicate significantly different 
values at P<0.05. These data are from Koprivova et al. (2013). 
 

 

Following on from the work done by Koprivova et al. (2013), the differences in ATPS1 

sequence in the global population of Arabidopsis thaliana were examined. Since the presence 

of the two deletions in Bay-0, in intron 1 and downstream of the gene, is probably the main 

difference between ATPS1
Bay-0

 and ATPS1
Sha (Koprivova et al. 2013) the 1001 Genomes 

database was screened to investigate whether there are more accessions sharing this allele. In 

Bay-0 the deletion localised in a middle part of the first intron is 13-bp long and it is 

accompanied by highly polymorphic region around it. The second deletion, located 249 bp 

downstream of the ATPS1 stop codon is 71-bp long and it is also accompanied by few 

additional substitutions (Figure 3.6A). Among all the 500 accessions available in the database 

at the time of the analysis, 50 shared the deletion downstream of the ATPS1 gene. Among 

these, 28 also had the deletion in the first intron. To confirm the presence of these deletions 

and verify their exact position, corresponding DNA fragments from six representative 

accessions were amplified and sequenced by Koprivova et al. (2013; Figure S3.2). The deletions 

indicated in the database were confirmed. However, the exact borders of the deletions 

differed slightly from those specified in the database (Koprivova et al. 2013). Nevertheless, a 

subset of 12 accessions with no deletion (including Sha and Col-0), 7 accessions with the 

deletion downstream of ATPS1 and 10 accessions with two deletions (including Bay-0) was 

selected for further analyses.  

To examine how the deletions affect the mRNA transcript accumulation in these 

accessions a qPCR analysis was conducted. To account for the differences in the expression of 

the sulfate reduction pathway, the ATPS1 transcript  abundance  is shown as relative to 

Figure 3.5 Analysis of the contribution of ATPS1 to sulfate homeostasis 



   ATPS1 and APR2                                                                                                                         Chapter 3 
 

54 
 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Sh
a

G
o

et
ti

n
ge

n
-7

P
e

r-
1

Ed
i-

0

U
ll 

2
-3

C
2

4

C
o

l-
0

H
Sm D
u

k

A
n

-1

O
r-

0

A
a-

0

B
lh

-1

Lo
m

1
-1

H
e

l-
3

Li
llo

e
-1

V
im

m
er

b
y

G
ro

en
-5

Sr
:5

B
ay

-0

W
l-

0

K
ro

t-
0

D
o

g-
4

D
ra

-0

A
k-

1

B
o

r-
1

V
as

h
-1

In
-0

K
yo

to

No deletion One deletion Two deletions

S
u

lf
a

te
 [

n
m

o
l m

gF
W

-1
]B.

constitutively expressed APR2 (Figure 3.6C). The mean value for all 10 accessions with two 

deletions was significantly lower than the mean value from the accessions with one deletion 

and with no deletions (Figure 3.6E). Additionally, sulfate concentration was analysed in these 

accessions to investigate how the variation in transcript  abundance affects accumulation of 

sulfate (Figure 3.6B). The 10 accessions sharing the two deletion haplotype showed higher 

sulfate concentration compared to the accessions with one deletion and to the accessions with 

no deletion. The mean value from all the 10 accessions was about 30% higher than the mean 

values from the two other haplotype groups (Figure 3.6D). These results support the 

hypothesis that the deletion in the intron (but not the deletion downstream of ATPS1 stop 

codon) results in a decrease of expression of ATPS1 which leads to a decrease in overall ATPS 

activity and increase in sulfate accumulation. 
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Schematic presentation of the one and two deletion haplotypes in representative accessions (A); 
the data were obtained from 1001 Genomes database. The grey boxes represent the deletions. 
Sulfate concentration (B) and relative transcript abundance of ATPS1 in leaves of individual 
accessions representing three different haplotypes grouped according to the number of deletions 
in ATPS1. Results are presented as means of three biological replicates ± standard error. The 
transcript accumulation was measured in duplicate. Sulfate concentration (D) and relative 
transcript abundance of ATPS1 (E) in leaves of three haplotypes of arabidopsis accessions shown as 
means of all accessions analysed per haplotype (as in B and C respectively) ± standard error. 
Different letters mark significantly different values at p<0.05. 

 

The analysis of 1001 Genomes database also revealed a number of accessions with 

various non-synonymous SNPs leading to amino acid substitutions which were not found in 

Bay-0 and Sha. To investigate how this variation in ATPS1 affects the enzyme activity and 

sulfate accumulation sulfate concentration was first analysed in representative accessions for 

each haplotype (Figure 3.7A). Additionally, sulfate accumulation in Col-0 and the atps1 mutant 

was analysed to use it as a reference. All of the accessions analysed showed the same or higher 

sulfate accumulation than Col-0. Fjae1-2 was the only accession with sulfate concentration 

lower then Col-0. Three accessions including Dra2-1, Vie-0, and Naes-2 showed the highest 

sulfate accumulation comparable to that observed in atps1 mutant (Figure 3.7A). Since the 

variation in sulfate accumulation is dependent on various factors, the total ATPS activity in 

these accessions was determined (Figure 3.7B) to investigate if there is any correlation 

Figure 3.6 Natural variation in ATPS1 among Arabidopsis thaliana accessions 
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between sulfate accumulation and ATPS activity as was observed for accessions with different 

APR2 haplotypes. This analysis revealed that the ATPS activity in most of the accessions was 

comparable to or even higher than that of Col-0 suggesting that the amino acid changes found 

in these accessions do not affect negatively the enzyme activity and therefore sulfate 

accumulates due to other factors. Moreover, T800 had the highest ATPS activity among all 

accessions tested, but the sulfate concentration in this accession did not differ significantly 

from Col-0. The only accession with significantly lower ATPS activity and significantly higher 

sulfate concentration compared to Col-0 was Naes-2 indicating that the substitution of G342 

into D342 found in this accession may affect the catalytic activity of the enzyme (Figure 3.7B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sulfate concentration (A) and ATPS activity (B) were measured in the accessions representing 
various ATPS1 haplotypes. Additionally, Col-0 and the atps1 mutant were measured as a control. 
The bars represent mean values of three biological replicates ± standard error. White symbols on 
the bottom of each bar correspond to amino acid substitution specific for this accession. Asterisks 
indicate an accession with sulfate concentration higher than Col-0 and ATPS activity comparable 
with atps1 mutant.  

Figure 3.7 Analysis of the natural variation in ATPS activity and sulfate concentration 
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Mutation Accessions Localisation Comment

V43N Dog-4 0.140 transit peptide

Vash-1 0.156

G56S Dra2-1 0.125 n.a

Fjae 1-2 0.093

Ull 2-3 0.121

L122V Vie-0 0.108 dimer interface

L122 very conserved among species; may cause 

alteration of oligomerization and/or disruption 

of protein folding

T150S Dra-0 0.125 loop region
mutations in loop region usually don't alter 

enzyme function

E169A Goettingen-22 0.111 dimer interface

Goettingen-7 0.135

V316F T800 0.247 internal packing may alter protein structure

A337S Bil-7 0.145 loop region

Fri-2 0.115

Tgr-01 0.119

G342D Naes-2 0.072 internal packing may alter protein structure

mutation not mapped to                                            

A. thaliana  ATPS1

mutation not mapped to                                                       

A. thaliana  ATPS1

may cause alteriation of oligomerization and/or 

disruption of protein folding

mutations in loop region usually don't alter 

enzyme function

ATPS1 activity         

[µmol/min/mg protein]

Recently, Herrmann et al. (2014) determined the crystal structure of the ATP 

sulfurylase isoform 1 from soybean. Since there is 79% amino acid sequence identity between 

the ATPS1 in arabidopsis (AtATPS1) and soybean (GmATPS), it was possible to map the amino 

acid substitutions found in arabidopsis accessions onto the GmATPS structure (see Herrmann 

et al. (2014), on which I am a co-author). The information about particular amino acid 

substitutions, their localisation in the protein and possible effect on the enzymatic activity are 

summarised in Table 3.2. Two of these substitutions: V43N and G56S were localised in the 

region corresponding to the disordered region of GmATPS and therefore they were not 

mapped to the structural model (Herrmann et al. 2014).  

Table 3.2 Summary of variation in arabidopsis ATPS1 haplotypes 

The information in comments is taken from Herrmann et al. (2014). The ATPS1 activity for 
accessions listed is the same as shown on Figure 3.7. 
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3.4 Discussion 

Most agronomically important traits including control of plant elemental composition 

and nutrient use efficiency are tightly regulated by various genes and regulatory factors as well 

as the products and intermediates of the same or interacting metabolic pathways (White et al. 

2014). The control of sulfate homeostasis has a crucial role for plant fitness and development 

(Koprivova et al. 2014, White & Brown 2010). It is also of great importance from human 

perspective since we utilize plants for food. Investigation of the genetic basis of plant mineral 

composition is a first critical step to understand the regulatory networks and improve crop 

yield and quality. 

Sulfate homeostasis depends mainly on the balance between sulfate uptake and 

reduction and is controlled in a demand-driven manner (Lappartient & Touraine 1996). When 

plants experience sulfate starvation, a simultaneous increase in mRNA accumulation is 

observed for sulfate transporters, ATPS and APR (Hopkins et al. 2004). On the other hand, 

increase in reduced sulfur compounds such as cysteine or glutathione causes a decreased 

accumulation of ATPS mRNA and protein as well as enzymatic activity (Bolchi et al. 1999, 

Vauclare et al. 2002). The demand-driven control mechanisms appear on different steps of the 

pathway and involve regulation of specific enzymes (see Chapter 1). Moreover, the whole 

pathway may be controlled as a process e.g. in response to stress (Bick et al. 2001, Koprivova 

et al. 2008), via phytohormones (Harada et al. 2000, Jost et al. 2005), or within the 

interconnection with nitrogen and carbon metabolism (Kopriva et al. 2002, Koprivova et al. 

2000).   

The main research on genetic control of sulfate assimilation pathway so far has been 

conducted on the Bay-0 x Sha RIL population and led to the identification of two major QTLs 

responsible for sulfate concentration in arabidopsis (Loudet et al. 2007). One of these QTLs 

was underlined by the APR2 isoform of the key enzyme of sulfate assimilation pathway, APS 

reductase. Biochemical analysis revealed that a single nucleotide polymorphism led to an 

amino acid substitution in APR2Sha resulting in over 99% loss of enzyme activity (Loudet et al. 

2007). Similarly, an amino acid substitution in APR2 in the Hod accession, described in this 

chapter and identified independently from QTL analysis, led to a severe reduction in APR 

activity (Figure 3.1A). The transgenic complementation of Hod lines with the APR2Col-0 allele 

restored APR activity confirming further that it is disruption in APR2 which affects sulfate 

accumulation in this accession. The analysis of leaf sulfate concentration in the apr mutants 

revealed a link between very low APR activity and sulfate concentration (Figure 3.1). The 
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reduction in APR activity of about 80% compared to Col-0 resulted in 50% increase in leaf 

sulfate concentration in the loss-of-function apr2-1 mutant. In the apr1 mutant the APR 

activity was only slightly lower than in Col-0. Additionally, sulfate concentration in this mutant 

did not differ from that observed in Col-0 which is in agreement with previous results of 

Loudet et al. (2007) indicating that the APR1 isoform contributes much less to the total APR 

activity than APR2. 

As described previously (Mugford et al. 2011, Scheerer et al. 2010, Vauclare et al. 

2002) the disruption of APR activity reduces the sulfate flux through the pathway into reduced 

organic forms (such as cysteine and glutathione) leading to accumulation of the pathway 

substrate – sulfate. The analysis described in this chapter revealed strong positive correlation 

between APR activity and sulfate flux through the reduction pathway (measured as the 

percentage of radioactive sulfate incorporated into thiols and proteins) providing evidence 

that supports this model (Figure 3.2). It  was true for the Hod accession, analysis of which is 

described here, but not for Sha which despite possessing the weak APR2 and reduced flux, 

accumulated sulfate only under nitrate limitation (Loudet et al. 2007). Under normal nitrate 

supply, sulfate concentration in this accession was comparable with that observed in Col-0. 

These results suggest the existence of additional mechanism(s) of regulation of sulfate 

assimilation beyond APR. In support of this hypothesis, APR activity in Hod lines 

complemented with APR2Col-0 was significantly higher than in Col-0, but there was no 

difference in sulfate concentration compared to Col-0.   

The accumulation of sulfate due to disruption of the first steps of the pathway may 

lead to a decrease in concentration of the final products of the pathway: cysteine and 

glutathione (GSH). Moreover, evidence was provided that GSH, rather than cysteine, is the 

thiol compound used as a signal in this process (Lappartient & Touraine 1996, Lappartient et al. 

1999, Vauclare et al. 2002). Decreased concentration of the products of the pathway can result 

in an induction of sulfate starvation response in plants leading to an increase in sulfate uptake 

or elevated APR2 transcript abundance. Indeed, it has been shown that the adjustment of 

sulfate uptake and assimilation to the plant’s demand for sulfur is mediated by reduced sulfur 

containing compounds such as cysteine and glutathione (Datko & Mudd 1984, Vauclare et al. 

2002). However, there was no difference in the APR2 expression between Col-0 and Hod (Chao 

et al. 2014). Moreover, there was no difference in sulfate uptake in the apr mutants compared 

to Col-0 (Figure 3.3A). In contrast, Hod and Sha showed the lowest sulfate uptake among all 

lines tested, confirming further the existence of some additional regulatory mechanisms. 

These results indicate that sulfate accumulation in the accessions with low APR activity is 
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uncoupled from the control of sulfate uptake. This is in contrast to low sulfate accumulation 

phenotype which is known to induce the sulfate starvation response leading to the induction 

of sulfate uptake (Lee et al. 2012, Matthewman et al. 2012). The most likely explanation is that 

in the accessions with high sulfate concentration it accumulates in the vacuole and is not 

available as a signal (Koprivova et al. 2013). 

Based on the results described in this chapter it might be hypothesised that the APR1 

isoform of APS reductase, in addition to APR2, might exercise significant control over sulfate 

flux through the reduction pathway. Indeed, it was shown previously that the activity of APR1 

is modulated by the accumulation of the oxidised form of GSH (Bick et al. 2001). Moreover, 

Loudet et al. (2007) showed that reduced APR activity in Sha results in lower accumulation of 

glutathione in this accession compared to Bay-0 which possess a stronger APR2 allele. The 

same was observed for Sha and Hod in the analysis described in this chapter when compared 

to Col-0. Since GSH synthesis depends on cysteine availability (Galant et al. 2011, Strohm et al. 

1995), the lower GSH concentration in Sha and Hod compared to Col-0 indicates an indirect 

effect of reduction in APR activity. Despite the reduced APR activity and sulfate flux in the 

apr2-1 mutant the GSH concentration was comparable with this in Col-0, even though the 

unused substrate of the pathway – sulfate – was accumulated (Figure 3.3). However, the 

apr1apr2 double mutant showed significantly lower GSH concentration compared to Col-0. 

Furthermore, the APR2Hod allele caused sulfate accumulation, especially in mature plants, 

whereas in Sha sulfate was accumulated only under nitrate deficiency, but both of these 

accessions showed significantly low GSH accumulation. According to the 1001 genomes 

database both Bay-0 and Sha have two deletions in the third exon of APR1 (data not shown), 

one of which is localised in slightly different place in the two accessions. However, neither of 

these deletions was observed in Hod. This observation further supports the hypothesis of APR1 

being involved in the regulation of sulfate flux through the metabolic pathway. Moreover it 

indicates that the natural variation in APR1 might affect the GSH accumulation. However, this 

hypothesis requires further investigation. 

Taken together, the results described here indicate that the control of thiol 

accumulation is partly uncoupled from the control of sulfate reduction. It also seems that GSH 

accumulation is well maintained by balancing synthesis with utilisation since its concentration 

in the apr2 mutant did not differ from this in Col-0 despite dramatically low APR activity and 

sulfate flux in this mutant. The decreased GSH concentration in the double mutant may 

suggest that either APR1 is involved in the control of GSH accumulation or the disruption of 

total APR activity in the double mutant is too severe to maintain the appropriate concentration 
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of this compound. These findings might be useful for developing new strategies to increase its 

concentration in plants and thus improve stress tolerance and detoxification capacity and 

provide a better understanding of the complex regulation of the sulfate assimilation pathway. 

The analysis of the APR2 sequence among the worldwide population of Arabidopsis 

thaliana revealed additional rare alleles with a strong effect on APR activity (Table 3.1, Figure 

3.4). Chao et al. (2014) have found four accessions sharing the same amino acid substitution in 

a conserved PAPS reductase domain in the APR2 enzyme. All of these accessions were 

collected in western Sweden around the Härnösand. It might be suggested that this amino acid 

substitution is a result of a recent evolutionary adaptation to the local environment. Since 

sulfate assimilation is an energy consuming process, there may be a fitness advantage for 

plants with decreased APR2 activity and lower assimilation, growing in soils with elevated 

sulfate concentration. Such local adaptations that maximized plant fitness were previously 

described in arabidopsis, usually in relation to flowering time (Brachi et al. 2012, Li et al. 2010). 

However, in this case more work testing more accessions would be required to establish if the 

rare alleles of APR2 are a result of local adaptation.  

It has been demonstrated that the variation in the sequence of enzymes involved in 

sulfate reduction is reflected in the natural variation in sulfate accumulation in different 

arabidopsis accessions (Koprivova et al. 2013, Loudet et al. 2007). However, this correlation is 

not always straightforward and the same amino acid substitution may cause different 

phenotypes. The four Swedish accessions are an excellent example of such a difference. All of 

them were collected in the same location and share the same amino acid substitution leading 

to dramatically low APR activity. However, Tfa-08, accumulates significantly less sulfate than 

the other three Swedish accessions, but still more than Col-0. Therefore it seems that Tfa-08 

contains additional loci that limit sulfate accumulation. Making crosses between these 

accessions might be a good way to discover additional genes involved in the control of sulfur 

homeostasis in plants. A similar phenomenon was observed for ICE61. It had only 30% lower 

APR activity than Col-0, however sulfate concentration was comparable with this observed in 

the three Swedish accessions which lost more than 80% of APR activity (Figure 3.4). A very 

interesting phenotype was identified in Qar-8a which had elevated APR activity and sulfate 

accumulation. Further investigation of this phenotype could bring new insights into regulatory 

mechanisms of sulfate reduction. This could be useful for developing new lines used in 

agriculture as well as new breeding strategies.  
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Taken together, there is a strong link between decreased APR activity and increased 

sulfate concentration (relative to Col-0) in the leaves. However, results described here showed 

that the two traits are not absolutely correlated with each other. The reduction in APR activity 

did not always affect sulfur accumulation (e.g. ICE61) and the accumulation of sulfate in leaves 

was not always driven by low APR activity (e.g. LAC-5). On the other hand all the accessions 

with severely disrupted APR activity accumulated sulfate.  

The analysis of the purified recombinant APR2 protein heterologously expressed in E. 

coli revealed that the extremely low APR activity in Sha was caused by a decrease in the 

efficiency of interaction of the protein with its electron donor (Loudet et al. 2007). The KM 

(Michaelis constant) for glutathione (GSH) as a substrate was much higher for APR2Sha than 

APR2Bay-0. The KM was the same in the two accessions for APS as a substrate. The newly 

identified, extremely rare alleles of APR2 provided an opportunity to increase our 

understanding of the correlation between structure of the protein and its function. The 

polymorphism in APR2
Hod allele severely reduces the enzymatic activity of the protein. Based 

on current knowledge the Gly/Arg polymorphism found in the APR2Hod protein is a part of 

conserved Arg-loop that interacts with the APS substrate. However, binding affinity for the APS 

as a substrate is not affected in this protein (Chao et al. 2014). Therefore it might be proposed 

that Gly216 might rather be involved in the catalytic mechanism. On the other hand the 

Phe265/Ser265 found in APRLov-5 and the other three Swedish accessions is localised in helix 

alpha7 of the PAPS reductase domain. According to the literature, this region does not have 

any predicted catalytic function (Chartron et al. 2006). Nevertheless, protein sequence analysis 

among 855 accessions examined revealed that this residue is conserved as Phe or Tyr across 

the global A. thaliana population (Chao et al. 2014). Its substitution to Ser results in over 1000-

fold reduction in the catalytic capacity of the enzyme. Therefore, it has been suggested that 

this amino acid substitution might have a more global effect on the enzyme structure such as 

maintaining the tertiary or quaternary structure of the protein (Chao et al. 2014). 

As mentioned before the analysis of the Bay-0xSha RIL population led to the 

identification of two major QTLs for sulfate accumulation in this population (Loudet et al. 

2007). The APR2 gene encoding an isoform of APR was identified as underling the first QTL. 

Further analysis of the natural variation in this gene and its contribution to the natural 

variation in sulfate accumulation among arabidopsis accessions was described in the first part 

of this chapter. Recently, ATPS1 was identified as the gene underlying the second major QTL 

(Koprivova et al. 2013) and my contribution to the investigation of the variation in this gene 
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and its role in the control of sulfate accumulation is described in the second part of this 

chapter.  

 It was previously thought that APR possesses much stronger control over sulfate flux 

through the pathway than ATPS (Scheerer et al. 2010, Vauclare et al. 2002). Therefore, it was 

expected that the Bay-0 allele of ATPS1 will have a greater effect on the genotypes with the 

Sha allele of APR2. However, Koprivova et al. (2013) revealed that the two enzymes act 

independently and they have additive effects on sulfate accumulation, indicating the 

important contribution of ATPS to the control of sulfate flux through the pathway (Koprivova 

et al. 2013). While the allelic variation in APR2 alters the enzymatic capacity of the protein the 

variation in ATPS1 leads to decrease in transcript abundance. Moreover, the results described 

in this chapter indicate that the main cause of low transcript abundance among these 

accessions is the presence of the deletion in the first intron of ATPS1 gene sequence. These 

two deletions were first identified as the main cause of the sulfate accumulation in Bay-0 

(Koprivova et al. 2013). Subsequently, a number of accessions that shared similar variants of 

ATPS1 as the one found in Bay-0 was identified (Figure 3.6). In general, accessions with the two 

deletions showed lower ATPS1 transcript abundance and increased accumulation of sulfate. It 

seems that there is a direct correlation between ATPS1 transcript abundance and ATPS activity 

(Koprivova et al. 2013). Additionally, these results confirm that the variation in sulfate 

concentration in different accessions is at least partially due to variation in ATPS1. 

Disruption in ATPS1 causes a decrease in sulfate flux through the metabolic pathway 

and accumulation of sulfate (Kawashima et al. 2011, Koprivova et al. 2013). However, the 

analysis of ATPS activity and sulfate concentration in accessions with amino acid substitutions 

in the ATPS1 protein sequence did not reveal a specific link between ATPS enzymatic activity 

and sulfate concentration (Figure 3.7). The only accession which showed elevated sulfate 

concentration and decreased ATPS activity was Naes-1. The single nucleotide polymorphism in 

this accession resulted in an amino acid substitution of Gly with Asp in position 342. 

Asparagine has a different size and charge of side chain than glycine and it can change local 

amino acid interactions. This might be detrimental for the function of the protein (Herrmann 

et al. 2014). Localisation of amino acid substitutions that affect ATPS1 and sulfur metabolism 

may provide new understanding of the nature of the relationship between enzyme structure 

and its function, as was already shown in the analysis of APR2. However, in the case of ATPS1 

the effect of variation in the sequence on enzymatic activity was not that pronounced. 

Therefore, it might be necessary to investigate the ATPS1 sequence and sulfate concentration 

in a greater number of accessions to get better understanding of this phenomenon. 
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3.5 Conclusions 

The two enzymes described in this chapter are two consecutive steps of the same 

pathway and were identified in the QTL analysis of the same RIL population (Koprivova et al. 

2013, Loudet et al. 2007). The work described in this chapter has revealed that limitation in the 

catalytic ability of two sequential sulphate assimilatory enzymes is an important source for the 

variation in sulfate accumulation among Arabidopsis thaliana accessions. However, the 

mechanism by which the two enzymes alter sulfate concentration is different. Reduced 

catalytic activity of APR2 results in a reduction of the flux through the sulfate assimilation 

pathway. Consequently, unused sulfate accumulates in the cells. The reduction in ATPS1 

activity is caused by low transcript accumulation of the main isoform of the enzyme. Low 

transcript accumulation is associated with the deletion in the first intron of the ATPS1 gene. 

This deletion also leads to sulfate accumulation. Results described here and by Koprivova et al. 

(2013) indicate that both of these enzymes make an important contribution to the control of 

sulfate flux through the metabolic pathway. This analysis complements our knowledge about 

the regulation of sulfate assimilation pathway which, until now, was thought to be controlled 

almost exclusively by APR (Vauclare et al. 2002). 

Both of the accessions used to create the RIL population (Sha and Bay-0) possess 

changes in one of the enzymes that contribute to sulfate accumulation: Sha possesses the 

disrupted APR2 allele and Bay-0 – APTS1.  Therefore, it could be expected that the accessions 

with a high APR activity and high sulfate concentration will carry a reduced function ATPS1 

allele, but this is not the case. An excellent example of such an accession used in these 

experiments is Qar-8a. It accumulates sulfate even though it has the highest APR activity from 

all the accessions tested in the experiment shown on Figure 3.4. However, it has no specific 

changes (insertion/deletions or non-synonymous SNPs) in the ATPS1 sequence. This indicates 

that the control of sulfate flux is much more complex than expected. It seems that the 

regulation of sulfate homeostasis involves a much broader range of factors than the two 

enzymes characterised in this chapter. Taking into account the importance of sulfate 

homeostasis for plant fitness, more research is needed to further investigate what these 

components may be. A contribution to the discovery of new important genes involved in 

sulfate homeostasis as well as sulfate and nitrate use efficiency is described in the next 

chapters of this dissertation. 
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4.1 Introduction 

Because sulfur deficiency in Europe appeared relatively recently, research on sulfur 

use efficiency still lags behind that on the other major nutrients (Abdallach et al. 2010). 

Exploring sulfur assimilation and the regulation of sulfur metabolism is of great interest for 

agriculture and plant science. Therefore, a series of experiments on the collection of natural 

Arabidopsis thaliana accessions was conducted to characterise plant response to sulfate and 

nitrate deficiency. General arabidopsis response profile to sulfate limitation was described. 

Four different patterns of plants response to sulfate limitation were characterised and the 

accessions which were best adapted to the analysed conditions were identified. In this section 

I briefly introduce the main problems addressed in the course of these studies.  

The major goal of this project was to get better understanding of the processes 

involved in plant response to sulfate deficiency. Unbalanced plant mineral nutrients in soil are 

a major limiting factor for crop growth and development (Blake-Kalff et al. 2001). The need to 

feed a rapidly growing population puts extra pressure on limited land resources and is the 

main justification for such studies. Breeding high yielding varieties resulted in a shortage of 

important plant mineral nutrients in the soil around the globe (Mba et al. 2012). Sulfur 

deficiency in agricultural soils has been reported frequently in recent years (Ahmad et al. 2005, 

Blake-Kalff et al. 2001, Scherer 2001). It was also suggested that the demand for sulfur in many 

crops has increased due to intensive agriculture and optimization during plant breeding 

programmes (Abdallah et al. 2010). Crop requirements for sulfur vary in different species. 

Generally, wheat requires approximately 2-3 kg of sulfur for each tonne of grain produced 

(Zhao et al. 1999) whereas the production of one tonne of oilseed rape seeds requires about 

16 kg of sulfur (McGrath & Zhao 1996). It was suggested that this high sulfur demand in oilseed 

rape is due to an accumulation of large amounts of sulfate in the vacuole under sulfate 

sufficient conditions. However, this vacuolar pool of sulfate is not easily available for 

redistribution during sulfate limitation which results in an early induction of sulfate starvation 

response (Blake-Kalff et al. 1998). Therefore oilseed rape is particularly sensitive to sulfur 

deficiency or limitation which reduces both seed quality and yield (Malhi et al. 2007). Sulfur 

deficiency in crop plants has been recognized as a limiting factor not only for crop growth and 

seed yield, but also for grain quality which is particularly important for wheat breeding and the 

maintenance of baking quality (Shahsavani & Gholami 2008).  

The symptoms of sulfur deficiency appear shortly after it occurs in the soil, especially 

in oilseed rape (McGrath & Zhao 1996). In general, sulfur deficiency results in uniform pale 
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green chlorosis through the plant (Nikiforova et al. 2003). A considerable reduction in growth 

may be suffered without the appearance of any other visible symptoms. Clear symptoms 

include severe stunting, reduced leaf size and activity of axillary buds which results in less 

branching. Physiologically, in wheat plants sulfur deficiency affects CO2 assimilation rates and 

Rubisco enzyme activity as well as protein abundance which results in general inhibition of de 

novo synthesis of the photosynthetic apparatus (Gilbert et al. 1997). Additionally, depression 

of root hydraulic conductivity was observed in sulfur deficient barley plants. It was suggested 

that this response can have a role in signalling nutrient starvation from shoots to roots 

(Karmoker et al. 1991).  

In the course of this study the interaction between sulfate, phosphate, and nitrate 

metabolism was characterised. Nitrogen deficiency often occurs in the field (Rossato et al. 

2001). It is the most limiting resource in many areas of the world. Nitrogen availability can 

fluctuate greatly due to precipitation or changes in temperature, wind, soil type and pH 

(Masclaux-Daubresse et al. 2010). Plants are able to sense the concentration of external and 

internal nitrogen and adapt to changing nitrogen conditions by modifying different aspects of 

nitrogen metabolism e.g. gene expression or enzyme activities (Sakakibara et al. 2006). In the 

first step of the response to nitrogen depletion plants reduce the rate of leaf elongation 

leading to a decrease in shoot growth rate without affecting photosynthesis 

(Anandacoomaraswamy et al. 2002). Root elongation is maintained by the direction of 

additional carbon towards the subterranean part of the plant (Smolders & Merckx 1992). All 

these reactions together with increased nitrogen remobilisation allow the plant to cope with 

short periods of nitrogen starvation e.g. in the intervals between supply of fertilizer. However, 

extended nitrogen deficiency is known to hasten senescence (Gombert et al. 2006) and 

decrease the photosynthetic capacity of the plant due to Rubisco breakdown, ultimately 

inhibiting whole plant growth (Walker et al. 2001). Therefore, the plant’s ability to lengthen 

the nitrogen recycling step described above, without affecting photosynthetic capacity is one 

of the key factors in maintaining growth during temporary nitrogen shortage (Richard-Molard 

et al. 2008). Chemical nitrogen fertilization is a common agronomic practice to improve crop 

yield and quality (Kant et al. 2011). However, nitrogen fertilisation is the highest input cost for 

many crops (Rothstein 2007). Therefore, current research on nitrogen use efficiency (NUE) is 

directed towards developing genotypes that use nitrogen more efficiently. This is expected to 

improve plant growth and development while sustaining the quality of the environment (Ikram 

et al. 2012). 



   Arabidopsis response to sulfate and/or nitrate availability                                                      Chapter 4 
 

68 
 

It is long known that nitrogen deficiency results in changes in expression pattern of 

genes related to sulfate metabolism (Yamaguchi et al. 1999). Koprivova et al. (2000) have 

shown that in nitrate deficient plants the APR activity in leaves decreases about 30% and in 

roots about 50%. This is caused by a decrease in APR mRNA and protein accumulation which 

further confirms that nitrogen availability regulates sulfate assimilation on the transcriptional 

level.  Similarly, sulfate deficiency results in a decrease in nitrate uptake and the activity of 

nitrate reductase which leads to a decrease in amino acid accumulation (Prosser et al. 2001). In 

oilseed rape, which is known to have a high demand for sulfate, the growth during short 

periods of sulfate deficiency is maintained by an optimization of nitrogen uptake and 

remobilising sulfate from internal reservoirs (Abdallah et al. 2010). The unavailability of sulfate 

for crops is known to decrease the efficiency with which plants use nitrogen fertilizers 

(Ceccotti 1995). Therefore, sufficient sulfate availability is necessary to ensure efficient 

nitrogen use and maintain adequate oil concentration and fatty acid quality of seeds in oilseed 

brassicas (Fismes et al. 2000). Additionally, positive interaction between sulfur and nitrogen 

was reported to be beneficial for tolerance to various stress factors (Anjum et al. 2012). 

Glutathione (GSH) is considered to be the main factor in the intracellular defence against 

oxidative stress (Gill & Tuteja 2010). Its synthesis depends on the availability of cysteine 

(provided through assimilation of sulfate) and glutamate (provided through assimilation of 

nitrate) and therefore might be influenced by the supply of the two macronutrients (Anjum et 

al. 2012). These observations clearly indicate a strong interconnection between the two 

metabolic pathways and emphasise the need for further investigation of this coordination in 

order to understand the regulation of nutrient metabolism in plants and thus improve crop 

yield and quality.  

For the experiments described in this chapter a large number (25) of natural 

arabidopsis accessions was used to uncover the genetic variation underlying adaptation to 

environmental gradients. This type of analysis leads to better understanding of plant responses 

to fluctuating environments and development of agricultural systems that are more resilient to 

such changes. The genetic diversity of Arabidopsis thaliana makes it a suitable model for 

studying genetic variability of plant adaptation to nutrient deficiency. Indeed, arabidopsis has a 

broad geographical distribution and as such is subjected to diverse nutritional environments 

(Montesinos et al. 2009, Pico et al. 2008, Weigel 2012). Therefore, it is a useful model for 

studying possible contrasting adaptation to limited nutrient availability. A number of studies 

have been conducted that use natural variation within Arabidopsis species to investigate the 

genetic diversity within the genus. The analysis of a Bay-0 and Shahdara RIL population 
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revealed a number of loci associated with nitrate homeostasis (Loudet et al. 2003) and key 

regulatory factors of sulfate metabolism (Loudet et al. 2007). The same population was used to 

investigate natural variation in adaptation to growth under low nitrogen supply (North et al. 

2009, Richard-Molard et al. 2008). However, these studies used a limited number of accessions 

that were characterised for only a few selected traits. New genomic information has made it 

possible to generate collections of accessions with a maximum possible genetic diversity and 

minimum of repetitiveness (Cao et al. 2011, McKhann et al. 2004). These collections are 

extensively used to uncover the natural variation in plant response to environmental changes 

(Chevalier et al. 2003, De Pessemier et al. 2013, Ikram et al. 2012, Kellermeier et al. 2013) and 

investigate the best adapted individuals.  

No studies on the extent of diversity of arabidopsis growth responses to sulfate 

limitation and starvation have been published. Therefore, to find accessions showing 

contrasting responses to different sulfur conditions a detailed analysis of the response of 25 

arabidopsis accessions originating from various areas of the world was conducted (McKhann et 

al. 2004). These accessions were characterised for seven morphological and ten metabolic 

traits in normal, limited, and sulfate-starved conditions. It was possible to distinguish four 

different classes of accessions depending on the pattern of plant response to different sulfur 

supply. In general, this part of the experiment was inspired by and based on the analysis of the 

response of the same collection of accessions to nitrate availability published recently (Ikram 

et al. 2012). Therefore, there is a high level of similarity in plant growth conditions and 

measured traits as well as statistical analysis and abbreviations used in the two experiments.  

Subsequently, one representative accession from each group was selected and 

analysed in more detail to identify different adaptive strategies within the Arabidopsis species. 

At this stage additional nutrition regimes were added including sulfate/nitrate double 

limitation to further investigate the interconnection between the two elements. In this part I 

analysed the plants for additional traits such as sulfate uptake and incorporation into thiols 

and cysteine. Additionally, primary metabolite profiling was conducted to investigate the 

global changes in plant metabolism under each nutritional condition. 

This experiment was conducted in collaboration with two other BioNut partners 

(http://bionutitneu2.fatcow.com/; Chapter 7): Fabien Chardon and Giorgiana Chietera from 

INRA Versailles in France and Rainer Höfgen and Sarah Whitcomb from the Max Planck 

Institute of Molecular Plant Physiology (MPIMP) in Golm, Germany. Since there is a well-

established plant hydroponic culture facility in the institute in Versailles, plants for the first 
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part of this experiment were grown there. I spent two weeks in the laboratory of Fabien 

Chardon and I participated in all the stages of setting up the hydroponic cultures and 

subsequent harvesting together with collection of morphological data. I analysed the samples 

for metabolic data in Norwich. The statistical analysis of the data was conducted by Fabien 

Chardon. For the detailed analysis of the four representative accessions of each group I grew 

the plants on plates and performed all the experiments with radioactive labelling in Norwich. 

The samples for metabolite profiling were analysed in Golm. I visited the laboratory of Rainer 

Höfgen for a week and together with Sarah Whitcomb processed the samples. The actual 

analysis of the samples was performed by the Applied Metabolome Analysis group of Dr 

Joachim Kopka who provides GC-MS based metabolite profiling services to scientists from 

MPIMP and to cooperating partner groups. They also provided primary data normalisation and 

initial statistical analysis. Subsequently, Sarah Whitcomb conducted more sophisticated 

analysis of significance of delivered metabolites followed by assigning these metabolites onto 

general plant metabolism. 
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4.2 Materials and Methods 

4.2.1 Plant material 

The 24 Arabidopsis thaliana accessions used in this study were obtained from the 

Versailles stock centre (http://dbsgap.versailles.inra.fr/publiclines). The 24 accessions (Akita, 

Alc-0, Bay-0, Bl-1, Blh-1, Bur-0, Ct-1, Cvi-0, Edi-0, Ge-0, Gre-0, Jea, Kn-0, Mh-1, Mt-0, N13, Oy-0, 

Pyl-1, Sakata, Sha, St-0, Stw-0, Tsu-0, Ws) belong to the core collection selected by McKhann et 

al. (2004) and were used in the previous study on nitrate limitation (Ikram et al. 2012). This 

collection was selected on the basis of genetic variability and it was used in this and the 

previous study because it maximizes allelic richness. Moreover, Col-0 which is a parental line 

for most of RIL populations available at the resource centre in Versailles was added to the 

collection. All these accessions are characterized by similar flowering time in short day 

conditions (McKhann et al. 2004). Col-0 was added to the collection since it is used widely as a 

control accession, making it 25 accessions in the initial collection. Additionally, C24 was added 

in part of experiment concerning the detailed analysis of representative accessions to create a 

range in the primary concentration of sulfate and nitrate. 

4.2.2 Growth conditions in hydroponic cultures 

The growth conditions used in this experiment were as described by Ikram et al. 

(2012). Briefly, seeds were surfaced sterilized using ethanol-“bayrochlor” (BAYROL, Germany; 

95/5%, v/v) prior to stratification at 4°C on the top of one Eppendorf tube with the cut base 

filled with 0.65% agar. Tubes were inserted into 96-well 1000µl tip boxes filled with deionized 

water. After 3 days at 4°C the boxes containing tubes were transferred to a growth chamber 

with 8-h-light/16-h-dark cycle and 21°C day and 17°C night temperatures. The photon flux 

density was 140 µmol m-2 s-1. Boxes remained closed by a transparent plastic lid and they were 

opened after two days. On the seventh day of growth, the tubes with seedlings were 

transferred to six plastic tanks (two tanks per nutrition condition) having the capacity to grow 

104 plants each. Eight plants per nutrition condition (four in each tank), were used for the 

evaluation of natural variation among the 25 accessions core collection. Samples were 

composed of two plants resulting in four biological replicates per treatment. Plastic tanks were 

filled with 33 l of nutrient solution. The plants were cultivated in hydroponics for 35 days (the 

entire vegetative growth period). Cycles of 8-h-light/16-h-dark were chosen to prevent early 

flowering. Relative humidity in the growth chamber was 65%. One set of plants was fed on 

complete nutrient solution (S+N+; referred to as normal condition) containing 0.15 mM MgSO4 

as a sulfate source and the second set of plants was fed on limited nutrient solution (S-N+; 
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Control 
condition

Sulfate 
limitation

Sulfate 
starvation

Nitrate 
limitation

Sulfate/nitrate 
double limitation

Elements S+N+ S-N+ S0N+ S+N- S-N- 

KNO3 3.00 3.00 3.00 1.00 1.00

CaCl2 1.70 1.70 1.70 1.70 1.70

MgCl 2 1.85 1.95 2.00 3.45 3.55

MgSO4 0.15 0.05 0.00 0.15 0.05
KH2PO4 2.00 2.00 2.00 2.00 2.00

H3BO3 24.00 24.00 24.00 24.00 24.00

MnCl 10.00 10.00 10.00 10.00 10.00
ZnCl 3.00 3.00 3.00 3.00 3.00
Kl 0.50 0.50 0.50 0.50 0.50

Na2MoO4 0.24 0.24 0.24 0.24 0.24

CuCl 0.90 0.90 0.90 0.90 0.90

CoCl 2 0.01 0.01 0.01 0.01 0.01

FeEDTH 22.40 22.40 22.40 22.40 22.40
Na2EDTA 22.30 22.30 22.30 22.30 22.30

KCl 0.00 0.00 0.00 0.50 0.50

Ca(NO3)2 0.50 0.50 0.50 0.00 0.00

[mM]

[µM]

referred to as sulfate limitation) containing 0.05mM MgSO4 as a sulfate source for 28 days 

(Table 4.1M). The third set of plants was supplied with complete nutrient solution for 21 days 

and subsequently moved for 7 days to nutrient solution with no sulfate source (S0N+; referred 

to as induced sulfate starvation). The exact media composition is shown in table 4.1M (grey 

box). Solutions were renewed once during each week of culture up to harvest. Shoots and 

roots of each plant were separated at the time of harvest (10am–1pm with a daylight period of 

9am– 5pm) and weighed. Roots were patted dry with a paper towel before weighing. All 

samples were frozen in liquid nitrogen and stored at –80°C to preserve biological material and 

were ground to a fine powder using the steel balls (section 2.2.3) which was then lyophilized 

before analysis. 

The composition of media used in all the experiments described in this chapter. Grey boxes 
correspond to media used in hydroponic cultures; the purple box corresponds to media used for 
plant growth on plates. All the values for macronutrients are shown in mM and the values for 
micronutrients are shown in µM. This media composition is based on the media used by Ikram et 
al. (2012). 

 
4.2.3 Growth conditions on plates 

Dry seeds were surface sterilised for up to four hours in a vacuum desiccator using 

chlorine gas which was generated by mixing 125 ml of sodium hypochlorite with 2.5 ml of 12 

M HCl. Seeds were then mixed with 0.1% sterile Low EEO agarose (Sigma Aldrich) and seeded 

Table 4.1M Media composition 
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on plates with specific media. One set of plants was fed on complete nutrient solution 

containing 3 mM KNO3 as nitrate source and 0.15 mM MgSO4 as sulfate source (S+N+; referred 

to as normal condition). A second set of plants was fed on sulfate limited nutrient solution 

containing 3 mM KNO3 and 0.05 mM MgSO4 (S-N+; referred to as sulfate limitation). A third set 

of plants was supplied with complete nutrient solution for 17 days and subsequently moved to 

the medium with no sulfate source for 4 days: 3 mM KNO3 and 0 mM MgSO4 ( S0N+; referred 

to as induced sulfate starvation). A fourth set of plants was fed on nitrate limited medium 

containing 1 mM KNO3 and 0.15 mM MgSO4 (S+N-; referred to as nitrate limitation). The last 

set of plants was fed on sulfate/nitrate double limited medium containing 1 mM KNO3 and 

0.05 mM MgSO4 (S-N-; referred to as sulfate/nitrate double limitation). The exact media 

composition is shown in table 4.1M (purple box). All media were supplied with 0.8% of EEO 

agarose. Plates were first stored at 4°C in the dark for three days. Subsequently they were 

transferred to a controlled environmental chamber at 22°C under 16-h-light/8-h-dark 

cycles where they were grown vertically for 21 days.  

4.2.4 Primary metabolite profiling 

 Metabolite profiling was performed by gas chromatography coupled to electron 

impact ionization/time-of-flight mass spectrometry (GC-EI/TOF-MS) using an Agilent 6890N24 

gas chromatograph (http://www.agilent.com Agilent Technologies, Böblingen, Germany) with 

split and splitless injection onto a FactorFour VF-5ms capillary column, 30 m length, 0.25 mm 

inner diameter, and 0.25 μm film thickness (Varian-Agilent Technologies), which was 

connected to a Pegasus III time-of-flight mass spectrometer (LECO Instrumente GmbH, 

Mönchengladbach, Germany; http://www.leco.de) as described previously (Dethloff et al. 

2014, Erban et al. 2007, Wagner et al. 2003). Briefly, plant material was frozen in the liquid 

nitrogen immediately after harvesting to stop the metabolism. Frozen tissue was homogenised 

as described in Chapter 2 using the Genogrinder and aliquoted into 2 ml Eppendorf tubes. The 

soluble metabolites were extracted by a two-step methanol and chloroform extraction. Briefly, 

the extraction buffer was pre-mixed: for each 100 µl of ice-cold MeOH (to stop most enzymatic 

activity), 10  µl nonadecanoic acid methylester “C19” (fresh prepared, dissolved in chloroform: 

2 mg ml-1; internal standard for organic phase), and 10 µl sorbitol (from stock, dissolved in 

MeOH: 2 mg ml-1; internal standard for polar phase) was added. The appropriate amount of 

pre-mix was added to the sample depending on its fresh weight (Table 4.2M). The sample was 

then mixed and left at room temperature until entire batch (including the blank samples) was 

prepared. Subsequently, samples were shaken at 70°C for 15 min (950 rpm in the 

thermomixer). After that they were cooled down to room temperature and the appropriate 
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Sample weight 
[mg]

Pre Mix 
[µl]

Chloroform 
[µl]

Water                 
[µl]

30 - 45 240 133 267
45 - 55 300 167 333
55 - 65 360 200 400
65 - 75 420 233 467
75 -90 480 267 533

>90 600 333 666

amount of chloroform was added (Table 4.2M). Subsequently, the samples were shaken at 

37°C for 5 min (950 rpm in the thermomixer). Afterwards, appropriate amount of water was 

added (Table 4.2M) and the samples were well mixed and centrifuged at 14,000 g for 5 min to 

separate the bottom organic phase from the top polar phase. Subsequently two 100 µl 

aliquots of polar phase and one (if possible) 100 µl aliquot of organic phase were dried in a 

vacuum concentrator without heat. The pellet was stored at -80°C until further processing.  

Table 4.2M The composition of extraction mix depending on the sample fresh weight 

 

 

 

 

  

Dried extracts were given to the Applied Metabolome Analysis group of Dr Joachim Kopka for 

GC-MS based metabolite profiling. Metabolites were methoxyaminated and trimethylsilylated 

manually prior to GC-EI/TOF-MS analysis (Erban et al. 2007, Fiehn et al. 2000, Lisec et al. 2006, 

Roessner et al. 2000, Wagner et al. 2003).  Retention indices were calibrated by addition of a 

C10, C12, C15, C18, C19, C22, C28, C32, and C36 n-alkane mixture to each sample (Strehmel et al. 

2008).   

 GC-EI/TOF-MS chromatograms were acquired, visually controlled, baseline corrected 

and exported in NetCDF file format using ChromaTOF software (Version 4.22; LECO, St. Joseph, 

USA).  GC-MS data processing into a standardized numerical data matrix and compound 

identification were performed using the TagFinder software (Allwood et al. 2009, Luedemann 

et al. 2008). Compounds were identified by mass spectral and retention time index matching 

to the reference collection of the Golm metabolome database (GMD, 

http://gmd.mpimpgolm.mpg.de/; Hummel et al. 2010, Kopka et al. 2005, Schauer et al. 2005) 

and to (http://www.nist.gov/srd/mslist.htm) – the mass spectra of the NIST08 database.  

Guidelines for manually supervised metabolite identification were the presence of at least 3 

specific mass fragments per compound and a retention index deviation < 1.0% (Strehmel et al. 

2008).   
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 All metabolites identified in an experiment were normalized by sample fresh weight 

and internal standard. For quantification purposes all metabolites were evaluated for best 

specific, selective and quantitative representation of observed analytes.  Laboratory and 

reagent contaminations were evaluated by non-sample control experiments.  Metabolites 

were routinely assessed by relative changes expressed as response ratios, i.e. x-fold factors in 

comparison to a control condition or in comparison to the overall median of each metabolite 

measurement.    

4.2.5 Statistical analysis 

Statistical analysis described in the first two parts of the chapter (excluding metabolite 

profiling) was performed by Fabien Chardon as previously described (Ikram et al. 2012). Briefly, 

ANOVA of phenotypic data was performed using the general linear models (GLM) procedure of 

SAS software (http://www.sas.com). Phenotypic correlations were calculated for all 

combinations of traits in each sulfate condition as described previously (Ikram et al. 2012) by 

using XLSTAT software (http://www.xlstat.com). Significant correlations were visualised by 

using Cytoscape software (http://www.cytoscape.org). Hierarchical ascendant clustering was 

performed by using the XLSTAT software according to the Ward method. Differences between 

accessions and conditions were determined using XLSTAT ANOVA comparisons and Student-

Newman-Keuls multiple comparison method. 

 Statistical analysis of the primary metabolite profiling was performed by Sarah 

Whitcomb. All the analysis was performed in Microsoft Excel 2010 using the log10-transformed 

response ratios. The assignment of significantly altered metabolites was based on information 

from Kyoto Encyclopaedia of Genes and Genomes (KEGG) – a database of manually drawn 

pathway maps (http://www.genome.jp/kegg/).    
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4.3 Results 

4.3.1 The general arabidopsis response to sulfur availability 

In order to characterise general plant responses to sulfate limitation and starvation, 25 

arabidopsis accessions were grown in hydroponic culture for 35 days which is the vegetative 

growth period (section 4.2.2). One set of plants was grown on complete nutrient solution 

containing 0.15 mM MgSO4 as a source of sulfate and is referred to as the normal or control 

condition (S+N+). The second set of plants was supplied with 0.05 mM MgSO4 as a source of 

sulfate and is referred to as sulfate limitation (S-N+). The starvation condition (no source of 

sulfate; S0N+) in this experiment was induced for the last seven days of plant growth. Initially 

these plants were grown in normal sulfur conditions. The nutrient solutions were changed 

once every week in order to maintain constant concentration of elements in the growing 

medium over the entire growth period. The composition of the growth media was based on 

the experiment published previously by Ikram et al. (2012).  

To characterise developmental variation in response to various sulfur regimes among 

25 arabidopsis accessions ten morphological traits that contribute to plant growth were 

investigated. To quantify the differences in vegetative plant growth between normal 

conditions, sulfate limitation, and sulfate starvation shoot and root fresh matter (SFM and RFM 

respectively) and primary root length (PRL) were measured at the time of harvesting. 

Subsequently, the ratio of RFM and PRL was calculated, which is termed root thickness (RT) 

and corresponds to the changes in the amount of lateral roots (Ikram et al. 2012). After the 

lyophilisation of the samples the shoot and root dry matter (SDM and RDM respectively) was 

measured. The shoot and root water concentration (SH2O and RH2O respectively) was 

calculated by subtracting dry weight of samples from their fresh weight and expressing it as a 

percentage of the total fresh weight. The shoot to root fresh and dry matter ratio (SRFM and 

SRDM respectively) was calculated to obtain the information about biomass allocation. 

In order to characterise sulfate metabolism ten metabolic traits were investigated. All 

the metabolites described in this part of experiment are shown as nmol mg-1 DW. I measured 

shoot and root sulfate concentration (SSO4 and RSO4 respectively) and the concentration of 

sulfur containing metabolites in both shoots and roots: cysteine (SCys and RCys respectively) 

and glutathione (SGSH and RGSH respectively) to examine the effect of different sulfur 

nutrition regimes on those traits. Additionally, I measured shoot and root nitrate 

concentration (SNO3 and RNO3 respectively) and phosphate concentration (SPO4 and RPO4 

respectively) to verify the natural variation and the effect of sulfate availability on those 
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metabolites. All the metabolic traits were measured from the dry tissue samples using high-

performance liquid chromatography (HPLC). 

To investigate the general arabidopsis response to normal, limited, and sulfur-starved 

conditions and identify the most responsive traits in these three conditions the averages of all 

accessions for each trait in each of the three nutrition regimes tested were computed.  The 

phenotypic profile of arabidopsis response to sulfate limitation and starvation is shown in 

Figure 4.1 as a percentage of the values obtained in control condition. The significance of 

arabidopsis response to different nutrition regimes is shown in Figure S4.1.  

The analysis of morphological traits revealed that in Arabidopsis thaliana sulfate 

limitation results in significantly higher root biomass (21%), but lower shoot biomass (15%, 

Figure 4.1). Since there was no change in root length, but root thickness was significantly 

higher (32%) compared to control condition, it can be concluded that plants produce more 

lateral roots in sulfate limitation compared to control condition. This is also reflected in low 

SRDM which indicates an increase in allocation of new biomass to the roots compared to 

control conditions. 

The differences in morphological traits during induced sulfate starvation were not that 

clearly pronounced. The root biomass did not change compared to control condition and the 

root thickness slightly increased (15%), but the difference was not as clearly pronounced as in 

continuous sulfate limitation (Figure 4.1). The decrease in shoot biomass in induced starvation 

resulted in a decrease in SRDM which again suggests higher allocation of new biomass into 

roots during sulfate withdrawal. The less pronounced differences may be a result of 

redistribution of sulfate accumulated in cells when it was sufficiently supplied. However, in this 

experiment total sulfate concentration was measured. Therefore, at this stage it is not possible 

to quantify the amount of sulfate from different subcellular pools. 

Sulfate limitation resulted in a lower sulfate (16%) and phosphate (32%), but slightly 

higher nitrate concentration (8%) in roots compared to control condition (Figure 4.1). In 

contrast, sulfate limitation resulted in higher concentrations of all measured anions in shoots 

compared to control condition. The concentration of cysteine and GSH was significantly lower 

in both shoots and roots in sulfate limitation compared to control condition. These results 

indicate that the response of plants to continuous sulfate limitation differs from the response 

to induced sulfate starvation. 
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Phenotypic response profiling of arabidopsis to sulfate limitation (0.05 mM MgSO4 – red line) and 
starvation (0 mM MgSO4 – green line) shown as a percentage of the value obtained in control 
condition (0.15 mM MgSO4 – grey circle). The percentage was calculated for both sulfate limitation 
and starvation from the average of all accessions for each trait. The average value of all accessions 
in normal sulfate condition was set as 100%. Abbreviations: root dry matter (RDM), shoot dry 
matter (SDM), shoot to root ratio of dry matter (SRDM), primary root length (PRL), root thickness 
(RT), shoot water concentration (SH2O), root water concentration (RH2O), shoot nitrate 
concentration (SNO3), root nitrate concentration (RNO3), shoot phosphate concentration (SPO4) 
root phosphate concentration (RPO4), shoot sulfate concentration (SSO4), root sulfate 
concentration (RSO4), shoot cysteine concentration (SCys), root cysteine concentration (RCys), 
shoot glutathione concentration (SGSH), root glutathione concentration (RGSH); This analysis was 
performed by Fabien Chardon. 

 

Induced sulfate starvation resulted in a dramatic decrease in sulfate concentration in 

roots (59%; Figure 4.1). However, root nitrate and phosphate concentration did not differ 

compared to control condition. The concentration of the three anions decreased significantly 

in the shoots. Nevertheless, sulfate concentration in the shoots decreased to much lesser 

extent than in roots (34%). This is not surprising since sulfate reduction occurs mainly in the 

leaves. Induced sulfate starvation resulted also in a significant decrease in the concentration of 

both thiols compared to control condition (Figure 4.1). However, this phenotype was much 

Figure 4.1 General arabidopsis response profile to sulfate limitation and starvation 
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more pronounced in roots, especially for GSH. The low concentration of thiols in shoots during 

sulfate starvation is most likely a result of unavailability of pathway substrate - sulfate.  

4.3.2 The analysis of natural variation among 25 arabidopsis accessions 

In order to determine the proportion of variance explained by genetic and 

environmental effects, ANalysis Of VAriance  (ANOVA) was performed by Fabien Chardon for 

all the traits studied under normal, limited, and sulfur-starved conditions (Figure 4.2). In this 

analysis genotype and nutrition were considered as the two main effects with potential 

genotype x nutrition interaction. The ANOVA analysis revealed that nutrition had a significant 

effect on all investigated traits except RH2O and the genetic effect was highly significant for all 

studied traits (Table S4.1). Two traits– SRFM and SH2O – did not show a significant effect of 

genotype x nutrition interaction (Figure 4.2). The global nutrition effect is shown in Figure S4.1 

and the global genetic effect is shown in Figure S4.2. The plant response in different nutrition 

regimes was significant for majority of traits analysed and the percentage variation explained 

by each factor which was computed from the sum of squares differed among the studied traits 

(Table S4.1).  

Genotype explains most of the variation in morphological traits (Figure 4.2A). For six 

out of ten traits measured the percentage variation explained by genotype was over 50%. The 

root length is the morphological trait with the highest variation due to genotype (73%) and the 

lowest effect of nutrition (1%) among morphological traits. Additionally, the genotype 

explained also most of the variation in shoot and root biomass and root thickness (c.a. 55%).  

The variation in biomass ratios was mainly due to nutrition (42% and 26% respectively for 

SRFM and SRDM). These were also the two morphological traits with the highest nutrition 

effect. Because both fresh matter and dry matter showed similar patterns of response the 

fresh matter data were excluded from further analyses in order to avoid unnecessary 

duplication of the data. Interestingly, the variation in SH2O was mainly explained by genotype 

(48%), whereas the variation in RH2O was mainly explained by the genotype x nutrition 

interaction (31%). A significant effect of genotype x nutrition interaction was observed for 

most of the investigated traits indicating that the effect of sulfate nutrition on plant growth is 

genotype dependent (Figure 4.2).  

 

 

 



   Arabidopsis response to sulfate and/or nitrate availability                                                      Chapter 4 
 

80 
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SNO3 RNO3 SPO4 RPO4 SSO4 RSO4 SCys RCys SGSH RGSH

Nutrition Genotype Nutrition x Genotype Residual

A.

B.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SFM RFM SRFM SDM RDM SRDM PRL RT SH20 RH20

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA of ten morphological traits and 15 metabolic traits among 25 arabidopsis accessions grown 
under normal sulfate condition, sulfate limitation and sulfate starvation. (A) The morphological 
traits studied are shoot fresh matter (SFM), root fresh matter (RFM), shoot to root ratio of fresh 
matter (SRFM), shoot dry matter (SDM), root dry matter (RDM), shoot to root ratio of dry matter 
(SRDM), primary root length (PRL), root thickness (RT), shoot water concentration (SH2O), and root 
water concentration (RH2O); (B) The metabolic traits studied are shoot nitrate concentration 
(SNO3), root nitrate concentration (RNO3), shoot phosphate concentration (SPO4) root phosphate 
concentration (RPO4), shoot sulfate concentration (SSO4), root sulfate concentration (RSO4), shoot 
cysteine concentration (Scys), root cysteine concentration (Rcys), shoot glutathione concentration 
(SGSH), root glutathione concentration (RGSH); Histograms show the effects of nutrition, genotype, 
and nutrition x genotype interaction as percentages of explained variation. This analysis was 
performed by Fabien Chardon. 

 

Both genotype and nutrition have a significant effect on all investigated metabolic 

traits (Figure 4.2B). The percentage of explained variation differs depending on the trait. 

Nutrition has the highest effect on variation among sulfate related metabolites in roots. 

Moreover, it is the main source of variation in shoot sulfate concentration (38%), but the 

Figure 4.2 Analysis of variance (ANOVA) among 25 arabidopsis accessions 
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variation in shoot cysteine concentration is mainly due to genotype (31%). Genotype x 

nutrition effect explains most of the variation in SGSH (47%).  

Genotype is the main source of variation for nitrate and phosphate concentration in 

shoots (38% and 33% respectively). Apart from SGSH genotype x nutrition effect was the main 

source of variation for nitrate concentration in roots (41%) and phosphate concentration in 

shoots (33%). A significant effect of genotype x nutrition interaction indicates that the 

variation in plant response to sulfur nutrition is genotype dependent. The significant variation 

due to different factors (nutrition, genotype or both) among all measured traits can be used to 

dissect the genetic variation of plant response to sulfur availability and eventually different 

adaptive strategies to environmental changes among arabidopsis accessions. 

4.3.3 Classification of accessions according to their response to sulfate limitation 

The analysis of morphological and metabolic traits among the collection of 25 

accessions described above provided a general response profile of Arabidopsis thaliana to 

changing sulfur availability. The analysis of the response of particular accessions to sulfate 

availability (described in previous sections of this chapter and shown in detail in Figure S4.2) 

revealed that some of them were following the general patterns of response shown in Figure 

4.1. However, some of the accessions showed different response patterns to sulfate 

deficiency. Therefore, in order to characterise these specific responses a hierarchical 

ascendant clustering (HAC) was performed by Fabien Chardon (Figure 4.3A). For this analysis 

he used the values obtained in the two stress conditions shown as a percent of values 

obtained in control condition as described before (Ikram et al. 2012). Based on this analysis the 

behaviour of all accessions from the collection was classified into four distinct classes.   

Class 1 included Ws-0, Gre-0, Akita, Bay-0, Sha, Sakata, N13, and Mt-0; class 2 

included: Stw-0, Edi-0, Oy-0, Ge-0, Tsu-0, Ct-1 and Alc-0; class 3 included: JEA, Bl-1, Pyl-1, Col-0; 

and class 4 included: Cvi-0, Bur-0, Mh-1, Blh-1, St-0, and Kn-0. The response profile of each 

class was first characterised based on the plant phenotype under sufficient sulfate supply 

(Figure 4.3B). The investigation of morphological traits allowed the separation of class 1 and 4 

from class 2 and 3. Classes 1 and 4 group relatively small plants (with class 1 including the 

smallest plants in the collection), whereas classes 2 and 3 comprise significantly bigger plants 

(with class 2 including the biggest plants from entire collection) in terms of shoot and root 

biomass as well as root length and thickness. Class 3 consisting of big plants showed the lowest 

SRDM suggesting a high biomass allocation to the roots in accessions from this class. This 
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result is in contrast to class 4 containing slightly smaller plants, which has the highest SRDM 

ratio among all four classes indicating higher biomass allocation to the shoots.  

The comparison of class 2 and 3 including morphologically bigger accessions revealed 

interesting differences in metabolic traits (Figure 4.3B). In general, class 3 which includes 

slightly smaller plants than those from class 2 showed the highest anion concentration among 

all classes. On average accessions from class 3 have 26% higher SNO3, 10% higher SSO4, and 

23% higher SPO4 compared to accessions from class 2. The differences in anion concentration 

in roots are slightly less pronounced. Interestingly, the thiol concentration is low in both 

classes, with the lowest thiol concentration in class 2 among all four classes. Both shoot and 

root sulfate concentration is lower in class 2 than in class 3. There are substantial differences in 

phosphate concentration between shoots and roots in the two classes. The accessions from 

class 2 have more phosphate in roots, whereas accessions from class 3 have more phosphate 

in the shoots.  
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B. Class 1 Class 2 Class 3 Class 4 GR

RDM 0.944 1.121 1.079 0.857 0.994

SDM 0.917 1.112 0.972 0.999 1.000

SRDM 0.999 0.970 0.874 1.157 1.009

RL 0.970 1.003 1.017 1.009 0.996

RT 1.006 1.141 1.036 0.820 1.003

SH20 1.001 0.999 1.001 0.997 1.000

RH20 1.002 1.006 1.000 0.994 1.000

MORPHOLOGICAL TRAITS

Class 1 Class 2 Class 3 Class 4

RNO3 1.052 0.970 1.011 0.967 1.002

SNO3 0.905 0.948 1.192 0.955 0.975

RSO4 0.945 0.937 1.062 1.056 0.988

SSO4 0.840 1.030 1.130 1.000 0.978

RPO4 0.793 1.252 0.805 1.150 1.009

SPO4 0.876 0.918 1.127 1.080 0.977

RCys 1.060 0.994 0.983 0.964 1.006

SCys 1.013 0.953 0.967 1.067 1.002

RGSH 0.912 0.966 1.270 0.853 0.970

SGSH 0.962 0.915 0.966 1.158 0.996

METABOLIC TRAITS

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Classification of the collection into four distinct classes 

Hierarchical ascendant classification of accessions performed based on the different patterns of 
plant response to sulfate limitation and starvation. (A) Dendrogram of 25 accessions. (B) Heat map 
of the differences in morphological and metabolic traits between the classes in normal sulfate 
condition. The values indicate class means shown as relative to average value of all classes for each 
trait. Additionally, general arabidopsis response (GR) is shown in the panel on right as relative to 
average of all classes. Colours indicate the differences between classes with the lowest value in 
blue and the highest in red. GR is color-coded independently from the classes. Abbreviations: root 
dry matter (RDM), shoot dry matter (SDM), shoot to root ratio of dry matter (SRDM), primary root 
length (PRL), root thickness (RT), shoot water concentration (SH2O), root water concentration 
(RH2O), shoot nitrate concentration (SNO3), root nitrate concentration (RNO3), shoot phosphate 
concentration (SPO4) root phosphate concentration (RPO4), shoot sulfate concentration (SSO4), 
root sulfate concentration (RSO4), shoot cysteine concentration (SCys), root cysteine concentration 
(RCys), shoot glutathione concentration (SGSH), root glutathione concentration (RGSH); 

 

Similarly, the investigation of metabolic traits among class 1 and 4 including small 

plants revealed that class 1 has lower metabolite concentration than class 4 which has 

morphological phenotype closer to average (Figure 4.3B).  Class 1 is characterised by the 

lowest anion concentration among the classes. The only exception is nitrate concentration in 

roots which in this class is the highest among all four classes. Thiol concentration in this class is 

also lower than in class 4. In fact, class 4 is characterised by the lowest root thiol 

concentration.  
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Although the diversification of the four classes according to morphological traits imply 

the grouping of class 2 and 3 including bigger plants and class 1 and 4 including smaller plants, 

according to metabolic traits class 1 and 2 include accessions with metabolite concentration 

below the average whereas class 3 and 4 include accessions with metabolite concentration 

above the average. Additionally, class 3 is characterised by higher anion concentration and 

class 4 by higher thiol concentration which is the main difference between the two classes. 

There was no apparent difference in water concentration between the classes (Figure 4.3B). 

4.3.4 Analysis of different patterns of response to low sulfur supply  

In order to characterise plant response to different sulfur nutrition regimes the main 

differences between the classes in response to sulfate limitation and induced sulfate 

starvation were characterised (Figure 4.4). This analysis emphasised higher root biomass 

production characteristic for class 4 and significantly lower concentration of all metabolites in 

class 3 in response to sulfate limitation. Apart from class 3 all the other classes responded to 

sulfate limitation with an increase in anion concentration, especially in shoots. Accessions from 

all classes responded to sulfate starvation with a significant decrease in anion concentration. 

These results indicate that arabidopsis responds differently to continuous sulfate limitation 

and to induced sulfate starvation (Figure 4.4). 

Phenotypic response profiling of four classes is shown as a mean of all accessions belonging to the 
class. The response of individual traits is shown as a percentage of the value obtained in control 
condition (grey circle). Red line corresponds to class 1, orange line corresponds to class 2, blue line 
corresponds to class 3, and green line corresponds to class 4; annotation is in Figure 4.3. 

 

Figure 4.4 Characteristic of the four classes in response to sulfate nutrition 



   Arabidopsis response to sulfate and/or nitrate availability                                                      Chapter 4 
 

85 
 

In order to characterise the behaviour of accessions from each class in response to 

sulfate limitation and induced sulfate starvation detailed response profiles for each class were 

performed, using the same strategy as in previous work on plant response to nitrate 

availability (Ikram et al. 2012). For each trait the average of all accessions within the class was 

calculated. The percentage data are shown as the difference in response to sulfate limitation 

and/or starvation and control condition (Figure 4.6).  

Class 4 is the most similar to the general arabidopsis response profile to sulfate 

availability shown in Figure 4.1. The heat map shown in the Figure 4.3B indicates clearly 

pronounced lower concentration of anions and slightly higher concentration of sulfur-

containing compounds as a common characteristic of class 4 and the general arabidopsis 

response profile. They are also characterised by low root thiol concentration and high root 

phosphate concentration. The similarities between class 4 and general arabidopsis response 

profile occur not only in normal sulfate condition but also in response to sulfate deficiency. A 

higher root biomass and amount of lateral roots (expressed as root thickness) is a common 

response to sulfate limitation for the two groups.   

Accessions from class 2 responded to sulfate limitation with a higher root biomass and 

thickness which was common for all classes except class 3 which did not show a significant 

difference in root biomass compared to control condition (Figure 4.6). Moreover, class 2 

showed higher concentration of all anions tested and GSH in the shoots, whereas class 3 was 

characterised by a low concentration of all metabolites. The response of both class 2 and 3 to 

induced sulfate starvation was similar, especially in morphological traits 

Accessions from class 4 responded to sulfate limitation with the highest root biomass 

and root thickness among all the classes (Figure 4.6). This phenotype was not that clearly 

pronounced in class 1. High shoot concentration of all anions and root nitrate concentration 

was a common response to sulfate limitation of both class 1 and class 4.  

The response of accessions from class 1 and 4 to induced sulfate starvation differed 

compared to their response to sulfate limitation. Class 1 is the only one among all classes 

which responded to induced sulfate starvation with a decrease in root biomass and thickness 

(Figure 4.5). Moreover, it is the only class which showed an increase in root phosphate 

concentration in response to induced sulfate starvation. The traits not affected in any of the 

classes by any of the conditions were SH2O, RH2O and PRL suggesting that neither water 

concentration nor root length play a significant role in response to sulfur deficiency (Figure 
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4.5). In fact, the variation due to nutrition was not significant in RH2O and very low in PRL 

(Figure 4.2).  

The response profiles of each class are shown as an average of all accessions from the class. The 
response of individual traits is shown as a percentage of the value obtained in control condition 
(grey circle). Red line indicates response to sulfate limitation (0.05 mM MgSO4) and green line to 
sulfate starvation (0 mM MgSO4). Abbreviations are in Figure 4.3. 

 

4.3.5 Perturbations in sulfate utilization in sulfate deficient medium 

Because sulfate was the only source of sulfur in the growing media, it was possible to 

analyse its utilisation by the plants in different conditions. To better illustrate this 

phenomenon I show in Figure 4.6 part of the data from figure 4.5 (the morphological traits as 

well as accumulation of nitrate and phosphate are excluded) in a way which demonstrates the 

Figure 4.5 Characteristic of the four classes 



   Arabidopsis response to sulfate and/or nitrate availability                                                      Chapter 4 
 

87 
 

a
a a a

0

50

100

150

200

Class 1 Class 2 Class 3 Class 4

R
S

O
4

 [
n

m
o

l m
g

D
W

-1
] a

b
ab

a

0

20

40

60

80

100

120

140

Class 1 Class 2 Class 3 Class 4

R
S

O
4

 [
n

m
o

l m
g

D
W

-1
]

a

a
a

a

0

20

40

60

80

Class 1 Class 2 Class 3 Class 4

R
S

O
4

 [
n

m
o

l m
g

D
W

-1
]

statistical significance of the differences between the classes and not plant response to 

different nutrition regimes as in Figure 4.5. 

 As shown before, class 3 is characterised by high anion concentration under normal 

sulfate supply (Figure 4.3B). Indeed, class 3 has the highest shoot sulfate concentration among 

all classes (Figure 4.6). There were no changes in shoot thiol concentration in this class 

indicating that increased sulfate concentration does not occur due to disruptions in sulfate 

assimilation. However, the GSH concentration in roots is significantly elevated in this class. In 

sulfate limitation class 3 showed the lowest sulfate concentration, however GSH concentration 

in roots was still high compared to other classes. In induced sulfate starvation this class 

showed high shoot sulfate concentration and root GSH concentration similarly to what was 

observed in normal sulfate condition. GSH is known to be involved in long distance transport of 

small molecules between shoots and roots (Li et al. 2006). Moreover, it has an important role 

in regulation of the sulfate assimilation pathway and response to sulfate deficiency. GSH is 

involved in the modulation of root architecture in response to sulfate deficiency. As mentioned 

in the introduction to this chapter reduction in GSH concentration results in an inhibition in 

root growth. Therefore, it might be hypothesised that increased GSH concentration in roots in 

class 3 can be a way to maintain the production of lateral roots – an organ involved in 

acquiring limited nutrients. In fact, this class showed no changes in root biomass, but an 

increase in the amount of lateral roots was observed (Figure 4.5). 

 Under normal sulfate supply accessions from class 4 did not show specific difference in 

shoots and roots sulfate concentration compared to other classes (Figure 4.6). However, the 

highest shoot GSH and cysteine concentration was observed in these accessions under 

sufficient sulfur supply among all the classes. Therefore, it might be suggested that this class 

has the most effective mechanism of sulfate reduction among the four classes. However, this 

phenomenon was observed under normal sulfur supply only. There were no significant 

changes in GSH and cysteine concentration in this class under sulfate limitation or induced 

starvation. 
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The differences between sulfate related metabolites in the four classes are shown as average 
values of all accession in a class. The red bars indicate response in normal sulfate condition, the 
blue bars indicate response to sulfate limitation, and the green bars indicate response to sulfate 
starvation ± standard deviation. Different letters above the bars indicate values significantly 
different at P-value<0.05 obtained from ANOVA with Newman-Keuls (SNK) multiple comparison 
grouping test. 
 

 

Figure 4.6 Changes in sulfate metabolism in response to differences in sulfate supply 
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4.4 The more in depth analysis of different patterns of response 

Clustering of the 25 arabidopsis accessions revealed four different patterns of 

behaviour in sulfur limitation and starvation. In order to characterise particular patterns of 

response to different nutrition regimes one representative accession from each class was 

selected and analysed in more detail. The representative accessions were selected based on 

the comparison of individual behaviours of accessions with the average behaviours for the 

class and the clustering of accessions based on their behaviour in response to nitrate 

deficiency (Ikram et al. 2012). Sakata was selected as a representative of class 1, Edi-0 as a 

representative of class 2, Col-0 as a representative of class 3, and Cvi-0 as a representative of 

class 4. Class 3 which was characterised by the highest anion concentration among all classes 

in normal sulfate condition was most severely affected by sulfate deficiency (Figure 4.6). This 

may suggest that the variation in anion concentration in different accessions is dependent on 

plant demand and plant response to sulfate availability differs depending on the initial 

concentration of anions. Therefore, to further investigate this hypothesis I added C24 to this 

reduced set of accessions to create a range in initial concentration of nitrate and sulfate which 

would allow me to investigate this problem further. C24 was not included in the global analysis 

of 25 accessions (see section 4.2.1).  

As mentioned before, the analysis of the response of 25 arabidopsis accessions to 

sulfate limitation and starvation was based on previous analysis of the same collection of 

accessions which provided information about plant response to nitrate limitation (Ikram et al. 

2012). Additionally, an importance of interaction between sulfate and nitrate metabolism in 

response to limitation of one of the two elements was highlighted in the introduction to this 

chapter. Therefore, it was of interest to characterise the effect of nitrate limitation and the 

interaction between nitrate and sulfate in more detail. Hence, I added two additional nutrition 

regimes to this analysis: nitrate limitation with sufficient sulfate and nitrate/sulfate double 

limitation. This experimental design allowed independent testing of the effect of sulfate status, 

nitrate status, and sulfate x nitrate interactions on plant growth.  

I grew the plants on agarose plates, vertically for 21 days as described in section 4.2.3. 

Briefly, plants were grown in 16-h-light/8-h-dark cycles. One set of plants was grown on 

complete nutrient solution containing 0.15 mM MgSO4 as a source of sulfate and 3 mM KNO3 

as a source of nitrate and is referred to as normal or control condition (S+N+). The second set 

of plants was supplied with 0.05 mM MgSO4 as a source of sulfate and is referred to as sulfate 

limitation (S-N+). The starvation condition (no source of sulfate) in this experiment was 
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induced for the last four days of plant growth by transferring plants from the normal condition 

to new plates with no sulfate (S0N+). Up to this point these plants were grown in normal sulfur 

condition. Both sulfate limitation and starvation condition media were supplied with 3 mM 

KNO3 as a source of nitrate. The nitrate limited plants were supplied with 0.15 mM MgSO4 and 

1 mM KNO3 (S+N-). In double limitation plants were supplied with 0.05 mM MgSO4 and 1 mM 

KNO3 (S-N-). In this experiment the media were not changed over the growth period except for 

plants exposed to sulfate starvation which were moved to new plates for the last four days 

before harvesting. The composition of growth medium used in this experiment was based on 

the medium used in hydroponic cultures. In order to adjust the amount of particular nutrients 

to the requirements of experimental set up I ran a pre-experiment. I grew Col-0 on media with 

different concentrations of nitrate and sulfate. I measured anion concentration in these plants 

to make sure that the conditions I used would be sufficient to see the differences in plant 

response to different nutrition regimes (data not shown). 

 After 21 days of growth plants were incubated with medium containing 100 µCi [35S] 

sulphuric acid (specific activity 70,000 dpm / 10 µl) in the light for four hours; only roots were 

flooded (pH 6; see Chapter 2 section 2.2.18). The experiments with radioactive labelling were 

conducted essentially as previously described (Kopriva et al. 1999, Koprivova et al. 2000, 

Vauclare et al. 2002). To investigate the concentration of radioactive sulfate taken up by the 

plant I determined the radioactivity in plant extract (TU). Additionally, I measured the 

incorporation of [35S]sulfate into thiols (ITh) and proteins (IP). The concentration of [35S]sulfate 

detected into thiols and proteins together is referred to as absolute sulfate flux (ASF) through 

the sulfate assimilation pathway. Additionally, I calculated the percentage of the radioactivity 

detected in thiols and proteins together (relative to the total radioactivity detected in plant 

extracts) which is referred to as relative sulfate flux through the assimilation pathway. The 

ratio of radioactivity detected in the shoots and the radioactivity detected in the entire plant 

indicates sulfate translocation from the roots to the shoots (TTS). It should be stressed that 

these traits are expressed as concentrations (Chao et al. 2014, Mugford et al. 2011) and 

therefore should be interpreted with caution. Because the plant growth conditions in this 

experiment were different from those in the global analysis of 25 accessions described above I 

also measured the shoot anion (SNO3, SPO4, SSO4) and thiol (SCys and SGSH) concentration in 

these plants. 
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4.4.1 General effect of sulfate and nitrate availability on sulfate metabolism 

To characterise the effect of sulfate and nitrate availability on the anion concentration 

and sulfate metabolism, I calculated the averages of all accessions for each trait in each 

condition tested (Figure 4.8). The experimental design allowed independent analysis of sulfate 

limitation, nitrate limitation, and sulfate x nitrate interactions. 

Under sufficient nitrate the distribution of radioactive sulfate between sulfate and 

proteins shown as a percentage of [35S]sulfate taken up by the plant did not change depending 

on sulfate availability (Figure 4.8B). About 80% of [35S]sulfate remained in the form of sulfate 

and about 1% was incorporated into proteins. In contrast, the percentage of [35S]sulfate which 

ended up in thiols was higher in sulfate limitation (14%) and induced sulfate starvation (16%) 

compared to control condition (8%). The remaining radioactive sulfate was probably 

incorporated into methionine and its derivatives, and the products of secondary sulfate 

metabolism which were not measured in this experiment. It is known that sulfate uptake is 

strongly up regulated in sulfate limitation (Davidian & Kopriva 2010). Indeed, in this 

experiment sulfate uptake was higher in plants exposed to sulfate limitation and induced 

starvation (Figure 4.8C). The total sulfate concentration of plants exposed to sulfate limitation 

and starvation not incubated with [35S]sulfate was lower compared to plants grown under 

normal sulfate supply. There were no changes in cysteine and only slightly lower GSH 

concentration in these plants in relation to plants grown under normal sulfate supply (Figure 

4.8A). These results suggest that sulfate flux through the reduction pathway increased as a 

result of sulfate limitation.  In fact, there was a higher incorporation of [35S]sulfate into thiols 

as well as absolute and relative sulfate flux in plants exposed to sulfate limitation (Figure 4.8C). 

It is also long known that the activity of APR2 – the key enzyme of the sulfate assimilation 

pathway – is induced by sulfate limitation (Davidian & Kopriva 2010, Lappartient et al. 1999, 

Lee et al. 2011). 

In this experiment sulfate uptake was significantly lower in plants exposed to nitrate 

limitation compared to plants grown under sufficient nitrate (Figure 4.7C). Moreover, the 

percentage of [35S]sulfate taken up by the plant which remained as sulfate was also lower 

under nitrate limitation and sufficient sulfate compared to plants grown under sufficient 

nitrate (Figure 4.7B). However, the total sulfate concentration in plants not exposed to 

radioactive sulfate (Figure 4.8A) did not change due to nitrate limitation, but cysteine and 

glutathione were higher compared to phenotypes observed under sufficient nitrate supply. 

The percentage of [35S]sulfate  taken up by the plant that was converted into proteins reached 
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about 4% in nitrate limitation compared to 1% under nitrate sufficient condition (Figure 4.8B). 

This phenotype was common for roots and shoots (Figure 4.7C) and indicates higher 

assimilation of sulfate under nitrate deficiency. This is not in agreement with the literature as it 

was shown that nitrate deficiency inhibits sulfate reduction (Koprivova et al. 2000, Lee et al. 

2011). However, in these experiments five week old plants grown in hydroponic cultures 

(Koprivova et al. 2000) or two week old plants grown on plates but with higher sulfate and 

lower phosphate (compared to media used in the experiment described here) were analysed. 

Although it is possible that these differences in growth conditions might have caused these 

discrepancies, more analysis would be required to investigate this issue further. 
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(A) Concentration of anions and thiols in response to nutrient limitation. (B) The percentage of [35S] 
taken up by the plant and remained in form of sulfate and incorporated into thiols and proteins. (C) 
The analysis of sulfate flux and uptake expressed as a concentration of [35S]sulfate detected in 
plant extracts (TU) and different fractions of plant extracts (IP, ITh etc.). Arabidopsis response to 
different nutrition regimes is shown as average of all accessions for each trait in normal sulfate 
condition (S+), sulfate limitation (S-), sulfate starvation (S0) as well as normal nitrate condition (N+) 
and nitrate limitation (N-).Different letters indicate values significantly different at P-value ≤ 0.05 
obtained from ANOVA with Newman-Keuls (SNK) multiple comparison grouping method. Capital 
letters correspond to differences between nitrate nutrition regimes and small letters correspond to 
differences between sulfate nutrition regimes – treated separately under sufficient and limited 
nitrate. The error bars correspond to standard deviation. 

 

4.4.2 The analysis of natural variation among five arabidopsis accessions 

To take the analysis described above further the variation in response to different 

nitrate and sulfate availability among five accessions representing different patterns of 

behaviour was investigated. ANOVA was run by Fabien Chardon to determine the proportion 

of variance explained by genetic and environmental effects (Figure 4.8). In this analysis there 

were three main effects: genotype, nitrate nutrition, and sulfate nutrition; with potential 

interactions: nitrate nutrition x sulfate nutrition, genotype x nitrate nutrition, and genotype x 

sulfate nutrition. The ANOVA analysis revealed significant effects of genotype for all the traits 

except SSO4 (Table S4.3). There was also significant variation due to nitrate nutrition for all the 

traits analysed and significant effect of sulfate nutrition for most of the traits except SPO4 and 

IP (Figure 4.8). Only five traits showed significant effect of nitrate x sulfate nutrition 

interaction: SPO4, SSO4, SGSH, ITh and RSF; six traits showed significant effect of genotype x 

nitrate nutrition interaction: SNO3, SPO4, SSO4, SCys, SGSH, and TU; and five traits showed 

significant effect of genotype x sulfate nutrition interaction: SNO3, SPO4, SSO4, SCys, SGSH. 

Figure 4.7 General effect of sulfate and nitrate limitation on sulfate metabolism 



   Arabidopsis response to sulfate and/or nitrate availability                                                      Chapter 4 
 

94 
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SNO3 SPO4 SSO4 SCys SGSH ITh IP TTS ASF RSF TU

Residual

Genotype x S nutrition

Genotype x N nutrition

N nutrition x S nutrition

S nutrition

N nutrition

Genotype

The percentage variation explained by each factor was computed from the sum of squares and 

differed among studied traits (Table S4.3).  

Genotype was the main source of variation for SPO4 (79%), SCys (35%), and TU (17%). 

Interestingly, for five out of 11 traits measured, nitrate nutrition was the main source of 

variation (Figure 4.9). It explained most of the variation observed for SGSH concentration 

(92%) and sulfate incorporation into proteins (63%). Moreover, it accounted for 42% of the 

variation observed for nitrate concentration, 41% of the variation in relative sulfate flux and 

35% of the variation in absolute sulfate flux.  Sulfate nutrition was the main source of variation 

among three traits closely related to sulfate metabolism: 45% for SSO4, 38% for TTS and 33% 

for ITh. The two traits with the highest effect of nitrate x sulfate nutrition interaction are RSF 

(8%) and SGSH (2.9%). However, SGSH and RSF behave in an opposite manner. Sulfate 

limitation causes lower SGSH concentration in sufficient nitrate availability. But when nitrate is 

limited, SGSH concentration is lower due to sulfate limitation. In contrast, sulfate limitation 

causes higher RSF when nitrate is sufficient. When nitrate is limited, sulfate limitation causes 

lower RSF (see below). 

 

The analysis of variance (ANOVA) of the morphological traits which correspond to anion 
concentration and sulfate metabolism among five accessions representing different patterns of 
response to sulfate availability; Abbreviations: shoot nitrate concentration (SNO3), shoot 
phosphate concentration (SPO4), shoot sulfate concentration (SSO4), shoot cysteine concentration 
(SCys), shoot  glutathione concentration (SGSH), sulfate incorporation into thiols (ITh), sulfate 
incorporation into proteins (IP), sulfate translocation to the shoots (TTS), absolute sulfate flux 
(ASF), relative sulfate flux (RSF), total sulfate uptake (TU). 

 

Figure 4.8 Analysis of variance (ANOVA) among five Arabidopsis accessions 
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4.4.3 Characteristics of accessions 

In order to characterise the differences in response to the various nutrition regimes 

used in this experiment among all five accessions the genetic variation among the traits was 

investigated (Figure 4.9). Edi-0 was selected as a representative of class 2 which includes the 

largest plants in the collection. In this experiment it had the lowest total sulfate uptake among 

all accessions tested. Consequently, the absolute flux which is a function of both uptake and 

assimilation is very low in this accession. However, relative flux which refers to assimilation 

only is the highest. Therefore, it is possible to conclude that this accession has the highest rate 

of sulfate reduction. However, taking into account low incorporation of [35S]sulfate into thiols 

in this accession as well as low accumulation of cysteine and glutathione most of the sulfate 

probably enters secondary metabolism. A quantification of methionine and glucosinolates 

would be necessary to verify this statement.  

Col-0 as a representative of class 3 is characterised by the highest absolute sulfate flux 

and high sulfate incorporation into thiols among all accessions (Figure 4.9). There was no 

significant difference between accessions in terms of sulfate incorporation into proteins which 

might suggest that sulfate incorporation in proteins is not genotype dependent. However, Col-

0 showed the lowest concentration of SGSH, but the highest concentration of cysteine in shoot 

among all accessions tested. The low SGSH concentration is in agreement with the general 

characteristic of class 3 which showed rather low concentration of thiols. However, high 

cysteine concentration in this accession is common with the general arabidopsis response 

profile, rather than class 3 specifically. Interestingly, C24 showed very similar pattern of 

response in this experiment as Col-0 suggesting that it might belong to the same class (Figure 

4.9). 

Sakata was selected as a representative of class 1 that includes the smallest plants in 

the entire collection. Moreover, class 1 was also characterised by low concentration of anions 

and thiols under sufficient sulfate supply (Figure 4.3). In the experiment with [35S]sulfate 

labelling it showed the highest sulfate uptake and sulfate translocation to the shoots (Figure 

4.10). However it was characterised by the lowest relative flux which is a function of sulfate 

assimilation. It also showed low absolute flux and sulfate incorporation in thiols.  This, together 

with low cysteine and glutathione concentration in this accession could suggest low rate of 

sulfate assimilation in this accession. The apparent differences between the general 

characteristic of class 1 shown on Figure 4.3 and the results shown on figure 4.9 e.g. 

concerning nitrate concentration and sulfate allocation between shoots and roots  (both traits 
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are the lowest among all the classes in first experiment and the highest here) are most likely to 

occur due to big differences in growth conditions. In the first experiment the plants were 

grown in hydroponic cultures for five weeks and here they were grown on plates for three 

weeks. Moreover, the growth conditions differed in photoperiod and light conditions. It has 

been shown previously that the phenotypes of mutants lacking different isoforms of O-

acetylserine(thiol)lyase (OAS) differ significantly depending on growth conditions and 

photoperiod (Álvarez et al. 2012, Bermúdez et al. 2012). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The difference between arabidopsis accessions is shown as an average of the values for all five 
nutrition regimes for each trait ± standard deviation. Different letters above each bar indicate 
values significantly different at P-value < 0.05 obtained from ANOVA with Newman-Keuls (SNK) 
multiple comparison grouping test. Abbreviations are in Figure 4.8. 

Figure 4.9 The response of the five accessions to sulfate and nitrate supply 
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Cvi-0, selected as a representative of class 4 in the experiment with [35S]sulfate 

labelling, showed the lowest absolute sulfate flux and sulfate incorporation into thiols. 

Moreover, it was also characterised by low concentration of SGSH and shoot cysteine 

compared to other accessions. This is opposite to the general characteristics of class 4 shown 

in Figure 4.3 which indicates a high concentration of thiols in this class. The most likely reason 

is the difference in growth conditions mentioned above. However, the pattern of anion 

concentration in these two experiments (general characterisation of the class and the 

characterisation of one accession as a representative) is similar. Cvi-0 showed the highest 

phosphate concentration among all the accessions tested (Figure 4.9). The variation in 

phosphate concentration in response to different nutrition regimes is strongly genetically 

driven (Figure 4.8). Both of these results are in agreement with the general characterisation of 

class 4 (Figure 4.2 and 4.3). Moreover, both class 4 and Cvi-0 are characterised by the low 

nitrate concentration. These results might suggest some correlation in accumulation of these 

two anions.  

It should be stressed that these data are expressed as concentration of [35S]sulfate and 

therefore they should be treated as an indication only and they should be confirmed by the 

analysis of concentration of radioactive sulfate ([35S]sulfate per shoot or root). 

4.4.4 Response to nutrient availability 

In order to provide more in depth analysis of the response of different accessions to 

the availability of sulfate and nitrate Fabien Chardon performed hierarchical ascendant 

clustering (HAC) analysis. To perform the HAC he used values obtained in all stress conditions 

as a percent of values obtained in control condition (Figure 4.10). The response of different 

accessions to changes in sulfate and nitrate availability was gathered into four distinct clusters 

of response dependent on both genotype and nutrition.  

This analysis revealed that nitrate availability is the most important factor that 

contributes to plant response in this experiment. Nitrate availability separates clusters 1 and 2 

that include plant response under sufficient nitrate supply from clusters 3 and 4 that include 

plant response under nitrate limitation. Furthermore, sulfate availability is the second factor 

that contributes to plant response under sufficient nitrate. Cluster 1 includes plant response to 

sulfate limitation and cluster 2 includes plant response to sulfate starvation under sufficient 

nitrate supply. Sakata and C24 are clustered irrespective of sulfate availability making these 

the two exceptions in these two clusters (Figure 4.10). Cluster 1 includes the response of C24 
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to sulfate starvation and cluster 2 includes the response of Sakata to sulfate limitation. In this 

case the genetic effect is stronger than the environmental effect.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

Hierarchical classification of the response to different nutrition regimes among five accessions; the 
dendrogram was created based on the percentage of value obtained in control condition. This 
analysis was performed by Fabien Chardon. 

 

In contrast, the results of HAC revealed that under limited nitrate, plant response to 

different sulfate supply is mainly driven by genotype and not by sulfate nutrition.  In contrast 

to clusters 1 and 2, the difference between clusters 3 and 4 is due to genetic effect. Cluster 3 

comprises the response of Col-0 and Edi-0 and cluster 4 comprises the response of Cvi-0 and 

C24. Because both clusters (3 and 4) correspond to accessions response under limited nitrate 

these results suggest that the response of Cvi-0 and C24 as well as Col-0 and Edi-0 to nitrate 

limitation was similar. In this case Sakata is again an exception. Cluster 3 comprises its 

response to sulfate limitation and cluster 4 comprises its response to nitrate limitation under 

sufficient sulfate suggesting that in this accession sulfate nutrition has a stronger effect than 

genotype.  

Figure 4.10 Key factors in plant response to sulfate and nitrate availability 
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4.5 Primary metabolite profiling 

Up to this point a general profile of the arabidopsis response to sulfate limitation and 

starvation has been described. Additionally, four different patterns of response to sulfate 

limitation and starvation were distinguished in the collection of 25 accessions. This and 

previous studies showed that sulfate deficiency affects not only sulfate concentration, but also 

other metabolic pathways. Therefore it was of interest to unravel the primary metabolites and 

biochemical pathways that are involved in the response to sulfate limitation at a more global 

scale and further characterise the patterns of response to sulfate limitation revealed earlier. 

Primary metabolite profiling was performed on two independent sets of samples. First of all, I 

grew the four arabidopsis accessions selected as representatives of different patterns of 

response to sulfate limitation and starvation on plates for three weeks in five different 

sulfate/nitrate regimes as described above (section 4.2.3). Because I did not obtain enough 

root tissue from three week old seedlings, in this set only shoot samples were analysed. 

However, the plants for the global analysis of 25 arabidopsis accessions were grown in 

hydroponic cultures. This way of plant cultivation allows longer periods of plant growth 

delivering bigger plants and more tissue for analysis. Therefore, a second set of plants for 

metabolite profiling was grown in hydroponic cultures in Versailles by Giorgiana Chietera. In 

both cases samples were analysed at MPIMP in Golm. Plant extracts were prepared by two 

step extraction with methanol and chloroform and analysed by a gas chromatography-mass 

spectrometry (GC-MS). Both of these plant sets were analysed only recently and the statistical 

analysis of the data is not complete yet. However, some interesting results have already been 

revealed.  

All results described below concern the shoots of three week old seedlings grown on 

plates. The statistical analysis of plants grown on hydroponic cultures is still at an early stage. 

However, it has already shown a significant overlap with metabolites detected in the first 

experiment suggesting that the two analyses may well complement each other. Moreover, the 

analysis of the plants grown in hydroponic cultures included the analysis of roots. Therefore, it 

will provide a more complete picture of the different patterns of response to changes in 

nutrient availability among the four accessions analysed and eventually, better understanding 

of plant adaptation strategies to different environmental conditions. It will also allow 

investigation of differences between the metabolic changes in shoots and roots and 

identification of specific metabolic pathways which were affected by nutrition stress. 
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A pie chart presenting the amount of identified metabolites classified based on the chemical 
structure. MST – non-identified but repeatedly observed mass spectral metabolites tags. 

 

4.5.1 General characterisation of changes in primary metabolites 

The GC-MS analysis of the shoots of three week old seedlings grown on plates resulted 

in the identification of 107 metabolites. Among these 63 were known metabolites and 41 were 

non-identified, but repeatedly observed mass spectral metabolite tags (MSTs) which 

correspond to 40% of all detected metabolites in this experiment. The profiled metabolites are 

classified into ten categories based on their chemical structure: acids, amino acids, fatty acids, 

nitrogenous compounds, phenylpropanoids, phosphates, polyhydroxyacids, polyols, sugars, 

and sugar conjugates (Figure 4.11). Because of the high cost of standards for particular 

metabolites the data obtained from the GC-MS analysis are usually expressed as a pool size 

and not concentration or content (Dethloff et al. 2014). A pool size refers to the data obtained 

from GC-MS (peak area) normalised to an internal standard (in this experiment C19 for organic 

phase and sorbitol for polar phase; section 4.2.4) and fresh matter of the sample. However, if 

the pool size is 10 for metabolite A and 30 for metabolite B it is not possible to say that in a 

given sample there is more metabolite B than A. Therefore, to investigate the changes among 

known metabolites identified in this experiment in response to different nutrition regimes a 

ratio of response for each of them was calculated by Sarah Whitcomb (MPIMP Golm). To 

obtain the ratio of response a pool size of a given metabolite identified in a sample was divided 

by average pool size of that metabolite in the samples from control condition from the same 

Figure 4.11 Metabolites identified in the shoots of three week old seedlings 
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Metabolite

S- S0 N- N-S- S- S0 N- N-S- S- S0 N- N-S- S- S0 N- N-S-

Citric acid -0.221 -1.041 -1.000 -1.880 -0.910 -0.478 -0.965 -0.832 0.911 1.025 0.186 0.264 -1.016 0.268 -1.796 -1.472

Fumaric acid 0.856 0.350 0.130 0.417 -0.265 0.394 -0.251 -0.447 0.571 0.803 0.020 -0.475 0.061 0.275 -0.565 -0.358

Malic acid 0.691 -0.457 -0.026 0.000 -0.231 0.008 -0.003 -0.566 0.474 -0.152 -0.398 -0.587 -0.097 0.513 -1.305 -0.901

Succinic acid 0.206 -0.445 0.219 0.204 -0.421 0.326 0.356 0.162 0.179 0.347 -0.313 -0.353 -0.326 0.987 -0.619 -0.628

Benzoic acid, 0.741 -0.368 -0.183 0.042 0.132 -0.092 0.063 0.309 0.258 0.237 0.339 0.844 0.170 0.150 0.243 0.655

Lactic acid 0.820 0.453 0.461 0.324 0.590 -0.244 0.027 0.201 0.145 0.012 0.304 0.337 0.210 0.511 1.716 0.687

Boric acid 0.441 -0.136 -0.019 0.236 0.580 -0.688 0.247 0.322 0.341 0.184 0.209 0.567 0.369 0.305 0.169 0.623

4-hydroxy-benzoic acid 0.380 0.064 0.000 -0.010 -0.128 -0.555 -0.319 0.395 0.394 0.044 0.205 0.475 0.401 0.186 0.718 0.454

2,4-dihydroxy-butanoic acid 1.751 -0.645 -0.112 0.116 0.061 -0.278 -0.036 -0.127 0.420 0.376 0.308 1.196 0.644 -0.078 0.229 0.854

4-amino-butanoic acid -1.232 -1.314 -0.332 0.159 -0.303 -0.387 -0.082 -0.144 0.482 -1.152 0.749 0.659 0.522 0.691 1.002 0.289

Valine 0.061 -0.283 -0.679 -0.560 -0.013 -1.142 -0.266 0.142 1.181 0.979 1.520 1.108 -0.266 -0.955 -0.442 -0.201

Glycine 0.565 -0.026 -0.081 -0.159 0.327 -0.038 -0.140 0.045 0.493 -0.036 1.033 0.583 0.506 1.079 0.806 0.594

β-Alanine 0.323 -0.947 -0.386 -0.255 0.037 -1.317 -0.536 0.066 1.109 0.464 1.222 0.982 -0.464 -0.534 0.222 0.289

Serine 0.108 -1.040 0.227 -0.576 -0.400 -0.630 -0.298 0.006 0.645 0.226 0.754 1.098 -0.252 0.596 1.111 0.679

Leucine -0.195 -0.492 -0.596 -0.730 -0.223 -0.729 -0.228 -0.035 0.873 0.860 0.980 0.957 -1.025 -0.514 0.082 -0.013

Octadecanoic acid 0.605 -0.073 0.152 0.179 -0.118 -0.270 0.096 0.154 0.378 0.052 0.081 0.224 -0.332 0.272 0.199 0.414

Hexadecanoic acid 0.618 -0.196 0.094 0.114 -0.004 -0.274 0.115 0.216 0.322 -0.027 0.036 0.303 -0.362 0.197 0.029 0.337

Ethanolamine 0.513 -0.250 -0.009 0.154 0.226 -0.270 0.124 0.496 0.210 0.167 0.195 0.450 0.220 0.229 0.237 0.487

2-hydroxy-pyridine 0.396 -0.282 -0.053 0.128 0.292 -0.262 0.026 0.502 0.050 0.299 0.218 0.455 0.366 0.212 0.086 0.372

Indole-3-acetonitrile 0.756 0.087 0.089 -0.010 -0.330 -0.260 -0.024 -0.455 0.189 -0.158 0.709 0.349 -0.894 -0.131 -0.030 -0.253

cis  - sinapic acid 0.995 0.054 0.320 0.235 -0.032 -0.128 0.091 -0.732 1.204 0.380 0.477 0.746 -0.298 0.737 -0.372 -0.111

Phosphoric acid 0.407 -0.456 -0.142 0.044 -0.034 -0.387 -0.309 -0.154 0.442 0.524 0.799 0.863 0.214 0.342 0.370 0.662

Phosphoric acid monomethyl ester 0.457 -0.565 -0.229 -0.523 -0.609 -0.522 -0.604 -0.829 1.388 0.859 0.587 0.486 0.544 0.806 0.865 1.130

Glyceric acid -1.499 -0.927 -1.977 -0.931 -0.349 0.478 0.111 -0.174 1.040 1.858 0.281 0.670 0.219 1.608 0.569 0.153

Dehydroascorbic acid dimer 0.743 -0.198 -0.277 0.003 -0.001 -0.141 0.277 0.205 0.510 0.640 0.713 0.818 0.559 0.870 0.346 0.199

Threonic acid 0.743 0.766 0.148 0.193 0.249 0.449 0.034 -0.302 0.405 0.386 0.149 -0.030 -0.657 0.785 -0.836 -0.689

Threonic acid-1,4-lactone 0.615 0.258 -0.034 0.093 0.143 0.300 -0.065 0.087 0.394 0.820 0.359 0.351 -0.073 0.891 -0.445 -0.348

Galactonic acid 0.190 -1.096 -0.049 -0.439 -0.653 -0.876 -0.253 -0.536 0.222 -0.627 0.537 0.147 -0.427 -0.074 0.335 0.235

myo -Inositol 0.571 0.365 0.169 0.764 -0.161 0.635 0.181 0.354 0.419 1.208 0.539 0.654 0.609 1.508 -0.052 -0.302

Glycerol 0.197 0.312 -0.089 0.553 1.213 0.159 -0.466 0.260 0.621 0.836 0.497 1.417 -0.533 -0.290 0.555 0.276

Erythritol 0.432 -0.593 -0.160 0.046 -0.060 -0.427 -0.183 0.196 0.329 0.111 0.302 0.449 0.417 0.187 0.278 0.163

Sorbitol 0.337 -0.079 -0.543 -0.308 -0.126 0.037 -0.093 -0.510 0.698 0.797 0.468 0.189 0.593 1.208 0.455 0.098

Ribitol 0.386 -1.193 -0.150 0.113 0.015 -0.864 0.063 0.287 0.362 -0.088 0.555 0.532 0.514 0.088 0.594 0.721

Mannitol 0.885 -0.122 -0.031 -0.086 1.314 0.410 0.274 0.034 0.299 0.352 0.065 0.206 -0.044 0.485 0.110 0.037

Fructose 0.703 -0.546 0.338 0.817 -1.394 0.907 -0.321 -0.040 -0.051 0.097 -0.245 -0.318 1.292 1.549 0.875 -0.733

Sucrose 0.839 0.477 0.435 0.555 -0.436 0.488 -0.076 0.006 0.644 1.043 1.018 1.149 -0.018 0.940 0.115 -0.220

Glucose 0.868 -0.112 0.070 0.494 -0.740 1.149 -0.009 -0.060 0.392 0.389 0.540 0.645 0.778 1.002 0.829 0.389

Galactose 0.330 -0.411 -0.266 0.130 -0.508 0.454 -0.131 0.188 0.693 0.611 0.422 0.415 0.698 0.868 0.292 -0.051

Ribose 0.286 -0.705 0.058 0.135 -0.093 -0.310 0.204 0.220 0.678 0.505 0.455 0.590 0.665 0.595 0.832 0.581

β - 1,6-anhydro glucose 0.464 -0.106 0.156 0.340 -0.030 -0.010 0.240 0.328 0.650 0.215 0.555 0.671 0.042 0.089 0.383 0.652

Xylose 0.817 0.152 -0.077 0.379 -0.061 0.018 0.227 0.177 0.457 0.883 0.258 0.779 0.330 1.264 0.400 0.508

Log2(response ratio)

Class 1 Class 2 Class 3 Class 4

Col-0 Cvi-0Edi-0Sakata

accession. This allows to clearly compare the changes in each accession due to nutrition 

regime (Dethloff et al. 2014). Additionally, the response ratios were log2 transformed to make 

the data distribution more symmetric and to convert multiplicative relations into additive 

relations (to reduce heteroscedasticity, Kvalheim et al. 1994, van den Berg et al. 2006, Veyel et 

al. 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The heat map shows the changes in metabolite response ratio of four accessions in response to 
different nutrition regimes tested. The values are shown as a relative to response ratio and in log2 
space. Colours indicate the differences in metabolite accumulation between different accessions 
and in different nutrition regimes with the lowest value in blue (decrease) and the highest in red 
(increase). This analysis was made by Sarah Whitcomb. 

 

 

 

Figure 4.12 Changes in concentration of identified metabolites in different accessions 
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In order to investigate how the primary metabolites varied in response to different 

nutrition regimes among the four accessions analysed, Sarah Whitcomb (MPIMP Golm) 

created a heat map for metabolites which were detected in 70% of all samples tested (Figure 

4.12). In general, Sakata and Edi-0 selected as representatives of class 1 and 2 respectively 

showed decrease in response ratio of most metabolites detected in response to most of the 

conditions analysed when compared to control condition. In contrast, most of the metabolites 

in Col-0 and Cvi-0 selected as representatives of class 3 and 4 respectively showed an increase 

in response ratio of most metabolites detected in response to the nutrition regimes tested 

when compared to control condition. Interestingly, Sakata showed increase in response ratio 

of most metabolites in response to sulfate limitation. However, in induced sulfate starvation it 

showed a decrease in response ratio of most detected metabolites. Edi-0, selected as a 

representative of class 2, showed decrease in response ratio of most metabolites in response 

to changes in sulfate and nitrate supply. In contrast, Col-0 which is a representative of class 3 

showed a general increase in response ratio of metabolites detected in response to different 

nutrition regimes. In Cvi-0 the response to different nutrition regimes varied depending on the 

metabolite (Figure 4.13).  

In order to reveal the metabolites which response ratios changed most significantly a 

t-test significance analysis was carried out by Sarah Whitcomb on these response ratios. 

Metabolite response ratios showing t-test significance P-value ≤ 0.05 were considered as 

different. Altogether, the response ratio of 69 metabolites and MSTs changed significantly in 

response to at least one nutrition regime tested. In general, Col-0 had the highest amount of 

metabolites which response ratio changed significantly in response to sulfate limitation (21), 

nitrate limitation (22), and sulfate/nitrate double limitation (15; Figure 4.13). Edi-0 was the 

accession which had the lowest number of metabolites which response ratio changed 

significantly in response to these three nutrition regimes (2, 4, and 2 metabolites, 

respectively). The nutrition regime which resulted in the biggest number of metabolites which 

response ratio changed significantly for all accessions tested was induced sulfate starvation 

(Figure 4.14B).  In this condition Cvi-0 had 26 metabolites which response ratio changed 

significantly, Edi-0 had 25 metabolites which response ratio changed significantly, Col-0 had 20 

metabolites which response ratio changed significantly, and Sakata had 15 metabolites which 

response ratio changed significantly. The only chemical compound category which was not 

affected by any of the nutrition regimes tested in any of the four accessions was 

phenylpropanoids. This is surprising since it has been shown previously that these compounds 

accumulate often in nitrogen limitation (Fritz et al. 2006, Yaeno & Iba 2008). MSTs were the 
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group with the largest amount of metabolites which response ratio changed significantly. 

However, these are not useful in identification of particular response process in arabidopsis 

accessions to different nutrition regimes. Therefore, at this stage MSTs were excluded from 

further analysis. After elimination of MSTs, amino acids and sugars were the two chemical 

compound categories with the largest number of metabolites which response ratio changed 

significantly. 

 

 

 

 

 

 

 

 

Metabolites which response ratio changed significantly in response to sulfate limitation (A), 
sulfate starvation (B), nitrate limitation (C), and sulfate/nitrate limitation (D) at P-value<0.05. Data 
are shown as a relative to normal condition with sufficient sulfate and nitrate supply. Different 
colours correspond to different chemical categories. 

 

Figure 4.13 Number of metabolites which response ratios changed significantly 
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4.5.2 Changes in metabolite response ratios among accessions 

The profiling of primary metabolites revealed substantial differences between 

accessions.  The repertoire of metabolites which response ratio changed significantly differed 

between accessions as well as between the nutrition regimes. Col-0, as a representative of 

class 3, was the accession with the highest number of metabolites which response ratio 

changed significantly in all regimes tested. Moreover, the response ratio of only one 

metabolite – 4-amino-butanoic acid, a non-proteinogenic amino acid involved in the 

metabolism of alanine, aspartate, and glutamate – was reduced in response to induced sulfate 

starvation. The response ratios of all the other metabolites which response ratio changed 

significantly in this accession increased in response to different nutrition regimes. The 

response ratio of the two proteinogenic amino acids – leucine and valine – significantly 

increased in this accession in response to all nutrition regimes tested compared to control 

condition. Valine and β-alanine (not changed in response to sulfate starvation) were the two 

metabolites which response ratios increased most strongly in this accession. Additionally, myo-

inositol – a molecule that builds a number of lipid signalling molecules in the cell – and glyceric 

acid were the two metabolites which response ratios increased most strongly in response to 

induced sulfate starvation. Col-0 was also characterised by strong increase of response ratio of 

sucrose in response to all nutrition regimes except sulfate limitation. 

Similarly to Col-0, Cvi-0 selected as a representative of class 4 was also characterised 

by general increase in response ratio of significantly changed metabolites in response to 

different nutrition regimes.  In this case only the response ratio of leucine and indole-3-

decreased in response to sulfate limitation compared to control condition. These were also the 

only two metabolites which response ratio changed significantly in response to sulfate 

limitation. The response ratio of most metabolites in this accession was higher in response to 

sulfate starvation compared to control condition. In this accession galactinol was the 

metabolite with the most strongly elevated response ratio. The response ratio of only three 

metabolites was higher in response to nitrate limitation, and only two in response to 

sulfate/nitrate double limitation.  

Induced sulfate starvation was also the condition with the highest number of 

metabolites which response ratio changed significantly in Edi-0, selected as a representative of 

class 2. It is also the accession with the lowest number of metabolites which response ratio 

changed significantly. In Edi-0 65% of all metabolites which response ratio changed 

significantly were reduced in response to different nutrition regimes compared to control 
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Metabolite Class

S- S0 N- N-S-

4-hydroxy-benzoic acid 0.475 Acids

2,4-dihydroxy-butanoic acid 0.420 Acids

Fumaric acid 0.571 0.803 Acids

β-Alanine 1.109 1.222 0.982 Amino Acids

4-amino-butanoic acid -1.152 0.749 0.659 Amino Acids

Leucine 0.873 0.860 0.980 0.957 Amino Acids

Serine 0.754 1.098 Amino Acids

Valine 1.181 0.979 1.520 1.108 Amino Acids

Indole-3-acetonitrile 0.709 N- Compounds

Phosphoric acid 0.524 0.799 0.863 Phosphates

Phosphoric acid monomethyl ester 1.388 0.859 Phosphates

Dehydroascorbic acid dimer 0.713 Polyhydroxy Acids

Erythronic acid 0.737 0.616 Polyhydroxy Acids

Galactonic acid 0.537 Polyhydroxy Acids

Glyceric acid 1.040 1.858 Polyhydroxy Acids

Threonic acid 0.405 Polyhydroxy Acids

Threonic acid-1,4-lactone 0.394 0.820 0.359 Polyhydroxy Acids

Erythritol 0.449 Polyols

Glycerol 0.621 0.836 0.497 Polyols

myo -Inositol 0.419 1.208 0.539 Polyols

Ribitol 0.532 Polyols

Sorbitol 0.698 0.797 0.468 Polyols

Galactose 0.693 0.611 Sugars

β - 1,6-anhydro glucose 0.555 0.671 Sugars

Ribose 0.678 Sugars

Sucrose 1.043 1.018 1.149 Sugars

Xylose 0.883 Sugars

Col-0

condition. Amino acids – alanine, glutamate and valine – were the metabolites which response 

ratio was the lowest in response to induced sulfate starvation. In contrast, glucose was the 

metabolite which response ratio was the highest in response to induced sulfate starvation. 

Table 4.1 Metabolites which response ratio changed significantly 
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Metabolite Class

S- S0 N- N-S-

Boric-acid 0.305 Acids

Lactic acid 1.716 Acids

Succinic acid 0.987 Acids

4-amino-butanoic acid 0.691 1.002 Amino Acids

Leucine -1.025 Amino Acids

Indole-3-acetonitrile -0.894 N- Compounds

2-hydroxy-pyridine 0.212 N- Compounds

Fructose-6-phosphate 1.706 Phosphates

Dehydroascorbic acid dimer 0.870 Polyhydroxy Acids

Glyceric acid 1.608 Polyhydroxy Acids

Threonic acid 0.785 Polyhydroxy Acids

Threonic acid-1,4-lactone 0.891 Polyhydroxy Acids

myo -Inositol 1.508 Polyols

Sorbitol 1.208 Polyols

Galactinol 2.209 Sugar Conjugates

Galactose 0.868 Sugars

β - 1,6-anhydro glucose 0.652 Sugars

Raffinose 1.575 Sugars

Ribose 0.595 0.581 Sugars

Sucrose 0.940 Sugars

Cvi-0

Metabolite Class

S- S0 N- N-S-

Boric acid -0.688 Acids

Fumaric acid 0.394 Acids

Lactic acid 0.590 Acids

β-Alanine -1.317 -0.536 Amino Acids

Glutamic acid -0.959 Amino Acids

Valine -1.142 Amino Acids

Ethanolamine -0.270 N- Compounds

Putrescine 0.984 N- Compounds

Phosphoric acid -0.387 Phosphates

Erythritol -0.427 Polyols

myo -Inositol 0.635 Polyols

Ribitol -0.864 Polyols

Sorbitol -0.510 Polyols

Fructose 0.907 Sugars

Glucose 1.149 Sugars

Ribose -0.310 Sugars

Edi-0
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Metabolite Class

S- S0 N- N-S-

Benzoic acid, 0.741 Acids

Citric acid -1.041 -1.880 Acids

Fumaric acid 0.856 Acids

β-Alanine -0.947 Amino Acids

4-amino-butanoic acid -1.232 -1.314 Amino Acids

Glycine 0.565 Amino Acids

Isoleucine -0.415 Amino Acids

Valine -0.679 -0.560 Amino Acids

Hexadecanoic acid 0.618 Fatty Acids

Indole-3-acetonitrile 0.756 N- Compounds

Galactonic acid -1.096 Polyhydroxy Acids

Glyceric acid -1.977 Polyhydroxy Acids

Erythritol -0.593 Polyols

myo -Inositol 0.764 Polyols

Mannitol 0.885 Polyols

Ribitol -1.193 Polyols

Fructose 0.817 Sugars

β - 1,6-anhydro glucose 0.464 Sugars

Ribose -0.705 Sugars

Sucrose 0.839 Sugars

Xylose 0.817 Sugars

Sakata

 The data correspond to averages of response ratios from up to eight biological replicates shown as 
log2 transformed values. Only metabolites which response ratios changed significantly (t-test 
significance P<0.05) are shown. Values higher than those obtained in control condition and marked 

in green, lower – in red.   
 
 
 

In Sakata, selected as a representative of class 1, 54% of all metabolites which 

response ratio changed significantly were reduced in response to different nutrition regimes 

compared to control condition. In this accession response ratio of metabolites that changed 

significantly in response to sulfate limitation was higher than in control condition whereas 

response ratio of metabolites that changed significantly in response to induced sulfate 

starvation was lower compared to control condition. Mannitol – the sugar alcohol that is 

involved in plant response to biotic and abiotic stress – was the metabolite which response 

ratio increased the most in this accession (in response to sulfate limitation). Glyceric acid was 

the metabolite which response ratio was most strongly reduced in this accession (in response 

to nitrate limitation). 
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4.5.3 Alterations of metabolic pathways among four accessions 

After identifying the metabolites which response ratio changed significantly it was 

possible to assign them to their respective metabolic pathways and processes they are 

involved in. This assignment was performed by Sarah Whitcomb (MPIMP) and it is based on 

information from Kyoto Encyclopaedia of Genes and Genomes (KEGG) – a database of 

manually drawn pathway maps including the current understanding of the molecular 

interactions and processes in plant cells. This analysis revealed that Col-0, selected as a 

representative of class 3, showed the most complex response to the analysed nutrition 

regimes in terms of the amount of altered processes in the cell (Figure 4.14). The metabolism 

of amino acids and carbohydrates were the two processes mainly altered in this accession. The 

metabolism of amino acids was mainly altered by nitrate and sulfate/nitrate double limitation. 

However, response ratio of some of the amino acids was significantly higher in response to 

sulfate limitation and induced sulfate starvation. In contrast, carbohydrate metabolism was 

altered in response to all nutrition regimes tested. The distortion of carbohydrate metabolism 

is a common change in plants under nutrient stress and it is most likely to occur due to 

reduction in photosynthetic capacity (Honsel et al. 2012, Lunde et al. 2008). 

 Similarly to Col-0, carbohydrate metabolism was also the main cellular process altered 

in Cvi-0 – a representative of class 4 (Figure 4.14). Moreover, not only the metabolic process, 

but also particular pathways related to carbohydrate metabolism and altered by nutrition 

regimes analysed in this experiment were similar in these two accessions. Cvi-0 is the 

accession with the smallest number of metabolic processes altered in response to different 

nutrition regimes and most of these changed in response to induced sulfate starvation.  

 Edi-0 was selected as a representative of class 2 and was characterised by the lowest 

number of significantly altered metabolites among all four accessions (Figure 4.14). Similarly to 

Col-0, amino acid and carbohydrate metabolism are the two metabolic processes mainly 

altered in this accession. Like in Cvi-0, most of metabolic processes are altered by sulfate 

starvation. In contrast, apart from amino acid and carbohydrate metabolism, in Sakata 

metabolism of the lipids, particularly fatty acid metabolism, was significantly altered. In this 

accession both sulfate limitation and induced sulfate starvation are the main drivers of 

observed metabolic changes. 
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The figures were created based on the assignment of significantly altered metabolites in particular 
accessions to their respective metabolic pathways performed by Sarah Whitcomb. The assignment 
was performed using the Kyoto Encyclopaedia of Genes and Genomes (KEGG). 

 

Figure 4.14 Metabolic pathways altered in response to sulfate and/or nitrate deficiency 
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4.6 Discussion 

In this study the extent of variation in growth response to different sulfate supply in 

Arabidopsis thaliana was investigated with the goal to identify accessions showing contrasted 

responses and ultimately different growth adaptive strategies. The analysis described in this 

chapter is unique since it provides the general arabidopsis response profile to changes in 

sulfate availability based on the analysis of 25 genetically different accessions grown in highly 

controlled environments. Such collections of accessions were successfully used to dissect the 

natural variation in response to nitrate (De Pessemier et al. 2013, Ikram et al. 2012), 

phosphate (Chevalier et al. 2003), and potassium (Kellermeier et al. 2013) availability. Several 

studies were conducted to provide a general profile of arabidopsis response to sulfate 

availability. However, in these studies, only Col-0 (Hirai et al. 2004, Nikiforova et al. 2003, 

Nikiforova et al. 2005) or sel1 mutants (Zhang et al. 2014) were used, thus limiting the overall 

outcome of a study. The analysis of natural variation allows dissection of traits important for 

plant growth in response to combined genetic and environmental variation.  

The global response profile computed as an average of values obtained from 25 

arabidopsis accessions revealed that plants respond to sulfate limitation with a higher root 

biomass and a bigger amount of lateral roots (Figure 4.1). This is in agreement with previous 

studies which reported the changes in root morphology leading to an increase of total 

absorptive surface of the system (Kutz et al. 2002, Lopez-Bucio et al. 2003). Moreover, it has 

been shown that during limited sulfate supply the available resources are not transported to 

the shoots, but remain in the roots to increase the biomass production of organs involved in 

acquiring of depleted nutrients (Hawkesford & De Kok 2006, Stuiver et al. 1997). In the 

experiment described here this phenomenon was shown as significantly lower SRDM ratio in 

both sulfur stress conditions (Figure 4.1). Kutz et al. (2002) have shown that in arabidopsis the 

lateral roots develop closer to root tip (earlier) and at increased frequency under sulfate 

limitation. This adaptation response is dependent on the induction of NITRILASE3 (NIT3) which 

initiates the production of additional auxin leading to increased root growth and branching at 

the expense of shoot growth. Subsequently, Koprivova et al. (2010) have shown that depletion 

of GSH by inhibition of its synthesis with buthionine sulphoximine (BSO) results in loss of auxin 

accumulation in the root apex leading to an inhibition in root growth. In the experiment 

described here the classes characterised by smaller decrease of GSH concentration in response 

to sulfate limitation showed also a smaller reduction in root growth in response to sulfate 

limitation compared to other classes. These results highlight the importance of GSH in plant 

response to sulfate deficiency. 
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Accessions from classes 1 and 2 were characterised by no changes or even increase 

(respectively) in GSH concentration in shoots in response to sulfate limitation (Figure 4.4). GSH 

serves as the main storage of reduced sulfur in the plant. It is also the main form (together 

with S-methylmethionine) of reduced sulfur transported via phloem (Rennenberg et al. 1979). 

Moreover, it has been postulated to act as a signal of the sulfur status from shoots to roots 

(Herschbach et al. 2000, Lappartient et al. 1999). Apart from its role in sulfur metabolism, GSH 

also plays an important role in regulation of plant growth and development including redox 

homeostasis (Lewandowska & Sirko 2008). Since nutrient deficiency is known to induce 

oxidative stress (Anjum et al. 2012, Waraich et al. 2012) the maintenance of GSH 

concentration and partitioning between different plant organs has an important role in plant 

response to nutrient depletion. The shoot is assumed to be the predominant site of sulfate 

reduction in the plant (although all the enzymes of sulfate reduction pathway are present in 

roots; Hubberten et al. 2012a, Saito 2000). It has been shown that APS reductase, the key 

regulatory component of the sulfate reduction pathway, is post-translationally induced by 

oxidative stress (Bick et al. 2001). The induction of APS reductase can lead to an increase in 

GSH concentration (Bick et al.). Therefore, higher concentration of GSH in shoots is not 

surprising and could be postulated as useful plant strategy to maintain the growth during 

limited sulfate availability. Additionally, GSH may also serve as a donor of cysteine for protein 

synthesis since it can be degraded completely to cysteine, glutamate, and glycine (Noctor et al. 

1998) which further explains its higher concentration in the aerial parts of the plant than in 

roots. However, to verify this hypothesis the analysis of translocation of GSH between shoots 

and roots and the expression analysis of genes encoding the enzymes involved in GSH 

biosynthesis and degradation would be necessary. 

The increase in the concentration of all anions tested in the shoots (SNO3, SPO4, SSO4) 

in response to sulfate limitation was observed in the general arabidopsis response profile as 

well as in the characterisation of all classes except class 3 (Figure 4.1 and 4.4 respectively). 

These results suggest an interconnection between these three elements in response to sulfate 

limitation. It has been reported that the changes in concentration of phosphate and/or sulfate 

cause coordinated downstream metabolic responses (Essigmann et al. 1998, Sugimoto et al. 

2007). The most common is the rapid replacement of sulfolipids by phospholipids under 

sulfate deficiency and vice versa (Essigmann et al. 1998, Sugimoto et al. 2007). Additionally, 

deficiency of one of these elements often results in modification of expression level of genes 

encoding proteins involved in the regulation of the homeostasis of the other elements 
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(proteins catalysing assimilation and controlling assimilatory flux of these elements and 

regulatory factors acting in the signalling pathways; Misson et al. 2005, Rouached 2011).  

Nitrate availability is the most important factor that contributes to the plant response 

in this experiment (Figure 4.10). Similarly to the interconnection between phosphate and 

sulfate accumulation the assimilatory pathways of sulfur and nitrogen are also considered 

functionally convergent and well-coordinated (Koprivova et al. 2000, Anjum et al. 2012). 

However, the mechanism of this coordination is different than in case of phosphate.  In the 

case of sulfur and nitrogen the availability of one element regulates the metabolism of the 

other (Anjum et al. 2012, Habtegebrial & Singh 2006). The interconnection between sulfate 

and nitrate assimilation is long established. Such coordination is not surprising since the molar 

ratio of sulfur to nitrogen in the proteins is relatively stable (1:25; Koprivova et al. 2000, 

Rennenberg 1984, Smith 1980). Sulfur deficiency is known to reduce nitrogen use efficiency 

and vice versa (Fismes et al. 2000). It has been shown that nitrate uptake and activity of nitrate 

reductase are strongly reduced in maize, spinach, and oilseed rape under sulfate deficiency 

(Abdallah et al. 2010, Friedrich & Schrader 1978, Prosser et al. 2001). Moreover, sulfate 

deficiency has been shown to cause accumulation of nitrate in maize, wheat, and oilseed rape 

(Dietz 1989, Gilbert et al. 1997, McGrath et al. 1996). The results described in this chapter 

indicate that this phenomenon is also common among arabidopsis accessions in response to 

sulfate limitation. Koprivova et al. (2000) have shown that, in arabidopsis, the flux through the 

sulfate metabolic pathway measured as incorporation of [35S]sulfate into proteins (after plant 

incubation with [35S]sulfate) increased after addition of nitrogen containing compounds to the 

growing medium. Addition of O-acetylserine (OAS) – a precursor necessary for biosynthesis of 

cysteine – to the growing medium was shown to cause the accumulation of APR mRNA and 

protein (Koprivova et al. 2000). Therefore, OAS was proposed to play a signalling role in the co-

ordination of nitrate and sulfate metabolic pathways.  

The primary metabolite profiling in three week old seedlings grown in different 

nutrition regimes revealed that in this experiment sulfate limitation altered mainly the 

metabolism of carbohydrates and amino acids (Table 4.1). This is in agreement with previous 

results showing that continued sulfate limitation results in general reduction of metabolic 

activities which are shown as decrease in chlorophyll, RNA, and total protein followed by 

reduction in photosynthetic activity and decreased biomass production (Hirai et al. 2004, 

Nikiforova et al. 2005). The decrease in the total protein during sulfate deficiency is not 

surprising since about half of all internal sulfur is allocated into proteins (Blake-Kalff et al. 

1998).  
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Sugars were altered in all accessions analysed, but by different environmental 

conditions and in various ways (Table 4.1). Apart from the crucial role of sugars in the global 

metabolism of the cell (they are the starting point for almost all biosynthetic and energy-

producing pathways in the cell) they play also an important role in the regulation of various 

processes such as seed and embryo development, timing of flowering, photosynthesis, β-

oxidation and more (Cakmak et al. 1994, Lloyd & Zakhleniuk 2004, Smeekens & Hellmann 

2014). Fixed carbon is required to convert inorganic nitrogen and sulfur into amino acids, 

nucleotides and cofactors. In plant metabolism, OAS is formed from acetate and L-serine, thus 

linking the assimilatory sulfate reduction with carbohydrate and nitrogen metabolism (Kopriva 

et al. 2002). Additionally, it has been long known that the sulfate reduction pathway is 

regulated by light (Kopriva et al. 1999). The induction of APR mRNA accumulation and activity 

in plants kept in the dark could be mimicked by addition of sucrose to the growing medium 

(Kopriva et al. 1999). Similarly, glucose was also able to induce the expression of APR (Hesse et 

al. 2003).  

Sucrose was accumulated in response to either sulfate limitation or induced sulfate 

starvation in all accessions except Edi-0 (Table 4.1). In nitrogen metabolism, when nitrate is 

limited, carbohydrates, starch, and soluble sugars accumulate in photosythetically active 

organs because they cannot be used for further synthesis of nitrogenous compounds (Sun et 

al. 2002). The accumulation of carbon results in an inhibition of photosynthesis (Sun et al. 

2002). Since carbon skeletons are necessary to complete sulfate assimilation by production of 

cysteine and sulfate metabolism is closely related to nitrate metabolism the mechanism 

described above could be also involved, at least to some extent, in sulfate metabolism. This is 

further supported by the fact that sulfate deficiency is known to reduce nitrogen use efficiency 

(Fismes et al. 2000; see above). Interestingly, in Edi-0 selected as a representative of class 2, 

sucrose was not significantly altered by any of the nutrition regimes analysed. Instead, fructose 

and glucose were accumulated in response to sulfate starvation. Glucose and fructose are not 

direct end products of photosynthesis, but they are produced by the action of invertases on 

sucrose (Koch 2004). Therefore, it seems that the role of sugars in the regulation of sulfate 

assimilation differs in Edi-0 (and perhaps other accessions from class 2) compared to the 

accessions from the other classes. However, analysis of starch and chlorophyll concentration in 

these accessions would be necessary to better understand this phenomenon.  

Myo-inositol accumulates in all accessions (Table 4.1) suggesting an induction of 

complex regulatory processes in response to sulfate deficiency. It accumulates either in 

response to sulfate starvation only or in both sulfate starvation and limitation. In plant cells it 
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forms a structural basis of a number of lipid signalling molecules that function in diverse 

pathways. It is involved in stress response and the regulation of cell death (Valluru & Van den 

Ende 2011). Myo-inositol is involved in the biosynthesis of L-ascorbic acid (Davey et al. 2000, 

Gallie 2013). It is also involved in cell wall biosynthesis and auxin perception (Gillaspy 2011, 

Valluru & Van den Ende 2011). The attempts to genetically engineer myo-inositol and its 

derivatives have been undertaken to improve crop tolerance to abiotic stress (Sengupta et al. 

2012). Therefore, if myo-inositol will be also significantly altered in the metabolite profiling of 

older plants grown in hydroponic cultures, further investigation of its accumulation could 

uncover results useful for improving crop productivity. However, this will not be 

straightforward because of the multiple functions of this molecule.   

 Accessions from class 4 as well as Cvi-0, which was selected as a representative of this 

class, are well adapted to sulfate deficiency. Under sufficient sulfur supply accessions from 

class 4 include rather small plants and they accumulate sulfate containing compounds rather 

than anions, especially in shoots (Figure 4.3B). Under sulfate deficiency they showed the 

highest production of root biomass and lowest decrease in shoot biomass especially in 

response to sulfate limitation (Figure 4.5). They also showed the highest biomass allocation to 

the roots. It has been known for a long time that sulfate metabolism is controlled not only by 

the external availability of sulfate but also by metabolic demand for reduced sulfate 

(Lappartient & Touraine 1996, Lewandowska & Sirko 2008, Rouached et al. 2008, Westerman 

et al. 2001). Plants supplied with additional forms of reduced sulfur, such as H2S, cysteine or 

GSH show a strong decrease in sulfate uptake and accumulation (Lappartient et al. 1999, 

Westerman et al. 2001). Therefore, it might be hypothesised that the high concentration of 

GSH and cysteine in accessions from class 4 may mask the demand for external sulfate which 

results in a delay of the induction of the sulfate starvation response in accessions from this 

class. However, more analyses are needed to examine this hypothesis. In contrast, accessions 

from class 3, with Col-0 as a representative, included rather big plants. However, they seemed 

to be the least adapted to sulfate deficiency. Despite the high accumulation of anions (rather 

than sulfur containing compounds) under normal sulfate supply, this class is the most severely 

affected by sulfate deficiency in almost all traits analysed.  

 The comparison of the experiments described in this chapter with the analysis of 

natural variation in response to nitrogen deficiency described by Ikram et al. (2012), on which 

the experiments described here were based, revealed that plant response to sulfur and 

nitrogen deficiency are independent. The hierarchical ascendant clustering of similar set of 

accessions analysed in both experiments revealed different composition of particular classes in 
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the two experiments (Ikram et al. 2012; Figure 4.3A). Accessions classified in class 2 (Edi-0, Alc-

0, Ge-0) in the analysis of natural variation in response to nitrogen limitation described by 

Ikram et al. (2012) are the only exception. In the analysis of natural variation in response to 

sulfate availability described in this chapter all of these accession belong to the class 4. 

However, there are some significant differences in the characterisation of the two classes. In 

the analysis of natural variation in response to nitrogen limitation these accessions are 

characterised as big plants (Ikram et al. 2012) whereas in the experiments described here they 

belong to a class including small plants. On the other hand, class 2 from the analysis of Ikram 

et al. (2012) is considered as well adapted to nitrogen starvation because of high rate of 

biomass allocation to the roots. In the experiment described in this chapter class 4 was also 

suggested to group best adapted accessions from the entire collection. Moreover, in the 

analysis of Ikram et al. (2012) Col-0 belongs to class 4 which, similarly to the analysis described 

in this chapter (Col-0 belongs to class 3), was characterised as the least well adapted. However, 

in the analysis of Ikram et al. (2012) Col-0 was considered as a small plant, whereas in the 

analysis described in this chapter it was a big plant. 

 The main difference in morphological traits between the two experiments was the 

biomass allocation in response to sulfate and nitrate limitation (Ikram et al. 2012; Figure 4.1). 

In the experiment described in this chapter both sulfate limitation and starvation resulted in 

higher root biomass and thickness at the expense of shoot biomass (Figure 4.1). However, in 

the experiment of Ikram et al. (2012) nitrate limitation resulted in low root biomass and 

thickness and low shoot biomass whereas nitrate starvation resulted in an increase in root 

biomass and thickness and a severe decrease in shoot biomass. The authors concluded that 

this contrasting response to limitation versus starvation is due to plant response not only to 

the external availability of nitrate, but also its allocation between shoots and roots (Ikram et al. 

2012, Zhang & Forde 2000). Moreover, since nitrate is known to act as a signal of nitrogen 

status of the plant (Vidal et al. 2010, Zhang & Forde 2000) which is partially mediated by auxin 

(Krouk et al. 2010) they assumed that the difference in response to nitrate limitation and 

starvation is due to alteration in the sensing of the nitrate signal (Ikram et al. 2012). 

Additionally, the decrease in root biomass and thickness in nitrate limitation was directly, 

negatively correlated with SRNO3 (Ikram et al. 2012). This phenomenon was not observed in 

sulfate limitation where the morphological traits did not show significant correlations with 

metabolic traits. Neither nitrate deficiency (Ikram et al. 2012) nor sulfate deficiency resulted in 

changes in primary root length. 
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4.7 Conclusion 

The analysis described in this chapter provided a general profile of adaptation to 

sulfate deficiency in Arabidopsis thaliana. It is one of the first case studies in which global 

metabolic changes were analysed in such a big collection of accessions. The analysis of 

morphological traits revealed that increased root growth, often at the expense of shoot 

biomass, is a common plant response to sulfate limitation. The hierarchical ascendant 

clustering of the collection of 25 arabidopsis accessions revealed four different classes of 

accessions characterised by different patterns of response to different sulfate availability. 

Subsequently, accessions selected as characteristic for each of these patterns were analysed in 

more detail to get better understanding of each of these strategies. Traits specific for sulfate 

metabolism were analysed and the repertoire of primary metabolites that change in response 

to sulfate and nitrate deficiency was explored. It was possible to identify accessions that are 

better adapted to nutrition stress than others. Moreover, the metabolic changes which may 

lead to changes in the expression of the genes encoding enzymes and regulatory factors were 

identified. The inhibition or induction of particular pathways due to changes in expression 

profiles and the activity of regulatory molecules newly synthesised in response to 

environmental fluctuations may lead to further changes in biochemical reactions making the 

general plant response more complex on each level. This study provided unprecedented 

insight into metabolic changes as well as reprograming and regulation of metabolism during 

sulfate limitation. Additionally, important targets for improving crop tolerance to sulfate 

deficiency were identified. However, these targets would require further analysis before 

commercial application. 
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5.1 Introduction 

The analysis of natural variation in the response of arabidopsis to changes in the 

availability of nitrate and sulfate described in Chapter 4 is important in the investigation of 

plant adaptation strategies to the different environmental conditions. It allowed identification 

of crucial processes and metabolites involved in the control of sulfate and nitrate homeostasis. 

This knowledge may be used to develop new breeding strategies leading to even more 

effective food production. However, at this stage these analyses will not result in the discovery 

of new genes and regulatory factors responsible for these adaptations unless additional 

approaches such as gene-expression profiling are undertaken. Therefore, to examine the 

genetic architecture underlying the adaptation mechanisms genome-wide association study 

(GWAS) was conducted to identify regions of the genome at which genetic variation is 

associated with the accumulation of nitrate, phosphate or sulfate in arabidopsis leaves.  

The relationship between genetic and phenotypic variation observed between 

individuals within the species is interesting from two general points of view. First, it can be 

useful from an ecological and evolutionary perspective since it leads to the identification of 

allelic variants crucial for the adaptation to specific environmental conditions. Secondly, 

analysis of natural variation allows the discovery and characterisation of individual genes 

(Koornneef et al. 2004). Genetic variation among arabidopsis accessions was identified for a 

number of traits including plant response to biotic and abiotic stress (Hannah et al. 2006, 

McKay et al. 2003, Nemri et al. 2010, Todesco et al. 2010), traits related to plant development 

(Alonso-Blanco et al. 1999, Coupland 1995, Juenger et al. 2000), plant physiology (Borevitz et 

al. 2002, Botto et al. 2003, Loudet et al. 2003) and metabolism (El-Soda et al. 2014, Huang et 

al. 2012a). The accessions that differ in genotype are screened for phenotypic differences. 

Subsequently, any identified phenotypic differences are linked back with their causative loci 

via various mapping approaches (Korte & Farlow 2013). 

Quantitative trait loci (QTL) mapping is one of the classic approaches to identify 

regions of the genome that co-segregate with a trait of interest in Recombinant Inbred Line 

(RIL) families (Koornneef et al. 2004). In principle, a trait of interest is quantified in the 

progenies derived from the cross between two different parental accessions. The values are 

then compared with the genetic markers of the progeny to search for the regions in the 

genome that show statistically significant associations between polymorphism and the 

variation in the trait (Koornneef et al. 2004). This approach was successfully used to identify 

regions in the genome responsible for the variation in sulfate accumulation in the RIL 
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population derived from the cross between Bay-0 and Sha (Loudet et al. 2007). Some aspects 

of the characterisation of the QTLs identified in this analysis are described in Chapter 3 of this 

thesis. However, despite the fact that QTL mapping remains a very powerful tool to discover 

genes responsible for natural variation, it has its limitations. One of the major obstacles is the 

fact that in the RIL population the genetic variation is restricted to only the two parental 

accessions (Koornneef et al. 2004). Additionally, the genotyping density of the RIL population 

and the relatively low number of recombination events in the mapping population are 

important factors limiting the resolution of QTL. Various approaches have been undertaken to 

overcome these problems. RIL populations have been generated by using an advanced inter-

cross design (AI-RIL) to increase number of recombination events which improves the 

resolution of QTL (Balasubramanian et al. 2009). Additionally, to increase allelic diversity 

within the population multiple genetically diverse accessions are inter-crossed before 

establishing the RILs as in MAGIC (Multi-parent Advanced Generation Inter-Cross) or AMPRIL 

(arabidopsis multi-parent RIL) lines (Huang et al. 2011, Kover et al. 2009). Nevertheless, the 

allele frequencies and combinations present in such populations will always be different from 

those in the natural population. Therefore, more advanced approaches are needed to 

overcome the major limitations of QTL mapping.  An alternative approach suggested as a 

solution for the QTL limitations was GWAS (Korte & Farlow 2013, Weigel 2012). 

Taking advantage of a large number of historic recombination events and mutations 

that have occurred within the population of arabidopsis, the GWAS approach is based on 

looking for associations between the DNA sequence variants present in an individual’s genome 

and the phenotype of interest (Nordborg & Weigel 2008, Weigel 2012). In other words, GWAS 

associates phenotype with single-nucleotide polymorphism (SNP) data from a diverse 

population of accessions (100 accessions or more) to identify loci that correlate allele 

frequency to phenotypic variation (Atwell et al. 2010) or adaptation to particular 

environmental conditions (Lasky et al. 2012). This technique was pioneered in human genetics 

(Hirschhorn & Daly 2005) nearly ten years ago. Since then it was successfully applied  in model 

organisms including arabidopsis (Aranzana et al. 2005, Verslues et al. 2014) and mouse (Flint & 

Eskin 2012) and non-model organisms including rice (Huang et al. 2012b), maize (Tian et al. 

2011), and cattle (Olsen et al. 2011). 

GWAS, also called Linkage Disequilibrium (LD) mapping, overcomes the two major 

limitations of QTL mapping. It can take account of a large portion of natural variation in a 

species and localize the associations to much smaller genomic regions. The array-based re-

sequencing study in arabidopsis provided large collections of hundreds of thousands of SNPs 
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that could be used for GWAS (Horton et al. 2012, Kim et al. 2007). The whole-genome 

sequencing revealed c.a. 7 million SNPs segregating within a worldwide population (Cao et al. 

2011). However, Kim et al. (2007) by using the tag SNP selection algorithms and “hide-the-

SNP” simulations have shown that GWAS will require only 40%-50% of the observed SNPs. 

Therefore they designed an Affymetrix genotyping array that includes 250, 000 SNPs 

segregating within the population (Kim et al. 2007). This genotyping array is currently available 

as a collection of genotyped SNPs in arabidopsis. Although it is only a small percent of all 

observed SNPs, the 250, 000 SNPs lead on average to one SNP every 600bp and tag almost all 

of the non-repetitive genome (Kim et al. 2007, Korte & Farlow 2013). The high density of SNPs 

has made GWA study in arabidopsis much more powerful than in humans.  

GWAS generates lists of SNPs associated with variation in the studied phenotype 

(Korte & Farlow 2013). Each association has a probability (P)-value defining the strength of the 

association. However, it is possible that some of the SNPs associated with a given phenotype 

might be false positive. Taking into account that GWAS is based on LD – a non-random 

association of alleles at different loci – which is a crucial aspect of genetic variation in natural 

populations (Kim et al. 2007) it has been established that in arabidopsis the SNP might be 

linked to a causal gene within 20kb around it (Atwell et al. 2010). Therefore, for some 

phenotypes, it is possible to predict which genes might be responsible for natural variation 

based on existing functional knowledge and select the candidates for follow-up studies. 

While the general principles of GWAS are straightforward, there are a number of 

confounding factors that might affect its outcome (Korte & Farlow 2013). False-positive 

associations might arise from population structure as the individuals in a population are not 

equally distantly related to each other. This is a limitation especially for traits important in the 

adaptation to the local environment (Nordborg & Weigel 2008, Weigel 2012). Mixed models 

are a powerful method that corrects for population structure by accounting for the amount of 

phenotypic co-variance which is due to genetic relatedness (Yu et al. 2006). Mixed models 

were first developed in the field of animal breeding. They were successfully applied to GWAS 

and have led to a significant reduction of false-positive associations (Atwell et al. 2010, Zhao et 

al. 2007). However, it should be stressed that these methods do not always work and the 

additional control of GWAS outcome is necessary (Weigel 2012). False-positive associations 

may also arise due to multiple testing of thousands of SNPs. Conversely, traits with complex 

architecture, where many different genes affect the same trait, may cause false-negative 

associations (Weigel 2012). The significance of a particular allele in the phenotypic variation 
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within the population depends on its frequency and effect. Consequently, rare alleles present 

difficulties to GWAS even if they have a large phenotypic effect (Nordborg & Weigel 2008). 

Non-additive effects among loci as well as alleles arising repeatedly at a single locus with a 

similar effect on gene function (allelic heterogeneity) may also potentially lead to false-

negative associations (Bergelson & Roux 2010). 

Several studies have been published which show that GWAS is often successful in 

arabidopsis and may result in discovery of previously undescribed genes (Chao et al. 2012, 

Huang et al. 2012b, Todesco et al. 2010). Additional information such as functional data from 

mutant studies or involvement of a gene of interest in complex regulatory networks might help 

to prioritize GWAS candidates and increase its utility (Aranzana et al. 2005, Atwell et al. 2010, 

Verslues et al. 2014). Additionally, QTL mapping in an experimental population can indicate the 

region of the genome which should be considered for the location of the locus of interest 

(Brachi et al. 2010, Nemri et al. 2010). Therefore, QTL mapping and GWAS can be used as 

complementary approaches that mitigate each other’s limitations when applied together. Such 

a combined approach – referred to as nested-association-mapping – takes advantage of the 

increased resolution of GWAS and allows GWAS limitations to be overcome because QTL 

mapping is more robust to confounding factors (Nordborg & Weigel 2008). Nested association 

mapping was successfully developed in maize (Yu et al. 2006) and in theory could be also 

applied in arabidopsis (Nordborg & Weigel 2008). Although QTL mapping and GWAS proved 

themselves to be successful, especially in arabidopsis, both of them are based on correlations 

in form of linkage disequilibrium described above. Therefore, they cannot prove the causality 

by themselves and they need to be followed by the functional analysis of the candidate genes 

(Weigel 2012). 

Arabidopsis is an ideal organism for such a study. Its life cycle can be as short as six 

weeks and most importantly it is self-compatible (Weigel 2012). Therefore, various accessions 

can be maintained as inbred lines. Thus, it is possible to genotype them once and phenotype 

repeatedly for the same or different phenotypes. Both of these properties greatly facilitate 

genetic studies (Korte & Farlow 2013). Arabidopsis is broadly distributed throughout the 

northern hemisphere (Figure 5.1). It originated from Eurasia and North Africa (Hoffmann 

2002). Subsequently, it has been introduced throughout much of the rest of the world. It 

grows in a range of climatic habitats and is continuously exposed to various selective pressures 

(Hoffmann 2002). Therefore, its genome contains extensive diversity within the global 

population. Part of this genetic diversity is associated with large phenotypic variation (Atwell 

et al. 2010) and adaptation to the local conditions (Hancock et al. 2011). Currently, the analysis 
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of natural variation in arabidopsis is used continuously to reveal new insights into various 

biological processes and the entire genus is used to explore fundamental questions of 

evolution (Bergelson & Roux 2010). 

Distribution of 7,000 Arabidopsis thaliana accessions collected from worldwide locations 
available for the analysis of natural variation. Locations marked in yellow are considered to be 
native and the ones marked in red are presumably introduced (Weigel 2012). 

 

In this chapter I describe GWAS on 317 Arabidopsis thaliana accessions which are a 

subset of 360 accessions from the Justin Borevitz core collection (Baxter et al. 2010). This 

analysis was conducted to explore the genetic architecture of traits related to nutrient use 

efficiency in the model organism. I screened all these accessions for the leaf concentration of 

nitrate, phosphate, and sulfate. To identify the regions of the genome at which genetic 

variation is associated with changes in concentration of the three macronutrients in leaves 

GWAS was conducted using two different tools: an online pipeline called Matapax (Childs et al. 

2012) and Efficient Mixed-Model Association (EMMA) method (Kang et al. 2008). The Matapax 

GWAS was conducted by me. The EMMA analysis was performed by David E. Salt and Dai-Yin 

Chao from University of Aberdeen. To verify the output of the GWAS, I analysed T-DNA 

insertion lines to investigate whether disruption of selected candidate genes affects 

accumulation of the three macronutrients tested. 

 

 

 

Figure 5.1 Worldwide distribution of natural accessions of Arabidopsis thaliana 
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Element Concentration Element Concentration

H3BO3 12.5

KNO3 1.25 MnCl2 1

Ca(NO3)2 1.25 ZnSO4 1

KH2PO4 0.25 CuSO4 0.25

MgSO4 0.5 NaMoO4 0.03

KCl 12.5

FeEDTA 10

Macroelements

[mM]

¼ Hoagland solution

Microelements

[µM]

5.2 Materials and Methods 

5.2.1 Growth conditions in the soil 

 Plants used for generation of the dataset for GWAS and T-DNA insertion lines grown 

for anion analysis shown in Figures 5.7 and 5.8 were grown for five weeks in a Controlled 

Environment Room (CER). First, the dry seeds were surfaced sterilised for up to four hours in a 

vacuum desiccator using chlorine gas which was generated by mixing 125ml of sodium 

hypochlorite with 2.5 ml of 12 M HCl. Seeds were then mixed with 0.1% sterile agarose (Sigma 

Aldrich) and seeded on plates with MS medium (see Chapter 2). Subsequently, plates were 

stored at 4°C in the dark for three days. After that time they were transferred to a CER at 22°C 

under 16-h-light/8-h-dark cycles where they were left horizontally up to one week during 

which the seeds germinated. One week old seedlings were transferred from plates to the 40-

cell tray (21 x 35cm) filled with Levington Horticulture soil mix (Figure 5.2) and grown for 

another four weeks in CER 10-h-light/14-h-dark cycles at constant temperature 22°C, 60% 

relative humidity, and light intensity of 160 µE s-1 m-2. Twice a week each tray was supplied 

with 1 l of ¼ Hoagland solution (Table 5.1M) in order to provide sufficient nutrients to the 

plants over the growth period.  

 

 

 

 

 

 

 

 

The concentration is shown per 1 l of solution. 

 

 

Table 5.1M The composition of ¼ Hoagland solution 
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5.2.2 Experimental design 

Each accession was grown in five biological replicates. In the soil, plants were grown in 

seven independent sets in blocks containing up to seven accessions each. Overall, each 

accession was grown once. In each block Col-0 was included as internal reference and always 

grown in the first column. Additionally, up to seven accessions were grown in remaining 

columns within the block. The number of blocks within a set varied from four to ten depending 

on the space availability (Figure 5.2). After four weeks of vegetative growth a young leaf was 

harvested individually for each plant. Only four plants were used for sample composition. If 

five plants were available one was left out randomly. If some of the plants looked different 

than the others from the same accession they were not harvested. Plant material was 

weighed, frozen in liquid nitrogen and stored at -80°C for further analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Experimental design of growth of 317 Arabidopsis thaliana accessions 
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5.2.3 Growth conditions on plates 

The seeds of all the T-DNA insertion lines were obtained from The European 

arabidopsis Stock Centre (NASC). The T-DNA insertion lines grown for anion analysis shown in 

Figures 5.6 and 5.10 were grown on plates for two weeks. First, dry seeds were surfaced 

sterilised as described above. They were mixed with 0.1% sterile agarose (Sigma) and seeded 

on plates with MS medium (see Chapter 2). Medium for plants grown for the selection of 

homozygous lines (shown in Figure 5.6) was supplemented with 50 µg ml-1 kanamycin.  

Medium for plants grown on sucrose (shown in Figure 5.10) was supplemented with 0.8% 

sucrose. Subsequently, plates were stored at 4°C in the dark for three days. After that time 

they were transferred to the CER at 22° under 16-h-light/8-h-dark cycles where they were 

grown vertically for two weeks. The photon flux density was ca. 125 µmol s-1 m-2. 

5.2.4 Genome-Wide Association mapping methods 

Two different tools were used for GWAS: web-based pipeline called Matapax (Childs et 

al. 2012) with GAPIT method for correction for population structure was used by me; David E. 

Salt and Dai-Yin Chao from University of Aberdeen ran GWAS using R package with the EMMA 

method for correction for population structure.  EMMA takes an advantage of linear mixed-

models which were shown to effectively correct for the population structure in model 

organisms (Yu et al. 2006). Taking into account that two genetically related individuals are 

more likely to be correlated than genetically different individuals, linear mixed-models 

incorporate pairwise genetic relatedness between every pair of individuals directly in the 

statistical model. This strategy allows reduction of the rate of false positive associations and 

increases the power of the analysis (Yu et al. 2006, Zhao et al. 2007). EMMA is the most 

frequently used tool for GWAS in arabidopsis. However, it was not possible to use it within the 

Matapax pipeline with  datasets greater than 200 accessions (Childs et al. 2012) and using it 

within R package requires specialist statistical knowledge. 

 Using a web-based tool such as Matapax is much more user friendly and does not 

require a specialist statistical and programing knowledge. Genome Association and Prediction 

Integrated Tool (GAPIT) was used to correct for population structure (Lipka et al. 2012). GAPIT 

is a mixed-model association tool that implements EMMA and enhances it with additional 

algorithms that increase the statistical power and decrease the computational time (Childs et 

al. 2012). In the GWAS described here the kinship matrix (K matrix) was used to control for the 

population structure. It contains the pairwise relationship between all represented genotypes 

and calculates the relatedness of each genotype to others (Kang et al. 2008). Additionally, the 
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marker dataset from arabidopsis POLYmorphism DataBase (AtPolyDB; Atwell et al. 2010, 

Horton et al. 2012) was used, which is one of the three marker sets available within Matapax. 

It contains the SNPs determined using a 250k Affymetrix genotyping chip providing a high 

resolution map of genetic variation across a great number of accessions. The output from 

Matapax is a graphical genome browser with the gene annotations from The Arabidopsis 

Information Resource (TAIR) database and detailed results table. The results table includes 

chromosome, position, p-value, gene annotation and a specific polymorphism. Matapax 

output does not include the Manhattan plots which are a common way to visualize the data 

and inspect the inflation of P-value (Korte & Farlow 2013). However, the result table was 

downloaded and the Manhattan plots were created in Microsoft Excel. 

Identifying meaningful associations from such a large amount of pair-wise tests as 

these obtained from GWAS requires the application of additional approaches (Noble 2009). 

First of all, since GWAS involves a large number of accession-phenotype tests, the produced P-

values require an application of a multiple testing correction method to control the number of 

false-positive associations (Noble 2009). To address that issue a False Discovery Rate (FDR) 

estimation (Banjamini-Hochberg method) was employed in the Matapax pipeline (Childs et al. 

2012). In principle, the FDR procedures are intend to control the proportion of incorrectly 

rejected null hypotheses within a particular analysis (Benjamini & Hochberg 1995). The simple 

FDR estimation method is sufficient for many studies. However, there are cases in which a 

more strict method is required (Noble 2009). The most stringent method of multiple correction 

testing commonly used in GWAS is a Bonferroni adjustment. It is based on minimizing the 

Family-Wise Error Rate (FWER) to one percent. In other words, it gives 99% assurance that 

none of the observed scores is drawn according to the null hypothesis (Noble 2009). Usually, 

5% significance threshold is used for Bonferroni adjusted P-values to extract the true 

associations (Atwell et al. 2010) and was applied also in the analysis described in this chapter. 

To calculate it one needs to divide the threshold by the number of separate tests used in the 

analysis (Noble 2009).  

5.2.5 Genotyping of T-DNA lines 

The DNA from plant tissue was isolated as described in Chapter 2. The genotyping of T-

DNA lines was carried out on genomic DNA by PCR amplification using the gene specific 

primers listed in Table 5.2M and the left-border SALK primer for Salk lines or left-border SAIL 

primer for Sail lines. Genotyping of T-DNA insertion mutants was carried out in two steps. In 

the first reaction, gene specific primers listed in the table were used to amplify genomic DNA 
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of the wild-type sequence. This PCR gave a product in heterozygous mutants or wild-type 

plants, but not in homozygous mutants. In the second step, one gene specific primer was used 

in combination with SALK_LB1 or SAIL_LB1 primer respectively. The gene specific primer 

depended on the orientation of the T-DNA insert in the gene and is highlighted in the Table 

5.2M. 

5.2.6 Genotyping polymerase chain reaction  

 The GoTaq Flexi Kit (Promega) was used for genotyping PCR. PCR reactions contained 

50-500 ng of gDNA or 1 pg - 50 ng plasmid DNA as template, 1x polymerase reaction buffer, 0.1 

U of GoTaq polymerase, 0.4 μM of each primer and 500 μM dNTPs. PCR amplifications were 

carried out in a DYAD Thermal Cycler (Biorad) or Mastercycler Pro (Eppendorf). The standard 

PCR amplification protocol included an initial denaturation step of 95°C for 2 min, followed by 

35 cycles of: 94°C for 30 s, 50-60°C (Primer Tm-3°C) for 30 s, 72°C for 1 min for each 1kb of 

target DNA product and a final elongation step at 72°C for 10 min. After PCR reaction the PCR 

products were separated by agarose gel electrophoresis using 1% gel.  
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Name T-DNA line Gene Sequence 5' -> 3'

1Fw SALK_098851 AT3G45570 ATGATCAGGCATATCTATGC

1Rw gcgaggaaaccacagagc

2Fw SALK_009859 AT5G23000 AACAACAACACCTCGAACG

2Rw aagcatttgtattctagtagg

4Fw SALK_021437 AT1G10670 AAATGAGCTAGTTGAAAAGG

4Rw ggtgtcagggaagcacc

5Fw SALK_030899 AT2G17260 CAATCATCTTTACTCATTTGG

5Rw accaagaacaatgatgaagc

6Fw SALK_036267 AT4G17500 CGTTCCTAACCAAACCCTAGC

6Rw tcctactcttctccctgctcc

7Fw SALK_071872 AT3G16600 GCAACAATGTTCCTTTTACG

7Rw taaagacaatagtatcagtgg

8Fw SALK_092114 AT2G01760 AGTTGGTCTTCTTGAAATGG

8Rw ctcagagtcattactctgc

10Fw SALK_112450 AT4G14370 GCATCTATTAAGATGTGACG

10Rw atggtatcaacaaaacttacc

11Fw SALK_116156 AT4G15530 CAGTCCCTGAAGTGTCC

11Rw gcttgaacgaccaagtcg

12Fw SALK_033906C AT1G06450 TGTATTGGAAGTTTTGCCATTATC

12Rw ccgtgagtctctggtagcttg

13Fw SALK_070088C AT4G31990 CGCGGTAACAGAGAAGTGG

13Rw atcacaatccactagtatcc

15Fw SALK_124733C AT1G06470 TCCATTACAGGGGTACTCGTG

15Rw aagaagaaatattggggctgc

16Fw SALK_092343C AT4G31360 GAGGTTGAGAAGGAAGAGC

16Rw tcttgtcttgaaagcattgc

17Fw SALK_080084C AT5G08590 TTGTTGGCTGAAAGTTGAGG

17Rw tttgaacatacacactgagc

18Fw SALK_044043C AT5G22250 CCTCAACGAAATACAAATCC

18Rw tctccgccgtggaaacc

19Fw SALK_061581C AT3G51770 CAAACTGGTTTTCTTCCACC

19Rw gcttgtgattcgcatttggc

20Fw SALK_110194C AT5G43370 TTCTTTACCGATGCGTACG

20Rw gcgtattcagacatgatgg

21Fw SALK_043036C AT1G32450 TCTACTAATAAATCATCAAACC

21Rw caattatagtacttatgtaaagc

22Fw SALK_065920C AT2G43900 TTACGGAATTGACAGGACC

22Rw caccggaggagatacagg

23Fw SALK_081127C AT5G44720 TCTGTTCCTCAGGCTACC

23Rw tgaaactgtagtcttgatgc

 

 

Table 5.2M Gene specific primers used for genotyping 
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Name T-DNA line Gene Sequence 5' -> 3'

24Fw SALK_099679C AT5G54310 TTTTCTCTGCCGTTTGACC

24Rw gcaacgagaataaatcttcc

25Fw SALK_138643C AT2G38940 AAGTACTTCCAGTGTCTCC

25Rw cttggccacgtcaagtgc

27Fw SALK_088586C AT5G43350 GCCCATGGCGTCTAAGG

27Rw gtcatgaccaccctttgc

28Fw SALK_117672C AT5G10800 CTCCCCTTCTTTGAAATGG

28Rw gagttctttctcgatcacc

29Fw SALK_129778C AT2G38920 GGTATCTCATTTGATCCAAG

29Rw atatctacatggagaagagg

30Fw SALK_138009C AT2G32830 ATGAATTTGAATTTGATTGTGC

30Rw gctcggtttcggcatagg

31Fw SALK_103821C AT5G39080 CAATGAACCATTCCCCTCC

31Rw attatgcatactaatacatacg

33Fw SALK_122868C AT5G03730 CGCTGTTATGGTTGCTCC

33Rw atatgaatagatatcatagtcg

34Fw SALK_141801C AT5G03430 CAGATTCTTCTTCTTCTCG 

34Rw cgatgatcaattggcttcg

35Fw SALK_111336C AT3G14400 AAATGGCTTTATCAATCTTCC

35Rw ggatctaactaccgatgc

36Fw SALK_151903C AT1G11390 CAAAGCTGGAATTAAAGTCG

36Rw gtcctatctttctgtcttcg

37Fw SALK_097431 AT1G12110 ATCAGATACTTATCTTTAATCC

37Rw atagacccgtgctcatcc

38Fw SALK_120831 AT1G12140 CGAGTCAACTCACTCAACG

38Rw gaacatgagcaactctagg

39Fw SAIL_41_C07 AT5G10790 CGACGTGGAACAAAGTGC

39Rw agttattgaaagatttgtaacc

40Fw SAIL_371_D04 AT4G23750 GAGAATCAAATTCACAGAGC

40Rw tccgacccgaatagatcc

43Fw SALK_135953 AT1G29230 CGTATATTGCACCCGAGG

43Rw caaactcccattctttcttcc

44Fw SALK_007262 AT3G55780 TGTTGAGAAAGATGCTAAGC

44Rw ttctccatcttcaatgtacc

46Fw SALK_107550 AT3G48850 ACCGCAGCTCAGCATCC

46Rw tgttgacaagtaaagagtcg

48Fw SALK_133599C AT1G65840 TCGTTTCCAGATAATCTTCC

48Rw ccatatcaacaggacaacc

49Fw SALK_009687C AT1G52990 GTGAGGATGATCAAGTCC

49Rw tgatatgggcaatacaagc
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Name T-DNA line Gene Sequence 5' -> 3'

50Fw SALK_021421C AT1G03495 CCCAACCTCAAACATTCC

50Rw tctgaccatgttctcagg

51Fw SALK_057196C AT1G52430 ACTCTCACTTGCAAGAGC

51Rw tcttgcactcgaggagg

52Fw SALK_018778C AT5G09930 CAAGTGACATTCTCATTTGC

52Rw ttgagaacattagtaagagc

53Fw SALK_009893C AT4G14580 AGATCCAGCTCGGAAACC

53Rw aggaagcggaagcttcg

54Fw SALK_097424C AT4G40010 CGTGACAATAGCTAACTCC

54Rw cagagagagatcataaacc

55Fw SALK_142820C AT4G31805 GAGGATAGACAAACAAAGC

55Rw gcggtgtatcgaacatgc

57Fw SALK_024894C AT1G44350 CGCCATCAAATGAAGTAACC

57Rw aggagttatggtctttagg

58Fw SALK_003255C AT4G26890 TGGGATGTACGATGATCG

58Rw gtcgtcagaggaatattcc

59Fw SALK_115780C AT5G59670 GTCTGGATCTAGGCTACG

59Rw gcttatctgggacttcagg

60Fw SALK_021591C AT4G21230 CCCTTGCTGAAACCTTCC

60Rw aatgtgttgtaagttgtaacc

62Fw SALK_096310C AT1G52890 ACATAGAACCCAATCATCC

62Rw ttacaaattcgatccatgg

63Fw SALK_121775C AT5G55240 GTCCTCAAGTAGGCAAGG

63Rw tgtccaaatcgaagaaagc 

64Fw SALK_004669C AT3G26340 ATTGTACCAAGCATATAAGG

64Rw tttgggtacctctcaagc

65Fw SALK_099224C AT1G52950 GACATTATGGATAACACAGG

65Rw gtctgagagttgtcctcc

66Fw SALK_039947C AT4G30510 GGATCAAGGTTCCTTGC

66Rw cttctatactcgctgttcg

67Fw SALK_052482C AT5G65500 AAGTAATGTATTTGGACAGC

67Rw tggaaattcacctgtttcc

68Fw SALK_047774C AT1G67600 CACCAGCTTTGGATTTCG

68Rw gccacactgttcttgagg

69Fw SALK_019928C AT5G57180 GGGATCGGAAGCTGTCG

69Rw cgaacaaatcaatctgagc

70Fw SAIL_512_B08 AT4G28140 CATAGGACAAGAGAGAGG

70Rw tcctagtcgtcctaaacc

71Fw SAIL_572_G08 AT5G57240 GGACGTTGAGGTGAAGG

71Rw ggaaataatcagagttattcg 
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Name T-DNA line Gene Sequence 5' -> 3'

72Fw SAIL_418_H08 AT1G48630 TAACTCCATCAGTGTATCC

72Rw agtcccaataggtactgg

73Fw SALK_095121 AT2G45650 CAAGCTCTACGAGTTTGG

73Rw ttataccgttcgattgtgc

74Fw SALK_128101 AT5G03430 ATTGAAACTAAAGGCGACC

74Rw ccaatctactaaatagttcg

75Fw SALK_087356C AT4G17490 CAGAAACTCCGTCAAATCC

75Rw gtaccggttgtagcagc

76Fw SAIL_549_F06 AT2G03590 CTCTTGCCTTGCCTTTGC

76Rw tatatctgttagggtaaagg 

77Fw SAIL_675_A03 AT1G11930 AGAAGTGAAGTGTGTAAGG

77Rw ttccaaatccatagtattgg 

78Fw SAIL_869_F08 AT2G28810 GCTGAACCAGAAAGCACG

78Rw tgtaaatggtctatatatacc 

79Fw SALK_117130 AT2G37440 GGTATTGACTTATACGTGC

79Rw ttctcaacaggataagttcc

80Fw SALK_072213C AT4G14880 CGCTAGAGCACGGTTCC

80Rw gccatgtgactgacacc

PAPS1_1Fw SALK_031937 AT5G03430 AGTTGCAGATTGTAACTGCCG

PAPS1_1Rw gcccattattagtgtccgagac

PAPS1_2Fw SALK_043060 AT5G03430 GCTCAAAATTTTCTGCACGTC

PAPS1_2Rw cgccatcttcgtcattaaaag

PAPS1_3Fw SALK_128101 AT5G03430 GAATTGCTCTTGACCAACCTG

PAPS1_3Rw tgcagatactccgaaatttgg

PAPS1_4Fw SALK_140720 AT5G03430 AGGCACCTGATGAAGAGTTTG

PAPS1_4Rw tgtgaccggtacatagaagcc

PAPS1_5Fw SALK_144629C AT5G03430 GAGGTCGTGTGGGATATGTTG

PAPS1_5Rw acagaaacgagagcagagcag

CAF1_1Fw SALK_101782 AT1G03450 TTCATGTCCAAGACCAAAACAC

CAF1_1Rw gatcagcttggtgttctcgac

CAF1_2Fw SAIL_533_G10 AT1G03450 GATTAAGGTGGAGCTTCTGGG

CAF1_2Rw ccaattaattttaacgcggtg

CAF1_3Fw SAIL_1306_A08 AT1G03450 TGTATTGGAAGTTTTGCCATTATC

CAF1_3Rw ccgtgagtctctggtagcttg

CAF1_4Fw SALK_009021C AT1G03450 TGCCAGTCAGTCATTAGCTTG

CAF1_4Rw ttcggtcaagtttacgacacc

ST1_1Fw SALK_088510 AT1G03470 TGGATTACATCTGATTTCG

ST1_1Rw ctccctcattggatatgg

ST1_2Fw SAIL_156_B12 AT1G03470 GCTGGTGTATGACGCAAG

ST1_2Rw ccacgtaaattcgtcatgg

ST1_3Fw SALK_126893C AT1G03470 GTTGTCAAAGAGGCTGTCACC  

ST1_3Rw GACCAAATTTGCAGCCACTAC  
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Name T-DNA line Gene Sequence 5' -> 3'

SALK_LB1 Salk lines insertion GCGTGGACCGCTTGCTGCAACT

SAIL_LB1 Sail lines insertion TAGCATCTGAATTTCATAA

ACCACTCGATACAC             

 

 

 

One of the primers from each pair which is underlined and bold was used in combination with 
either of the left-border primers to identify homozygous lines. 

 

5.2.7 Bioinformatics tools 

 The arabidopsis Information Resource (TAIR) database was used for the functional 

annotation of the candidate genes (http://www.arabidopsis.org/); the Gene Expression 

Omnibus (GEO) database was used to obtain the microarray data for the slim1 mutant  

(www.ncbi.nlm.nih.gov/geo; the 1001 Genomes database was used for the investigation of the 

natural variation in the architecture of candidate genes (http://signal.salk.edu/atg1001 

/3.0/gebrowser.php); the “Stress Response” tool within the gene expression search engine 

Genevestigator (Zimmermann et al. 2004; https://www.genevestigator.com/gv/plant.jsp) was 

used to investigate the candidate genes which in the analysis of T-DNA insertion lines showed 

differences in anion accumulation; the T-DNA Express search tool was used to obtain the T-

DNA line with insertions in genes of interest (Alonso et al. 2003); the basic statistical analysis of 

the data presented in this chapter was performed using Microsoft Excel 2010. 
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5.3 Results 

5.3.1 Analysis of the anion concentration in Arabidopsis thaliana accessions 

To generate the dataset that could be used for GWAS I screened 317 arabidopsis 

accessions for concentration of nitrate, phosphate and sulfate. The population of 317 

accessions used for analysis of anion concentration is a part of the collection of 360 accessions 

selected by Justin Borevitz and collaborators within the HapMap project (Baxter et al. 2010; 

Table S5.1). The set of 360 accessions was selected from 5,810 worldwide accessions based on 

the genotypes at 149 SNPs developed by Platt et al. (2010) and spread across the genome. This 

population was selected to minimize redundancy and close family relatedness. As mentioned 

in the introduction, these factors may affect population structure which leads to an increased 

rate of false-positive associations in GWAS results. More detailed description of the entire 

collection of 360 accessions can be found online (http://naturalvariation.org/hapmap) and in 

Baxter et al. (2010).. 

The subset of 317 accessions used in this analysis was obtained based on seed 

availability and germination rate (Table S5.1).  Initially, seeds of 71 Swedish accessions were 

provided by Matthew Box and Susan Duncan from the Caroline Dean lab at the John Innes 

Centre and seeds of 273 accessions, originating from a wide range of locations, were provided 

by David E. Salt from the University of Aberdeen.  From this initial set of 344 accessions 28 did 

not germinate or did not develop mature plants (Table S5.1). Finally, 317 accessions were 

screened for anion concentration to generate the dataset which was later used for GWAS 

(Table S5.1). All these accessions were previously genotyped using custom Affymetrix SNP-

tilling array Atsnptile 1 which contains probe sets for 248,584 SNPs (Atwell et al. 2010, Baxter 

et al. 2010). The SNP data are publically available and widely used for various GWA analyses 

(Chao et al. 2012, Li et al. 2010). 

All the accessions used for this experiment were grown for five weeks in CER as 

described in the Material and Methods section of this chapter. Leaves of five week old plants 

were analysed for concentration of nitrate, phosphate and sulfate in four biological replicates 

using HPLC (Chapter 2). This analysis provided a large quantitative dataset which was 

subsequently used for GWAS to investigate the genetic architecture of nutrient use efficiency 

in arabidopsis. However, before that a basic verification and normalisation was applied to the 

dataset to examine its quality.  
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Anion

Average anion 

concentration in Col-0                 

[nmol mg
-1 

FW]

Standard 

Deviation

Nitrate 137 ± 22

Phosphate 14 ± 4

Sulfate 14 ± 4

Dataset

Accessions with lowest 

concentration [nmol 

mg
-1 

FW]

Accession with highest 

concentration [nmol 

mg
-1 

FW]

Mean of all accessions 

[nmol mg-1 FW] ± SD Variation

Number of 

accessions in 

the dataset

Nitrate Se-0         86.4 TOU.A1.12     270.3 132 ± 25 4 fold 284

Phosphate DNAII-1      5.4 UKID-22          73.1 18 ± 8 13 fold 246

Sulfate CS28053      6.7 Can-0               32.8 15 ± 5 5 fold 261

Table 5.1   Col-0 performance within the datasets 

 

 

 

 
 
 

The average values correspond to the concentration of particular anions in Col-0 from 50 blocks 
grown in seven independent sets containing four biological replicates each (200 samples). 

 

To investigate the variation between the sets of accession and between the blocks 

within the sets I first examined the variation between the Col-0 which was used as a reference 

accession (Table 5.1). There was variation between Col-0 values from block to block measured 

in independently grown sets. Therefore, to correct for this variation, I normalised values for all 

accessions within a block on the basis of Col-0 value for that block. Subsequently, I removed 

from each of the three datasets the accessions for which standard deviation was higher than 

20% of average value. Finally, I used 284 accessions to compose the nitrate accumulation 

dataset, 246 accessions to compose the phosphate accumulation dataset, and 261 accessions 

to compose the sulfate accumulation dataset (Table 5.2). 

Table 5.2 Summary of the macronutrient accumulation datasets 

 

 

After the normalisation of the data I examined the frequency distribution of leaf anion 

concentration in all accessions analysed. The mean value of nitrate concentration fell between 

130-140 nmol mg-1 fresh weight. Col-0 (137.17 nmol mg-1 fresh weight) fell in the centre of 

distribution (Figure 5.3A). The leaf phosphate concentration across 246 accessions varied from 

5.43 nmol mg-1 fresh weight in DraII-1 to 73.15 nmol mg-1 fresh weight in UKID-22 giving 13 
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fold variation between accessions (Table 5.2). However, phosphate concentration in UKID-22 is 

exceptionally high. The accession with the second highest phosphate concentration is Kr-0 

which has 41.80 nmol mg-1 fresh weight which is nearly two fold lower than in UKID-22.  

Therefore, the mean of the frequency distribution of phosphate data which is between 15-18 

nmol mg-1 fresh weight is shifted to the left. The average Col-0 phosphate concentration (14.35 

nmol mg-1 fresh weight) is also slightly shifted to the left side of the graph (Figure 5.3B). The 

leaf sulfate concentration across 261 accessions showed fivefold variation (Table 5.2). The 

mean of the frequency distribution of sulfate data fell between 14-16 nmol mg-1 fresh weight. 

The average Col-0 sulfate concentration (13.74 nmol mg-1 fresh weight) is slightly shifted to the 

left (Figure 5.3). In general, all these data showed a prominent variation, sufficient for GWA 

analysis. The analysis of the data revealed that the population is suitable for GWAS of the 

anion traits. However, the normal probability plot, which is the simple normality test for 

Microsoft Excel, showed that the datasets are not normally distributed, but slightly skewed to 

the right (Figure 5.3). Therefore, methods implying the correction for population structure 

need to be used in order to limit the rate of false-positive associations (Atwell et al. 2010, Zhao 

et al. 2007).   
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The frequency distribution (left panel) and normality testing (right panel) of the leaf nitrate 
concentration in 284 arabidopsis accessions (A); leaf phosphate concentration in 246 arabidopsis 

accessions (B); leaf sulfate concentration in 261 arabidopsis accessions (C) grown in a Controlled 
Environment Room (CER). Horizontal bars represent the Col-0 interval. The normal probability plot 
was performed in Microsoft Excel 2010. The red line represents the expected value, the blue line 
represents the actual data. The expected value was calculated by using cumulative distribution 
function (CDF) and the Excel formula NORMINV (CDF at sample point, sample mean, sample 
standard deviation; Harmon 2011). 
 

 

5.3.2 Genome-Wide Association Study 

GWAS on the nitrate, phosphate, and sulfate accumulation datasets was run by using 

the MArker-Trait Association Platform And eXplorer (Matapax). Matapax is a Web-based 

platform to support GWAS in arabidopsis (Childs et al. 2012; section 5.2.4). Since it was not 

possible to use EMMA (within Matapax) with the datasets greater than 200 accessions, I used 

GAPT method that includes correction for kinship and population structure (Childs et al. 2012). 

It is the main association tool in the Matapax pipeline. In general, it implements EMMA and 

enhances it with algorithms designed to increase statistical power and further decrease 

computational time (Childs et al. 2012). It is able to handle large datasets by subdividing the 

genotypic data into multiple smaller files (Lipka et al. 2012). 

Despite the convenience of using the Web-based tool Matapax for GWAS, it would be 

desirable to use independent and more flexible tools for this purpose. In addition, GAPIT has 

not been extensively used for GWAS whereas EMMA was proved to produce meaningful 

associations (Atwell et al. 2010) and since then has been successfully used for GWAS of 

various, agronomically important traits (Baxter et al. 2010, Chao et al. 2012). Therefore, to 

verify the results obtained from Matapax David E. Salt and Dai-Yin Chao  performed the GWAS 

on  the datasets using EMMA algorithm implemented in the R package.  

Figure 5.3 Anion concentration in a worldwide collection of arabidopsis accessions 



   GWAS                                                                                                                                                  Chapter 5 
 

138 
 

To identify significant associations I created Manhattan plots for the P-values obtained 

by using both the Matapax pipeline and the EMMA algorithm (Figure 5.4). The calculated 5% 

significant threshold with Bonferroni correction for 250k tests was set at -log10 P-value = 6.7. 

Because the SNP data used for both EMMA and Matapax GWAS were the same, the threshold 

is also the same for all the results. There were no associations that exceeded this threshold for 

either nitrate or sulfate accumulation data with either of the two methods used (Figure 5.4A, 

C). Twelve significantly associated SNPs were identified for phosphate accumulation data. 

Three of them were derived by Matapax and nine by EMMA (Figure 5.4B). A major peak of 

SNPs associated with leaf phosphate accumulation was localised on chromosome 5. It was 

identified using both Matapax and EMMA methods. However, it was not significant in the 

Matapax results with the Bonferroni threshold (Figure 5.4B). Within 20 kb either side of the 

most significantly associated SNP from that region there were nine genes including AT5G03730 

which is annotated in TAIR database as Constitutive Triple-Response 1 (CTR1) kinase and is 

involved in the negative regulation of the ethylene signal transduction pathway. Ethylene was 

shown to be involved in the regulation of plant response to phosphate deficiency (Nagarajan & 

Smith 2012). Therefore, this gene was selected as a candidate for further analysis which is 

described in next sections of this chapter. 

As mentioned before, the Bonferroni threshold is the strictest one from the available 

and commonly used methods. Chao et al. (2012) in a GWAS of leaf cadmium accumulation 

used 337 arabidopsis accessions which also were a subset of the Borevitz collection and the 

same set of SNPs as in my analysis. In this study they set the threshold at –log10 P-value = 5, 

(even though the major peak revealed by this analysis would be significant with the higher 

threshold). Therefore, I decided to lower the threshold in this analysis to the same level. The 

lower threshold revealed three SNPs significantly associated with nitrate accumulation data 

(two derived by Matapax and one by EMMA; Figure 5.4A), three SNPs significantly associated 

with sulfate accumulation (two derived by Matapax and one by EMMA; Figure 5.4C), and 31 

additional SNPs significantly associated with phosphate accumulation (10 derived by Matapax 

and 21 by EMMA; Figure 5.4B). However, the meaning of the threshold depends on the aim of 

the study. If the aim of the analysis is to identify candidate genes for follow up studies, a 

stringent FDR and a strict threshold are recommended (Korte & Farlow 2013). This strategy 

prevents the substantial cost consequences of extensive wasted effort and money in further 

biological and functional characterisation of spurious associations. Conversely, if the aim of the 

study is to investigate the genetic architecture of a trait, one may consider a less stringent FDR 

and subsequent lower threshold value (Korte & Farlow 2013).  
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GWAS of leaf nitrate concentration in 284 arabidopsis accessions (A); leaf phosphate concentration 
in 246 arabidopsis accessions (B); leaf sulfate concentration in 261 arabidopsis accessions (C) grown 
in CER. In each case results derived by the Matapax pipeline are presented in the upper panel and 
results derived by the EMMA algorithm are presented in the lower panel. Black horizontal lines 
indicate a nominal 5% significance threshold with Bonferroni correction for 250,000 tests -log10 P-
value = 6.7. Blue horizontal lines indicate genome-wide significance threshold of –log10 P-value = 5. 
SNPs are accurately plotted according to their position along the appropriate chromosome. 
Different colours facilitate the visualisation of individual chromosomes.  

 

5.3.3 Selection of candidate genes 

Keeping in mind the low significance of the GWAS outcome the most strongly 

associated markers obtained as a result of the two methods were analysed. For the GWAS on 

phosphate and sulfate concentration data all the markers with P-value ≤ 0.0001 were analysed 

whereas for nitrate all the markers with the P-value ≤ 0.005 were analysed. As mentioned 

before, the significantly associated markers are often not a direct effect of a variation in the 

tested trait (Myles et al. 2009). Hence, the genes with a causal polymorphism can be found 

within the LD of the markers.  It has been shown that in arabidopsis this LD is between 10-20 

Figure 5.4 Manhattan plots of GWAS results on anion accumulation data 
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kb from a marker (Atwell et al. 2010, Kim et al. 2007). Therefore, an LD decay distance of 20 kb 

either side from each analysed marker was assumed.   

The possible candidate genes that seemed likely to be involved in the control of 

natural variation in the accumulation of the three macronutrients tested were selected based 

on two main information sources. First of all, based on the gene annotations from the TAIR 

database and the existing functional knowledge candidates involved in the uptake and 

assimilation of the three nutrients tested were selected. Additionally, signalling and regulatory 

factors that could be involved in the control of the homeostasis of the three macronutrients 

were of interest. Secondly, publically available microarray data was used as additional sources 

of information.  It was assumed that the profiles of expression of genes involved in the control 

of sulfate homeostasis will be altered under sulfate deficiency. For that reason, the microarray 

data for Col-0 WT grown in sulfate deficient media were evaluated. These data were published 

previously (Maruyama-Nakashita et al. 2006) and they can be obtained from the Gene 

Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) database under accession number 

GSE445.  

The P-values produced by both Matapax and EMMA were comparable for nitrate and 

sulfate accumulation data suggesting that both of them produced similar P-value distributions. 

For phosphate accumulation data some P-values produced by EMMA were two fold lower than 

those produced by Matapax. A good example of such elevated P-value is SNP Chr4:15754220. 

It is the most significantly associated SNP on the chromosome 4 in the phosphate 

accumulation dataset produced by both methods. However, the P-value for that SNP produced 

by EMMA is only half of the P-value produced by Matapax (Figure 5.4B). It was shown 

previously that P-values produced by EMMA are not always well estimated and should be 

interpreted with caution (Atwell et al. 2010). Therefore, using the results from both Matapax 

and EMMA allowed a mutual complementation of the data which gave confidence in the 

results. 

These analyses resulted in a selection of 59 genes for further analysis of their 

involvement in the natural variation of accumulation of the analysed nutrients. Seventeen of 

these genes were derived from the nitrate accumulation data (Table 5.3), 20 were derived 

from the phosphate accumulation data (Table 5.4), and 22 were derived from the sulfate 

accumulation data (Table 5.5). A large number of analysed markers were related to unknown 

genes, pseudogenes or transposable elements. Therefore, they seemed unlikely to influence 

the nutrient accumulation. Due to time limitation of my PhD project they were excluded from 
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further analyses. On the other hand, a number of genes was likely to be involved in nutrient 

homeostasis. For example, genes encoding mitochondrial phosphate transporter 2 (MPT2) 

derived from the phosphate accumulation dataset and the ATPS1 isoform of ATPS (an enzyme 

involved in the first step of sulfate reduction in the plant cells described in chapter 3 of this 

thesis) and sulfate transporter SULTR3;3 derived from the sulfate accumulation dataset 

suggest that there is real information in these data. Among the genes selected as candidates 

only 12 directly included the GWAS markers. All the other genes were selected using the LD. 

Therefore, in some cases two candidates were selected from the same marker, e.g. 

Chr2:1081648 especially when they belonged to the same class of genes as in case of 

Chr4:9749937 or when the marker was significant in both Matapax and EMMA. 
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Rank Chr Position Score Method Candidate TAIR annotation

1 4 9749937 5.1894 both AT4G17500 Ethylene response factor 1 AtERF-1

1 4 9749937 5.1894 both AT4G17490 Ethylene response factor 6 AtERF-6

2 2 7507230 5.0797 Matapax AT2G17260 Glutamate receptor 2 GLR-2

4 1 24480901 4.6135 EMMA AT1G65840 Peroxisomal polyamide oxidase AtPAO4

7 3 16728880 4.6849 both AT3G45570 

RING/U-box protein with C6HC-type zinc 

finger domain

10 4 8877666 4.3534 both AT4G15530 Pyruvate orthophosphate dikinase PPDK

12 3 9643862 3.9868 both AT3G26340 N-terminal nucleophile aminohydrolase

13 4 8513274 3.9838 EMMA AT4G14880

Cytosolic isoform of cytosolic O-

acetylserine(thiol)lyase OAS-TL

18 4 13967619 3.9570 Matapax AT4G28140

Member of ERF/AP2 transcription factor 

family

19 4 18550616 3.9339 EMMA AT4G40010 SNF1 related protein kinase 2.7  SNRK2.7

53 5 18067534 3.4955 Matapax AT5G44720 

Molybdenum cofactor sulfurase family 

protein

56 2 319733 3.4782 Matapax AT2G01760 Response regulator 14 ARR14

60 1 4023029 3.4630 both AT1G11930 

Predicted pyridoxal phosphate-

dependent enzyme

152 5 845487 3.0073 both AT5G03430 putative PAPS reductase

192 2 1081648 2.9727 Matapax AT2G03600 Hypothetical protein similar to AtUPS1

192 2 1081648 2.9727 Matapax AT2G03590 

Member of a class of allantoin 

transporters AtUPS1

242 2 16740121 2.7982 EMMA AT2G40090 

Member of ATH transporters subfamily 

AtATH9

Table 5.3 Candidate genes derived from GWAS on leaf nitrate concentration data 

 

 

Rank column corresponds to the significance of the association in the total dataset (and not on 
individual chromosome); in cases where the marker was significant in both methods (“both” in the 
method column) the higher number is given; grey boxes indicate genes which directly included the 
GWAS marker; the Chr = Chromosome; Score corresponds to –log10 P-value. 
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Rank Chr Position Score Method Candidate TAIR annotation

6 1 8342207 7.4881 EMMA AT4G14580

SNF1 related protein kinase 3.3                                   

SNRK3.3

3 3 18150590 7.3103 both AT3G48850

Mitochondrial phosphate transporter 2 

MPT2

8 1 3828144 5.9743 Matapax AT1G11390 Protein kinase superfamily protein

16 2 12364981 5.6052 both AT2G28810

Dof-type zinc finger DNA-binding family 

protein

18 1 873731 5.5202 EMMA AT1G03495

HXXXD-type acyl-transferase family 

protein

10 5 955628 5.4877 both AT5G03730

Constitutive Triple-Response 1 kinase 

CTR1

20 1 16834866 5.4851 both AT1G44350

IAA-leucine resistant (ILR)-like                        

gene 6 ILL6

23 1 19751436 5.4497 EMMA AT1G52990 Thioredoxin family protein

24 1 30284235 5.4174 EMMA AT1G80580

Ethylene response transcription factor 

AtERF B-1

27 3 4795786 5.2239 both AT3G14400

Ubiquitin-specific protease 25                                           

UBP25

28 1 10195762 5.1123 EMMA AT1G29230

Member of SNF1 related kinase gene 

family AtCIPK18

40 4 11310888 4.5607 both AT4G21230

Cysteine-rich receptor-like protein kinase 

CRK27

43 1 19687330 4.4621 EMMA AT1G52890 NAC transcription factor ANAC019

49 5 22060060 4.3181 EMMA AT5G54310

A member of ARF GAP domain                                       

AGD5

35 1 11693580 4.1888 Matapax AT1G32450

Nitrate transporter 1.5                                                    

NRT1.5

67 1 17982197 4.1822 both AT1G48630 RACK1B

75 1 25320168 4.0275 both AT1G67600 

Acid phosphatase/vanadium-dependent 

haroperoxidase related protein

66 3 5637573 3.8274 both AT3G16600 SNF2 domain-containing protein

68 5 7694730 3.8114 Matapax AT5G23000 ATMYB37

75 5 26173474 3.7688 Matapax AT5G65500

U-box domain-containing  protein kinase 

family protein

Table 5.4 Candidate genes derived from GWAS on leaf phosphate concentration data 

 

 

 
 
 
Rank column corresponds to the significance of the association in the total dataset (and not on an 
individual chromosome); in cases where the marker was significant in both methods (“both” in the 
method column) the higher number is given; grey boxes indicate genes which directly included the 
GWAS marker; the Chr = Chromosome; Score corresponds to –log10 P-value. 
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Rank Chr Position Score Method Candidate TAIR annotation

1 5 24051345 5.8611 both AT5G59670

Leucine-rich repeat protein kinase family 

protein                                                                            
up-regulated in slim1  microarray data

2 4 13513943 4.9556 both AT4G26890 Member of MEKK subfamily MAPKKK16

3 1 2629873 4.6802 both AT1G08340 Rho GTP-ase activating protein

5 5 3100575 4.5520 both AT5G09930
Member of GCN subfamily ABCF2                                 
up-regulated in slim1  microarray data

5 1 19737375 4.6938 both AT1G52950
Nucleic acid-binding, OB-fold-like protein                                               

up-regulated in slim1  microarray data

7 5 830621 4.4844 both AT5G03430 putative PAPS reductase

10 5 15642814 4.5619 both AT5G39040

Member of TAP subfamily of ABC 

transporters

10 5 15642814 4.5619 both AT5G39080

HXXXD-type acyl-transferase family 

protein

12 4 15366769 4.3249 both AT4G31805
WRKY family transcription factor                                  

up-regulated in slim1  microarray data

13 4 15231390 4.2762 EMMA AT4G31360 Selenium binding protein

15 2 18177061 4.3817 Matapax AT2G43900

5 inositol polyphosphate 5-phosphatase 

12 5PTASE12

18 4 14920764 4.2093 both AT4G30510

Arabidopsis thaliana  homolog of yeast 

autophagy 18 (ATG18) B

19 1 1966415 4.1612 both AT1G06450 CCR4-associated factor 1 CAF1

19 1 1966415 4.1612 both AT1G06470 

Nucleotide/sugar transporter family 

portein

20 2 15728631 4.1599 EMMA AT2G37440 DNAse I-like superfamily protein

22 1 3520775 4.2670 Matapax AT1G10670 

Subunit A of the trimeric protein ATP 

Citrate Lyase ACLA1

24 1 19515429 4.1282 EMMA AT1G52430

Ubiquitin carboxyl-terminal hydrolase-

related protein

25 5 23177993 4.0906 EMMA AT5G57180
Chloroplast import apparatus 2 CIA2                                                              
down-regulated in slim1  microarray data

25 5 23177993 4.0906 EMMA AT5G57240

OSBP(oxysterol binding protein)-related 

protein 4C ORP4C                                                          
up-regulated in slim1  microarray data

28 5 22407229 4.0031 EMMA AT5G55240

Arabidopsis thaliana  peroxygenase 2 

ATPXG2

38 4 5931214 4.0191 both AT4G09350 
Chlororespiratory reduction J CRRJ up-

regulated in slim1  microarray data

85 3 8139451 3.9860 EMMA AT3G22890 ATPS1 

  Table 5.5 Candidate genes derived from GWAS on leaf sulfate concentration data 

 

 

 
Rank column corresponds to the significance of the association in the total dataset (and not on an 
individual chromosome); in cases where the marker was significant in both methods (“both” in the 
method column) the higher number is given; grey boxes indicate genes which directly included the 
GWAS marker; the Chr = Chromosome; Score corresponds to –log10 P-value. 
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Rank Chr Position Score Dataset Candidate TAIR annotation

3 2 18798180 5.28433086 np AT2G45650

Agamous-like 6 transcription factor                   

AGL6

7 4 15459090 4.97510404 np AT4G31990

Aspartate aminotransferase 5                                       

ASP5

37 3 19182836 3.6476245 ns AT3G51770 

Ethylene overproducer 1                                              

ETO1

54 4 8303998 3.43616308 ns AT4G14370 Phosphoinositide binding protein

3 5 23672391 5.14935376 sp AT5G58550

ETO1-like 2                                                                    

EOL2

9 5 3417901 4.46142627 sp AT5G10800 RNA recognition motif

9 5 3417901 4.46142627 sp AT5G10790

Ubiquitin-specific protease 22                                   

UBP22

12 5 17420543 4.33198703 sp AT5G43370

Phosphate transporter 1;2                                              

PHT1;2

12 5 17420543 4.33198703 sp AT5G43350

Phosphate transporter 1;1                                                          

PHT1;1

16 2 13915316 4.25212229 sp AT2G32830

Phosphate transporter 1;5                                                                  

PHT1;5

23 2 16249798 4.07810553 sp AT2G38940

Phosphate transporter 1;4                                                               

PHT1;4

60 5 2776844 3.56161589 sp AT5G08590

SNF1 protein related kinase 2.1                                                                 

SNRK2.1

Since there is evidence of interconnection between different nutrient assimilation 

pathways (Chapter 4 of this thesis; Kopriva & Rennenberg 2004, Koprivova et al. 2000) I 

calculated the ratios between nitrate, phosphate, and sulfate (N/P, N/S, S/P) and performed 

GWAS on these data. These data were analysed by using only the Matapax pipeline (Figure 

5.5).  In this case all the markers with P-value ≤ 0.001 for each of the three datasets were 

analysed. Subsequently, SNPs which were common between accumulation and ratio data were 

excluded from the further analysis of ratio data. Similarly to the analysis of accumulation data, 

the LD decay distance  of 20kb either side of a given SNP was assumed to look for the 

candidate genes that may explain the natural variation in the accumulation of analysed anions. 

The rationale for candidate genes selection was as described above. Finally two genes derived 

from N/P ratio data, two genes derived from N/S ratio data and eight genes from S/P ratio data 

were selected for further analysis of their involvement in the regulation of the homeostasis of 

particular anions (Table 5.6). 

Table 5.6 Candidate genes derived from GWAS analysis of the ratio data 

Rank column corresponds to the significance of the association in the total dataset (and not on an 
individual chromosome); grey box indicates gene which directly included the GWAS marker; Chr = 
Chromosome; Score corresponds to –log10 P-value; np indicates nitrate/phosphate ratio, ns – 
nitrate/sulfate ratio, and sp – sulfate/phosphate ratio 
 



   GWAS                                                                                                                                                  Chapter 5 
 

147 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GWAS of the ratio between nitrate/phosphate (N/P) leaf concentration in 246 arabidopsis 
accessions (A); ratio between nitrate/sulfate (N/S) leaf concentration in 261 arabidopsis accessions 
(B); ratio between sulfate/phosphate (S/P) leaf concentration in 246 arabidopsis accessions (C) 
grown in CER. Black horizontal lines indicate a nominal 5% significance threshold with Bonferroni 
correction for 250,000 tests -log10 P-value = 6.7. Blue horizontal lines indicate genome-wide 
significance threshold of –log10 P-value = 5. SNPs are accurately plotted according to their position 
along the appropriate chromosome. Different colours facilitate the visualisation of individual 
chromosomes.  

 

Figure 5.5 Manhattan plots of GWAS results on ratio data 
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Line number NASC line number Gene TAIR annotation Comment

Line 1 SALK_098851 AT3G45570 
RING/U-box protein with C6HC-type 

zinc finger domain heterozygous

Line 5 SALK_030899 AT2G17260 
Glutamate receptor 2                          

GLR-2 heterozygous

Line 6 SALK_036267 AT4G17500 
Ethylene response factor 1                                                             

AtERF-1 KmR  homozygous

Line 8 SALK_092114 AT2G01760
Response regulator 14                                                            

ARR14 homozygous

Line 11 SALK_116156 AT4G15530 
Pyruvate orthophosphate dikinase 

PPDK heterozygous

Line 23 SALK_081127C AT5G44720 
Molybdenum cofactor sulfurase family 

protein homozygous

Line 26 SALK_064134C AT2G03600 Hypothetical protein similar to AtUPS1 KmR not genotyped

Line 32 SALK_056596C AT2G40090 
Member of ATH transporters subfamily 

AtATH9 KmR not genotyped

Line 34 SALK_141801C AT5G03430 PAPS reductase KmR  homozygous

Line 48 SALK_133599C AT1G65840
Peroxisomal polyamide oxidase 

AtPAO4 homozygous

Line 54 SALK_097424C AT4G40010
SNF1 related protein kinase 2.7  

SNRK2.7 KmR  homozygous

Line 64 SALK_004669C AT3G26340 
N-terminal nucleophile 

aminohydrolases homozygous

Line 70 SAIL_512_B08 AT4G28140
Member of ERF/AP2 transcription 

factor family homozygous

Line 75 SALK_087356C AT4G17490 
Ethylene response factor 6                                                                   

AtERF-6 KmR  homozygous

Line 76 SAIL_549_F06 AT2G03590 
Member of a class of allantoin 

transporters ATUPS1 homozygous

Line 77 SAIL_675_A03 AT1G11930 
Predicted pyridoxal phosphate-

dependent enzyme homozygous

Line 80 SALK_082213C AT4G14880
Cytosolic isoform of                                  

O-acetylserine(thiol)lyase OAS-TL homozygous

NITRATE DATASET

5.3.4 The analysis of T-DNA insertion lines 

Because of the low statistical significance of the GWAS results the selected candidates 

required careful verification. Assuming that disruptions in genes involved in the regulation of 

nutrient homeostasis will affect the leaf anion concentration, one Salk or Sail T-DNA insertion 

line per gene selected as a candidate (Tables 5.3 to 5.6) was obtained from The European 

Arabidopsis Stock Centre (NASC; Table 5.7). Since the homozygous T-DNA insertion lines are 

resistant to kanamycin on the initial stage of the analysis I grew all the lines on plates with MS 

medium supplemented with kanamycin in order to be able to distinguish the homozygous lines 

from heterozygous line and lines with no insertion for the primary analyses. 

Table 5.7  DNA insertion lines analysed to verify GWAS candidate genes 
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Line number NASC line number Gene TAIR annotation Comment

Line 2 SALK_009859 AT5G23000 ATMYB37 heterozygous

Line 7 SALK_071872 AT3G16600 SNF2 domain-containing protein homozygous

Line 21 SALK_043036C AT1G32450
Nitrate transporter 1.5                     

NRT1.5 homozygous

Line 24 SALK_099679C AT5G54310 A member of ARF GAP domain AGD5 homozygous

Line 33 SALK_122868C AT5G03730
Constitutive Triple-Response 1 kinase 

CTR1 heterozygous

Line 35 SALK_111336C AT3G14400
Ubiquitin-specific protease 25                                         

UBP25 homozygous

Line 36 SALK_151903C AT1G11390 Protein kinase superfamily protein heterozygous

Line 43 SALK_135953 AT1G29230
Member of SNF1 related kinase gene 

family AtCIPK18 KmR  homozygous

Line 46 SALK_107550 AT3G48850
Mitochondrial phosphate transporter 2 

MPT2 homozygous

Line 47 SALK_142536 AT1G80580
Ethylene response transcription factor 

AtERF B-1 didn’t germinate

Line 49 SALK_009687C AT1G52990 Thioredoxin family protein KmR  homozygous

Line 50 SALK_021421C AT1G03495
HXXXD-type acyl-transferase family 

protein KmR  homozygous

Line 53 SALK_009893C AT4G14580
SNF1 related protein kinase 3.3 

SNRK3.3 KmR  homozygous

Line 57 SALK_024894C AT1G44350
IAA-leucine resistant (ILR)-like gene 6 

ILL6 homozygous

Line 60 SALK_021591C AT4G21230
Cysteine-rich receptor-like protein 

kinase CRK27 no insertion

Line 62 SALK_096310C AT1G52890 NAC transcription factor ANAC019 heterozygous

Line 67 SALK_052482C AT5G65500
U-box domain-containing  protein 

kinase family protein homozygous

Line 68 SALK_047774C AT1G67600 

Acid phosphatase/vanadium-

dependent haroperoxidase related 

protein heterozygous

Line 72 SAIL_418_H08 AT1G48630 RACK1B homozygous

Line 78 SAIL_869_F08 AT2G28810
Dof-type zinc finger DNA-binding family 

protein heterozygous

PHOSPHATE DATASET
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Line number NASC line number Gene TAIR annotation Comment

Line 3 SALK_011884 AT5G39040
Member of TAP subfamily of ABC 

transporters KmR not genotyped

Line 4 SALK_021437 AT1G10670 
Subunit A of the trimeric protein ATP 

Citrate Lyase ACLA1 homozygous

Line 12 SALK_033906C AT1G06450 
CCR4-associated factor 1                                                                                

CAF1 KmR  homozygous

Line 15 SALK_124733C AT1G06470 
Nucleotide/sugar transporter family 

portein KmR  homozygous

Line 16 SALK_092343C AT4G31360 Selenium binding protein homozygous

Line 22 SALK_065920C AT2G43900
5 inositol polyphosphate 5-

phosphatase 12 5PTASE12 homozygous

Line 31 SALK_103821C AT5G39080
HXXXD-type acyl-transferase family 

protein heterozygous

Line 44 SALK_007262 AT3G55780 Glycosyl hydrolase homozygous

Line 51 SALK_057196C AT1G52430
Ubiquitin carboxyl-terminal hydrolase-

related protein heterozygous

Line 52 SALK_018778C AT5G09930
Member of GCN subfamily ABCF2                           
up-regulated in slim1  microarray data KmR  homozygous

Line 55 SALK_142820C AT4G31805
WRKY family transcription factor             

up-regulated in slim1  microarray data KmR  homozygous

Line 56 SALK_111394C AT4G09350 
Chlororespiratory reduction JCRRJ        
up-regulated in slim1  microarray data didn’t germinate

Line 58 SALK_003255C AT4G26890 Member of MEKK subfamily MAPKKK16 KmR  homozygous

Line 59 SALK_115780C AT5G59670

Leucine-rich repeat protein kinase 

family protein                                               
up-regulated in slim1  microarray data homozygous

Line 61 SALK_080212C AT1G08340 Rho GTP-ase activating protein didn’t germinate

Line 63 SALK_121775C AT5G55240
Arabidopsis thaliana               

peroxygenase 2 ATPXG2 heterozygous

Line 65 SALK_099224C AT1G52950

Nucleic acid-binding, OB-fold-like 

protein                                                               
up-regulated in slim1  microarray data homozygous

Line 66 SALK_039947C AT4G30510
Arabidopsis thaliana  homolog of yeast 

autophagy 18 (ATG18) B no insertion

Line 69 SALK_019928C AT5G57180
Chloroplast import apparatus 2 CIA2 
down-regulated in slim1  microarray data homozygous

Line 71 SAIL_572_G08 AT5G57240

OSBP(oxysterol binding protein)-

related protein 4C ORP4C                               
up-regulated in slim1  microarray data homozygous

Line 74 SALK_128101 AT5G03430 PAPS reductase heterozygous

Line 79 SALK_117130 AT2G37440 DNAse I-like superfamily protein homozygous

SULFATE DATASET
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Line number NASC line number Gene TAIR annotation Comment

Line 13 SALK_070088C AT4G31990 Aspartate aminotransferase 5 ASP5 homozygous

Line 73 SALK_095121 AT2G45650
Agamous-like 6 transcription factor 

AGL6 no insertion

Line 10 SALK_112450 AT4G14370 Phosphoinositide binding protein homozygous

Line 19 SALK_061581C AT3G51770 
Ethylene overproducer 1                                                                      

ETO1 heterozygous

Line 14 SALK_114207C AT5G58550
ETO1-like 2                                              

EOL2 KmR not genotyped

Line 17 SALK_080084C AT5G08590
SNF1 protein related kinase 2.1 

SNRK2.1 homozygous

Line 20 SALK_110194C AT5G43370
Phosphate transporter 1;2                                                                    

PHT1;2 heterozygous

Line 25 SALK_138643C AT2G38940
Phosphate transporter 1;4                                                                        

PHT1;4 no insertion

Line 27 SALK_088586C AT5G43350
Phosphate transporter 1;1                                                                 

PHT1;1 heterozygous

Line 28 SALK_117672C AT5G10800 RNA recognition motif heterozygous

Line 30 SALK_138009C AT2G32830
Phosphate transporter 1;5                                                                                            

PHT1;5 homozygous

Line 39 SAIL_41_C07 AT5G10790
Ubiquitin-specific protease 22                                                                      

UBP22 homozygous

S/P RATIO DATASET

N/P RATIO DATASET

N/S RATIO DATASET 

 

 

 

 

Line numbers correspond to the working numbers of lines; KmR corresponds to lines which showed 
resistance to kanamycin; N/P indicates nitrate/phosphate ratio; N/S indicates nitrate/sulfate ratio; 
S/P indicates sulfate/phosphate ratio. 

 

After 11 days of growth on plates 17 lines (out of 79) remained green and healthy 

indicating resistance to kanamycin (Table 5.7). I assumed that these plants are homozygous 

and transferred them to the soil for four weeks. Subsequently, I harvested leaves of these 

plants and measured anion concentration (Figure 5.6). This preliminary analysis revealed three 

T-DNA lines with significantly lower nitrate concentration (Figure 5.6A), one line with 

significantly higher phosphate concentration (Figure 5.6B), and two lines with contrasting 

sulfate concentration; one line with significantly lower and one line with significantly higher 

sulfate concentration (Figure 5.6C). However, these results should be treated with caution. 

Due to poor column performance, hence poor separation of nitrate on the HPLC some batches 

of plants gave much lower values for nitrate concentration than those reported in other 

chapters of this thesis (right panel of Figure 5.6A). The separation of phosphate and sulfate 
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was as usual. Because all the T-DNA insertion lines are in the Col-0 background in this 

preliminary experiment, I compared the lines with each other.  

The lines with low nitrate have insertions in genes annotated in TAIR as putative PAPS 

reductase family protein (line 34), arabidopsis ethylene response factor 6 AtERF6 (line 75), and 

arabidopsis ethylene response factor 1 AtERF1 (line 6; Figure 5.6A). The line with higher 

phosphate has an insertion in gene encoding HXXXD-type acyl-transferase family protein (line 

50) according to TAIR annotation (Figure 5.6B). The line with high sulfate concentration has an 

insertion in gene encoding a phosphate/sugar transporter (line 15) and the line with low 

sulfate has an insertion in gene encoding CCR4-NOT associated factor 1 CAF1 (line 12; Figure 

5.6C). Due to the limited length of my PhD project I decided to investigate the differences 

between the lines which have insertions in genes selected based on GWAS for a particular 

anion e.g. in lines with an insertion in genes selected based on GWAS for nitrate accumulation 

I looked only at nitrate concentration. I did not look at the variation in phosphate or sulfate 

concentration in these lines which could also be an interesting subject of future research.  

The results shown in Figure 5.6 indicate that some of the genes selected as candidates 

might have an effect on anion accumulation. However, since these were preliminary results, it 

was necessary to verify them. Moreover, some of them showed a large standard error on 

values which might be due to bad column performance. It was also seen before in Kopriva’s lab 

that kanamycin resistance is not always the best way of selection for homozygous plants (A. 

Koprivova, personal communication). Therefore, I decided to genotype the lines which did not 

show resistance to kanamycin as well as lines which showed differences in anion concentration 

in the preliminary experiment (Figure 5.6) and analyse them again for anion concentration. 

Four of the lines from the batch on the right side of Figure 5.6 which showed resistance to 

kanamycin, but no changes in anion concentration were not genotyped and excluded from 

further analyses (Table 5.7).  

All the remaining lines (except the four removed after the preliminary experiment) 

were genotyped using the standard PCR procedure. The genotyping revealed 43 homozygous 

lines and 17 heterozygous lines; four lines did not have an insertion and three lines did not 

germinate (Table 5.7). Subsequently, I measured the anion concentration in five week old 

plants of 39 homozygous lines (the four lines on the right panel of figure 5.6 which showed 

differences in anion concentration were not included in this analysis).  
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Primary analysis of nitrate (A), phosphate (B), and sulfate (C) concentration in the T-DNA insertion 
lines which showed resistance to kanamycin after 11 days of growth; Left and right panels 
correspond to measurements in different batches of plants; The bars represent mean values of 
three biological replicates ± standard error; Asterisks indicate lines significantly different from the 
other lines within a measurement (t-test P-value ≤ 0.05); White labels on the bottom of each bar 
correspond to the dataset from which the candidate gene was derived; NO3 indicates nitrate 
dataset; PO4 indicates phosphate dataset; SO4 indicates sulfate dataset; S/P indicates 
sulfate/phosphate ratio dataset. 

 

There was large variation in nitrate concentration most probably due to the poor HPLC 

separation (see above). Thus it is likely that these results may be unreliable. Therefore I 

decided not to use them in gene selection (Figure 5.7A). In contrast, the analysis of phosphate 

accumulation revealed two lines with significantly higher phosphate concentration and one 

line with significantly lower phosphate concentration (Figure 5.7B). The lines with high 

Figure 5.6 Anion concentration in T-DNA insertion lines resistant to kanamycin 
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phosphate concentration have an insertion in the genes encoding Ubiquitin-specific protease 

25 UBP25 (Line 35) and SNF1 related kinase gene family AtCIPK18 (Line 43). The line with low 

phosphate concentration has an insertion in the gene encoding IAA-leucine resistant (ILR)-like 

gene 6 ILL6 (Line 57). Line 50 which in the preliminary experiment described above (Figure 5.6) 

showed high phosphate concentration, in this experiment did not differ from other lines. 

Therefore, I excluded this line from further analysis. Additionally, I selected one line with 

significantly lower sulfate concentration (Figure 5.7C). This line has an insertion in the gene 

encoding MAPKKK16 kinase (Line 58). In this experiment I compared the selected lines to all 

the lines measured. 

 

 

Analysis of nitrate (A), phosphate (B), and sulfate (C) concentration in the homozygous T-DNA 
lines with insertions in the genes selected based on the GWAS results; The bars represent 
mean values of three biological replicates ± standard error; Asterisks indicate lines with 
insertions in a gene selected based on GWAS for a given anion significantly different within a 

Figure 5.7 Anion concentration in the homozygous T-DNA insertion lines 
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dataset to all the other lines (t-test P-value ≤ 0.05) – light grey boxes on each histogram shade 
the data which are not particularly important for the analysis described in this chapter, but 
they were used for statistical analysis; NO3 indicates nitrate dataset; PO4 indicates phosphate 
dataset; SO4 indicates sulfate dataset; NP indicates nitrate/phosphate ratio dataset; NS 
indicates nitrate/sulfate dataset; SP indicates sulfate/phosphate dataset. 
 

In order to finally examine the anion concentration phenotypes of lines selected so far 

based on the preliminary experiment (Figure 5.6; lines 6, 34, 75, 12, and 15) and the analysis of 

39 homozygous lines (Figure 5.7; lines 35, 43, 57, and 58) and select the best candidates for 

further analyses I analysed these lines once again. I increased the number of biological 

replicates to five and included WT Col-0 as a control (Figure 5.8). The analysis of five week old 

plants confirmed the low nitrate accumulation phenotype obtained in the preliminary analysis 

for lines 6 and 34 (Figure 5.6) with the insertions in genes selected based on GWAS for nitrate 

accumulation. Line 75 which in the preliminary analysis showed low nitrate concentration, in 

this experiment was not significantly different from Col-0 (Figure 5.8A). Therefore this line was 

excluded from the further analyses. The verification experiment did not confirm any of the 

phosphate accumulation phenotypes revealed in previous experiments. Line 43 was the only 

line with phosphate concentration significantly different than Col-0 (Figure 5.8B), but it 

showed a different phenotype in every experiment in which it was included. Because none of 

the phosphate related lines showed consistent phosphate accumulation phenotype, all of 

them were excluded from further analyses.  Similarly to the preliminary experiment, line 12 

showed lower sulfate accumulation (Figure 5.8C). This result was not significant when 

compared to Col-0, but it was significant when compared to other lines tested (as was done in 

the preliminary experiment). Line 15 showed opposite response in sulfate accumulation 

compared to the preliminary experiment where it had a high sulfate concentration compared 

to other lines tested (Figure 5.6C). In this experiment it had lower sulfate concentration 

compared to other lines (Figure 5.8C). However, this line has an insertion in a gene encoding a 

tonoplast localised transporter gene. Since the genes encoding vacuolar sulfate influx 

transporters have not been identified yet I decided to include this gene in further analyses. 

Even though the sulfate accumulation results obtained so far were contrary to each other, they 

were always significantly different from other lines tested. 
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The analysis of nitrate (A), phosphate (B), and sulfate (C) concentration in the T-DNA insertion lines 
selected based on previous experiments. The bars represent mean values of five biological 
replicates ± standard error. Asterisks indicate lines significantly different from Col-0 or the other 
lines (indicated in text; t-test P-value ≤ 0.05); White labels on the bottom of each bar correspond to 
the dataset from which the candidate gene was derived; NO3 indicates nitrate dataset; PO4 
indicates phosphate dataset; SO4 indicates sulfate dataset.  
 

5.3.5 Outcome of Genome-Wide Association Study 

Finally, three candidate genes were selected for further analysis based on the analysis 

of anion accumulation in the homozygous T-DNA insertion lines. Line 34 has an insertion in the 

AT5G03430 gene annotated in TAIR as putative PAPS reductase family protein. PAPS reductase 

Figure 5.8 Anion concentration in T-DNA insertion lines – verification 
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domain is similar to APS reductase and enzymes of primary sulfate assimilation from bacteria 

and yeast (see Chapter 6). In bacteria, enzymes with PAPS reductase activity reduce PAPS (the 

main donor of activated sulfate for sulfation reactions) to free sulfite in a two-step reaction 

(Savage et al. 1997). This gene was revealed in both nitrate and sulfate accumulation GWAS. 

The T-DNA line showed low nitrate concentration and sulfate concentration similar to Col-0. 

The low nitrate phenotype in this line was observed in a number of independent experiments 

performed by me and Anna Koprivova from the Kopriva lab on two week old plants as well as 

on five week old plants. Line 12 has the insertion in AT1G06450 annotated in TAIR as CCR4-

NOT associated factor 1 (CAF1). CAF1 is a key subunit of the CCR4-NOT complex and it is 

involved in the regulation of plant development and biotic stress resistance (Sarowar et al. 

2007). The gene was revealed in sulfate accumulation GWAS and the T-DNA line with insertion 

in this gene showed low sulfate concentration in a number of independent experiments. The 

last gene selected as a candidate was also revealed in sulfate accumulation GWAS – line 15. It 

is annotated in TAIR database as a phosphate/sugar translocator (AT1G06470). However, the 

phenotype of the T-DNA line with insertion in this gene is not consistent. 

To investigate the architecture of these genes among arabidopsis natural accessions 

1001 Genomes Database was used. Subsequently, the data generated for GWAS were 

reconsidered to investigate whether the variation in the gene architecture is likely to affect 

anion accumulation phenotypes. The analysis of 1001 Genomes Database led to an 

identification of various amino acid changes and insertions/deletions (indels) across ca. 150 

accessions which were common between accessions which sequences were deposited in the 

database and the accessions from Borevitz collection (Figure 5.9). A subset of the accessions 

with various amino acid substitutions and deletions was identified in the gene encoding 

putative PAPS reductase family protein which were not found in Col-0. Some of these deletions 

included the second exon, which may significantly affect the protein function (accessions Ag-0 

and Sp-0 in Figure 5.9A). The analysis of GWAS nitrate concentration data revealed that the 

accessions with these changes have lower nitrate concentration compared to accessions with 

the gene architecture similar to Col-0 (Figure 5.9B). There was no difference in sulfate 

concentration between the two groups of accessions (Figure 5.9C).  

Similarly, a subset of accessions with E170D amino acid substitution was identified in 

the gene encoding CAF1 (Figure 5.9D; accessions C24, Ha-0, Per-1, and Ws-0). The analysis of 

sulfate accumulation data from 150 accessions used for GWAS (a subset which overlaps with 

the 1001 Genomes database) revealed that the accessions with the D allele in position 170 

have significantly lower sulfate concentration compared to the accessions with the E allele in 
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this position as in Col-0 (Figure 5.9E). Additionally, a subset of accessions with S63V amino acid 

substitution was identified in the first exon of the gene encoding phosphate/sugar transporter 

(Figure 5.9F; accessions Bla-1, Boot-1, Pla-0, Rou-0). The analysis of sulfate accumulation data 

revealed that the accessions with V allele in position 63 have significantly higher sulfate 

concentration compared to the accessions with S allele in this position as in Col-0 (Figure 

5.9G). These data suggest that the natural variation in selected candidate genes may have a 

real effect on nutrient homeostasis in Arabidopsis thaliana. 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Natural variation in the architecture of AT5G03430; amino acids marked in green indicate 
non-synonymous substitutions; amino acids marked in red indicate synonymous substitutions; 
grey boxes indicate deletions; (B) Average nitrate concentration (NO3) of accessions sharing 
similar gene architecture of At5G03430; (C) Average sulfate concentration (SO4) of accessions 

Figure 5.9 Natural variation in selected candidate genes 



   GWAS                                                                                                                                                  Chapter 5 
 

159 
 

sharing similar gene architecture of AT5G03430; (D) Natural variation in the architecture of 
AT1G06450, the changes in the gene are shown in the same way as in A; (E) Average sulfate 
concentration (SO4) in accessions sharing the same allele in AT1G06450; (F) Natural variation 
in the architecture of AT1G06470, the changes in the gene are shown in the same way as in A; 
(G) Average sulfate concentration (SO4) in accessions sharing the same allele in AT1G06470; 
the natural variants are subtracted from the 1001 Genomes database; the error bars on the 
histograms correspond to standard deviation; the differences between different groups of 
accessions are statistically significant with t-test P-value ≤ 0.05 except C where is no significant 
difference. 

 

To further examine the involvement of these genes in anion homeostasis I analysed 

additional T-DNA insertion lines in each of these genes for anion accumulation. I obtained five 

additional insertion lines for the putative PAPS reductase, four lines for CAF1, and three lines 

for phosphate/sugar transporter from NASC (Table 5.8). PCR genotyping revealed two 

homozygous lines with an insertion in CAF1, one homozygous line with an insertion in the 

phosphate/sugar transporter and no additional homozygous lines for PAPS reductase (Table 

5.8). I grew all the homozygous lines with insertions in the selected candidate genes on plates 

with MS medium for two weeks. Additionally, one set of plants was grown on MS medium 

supplemented with sucrose to investigate sugar effect on the anion accumulation in these 

lines. The analysis of anion concentration revealed no significant difference in nitrate 

concentration in the T-DNA line with the insertion in PAPS reductase gene in either of the two 

conditions tested (Figure 5.10A). This might be due to the fact that anions accumulate in plant 

cells during development and the differences are more pronounced in older plants. 

Nevertheless, addition of sucrose revealed a significant difference in sulfate concentration in 

the homozygous lines with insertion in both CAF1 and phosphate/sugar transporter, even in 

two week old seedlings (Figure 5.10B). There were no differences in anion accumulation 

between the lines grown on medium without sucrose which, as mentioned before, might be 

due to developmental stage of the plants (anion accumulation phenotype more pronounced in 

older plants). The differences in plant response depending on the presence of sucrose in the 

growing medium are not surprising. It is long known that plant growth and development as 

well as the sensing of external and internal environmental signals are influenced by sucrose 

availability (Koch 2004, Ohto et al. 2001, Rolland et al. 2002). These results further confirm 

that disruption in genes selected as candidates may affect the anion accumulation. However, 

more detailed investigation of the involvement of these genes in nutrient metabolism is 

required in order to characterise their specific function.  
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Gene Line name NASC line number Comment

AT5G03430 PAPS (Line 34) SALK_141801C primary line

PAPS1_1 SALK_031937 (AE) heterozygous

PAPS1_2 SALK_043060 didn't germinate

PAPS1_3 SALK_128101 no insertion

PAPS1_4 SALK_140720 no insertion

PAPS1_5 SALK_144629C no insertion

AT1G03450 CAF1 (Line12) SALK_033906C primary line

CAF1_1 SALK_101782 (BO) didn’t germinate

CAF1_2 SAIL_533_G10 homozygous

CAF1_3 SAIL_1306_A08 homozygous

CAF1_4 SALK_009021C no insertion

AT1G03470 ST (line 15) SALK_124733C primary line

ST1_1 SALK_088510 (CI) no insertion

ST1_2 SAIL_156_B12 no insertion

ST1_3 SALK_126893C homozygous

0

1

2

3

4

5

6

7

8

9

10

C
o

l-
0

C
A

F1

C
A

F1
b

C
A

F1
c

P
A

P
S

ST ST
c

C
o

l-
0

C
A

F1

C
A

F1
b

C
A

F1
c

P
A

P
S

ST ST
c

MS+S MS-S

Su
lf

a
te

 c
o

n
ce

n
tr

a
ti

o
n

 

[n
m

o
l 

m
g

 -1
FW

]

0

10

20

30

40

50

60

C
o

l-
0

C
A

F1

C
A

F1
b

C
A

F1
c

P
A

P
S

ST ST
c

C
o

l-
0

C
A

F1

C
A

F1
b

C
A

F1
c

P
A

P
S

ST ST
c

MS+S MS-S

N
it

ra
te

 c
o

n
ce

n
tr

a
ti

o
n

 

[n
m

o
l m

g
 -1

FW
]

* *

*
*

A.

Table 5.8 Additional T-DNA lines with insertions in the three selected candidate 

  

 

 

 

 

 

 

The column “Line name” corresponds to working names of the lines 

 

 

 

 

 

 

 

 

 

 

 

 

The analysis of nitrate (A) and sulfate (B) concentration in the additional T-DNA lines with insertions 
in the three candidate genes; the bars represent mean values of six biological replicates ± standard 
error; Asterisks indicate lines significantly different from Col-0 (t-test P-value ≤ 0.05); MS+S 
indicates Murashige-Skoog medium supplemented with 0.8% sucrose; MS-S indicates Murashige-
Skoog with no sucrose. 

Figure 5.10 Anion analyses in additional T-DNA lines 
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5.4 Discussion 

Many traits of agronomic importance are quantitative and as such required 

development of specific tools that would allow analysis of their complex genetic architecture 

(Koornneef et al. 2004). In fact, many tools for quantitative genetics were developed by 

breeders. Arabidopsis thaliana was adopted as a model organism to study the genetic 

architecture of quantitative traits after the molecular markers for mapping became available 

(Chang et al. 1988, Nam et al. 1989). Currently, around 1,500 accessions have been genotyped 

for 250,000 SNPs (Horton et al. 2012) and the data are publically available and can be used for 

the study of natural variation. Additionally, a number of statistical and computational tools 

have been developed to overcome various limitations and increase the efficiency of such 

analyses. Therefore, there is an increasing interest in the studies of natural variation. To date, 

quantitative genetic studies of arabidopsis natural variation have been successfully used to 

examine genetic variation underlying a number of agronomically important traits such as 

drought tolerance (Thudi et al. 2014, Varshney et al. 2012), salt tolerance (Baxter et al. 2010), 

shade avoidance (Filiault & Maloof 2012) and more.  

The GWAS on 317 arabidopsis accessions described in this chapter was performed to 

get new insight into the regulation of anion accumulation in this model plant. Rather than a 

few peaks with large effects, as seen in some previously published arabidopsis GWAS (Atwell 

et al. 2010, Chao et al. 2012), this analysis revealed many peaks with small effects. These 

results suggest that variation in homeostasis of the three nutrients tested is a complex trait 

controlled by many different loci as might be expected for an environmentally sensitive trait 

(Atwell et al. 2010, Filiault & Maloof 2012). Through the analysis of the most significant 

associations and the follow up analysis of T-DNA insertion lines it was possible to identify 

genes that might be involved in control of nutrient accumulation. The analysis of the gene 

variants in 1001 Genomes database revealed various haplotypes for each of the genes tested. 

Subsequent cross reference with anion accumulation datasets showed differences in anion 

concentration between the accessions with different variants of each of the genes tested. This 

indicates further the possible involvement of these genes in the control of nutrient 

homeostasis. Future work should be focused on the verification of these associations by 

complementary methods such as QTL mapping that minimize the confounding due to effects 

of population structure. Secondly, the polymorphisms in these genes should be functionally 

characterised and their involvement in nutrient homeostasis described in more detail.  
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For two of the candidates revealed from the analysis of T-DNA insertion lines, CAF1 

and phosphate/sugar transporter, I investigated only the information available online to get 

better understanding of their functions and possible involvement in sulfate homeostasis. 

Briefly, CAF1 (AT1G06450) is an integral subunit of carbon catabolite repressor 4 – CCR4 

associated factor 1 (CCR4-CAF1) complex. CCR4-CAF1 is the major enzyme complex that 

catalyses mRNA deadenylation (shortening of the poly(A) tail which is the initial step of mRNA 

degradation; Sarowar et al. 2007). This process is well studied in yeast (Tucker et al. 2001), but 

relatively less is known about this complex in plants. CAF1 shows deadenylase activity in vitro 

(Daugeron et al. 2001) but the in vivo role remains unclear. The arabidopsis CAF1 protein 

family consists of 11 homologs among which CAF1a and CAF1b are best described (Walley et 

al. 2010). In the study of Walley et al. (2010) AT1G06450 is referred to as CAF1f. In this study 

they analysed the expression of all eleven members of family in response to mechanical 

wounding. The expression of CAF1f was undetectable under these conditions (Walley et al. 

2010). To date, it is the only report of this gene in the literature. However, CAF1 proteins are 

known to be involved in mediating plant development and response to biotic and abiotic stress 

(Chou et al. 2014, Liang et al. 2009). Additionally, according to Genevestigator expression data 

AT1G06450 is induced by sulfate and nitrate depletion. These results, together with the 

analysis of the two haplotype groups in this gene described above suggest that it is likely to be 

involved in the control of sulfate homeostasis in arabidopsis. Plant nutrition is often regulated 

on the post-transcriptional level (Yoshimoto et al. 2007, Yuan et al. 2007) and these regulation 

processes often involve mRNA turnover, e.g. after sulfate resupply to sulfur-starved plants 

(Smith et al. 1997, Tavares et al. 2008, Yoshimoto et al. 2007). Further characterisation of the 

involvement of CAF1f in the regulation of sulfate metabolism could provide an interesting, 

novel insight into sulfate homeostasis and perhaps sulfate use efficiency. 

Phosphate/sugar transporter (AT1G06470) is the next gene revealed as a candidate in 

GWAS, based on leaf sulfate accumulation data. The S63V amino acid substitution leads to 

increased sulfate concentration in the accessions with the V allele. The two T-DNA lines, one 

with an insertion at the beginning of the gene and the second with the insertion in the last (11) 

exon (according to T-DNA Express database) showed high sulfate concentration. Increased 

sulfate concentration in these lines is more pronounced after addition of sucrose to the 

growing medium. The only report of this gene in the literature concerns its localisation in the 

tonoplast membrane (Schmidt et al. 2007). Therefore, higher sulfate accumulation in the 

presence of sucrose in the T-DNA lines with insertion in this gene is particularly interesting. 

The analysis of regulation of arabidopsis ion transporters showed induction of nitrate and 
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sulfate transporters by sucrose (Lejay et al. 2003). Therefore it might be hypothesized that this 

transporter might be involved in transport of sulfate across vacuolar membranes. However in 

that case rather low sulfate accumulation would be expected. Vacuolar sulfate transporters 

are key regulators of the distribution of internal sulfate in arabidopsis. They have been shown 

to respond to sulfate limitation with an increased transcript accumulation (Kataoka et al. 

2004b). To date no sulfate vacuolar importer has been identified at a molecular level. Because 

the sulfate accumulation phenotype of T-DNA lines with insertions in this gene was not 

consistent in independent experiments more detailed analysis is necessary to examine the 

involvement of this protein in sulfate transport. Nevertheless, its further examination could 

reveal an important regulatory factor involved in sulfate distribution within the cell.  

Due to limited length of my PhD project I could focus on detailed analysis of only one 

gene. I chose to analyse in more detail AT5G03430 which is annotated in TAIR database as a 

putative PAPS reductase family protein. In sulfate assimilation APS (activated form of sulfate) 

can be either directly reduced to sulfite by APS reductase or phosphorylated by APS kinase to 

form PAPS (Leustek et al. 2000). In bacteria PAPS can be reduced to sulfite by PAPS reductase 

(Leustek et al. 2000, Kopriva 2006). The existence of PAPS reductase activity in plants is 

controversial.  Up to date no PAPS reductases homologous to those from E. coli other than APR 

have been identified in the arabidopsis or rice genomes (Kopriva et al. 2007). It has been 

shown that algae and higher plants reduce APS (Tsang et al. 1971) whereas the PAPS reductase 

activity is identified mainly in yeast and enteric bacteria (Schmidt & Jager 1992). However, it 

could be that such an enzyme in plants has a completely divergent structure from the one 

found in bacteria (see Chapter 6). This controversy made that gene particularly interesting for 

me. The AT5G03430 came up in the GWAS on both leaf nitrate and sulfate accumulation data. 

However, the T-DNA line with an insertion in the gene differed only in concentration of nitrate. 

Sulfate concentration in that line was comparable with Col-0 and other lines (Figure 5.6C). 

Additionally, this phenotype was the most consistent among all the lines tested in a number of 

independent experiments. More detailed analysis of this gene is described in Chapter 6.  

Due to time limitation a number of potentially interesting genes selected as candidates 

were not verified. The 17 heterozygous T-DNA lines were immediately excluded from further 

analysis. Among these, one had an insertion in AT5G03730 which was linked to SNP 

Chr5:955628. This is the major peak of linked SNPs associated with leaf phosphate 

accumulation revealed by both GWAS methods used (Figure 5.4B). The AT5G03730 is a 

Constitutive Triple-Response 1 CTR1 kinase which was identified by mutants that displayed the 
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triple response morphology in the absence of exogenously added ethylene (Huang et al. 2003, 

Kieber et al. 1993). This protein kinase negatively regulates ethylene signalling in arabidopsis 

(Huang et al. 2003, Yang et al. 2013). Ethylene is a gaseous hormone involved in the regulation 

of number of cellular processes and stress responses. It has been shown that ethylene is 

involved in phosphate-dependent root modifications and systemic phosphate signalling 

pathways (Nagarajan & Smith 2012, Roldan et al. 2013). Therefore, it is possible that CTR1 is 

directly or indirectly involved in the regulation of phosphate accumulation in arabidopsis 

leaves. However, it was not selected for further analysis because the T-DNA line was a 

heterozygote and none of the heterozygous lines was analysed. Additionally, this gene is 

already described in detail and the aim of the study was to identify novel candidate genes 

involved in the regulation of nutrient concentration. Since phosphate is a common limiter of 

plant growth, a better understanding of the regulation of phosphate metabolism would help to 

improve breeding strategies towards more efficient use of phosphate available in the soil. 

Therefore, further investigation of this and other candidate genes revealed by this GWAS 

analysis should be considered in the near future.  

Similarly, none of the candidates derived from the ratio data were analysed in more 

detail even though a number of interesting candidates were revealed. Here again the datasets 

including phosphate accumulation and especially the S/P ratio dataset yielded candidate genes 

that are likely to be involved in the control of nutrient use efficiency. The GWAS on the S/P 

ratio dataset revealed four phosphate transporters. Phosphate transporters are the major 

factors in the response to phosphate depletion. They are strongly induced in response to 

phosphate deficiency (Karthikeyan et al. 2002). Additionally, both sulfate and phosphate 

transporters are regulated by miRNAs. MiR395 is involved in the regulation of sulfate 

assimilation (Matthewman et al. 2012), whereas miR399 is known to be involved in regulation 

of phosphate uptake and translocation (Chiou et al. 2006, Fujii et al. 2005, Lin et al. 2008). It 

was also suggested that miR395 might be suppressed in phosphate deficient plants (Hsieh et 

al. 2009). Together with the Phosphate Response 1 (PHR1) transcription factor miRNAs are 

known to be involved in the interconnection of sulfate and phosphate assimilation pathways 

(Rouached 2011). Therefore, more careful analysis of the genes revealed from the GWAS on 

ratio data may provide new insights into interconnection of the control of homeostasis of 

various nutrients and should be considered as a future goal. 

In general, GWAS on leaf phosphate concentration data produced the highest amount 

of significant associations (Figure 5.4). Moreover, it was the only dataset that apart from few 

significant associations spread across the genome showed a peak of SNPs associated with leaf 
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phosphate accumulation on chromosome 5 discussed above. Taking into account the low 

significance of the GWAS outcome, highly significant associations from well-defined peaks with 

several adjacent SNPs having high score are more likely to contain real information. In 

contrast, a single isolated SNP is probably a false positive even if it is above the threshold 

(Atwell et al. 2010, Korte & Farlow 2013). However, none of the T-DNA lines tested showed 

significant differences compared to other lines or Col-0 (Figures 5.6 to 5.8).  

Contrary to GWAS on leaf phosphate concentration data, the strongest associations 

from GWAS on leaf nitrate and sulfate concentration data were relatively weak and below 

significance thresholds commonly used (Figure 5.4). This might be due to a complex 

architecture of the analysed traits (Korte & Farlow 2013). The power of GWAS to identify the 

association between the SNP and the variation in the trait depends on the phenotypic variance 

within the population. The phenotypic variance depends on the strength of the phenotypic 

effect of the different alleles and their frequency in the sample. Therefore, there are two cases 

where GWAS is likely to produce a large number of false positive associations. First, the 

analysed trait is controlled by many common variants, each with only a small phenotypic 

effect. Second, the analysed trait is controlled by many rare variants, each having a large effect 

on phenotype (Korte & Farlow 2013). Moreover, computer simulations which were 

subsequently coupled with available data showed that the rare variations are very often 

strongly correlated with other, non-causative rare variants within the genome, irrespective of 

LD decay. Therefore, a single rare causative locus may drag with it many synthetic associations 

(Dickson et al. 2010). 

As described previously, the analysis of natural variation in sulfate concentration 

between two wild arabidopsis accessions Bay-0 and Shahdara, performed to identify the 

gene(s) controlling sulfate concentration, revealed APR2 as a key control step in the sulfate 

reduction pathway (Loudet et al. 2007). The analysis of Bay-0 x Sha recombinant inbred lines 

(RIL) led to the identification of a single nucleotide polymorphism in the APR2 isoform of APR. 

The substitution of alanine with glutamate in a conserved domain of the protein resulted in 

significant differences in enzyme activity leading to sulfate accumulation (Loudet et al. 2007). 

However, APR2 did not come up in the GWAS on leaf sulfate accumulation data. As described 

in Chapter 3 and by Chao et al. (2014) further analysis of natural variation in APR2 gene 

architecture led to the identification of a number of very rare loci that severely reduced the 

activity of the protein. This complex architecture of the gene was probably the reason why 

APR2 presented difficulties for GWAS and did not produce a significant association. The 

analysis of APR2 and ATPS1 described in Chapter 3 as well as the results described in this 
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chapter are excellent examples of how combining both GWAS and QTL mapping may improve 

the overall understanding of such a complex process as nutrient use efficiency. 

Although GWAS was proved to be successful in investigation of the genetic 

architecture of a number of quantitative traits related to flowering time (Aranzana et al. 2005), 

drought tolerance (Bouchabke et al. 2008), or nutrient accumulation (Koprivova et al. 2014) it 

has its limitations. Traits with complex genetic architecture are known to present difficulties 

for GWAS (Korte & Farlow 2013). There are two possible scenarios: the traits confounding for 

GWAS are either controlled by many common variants with small effect on phenotype, or 

many rare variants each having a large effect on phenotype (Korte & Farlow 2013). 

Additionally, there is number of other issues such as sample size, mapping panel composition 

or missing heritability that can affect the performance of GWAS (Brachi et al. 2011, Korte & 

Farlow 2013). All these limitations are difficult to overcome with the currently used techniques 

especially when environmentally sensitive traits are analysed (Korte & Farlow 2012, Weigel 

2012).   

The first GWAS on anion accumulation was described by Atwell et al. (2010) in a proof 

of concept studies on 107 arabidopsis accessions. In this analysis no significant associations 

were identified for sulfate concentration data (Atwell et al. 2010). It was concluded that 

increasing the population to 192 accessions can double the power of GWAS (Atwell et al. 

2010). Therefore, in GWAS described in this chapter the data from more than 200 accessions 

were used to compose each of the three datasets. Nevertheless, it did not improve the 

outcome of the analysis. GWAS was also not successful in the analysis of total sulfur (and 

selenium) concentration data in 349 accessions from Borevitz collection published recently 

(Chao et al. 2014). In the study of Chao et al. (2014) the causal locus for total sulfur was 

identified using the extreme array mapping (XAM) method which combines bulk segregant 

analysis with SNP microarray genotyping (Chao et al. 2014, Becker et al. 2011). The results 

described in Chapter 3 of this thesis and by Chao et al. (2014) indicate that sulfate 

accumulation is controlled by a number of singleton loci with a large phenotypic effect. The 

same might be true for nitrate concentration and most likely is the reason of low significance 

of the studies described here.   

An inadequate experimental design might also be a reason for low significance of 

GWAS described in this chapter (Figure 5.2). The seeds of various accessions were provided by 

David E. Salt (University of Aberdeen) and Caroline Dean (John Innes Centre, Norwich, UK). 

Therefore the performance of the plants obtained from these seeds might have been affected 
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by the place of origin of parental plant. This phenomenon is known as a genomic imprinting 

(Costa et al. 2012, Kohler et al. 2005, Baroux et al. 2002). To avoid the changes in plant 

performance due to genomic imprinting the seeds should be cycled at the John Innes Centre 

(Norwich, UK) at least twice before the actual analysis. However, due to time limitation of my 

PhD project it was not possible and the plants originated from seeds obtained from different 

locations were used directly for the analysis of anion concentration. Additionally, more 

randomization should be introduced during plant growth and harvesting. Instead of only one 

leaf which was used for the analysis described here, entire rosette should be harvested and an 

aliquot of this should be analysed. The consistency of the data could be improved by inducing 

more reference accessions (Chao et al. 2012). These inaccuracies in the experimental design as 

well as lack of proper normalisation of the data might have affected the outcome of the 

studies. It can be speculated that introducing all these improvements in experimental design 

would improve the outcome of the studies. However, taking into account the issues described 

in previous paragraph it also should be stated that traits with such complex architecture as ion 

accumulation still present difficulties for GWAS with currently used statistical methods for 

identification of meaningful associations (Chao et al. 2014, Korte & Farlow 2013, Weigel 2012). 

There is no certainty that the changes in experimental design would improve the outcome. 

Therefore, it can be concluded that further improvement of existing methods for GWAS and 

development of new statistical tools is required to overcome the difficulties described in this 

paragraph.      

Despite the low significance of the GWAS results, it revealed a number of genes which 

are known to be involved in the control of nutrient homeostasis. An excellent example of such 

known associations are all the transporter genes: mitochondrial phosphate transporter MPT1 

derived from the GWAS on leaf phosphate accumulation data, SULTR3;3 derived from the 

GWAS on leaf sulfate accumulation data, and the four phosphate transporters derived from 

GWAS on S/P ratio data (Table 5.7). Additionally, ATPS1 was revealed in the GWAS on leaf 

sulfate accumulation data. As described in Chapter 3, the natural variation in the transcript 

abundance of ATPS1 contributes to the control of sulfate metabolism.  These “known” 

associations indicate that there is real information in the data, but the low significance will 

increase the number of false-positive associations. Therefore, it was necessary to verify the 

primary candidate genes by the analysis of T-DNA insertion lines. On the other hand, the 

inconsistent phenotypes of the T-DNA lines analysed here (Figure 5.6 to 5.8) indicate that 

some of the selected candidates might have been false-positive. Due to time limitation of my 

PhD project a number of the experiments described in this chapter were not repeated and the 
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selection of candidates was rough. Therefore, the results described here should be interpreted 

with caution and the phenotyping should be repeated before possible future analyses. 

However, it should be stressed that the phenotype of the T-DNA line with the insertion in the 

promoter of the putative PAPS reductase – a candidate gene characterisation of which is 

described in the next chapter – was strongly consistent over a number of experiments 

performed by me and by Anna Koprivova (JIC, Norwich) who used this line for other purposes 

and the results are not shown here.  

An additional confirmation of the real associations in the data was the fact that a 

number of the strongest associations were common for both methods used (Tables 5.3 to 5.5). 

However, despite some obvious similarities of the results derived from the two GWAS 

methods (such as the peak of associations on the chromosome 5 revealed in the GWAS on 

phosphate accumulation data), differences between significance and location of the strongest 

associations were clearly visible. Similar phenomenon was observed in the proof of concept 

studies described by Atwell et al. (2010) who also used two different methods of the 

correction for population structure – non-parametric Wilcoxon rank-sum test and EMMA 

method.  In the course of their studies, Atwell et al. (2010) have concluded that the P-values 

produced by EMMA are not always well estimated and should be interpreted with caution.  

This was also observed in the analysis described here – the EMMA method produced slightly 

elevated P-values compared to GAPIT, especially in phosphate concentration data. Because of 

the differences in the results delivered by two different methods, the selection of candidates 

for follow up studies should be supported by additional information such as the current 

functional knowledge and publically available information such as membership of genes in 

specific regulatory networks (Atwell et al. 2010, Verslues et al. 2014, Weigel 2012) or by 

microarray data, as was presented here. 
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5.5 Conclusion 

GWAS methodology has developed significantly in recent years and can be successfully 

used as a powerful tool to discover genes underlying traits with simple architecture. However, 

factors such as genetic heterogeneity, unexpected LD, small effect size, low allele frequency or 

complex genetic architectures still remain a challenge (Korte & Farlow 2013). Nevertheless, 

these difficulties can be overcome by complementing and/or verifying GWAS outcomes by 

additional methods such as QTL mapping or follow up analysis of primary candidate genes. 

Moreover, current functional knowledge and publically available databases are helpful in 

identification of meaningful associations. 

Despite the low significance of the results, the GWAS analysis described in this chapter 

revealed a number of candidate genes. The functions of these genes are quite diverse. In 

general, genes which were selected as candidates fall into four categories: transcription 

factors, regulatory factors, transporters and enzymes. Each of these genes might be involved in 

the control of accumulation of one or more macronutrients tested. The follow up analysis of T-

DNA lines with insertions in selected candidate genes was conducted to eliminate possible 

false-positive associations. It led to selection of three final candidates. Each of them showed 

differences in anion accumulation capacity in the T-DNA insertion lines compared to other T-

DNA lines tested and Col-0. Additionally, the analysis of the genetic variation in these genes 

revealed natural haplotypes that also differed in anion accumulation capacity. These results 

indicate that selected candidates may be involved in the control of nutrient homeostasis. 

However, more detailed analysis is required to investigate the exact function of these genes in 

this process. Nevertheless, GWAS led to identification of known genes that have not previously 

been related to plant nutrition as well as a previously undescribed gene: AT5G03430. The 

detailed analysis of this novel gene is the subject of the following chapter of this dissertation. 
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6 Functional Characterisation of AT5G03430 

Gene Revealed by GWAS  
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6.1 Introduction 

The analysis described so far in this thesis has provided new information concerning 

plant mineral nutrition. Through various collaborations the regulatory functions of two 

enzymes of the sulfate reduction pathway were characterised and their contribution to natural 

variation in sulfate accumulation in arabidopsis accessions was investigated. Subsequently, 

plant adaptation strategies to different sulfate and nitrate availability were investigated and 

marker traits that define plant growth during nutrient limitation were identified. Finally, GWAS 

was performed to identify new genes that were not previously known to be involved in plant 

nutrition, and show that disruptions in these genes are associated with differences in anion 

accumulation among natural arabidopsis accessions. In this chapter I describe my contribution 

to the characterisation of a previously undescribed gene identified by GWAS analysis and its 

involvement in the variation in anion accumulation in different accessions. 

The gene identified by GWAS – AT5G03430 – was annotated in TAIR as a putative PAPS 

reductase family protein (see Chapter 5). In plant cells sulfate is first activated by ATPS to form 

APS (see Chapter 1). Subsequently, APS is directly reduced to sulfite by APS reductase. 

However, in bacteria, where the PAPS reductase activity was first identified, APS is further 

activated by APS kinase to form 3’ –phosphoadenosine 5’ –phosphosulfate (PAPS). In this case, 

PAPS can serve as a starting point for the synthesis of secondary sulfate metabolites or can be 

reduced by thioredoxin-dependent PAPS reductase (PAPR) to sulfite which is subsequently 

reduced to sulfide and as such, incorporated into O-acetylserine to form cysteine (for details 

see chapter 1 and (Kopriva & Koprivova 2004, Takahashi et al. 2011).  

 A single phospho group in PAPS is the only difference between APS and PAPS. APR and 

PAPR are homologous proteins which share about 20% amino acid sequence identity (Kopriva 

& Koprivova 2004). The main difference between the two proteins is a lack of an iron-sulfur 

cluster in PAPS reductase. Additionally, APS reductases possess a C-terminal domain 

(thioredoxin-like domain) that acts as a glutaredoxin during the transfer of electrons from 

glutathione (Kopriva et al. 2007). Otherwise, the comparison of APS reductase crystallised 

from Pseudomonas aeruginosa and PAPS reductase crystallised from Escherichia coli revealed 

that the two enzymes have similar structure (Chartron et al. 2006, Savage et al. 1997). The 

active site of both enzymes is defined by three elements:  the P-loop motif, the LDTG motif, 

and the Arg-loop. Both of these enzymes recognise adenosine as a substrate. Because the 

adenosine recognition residues are highly conserved between the two proteins it was 

proposed that PAPS binds to the enzyme in the same manner as APS (Chartron et al. 2006).  
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The PAPS reductase activity is identified mainly in yeast and enteric bacteria (Schmidt 

& Jager 1992) whereas APS is utilised by photosynthetic organisms (Schmidt 1975, Schmidt & 

Trüper 1977). Despite the fact that it has long been known that in plants and algae APS rather 

than PAPS is the main form of activated sulfur used for further reduction (Tsang et al. 1971) 

the existence of a sulfate assimilation pathway dependent on PAPS was never excluded. 

Indeed, PAPS reductase activity has been reported in spinach (Schwenn 1989). Up to date, 

apart from genes encoding APR no other genes homologous to the PAPS reductase gene 

identified in Escherichia coli have been found in the arabidopsis and rice genome. The first 

plant species from which a putative gene for PAPS reductase was cloned was the moss 

Physcomitrella patens (Koprivova et al. 2002). It was suggested that in this species PAPS- and 

APS-dependent sulfate assimilation co-exist. However, further analysis of the two enzymes 

revealed that even though the PAPS reductase enzyme from Physcomitrella patens is 

structurally more similar to bacterial PAPS reductases (it does not contain the iron-sulfur 

cluster and the thioredoxin-like domain) it preferentially binds APS (Koprivova et al. 2002). 

Therefore, the enzyme was renamed as APR-B (Kopriva et al. 2007). These results were 

remarkable since they revealed that the reduction of APS without an iron-sulfur cluster is 

possible and that APS-dependent sulfate reduction dominates in plants.    

Because no genes encoding PAPS reductase were known in arabidopsis, the 

identification of AT5G03430 was potentially very interesting. However, the analysis of the 

sequence of this gene revealed that it does not contain the active site necessary for the PAPS 

reductase activity (see the results section). Instead, it contains a cinA domain which belongs to 

the MoCF_BD superfamily (according to NCBI Conserved Domain Database). Domains included 

in this superfamily such as MoeA or MogA_MoaB are found in arabidopsis Cnx1, and bacterial 

MoeA – proteins involved in biosynthesis of molybdenum cofactor (MoCo) which possess 

residues that allow binding of molybdopterin (Rizzi & Schindelin 2002). The present state of 

knowledge about MoCo synthesis and related aspects of molybdenum metabolism as well as 

the link between molybdenum and nitrate and sulfate metabolism in plants is described in the 

following paragraphs.  

 The specific redox chemistry of molybdenum is used by number of enzymes such as 

nitrate reductase and sulfite oxidase to catalyse diverse redox reactions (Hille et al. 2011). 

However, the molybdenum atom cannot be directly introduced into the protein, but needs to 

be first attached to a specific cofactor scaffold to be able to execute its catalytic function. This 

molecule is a tricyclic pterin called molybdopterin or metal-containing pterin (MPT), to account 

for the fact that in some bacteria tungsten is also coordinated by this pterin (Mendel 2013). 
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MoCo is synthesised in all higher organisms (including humans) by a conserved four-step 

biosynthetic pathway. In general, six proteins are involved in MoCo biosynthesis in plants 

(Mendel & Hansch 2002), fungi (Millar et al. 2001), and humans (Reiss et al. 1998, Stallmeyer 

et al. 1999). Homologs of these genes are found in bacteria. Moreover, bacterial mutants 

deficient in some MoCo biosynthetic genes can be complemented by their eukaryotic 

homologs (Mendel 2013).  A mutation in MoCo biosynthetic genes leading to inhibition of the 

pathway has dramatic consequences. The complete loss of MoCo, as observed in cnx (cofactor 

for nitrate reductase and xanthine dehydrogenase) mutants missing one or more Cnx proteins 

(see below), is lethal for plants grown in soil and has severe consequences for humans because 

the activity of all MoCo enzymes is altered (Mendel & Kruse 2012). 

Conversion of 5’-GTP into cyclic pyranopterin monophosphate (cPMP), known 

previously as precursor Z, is the initial step of MoCo biosynthesis pathway (Figure 6.1). This 

reaction is catalysed by two proteins. Cnx2 initiates the transformation of 5’-GTP (Hoff et al. 

1995) through the C-terminal [4Fe-4S] cluster. The function of second protein, Cnx3, is not yet 

understood. However it is believed to be involved in the release of pyrophosphate after the 

rearrangement reaction (Mendel 2013). cPMP is the first and most stable intermediate of the 

pathway (Wuebbens & Rajagopalan 1993). The first step of MoCo biosynthesis occurs in 

mitochondria, since both Cnx2 and Cnx3 were demonstrated to be localised in this cell 

compartment (Teschner et al. 2010). All subsequent steps were demonstrated to be localised 

in the cytosol (Kaufholdt et al. 2013). Therefore, cPMP is transported through the 

mitochondrial inner membrane via a recently identified ABC-transporter: ATM3 (Teschner et 

al. 2010). In the cytosol MPT is generated by transfer of sulfur to cPMP in a two-step reaction 

catalysed by MPT synthase (Figure 6.1; Leimkuhler et al. 2011). Subsequently, the 

molybdenum atom is incorporated into the chemical backbone of the MPT moiety. This step is 

catalysed by molybdenum insertase – Cnx1 (Schwarz et al. 2000). The two domains of the 

enzyme are named E-domain and G-domain and each has a different mechanistic function. 

Cnx1G activates the MPT before insertion of the metal and Cnx1E catalases subsequent 

insertion of molybdenum (Llamas et al. 2004, Llamas et al. 2006). As a result a physiologically 

active MoCo is synthesised.  
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MoCo biosynthesis pathway starts from the conversion of GTP to cPMP in the mitochondria. The 
enzymes involved in MoCo biosynthesis are shown in blue boxes. The five enzymes which use 
MoCo as a cofactor are indicated with full names in blue and their schematic structure is shown as 
yellow and green boxes. Abbreviations: (AD) adenylation domain of Cnx5, (RLD) rhodanese-like 
domain of Cnx5, (MoBP) MoCo binding proteins. The figure is modified after Mendel 2011. 

 

Since mature MoCo is extremely sensitive to oxidation it is known to be permanently-

bound to protein in the cell (Rajagopalan & Johnson 1992). It needs to be transported 

immediately to the target enzymes to minimize its degradation. Both of these requirements 

are fulfilled by MoCo-binding proteins, which bind newly synthesised MoCo allowing its 

storage and providing it according to demand (Mendel 2013). The first MoCo-binding protein 

was identified in Chlamydomonas reinhardtii (Witte et al. 1998) and named MoCo carrier 

protein (MCP). Recently, a family of eight MCP-related proteins was identified in arabidopsis 

(Kruse et al. 2010). However, they seem to be involved in cellular distribution of MoCo rather 

than storage since they undergo protein-protein interactions with both Cnx1 and the MoCo 

Figure 6.1 Biosynthesis of MoCo in plant cell 
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acceptor protein nitrate reductase (NR; Kruse et al. 2010). To date, the exact mechanism of 

MoCo insertion into the acceptor proteins is not understood. The crystallographic analysis of 

MoCo enzymes revealed that the cofactor is usually localised deep inside the holoenzymes 

(Dobbek 2011). Since all eukaryotic MoCo enzymes are dimers, it has been suggested that 

MoCo needs to be incorporated into the targeted protein during the folding and dimerization 

of the apoprotein monomers, before the mature protein is synthesised (Mendel 2013). 

The eukaryotic molybdenum enzymes fall into two groups (Hille et al. 2011). The first, 

called the sulfite oxidase (SO) family, also includes nitrate reductase (NR) and the 

mitochondrial amidoxime-reducing component (mARC; Figure 6.1). SO and NR are links 

connecting molybdenum with sulfate and nitrate metabolism. Therefore, it is possible that 

AT5G03430 which was identified from GWAS from both nitrate and sulfate accumulation data 

(see Chapter 5) can be involved in molybdenum metabolism. Enzymes from this family are 

activated by insertion of MoCo. The second group is called the xanthine oxidase (XO) family 

and includes xanthine dehydrogenase (XDH) and aldehyde oxidase (AO; Figure 6.1). Enzymes 

from this family require the addition of a terminal sulfido group to the MoCo during or after its 

insertion which is the final maturation step necessary to gain the enzymatic activity (Hille et al. 

2011). In addition to these proteins which contain the pterin type of cofactor, there is another 

type of Mo-containing cofactor which is known in only one type of enzyme in nature. Bacterial 

nitrogenase, which is required for biological nitrogen fixation, contains the so-called iron-

molybdenum cofactor, FeMoCo (Hu & Ribbe 2013).  

Sulfite oxidase catalyses the oxidation of sulfite to sulfate (Eilers et al. 2001). It has a 

sulfite-detoxifying function, removing excess sulfite from the cell (Brychkova et al. 2007). In 

plants the reaction catalysed by SO results in production of hydrogen peroxide. Therefore, SO 

is localised in peroxisomes where the hydrogen peroxide can be easily eliminated by catalase 

(Nowak et al. 2004). Similarly to mARC it possesses only MoCo as a redox centre and is the 

simplest molybdenum enzyme found in plants (Figure 6.1). However, the animal SO is much 

more complex. It consists of an iron-heme N-terminal domain containing cytochrome b5 and 

the C-terminal domain which is responsible for MoCo binding and dimerization (Kisker et al. 

1997). It is localised in the intermembrane space of mitochondria and a loss of its activity 

results in severe neurological disability and early death (Johnson & Rajagopalan 1979). The 

second member of the SO family is NR, which is the main enzyme of nitrate assimilation. In the 

cytosol it catalyses the reduction of nitrate to nitrite providing essential nitrogen metabolites 

to the plant (Eckardt 2005). The MoCo domains of SO and NR are very similar (Fischer et al. 

2005, Schrader et al. 2003). mARC is the last and the least known (at least in plants) member of 
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the SO family. In eukaryotes mARCs form a small protein family (Wahl et al. 2010). They were 

predicted to be localised in mitochondria and it is assumed that they play a detoxifying role 

(Plitzko et al. 2013). 

The second group of Mo-enzymes includes molybdo-flavoenzymes that are known to 

catalyse the oxidative hydroxylation of a number of aldehydes and aromatic heterocycles. 

Xanthine dehydrogenase (XDH) is the first member of the family and a key enzyme of purine 

degradation. It was shown to oxidize hypoxanthine to xanthine and further to uric acid 

(Zarepour et al. 2010). The second member of the family AO converts aromatic and non-

aromatic heterocycles and aldehydes to the respective carboxylic acids via oxidation 

(Yesbergenova et al. 2005). AO is essential for the biosynthesis of abscisic acid (ABA) – a plant 

hormone which plays an important role in seed development and dormancy and plant 

response to various environmental stresses (Seo & Koshiba 2002). AO and XDH show a high 

level of sequence similarity and the main difference between the two enzymes concerns the 

substrate binding at the MoCo centre as well as binding of the physiological acceptor of 

electrons. Since AO are strict oxidases they are unable to bind NAD+ and they use molecular 

oxygen as electron acceptor (Hille 2005). 

In this chapter I describe my attempt to functionally characterise the novel protein 

revealed by GWAS. This analysis is still at an early stage; however some interesting results can 

be already presented. First of all, I conducted a bioinformatics analysis of the gene and the 

protein using publicly available bioinformatics tools to get an idea about the possible function 

of the protein. In the characterisation of AT5G03430, with advice from Vasilios Andriotis 

(Metabolic Biology, John Innes Centre), I performed an experiment which revealed that a 

mutation in this gene is embryo-lethal. I also prepared GFP-fusion constructs to verify the 

subcellular localisation of the protein. Moreover, I undertook some steps to explain the 

involvement of the protein in the metabolism of nitrate and sulfate as well as metabolism of 

molybdenum. I analysed a number of arabidopsis accessions with different versions of the 

gene to investigate how the changes in the gene affect anion accumulation as well as activity 

of enzymes possibly related to/regulated by the product of AT5G03430.  
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6.2 Materials and Methods 

6.2.1 Growth conditions in the soil 

 Accessions with different architecture of AT5G03430 gene used for the analysis of 

anion accumulation and mature plants for the expression analysis of AT5G03430 (Figure 6.6C) 

were grown for five weeks in the CER as described in Chapter 5 (see section 5.2.1) Plants for 

the analysis of anion accumulation were supplied with 1 l of ¼Hoagland solution per tray twice 

a week in order to provide sufficient nutrient supply over the growth period (see Chapter 5). 

 Plants used to study the time course of embryo development and for transformation 

were sown directly in the soil (Levington Horticulture soil mix, Ipswich, UK) in single pots (9 cm 

diameter) or in a 40-cell tray. They were first stored at 4°C for three days to break the seed 

dormancy and subsequently moved to a glasshouse where they were grown until seed 

production. 

6.2.2 Growth conditions on plates 

 Young plants for the analysis of expression of AT5G03430 (Figure 6.6A, B) were grown 

on plates with MS medium without sucrose for three weeks as described in Chapter 5 (see 

section 5.2.3).  

6.2.3 Bioinformatic tools and software 

 The arabidopsis Information Resource (TAIR) database was used for the functional 

annotation of the genes (http://www.arabidopsis.org/); National Centre for Biotechnology 

Information (NCBI; http://www.ncbi.nlm.nih.gov/) was used to obtain the gene and protein 

sequences; the Conserved Domain Database (NCBI CDD) was used to investigate the conserved 

domains in the protein sequences (Marchler-Bauer et al. 2011); Blast was used to look for 

homologous sequences (Altschul et al. 1990); ClustalW was used for multiple alignment of 

gene sequences (Larkin et al. 2007); 1001 Genomes database was used for the investigation of 

the natural variation in the architecture of candidate genes (http://signal.salk.edu/atg1001 

/3.0/gebrowser.php); the “Stress Response” tool within Genevestigator (Zimmermann et al. 

2004; https://www.genevestigator.com/gv/plant.jsp) was used to investigate the changes in 

gene expression in different conditions; Mfold software was used for the analysis of DNA 

secondary structure (Zuker 2003); the molybdenum accumulation data were obtained from 

publically available ionome database iHUB (Baxter et al. 2007; www.ionomicshub.org), Vector 

NTI Advance Suite 11 (Invitrogen) software was used for the analysis of sequencing data; the T-

DNA Express search tool was used to obtain T-DNA lines with insertions in genes of interest 
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Name T-DNA line Gene Sequence 5' -> 3'

34Fw SALK_141801C AT5G03430 CAGATTCTTCTTCTTCTCG 

34Rw cgatgatcaattggcttcg

PAPS1_1Fw SALK_031937 AT5G03430 AGTTGCAGATTGTAACTGCCG

PAPS1_1Rw gcccattattagtgtccgagac

PAPS1_2Fw SALK_043060 AT5G03430 GCTCAAAATTTTCTGCACGTC

PAPS1_2Rw cgccatcttcgtcattaaaag

PAPS1_3Fw SALK_128101 AT5G03430 GAATTGCTCTTGACCAACCTG

PAPS1_3Rw tgcagatactccgaaatttgg

PAPS1_4Fw SALK_140720 AT5G03430 AGGCACCTGATGAAGAGTTTG

PAPS1_4Rw tgtgaccggtacatagaagcc

PAPS1_5Fw SALK_144629C AT5G03430 GAGGTCGTGTGGGATATGTTG

PAPS1_5Rw acagaaacgagagcagagcag

PAPS1_6FW SALK_140626 AT5G03430 GTGTTGCTAAGGCATTTGGAG

PAPS1_6RF tgtgaccggtacatagaagcc

SALK_LB1 Salk lines insertion GCGTGGACCGCTTGCTGCAACT

(Alonso et al. 2003); Arabidopsis electronic Fluorescent Pictograph (eFP) browser was used for 

expression data of gene of interest (Winter et al. 2007); Subcellular Proteomic Database 

(SUBA3) was used for the prediction of subcellular location of gene of interest (Tanz et al. 

2013);   

6.2.4 Genotyping of the T-DNA lines 

 The DNA from plant tissue was isolated as described in Chapter 2. The genotyping of T-

DNA lines was carried out on genomic DNA by PCR amplification as described in Chapter 5 

using gene specific primers listed in Table 6.1M and the left-border SALK primer for Salk lines. 

  

 

 

 

 

 

 

 

One of the primers from each pair which is underlined and bolded was used in combination with 
the Salk left-border primer to identify homozygous lines. 

 

6.2.5 Time course of arabidopsis embryo development 

 The siliques from the main flowering stem of three plants were analysed after the 

flowering of the plant. Every second silique (starting from the youngest one) was opened 

under a dissecting microscope. Developing seeds were cleared on microscope slides according 

to Andriotis et al. (2010) overnight at room temperature using Hoyer’s solution (100 g chloral 

hydrate,  5 ml glycerol, 30 ml water; Liu & Meinke 1998). Whole-mount preparations of 

cleared seeds were viewed under differential interference contrast (DIC) optics with a Leica 

DM6000 microscope operated with the Leica LAS AF7000 software. For the quantification of 

abnormal seeds up to six siliques from three heterozygous plants were opened under the 

Table 6.1M Gene specific primers used for genotyping 
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Name Gene Sequence 5' -> 3'

PAPSqFw AT5G03430 TGCACAGGTGACAGGAATGAGATG

PAPSqRw ttcccactctttctcgagctcctc

03435qFw AT5G03435 GTGGGATATGTTGAAGCCGAAGAC   

03435qRw aaagcaagcgcagcaactttcc

03435qFwa AT5G03435 GTGGGATATGTTGAAGCCGAAGAC

03435qRwa gcgcagcaactttccgcatatc

03435qFwb AT5G03435 TGGGATATGTTGAAGCCGAAGACG

03435qRwb gcgcagcaactttccgcatatc

03435rtFw AT5G03435 ATGGCTGCCAATAAAGATGAATTCTCCGTC

03435rtRw gaacaatacttcgtttgtgggcaatcttcg

S18F S18 GGTACGTGCTACTCGGATAACC

S18R tctccggaatcgaacccta

ACT2F actin GCACCCTGTTCTTCTTACCG

ACT2R aaccctcgtagattggcaca

dissecting microscope and the number of phenotypically normal and abnormal seeds was 

calculated.  

  

The primers for qPCR were generated using the Quant Prime program 

6.2.6 Expression analysis  

 RNA was isolated from frozen plant tissue using the RNeasy Plant Mini Kit (Qiagen) 

following the manufacturer’s instructions. RNA was eluted from the RNeasy spin column using 

30 μl of RNase-free dH2O and its quality and quantity were assessed by measurements of 

absorbance at 260 nm and 280 nm using the NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies, http://www.nanodrop.com/). Subsequently the RNA samples were 

DNase treated using the DNase Ambion kit (Life Technologies™) according to the 

manufacturer’s instructions. The quality and quantity of RNA were assessed using the 

NanoDrop spectrophotometer as described above. Highly concentrated samples with good 

quality RNA were used for cDNA synthesis. For the reaction 1.5 µl of Oligo(dT) and 1.5 µl of 

dNTP were added to 1 µg of RNA in the final reaction volume of 30 µl. Samples were incubated 

at  65°C for 5 min and cooled down on ice for 1 min. For reverse transcription the SuperScriptIII 

Reverse Transcriptase (RTase) kit (Invitrogen) was used. To each sample, 6 µl of 5x First Strand 

Buffer, 1.5 µl of RNAsin RNAse Inhib, 1.5 µl of 0.1M DTT, and 1.5 µl of SuperScriptIII RTase 

were added. The samples were gently mixed and incubated at 50°C for 50 min and 

subsequently 70°C for 15 min to inactivate the RTase. After that 30 µl of water were added to 

each sample and they were tested for genomic contamination via PCR reaction with primers 

specific for actin (ACT2 – Table 6.2M) against the genomic DNA as a control. The transcript 

Table 6.2M Primers used for qPCR and RT-PCR of AT5G03435 
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abundance was measured via real-time quantitative RT-PCR (qPCR) using 1 µl of cDNA and the 

fluorescent intercalating dye SYBR Green (Applied Biosystems) in a DNA engine OPTICON2 

continuous fluorescence detector (Bio-Rad). The qPCR was performed using gene specific 

primers and the results were normalised to the S18 gene (Table 6.2M). The qPCR was 

performed in triplicate for each of three independent samples. 

6.2.7 Complementation of heterozygous T-DNA line with wild-type Col-0 DNA 

 The cDNA obtained for the expression analysis (see section 6.2.6) was PCR amplified 

using Platinum™ High-Fidelity DNA Polymerase (Invitrogen) which leaves 3’-A overhangs on 

the PCR products and gene specific primers (Table 6.3M). PCR products were purified using the 

QIAquick®PCR-purification kit (Qiagen). Cloning of the PCR fragments was performed using a 

reaction mix containing: 0.5 μl PCR product, 1 μl salt solution provided with the vector, 0.5 μl 

vector (pCR8/GW/TOPO TA) and dH2O in a final volume of 3 μl. Subsequently, samples were 

incubated for 10 min at room temperature and transformed into chemically competent E. coli 

TOP10 or HD5α cells via a heat shock (see Chapter 2). Transformants were selected on LB 

medium supplemented with spectinomycin. Subsequently, the plasmid DNA was isolated from 

overnight liquid bacterial cultures using the QIAprep Spin Miniprep Kit (Qiagen) according to 

the manufacturer’s instruction. Successful cloning was confirmed by restriction digestion of 

plasmid DNA with EcoRI (Roche; see Chapter 2). Successful transformants were sequenced 

(section 6.2.9) with plasmid specific primers by the sequencing service at Eurofins Genomics 

(www.eurofins.com). The constructs with sequences identical to template were then 

transformed from pCR8 entry vector to the destination vector pGWB2 via overnight LR 

reaction (see Chapter 2). Subsequently the constructs were transformed to chemically 

competent E. coli TOP10 or DH5α cells via a heat shock (see Chapter 2). Transformants were 

selected on LB medium supplemented with kanamycin and hygromycin. Successful cloning was 

confirmed by colony PCR. Subsequently, the successful constructs were transformed to 

electrocompetent Agrobacterium tumefaciens via electroporation (see Chapter 2). Successful 

transformants were selected on LB medium supplied with carbenicilin, rifampicin, kanamycin, 

and hygromycin. The successful transformants were used to prepare the cell suspension and 

the plants were transformed via the floral dip method (see Chapter 2). Successful plant 

transformants were selected on MS medium supplemented with hygromycin. 
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Name Sequence 5' -> 3' Comment

PAPSFw CCGGACTGGAAAACTTGATAGACCACC With START codon

PAPSRw CTTGATTTCTACGAACACATCTTTCTTGAATTTCTTGCG Without STOP codon  

The 1.2kb fragments cloned for sequencing of the fragment indicated in the 1001 Genomes 
database as a deletion were amplified with primers PAPS1_1Fw and PAPS1_1Rw from Table 6.1M. 

 

6.2.8 Subcellular localisation of GFP fused AT5G03430 

 The cDNA obtained for the expression analysis (section 6.2.6) was PCR amplified using 

Platinum™ High-Fidelity DNA Polymerase, cloned to pCR8 vector and successful transformants 

were selected and verified as described before (section 6.2.7). Since the destination vector 

pK7FWG2,0 has resistance to the same antibiotic as the entry vector the constructs with 

sequences identical to template were first digested with BglI (New England Biolabs) to disable 

the resistance gene of the entry vector. Subsequently, the plasmid DNA was purified using the 

QIAquick®PCR-purification kit (Qiagen) and introduced to the destination vector pK7FWG2,0 

via overnight LR reaction (see Chapter 2). The constructs were then transformed to chemically 

competent E. coli TOP10 or DH5α cells via a heat shock (see Chapter 2). Transformants were 

selected on LB medium supplemented with spectinomycin. Successful cloning was confirmed 

by restriction digestion with ClaI and BspHI (Roche, New England Biolabs respectively) and 

colony PCR. Subsequently, the successful constructs were transformed to electrocompetent 

Agrobacterium tumefaciens via electroporation (see Chapter 2). Successful transformants were 

selected on LB medium supplied with spectinomycin, carbenicilin, and rifampicin. The 

successful transformants were used to prepare the cell suspension used to infiltrate the 

Nicotiana benthamiana plants (see Chapter 2). After three days the tobacco leaves were 

analysed under a confocal microscope Leica SP5 (II). 

6.2.9 Sequencing of plasmid DNA 

 The DNA for sequencing was PCR amplified using the Platinum™ High-Fidelity DNA 

Polymerase and cloned to pCR8 vector. Subsequently the plasmid DNA from the successful 

transformants was isolated using the QIAprep Spin Minipre Kit (Qiagen) according to the 

manufacturer’s instructions. The plasmid DNA was eluted from the spin column using 30 µl of 

dH2O and its quality and quantity was assessed using the NanoDrop spectrophotometer 

(NanoDrop Technologies). Subsequently, the appropriate dilutions of DNA were prepared and 

sequenced with plasmid and gene specific primers (Table 6.4M) by the sequencing service at 

Eurofins Genomics.  

Table 6.3M Primers used for high-fidelity PCR amplification of AT5G03430 for cloning 
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Name Sequence 5' -> 3' Comment

M13 rev (-29) CAG GAA ACA GCT ATG ACC

M13 uni (-21) TGT AAA ACG ACG GCC AGT

Seq960F      TATCATTCGCCAGGATTTCAAATCC

Seq1910R    CTTACAGAATCTCATCGCCGACAGC

Seq1730F    GGTTCCCAACTCATTATTGTCTG

Seq2610R    CACATTCATTGAGATGTTAAGGCAC

Seq2550F    GGAGTTCGCCTGGTACGTATC

Seq3130R    CAGACATTCCCACTCTTTCTCG

SeqProm300F    GGTGGGTTTTAGATAAATTTGGTGTGG

SeqProm1570R  GCATCTGGATCTTGAGATTAAAGATTTGAAG

SeqProm130F CTCTCTCTCGCCATGAGTAGTAACACGCGG

SeqProm600R CTGAAGAATGAGAGAGAGAGAGAGCTCACGAG

Supplied by Eurofins, specific for 

pCR8 vector

Designed by me to sequence 

genomic DNA of AT5G03430 with 

the promoter

Designed by me to sequence 

genomic DNA of AT5G03430 with 

the promoter  

 

 

 

.  

  

  

Table 6.4M Primers used for sequencing 
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6.3 Results 

6.3.1 Bioinformatics analysis of AT5G03430 sequence 

The GWAS on nitrate, phosphate, and sulfate accumulation data and subsequent 

analysis of T-DNA insertion lines described in Chapter 5 revealed a number of candidate genes 

that could potentially be linked to the regulation of anion accumulation. Moreover, data 

supporting the hypothesis that disruptions in selected genes may affect anion accumulation in 

these lines were provided (Figure 5.9). Among genes selected as candidates AT5G03430, 

annotated in the TAIR database as a putative PAPS reductase family protein, seemed 

particularly interesting, since PAPS reductase activity had not been previously identified in 

arabidopsis. AT5G03430 was revealed in GWAS on both nitrate and sulfate concentration data. 

The T-DNA line with insertion in the gene promoter was characterised by a low nitrate 

concentration, but there was no difference in sulfate concentration compared to Col-0 (see 

Chapter 5). The low nitrate phenotype was consistent over a number of experiments 

performed by myself and Anna Koprivova who used this line for other purposes. Additional 

information on AT5G03430 was delivered from the investigation of its architecture in the 1001 

Genome database which revealed a number of accessions with various deletions and amino 

acid changes in the gene body. Further analysis showed that these accessions accumulate in 

general less nitrate compared to accessions with gene sequence similar to Col-0 (Figure 5.9B). 

There was no difference in sulfate concentration in these accessions when compared to 

accessions with the gene coding region as in Col-0 (see Chapter 5). These results indicated that 

the variation in AT5G03430 gene sequence is likely to affect nitrate accumulation. However 

the exact mechanism was not known at this stage.  

 First, I investigated the information available online in various databases to get a 

better understanding of the function of the protein encoded at AT5G03430 and its possible 

involvement in nitrate and/or sulfate metabolism. Analysis of the protein sequence using the 

NCBI conserved domain search tool (Marchler-Bauer et al. 2011) revealed that the product of 

AT5G03430 is a 497 amino acid protein containing two conserved domains: a PAPS reductase 

domain specific for PAPS reductase enzymes and a cinA domain similar to domains found in 

proteins involved in MoCo biosynthesis which bind MPT (Figure 6.2A). However, further 

analysis of the protein sequence revealed that AT5G03430 does not have the conserved 

residues which are crucial for PAPS reductase activity (Figure 6.2B). These residues are 

conserved among species and found in both plant APS reductases and bacterial PAPS 

reductases.    
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 (A) The conserved domains found in the sequence of the entire protein encoded by AT5G03430 
using the NCBI Conserved Domain Database (Marchler-Bauer et al. 2011). The result indicates the 
presence of two domains in the submitted protein sequence which was obtained from NCBI 
database: PAPS reductase domain (yellow box) and cinA domain (green box). (B) A fragment of the 
alignment of APS/PAPS reductase domains from Arabidopsis thaliana (APR1, APR2, APR3), 
Pseudomonas aeruginosa (APS reductase), Physcomitrella patens (APS reductase and APR-B), and 
Escherichia coli (PAPS reductase) with first 225 amino acids of AT5G03430 protein sequence 
indicated by Conserved Domain Database as PAPS reductase domain (Candidate). The red arrows 
and black frames indicate conserved motifs defining the active site of the enzymes. Strictly 
conserved residues are marked in green, semi conserved residues or residues common for APS 
reductases only are marked in grey. The multiple alignment was made by using the ClustalW 
software. The numbers are created by the software and do not correspond to actual positions of 
particular residues in the protein sequence since only a fragment of the sequence was used for the 
alignment. 

Figure 6.2 Conserved domains in AT5G03430 
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Figure 6.2B presents the alignment of the putative PAPS reductase domain of 

AT5G03430 with different isoforms of arabidopsis APS reductase and bacterial APS and PAPS 

reductases. It revealed that the fragment of AT5G03430 indicated by the conserved domain 

search tool as PAPS reductase domain (first 225 amino acids of the protein) does not contain 

any of the residues recognised before as crucial for this enzymatic activity. Among the motifs 

that define the active site of the enzyme, the P-loop plays an important role in substrate 

recognition and specificity (Chartron et al. 2006). It consists of FS-GAED sequence which is 

highly conserved in APS reductases and related motifs in other ATPases (Mougous et al. 2006). 

It aligns with SSSFGIQA motif from the PAPS reductase from E. coli which contains the 

consensus SXG motif that is involved in the interaction with phosphate of AMP (Savage et al. 

1997). It has been proposed that the two last amino acids found in P-loop motif in APS 

reductases – Gly and Asp – which are not present in this motif in PAPS reductases are 

mimicking the interaction of a negatively charged 3’-phosphate group in PAPS reductase 

(Chartron et al. 2006). None of the residues of the P-loop motif are found in the AT5G03430 

protein. 

Correspondingly, none of the residues of LDTG motif or Arg-loop are found in the PAPS 

reductase domain of AT5G03430. The LDTG motif plays an important role in the proper 

conformation of the protein as well as substrate binding (Chartron et al. 2006). Threonine in 

this motif is strongly conserved among a number of species in both APS and PAPS reductases 

and is involved in stabilizing the protein. Glycine from this motif is also highly conserved and it 

has been recognized to be involved in the proper conformation of the protein (Chartron et al. 

2006, Savage et al. 1997). Only APR-B from Physcomitralla patens does not share this residue 

on the alignment shown in the Figure 6.2B. Similarly, the residues building Arg-loop, especially 

the last arginine from the motif which plays a crucial role in alternate conformation of Arg-loop 

(dependent on the presence of the substrate), are conserved among both APS and PAPS 

reductases but they are not present in the AT5G03430 protein (Figure 6.2B; Chartron et al. 

2006, Savage et al. 1997). 

 Most importantly, the ECG motif that contains the catalytic cysteine is not present in 

the PAPS reductase domain from AT5G03430 (Figure 6.2B). To date this motif has been found 

in all identified APS/PAPS reductases and is crucial for the catalytic function of the enzyme. 

Moreover, the cysteine from this motif which is the only conserved cysteine in both APS and 

PAPS reductases has been suggested to be involved in the formation of a disulphide bond that 

joins the two monomers of the enzyme (Kopriva & Koprivova 2004).  
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PAPS/APS reductases are not the only enzymes that contain the PAPS reductase 

domain. Some bacteria such as Pseudomonas syringae possess a specific sulfate assimilation 

gene cluster in which genes encoding ATPS are associated with genes encoding GTP hydrolases 

(Mougous et al. 2006). Because the formation of APS is thermodynamically unfavourable 

bacteria evolved mechanisms that shift the reaction equilibrium towards production of APS 

(Liu et al. 1994). In bacteria such as Pseudomonas syringae the ATPS activity is coupled with 

GTP hydrolysis activity in one protein. In that protein, the monomer that is able to bind GTP 

possesses the PAPS reductase domain. The GTPase activity is gained after the two monomers 

are coupled as a heterodimer (Mougous et al. 2006).   

Another group of proteins which possess the PAPS reductase domain are FAD 

synthases. FAD is a cofactor necessary for the functioning of large variety of dehydrogenases, 

reductases, and oxidases involved in a number of vital processes in the cell (Joosten & van 

Berkel 2007). It is synthesised from riboflavin in a two step reaction catalysed by riboflavin 

kinase and FAD synthase (Massey 2000). The first eukaryotic gene for FAD synthase was 

identified in Saccharomyces cerevisiae and named FAD1.  In yeast this protein contains a PAPS 

reductase domain and is not similar to the bacterial FAD synthases (Leulliot et al. 2010). The 

sequence of yeast FAD synthase was used to identify two human isoforms of that protein 

(Brizio et al. 2006). In contrast to yeast FAD synthase, the enzyme found in humans is 

organised in two domains: the PAPS reductase domain at the C-terminus and the cinA domain 

at the N-terminus (Figure 6.3A). It has been shown that in the human FAD synthase the PAPS 

reductase domain itself is able to catalyse FAD synthesis and its cleavage (Miccolis et al. 2012). 

The role of the cinA domain has not been described in detail. However, the analysis of 

recombinant PAPS domain (Miccolis et al. 2012) revealed differences in the response to Mg2+, 

Co2+, and Ca2+, and GTP compared to the response observed in the analysis of the entire 

protein (Torchetti et al. 2011). Therefore, it was suggested that this domain may play some 

role in the regulation of hFADS contributing to binding of GTP in a site different from the 

substrate sites (Miccolis et al. 2012). It is worth noticing that the FAD synthetases identified in 

the arabidopsis genome – RibF1 and RibF2 – have a completely different structure from the 

human enzymes (Sandoval et al. 2008). 

The Blast search against the sequence of the PAPS reductase domain from AT5G03430 

protein (amino acids from 1 to 224) revealed 90% similarity and 42% identity between it and 

FAD synthase isoform 1 and 2, 83% similarity and 40% identity with FAD synthase isoform 3 

and 79% similarity and 32% identity with yeast FAD synthase. The alignment of the sequences 

from these proteins revealed that PAPS reductase domain from AT5G03430 shares all the 
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residues involved in the conserved PP-loop, ARG1, flavin and γ-phosphate motifs commonly 

found in FAD synthases from different species (Figure 6.3B). In FAD synthases the PP-loop and 

ARG1 motifs are known to be involved in the binding of ATP, the flavin motif is involved in 

FMN binding, and the function of γ-phosphate motif is not clear yet (Huerta et al. 2009, 

Miccolis et al. 2012). The high similarity of the PAPS reductase domains from the two proteins 

might have been a reason why the AT5G03430 is annotated as a putative PAPS reductase 

family protein.    

Likewise, the Blast search against the sequence of the cinA domain from AT5G03430 

protein (amino acids from 225 to 497) revealed 86% similarity and 21% identity between it and 

FAD synthase isoform 1 and 2, and 78% similarity and 20% identity with FAD synthase isoform 

4. In contrast to other isoforms of human FAD synthase, the isoform 4 consists of a cinA 

domain only. According to Conserved Domain Database all of these proteins share the 

sequence features important for binding of molybdopterin (Figure 6.3C). Blast search also 

revealed that the cinA domain is similar to Cnx1G domain of Cnx1 from Arabidopsis thaliana 

(56% similarity, 15% identity), mammalian gephyrin isoform 1 and 2 (62% similarity, 12% 

identity), and Drosophila melanogaster cinnamon protein (37% similarity, 15% identity). There 

was also a high similarity to three monofunctional proteins from Escherichia coil – MoeA (47% 

similarity, 19% identity), MogA (40% similarity, 16% identity), and MoaB (38% similarity, 16% 

identity). All these proteins (except FAD synthases) are functional homologues and are known 

to be involved in the final step of the MoCo biosynthesis i.e. incorporation of molybdenum into 

molybdopterin which yields the active cofactor (Schwarz & Mendel 2006). Moreover, human 

gephyrin and cinnamon protein for Drosophila have a number of assigned functions in addition 

to MoCo biosynthesis (Nawrotzki et al. 2012, Wittle et al. 1999). 

In summary, there is no similarity between AT5G03430 and the known APS and PAPS 

reductases (Figure 6.2). Because no homologues to PAPS reductase from E. coli other than APR 

have been identified in arabidopsis or rice it could be that such an enzyme does not exist or 

has a structure completely divergent from the bacterial enzyme. Nevertheless, it seems 

unlikely that AT5G03430 has this activity, especially when taking into account the high 

similarity of the protein to FAD synthases and proteins involved in MoCo biosynthesis (Figure 

6.3). MoCo biosynthesis as well as molybdenum metabolism are linked to the metabolism of 

nitrate and sulfate (see discussion of this Chapter). The T-DNA line with insertion in 

AT5G03430 showed low nitrate concentration and no changes in sulfate accumulation (see 

Chapter 5; Figure 5.6). Moreover, the role of the cinA domain and the structural relationship 

between the two domains in FAD synthases are not known. Therefore, I decided to focus 
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C.
FADS1           EILKGHTQDTNTFFLCRTLRSLGVQVCRVSVVPDEVATIAAEVTSFSNRFTHVLTAGGIG 
FADS3           EILKGHTQDTNTFFLCRTLRSLGVQVCRVSVVPDEVATIAAEVTSFSNRFTHVLTAGGIG 
FADS2           EILKGHTQDTNTFFLCRTLRSLGVQVCRVSVVPDEVATIAAEVTSFSNRFTHVLTAGGIG 
FADS4           FNPQGHTQDTNTFFLCRTLRSLGVQVCRVSVVPDEVATIAAEVTSFSNRFTHVLTAGGIG 
Candidate       EILSGTVEDQLGLSLCKKLTSVGWSVQQTTVLRNDIDSVSEEVDRQRSTSDMVFIYGGVG 
 
FADS1           PTHDDVTFEAVAQAFGDELKPHPKLEAATKALGGEGWEKLSLVPSSARLHYG-TDPCTGQ 239
FADS3           PTHDDVTFEAVAQAFGDELKPHPKLEAATKALGGEGWEKLSLVPSSARLHYG-TDPCTGQ 142
FADS2           PTHDDVTFEAVAQAFGDELKPHPKLEAATKALGGEGWEKLSLVPSSARLHYG-TDPCTGQ 142
FADS4           PTHDDVTFEAVAQAFGDELKPHPKLEAATKALGGEGWEKLSLVPSSARLHYG-TDPCTGQ 140
Candidate       PLHSDVTLAGVAKAFGVRLAPDEEFEEYLRHLISDQCTGD--RNEMAQLPEGITELLHHE 170
 
FADS1           PFRFPLVSVRNVYLFPGIPELLRRVLEGMKGLFQN---PAVQFH--------------- 280
FADS3           PFRFPLVSVRNVYLFPGIPELLRRVLEGMKGLFQN---PA------------------- 179
FADS2           PFRFPLVSVRNVYLFPGIPELLRRVLEGMKGLFQN---PAVQFHSKELYVAADEASIAP 198
FADS4           PFRFPLVSVRNVYLFPGIPELLRRVLEGMKGLFQN---PAVQFHSKELYVAADEASIAP 196
Candidate       KLSVPLIKCRNVIVLATNTEELEKEWECLTELTKLGGGSLIEYSSRRLMTSLTDVEVAE 230

 

further analysis of the protein encoded by AT5G03430 on the function of the cinA domain and 

the involvement of this protein in nitrate and/or sulfate metabolism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
(A) The conserved domains found in human FAD synthase isoform 1 protein sequence by using the 
NCBI Conserved Domain Database (Marchler-Bauer et al. 2011). Two domains are indicated: cinA 
domain (green box) and PAPS reductase domain (yellow box). (B) Fragment of the alignment of 
PAPS reductase domains from different isoforms of human FAD synthase (FADS1, FADS2, FADS3), 
Saccharomyces cerevisiae FAD synthase (FAD1p), with first 225 amino acids of AT5G03430 protein 
sequence indicated by Conserved Domain Database as PAPS reductase domain (Candidate). The 
red arrows and black frames indicate conserved motifs defining the active site of the enzymes. 
Strictly conserved residues within these motifs are marked in green, semi conserved residues 

Figure 6.3 Comparison of conserved domains from AT5G03430 with other proteins 
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Line name NASC line number
Localisation according to                  

T-DNA Express Comment

PAPS (Line 34) SALK_141801C promoter homozygous

PAPS1_1 SALK_031937 (AE) beginning of the gene heterozygous

PAPS1_2 SALK_043060 beginning of the gene didn't germinate

PAPS1_3 SALK_128101 beginning of the gene no insertion

PAPS1_4 SALK_140720 end of the gene no insertion

PAPS1_5 SALK_144629C promoter no insertion

PAPS1_6 SALK_140626 (BY) end of the gene no insertion

within these motifs are marked in grey. (C) Fragment of the alignment of cinA domains from 
different isoforms of human FAD synthase (FADS1, FADS2, FADS3, FADS4) with the part of 
AT5G03430 sequence indicated by Conserved Domain Database (CDD) as a cinA domain (amino 
acids 225 to 497). Strictly conserved residues that are involved in MPT binding (according to CDD 
search tool) are marked in green, semi conserved residues that are involved in MPT binding are 
marked in grey. The multiple alignment was made by using the ClustalW software. The numbers 
are created by the software and do not correspond to actual positions of particular residues in the 
protein sequence since only a fragment of the sequence was used for the alignment. 

 

6.3.2 The embryo-lethality of AT5G03430 mutant 

The T-DNA line with insertion in the promoter showed low nitrate concentration. 

Therefore, I obtained additional T-DNA lines with insertions in this gene to investigate the 

effect of disruption of the gene on anion accumulation and eventually, the exact function of 

the gene product (Table 6.1). I ordered six additional T-DNA lines from NASC and genotyped 

them via PCR. The seeds for one line did not germinate. The genotyping of the other five lines 

revealed that four of them had no insertion and one was heterozygous (Table 6.1). Therefore, I 

grew the heterozygous line again in order to genotype the next generation of the plants. 

However, in this case I also did not identify any homozygous mutants in PCR genotyping 

screens. I then examined the dry seeds obtained from WT Col-0 and the heterozygous line 

under the microscope. The seeds from WT Col-0 had a proper egg-shape with comb-like rise at 

the side and not many aborted seeds. In contrast a large number of seeds obtained from the 

heterozygous line were aborted. This observation suggests that the insertion in AT5G03430 

might alter the development of plant embryos.  

Table 6.1 T-DNA lines with insertions in AT5G03430 

Line names correspond to working names of the lines 

In arabidopsis the phenotype of the immature seeds changes from white to green, and 

then to brown before seed release (Andriotis et al. 2010). In normal conditions the immature 

seeds within the silique develop at the same rate. Very often seeds containing defective 
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embryos may appear white or brown and shrivelled when seeds containing normal embryos 

have turned green (Andriotis et al. 2010, Patton et al. 1998, Sparkes et al. 2003, Yu et al. 2004). 

Therefore, to examine whether disruption in AT5G03430 could affect the development of 

plant embryos, I performed a time-course experiment to investigate the development of the 

embryos from heterozygous plants. I had advice and assistance from Vasilios Andriotis (JIC), 

who is experienced in work with embryo lethal mutants. All seeds from every second silique 

starting from the top of the stem which had 20 siliques at the time of the analysis were 

investigated (Figure 6.4). In the first silique (the youngest) all seeds were at the early globular 

stage. They all looked identical and they were properly developed according to the literature 

(Figure 6.4A; Andriotis et al. 2010, Patton et al. 1998, Sparkes et al. 2003). Similarly, in seeds 

from the third silique most of the embryos were at the succeeding, transition stage with 

properly developed suspensors and seed tissues (Figure 6.4B). In the fifth silique some 

embryos were at the transition stage, whereas some others were at the early heart stage 

(Figure 6.4C). No abnormalities were observed in the development of these embryos.  

Likewise, in silique seven the embryos were at the early or late heart stage (Figure 6.4D). 

However, the morphology of some embryos in silique nine differed between seeds from this 

silique. Most of the embryos were at the early torpedo stage (Figure 6.4E), but some were 

significantly lagging behind. They were at the early or late heart stage with short suspensors 

containing abnormally enlarged cells (Figure 6.4F).  

Silique 11 was the first where, among green seeds, a number of white seeds was 

detected. The embryos from green seeds from silique 11 were at the late torpedo stage and 

did not show signs of abnormal development (Figure 6.4G). However, the embryos from white 

seeds were at the heart stage with short suspensor containing abnormally enlarged cells 

(Figure 6.4H). Similarly, in silique 13 the embryos from green seeds were maturing (Figure 6.4) 

whereas the embryos from white seeds were still arrested at the heart stage (Figure 6.4J). In 

silique 15 apart from the white seeds, pale-yellow seeds were detected. Embryos from these 

seeds developed slightly further than the embryos from the white seeds. They were arrested 

at the early torpedo stage but their shape was severely altered (Figure 6.4L). The cells of these 

embryos were abnormally large and they developed some kind of tumours suggesting 

disorganised cell division. The cotyledons in these embryos were growing apart (Figure 6.4L). It 

is likely that these embryos would abort eventually, in the same way as the embryos from 

white seeds. Indeed, in silique 17 and 19 where the embryos from green seeds were fully 

developed (Figure 6.4N, R) the embryos from white and pale seeds were arrested at the 

torpedo stage and presented abnormal   
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The 
siliques of a heterozygous T-DNA line with insertion in AT5G03430 were examined under DIC 
optics. Particular pictures correspond to representative embryos at different developmental stages: 
(A) early globular, (B) globular, (C) early heart, (D) heart, (E) early torpedo, (F) globular stage from 
the same silique as E, (G) late torpedo stage from green seed, (H) heart stage from white seed in 
the same silique as G, (I) bent torpedo from green seed, (J) heart stage from white seed in the same 
silique as I, (K) mid torpedo, (L) misshaped torpedo stage from a pale seed in the same silique as K, 
(M) heart stage from white seed in the same silique as K, (N) mature embryo, (O) misshaped 
torpedo in pale seed in the same silique as N, (P) heart stage from white seed in the same silique as 
N, (R) post-mature embryo, (S) late heart stage from pale seed in the same silique as R, (T) early 
torpedo from the white seed in the same silique as R.  
morphology (Figure 6.4O, P, S, T). These seeds would most certainly fail to germinate at 

maturity. Silique 19 was the last analysed and the oldest from this stem. The results described 

here are for a representative plant. The phenotypes and the time points, at which the 

Figure 6.4 Developmental arrest of embryos with disruption in AT5G03430 gene 
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significant differences in the embryo development were observed, were common for three 

independent plants analysed.  

To quantify the percentage of abnormal seeds I counted the numbers of green, white, 

pale, and dry (aborted) seeds from up to six siliques (about 150 seeds per plant) from three 

independent plants (Figure 6.5). The percent of abnormal seeds in each plant varied between 

20% and 35% with a mean close to 25% when dry and white seeds were treated as abnormal 

(excluding pale seeds). The percentage was higher when dry, white, and pale seeds were 

treated as abnormal (Figure 6.5). Nevertheless, these quantification data, together with the 

microscopic analysis of the embryos indicate that the homozygous mutant is embryo-lethal 

and that the mutation is recessive.   

 

 

 

 

 

 

 
 

The bars indicate the percentage of abnormal seeds calculated as average from up to six siliques 
from a plant. The red bars correspond to percentage of white and dry seeds (W+D) among all the 
seeds in the silique. The blue bars correspond to white, dry, and pale seeds (W+D+P) among all the 
seeds in the silique.  

 

To verify whether it is the mutation in AT5G03430 that results in the embryo-lethality I 

complemented the heterozygous line with the wild-type cDNA of AT5G03430 from Col-0 under 

35S promoter. The arabidopsis heterozygous line with T-DNA insertion in AT5G03430 

(SALK_031937) was transformed by dipping the flowering plants in a suspension of 

Agrobacterium tumefaciens transformed with appropriate gene constructs (see methods 

section specific for this Chapter). The transformants were selected on hygromycin B. The 

transgenic lines were not analysed in time before the thesis submission.  

It is important to consider how it was possible to obtain the homozygous insertion line 

in this gene (line 34 described in Chapter 5), if the mutation is embryo-lethal. According to T-

Figure 6.5 Quantification of abnormal seeds 



   Functional characterisation of AT5G03430                                                                                 Chapter 6 
 

193 
 

DNA Express search tool (Alonso et al. 2003) this T-DNA line has the insertion in the promoter 

and the gene sequence itself should not be disrupted. One possible explanation is that the 

insertion in the homozygous line did not knock out the gene expression completely. Therefore, 

I analysed the AT5G03430 transcript abundance in the homozygous line. The investigation of 

the electronic fluorescent pictographic tool (eFP browser; Winter et al. 2007) revealed that 

AT5G03430 is expressed continuously at all developmental stages (Figure S6.1). In young 

seedlings it is expressed in both shoots and roots, whereas in mature plants at the stage of 

flowering it is expressed mainly in entire rosette and in cauline leaves. It is not expressed in the 

mature pollen. Therefore, for the analysis of AT5G03430 transcript abundance in the 

homozygous T-DNA line I first used whole three week old plants (Figure 6.6A). I measured the 

gene transcript abundance by qPCR using the gene specific primers (see methods section 

specific for this chapter). I used the arabidopsis S18 gene as a standard for all measurements 

described in this chapter. The analysis of three week old plants did not show any difference in 

AT5G03430 transcript accumulation between the insertion line and the wild type Col-0. 

Subsequently, I measured the transcript accumulation in roots and shoots separately (Figure 

6.6B). However, similarly to the previous analysis I did not observe any difference in 

AT5G03430 transcript accumulation in homozygous line compared to WT Col-0. There was 

higher accumulation of the transcript in shoots than in roots in both the insertion line and WT 

Col-0 in three week old plants. In the next step, I examined the leaves of mature plants for 

transcript accumulation to finally resolve that issue (Figure 6.6C). This analysis also did not 

reveal any significant differences between transcript accumulation in the homozygous line and 

the WT Col-0. These results indicate that the T-DNA insertion in the promoter did not affect 

the accumulation of the gene transcript in this line. This observation is surprising. The question 

arises, what exactly affects the nitrate accumulation in this line if the expression of the gene 

remains unaltered. 
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 (A) The transcript abundance in whole, three week old seedlings, (B) the transcript abundance in 
shoots and roots from three week old seedlings, (C) the transcript abundance in leaves of mature 
plants; the bars indicate average value of three biological replicates measured in triplicate each ± 
standard error. 

 

One possible explanation of this phenomenon is that the insertion in the promoter 

might affect adjacent genes. In that case altered expression of AT5G03435 (the closest to the 

gene of my interest) rather than AT5G03430, might give rise to the changes in nitrate 

accumulation in the T-DNA line. The AT5G03435 gene is annotated in TAIR as a calcium 

dependent plant phosphoribosyl transferase family protein, but nothing is known about the 

function of the gene product. It was not mentioned in the literature before and no data are 

available in the gene co-expression database ATTEDII or in eFP browser. I analysed the 

accumulation of its transcript by qPCR with three pairs of different primers as described above 

using S18 as a standard. I tested three and five week old plants using shoots and roots 

separately. The expression of AT5G03435 was undetectable in each of these experiments. 

These results indicate that AT5G03435 has a very low expression or is expressed only in 

specific conditions or at a certain developmental stage. Therefore, it seemed unlikely that the 

changes in its expression are responsible for changes in nitrate accumulation which were 

consistent in a number of experiments on plants at different developmental stages. 

Figure 6.6 Transcript abundance of AT5G03430 in the homozygous T-DNA insertion line 
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Since the T-DNA insertion in the gene promoter does not alter its transcript 

accumulation it might be that the low nitrate phenotype in this line is not affected by the 

insertion itself but some other changes in the gene. One of the possibilities is alternative 

splicing of the gene. In that case the function of the gene product would be altered, rather 

than its expression. To see whether there are any differences in the gene transcript between 

WT Col-0 and the AT5G03430 line I amplified the cDNA of AT5G03430 with gene specific 

primers. However, there was no difference in the size of PCR products between the insertion 

line and WT Col-0 in both shoots and roots. Subsequently, I sequenced the genomic DNA of the 

entire gene isolated from WT Col-0 and the homozygous line to investigate whether there are 

any other changes in the gene sequence that could result in a low nitrate phenotype. The 

sequencing of AT5G03430 from the insertion line did not reveal any changes in the sequence 

compared to WT Col-0 and the genomic sequence of that gene obtained from the TAIR 

database (data not shown).   

An experiment which could provide the explanation for low nitrate phenotype in the 

homozygous line is the analysis of the regulation of gene expression by different nitrogen 

sources and nitrate limitation. However, according to Genevestigator there was no difference 

in expression of this gene in response to nitrate or sulfate deficiency. Therefore, I first 

examined the other possibilities. Finally, due to time limitation I did not manage to perform 

these experiments.   
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 (A) Accessions with no deletion or SNPs in the coding region of the gene, (B) accessions with 
various SNPs in the gene sequence; (C) accessions with deletion including second exon, (D) 
accessions with deletion excluding second exon; the deletions are indicated as a grey boxes, codons 
with synonymous substitutions are marked in green (in coding region in green box), codons with 
non-synonymous substitutions are marked in red (in coding region in red box), the arrow indicates 
the left border primer used for sequencing; the right border primer is not indicated on the figure. 

 

 

Figure 6.7 Schematic representation of different haplotype groups of AT5G03430 
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6.3.3 The analysis of AT5G03430 haplotypes 

To investigate further the involvement of AT5G03430 in the variation of nitrate and/or 

sulfate accumulation I examined the genetic variation of this gene in arabidopsis using the 

1001 Genomes database. This analysis revealed four different haplotypes. In some accessions 

there were various amino acid changes in the protein sequence compared to Col-0 (Figure 

6.7B). There was also a group of accessions with a long deletion including the second exon 

(Figure 6.7C) and accessions with a deletion excluding the second exon (Figure 6.7D). The 

group which included Col-0 did not have any of the changes found in other haplotypes and was 

treated as a control group (Figure 6.7A). Since removing one exon from the gene can have a 

significant effect on the gene product (e.g. alterations of protein folding or protein function) 

the difference between the two haplotype groups seemed substantial. Therefore I analysed 

the available data to investigate the effect of this deletion on anion accumulation.  

Such an analysis for AT5G03430 was already described in Chapter 5 where the anion 

accumulation datasets generated for GWAS were used to investigate the differences in anion 

accumulation between accessions with different changes in the gene sequence compared to 

Col-0 (Figure 5.9A, B, and C). In this analysis the three groups of accessions were treated as 

one and compared to accessions with no changes in the gene sequence. This analysis revealed 

that the accessions with various changes in AT5G03430 sequence accumulate less nitrate 

compared to accessions with gene sequence similar to that found in Col-0 (Figure 5.9B). There 

was no difference in sulfate accumulation between the two groups of accessions (Figure 5.9C).  

In the analysis shown in Figure 6.8A and B the same data as above are classified into 

three different groups (instead of two as was shown in Chapter 5). The first group includes 

accessions with no changes in the gene sequence compared to Col-0 (as shown in Figure 6.7A). 

The second group includes accessions with deletion including second exon (as shown in Figure 

6.7C). The last group includes the accessions with various predicted amino acid changes and 

deletion excluding second exon (as shown on Figure 6.7B and D). The data for molybdenum 

concentration were obtained from a publicly available database of ionomic data iHUB (Baxter 

et al. 2007; www.ionomicshub.org). This analysis revealed that the accessions with various 

predicted amino acid changes and deletion excluding second exon have significantly lower 

nitrate concentration and significantly higher molybdenum concentration compared to 

accessions with no changes in the gene sequence as found in Col-0. There was no difference in 

sulfate concentration which is consistent with the results from Chapter 5 (Figure 5.9C). 
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Surprisingly, these data suggest that the deletion of second exon does not have an effect on 

the accumulation of anions.  

 

 

 

 

 

 

 

 

 

 

Nitrate (A) and sulfate (B) accumulation data from the datasets generated for GWAS analysis 
described in Chapter 5. (C) Molybdenum accumulation data were obtained from the publically 
available database iHUB (www.ionomicshub.org). The bars correspond to average value of anion 
accumulation for accessions with gene sequence similar to Col-0 (no deletion), accessions with the 
deletion including second exon (including deletion), and accessions with various amino acid 
changes and deletions excluding second exon (excluding exon) ± standard deviation. Asterisks 
indicate significantly different values compared to accessions with no changes in the gene 
sequence (t-test P-value ≤ 0.05).  

 

To investigate further the effect of the variation in AT5G03430 I selected 10-15 

accessions representing different groups. I grew these plants for five weeks in soil and 

analysed them for anion accumulation. This analysis revealed that the nitrate concentration in 

accessions with the deletion including the second exon was significantly higher (t-test P-value 

≤ 0.05) compared to accessions with no changes in gene sequence and accessions with the 

deletion excluding the exon (Figure 6.9A). This is in contrast to the results shown in Figure 6.8 

where the accessions with deletion including exon did not differ from the accessions with no 

changes in the gene sequence as seen in Col-0 and the accession with the deletion excluding 

exon showed lower nitrate concentration. Moreover, the analysis shown in Figure 6.9B 

revealed that the accessions with the deletion excluding exon showed lower sulfate 

Figure 6.8 Analysis of AT5G03430 haplotypes based on available data 
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concentration compared to the accessions with no changes in the gene sequence. In the 

previous analysis (Figure 6.8B) there was no difference in sulfate accumulation between the 

accessions. Additionally, the analysis shown in Figure 6.9 revealed higher phosphate 

concentration in accessions with deletion including and excluding second exon compared to 

accessions with no deletion in the gene sequence as seen in Col-0 (Figure 6.9C). The anion 

accumulation data for particular accessions are shown in Figure S6.2. 

 

 

 

 

 

 

The bars correspond to average value of concentration of nitrate (A), sulfate (B), and phosphate (C) 
in 10-15 accessions selected as representatives of each haplotype group shown on figure 6.5 ± 
standard deviation. Asterisks indicate values significantly different compared to control group with 
no deletions in the gene coding region (t-test P-value ≤ 0.05). 

 

 To investigate this discrepancy of the results more analyses were needed. 

First, I investigated the presence of the deletion. I isolated the genomic DNA from all the 

accessions and PCR amplified a 1.2kb fragment of AT5G03430 which was indicated by 1001 

Genomes database to include the deletions. Subsequently, I cloned these fragments into the 

pCR8 vector and sequenced the plasmid DNA. The sequencing showed that there is no deletion 

in the 1.2 kb fragment in any of the accessions analysed. Moreover, the PCR of the genomic 

Figure 6.9 Analysis of anion concentration in three different AT5G03430 haplotype groups 
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DNA amplifying entire gene did not show any difference in the PCR product size between 

accessions. These results indicate not only that the deletion is not in the place indicated by the 

1001 Genomes Database, but it is not there at all. One of the possible reasons why this region 

could be indicated as a deletion in the database is the presence of secondary structure in that 

region which would disrupt the sequencing. To examine that hypothesis I used the Mfold Web 

Server (Zuker 2003) that is an online tool to predict nucleic acid secondary structure. First I 

folded the genomic sequence of AT5G03430 obtained from TAIR (Figure 6.10A, B). The analysis 

revealed five alternative structures (two are shown in the figure), four of which had a very 

complicated folding in the region indicated by 1001 Genomes database as a deletion. 

Subsequently, I folded the 1.2kb fragment of AT5G03430 obtained from sequencing of 

accessions with no changes in gene sequence as in Col-0 and accessions which were indicated 

to have a deletion (Figure 6.10C, D). This analysis revealed that the folding of DNA is more 

complicated in the accessions which were indicated as accessions with deletion in 1001 

Genomes database compared to accessions similar to Col-0. 
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(A) Secondary structure with the highest ΔG obtained from the AT5G03430 genomic sequence from 
TAIR database; (B) Secondary structure with the lowest ΔG obtained from the AT5G03430 genomic 
sequence from TAIR database; The region indicated as a deletion is circled. The three other 
structures had similar complicated fold as this one; (C) Secondary structure obtained from 1.2kb 
fragment of AT5G03430 sequenced from Col-0; (D) Secondary structure obtained from 1.2kb 
fragment of AT5G03430 sequenced from Com-1 indicated in 1001 Genomes database as deletion; 
The prediction was made by using the Mfold Web Server. The folding temperature was set to 37ᵒC. 
The arrow indicates the start codon. 

 

The sequence analysis revealed a lack of deletion, but the differences in anion 

concentration between the accessions described before were noticable (Figure 6.9). Therefore 

it was of interest to discover whether there are any other changes in the gene sequence that 

could be responsible for these differences. The sequenced fragment of the gene included three 

first exons. Within that fragment I found only one non-synonymous nucleic acid change which 

led to substitution of proline for arginine at position 86 (third exon). Since only a short 

fragment of the gene was sequenced it was impossible to verify whether this substitution is 

responsible for the differences between accessions. The multiple alignment of the fragments 

obtained from sequencing revealed three clearly distinguished groups, one of which included 

Figure 6.10 Secondary structure of AT5G03430 genomic sequence 
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only accessions with the Pro/Arg substitution (Figure 6.11B). In the alignment based on the 

sequences obtained from the 1001 Genomes database the groups of accessions were not that 

clearly pronounced (Figure 6.11A). This could result in less pronounced differences in anion 

accumulation between groups of accessions and the discrepancies in the results seen before 

and described above. 

 

 

 

 (A) The guide tree created based on the alignment of 1.2 kb fragment of AT5G03430 sequence 
obtained from the 1001 Genomes database. According to the database this fragment was expected 
to have two different types of deletion. (B) The guide tree created based on the alignment of 1.2 kb 
fragment of AT5G03430 obtained after sequencing. The trees were generated by Vector NTI 
software as a part of multiple sequence alignment analysis. Different colour boxes indicated 
accessions belonging to different groups before (A) and after (B) the sequencing.  

 

Following the results of sequence alignment I regrouped the anion accumulation data 

so that I could compare the effect of the P86R amino acid substitution. Most of the accessions 

with arginine in position 86 instead of proline were previously selected as accessions with 

deletion including exon (Figure 6.11). The only exception was Abd-0 which, based on the 1001 

Genomes database selection, belonged before to the group of accessions with deletion 

excluding exon. Moreover, four accessions - Ag-0, Gr-1, Chat-1, and JEA - which before 

sequencing belonged to the group of accessions with deletion including exon did not have the 

amino acid substitution. In the multiple alignment obtained based on the sequencing results 

these accessions were included in the group selected before sequencing as accessions with 

Figure 6.11 Changes in haplotype grouping revealed by sequencing 
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deletion excluding exon. The control group remained unchanged with the exception of Kyoto 

which before sequencing was selected as accession with deletion excluding exon (Figure 6.11). 

After regrouping of the accessions the results of anion accumulation were in 

agreement with what was seen before (Figure 6.9) but the differences between groups were 

much more pronounced and had higher significance (Figure 6.12).  The nitrate concentration 

was significantly higher in the accessions with the P86R amino acid substitution compared to 

both the control group (including Col-0) and the third group distinguished from the sequence 

alignment (Figure 6.12A). I did not observe any non-synonymous nucleic acid substitutions in 

the coding region in accessions from this group. However, there were a number of SNPs in 

introns common for these accessions which most likely resulted in differentiating this group 

from the accessions with no changes in the gene sequence as seen in Col-0. Moreover, sulfate 

concentration was significantly lower in accessions with the P86R substitution compared to 

control group (Figure 6.12B). There was no significant difference between the accessions with 

no changes in the gene coding region and the third group of accessions. In contrast, phosphate 

concentration was higher in accessions with P86R substitution as well as in the accessions from 

the third group (Figure 6.12C). This indicates that there might be additional amino acid 

substitutions or other changes in this gene or related genes in the accessions from this group 

which were not included in the sequenced fragment.  

At this stage it is impossible to infer the exact reason for the differences in anion 

accumulation between the accessions. However, the results described here indicate that the 

P86R amino acid substitution in AT5G03430 might be involved in the natural variation in anion 

accumulation. Given the discrepancy between the sequence provided in the database and the 

results of sequencing thus far, it would be necessary to re-sequence the entire gene in these 

accessions to investigate whether it is the only difference in the gene sequence among these 

accessions. Moreover, additional experiments such as analysis of transcript accumulation 

would be necessary to investigate the mechanism of that variation (similar to the results 

described in Chapter 3). 
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The bars correspond to average value of concentration of nitrate (A), sulfate (B), and phosphate (C) 
in 10-15 accessions selected as representatives of each haplotype group shown on figure 7.9B ± 
standard deviation. Asterisks indicate values significantly different compared to control group with 
no changes in the gene coding region (t-test P-value ≤ 0.05). 

 

6.3.4 Subcellular localisation of the AT5G03430 gene product 

 The prediction of subcellular localisation of AT5G03430 in the SubCellular Proteomic 

Database (SUBA3; Tanz et al. 2013) was not clear. According to this database AT5G03430 gene 

product was predicted to be localised in number of cellular compartments such as cytosol, 

nucleus, mitochondria, and Golgi. The SLPFA tool also showed an extracellular localisation of 

this protein. Therefore, to discover the location of the AT5G03430 gene product I fused the 

coding region of AT5G03430 to the C-terminal GFP vector under the control of a 35S promoter. 

I then transferred the gene constructs to Agrobacterium tumefaciens by electroporation and 

infiltrated Nicotiana benthamiana leaves. I detected the GFP fluorescence by confocal 

microscopy two days after infiltration. This analysis revealed that the product of AT5G03430 is 

localised in cytoplasm and nucleus (Figure 6.13A). This is in agreement with the MoCo 

biosynthesis pathway which, except the first step (the conversion of 5’-GTP into cPMP occurs 

in mitochondria), occurs in the cytosol.  

Figure 6.12 Anion concentration in different AT5G03430 haplotype groups after 

sequencing 



   Functional characterisation of AT5G03430                                                                                 Chapter 6 
 

205 
 

Confocal microscopy images of leaf epidermis of Nicotiana benthamiana infiltrated with 
Agrobacterium tumefaciens transformed with (A) AT5G03430 coding region fused to GFP under the 
35S promoter. The image indicates protein location in cytoplasm and nucleus (white arrow); (B) the 
expression of GFP under the control of 35S promoter as a positive control.   
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 Subcellular localization of the GFP::AT5G03430 in tabacco leaves 
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6.4 Discussion 

The gene described in this chapter was detected by GWAS conducted on nitrate and 

sulfate concentration data. Based on the analysis of the protein sequence I hypothesised that 

it might be involved in the molybdenum cofactor biosynthesis pathway. Since the metabolic 

pathways of molybdenum, nitrate and sulfate are closely linked it is entirely possible that this 

novel gene could affect the accumulation of nitrate and sulfate. Two of the molybdenum 

enzymes known in eukaryotes catalyse basic reactions in the metabolism of nitrogen and 

sulfur compounds (Hille 1996, Mendel & Hansch 2002). Moreover, bacterial molybdenum 

nitrogenase links molybdenum with nitrate metabolism in bacteria (Seefeldt et al. 2009). The 

crucial biochemical role of molybdenum in nitrogen fixation and nitrate reduction is long and 

well recognised in plants (Nicholas & Nason 1955, Spencer & Wood 1954, Yang et al. 2011). 

Nitrate reductase catalyses the first step in the nitrate assimilation pathway and is a key 

regulatory step in nitrate metabolism (Masclaux-Daubresse et al. 2010). Nitrate assimilation is 

regulated by a complex network responding to a number of internal and external signals e.g. 

light, phytohormones, nitrate, and carbon (Crawford & Forde 2002). The complete loss of 

enzyme activity e.g. in NR mutants or during molybdenum deficiency is lethal confirming 

further the importance of this enzyme for plant fitness.  

Sulfur is embedded in molybdenum metabolism at several steps. First, the uptake 

system of molybdate and sulfate are closely related. The first information about the similarity 

between molybdenum and sulfate transport system was delivered by Stout et al. (1951) who 

showed that sulfate is a potential inhibitor of molybdenum uptake. This finding was later 

confirmed in research on rice (Kannan & Ramani 1978). Recently it was also shown that 

molybdate uptake increases under sulfate deficiency (Shinmachi et al. 2010). Since variation in 

sulfate availability may affect molybdenum accumulation and distribution within the plant this 

relationship has a practical significance in crop production (Balik et al. 2006, Macleod et al. 

1997). Extensive use of sulfate fertilizers can result in molybdenum deficiency in soil (Macleod 

et al. 1997). On the other hand, high sulfate concentration can interfere with the capacity of 

the plant to remove inorganic forms of molybdenum during phytoremediation (Schiavon et al. 

2012). 

Molybdenum and sulfate share a high degree of structure similarity: they both have a 

double negative charge and tetrahedral structure. They are also similar in size (Bittner 2014). 

Therefore, it is not surprising that the two molecules are taken up via the same transport 

system. Indeed, the first molybdenum transporter identified in arabidopsis MOT1 was 
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previously classified as a sulfate transporter SULTR5.2 (Baxter et al. 2008, Tomatsu et al. 2007). 

This class of sulfate transporters lacks the STAS domain commonly found in the sulfate 

transporters (see Chapter 1).  However, the analysis of the mot1 mutant did not show any 

changes in the shoot sulfate concentration (Baxter et al. 2008). The two reports describing 

MOT1 as a molybdate transporter provided different subcellular localisation of the protein: 

either endomembrane (Tomatsu et al. 2007) or in mitochondria (Baxter et al. 2008). Therefore 

the exact function of MOT1 in molybdate transport remains to be investigated. Molybdenum 

was also shown to affect not only sulfate uptake but also sulfate assimilation. It was shown 

that molybdate can serve as a substrate for the ATP sulfurylase (Reuveny 1977, Wangeline et 

al. 2004). However, no stable products are formed in this reaction (Reuveny 1977). The 

overexpression of ATPS in Brassica juncea resulted in lower tolerance of molybdenum toxicity 

and higher accumulation of molybdenum (Wangeline et al. 2004). It was suggested that this is 

due to increased loss of ATP which was bound by ATPS to molybdenum yielding an unstable 

product (Wangeline et al. 2004). It was shown recently that plants treated with high 

concentration of molybdate accumulate less cysteine and glutathione in sulfate sufficient 

plants (Schiavon et al. 2012). The concentration of thiols in these plants was similar to that 

observed in plants grown under sulfate limitation (Schiavon et al. 2012). It was suggested that 

the decreased thiol synthesis is an effect of competition between sulfate and molybdate for 

access to the sulfate reduction pathway as was observed before (Reuveny 1977, Wangeline et 

al. 2004).  

As mentioned before, sulfite oxidase, the molybdenum enzyme that oxidises sulfite to 

sulfate, is another link between sulfate and molybdenum metabolism (see introduction to this 

Chapter). In arabidopsis, sulfite oxidase together with APR is involved in the co-regulation of 

the sulfate assimilation pathway (Randewig et al. 2012). In contrast to nitrate reductase, the 

loss of sulfite oxidase is not lethal unless the plant is exposed to high sulfur dioxide in the 

atmosphere (Lang et al. 2007). The availability of sulfate also has an important role during 

MoCo biosynthesis since the sulfur atom is necessary to generate MPT, and molybdenum 

enzymes of xanthine oxidase family require the addition of a terminal inorganic sulfur to 

acquire enzymatic activity (Wahl et al. 1984).  Therefore it is likely that fluctuations in sulfate 

accumulation could affect molybdenum metabolism and vice versa. 

The high sequence identity between the cinA domain of AT5G03430 and the proteins 

involved in molybdenum cofactor biosynthesis in E. coli (MoeA and MoaB), arabidopsis 

(Cnx1G) and human (gephyrin) is another clue suggesting that this novel gene might be 

involved in MoCo metabolism. Some of the proteins in MoCo biosynthesis in different species 
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are known to be multifunctional proteins. The Cnx5 in Nicotiana plumbaginifolia was shown to 

be a two domain protein. One of the domains is homologous to E. coli MoeB and the other to 

Ntdin, a protein for which the exact involvement in MoCo biosynthesis in tobacco is still not 

clarified (Yang et al. 2003). However, it was shown that transgenic tobacco mutants with 

reduced expression of Ntdin showed low activities of NR and xanthine dehydrogenase and very 

low MoCo concentration (Yang et al. 2003). Similarly, Cnx1 and human gephyrin consist of two 

domains which are homologous to E. coli MogA and MoeA proteins (Stallmeyer et al. 1999, 

Stallmeyer et al. 1995). In plants the E-domain is localised at the N-terminus of the protein and 

the G-domain is localised at the C-terminus. Mammals and fungi have the G-domain at the N 

terminus (Mendel & Schwarz 2011). This indicates that the fusion of the two bacterial proteins 

occurred at least twice during evolution and points out the functional benefit of having the 

two enzymatic functions coupled into one protein (Belaidi & Schwarz 2013).  

Given that human FAD synthases have the same two domains as found in AT5G03430, 

but in reverse order, it is possible to speculate that a similar event in evolution would lead to 

the two-domain structure of AT5G03430 gene product. FAD synthase acts in the second step 

of FAD synthesis by adenylation of FMN yielding FAD (Barile et al. 2013). Some of the proteins 

involved in MoCo biosynthesis which show high sequence similarity to cinA domain of 

AT5G03430 have similar function (Mendel & Kruse 2012). They are involved in the adenylation 

of the MPT to activate it before the insertion of molybdenum atom (Mendel & Kruse 2012). 

This could suggest that AT5G03430 may have a similar function to human FAD synthases. 

However, it remains to be investigated if and how the human FAD could adenylate the 

molybdopterin and what is the relationship between the two domains in the FAD synthase 

protein (Miccolis et al. 2012). Therefore, the investigation of the function of AT5G03430 gene 

product could lead to the better understanding of the function of human FAD synthases.  

The crucial function of AT5G03430 for plant fitness was confirmed by the embryo-

lethality of homozygous mutant. The embryo-lethal phenotype was observed in three 

independent heterozygous plants. Since I could not obtain homozygous lines from several 

generations and the embryos from about 25% of seeds from each plant were arrested it is 

likely that they were the homozygous mutants. The embryo development in these plants was 

arrested at the early heart stage. The embryos from the pale seeds developed further, 

however their shape was abnormal with the suspensors and cotyledons enlarged by 

disorganised cell division and expansion. The embryo arrest at the early developmental stage 

resulted in embryo death and seed abortion. It is not possible to evaluate the role of the 

AT5G03430 gene product in embryo development at this stage when the function of the 
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protein is not known. However, following the hypothesis that it might be involved in the MoCo 

biosynthesis, this phenotype would not be surprising. In plants, loss of any of the proteins 

involved in MoCo biosynthesis results in the loss of the enzymatic function of all MoCo 

enzymes (Mendel 2011). Mutants in MoCo biosynthetic genes need to be supplemented with 

ammonium since they don’t have NR activity which is crucial for nitrate assimilation (Mendel & 

Kruse 2012). In humans, MoCo deficiency results in severe neurological disorders in new-born 

babies and early childhood death (Mendel & Kruse 2012). However, it can be treated by 

repetitive injection of cPMP overproduced and purified from E. coli (Schwarz et al. 2004). 

The understanding of molybdenum metabolism and the biosynthesis of MoCo has 

progressed rapidly over past years. The molybdo-enzymes have been characterised and the 

enzymes of MoCo synthesis have been cloned. However, many aspects still remain poorly 

understood. The currently open questions concern mainly molybdate transporters including 

the import and export routes in plants as well as its uptake from the soil. A family of MoCo 

binding proteins was recently discovered in arabidopsis, however their exact function is still 

not clear (Kruse et al. 2010). Moreover, no proteins that could store molybdate or transport it 

between organelles and tissues are known. Very little is also known about the control of the 

gene expression and interaction of proteins involved in molybdenum metabolism. 

Interestingly, the crystallisation of Cnx1G revealed the existence of copper bound to the MPT 

dithiolate sulfur (Kuper et al. 2004). However, very little is known about the interaction 

between molybdenum and copper metabolism and the mechanism of copper insertion into 

MPT. Moreover, the proteins that donate copper to MPT or that accept it after its release 

during MoCo formation have not been identified to date.  
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6.5 Future work 

The analysis described in this chapter is still at an early stage and not many conclusions 

can be drawn. In order to verify the hypothesis of the involvement of AT5G03430 in MoCo 

biosynthesis and its possible function in that process, further analyses have been planned. In 

collaboration with the group of Ralf Mendel from the Technical University of Braunschweig, 

who is a specialist in molybdenum metabolism, I prepared appropriate gene constructs to over 

express and purify the AT5G03430 gene product. The recombinant protein will be used to 

quantify the MoCo, MPT and molybdenum via HPLC. This information will show whether there 

is any connection of AT5G03430 gene product with molybdenum metabolism. Since loss of 

function of this gene is embryo lethal the characterisation of its function by a classic method 

including detailed analysis of loss-of-function alleles is problematic. However, there are other 

methods which can be used to uncover the function of embryo-lethal genes.  Approaches such 

as rescue of mutant embryos using special culture conditions or partial complementation of 

mutant phenotypes during embryogenesis have been successfully used to dissect the essential 

gene functions (Baus et al. 1986, Candela et al. 2011, Despres et al. 2001). Direct gene silencing 

in post-embryonic tissues has also been very effective in uncovering gene function (Schwab et 

al. 2006, Schwab et al. 2010). 

Additionally, the analysis of complemented heterozygous lines is necessary to confirm 

that it is disruption in the AT5G03430 gene which causes early stage embryo arrest in the 

homozygous lines. The analysis of Col-0 lines overexpressing AT5G03430 will be helpful to 

investigate further the low nitrate accumulation phenotype in the homozygous T-DNA 

insertion line which did not show changes in gene transcript abundance. It can also be helpful 

in dissecting the function of the gene product. I have already obtained these transgenic lines, 

but due to time limitation I was not able to analyse them before the thesis submission 

deadline.   

In order to examine the effect of natural variation in AT5G03430 on the accumulation 

of nitrate, phosphate, sulfate and possibly molybdenum more detailed analysis of haplotypes 

would be necessary. Since the sequencing of the gene fragment revealed some discrepancies 

between the database and re-sequencing results, the entire gene would need to be re-

sequenced in all the accessions used for such an analysis.  Furthermore, the transcript 

abundance in the accessions with different alleles of AT5G03430 should be measured to 

investigate the exact effect of the P86R and possible other substitutions revealed by the gene 

sequencing. The analysis of metabolite accumulation and enzymatic activity of key enzymes 
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from sulfate and nitrate metabolic pathways would aid discovery of the nature of the effect of 

these substitutions. Directed mutagenesis would be useful to confirm whether the observed 

variation in measured traits is caused by the variation in AT5G03430. Due to the limited length 

of my PhD project I was not able to perform any of these analyses. However, they are 

necessary to characterise the exact function of AT5G03430 gene product. 
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7.1 Summary 

 The work described in this thesis concerned the investigation of genetic variation in 

arabidopsis response to sulfate, nitrate, and phosphate availability. The main aims of this work 

were to investigate the natural variation in plant response to low nutrient availability as well as 

identify and functionally characterise genes involved in the control of nitrate, phosphate, and 

sulfate metabolism using forward genetic screens and biochemical and molecular biology 

techniques. 

 The investigation of natural variation in the gene architecture of APR2 and ATPS1 

described in Chapter 3 led to remarkable results. First, it revealed that two consecutive 

enzymes of sulfate assimilation pathway are nearly equally involved in its regulation (Chao et 

al. 2014, Koprivova et al. 2013). This is in contrast with previous results suggesting almost 

exclusive control of APR2 over the pathway (Vauclare et al. 2002). Detailed analysis of the 

natural variation in the gene sequence of these two enzymes revealed different mechanisms 

by which they control the pathway (Chao et al. 2014, Koprivova et al. 2013). Moreover, it led 

to the identification of individuals with extremely rare alleles and a large phenotypic effect 

which would not have been identified using the classic mutant approaches (Chao et al. 2014). 

Further characterisation of these individuals can lead to better understanding of the regulation 

of the entire pathway. Additionally, further characterisation of identified individuals may 

provide new insights in the relation between enzyme structure and its function (Herrmann et 

al. 2014). In general, this analysis complemented current understanding of the regulation of 

sulfate metabolism, set the background for further analyses and highlighted the benefits of the 

analysis of natural variation. 

 Subsequently, natural variation was used to characterise a general response profile of 

arabidopsis to low sulfate supply and characterise specific patterns of response among 

accessions, followed by identification of accessions which were well adapted to the nutrition 

regimes tested in this experiment (see Chapter 4). Additionally, the natural variation in a 

worldwide population of arabidopsis was used to identify novel genes involved in the control 

of nutrient homeostasis using GWAS (see Chapter 5). The analysis described in Chapter 3 

revealed that sulfate accumulation is a complex trait controlled by a number of rare loci with 

strong phenotypic effects (see Chapter 3). Since such traits present difficulties for GWAS 

(Nordborg & Weigel 2008) this might be the reason for the low significance of the results. 

However, a follow up analysis of insertion mutants in candidate genes delivered by GWAS led 

to identification of genes potentially involved in the control of nutrient accumulation: CCR-
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4NOT associated factor 1 (CAF1), phosphate/sugar transporter, and putative PAPS reductase.  

The analysis of sequences of these candidate genes revealed single nucleotide polymorphisms 

which might be associated with variation in anion accumulation (see Chapter 5, Figure 5.9). 

Further characterisation of individuals with different variations in each of these genes might be 

helpful in dissection of their exact functions in control of anion homeostasis. Additionally, 

these individuals can also be used for creation of specific populations with positive variations 

in the traits of interest (Baxter & Dilkes 2012). 

 Further investigation of a candidate gene delivered by GWAS and partially described in 

Chapter 6 – AT5G03430 – may lead to an improvement of our knowledge about molybdenum 

metabolism. Given the high similarity of the novel gene delivered by GWAS to genes found in 

humans  (based on the computational analysis of the sequence) the analysis of plant 

homologue may result in an improvement of knowledge of an important human protein (FAD 

synthase) the exact function of which has not yet been resolved. Here again, the analysis of 

natural variation in gene sequence revealed specific groups of individuals with different 

phenotypes which may be used in future investigation of function of the gene product as was 

described in Chapter 3. 

7.2 Practical application of the results 

 My PhD project was part of Marie Skłodowska-Curie International Training Network, 

Bionut ITN (http://bionutitneu2.fatcow.com/). The main objective of this network was to 

provide state-of-the-art training for young researchers through international research 

programmes, workshops, and transfer of knowledge.  The scientific focus of the network 

partners was based around biochemical and genetic dissection of the control of plant mineral 

nutrition. Given the constantly growing global population and the increasing pressure on land 

resources, the food security became a major challenge of our society (Mba et al. 2012). It has 

been projected that the human population will exceed nine billion by the year 2050 (Mba et al. 

2012). Therefore, food production must increase around 70% over next decades to nourish 

adequately the human population (Tomlinson 2013). Moreover, food quality, particularly 

nutrient concentration, needs to be improved and the agricultural input needs to be reduced 

(Tester & Langridge 2010). Achieving these goals is even more challenging in the face of global 

environmental changes (Beddington et al. 2011). Therefore, it requires fundamental 

modifications in breeding strategies and crop improvement (Moose & Mumm 2008). Thus, the 

major scientific questions of Bionut ITN concerned the control of nutrient use efficiency in 

plants and its practical application in generation of crop plants with optimized yields without 
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increasing inputs. The implementation of the main objectives of the network fell into three 

main areas: investigation of genetic control of nutrient use efficiency, functional analysis of 

new genes affecting plant mineral nutrition, and evaluation of candidate genes in crop plants.  

 In order to develop new crop varieties ensuring high yield at low inputs in the changing 

environment a better understanding of plant response to environmental fluctuations is 

necessary. This was achieved by the analyses described in Chapter 4. First of all, this analysis 

revealed the traits that can be targeted in the process of development of new crop varieties. 

The general response profile of 25 arabidopsis accessions as well as the detailed 

characterisation of four different classes of accessions representing different patterns of plant 

response to sulfate availability highlighted the importance of increased root development 

under limited sulfate. In that case the possible targets for genetic engineering could be focused 

on improving resource capture from the soil (Hawkesford 2000). It could be achieved by 

modulation of transport system or root structure and proliferation. It has been shown 

previously that the expression of sulfate transporter genes increases significantly under sulfate 

limitation, but decreases when sulfate is abundant (Takahashi et al. 1997). Overriding this 

control might be achieved by expressing transporter genes under the control of an appropriate 

constitutive promoter. However, the control mechanisms would have to be removed only for 

sulfate transport and not for other steps of the pathway in order to prevent e.g. accumulation 

of sulfide which is toxic for plants in high concentration (Lamers et al. 2013).  

 Alternatively, root structure and proliferation could be targeted. The mechanism of 

increased root proliferation under sulfate deficiency was already described in the discussion 

section of Chapter 4. Briefly, sulfate limitation results in an induction of NIT3 gene leading to 

increased production of auxin which subsequently results in increased root growth and 

branching (Kutz et al. 2002). Moreover, root growth is also modulated by alterations in auxin 

homeostasis caused by depletion of GSH (Koprivova et al. 2010). In fact, the results described 

in Chapter 4 also revealed significant correlation between GSH concentration in roots and root 

thickness. All these three factors: expression of NIT3, GSH concentration in roots, and auxin 

homeostasis could be manipulated in order to develop crop varieties which will be more 

resistant to nutrient depletion. Moreover, manipulation of GSH concentration could increase 

the resistance of plants to biotic and abiotic stress. 

 An increased biomass allocation towards the roots was a common plant response to 

sulfate deficiency observed in the analyses described in Chapter 4. Moreover, the primary 

metabolite profiling revealed accumulation of sugars in all accessions analysed in response to 
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sulfate limitation and/or starvation. A shift of biomass production towards the greater root 

biomass is a sensible adaptation to maximise the acquisition of minerals. However, it needs to 

be well balanced in order to avoid a decrease in shoot biomass (Hawkesford 2000). An 

increased accumulation of carbohydrate and carbon allocation towards the roots has been 

observed in nitrate and phosphate deficient plants (Ciereszko et al. 2001, Linkohr et al. 2002, 

Lopez-Bucio et al. 2002, Paul & Driscoll 1997). Based on the analysis of microarray data 

obtained from phosphate and nitrate deficient plants a mechanism leading to optimisation of 

root architecture has been proposed (Hermans et al. 2006). Changes in gene expression under 

phosphate and nitrate deficiency result in changes in primary metabolism leading to increased 

transport of sugars to the roots and simultaneous fluctuations in the hormone concentration, 

which results in modification of the root architecture (Hermans et al. 2006). Given the results 

described in Chapter 4 it might be hypothesised that a similar mechanism could apply to 

sulfate deficient plants. However, these results concerned the investigation of changes in 

primary metabolite composition in shoots only. The analysis of primary metabolites in roots as 

well as the analysis of gene expressions in sulfur starved plants (perhaps using the available 

data) would be necessary to answer that question.  

 Another important feature revealed in the analysis described in this thesis is the 

importance of the interconnection between elements in nutrient homeostasis. It is long been 

known that the lack of one element can limit the use efficiency of other elements (Ahmad et 

al. 2005, Anjum et al. 2012, Rouached 2011). Therefore, the investigation of such 

interconnections is crucial for developing new breeding strategies.  The need of simultaneous 

analysis of changes in plant mineral composition was recognised a decade ago when the term 

“ionome” was introduced to describe all metals, metalloids, and non-metallic elements in an 

organism (Hirschi 2003, Salt 2004). It has been shown that one gene can control the 

metabolism of more than one element and about 2-4% of all genes are involved in the control 

of ion uptake (Eide et al. 2005, Lahner et al. 2003). Since then complex studies of the ionome 

in different plant species and its connection with the genome have been carried out to expand 

our knowledge (Buescher et al. 2010, Chao et al. 2011, Chen et al. 2009, Parida et al. 2004). 

Therefore, one of the main goals in the studies described here was to identify and characterise 

regulatory components that might be involved in the control of concentration of one or more 

elements in the plant cells. In Chapter 4 an involvement of a mechanism of coordination of 

long distance transport of minerals in response to nutrient limitation involving miRNA and 

transcription factors was suggested. A signalling role of GSH, sugars and other molecules was 

also revealed in these studies. Moreover, genes potentially involved in the coordination of 
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nutrient homeostasis were revealed in the GWAS described in Chapter 5. Evidence was 

provided that the natural variation in the architecture of these genes may result in changes in 

patterns of anion accumulation. These results, together with further analyses and functional 

characterisation of particular genes could provide more targets for improving crop yield and 

quality. 

 In the course of the studies described here accessions best adapted to sulfate 

limitation and accessions with various polymorphisms in genes of interest were identified. The 

genetic modification (GM) of organisms is a common method of implementing novel genetic 

variation to create new crop varieties (Mba et al. 2012). The development of genetically 

modified crops and its evaluation remains a very attractive area of research (Tester & 

Langridge 2010). However, currently the access to transgenic technologies is highly restricted, 

especially in Europe, mainly by political and bioethical issues (Moose & Mumm 2008). 

Although it is believed that deployment of GM technologies is a matter of time, currently non-

GM technologies such as molecular plant breeding are in favour, perhaps to ease public 

concerns (Moose & Mumm 2008). In general, plant breeding is a three step process including 

creation of populations with a genetic variation of commercial value, identification of 

individuals with superior phenotypes, and development of improved cultivars (Moose & 

Mumm 2008). Therefore, the identification of genetic variation in traits of commercial interest 

as well as identification of individuals with specific phenotypes is of great importance. Further 

investigation of best adapted accessions identified in the analysis described in Chapter 4 

including specific patterns of gene expression can help to reveal particular changes in the 

metabolism of plants that foster specific adaptations. Further characterisation of individuals 

with specific polymorphisms described in different chapters of this dissertation will set the 

background for further implementation of these specific changes in the process of crop 

improvement.  

7.3 Future research directions 

 The understanding of sulfur metabolism, its regulation and interconnection with other 

elements has progressed rapidly over the last two decades. However, it is still lagging behind 

the understanding of metabolism of other elements such as nitrate and phosphate. A detailed 

analysis of accessions with interesting phenotypes (concerning the link between APR activity 

and sulfate concentration) revealed in the analysis described in Chapter 3 such as Tfa-08, 

ICE61, or Qar-8a may bring new insights into regulation of sulfate assimilation. These 

accessions may also be used for creation of new segregating populations which subsequently 
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could be used for the discovery of novel genes and regulatory elements involved in the control 

of sulfate reduction pathway. Moreover, the single amino acid substitutions revealed in the 

course of this project could be used for the investigation of the relation between protein 

structure and enzymatic activity of enzymes for which the crystal structure is available.  

 Further characterisation of different patterns of plant response to sulfate and nitrate 

deficiency including global analysis of gene expression may improve our understanding of 

plant response to the limitation of these two elements and eventually characterise different 

adaptation strategies specific for particular groups of accessions. Moreover, detailed analysis 

of different patterns of plant response to nutrient deficiency may lead to a development of 

“catalogue” of specific changes in metabolism important for improving particular traits: for 

example plant biomass, or increased accumulation of a specific metabolite. More in depth 

analysis of the accessions from the best adapted group would reveal the changes in 

metabolism important for response to sulfate and nitrate deficiency. 

 A large number of candidate genes derived by GWAS were not analysed due to time 

limitation. However, the evidence was provided that the disruption in some of these genes 

may have a real effect on the accumulation of related anions. Further characterisation of these 

genes as well as investigation of the T-DNA insertion lines which were omitted in this analysis 

could result in the discovery of new genes and regulatory factors involved in the control of 

nutrient homeostasis. Similarly, the detailed analysis of the AT5G03430 – a gene identified by 

GWAS and subjected to subsequent functional characterisation – may bring new insight into 

molybdenum metabolism in plants and humans and perhaps better understanding of the 

function of human FAD synthases.  

7.4 Conclusion 

 In conclusion, the analysis described in this dissertation revealed different patterns of 

arabidopsis response to sulfate and/or nitrate availability. Individuals well adapted to sulfate 

limitation were selected and the specific mechanisms involved in plant response to sulfate 

limitation were described.  Additionally, number of genes which, when disrupted, affect the 

nutrient homeostasis were identified and partially characterised. Functions of some of these 

genes were already known, however they were not related to nutrition previously (e.g. CAF1). 

Moreover, a novel gene was identified, which seems to be involved in the metabolism of 

molybdenum. Taken together, the main aims of this project listed on the beginning of this 

chapter were met in the course of the research described here. Moreover, the results 

delivered from a number of experiments also meet the main objectives of the Bionut network 
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of which this project was a part. Some of the results described here such as the marker traits 

for sulfate availability can be used immediately in developing new breeding strategies. Some 

others require more in depth analysis and further investigation to be applied prior to the 

commercial use. However, this project undoubtedly improved our current understanding of 

sulfate metabolism and set the background for future research. 
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ATPS1_Bay GAGTCAAATCTTTGAGTTAAGACACTAAATGATTTTACAAAACTCGAATAATATAATAAG 
ATPS1_Sha GAGTCAAATCTTTGAGTTAAGACACTAAATGATTTTACAAAACTCGAATAATATAATAAG 
ATPS1_Col TAGTCAAATCTTTGAGTTAAGACACCAAATGATTTTACAAAACTCGAATAATATAAGAAG 
 
ATPS1_Bay AGTATACTTGTTGTAAGTTGTAACCTTGGAGTACTACGAATTC---AATTTGATGAAGTG 
ATPS1_Sha AGTATACTTGTTGTAAGTTGTAACCTTGGAGTACTACGAATTC---AATTTGATGAAGTG 
ATPS1_Col AGTATACTTGTTGTAA-------CCTTGGAGTACTACGAATTCAACAATTTGATGAAGTG 
 
ATPS1_Bay AAAACATAGTTAAGAAATGATTGGGAGATTATTCATCTAAAGCTACCAGTCTACCAACTT 
ATPS1_Sha AAAACATAGTTAAGAAATGATTGGGAGATTATTCATCTAAAGCTACCAGTCTACCAACTT 
ATPS1_Col AAAACATAGTTAAGAAATGATTGGGAGATTATTCATCTAAAGCTACCAGTCTACCAACTT 
 
ATPS1_Bay TCCAGTTTTGACAATATTTACCACGTGGCCCTGAGGAACATCATTGTCAGTTTATCAAGC 
ATPS1_Sha TCCAGTTTTGACAATATTTACCACGTGGCCCTGAGGAACATCATTGTCAGTTTATCAAAC 
ATPS1_Col TCCAGTTTTGACAATATTTACCACGTGGCCCTGAGGAACATCATTGTCAGTTTATCAAAC 
 
ATPS1_Bay ACTCCATATTTCGTGGCAGCTTCGGGTCAAGAATCCAAATTGGTAATGGTATGGTCACTT 
ATPS1_Sha ACTCCATATTTCGTGGCAGCTTCGGGTCAAGAATCCAAATTGGTAATGGTATGGTCACTT 
ATPS1_Col ACTCCATATTTCGTGGCAGCTTCGGGTCAAGAATCCAAATT------GGTATTGTCACTT 
 
ATPS1_Bay GGTCAGGTCAAAGTTGAGGAGCTTTTATCTATAGTATACTCAATGAGTCGGCTAAAATGT 
ATPS1_Sha GGTCAGGTCAAAGTTGAGGAGCTTTTATCTATAGTATACTCAATGAGTCGGCTAAAATGT 
ATPS1_Col GGTCAGGTCAAAGTTGAGGAGCTTTTATATATAGTATAATCAATGAGTCGGCTAAAATGT 
 
ATPS1_Bay AAAATAAAAAACATTTTCTAAATTAAACGTAATAAATTACTATAATCGTATCAAATTTAT 
ATPS1_Sha AAAATAAAAAACATTTTCTAAATTAAACGTAATAAATTACTATAATCGTATCAAATTTAT 
ATPS1_Col AAAATAAAAAACATGTTCTAAATTAAACGTAATAAATTACTATAATCGTATCAAATTTAT 
 
ATPS1_Bay CCCTCTTATCAAATTAGTACTTTCGAGTTTCGATATTGTTTTTCTTTCTCTGGGAAACTA 
ATPS1_Sha CCCTCTTATCAAATTAGTACTTTCGAGTTTCGATATTGTTTTTCTTTCTCTGGGAAACTA 
ATPS1_Col CCCTCTTATCAAATTAGTACTTTCGAGTTTCGATATTGTTTTTCTTTCTCTGGGAAACTA 
 
ATPS1_Bay TATATATTTACATTTTTAGAAAGAAAGAAAAAAACTATATATTACATTTTATACGTGCTA 
ATPS1_Sha TATATATTTACATTTTTAGAAAGAAAGAAAAAAACTATATATTACATTTTATACGTGCTA 
ATPS1_Col TATATATTTACATTTCTAGAAAGAAAGAAAAAAACTATATATTACATTTTATACGTGCTA 
 
ATPS1_Bay AGCCTAGAAAAGATTAATTACAAAGAAATTATACATTTTATTGATCAAGTGGTGCTTAAA 
ATPS1_Sha AGCCTAGAAAAGATTAATTACAAAGAAATTATACATTTTATTGATCAAGTGGTGCTTAAA 
ATPS1_Col AGCCTAGAAAAGATTAATTACAAAGAAATTATACATTTTATTGATCAAGTGGTGCTTAAA 
 
ATPS1_Bay GCAGTAAAAACAATTTGAACTCATAAATCGTAAATACGTCGACATATTTCGTGATCTCCA 
ATPS1_Sha GCAGTAAAAACAATTTGAACTCATAAATCGTAAATACGTCGATATATTTCGTGATCTCCA 
ATPS1_Col GCAGTAAAAACAATTTGAACTCATAAATCGTAAATACGTCGACATATTTCGTGATCTCCA 
 
ATPS1_Bay TTAATTTTTCTTTTTTTAAAGATTGACGCAAAATAATATTCTGAAAATGAAAAAGTAAAA 
ATPS1_Sha TTAATTTTTCTTTTCTTAAGGATTGACGCAAAATAATATTCTGAAAATGAAAAAGTAAAA 
ATPS1_Col TTAATTTTTCTTTTTTTAAAGATTGACGCAAAATAATATTCTGAAAATGAAAAAGTAAAA 
 
ATPS1_Bay TAAGAGGGGACAAATATTCGAGATGTGACGTGGCAGATCGAGTGGTTTAAATATTCTATT 
ATPS1_Sha TAAGAGGGGACAAATATTCGAGATGTGACGTGGCAGATCGAGTGGTTTAAATATTCTATT 
ATPS1_Col TAAGAGGGGACAAATATTCGAGATGTGACGTGGCAGATCGAGTGGTTTAAATATTCTATT 
 
ATPS1_Bay AGCAAGTGGTTTGTGTAATAAGCAAATGGGTGGTCGAACCTGACCGTATTCTTGGATCTA 
ATPS1_Sha AGCAAGTGGTTTGTGTAATAAGCAAATGGGTGGTCGAACCTGACCGTATTCTTGGATCTA 
ATPS1_Col AGCAAGTGGTTTGTGTAATAAGCAAATGGGTGGTCGAACCTGACCGTATTCTTGGATCTA 
 
ATPS1_Bay TTCAACTGTAGCATCAGTCCACCTTCCTTACCTCATCTTTCCTAACTTTTTAATACCTTT 
ATPS1_Sha TTCAACTGTAGCATCAGTCCACCTTCCTTACCTCATCTTTCCTAACTTTTTAATACCTTT 
ATPS1_Col TTCAACTGTAGCATCAGTCCACCTTCCTTACCTCATCTTTCCTAACTTTTTAATACCTTT 
 
ATPS1_Bay TTAATTTGCTAAAAACATCACTACTATTTATATTTGATCTCTAATTACTGTTTCAACTCT 
ATPS1_Sha TTAATTTGCTAAAAACATCACTACTATTTATATTTGATCTCTAATTACTGTTTCAACTCT 
ATPS1_Col TTAATTTGCTAAAAACATCACTACTATTTATATTTGATCTCTAATTACTGTTTCAACTCT 
 
ATPS1_Bay GAATATTCCGTAATCCTTATATTAATATGTCCAAAAATATGTAATTTCTGGACTTTCCCT 
ATPS1_Sha GAATATTCCGTAATCCTTATATTAATATGTCCAAAAATATGTAATTTCTGGACTTTCCCT 
ATPS1_Col GAATATTCCGTAATCCTTATATTAATATGTCCAAAAATATATAATTTCTGGACTTTCCCT 
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ATPS1_Bay TGAGATGGGAATATGAAAGAATTGCATCATTTACCTAATCATATGAACACAAATAGATAT 
ATPS1_Sha TGAGATGGGAATATGAAAGAATTGCATCATTTACCTAATCATATGAACACAAATAGATAT 
ATPS1_Col TGAGATGGGAATATGAAAGAATTGCATCATTTACCTAATCATATGAACACAAATAGATAT 
 
ATPS1_Bay TGGAAAAAATGTGGTTTTATTTTTCATGTTTTGTTCGATTATCTTTATCTTTATCCCAAA 
ATPS1_Sha TGGAAAAAATGTGGTTTTATTTTTCATGTTTTGTTCGATTATCTTTATCTTTATCCCAAA 
ATPS1_Col TGGAAAAAATGTGGTTTTATTTTTCATGTTTTGTTCGATTATCTTTATCTTTATCCCAAA 
 
ATPS1_Bay AAAAAAAAAATCATTCGATTATATCTAAAATTCAAAATAGATTACAGAAATATAATTTAT 
ATPS1_Sha AAAAAAAAAATCATTCGATTATATCTAAAATTCAAAATAGATTACAGAAATATAATTTAT 
ATPS1_Col AAAAAAAAAATCATTCGATTATATCTAAAATTCAAAATAGATTACAGAAATATAATTTAT 
 
ATPS1_Bay TAGCAAAACGGCATGTTTAAAGCGTTTGAAGTTATTAAATCATTAGTAAGAATATATAAG 
ATPS1_Sha TAGCAAAACGGCATGTTTAAAGCGTTTGAAGTTATTAAATCATTAGTAAGAATATATAAG 
ATPS1_Col TAGCAAAACGGCATGTTTAAAGCGTTTGAAGTTATTAAATCATTAGTAAGAATATATAAG 
 
ATPS1_Bay AATATAATTAGTGGAAATACATAGTAAGTATCATTGGTTTTTGCCACATATGGTGAGCAA 
ATPS1_Sha AATGTAATTAGTGGAAATACATAGTAAGTATCATTGGTTTTTGCCACATATGGTGAGCAA 
ATPS1_Col AATGTAATTAGTGGAAATACATAGTAAGTATCATTGGTTTTTGCCACATATGGTGAGCAA 
 
ATPS1_Bay TTTTTTATTTTAAGAAGGGAAAATCAATTTGTACATAGATTTATGTCACTTATTCAATTG 
ATPS1_Sha TTTTTTATTTTAAGAAGGGAAAATCAATTTGTACATAGATTTATGTCACTTATTCAATTG 
ATPS1_Col TTTTTTATTTTAAGAAGGGAAAATCAATTTGTACATAGATTTATGTCACTTATTCAATTG 
 
ATPS1_Bay AATAATACAGAAGGATTTAAAGTCTAAAGTAAAAACAGGCAAAATAATAATATGTTTTTT 
ATPS1_Sha AATAATACAGAAGGATTTAAAGTCTAAAGTAAAAACAGGCAAAATAATAATATGTTTTTT 
ATPS1_Col AATAATACAGAAGGATTTAAAGTCTAAAGTAAAAACAGGCAAAATAATAATATGTTTTTT 
 
ATPS1_Bay TCTTTGATCGCTCAGATTATCGTATTAAAATTTGGATTATGACATAACAACGATAATAAT 
ATPS1_Sha TCTTTGATCGCTCAGATTATCGTATTAAAATTTGGATTATGACATAACAACGATAATAAT 
ATPS1_Col TCTTTGATCGCTCAGATTATCGTATTAAAATTTGGATTATGACATAACAACGATAATAAT 
 
ATPS1_Bay ACAAACTAGTTGGTTATGAACTCTGAATAAATTATTTTAAAGAAAGAATACTACTATTTA 
ATPS1_Sha ACAAACTAGTTGGTTATGAACTCTGAATAAATTATTTTAAAGAAAGAATACTACTATTTA 
ATPS1_Col ACAAACTAGTTGGTTATGAACTCTGAATAAATTATTTTAAAGAAAGAATACTACTATTTA 
 
ATPS1_Bay ATTATAAAATGACTCTGCATCATATCAATAAGGTAACCTCGTTATTATAAACGTCACACT 
ATPS1_Sha ATTATAAAATGACTCTGCATCATATCAATAAGGTAACCTCGTTATTATAAACGTCACACT 
ATPS1_Col ATTATAAAATGACTCTGCATCATATCAATAAGGTAACCTCGTTATTATAAACGTCACACT 
 
ATPS1_Bay AACACACTGTATTAGTATTTTAATTACACAGTGAAAAAATTTAATTAATTACTAATCTCT 
ATPS1_Sha AACACACTGTATTAGTATTTTAATTACACAGTGAAAAAATTTAATTAATTACTAATCTCT 
ATPS1_Col AACACACTGTATTAGTATTTTAATTACACAGTGAAAAAATTTAATTAATTACTAATCTCT 
 
ATPS1_Bay GTCCAGGTACATAATATTATTCCAAGATACGGTCCTTCGTTACTATAAACTCTATAAAAA 
ATPS1_Sha GTCCAGGTACATAATATTATTCCAAGATACGGTCCTTCGTTACTATAAACTCTATAAAAA 
ATPS1_Col GTCCAGGTACATAATATTATTCCAAGATACGGTCCTTCGTTACTATAAACTCTATAAAAA 
 
ATPS1_Bay CCAATTTTCACTTCCAATTGAATTGGGAACAAACCAAATCTCTATCTCTCTCCATTAGAG 
ATPS1_Sha CCAATTTTCACTTCCAATTGAATTGGGAACAAACCAAATCTCTATCTCTCTCCATTAGAG 
ATPS1_Col CCAATTTTCACTTCCAATTGAATTGGGAACAAACCAAATCTCTATCTCTCTCCATTAGAG 
 
ATPS1_Bay CTTGAAGCAGCCATAGCCTGAGAAAACCTTCAACAATGGCTTCAATGGCTGCCGTCTTAA 
ATPS1_Sha CTTGAAGCAGCCATAGCCTGAGAAAACCTTCAACAATGGCTTCAATGGCTGCCGTCTTAA 
ATPS1_Col CTTGAAGCAGCCATAGCCTAACAAAACCTTCAACAATGGCTTCAATGGCTGCCGTCTTAA 
                                             ************************* 
ATPS1_Bay GCAAAACTCCATTCCTCTCTCAACCACTAACCAAATCATCTCCAAACTCCGATCTCCCCT 
ATPS1_Sha GCAAAACTCCATTCCTCTCTCAACCACTAACCAAATCATCTCCAAACTCCGATCTCCCCT 
ATPS1_Col GCAAAACTCCATTCCTCTCTCAACCACTAACCAAATCATCTCCAAACTCCGATCTCCCCT 
          ************************************************************ 
 
ATPS1_Bay TCGCCGCGGTTTCCTTCCCTTCCAAATCCCTACGCCGCCGCGTAGGATCAATCCGAGCCG 
ATPS1_Sha TCGCCGCGGTTTCCTTCCCTTCCAAATCCCTACGCCGCCGCGTAGGATCAATCCGAGCCG 
ATPS1_Col TCGCCGCGGTTTCCTTCCCTTCCAAATCCCTACGCCGCCGCGTAGGATCAATCCGAGCCG 
          ************************************************************ 
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ATPS1_Bay GATTAATCGCTCCCGACGGTGGTAAGCTTGTAGAGCTCATCGTGGAAGAGCCAAAGCGGC 
ATPS1_Sha GATTAATCGCTCCCGACGGTGGTAAGCTTGTAGAGCTCATCGTGGAAGAGCCAAAGCGGC 
ATPS1_Col GATTAATCGCTCCCGACGGTGGTAAGCTTGTAGAGCTCATCGTGGAAGAGCCAAAGCGGC 
          ************************************************************ 
 
ATPS1_Bay GAGAGAAGAAACACGAGGCGGCGGATTTGCCACGTGTTGAGCTGACGGCGATTGACTTGC 
ATPS1_Sha GAGAGAAGAAACACGAGGCGGCGGATTTGCCACGTGTTGAGCTGACGGCGATTGACTTGC 
ATPS1_Col GAGAGAAGAAACACGAGGCGGCGGATTTGCCACGTGTTGAGCTGACGGCGATTGACTTGC 
          ************************************************************ 
 
ATPS1_Bay AATGGATGCATGTATTAAGCGAAGGCTGGGCAAGTCCACTCGGAGGTTTCATGAGAGAAT 
ATPS1_Sha AATGGATGCATGTATTAAGCGAAGGCTGGGCAAGTCCACTCGGAGGTTTCATGAGAGAAT 
ATPS1_Col AATGGATGCATGTATTAAGCGAAGGCTGGGCAAGTCCACTCGGAGGTTTCATGAGAGAAT 
          ************************************************************ 
 
ATPS1_Bay CCGAGTTCCTCCAAACTCTTCATTTTAACTCGCTACGTCTTGACGACGGCTCCGTCGTTA 
ATPS1_Sha CCGAGTTCCTCCAAACTCTTCATTTTAACTCGCTACGTCTTGACGACGGCTCCGTCGTTA 
ATPS1_Col CCGAGTTCCTCCAAACTCTTCATTTTAACTCGCTACGTCTTGACGACGGCTCCGTCGTTA 
          ************************************************************ 
 
ATPS1_Bay ACATGTCCGTGCCTATTGTTCTCGCTATTGACGATGAACAAAAAGCACGTATCGGCGAGT 
ATPS1_Sha ACATGTCCGTGCCTATTGTTCTCGCTATTGACGATGAACAAAAAGCACGTATCGGCGAGT 
ATPS1_Col ACATGTCCGTGCCTATTGTTCTCGCTATTGACGATGAACAAAAAGCACGTATCGGCGAGT 
          ************************************************************ 
 
ATPS1_Bay CTACACGTGTCGCTCTTTTTAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAG 
ATPS1_Sha CTACACGTGTCGCTCTTTTCAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAG 
ATPS1_Col CTACACGTGTCGCTCTTTTCAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAG 
               ******************************************************* 
 
ATPS1_Bay TCCTCCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTCGAGAAGACGAAAAC 
ATPS1_Sha TCCTTCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTGGAGAAGACGAAAAC 
ATPS1_Col TCCTTCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTGGAGAAGACGAAAAC 
 
ATPS1_Bay TGATATTTGAATTTGATTTTGAACT-------------GATTAGTTAAATACAGTAGAAT 
ATPS1_Sha TGAGATTTGAATTTGATTTTGAACTTATCTCTCTTTGAGATTAGTTAAATACAGTATAAT 
ATPS1_Col TGAGATTTGAATTTGATTTTGAACTTATCTCTCTTTGAGATTAGTTAAATACAGTATAAT 
 
ATPS1_Bay CTCCATAAATTAATACTCGATAAATTAAGAA--ACTTAGACTAGATCTGATTAGTATTGA 
ATPS1_Sha CTCGATAAAGTAATACTCGATAAATTAATAACTATGTATTCACGATTAGACTTAGACTAG 
ATPS1_Col CTCGATAAAGTAATACTCGATAAATTAATAACTATGTATTCACGATTAGACTTAGACTAG 
 
ATPS1_Bay GATTAGTCAAATATGT-ATT-GAACTTGGCTATATGTGTAATTGATTACTGAAATCTGTT 
ATPS1_Sha ATCTGATTAATCTTGAGATTAGAATTTGGCTATATGTGTAATTGGTTACTGAAATCTGTT 
ATPS1_Col ATCTGATTAATCTTGAGATTAGAATTTGGCTATATGTGTAATTGGTTACTGAAATCTGTT 
 
ATPS1_Bay TGTTTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTA 
ATPS1_Sha TGTTTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTA 
ATPS1_Col TGTTTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTA 
                             ***************************************** 
 
ATPS1_Bay GAACATGGGGTACGACGGCTCCAGGTTTGCCTTACGTAGACGAGGCGATAACTAATGCTG 
ATPS1_Sha GAACATGGGGTACGACGGCTCCAGGTTTGCCTTACGTAGACGAGGCGATAACTAATGCTG 
ATPS1_Col GAACATGGGGTACGACGGCTCCAGGTTTGCCTTACGTAGACGAGGCGATAACTAATGCTG 
          ************************************************************ 
 
ATPS1_Bay GAAACTGGCTCATTGGGGGTGATCTTGAGGTTCTTGAGCCAGTGAAGTACAATGATGGGC 
ATPS1_Sha GAAACTGGCTCATTGGGGGTGATCTTGAGGTTCTTGAGCCAGTGAAGTACAATGATGGGC 
ATPS1_Col GAAACTGGCTCATTGGGGGTGATCTTGAGGTTCTTGAGCCAGTGAAGTACAATGATGGGC 
          ************************************************************ 
 
ATPS1_Bay TTGATCGTTTCAGGCTTTCGCCTGCTGAGTTACGTAAAGAGTTGGAGAAGCGTAATGCGG 
ATPS1_Sha TTGATCGTTTCAGGCTTTCGCCTGCTGAGTTACGTAAAGAGTTGGAGAAGCGTAATGCGG 
ATPS1_Col TTGATCGTTTCAGGCTTTCGCCTGCTGAGTTACGTAAAGAGTTGGAGAAGCGTAATGCGG 
          ************************************************************ 
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ATPS1_Bay ATGCGGTGTTTGCTTTCCAGCTGAGGAATCCTGTTCATAATGGTCATGCTCTTCTTATGA 
ATPS1_Sha ATGCGGTGTTTGCTTTCCAGCTGAGGAATCCTGTTCATAATGGTCATGCTCTTCTTATGA 
ATPS1_Col ATGCGGTGTTTGCTTTCCAGCTGAGGAATCCTGTTCATAATGGTCATGCTCTTCTTATGA 
          ************************************************************ 
 
ATPS1_Bay CTGATACTCGTAGGAGACTTCTTGAGATGGGTTACAAAAACCCTATTCTTTTGCTTCATC 
ATPS1_Sha CTGATACTCGTAGGAGACTTCTTGAGATGGGTTACAAAAACCCTATTCTTTTGCTTCATC 
ATPS1_Col CTGATACTCGTAGGAGACTTCTTGAGATGGGTTACAAAAACCCTATTCTTTTGCTTCATC 
          ************************************************************ 
 
ATPS1_Bay CGTTAGGTGGGTTTACAAAGGCTGATGATGTTCCTTTAGATTGGAGGATGAAGCAACACG 
ATPS1_Sha CGTTAGGTGGGTTTACAAAGGCTGATGATGTTCCTTTAGATTGGAGGATGAAGCAACACG 
ATPS1_Col CGTTAGGTGGGTTTACAAAGGCTGATGATGTTCCTTTAGATTGGAGGATGAAGCAACACG 
          ************************************************************ 
 
ATPS1_Bay AGAAGGTAAAAAAAGTTATTGATTGTTGTGTGTCTCTTGAGTGTGAGTGTGTGTATCTTG 
ATPS1_Sha AGAAGGTAAAAAAAGTTATTGATTGTTGTGTGTCTCTTGAGTGTGAGTGTGTGTATCTTG 
ATPS1_Col AGAAGGTAAAAAAAGTTATTGATTGTTGTGTGTCTCTTGAGTGTGAGTGTGTGTATCTTG 
          ***** 
 
ATPS1_Bay AAATGCTAAATGTGTTTATGAATGTAAAACAGGTTCTAGAGGATGGTGTTCTCGATCCGG 
ATPS1_Sha AAATGCTAAATGTGTTTATGAATGTAAAACAGGTTCTAGAGGATGGTGTTCTCGATCCGG 
ATPS1_Col AAATGCTAAATGTGTTTATGAATGTAAAACAGGTTCTAGAGGATGGTGTTCTCGATCCGG 
                                          **************************** 
 
ATPS1_Bay AGACTACAGTGGTTTCGATATTCCCGTCACCTATGCATTACGCTGGTCCAACCGAAGTGC 
ATPS1_Sha AGACTACAGTGGTTTCGATATTCCCGTCACCTATGCATTACGCTGGTCCAACCGAAGTGC 
ATPS1_Col AGACTACAGTGGTTTCGATATTCCCGTCACCTATGCATTACGCTGGTCCAACCGAAGTGC 
          ************************************************************ 
 
ATPS1_Bay AGTGGCACGCAAAGGCTAGAATCAATGCTGGTGCTAACTTTTACATTGTGGGTCGTGATC 
ATPS1_Sha AGTGGCACGCAAAGGCTAGAATCAATGCTGGTGCTAACTTTTACATTGTGGGTCGTGATC 
ATPS1_Col AGTGGCACGCAAAGGCTAGAATCAATGCTGGTGCTAACTTTTACATTGTGGGTCGTGATC 
          ************************************************************ 
 
ATPS1_Bay CTGCTGGGATGGGTCATCCAGTAGAGAAACGTGATCTTTACGATGCTGATCATGGAAAGA 
ATPS1_Sha CTGCTGGGATGGGTCATCCAGTAGAGAAACGTGATCTTTACGATGCTGATCATGGAAAGA 
ATPS1_Col CTGCTGGGATGGGTCATCCAGTAGAGAAACGTGATCTTTACGATGCTGATCATGGAAAGA 
          ************************************************************ 
ATPS1_Bay AAGTACTAAGCATGGCACCAGGACTCGAACGACTCAACATCCTTCCTTTCAGGGTATATA 
ATPS1_Sha AAGTACTAAGCATGGCACCAGGACTCGAACGACTCAACATCCTTCCTTTCAGGGTATATA 
ATPS1_Col AAGTACTAAGCATGGCACCAGGACTCGAACGACTCAACATCCTTCCTTTCAGGGTATATA 
          ***************************************************** 
 
ATPS1_Bay CAATTCGAAAAGATTCACACTTTTTGTTTGACAATGTAGAGATCTAATTCCTTGGTGTAA 
ATPS1_Sha CAATTCGAAAAGATTCACACTTTTTGTTTGACAATGTAGAGATCTAATTCCTTGGTGTAA 
ATPS1_Col CAATTCGAAAAGATTCACACTTTTTGTTTGACAATGTAGAGATCTAATTCCTTGGTGTAA 
 
ATPS1_Bay CTGCAGGTTGCTGCATATGACAAGACGCAAGGCAAGATGGCTTTCTTCGATCCCTCGAGG 
ATPS1_Sha CTGCAGGTTGCTGCATATGACAAGACGCAAGGCAAGATGGCTTTCTTCGATCCCTCGAGG 
ATPS1_Col CTGCAGGTTGCTGCATATGACAAGACGCAAGGCAAGATGGCTTTCTTCGATCCCTCGAGG 
                ****************************************************** 
 
ATPS1_Bay CCTCAAGATTTCTTGTTCATCTCCGGCACTAAGGTAATATACCAGTCCTACATTGTTAAA 
ATPS1_Sha CCTCAAGATTTCTTGTTCATCTCCGGCACTAAGGTAATATACCAGTCCTACATTGTTAAA 
ATPS1_Col CCTCAAGATTTCTTGTTCATCTCCGGCACTAAGGTAATATACCAGTCCTACATTGTTAAA 
          ********************************* 
 
ATPS1_Bay ATTCTTCATAGTTTGTTTATAAAACAAACCTCTAAATGTTTTTCGATTATTCTAGATGCG 
ATPS1_Sha ATTCTTCATAGTTTGTTTATAAAACAAACCTCTAAATGTTTTTCGATTATTCTAGATGCG 
ATPS1_Col ATTCTTCATAGTTTGTTTATAAAACAAACCTCTAAATGTTTTTCGATTATTCTAGATGCG 
                                                                 ***** 
 
ATPS1_Bay CACATTGGCAAAGAACAACGAAAACCCGCCAGACGGTTTTATGTGCCCAGGTGGATGGAA 
ATPS1_Sha CACATTGGCAAAGAACAACGAAAACCCGCCAGACGGTTTTATGTGCCCAGGTGGATGGAA 
ATPS1_Col CACATTGGCAAAGAACAACGAAAACCCGCCAGACGGTTTTATGTGCCCAGGTGGATGGAA 
          ************************************************************ 
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ATPS1_Bay AGTTCTGGTGGATTACTATGAGAGCTTGACTCCGGCGGGTAATGGTAGACTACCAGAAGT 
ATPS1_Sha AGTTCTGGTGGATTACTATGAGAGCTTGACTCCGGCGGGTAATGGTAGACTACCAGAAGT 
ATPS1_Col AGTTCTGGTGGATTACTATGAGAGCTTGACTCCGGCGGGTAATGGTAGACTACCAGAAGT 
          ************************************************************ 
 
ATPS1_Bay GGTTCCGGTGTAAGACAAAACTGTTCGTTTCAAATTGTAACGTTTGTGTTGTGAAGCCTT 
ATPS1_Sha GGTTCCGGTGTAAGACAAAACTGTTCGTTTCAAATTGTAACGTTTGTGTTGTGAAGCCTT 
ATPS1_Col GGTTCCGGTGTAAGACAAAACTGTTCGTTTCAAATTGTAACGTTTGTGTTGTGAAGCCTT 
          ************* 
 
ATPS1_Bay GTAGCAACAATCATTGTTGTATTGGGAGAGAAGCCTATGTATAATCTGGCTTGACCTTTT 
ATPS1_Sha GTAGCAACAATCATTGTTGTATTGGGAGAGAAGCCTATGTATAATCTGGCTTGACCTTTT 
ATPS1_Col GTAGCAACAATCATTGTTGTATTGGGAGAGAAGCCTATGTATAATCTGGCTTGACCTTTT 
 
ATPS1_Bay TCCAAATAAAATACAGAAGAAAAAAAGACTGTTTTTCGTTTGCAAGATAATTTACGAAAC 
ATPS1_Sha TCCAAATAAAATACAGAAGAAAAAAAGACTGTTTTTCGTTTGCAAGATAATTTACGAAAC 
ATPS1_Col TCCAAATAAAATACAGAAGAAAAAAAGACTGTTTTTCGTTTGCAAGATAATTTACGAAAC 
 
ATPS1_Bay TTGTAATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTGTTTACATATA 
ATPS1_Sha TTGTAATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTGTTTACATATA 
ATPS1_Col TTGTAATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTTTTTACATATA 
 
ATPS1_Bay AGGATTTACGTACTTTTGACTT-------------------------------------- 
ATPS1_Sha AGGATTTACGTATTTTTGACTTTTGACTACATCTTTTTCTATTTAATCACTCACTTTTTT 
ATPS1_Col AGGATTTACGTATTTTTGACTTTTGACTACATCTTTTTCTATTTAATCACTCACTTTTTT 
 
ATPS1_Bay -------------------------------------------CATAAAATCTAGTGAT 
ATPS1_Sha TTTTTTTTTTTTCGCCATTTAGTCACTCACTTTTGACTTCATATATGTATTCTAGTAGTC 
ATPS1_Col TTTTTTTTTTTTCGCCATTTAATCACTCACTTTTGACTTCATATATGTATTCTAGTAGTC 
 
ATPS1_Bay G-ATCCAATTGTAGTAATGGGCCTTCAAAGGCATCTTGTGGTAATGGGCCTATTAATTTG 
ATPS1_Sha GTACCCAATTGTTGTAATGGGCCTTCAAAGGCCTCTTGTAGTAATGGGCCTATTAATTTG 
ATPS1_Col GTACCCAATTGTTGTAATGGGCCTTCAAAGGCCTCTTGTAGTAATGGGCCTATTAATTTG 
 
ATPS1_Bay TAAACTAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTCTTTCTTC 
ATPS1_Sha TAAACTAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTTTTTCTTC 
ATPS1_Col TAAACTAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTTTTTCTTC 
 
ATPS1_Bay TCCGACGCTACAATCGGTGTCTGTTTCCGAAGTTGTTCGTTCCATTAGAGCTTCAGATTT 
ATPS1_Sha TCCGACGCTACAATCGGTGTCTGTTTCCGAAGTTGTTCGTTCCATTAGAGCTTCAGATTT 
ATPS1_Col TCCGACGCTACAATCGGTGTCTGTTTCCGAAGTTGTTCGTTCCATTAGAGCTTCAGATTT 
 
ATPS1_Bay CGTCGTTTGGTAATTTCAAGTTAGAGCTACTTAATCTTTTGATCTGTCAAACCAATTTCT 
ATPS1_Sha CGTCGTTTGGTAATTTCAAGTTAGAGCTACTTAATCTTTTGATCTGTCAAACCAATTTCT 
ATPS1_Col CGTCGTTTGGTAATTTCAAGTTAGAGCTACTTAATCTTTTGATCTGTCAAACCAATTTCT 
 
ATPS1_Bay CAGATAAATTCACTCTAGGGTTTGTGAAGAACGATGATATGATCACATTTCAGAATGCAA 
ATPS1_Sha CAGATAAATTCACTCTAGGGTTTGTGAAGAACGATGATATGATCACATTTCACAATGCAA 
ATPS1_Col CAGATAAATTCACTCTAGGGTTTGTGAAGAACGATGATATGATCACATTTCACAATGCAA 

Figure S3.1 Comparison of ATPS1 gene sequence from Bay-0, Sha and Col-0 

Identical residues are in blue, SNPs and indels are in red. Coding region is marked with asterisks. 
The results were obtained by Anna Koprivova and the figure comes from Koprivova et al. (2013). 
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Col-0     CACGTGTCGCTCTTTTCAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAGTCC 
Sha       CACGTGTCGCTCTTTTCAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAGTCC 
Blh-1_1   CACGTGTCGCTCTTTTTAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAGTCC 
Aa-0_1    CACGTGTCGCTCTTTTCAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAGTCC 
Hel-3_1   CACGTGTCGCTCTTTTTAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAGTCC 
Ak-1_1    CACGTGTCGCTCTTTTTAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAGTCC 
Krot-0_1  CACGTGTCGCTCTTTTTAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAGTCC 
Bor-1_1   CACGTGTCGCTCTTTTTAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAGTCC 
Bay-0     CACGTGTCGCTCTTTTTAATTCCGATGGTAACCCCGTCGCTATCCTCAGCGAGTAAGTCC 
          **************** *********************************** 
 
Col-0     TTCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTGGAGAAGACGAAAACTGA 
Sha       TTCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTGGAGAAGACGAAAACTGA 
Blh-1_1   TCCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTGGAGAAGACGAAAACTGA 
Aa-0_1    TTCTTCAACATACTCAGATTCAAATTCAGATCATAGATTATTGGAGAAGACGAAAACTGA 
Hel-3_1   TCCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTCGAGAAGACGAAAACTGA 
Ak-1_1    TCCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTGGAGAAGACGAAAACTGA 
Krot-0_1  TCCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTGGAGAAGACGAAAACTGA 
Bor-1_1   TCCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTCGAGAAGACGAAAACTGA 
Bay-0     TCCTTCAACATACTCAGATTCAAATTCAGATCATAGATTGTTCGAGAAGACGAAAACTGA 
 
Col-0     GATTTGAATTTGATTTTGAACTTATCTCTCTTTGAGATTAGTTAAATACAGTATAATCTC 
Sha       GATTTGAATTTGATTTTGAACTTATCTCTCTTTGAGATTAGTTAAATACAGTATAATCTC 
Blh-1_1   GATTTGAATTTGATTTTGAACTTATCTCTCTTTGAGATTAGTTAAATACAGTATAATCTC 
Aa-0_1    GATTTGAATTTGATTTTGAACTTATCTCTCTTTGAGATTAGTTAAATACAGTATAATCTC 
Hel-3_1   TATTTGAATTTGATTTTGAACTTATCTCTCTTTGAGATTAGTTAAATACAGTATAATCTC 
Ak-1_1    GATTTGAATTTGATTTTGAACT-------------GATTAGTTAAATACAGTAGAATCTC 
Krot-0_1  GATTTGAATTTGATTTTGAACT-------------GATTAGTTAAATACAGTAGAATCTC 
Bor-1_1   GATTTGAATTTGATTTTGAACT-------------GATTAGTTAAATACAGTAGAATCTC 
Bay-0     TATTTGAATTTGATTTTGAACT-------------GATTAGTTAAATACAGTAGAATCTC 
 
Col-0     GATAAAGTAATACTCGATAAATTAATAACTATGTATTCACGATTAGACTTAGACTAGATC 
Sha       GATAAAGTAATACTCGATAAATTAATAACTATGTATTCACGATTAGACTTAGACTAGATC 
Blh-1_1   GATAAAGTAATACTCGATAAATTAATAACTATGTATTCACGATTAGACTTAGACTAGATC 
Aa-0_1    GATAAATTAATACTCCATAAATTAATAACTATGTACTCACGATTAGACTTAGACTAGATC 
Hel-3_1   GATAAATTAATACTCGATAAATTAATAACTATGTACTCACGATTAGACTTAGACTAGATC 
Ak-1_1    CATAAAGTAATACTCGATAAATTAAGAAACTTAGACTA--GATCTGATTAGTATTGAGAT 
Krot-0_1  CATAAAGTAATACTCGATAAATTAAGAAACTTAGACTA--GATCTGATTAGTATTGAGAT 
Bor-1_1   CATAAAGTAATACTCGATAAATTAAGAAACTTAGACTA--GATCTGATTAGTATTGAGAT 
Bay-0     CATAAAGTAATACTCGATAAATTAAGAAACTTAGACTA--GATCTGATTAGTATTGAGAT 
 
Col-0     TGATTAATCTTGAGATTAGAATTTGGCTATATGTGTAATTGGTTACTGAAATCTGTTTGT 
Sha       TGATTAATCTTGAGATTAGAATTTGGCTATATGTGTAATTGGTTACTGAAATCTGTTTGT 
Blh-1_1   TGATTAATCTTGAGATTAGAATTTGGCTATATGTGTAATTGATTACTGAAATCTGTTTGT 
Aa-0_1    TGATTAATCTTGAGATTAGAATTTGGCTATATGTGTAATTGGTTACTGAAATCTGTTTGT 
Hel-3_1   TGATTAATCTTGAGATTAGAATTTGGCTATATGTGTAATTGATTACTGAAATCTGTTTGT 
Ak-1_1    TAGTCAAATATGTATT--GAACTTGGCTATATGTGTAATTGATTACTGAAATCTGTTTGT 
Krot-0_1  TAGTCAAATATGTATT--GAACTTGGCTATATGTGTAATTGGTTACTGAAATCTGTTTGT 
Bor-1_1   TAGTCAAATATGTATT--GAACTTGGCTATATGTGTAATTGATTACTGAAATCTGTTTGT 
Bay-0     TAGTCAAATATGTATT--GAACTTGGCTATATGTGTAATTGATTACTGAAATCTGTTTGT 
 
Col-0     TTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTAGAA 
Sha       TTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTAGAA 
Blh-1_1   TTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTAGAA 
Aa-0_1    TTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTAGAA 
Hel-3_1   TTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTAGAA 
Ak-1_1    TTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTAGAA 
Krot-0_1  TTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTAGAA 
Bor-1_1   TTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTAGAA 
Bay-0     TTTTATGTTTGATCAGTATTGAGATTTATAAGCATCCAAAGGAAGAAAGGATAGCTAGAA 
                          ******************************************** 
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Col-0     AATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTTTTTACATATAAGGA 
Sha       AATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTGTTTACATATAAGGA 
Aa-0_2    AATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTGTTTACATATAAGGA 
Blh-1_2   AATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTGTTTACATATAAGGA 
Hel-3_2   AATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTGTTTACATATAAGGA 
Ak-1_2    AATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTGTTTACATATAAGGA 
Krot-0_2  AATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTGTTTACTAATAAGGA 
Bor-1_2   AATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTGTTTACTAATAAGGA 
Bay-0     AATATTTGGGCCTCAAACTTTGTACCATATTAATGAAACGATTGTGTTTACATATAAGGA 
 
Col-0     TTTACGTATTTTTGACTTTTGACTACATCTTTTTCTATTTAATCACTCACTTTTTTTTTT 
Sha       TTTACGTATTTTTGACTTTTGACTACATCTTTTTCTATTTAATCACTCACTTTTTTTTTT 
Blh-1_2   TTTACGTATTTTTGACTTTTGACTACACCTTTTTCTATTTAATCACTCACTTTTTTTTTT 
Aa-0_2    TTTACGTATTTTTTACTTTTGACTACATCTTTTTCTATTTAATCACTCACTTTT------ 
Hel-3_2   TTTACGTACTTTTGACTTCA---------------------------------------- 
Ak-1_2    TTTACGTACTTTTGACTTCA---------------------------------------- 
Krot-0_2  TTTACGTACTTTTGACTTCA---------------------------------------- 
Bor-1_2   TTTACGTATTTTTGACTTCA---------------------------------------- 
Bay-0     TTTACGTACTTTTGACTTCA---------------------------------------- 
 
Col-0     TTTTTTTTCGCCATTTAATCACTCACTTTTGACTTCATATATGTATTCTAGTAGTCGTAC 
Sha       TTTTTTTTCGCCATTTAGTCACTCACTTTTGACTTCATATATGTATTCTAGTAGTCGTAC 
Blh-1_2   TTTTTTTTCGCCATTTAATCACTCACTTCTGACTTCATATATGTATTCTAGTAGTCGTAC 
Aa-0_2    ------------------------------GACTTCATATATGTATTCTAGTAGTCGTAC 
Hel-3_2   -----------------------------T------------AAAATCTAGTGATGAT-- 
Ak-1_2    -----------------------------T------------AAAATCTAGTGATGAT-- 
Bor-1_2   -----------------------------T------------AAAATCTAGTGATGAT-- 
Krot-0_2  -----------------------------T------------AAAATCTAGTGATGAT-- 
Bay-0     -----------------------------T------------AAAATCTAGTGATGAT-- 
 
Col-0     CCAATTGTTGTAATGGGCCTTCAAAGGCCTCTTGTAGTAATGGGCCTATTAATTTGTAAA 
Sha       CCAATTGTTGTAATGGGCCTTCAAAGGCCTCTTGTAGTAATGGGCCTATTAATTTGTAAA 
Blh-1_2   CCAATTGTTGTAATGGGCCTTCAAAGGCCTCTTGTAGTAATGGGCCTATTAATTTGTAAA 
Aa-0_2    CCAATTGTTGTAATGGGCCTTCAAAGGCCTCTTGTAGTAATGGGCCTATTAATTTGTAAA 
Hel-3_2   CCAATTGTAGTAATGGGCCTTCAAAGGCATCTTGTGGTAATGGGCCTATTAATTTGTAAA 
Ak-1_2    CCAATTGTAGTAATGGGCCTTCAAAGGCATCTTGTGGTAATGGGCCTATTAATTTGTAAA 
Krot-0_2  CCAATTGTTGTAATGGGCCTTCAAAGGCCTCTTGTAGTAATGGGCCTATTAATTTGTAAA 
Bor-1_2   CCAATTGTTGTAATGGGCCTTCAAAGGCCTCTTGTAGTAATGGGCCTATTAATTTGTAAA 
Bay-0     CCAATTGTAGTAATGGGCCTTCAAAGGCATCTTGTGGTAATGGGCCTATTAATTTGTAAA 
 
Col-0     -TAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTTTTTCTTCTCCG 
Sha       -TAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTTTTTCTTCTCCG 
Blh-1_2   -TAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTTTTTCTTCTCCG 
Aa-0_2    -TAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTTTTTCTTCTCCG 
Hel-3_2   CTAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTCTTTCTTCTCCG 
Ak-1_2    CTAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTCTTTCTTCTCCG 
Krot-0_2  CTAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTCTTTCTTCTCCG 
Bor-1_2   CTAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTCTTTCTTCTCCG 
Bay-0     CTAACCAAACCCGAAGTTTCGTCTCCTGAGTCATTTCACGACTGATGTCTTTCTTCTCCG 

 

Figure S3.2 Sequence comparison of the two deletions in ATPS1 gene  

Identical residues are in blue, coding region is marked with asterisks. The results were obtained by 
Anna Koprivova and the figure comes from Koprivova et al. (2013). 
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Arabidopsis response to different nutrition regimes shown as average of all 25 accessions for each 
trait in normal sulfate condition (0.15), sulfate limitation (0.05), and sulfate starvation (0). Different 
letters indicate values significantly different at P-value < 0.05 obtained from ANOVA with the 
Newman-Keuls (SNK) multiple comparison grouping method. The error bars correspond to 
standard deviation. Abbreviations: shoot dry matter (SDM), root dry matter (RDM), shoot to root 

Figure S4.1 Global nutrition effect 
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ratio of dry matter (SRDM), primary root length (PRL), root thickness (RT), shoot water 
concentration (SH2O), and root water concentration (RH2O), shoot nitrate concentration (SNO3), 
root nitrate concentration (RNO3), shoot phosphate concentration (SPO4) root phosphate 
concentration (RPO4), shoot sulfate concentration (SSO4), root sulfate concentration (RSO4), shoot 
cysteine concentration (SCys), root cysteine concentration (RCys), shoot glutathione concentration 
(SGSH), root glutathione concentration (RGSH). 
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The difference between arabidopsis accessions is shown as average of the values for all three 
nutrition regimes for each trait. The error bars correspond to standard deviation. Abbreviations: 
shoot dry matter (SDM), root dry matter (RDM), shoot to root ratio of dry matter (SRDM), primary 
root length (PRL), root thickness (RT), shoot water concentration (SH2O), and root water 
concentration (RH2O), shoot nitrate concentration (SNO3), root nitrate concentration (RNO3), 
shoot phosphate concentration (SPO4) root phosphate concentration (RPO4), shoot sulfate 
concentration (SSO4), root sulfate concentration (RSO4), shoot cysteine concentration (SCys), root 
cysteine concentration (RCys), shoot glutathione concentration (SGSH), root glutathione 
concentration (RGSH). 

 

 

Figure S4.2 Global genetic effect 
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Trait Nutrition Genotype Nutrition x Genotype Residual

SFM 8.48 59.77 10.80 20.96

P-value < 0.0001 < 0.0001 < 0.0001

RFM 4.08 57.43 10.11 28.38

P-value < 0.0001 < 0.0001 0.027

SRFM 41.89 22.40 ns 35.67

P-value < 0.0001 < 0.0001 0.086

SDM 6.89 58.61 11.77 22.73

P-value < 0.0001 < 0.0001 < 0.0001

RDM 4.15 53.52 14.45 27.84

P-value < 0.0001 < 0.0001 < 0.0001

SRDM 25.97 15.61 19.27 39.13

P-value < 0.0001 < 0.0001 0.0002

RL 1.19 73.38 6.66 18.77

P-value 0.002 < 0.0001 0.028

RT 6.75 59.42 9.50 23.36

P-value < 0.0001 < 0.0001 0.005

SH20 24.04 47.83 ns 26.22

P-value < 0.0001 < 0.0001 0.057

RH20 ns 14.56 31.45 53.90

P-value 0.262 0.001 < 0.0001

SNO3 16.14 38.01 27.74 18.11

P-value < 0.0001 < 0.0001 < 0.0001

RNO3 5.43 26.58 41.12 26.87

P-value < 0.0001 < 0.0001 < 0.0001

SPO4 21.65 33.30 25.08 19.96

P-value < 0.0001 < 0.0001 < 0.0001

RPO4 18.81 31.15 33.42 16.62

P-value < 0.0001 < 0.0001 < 0.0001

SSO4 37.56 24.98 21.99 15.46

P-value < 0.0001 < 0.0001 < 0.0001

RSO4 67.75 10.28 11.82 10.15

P-value < 0.0001 < 0.0001 < 0.0001

SCys 27.66 31.41 20.45 20.48

P-value < 0.0001 < 0.0001 < 0.0001

RCys 60.59 7.42 17.53 14.46

P-value < 0.0001 < 0.0001 < 0.0001

SGSH 3.39 29.74 47.29 19.58

P-value < 0.0001 < 0.0001 < 0.0001

RGSH 46.86 26.13 12.07 14.94

P-value < 0.0001 < 0.0001 < 0.0001

Percentage of variation

  

 

 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
The percentage variation explained by each factor among 2 arabidopsis accessions was computed 
from the sum of squares obtained from ANOVA which was also used for the significance testing. 
Traits with P-value<0.05 were considered as significantly altered. 

 

Table S4.1 Percentage of variation among 25 arabidopsis accessions 
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Trait Genotype N nutrition S nutrition N nutrition x                          
S nutrition

Genotype x                    
N nutrition

Genotype x                    
S nutrition Residual

NO3 23.72 41.64 5.44 ns 16.54 2.99 9.67

P-value <.0001 <.0001 <.0001 0.2164 <.0001 0.0106

PO4 78.76 4.11 ns 0.78 1.91 5.82 8.62

P-value <.0001 <.0001 0.1602 0.0144 0.0068 <.0001

SO4 ns 2.84 44.98 1.76 14.78 11.41 24.24

P-value 0.7637 0.0059 <.0001 0.0285 <.0001 0.0005

Cys 34.88 19.05 3.35 ns 8.40 9.91 24.41

P-value <.0001 <.0001 0.0097 0.1548 0.0002 0.0013

GSH 0.33 92.46 2.41 2.86 0.50 0.41 1.04

P-value 0.0004 <.0001 <.0001 <.0001 <.0001 0.0011

ITh 11.45 18.69 32.65 2.80 ns ns 34.41

P-value 0.0005 <.0001 <.0001 0.0206 0.5669 0.3129

IP 3.44 63.18 ns ns ns ns 33.37

P-value 0.0034 <.0001 0.2688 0.3443 0.1064 0.7019

TTS 25.43 8.88 38.24 ns ns ns 27.46

P-value <.0001 <.0001 <.0001 0.2169 0.187 0.1407

ASF 8.17 35.27 25.06 ns ns ns 31.51

P-value 0.0032 <.0001 <.0001 0.0852 0.418 0.4682

RSF 15.75 40.80 8.68 8.21 ns ns 26.56

P-value <.0001 <.0001 <.0001 <.0001 0.712 0.3505

TU 17.10 13.19 9.75 ns 11.35 ns 48.61

P-value 0.0002 <.0001 0.0013 0.3322 0.0037 0.1092

Percantage of variation

 

 

 

 

 

The percentage variation explained by each factor among five arabidopsis accessions was 
computed from the sum of squares obtained from ANOVA which was also used for the significance 
testing. Traits with P-value<0.05 were considered as significantly altered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S4.2 Percentage of variation among five arabidopsis accessions 
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Accession Alternative name Country Comment

Ag.0 n.a. FRA

Alc.0 n.a. ESP

ALL1.2 n.a. FRA

ALL1.3 n.a. FRA

An.1 n.a. BEL

App1.16 n.a. SWE

Ba1.2 n.a. SWE

Bay.0 n.a. GER didn't grow

Belmonte.4.94 n.a. ITA

Bg.2 n.a. USA

Bla.1 n.a. ESP

Blh.1 n.a. CZE

Bor.1 n.a. CZE

Bor.4 n.a. CZE

Br.0 n.a. CZE

Bro1.6 n.a. SWE

Bu.0 n.a. GER

BUI n.a. FRA

Bur.0 n.a. IRL

C24 n.a. POR

CAM.16 n.a. FRA

CAM.61 n.a. FRA

Can.0 n.a. ESP

Cen.0 n.a. FRA

CIBC.17 n.a. UK

CLE.6 n.a. FRA

Col.0 n.a. USA

CS28007 Aa-0 GER

CS28013 Alst-1 UK

CS28014 Amel-1 NED

CS28017 An-2 BEL

CS28018 Ang-0 BEL

CS28049 Ann-1 FRA

CS28053 Ba-1 UK

CS28054 Baa-1 NED

CS28063 Be-1 GER

CS28064 Benk-1 NED

CS28090 Blh-2 CZE

CS28091 Boot-1 UK

CS28097 Bs-2 SUI

CS28099 Bsch-0 GER

CS28108 Bu-8 GER

CS28128 Ca-0 GER

CS28133 Cha-0 SUI

CS28135 Chat-1 FRA

CS28140 CIBC-2 UK

CS28141 CIBC-4 UK

CS28142 CIBC-5 UK

CS28158 Cit-0 FRA

CS28163 Co-2 POR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S5.1 Borevitz collection accessions 
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Accession Alternative name Country Comment

CS28165 Co-4 POR

CS28181 CSHL-5 USA

CS28193 Com-1 FRA

CS28200 Da-0 GER

CS28201 Da(1)-12 CZE

CS28202 Db-0 GER

CS28208 Di-1 FRA

CS28210 Do-0 GER

CS28214 Dra-2 CZE

CS28217 Ede-1 NED

CS28236 Ep-0 GER

CS28241 Es-0 FIN

CS28243 Est-0 RUS

CS28252 Fi-1 GER

CS28268 Fr-4 GER

CS28274 Ga-2 GER

CS28277 Ge-1 SUI

CS28279 Gel-1 NED

CS28280 Gie-0 GER

CS28282 Go-0 GER

CS28326 Gr-5 AUT

CS28332 Gu-1 GER

CS28336 Ha-0 GER

CS28344 Hey-1 NED

CS28345 Hh-0 GER

CS28350 Hn-0 GER

CS28364 Je-0 GER

CS28369 Jl-3 CZE

CS28373 Jm-1 CZE

CS28382 Kelsterbach-2 GER

CS28394 Kl-5 GER

CS28395 Kn-0 LTU

CS28407 KNO-11 USA

CS28419 Kr-0 GER

CS28420 Kro-0 GER

CS28423 unknown GER

CS28454 Li-3 GER

CS28457 Li-5:2 GER

CS28459 Li-6 GER

CS28461 Li-7 GER

CS28490 Mc-0 UK

CS28492 Mh-0 POL

CS28495 Mnz-0 GER didn't germinate

CS28510 N4 RUS

CS28513 N7 RUS

CS28527 Nc-1 FRA

CS28550 NFC-20 UK

CS28564 No-0 GER

CS28568 Nok-1 NED

CS28573 Nw-0 GER
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Accession Alternative name Country Comment

CS28575 Nw-2 GER

CS28578 Nz1 NZL

CS28580 Ob-1 GER

CS28583 Old-1 GER

CS28587 Or-0 GER

CS28595 Pa-2 ITA

CS28610 PHW-10 UK

CS28613 PHW-13 UK

CS28614 PHW-14 UK

CS28620 PHW-20 UK

CS28622 PHW-22 UK

CS28628 PHW-28 UK

CS28640 Pla-0 ESP

CS28645 Pn-0 FRA

CS28650 Pog-0 CAN

CS28651 Pr-0 GER

CS28663 Pu2-24 CZE

CS28685 Rhen-1 NED

CS28692 Rou-0 FRA

CS28713 RRS-7 USA

CS28720 S96 Unknown

CS28724 Sapporo-0 JPN

CS28725 Sav-0 CZE

CS28729 Sei-0 ITA

CS28734 Sh-0 GER

CS28739 Si-0 GER

CS28743 Sp-0 GER

CS28750 Ste-0 GER

CS28759 Ting-1 SWE

CS28760 Tiv-1 ITA

CS28779 Tscha-1 AUT

CS28780 Tsu-0 JPN

CS28786 Ty-0 UK

CS28787 Uk-1 GER

CS28795 Utrecht NED

CS28800 Ven-1 NED

CS28804 Wa-1 POL

CS28808 Wag-3 NED

CS28809 Wag-4 NED

CS28810 Wag-5 NED

CS28812 WAR USA

CS28814 Wc-2 GER

CS28822 Wl-0 GER

CS28823 Ws RUS

CS28833 Wt-3 GER

CS28847 Zu-1 SUI

CS28849 Ors-2 ROU

Ct.1 n.a. ITA didn't germinate

CUR.3 n.a. FRA

Cvi.0 n.a. CPV
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Accession Alternative name Country Comment

Dra3.1 n.a. SWE seeds not available

DraII.1 n.a. CZE

DraIV.1.14 n.a. CZE

DraIV.1.5 n.a. CZE

DraIV.1.7 n.a. CZE

DraIV.6.16 n.a. CZE

DraIV.6.35 n.a. CZE

Duk n.a. CZE

Eden.2 n.a. SWE

Edi.0 n.a. UK

Est.1 n.a. RUS

Fab.2 n.a. SWE

Fei.0 n.a. POR

Fja1.1 n.a. SWE didn't germinate

Fja1.2 n.a. SWE

Fja1.5 n.a. SWE

Ga.0 n.a. GER

Gd.1 n.a. GER

Hi.0 n.a. NED

Hod n.a. CZE

Hov4.1 n.a. SWE

Hovdala.2 n.a. SWE

HR.5 n.a. UK

Hs.0 n.a. GER

HSm n.a. CZE

In.0 n.a. AUT

JEA n.a. FRA

Ka.0 n.a. AUT

Kas.2 n.a. IND

KBS.Mac.8 n.a. USA

Kelsterbach.4 n.a. GER

Kin.0 n.a. USA

Kno.18 n.a. USA

Koln n.a. GER

Kulturen.1 n.a. SWE

LAC.3 n.a. FRA didn't germinate

LAC.5 n.a. FRA

Lc.0 n.a. UK

LDV.25 n.a. FRA didn't germinate

LDV.34 n.a. FRA

LDV.58 n.a. FRA

Ler.1 n.a. GER

LI.OF.095 n.a. USA

Liarum n.a. SWE

Lillo.1 n.a. SWE didn't germinate

Lip.0 n.a. POL

Lis.1 n.a. SWE

Lis.2 n.a. SWE

Lisse n.a. NED

LL.0 n.a. ESP
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Accession Alternative name Country Comment

Lm.2 n.a. FRA

Lom1.1 n.a. SWE

Lov.5 n.a. SWE

Lp2.2 n.a. CZE

Lp2.6 n.a. CZE

Lund n.a. SWE

Lz.0 n.a. FRA

Map.42 n.a. USA

MIB.15 n.a. FRA

MIB.22 n.a. FRA

MIB.28 n.a. FRA

MIB.84 n.a. FRA

MNF.Che.2 n.a. USA

MNF.Jac.32 n.a. USA

MNF.Pot.48 n.a. USA

MNF.Pot.68 n.a. USA

MOG.37 n.a. FRA

Mr.0 n.a. ITA

Mrk.0 n.a. GER

Mt.0 n.a. LIB

Mz.0 n.a. GER

N13 n.a. RUS

Na.1 n.a. FRA

NC.6 n.a. USA

Ost.0 n.a. SWE

Oy.0 n.a. NOR

Pa.1 n.a. ITA

PAR.3 n.a. FRA

PAR.4 n.a. FRA

PAR.5 n.a. FRA

Paw.3 n.a. USA

Pent.1 n.a. USA

Per.1 n.a. RUS

Petergof n.a. RUS

PHW.34 n.a. FRA didn't germinate

Pna.17 n.a. USA

Pro.0 n.a. ESP

Pu2.23 n.a. CZE

Ra.0 n.a. FRA

Rak.2 n.a. CZE

Ren.1 n.a. FRA

Rev.2 n.a. SWE

Rmx.A180 n.a. USA

ROM.1 n.a. FRA

RRS.10 n.a. USA

Rsch.4 n.a. RUS

Sanna.2 n.a. SWE

Sap.0 n.a. CZE

Sav.0 n.a. CZE

Se.0 n.a. ESP
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Accession Alternative name Country Comment

Shahdara n.a. TJK

SLSP.30 n.a. USA

Sparta.1 n.a. SWE

Sq.8 n.a. UK didn't germinate

St.0 n.a. SWE

Ste.3 n.a. USA

T1040 n.a. SWE

T1060 n.a. SWE

T1080 n.a. SWE

T1110 n.a. SWE

T510 n.a. SWE

T540 n.a. SWE

T620 n.a. SWE

T690 n.a. SWE

Ta.0 n.a. CZE

TAD.01 n.a. SWE

Tamm.2 n.a. FIN

TDr.18 n.a. SWE

TDr.3 n.a. SWE

TDr.8 n.a. SWE

Tomegap.2 n.a. SWE

Tottarp.2 n.a. SWE

TOU.A1.115 n.a. FRA

TOU.A1.116 n.a. FRA

TOU.A1.12 n.a. FRA

TOU.A1.43 n.a. FRA didn't germinate

TOU.A1.62 n.a. FRA

TOU.A1.67 n.a. FRA didn't germinate

TOU.A1.96 n.a. FRA

TOU.C.3 n.a. FRA

TOU.I.6 n.a. FRA

TOU.J.3 n.a. FRA

TOU.K.3 n.a. FRA didn't germinate

Ts.1 n.a. ESP

UduI.1.34 n.a. CZE

UKID101 n.a. UK didn't germinate

UKID22 n.a. UK

UKID37 n.a. UK

UKID48 n.a. UK

UKID80 n.a. UK didn't germinate

UKNW06.059 n.a. UK

UKNW06.060 n.a. UK didn't germinate

UKNW06.386 n.a. UK

UKNW06.436 n.a. UK didn't germinate

UKNW06.460 n.a. UK

UKSE06.062 n.a. UK

UKSE06.192 n.a. UK didn't germinate

UKSE06.272 n.a. UK didn't germinate

UKSE06.278 n.a. UK

UKSE06.349 n.a. UK didn't germinate
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Accession Alternative name Country Comment

UKSE06.351 n.a. UK

UKSE06.414 n.a. UK

UKSE06.429 n.a. UK

UKSE06.466 n.a. UK

UKSE06.482 n.a. UK didn't germinate

UKSE06.520 n.a. UK didn't germinate

UKSE06.628 n.a. UK

UKSW06.202 n.a. UK

Ull2.5 n.a. SWE

Ull3.4 n.a. SWE

Uod.7 n.a. AUT

Var2.1 n.a. SWE

VOU.1 n.a. FRA didn't germinate

VOU.2 n.a. FRA didn't germinate

Wil.1 n.a. LTU

Ws.0 n.a. RUS

Wt.5 n.a. GER

X11ME1.32 n.a. USA didn't germinate

X11PNA4.101 n.a. USA didn't germinate

X328PNA054 n.a. USA

X627ME.4Y1 n.a. USA

Yo.0 n.a. USA didn't germinate

Zdr.6 n.a. CZE

ZdrI.2.24 n.a. CZE

ZdrI.2.25 n.a. CZE
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Accession NO3
1- SD PO4

3- SD SO4
2- SD

Ag.0 130.2 11.5 13.3 1.2 - -

Alc.0 114.5 11.4 13.2 1.3 - -

ALL1.2 159.2 10.0 16.7 3.7 12.7 1.8
ALL1.3 136.0 10.4 12.4 2.3 15.3 1.3

An.1 119.2 11.7 14.3 1.3 - -

App1.16 125.3 15.6 27.4 2.4 10.7 1.6

Ba-1.2 147.0 1.9 14.6 1.4 13.7 1.6

Belmonte.4.94 127.4 10.1 13.5 4.5 - -
Bg.2 116.0 14.8 - - - -

Bla.1 138.8 13.6 24.1 2.1 20.5 2.0

Blh.1 144.9 7.1 15.0 2.4 18.7 2.5

Bor.1 131.4 14.7 16.2 1.7 16.1 0.8

Bor.4 103.5 8.6 - - 17.3 2.4

Br.0 112.5 15.7 - - 17.1 3.4
Brö1-6 128.4 16.9 9.7 0.9 10.0 1.6

Bu.0 124.9 8.8 10.8 1.0 10.6 1.6

Bur.0 - - - - 13.6 3.2

C24 98.2 4.1 6.7 1.3 11.9 2.4

CAM.16 115.2 3.0 14.1 2.0 9.9 0.9
CAM.61 118.4 2.9 10.9 1.5 9.0 2.0

Can.0 126.9 22.0 - - 32.8 6.6

Cen.0 - - - - 15.1 1.8

CIBC.17 124.0 10.1 17.8 1.6 16.1 0.9

Col.0 137.2 21.6 14.3 4.4 13.7 3.7
Aa-0 139.0 8.6 15.5 1.9 18.3 1.0

Alst-1 133.4 12.0 13.1 3.0 8.1 1.5

Amel-1 119.8 5.6 21.9 0.9 10.4 2.0

An-2 135.3 3.5 18.1 2.6 - -

Ang-0 122.4 9.2 15.4 1.6 8.3 0.5
Ann-1 138.7 12.2 18.3 1.4 9.7 0.5

Ba-1 145.1 1.9 15.4 1.4 6.7 1.6

Baa-1 175.4 15.9 12.8 1.5 7.5 0.9

Benk-1 143.4 11.6 20.8 3.0 11.3 0.9

Blh-2 143.5 12.4 16.1 1.5 11.9 0.8
Boot-1 131.2 9.3 21.3 1.1 10.2 0.7

Bs-2 144.7 9.9 - - 12.1 0.9

Bsch-0 120.8 1.4 16.7 2.2 16.2 2.3

Bu-8 148.7 16.7 14.0 1.8 - -

Ca-0 136.5 4.2 15.4 0.9 10.1 0.4

Cha-0 116.7 8.4 31.2 1.2 22.7 0.5
Chat-1 153.0 13.3 20.0 0.7 13.3 1.1

CIBC-2 164.5 2.6 - - 10.3 0.8

CIBC-4 145.0 6.4 24.1 1.9 11.9 1.1

CIBC-5 163.4 12.2 19.0 1.8 10.7 1.4

Cit-0 164.9 8.3 18.0 1.6 - -
Co-2 157.0 4.1 20.4 1.7 - -

Anion accumulation [nmol mg
-1

 FW]
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Accession NO3
1- SD PO4

3- SD SO4
2- SD

Co-4 134.6 6.1 14.0 0.5 13.4 1.2

CSHL-5 143.4 10.5 11.5 1.2 12.0 1.0

Com-1 131.6 4.1 17.2 1.4 15.5 1.0

Da-0 148.1 2.2 17.3 1.5 - -

Da(1)-12 140.1 11.1 12.8 1.7 15.0 1.7

Db-0 140.4 14.1 13.7 1.0 14.6 1.6

Di-1 99.7 10.8 - - 21.1 1.8
Do-0 166.4 5.2 15.7 1.7 8.8 0.5

Dra-2 145.5 11.8 17.6 2.1 10.8 1.6

Ede-1 161.4 6.1 16.0 3.2 9.9 0.5

Ep-0 154.1 7.9 15.0 2.4 11.2 0.7

Es-0 125.8 3.6 14.5 2.3 12.4 2.6

Est-0 122.8 4.3 12.3 1.4 - 1.2

Fi-1 152.4 11.4 11.1 0.8 11.2 1.3
Fr-4 124.2 5.8 15.0 1.2 - -

Ga-2 120.9 6.9 17.5 1.0 - -

Ge-1 114.7 3.4 21.4 1.3 18.4 1.4

Gel-1 112.2 7.0 20.9 0.9 19.8 2.1

Gie-0 116.1 10.6 14.1 0.8 14.1 1.6

Go-0 122.7 8.6 - - - -

Gr-5 135.1 12.5 29.4 2.3 11.6 1.0

Gu-1 119.4 11.1 14.4 2.0 14.7 1.3
Ha-0 147.2 10.4 - - 7.9 1.2

Hey-1 130.2 14.7 9.8 1.0 10.9 1.8

Hh-0 134.4 6.7 9.8 1.2 8.9 0.8

Hn-0 117.1 10.5 - - - -

Je-0 134.7 12.7 20.5 1.0 17.3 0.8

Jl-3 120.2 11.7 18.9 1.3 14.5 0.5

Jm-1 - - 8.8 0.2 14.8 2.5
Kelsterbach-2 151.7 9.1 14.3 0.2 9.6 0.8

Kl-5 143.4 9.5 - - 13.7 0.3

Kn-0 137.7 14.0 13.7 1.3 12.7 0.9

KNO-11 226.0 18.4 - - 25.6 3.2

Kr-0 201.6 8.0 41.8 3.8 31.8 2.0

Kro-0 188.0 14.8 - - 27.7 1.0

Li-3 177.7 9.4 22.7 0.9 24.2 1.6

Li-5:2 135.9 15.5 20.1 1.6 10.4 1.0
Li-6 130.6 16.6 15.3 3.2 13.6 1.8

Li-7 155.3 10.3 12.9 1.6 15.1 2.5

Mc-0 129.0 14.3 20.9 0.9 - -

Mh-0 125.2 7.5 9.0 2.5 13.0 1.5

Mnz-0 119.4 4.5 13.3 1.9 - -

N4 124.7 10.9 - - 15.7 1.5

N7 - - 8.4 1.6 9.5 0.7

Nc-1 - - - - 9.7 1.3
NFC-20 129.2 12.1 - - 11.1 2.0

Anion accumulation [nmol mg
-1

 FW]
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Accession NO3
1- SD PO4

3- SD SO4
2- SD

Ob-1 138.2 8.9 - - - -

Old-1 - - 18.0 2.4 12.2 1.3

Or-0 155.7 13.3 12.3 0.7 13.1 2.0

Pa-2 172.9 15.6 - - - -

PHW-10 160.2 14.8 - - - -

PHW-13 147.3 12.0 12.5 2.2 9.9 1.4

PHW-14 156.6 9.8 17.3 1.8 9.8 1.1
PHW-20 101.1 8.9 21.4 3.3 17.9 1.3

PHW-22 157.8 8.8 14.7 2.9 10.6 1.6

PHW-28 125.3 11.1 35.1 4.9 - -

PHW-31 150.4 9.5 - - - -

PHW-35 132.2 7.2 24.6 3.2 14.8 2.7

PHW-36 152.8 12.1 22.1 2.0 11.3 1.4

PHW-37 150.2 10.9 22.8 2.6 13.7 0.7
Pla-0 147.5 5.0 18.7 0.5 15.2 1.5

Pn-0 130.8 5.3 21.5 1.7 17.5 0.9

Pr-0 163.0 17.1 16.7 0.5 9.5 0.8

Pu2-24 141.3 5.8 21.3 3.5 12.5 2.1

Rhen-1 135.8 13.5 - - 14.4 4.0

Rou-0 130.3 9.6 22.5 1.8 19.2 2.7

RRS-7 125.9 12.6 19.3 3.1 13.7 1.3

S96 130.5 6.5 - - 16.5 1.3
Sapporo-0 97.9 9.2 - - 28.2 1.1

Sav-0 120.0 8.8 7.8 1.7 13.3 1.3

Sei-0 119.2 13.0 10.0 1.3 - -

Sh-0 120.8 9.4 9.2 1.0 18.1 2.1

Si-0 - - 11.7 1.6 12.7 0.7

Sp-0 138.7 12.1 9.1 2.0 14.9 0.4

Ste-0 123.9 5.9 33.4 1.8 14.0 1.0
Ting-1 119.1 15.0 19.5 1.2 15.8 1.3

Tiv-1 140.8 4.0 25.1 1.2 12.7 1.6

Tscha-1 - - 16.7 0.9 15.5 1.9

Tsu-0 138.6 17.7 - - 14.5 1.0

Ty-0 128.1 9.1 - - 16.4 0.9

Uk-1 134.4 8.4 22.2 1.6 18.3 1.6

Utrecht 131.7 6.0 16.1 1.5 11.9 0.7

Ven-1 132.1 13.4 15.2 1.2 11.2 1.2
Wa-1 116.3 15.6 - - 12.0 1.4

Wag-3 125.1 10.1 17.5 1.7 16.5 1.8

Wag-4 144.7 14.6 14.8 1.7 11.8 1.3

Wag-5 128.6 12.3 19.4 0.4 18.5 1.7

WAR - - - - 13.6 1.8

Wc-2 108.0 3.4 16.7 0.3 14.3 0.5

Wl-0 114.0 6.9 14.6 1.8 11.1 0.8

Ws 145.6 17.4 - - 15.2 5.5
Wt-3 137.1 5.9 19.5 1.2 16.6 0.5

Anion accumulation [nmol mg
-1

 FW]
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Accession NO3
1- SD PO4

3- SD SO4
2- SD

DraIV.1.5 129.4 5.7 27.2 1.1 17.6 0.9

DraIV.6.16 138.4 15.9 15.5 2.0 10.2 1.3

DraIV.6.35 116.3 17.3 22.3 3.2 17.8 2.0

DraIV 1-14 157.5 10.7 25.5 1.6 19.6 1.4

Duk 143.9 13.9 16.6 1.8 14.7 1.2

Eden.2 112.0 7.7 30.7 2.3 26.7 1.8

Edi.0 152.0 13.5 - - 12.6 1.4
Est.1 129.1 13.8 27.2 3.4 20.7 1.2

Fäb-2 116.4 14.2 23.4 3.4 25.5 6.6

Fja1.2 179.9 15.6 26.8 4.5 17.0 2.0

Fja1.5 158.4 17.3 - - 13.9 2.4

Ga.0 134.5 18.5 32.8 4.2 - -

Gd.1 119.1 16.9 16.9 1.0 12.6 1.4

Ge.0 170.8 8.8 20.6 1.1 22.6 2.6
Got.7 163.2 9.5 20.8 0.9 - -

Gr.1 133.5 18.4 19.1 0.3 16.9 1.3

Gy.0 92.5 6.9 21.4 0.7 18.3 1.8

Hi.0 115.5 9.4 22.4 2.4 13.6 0.7

Hod - - - - 32.5 8.2

Hov4.1 114.7 14.5 - - - -

Hovdala.2 118.9 14.1 19.4 0.7 19.5 1.9

HR.5 119.4 10.2 17.8 2.3 - -
Hs.0 120.7 18.0 17.2 0.8 18.6 2.6

HSm 121.7 9.5 19.3 1.3 16.2 0.7

In.0 166.6 24.5 16.6 0.9 15.1 1.0

JEA 124.3 6.3 17.0 0.6 16.8 1.1

Ka.0 120.9 13.3 14.8 0.5 14.6 1.5

Kas.2 112.2 9.6 21.3 1.2 13.4 1.4

KBS.Mac.8 129.7 11.2 16.5 1.2 18.9 0.9
Kelsterbach.4 118.9 9.3 16.1 1.4 11.3 0.3

Kin.0 137.9 9.0 15.7 1.8 12.2 1.4

Kno.18 109.1 9.6 12.0 0.3 - -

Koln 119.4 7.7 16.8 2.0 18.2 1.0

Kulturen.1 94.7 8.4 29.7 1.7 19.3 2.9

LAC.5 107.0 14.1 11.8 0.5 21.6 1.1

Lc.0 103.4 7.8 14.6 1.0 - -

LDV.34 135.4 15.2 18.1 2.3 13.4 0.6
LDV.58 105.4 4.7 27.7 0.7 21.2 0.8

Ler.1 129.5 9.2 15.2 1.1 16.8 0.2

LI.OF.095 - - 14.1 0.9 19.7 0.3

Liarum - - 16.3 1.1 27.4 1.6

Lip.0 104.7 4.6 15.5 1.5 23.0 1.0

Lis.1 165.2 26.0 19.9 1.6 20.5 1.7

Lisse 125.3 5.3 14.5 0.5 15.9 1.1

LL.0 134.1 14.0 20.7 1.5 20.6 1.0
Lm.2 114.1 17.8 18.5 1.8 18.2 0.8

Anion accumulation [nmol mg
-1

 FW]
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Accession NO3
1- SD PO4

3- SD SO4
2- SD

Lz.0 127.2 5.6 21.0 3.3 17.9 1.3

Map.42 141.6 5.6 - - - -

MIB.15 152.0 9.2 17.6 1.9 - -

MIB.22 107.9 7.1 - - - -

MIB.28 133.3 2.6 18.3 1.2 13.9 1.7

MIB.84 127.1 13.1 16.3 1.5 18.6 1.1

MNF.Che.2 111.0 10.3 16.8 1.0 15.7 1.3
MNF.Jac.32 164.8 22.6 14.9 0.2 17.2 0.6

MNF.Pot.48 134.3 4.0 18.3 1.7 12.7 0.8

MNF.Pot.68 135.1 11.7 19.8 1.9 13.1 1.0

MOG.37 129.3 12.7 17.0 0.6 13.1 1.2

Mr.0 130.0 1.3 - - - -

Mrk.0 106.1 7.4 15.5 0.4 18.4 1.3

Mt.0 103.3 6.1 18.7 1.4 15.5 0.7
Mz.0 119.2 9.5 17.8 1.5 15.8 1.1

N13 123.6 3.9 15.5 1.7 9.3 0.5

Na.1 125.4 8.7 16.2 1.5 12.7 0.6

Nd-1 - - - - 20.8 0.8

NFA-10 166.0 11.2 22.6 2.3 24.6 2.1

NFA-8 182.7 26.0 - 6.6 - -

Omo2.1 118.1 10.1 15.8 1.7 16.3 3.6

Or-1 126.5 13.3 - - 12.6 2.0
Ost.0 94.9 5.2 14.3 2.1 18.5 1.5

Oy.0 112.2 13.5 14.6 0.8 13.4 1.4

Pa.1 82.3 9.7 8.4 0.9 9.4 0.9

PAR.3 113.6 8.8 12.9 0.7 10.3 0.4

PAR.4 107.3 10.2 13.8 1.9 7.8 1.9

PAR.5 117.2 13.7 25.0 0.9 16.0 1.4

Paw.3 126.7 12.1 18.7 2.6 9.8 1.3
Per.1 110.2 19.2 - - 9.9 1.5

Petergof 125.8 14.1 - - 12.0 2.2

Pna.17 124.5 12.7 - - - -

Pro.0 136.9 19.7 15.7 3.2 12.2 1.6

Pu2.23 94.5 4.5 16.3 1.5 18.7 1.5

Ra.0 120.0 12.9 10.2 1.6 14.0 0.4

Rak.2 94.8 5.9 16.1 2.4 13.8 1.3

Ren.1 124.4 13.5 12.1 1.6 - -
Rev.2 106.2 16.3 12.8 3.2 18.3 2.7

Rmx.A180 123.7 16.6 12.4 1.2 10.2 1.6

ROM.1 114.8 13.4 11.0 1.9 12.5 0.9

RRS.10 131.4 13.2 15.2 1.0 9.5 0.5

Rsch.4 - - 13.3 2.1 20.0 0.9

Sanna.2 157.7 20.0 15.2 2.4 17.0 1.6

Sap.0 - - 15.0 1.3 16.9 1.6

Sav.0 128.4 8.8 11.7 1.7 11.8 1.3
Se.0 - - 12.5 0.4 14.8 2.9

Anion accumulation [nmol mg
-1

 FW]
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Accession NO3
1- SD PO4

3- SD SO4
2- SD

T1040 175.0 16.1 13.6 0.1 11.6 0.8

T1060 151.6 2.1 19.5 1.7 11.7 1.6

T1080 168.8 7.2 25.2 1.3 10.9 0.7

T1110 152.6 12.2 19.3 0.5 13.6 1.4

T510 142.8 8.5 18.1 1.0 11.4 0.8

T540 144.3 6.0 25.8 1.0 18.8 2.7

T620 139.4 10.8 24.9 1.3 12.6 1.9
T690 175.0 5.4 17.1 2.4 9.2 2.3

Ta.0 109.7 11.5 18.7 1.4 14.5 1.9

TAD.01 133.9 4.6 17.8 1.3 11.9 0.7

Tamm.2 - - 14.7 2.1 18.7 1.3

TDr.3 108.2 1.9 19.6 1.6 12.2 1.1

TDr.8 111.7 9.4 16.6 0.6 16.1 2.1

TDr.18 112.1 10.2 17.4 2.2 13.6 1.3
Tomegap.2 - - - - 13.4 2.2

Tottarp.2 142.9 7.2 15.1 0.8 13.7 0.8

TOU.A1.115 131.4 8.3 19.1 1.3 15.6 1.0

TOU.A1.116 146.4 7.7 16.2 0.9 16.9 1.4

TOU.A1.62 247.1 25.7 37.0 3.5 27.1 2.5

TOU.A1.96 242.1 23.4 33.0 3.1 23.3 0.7

TOU.C.3 229.0 7.3 38.9 1.3 30.2 1.5

TOU.E.11 94.2 5.0 - - 17.0 0.4
TOU.I.17 108.2 10.6 - - 12.7 1.6

TOU.I.6 106.0 7.8 - - 12.7 1.1

TOU.J.3 108.2 11.6 - - 11.3 1.0

Ts.1 107.4 12.6 13.1 1.2 16.7 0.8

UduI.1.34 106.2 10.7 14.5 0.9 18.0 0.7

UKID22 103.3 5.6 73.1 1.1 12.7 0.7

UKID37 134.8 4.9 16.8 0.2 17.7 0.8
UKID48 129.4 8.2 13.2 1.0 15.7 0.8

UKNW06.059 123.8 5.5 13.7 0.7 15.2 0.3

UKNW06.386 121.6 12.9 18.7 1.4 14.3 1.5

UKNW06.460 127.2 9.9 18.3 1.1 12.6 0.4

UKSE06.062 133.1 7.5 20.6 1.5 17.3 1.6

UKSE06.278 118.0 13.7 21.3 2.5 19.8 0.6

UKSE06.351 124.8 14.1 13.1 2.0 12.5 1.0

UKSE06.414 104.9 6.1 15.1 1.2 16.6 3.4
UKSE06.429 114.8 19.4 13.9 2.3 12.6 2.0

UKSE06.466 101.9 9.2 - - 13.5 0.6

UKSE06.628 107.6 2.9 15.9 0.8 13.6 1.5

UKSW06.202 101.0 7.9 14.6 2.8 13.7 1.4

Ull2.5 99.8 4.4 13.1 1.3 15.2 1.2

Ull3.4 140.7 13.1 15.6 1.9 11.3 2.5

Uod.7 - - 18.2 2.5 17.3 1.2

Var2.1 115.7 10.0 15.8 0.8 10.1 1.3
Wil.1 96.6 5.1 - - 14.5 1.3

Anion accumulation [nmol mg
-1

 FW]
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Accession NO3
1- SD PO4

3- SD SO4
2- SD

Wt.5 111.6 7.7 13.3 1.9 18.3 1.4

X328PNA054 126.2 15.6 13.0 1.3 6.7 1.4

ZdrI.2.24 124.4 5.9 18.5 1.5 12.0 1.9

ZdrI.2.25 140.5 7.0 22.6 3.9 13.6 0.9

Zdr.6 - - 14.5 1.6 12.7 1.8

Anion accumulation [nmol mg
-1

 FW]

 

 

 

 

 

 

 

 

 

The dataset generated for GWAS (see Chapter 5) includes the concentration of nitrate, phosphate 
and sulfate in arabidopsis natural accessions. The anion concentration was measured in five week 
old plants grown in the soil in 10 hours light conditions (see section 5.2.2). 
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The image of transcript abundance of AT5G03430 at different developmental stages in different 
plant organs was obtained from eFP browser (Winter et al. 2007).   

 

 

 

 

 

 

 

 

 

 

Figure S6.1 Expression of AT5G03430 at different developmental stages 
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(A) Nitrate concentration, (B) sulfate concentration, (C) phosphate concentration in the 
representative accessions with no amino acid changes in the protein sequence, with deletion 
including second exon, and with deletion excluding second exon. The bars indicate average value of 
five independent plants ± standard error. 

 

 

 

 

 

Figure S6.2 Anion concentration in particular accessions from three AT5G03430 haplotype 

groups 
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