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ABSTRACT 

MicroRNAs are short endogenous non-coding RNA molecules, typically 19-25 

nucleotides in length, which negatively regulate gene expression.  In osteoarthritis (OA), 

several genes necessary for cartilage homeostasis are aberrantly expressed, with a number 

of miRNAs implicated in this process. However, our knowledge of the earliest stages of 

OA, prior to the onset of irreversible changes, remains limited. The purpose of this study 

was to identify miRNAs involved across the time-course of OA using both a murine model 

and human cartilage, and to define their function.   

Expression profile of miRNAs (Exiqon) and mRNAs (Illumina) on total RNA purified 

from whole knee joints taken from mice which underwent destabilisation of the medial 

meniscus (DMM) surgery at day 1, 3 and 7 post-surgery showed: the miRNA expression 

in whole mouse joints post DMM surgery increased over 7 days; at day 1 and 3, the 

expression of only 4 miRNAs altered significantly; at day 7, 19 miRNAs were upregulated 

and 15 downregulated. Among the modulated miRNAs, the miR-29b was the most 

interesting and was chosen to further investigate since integrating analysis of the miRNA 

and mRNA expression array data showed the inverse correlation between miR-29b and its 

potential targets.  In end-stage human OA cartilage and in murine injury model, the miR-

29 family was found to increase expression. Moreover, the miR-29 family was found to be 

the negative regulator in both human and murine chondrogenesis, and was also found to 

involve in murine limb development. Expression of the miR-29 family was found to 

suppress by SOX9 at least in part through directly binding to the promoter of the primary 

miR-29a/b1. Also, TGFβ1/3 decreased expression of the miR-29 family whilst Wnt3a did 

not have any effect. Lipopolysaccharide suppressed the miR-29 family expression in part 

through NFκB signalling pathway while the IL-1 strongly induced its expression partly 

through P38 MAKP signalling. Using luciferase reporter assay, the miR-29 family was 

showed to suppress the TGFβ, NFκB, and WNT/β-catenin signalling pathways. Gene 

expression profiles of gain- and-loss-of-function revealed regulation of a large number of 

previously recognised extracellular matrix-associated genes as well as an additional subset 

of protease and Wnt signalling pathway-related genes.  Among these genes, ADAMTS6, 

ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19, FZD3, DVL3, FRAT2, CK2A2 were 

experimentally validated as direct targets of the miR-29 family.   
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CHAPTER 1 
INTRODUCTION  

 

1.1. Synovial joints  

In mammals, joints are functionally classified into 3 categories: synarthroses (immovable 

joints), amphiarthroses (slightly movable joints), and diarthroses (freely movable joints).  

Most of the main joints of the appendicular skeleton are synovial joints, suggesting this 

type of joint has a crucial role in the body. The main component of synovial joints includes 

the hyaline cartilage, also known as articular cartilage, covering the bone of the synovial 

joint providing the cartilage lubricating and shock absorbing characteristics; a capsule 

enclosing the joint in line with synovial membrane which contains synovial membrane-

resident cells secreting synovial fluid into the synovial cavity helping reduce friction, 

enabling free movement; bones, further held together by ligaments. The characteristics of 

some important components of the synovial joint relevant to this PhD thesis are described 

below.  

1.1.1. Articular cartilage biology  

Articular cartilage, a highly specialized tissue with unique mechanical behaviour, consists 

of (i) chondrocytes, the only cells, responsible for the homeostasis of extracellular matrix 

(ECM), and (ii)  a dense layer of ECM composed primarily of water, collagen and 

proteoglycan.   

1.1.1.1 Cartilage structural organization 

Healthy articular cartilage comprises four different areas: the superficial, intermediate, 

radial or deep, and calcified zones (Buckwalter et al. 2005, Dudhia 2005, Pearle et al. 

2005, Aigner et al. 2006, Martel-Pelletier et al. 2008, Umlauf et al. 2010, Houard et al. 

2013) (Figure 1.0). Each is characterized by a particular chondrocyte phenotype, and by 

distinctive extracellular matrix organization and composition (Buckwalter et al. 2005).  

The superficial zone, the articulating surface and the thinnest of the four, makes up 10%-

20% of articular cartilage thickness (Buckwalter et al. 2005, Pearle et al. 2005). This 
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region contains a high amount of collagen (primary type II, and IX) but very low amount 

of proteoglycan. The collagen fibrils are densely packed and aligned paralleled to the 

articular surface. Chondrocytes in this layer are characterized by an elongated appearance 

(Pearle et al. 2005), express many proteins having lubricating and protective functions (e.g. 

lubricin) but relatively little proteoglycan. This zone is in contact with synovial fluid, and 

is responsible for most of the tensile properties of cartilage that enable cartilage to resist 

shear and the tensile and compressive forces imposed by the movement of the articulation 

(Martel-Pelletier et al. 2008).  

 

 

Figure 1.0: Histology of a healthy cartilage structural  

The articular cartilage is organized into superficial, intermediate, radial, and calcified 
zones. Each zone can be distinguished by the difference in chondrocyte morphologies and 
components of collagen, proteoglycan, mineral and water 

 

The intermediate and the radial zones contain large diameter collagen fibrils oriented 

perpendicular to the articular surface. These regions also have high amount of 

proteoglycan which is mainly aggrecan, a large chondroitin sulphate proteoglycan. 

Chondrocytes in the middle zone are more round than in the superficial zone. In the radial 

zone, the cells are arranged in columnar fashion (Buckwalter et al. 2005).  
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The tide mark, a thin line revealed after hematoxylin staining, marks the mineralization 

front between the calcified and non-calcified articular cartilage (Houard et al. 2013). In the 

calcified cartilage zone, the cell population is very scarce and chondrocytes are 

hypertrophic (Pearle et al. 2005, Martel-Pelletier et al. 2008). With aging, bloods vessels 

and nerves can be seen in calcified cartilage arising from the subchondral bones (Lane et al. 

1977). The main function of this zone seems to be to anchor the cartilage to the bone as 

collagen fibrils from the radial zone penetrate into the calcified cartilage.  

Furthermore, it is noteworthy to know that for mechanical protection purposes, in articular 

cartilage, the chondrocyte is surrounded by a pericellular matrix and a territorial cartilage 

matrix forming a capsule-like structure around the cells. Whilst the pericellular matrix is 

made of a thin layer of non-fibrillar material, which most likely represents the synthetic 

products of the chondrocytes, such as proteoglycans and glycoproteins, the pericellular 

matrix also contains a dense meshwork of thin collagen fibers (see below) (Dudhia 2005, 

Aigner et al. 2006, Martel-Pelletier et al. 2008, Heinegard et al. 2011).  

1.1.1.2 Biology of chondrocytes  

As mention above, chondrocytes are the only cellular components of articular cartilage, 

make up 5% of the wet weight of articular cartilage, and are surrounded by a pericellular 

matrix containing type VI collagen, microfibrils, hyaluronic acid, biglycan, and decorin 

but little or no type II collagen (Buckwalter et al. 2005, Dudhia 2005, Heinegard and 

Saxne 2011). The arrangement of chondrocytes and articular cartilage specific organisation 

result from a complex development process called endochondral ossification including 

four steps e.g. chondrogenesis, chondrocyte differentiation and hypertrophy, 

mineralization and invasion of bone cells, and finally the formation of bone (DeLise et al. 

2000, Goldring et al. 2006, Goldring 2012). Chondrocytes arise from mesenchymal 

progenitors as a result of chondrogenesis started with the condensation of mesenchymal 

stem cell (expressing collagens I, III and V), and followed by the differentiation of 

chondroprogenitor cell (expressing cartilage-specific collagens II, IX and XI) (Goldring et 

al. 2006). After chondrogenesis, the chondrocytes remain as resting cells to form the 

articular cartilage or undergo proliferation, terminal differentiation to chondrocyte 

hypertrophy, and apoptosis. 
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There are no blood vessels in articular cartilage, thus the cells rely on diffusion from 

articular surface or subchondral bone for nutrients and metabolites. Importantly, the 

oxygen level in the cartilage matrix is quite low, ranging from 10% at the surface to less 

than 1% in the deep zone (Silver 1975), suggesting the cells have to adapt to this low 

oxygen level. The mechanisms of this adaption remain unclear but some published data 

reported the involvement of hypoxia inducible factor -1 alpha (HF-1α) (Schipani et al. 

2001, Pfander et al. 2003). Hipoxia via HIF-1α can stimulate chondrocytes to express a 

number of genes associated with cartilage anabolism and chondrocyte differentiation like 

SOX9, TGFβ (Amarilio et al. 2007).  

1.1.1.3 Biology of cartilage extracellular matrix  

Together with chondrocytes, extracellular matrix (ECM) produced by these cells is among 

the main components of articular cartilage and its integrity is critical for the cartilage 

biochemical properties and joint physical function.  

About structure, the ECM in articular cartilage is organized into pericellular, territorial, 

interterritorial zones, each of which is represented at specific distance from the 

chondrocytes (Dudhia 2005, Heinegard and Saxne 2011) (Figure 1.1). 
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Figure 1.1: Molecular organisation of normal articular cartila ge. 

The cartilage matrix surrounding chondrocytes in healthy articular cartilage is arranged 
into zones defined by their distance from the cell. Pericellular matrix lies immediately 
around the cell and is the zone where molecules that interact with cell surface receptors are 
located. Next to the pericellular matrix, slightly further from the cell, lies the territorial 
matrix. At largest distance from the cell is the interterritorial matrix (adapted from 
Heinegard et al, 2011) (Heinegard and Saxne 2011) 

Biochemically, of the ECM, approximately 70% is water (Pearle et al. 2005) , and 30% left 

is solid, of which 5-6% are inorganic compounds (hydroxyapatite), and the remaining 25% 

are organic compounds. Of the organic components, type II collagen constitutes 68% and 

the 32% left is formed by proteoglycan (mainly aggrecan) (Martel-Pelletier et al. 2008). 

The biology of aggrecan and collagen and their functions in articular cartilage are 

described as below. 

1.1.1.3.1 Aggrecan  

Molecules made up of a core protein attached to glycosaminoglycan chain are referred as 

proteoglycan. In articular cartilage, the most abundant proteoglycan is aggrecan, composed 

of chondroitin sulphate chains and keratan sulphate chains with N- and O-linked 

oligosaccharides. Aggrecan has three globular domains (G1, G2 and G3) and three 

extended domains (IGD, KS and CS). The N-terminal G1 domain, responsible for 

aggrecan-hyaluronan interaction, is followed after the signal peptide. The inter-globular 

(IGD) connects G1 and G2 domains, whose functions are unclear. Keratan sulphate 

binding (KS) and chondroitin sulphate (CS) domain lie between G2 and G3 domains 

(Kiani et al. 2002, Dudhia 2005, Martel-Pelletier et al. 2008, Heinegard and Saxne 2011) 

(Figure 1.2). 
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Figure 1.2: Aggrecan structure.  

Aggrecan consists of 3 globular domains (G1, G2, and G3) and an attached GAG chain 
structure. The GAG attachment region is separated into keratin sulphate binding (KS) 
domain and chondroitin sulphate (CS) domain (Adapted from Kiani et al, 2002) (Kiani et 
al. 2002).  

 

The chondroitin sulphate domain is the largest domain of aggrecan and is composed of 

around 100 chondroitin sulphate chains (typically around 2kDa each). Each chain is made 

up of some 50 disaccharides of glucuronic acid and N-acetylgalactosamine, with a sulphate 

group in the 4- or 6- position. The negatively-charge chondroitin sulphate chain accounts 

for the major function of aggrecan as a structural proteoglycan. The function of the keratan 

sulphate domain is not very clear but may be involved in the tissue distribution of aggrecan. 

There are about 30 KS chains, usually of small size (5-15 kDa), attached to the mature 

aggrecan molecule.  

Chondroitin sulphate, keratan sulphate, and the interaction of aggrecan and hyaluronic acid 

are responsible for retaining water the cartilage. The interaction between aggrecan and 

collagen fibrils makes the ECM highly hydrophilic, leading to high resistance to 

compressive mechanical loads (Dudhia 2005, Martel-Pelletier et al. 2008).  

1.1.1.3.2 Collagen  

Collagen fibrils are composed of a protein macromolecular providing cartilage with 

resistance to tension. Collagen type II constitutes 85% total collagen content in the ECM 

of articular cartilage. Apart from type II Collagen, ECM also contains other collagens 

called minor collagens since their concentration is low in comparison with the type II 

collagen. A list of these collagens is provided in Table 1.1.  

All fibril collagens are synthesized in the form of three polypeptide α-chains as a 

procollagen in which each chain has an N-terminal extension and a C-terminal extension. 

The three chains are covalently linked via disulphide bridges in the C-terminal propeptide. 

Following or during secretion of procollagens into the extracellular matrix, the terminal 

propeptides are cleaved off by specific proteinases e.g. ADAMTS-2, ADAMTS-3, 

ADAMTS-14 (cleaves the N-terminal) (Lapiere et al. 1971, Fernandes et al. 2001, Colige 

et al. 2002), and BMP-1 (cleaves the C terminal) (Wermter et al. 2007) to produce the 

mature collagen molecules. The mature collagens then spontaneously self-assemble into 
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cross-striated fibrils in the extracellular matrix. The fibrils are stabilized by covalent cross-

linking (Figure 1.3) 

Collagen molecules then associate on a core of two homologous collagen XI and two 

collagen II molecules to form an outer shell of 10 collagen II molecules of the micro fibril. 

In addition to collagen type II, fibers contain other collagens, particular collagen type IX. 

The collagen network is then stabilized by the formation of covalent crosslinks that link 

the collagen II chains. The links formed are both intra- and inter-molecules, for example, 

between the chains of collagen XI, between collagens e.g. collagen II and collagen IX. 

Many other proteins also have a high affinity for collagens including thrombospondins, 

leucine-rich repeat proteins (biglycan, decorin, fibromodulin, lumican), matrillins, and 

fibronectin. Some of these interactions support fibre formation while others modify the 

collagen fibre surface to provide sites for interactions with neighbouring structures 

(Heinegard and Saxne 2011).  
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Collagen 
types 

Characteristics 

Type IX Located on the surface of type II collagen fibrils; promotes the binding of the fibrils 
to other components of the matrix and to each other; carries a glycosaminoglycan 
chain. 

Type XI Forms the core of the same fibrosis. Regulates the formation and the diameter of 
the fibrils  

Type V Sometimes replaces the type XI collagen in cartilage; included in type I collagen 
fibrils in other tissues. Data on the composition and structure of the third a-chain 
are contradictory  

Type III Small amount are covalently bound to type II collagen  
Type XII Very small amounts are present on the surface of type II collagen  
Type XIV Very small amounts are present on the surface of type II collagen 
Type VI As in other tissue, forms a network of microfibrils. Concentrated mainly in the 

pericellular areas, provides a connection between the chondrocytes and the matrix  
Type X Expressed only by hypertrophic chondrocytes in cartilage areas undergoing 

ossification  
Type XXVII Expressed in cartilage tissue  

Table 1.1 Minor collagen of cartilage tissue (adapt from Omelyanenko et al, 
2014)(Petrovich et al. 2014) 
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Figure 1.3: The formation of the fibrillar collagens  

 

Procollagen is secreted from cells and converted into collagen by removal of the N- and C- 
propeptids by pro-collagen metalloproteinases. This produces mature collagen that 
spontaneously self-assembles into cross-striated fibrils which are stabilized by covalent 
cross-linking. Taken from (Kadler et al, 1996)(Kadler et al. 1996). 
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1.1.2. Synovium 

Synovium is a thin tissue only a few cell layers thick (Fell 1978). The synovium acts as the 

controller for the environment within the joint where nutrients for chondrocytes can pass 

into the synovial cavity. Also, the synovium gives the joint its mechanical properties. The 

synovium can be divided into two compartments e.g. the synovial lining and the sub-lining. 

The synovial lining contains two cell types e.g. type A (macrophage-like cells) clearing 

all excess materials and potential pathogens from the joint, producing and secreting a 

number of enzymes and cytokines and chemokines that mediate tissue damage and 

inflammation in disease; type B synoviocytes, fibroblast like cells, producing the main 

component of synovial fluid, hyaluronan. The synovial sublining consists of connective 

tissue containing blood vessels, fibroblasts, adipocytes, and a limited number of resident 

immune cells, such as macrophage and mast cells (Smith et al. 2003). The synovial fluid 

has crucial role for lubrication of the joint and for transporting nutrients and oxygen to the 

cartilage. 

1.1.3. Bone 

Periarticular bone can be separated into distinct anatomic entities e.g. the subchondral 

bone plate, the subchondral trabecular bone, and the bone at the joint margins. The 

subchondral bone plate consists of cortical bone, which is relatively nonporous and poorly 

vascularized. It is separated from the overlying articular cartilage by the zone of calcified 

cartilage.  

Bone is a very dynamic tissue with constantly undergoing remodelling in which bone 

resorption is normally followed by new bone formation. The primary cell responsible for 

bone resorption is the osteoclast, a specialized multinucleated cell of hemopoietic origin 

(Roodman 1999). Bone resorption takes place under a specialized area of the osteoclast 

cell membrane called “ruffled border,” which comprises a sealed lysosomal compartment 

where the acidic pH solubilizes the mineral and proteolytic enzymes digest the matrix.  On 

the contrary, osteoblasts, the bone forming cells, originally from MSCs committed to 

osteoblastic lineage. Osteoblasts synthesize and secrete most of the proteins of the bone 

matrix, including type I collagen and non-collagenous proteins (Caetano-Lopes et al. 

2007). In normal physiological condition, the amount of bone removed during the 

resorption and formation phases is balanced such that bone mass is maintained.  
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1.2. Osteoarthritis  

Osteoarthritis (OA) is defined by the American College of Rheumatology as a 

“heterogeneous group of conditions that lead to joint symptoms and signs which are 

associated with defective integrity of articular cartilage, in addition to related changes in 

the underlying bone at the joint margins’’.  

There are more than 100 types of arthritis. However, OA or degenerative joint disease is 

the most common type. From a clinical point of view, OA can be classified into two 

categories e.g. primary  which refers to its occurrence not related to any prior condition or 

event which is also referred as idiopathic, and secondary which refers to the development 

of the disease after trauma or pre-existing condition.   

The disease most commonly affects the middle-age and elderly, although it may begin 

earlier as result of injury, obesity or congenitally. As a greater proportion of the population 

is old aged and with increasing obesity, OA will have a great impact on society in the 

future with enormous socioeconomic costs.  

1.2.1. Osteoarthritis pathology 

It is now considered that OA is a disease of the whole joint as an organ resulting in “joint 

failure” where all major components of the joint e.g. the cartilage, the synovium, and the 

underlying bone are affected (Loeser et al. 2012). The pathologic changes seen in OA 

include cartilage destruction, fibrosis of the synovial capsule, hyperplasia of the synovial 

membrane, osteophyte formation, the subchondral bone thickening (Figure 1.4) (Aigner et 

al. 2006, Loeser et al. 2012). These changes result from an incompletely understood series 

of functional events. 
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Figure 1.4: Overview of the pathologic changes associated with OA. 

In a normal joint, the subchondral bone is covered by a thick layer of articular cartilage 
and the joint is enclosed in a capsule where the synovial membrane lies. In an OA joint, 
articular cartilage is destroyed, the subchondral bone is remodelled (thickens), the synovial 
capsule is fibrosed and osteophytes are formed (reprinted from Aigner et al, 2006) (Aigner 
et al. 2006) 
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1.2.1.1.Articular cartilage destruction in osteoarthritis  

Biochemical, genetic factors, and mechanical stress contribute to the OA lesion in cartilage, 

leading to articular cartilage degradation, and chondrocyte metabolism disorders as a 

consequence. Articular cartilage degeneration is a two phase process controlled mainly by 

chondrocytes e.g. a short biosynthesis phase where the cells attempt to repair the damaged 

ECM, followed by the degenerative phase, where the cells destroy the articular cartilage by 

increasing the synthesis of matrix degradating proteinases and decreasing their synthesis of 

matrix components, in particular of aggrecan. Besides changes in synthesis and 

degradation, other aberrant behaviours in cell proliferation and death, and phenotypic 

modulation are also observed in OA chondrocytes (Sandell et al. 2001).  

Contrary to normal chondrocytes with no proliferative activity, OA chondrocytes have a 

low proliferative activity (Meachim et al. 1962, Rothwell et al. 1973, Lee et al. 1993), 

explained in part due to the better access to proliferation factors from the synovial fluid as 

well as due to the damage of the ECM (Meachim and Collins 1962, Lee et al. 1993), 

subsequently causing chondrocyte clustering, a characteristic feature of OA cartilage. 

Chondrocyte death, caused by apoptosis, necrosis, or other cell death mechanisms such as 

chondroptosis, is another known feature of OA.  Many studies have demonstrated the 

significant correlations between chondrocyte death and severity of OA and aging. These 

changes are associated with the production of reactive oxygen species, a lack of growth 

factors, release of glycosaminoglycan and mechanical injury. However, which of these 

types of cell death predominate in OA is debatable. The detection of specific form of cell 

death in articular cartilage is difficult in which current gold standard for detecting 

chondrocyte death is electron microscopy which suggests that the morphological changes 

of chondrocytes in OA cartilage are attributed to apoptosis and / or chondroptosis.  

Chondrocyte death by apoptosis has been reported play an important role: normal cartilage 

explants or chondrocyte culture exposed to nitric oxide, collagenase, anti CD-59, or 

mechanical factors e.g. shear strain, loading strain induced apoptosis; cartilage from 

equine joints have shown that chondrocyte apoptosis is positively correlated with early 

stages of OA and severity of cartilage damage (Zamli et al. 2011).  
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When the damage occurs, the chondrocytes attempt to repair the damaged matrix by 

increasing their anabolic activity to enhance ECM synthesis. However, a net loss of ECM 

content is one of the hallmarks of all stages of OA, suggesting the dominance of ECM 

degradation over the synthesis. This is characterized by the increase in expression and 

activation of matrix-degrading enzymes e.g. matrix metalloproteinase (MMPs) and 

aggrecanases (from the ADAMTS family) (Buckwalter et al. 2005, Pearle et al. 2005, 

Aigner et al. 2006, Umlauf et al. 2010, Loeser et al. 2012). The MMPs, belonging to a 

family of zinc-dependent proteases, show activation correlating with cartilage degradation. 

Among these, the groups of collagenases 1, 2, 3 (MMP-1, MMP-8, and MMP-13, 

respectively), stromelysins (MMP-3, MMP-10, MMP-11) and gelatinases (MMP-2, MMP-

9) have the highest impact on OA cartilage breakdown (Burrage et al. 2006). The MMP-1, 

MMP-8 and MMP-13 which cleave native fibrillar collagen, contribute to the pathological 

cleavage of collagen fibrils in OA (Burrage et al. 2006). Of the collagenase group, MMP-

13 is deemed to be responsible for most of the collagen II breakdown whilst MMP-1 

cleaves type II collagen stronger than MMP-8 (Billinghurst et al. 1997) has a pivotal role 

for collagen cleavage in OA (Knauper et al. 1996). In addition to collagenases, others 

MMPs degrading non-collagen have also been shown to be elevated in OA cartilage e.g. 

the gelatinases (which cleave denatured collagen, gelatin, type V collagen) and the 

stromelysins (having substrate preference for proteoglycans, elastin, laminin, fibronectin) 

(Umlauf et al. 2010) The aggrecanases (the ADAMTS family), are also of particular 

importance in cartilage turnover, and have activity against the proteoglycan aggrecan. Of 

all ADAMTS members, ADAMTS-4 and ADAMTS-5 are most active against aggrecan 

(Arner 2002). ADAMTS-5 is constitutively expressed in chondrocytes whereas 

ADAMTS-4 expression is stimulated by proinflammatory cytokines IL-1β, and TNF-α 

(Umlauf et al. 2010) (Tortorella et al. 2001). In vitro studies with human cartilage show 

that both ADAMTS-4 and ADAMTS-5 contribute to ECM breakdown during the disease 

progression even though human recombinant ADAMTS-5 has higher rate of aggrecan 

cleavage than ADAMTS-4 (Song et al. 2007). In mice, ADAMTS-5 has been shown to be 

the major aggrecanase, by studies with ADAMTS-4 and ADAMTS-5 knockout mice in 

which only ADAMTS-5 deficiency prevented the mice from cartilage degradation in both 

inflammatory and a joint-instability model of arthritis (Glasson et al. 2005, Stanton et al. 

2005) .  
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As mentioned above, despite the attempt at repairing the ECM, the damage to the cartilage 

becomes irreversible because the adult chondrocytes fail in regenerating the normal 

cartilage matrix structure. This failure could be, in part, attributed to the phenotypic 

alteration of chondrocytes. Chondrocyte phenotypes are categorized largely by subtyping 

collagen expression e.g. chondroprogenitor cells express type IIA procollagen. The 

alternative splice variant) (Sandell et al. 1991), mature chondrocytes are marked by 

expressing type IIB procollagen, IX, and XI, aggrecan and link protein (Sandell and 

Aigner 2001), and hypertrophic chondrocytes express type X collagen (Schmid et al. 

1985). In OA cartilage degeneration, an important proportion of adult articular cartilage 

chondrocytes, found mostly in the middle zone, re-expressed type IIA procollagen 

(chondroprogenitor cells) in both early and late OA stages (Sandell and Aigner 2001). 

Cells in the upper middle zone mainly express type III collagen which is a fibroblast-like 

phenotype. This phenotype is normally observed in vitro, where the chondrocyte 

phenotypes are modulated through so-called “dedifferentiation” process by several factors 

like retinoic acid or IL-1. Dedifferentiated chondrocytes are still very active, express 

collagen types I, III and V but stop expressing aggrecan and collagen type II (Sandell and 

Aigner 2001). In the deepest zone of OA cartilage, the cells start to express type X 

collagen, specific marker for hypertrophy of growth-plate chondrocytes (Girkontaite et al. 

1996). Indeed, the hypertrophic chondrocytes in OA cartilage and in the growth-plate 

share similarities and the subsequent functional event associated with hypertrophic 

differentiation is cartilage mineralization which is also a feature of OA. However, the 

mechanism involved in pathological cartilage calcification during OA is not completely 

understood.  

 

1.2.1.2. Synovium in osteoarthritis  

Inflammation of the synovial membrane (synovitis) is identified in many OA patients 

despite lower severity and greater variability as compared to rheumatoid arthritis. It is 

reported that synovitis can occur even in early stages of the disease (Benito et al. 2005). 

Synovitis is associated with symptoms such as pain, the degree of joint dysfunction, the 

rapid degeneration of cartilage, and is characterized by the thickening of the synovial 

lining layer, leukocyte infiltration, and thickening of the sub-lining stroma. The 
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mechanisms underlying the development of synovitis in OA remain unclear. It is however 

well known that this inflammatory process is triggered by ECM degradation products, 

which engage Toll-like receptors and the complement cascade (Scanzello et al. 2012). 

Noteworthy, the synovial reaction may produce a variety of cytokines and chemokines, in 

turn affecting catabolism of chondrocytes (Scanzello and Goldring 2012).  

 Of all cell types in the inflamed OA synovium, the macrophages are among the most 

abundant and depletion of synovial macrophages has been shown to result in decreased 

osteophyte formation, and IL-1, TNF-α, IL-6, IL-8, MMP-1, MMP-3 production 

(Bondeson et al. 2010). Natural killer cells and dendritic cells are also reported to present 

in synovial tissue. However, the role of both of them in OA pathogenesis has not yet been 

elucidated in detail.  

1.2.1.3. Subchondral bone in osteoarthritis  

Articular cartilage helps to distribute load across the whole joint surface. Any alteration in 

the properties of cartilage leads to alter load experience by the underlying bone and 

probably causes a tissue remodelling response. The properties of bone might also modulate 

how the overlying cartilage reacts to load. 

Although OA is often characterized as a disease of articular cartilage, the alteration of 

bone metabolism is increasingly recognised as a mediator of pain and OA progression. 

Subchondral bone consists of a dome-like subchondral plate and underlying trabeculae, 

having a close biomechanical and biochemical relationship with the overlying cartilage. 

Strong evidence associates subchondral bone alterations with cartilage damage and loss in 

OA (Karsdal et al. 2014). However, there is still an incomplete understanding of the 

mechanisms for the numerous pathophysiological alterations detected in subchondral bone 

with OA.  

The pathological cascade may be started when the normal subchondral bone suffers from a 

non-physiological strain. In early-stage OA, the subchondral plate becomes thinner and 

more porous, together with initial cartilage degeneration.  Subchondral trabecular bone 

also deteriorates, with increased separation and thinner trabeculae. At the same time, 

microdamage begins to appear in both calcified cartilage and subchondral bone, which will 

persist throughout the whole pathological process. In late-stage OA, calcified cartilage and 

the subchondral plate become thicker, with duplicated tidemarks and progressive non-

calcified cartilage damage.  Subchondral trabecular bone becomes sclerotic (Li et al. 2013). 
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The sclerosis of periarticular mineralized tissues may be a biomechanical compensational 

adaption to the widespread cysts and microdamage in subchondral bone, which render 

subchondral bone structure more fragile (Figure 1.5).  

Despite increased bone volume density in the sclerotic subchondral bone, its 

mineralization is reduced and lower than in normal joints. Although collagen synthesis is 

elevated in subchondral bone, the deposited collagen is hypomineralized and has a 

markedly reduced calcium-to-collagen ratio [42].  

 

Figure 1.5: Alteration in subchonral bone in Osteoarthritis  

In early stage of OA, subchondral microdamage occurs, the subchondral plate is thinner 
with increased porosity, and subchondral trabeculae are deteriorated. At OA later stage, the 
calcified cartilage and subchondral plate is thicker, with reduplicated tidemarks. 
Subchondral trabecular bone becomes sclerotic (adapted from Li et al, 2013)(Li et al. 2013) 
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1.2.1.4. Osteophytes 

Osteophytes, considered as an adaptation to the altered biomechanics, are non-neoplastic 

osteo-cartilaginous protrusions growing at the margins of OA joints, and represent areas of 

new cartilage and bone formation. Osteophytes limit joint movement, represent a source of 

joint pain, and are a radiographic hallmark of OA. However, it is noteworthy that when 

osteophytes appear in the absence of other bony changes, e.g. subchondral cysts or 

subchondral sclerosis, they may be a manifestation of aging, rather than of OA. 

Osteophytes derive from precursor cells within periosteal or synovial tissue (van der Kraan 

et al. 2007) but the initial stimuli for osteophyte formation remains unclear, probably 

involving both mechanical and humoral factors as repeated injections of mouse joints with 

TGFβ or BMP induced or enhanced osteophyte formation in animals with experimentally 

induced OA (van Beuningen et al. 1998).  

Osteophytes are composed of cells that express type I procollagen mRNA, mesenchymal 

prechondrocytes that express type IIA procollagen mRNA, and maturing chondrocytes that 

express type IIB procollagen mRNA. Based on the spatial pattern of gene expression and 

cytomorphology, the neochondrogenesis associated with osteophyte formation closely 

resembles that of healing fracture callus (Matyas et al. 1997) and is also similar to the 

growth plate. Thus, osteophytes may represent an excellent in vivo model for induced 

cartilage repair processes. 

1.2.2. Anabolic and catabolic signalling in OA  

Anabolic and catabolic activation are largely the result of exposing cells to various 

cytokines and growth factors e.g. TGFβ, BMPs, IGF-1, TNF-α, IL-1β, Wnt3a. In OA 

cartilage, the catabolic and anabolic equilibrium is broken and favours the activation of 

catabolic pathways or mechanisms leading to matrix degradation.  

1.2.2.1.Anabolic signalling in OA 

As previously mentioned, the early phase of the response to mechanical injury is 

characterized by the attempt to repair the damage matrix by increasing the anabolic 

activity of chondrocytes, enhancing synthesis of extracellular matrix components. This is 

facilitated by enhancing levels of anabolic factors e.g. TGFβ, FGF, and BMPs, and Wnt.  

1.2.2.1.1. TGFβ signalling  
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The TGFβ family, consisting of over 35 members including TGFβ and BMPs, has been 

widely known to play a crucial role in the development and homeostasis of various tissues. 

Activated TGFβ (TGFβ-1, -2, -3) binds to their two receptor complex, TGFβ-R1 and 

TGFβ-RII and phosphorylates members of the receptor-specific Smad family, Smad2 and 

Smad3. Upon phosphorylation, Smad2/3 subsequently forms a complex with the common 

mediator Smad4. This complex then translocates into the nucleus where it can act as a 

transcription factor. Unlike TGFβ-1, -2, -3 which signal via Smad2/3/4, BMPs transduce 

their signal through Smad-1, -5 and -8 (Miyazawa et al. 2002, Verrecchia et al. 2002).  

Members of the TGFβ family are considered potent mediators of cartilage matrix synthesis, 

in which they up-regulate the expression of several types of collagens and proteoglycan 

but down-regulate cartilage degrading enzymes (Verrecchia et al. 2001, Verrecchia and 

Mauviel 2002). Despite such promising data, therapeutic studies with TGFβ revealed 

major side effects e.g. injection or adenovirus–mediated delivery of TGFβ1 into normal 

murine knee joint resulted in joint fibrosis and osteophyte formation (van Beuningen et al. 

1998) .  

1.2.2.1.2. Wnt signalling 

The human Wnt family includes 19 members which mostly exert their function by binding 

to Frizzled (FZD) receptor proteins and LRP-5/6 co-receptor proteins, in turn activating 

several signal transduction pathways e.g. canonical, and non-canonical signalling 

pathways. In the canonical Wnt pathway, most β-catenin in the cytoplasm is sequestered 

and targeted for proteasome-mediated degradation within a multi-protein complex of 

casein kinase, axin, the adenomatous polyposis coli tumour suppressor protein (APC) and 

glycogen synthase kinase 3β (GSK3β). With the presence of appropriate Wnt ligands, 

signalling through the Frizzled receptors inhibits this degradation process, and thereby 

leads to β-catenin accumulation and translocation into the nucleus (Clevers 2006). Within 

the nucleus, it acts in concert with Tcf/Lef transcription factors to generate a 

transcriptionally active complex that regulates a number of genes e.g. MYC, cyclin D1, 

MMP3 and CD44, E-cadherin, MMP7, MMP26(Dell'accio et al. 2008, Umlauf et al. 2010). 

In contrast to the canonical pathway, non-canonical Wnt signalling is mostly a β-catenin 

independent mechanism like the Wnt/calcium and Wnt/JNK pathways in vertebrates and 

the Wnt/planar cell polarity pathway (PCP) in flies (Willert et al. 2006). In addition, there 
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are some natural extracellular inhibitory factors for Wnt signalling. One of the best 

characterized families is the Dickkopf (Dkk) family which bind to LRP-5/6 and antagonize 

the canonical pathway. Other antagonists are the secreted frizzled-related protein (sFRP) 

family which bind directly to Wnt ligands and inhibiting both canonical and non-canonical 

Wnt pathways (Kawano et al. 2003).  

A number of published data provide evidence of the critical role of Wnt signalling in OA 

development. Direct evidences come from animal model studies where β-catenin is 

conditionally activated or inhibited in articular cartilage chondrocyte of adult mice (Zhu et 

al. 2008, Zhu et al. 2009). Mice with β-catenin activated had OA-like cartilage 

degradation, osteophyte formation, associated with accelerated chondrocyte maturation 

and MMP13 expression (Zhu et al. 2009). Similarly, selective suppression of β-catenin 

signalling in Col2a1-ICAT (inhibitor of β-catenin and TCF) transgenic mice also causes 

OA-like cartilage degradation(Zhu et al. 2008). In line with these reports, in vitro culture 

of human primary chondrocyte, either activation or blockade of β-catenin signalling all 

resulted in cartilage loss (Nalesso et al. 2011).  These data suggest that balanced β-catenin 

levels are essential for maintaining homeostasis of articular chondrocytes and that any 

factors impairing this balance could lead to pathological changes. Moreover, LRP5 is 

located in chromosome 11q12-13, which is thought to be an OA susceptibility locus. 

LRP5-/- mice displayed increased cartilage degradation, probably due to low bone mass 

density (Lodewyckx et al. 2012). Another study in a mouse OA model also demonstrated 

that control of Dkk1 expression, a negative regulator of β-catenin/Wnt signalling, prevents 

joint cartilage deterioration in OA knees through attenuating the apoptosis regulator Bax, 

MMP3 and RANKL (Weng et al. 2010). Also, the inhibition of Dkk1, has been reported to 

be able to reverse the bone-destructive characteristics of rheumatoid arthritis to the bone-

forming characteristics of OA (Diarra et al. 2007). This evidence further supports the 

crucial role of β-catenin/Wnt signalling in OA. Wnt signalling is also reported to function 

as an OA initiation factor e.g. a down-regulation of Wnt antagonist FRZB and an up-

regulation of the ligand Wnt16 and target genes encoding β-catenin, Axin-2, C-JUN and 

LEF-1 was observed in mouse model of mechanical injury, a major cause of OA; 

expression of WNT1-inducible signalling protein (WISP-1) was also increased twofold in 

cartilage lesions compared to healthy intact cartilage (Blom et al. 2009).  
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Human studies also observed the critical role of WNT signalling in OA development. A 

loss-of-function allelic Arg200Trp and Arg324Gly Frzb variants, encoding sFRP-3, a β-

catenin/Wnt signalling inhibitor, contributed to genetic susceptibility of women to hip OA 

(Loughlin et al. 2004, Lane et al. 2006). Given the close relationship between bone shape 

and OA development, Baker-Lepain et al proposed that SNPs in Frzb are associated with 

the shape of proximal femur and further contribute to hip OA development (Baker-Lepain 

et al. 2012). Moreover, the Frzb knockout mice increased articular cartilage loss during 

arthritis triggered and this damage was associated with increased WNT signalling and 

MMP-3 expression and activity. Also, the FRZB deficiency resulted in the cortical bone 

thickness and density with stiffer bones (Lories et al. 2007). 

1.2.2.2. Catabolic signalling in OA 

Opposing the anabolic effects of growth factors are pro-inflammatory cytokines and a 

variety of mediators associated with inflammation e.g. NO, prostaglandins, IL-1β, TNF-α, 

IL-6, IL-8 These factors are first produced by the synovial membrane and diffuse into the 

cartilage through synovial fluid, together with activate chondrocytes which also have the 

capacity to produce a variety of cytokines and mediators, responsible for functional 

alterations in the synovium, the cartilage, and the subchondral bone. Their role in OA has 

attracted considerable attention.   

Of pro-inflammatory cytokines, IL-1β, TNF-α seem prominent and of major importance to 

cartilage destruction. The biologic activation of cells by IL-1 is mediated through the 

association with its specific receptors e.g. type I and II IL-1R. Especially, the type I IL-1R, 

responsible for signal transduction, was found to increase in OA chondrocytes and 

synovial fibroblasts. IL-1β is a critical mediator, and stimulation of chondrocytes by IL-1β 

causes gene expression patterns similar to those in OA cartilage (Goldring et al. 1988, 

Lefebvre et al. 1990). IL-1β localizes to the site of cartilage degradation in OA joints, 

providing evidence of its key role in the pathogenesis of OA (Tetlow et al. 2001, Pujol et 

al. 2008). IL-1β was reported to suppress aggrecan and collagen and up-regulate the 

proteolytic enzymes e.g. ADAMTS4 and MMP13 (Goldring 2000, Kobayashi et al. 2005).  

In addition, IL-1β, or IL-1β-converting enzyme knockout mice showed the accelerated 

development of OA lesions in response to OA surgical induced compared to wild type 

mice (Clements et al. 2003).  The blocking effects of IL-1β by IL-1 receptor antagonist 
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(IL-1ra), which is the natural inhibitor of IL-1β by competing with IL-1β for occupancy of 

the IL-1β cell surface receptors but cannot initiate cellular signals protect against the 

development of experimentally induced OA lesions in animal models e.g. dogs, horses 

(Pelletier et al. 1997, Frisbie et al. 2002).  Interestingly, it was reported that the IL-1β 

concentration is low in inflamed joints and a level from 10-1000 fold excess of IL-1ra over 

IL-1β was required to efficiency block all of the available IL-1β  receptors enough to 

inhibit joint degradation (Pelletier et al. 1997). 

1.2.2.2.1. NFκB Signalling  

The transcription factor NFκB is the master regulator of expression of a number of genes 

critical to innate and adaptive immunity, cell proliferation, and inflammation. NFκB is 

held in the cytoplasm in an inactive form associated with the inhibitory κB (IκB) protein. 

A broad range of stimuli, including TNF-α, IL-1β, bacteria and viruses trigger a cascade of 

signalling, leading to release of NFκB from IκB. The activated NFκB will then translocate 

to the nucleus, bind to DNA elements present in its target genes and facilitate their 

transcription.  

Numerous published data support the central role of NFκB signalling in cartilage 

metabolism and development of OA e.g. IκB overexpression in human OA synovial 

fibroblasts resulted in a decrease in expression of IL-6, IL-8, MPC-1/CCL-2, and MMPs 

(Amos et al. 2006) as well as abolishing the IL-1β-induced effect on expression of 

ADAMTS-4 (Bondeson et al. 2007); In a mouse surgically induced OA model, siRNA 

inhibiting NFκB/p65 resulted in reducing the amount of IL-1βand TNF-α in synovial fluid, 

reducing the level of inflammation in the synovium, and decreasing cartilage damage 

(Chen et al. 2008).  

1.2.3. Risk factors for Osteoarthritis  

The pathogenesis of OA is complex and poorly understood but involves the interaction of 

multiple factors ranging from genetic predisposition to mechanical and environmental 

components. Studies are in progress to define the molecular mechanisms involved in 

initiation and progression of OA. 

1.2.3.1.Trauma and altered mechanical load  

Mechanical factors and trauma have a central role in the initiation and propagation of OA: 

Excessive load and trauma which lead to injury of the menisci or ligaments predispose to 
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the development of the disease; the level and nature of the load experienced might also 

influence the progression of joint damage: an acute trauma leading to rupture of the 

meniscus or the cruciate ligaments might precipitate the development of OA. However, the 

differing contributions to this effect of the initial trauma and the ensuing mechanical 

instability have not been clearly delineated; also, in immobilized joints, there is lack of OA: 

further supporting the importance of mechanical triggers in the disease process (Riordan et 

al. 2014).   

After joint trauma, the onset and progression of clinical symptoms differs even among 

groups with the same type of injury and physical activity profile, pointing to the 

involvement of other factors apart from the trauma.  

1.2.3.2. Inflammation 

Histologically, the disease was denominated osteoarthrosis, a term that implied the absence 

of inflammation. However, data acquired using high-sensitivity assays for inflammatory 

markers (such as C-reactive protein) demonstrate that low-grade inflammation is present 

(Pearle et al. 2007). Numerous inflammatory cytokines are found at increased levels in 

joint tissues during the acute post-injury phase, including IL-1, IL-6, IL-17, and TNFα 

(Lee et al. 2009). Inflammation seems to be a very early event in OA since the increase of 

CRP levels precedes the release of other OA indicators or molecular markers of matrix 

breakdown, and is observed well before clinical disease. 

Inflammatory might be of particular importance to the onset and propagation of the 

primary and secondary OA. However, why the inflammation triggered in OA remains 

controversial. It was hypothesized that it was caused by traumatic joint injury or an age – 

related process. Joint injury leads to cartilage degradation and tissue damage. Once 

degraded, cartilage fragments accumulate in the joint and contact the synovium. 

Considered foreign bodies, synovial cells react by producing inflammatory mediators, 

found in synovial fluid. These mediators can activate chondrocytes present in the 

superficial layer of cartilage, which leads to metalloproteinase synthesis and, eventually, 

increase cartilage degradation. Published data support for the hypothesis that inflammation 

was triggered by aging process: advance glycation endproducts (AGEs), produced by a 

non-enzymatic process in aging tissue, weaken cartilage by modifying its mechanical 

properties triggering chondrocyte activation by binding to specific receptors present at the 
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surface of the chondrocytes, called RAGE (receptor for AGEs) lead to an overproduction 

of proinflammatory cytokines and MMPs (Nah et al. 2007); or after a period of vigorous 

proliferation, chondrocyte division rate declines but has high capacity to synthesize soluble 

mediators which in turn induces several inflammatory and pro-degradative mediators.   

1.2.3.3. Obesity  

Obesity is a well known risk factor for the initiation and progression of OA. This 

association is obvious because any overload on a weight – bearing joint would provoke 

tear and wear at the surface of the cartilage.  

The molecular mechanisms explaining why obesity is one of the major risk factors for OA 

(Messier et al. 2005) is not exactly known. It is possible that the excess weight increases 

the load borne by all parts of the joint.  However, the association between overweight and 

OA is not simply a question of increased mechanical load because obesity acts as a risk 

factor for developing hand OA (Grotle et al. 2008). Together with this, published data 

from animal studies: knee cartilage from rabbits fed a high – fat diet showed lower 

glycosaminoglycan content and aggrecan-1 than cartilage from rabbits fed a normal – fat 

diet independently of animal weight (Brunner et al. 2012); OA surgical induced mice fed a 

high – fat diet from 4 weeks of age showed higher OA cartilage degeneration at 8 weeks 

after surgery than those fed a normal diet (Mooney et al. 2011); in mice transgenic for 

human C – reactive protein (CRP) on a high – fat diet, there is a lack of correlation 

between OA severity and body weight (Gierman et al. 2012). 

Many studies suggest that systemic inflammatory mediators contribute to the increased 

risk of OA with obesity. Adipose tissue, especially from the abdomen, is a rich source of 

pro-inflammatory cytokines, which are often referred to as adipokines. Many adipokines 

elevated with obesity have also been shown to mediate synovial tissue inflammation. For 

example, leptin is a 16-kd polypeptide hormone encoded by the obese (ob) gene and is 

primarily secreted by adipocytes. Female C57BL/6J mice with impaired leptin signalling 

are protected from obesity – induced OA, suggesting elevated body fat in the absence of 

leptin signalling is insufficient to induce systemic inflammation and OA (Griffin et al. 

2009).  Leptin has been found to exist at higher concentrations in the synovial fluid 

compared to serum (Presle et al. 2006). Leptin, alone or in synergy with IL-1, induced 

collagen release from bovine cartilage explants and upregulated MMP-1 and MMP-13 

expression in bovine chondrocytes(Hui et al. 2012). 
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1.2.3.4. Aging  

Aging is the most important risk factor for OA. After 40 year old, many people will appear 

to have some damage to their joints which may lead to OA, and approximately 50% of 

individuals greater than the age of 65 suffer from OA. The incidence of the disease 

through age has been observed: the prevalence of OA rises from 4% in people under the 

age of 24 to as high as 85% for those at 75-79 years of age. The common justification is 

the long-term effect of mechanical load on all joint components. Also, the regenerative 

capability of cartilage is reduced and cellular apoptosis is enhanced with age (Goldring et 

al. 2007).  

1.2.3.5.Genetic factors 

Evidence from family clustering and twin studies indicates that the risk of OA has an 

inherited component. Genetic factors may influence between 39% and 65% in 

radiographic OA of the hand and knee in OA, about 60% in OA of the hip, and about 70% 

in OA of the spine. Mutations to genes that play a role in the ECM, proteases and 

inhibitors, cytokines, and growth factors have been found to affect one’s susceptibility to 

develop of OA (Sulzbacher 2013). However, the individual effects are relatively small. For 

example, a genome – wide association study showing that the C allele of rs3815148 on chr 

7q22 was associated with a 1.14- fold increased prevalence of knee and/ or hand 

OA(Kerkhof et al. 2010). 

1.3. MicroRNAs in osteoarthritis  

1.3.1. The basic biology of miRNA  

miRNAs are an abundant class of evolutionarily conserved, short (~22nt long), single – 

stranded RNA molecules that have emerged as important post transcriptional regulators of 

gene expression by binding to specific sequences within a target mRNA (Ambros 2004, 

Bartel 2004). To date, 1424 miRNAs have been identified in human cells and each is 

predicted to regulate several target genes (Lim et al. 2005, Kozomara et al. 2011). 

Computational predictions indicate that more than 50% of all human protein – coding 

genes are potentially regulated by miRNAs (Lewis et al. 2005, Friedman et al. 2009). The 

abundance of mature miRNAs varies extensively from as few as ten to more than 80,000 

copies in a single cell, which provides a high degree of flexibility in the regulation of gene 

expression (Chen et al. 2005, Suomi et al. 2008). The regulation exerted by miRNAs is 
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reversible, as feedback/forward regulatory loops have been shown to exert modifying 

effects during translation (Inui et al. 2010) . 

1.3.1.1. MicroRNA discovery  

In 1981, the first miRNA: lin-4 was discovered in Caenorhabditis elegans (Chalfie 1981). 

In the early 1990s, Ambros and Ruvkun revealed that lin-4 controlled a specific step in 

developmental timing in C.elegans by downregulating lin-14 (a conventional protein – 

coding gene) (Chalfie 1981, Lee et al. 1993, Wightman et al. 1993). They recognized that 

the lin-14 3’UTR harbours multiple sites of imperfect complementarity to lin-4 and 

proposed that lin-4 binds to these sites and blocks lin-14 translation.  

Forward genetics also discovered a second miRNA in C.elegans, known as let-7 (Reinhart 

et al. 2000) which targets lin-41 and hbl-1 (Abrahante et al. 2003, Lin et al. 2003). The 

concept of miRNAs then jumped from worms to higher species, since let-7 had well-

known homologues even in human and fly. In 2001, the term “microRNA” was coined for 

this class of non-coding gene regulators (Lagos-Quintana et al. 2001, Lau et al. 2001, Lee 

et al. 2001). The discovery of miRNAs had crossed over to human, and finding miRNA 

targets became a high priority. 

1.3.1.2. MicroRNA biogenesis  

Most of the currently known miRNA sequences are located in introns of protein coding 

genes; a lower percentage of miRNAs originate from exons or non-coding mRNA-like 

regions (Rodriguez et al. 2004). In addition, a significant number of miRNA are found in 

polycistronic units that encode more than one miRNA. The miRNAs within clusters are 

often functionally related (Lagos-Quintana et al. 2001, Lau et al. 2001).  

Despite the obvious differences between the biology of miRNAs and mRNAs, all available 

evidence suggests that these transcripts share common mechanisms of transcriptional 

regulation. Generally, the generation of a miRNA is a multi-step process that starts in the 

nucleus and finishes in the cytoplasm (Lee et al. 2002). First, miRNAs are transcribed by 

the RNA polymerase II complex (Lee et al. 2004) and subsequently capped, 

polyadenylated, and spliced (Cai et al. 2004). Transcription results in a primary miRNA 

transcript (pri-miRNA) that harbors a hairpin structure (Lee et al. 2002, Kim 2005). Within 
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the nucleus, the RNAse II–type molecule Drosha and its cofactor DGCR8 process the pri-

miRNAs into 70- to 100-nt-long pre-miRNA structures (Lee et al. 2003, Han et al. 2004), 

which in turn are exported to the cytoplasm through the nuclear pores by Exportin-5 (Yi et 

al. 2003, Bohnsack et al. 2004, Lund et al. 2004, Zeng et al. 2004). Subsequently, the 

RNAse III-type protein Dicer generates a double stranded short RNA in the cytoplasm that 

consists of the leading – strand miRNA and its complementary sequence (Grishok et al. 

2001, Hutvágner et al. 2001, Ketting et al. 2001, Chendrimada et al. 2005). This duplex 

miRNA is unwound by a helicase into a single stranded short RNA in the cytoplasm and 

the leading strand is incorporated into the argonaute protein (Ago 2)-containing 

ribonucleoprotein complex known as the miRNA-induced silencing complex, mRISC 

(Hammond et al. 2000, Hutvagner et al. 2008, Bossé et al. 2010). During this process, one 

strand of the miRNA duplex is selected as the guide miRNA and remains stably associated 

with mRISC, while the other strand, known as the passenger strand is rapidly removed and 

degraded (Martinez et al. 2002) (Figure 1.5). Selection of the appropriate strand is 

primarily determined by the strength of base pairing at the ends of the miRNA duplex. The 

strand with less-stable base pairing at its 5’ end is usually destined to become the mature 

miRNA (Khvorova et al. 2003, Schwarz et al. 2003, Hutvagner 2005). However, some 

miRNA passenger strands are thought themselves to negatively regulate gene expression. 

One hypothesis is that both strands could be used differently in response to extracellular or 

intracellular cues, to regulate a more diverse set of protein –coding genes as needed, or 

strand selection could be tissue specific (Ro et al. 2007). The mature miRNA guides the 

RISC complex to the 3’UTR of its target miRNA (Lai 2002, Bartel 2009) . The seed 

sequence, comprising nucleotides 2-8 at 5’-end of the mature miRNA, is important for 

binding of the miRNA to its target site in the mRNA (Lewis et al. 2005). Association of 

miRNA with its target results in mRNA cleavage (if sequence complementarity is high) or 

more usually in higher eukaryotes, blockade of translation (Zeng and Cullen 2004) (see 

below). 

In an alternative pathway for miRNA biogenesis, short hairpin introns termed mirtrons are 

spliced and debranched to generate pre-miRNA hairpin mimics (Berezikov et al. 2007, 

Okamura et al. 2007, Ruby et al. 2007, Westholm et al. 2011, Sibley et al. 2012). These 

are then cleaved by Dicer in the cytoplasm and incorporated into typical miRNA silencing 
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complexes (Berezikov et al. 2007, Okamura et al. 2007, Ruby et al. 2007, Westholm and 

Lai 2011, Sibley et al. 2012). The presence of mirtrons may be an evolutionary strategy to 

diversify miRNA-based gene silencing (Lau et al. 2009). 

1.3.1.3. Mechanisms of action of miRNAs 

Mammalian miRNAs often have several isoforms encoded from one or more chromosome, 

suggesting that they are functionally redundant (Heimberg et al. 2008, Kim et al. 2009).  

They may exert variable roles in vivo via differences in their expression pattern and 3’-end 

binding (Ventura et al. 2008).  

Regulation is mainly exerted by the binding of the miRNA to the 3’UTR of the target 

mRNA, but binding to other positions on the target mRNA, e.g. in 5’UTR or coding 

sequence has also been reported (Lytle et al. 2007, Lee et al. 2009, Li et al. 2009). 

Interestingly, miRNA binding sites within the coding region of a transcript are reported as 

less effective at mediating translational repression.  Aside from the location of miRNA 

binding sites, factors including the sequence context of the miRNA binding site, the 

number of target sites within the mRNA, the focal RNA structure, the distance between 

target sites, all contribute to the efficacy of repression mediated by miRNAs (Brennecke et 

al. 2005, Sætrom et al. 2007). 

 The degree of base pairing between the miRNA and its target in the mRISC complex 

determines the fate of the transcript. If there is perfect binding between the miRNA and 

target, the mRNA target is cleaved by Ago2 at the annealing site, with subsequent 

degradation of the mRNA.  In contrast, in cases where the miRNA is only partially 

complementary to its corresponding 3’UTR, inhibition of target mRNA translation occurs 

via Ago1. Repression may be exerted either at the initiation step of mRNA translation in 

which Ago competes with eIF4E or at some stage subsequent to initiation (Kiriakidou et al. 

2007) (Figure 1.6). This is because miRNA-mRISC complex can bind to actively 

translating mRNAs, reducing translational elongation and/ or enhancing termination, 

concomitant with a reduction in ribosome initiation and nascent peptide destablilization 

(Petersen et al. 2006). 
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Interestingly, besides generally promoting mRNA cleavage or translational repression, 

miRNA binding to 3’UTR can also induce translation of some target mRNAs. MicroRNAs 

have been identified which activate translation on cell cycle arrest by directing AGO-

containing protein complexes to AU-rich elements in the 3’UTR (Vasudevan et al. 2007, 

Vasudevan et al. 2007) 
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Figure 1.6: Biogenesis of miRNAs.  

MicroRNAs are transcribed as RNA precursor molecules (pri-miRNA), which are 
processed by Drosha and its cofactor DGCR8 into short hairpin structure (pre-miRNA). 
These are exported into the cytoplasm by Exportin 5, where they are further processed by 
Dicer and TRBP (Dicer-TAR RNA binding protein) into a miRNA duplex. The duplex is 
unwound by a helicase and the “guide” strand is incorporated into the RNA–induced 
silencing complex (RISC) whilst the “passenger” strand undergoes degradation. This 
miRNA-RISC complex acts by two possible mechanisms: (A) Degradation of target 
mRNA occurs when miRNA is near-perfectly complementary with 3’ untranslated region 
of target mRNA; (B) Translation inhibition occurs when miRNA is only partially 
complementary to its target mRNA.  
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1.3.2. MicroRNAs in skeletal development     

It is evident that miRNAs are essential for skeletal development, however, our current 

knowledge of expression and function of specific miRNAs is still limited. Experimentally 

removing the majority of miRNAs by a block in miRNA biogenesis through mutating or 

deleting Dicer, reveals that the miRNA pathway plays a prominent role in skeletal 

development. An excellent example is the conditional knockout of Dicer in limb 

mesenchyme at the early stages of embryonic development, which leads to the formation 

of a much smaller limb. Dicer-null growth plates display a pronounced lack of 

chondrocyte proliferation in conjunction with enhanced differentiation to postmiototic 

hypertrophic chondrocytes; this latter may be explained by Dicer having distinct functional 

effects at different stages of chondrocyte development (Harfe et al. 2005). Recently, 

Kobayashi et al. reported that mice null for Dicer in chondrocytes resulted in skeletal 

growth defects and premature death (Kobayashi et al. 2008), again pointing to essential 

role of miRNAs in skeletal development.  

Further evidence of the important role of miRNAs in skeletogenesis is that some miRNAs 

were found to exhibit bone-specific and cartilage-specific expression in late development. 

Wienholds et al. first provided evidence for miR-140 specifically expressed in cartilage of 

the jaw, head, and fins in zebrafish cartilage during embryonic development (Wienholds et 

al. 2003). Later, Tuddenham et al found that miR-140 is specifically expressed in cartilage 

tissues during mouse embryonic development (Tuddenham et al. 2006). Importantly, 

Miyaki et al and then Nakamura et al reported that universal knockout of miR-140 lead to 

mild dwarfism, probably as a result of impaired chondrocyte proliferation (Miyaki et al. 

2010, Nakamura et al. 2011). Recently, Swingler et al found that miR-455-3p was 

expressed in developing long bones during chick development, restricted to cartilage and 

perichondrium, and in mouse embryos, where expression was selective in long bones and 

joints (Swingler et al. 2011). 

These studies emphasize the importance of the miRNA pathway in skeletal development 

and revealed that some miRNAs are expressed with precise tissue and developmental stage 

specificity. Intensive research will uncover a complete spectrum of skeletally associated 

miRNAs as well as elucidate their biological function.  
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Figure 1.7: An overview of miRNAs involved in chondrogenesis, osteoarthritis and 

their direct and indirect targets                                                                                                                                                                                   
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1.3.3. MicroRNAs in mechanotransduction  

Articular cartilage has the unique capacity to resist significant mechanical loading during 

the lifetime of the organism (Guilak et al. 2001). The surface, middle and deep zones 

within articular cartilage are distinct domains, and they exhibit differential gene expression 

and attendant functional roles (Neu et al. 2007).  

Mechano-responsive miRNAs are being identified in chondrocytes, the sole cell type of 

articular cartilage and evidence that specific miRNAs may impact on stress-related 

articular cartilage mechanotransduction has also been reported.  MicroRNA-365 was the 

first identified mechanically responsive miRNA in chondrocytes, regulating chondrocyte 

differentiation through inhibiting HDAC4 (Guan et al. 2011). MicroRNA-221, miR-222 

were postulated as potential regulators of the articular cartilage mechanotransduction 

pathway, since their expression patterns in bovine articular cartilage are higher in the 

weight-bearing anterior medial condyle as compared with the posterior non-weight-bearing 

medial condyle (Dunn et al. 2009). Recently, Li et al. reported that miR-146a was induced 

by joint instability resulting from medial collateral ligament transection and medial 

meniscal tear in the knee joints of an OA mouse model, suggesting that miR-146a might 

be a regulatory factor of the mechanical transduction process in articular cartilage (Li et al. 

2012). All of these studies are useful for enriching the data on the regulatory mechanism 

for miRNAs in chondrocyte homeostasis. 

1.3.4. MicroRNAs in chondrogenesis  

Differential disruption of the Dicer gene in mice resulting in highly abnormal cartilage 

development suggests miRNAs play a significant role in chondrogenic differentiation. 

Furthermore, many studies profiled the expression of miRNAs to investigate their function 

in differentiating MSCs and showed that once they differentiate into chondrocytes, 

miRNA expression significantly altered (Sorrentino et al. 2008, Suomi et al. 2008, Lin et 

al. 2009, Miyaki et al. 2009, Karlsen et al. 2011, Lin et al. 2011, Yan et al. 2011, Yang et 

al. 2011) (Table1.2). However, there is no consensus expression signature of any miRNAs 

amongst these and we attribute this to the design of experiment including inducers of 

differentiation, cell types, numbers of detected miRNA probes and organism (Table1.2).  
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Table 1.2: Studies performing miRNA profile comparing between MSC and chondrocytes 

 Sorrentino  
et al 
 2007 

Suomi  
et al 
 2008 

Lin  
et al 
 2009 

Miyaki  
et al 
2009 

Yang 
 et al, 
 2010 

Lin  
et al 2011 

Yang  
et al 
2011 

Karlsen  
et al 
 2011 

 

Stimulators - TGF-β3 BMP-2 BMP-2 
TGF-β3 

TGF-β3 - - -  

Cells  BM MSC BM MSC C12C2 BM 
MSC 

BM 
MSC 

DAC BM MSC 
AC 

DAC  

Organisms Human  Mice  - Human Mice Human  Mice Human  
Probes 226  35 - - 7,815 - - 875  
Cutoff(fold) 1.3 - 1.5 1.5  5  4 - -  
Platform microarray qPCR microarray microarray microarray microarray microarray microarray  
miRNAs 
up- 
regulated 

31 
32 
136 
146 
149 
185 
Pre-mir 
192 
199a-2-5 
204 
212 
Pre-mir-212 
Pre-miR- 
214 

24  
101 
124a  
199b 
199a 

199* 
221  
298  
374  
let-7e  
 

15b 
16 
23b  
27b 
140 
148 
197  
222 
328  
505  
 

30a 
81a-1 
99a 
125* 
127 
140 
140* 
Let-7f 
 

26a 
140*  
140  
222 
320a  
320d 
491*  
547-5p 
720 
1308 
let-7d  
let-7f  
let-7a  
 
 

21  
22 
27b 
27a 
140 
140*  
152  
291b* 
 330  
431  
433 
455 
let-7b  
let-7d 
let-7l  

30d  
140*  
210 
451  
563  
 

 

miRNAs 
down 
-regulated 

10a 
10b  
21 
23a 
24-1-3p 
24-2 
26b 
29b 
30a-5p 
34 
100 
103-2 
107 
130a 
138-1 
Pre-miR- 
143 
145 
181a-1 
191-5p 
let-7a-1 
let-7a-2 
let-7a-3 
let-7c 
let-7d 

18 
96 

21 
125a  
125b 
143 
145 
210 
 

 125b* 
132 
143 
145 
212 
 

18a 
27a  
146a 
193b  
220b  
342-5p 
335 
365 
519e 
548e  
1248  
1284  
 

1 
23a 
23b 
24  
26b 
99a  
99b 
99b*  
125a-5p  
143 
144 
145 
146a 
181a  
181d 
191 
199a  
199a* 
210  
320 
355-5p 
431 
503 
652 
Let-7a  
Let-7c 
Let-7g 
Let-7f 

15b 
31  
132 
138 
143  
145  
221  
222  
379  
382 
432  
494  
654* 
1308 
let-7e  
 

 

AC: Articular chondrocytes; BM MSC: Bone marrow mesenchymal cells; DAC: 
dedifferentiated articular chondrocytes.  
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The regulation of chondrogenesis of murine MSCs in response to stimulation of TGF-β3 

was investigated (Suomi et al. 2008, Yang et al. 2011) (Table1.2).  Suomi et al compared 

the expression of 35 miRNAs in chondroblasts derived from MSCs, and found that miR-

199a, miR-124a were strongly up-regulated while miR-96 was substantially suppressed 

(Suomi et al. 2008). They demonstrated how miRNAs and transcription factors could be 

capable of fine-tuning cellular differentiation by showing that miR-199a, miR-124a, miR-

96 could target HIF-α, RFX1, Sox5, respectively (Suomi et al. 2008). Similarly, Yang et 

al , revealed eight significantly up-regulated and five down-regulated miRNAs (Yang et al. 

2011) in this process. The miRNA clusters, miR-143/145 and miR-132/212 were down-

regulated, with miR-132 the most down-regulated whilst miR-140* was the most up-

regulated (Yang et al. 2011). Similar expression patterns of miR-145, miR-143 were also 

described in other studies (Lin et al. 2009, Karlsen et al. 2011, Lin et al. 2011, Yan et al. 

2011).  Corresponding targets of these differentially expressed miRNAs were predicted 

including: ADAMTS5 (miR-140*), ACVR1B (miR143/145), SMAD family members: 

SMAD1 (miR-30a), SMAD2 (miR-132/212), SMAD3 and SMAD5 (miR-145), Sox 

family members: Sox9 (miR-145); Sox6 (miR-143, miR-132/212), Runx2 (miR-30a and 

miR-140*) (Yang et al. 2011).  

Further study has confirmed miR-145 as a key mediator which antagonizes early 

chondrogenic differentiation in mice via attenuating Sox9 at post-transcriptional level. 

(Yang et al. 2011).  Interestingly, cells over-expressing miR-145 significantly decreased 

the expression of chondrogenic markers at the mRNA level including Col2a1, Agc1, 

COMP, Col9a2 and Col11a1. Consistent with this,, Martinez-Sanchez et al. reported miR-

145 as a direct regulator of Sox9 in normal human articular chondrocytes though binding 

to a specific site in its 3’UTR, which is not conserved in mice (Martinez-Sanchez et al. 

2012). Similarly, over-expression of miR-145 in articular cartilage chondrocytes reduced 

the levels of Sox9, the cartilage matrix components Col2a1 and Agc1 in combination with 

a significant increase of the hypertrophic markers Runx2 and MMP-13 (Martinez-Sanchez 

et al. 2012)  (Figure 1.7). 

This group also reported that miR-675, processed from H19, a non-coding RNA, was 

tightly regulated by Sox9 during chondrocyte differentiation. MicroRNA-675 could up-

regulate expression of Col2a1, albeit indirectly, indicating its potential importance in 
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maintaining cartilage integrity and homeostasis. Forced over-expression of miR-675  

rescued Col2a1 mRNA levels in either Sox9- or H19-depleted primary human articular 

chondrocytes (Dudek et al. 2010). Although its target mRNAs remain unknown, these data 

suggest that miR-675 may modulate cartilage homeostasis by suppressing a Col2a1 

transcriptional repressor (Dudek et al. 2010) (Figure 1.7). Moreover, by performing 

miRNA expression profile during human primary chondrocyte dedifferentiation, Martinez-

Sanchez found that 29 miRNAs were up-regulated more than two-fold and 18 miRNAs 

were down-regulated. Among these up-regulated miRNAs, miR-1247, transcribed from 

the DLK1-DIO3 locus, was of particular interest as its expression pattern still increased 

under hypoxia condition, together with miR-140. Also, miR-1247 level was found to 

correlate with cartilage-associated miR-675 across a range of 15 different mouse tissues 

(Martinez-Sanchez et al. 2013). Interestingly, SOX9, directly target of miR-1247 via 

coding sequence, inhibit this miRNA expression, suggesting a negative feedback loop 

between miR-1247 and its target SOX9 (Martinez-Sanchez and Murphy 2013).  

Another study performed miRNA profiling to find expression signatures of nearly 380 

miRNAs in C2C12 cells induced by BMP-2 for 24 hours and found  that 5 miRNAs 

including miR-199a* and miR-221 were positively regulated while miR-125a, miR-210, 

miR-125b, miR-21, miR-145, miR-143 were repressed (Lin et al. 2009).  Interestingly, 

using C3H10T1/2 cells, a well-established in vitro cell model of chondrogenesis, showed 

that miR-199a* expression was reduced significantly within several hours following BMP-

2 treatment and then rose dramatically at 24 hours and remained higher thereafter, 

indicating that miR-199a* may function as a suppressor of the early steps of chondrogenic 

differentiation (Lin et al. 2009). Indeed, enforced miR-199a* expression in C3H10T1/2 

cells or in the prechondrogenic cell line ATDC5, suppresses multiple markers of early 

chondrogenesis, including Col2a1 and COMP, whereas the antagomir blocking miR-199a* 

function has the opposite stimulatory effect (Lin et al. 2009). Consistent with these 

observations, Smad1, a positive downstream mediator of BMP-2 signalling, was shown to 

be a direct miR-199a* target. Moreover, miR-199a*, through its inhibition of the Smad 

pathway, is able to inhibit the expression of downstream genes such as p204 (Lin et al. 

2009) (Figure 1.7). 

The change in expression pattern of miRNAs across the dedifferentiation of chondrocytes 

also, adds to our understanding of the biology of in vitro human chondrogenesis (Karlsen 
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et al. 2011, Lin et al. 2011). MicroRNA-451, miR-140-3p, miR-210, miR-30d, and miR-

563 were reported to be highly expressed on human primary articular chondrocytes at early 

passage compared with their dedifferentiated counterparts, suggesting their role as 

inhibitors of differentiation in vitro (Lin et al. 2011). Of these miRNAs, miR-140-3p had 

the highest expression. Conversely, 16 miRNAs were significantly up-regulated in 

dedifferentiated articular chondrocytes, reflecting their potential as modulators of the 

chondrogenenic process. Notably, miR-143, miR-145 also had similar expression patterns 

as previously reported (Lin et al. 2011). A second study also reported a group of 5 

miRNAs:  miR-451, miR140-3p, miR-210, miR-30d, and miR-563 upregulated on 

differentiation which may inhibit molecules participating in the dedifferentiation process 

whilst a further 16 miRNAs were downregulated and may potentially act conversely.  

Recently, performing miRNA profiling across ATDC5 cell induced differentiation within 

42 days to identify miRNAs with functions in cartilage development, we identified 7 

cluster groups of miRNAs which may function cooperatively (Swingler et al. 2011). 

Among these, 39 miRNAs were found potentially co-regulated with miR-140 with 

expression increase during chondrogenic process (Swingler et al. 2011). Especially 

interesting is miR-455, located in an intron of the protein coding gene Col27a1, a 

cartilage-expressed collagen, which showed similar expression kinetics to collagen XXVII 

and to miR-140.  Consistent with role for miR-140 in modulating TGFβ signalling, miR-

455-3p was also found to directly target Smad2, ACVR2B and CHRDL1, again potentially 

attenuating the TGFβ pathway (Swingler et al. 2011) (Figure 1.7). 

MicroRNA-140 shows a generally consistent expression pattern between studies.  Indeed, 

cartilage miRNA research to date has focused heavily on miR-140 and has successfully 

shown the key roles of miR-140 in chondrocyte proliferation and differentiation. Miyaki et 

al compared gene expression profiling using miRNA microarrays and quantitative 

polymerase chain reaction in human articular chondrocytes and human mesenchymal stem 

cells. They demonstrated that miR-140 had the largest difference in expression between 

chondrocytes and MSCs (Miyaki et al. 2009), and this is in agreement with latter 

publications in human, rat and mice (Karlsen et al. 2011, Lin et al. 2011, Yan et al. 2011, 

Yang et al. 2011).  MicroRNA-140 was first shown to target Hdac4, a known co-repressor 

of Runx2 and MEF2C transcription factors essential for chondrocyte hypertrophy and bone 
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development (Tuddenham et al. 2006).  miR-140 also targets Cxcl12 (Nicolas et al. 2008) 

and Smad3 (Pais et al. 2010), both of which are implicated in chondrocyte differentiation. 

Interestingly, miR-140 is reported to suppress Dnpep, an aspartyl aminopeptidase, which 

has been suggested to antagonize BMP signalling downstream of Smad activation 

(Nakamura et al. 2011). Moreover, Sox9 a major transcription factor in maintaining 

cellular phenotype and preventing hypertrophy, particularly with L-Sox5 and Sox6, 

(Yamashita et al. 2012), is shown to control the expression of miR-140 (Yang et al. 2011, 

Nakamura et al. 2012).  

The miR-194 is a key mediator during chondrogenic differentiation via suppression of the 

transcription factor Sox5 (Xu et al. 2012). The expression of miR-194 was significantly 

decreased in chondrogenic differentiation of adipose-derived stem cells (ASCs). 

Importantly, chondrogenic differentiation of ASCs could be achieved through controlling 

miR-194 expression (Xu et al. 2012) (Figure 1.7). 

Using three rat models e.g. bone matrix gelatin-induced endochondral ossification, 

collagen-induced arthritis and pristane-induced arthritis, Zhong et al. further demonstrated 

that miR-337 was directly implicated with chondrogenesis. miR-337 acted as a repressor 

for TGFBR2 expression at the protein level (Zhong et al. 2012). Moreover, aggrecan was 

differentially expressed in both gain- or loss-of function of miR-337 experiments,  

providing evidence that miR-337 could influence cartilage specific gene expression in 

chondrocytes (Zhong et al. 2012) (Figure 1.7). 

Kim et al. used chick as a model of chondrogenesis and focused on initiation, namely 

precartilage condensation, proliferation and migration. They reported that miR-221 and 

miR-34a, induced by c-Jun N-terminal kinase (JNK) signaling, played pivotal roles (Kim 

et al. 2010, Kim et al. 2011). Treatment of chick wing bud MSCs with a JNK inhibitor 

lead to the suppression of cell migration and stimulation of apoptosis with concurrent 

significant increase in expression of miR-221 and miR-34a (Kim et al. 2010, Kim et al. 

2011). Notably, miR-221 may be involved in apoptosis, since treatment of MSCs with a 

miR-221 inhibitor increased cell proliferation and this could be rescued by the JNK 

inhibitor (Kim et al. 2010).  MicroRNA-221 is reported to directly target Mdm2, which 

encodes for an oncoprotein with E3 ubiquitin ligase activity (Kim et al. 2010). Inhibition 

of Mdm2 expression via miR-221 suppresses ubiquitination leading to accumulation of 
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Slug protein, whose expression is associated with an increase in apoptosis (Kim et al. 

2010). Conversely, miR-34a affects MSC migration, not proliferation (Kim et al. 2011). 

EphA5, a receptor in Eph/Ephrin signaling which mediates cell-to-cell interaction, has 

been proven to be a miR-34a target (Kim et al. 2011). Moreover, via regulating 

RhoA/Rac1 cross-talk, miR-34a negatively modulated reorganization of the actin 

cytoskeleton (Kim et al. 2012), one of the essential processes for establishing chondrocyte-

specific morphology. MicroRNA-488 expression is up-regulated at the pre-condensation 

stage and then down-regulated at the post-condensation stage in chick limb chondrogenesis, 

suggested a key role in this process (Song et al. 2011). Interestingly, mir-488 could 

regulate cell–to-ECM interaction via modulation of focal adhesion activity by indirectly 

targeting MMP-2 (Song et al. 2011). More recently, this group reported that miR-142-3p 

was an important modulator in position-dependent chondrogenesis and was reported to 

regulate ADAM9 (Kim et al. 2011) (Figure 1.7). 

1.3.5.  MicroRNAs in osteoarthritis 

The effects of miRNA deregulation on OA are evident through studies comparing the 

expression of miRNAs between OA tissues and their normal articular counterparts 

(Iliopoulos et al. 2008, Jones et al. 2009). Illopoulos et al. tested the expression of 365 

miRNAs and identified a signature of 16 miRNAs, with 9 miRNAs significantly 

upregulated and 7 miRNAs downregulated in OA cartilage compared with normal controls. 

Some of these were postulated to  be involved in obesity and inflammation (Iliopoulos et al. 

2008). Interestingly, functional experiments implicated miR-9 in the regulation of MMP13 

expression, as well as miR-9, miR-98 and miR-146 in the control of TNF-α expression, 

suggesting that these miRNAs may play a protective role in OA. Moreover, miR-22, 

whose expression correlated with body mass index, directly targets PPARA and BMP-7 at 

the mRNA and protein levels, respectively. Enforced miR-22 overexpression or siRNA-

mediated suppression of either PPARA or BMP-7 resulted in increases in IL-1β and 

MMP-13 protein levels, again suggesting that miRNA deregulation can have effects on 

OA (Iliopoulos et al. 2008) (Figure 1.7).  

Additionally, Jones et al. investigated the expression of 157 human miRNAs and identified 

17 miRNAs whose expression varied by 4-fold or more when comparing normal versus 
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late-stage OA cartilage (Jones et al. 2009). Consistent with the Illopoulos data, the altered 

expression of miR-9, miR-98 and miR-146 in OA cartilage are highlighted. The over-

expression of these miRNAs also reduced IL-1β-induced TNF-α production, whilst 

inhibition or over-expression of miR-9 modulated MMP-13 secretion (Jones et al. 2009) 

(Figure 1.7). 

The miR-140 gene, located in an intron of the E3 ubiquitin protein ligase gene Wwp2 on 

murine chromosome 8 and the small arm of chromosome 16 in humans, is evolutionarily 

conserved among vertebrates. MicroRNA-140 expression in the cartilage of patients with 

OA was significantly lower than in normal cartilage (Miyaki et al. 2009, Tardif et al. 2009) 

and decreased miR-140 expression was reported also in OA chondrocytes  (Tardif et al. 

2009).                                                                                                                                                                                                                                         

Deletion of miR-140 in mice predisposes to the development of age-related OA-like 

changes (Miyaki et al. 2010, Nakamura et al. 2011) and gives a significant increase in 

cartilage destruction in surgically induced OA. Conversely, in an antigen-induced arthritis 

model, transgenic over-expression of miR-140 in chondrocytes protects against cartilage 

damage (Miyaki et al. 2010).  The ADAMTS5 gene has been shown to be a direct target of 

miR-140, whilst reciprocal regulation of ADAMTS5 in the in vivo models above suggests 

that suppression of OA may involve regulation of ADAMTS5 (Miyaki et al. 2010). 

Swingler et al. show that miR-140 is increased in expression in hip OA cartilage compared 

to fracture controls (Swingler et al. 2011), but ADAMTS5 expression is decreased in the 

former samples.  As above, Nakamura et al. identified the aspartyl aminopeptidase Dnpep 

as a key target for miR-140 essential for skeletal defects in miR-140 null mice (Nakamura 

et al. 2011).  Using functional interference, Tardif et al. confirmed IGFBP-5, whose 

expression in human chondrocytes was significantly higher in OA, as a direct target of 

miR-140 (Tardif et al. 2009). More recently, miR-140 was shown to directly mediate 

MMP13 expression in vitro by luciferase reporter assay (Liang et al. 2012) (Figure 1.7). 

The human genome contains two miR-27 genes [mir-27a and miR-27b] on chromosomes 

19 and 9, respectively, and their major products differ by only 1 nucleotide in the 3’ region. 

MicroRNA-27a expression was shown to be decreased in OA compared to normal 

chondrocytes (Tardif et al. 2009). Down-regulation of miR-27a was proposed to be 

connected with adipose tissue dysregulation in obesity, a strong risk factor for OA. Tardif 
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et al. suggested that miR-27a may indirectly regulate the levels of both MMP-13 and 

IGFBP-5 by targeting upstream positive effectors of both genes (Tardif et al. 2009).  

Conversely, expression miR-27b was found to be significantly lower in OA cartilage 

samples compared with normal counterparts where it inversely correlated with MMP13, a 

direct target (Akhtar et al. 2010). This points to the possibility of novel avenues for OA 

therapeutic strategies (Figure 1.7).  

MicroRNA-146a was strongly expressed in chondrocytes residing in the superficial layer 

of cartilage and in low-grade OA cartilage (Yamasaki et al. 2009, Li et al. 2012). Its 

expression level gradually decreased with progressive tissue degeneration. Interestingly, 

when miR-146 was highly expressed, the expression of MMP13 is low, suggesting that 

miR-146a has target genes that play a role in OA cartilage pathogenesis (Yamasaki et al. 

2009). MicroRNA-146a has recently been implicated in the control of knee joint 

homeostasis and OA-associated algesia by balancing the inflammatory response in 

cartilage and synovium with pain-related factors in glial cells (Li et al. 2011). As such, it 

may be useful for the treatment of both cartilage regeneration and the pain symptoms 

caused by OA (Figure 1.7). 

Park et al reported the miR-127-5p, an important mediator in OA whose expression was 

significant decreased in OA articular cartilage compared to the control counterpart, 

directly target MMP13. Noteworthy, pre-treatment with MAPK inhibitors and NFκβ 

inhibitor attenuated the inhibitory effects of IL-1 on miR-127-5p expression while 

overexpression of miR-127-5p significantly inhibited the phosphorylation of JNK, p38 and 

Iκβα in the human chondrocytes. These data suggest a reciprocal regulatory loop between 

NFκβ, MAP kinase, and IL-1β in controlling MMP13 expression  (Park et al. 2013).  

1.3.6.  MicroRNAs in inflammation 

Some miRNAs could be of importance in the inflammatory events of osteoarthritis. 

MicroRNA-140 was suppressed by IL-1β signaling, and transfection of human 

chondrocytes with miR-140 downregulated IL-1β driven induction of ADAMTS5 (Miyaki 

et al. 2009).  However, contrary to this, Liang et al. reported that expression of miR-140 
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and MMP-13 was elevated in IL-1β-stimulated C28/I2 and expression of miR-140 was 

shown to be NF-κB-dependent (Liang et al. 2012) (Figure 1.7). 

Expression of miR-34a was significantly induced by IL-1β while antagonism of miR-34a 

prevented IL-1β-induced chondrocyte apoptosis (Abouheif et al. 2010), as well as IL-1β-

induced down regulation of type II collagen in rat chondrocytes (Abouheif et al. 2010).  

Other relevant miRNAs reported to be induced by IL-1β are miR-146a (Yamasaki et al. 

2009, Li et al. 2012), miR-34a (Abouheif et al. 2010), miR-194  (Xu et al. 2012), miR-27b 

(Akhtar et al. 2010)  (Figure 1.7). 

1.3.7. Utility of microRNAs for diagnosis  

It is evident that miRNAs in serum may become a powerful tool in the development of 

diagnostic biomarkers. MicroRNAs are relatively stable with enzymatic, freezing, thawing 

or extreme pH conditions (Mitchell et al. 2008, Link et al. 2010) due to lipid or lipoprotein 

complexes (Esau et al. 2006). Moreover, extracellular miRNAs are detectable in almost all 

body fluids and excretions including urine, faeces, saliva, tears, ascetic, pleural and 

amniotic fluid (Chen et al. 2008, Gilad et al. 2008). Interestingly, miRNAs in plasma have 

the capacity to interact with intact cells with some degree of specificity, and modify 

recipient cell gene expression and protein production via a miRNA-related mechanism 

(Arroyo et al. 2011). This opens up the possibility of genetic exchange between cells and 

the exogenous regulation of gene expression.  MicroRNA-21 was the first serum miRNA 

biomarker to be discovered: patients with diffuse large B cell lymphoma had high serum 

levels of miR-21, which was associated with increased relapse-free survival (Lawrie et al. 

2008). Subsequently, the usefulness of serum miRNAs for diagnosis and prognosis has 

been reported for solid cancers and leukemia (Ferracin et al. 2010, Kosaka et al. 2010, 

Wittmann et al. 2010). For OA,  Murata et al. examined the potential of miRNA as 

diagnostic biomarkers and found a number of miRNA in plasma some of which were 

found at different levels between RA and OA patients (Murata et al. 2010). Recently, let-

7e, miR-454, miR-886 were identified differentially expressed crilculating miRNAs in OA 

patient necessitating arthroplasty in a large, population – based cohort. Especially, let – 7e 

emerged as potential predictor for severe knee or hip OA (Beyer et al. 2014). 
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Besides the measurement of miRNAs in plasma, PBMCs could also be useful in 

developing a biomarker for OA. Circulating PBMCs such as macrophages and T cells 

accumulate in the synovium of OA patients, producing proinflammatory cytokines and 

proteinases associated with synovitis, linked to the early stages of OA progression.  It has 

been demonstrated that the high expression of miR-146a, miR-155, miR-181a and miR-

223 in PBMCs from OA patients versus normal controls may be related to the 

pathogenesis of OA (Okuhara et al. 2011). Interestingly, miR-146 and miR-223 are highly 

expressed in early-stage OA (Yamasaki et al. 2009), with expression gradually decreasing 

with OA progression with the promise for diagnosis of early OA is specificity can be 

demonstrated. 

Taken together, there is growing evidence for future miRNA-based diagnostics.  However, 

there is a requirement for detailed investigations directed at diagnostic performance 

(sensitivity, specificity, accuracy) of these promising novel biomarkers before the 

measurement of miRNAs can enter the clinic.  

1.3.8.  Utility of microRNAs in therapeutic treatment 

Currently there is no disease-modifying therapeutics available for patients suffering from 

OA. Therapeutic options are limited to oral and intra-articularly injected analgesic 

medications, and joint replacement surgery (Wieland et al. 2005). OA patients often 

present with cartilage that already exhibits a damaged matrix, and in which 

repair/regeneration is. Although cartilage seems a relatively simple tissue type to engineer 

because of its single cell type and its lack of a blood, nerve or lymph system, regenerating 

cartilage in a form that can function effectively after implantation has proven difficult. 

Several approaches are currently being investigated to utilize a miRNA-based therapy to 

overcome these problems, and these may represent a novel therapeutic application for 

pharmacological control. Currently there are over 70 clinical trials worldwide based on 

miRNA manipulation to treat a range of conditions including various cancers and 

cardiovascular disease; however, none of these to date are for arthritis. 

The targeting of miRNAs represents a novel therapeutic opportunity for OA treatment in 

which miRNA deficiencies could be corrected by either antagonizing (antagomirs) or 
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restoring (mimics) miRNA function.  Poorly expressed miRNAs could be restored by over 

expression using stable vector transfection or transfection by double-stranded miRNA, 

whilst over-expressed miRNAs could be antagonized by modified DNA oligonucleotides. 

Particularly, it has been proven that the systematic administration of antagonist miRNAs 

modified with locked nucleic acids (LNA) could function without toxicity in non-human 

primates (Elmen et al. 2008). Evidence on efficacy was also demonstrated in mouse 

models using miR-122 antisense oligonucleotides, which resulted in a decrease in hepatic 

fatty acid and cholesterol synthesis (Esau et al. 2006). In man, when miR-143/miR-145 

activity was restored in pancreatic cancer cells (in which their levels were repressed), the 

cell was no longer tumourigenic (Kent et al. 2010). Although this type of therapy has not 

been applied in OA, there is very promising evidence for therapeutic potential, e.g. the 

silencing of miR-34a by LNA-modified antisense oligonucleotides could effectively 

reduce rat chondrocyte apoptosis induced by IL-1β (Kongcharoensombat et al. 2010). This 

study revealed that silencing of miR-34a might be a novel intervention for OA treatment if 

this could be appropriately targeted.  

Another approach is to combine miRNA technology with stem cell engineering. In vivo 

MSCs participate in chondrogenesis. MSCs can be conveniently obtained with less injury 

than primary cells and manipulated in vitro and hence they are promising cells in cartilage 

regeneration. At present, autologous MSCs have been transplanted in human injured or 

osteoarthritis knees for repair of articular cartilage defects.  However, unexpected results 

from the ectopic transplantation of MSCs also have been reported, such as hypertrophy, 

mineralization, and vascularisation. Deciphering the role of miRNA regulation in the 

chondrogenesis of MSCs may open a new era of research and pave the way for the 

development of new treatments for OA  

A growing body of evidence indicates that miRNAs convey a novel and efficient way for 

the regulation of gene expression, being involved in multiple aspects of cellular processes. 

Understanding their expression profile and dynamic regulation may be the key to 

enhancing chondrogenic differentiation, or maintaining phenotype in the treatment of OA. 

Recent advances in miRNA research have provided new perspectives on the regulation of 

OA and novel insight into the potential development of therapeutic treatments. Using 

miRNAs as therapeutic targets may well become a powerful tool in the development of 
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new therapeutic approaches. However, numerous questions including potential off-target 

effects and efficient and targeted delivery in vivo need to be solved before using miRNAs 

in therapeutics  
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SCOPE OF THE THESIS 
 

OA is the most prevalent degenerative joint pathology leading to considerable problems 

with disability and pain in a huge number of people, especially the elderly population. As 

the population ages and with increased life expectancy, the burden of osteoarthritis will 

continue to rise. However, there is currently a lack of biomarkers and sensitive techniques 

for identifying and assessing patients with early changes. Also, clinical treatment for OA 

still remains unsatisfactory. Thus, deepening our understanding and gain further insights 

into the molecular mechanisms in OA would be very important for long term purpose of 

diagnosis and therapeutic treatment.  

Several hundred miRNAs have been identified so far and initial studies have linked 

specific miRNAs to OA. However, there are no key miRNAs identified so far which 

functionally impact on early human OA onset and disease progression. Thus, I undertook 

this project to identify miRNAs mediating initiation and progression of OA and dissect 

their biological function in order to identify new signalling pathways involved in the 

pathogenesis of OA. The hypothesis and specific aims of the project were: 

Hypothesis: The dysregulated expression of specific microRNAs contributes to the onset 

or progression of OA. 

 Specific aim 1: Profile miRNA and mRNA expressions in whole knee joint in DMM 

model to identify the potential miRNAs involved in the early stage of OA  

Specific aim 2: Determine the involvement of the miRNA in human end stage OA 

cartilage, in murine injury model, in chondrogenesis.  

Specific aim 3: Identify factors control the miRNA expression in articular cartilage 

Specific aim 4: Identify miRNA direct targets to identify new signaling pathways 

involved in homeostasis of articular cartilage.  
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CHAPTER 2 
MATERIALS AND METHODS 

 

2.1.Materials  

2.1.1. Murine models  

2.1.1.1. Destabilization of the medial meniscus murine model (DMM model) 

Induction of OA by destabilization of the medial meniscus (DMM) was kindly performed 

by Professor Tonia Vincent Kennedy Institute for Rheumatology, Oxford University, U.K. 

Protocols using C57Bl/6 mice were as described previously in (Burleigh et al. 2012, 

Chong et al. 2013).  

Briefly, C57Bl/6 male mice were housed 3-5 per cage in 63x54x30 cm3 standard 

individually vented cages and maintained with a 12h/12h light/dark cycle at an ambient 

temperature of 21oC. Mice were fed a certified mouse diet (RM3 from Special Dietary 

Systems, Essex, UK) and water ad libitum. 10 week old mice were anaesthetized by intra-

peritoneal injection of a 1:1:2 mixture of Hypnorm (0.315mg/ml fentanyl citrate and 

10mg/ml fluanisone; VetaPharma Ltd, Leeds, UK), Hypnovol (5mg/ml midazolam; 

Roche), and sterile water for injection, at a dose of 10ml/kg body weight. The ventral 

portion of the right knee was shaved and swabbed with iodine to prepare a sterile surgical 

field. The medial meniscus was identified and the attachment of its anterior horn to the 

tibial plateau was cut. Care was taken to avoid injury to the anterior cruciate ligament and 

the cartilage surfaces. The mice were fully mobile within 2-4 hours after surgery. After 1, 

3, 7 days after surgery, the mice were culled and knees harvested. 

2.1.1.2. Murine hip avulsion injury model  

The femoral caps of C57Bl/6 mice ages 4 weeks were avulsed using forceps as described 

in (Chong et al. 2013). After washing three times with sterile phosphate-buffered saline 

(PBS) (Life Technologies, 10010023), the femoral caps were immediately put in either 

500µl Trizol® reagent (Invitrogen, 15569-026) (for time point 0) or in 24-well plate for 

(other time points e.g. 3, 6, 12, 48 hours). 200µl of Dulbecco’s modified Eagle’s medium 

(DMEM) (Life Technologies, 10566-016) containing 100 IU/ml penicillin and 100µg/ml 



64 

 

streptomycin (Sigma, P4333) was added to each well and the plate was incubated at 37oC 

in 5% (v/v) CO2.  At the desired time points, the femoral caps were harvested (with Trizol 

reagent) and total RNA was isolated.   

2.1.2. Human end stage OA specimens and normal counterparts  

Ethical Committee approval for using discarded human tissue was received prior to the 

initiation of the studies. Full informed consent was obtained from all donors. Human 

articular cartilage was obtained from patients undergoing total hip/ knee replacement 

surgery at the Norfolk and Norwich University Hospital. In total, 8 hip and 7 knee OA 

cartilage samples were collected. 7 healthy articular cartilages were harvested from total 

hip replacement following fracture to the neck of femur. None of the healthy individuals 

had a clinical history of arthritis or other diseases affecting cartilage, no macroscopic 

lesions to the cartilage were seen.  

2.1.3. Cell lines  

All cell lines were maintained in DMEM high glucose, GlutaMAX supplement (Life 

Technologies, 10566-016) containing 10% (v/v) heat-inactivated fetal bovine serum (FCS) 

(PAA, UK), 100U/ml penicillin, and 100µg/ml streptomycin (Sigma, P4333) at 37oC in 5% 

(v/v) CO2.  

2.1.3.1.  Chondrosarcoma SW1353  

The SW1353 cell line was initiated from a primary grade II chondrosarcoma of the right 

humerus obtained from a 72 year old female Caucasian. SW1353 cells were purchased 

from the American Type Culture Collection (ATCC) (no.HTB-94).   

2.1.3.2.  Chicken dermal fibroblasts DF1 

DF-1 is a spontaneously immortalized chicken fibroblast cell line without viral or chemical 

treatment derived from 10 day old East Lansing Line (ELL-0) embryo.  DF1 was a kind 

gift from Professor Andrea Munsterberg, University of East Anglia, U.K.  

2.1.3.3.  Dicer knockdown cell lines 
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DLD-1 Parental and DLD-1 Dicer null cell lines were a kind gift from Professor Tamas 

Dalmay, University of East Anglia, U.K. These cell lines were originally purchased from 

Horizon Discovery (Cambridge, U.K.). Both cell lines were originally isolated from a 

colorectal adenocarcinoma.  
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2.2.Methods  

2.2.1. Molecular biology- based methods 

2.2.2.2. Human genomic DNA isolation 

Buffer 

Extraction Buffer: 10mM Tris-HCl pH 8 (Fisher Scientific, BP152-500), 5mM NaCl 

(Fisher Scientific, BP3581), 0.5% (w/v) SDS (Fisher Scientific, 10356463). 

DNA extraction protocol 

Human chondrosarcoma SW1353 cells were harvested from a 75cm2 flask by trypsin-

EDTA treatment (Life Technologies, 25200072) and pelleted by centrifugation at 17.3xg, 

5 minutes.  

The cell pellet was mixed well with 100µl nuclease-free water (Sigma, W4502), 400µl 

extraction buffer, 10µl Proteinase K (20mg/ml) (Sigma, P6556) and incubated at 50oC, 2 

hours.  

500µl of PCI (phenol: chloroform: isoamyl alcohol 25:24:1) (Sigma, P2069) was added, 

mixed gently and centrifuged, 10 minutes at 130,000xg. 

 The top phase was transferred to a new tube, 1 ml of chloroform (Sigma, 288306) was 

added and after vortex, the mixture was again centrifuged at 130,000xg for 10 minutes.  

The upper phase was transferred to a new tube and two volumes of 100% (v/v) ethanol 

(Sigma, 459844) were added, followed by centrifugation at 130,000xg for 5 minutes. 

 The DNA pellet was washed with 700µl of 70% (v/v) ethanol, and then centrifuged at 

130,000xg for 1 minute. Discard the ethanol. 

Finally, the pellet was dried at room temperature and dissolved in 100µl of nuclease-free 

water (Sigma, W4502). 

2.2.2.3. PCR amplification for 3’UTR regions 
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3’UTR regions of all genes including ADAMTS6, ADAMTS14, ADAMTS17, ADAMTS19, 

FZD3, FZD5, DVL3, FRAT2, and CK2A2 were downloaded from the Ensembl Genome 

Browser: http://www.ensembl.org/index.html. Primers were specifically designed to 

amplify a 1-2 kb region of 3’UTR of these genes including the miR-29 family binding 

sites. A restriction site of SacI (5’GAGCTC3’), XbaI (5’TCTAGA3’) or SalI 

(5’GTCGAC3’) are added to the 5’ end of each primer. Primer sequences are listed in 

Appendix, Table 1. 

 All 3’UTR regions were amplified from human genomic DNA, isolated from the SW1353 

cell line. 100ng genomic DNA was added together with 5µl 10X reaction buffer, 5 units 

accuTaqTM LA DNA polymerase (Sigma, D8045), 0.5µl dNTP 10µM (Bioline, BIO-

39044), 1µl forward primer 10µM (Sigma), 1µl reverse primer 10µM (Sigma) in a 50µl 

reaction volume. The reaction was run on a VeritiR 96-well thermal cycler (Applied 

Biosystems, 4375786) at 98oC, 30 seconds to denature DNA and follows by 32 cycles: 10 

seconds at 98oC, 20 seconds at annealing temperature (depending on each primer pair), 1-2 

minutes at 68oC. Finally, the reaction was left 2 minutes at 68oC for final extension.  

The PCR reaction was confirmed by loading 3µl PCR product on 1% (w/v) agarose gels, 

which were prepared by heating 1% (w/v) agarose (Sigma, A9639) in Tris-acetate-EDTA 

(TAE) buffer, and run at 120V. After staining in ethidium bromide solution (Sigma, E1510) 

for 20 minutes, the product was visualized under UV-light. 

2.2.2.4.  Phenol/chloroform clean up  

 Nuclease- free water (Sigma, W4502) was added to a PCR reaction to 200µl, followed by 

200µl of phenol: chloroform: isoamyl alcohol (Sigma, P2069). The reaction was mixed 

well and centrifuged at 130,000xg for 10 minutes. The upper phase was collected to a fresh 

tube and a 2.5 volume of 100% (v/v) ethanol (Sigma, 459844) and 1/10 volume of 5M 

NaOAc (sodium acetate, Sigma, S2889) were added, followed by centrifugation at 

130,000xg for 10 minutes. The DNA pellet was washed with 500µl of 70% (v/v) ethanol 

(Sigma, 459844), and centrifuged at 130,000xg for 10 minutes. Finally, the pellet was 

dried at room temperature for 5 minutes and dissolved in 27µl nuclease- free water (Sigma, 

W4502). 
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2.2.2.5.  Plasmid isolation  

A single colony from LB (Luria Bertani) agar plate supplemented with 100µg/ml 

ampicillin (Sigma, A0166) was inoculated into 5ml of LB broth medium also 

supplemented with 100µg/ml ampicillin incubated at 37°C, 180rpm overnight. The 

bacterial culture was pelleted by centrifugation at maximum speed for 5 minutes. Plasmids 

were isolated using the QIAprep Spin Miniprep Kit (Qiagen, 27104): The pellet was 

resuspended in 250µl of P1 buffer.  250µl of P2 buffer was added to the suspension which 

was then mixed thoroughly by vigorously inverting 4-6 times and incubated at room 

temperature for 5 minutes. After that, 50µl of P3 buffer was added and the mixture was 

inverted until a homogenous suspension containing a white flocculate was formed. The 

bacterial lysate was cleared by centrifugation at 130,000xg, 10 minutes and the supernatant 

was transferred to a spin column. The column was washed two times with 500µl of wash 

buffer. Finally, the plasmid was then eluted with 30µl nuclease free water (Sigma, W4502).  

For preparation of large quantities of plasmid DNA, the QIAGEN Plasmid MIDI Kit was 

used (Qiagen, 12143): A single colony from LB ampicillin agar plate was inoculated into 

100ml of LB medium supplemented with 100µg/ml ampicillin (Sigma, A0166), incubated 

at 37°C, 180rpm overnight and harvested by centrifugation at maximum speed for 10 

minutes at 4°C. The bacterial pellet was resuspended in 4 ml of P1 buffer, followed by 4 

ml of P2 buffer, and the suspension was thoroughly mixed by vigorously inverting the 

sealed tube 4-6 times and incubated at room temperature for 5 minutes. 4 ml of chilled P3 

buffer was added, and the suspension was thoroughly mixed by vigorously inverting 4-6 

times and incubated on ice for 15 min, followed by centrifugation at 130,000xg for 30 

minutes at 4°C. The QIAGEN-tip was equilibrated by applying 3 ml of QBT buffer, and 

the column was allowed to empty by gravity flow. The supernatant (above) was applied to 

the QIAGEN-tip. The QIAGENtip was washed twice with 10ml of wash buffer. The DNA 

was eluted with 5 ml of elution buffer and precipitated by adding 5 ml of room 

temperature 100% (v/v) isopropanol (Sigma, 190764) to the eluted DNA, followed by 

centrifugation immediately at 130,000xg for 10 minutes at 4 °C. The supernatant was 

carefully decanted. The DNA pellet was washed with 2 ml of room temperature 70% (v/v) 

ethanol (Sigma, 459844), followed by centrifugation at 130,000xg for 5 minutes. The 

supernatant was carefully decanted without disturbing the pellet. The pellet was dried for 
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5-10 min. Finally, the plasmid pellet was dissolved in 500µl of nuclease free water and the 

plasmid concentration was determined using a Nanodrop spectrophotometer.  

2.2.2.6.  Digestion  

2µg of plasmid pmiR-Glo or all PCR products after phenol/chloroform clean up was 

incubated with 1µl either SalI (10 units/ µl) (Promega, R6061), SacI (10 units/ µl) 

(Promega, R6051), or XbaI (Promega, R6181) in the recommended buffer in a final 

volume 20µl for 3 hours at 37oC. The digestion reaction was terminated by heating at 75oC 

for 15 minutes.  

After digestion, the 5’ phosphate of plasmid was removed to prevent self-ligating by 

incubating the digestion mix with 1µl Antarctic Phosphatase (5 units/µl) (NEB, M0289S) 

and 3µl Antarctic Phosphatase buffer 10X, in a final volume 30µl.The reaction was carried 

out at 37oC for 15 minutes and followed 5 minutes at 70oC to inactivate the enzyme.  

2.2.2.7.  Gel purification  

The digestion mix was applied to 1% (w/v) SeaKem® LE Agarose (Lonza, 50002). DNA 

fragments were visualized by staining with ethidium bromide (Sigma, E1510). Under UV-

light, the appropriate DNA band was excised from the gel with a clean scalpel and 

transferred into an Eppendorf tube. The Zymoclean Gel DNA Recovery Kit (Zymo 

Research, D4001) was used to purify DNA from the agarose gel. Briefly, 3 volumes of 

ADB were added to each volume of agarose excised from the gel and incubated at 37-55oC 

for 5-10 minutes until the gel slice was completely dissolved. For DNA fragments higher 

than 8kb, 1 addition volume of water was also added to the agarose. The dissolved agarose 

solution was transferred to the Zymo-spin column and centrifuged for 30 seconds at full 

speed. The flow-though was discarded. The column was washed two times with 200µl 

DNA wash buffer and centrifuged at full speed at 30 seconds. The flow-though was 

discarded. DNA was eluted with 13µl nuclease-free water (Sigma, W4502) and quantified 

using a NanoDrop spectrophotometer. 
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2.2.2.8.  Ligation 

Ligation of DNA fragments was performed with a ratio of 1:3 of plasmid DNA: insert. The 

reaction mixture was incubated with 1µl of T4-DNA Ligase (1 unit/µl) (Life Technologies, 

15224-017), 1µl of ligation buffer (10X) in a final volume of 10µl ddH2O. The reaction 

was left at 14oC for 24hours. 

2.2.2.9. Transformation 

To 100µl of competent E.coli DH5α, either 50-100ng of plasmid DNA or 10 µl of ligation 

reaction were added and incubated for 20 minutes on ice. A heat shock at 42°C for 30 

seconds was followed by incubation on ice for another 2 minutes. 500µl of LB medium 

was added to the bacteria and the bacterial suspension was shaken at 37°C and 180rpm for 

60 minutes. The bacteria were then spread on LB-agar plates containing 100µg/ml 

ampicillin (Sigma, A9393). Plates were incubated at 37°C overnight. 

2.2.2.10.  MicroRNA 29 family binding site mutagenesis  

QuikChange II XL site-directed mutagenesis kit (Agilent, 200521) was used to replace 5 

nucleotides in the binding site of the miR-29 family to either XbaI (5’TCTAGA3’), SalI 

(5’GTCGAC3’), SacI (5’GAGCTC3’) depending on which restriction enzymes were used 

in subcloning. The basic procedure utilizes PfuUltra high fidelity (HF) DNA polymerase 

for extending two mutagenic oligonucleotide primers which have desire mutations in the 

middle of their sequences and the rest of the sequence complementary to opposite strands 

of miR-GLO- 3’UTR. After cycling, PfuUltra HF DNA polymerase will generate a 

mutated plasmid containing staggered nicks (Figure 2.1). The product is then treated with 

Dpn I nuclease targeting sequence 5’-Gm6ATC-3’. Dpn I, specific for methylated and 

hemimethylated DNA, will digest the parental DNA template and select for mutant-

containing synthesized DNA. The nicked vector DNA incorporating the desire mutant of 

the miR-29 family binding site is then transformed into XL10 Gold ultracompetent cells 

(Figure 2.1). 
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Mutangenic primers were designed using Agilent’s website: QuikChange primer design 

program: www.agilent.com/genomics/qcpd. The lists of primer mutants used are listed in 

Appendix, Table 2.  
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Figure 2.1: QuikChange II XL site-direct mutagenesis method 

The reaction is prepared in a final volume of 50µl with 10ng of pmiR-Glo-3’UTR, 1.5µl 

primer mutant forward (100ng/µl), 1.5µl primer mutant reverse (100ng/µl), 1µl of dNTP 

mix (10mM), 5µl of reaction buffer (10X), 1µl of PfuUltra HP DNA polymerase (2.5 

units/µl). The reaction is cycled at 1 minute at 95oC, followed by 18 cycles at 95oC 50 

seconds, 68oC 1 minute/1 kb plasmid length, and finally extension at 68oC for 7 minutes. 

The amplification reaction was further incubated with 1µl of DpnI restriction enzyme 

(10units/µl) at 37oC for another 1 hour. To 50µl of XL10-Gold Ultracompetent cells, 5µl 

of Dpn I-treated DNA was added and the transformation protocol followed as above.  

2.2.2.11.   Sequencing  

DNA Sequencing was performed by Source BioScience 

(http://www.lifesciences.sourcebioscience.com/). The sequencing signal was read by 

Chromas 2.4. 

 

 

2.2.2.12.  Total RNA isolation 
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2.2.2.12.1. Total RNA isolation from cultured cells 

500ml of Trizol® reagent (Invitrogen, 15569-026) were added directly to adherent cells 

after removing the growth media from a 6-well plate. The cells were lysed by pipetting up 

and down several times. 250µl chloroform (Sigma, 288306) was added per 500µl Trizol®, 

vortexed for 15 seconds and incubated at room temperature for 10mins. The 

Trizol®/Chloroform mixture was centrifuged at 130,000xg, 10min, at 4oC and the aqueous 

layer recovered into a fresh tube. 500µl of 100% (v/v) isopropanol (Sigma, 190764) was 

added, mixed, left 10min at room temperature and centrifuged at 130,000xg, 10min, at 4oC 

then the supernatant was discarded. RNA pellets were washed with 75% (v/v) ethanol 

(Sigma, 459844), and centrifuged at 130,000xg, 2min, at 4oC. The supernatant was 

discarded, the pellet air dried and then suspended in 50µl RNase-free water and stored at -

80oC until further use. 

2.2.2.12.2. Total RNA isolation from murine whole knee joint 

All materials used were RNase free. Whole knee joints were ground under liquid nitrogen 

using BioPulverizer (Biospec). Trizol® reagent (Invitrogen, 15569-026) were added 

immediately to ground samples (1.5ml/50mg samples) and mixed thoroughly for 5 minutes. 

Ground knee joints were pelleted at 130,000xg for 2min at 4oC and the supernatant 

recovered. 250µl chloroform (Sigma, 288306) was added per 500µl Trizol®, vortexed for 

15 seconds and incubated at room temperature for 10mins. Samples were then treated as 

cultured cells above.  

2.2.2.12.3. Total RNA isolated from murine hip or knee cartilage  

Murine hip femoral caps were fully homogenized with 500µl Trizol® reagent (Invitrogen, 

15569-026) using a disposable pestle. Then, 200µl chloroform (Sigma, 288306) was added, 

vortexed for 15 seconds, and left at room temperature for 10mins. The Trizol®/chloroform 

mixture was centrifuged at 130,000xg for 10 minutes at 4oC, and the aqueous layer 

collected into a fresh tube. The RNA purification step was performed using mirVana™ 

miRNA Isolation Kit (AM1560, Life Technology) according to the manufactures 

recommendation for total RNA recovery. Briefly, 1.25x aqueous layer volume of 100% 

(v/v) RT ethanol was added to the aqueous phase and the samples were loaded onto 
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columns. The flow through was discarded after centrifuging 15 seconds at 130,000xg. 

Then three wash steps were followed by applying wash solution 1 (700µl), and then wash 

solution 2/3 (500µl) (twice) to the column. For each washing, the column was centrifuged 

at 130,000xg for 15 seconds followed by discarding the flow through. The columns was 

then placed in RNase-free collection tubes and 30µl of RNas-free water added. Columns 

were then left to stand for 2 minutes and centrifuged at 2 minutes, 13,000xg. RNA was 

then stored at -80oC until used.  

2.2.2.13. MicroRNA quantification and integrity  

The concentration of RNA samples was determined by measuring the absorbance at 

260nm using the NanoDrop spectrophotometer (NanoDrop Technologies). The purity of 

RNA is determined from the ratio A260/A280 and A260/A230. 

The integrity of total RNA was determined using the ExperionTM automated 

electrophoresis system (Bio-Rad, USA). This method measures fluorescence of a 

fluorophore bound to RNA. RNA integrity can be evaluated automatically by comparing 

the area of the peaks corresponding to the rRNAs. A 28S/18S rRNA ratio close to 2 

indicates for intact RNA. 

2.2.2.14.  cDNA synthesis  

2.2.2.14.1. SuperScript II reverse transcriptase cDNA synthesis 

Total RNA was isolated from cells, whole knee joints, human or murine cartilages as 

above and reverse transcribed to cDNA using SuperScript II reverse transcriptase (Life 

Technologies, 18064-014). Briefly, in a total volume of 11µl in 96-well PCR plate, 1µg 

total RNA and 0.2µg random hexamer primer (Life Technologies, 48190-011) was mixed 

together and the plate was incubated at 70oC for 10mins. Samples were chilled on ice, then, 

a master mix containing 1µl SuperScript II reverse transcriptase (200 units/µl) (Life 

Technologies, 18064-014), 4µl First Strand buffer (5X) (Life Technologies, 28028-013), 

2µl 0.1M dithiothreitol (DTT) (Life Technologies, 18057-018), 2µl of 10mM dNTP mix 

(Bioline, BIO-39044), 1µl Recombinant RNasin Ribonuclease Inhibitor (20-40 units/µl) 

(Promega, N2511) was added to the randomly primed RNA to give a total volume of 20µl 

and incubated for 1 hour at 42oC followed by a heat inactivation step at 70oC, for 10mins. 
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cDNA was diluted to 0.5µg/ml in nuclease-free water (Sigma, W4502). 5µg cDNA was 

used for qRT-PCR analysis of genes of interest and 1µg cDNA was used for analysis of 

18S rRNA. QRT-PCR is described in 2.2.2.15. 

2.2.2.14.2. M-MLV reverse transcriptase cDNA synthesis  

Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase was used to perform 

cDNA synthesis straight from cell lysate without the need of purifying total RNA. This 

method was used for cell plated in 96-well plate where a number of cells are too small for 

RNA extraction. 

Briefly, medium was removed and the cells in 96-well plate were washed with ice cold 

PBS (Life Technologies, 10010023). Then, 30µl cells to Cells-II-cDNA lysis buffer (Life 

Technologies, AM8723) was added to each well, providing a cell lysate which can 

immediately be reverse transcribed without the need for RNA isolation. Lysates were 

transferred to 96-well PCR plate and heated to 75oC for 15 minutes to inactivate RNases. 

Lysates can be stored at -80oC until reverse transcription. For genomic DNA digestion, 1µl 

DNase I 1 units/µl (Life Technologies, AM2222) and 3µl DNase I buffer (10X) were 

added per well. The plate was heated to 37oC for 15 minutes, followed by an inactivation 

step at 75oC for 5 minutes.  

For reverse transcription, 8µl of DNase-treated samples were transferred to a new ice cold 

PCR plate. Following this, 3µl of 10mM dNTP mix (Bioline, BIO-39044) and 0.2µg 

random hexamer primers (50µM) (Life Technologies, 48190-011) were added per well and 

samples were heated to 70oC for 5 minutes. Samples were chilled on ice and a master mix 

including 0.5µl Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase 200 

units/µl (Life Technologies, 28028-013), 4µl First Strand buffer (5X) (Life Technologies, 

28028-013), 2µl 0.1M dithiothreitol (DTT) (Life Technologies, 18057-018), 0.5µl 

Recombinant RNasin Ribonuclease Inhibitor (20-40 units/µl) (Promega, N2511), 1µl 

nuclease-free water (Sigma, W4502) was added per well. Samples were then heated to 

37oC for 50 minutes, followed by an inactivation step of 75oC for 15 minutes. After that, 

30µl of nuclease-free water (Sigma, W4502) was added per sample. For quantitative real-

time PCR (qRT-PCR) analysis of genes of interest, 5µl of each sample was used. For the 
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house keeping gene 18S rRNA, samples were diluted 1:10 and 5µl was used. QRT-PCR is 

described in 2.2.2.15. 

2.2.2.14.3. miRCURY LNA TM  Universal cDNA synthesis 

MicroRNA cDNA was synthesized by the miRCURY LNATM Universal cDNA synthesis 

kit (Exiqon, 203300). This step provides templates for all miRNA real-time PCR assays by 

one first-strand cDNA synthesis reaction. The basis principal is in Figure 2.2. 
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Figure 2.2: Outline of the miRCURY LNA Universal RT miRNAsynthesis. 

 A poly-A tail is added to the mature miRNA template (step 1A). cDNA was synthesized 
using a poly-T primer with a 3’degenerate anchor and a 5’universal tag (step1B). Then the 
cDNA template is amplified using miRNA-specific and LNATM-enhanced forward and 
reverse primers (step 2A). Sybr green is used for detection (step 2B). Reprinted from 
miRCURY LNATM Universal RT microRNA PCR instruction manual (Exiqon). 

Total RNA was adjusted to 5ng/µl using nuclease-free water (Sigma, W4502). 10ng of 

RNA was transferred to an ice cold 96-well PCR plate. A master mix contained 2µl 

Reaction Buffer (5X) (Exiqon, 203300), 1µl enzyme mix was added to each well. The 

reaction was brought to 10µl with nuclease-free water and the plate was heated to 42oC for 

1 hour followed by a heat inactivation step at 95oC for 5minutes. cDNA was then diluted 

to 12.5 pg/µl by nuclease free water (Sigma, W4502) and 50pg of cDNA was used for 

qRT-PCR analysis of miRNA of interest.  
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2.2.2.15.  Real-time quantitative RT-PCR 

2.2.2.15.1. Universal Probe Library Real-Time qRT-PCR 

The Universal Probe Library (UPL) (Roche Diagnostics) enables extensive transcript 

coverage due to the short 8-9 nucleotide-long probes. Each probe has a fluorescein 

(FAM™) label at the 5’ end and a dark quencher dye at the 3’ end; shorter (typically 8-9 

nucleotide) than conventional probe (25-35 nucleotides); locked nucleic acids (LNATM) 

are incorporated into it sequence. Each probe can detect ~7,000 transcripts and each 

transcript is detected by ~16 probes.  

Primers were designed using the freely available ProbeFinder web-based software 

provided by Roche Applied Science in which the ‘exon boundary spanning’ option was 

selected. Primers were subjected to short sequence BLASTn search to confirm specificity. 

All the primers were purchased from Sigma and reconstituted in nuclease free water 

(Sigma, W4502) at 100nM. Primer sequences and UPL probe numbers are in Appendix, 

Table 3. 

For quantitative RT-PCR using the universal primers and probes, the qRT-PCR was 

carried out using the ABI Prism 7900 HT Sequence Detector (Applied Biosystems) in a 

microAmp® optical 96-well plate (Life technologies, N8010560). When RNA quantity was 

known, the qRT-PCR was run using 5ng cDNA for genes of interest and 1ng cDNA for 

18S rRNA. For M-MLV-reverse-transcribed- cDNA transcript samples, 5µl samples was 

used for gene of interest or diluted 1:10 and used 5µl for detecting 18S rRNA.   

Each qRT-PCR reaction contained Kappa Fast Universal qPCR Master Mix (2X) (Kappa 

Biosystems, KK4703), a final concentration of 100nM of each of forward and reverse 

primers, 200nM of Universal Probe (Roche Diagnostics). The reaction was carried out in a 

final volume of 25µl. The plate was sealed with microAmp® optical adhesive film (Life 

Technologies, 4311971) and run with the following PCR cycles: 50oC 2 minutes, 95oC 10 

minutes, 40 cycles for 95oC 15 seconds, 60oC 1 minute.  
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2.2.2.15.2. Standard probe-based Real-time qRT-PCR 

The probe-based quantitative real-time PCR method was used to detect the expression of 

ADAMTS genes including ADAMTS4, ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, 

ADAMTS19. These primer and probe sequences were described in (Davidson et al. 2006). 

Briefly, the primers and probes were designed by Primer Express® 1.0 software (Life 

Technologies, 4363991) and were closed to intron/exon boundaries to control 

amplification of genomic DNA. Where possible, the probes were designed to span two 

neighbouring exons. Specificity of primers and probes were validated thought BLASTn. 

Primer sequences and probe sequences are in Appendix, Table 4 

The qRT-PCR reaction was also carried out in a final volume 25µl of Kappa Fast 

Universal qPCR Master Mix (2X) (Kappa Biosystems, KK4703), 100nM final 

concentration of each of forward and reverse primers, 200nM genes of interest-specific 

probe. Reaction set up and cycling conditions were as in 2.2.2.15.1. 

2.2.2.15.3.  SYBR® Green Real-time PCR  

A combination of SYBR® green dye fluorescence with gene-of-interest specific primers 

enabled double stranded-DNA amplification measurement during PCR. SYBR® green 

real-time qRT-PCR was used to detect primary and pre sequences of the miR-29 family 

(which were described in (Eyholzer et al. 2010)) and other genes as below. Full primer 

sequences and list of genes detected by SYBR® green real-time PCR are listed in 

Appendix, Table 5. All primers were purchased from Sigma.  

For SYBR® green qRT-PCR reaction, the amount of cDNA for genes of interest and 18S 

rRNA is as 2.2.2.15.1. The reaction contained 0.18µl SYBR® green I dye, Kappa Fast 

Universal qPCR Master Mix (2X) (Kappa Biosystems, KK4703), 100nM final 

concentration of each of forward and reverse primers. The PCR cycle conditions are as 

2.2.2.15.1 followed by another dissociation step which produces the melting curve for the 

PCR amplification product.  

2.2.2.15.4. SYBR® Green Real-time PCR for the mature miR-29 family detection 
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LNA primers for detecting miR-29 family mature sequence 

All LNA primers were designed for optimal performance with the miRCURY LNATM 

Universal cDNA synthesis kit. The LNA primers are Hsa-miR-29b-3p LNATM PCR primer 

sets (Exiqon, 204679), Hsa-miR-29a-3p LNATM PCR primer sets (Exiqon, 204698), Hsa-

miR-29c-3p LNATM PCR primer sets (Exiqon, 204729). 

Real-time PCR protocol  

The qRT-PCR reaction used SYBR® green I dye in combination with LNATM PCR primer 

sets to quantify the original mature miR-29 family. The reactions contained 50pg of 

miRCURY-LNATM-Universal cDNAs for either the miR-29 family or U6. The PCR 

reaction mix contained 0.18µl SYBR® Green I dye, 5µl Kappa Fast Universal qPCR 

Master Mix (2X) (Kappa Biosystems, KK4703), and 1µl of forward and reverse primer 

mix (as recommend by the manufacture (Exiqon)) in a final volume of 10µl. PCR cycles: 

10 minutes at 95°C, 40 cycles for 10 seconds at 95°C, 1 minute at 60°C and a dissociation 

step. The dissociation step produces a melting curve for the PCR amplification product and 

ensures there is only amplification of the target gene.  

2.2.2.15.5. Quantitative RT-PCR Data analysis  

2.2.2.15.5.1. Control genes  

The constitutively expressed “housekeeping” 18S rRNA was used as the control for 

relative mRNA gene expression while U6 was used as endogenous control for relative 

miRNA gene expression. 

2.2.2.15.5.2. Relative gene expression – comparative Ct method 

Raw fluorescence data was analyzed by the 7000HT SDS 2.2 software to produce 

threshold cycle (Ct) values, which is the cycle number at which the signal is detectable 

above the baseline. The Ct values were transformed using the comparative Ct method to 

obtain relative quantification (RQ) of gene expression:  

RQ=2-∆Ct 

 Where: for mRNA expression: ∆Ct= target gene Ct - 18S Ct 
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         Or for miRNA expression: ∆Ct= the miR-29 family Ct - U6 Ct
  

This method assumed that all primers and probe sets are working at the same efficiency.  

2.2.2.15.6. Western Blot 

Buffer and antibody 

Radio immunoprecipitation assay (RIPA) buffer: The buffer was made (final 

concentration) with 50mM Tris base (Fisher Scientific, BP152-500) (which was adjusted 

to pH 7.6 with hydrochloric acid (Sigma, 258148)),150mM NaCl (Fisher Scientific, 

BP3581), 1% (v/v) Triton X-100 (Sigma, X100), 1% (w/v) sodium deoxycholate (Sigma, 

D6750), 0.1% (w/v) sodium dodecyl sulfate (SDS) (Fisher Scientific, 10356463), 10mM 

sodium fluoride (NaF) (Sigma, 201154), 2mM sodium orthovanadate (Na3VO4) (Sigma, 

S6508), 1X protease inhibitor cocktail (Fisher Scientific, PI-78410).  

Resolving buffer: To make up 4X buffer: 91g Tris base (Fisher Scientific, BP152-500) 

was dissolved in Milli-Q Ultrapure water (Merck Millipore) and adjusted to pH 8.8 with 

hydrochloric acid (Sigma, 258148). The solution was then made up to 500ml. 2g SDS 

(Fisher Scientific, 10356463) was added and dissolved. 

Staking buffer: To make up 4X buffer: 6.05g Tris base (Fisher Scientific, BP152-500) 

was dissolved in Milli-Q Ultrapure water and adjusted to pH 6.8 with hydrochloric acid 

(Sigma, 258148). Milli-Q water was added to 100ml volume. 0.4g SDS (Fisher Scientific, 

10356463) was added and dissolved. 

Running buffer:  To make up 10X buffer: 30.2g Tris base (Fisher Scientific, BP152-500), 

144g glycine (Fisher Scientific, 10467963), 10g SDS (Fisher Scientific, 10356463) were 

dissolved in Milli-Q water to a final volume 1L. 

Transfer buffer:  To make up 1X buffer: 5.8g Tris base (Fisher Scientific, BP152-500), 

2.9g glycine (Fisher Scientific, 10467963), 0.37g SDS (Fisher Scientific, 10356463) were 

dissolved in Milli-Q water, 200ml 100% (v/v) methanol (Sigma, 322415) were added then 

Milli-Q water to a final volume of 1L. 
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Tris-buffered saline (TBS): To make up 10X buffer: 24.2g Tris base (Fisher Scientific, 

BP152-500), 80g NaCl (Fisher Scientific, BP3581) were dissolved in 900ml Milli-Q water 

and adjusted to pH 7.6 with hydrochloric acid (Sigma, 258148). Milli-Q water was added 

to 1L volume. 

Blocking buffer:  For 150ml, 15ml 10X TBS was diluted in 135ml Milli-Q water. 7,5g 

non-fat dry milk (OXOID, LP0031) was added and stirred to mix. Finally, 0.15ml 

Tween®-20 was added (Sigma, P5927).  

Primary antibody dilution buffer:   For 20 ml, 2 ml 10X TBS was diluted to 18 ml with 

Milli-Q water. 1.0 g BSA (Sigma, A9418) was added and dissolved by stirring. While 

stirring, 20µl Tween-20 (Sigma, P5927) was added. 

Wash Buffer (TBST): TBS with a final concentration 0.1% (v/v) Tween-20 (Sigma, 

P5927). 

Antibody:  GAPDH antibody (Cell Signaling, #2118S), DVL3 antibody (Cell Signaling, 

#3218), FZD5 antibody (Cell Signaling, #3795) 

Western blot protocol  

SW1353 cells were plated in 6-well plates (1.5x105cells/well) and transfected with Syn-

Hsa-miR-29b miScript miRNA mimic (Qiagen, MSY0000100) as referred in 2.2.2.7.2.5. 

At desired time post transfection, cells in each well of 6-well plate were washed twice with 

ice cold PBS (Life Technologies, 10010023) before adding 100µl RIPA buffer to each 

well and harvesting by scraping. The cell lysate was transferred to a fresh ice-cold 1.5ml 

tube and centrifuged at full speech in 10 minutes. The supernatant was collected and stored 

at -20oC.  

Protein was quantified using the Bio-Rad Protein Assay (Bio-Rad, #500-0006) which is 

based on the method of Bradford. Briefly, 200µl dye reagent concentrate was diluted 5 

times with Milli-Q water before adding 20µl sample lysate. The mixture was incubated at 

room temperature for 10 minutes and absorbance measured at 595nm. Comparison of this 

value to a standard curve provided a relative concentration of solubilized protein. The 
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standard curve was created with five dilutions of proteins standards of bovine serum 

albumin (Bio-Rad, 500-0002) from 0.2 to 0.9 mg/ml. 

Samples was adjusted to 20µg solubilized protein in a 30µl with nuclease-free water 

(Sigma, W4502), followed by adding 20ng/µl Bromophenol Blue (Sigma, 114391) and 

1.2µl 1M DTT (Thermal Scientific, # R0861).  The sample was gently mixed and heated to 

95oC for 5 minutes. Samples were then electrophoresed on 10% (w/v) polyacrylamide gels.  

The resolving gel was cast with the following components: 5ml 30% (w/v) Acrylamide/ 

Bis Acrylamide solution 37:5:1 (Bio-Rad, #161-0154), 3.75ml resolving buffer (4X), 

6.25ml Milli-Q water, 50µl 10% (w/v) ammonium persulfate (APS) (Sigma, A3678), 10µl 

TEMED (Sigma, T9281). Resolving gels were topped with isopropanol (Sigma, 190764) 

until set. Then isopropanol was removed and the stacking gel was cast on top of the 

resolving gel and a comb was inserted. For 1 gel, the stacking gel was made with 0.71ml 

stacking buffer (4X), 0.41ml 30% (w/v) acrylamide/ bis acrylamide solution 37:5:1 (Bio-

Rad, #161-0154), 1.91ml Milli-Q water, 16µl 10% (w/v) APS (Sigma, A3678), 3.2µl 

TEMED (Sigma, T9281). Samples were loaded on the gel and were electrophoresed at 

50V until the bromophenol blue passed through the stacking gel and then 80V for 1.5 

hours.  

Immobilon®-FL PVDF membrane (Merck Millipore, IPFL00010) was incubated in 100% 

(v/v) methanol (Sigma, 322415) for 15 seconds and washed with Milli-Q water. Then, 

Immobilon®-FL PVDF membrane, gel, extra thick blotting paper (Bio-Rad, #170-3966) 

were incubated in transfer buffer for 5 minutes. The gel was plated on top of Immobilon®-

FL PVDF membrane in Trans-blot® SD semi-Dry Electrophoretic transfer cell (Bio-Rad, 

#170-3940) with extra thick blotting paper underneath and on top and run for 25V for 30 

minutes (for 2 gels,1 mm thick).  

After transfer, the membranes were briefly washed with TBS and incubated in blocking 

buffer for 1 hour, with gently rocking at room temperature. Membranes were then washed 

in TBST three times for 5 minutes. Primary antibody and membrane was incubated with 

gentle agitation overnight at 4oC. Membranes were then washed in TBST three times for 5 

minutes and incubated with IRDye® 800CW goat polyclonal anti-rabbit IgG (Li-Cor, 926-

32211) (50µg) for 1 hour at room temperature with gently rock. Membranes were washed 
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with TBST for another three times for 5 minutes. The membrane was visualized using a 

Li-Cor Odyssey InfraRed Scanner. 

2.2.2.15.7. Whole mount in situ hybridization  

Reagents and buffers 

Sodium chloride (NaCl) (Fisher Scientific, BP3581), tri-sodium citrate (Fisher Scientific, 

10637174), magnesium chloride hexahydrate (MgCl2.6.H2O) (Fisher Scientific, M35-500), 

potassium chloride (KCl) (Fisher Scientific, BP366-500), heparin (Sigma, H3393), yeast 

tRNA (Fisher Scientific, 10523043), paraformaldehyde (Sigma, P6148), normal goat 

serum (heat inactivated), Triton-X100 (Sigma, X100), Tween-20 (Sigma, P5927), BSA 

(Sigma, A9418) 

Saline sodium citrate buffer (SSC): 20X SSC buffer was made up with 175.3 g of NaCl 

and 88.2 g of sodium citrate, pH 7, in a total volume of 1000ml. 

Development solution (DS): The solution was made up with: 100 mM Tris-HCl pH9.5,  

50mM magnesium chloride hexahydrate (MgCl2.6.H2O),  100mM sodium chloride (NaCl) 

+ 0.1% (v/v)Tween 20. 

Blocking solution: The solution was made up with: 2% (v/v) NGS, 2 mg/ml BSA, 0.1% 

(v/v)  Triton X-100 + 0.05% )v/v) Tween 20 in PBS. 

Hybridisation Buffer (HB):  The buffer was made up with 50% (v/v) formamide, 5xSSC, 

0.1% (v/v) Tween 20 + 10 mM citric acid pH6.0 + 50 µg/ml heparin + 100 µg/ml tRNA in 

PBS 

Tris-buffered saline with Tween 20 (TBST):  for 100ml (10X) buffer was made up with 

8g NaCl, 25ml Tris-HCl pH7.5, 0.2g KCl, 10ml Tween 20  

Phosphate-buffered saline with Tween 20 (PBST):  PBS with 0.1% (v/v) Tween 20 

Probe: miRCURY LNATM miR-29b-3p detection probe, 250pmol, 5’-DIG and 3’-DIG 

labelled (Exiqon, 38131-15) 

Fixation 



 

 

85 

 

Mouse embryos at desired stages were dissected and fixed in 4% PFA-PBS on a rolling 

platform overnight at 4oC. Then next day, the embryos were washed 4 times with PBST 

and dehydrated through increasing MeOH concentration washes e.g. 25%, 50%, 75% and 

100% MeOH on the gentle rocking platform. The embryos can then store in 100% MeOH 

at -20oC until required.   

In situ hybridization protocol  

On a gently rocking platform, the embryos were washed with decreasing MeOH 

concentration i.e. 75% (v/v), 50% (v/v), 25% (v/v), 0 (v/v) % MeOH for 15 minutes each 

time to dehydrate. After that, the embryos were digested with Proteinase K (10µg/ml final 

concentration) for 30 minutes, followed by rinsing twice in PBST and fixing in 4% (v/v) 

PFA for 20 minutes. To get rid of the remaining PBST, the embryo was washed 4 times in 

PBST for 5-7 minutes. The embryo was prehybridized in hybridization buffer at 54oC for 3 

hours and the “nape” of the neck of embryo was pricked to facilitate the probe penetration. 

After prehybridisation step, the buffer was removed and replaced with fresh warm 

hybridisation buffer containing 20 pmol of the miR-29b LNA probe (Exiqon, 38131-15) 

and left at 54oC overnight with gentle rocking. The probe hybridisation solution was 

removed followed by washes at 54oC and 15 minutes each wash e.g. 75% HB: 25% 2xSSC, 

50% HB:50% 2xSSC, 25% HB:75% 2xSSC, 2xSSC, 0.2xSSC. Following these washes, at 

room temperature, another 4 washes were carried on gently rocking platform, 10 minutes 

for each wash e.g. 75% 0.2xSSC:25% PBST, 50% 0.2xSSC:50% PBST, 25% 0.2xSSC:75% 

PBST, PBST. The embryo was then put in blocking solution for several hours at room 

temperature and incubated at 4°C O/N with the pre-absorbed antibody at a final dilution of 

1:5000 in Blocking Solution. After that, the Blocking Solution was removed and washed 

throughout 2 or 3 days at RT in PBST with gentle rocking. To get rid of all remaining 

PBST, the embryos were washed twice with TBST and with development solution for 15 

minutes each wash. Colour development was carried out at room temperature in 3.5ml 

development solution plus 15-50µl substrates. 

The antibody was pre-adsorbed using previously fixed and dehydrated tissue that is not 

suitable for in situ hybridization. These tissues were dehydrated and washed 15 minutes in 
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blocking solution, followed by incubating with blocking solution containing the antibody 

at 1:1000 dilution for three hours.  

2.2.2. Cell culture and cell-based assays 

2.2.2.1. Human primary chondrocyte isolation 

Human cartilage chips were incubated with digestion medium including DMEM 

GlutaMAXTM (Life Technologies, 10566-016), 1mg/ml collagenase (Sigma, C1639), 0.4% 

(w/v) Hepes (Fisher Scientific, BP310-100), 100 IU/ml penicillin, 100µg/ml streptomycin 

(Sigma, P4333) at 37oC, 180rpm overnight. The digestion mixture was then strained 

through a 70µm cell strainer. Cells were plated at 4x104cells/cm2 and grown to 80% 

confluence. Cells were used by passage 2.  

2.2.2.2. Human de-differentiation assay 

Human primary chondrocytes were isolated from human knee OA articular cartilage as 

described in 2.2.2.1. The cells were then subjected to serial subculture in monolayer. The 

de-differentiation assay was performed by Dr Natalie Crowe (Clark lab, University of East 

Anglia). 

2.2.2.3.  Chondrogenesis model 

The human chondrogenesis model was performed by Dr Matthew Barter, Newcastle 

University. Briefly, human bone marrow stem cells (from seven donors, 18-25 years of age) 

were isolated from human bone marrow mononuclear cells (purchased from Lonza 

Biosciences) and resuspended in chondrogenic culture medium consisting of high glucose 

Dulbecco’s modified Eagle’s medium containing 100 µg/ml sodium pyruvate (Lonza), 10 

ng/ml TGF-β3 (Peprotech), 100 nM dexamethasone, 1x ITS-1 premix, 40 µg/ml proline, 

and 25 µg/ml ascorbate-2-phosphate (Sigma). 5x105 hMSC in 100µl medium were 

pipetted onto 6.5mm diameter, 0.4-µm pore size polycarbonate Transwell filters (Merck 

Millipore), centrifuged in a 24-well plate (200g, 5 minutes), then 0.5 ml of chondrogenic 

medium was added to the lower well as described. Media were replaced every 2 or 3 days 

up to 14 days. 
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The murine chondrogenesis model was performed by Dr Tracey Swingler, University of 

East Anglia. Briefly, ATDC5 cells were seeded at 6x104/well of a 6-well plate in 

DMEM/Ham’s F-12 medium (Life technologies, 11320-033) containing 5% (v/v) FCS 

(PAA), 2mM glutamine, 100 IU/ml penicillin, 100µm/ml streptomycin (Sigma, P4333), 

5ng/ml sodium selenite, 10µg/ml human transferrin (Sigma, I3146), and 10µg/ml bovine 

pancreatic insulin at 37oC, in an atmosphere of 5% CO2. Media was replaced every 2 days 

up to 42 days. After 21 days, the medium was replaced with α-minimal essential medium 

with the same supplements, and the atmosphere was changed to 3% CO2.  

2.2.2.4. Monolayer cell culture and storage  

All cells were cultured at 37°C with 5% (v/v) CO2. Cells were usually grown in 

Dulbecco’s modified Eagle’s medium (DMEM) High Glucose, GlutaMAX supplement 

(Life technologies, 10566-016) with 10% (v/v) heat-inactivated Fetal Calf Serum (FCS) 

(PAA) and 100 IU/ml penicillin and 100µg/ml streptomycin (Sigma, P4333). For 

maintenance, medium was refreshed at least three times weekly. Cells were passaged at 

around 80-90% confluence. Adherent cells were detached by washing x2 with HBSS (Life 

Technologies, 14025092) then treated with 2 ml of trypsin/EDTA (Life Technologies, 

25200072) for 2-3 minutes at 37°C. After centrifugation (17.3xg, 5 minutes), the cell pellet 

was gently resuspended in fresh medium. Cells were replated at a ratio of 1: 20. For long 

term storage, cells were detached and pelleted by centrifugation at 17.3xg for 5 minutes. 

The pellets were resuspended in cryo-preservation medium including 90% (v/v) FCS 

(ATCC) and 10% (v/v) DMSO (Fisher, BP231-100), slowly frozen down at approximately 

1oC/minute, and stored in liquid nitrogen.  

2.2.2.5. Micromass culture  

Media 

Growth medium: Dulbecco’s modified Eagle’s medium (DMEM) High Glucose, 

GlutaMAX supplement (Life technologies, 10566-016) with 10% (v/v) heat-inactivated 

Fetal Calf Serum (FCS) (ATCC) and 100 IU/ml penicillin and 100µg/ml streptomycin 

(Sigma, P4333). 
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Different medium were prepared: the DMEM high glucose, GlutaMAX supplement (Life 

technologies, 10566-016) adding 1X Insulin- Transferrin-Selenium (ITS-G) (Life 

Technologies, 41400-045). 

Micromass culture  

The protocol was described in (Greco et al. 2011) with some modifications. Human 

primary chondrocytes was isolated from human OA knee cartilage as described in 2.2.2.1 

and cultured in monolayer with growth medium. Whenever reaching confluence, the cells 

were passaged two times. Confluent passage 2 monolayer culture of human primary 

chondrocytes were released by trypsin/EDTA (Life Technologies, 25200072), and 

resuspended in growth media at a density of 2.5x107 cells/ml. Micromass was obtained by 

pipetting 20µl of cell suspension into individual wells of 24 well-plates and leaving for 3 

hours to attach without additional medium. Then, 1ml growth medium was gently added 

and the micromass was left for another 24 hours before stimulating with cytokines or 

growth factors.  

2.2.2.6.Induction cells with regulatory factors: major cytokines and growth factors 

Cytokines and growth factors: 

Human recombinant TGFβ1 (R&D Systems, 240-B-002/CF) and human recombinant 

TGFβ3 (R&D Systems, 243-B-002/CF) were reconstituted in sterile 4mM HCl (Sigma, 

258148) containing 0.5% (w/v) bovine serum albumin (Sigma, A2058). 

Human recombinant Wnt3a (R&D Systems, 5036-WN-010/CF) was reconstituted in 

sterile Phosphate Buffered Saline (PBS) (Life Technologies, 10010023). 

Human Recombinant Interleukin-1β (IL-1β) (First Link, ILB4551) was reconstituted in 

sterile Phosphate Buffered Saline (PBS) containing 0.5% (w/v) bovine serum albumin 

(Sigma, A2058).  

NFκB activation inhibitor II JSH-23 (Calbiochem, 481408) is a cell-permeable diamino 

compound that selectively blocks nuclear translocation of NF-κB p65 and its transcription 

activity without affecting IκB degradation.  
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Lipopolysaccharides (LPS) (Sigma, L3012) are components of the cell wall of gram 

negative bacteria. LPS are extracted from E.coli serotype O111:B4 and purified by gel 

filtration. LPS is reconstituted in sterile (PBS) (Life Technologies, 10010023). 

P38 inhibitor SB203580 (Sigma, S8307) is a pyridinyl imidazole that suppresses the 

activation of MAPKAP kinase-2. The P38 inhibitor, therefore, inhibits the MAPKAP 

kinase-2 cascade which is activated by cellular stress, bacterial infection and pro-

inflammatory cytokines. SB203580 was resuspended in DMSO (Fisher, BP231-100).  

2.2.2.6.1. Stimulation of cells in monolayer with cytokines and growth factors  

Human chondrosarcoma SW1353 and human primary chondrocytes were maintained as 

described above. For stimulation, either 5x103 SW1353 cells or 104 human primary 

chondrocytes were seeded into each well of a 96-well plate with 100µl DMEM GlutaMax 

(Life Technologies, 10566-016) with 10% (v/v) FCS (ATCC) and 100 units/ml penicillin 

and 100µg/ml streptomycin (Sigma, P4333). Cells were serum starved for 14 hours and 

were stimulated with different cytokines and growth factors at final concentration: TGFβ1, 

TGFβ3 4ng/ml, IL-1 5ng/ml, Wnt3a 100ng/ml, LPS 1µg/ml at 4, 8, 12, 24, 48 hours. All 

treatments were performed in triplicate. At each time point, cells in each well were washed 

with ice cold PBS (Life Technologies, 10010023) and harvested with 30µl Cells-to-cDNA 

lysis buffer (Life Technologies, AM8723).  

2.2.2.6.2. Stimulation of cells in micromass culture with cytokines and growth 

factors  

After the micromass was rested in growth medium for 24 hours, the different medium with 

either TGFβ1 (10ng/ml), IL-1 (20ng/ml), Wnt3a (50ng/ml) or LPS (1µg/ml) was added. 

All treatments were performed in triplicate. After different time points as desired, some of 

micromasses were harvested for Alcian blue matrix staining and others for quantitative 

RT-PCR.  
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2.2.2.7. Mammalian cell transfection 

2.2.2.7.1.  Plasmids, constructs, siRNAs and microRNA mimic and inhibitor 

Sox9 expression vector: The vector was kindly provided by Dr Simon Tew (University of 

Liverpool, UK). The vector was described in (Lefebvre et al. 1997). Briefly, an almost 

full-length coding sequence of human SOX9 which is from codon 27 (directly from the 

first ATG associated with the Kozak sequence) up to 39bp of 3’unstranslated region was 

subcloned into pCDNA-5’UT-FLAG. pCDNA-5’UT-FLAG is pCDNA 3.1 with a FLAG 

sequence.  

The miR-29a/b1 promoter construct: The construct was kindly provided by Dr Anne 

Delany (University of Connecticut Health Center, US) and was described in (Kapinas et al. 

2010). The 2kb region upstream from the transcriptional start site of the human miR-

29a/b1 putative promoter (EU154353) was subcloned into the luciferase reporter pGL4.10 

(Promega). 

p(CAGA)12-luc plasmid: The construct was a kind gift of Dr Andrew Chantry, University 

of East Anglia, UK and is described in (Pais et al. 2010). 12 binding sites of the complex 

Smad3/4 (GAGAC) was cloned upstream of the luciferase encoding gene in luciferase 

reporter pGL3 (Promega).  

I κκκκBα promoter reporter plasmid: The plasmid was a kind gift from Prof. Derek Mann, 

(Newcastle University, UK), (originally from Prof. Ronald Hay, University of Dundee, 

UK). The plasmid contains 5 binding sites of P65 cloned upstream of the luciferase gene.  

TOPflash and FOPflash reporter plasmids: The TOPflash reporter is a kind gift from 

Prof. Andrea Munsterberg (University of East Anglia, UK), and was originally from Prof. 

Randall Moon (University of Washington, USA). The FOPflash vector is provided by Dr 

Sarah Snelling (University of Oxford, UK). TOPflash contains 7 binding sites of TCF/LEF 

(AGATCAAAGG) driving the expression of the firefly luciferase. The back bone is the 

pTA-luc vector. The FOPflash vector is the control of TOPflash where all 7 binding sites 

of TCF/LEF are mutated.  
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The miR-29 mimic:  

• Syn-hsa-miR-29a-3p miScript miRNA mimic (Qiagen, MSY000086): 

5'UAGCACCAUCUGAAAUCGGUUA 

• Syn-hsa-miR-29b miScript miRNA mimic (Qiagen, MSY0000100): 

5'UAGCACCAUUUGAAAUCAGUGUU 

• Syn-hsa-miR-29c miScript miRNA mimic (Qiagen, MSY0000681) 

5'UAGCACCAUUUGAAAUCGGUUA 

• AllStars negative control siRNA (Qiagen, SI03650318) 

The 29b inhibitor control  

• Anti-hsa-miR-29b miScipt miRNA inhibitor (Qiagen, MIN000100) 

• miScript Inhibitor negative control (Qiagen, 1027271) 

siRNA 

• SOX9 siRNA: Dharmacon siRNA SMARTpool® (Fisher Scientific)  

• Control: non-targeting siRNA 2  (Dharmacon, 001210-02) 

2.2.2.7.2. Transient transfection protocol  

2.2.2.7.2.1. SOX9 overexpression  

SW1353 cells were plated in a 96-well plate (5x103cells/well) in growth medium without 

antibiotics one day before transfection. The cells were 80% confluent at the time of 

transfection. Before addition of the transfection complexes, the growth medium was 

removed from the cells and the cells were covered with 50µl of fresh growth medium 

without antibiotics. For each transfection, two tubes are prepared as follows: Tube 1: 

100ng SOX9 expression vector was diluted in 25µl DMEM GlutaMax (Life Technologies, 

10566-016) without serum and antibiotics; Tube 2: 0.2µl transfection reagent 

Lipofectamine 2000 (Life Technologies, 11668027) was diluted in 25µl DMEM GlutaMax 

(Life technologies, 10566-016) no serum and antibiotics. After 5 min of incubation, the 

diluted DNA and the diluted transfection reagent were combined and incubated at room 

temperature for 20 min. Then, 50µl of complexes were added to each well. The plate was 
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gently rocked back and forth and incubated at 37°C in a CO2 incubator. All transfection 

was performed in triplicate. The pcDNA3.1 vector was used as control. After 6 hours of 

transfection, transfection medium was replaced with fresh growth medium without 

antibiotics for another 24 hours. For harvesting, cells were washed with ice cold PBS (Life 

Technologies, 10010023) and harvested with 30µl Cells-to-cDNA lysis buffer (Life 

Technologies, AM8723). 

2.2.2.7.2.2. SOX9 and miR-29a/b1 promoter cotransfection  

To cotransfect SOX9 and the promoter miR-29a/b1, the SW1353 cells were prepared as 

described above one day before transfection. For each transfection, two tubes are prepared 

as follows: Tube 1: 100ng of 29a/b1 promoter, and either 100ng SOX9/200ng pcDNA3 or 

300ng SOX9/100ng pcDNA3 was diluted in 25µl DMEM GlutaMax (Life Technologies, 

10566-016) without serum and antibiotics; Tube 2: 0.2µl transfection reagent 

Lipofectamine 2000 (Life Technologies, 11668027) was diluted in 25µl DMEM GlutaMax 

(Life Technologies, 10566-016) no serum and antibiotics. The diluted DNA and the 

diluted transfection reagent were combined after 5 min of incubation and incubated at 

room temperature for another 20 min. Then, 50µl of complexes were added to each well. 

The plate was incubated at 37°C in a CO2 incubator and transfection medium was changed 

with fresh medium without antibiotics for another 24 hours. Then, cells were washed with 

ice cold PBS (Life Technologies, 10010023) and a luciferase assay performed. All 

transfection were performed in triplicate. 

2.2.2.7.2.3. Transfection of the miR-29a/b1 promoter with cytokines and growth 

factors 

SW1353 cells were plated and transfected with 100ng miR-29a/b1 promoter as described 

above. Cells were incubated with the promoter for 24 hours. The medium was then 

removed and replaced with serum, antibiotic-free DMEM GlutaMAX medium (Life 

technologies, 10566-016), and cells were serum-starved overnight. Cells was stimulated 

for 6 hours with TGFβ1/3 (4ng/ml), IL-1 (5ng/ml), Wnt3a (100ng/ml), LPS (1µg/ml) in 

the presence or absence of 50nM NFκB inhibitor or 10nM p38 inhibitor (Sigma, S8307). 

Medium was removed 6 hours post stimulation and cells were washed twice with ice cold 

PBS (Life Technologies, 10010023) and then harvested for luciferase assay. 
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2.2.2.7.2.4. Short interfering RNA SOX9 mRNA knockdown 

SW1353 cells were plated and transfected with either 100nM SOX9 siRNA (Dharmacon) 

or non-targeting siRNA 2 (Dharmacon, 001210-02) as section 2.2.2.7.2.1. To detect 

siRNA-mediated mRNA SOX9 knockdown, cells were incubated for 48 hours post 

transfection, then harvested in 30µl Cells-to-cDNA lysis buffer (Life Technologies, 

AM8723).  

2.2.2.7.2.5.  Human primary chondrocyte gain- and loss-of-function experiments 

One day before transfection, human primary chondrocytes at passage 1 was plated in 6-

well plate at 2x105 cells/ wells in fresh growth medium without antibiotics so that the cells 

will be around 80% confluent. Complexes were prepared as followed for transfection: 

Tube 1: miR-29b mimic/ inhibitor/ AllStar negative control/ inhibitor negative control 

(50nM) was diluted in 250µl of serum, antibiotic-free DMEM GlutaMAX (Life 

Technologies, 10566-016). Tube 2: 5µl of Lipofectamine 2000 (Life Technologies, 

11668027) was diluted in 250µl serum, antibiotic-free DMEM GlutaMax (Life technology, 

10566-016). Time for incubation and transfection mixture was prepared similar to section 

2.2.2.7.2.2. The original medium was aspirated from the wells, 500µl transfection mixture 

was added to each well and the final volume was made to 1ml with DMEM GlutaMAX 

with 10% (v/v) heat-inactivated FCS, without antibiotics. All transfections were performed 

in triplicated. Cells were incubated for 48 hours, then, supernatant was removed and cells 

was washed with ice cold PBS and 1ml Trizol reagent was added.  Samples were stored at 

-20oC until RNA extraction.  

2.2.2.7.2.6. Transfection of human primary chondrocytes with miR-29 family 

mimics and treatment cytokines and growth factors  

50nM either miR-29a/b/c mimics or AllStar negative control was transfected to human 

primary chondrocytes in 6-well plate as in section 2.2.2.7.2.5. After 24 hours, medium was 

removed from the wells and replaced with DMEM GlutaMAX with 0.5% (v/v) heat 

inactivated FCS overnight. Then, cells were stimulated with TGFβ1 (4ng/ml), IL-1 

(5ng/ml), Wnt3a (100ng/ml). At desired times post stimulation as in Chapter 5, medium 

was removed, the cells were washed with ice cold PBS and harvested in 1ml Trizol reagent.  
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2.2.2.7.2.7. Transfection of the miR-29b mimic in micromass culture with 

cytokines and growth factors 

Confluent passage 2 monolayer culture of human primary chondrocytes were released by 

trypsin/EDTA and plated in 175 cm2 flask with growth medium with 10% (v/v) heat 

inactivated FCS, no antibiotics one day before transfection to give cells at 90-100% 

confluence. 100nM miR-29b mimic or non-targeting control was diluted in 500µl medium 

(tube1) and 4 µl Lipofectamine 2000 was also diluted in 500µl medium (tube 2). 

Transfection was carried out as in 2.2.2.7.2.2. The original medium from the flask was 

removed before adding 1ml transfection mixture and the flask was further covered with 

another 14ml growth medium with 10% (v/v) heat inactivated FCS. After incubating with 

miR-29b mimic for 48 hours, cells was detached by trypsin/EDTA and put in micromass 

culture as in 2.2.2.5. After 24 hours of resting, miR-29b transfected micromasses were 

treated with either TGFβ1 (10ng/ml), IL-1 (5ng/ml), Wnt3a (100ng/ml) in different media 

(referred in 2.2.2.5) with 10% (v/v) heat inactivated FCS without antibiotics. At desired 

time, micromasses were harvested in 500µl Trizol reagent.  

2.2.2.7.2.8. Co-transfection of reporter vectors with the miR-29 family mimic/ 

miR-29b inhibitor and stimulation with cytokines and growth factors  

SW1353 were seeded into 96-well plate 1 day before transfection as in 2.2.2.7.2.1 and 

transiently co-transfected with: (1)100ng of reporter plasmids of either p(CAGAC)12- luc, 

IκB3-luc, TOPflash, FOPflash, (2) 10ng of renilla luciferase reporter, and (3) 50nM of 

either miR-29a/b/c mimic, AllStar non-targeting negative control, miR-29b inhibitor, or 

inhibitor negative control.  The protocol for transfection is as in 2.2.2.7.2.5. After 24 hours 

of transfection, cells was serum starved overnight and were treated with recombinant 

human TGFβ1 (4ng/ml), IL-1β (5ng/ml), Wnt3a (100ng/ml) for 6 hours. After stimulation, 

cells were harvested and a luciferase assay performed as in 2.2.2.8. 

2.2.2.7.2.9. Cotransfection of pmiR-Glo-3’UTR reporter with the miR-29 family 

mimic  

Chicken fibroblasts DF1 were plated in a 96-well plate (104cells/well) in antibiotic free 

growth media with 10% (v/v) FCS overnight. 100ng of either pmiR-Glo-3’UTR wild type 
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or mutant constructs were co-transfected with 50nM miR-29a/b/c mimic using the non-

targeting Allstars as control. The protocol for transfection was described in 2.2.2.7.2.5. 

After 24 hours post transfection. DF1 cells were harvested for luciferase assay as in 2.2.2.8. 

2.2.2.8. Luciferase reporter assay 

At desire times post transfection, the plate was removed from the incubator. Luminescence 

was detected using the Dual-Luciferase Reporter Assay system (Promega, E1980). Briefly, 

the medium on the cells was removed. The cells were washed twice with ice cold PBS and 

70µl of cell lysis buffer provided in the kit (Promega, E1980) was added to each well. The 

plate was gently rocked back and forth for 30 minutes. Then, 10µl cell lysates were 

transferred to a 96- well white microplate. For measuring firefly luciferase activity, 50µl of 

Dual Luciferase Reagent was added to each well. The firefly luminescence was measured 

using a microplate reader. For measuring Renilla luciferase activity, 50 µl of Dual Stop & 

Glo Reagent was added to each well and mixed gently then the luminescence measured.  

After measurement of the firefly luciferase luminescence and Renilla luciferase 

luminescence, the relative luciferase activity was calculated as the ratio of the firefly 

activity normalized to the Renilla luciferase activity. 

2.2.3. MicroRNA and mRNA microarray   

2.2.3.1. MicroRNA and mRNA microarray for destabilization of  medial menicus 

(DMM) model  

Whole knee joints from mice which underwent DMM surgery (e.g. DMM-operated right 

knee and unoperated left knee) were subjected to total RNA isolation and grouped as 

DMM left (referred to as control) or DMM right (referred as treatment). At each time point 

(1, 3, 7 days after surgery), equal amounts of total RNA from each sample in the same 

group was pooled together. The integrity of the new pooled samples was checked before 

sending to Exiqon Services (Denmark) or Source Bioscience (UK) to perform miRNA 

microarray or mRNA microarray, respectively.  

The miRCURY LNATM microRNA Hi-Power Labelling Kit Hy3TM/Hy5TM was used for 

miRNA microarray in which the Hy3TM labelled samples and Hy5TM labelled samples 



96 

 

were mixed pair-wise and hybridized to capture probes targeting all miRNAs or human, 

mouse and rat registered in the miBASE 18.0. For whole genome array, Illumina’s  

BeadArray-based technology was employed by using MouseWG-6 v2.0 Expression 

BeadChips whose feature content derived mainly from NCBI reference sequence (NCBI 

refseq), and simultaneously profiles more than 45,000 mouse transcripts. The BeadChips 

consists of oligonucleotides immobilized to bead held in microwells on the surface of any 

array substrate, and made up with 50-mer-gene-specific probe plus 29-mer address 

sequences. Especially, the chip has high level of bead type redundancy (average 30 beads 

per probe) to control the quality and reproducibility of the direct hybridization assay.  

2.2.3.2. Whole genome array for miR-29b gain and loss-of-function experiment 

Human primary chondrocytes were transiently transfected with either miR-29b mimic or 

miR-29b inhibitor for 48 hours in triplicate. Then, total RNA was isolated and equal 

amounts of total RNA of each sample in the triplicate was pooled together. After checking 

the quality and integrity, the new pooled samples were sent to Source Bioscience (UK) to 

perform human whole genome profile. Again, the Illumina’s BeadArray-based technology 

was employed but using humanHT-12 V4.0 expression BeadChips. Similarly, the feature 

content derived mainly from NCBI reference sequence (NCBI refseq) which 

simultaneously profile more than 47,000 human transcripts. 

2.2.4. Data analysis  

2.2.4.1.   Pre-processing microRNA array data 

2.2.4.1.1. VST transformation and quantile normalization  

It is necessary to do background correction to remove non-specific signal from total signal. 

However, the initial data-pre-processing in the Illumina GenomeStudio solfware provides 

users with bead summary data in the form of a single signal intensity value for each probe. 

This value is calculated by subtracting the local background from the signal intensity of 

each bead, then taking the means of all beads containing a given probe. This means 

BeadStudio output data has undergone background correction. Thus, no further 

background correction need to be done for the Bead summary data, received from Source 

Bioscience (UK).  



 

 

97 

 

To reliably detect changes in expression from the whole genome array, it is important to 

remove sources of variation of non-biological origin between arrays to make data 

comparable. There are two types of variations might be seen when comparing arrays e.g. 

interesting variation (biological differences), and obscuring variation. Sources of obscuring 

variation were introduced during the process of carrying out the experiments e.g. during 

preparing the samples including mRNA extraction and isolation, variation in 

introduction and incorporation of dye, effected by pipetting error, temperature fluctuations 

and reagent quality; during manufacturing of the array  including variation in the 

amount of probe present at each feature or spot and variation in the hybridization 

efficiency of the probes for their mRNA targets; during hybridization of the sample on 

the array including variation in the amount of samples applied to the array and variation 

in the amount of target hybridized to the probe; and after array hybridization including 

variation in optical measurement and intensity computed from the scan image. So, 

comparisons between different biological samples can be made, it is important to remove 

these obscuring variations to ensure the values being analysed reflect the biology. For 

Beadchip array data, the two steps to achieve this are commonly referred to as between-

array normalization, and transformation. Two popular methods that implement these steps 

are VST transformation and quantile normalization for the Lumi packages. Briefly, for 

analysing, bead summary array data was imported into R studio (http://www.rstudio.com/). 

Array data was then transformed and normalized using Lumi package.  

2.2.4.1.2. Sequence data 

The miR-29 family mature sequence data was retrieved from miRbase database 

(http://www.mirbase.org/). 3’UTR sequences were downloaded from UCSC 

(https://genome.ucsc.edu/) and Ensembl (http://www.ensembl.org/index.html). RefSeq IDs 

were used to map probe sets to UCSC database and Ensembl Gene IDs were used to map 

probesets to the Ensembl database.  

2.2.4.1.3. The MicroRNA-29 family target prediction 

Three types of seed matches in the 3’UTR were considered when predicting direct 

miRNA-29 targets e.g. 6-mer seed match which is 6nt in length and was complementary 
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to nucleotides 2 to 7 in the miR-29 family; 7-mer seed match which is 7nt length and is 

complementary to nucleotides 1–7 in the miRNA or nucleotides 2–7 in the miRNA with 

“A” at the first position; and 8-mer seed match which is 8nt length, and matched 

nucleotides 1–8 in the miRNA or nucleotides 2–8 in the miRNA with an “A” at the first 

position. For searching these seed matches in the 3’UTR, 3’UTR sequences were imported 

and read in R studios using the “readDNAStringSet” function in Biostring package. Also, 

three types of miR-29 family seed matches were searched using “vcountPattern”function.   

In line with using R studios, some miRNA target prediction programs available were also 

used to predict targets for miR-29 including TargetScan (http://www.targetscan.org/), 

miRNA body map (http://www.mirnabodymap.org/), miRDB (http://mirdb.org/miRDB/), 

DIANA (http://diana.cslab.ece.ntua.gr/), Pictar (http://pictar.mdc-berlin.de/), miRbase 

(http://www.mirbase.org/).  

2.2.4.1.4. Functional pathway analysis  

DAVID (Database for Annotation, Visualization and Integrated Discovery) functional 

annotation tool (http://david.abcc.ncifcrf.gov/) was used to perform functional analysis for 

particular gene groups.  

2.2.4.1.5. Statistical analysis 

Unless otherwise stated, for the whole thesis, Student’s unpaired t-test (two-tail) was 

performed to compare difference between two groups. All values are given as mean values 

of replicates with error bar representing the standard error of the mean. The statistical 

analysis was carried using GraphPad Prism version 4.0 for Windows.  Levels of statistical 

significant are represented as * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. 
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CHAPTER III 

IDENTIFICATION OF THE MIR-29 FAMILY IN 

CARTILAGE HOMEOSTASIS AND OSTEOARTHRITIS 

 

3.1. Introduction  

MicroRNAs are referred to as the master regulators for gene expression: they exert their 

suppressive functions on targeting genes at the post transcriptional level through a 

sequence-complementary mechanism (Bartel 2009). In human chondrocytes, many 

different miRNAs are found and each of them are shown to directly and/or indirectly 

regulate hundreds of target genes, implicating a complex gene regulatory network in which 

miRNAs are involved (Le et al. 2013). This means that miRNAs take a crucial part in 

controlling the balance of the mRNA network in cartilage homeostasis; and the 

dysregulation of miRNA expression could trigger OA onset by disrupting this regulatory 

network.  

Indeed, an essential role of miRNAs has been reported in various aspects of cartilage 

development, cartilage homeostasis, and also in OA pathogenesis (Le et al. 2013). For 

instance, knockout of Dicer, the pre-miRNA processing enzyme, in a cartilage-specific 

manner resulted in skeletal growth defects, premature death of mice, reduction in growth 

plate chondrocytes, and an increase in hypertrophic chondrocytes (Kobayashi et al. 2008).   

Mutation of the Dnm3 locus, transcribing the miRNAs miR-199a, miR-199*, and miR-214, 

resulted in growth retardation including craniofacial hypoplasia (Watanabe et al. 2008). 

Universal knockout of miR-140, a cartilage and skeletal-restricted miRNA lead to: mild 

craniofacial deformities and dwarfism; early onset of age-related OA development; greater 

susceptibility to OA with accelerated proteoglycan loss and fibrillation of articular 

cartilage (Miyaki et al. 2010, Nakamura et al. 2011). Transgenic mice overexpressing 

miR-240 in cartilage were resistant to antigen-induced arthritis-associated loss of 

proteoglycan and type II collagen (Miyaki et al. 2010). Other specific miRNAs: miR-9, 

miR-98, and miR-146 were highlighted to be expressed differentially in miRNA profiles 

between human OA cartilage and its normal articular counterpart (Iliopoulos et al. 2008, 

Jones et al. 2009); miR-199a, miR-675, miR-145, miR-140, miR-455 have been proven to 

function in chondrogenesis and cartilage homeostasis (Lin et al. 2009, Miyaki et al. 2009, 

Dudek et al. 2010, Martinez-Sanchez et al. 2012, Swingler et al. 2012); miR-222 is 
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reported to play a potential role in the articular cartilage mechanotransduction pathway 

(Dunn et al. 2009); miR-146a and miR-146b, whose expression is regulated by NFκB, 

appear to be the key miRNAs in the inflammatory response (Taganov et al. 2006); miR-

34a, miR-194, miR-27b were reported to be induced by IL-1β (Abouheif et al. 2010, 

Akhtar et al. 2010, Xu et al. 2012). All of these data reveal miRNAs as important 

modulators of various aspects of articular cartilage homeostasis and OA pathogenesis.  

OA develops slowly with time and may not be symptomatic until significant joint damage 

has occurred. Currently, there is a lack of effective approaches to OA prevention or 

treatment. Available treatments are limited to pain management, and joint replacement 

surgery, this latter in the late phase of the disease. MicroRNAs, with the ability to fine-

tune the expression of multiple genes, could be a promising tool for therapeutic 

applications for a complex disease like OA. The down regulation of gene expression by 

miRNAs is relatively modest, thus the approach of combining multiple miRNAs to 

simultaneously target OA pathogenesis-relevant networks may be needed. Furthermore, 

There is growing evidence for future miRNA-based diagnostics: a number of miRNA in 

plasma were found at different levels between RA and OA patients (Murata et al. 2010); 

let-7e, miR-454, miR-886 were identified as differentially expressed circulating miRNAs 

in OA patients necessitating arthroplasty, especially, let–7e emerged as potential predictor 

for severe knee or hip OA (Beyer et al. 2014). However, there is a requirement for detailed 

investigations directed at diagnostic performance (sensitivity, specificity, accuracy) of 

these promising novel biomarkers before the measurement of miRNAs can enter the clinic. 

With all of the above information, the essential roles of miRNAs in cartilage homeostasis 

and OA are shown with potential for clinical application. The insights into the roles of 

miRNAs in chondrogenesis, articular cartilage homeostasis, and OA initiation and 

progression are, nevertheless, still insufficient. Thus, there is a continuing need to deepen 

our understanding of the molecular mechanisms miRNAs are involved in cartilage 

homeostasis and OA. Investigating the disease directly in man is challenging due to e.g. 

the inability to harvest articular tissue at an early stage; the slow disease progression; the 

absence of symptoms in the early stage of the disease; the variety of symptoms; the variety 

of causes and environmental influence. Animal models mimicking features of OA are, 

therefore, an important alternative solution.  
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In an effort to identify novel miRNAs important in the development of OA, the murine 

Destabilization of Medial Meniscus (DMM) model was used to identify miRNAs 

differentially expressed at 1, 3, 7 days (i.e. early stages) after the surgery. Performing 

miRNA and mRNA profiling followed with an integrated analysis highlighted miR-29b as 

a candidate miRNA participating in the early onset of OA in DMM model. Alongside the 

DMM model, the role of the miR-29 family in cartilage homeostasis and OA was also 

investigated in other human and mouse models e.g. human end-stage OA cartilage, the 

murine hip avulsion injury model, a human primary chondrocyte dedifferentiation model, a 

human chondrogenesis model, and murine limb development. 
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Aims 

• Performing miRNA and mRNA profiling in DMM model at very early time points 

1, 3, 7 days after surgery 

• Identifying miRNA potentially involve in OA onset by bioinformatics analysis  

• Investigating the regulation of the miR-29 family which is highlighted from 

bioinformatics analysis above in human end-stage OA cartilage   

• Determining the expression pattern of the miR-29 family in injury model  

• Establishing if the miR-29 family involving in chondrocyte phenotype  

• Determining the role of miR-29 in human and murine chondrogenesis  

• Investigating the involvement of miR-29 in murine limb development 
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3.2. Results  

3.2.1. The microRNA profile in the DMM model at 1, 3, 7 days after surgery    

As little is known about the involvement of miRNAs at the early stage of OA, identifying 

miRNAs modulated in OA initiation was a major aim.  Since mRNA profiles have shown 

large changes in gene expression even at 24 hours post surgery, the DMM model was used 

to investigate this. 

Alongside DMM mice (mice whose medial meniscal tibial ligament of the right knee was 

transected whilst the left knee was untouched), naïve mice (receiving no treatment), and 

sham-operated mice (mice whose right knees were operated to visualize the medial 

meniscal tibia ligament but not transected) were used.  Total RNA was first isolated from 

the whole knee joints of DMM mice (both right and left knees) and their controls at 3 

different time points i.e. 1, 3, 7 days after surgery, and subsequently checked for quality 

and integrity.  Unfortunately, RNA from naïve mice was degraded and not further studied. 

For miRNA profiling, an equal amount of total RNA from individual in each triplicate in 

the DMM right knee and DMM left knee group at 1, 3, and 7 days after surgery was 

pooled and these pools were subsequently subjected to miRNA microarray using the 

miRCURY LNATM microRNA Hi-Power Labelling Kit Hy3TM/Hy5TM, containing probes 

targeting all human, mouse and rat miRNAs registered in the miRBase 18.0.  

Clustering analysis showed that: the miRNA profiles of the DMM right or left knees were 

clustered quite closely to each other at day 1 and 3 but far apart at day 7 (Appendix, Figure 

1), suggesting that more miRNAs were modulated at the later time point than the earlier. In 

line with this, calculating the number of miRNAs which changed expression at each time 

point revealed the same pattern: only small changes were observed until 7 days post-

surgery (Figure 3.1). Using 1.5 fold-change (FC) as the cut off, only four miRNAs 

significantly increased expression at day 1 and 3 whilst more than 30 miRNAs were 

modulated at day 7.  The list of miRNAs which changed expression is listed in Table 3.1.  

To visualize the expression pattern of miRNAs across the time course of the DMM model, 

unsupervised hierarchical clustering analysis was carried out for miRNAs that met the 

filtering criteria e.g. absolute FC > 1.3 in each time point. Several clusters of miRNAs 

were identified comparing between DMM right and left knee i.e. (i) miRNAs which 

increased expression across the time course (cluster 1, 2, 3) (Figure 3.2a, b, c),  (ii) 
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miRNAs which decreased expression across the time course (cluster 5, 6) (Figure 3.2.e, f), 

(iii) miRNAs which decreased expression across 3 days but increased at day 7 (cluster 4) 

(Figure 3.2d) and (iv) miRNAs which increased until 3 days but decreased at day 7 

(cluster 7) (Figure 3.2.g).  

A subset of miRNA differentially expressed by microarray analysis was selected for 

revalidating the array data by quantitative real-time RT-PCR. The result confirmed the 

miRNA array data since a similar expression pattern between the two platforms for miR-

140, miR-455 (data not shown) and miR-29b (which will be discussed below) was 

observed.  
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Figure 3.1: Modulation of miRNA expression across a 7 day time course 

From the array data, for each miRNA, fold change (FC) was calculated by comparing its 
expression level in DMM right versus left knee. The number of regulated miRNAs were 
calculated for each of 0.05 interval of a (0.4, 2.5) range of FC. FC:  > 1: increase 
expression; < 1: decrease expression. The difference in number of miRNAs modulated was 
calculated by unpaired two-tailed t test: * p<0.05, ** p < 0.01, *** p<0.001. 
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Table 3.1: The list of miRNAs regulated in the DMM model with fold change higher than 
1.5 (increase or decrease) at 1, 3, and 7 days after surgery.  

Fold change (FC) was calculated by comparing between the DMM operated right and un-
operated left knee. Down-regulated miRNAs are presented as negative FC.   

 

  



 

 

107 

 

              

 

 

 

 

 

 

 

 

 

 

 

  

Cluster 1

-0.3

-0.2

-0.1

-0.0

0.1

0.2
Left
Right

in
te

ns
ity

Cluster 2

-0.6

-0.4

-0.2

-0.0

0.2

0.4
left
right

d1            d3        d7

in
te

ns
ity



108 

 

          

 

 

Cluster 3

-0.3

-0.2

-0.1

0.0

0.1
Left
Right

d1            d3        d7

in
te

ns
ity

Cluster 4

-0.4

-0.3

-0.2

-0.1

0.0

0.1
Legend
Legend

d1            d3        d7

in
te

ns
ity



 

 

109 

 

 

          

 

 

 

 

 

cluster 5

-0.3

-0.2

-0.1

0.0

0.1
Left
Right

d1            d3        d7
in

te
ns

ity



110 

 

           

Cluster 6

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3
Left
Right

d1            d3        d7

in
te

ns
ity

 

                  

Cluster 7

-0.6

-0.4

-0.2

-0.0

0.2
left
right

d1            d3        d7

in
te

ns
ity

 

Figure 3.2: Unsupervised hierarchical clustering analysis for miRNAs with absolute fold 
change higher than 1.3. 

Comparing DMM right versus left knee at 1, 3, 7 day time points: cluster 1, 2, 3: all the 
miRNAs induced expression; cluster 5, 6: all miRNAs decreased expression; cluster 4: 
miRNAs decreased across 3 days but increased at day 7; cluster 7: miRNAs increased 
across 3 days but decreased at day 7. Comparing between three time points: cluster 1: 
miRNAs increased across 7 days; cluster 2, 6: miRNAs decreased at day 3; cluster 3, 5: 
miRNAs decreased at day 7. SNORD: small nucleolar RNA.  
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3.2.2. Expression profile of mRNAs in DMM right and left knee 

The microRNA microarray profiling revealed approximately 35 miRNAs modulated in the 

DMM model at 3 different time points, and whilst changes in expression are small, this 

may suggest that these miRNAs may have a role in regulating the onset of OA.  For further 

filtering of miRNAs having important roles amongst these modulated miRNAs, examining 

the mRNA expression profile would be useful since miRNAs exert their function by 

directly targeting and subsequently inhibiting mRNA expression. Additionally, since no 

major modulation of miRNA expression level was observed until 7 days after DMM 

surgery, it was sufficient to profile mRNA expression for two time points i.e. 1 and 7 day 

following DMM surgery.  

The Illumina BeadArray-based: MouseWG-6 v2.0 Expression BeadChip was used to 

profile more than 45,000 mouse transcripts in the pooled total RNA samples (DMM right 

and left knee), previously subjected to miRNA profiling. Consistent with the miRNA 

profile, mRNA array data also showed a similar expression pattern: no major change in 

mRNA expression level until day 7 when comparing between DMM right and left knee 

(Figure 3.3). If the absolute fold change cutoff is set at 1.5, only 30 mRNAs changed 

expression at day 1 whilst at day 7, more than 683 mRNAs were modulated. The full lists 

of mRNA which changed expression are in Appendix, Table 6, 7.  

A subset of mRNA differentially expressed by microarray analysis was selected for 

revalidating the array data. Comparison of the expression levels between the mRNA 

microarray and quantitative real-time qRT-PCR demonstrated a similar expression pattern 

between the two platform for 4 genes i.e. CCL2, IL6, SAA3, Arginase-1 (Appendix, Figure 

2). These results confirmed the mRNA array data. 
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 Figure 3.3 Total numbers of mRNAs at different fold change value at day 1 and day 7 
following surgery in DMM model.   

At each time point, Fold change = intensity value in DMM right - intensity value in DMM 
left. Numbers of mRNAs were calculated as fold change ranging from -3 to 7 for each 
increase of 0.05. Fold change:  > 1: increase expression; < 1: decrease expression.  
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3.2.3. Integrated miRNA and mRNA expression profiles of the DMM model identify 

miR-29b as a miRNA associated with OA onset  

To prioritize miRNAs which might have a role in OA onset in the DMM model, an integrated 

analysis between miRNA and mRNA profiles at 1 and 7 day of the DMM model was 

performed. This approach took advantage of inverse correlation analysis in which a miRNA 

was considered as a potential candidate if it was differentially expressed, and inversely 

correlated with the expression of its putative targets in the same biological samples.  

Steps for the miRNA and mRNA profile integrating analysis include: (i) predicting miRNA 

putative targets by searching for 4 different types of seed sequences e.g. 6-, 7 match 8-, 7 A1-, 

and 8-mer seed sequences located in the 3' UTR; (ii) integrating expression levels at each 

time point in the DMM model for all miRNA targets; (iii) searching for a miRNA’s putative 

target enrichment which is given more detail below.  

If a miRNA has an impact in the pathological changes in the DMM model and could exert its 

suppressive function on variety of targets, then when it is down-regulated, there should be an 

enrichment of its predicted targets among up-regulated mRNA and vice versa. This means 

that for downregulated miRNAs, a greater percentage of upregulated mRNAs will be their 

targets and the inverse pattern will be observed for an upregulated miRNA. This should also 

be true when comparing between different time points, 1 and 7 days in the DMM model. For 

instance, if a miRNA was repressed across the 7 day time course, the percentage of its targets 

amongst up-regulated mRNA at day 7 should be higher than at day 1. Together with this, for 

a downregulated miRNA, an enrichment of miRNA targets in up-regulated mRNAs over 

unmodulated mRNAs should also be observed at each time point or across the time course.  

Additionally, fold change threshold is another challenge faced in integrating analysis. In fact, 

it is almost impossible to choose the “right” cut off as the normal 1.5 fold change would be 

too stringent, and consequently, the power to detect potential miRNAs would be very low. To 

overcome this, in this study, all calculations were done for all fold change values greater than 

1 at 0.05 fold intervals. 

The integrating analysis for the miRNA and mRNA array data in the DMM model showed 

that amongst the differentially expressed miRNAs, miRNA-29b is the most interesting. 

Indeed, a substantial enrichment of miR-29b putative targets which was inversely correlated 
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with the miRNA expression level was observed at each time points (Figure 3.4, Figure 3.5).  

At day 1, when miR-29b increased expression, 6mer- and 7mer match 8- targets in the down-

regulated section were dominant compared with the up-regulated section (Figure 3.4). 

Conversely, at day 7, when miR-29b decreased expression, there was a strong enrichment of 

targets with 4 different types of seed sites in the up-regulated section over the down-regulated 

(figure 3.4). Also at day 7, the ratio up-regulated targets/unchanged targets was substantially 

higher than the ratio down-regulated targets/unchanged targets (Figure 3.5).  

The inverse correlation between miR-29b and its potential targets was also observed across 

the time course: whilst miR-29b level was down-regulated from day 1 to day 7, there was a 

substantial increase of miR-29 targets in the up-regulated mRNAs at day 7 compared with 

day 1. Consistent with this, the ratio up-regulated targets/unchanged targets showed an 

enrichment at day 7 (Figure 3.5). All of the data above suggest that miRNA-29b has a 

potential functional role in OA onset in the DMM model and was selected as the candidate 

miRNA for further functional studies.   

From miRNA microarray data, miR-29b is the one on two miRNAs increased expression 

with 1.5 fold change at day 1 following DMM surgery. Real-time qRT-PCR was used to re-

measure expression level of miR-29b in the DMM samples and sham surgery samples. The 

Real-time qRT-PCR data confirmed miRNA microarray data and showed a significant 

increase of miR-29b expression level in DMM right compared with left knee or sham surgery 

(Figure 3.6).  

MicroRNA-29b is a member of the miR-29 family including miR-29a and miR-29c with the 

mature sequences differing at nucleotide positions 10, 18, 21, 22, or 23 but sharing a common 

seed sequence for target recognition. We hypothesized that not just miR-29b but all members 

of miR-29s may contribute to OA onset, as all miRNA-29s showed a downward trend at all 3 

time points even though the difference did not reach statistical significance. Therefore, in this 

study, we investigated the link between all miR-29 members with OA rather than just miR-

29b alone.  
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Figure 3.4 Percentage of miR-29 predicted targets in differentially expressed mRNA at day 1 
and day 7 after surgery in DMM model.  

The calculation was done for all the fold changes ± 0.05 from -2.5 to 4.0 and for each type of 
seed sequence e.g. 6mer, 7mer match 8, 7mer a1, 8mer. The mRNA having more than one 
binding site for each type of seed sequence was always assigned as 1. At k fold change, the 
percentage of 6mer-seed-site targets in modulated mRNAs was calculated: a_6mer= sum of 
mRNA having 6mer-seed site sequence in their 3’UTR with the fold change in the range (k, 
k+0.05); b_k= sum of mRNA with the fold change in the rank (k, k+0.05); Freq= 
a_6mer/b_k. The percentage of other seed site targets was calculated similarly. Day1: closed 
bar, day 7: opened bar.  
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Figure 3.5 Percentage of miR-29 targets that changed expression compared to unchanged 
expression at day 1 and day 7 after surgery in DMM model.  

The calculation was done for all the fold change (FC) ± 0.05 from each other from -2.5 to 4.0 
and for each types of seed sequence e.g. 6mer, 7mer match 8, 7mer a1, 8mer. The mRNA 
having more than one binding site for each type of seed sequence was always assigned as 1. 
When FC=k, the percentage of 6mer-seed-site targets which increased or decreased 
expression was calculated: 6mer_changed = sum of mRNA having 6mer-seed site sequence 
in their 3’UTR with FC in the range (k, FC max) if k >0, or (FC min, k) if k<0; 
6mer_unchanged = sum of mRNA having 6mer-seed site sequence in their 3’UTR with FC 
range in (0,k]  if k>0, or (k, 0] if k< 0;  1/Per.different = 6mer_unchange/6mer_changed. 
The percentage of other seed site targets was calculated similarly. Day1: red line, day 7: blue 
line.  
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Figure 3.6: MicroRNA 29b was significantly induced in the DMM model at 1 day after 

surgery 

Total RNA was reversed transcribed to cDNA and miR-29b expression was measured by 
real-time qRT-PCR in individual samples of sham right knee (sham surgery), DMM left knee 
(un-operated), and DMM right knee (DMM) at 1 day after surgery. U6 was used as 
endogenous control. Expression level of miR-29b in DMM and sham surgery was normalized 
to un-operated control. The data show mean +/- SEM, n=3.  The expression of miR-29b 
between each group was analysed by unpaired two-tailed t test * p<0.05, ** p < 0.01, *** 
p<0.001. 
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3.2.4. Up-regulation of miR-29s in the murine hip avulsion injury model  

Traumatic joint injury and joint magliment are linked to OA initiation. Patients with 

traumatic joint injury show an increased risk of OA, implicating the early events post-injury 

as important in the long term. To investigate the role of miR-29s in the onset of OA, a murine 

hip cartilage avulsion injury model, where the murine hip femoral cap cartilage was sub-

cultured in serum-free media across a 48 hour-time course, was used. Total RNA was isolated 

from the explants using Trizol, reverse transcribed to cDNA by either SuperScript II reverse 

transcriptase (for mRNA detection) or miRCURY LNATM  Universal cDNA synthesis (for 

miRNA detection). Expression levels were measured by real-time qRT-PCR. 

The majority of the genes rapidly induced in murine joints following surgical destabilization 

(DMM model) were also regulated in murine hip cartilage explants upon injury (Chong et al. 

2013). Interestingly, some genes such as Dkk3, Ccl2, Il6 were significantly regulated after 3 

hours in culture (Appendix, Figure 3) though likely regulating genes which are modulated at 

later time points. The expression pattern of the miR-29 family is similar to each other and 

tends to increase across the 48 hour time course (Figure 3.7): miR-29b and 29c significantly 

increased expression after 12 hours in culture; miR-29a significantly after 6 hours. This 

suggests that the regulation of the miR-29s may contribute to the molecular mechanism 

underlying the initiation of OA. 
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Figure 3.7: Expression of the miR-29 family in the hip avulsion injury model  

The femoral caps of C57Bl/6 mice aged 4 weeks were avulsed and put in culture. At each of 
3, 6, 12, 48 hour time points, the femoral caps were harvested. Total RNA was isolated using 
Trizol and reverse transcribed to cDNA.  Expression of the mature miR-29 family was 
measured by real-time q-RTPCR where U6 was used as an endogenous control. At least 
triplicate samples were measured at each time. Means ± standard errors are presented, n=6. 
Difference in expression between each time point against control (t=0) was calculated by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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3.2.5. Up-regulation of the miR-29 family in human end-stage OA cartilage  

To determine whether the miR-29 family could play a role in human OA, its expression level 

was compared between hip / knee OA cartilage and non-disease tissue controls (hip cartilage 

followingfracture to the neck of femur).  

Human articular cartilage samples (total: 8 hip and 7 knee OA cartilage, 7 healthy fracture to 

the neck of femur) were obtained from patients undergoing total hip/ knee replacement 

surgery at the Norfolk and Norwich University Hospital. Total RNA was isolated from all 

cartilage samples using Trizol and followed by a purification step through column using 

miRVana kit. The total RNA was reverse transcribed to cDNA using miRCURY LNATM 

Universal cDNA synthesis. Expression of all miR-29 members was measured by real-time 

qRT-PCR with U6 as the endogenous control. 

Data (Figure 3.8) showed an increase in miR-29 expression in hip OA but decrease in knee 

OA cartilage compared to fracture control. This reached significance, or close to significance 

in each case. Whilst there is no comparison with normal knee cartilage, these data show that 

the miR-29 family is regulated in human end-stage OA cartilage. 
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Figure 3.8: Expression of the miR-29 family in human OA cartilage  

Total RNA was isolated from human articular cartilage of either end-stage OA patients or 
healthy controls and reverse transcribed to cDNA. Expression of the mature miR-29 family 
was measured by real-time qRT-PCR using U6 as an endogenous control. HOA (hip 
osteoarthritis cartilage, n=8), KOA (knee osteoarthritis, n=7), NOF (neck of the femur, n=7). 
Means ± standard errors are presented. Difference in expression between each time point 
against control (NOF) was calculated by unpaired two-tailed Student’s t test. * p<0.05, ** p < 
0.01, *** p<0.001. 
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3.2.6. The miR-29 family is regulated with chondrocyte phenotype 

Dedifferentiation and the loss of phenotype is an obstacle in expanding human chondrocytes: 

the cells stop expressing aggrecan and collagen type II, and this limits capacity to form 

cartilage. In line with this, alteration chondrocyte phenotype is one of the characteristics of 

OA. As compared with normal articular cartilage, the chondrocytes embedded in different 

zones of OA cartilage were shown to express different markers of chondrocyte differentiation: 

chondrocytes in the middle zone re-expressing chondroprogenitor phenotype; cells in the 

upper middle zone expressing type III collagen (dedifferentiated phenotype) (Aigner et al. 

1993). Assessing whether the miR-29 family is regulated with chondrocyte phenotype, 

therefore, would help to further determine the relevance of the miR-29 family in cartilage 

function.  

This was investigated using human primary chondrocyte dedifferentiation model. After 

isolation from human knee OA cartilage by collagenase (collagenase-post digested HACs 

(PD)), primary chondrocytes were cultured in monolayer (primary culture HACs (P0), and 

three sequential passages were performed at 1: 3 dilution of cells (passage 1 to passage 3). 

Total RNA was isolated from cartilage, PD, P0 to P3 chondrocytes and reverse transcribed to 

cDNA. The expression level of all the miR-29 family was then measured by real-time qRT-

PCR. 

The expression of the miR-29 family was found to significantly decrease when HACs were 

passaged in monolayer (Figure 3.9), indicating the putative role of the miR-29 family in 

chondrocytic phenotype.  
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Figure 3.9: Expression of the miR-29 family in a chondrocyte dedifferentiation model  

Human primary chondrocytes were isolated from the articular cartilage of 8 knee OA patients 
using collagenase digest. The cells were put in culture and passaged 3 times. Total RNA was 
isolated from either human articular cartilage (cart) or chondrocytes post digestion with 
collagenase (PD) or each passage 0, 1, 2, 3 (P0, P1, P2, P3).  After reverse transcribing to 
cDNA, expression of the mature miR-29 family was measured by real-time qRT-PCR (U6 
was used as an endogenous control). Mean ± standard errors are presented, n=8. Different in 
expression between was calculated by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001. 
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3.2.7. MicroRNA-29s expression in chondrogenesis  

Chondrogenesis is the earliest phase of skeletal development, occuring as a result of: 

mesenchymal cell condensation, chondroprogenitor cell differentiation, chondrocyte 

differentiation and maturation. Chondrogenesis results in the formation of cartilage and bone 

in the process of endochondral ossification (Goldring et al. 2006). It is pertinent to examine 

the role of miR-29 in chondrogenesis, particularly since the replay of this developmental 

process may contribute to osteoarthritis.   

To determine the expression and therefore possible role of the miR-29 family in 

chondrogenesis both human and mouse chondrogenesis models were used. Human 

chondrogenesis model: human bone marrow stem cells were differentiated to form a 

cartilage disc (the model was kindly developed by Dr Matt J. Barter (Newcastle University, 

UK)); Mouse chondrogenesis model: the embryonic carcinoma cell line ATDC5 was 

stimulated to from chondrocytes using insulin for 42 days (this model was developed by Dr 

Tracey Swingler (University of East Anglia)). Total RNA was isolated, reverse transcribed to 

cDNA and used for measuring expression level of the miRNA by real-time qRT-PCR. 

In the human chondrogenesis model, a significant down-regulation of the miR-29s after 3 

days of differentiation was observed; after that, miR-29s return to the original expression 

levels (Figure 3.10). A similar expression pattern was also observed in the murine ATDC5 

chondrocyte differentiation model: significantly decreased expression of all the miR-29 

members after 14 days differentiation; with a return after 36 days, to the original level 

(Appendix, Figure 4). These data imply that miR-29 may be a negative regulator of the early 

stage of chondrogenesis.  

Indeed, the miR-29 family was not the only miRNA regulated in either the human or murine 

chondrogenic process, many other miRNAs were strongly modulated e.g. (Barter et al, 

unpublished data) (Swingler et al. 2012). However, it can be postulated that the miRNA 

would have a functional role in chondrogenesis if it had affected on mRNA expression. To 

test this hypothesis, again an integrating analysis approachs (using mRNA expression profile 

data to analyse miR-29 putative target genes) was used. A substantial enrichment of miR-29 

targets was inversely associated with the expression of miR-29s was observed (Data not 

shown). Together, these data suggest that the miR-29 family acts as the negative regulator of 

chondrogenesis, leading to an increase in mRNA to enable the process.  
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Figure 3.10: Expression of the miR-29 family in the human chondrogenesis model. 

Human bone marrow stem cells (from 3 donors, 18-25 years of age, 5x105 cells in 100µl 
growth medium) were put into polycarbonate Transwell filters and centrifuged in 24 well 
plates. 0.5ml chondrogenic culture medium containing 100µg/ml sodium pyruvate, 10ng/ml 
TGFβ3, 100nM dexamethasone, 1x ITS, 40µg/ml proline, and 25µg/ml ascorbate-2 
phosphate was added to the lower well. Media were replaced every 2 or 3 days up to 14 days. 
At 0, 3, 7, 14 days, the cells were harvested and total RNA was extracted using Trizol. The 
RNA was then reverse transcribed to cDNA and was used for measuring the expression level 
of the mature miR-29 family by real-time qRT-PCR (U6 was used as an endogenous control). 
Assays were repeated 3 times. At least triplicate samples were in each time. Means ± 
standard errors are presented. Difference in expression between each time point was 
calculated by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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3.2.8. The miR-29b is expressed in murine limb development 

The formation of the skeleton first is initiated with the formation of a precartilage 

condensation (anlagen) which is followed by chondrogenesis triggered in the precartilage 

condensation and ultimately cartilage is formed. This process involves the cooperation of 

many cell activities e.g. migration, adhesion, intracellular signalling, and proliferation 

(Goldring et al. 2006). Given the likely involvement of the miR-29 family in chondrogenesis, 

it is pertinent to ask whether miR-29s are expressed in murine limb development. 

Additionally, the miR-29 family or its members have been shown to control cell proliferation 

and apoptosis in different tumour types. A murine model would thus be a useful model to 

study the role of the miR-29 family in cell proliferation and apoptosis limb development. 

In mice, the forelimb starts to develop at stage E9.5 whilst the hindlimb starts behind by 

about half a day. Five days later, a miniature model of the adult limb is formed (E14.5 and 

E15 for fore and hindlimb, respectively). At stage E11, a distinct apical ectodermal ridge at 

the limb tip is formed in the forelimb and the handplate is beginning to form at E11.5.  

Similarly events happen in the hindlimb at half a day later (at E11.5 and E12) (Martin 1990).  

Whole mount in situ hybridization was conducted using amiRCURY LNATM miR-29b-3p 

double-DIG labelled probe to detect the expression of miR-29b in the mouse embryo stage 

E11.5 and E15. The data showed that: at stage E11.5, miR29b was expressed in the cartilage 

of both fore and hindlimb; at stage E15 when the small scale the adult limb was formed, miR-

29b was strongly expressed, implicating miR-29b playing a role in murine limb development. 

Besides limbs, miR-29b was also found on the brain and the spine of embryo stage E11.5 

(Figure 3.11).  
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Figure 3.11: Whole mount in situ hybridization of miRNA-29b in murine embryo stage 

E11.5 and E.15.   

Using a miRCURY LNATM double-DIG labelled miR-29b probe, miR-29b was found to be 

expressed: in the embryo stage E11.5 in the brain (A), mouth (B), spine (C-D), hindlimb (E), 

forelimb (F); in the embryo stage E15 in hindlimb (G) and  forelimb (H).  
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3.3. DISCUSSION 

The principal aim of this study was to begin to identify the miRNAs which were implicated 

in the early stages of OA and elucidate their function.  Whilst there have been a number of 

studies on the role of miRNAs in OA pathogenesis, they have not focused on the disease 

onset. In the present study, for the first time, the miRNA expression profile was reported for 

the DMM mouse model at early time points e.g. 1, 3, 7 days following surgery. The fact that 

only a small number of miRNAs changed expression across the first three days after DMM 

surgery might indicate miRNAs mainly contribute in disease progression rather than 

initiation. However, there are some limitations of the study which prevent a firm conclusion 

about the role of miRNAs in the early stages of the disease. Total RNA for the miRNA 

microarray was isolated from whole knee joints of DMM mice. Thus, if a miRNA is 

expressed in a single tissue e.g. cartilage, bone, meniscus, ligament or synovium, pooling of 

tissues will reduce the signal to a lower level than in the individual tissue and that could be 

the explanation for the overall low levels of modulated miRNAs observed in the present 

study. Moreover, insufficient controls, e.g. naïve samples and genes responding to sham 

surgery in this study may also have been problematic.  The DMM model does not completely 

recapitulate human OA pathogenesis, e.g. with more synovial involvement in the latter.  

However, it remains unlikely that the miRNA microarray data acquired from the DMM 

model in this study is incorrect. The DMM left knee (no surgery) used as a control would 

show the consequence of surgery, even if it can’t distinguish injury per se from early OA. 

Moreover, Burleigh et al (2012)  reported a large and significant difference in expression 

levels of e.g. Ccl2, Arg1e, Il6, Saa-3 in the same DMM model just 6 hours following surgery, 

which was interpreted as response to surgical destabilization rather than reaction to injury 

(Burleigh et al. 2012). In this study, such an increase in expression was also observed when 

comparing between the DMM right and DMM left, suggesting that the DMM left knee can 

act as a suitable control. Hence, it was expected that the changes in miRNA expression at 

early time points would be greater.   

MicroRNA-29b, one of only two miRNAs significantly increased in expression at day one 

post-surgery and inversely correlated with expression of its putative targets, was investigated 

in detail. The miR-29b is encoded by two loci in the human genome e.g. the primary miR-29-

a/b1 cluster in chromosome 7, and the primary miR-29b2/c cluster in chromosome 1. 
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Normally, clustered miRNAs in humans work in combination to accomplish their function. 

At the transcriptional level, at least one of the other miR-29 family members i.e. miR-29a or 

miR-29c will be co-transcribed with miR-29b.  In addition, miR-29b is reported to have a 

short half-life (the time taken for the miRNA to fall to half of its original value) which is 

linked to the presence of uracil bases at positions 9-11, compared with miR-29a (more stable 

with a reported half-life of > 12 hours) (Zhang et al. 2011). Thus, in the DMM model at 1 

day after surgery it would be expected that a significant increase in either miR-29a or miR-

29c would accompany that of miR-29b. However, only miR-29b increased in expression (1.5 

fold change in array data) but not any of the other miR-29 family members, perhaps 

implicating another post-transcriptional regulatory mechanism controlling miRNA processing. 

In line with the DMM model data, in a murine hip avulsion injury model, an increasing 

expression level was also observed for all miR-29 members post injury. Interestingly, a 

similar pattern of expression of some genes strongly induced in the DMM model at 6 hours 

after surgery (Burleigh et al. 2012) was seen in the injury model suggesting some molecular 

similarities between the two models. In line with this, Chong et al (2013) also observed a 

similar pattern when measuring the expression of the set of gene induced expression in DMM 

model 6 hours after surgery and in murine injury model in which the hip cartilages cultured 

for 6 hours (Chong et al. 2013). Since mechanical factors following traumatic joint injury 

may mediate OA onset, these data suggest for the first time an important role for the miR-29 

family in the initiation of OA. The fact that the miR-29 family increased in expression in 

human OA end-stage cartilage supports a role for the miR-29s in the disease. In this study, 

human knee cartilage normal controls were not available, and the difference in hip and knee 

cartilage may explain in part why the miR-29 family levels increased in hip but decreased in 

knee OA cartilage compared to human hip fracture control. Also, in this project, the miR-29 

family expression level is very variable across a human tissue panel e.g. heart, brain, lung, 

spleen (data not shown). In supporting these data, previous published data also demonstrated 

the different expression level of the miR-29 family in different tissues in zebrafish 

(Wienholds et al. 2005). These data suggest that the mechanisms controlling the miR-29 

family expression in different tissues are not similar. The fact that miR-29 family expression 

was modulated in different mouse models and in human OA cartilage implies a role for the 

miR-29 family in cartilage, and suggest that the two pri-miR-29a/b1 and pri-miR-29b2/c 

clusters may be involved in both early and late stages of the disease. The direct mechanism 
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controlling miR-29 family expression and the extent to which each cluster contributes to OA 

remains unknown and is worthy of further investigation.  

This study also provides evidence for the role of the miR-29 family in cartilage formation as 

its expression was regulated during human and mouse chondrogenesis and inversely 

correlated with its putative targets. In fact, such decreased expression level at an early stage 

of chondrogenesis is in line with published data e.g. Guerit et al (2013) showed the decreased 

expression of miR-29a is essential for chondrogenesis via its regulation of FOXO3a (Guerit 

et al. 2014); Sorentino et al (2008) found miR-29b was among miRNAs down-regulated 

when differentiating human MSCs through chondrogenesis (Sorrentino et al. 2008); Yan et al 

(2011) demonstrated that both miR-29a and miR-29b were significantly decreased in a 

chondrogenesis model where mouse MSC were grown on polyhydroxyalkanoates (Yan et al. 

2011). However, I have demonstrated for the first time that all miR-29 family members are 

involved in chondrogenesis, stressing the important role of both miR-29 clusters in 

controlling cartilage homeostasis in human and mouse. In contrast to this data, there are 

others studies profiling the expression of miRNAs in murine and human chondrogenesis 

model (Suomi et al. 2008, Lin et al. 2009, Miyaki et al. 2009, Lin et al. 2011, Yang et al. 

2011). The miR-29 family, nevertheless, was not amongst the miRNAs which had altered 

expression. This is not surprising and could be attributed to differing design of experiments 

including inducers of differentiation, cell type, numbers of detected miRNA probes and 

organism.  In addition, despite of being a negative regulator of chondrogenesis, miR-29b was 

found to express in murine limb development. A number of published data report that the 

miR-29 family can act as oncogenes whose expression induces cell proliferation but inhibits 

apoptosis. Whether the miR-29 family is involved in murine limb development through 

inducing chondrocyte proliferation in the growth plate remains unknown. Therefore, 

examination of the role of miR-29 family in limb development in vivo will be a priority for 

future studies.  

Another piece of data supporting the role of the miR-29 family in OA comes from the fact 

that expression of the miR-29 family is decreased during chondrocyte dedifferentiation. 

Again, other groups have profiled miRNAs in human dedifferentiation models (Karlsen et al. 

2011, Lin et al. 2011) but the miR-29 family has not shown up in any of them. As mentioned 

above, this could be attributed to many different factors.   
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Taken together, all of these data show that the miR-29 family may modulate both cartilage 

homeostasis and OA and make a compelling case for further investigation. In this PhD thesis, 

for the first time, the whole miR-29 family is reported to be involved in OA although the 

increase of the miR-29b in OA had been shown (Moulin et al. 2012). Nevertheless, the 

miRNA-29 family has been implicated in many other areas of pathology. Many publications 

have reported the involvement of the miR-29 family in cancers where the miRNA family or a 

single member could serve as either a tumour suppressor or an oncogene. In 

rhabdomyosarcoma (Wang et al. 2008), nasopharyngeal carcinoma (Sengupta et al. 2008), 

hepatocellular carcinoma (Xiong et al. 2010), acute myeloid leukemia (Eyholzer et al. 2010) , 

multiple myeloma (Zhang et al. 2011, Amodio et al. 2012), chronic lymphocytic leukemia 

(Santanam et al. 2010), glioblastoma (Cortez et al. 2010), and lung (Fabbri et al. 2007) and 

pancreatic cancer (Muniyappa et al. 2009), miR-29 was described as a tumor suppressor 

whilst in acute myeloid leukemia , colorectal liver metastasis (Wang et al. 2012), and breast 

cancer (Chou et al. 2013) , miR-29 was shown to be as tumour promoter. 

Besides cancers, the miR-29 family has been shown to participate in a number of 

physiological processes including (i) muscle development e.g. knockdown of miR-29b in 

vivo induced cardiac fibrosis in mice; miR-29a/b1 inhibition induced vascular smooth muscle 

cell calcification; miR-29 family expression was developmentally up-regulated in porcine 

skeletal muscle from fetal to adult, and this was also true in mice and human; the miR-29 

family was found to be down-regulated in myotonic dystrophy type I and Duchenne muscular 

dystrophy (Wei et al. 2013), (ii) bone formation e.g. miR-29a increased bone mass, induced 

osteoblast differentiation, and inhibited osteoclast differentiation; reduced miR-29a 

expression was associated with low bone mass and poor skeletal microarchitecture in rats 

treated with glucocorticoids (Wang et al. 2013), (iii) HIV virus infection  e.g. ectopic 

expression of miRNA-29a resulted in reduction of HIV virus levels, implicating this miRNA 

as a potential strategy in developing anti-HIV therapeutics  (Ahluwalia et al. 2008), (iv) 

aging e.g. miR-29 family up-regulation was observed in a number of different organs e.g. 

liver, muscle, and brain of several aging models (Ugalde et al. 2011, Fenn et al. 2013, Hu et 

al. 2014), (v) diabetes e.g. the miR-29 family was up-regulated in diabetic rats and forced 

expression of miR-29 inhibited insulin induced glucose imported by 3T3-L1 adipocytes (He 

et al. 2007);  reduced miR-29b in plasma samples of type 2 diabetes patients anticipated the 
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manifestation of the disease (Zampetaki et al. 2010); miR-29c was found up-regulated the 

kidney glomeruli from diabetic mice (Long et al. 2011); the continued expression of miR-29 

isoforms in the pancreatic β-cell seems to be required for normal and selective stimulation of 

insulin secretion by glucose (Pullen et al. 2011); (vi) fibrosis development, the miR-29 

family has been shown to be implicated in the development of fibrosis of many organs 

including heart, kidney, lung, liver, and systemic sclerosis; (vii) Alzheimer disease, the miR-

29a/b1 cluster or miR-29a was significantly decreased in Alzheimer patients (Hebert et al. 

2008, Shioya et al. 2010). 

In conclusion, with all of the data above, the miR-29 family may play a key role in 

Osteoarthritis and of is worthy of further investigation. The mechanisms which control its 

expression together with its function in chondrocytes will be described in the next chapters.  
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CHAPTER IV 
FACTORS THAT CONTROL EXPRESSION OF THE MICRORNA-29 FAMILY  

 

4.1. Introduction  

In the previous chapter, evidence for the involvement of the miR-29 family in cartilage 

homeostasis and OA was presented. The increased expression of the all family members is 

apparent in both early and late stages of OA. However, which factors or mechanisms are 

responsible for miR-29 induction or repression in chondrocytes remains unknown and is 

worthy of further investigation.   

The miR-29 family is intergenic miRNAs and is encoded in two gene clusters e.g. one for the 

primary miR-29a/b1 on chr.7q32, and the other for the primary miR-29b2/c on chr.1q32.2 

(Saini et al. 2007, Chang et al. 2008). The miR-29b1 and miR-29a precursors are processed 

from the pri-miR-29a/b1 last intron (Genbank accession EU154353) whist the miR-29b2 and 

miR-29c precursors are from the pri-miR-29b2/c last exon (Genbank accession EU154352 

and EU154351) (Chang et al. 2008) (Figure 4.1). These precursors are all transcribed as 

polycistronic primary transcripts (Chang et al. 2008, Mott et al. 2010) upon which various 

transcriptional regulators e.g. NFκB (Liu et al. 2010, Mott et al. 2010), supressors (c-Myc 

(Mott et al. 2010, Parpart et al. 2014), Sp1(Liu et al. 2010, Amodio et al. 2012), Gli (Mott et 

al. 2010), Yin-Yang-1, Smad3 (Qin et al. 2011), Ezh, H3K27, HDAC1, HDAC3), or inducers 

(Gli, SRF, Mef2, TCF/LEF, GATA3 (Chou et al. 2013), CEBPA (Eyholzer et al. 2010)), and 

signalling pathways e.g, Wnt , TGFβ, TLR/NFκB, TNFα/NFκB, hedgehog signalling have 

been reported to be directly and/or indirectly involved. For instance, both canonical and 

non-canonical Wnt signalling was reported to induce the miR-29 family level in different 

cellular contexts: Wnt3a rapidly induces miR-29 levels in osteoblastic cells (Kapinas et al. 

2009, Kapinas et al. 2010) or in muscle progenitor cells (MPCs) (Hu et al. 2014), 

respectively, at least in part through the two putative TCF/LEF-binding sites in the miR-29a 

promoter (Kapinas et al. 2010); non-canonical Wnt signalling through Wnt7a/Frizzled 9 

resulted in increased expression of only the mature miR-29b but not miR-29a or c or any 

miR-29b primary or precursor forms in non-small lung cancer cell lines H661 and H15 

(Avasarala et al. 2013). In addition, ERK5 and PPARγ, key effectors of the Wnt7a/Frizzled 9 

pathway, were also observed to be strong inducers of miR-29b expression (Avasarala et al. 
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2013). In contrast to Wnt signalling, TGFβ/Smad3 signalling was shown to negatively 

regulate miR-29 family expression in different cell lines e.g. human aortic adventitial  
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Figure 4.1: Genomic organization of the miR-29 family 

The miR-29 family includes three members miR-29a, miR-29b and miR-29c. The primary 
pri-29a/b1 is located in chromosome 7 containing pre-29a and pre-29b1. The primary pri-
29b2/c is located in chromosome 1 including pre-29b2 and pre-29c. The hairpins indicate the 
locations of the sequence encoding precursors of miR-29s. Pre-29a and pre-29c will process 
into mature miR-29a and miR-29c, respectively. Pre-29b1 and pre-29b2 will process into 
mature miR29b. The mature sequences of the miR-29 family members share identical seed 
regions. Nucleotides that differ among miR-29s are indicated in italics.  
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fibroblasts (Maegdefessel et al. 2012), renal fibrosis cells (Wang et al. 2012, Ramdas et al. 

2013), murine hepatic stellate cells (Roderburg et al. 2011), rat hepatic stellate cells 

(Kwiecinski et al. 2011), human skin fibroblasts (Maurer et al. 2010), human tenon’s 

fibroblast (Li et al. 2012), human lung fibroblast cell line (Cushing et al. 2011, Yang et al. 

2013). The suppressive effect of TGFβ/Smad3 signalling on miR-29 expression was partly 

mediated through a Smad3 binding site in the highly conserved region around 22kb upstream 

of the miR-29b2/c promoter as showed by chromatin immunoprecipitation assay (Qin et al. 

2011, Ramdas et al. 2013). Similar to TGFβ, Toll-like receptor (TLR) signalling and 

TNFαααα signalling have been shown to mediate suppressive effects on miR-29 family 

expression. In man,  treating human cholangiocarcinoma cells with TLR ligands e.g. TLR3 

(Poly (I:C)), TLR4 (LPS), TLR5 (flagellin), TLR6 (MALP-2) showed a significant decrease 

in the miR-29 level beginning after 4 hours of LPS treatment but increasing to 24 hours (Mott 

et al. 2010); treating human stellate cells with LPS strongly decreased all miR-29 family 

expression after 1 hour (Roderburg et al. 2011); treating C2C12 myoblasts with TNFα 

substantially reduced miR-29b and miR-29c expression (Wang et al. 2008); stimulating the 

choroidal-retinal pigment epithelial cell line ARPE-19 with TNFα resulted in significant 

down regulation of all miR-29s; conversely, transfecting with a synthetic NFκB decoy, 

(NFκB inhibitor), rescued the down regulation of miR-29 by TNFα (Χαι ετ αλ. 2014). The 

activation of NFκB through TLR signalling with its three binding sites in the miR-29a/b1 

cluster promoter (-561, -110, and +134) was proven to be the mechanism for the suppression 

of miR-29a/b1 promoter function (Mott et al. 2010). In mice, miR-29a and miR-29b 

significantly decreased expression in murine natural killer (NK) cells stimulated with the 

TLR3 ligand (Poly (I:C)) or phorbol ester (PMA) as well as in splenocytes, NK and T cells of 

mice infected with L. monocytogenes or Mycobacterium bovis bacillus Calmette-Guérin (Ma 

et al. 2011). Consistent with the human miRNA, a region about 25 kb upstream of the murine 

promoter of miR-29a/b1 contains two NFκB binding sites. The second binding site is more 

conserved between human and mouse and it has been shown to be key for suppression of the 

miR-29a/b1 promoter (Ma et al. 2011). Importantly, other transcriptional factors, co-

operating with NFκB to suppress or induce miR-29 family expression, have also been 

reported e.g. YY1, Sp1, Ezh, H3K27, HDAC1, HADC3, Mef2, SFR.  Forced expression of 

YY1 in C2C12 lead to a 2-fold decrease of miR-29b and miR-29c levels; similarly, siRNA 

knockdown of YY1 significantly enhanced expression of miRNA expression.  ChIP analysis 

showed that YY1 did not bind to the miR-29b2/c locus in cells in the absence of NFκB, 
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suggesting that both pathways are necessarye for silencing the miR-29b2/c locus. Amongst 4 

putative binding sites of YY1 in highly a conserved region ~20kb upstream of miR-29b2/c, 

only one site is bound by YY1 on ChIP assay whereas all 4 sites produced a binding complex 

with EMSAs using nucleus extract from C2C12. Notably, Ezh, H3K27, HDAC1, whose 

expression is associated with repression of muscle-specific genes, and recruited by YY1, was 

also detected by ChIP assay. In line of these transcription factors, Mef2 and SFR, well-known 

for activating muscle genes, were also found binding to the miR-29b2/c promoter. Again 

using luciferase reporter assay, a reporter containing a 4.5 kb fragment spanning YY1, Mef2, 

SFR binding sites was repressed by YY1 or loss of the YY1 binding site but stimulated with 

either YY1 knockdown or SRF or Mef2 (Wang et al. 2008). In addition, forced expression of 

Sp1 or NFκB (p65) reduced miR-29b expression; conversely, knockdown of Sp1 or NFκB 

(p65) by siRNAs resulted in induced miR-29b level (Liu et al. 2010). EMSA assay using 

probes spanning the -125/-75 miR-29b sequence yielded two major complexes, suggesting 

Sp1/NFκB acts as a repressive complex interacting with an element of the miR-29b enhancer 

(Liu et al. 2010). Interestingly, histone deacetylase (HDAC) 1 and 3 contribute to the 

repressor activity of Sp1/NFκB on miR-29b expression (Liu et al. 2010). Incubation of 

HDAC1/HDAC3 with 32P-labelled probe from the miR-29a/b1 cluster region together with 

NFκB p50/p65 and Sp1 showed a delayed and more intense band; HDAC1/3 inhibitors 

increase miR-29b expression, supporting the interaction of HDAC1 and 3 and Sp1/NFκB 

with the miR-29b regulatory sequence (Liu et al. 2010). Similar to other signalling mentioned 

previously, hedgehog signalling pathway was also shown to repress miR-29 expression: 

cells treated with cyclopamine, an inhibitor of Smoothened (a hedgehog signalling 

component), or transfected with siRNA to knockdown Gli-3, the expression of miR-29b 

increased (Mott et al. 2010). Along with the transcription factors mentioned above, there are 

other transcriptional factors controlling miR-29 family expression. The serum 

alphafetoprotein (AFP), a membrane-secreted protein associated with poor patient outcome in 

hepatocellular carcinoma, was reported to inhibit miR-29a expression through facilitating c-

MYC binding to the promoter of the pri-miR-29a/b. This conclusion was supported by: the 

inability of AFP to decrease the miR-29a level in the absence of c-MYC protein; c-MYC was 

abundantly bound to the miR-29a/b1 promoter in the presence of AFP, but did not bind 

without AFP (Parpart et al. 2014); c-MYC promoter binding protein (MBP), originally 

described to bind to and repress c-MYC promoter function, up-regulated miR-29b expression 
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by 6 fold in prostate cancer cells (Steele et al. 2010). The haematopoietic master transcription 

factor, CCAAT/enhancer-binding protein-α (CEBPA), was also reported to activate the 

expression of miR-29a and miR-29b. Forced expression of CEBPA in acute myeloid 

leukaemic cells lead to two-fold induced expression of the primary miR-29a/b1 and the 

mature miR-29a and miR-29b whereas the expression of miR-29b2/c primary transcript 

remained stable. Using luciferase reporter assays, the sequence, having the conserved region 

spanning -682 bp upstream to +296 bp downstream of the miR-29a/b1 transcriptional start 

site and containing 6 potential CEBPA sites, was also strongly induced with CEBPA. Among 

these binding sites,  the one located at +15 to +29 bp was identified to be responsible for 

CEBPA-mediated activation of the pri-miR-29a/b1 promoter on ChIP assay (Eyholzer et al. 

2010). Another transcriptional factor, GATA3, specifying and maintaining luminal epithelial 

cell differentiation in the mammary gland, was also found to induce miR-29 expression 

directly by binding to three GATA3 sites in the miR-29a/b1 promoter. Interestingly, GATA3 

can induce miR-29s expression by inhibiting the TGFβ and NFκB signalling pathway. 

Additionally, STAT1 (signal transducer and activator of transcription) a transcription factor 

induced by interferon γ signalling, was reported to upregulate primary 29a/b1, the pre-29a, 

pre-29b1, and the mature miR-29a, miR-29b in melanoma cell and T cells (Schmitt et al. 

2013).  

With all the information above, it is likely that in different cellular contexts, the miR-29 

family expression is controlled by different transcription factors and signalling pathways. 

Which factors control its expression in human chondrocytes remains unknown. The effects of 

a variety of anabolic and catabolic factors e.g. TGFβ, Wnt3a, IL-1, LPS on miR-29 family 

expression in human chondrocytes were thus investigated. Also, the effect of SOX9, a major 

specifier of chondrocyte phenotype was also investigated.  
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Aims: 

• Analyse the promoter region (approximately 2kb upstream of the transcription starting 

site) of the miR-29 family for SOX9 binding sites. Experimentally validate the impact 

of SOX9 on miR-29 expression. 

• Test major anabolic and catabolic cytokines controlling the miR-29 expression in 

chondocytes.  
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4.2. Results 

4.2.1. The master regulator of chondrogenesis SOX9 suppresses expression of the miR-

29 family  

The master regulator for chondrogenesis SOX9 has a critical function in a number of 

development processes e.g. skeletal formation, sex determination, pre-B and T cell 

development. SOX9 was found to be expressed in all chondroprogenitors and differentiated 

chondrocytes, but not in hypertrophic chondrocytes (Ng et al. 1997, Zhao et al. 1997). 

Importantly, SOX9 is considered as the critical transcriptional factor for chondrogenic 

differentiation, partly owing to the fact that its functions are required for differentiating 

chondrogenic mesenchymal condensations into chondrocytes, and for all stages of 

chondrocyte differentiation: in mouse chimera, Sox9 knockout cells were excluded from all 

cartilage and no cartilage developed in teratomas derived from Sox9 -/- embryonic stem cells 

(Bi et al. 1999); Sox9 deletion from chondrocytes at later stages of development resulted in 

decrease in chondrocyte development, cartilage matrix gene transcriptional inhibition, and 

prematurely conversion from proliferating chondrocytes to hypertrophic chondrocytes 

(Akiyama et al. 2002). Considering the critical role of SOX9 in chondrocytes, I explored the 

connection between this factor and expression of the miR-29 family.  Initial evidence 

suggested a link: in the DMM model mRNA profiling data, at 7 days after the surgery, Sox9 

expression was greatly induced (Appendix, Table 7) whilst the miR-29s expression was 

suppressed; in both human and mouse chondrogenesis models, the level of Sox9 was 

inversely correlated with the level of miR-29 expression (data not shown). Thus, SOX9 could 

be a miRNA-29 target or SOX9 could regulate miRNA-29 expression.  

To test the postulate that SOX9 is a miR-29 target, the effect of the miR-29 members on 

SOX9 transcriptional expression was examined: after sub-cloning the SOX9 3’UTR 

downstream of the luciferase gene, this SOX9-3’UTR reporter vector was co-transfected with 

the miR-29 family into SW1353 cells; 24 hours after transfection, luciferase activity was 

measured. Luciferase activity showed that miR-29 family have no effect on the SOX9 3’UTR 

even though bioinformatics analysis found one 6-mer seed site for miR-29 in the SOX9 

3’UTR (data not shown), suggesting that SOX9 is not a miR-29 family direct target. Also, 

whether SOX9 is a miR-29 indirect target was also determined: relative expression of SOX9 

was checked in human primary chondrocytes transfected with miR-29 family for 48 hours. 

Quantitative RT-PCR confirmed that the SOX9 level was not changed with miR-29 
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transfection in chondrocytes (data not shown). Thus, SOX9 is not a direct or indirect target of 

miR-29s at least at the transcriptional level.  

For testing the second hypothesis SOX9 is a suppressor of miR-29 expression, the effect of 

overexpression or knockdown of SOX9 on miR-29 expression was studied: a SOX9 

expression construct or siRNA was transiently transfected into the human chondrosarcoma 

SW1353, 48 hours after transfection, the level of the mature miR-29 family was measured by 

quantitative RT-PCR. The data (Figure 4.2) show that SOX9 suppressed miR-29 transcription: 

the miR-29 family levels were significantly reduced when SOX9 was overexpressed (Figure 

4.2.a,c) but induced when SOX9 was knocked down (Figure 4.2.b,c).   

To further explore the regulatory mechanism by which SOX9 suppressed miR-29 expression, 

the 2kb region upstream from the primary miR-29a/b1 and miR-29b2/c transcription start 

sites were analysed by searching for the SOX9 DNA-binding motif ([A/T][A/T]CAA[A/T]). 

This analysis revealed 5 putative binding sites for SOX9 in the promoter regions of pri-miR-

29a/b1 and pri-miR-29b2/c, respectively (Figure 4.3.a). A reporter construct with the primary 

miR-29a/b1 2kb promoter, kindly provided by Dr Anne Delany (University of Connecticut, 

USA) was used to further validate the direct effect of SOX9: the reporter was co-transfected 

with increasing amounts of SOX9-expression plasmid into SW1353 cells and luciferase 

activity measured after 24 hours of transfection. Luciferase activity in SW1353 cells 

significantly decreased in a dose-dependent manner (Figure 4.3.b) showing that SOX9 

directly regulated the primary miR-29a/b1 promoter.  

The data above demonstrate that SOX9 is a miR-29 family suppressor. 
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Figure 4.2: Sox9 suppresses miR-29 family expression.  

(A) SOX9 gain-of-function: transiently transfection of a SOX9-expression vector or pcDNA3 
empty vector (control) into SW1353 cells; (B) SOX9 loss-of-function: transiently transfection 
of SOX9 siRNA or a non-targeting control into SW1353 cells. Relative expression of SOX9 
in (A) and (B) was measured 48 hours after transfection by quantitative RT-PCR using18S as 
the endogenous control; (C) The miR-29 family expression levels after overexpression or 
knockdown of SOX9 in SW1353 cells was measured by quantitative RT-PCR. Using U6 as 
the endogenous control. Red bar: miR-29a, green bar: miR-29b, black bar: miR-29c, open bar: 
control. Means ± standard errors are presented. Difference in expression was analysed by 
unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.3: Sox9 suppresses primary miR-29a/b1 transcription by directly binding to 
the proximal miR-29a/b1 promoter. 
 

(A) Structure of the miR-29a/b1 promoter reporter: 5 putative binding sites of SOX9 were 
identified by analysing the 2kb region upstream of the transcription start site of miR-29a/b1 
by JASPAR. This 2kb region was sub-cloned upstream of the luciferase gene in a pGL4 
vector.   
(B) Suppressive effect of SOX9 on the primary miR-29a/b1 promoter reporter: transiently co-
transfection of primary miR-29a/b1 promoter (100ng) with increasing amount of SOX9-
expression vector (0, 100, 300ng) or pcDNA.3 to equalise DNA into SW1353. A 
constitutively expressed Renilla lucierase was used as a control for transfection efficiency. 
Luciferase activity was measured 24 hours after transfection. Means ± standard errors are 
presented. The difference in luciferase activity was analysed by unpaired two-tailed Student’s 
t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6. 

(B) 

(A) 
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4.2.2.  TGFββββ1 inhibits expression of the miR-29 family    

TGFβ signalling has many important roles in chondrocytes and articular cartilage: TGFβ 

induces extracellular matrix formation; stimulates chondrocyte proliferation; inhibits the 

terminal differentiation of chondrocytes; retains chondrocytes in the pre hypertrophic stage; 

increases total glycosaminoglycan synthesis; maintains the matrix component in immature 

cartilage (Li et al. 2005). Animal studies showed that: transgenic mice overexpressing a 

cytoplasmically truncated, dominant-negative form of the TβRII in cartilage, resulted in a 

joint disease similar to human osteoarthritis (Serra et al. 1997); Smad3 deficient mice 

showed premature chondrocyte maturation with increased length of the hypertrophic region, 

disorganization of the chondrocyte columns, early expression of collagen type X in the 

growth plate; and null mice gradually developed an end-stage OA phenotype  (Li et al. 

2005). These essential roles of TGFβ signalling in chondrocytes suggest the necessity of 

examining whether the miR-29 family is regulated by TGFβ signalling in human 

chondrocytes. Moreover, a number of published data show that TGFβ signalling negatively 

regulates miR-29 family expression in different human fibroses e.g. renal, lung, liver 

fibrosis. The impact of TGFβ signalling in human chondrocytes on the miR-29 family was 

thus checked.  

To address the above question, expression of the miR-29 family with TGFβ1 treatment in 

human primary chondrocytes was compared both in monolayer and micromass culture. In 

monolayer culture: HACs were put in high glucose media containing 10% (v/v) FCS until 

the cells reached 90% confluence; medium was replaced with that containing 0.5% (v/v)  

FCS) prior to stimulating with 4ng/ml TGFβ or vehicle control (4mM HCl with 0.5% (w/v) 

BSA). In micromass culture: HACs were put in high glucose media containing 10% (v/v) 

FCS in monolayer following two sequential passages to increase cell number; the 

micromass (2.5x107cells/ml) was cultured in high glucose media with 10% (v/v) FCS for 24 

hours before treating with 10ng/ml TGFβ or vehicle control (4mM HCl with 0.5% (w/v) 

BSA). Cells were harvested for qRT-PCR after 24 hours or 48 hours treatment in monolayer 

or micromass cultures, respectively. Quantitative RT-PCR primers for measuring the miR-

29 family were described before. For the primary transcripts: two primer pairs specific for 

exon 1 and exon 3 were used; for the precursor transcripts: primers directly bind to the 

precursor sequence (Appendix, Table 5); the mature transcripts were measure by LNA-

primers.   
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The qRT-PCR data show that expression of the miR-29 family was suppressed by TGFβ 

signalling (Figure 4.4). However, each culture system gave a different response. The pri-

29b2/c transcript was significantly decreased after stimulating HACs for 24 hours with 

TGFβ1 in monolayer culture, whilst the pri-29a/b1 transcript was unchanged (Figure 4.4 a); 

the pri-29a/b1 transcript was significantly decreased in micromass culture after 48 hours 

with TGFβ1 whilst the pri-29b2/c transcript was unchanged or even increased (Figure 4.4 b). 

Notably, the levels of all mature forms of miR-29 were significantly decreased by TGFβ1 in 

both systems. These data suggest a hypothesis that the primary and the precursor miRNAs 

may be rapidly regulated and then processed into mature miRNAs. In order to test this 

hypothesis, SW1353 cells were treated with TGFβ1 (4ng/ml) in monolayer in a time course. 

Since the expression levels of the primary and pre miRNAs modulated by TGFβ1 in human 

primary chondrocyte were similar and ahead the mature miRNAs, it might be sufficient to 

measure only the pre-miRNA rather than both the primary and precursor sequences. 

Consistent with above data, qRT-PCR showed that TGFβ1 suppressed miR-29 family 

expression in SW1353 cells (Figure 4.5). Interestingly, significantly suppressive effects of 

TGFβ1 on precursor miRNAs were observed after 4 hours till the end of the time course 

(Figure 4.5.a) whilst significant change in the mature miRNAs was only seen after 12 hour 

treatment (Figure 4.5.b). This data, thus, confirms the hypothesis above. Together with 

TGFβ1, the effect of TGFβ3 on the miR-29 family expression also checked on SW1353 in 

monolayer across the time course. Quantitative RT-PCR data (Figure 4.5) showed that 

TGFβ3 also strongly supressed the expression of the miR-29s.  However, the TGFβ3 

significant decrease the precursor and the mature miRNAs were observed at 12 hour time 

point though at 4 hours a  

The suppressive effect of TGFβ on expression of the miR-29 family was also investigated 

on the proximal promoter of the primary miR-29a/b1 gene. The promoter-reporter was 

transfected into SW1353 cells, cells were serum starved for 24 hours and treated with 

TGFβ1 (4ng/ml) for another 6 hours before performing the luciferase assay. In line with the 

expression data, TGFβ1 significantly suppressed the promoter activity of pri-miR-29a/b1 

(Figure 4.6).  
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Figure 4.4 TGFβ1 suppresses expression of the miR-29 family in human primary 
chondrocyte  
 

(A) TGFβ1suppresses expression of the miR-29 family in monolayer culture: Human primary 
chondrocytes were cultured in high glucose media with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were switched to high glucose media with 0.5% (v/v) FCS for 24 hours 
before treating with TGFβ1 (4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) for another 24 
hours.  

(B) TGFβ1suppresses expression of the miR-29 family in micromass culture: Human primary 
chondrocytes were cultured in high glucose media with 10% (v/v) FCS in monolayer. After 2 
sequential passages, cells were put in micromass culture (2.5x107cells/ml) in high glucose 
media with 10% (v/v) FCS. After 24 hours in micromass, cells were stimulated for 48 hours 
with TGFβ (10ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) in 10% (v/v) FCS media.  

Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a, b, c were measured by quantitative RT-PCR. 18S rRNA was the 
endogenous control for measuring primary and precursor transcripts; U6 was the endogenous 
control for measuring miR-29 mature transcripts. The horizontal line at 1 represents the mean 
of the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-29b2/c 
transcripts; black bar, precursor transcripts; yellow bar, mature transcripts. Means ± standard 
errors are presented. The difference between the treatment and the control was analysed by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 

  

(A) 

(B) 
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Figure 4.5 TGFβ1/3 suppresses expression of the miR-29 family in SW1353 cells  

SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were serum starved for 24 hours before treating with TGFβ1or TGFβ3 
(4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) across 24 hour course.   

Relative expression of the precursor miR-29a, -29b2, -29c, the mature miR-29a, b, c were 
measured by quantitative RT-PCR. 18S rRNA was the endogenous control for measuring the 
precursor transcripts; U6 was the endogenous control for measuring miR-29 mature 
transcripts. Open bar, control; brick bar, TGFβ1; close bar, TGFβ3. (A) Expression level of 
pre-miR-29a, 29b2, 29c. (B) Expression level of mature miR-29a, b, c. Means ± standard 
errors are presented. The difference between the treatment and the control was analysed by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.6: TGFβ1decreases expression from the primary miR-29a/b1 promoter  

The pri-miR-29a/b1 promoter-reporter (100ng) or the empty vector pGL4 (control, 100ng) 
were transfected into SW1353 cells. After transfection, cells were serum starved for 24 hours, 
followed by stimulating for another 6 hours with TGFβ1 (4ng/ml), or vehicle (4mM HCl+0.5% 
BSA) before measuring luciferase activity. Renilla was use as endogenous control. Open bar: 
vehicle, black bar: TGFβ1. Means ± standard errors are presented. The difference of 
luciferase activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, 
*** p<0.001, n=6. 
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4.2.3. Expression of the miR-29 family is not regulated by canonical Wnt signalling  

As shown in the section above, the TGFβ signalling pathway, stimulated by TGFβ1 (or 

TGFβ3, data not shown), negatively regulated the expression of themiR-29 family. 

Signalling cross talk between TGFβ and Wnt signalling pathways has been previously 

reported, e.g. after TGFβ stimulation, Smad3 interacts with LEF1 to activate target gene 

transcription independently of β-catenin (Letamendia et al. 2001); TGFβ was shown to up-

regulate the expression of many Wnt ligands e.g. Wnt2, 4, 5a, 7a, 10a, and Wnt co-receptors 

e.g. LRP5 (Zhou et al. 2004);  TGFβ was found to increase nuclear accumulation and 

stability of β-catenin; interestingly, working synergistically with Wnt signalling pathways, 

TGFβ was reported to stimulate chondrocyte differentiation from mesenchymal cell (Zhou 

et al. 2004). Wnt signalling is also known to have a key role in cartilage homeostasis and 

osteoarthritis (Zhu et al. 2008, Zhu et al. 2009). Thus, it was pertinent to investigate the 

effect of Wnt signalling onexpression of the miR-29 family in chondrocytes, and then 

potential synergy with TGFβ signalling.  

The effect of canonical Wnt signalling stimulated by Wnt3a (50 or 100ng/ml) on the miR-

29 family was investigated in HACs cultured in monolayer or micromass after 24 hours or 

48 hours, respectively; or in SW1353 cells in monolayer culture across a 24 hour time 

course. In addition, the effect of Wnt3a on the proximal pri-miR-29a/b1 promoter was also 

examined after 6 hour treatment with Wnt3a (50 or 100ng/ml). Quantitative RT-PCR data 

for all transcripts of miR-29 family and luciferase assay data for the miR-29a/b1 promoter 

showed canonical Wnt signalling did not regulate expression of the miR-29 family 

(Appendix, Figure 5). Wnt3a did regulate Axin2 expression in the same experiments, 

showing induction of the canonical Wnt pathway (Appendix, Figure 6).  
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4.2.4. IL-1 induces expression of the miR-29 family in part via the p38 signalling 

pathway.  

IL-1 is a catabolic and anti-anabolic cytokines, it down regulates the expression of cartilage 

matrix components e.g. aggrecan and type II collagen and induces expression of matrix 

degrading enzymes e.g. MMP-3, MMP-13, ADAMTS4 (Koshy et al. 2002). Il-1β, or Il-1β-

converting enzyme knockout mice showed the accelerated development of OA lesions in 

response to OA surgical induced in compared with wide type mice (Clements et al. 2003). It 

is considered to be a major cytokine driving the pathology of OA (Goldring et al. 2004).  

Thus, it was pertinent to examine whether IL-1 controls the expression of the miR-29 

family in human chondrocytes.  

The effect of IL-1 on the expression of the miR-29 family was first measured in IL-1-treated 

SW1353 for 48 hour time course in monolayer culture: SW1353 cells were cultured in high 

glucose media with 10% (v/v) FCS until reach confluence and followed by serum starved 

for 24 hours before treating with 5ng/ml IL-1 or vehicle (0.5% (w/v) BSA) for 48 hour time 

course. Relative expressions of the precursor and mature miRNA-29 transcripts were 

measured by qRT-PCR. Data (Figure 4.7) showed that IL-1 induced the expression of miR-

29 family: the biggest induction on miR-29 precursors was observed at 4 hours; at later time 

point, the level of miR-29a precursors was decreased as compare with 4 hours (pre-29a) 

whilst other precursors did not change expression (Figure 4.7a); the induction of mature 

miR-29s were only observed significantly after 48 hours (Figure 4.7b). These data 

suggested that the increase in expression after IL-1 treatment of the miR-29 derivatives is 

time-dependent. The induction of IL-1 on the miR-29 family was again checked on the 

HACs in micromass culture: The micromass containing (2.5x107cells/ml) of passage 2 HAC 

was cultured in high glucose media with 10% (v/v) FCS for 48 hours before treating with 

20ng/ml IL-1 or vehicle control (0.5% (w/v) BSA). Quantitative RT-PCR primers for 

measuring the miR-29 family were described before (Appendix, Table 5). Real-time RT-

PCR data (Figure 4.8) showed that IL-1 strongly induced expression of the miR-29 family, 

with all processed transcripts significantly up-regulated by IL-1. The fold increase was 

highest for the pri-miR-29a/b1 locus in which the primary miR-29a/b1 and pre-miR29a and 

b1 were increased with 9 and 5 fold, respectively.  

The molecular pathways induced by IL-1 can be the three classical MAPK-signalling 

pathways i.e. ERK, p38, JNK and through NFκB (Aigner et al. 2006, Fan et al. 2007). The 
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signalling pathway through which IL-1 regulated miR-29 family expression was 

investigated. SW1353 cells were stimulated with IL-1 together with an NFκB inhibitor 

(10µM) or a p38 inhibitor (SB203580) (10µM) or 6 hours in monolayer and the relative 

expression of the precursor miRNAs were again measured. The data showed that inhibition 

of the NFκB pathway further induced expression of the pre-miR-29a and b1 (Figure 4.9).  

Inhibition of p38 suppressed IL-1 induction of pre-miR-29a and b1, with a similar pattern 

for pre-miR-29b2 and c (Figure 4.10), suggesting that IL-1 induces expression of the miR-

29 family at least in part through p38 MAPK signalling. 

Furthermore, the effect of IL-1 on the promoter of pri-miR-29a/b1 was also examined by 

luciferase assay. The pri-miR-29a/b1 promoter-reporter was transfected into SW1353 cells 

for 24 hours before stimulation with IL-1 (5ng/ml) with or without the NFκB inhibitor 

(10nM) or p38 inhibitor (10µM) for another 6 hours. Luciferase data showed that the 

activity of the pri-miR-29a/b1 promoter was significantly decreased by IL-1 and that this 

effect was abolished by treatment with the NFκB inhibitor (Figure 4.11). However, the p38 

inhibitor had no effect on the suppressive effect of IL-1 on the promoter of pri-miR-29a/b1 

(data not shown). 
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Figure 4.7: IL-1 induces expression of the miR-29 family in SW1353 in monolayer 

culture 

SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were serum starved for 24 hours before treating with IL-1 (5ng/ml) 
or vehicle (0.5% (w/v) BSA) across 48 hour course.   
Relative expression of the precursor miR-29a, -b1, -b2, -c, the mature miR-29a, b, c were 
measured by quantitative RT-PCR. 18S rRNA was the endogenous control for measuring 
the precursor transcripts; U6 was the endogenous control for measuring miR-29 mature 
transcripts. The horizontal line at 1 serves as the vehicle control. 
(A) Expression level of pre-miR-29a, 29b2, 29c. Red bar, pre-miR-29a; blue bar, pre-miR-

29b1; black bar, pre-miR-29b2; yellow bar, pre-miR-29c 
(B) Expression level of mature miR-29a, b, c. Red bar, miR-29a; blue bar, miR-29b; black 

bar, miR-29c 
Means ± standard errors are presented. The difference between the treatment and the control 
was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.8: IL-1 induces expression of the miR-29 family in human primary 
chondrocyte in micromass culture 

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer. After 2 sequential passages, cells were put in micromass culture 
(2.5x107cells/ml) in high glucose media with 10% (v/v) FCS. After 24 hours in micromass, 
cells were stimulated for 48 hours with IL-1β (10ng/ml) or vehicle (0.5% (w/v) BSA).  
Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a,- 29b, -29c were measured by quantitative RT-PCR. 18S rRNA 
was the endogenous control for measuring primary and precursor transcripts; U6 was the 
endogenous control for measuring miR-29 mature transcripts. The horizontal line at 1 
serves as the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-
29b2/c transcripts; black bar, precursor transcripts; yellow bar, mature transcripts. Means ± 
standard errors are presented. The difference between the treatment and the control was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
 
 
 



154 

 

 

Figure 4.9 NFκκκκB inhibition further increases the IL-1-induced expression of pre-miR-
29a and pre-miR-29b1 
 

SW1353 cells were plated in high glucose media with 10% (v/v) FCS in a 6 well-plate in 
monolayer and serum starved for 24 hours before treating with IL-1β (10ng/ml) in the 
presence or absence of NFκB inhibitor JSH-23 (10µM) for a further 8 hours. Cells were then 
harvested and the total RNA was isolated by Trizol. Relative expression of pre-miR-29a, -
29b1 were measured by quantitative RT-PCR. 18S rRNA was the endogenous control. Red 
bar, pre-miR-29a; blue bar, pre-miR-29b1. Means ± standard errors are presented. The 
difference between the treatment and the control was analysed by unpaired two-tailed 
Student’s t test * p<0.05, ** p < 0.01, *** p<0.001, n=6. 
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Figure 4.10 P38 inhibition suppresses the IL-1 induction of pre-miR-29s  
 

SW1353 cells were plated in high glucose media with 10% (v/v) FCS in a 6 well-plate in 
monolayer and serum starved for 24 hours before treating with IL-1β (10ng/ml) in the 
presence or absence of p38 inhibitor SB203580 (10µM) for a further 8 hours. Cells were 
then harvested and the total RNA was isolated by Trizol. Relative expression of pre-miR-
29a, -29b1, -29b2, -29c were measured by quantitative RT-PCR. 18S rRNA was the 
endogenous control. Red bar, pre-miR-29a; blue bar, pre-miR-29b1; black bar, pre-miR-
29b2; white bar, pre-miR-29c. Means ± standard errors are presented. The difference 
between the treatment and the control was analysed by unpaired two-tailed Student’s t test * 
p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.11: IL-1 suppresses the primary miR-29a/b1 promoter through NFκκκκB 

Pri-miR-29a/b1 promoter reporter (100ng) or pGL4 (control, 100ng) were transfected into 
SW1353 cells. After transfection, cells were serum starved for 24 hours, and followed by 
stimulating for another 6 hours with IL-1β (5ng/ml), IL-1β and NFκB inhibitor JSH-23 
(10µM) or vehicle (0.5% (w/v) BSA) before measuring luciferase activity. Renilla was the 
endogenous control. Means ± standard errors are presented. The difference of luciferase 
activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** 
p<0.001, n=6. 
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4.2.1. LPS suppressed the miR-29 family expression through NFκκκκB signalling 

pathway  

Toll-like receptors (TLRs) have important roles in activation of the innate and adaptive host 

defence against infections. TLR can bind to various damage-associated molecular patterns, 

which are endogenous danger signals or alarmins, leading to autoinflammatory conditions, 

and contributing to production of co-stimulatory signals necessary for adaptive immune 

reactions (Janeway et al. 2002). Lipopolysaccharide (endotoxin) (LPS) from bacteria is an 

example of a TLR-stimulating molecule. Chondrocytes are a potential source of several 

proinflammatory substances which may be TLR ligands: high-mobility group box 1, heat-

shock proteins, and several components of the cartilage extracellular matrix (ECM) - e.g. 

low-molecular-weight hyaluronan, heparin sulphate, biglycan, and fibronectin fragments 

(Konttinen et al. 2012). From this point of view, OA could be considered as an 

autoinflammatory disease with the chondrocyte as its primary inflammatory cell (Konttinen 

et al. 2012). On this basis it was hypothesized that the activation of TLR-4, a receptor for 

LPS, may directly affect the biosynthetic activity of chondrocytes, including expression of 

the miR-29 family.  

The level of miR-29 family expression was measured by qRT-PCR in HACs stimulated 

LPS (1µg/ml) in monolayer or micromass culture for a 24 hours or a 48 hour time course, 

respectively. Real-time PCR showed that the miR-29 family was significantly suppressed 

by LPS (Figure 4.12). Interesting, the levels of all processed miRNAs were strongly 

regulated by LPS in a time dependent manner: a significant decrease of the two miR-29 

family clusters and their precursors were detected after 4 hours of treatment whilst decrease 

of the mature miRNAs was not detected until 24 hours.  However, after 48 hours treating 

with LPS, all miR-29 family was tended to increase (Figure 4.12) 

Again, the effect of LPS on the promoter of pri-miR-29a/b1 was also examined by 

luciferase assay.  The pri-miR-29a/b1 promoter reporter was transfected into SW1353 cells 

for 24 hours before stimulation with LPS (1µg/ml) in the presence or absence of an NFκB 

inhibitor JSH-23 (10µM) for another 6 hours. Luciferase assay data showed that promoter 

activity of pri-miR-29a/b1 was significantly decreased by LPS and this effect was abolished 

with the NFκB inhibitor (Figure 4.13).  
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Figure 4.12: LPS suppresses expression of the miR-29 family  

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer. After 2 sequential passages, cells were put in micromass culture 
(2.5x107cells/ml) in high glucose media with 10% (v/v) FCS. After 24 hours in micromass, 
cells were stimulated for 4, 24, and 48 hours with LPS (1µg/ml) or vehicle (0.5% (w/v) 
BSA).  
Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a,- 29b, -29c was measured by quantitative RT-PCR. 18S rRNA was 
the endogenous control for measuring primary and precursor transcripts; U6 was the 
endogenous control for measuring miR-29 mature transcripts. The horizontal line at 1 
serves as the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-
29b2/c transcripts; black bar, pre-miR transcripts; yellow bar, mature miR transcripts. 
Means ± standard errors are presented. The difference between the treatment and the control 
was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, 
n=3.  
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Figure 4.13: LPS suppresss the primary miR-29a/b1 promoter through NFκκκκB 

Pri-miR-29a/b1 promoter-reporter (100ng) or pGL4 (control, 100ng) was transfected into 
SW1353 cells. After transfection, cells were serum starved for 24 hours, followed by 
stimulatiion for another 6 hours with LPS (1µg/ml) in the absence or presence of an NFκB 
inhibitor JSH-23 (10µM) before measuring luciferase activity. Renilla was the endogenous 
control. Means ± standard errors are presented. The difference of luciferase activity was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6. 
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4.2.2. The microRNA-29 family targets Dicer giving a negative feedback loop for 

maturation of pre-miR-29 

Previous data showed that expression of the miR-29 family was regulated by TGFβ, IL-1, 

LPS in which primary microRNA and precursor microRNA were modulated far ahead the 

mature microRNAs. In order to explain this, the 3’UTR regions of genes encoding for 

proteins involved in miRNA biogenesis were searched for putative binding site of the miR-

29 family. Among these, of particular interest is the ribonuclease III enzyme Dicer, 

renowned for its central role in the biogenesis of microRNAs, converting the stem-loop pre-

miRNA to mature miRNA (Bartel 2004). Bioinformatic analysis showed that there was a 

putative binding site of miR-29 in the DICER 3’UTR, suggesting the miR-29 family may 

regulate Dicer expression leading to the down-regulation of the Dicer level and as the 

consequence, the processing from precursors to mature miRNAs would potentially be 

slowed down. The 3’UTR region of DICER was therefore sub-cloned downstream of the 

firefly luciferase gene in the pmiR-GLO vector. The effect of the miR-29 family on the 

DICER 3’UTR was measured by luciferase assay after 24 hour co-transfection of the 

DICER 3’UTR- pmiR-GLO and the miR-29 family in SW1353 cells. Dual-luciferase 

reporter analysis showed the co-transfection of miR-29s significantly inhibited the wild type 

construct, whereas when the target site was mutated, the construct was not inhibited (Figure 

4.14). This indicates that miR-29 may suppress expression of Dicer. The effect of the miR-

29 family in DICER expression at transcriptional level was also investigated. Human 

primary chondrocyte was transfected with either miR-29b mimic (50nM) or non – targeting 

control (50nM). The transfected cells were then put in either monolayer or micromass 

culture for a further 48 hours. The expression of DICER was measured by qRT-PCR. Real-

time qRT-PCR data showed that the expression of Dicer was not affected by miR-29s (data 

not shown), suggesting that the miR-29s does not control Dicer expression at mRNA level.   

There is a growing body of work demonstrating that microRNAs can be processed 

independently of Dicer via Argonaute2 (Dueck et al. 2010). To evaluate whether or not 

miR-29s required Dicer to mature, the level of pre-miR-29s and mature miR-29s were 

measured in DLD, a Dicer-knockdown cell line. Data (Figure 4.15) showed that the levels 

of mature miR-29s were strongly reduced whilst the level of pre-miR-29s was not affected 

(Figure 4.15), demonstrating miR-29 processing is Dicer-dependent.  
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Taken together, these data show that the miR-29 family targets Dicer giving a negative 

feedback loop for its maturation. 
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Figure 4.14: The miR-29 family targets Dicer  

(A) Bioinformatic analysis reveals one binding site of the miR-29 family in the 3’UTR of 
Dicer. (B) miR-29 family targets Dicer: The Dicer 3’UTR containing the binding site of the 
miR-29 family (wild type) or a mutated, non-functional binding site for miR-29 family 
(mutant) were sub-cloned into the pmiR-GLO vector and were co-transfected with either 
miR-29a, -29b, -29c mimic (50nM) or non-targeting control (50nM) into SW1353 cells for 
24 hours and luciferase activity was measured. Renilla was the endogenous control. (C) miR-
29 targets Dicer giving a negative feedback loop for its maturation. Means ± standard errors 
are presented. The difference of luciferase activity was analysed by unpaired two-tailed 
Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6.  
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Figure 4.15: Dicer is required for the miR-29 family maturation  

２２２２ 

Level of Dicer, precursor and mature miR-29 were measured in DLD, Dicer knockdown 
cell line or parental control by quantitative RT-PCR. (A) Relative expression of Dicer; (B) 
Relative expression of precursor miR-29s (normalised to expression in parental control). 
18S rRNA is endogenous control. Red, pre-29a; blue, pre-29b1; black, pre-29b2; green, pre-
29c; white, levels of all precursors in control (set at 1); (C) Relative expression of mature 
miR-29 family (normalised to expression in parental control).  U6 is endogenous control. 
Red, miR-29a; blue, miR-29b; black, miR-29c; white, levels of all mature miR-29 in control 
(set at 1). Means ± standard errors are presented. The difference of relative expression was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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4.3. Discussion  

Since miRNAs have broad effects on cartilage homeostasis, and OA, it is particularly 

interesting to work out how miRNAs themselves are being regulated. Such data could 

provide crucial information for further understanding the mechanism underlying OA and for 

being able to manipulate these miRNAs in chondrocytes therapeutically. Generally, the 

expression of miRNAs can be regulated transcriptionally, epigenetically, or controlled by 

different stimuli e.g. cytokines and growth factors. In this study, just transcription factors, 

cytokines, and growth factors controlling the miR-29 family expression in chondrocytes were 

for the first time investigated. These studies were able to show that, in human chondrocytes, 

the master transcriptional regulator SOX9, TGFβ and LPS suppressed whilst IL-1 strongly 

induced the miRNA-29 family expression.  

Several published data report the suppressive effect of SOX9 on the expression of individual 

members of the miR-29 family in other cellular contexts: in murine stem cells, 

overexpression of SOX9 or knockdown SOX9 in cell lines e.g. C3H10T1/2 or ATDC5 leads 

to suppression or induction of miR-29a and miR-29b expression (Yan et al. 2011), 

respectively; in human C-20/A4 chondrocytes, overexpression of SOX9 strongly down-

regulated the level of miR-29a (Guerit et al. 2014). Herein, for the first time, suppressive 

effect of SOX9 on the expression of all members of the miR-29 family in primary human 

chondrocytes was shown. The effect was exerted, at least in part, through directly targeting 

the promoter of the miR-29a/b1 locus. In line with these data, Guerit et al (2014) reported 

that SOX9 can physically bind to at least 3 out of 4 putative binding sites within the proximal 

promoter of miR-29a/b1 cluster; also, another transcription factor YY1, was shown not to 

bind directly to the miR-29a/b1 promoter, but, physically interacted with SOX9 to suppress 

miR-29a/b1 expression (Guerit et al. 2014). The mechanism by which SOX9 negatively 

regulates the pri-miR-29b2/c cluster is still unknown. Several putative binding sites of SOX9 

are found in the promoter of the pri-miR-29b2/c cluster, implicating a possible direct 

mechanism. However, this needs further investigation.  

Alongside SOX9, other transcriptional regulatory mechanisms responsible for expression of 

the miR-29 family have also been reported: the pri-miR-29a/b1 locus was stimulated by the 

transcription factors CEBPA (Eyholzer et al, 2010), GATA3 (Chou et al. 2013), STAT1 

(Schmitt et al, 2012) but suppressed by c-MYC (Mott et al. 2010, Parpart et al. 2014), NFκB 
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(Liu et al. 2010, Mott et al. 2010), Sp1(Liu et al. 2010, Amodio et al. 2012), HDAC1, 

HDAC3, and Gli (Mott et al. 2010); the pri-miR-29b2/c locus was inhibited by Smad3 (Qin 

et al. 2011), NFκB, YY1, Ezh2, H3K37, HDAC1 (Wang et al. 2008). Thus, it is likely that 

the transcriptional regulation of the miR-29a/b1 cluster is controlled by a combination of 

different transcription factors. Interestingly, in the chondrocyte context, miR-1247 together 

with miR-145 were reported to directly target and repress expression of SOX9 (Yang et al. 

2011, Martinez-Sanchez and Murphy 2013), suggesting these miRNAs could contribute to 

the induction of the miR-29 family level in chondrocytes. Additionally, throughout the 

current project, the miR-29 family members exhibit different expression levels between the 

primary miR-29a/b1 and primary miR-29b2/c loci in different cellular contexts. This 

discrepancy could be explained in part by different transcription factor binding to each 

promoter.   

Together with SOX9, TGFβ signalling was found to suppress the expression of all miR-29 

family members in chondrocytes. Since TGFβ signalling induces SOX9 expression (Greco et 

al. 2011), the suppressive effect of TGFβ on the miR-29 family could be exerted through 

SOX9 and this TGFβ-SOX9 signalling could in part explain the down-regulation of the miR-

29 family by TGFβ. The suppressive effect of TGFβ on the miR-29 family expression has 

also been observed in various cell types associated with fibrosis e.g. human aortic adventitial 

fibroblasts (Maegdefessel et al. 2012), renal fibrosis cells (Wang et al. 2012, Ramdas et al. 

2013), murine hepatic stellate cells (Roderburg et al. 2011), rat hepatic stellate cells 

(Kwiecinski et al. 2011), human skin fibroblasts (Maurer et al. 2010), human tenon’s 

fibroblast (Li et al. 2012), human lung fibroblast cell line (Cushing et al. 2011, Yang et al. 

2013) in which either some members or the whole miR-29 family significantly decreased 

expression with TGFβ treatment. Apart from TGFβ-SOX9 signalling, the mechanism for the 

inhibition of TGFβ on the miR-29 family expression is currently unknown.  There is some 

evidence that TGFβ inhibits miR-29 expression through SMAD3 signalling e.g. the inhibition 

effect of TGFβ on miR-29 expression was abolished when Smad3 was knocked out in mouse 

embryonic fibroblast (Qin et al. 2011); SMAD3 could directly interact with at least two 

conserved SMAD3-binding sites in the promoter region of miR-29b2/c locus (Qin et al. 

2011); activated TGFβ signalling induced SMAD3 translocate into nucleus and bind to miR-

29b2/c promoter, resulting in the dissociation of MyoD and the stabilization of YY1 whose 

expression negatively regulated the miR-29b2/c expression through a conserved binding site 
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(Qin et al. 2011). However, this needs to be validated in chondrocytes. Besides the 

suppressive role, TGFβ also exerted an inductive effect on miR-29 expression at late time 

points. For instance, the primary miR-29b2/c locus was induced in human primary 

chondrocyte in micromass cultured with TGFβ1 for 48 hours (Figure 4.4b) though this 

increase did not reach significantly; the miR-29 family expression was increased at a late 

stage in the human chondrogenesis model with TGFβ3 as the major driver among others 

(Figure 3.12). That TGFβ induces miR-29 family expression suggests that there are may be 

several TGFβ-triggered signalling pathways, apart from TGFβ-SOX9, regulating the miRNA-

29 expression. However, in this project, the molecular mechanisms by which TGFβ controls 

expression of the miR-29s are again not fully understood.  

The TLR4 ligand, LPS, was found to repress the miR-29 family expression in chondrocytes. 

Importantly, this inhibition was facilitated by NFκB (p50/p65). Supporting the finding of this 

study, published data in cholangiocarcinoma cells and murine hepatic stellate cells also 

showed that LPS down-regulated expression of the miR-29 family (Mott et al. 2010, 

Roderburg et al. 2011) . Moreover, NFκB, activated by TLR ligands, was revealed to both 

directly or indirectly (cooperating with YY1) suppress the miR-29a/b1 or the miR-29b2/c 

locus, respectively (Wang et al. 2008, Mott et al. 2010). In contrast to LPS, it was surprising 

to find that IL-1β increased miR-29 expression and this stimulation was not NFκB but p38-

dependent. However, the effect of inhibiting p38 signalling was only observed for miR-29a 

and miR-29b but not miR-29c, although all miR-29 family members were found strongly 

induced by IL-1β. Since IL-1β could activate the NFκB signalling pathway alongside p38 

MAPK signalling (Aigner et al. 2006), the fact that an NFκB inhibitor further increased the 

IL-1 induction of the miR-29a/b1 locus implicates NFκB signalling in suppressing miR-29.  

It is likely that in human chondrocyte, for the period of time examined (48 hours), induction 

through 38 MAPK signalling was dominant over the NFκB, explaining why IL-1β induced 

(not suppressed) miR-29 expression. It therefore, made sense to expect a similar induction of 

the proximal promoter of miR-29a/b1 by IL-1β. However, a suppressive effect was observed. 

These data could be explained if the inductive p38-dependent transcription factors do not 

work through this 2kb proximal promoter of the miR-29a/b1, whilst several binding sites of 

NFκB in this promoter region are seen. This hypothesis needs experimental data to validate it. 

The mechanism responsible for the IL-1β induced miR-29b2/c cluster is still unclear and 

needed to be further explored. Notably, the IL-1β mRNA expression level was increased by 
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LPS/ TLR-4 and this is mediated by p38 MAP kinase in human chondrocytes (Bobacz et al. 

2007). Therefore, that the miR-29 family expression was increased after 48 hours treatment 

with LPS could be explained in part by the accumulation of IL-1β which in turn up-regulated 

the miR-29 family expression.   

This study also showed that the expression of all miR-29 members was not modulated by 

Wnt3a (β-catenin, canonical Wnt signalling), neither at the mRNA level by qRT-PCR or in 

the promoter assay. There are, several publications which have reported that either some 

members or the whole miR-29 family were Wnt3a-induced: In osteoblasts, Wnt3a positively 

modulates the expression of miR-29a and miR-29c though two T-cell factor/LEF-binding 

sites within the miR-29a/b1 promoter (Kapinas et al. 2009, Kapinas et al. 2010); in muscle 

progenitor cells (MPCs), Wnt3a treatment increased miR-29s expression in a time dependent 

manner (Hu et al. 2014); the promoter activities of both the miR-29a/b1 and miR-29b2/c 

cluster were strongly induced in MPCs where Wnt3a was overexpressed or added to media 

(Hu et al. 2014).Therefore, an interesting question that remains to be answered is why miR-

29 expression is not modulated by Wnt3a in chondrocytes. 

In contrast to the rapid change in expression of the pri-miR-29 or pre-miR-29 in response to 

stimuli, the modulation of the miR-29 family mature is quite slow. The posttranscriptional 

processing from the precursor to the mature form of the miR-29 family may be tightly 

controlled. Since the miR-29s has significant impact on a functional phenotype by regulating 

multiple genes that fall into the same or related pathways (which will be discussed more in 

Chapter 5), its expression must be regulated, potentially at more than one level. Interestingly, 

herein, Dicer was found to be the direct target of the miR29 family, suggesting a negative 

feedback loop for its maturation. In supporting this data, in T47D breast cancer cells, Dicer 1 

was also reported as a miR-29a target (Cochrane et al. 2010). Apart from Dicer, other 

components of the microRNA precursor processing machinery e.g. Helicase, Exportin 4 and 

5 are also predicted to be putative targets of the miR-29s as they have several binding sites in 

their 3’UTR regions (data not shown). Even though these have not been experimentally 

validated as the direct targets, this further supports the idea that miR-29 is involved in a 

negative feedback loop for its maturation.   

In conclusion, the miR-29 family was found to be negatively regulated by the master 

regulator of chondrogensis SOX9, by TGFβ signalling and by LPS-NFκB signalling.  It is 
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positively regulated by IL-1-p38 MAPK signalling. Interestingly, the canonical Wnt 

signalling pathway does not control expression of the miR-29 family. Furthermore, 

expression of the miR-29 family was tightly controlled at the level of posttranscriptional 

processing in which miR-29 directly targets Dicer, giving a negative feedback loop for its 

maturation. 
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CHAPTER 5 
FUNCTIONS OF THE MICRORNA 29 FAMILY IN CHONDROCYTES  

 

5.1 Introduction  

The ability of a single miRNA to target multiple mRNAs especially those that function in the 

same intracellular pathways and/or diseases, adds an additional layer of regulation to gene 

expression. The aberrant expression of the miR-29 family has been found in multiple 

malignancies and fibroses, carcinogenesis. Also, an understanding of how miR-29 contributes 

to these processes has been revealed: miR-29 targets genes are involved in cellular 

proliferation, cell cycle, cell differentiation, and apoptosis at genetic and epigenetic levels. 

The following summarizes some functions of miR-29s in human disease.   

In chondrogenesis or OA, around 30 miRNAs have been shown to have functions in cartilage 

homeostasis (Le et al, 2013), which is relatively small compared to the total number of 

miRNAs. Moreover, as mentioned in the previous chapter, for any potential miRNA 

therapeutic application, a combination of different miRNAs might be required for a complex 

disease like OA. Identifying novel miRNA targets and the cell signalling pathways and 

networks by which miRNAs exert their functions on disease phenotype are therefore, of 

particular importance both to have an insight into OA pathogenesis and also to ensure the 

specificity in any miRNA-based drug delivery method. Thus, this chapter places emphasis on 

identifying the function of the miR-29 family in chondrocytes including identifying the 

function of the miR-29 family in TGFβ/Smad, NFκB, and Wnt/β-catenin signalling pathways 

and novel targets of the miR-29s.  
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Aims:  

• Investigate signalling pathways involved in chondrogenesis and osteoarthritis which 

are regulated by the miR-29 family  

• Perform gain-and-loss of function of miR-29b experiments to identify potential 

targets of the miR-29 family  

• Identify and validate novel direct targets of the miR-29 family 
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5.2  Results  

5.2.1 The miR-29 family supress TGFβ/β/β/β/Smad signalling pathway 

In articular cartilage, the canonical TGFβ/Smad signalling pathway has been shown to play a 

pivotal role in the maintenance of normal cartilage: it up-regulates the expression of several 

types of collagens and proteoglycan; and it down-regulates cartilage degrading enzymes. 

Importantly, disruption of the TGFβ pathway has been shown to lead to OA. Mice expressing 

a dominant negative TGFβRII exhibit articular cartilage degeneration similar to that observed 

in human OA with abnormal expression of type X collagen, an indicator of chondrocyte 

hypertrophy; mutant mice with targeted disruption of Smad3 (Smad3−/−) show a similar 

pathology in chondrocytes, including aberrant type X collagen expression in vivo; primary 

chondrocytes isolated from Smad3−/− mice demonstrate an accelerated differentiation 

process with up-regulated BMP signalling. 

In Chapter 4, expression of the miR-29 family was found to be suppressed by TGFβ 

signalling. Here, I measure the impact of the miR-29 family on Smad signalling. The 

TGFβ/Smad signalling reporter (CAGA)12-luc (Figure 5.1a) containing 12 binding sites of 

the Smad2/3/4 (GAGAC) binding site upstream of the firefly luciferase-encoding gene was 

used. The principle of this experiment is based on the fact that: signals are transduced from 

TGFβ ligands to the Smad2/3/4 complex which subsequently regulates gene expression; the 

miR-29 family may change the expression or transcriptional activity of Smad2/3/4; thus 

altering luciferase levels. (CAGA)12-luc (100ng) and Renilla (10ng) were co-transfected with 

either miR-29 mimic (50nM) or non-targeting control (50nM) into SW1353 cells for 24 hours 

and followed by serum starvation for another 24 hours.  Cells were then treated with either 

TGFβ1 or TGFβ3 (4ng/ml) for another 6 hours before measuring the luciferase activity. 

Luciferase assay data (Figure 5.1b) showed that: stimulating cells with TGFβ1 strongly 

induced luciferase activity as compared with non-treatment control; pre-treatment with all 

members of the miR-29 family significantly decreased the luciferase activity at this 6 hour 

time point. A similar pattern was observed when treating cells with TGFβ3 (Appendix, 

Figure 7a). These data demonstrate that Smad signalling was successfully activated in 

SW1353 cells by TGFβ1or TGFβ3 and that the miR-29 family is a negative regulator of this 

signalling.  As all miR-29 family members supressed the signalling, an experiment using only 

an inhibitor of miR-29b (50nM) was performed. Consistent with the mimic data above, 
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luciferase activity was significantly increased with the miR-29b inhibitor compared to control 

(Figure 5.1c and Appendix, Figure 7b).  

The suppressive effect of the miR-29 family on the TGFβ signalling pathway was further 

confirmed by measuring the effect of the miR-29 family on a TGFβ responsive gene. 

ADAMTS4 was chosen since it is induced by TGFβ in chondrocytes, but was not a putative 

direct target of the miR-29 family.  Human primary chondrocytes were transfected with miR-

29 family mimics (50nM) in monolayer for 24 hours with 10% (v/v) FCS. The media was 

then replaced with media with 0.5% (v/v) FCS for another 24 hours before stimulating with 

TGFβ (4ng/ml) for a further 6 hours. The expression of ADAMTS4 was measured by qRT-

PCR (Figure 5.2) showing that ADAMTS4 was strongly induced by TGFβ; the miR-29 

mimics significantly decreased the expression of ADAMTS4 as compared with non-targeting 

control. These data again confirmed the suppressive effect of the miR-29 family on TGFβ 

signalling pathway. 
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Figure 5.1 The miR-29 family suppress TGFββββ signalling pathway 

(A) The TGFβ signalling reporter (CAGA12-luc) contains 12 binding sites of the Smad2/3/4 
(GAGAC) binding consensus upstream of the firely luciferase-encoding gene in pGL3100ng 
CAGA12-luc vector, and 10ng Renilla vector were co-transfected with either miR-29 family 
mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-targeting 
control (50nM) was also used as the negative control. 24 hours after transfection, cells were 
serum starved for another 24 hours, followed by treatment with TGFβ (4ng/ml) for another 6 
hours before measuring luciferase activity. Renilla is the loading control for luciferase assay. 
Open bar: non – treatment control, close bar: TGFβ treatment. Means ± standard errors are 
presented, n=6. The difference of luciferase activity was analysed by Student’s unpaired two-
tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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Figure 5.2 The miR-29 family suppresses the TGFβ induced gene ADAMTS4  
 

Human primary chondrocytes were transfected with either miR-29 family mimics (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then changed into 0.5% (v/v) FCS 
for 24 hours and followed by stimulating with TGFβ1 (4ng/ml) for another 6 hours. Total 
RNA was isolated and the expression level of ADAMTS4 was measured by qRT-PCR. 18S 
rRNA was used as the endogenous control. Data were normalized to untreated, mock 
transfected cells.  Open bar: non – treatment control, close bars: TGFβ treatment. Means ± 
standard errors are presented, n=3. The difference in expression level of ADAMTS was 
analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.00 
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5.2.2 The miR-29 family suppresses the NFκκκκB signalling pathway  

In Chapter 4, IL-1β was found to increase expression of the miR-29 family. It is, therefore, of 

importance to investigate how the miR-29 family regulates the signalling pathways triggered 

by IL-1β. There are at least three pathways triggered by IL-1β including NFκB, JNK, and 

p38 MAPK pathways. Nevertheless, in this project, just the interaction between the miR-29 

family and NFκB signalling was investigated. The transcription factor NFκB is held in the 

cytoplasm in an inactive form associated with the inhibtory κB (IκB) protein. In response to 

IL-1β binding of the receptor, NFκB releases from IκB and the activated NFκB will then 

translocate to the nuclear, bind to DNA elements present in its target genes and facilitate their 

transcription.  

Similar to the experiment for investigating the interacting between the miR-29 family and 

TGFβ signalling,  the NFκB signalling reporter containing multiple binding sites for NFκB 

upstream of a luciferase-encoding gene was utilized (Figure 5.3a). The signal cascade from 

IL-1β will activate NFκB which consequently induces the transcription of the luciferase gene 

in the reporter and this may be modulated by the miR-29 family. The luciferase assay was set 

up similar to the experiment in 5.1.1 except the cells were treated with IL-1β (5ng/ml) instead 

of TGFβ1 (4ng/ml). Luciferase data (Figure 5.3b, c) showed that IL-1β strongly induced the 

luciferase activity of the κB reporter; all miR-29 family mimics significantly decreased 

activity (B) but the miR-29b inhibitor induced activity (C). These data show that NFκB 

signalling was successfully triggered in SW1353 cells by IL-1and that the miR-29 family is a 

negative regulator of the NFκB signalling pathway.  

The suppressive effect of the miR-29 family on the NFκB signalling pathway was further 

confirmed by measuring the effect of the miR-29 family on an NFκB responsive gene.  

MMP3, which is induced expression by IL-1 and is not a putative direct target of the miR-29 

family, was chosen. Again, the experiment was set up similar to the experiment in 5.1.1 

except cells were stimulated with IL-1 (5ng/ml). The Taqman qRT-PCR (Figure 5.4) showed 

that MMP3 was strongly induced expression by IL-1β; the miR-29b and miR-29c mimics 

significantly decreased the expression of MMP3 as compared with non-targeting control, 

though the miR-29a mimic had no effect.  
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Figure 5.3 The miR-29 family suppresses NFκκκκB signalling pathway 

(A) The NFκB signalling reporter (κB vector) contains 5 binding sites of NFκB upstream of 
the firely luciferase-encoding gene in pGL3 
 
100ng κB vector, and 10ng Renilla expression vector were co-transfected with either miR-29 
family mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-
targeting control (50nM) was also used as a negative control. 24 hours after transfection, cells 
were serum starved for further 24 hours, and followed by treating with IL-1 (5ng/ml) for 
another 6 hours before measuring luciferase activity. Renilla is the endogenous control for 
luciferase assay. Means ± standard errors are presented, n=6. The difference of luciferase 
activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001 
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Figure 5.4 The miR-29 family suppresses expression of the IL-1-induced gene MMP3 
Human primary chondrocytes were transfected with either miR-29 family mimic (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then changed into 0.5% (v/v) FCS 
for 24 hours, followed by stimulating with IL-1β (5ng/ml) for a further 6 hours. Total RNA 
was isolated and the expression of MMP3 was measured by qRT-PCR. 18S rRNA expression 
was used as the housekeeping gene. Open bar: non – treatment control, close bar: IL-1β 
treatment. Means ± standard errors are presented, n=3. The difference in expression level of 
IL-1β was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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5.2.3 The miR-29 family supresses the canonical Wnt signalling pathway 

Even though expression of the miR-29 family is not regulated by Wnt3a in human 

chondrocyte, it is still of interest to investigate whether the WNT/β-catenin signalling is 

modulated by the miR-29 family because of the critical role of this signalling in OA 

development: balanced β-catenin levels are essential for maintaining homeostasis of articular 

cartilage and any factors impairing this balance could lead to pathological changes.  

For investigating the interaction between the miR-29 family with the WNT/β-catenin 

signalling, the TOPFlash reporter (containing 7 binding sites of TCF/LEF driving the 

expression of the luciferase encoding gene) and FOPFlash reporter (control for TOPFlash 

where all the TCF/LEF binding sites are mutated) were used (Figure 5.5a). With the presence 

of e.g. Wnt3a, the signal transduced from the FZD receptor and LRP-5/6 co-receptor proteins 

will lead to the accumulation of β-catenin in the nucleus where it acts in concert with 

TCF/LEF transcription factors to generate a transcriptionally active complex inducing the 

expression of cognate genes and also therefore the TOPFlash reporter. Thus, any modulation 

of luciferase activity in the presence of the miR-29 family indicates that the miRNA family 

impacts on canonical signalling. Again the luciferase assay experiment was set up similarly to 

the assay in 5.1.1 but the TOPFlash (100ng) or FOPFlash (100ng) and Wnt3a (50ng/ml) were 

utilized. Luciferase assay data (Figure 5.5b, c) showed that Wnt3a strongly induced the 

luciferase activity from TOPFlash but not FOPFlash reporters; all members of the miR-29 

family significantly decreased luciferase activity, whilst a miR-29b inhibitor increased the 

luciferase activity compared to control. These data show that the WNT/β-catenin pathway 

was induced in SW1353 cell with Wnt3a and that the miR-29 family is a negative regulator 

of this signalling. 

The suppressive effect of the miR-29 family on the WNT/β-catenin signalling pathway was 

further confirmed by measuring the effect of the miR-29 family on the expression of AXIN2, 

a WNT/β-catenin responsive gene and not a putative direct target of the miR-29 family. The 

experiment was set up similarly to the experiment in 5.1.1 except cells were stimulated with 

Wnt3a (50ng/ml). The qRT-PCR data (Figure 5.6) showed that AXIN2 expression was 

strongly induced by Wnt3a; the miR-29 family mimics significantly decreased the expression 

of AXIN2 as compared with non-targeting control.  
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Figure 5.5 The miR-29 family suppresses the WNT/β-catenin signalling pathway  

(A) The canonical WNT signalling reporter (TOPFlash vector) contains 7 binding sites of 
TCF/LEF upstream of the firely luciferase encoding gene in the pTAL-Luc vector. The 
FOPFlash vector is the control in which all binding sites of TCF/LEF are mutated. 
 
100ng TOPFlash or FOPFlash vectors, and 10ng Renilla vector was co-transfected with 
either miR-29 family mimic (50nM) (B) or miR-29b inhibitor (50nM) (C) into SW1353 cells 
in monolayer. The non-targeting control (50nM) was also used as the control. 24 hours after 
transfection, cells were serum starved for another 24 hours, and followed by treatment with 
WNT3a (50ng/ml) for another 6 hours before measuring luciferase activity. Renilla is the 
endogenous control for luciferase assay. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001 
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Figure 5.6 The miR-29 family suppresses expression of the WNT/β-catenin induced gene 

AXIN2 

Human primary chondrocytes were transfected with either miR-29 family mimic (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then serum starved for 24 hours and 
followed by stimulating with Wnt3a (50ng/ml) for another 6 hours. The expression level of 
Axin2 was measured by qRT-PCR. 18S rRNA was used as the housekeeping gene. Open bar: 
non – treatment control, close bar: WNT3a treatment. Means ± standard errors are presented, 
n=3. The difference in expression level of AXIN2 was analysed by unpaired two-tailed t test. 
* p<0.05, ** p < 0.01, *** p<0.001 
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5.2.4 Identification of  miR-29 family targets 

The miR-29 family was found to suppress the TGFβ/Smad, NFκB, and WNT/β-catenin 

signalling pathways. Nonetheless, it still remained unclear the direct mechanism by which the 

miR-29 family controlled these pathways. I therefore sought to identify novel targets of the 

miR-29 family to explain how the miR-29 family interacts with these pathways.  

5.2.4.1  Gain- and loss- of function of miR-29b 

For identifying new targets, a gain- and loss- of function experiment was performed. Since 

the miR-29 family shares the same seed binding site, it was deemed sufficient just to 

overexpress or silence miR-29b rather than all members of the family. Human primary 

chondrocytes were transiently transfected with miR-29b mimic or miR-29b inhibitor (50nM) 

and their non-targeting controls for 48 hours in triplicate and then total RNA was isolated. 

The transfection experiment was validated by measuring the miR-29b level by qRT-PCR. 

The data (data not shown) showed that the level of miR-29b strongly increased or decreased 

after transfection with either miR-29b mimic or inhibitor, respectively. These data suggest a 

good transfection efficiency into human chondrocytes. For performing a whole genome 

profile, an equal amount of total RNA from each sample in the triplicate was pooled together. 

These pooled samples were then subjected to whole genome array using Illumina human HT-

12 V4.0 expression BeadChips to profile more than 47,000 human transcripts.  

The global effect of the miR-29b mimic and inhibitor transfection on whole genome 

expression was first investigated by plotting the distribution of different expression values for 

all mRNAs in the miR-29b overexpression or knockdown experiments. Since the miRNA 

will exert its function by suppressing target gene expression, it was expected that the 

overexpression of miR-29b would significantly suppress target gene expression; conversely, 

a strong induction of target gene expression would be observed with the silencing of the miR-

29b. Consistent with this hypothesis, data (Figure 5.7A) showed that in the miR-29b silencing 

experiment, the distribution of modulated genes was slightly skewed towards higher 

expression. Using an absolute 1.3 fold change (FC) as the cut off, there are 213 and 144 

mRNA going up and down, respectively in this experiment (whilst just 9 and 10 mRNA 

going up and down respectively if the FC cut off was 1.5). Surprisingly, this pattern was also 

observed with the overexpression of the miR-29b (Figure 5.7B) with 703 and 518 mRNA 
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going up and down with 1.5 FC cut off, respectively. These data suggest that the miR-29b 

mimic has stronger effect than miR-29b inhibitor in chondrocytes and that the transfection 

with the miR-29b mimic strongly induced rather than supressed gene expression. Further 

analysis of the mRNAs strongly increased with miR-29b overexpression showed that the 

majority of these induced genes do not contain a binding site for the miR-29 family in their 

3’UTR, suggesting that they are not direct targets of the miR-29 family.  Indeed, a number of 

interferon responsive genes were strongly increased (Appendix, Table 7), suggesting a non-

specific response to the synthetic oligonucleotide.  This has been previously noted even for 

small RNAs (Karlsen et al. 2011). Interestingly, these genes were not modulated in the miR-

29b silencing experiment, suggesting that a specific sequence in the miR-29b mimic is 

responsible.  

The effect of the miR-29b mimic or inhibitor on whole genome expression was further 

analysed by examining the potential targets of the miR-29 family. The array data (Figure 5.8) 

revealed there were 12215 mRNAs in the intersection of the two experiments that increased 

in the miR-29b knockdown and decreased in miR-29b overexpression experiments. To 

further explore the effect of modulation of miR-29b on the transcriptome, the percentage of 

mRNAs containing seed sites (e.g. 6-mer, 7-mer, 8-mer) was calculated. It was a postulated 

that potential direct targets of miR-29s (those mRNA containing miR-29 seed sites) should be 

enriched in mRNA down-regulated by miR-29b and in mRNA up-regulated by miRNA-29b 

silencing.  Particularly, this enrichment should be highest in genes that are decreased by miR-

29b mimic and increased by miR-29b inhibitor. Data (Figure 5.8) showed that regardless of 

the length of the seed sequence, the percentage of mRNAs with seed sites is higher in the 

mRNAs which are decreased on overexpression or increased on silencing of miR-29b than in 

total mRNA.  The percentage of mRNAs with seed sites is the highest in the intersection of 

the two experiments. These data confirm the hypothesis that taking the intersection 

containing mRNAs which decrease with the overexpression and increase with silencing of 

miR-29b is an effective way to filter the relevant miRNA targets. 

Also, a subset of mRNA which was differentially expressed in the microarray analysis was 

selected for validating using RT-qPCR. Comparison of the expression levels between the 

microarray and RT-PCR results demonstrated a similar expression pattern between the two 

platforms (data not shown). These results confirmed the mRNA array data.  
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Figure 5.7 Gain- and loss- of function of miR-29b experiments 

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer until reaching 90% confluence. Cells were transfected with miR-29b mimic 
(50nM), miR-29b inhibitor (50nM), or non – targeting control (50nM) for 48 hours in 
triplicate. Cells were then harvested and total RNA was isolated from each sample. An equal 
amount of total RNA from each sample was pooled together. Pooled samples were subjected 
to whole genome array using Illumina humanHT-12 V4.0 expression BeadChip array. The 
Global effect of the miR-29b overexpression or silencing on whole genome expression was 
presented in (A) for the miR-29b silencing experiment and in (B) for the miR-29b 
overexpression experiment. Both datasets were plotted together on the same chart (C). The 
mRNAs which decreased in the miR-29 overexpression and increased in the miR-29b 
silencing experiment are highlighted in red.  
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Figure 5.8: Enrichment of miR-29 putative direct targets in miR-29b gain – and loss – 
of function experiment. 

From whole genome array data, the percentage of miR-29 putative direct targets was 
calculated for (i) mRNA decreased by the miR-29b mimic ; (ii) mRNA increased by the miR-
29b inhibitor ; (iii) mRNA in the intersection of the two (decreased by miRN-29b mimic and 
increased by inhibitor) (iv) all the mRNAs detected from the whole genome array. The 
calculation was performed for the range of fold change (FC) and for each types of seed 
sequence e.g. 6-mer, 7-mer, 8-mer. The mRNA having more than one binding site for each 
type of seed sequence was always assigned as 1. When FC=k, the percentage of 6mer-seed-
site targets increasing or decreasing expression was calculated: 6mer = sum of mRNA having 
6mer-seed site sequence in the 3’UTR with FC in the range of (k, FC max) if k >0, or (FC 
min, k) if k<0; Total mRNA = sum of mRNA with FC in the range of (k, FC max)  if k>0, or 
(FC min, k) if k< 0;  mRNA with binding site/ total mRNA = 6mer/total mRNA. The 
percentage of other seed site targets was calculated similarly. Here, calculation for the 
absolute FC 1.3 is presented.  
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5.2.4.2 Known targets of the miR-29 family  

The miR-29 family has emerged as an important miRNA in a number of pathologic settings 

by regulating multiple genes that fall into the same or related pathways.  

In the whole genome array of the overexpression and silencing of the miR-29b, a number of 

known direct targets of the miR-29 family were also identified in human chondrocytes (e.g. 

Table 5.1).  
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Gene  

Binding sites Fold change 
mimic 

(decrease) 

Fold change 
inhibitor 
(increase) s6 s7m8 s7a1 s8 

COL1A1 3 1 3 1 2.53 1.69 
COL1A2 3 1 2 1 1.26 1.05 
COL2A1 1 1 1 1 1.17 1.39 
COL3A1 3 2 2 2 1.36 1.26 
COL4A1 2 1 2 1 1.22 1.41 
COL5A1 5 4 2 2 1.15 1.15 
COL5A2 2 1 2 1 2.20 1.27 
COL6A1 1 0 1 0 1.27 1.08 
COL6A2 1 1 1 1 1.12 1.01 
COL6A3 1 1 1 1 1.20 1.14 
COL8A1 1 1 1 1 1.35 1.07 
COL11A1 2 2 0 0 1.80 1.25 
COL15A1 2 1 1 1 1.73 1.22 
COL16A1 1 1 0 0 1.35 1.05 
COL20A1 3 0 0 0 1.01 1.13 
ADAM19  6 2 0 0 1.64 1.28 
CDK6 3 2 1 0 1.61 1.07 

 

Table 5.1: Fold change expression of known targets of the miR-29 family in the miR-29b 

gain- and loss- of function experiment in human articular chondrocytes  
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5.2.4.3 Novel targets of the miR-29 family  

5.2.4.3.1 The ADAMTS family 

The miR-29 family is one example of the fact that a miRNA can regulate many functionally 

related genes. As shown above, a number of extracellular matrix-related genes were found to 

be direct targets of the miR-29 family. Since a miRNA can regulate the expression of several 

hundred genes, it was likely that the miR-29 family could directly target sets of novel genes 

within families. In chapter 4, TGFβ was found to suppress miR-29 family expression and the 

miR-29 family itself was also found to supress TGFβ signalling. These data suggest that the 

level of miR-29 and TGFβ-induced genes, may be inversely correlated and the miR-29 

family might further inhibit the effect of TGFβ signalling on gene expression by exerting a 

second suppressive effect on the pathway through directly targeting inducible genes. This 

means that a number of TGFβ-inducible genes could potentially be direct targets of the miR-

29 family. Herein, the ADAMTS family investigated as TGFβ inducible genes (except 

ADAMTS 19) (Figure 5.9) and genes which have roles in cartilage.  

Human primary chondrocytes were stimulated with TGFβ1 for 24 hours in monolayer culture. 

The expression levels of members of the ADAMTS families were measured by qRT-PCR 

showing that ADAMTS6, ADAMTS10, ADAMTS14 and ADAMTS17 were significantly 

induced by TGFβ (Figure 5.9). Moreover, bioinformatic analysis found that there were a 

number of miR-29 binding sites in the 3’UTR regions of these ADAMTS genes (Table 5.2). 

Together with this, these TGFβ induced ADAMTS genes were predicted to be miR-29 

potential direct targets by different bioinformatics algorithms e.g. Diana, Targetscan, 

Microcosm, miRDB, Picta (Table 5.2). Taken together, all of these data demonstrated that 

ADAMTS genes, including ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19 

are miR-29 potential direct targets.  

In order to validate these ADAMTS genes as miR-29 direct targets, the expression levels of 

these genes were measured by qRT-PCR in human chondrocytes transfected with the miR-

29b mimic for 48 hours. qRT-PCR (Figure 5.10) showed that the expression of these 

ADAMTS genes was significantly suppressed by overexpression of the miR-29b, again 

supporting that these genes are the miR-29 direct targets. To further validate these ADAMTS 

genes as miR-29 direct targets, the 3’UTR regions containing the miR-29 binding sties were 
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subcloned downstream of the luciferase encoding gene in pmiRGLO. These 

ADAMTS3’UTR-pmiRGLO reporter vectors (100ng) were co-transfected with the miR-29 

family mimic (50nM) to DF1 cells. After 24 hours of transfection, the cells were harvested 

and luciferase assays were performed. Together with the ADAMTS 3’UTR-pmiRGLO 

reporter vectors, mutant vectors in which the miR-29 binding sites were mutated were 

constructed and tested. A 3’UTR was a direct target for the miR-29 family if the luciferase 

activity was suppressed with the overexpression of the miRNA in the wild-type construct and 

this effect was abolished when the miRNA binding sites were mutated. Luciferase assay data 

showed that ADAMTS6 (Figure 5.14), ADAMTS10 (Figure 5.15), ADAMTS14 (Figure 5.11), 

ADAMTS17 (Figure 5.12), ADAMTS19 (Figure 5.13) were all direct targets of the miR-29 

family. 
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Table 5.2: ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19 are predicted 
to be miR-29 targets  

A number of different binding sites for miR-29 were found in the 3’UTR regions of 
ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, and ADAMTS19. These ADAMTSs were 
predicted to be miR-29 family targets by different bioinformatics algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Genes 8 
-mer  

7 
-mer 

6  
-mer 

Bioinformatic algorithm  

ADAMTS6   2  Diana, Targetscan, Microcosm, 
miRDB,Picta 

ADAMTS10  2  Diana, Microcosm, Picta 

ADAMTS14  2 2 Diana, Picta 

ADAMTS17  2 3 Targetscan, Microcosm, miRDB,Picta 

ADAMTS19  2  Picta 
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Figure 5.9 Members of ADAMTS family are TGFβ inducible genes  

Human primary chondrocytes was cultured with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were switched to media with 0.5% (v/v) FCS for 24 hours before treating 
with TGFβ1 (4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) for another 24 hours. Cells 
were harvested and subjected to total RNA isolation. Relative expression of the ADAMTS 
genes was measured by quantitative RT-PCR. 18S rRNA was the housekeeping control. 
Relative expression value of each of the ADAMTSs in TGFβ stimulated cells was normalized 
to the vehicle control. The horizontal line at 1 serves as the vehicle control. Closed bar: TGFβ 
treatment, open bar: vehicle. Means ± standard errors are presented, n=3. The difference 
between the treatment and the control was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, ***, p<0.001. 
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Figure 5.10 The expressions of members of the ADAMTS family were suppressed by 
miR-29b mimic 

Human primary chondrocytes was cultured in media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were then transfected with either miR-29b mimic (50nM) or non – 
targeting control (50nM) for 48 hours. Total RNA was isolated and the expression levels of 
the ADAMTS genes were measured by qRT-PCR. 18S rRNA was the housekeeping control. 
Relative expression value of each of the ADAMTS genes was normalized to non – targeting 
control. The horizontal line at 1 serves as the non-targeting control. Means ± standard errors 
are presented, n=3. The difference in expression between miR-29b overexpression and non – 
targeting control was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
***, p<0.001 
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Figure 5.11: ADAMTS14 is a direct target of the miR-29 family 

The ADAMTS14 3’UTR region containing 4 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS14 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or quadruplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.12: ADAMTS17 is a direct target of the miR-29 family 
 

The ADAMTS17 3’UTR region containing 5 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS17 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or quadruplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.13: ADAMTS19 is a direct target of the miR-29 family 
 

The ADAMTS19 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS19 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or duplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 



 

 

195 

 

miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.14: ADAMTS6 is a direct target of the miR-29 family 
 

The ADAMTS6 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS6 3’UTR-pmiRGLO wide type (WT) vector. The WT vector (100ng) was co-
transfected into chicken fibroblast DF1 cells with either miR-29b mimic (50nM) or non – 
targeting control (50nM). Luciferase assays were performed 24 hours after transfection. The 
relative luciferase value was normalised to the non-targeting control Open bar: non-targeting 
control, closed bar: miR-29 family mimic. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c 
mimic.  
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Figure 5.15: ADAMTS10 is a direct target of the miR-29 family 
The ADAMTS10 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS10 3’UTR-pmiRGLO wide type (WT) vector. The WT vector (100ng) was co-
transfected into chicken fibroblast DF1 cells with either miR-29b mimic (50nM) or non – 
targeting control (50nM). Luciferase assays were performed 24 hours after transfection. The 
relative luciferase value was normalised to the non-targeting control Open bar: non-targeting 
control, closed bar: miR-29 family mimic. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c 
mimic.  
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5.2.4.3.2 WNT signalling pathway related genes  

As shown previously, the miR-29 family was found to negatively regulate the TGFβ, NFκB, 

and WNT/β-catenin signalling pathways. The remaining question is how the miR-29 family 

supress these signalling pathways.  

The whole genome array from the miR-29b gain – and loss – of function experiment found 

12215 mRNAs that were the miR-29 putative targets. These consisted of 6925 mRNAs 

containing at least one 6-mer, 3400 mRNAs containing 7-mer, and 728 mRNAs containing 8-

mer binding sites in their 3’UTR. Those mRNAs with miR-29 binding sites were considered 

as putative direct targets of the miR-29 family; the others without the miR-29 binding site 

were considered as indirect targets.   

The miR-29 family suppression of TGFβ, NFκB, and WNT/β-catenin signalling pathways 

could be through a direct mechanism by targeting the mRNAs in the signalling cascade. In 

order to verify how miR-29 suppresses these signalling pathways, both putative miRNA-29 

indirect and direct targets were analysed with DAVID functional analysis (web address) 

software to identify the most represented gene ontology (GO) categories. Analysing the miR-

29 direct target sections found the enrichment for the Wnt signalling pathway together with 

MAPK kinase signalling pathway, apoptosis pathways, P53 signalling pathways. Since, 

NFκB and TGFβ pathways did not come up in this analysis, the miR-29 indirect targets were 

further analysed. However, neither NFκB nor TGFβ signalling pathways were enriched. In 

the scope of this project, the mechanisms by which the miR-29 suppressed these two 

signalling pathways remains unclear and need to be further explored.  

All the miR-29 putative direct targets were selected regardless of the fold change cut off.  In 

this manner, the Wnt signalling-related direct targets e.g. Dishevelled 3 (DVL3), casein 

kinase 2 alpha 2 polypeptide (CSNK2A2), GSK-3 binding protein frat2 (FRAT2), Frizzled 

family receptor 3 (FZD3), and Frizzled family receptor 5 (FZD5) were only modulated with a 

small fold change in the array (Fold change between 1 to 1.2). The expression of these 

mRNAs were measured by qRT-PCR, however in triplicate samples these data showed that 

the modulation of these genes under the control of the miR-29b did not reach statistical 

significance (Appendix, Figure 8).  
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Even though expression of these Wnt-related genes was not significantly modulated at the 

mRNA level, the genes were explored as miR-29 direct targets since miR-29 might exert its 

functions on these genes at the protein level. To verify these genes as the miR-29 direct 

targets, 3’UTR regions containing miR-29 binding sites of these genes were subcloned 

downstream of a luciferase encoding gene in the pmiRGLO vector. Constructs in which the 

miR-29 binding sites were mutated were also created. Either the 3’UTR-pmiRGLO vectors or 

the mutant 3’UTR-pmiRGLO vectors were co-transfected with the miR-29 family mimic 

(50nM) into DF1 cells for 24 hours. Then cells were harvested and the luciferase assays were 

performed. Luciferase assay data showed that FZD3 (Figure 5.19 ), FZD5 (Figure 5.18), 

FRAT2 (Figure 5.17), CK2A2 (Figure 5.16), DVL3 (Figure 5.15) were the direct targets of 

the miR-29 family since the luciferase activities were significantly decreased with the miR-29 

family mimics and this effects were abolished when the miR-29 binding sites were mutated.  

As mentioned above, qRT-PCR showed that the expression levels of these WNT signalling 

related genes were not significantly modulated with the miR-29b mimic at the mRNA level. 

However, the luciferase assay showed that miR-29 family could directly bind to the 3’UTR 

regions of these genes. It was postulated that the miR-29 family could directly target these 

genes at the protein level. Since all members of the miR-29 family directly targeted these 

genes, it was sufficient to check the effect of the miR-29b mimic on these genes at the protein 

level. In order to test this hypothesis, SW1353 cells were transfected with miR-29b mimic for 

72 hours. Cells were then harvested and subjected to western blot. Time limitations meant 

that only expression levels of DVL3 were examined. Western blot data (Figure 5.15) showed 

that miR-29b supressed DVL3 expression level to 50% as compared to the non – targeting 

control, again confirming DVL3 is a direct target of miR-29 family.  

Taken together, all of these data provide good evidence that the miR-29 family can inhibit the 

Wnt signalling, at least in part, via repression of these targets. Interestingly, DVL3, 

CSNK2A2 and FRAT2 were decreased in expression in hip OA cartilage compared to 

fracture controls, where the miR-29 family were increased in expression.  Fzd3 expression 

however, was higher in expression in hip OA (Figure 5.20).  
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Figure 5.16: DVL3 is a direct target of the miR-29 family 
 

(A) The DVL3 3’UTR region containing 3 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the DVL3 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or triplicate binding sites of the miR-29 family were mutated. Either the 
WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with 
either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays were 
performed 24 hours after transfection. The relative luciferase value was normalised to the 
non-targetting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
 
(B) SW1353 was transfected with a miR-29b mimic (50nM) or non-targeting control (50nM) 
for 3 days. Protein was extracted and separated on 10 (w/v) SDS-PAGE, blotted onto PVDF 
and probed with an anti DVL3 antibody.  The blot was stripped and re-probed with a 
GAPDH antibody to assess loading, n=2. 
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Figure 5.17: CK2A2 is a direct target of the miR-29 family 
 

The CK2A2 3’UTR region containing 4 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the CK2A2 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or quadruplicate binding sites of the miR-29 family were mutated. Either 
the WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells 
with either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays 
were performed 24 hours after transfection. The relative luciferase value was normalised to 
the non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.18: FRAT2 is a direct target of the miR-29 family 
 

The FRAT2 3’UTR region containing 4 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FRAT2 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or triplicate binding sites of the miR-29 family were mutated. Either the 
WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with 
either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays were 
performed 24 hours after transfection. The relative luciferase value was normalised to the 
non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.19: FZD5 is a direct target of the miR-29 family 
 
The FZD5 3’UTR region containing 5 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FZD5 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or quintuplicate binding sites of the miR-29 family were mutated. Either 
the WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells 
with either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays 
were performed 24 hours after transfection. The relative luciferase value was normalised to 
the non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
 
 
 
 
 
 
 
 
 
 



204 

 

ctr 29a 29b 29c Ctr 29a 29b 29c
0.0

0.5

1.0

Wide type mutant

** *** ***
R

el
at

iv
e 

lu
ci

fe
ra

se
 a

ct
iv

ity

Fzd3  mRNA
5'UTR

Translated region 3'UTR

7mer

 
 
Figure 5.20: FZD3 is a direct target of the miR-29 family 
 

The FZD3 3’UTR region containing 1 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FZD3 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which binding site of the miR-29 family were mutated. Either the WT or the mutants 
vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with either miR-29b 
mimic (50nM) or non – targeting control (50nM). Luciferase assays were performed 24 hours 
after transfection. The relative luciferase value was normalised to the non-targeting control. 
Means ± standard errors are presented, n=6. The difference of luciferase activity was 
analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, Ctr, 
non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.21: Expression of FZD3, FZD5, DVL3, and CK2A2 in human cartilage  
 

Total RNA was isolated from human hip articular cartilage of either end-stage OA patients or 
fracture controls and reverse transcribed to cDNA. Relative expressions of FZD3, FZD5, 
DVL3, and CK2A2 were measured by real-time PCR where 18S rRNA was used as 
housekeeping control in hip osteoarthritis cartilage (HOA, n=8) and fracture to the neck of 
the femur (NOF, n=7). The horizontal line at 1 is the expression of these genes in NOF. 
Means ± standard errors are presented. Different in expression between HOA and control 
NOF was calculated by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001  
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5.3 Discussion  

Previously, the miR-29 family has been shown to negatively interact with TGFβ signalling in 

several pathologic settings in which fibrosis development was the outcome of the disease 

such as liver, cardiac, renal fibrosis (van Rooij et al. 2008, Kwiecinski et al. 2011, Qin et al. 

2011). In line with these studies, in the present study, the miR-29 family was also found to 

suppress the TGFβ signalling pathway in human chondrocytes. Noteworthy, miR-29 is one 

downstream mediator of TGFβ signalling in which the miRNA blocks the effect of the 

growth factor on gene expression. However, the direct mechanism by which miR-29 

interferes with TGFβ signalling remains unclear in human chondrocytes. In fact, Smad3 was 

demonstrated to be a direct target of miR-29 in thyroid cells (Leone et al. 2012). In human 

chondrocytes, nevertheless, with transfection of miR-29 family mimics, the Smad3 mRNA 

level was not changed (data not shown); similarly, any decrease in luciferase activity when 

co-transfecting a Smad3-3’UTR reporter with miR-29 mimics was not statistically significant 

(data not shown), suggesting that Smad3 is not the target of miR-29 in the context of the 

chondrocyte. In addition, no obvious components of TGFβ signalling were regulated in the 

miR-29b gain- and loss-of function experiment with the whole genome array. This leads to 

the hypotheses that miR-29 may directly targets TGFβ signalling components at the protein 

level rather than mRNA level (similar to miR-140 (Pais et al. 2010)) or that the inhibition of 

miR-29 on TGFβ signalling is the consequence of the direct suppression of other factors 

inducing TGFβ signalling. To test this hypothesis, it may be best to perform miR-29b gain-

and loss-of function experiment together with a proteomic assay.  It may also be instructive to 

perform array experiments in the presence or absence of TGFβ itself  

It has been shown that in the development and progression of OA, NFκB plays an active role 

e.g. mediating articular chondrocyte responses to proinflammatory cytokines (IL-1, TNF-α); 

inducing MMPs (e.g. MMP-1, MMP-3, MMP-13), cytokines (e,g, IL-6, IL-8) and chemokine 

expression (Marcu et al. 2010). Thus, NFκB is an attractive target for the treatment of OA. In 

this project, for the first time, NFκB signalling was confirmed as negatively regulated by the 

miR-29 family and miR-29 is also likely to serve as a downstream inhibitor of the signalling. 

Similar to TGFβ signalling, it is still not clear the direct mechanism by which miR-29 

regulates NFκB signalling pathway. However, it suggests a potential therapeutic strategy for 

targeting NFκB signalling using miR-29. Further studies are needed to dissect the direct 

mechanism by which miR-29 interferes with NFκB signalling. 
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In this project, the miR-29 family was found to suppress the Wnt/β-catenin signalling 

pathway. In line with my data, the negative effect of the miR-29 on this signalling pathway is 

also reported. In human non-small-cell lung cancer cells, miR-29 directly targets DNMTs 

which in turn inhibited the methylation of Wnt inhibitory factor-1 (WIF-1) promoter; 

accordingly, miR-29 over-expression down-regulated β-catenin expression (Tan et al. 2013). 

In human colorectal cancer cells, miR-29b negatively regulated Wnt signalling and targeted 

B-cell CLL/lymphoma 9-like (BCL9L), thus decreasing its expression with a consequent 

decrease in nuclear translocation of β-catenin (Subramanian et al. 2014). In contrast to these 

studies, published data reports that the miR-29 family positively regulated canonical Wnt 

signalling by directly targeting its inhibitors in human embryonic kidney cells (Liu et al. 

2011) and human fetal osteoblastic cells (Kapinas et al. 2010). This contradiction is not 

surprising as many miRNAs are known to act in a context-dependent manner depending on 

the relative availability of their targets in any cell type and this discordance could be a 

reflection of the differences in the miR-29 family regulatory networks in different cell lines.   

Besides exerting function on several crucial signalling pathways implicated on 

chondrogenesis and OA, the crucial role of the miR-29 family was clearly shown through 

their target genes. In this project, miR-29b gain- and loss-of-function was applied to find 

miR-29 potential targets. Together with some novel and known targets which will be 

discussed later, the liposome – mediated transient transfection of the miR-29b-3p mimic 

surprisingly induced the expression of a number of immune genes which are not the miRNA 

targets. The Qiagen miR-29b-3p mimic used in the present study is double-stranded, 23 

nucleotides in length with sequence identical to the sequence of the mature endogenous 

miRNA-29b-3p and does not contain any chemical modifications or overhangs, which makes 

it unlikely for any sequence difference between endogenous miRNA and Qiagen mimic to be 

responsible for the immune response. Moreover, the lack of immune response against the 

controls and the miR-29b inhibitor confirms that the immune response was specific and not 

due to a general response to small RNA. Indeed, it is likely that some specific GU- rich 4-mer 

sequences e.g. AUUU, UUGA, UGUU in the miR-29b-3p mature sequence 

(5’UAGCACCAUUUGAAAUCAGUGUU3’) might be important for the immune gene up-

regulation since these sequences have been shown to be potent immunostimulatory motifs 

mediated through TLR7 or TLR7/8 (Forsbach et al. 2008). Especially, it has been shown that 

the main effects induced upon activation of TLR7 in human immune cells are IFN- dependent 
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effects, proinflammatory cytokines and chemokines from cell expression only TLR7 or both 

TLR7 and 8 (Hertzog et al. 2003). Also, it is possible that this up-regulation of the immune 

genes could be attributed to the liposome alone besides the sequence of the synthetic miRNA 

since the levels of the immune genes were higher than the levels obtained for electroporation, 

and those observed in un-transfected controls (Karlsen et al. 2013). The explanation for this 

could be because liposomes fuse with the plasma membrane, which may trigger membrane – 

associated lipid receptors and/or distort the actin cytoskeleton which in turn up-regulates 

immune genes. However, it may depend on cellular context since electroporation could 

strongly trigger the increase of the immune genes in some cell types.  

This study identifies FZD3, FZD5, FRAT2, CK2A2 and DVL3 as the critical targets of the 

miR-29 family in the Wnt signalling pathway. These genes have important roles in both 

canonical and/or non-canonical Wnt signalling pathways. FZD3 and FZD5 belong to the 

Frizzled proteins, which are the receptors for Wnt ligands. Wnt3a, Wnt5a, and Wnt2 can bind 

to FZD3 which in turn can activate both canonical and non-canonical WNT signalling 

pathways: Wnt3a activates the TOPFlash reporter in HEK293 cells overexpressing 

Wnt3a/FZD3/LRP6 (Lu et al. 2004) whist Wnt5a binding to FZD3 triggers downstream 

pathways independent of β-catenin (Hansen et al. 2009); Wnt2 can interact with FZD3 in 

human cumulus cells, but it is not known which downstream signalling pathways are 

activated after this binding interaction (Wang et al. 2009). FZD5 functions as the receptor for 

Wnt5a, Wnt9b, and Wnt7a. Co-injection of hFZD5 and XWnt-5a induced the formation of 

dorsal axis duplication in X. laevis embryos; this axis duplication was suppressed after co-

injection of RNA for human GSK-3β, suggesting the involvement β-catenin-dependent 

signalling in this receptor – ligand combination (He et al. 1997). Wnt9b was found in 

HEK293 cells as a binding partner for FZD5 to activate the TOPFlash reporter (Liu et al. 

2008). Wnt7a was found to bind to FZD5 to activate the β-catenin signalling pathway and 

increase the proliferation of epithelial cells in the endometrium (Carmon et al. 2008). By 

targeting these two Frizzled proteins, miR-29 can interfere with Wnt signalling pathways. 

However, it will depend on the cellular context, whichWnt ligands are available to partner 

with, which will determine outcome. In line with these Frizzled proteins, another novel target 

of the miR-29 family, DVL3 (Disheveled 3), belonging to the Disheveled family including 

DVL1, 2 and 3, is a central component in mediating downstream events of both canonical 

and non-canonical Wnt signalling. Wnt ligands binding to Frizzled protein recruit Disheveled 

to the plasma membrane which leads to activation of downstream pathways. Disheveleds 
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includes DIX, PD2, and DEP domains: DIX and PDZ domains function together in canonical 

Wnt signalling to stabilize β-catenin; the DIX domain binds with Axin and results in 

inhibition of the β-catenin degradation complex in canonical Wnt signalling; PDZ and DEP 

domains cooperate in different subpathways of noncanonical Wnt signalling. Moreover, the 

other two targets FRAT2 and CSNK2A2 are potent activators of canonical Wnt signalling. 

FRAT2 (Frequently rearranged in advanced T-cell lymphomas -2) belongs to the FRAT 

family including FRAT 1, 2, 3. By binding to GSK3, Frat prevents the phosphorylation and 

concomitant degradation of β – catenin (van Amerongen et al. 2005). CSNK2A2 encodes for 

the subunit CK2α’ of casein kinase 2 (CK2). CK2 has been shown to act as a positive 

modulator of WNT/β-catenin pathway, suppressing β-catenin degradation and β-catenin 

binding to APC (Price 2006). Several keys components of the WNT/β-catenin signalling are 

known substrates of CK2 in vitro including DVL (Willert et al. 1997), TEF/TCF (Homma et 

al. 2002, Miravet et al. 2002, Hammerlein et al. 2005), and β-catenin (Song et al. 2003). 

Taken together, it is likely that by directly targeting FZD3, FZD5, DVL3, FRAT2 and 

CSNK2A2, miR-29 could in part or in specific contexts, suppress the Wnt signalling pathway. 

Interestingly, in human cartilage, the expression levels of FZD5, CSNK2A2, and DLV3 were 

found to be down regulated in human OA, inversely correlating with the miR-29 expression 

level, suggesting a direct mechanism in which the suppression of these genes are controlled 

by miR-29 in human OA cartilage. However, FZD3 expression level was up-regulated in 

human OA cartilage which could be explained by the fact that there are many other factors 

which are involved in controlling gene expression together with miRNAs. Since the dys-

regulation (either up-regulation or down-regulation) of the canonical Wnt signalling pathway 

can both lead to OA, there is a possible explanation for the disease development: the 

excessive amount of the miR-29 down-regulates the expression levels of a number of Wnt 

signalling related genes which consequently suppress the Wnt signalling pathway. 

Nevertheless, whether miR-29 targets all of these genes at the same time and the level at 

which the suppression of each gene contributing to the disease are still not explained in this 

project.  

MicroRNA 29 has been suggested to serve as a master regulator in complex regulatory 

networks through fine-tuning a large set of functionally related genes, probably best 

illustrated by its extracellular matrix-related targets, whereby at least 16 ECM related genes 

are experimentally validated including collagen isoforms (van Rooij et al. 2008, Luna et al. 
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2009, Kwiecinski et al. 2011, Qin et al. 2011, Wang et al. 2012), laminin γ1 (Luna et al. 2009, 

Nishikawa et al. 2014), fibrillin 1, elastin (van Rooij et al. 2008), integrin β1 (Cushing et al. 

2011). In line with these data, in this project, a number of ECM- related genes were 

highlighted as the direct targets of the miR-29 in human OA chondrocytes. However, there is 

not complete overlap since there are a number of genes that have been experimentally 

validated as direct targets of miR29 but not regulated when miR-29b was overexpressed or 

inhibited in human chondrocytes. For example, validated miR-29 direct target genes include 

DNMT3A, DNMT3B (Fabbri et al. 2007, Garzon et al. 2009, Amodio et al. 2012, Morita et 

al. 2013, Tan et al. 2013, Parpart et al. 2014), MMP2 (Liu et al. 2010, Steele et al. 2010, Fang 

et al. 2011), MMP9, ADAM12, ADAM19 (Luna et al. 2009, Ramdas et al. 2013), 

ADAMTS9 (Cushing et al. 2011). Nonetheless, in human chondrocyte, the expression levels 

of these genes were not modulated by the miR-29 family. The precise explanation for this 

difference is still not clear.  

In this PhD thesis, members of ADAMTS family including ADAMTS6, ADAMTS10 

ADAMTS14, ADAMTS17, ADAMTS19 have been confirmed as novel direct targets of the 

miR-29 family. Interestingly, the miR-29 family is suppressed by TGFβ whist its direct 

targets, the ADAMTS family are strongly induced by TGFβ.  However, except ADAMTS14 

described as a procollagen N-propeptidase for pro-collagen type I, type II, and type III, the 

functions of ADAMTS 6, -17, and-19 remain unknown. Thus, further investigating the 

suppressive effect of miR-29 family on these ADAMTS becomes difficult both in vitro and in 

vivo. Moreover, ADAMTS14 and ADAMTS17 levels were reported to largely increase in hip 

OA cartilage and hip OA synovium, respectively (Davidson et al. 2006); the rs4747096 

nsSNP in ADAMTS14 was over-represented in women requiring joint replacement because 

of knee OA and in patients with symptomatic hand OA (Rodriguez-Lopez et al. 2009, 

Poonpet et al. 2013), implicating the involvement of these ADAMTS on OA. The microRNA 

29 family is, nevertheless, found to increase expression in hip OA cartilage in our sample set. 

Again, this could be explained in part by the fact that in cellular context, a miRNA is just one 

factor amongst others e.g. transcription, epigenetic silencing, differential biosynthesis, and 

extracellular stimuli controlling gene expression.  

In summary, the miR-29 family was found to suppress the TGFβ/Smad3, NFκB, and Wnt/β-

catenin signalling pathways. Gene expression profiles of gain- and-loss-of-function revealed 

the regulation of a large number of previously recognised extracellular matrix-associated 
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genes as well as an additional subset of protease and Wnt signalling pathway-related genes.  

Among these genes, the ADAMTS family e.g. ADAMTS6, ADAMTS10, ADAMTS14, 

ADAMTS17, ADAMTS19, and Wnt signalling related genes e.g. FZD3, FZD5, DVL3, FRAT2, 

CK2A2 were validated as direct targets of the miR-29 family.   
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CHAPTER 6 
GENERAL DISCUSSION 

6.1 Summary 

This project has identified the miR-29 family as important miRNAs involved in both 

cartilage homeostasis and OA (Chapter 3). In the murine DMM model of OA at 1, 3, and 7 

days after surgery, miRNA profile data from total RNA isolated from the whole knee joints 

showed that miR-29b was significantly increased at day 1 and showed a trend to decrease at 

day 3 and 7 after surgery. Integrating analysis between the mRNA profiling and miRNA 

profiling data from the DMM model strongly highlighted the role of the miR-29 family since 

the expression of its putative targets inversely correlated with its expression across the time 

course. In human end-stage hip OA cartilage, the miR-29 family was increased compared 

with the facture to neck of femur controls. Furthermore, in a murine hip injury model, the 

expression of the miR-29 family was increased across a 48 hour time course. The miR-29 

family was also found to be involved in chondrocyte phenotype since the expression of all 

members of the miR-29 family decreased across dedifferentiation of human chondrocytes. In 

chondrogenesis, the miR-29 family was found to significantly decrease at an early stage, 

suggesting a negative role in this phase of chondrogenesis in both human and murine models. 

The miR-29 family was also found to be expressed in murine limb development. 

The factors controlling miR-29 family expression are another important finding of this 

project (Chapter 4). The master regulator of chondrogenesis SOX9 was found to negatively 

regulate miR-29 expression, at least in part through directly binding to the promoter region of 

miR-29a/b1. A number of growth factors and cytokines were identified which regulate 

expression of the miR-29 family in both human primary chondrocytes and SW1353 cell line: 

TGFβ supressed miR-29 family expression; IL-1 strongly increased the miRNA expression 

through the p38 MAPK signalling pathway; treatment with LPS for less than 24 hours 

decreased expression of miR-29 through NFκB signalling whilst treatment with LPS for 

longer times increased miR-29 expression. Interestingly, in response to cytokines and growth 

factors, the miR-29 primary and precursor transcripts were regulated ahead the mature 

transcripts. This was explained in part by the fact that several components taking part in the 

miRNA precursor processing were possibly the miR-29 targets. Among these, Dicer-1 was 

proven as a miR-29 direct target.  
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Crucially, the functions of the miR-29 family in chondrocyte were also revealed in which 

miR-29 served as the negative regulator of the TGFβ/SMAD, NFκB and WNT/β-catenin 

signalling pathways. A number of novel direct targets of the miR-29 family have been found 

e.g. the ADAMTS family (ADAMTS6, -10, -14, -17, -19) and components of the Wnt 

signalling pathway (FZD3, -5, FRAT2, CK2A2, DVL3) (Chapter 5).   
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Figure 6.1. Summary of the role of the miR-29 family in chondrocytes  

 

 

 
 
 
 
 
 
 
 
 

6.2 General discussion  
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6.2.1 Increased expression of the miR-29 family may contribute to the onset or 

progression of OA 

The tight regulation of miRNA expression is crucial for cartilage homeostasis since the 

dysregulation of miRNAs may lead to OA. Especially, it has been shown that the aberrant 

expression of a single miRNA could have a profound effect on cartilage i.e. miR-140, with 

absence of miR-140 leading to premature OA (Miyaki et al. 2010). In the present study, all 

members of the miR-29 family have been implicated in cartilage homeostasis and OA. In 

both early and late stages of OA, an increase level of the miR-29 family was observed, 

suggesting that miR-29 may be involved in the onset of the disease. Moreover, in this study, 

the molecular mechanisms controlling this increased expression of miR-29 and the 

mechanisms by which increased miR-29 expression may lead to OA have been investigated: 

the miR-29 expression was up-regulated by IL-1, which is induced in both early and end 

stage OA, consequently suppressing both TGFβ and WNT/β-catenin signalling pathways. 

Since alteration of these two signalling pathways has been shown to be involved in OA 

development (Verrecchia et al. 2001, Verrecchia and Mauviel 2002, Zhu et al. 2008, Zhu et al. 

2009), the increased expression level of the miR-29 family may contribute to this. In line 

with this, the miR-29 family was found to strongly suppress a number of ECM-related genes, 

especially collagens. Aggrecan was also found to be indirectly decreased by miR-29 (data not 

shown). However, more evidence is required to support this premise. If the increased 

expression level of miR-29 is a common observation in different OA models, this may also 

suggest that circulating miR-29 could be a biomarker for detecting early stage OA and also 

offers the possibility of using a miR-29 inhibitor as a novel treatment for OA.  We are 

investigating the expression of the miR-29 family in the Str/ort model in collaboration with 

Dr Blandine Poulet (University College London, UK) and Professor Andy Pitsillides (Royal 

Veterinary College, London, UK). 
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The increased level of the miR-29 family may not be the only microRNA underlying the 

development of OA. In this project, miRNA profiling in the DMM model at 1, 3, and 7 days 

after surgery found a number of miRNAs modulated apart from miR-29s, suggesting these 

may also contribute to the pathogenesis of OA. Also, a number of miRNAs have been 

identified as differently expressed in human end stage OA cartilage as compared to the 

control counterparts. It is clear that in order to maintain cartilage homeostasis, miRNAs will 

interact with each other and mRNAs in a complex network that is tightly regulated. Thus, the 

up-regulation of miR-29 might be either the reason or the consequence of the deregulation of 

other networks of miRNAs. The question is how the other miRNAs interact with miR-29 and 

the effect of the increase expression of miR-29 on the miRNA/mRNA network in OA. This 

requires a computer modelling approach to resolve. 

6.2.2 The signalling cascade IL-1/p38, IL-1/NFκκκκB and the miR-29 family  

Interestingly, in this study, it was found that whist IL-1 induced miR-29 expression through 

p38/MAPK, the NFκB pathway appears suppressive to miR-29 expression. In addition, the 

miRNA itself was found to suppress NFκB signalling. These data suggest that in response to 

the signalling cascade triggered by IL-1, the miR-29 expression level was induced through (i) 

induced expression of p38 MAPK and (ii) escape from the suppressive effect of NFκB 

through inhibiting the NFκB signalling pathway. However, the mechanism by which miR-29 

suppressed NFκB signalling was not fully understood since the miR-29b gain- and loss- of 

function mRNA profiling experiment in human primary chondrocytes did not identify any 

potential targets related to the NFκB signalling pathway. It is a hypothesis that this 

suppressive effect could be an indirect effect or some potential targets could alter only at the 

protein level. Also, the direct mechanism through which  p38 induced the miR-29 expression 

is not clear, even though in the promoter of miR-29a/b1 there are several binding sites for 

AP1 (data not shown).  Interestingly, it is reported that p38 activation was found to induce 

NFκB activity in a dual way: by reducing IκB levels and by potentiating the translocation of 

p65/p50 (Baeza-Raja et al. 2004). Though evidence for this activation in human chondrocytes 

was not clear, the network controlling miR-29 expression in response to IL-1 becomes more 

complicated if this interaction is true in chondrocytes. Moreover, in this study, miR-29 was 

found to inhibit the pre-miRNA processing machinery to target Dicer and may also directly 

target other pre-miRNA processing genes, suggesting another regulatory layer for tightly 
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controlling the level of miR-29 in human chondrocytes. This could partly explain that the 

excessive amount of the miRNA in chondrocytes may lead to OA. Multiple regulatory layers 

are therefore needed for controlling miR-29 levels, clearly showed when the level of the 

primary miR-29 family was induced ahead of the level of mature miR-29 in chondrocytes 

stimulated with IL-1, TGFβ, and LPS. In the DMM model, miR-29 expression was induced 1 

day after surgery together with the IL-1β expression level though this latter was not 

significant (data not shown), suggesting one possible explanation for the increase level of 

miR-29. However, it is unlikely that miR-29 was solely induced by IL-1 in the DMM model 

since the IL-1 level would have to be induced very early in order to then stimulate miR-29 

expression. In line with this, mRNA profiling of DMM model 6 hours after surgery did not 

find a strongly induced expression of IL-1 (Burleigh et al. 2012). Similarly, in the murine hip 

injury model, the miR-29 expression level was also found to increase across the time course 

(reaching significance at 12 hours in culture). The precise mechanism for the increase 

expression of miR-29s in both DMM model and murine hip injury model are not clear and 

require further investigation.  

6.2.3 The signalling cascade TGFβ/ Smad3 signalling pathway and the miR-29 family  

In contrast with IL-1, TGFβ suppresses miR-29 expression. Since the miR-29 family directly 

targets a number of ECM-related genes, the suppressive effect TGFβ exerted on the miR-29 

family is consistent with the well described protective effect of TGFβ in chondrocytes (Li et 

al. 2005). Interestingly, the miRNA itself gave a negative feedback loop on the TGFβ/Smad 

signalling pathway. This could be explained as an attempt to maintain miR-29 at homeostatic 

levels as TGFβ signalling becomes aberrant. This may also in part support the fact that an 

excessive amount of the miR-29 family could lead to OA: through suppressing Smad 

signalling and directly inhibiting responsive genes e.g. ECM related genes, the up-regulation 

of the miR-29s could strongly diminish the function of TGFβ in chondrocytes.  

The precise mechanism by which TGFβ suppressed miR-29 expression and the mechanism 

by which miR-29 inhibited the TGFβ/Smad signalling were unclear. The miR-29b gain- and 

loss- of function mRNA profiling did not identify any TGFβ related potential targets, 

suggesting that this may also be at the protein level. Moreover, regarding the cellular context, 

when both IL-1 and TGFβ may be present, the cross talk between the two cytokines as well 
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as with other cytokines and growth factors in controlling the miR-29s expression levels are 

still unclear.   

6.2.4 The canonical Wnt signalling and the miR-29 family  

In this project, expression of the miR-29 family was not controlled by Wnt3a in chondrocytes. 

Since Wnt3a could trigger both canonical Wnt/β-catenin and CaMKII signalling pathways 

(Nalesso et al. 2011), it is likely that these two signalling pathways do not modulate the miR-

29 levels in chondrocyte. However, expression ofmiR-29 was found to be induced by 

WNT3a in osteoblasts, suggesting a different mechanism controlling the miRNA-29 

expression in the two cells types. The answer to this difference remains unknown and needs 

further investigation.  

The canonical Wnt/β-catenin signalling pathway was inhibited by the miR-29 family in 

which some Wnt signalling related genes were validated as direct targets of the miRNA. Both 

over-activation and inhibition of Wnt signalling can lead to skeletal deformities and an early 

onset OA (Zhu et al. 2008, Zhu et al. 2009), illustrating that Wnt signalling needs to be 

tightly regulated in cartilage homeostasis. However, whether the decreasing of these direct 

targets is the mechanism for inhibition of the Wnt/β-catenin signalling pathway has not been 

confirmed in this study. This could be facilitated by utilizing siRNA to suppress the 

expression of each of these genes and measure this effect on the signalling though TOPFlash 

reporter. 

6.2.5 Therapeautic applications for treating OA by targeting the miR-29 family  

MicroRNAs have many advantages as a therapeutic modality. The mature miRNA sequences 

are short and often completely conserved across species. These characteristics make miRNAs 

relatively easy to target therapeutically and allow for using the same miRNA-modulating 

compound in preclinical efficacy and safety studies as well as in clinical trials. Moreover, 

miRNAs have typically many targets within cellular networks, which, in turn, enable 

modulation of entire pathways in a disease state via therapeutic targeting of disease – 

associated miRNAs.  

The increase of the miR-29 family in OA potentially opens the door to develop a novel 

therapeutic strategy for OA. The therapeutic approach using miRNA sponges (transgenic 
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overexpression of RNA molecules harbouring complementary binding sites to a miRNA) or 

miRNA-29 antagonists to block the function of the endogenous miRNA-29s may have great 

promise as a novel treatment. The miRNA sponges have been proved to be successful in vivo 

whist the antagonists might have greater promise from a therapeutic perspective.  

However, detailed examination of the miRNA therapy should be conducted before clinical 

use. Especially, the antagonists should have high binding affinity, and bio-stability. Indeed, 

this could be facilitated by chemically modifying them to increase the duplex melting 

temperature and improving nuclease resistance. Sugar modifications e.g. the 2’-O-methyl (2’-

O-Me), 2’-O-Methoxyethyl (2’-MOE) 2’-fluoro and the bicyclic locked nucleic acid (LNA) 

modification are commonly used. Among these, the LNA exhibits the highest affinity toward 

complementary RNA with an increase in Tm of +2-8oC per introduced LNA modification. In 

addition, by substituting the phosphodiester (PO) backbone linkages with phosphorothioate 

(PS) linkages in the antagonist oligonucleotides or by using peptide nucleic acid (PNA) or 

morpholino oligomers, respectively, their nuclease resistance properties might increase. Apart 

from nuclease resistance, PS backbone modifications also enhance binding to plasma proteins, 

leading to reduced clearance by glomerular filtration and urinary excretion. PNA oligomers 

are uncharged oligonucleotide analogues, in which the sugar-phosphate backbone has been 

replaced by a peptide-like backbone consisting of N-(2-aminoethyl)-glycine units. 

Polylysine-conjugated and nanoparticle-encapsulated PNA antimiRs have been shown to 

efficiently inhibit miRNA function in cultured cells and in mice (van Rooij et al. 2014). 

Morpholinos are uncharged and with slightly increased binding affinity to complementary 

miRNAs.  

An effective way to deliver the miRNA-29 inhibitor to the arthritis joint to inhibit the 

endogenous miRNA-29 is needed. In particular, it is likely that the uptake of a synthetic 

antagonist into chondrocytes surrounded by the abundant matrix would be difficult in the 

treatment of damaged cartilage. The main challenge for development of miRNA - based 

therapeutics is efficient and safe delivery. Two strategies have been utilized to enhance in 

vivo delivery of antagonists: cholesterol conjugation and modification of the phosphate 

backbone with PS linkages. The 3’ cholesterol conjugated, 2’-O-Me-modified antagonists 

have become a well-validated experimental tool for in vivo inhibition of miRNAs. PS 

backbone linkages can be employed to enhance the pharmacokinetic properties of antisense 
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oligonucleotides. The antagonist approach contains 2 PS modifications at the 5’ end and 4 at 

the 3’ end, which have been shown to be important for their in vivo activity, whereas 

complete replacement of the PO backbone by PS linkages decreased the antagonist efficiency. 

An increasing number of reports have described silencing of miRNA in vivo by unconjugated 

LNA-modified antagonists ranging from 8nt to 16nt in length as described in previous section. 

Administration of such antimiRs is either by intraperitoneal or subcutaneous injection 

resulted in antimiR uptake in the tissue of interest, which led to inhibition of miRNA function 

and derepression of direct target mRNAs. However, the mechanism of cellular uptake and 

distribution are still poorly understood. Directing uptake to cartilage is likely still to be 

difficult, and delivery by injection not pragmatic in OA. 

6.3  Future direction 

6.3.1 The modulation of the miR-29 family in OA 

The miR-29 family was found to modulate expression in different animal models e.g. the 

DMM model, hip avulsion injury model, as well as human end stage OA cartilage. These data 

suggest that the increase in expression of the miR-29 family could be a common event in both 

early onset and end stage OA. However, care must be applied to conclude the up-regulation 

of miR-29s will lead to OA, with the expression level of miR-29s during OA progression 

remaining unclear. Thus, it is of importance to examine miR-29 expression in naturally 

occurring OA models too.   

The miR-29 expression pattern increased in the hip avulsion injury across the time course in 

this study. Nonetheless, whether miR-29 potential targets were inversely correlated with the 

miR-29 expression level in this model has not been proven. Thus, we are performing mRNA 

profiling in the same samples in which the miR-29 expression was found to increase. This 

may also reveal additional mechanisms which lead to the increased expression of miR-29. 

6.3.2 Biological functions of the miR-29 family in chondrocytes 

The miR-29 family was found to suppress TGFβ/Smad, NFκB, and Wnt/β-catenin signalling 

pathways through using the reporters of these pathways together with measuring expression 

level of the responsive genes. However, whether interfering with the miR-29 effect on these 

signalling will lead to alter chondrocyte phenotype remains unclear.  Overexpression and 
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knockdown of the miR-29 family in HACs in micromass culture in combination with 

measurement of chondrocyte markers e.g. MMP13, COL2A1, SOX9, ADAMTS5 will help to 

address this.   

From the miR-29b gain- and loss- of function mRNA data, apart from the Wnt signalling 

pathway, enrichment of some miR-29 potential targets which are related to MAPK signalling 

and apoptosis pathways was evident. Thus, validating these genes as the direct targets of the 

miR-29s is a priority in the future. It is now clear that miRNAs regulate gene expression at 

both mRNAs and protein levels. Also, the direct mechanisms the miR-29 supressing the two 

TGFβ and NFκB signalling pathways are unclear. Therefore, there is a need for proteomic 

analysis of the miR-29b gain- and loss- of function in HACs, likely in micromass culture. In 

addition, performing miR-29b gain – and loss - of function together with treatment with IL-1 

and TGFβ could greatly help to find the mechanism miR-29 family interfering with NFκB 

and Smad signalling pathways. All of these experiments will give more information about 

biological functions of miR-29 in chondrocyte and the complex regulatory network the miR-

29 is within.  

A key step in understanding the biological functions of the miR-29 family in cartilage 

homeostasis and OA will be the development of multiple in vivo molecular tools to access 

gain – of – functions or loss – of – function in mouse models: A number of gain- of –function 

where the miR-29 family members are overexpressed through a transgenic model, such as the 

B cell – specific overexpression of the miR-29a/b1 cluster (Santanam et al. 2010), a viral 

transfection model such as the retroviral transfection of bone-marrow stem cells with miR-

29a (Han et al. 2010) or systemic delivery of miR-29a have been reported (Wang et al. 2012). 

Also, loss-of-function models have been developed as a Cre-Lox-inducible knockout of the 

miR-29a/b-1 cluster or the expression of the miR-29 “sponge” sequence (either by transgene 

or lentivirus) (Ma et al. 2011). However, there is no information whether gain – and loss- of 

function of the miR-29s lead to OA in these models. Therefore, future studies in which these 

mice put on OA models e.g. DMM will provide more detail about the function of the miR-29 

family.  

6.3.3 The involvement of the miR-29 family expression in chick limb bud development 

and Zebrafish cartilage development.  
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The miR-29 family was suggested to be a negative regulator of early stage of chondrogenesis 

in both human and murine chondrogenesis models in this study. Nearly 16 collagen genes 

were validated as miR-29 direct targets in this study and others. Also, this miRNA was also 

expressed in murine limb development. It is likely that miR-29 would have a crucial role in 

cartilage and limb bud development and it is worthy of further investigation. This could be 

facilitated by again using the gain- and loss- of function of all members of the miR-29 family: 

a 500bp region around the mature sequence of the miR-29s or a sequence complementary to 

miR-29 can be subcloned and injected into the chicken limb. However, the involvement of 

the miR-29 family in chick limb development by in situ hybridization might be required to 

determine the stage in which miR-29 was expressed in the development process. In addition, 

ADAMTS14, a pro-collagen pro-peptidase, was validated as the miR-29 direct target. 

Overexpression or knockdown of the miR-29 family in chick limb could help to further 

investigate the functional outcome of the suppressive effect of the miR-29s on ADAMTS14 

though the ADAMTS14 will need to be verified to be expressed in the chick limb first. This 

method could be useful for investigating the functional outcome of the interaction between 

miR-29 and other novel targets.  

Interesting, the miR-29 family was found to be express in the cartilage of zebrafish 

(Wienholds et al. 2005). Thus, zebrafish might be a useful model for investigating the role of 

the miR-29s in cartilage development. Overexpression and knockdown of the miR-29 family 

could greatly help for answering this question. 

6.3.4 The miR-29 family as the biomarker for OA  

MicroRNAs exist in human body fluids such as plasma, urine, and saliva in a stable form 

which has the potential to be a novel diagnostic and prognostic biomarker. OA can be 

difficult to diagnose, but it is important to diagnose OA early and start treatment to prevent 

joint destruction in which the miR-29 based therapy could be an option. Indeed, there is 

growing evidence for future miRNA-based diagnostics: a number of miRNA in plasma were 

found at different levels between RA and OA patients. For examples, let-7e, miR-454, miR-

886 were identified as differentially expressed circulating miRNAs in OA patients who 

underwent arthroplasty especially, let–7e emerged as potential predictor for severe knee or 

hip OA (Beyer et al. 2014). Since the miR-29 family was modulated at an early stage in 

DMM model, it could be a useful biomarker for OA in clinical use. Thus the expression level 
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of the miR-29 family in plasma should be determined to have an overview expression pattern 

of the miRNA.  
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ENDICES 
 

Genes Accession 
number  

Sequences (5’->3’) 

ADAMTS6 ENSG000000491
92 

Forward: ACGTGAGCTCTCTCATCGTCATGGTTCTGC 
Reverse: 
ACGTGAGCTCCAAGCAGGAGAATGAATGTAGG 

ADAMTS1
4 

ENSG000001383
16 

Forward: GAGCTCGCTGTGCCCTGCCATC 
GAGCTCGGGTCCAATGGCGATGTTA 

ADAMTS1
7 

ENSG000001404
70 

Forward: ACGTTCTAGAAACATGAGCGTGGACTTGG 
Reverse: ACGTTCTAGATGTAATGCAAGTTAACGAATGG 

ADAMTS1
9 

ENSG000001458
08 

Forward: ACGTGAGCTCAATCACAGCTCCAGGTAATC 
Reverse: 
ACGTGAGCTCCCAAGAGACATACTATCTTCCAAGG 

FZD3 ENSG000001042
90 

Forward: ATGCGTCGACTATTAGATGCCCAGCCTTTCTC 
Reverse: 
ATGCGTCGACATGCCTACCAAGAGGATAACATTC 

FZD5 ENSG000001632
51 

Forward: ATGCGTCGACGGCATCGGCTACAACCTGAC 
Reverse: ATGCGTCGACAGACCACACAGTTCAAAGA 
AACCTG 

FRAT2 ENSG000001812
74 

Forward: ATGCGTCGACCAACAGCGTCCAGTTCCTAC 
Reverse: ATGCGTCGACGCCGTCAAGTTTCATACAGC 

CK2A2 ENSG000000707
70 

Forward: 
ATGCGTCGACATGCAGGTACTAGAGTTGTGTGG 
Reverse: 
ATGCGTCGACAATAAGTTTGCTTGTTTCTGTGG 

DVL3 ENSG000001612
02 

Forward: ATGCGTCGACGCTGCGTTCCTCTCTCCATC 
Reverse: 
ATGCGTCGACTACCATTTATTGAGCACCTACTCTACTG
TG 

Table 1: Primer sequences for PCR amplification 3’UTR region of potential targets of the 
miR-29 family. For subcloning purpose, restriction sites (bases underlined) were added to the 
5’P of the primers. SacI (GAGCTC), SalI (GTCGAC), XbaI (TCTAGA). 
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Genes 
Mut
ant 

Primer sequence  (5’->3’) 

ADAMT
S6 

Site 
1 

Forward: 
TATGTGATGCACTGACATGTAATTTAAGAAGCTTATGATGGAATC
AAGTCAAACATGCTGTTTAACTGAAAG 
Reverse: 
CTTTCAGTTAAACAGCATGTTTGACTTGATTCCATCATAAGCTTCT
TAAATTACATGTCAGTGCATCACATA 

 
Site 
2 

Forward: 
TATTTATTTCACCAGGGCACATTAAGCTTAAGTTAACTGTTCTTTG
AAAAGGCGCAAGGGAATTCAGT 
Reverse: 
ACTGAATTCCCTTGCGCCTTTTCAAAGAACAGTTAACTTAAGCTTA
ATGTGCCCTGGTGAAATAAATA 

ADAMT
S10 

Site 
1 

Forward: 
GGGGACACAGACCCGTTTGTAAGCTTACCCCTTGTCGATGGTGTG
CG 
Reverse: 
CGCACACCATCGACAAGGGGTAAGCTTACAAACGGGTCTGTGTCC
CC 

Site 
2 

Forward: 
GCTCGGTCCGGGCCAAGCTTATGACGATGAGAGATGCATTAATCG
GTCC 
Reverse: 
GGACCGATTAATGCATCTCTCATCGTCATAAGCTTGGCCCGGACC
GAGC 

ADAMT
S14 

Site 
1 

Forward: 
GTTTGTCTTTGCTGGCCAGAAGAGTCGACTCATGGCCATACTCTG
GCCTTG 
Reverse: 
CAAGGCCAGAGTATGGCCATGAGTCGACTCTTCTGGCCAGCAAAG
AC 

Site
2 

Forward: 
GGGTGCCAGCCCCTGGCCGTCGACTGGAGTGGGGAAGACAC 
Reverse: 
GTGTCTTCCCCACTCCAGTCGACGGCCAGGGGCTGGCACCC 

Site 
3 

Forward: 
CTAAACTCCTGCCAGGTGATAGAGAGCTCTCTCACTTCTTCCTTCC
CCAAGGC 



246 

 

Reverse: 
GCCTTGGGGAAGGAAGAAGTGAGAGAGCTCTCTATCACCTGGCA
GGAGTTTAG 

Site 
4 

Forward: 
CTAAACTCCTGCCAGGTGATAGAGAGCTCTCTCACTTCTTCCTTCC
CCAAGGC 
Reverse: 
GCCTTGGGGAAGGAAGAAGTGAGAGAGCTCTCTATCACCTGGCA
GGAGTTTAG 

ADAMT
S17 

Site 
1 

Forward: 
GCAATTACCGTTTCTTATGTCACAGTCGACTGAAGAGAGGCCCTT
CTGTTTCCC 
Reverse: 
GGGAAACAGAAGGGCCTCTCTTCAGTCGACTGTGACATAAGAAA
CGGTAATTGC 

Site
2 

Forward: 
CACCAACTTGGTGGGCATTTCATGTCGACTTATGTTCTAGGACTTT
ACCGTA 
Reverse: 
TACGGTAAAGTCCTAGAACATAAGTCGACATGAAATGCCCACCA
AGTTGGTG 

 

Site 
3 

Forward: 
TAACAAAACAAAACACAGAAACACAGTCGACATAAATCAAGAAG
CACAGGGAGATGATCCCATGG 
Reverse: 
CCATGGGATCATCTCCCTGTGCTTCTTGATTTATGTCGACTGTGTT
TCTGTGTTTTGTTTTGTTA 

Site 
4 

Forward: 
GAAGTGTTGAGAAACTTCCGTGTCGACTCTGTGGAAAGAACCGAG
GGT 
Reverse: 
ACCCTCGGTTCTTTCCACAGAGTCGACACGGAAGTTTCTCAACAC
TTC 

Site
5 

Forward: 
CCAGAGTCTCACGACCCTACGGTCGCCTTTTTATTGGTGCAAAATT
AAACC 
Reverse: 
GGTTTAATTTTGCACCAATAAAAAGGCGACCGTAGGGTCGTGAGA
CTCTGG 

ADAMT
S 

Site 
1 

Forward: 
ATCAAATTAATTTATTTTTTTGCCTGCCAAACATCCAATGGTCGAC
TTGTTTTGGTTACACAAACATTTTGATTTATACTATATG 
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19 Reverse: 
CATATAGTATAAATCAAAATGTTTGTGTAACCAAAACAAGTCGAC
CATTGGATGTTTGGCAGGCAAAAAAATAAATTAATTTGAT 

Site 
2 

Forward: 
GTTGTTTGTTAGGGCTATCTCTAAGTCGACCCTCTCTCCCCACCAA
TAACATTGAATTATC 
Reverse: 
ATAATTCAATGTTATTGGTGGGGAGAGAGGGTCGACTTAGAGATA
GCCCTAACAAACAACG 

FZD3  

Forward: 
GGATTTAGTCTAACTCACAGCTAAGGTAGAAAAGTACTCTGATGG
CAAGAGAATGTCCAGACTAATATTTTC 
Reverse: 
GAAAATATTAGTCTGGACATTCTCTTGCCATCAGAGTACTTTTCTA
CCTTAGCTGTGAGTTAGACTAAATCC 

FZD5 

Site 
1 

Forward: CGGCGTCGCGGCCCAAGCTTGGGAGGCGGTCGCAG 
Reverse: CTGCGACCGCCTCCCAAGCTTGGGCCGCGACGCCG 

Site
2 

Forward: 
GTGGACGTGGAGATGAAGCACAAGCTTGACCACAGGCCTATCCA
GAAGG 
Reverse: 
CCTTCTGGATAGGCCTGTGGTCAAGCTTGTGCTTCATCTCCACGTC
CAC 

Site 
3 

Forward: 
GCCCACCAGCAGGTAGAAGCTTAGCGGGCCCAGCACGAAGCC 
Reverse: 
GGCTTCGTGCTGGGCCCGCTAAGCTTCTACCTGCTGGTGGGC 

Site 
4 

Forward: 
CACATGAAGTACTTGAGCATGAAGCTTCAGTACTCGGGCTTGGCG
CGCG 
Reverse: 
CGCGCGCCAAGCCCGAGTACTGAAGCTTCATGCTCAAGTACTTCA
TGTG 

Site 
5 

Forward: 
CGGGAGGGGGCAACAAGCTTATGAAGGTAAACGGAAGTGACCTT
GGCA 
Reverse: 
TGCCAAGGTCACTTCCGTTTACCTTCATAAGCTTGTTGCCCCCTCC
CG 

FRAT2 
Site
1 

Forward: 
GCGTGGAGAAATGTATGCGCCAGAAGCTTTCCGTGGGGCATGAG
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AATTTCC 
Reverse: 
GGAAATTCTCATGCCCCACGGAAAGCTTCTGGCGCATACATTTCT
CCACGC 

Site
2 

Forward: 
CTTATTTTCTGGTGGAGGAGCTTAGTAAGTAAGCTTACAATTGCT
GTGCAAAGAAATTCCAGAGG-3' 
Reverse: 
CCTCTGGAATTTCTTTGCACAGCAATTGTAAGCTTACTTACTAAGC
TCCTCCACCAGAAAATAAG 

Site
3 

Forward: 
GGGAGACTCCAAGCGGTGGTAAAAGCTTAACAGGGCTCTTCTTGG
AGCAAG 
Reverse: 
CTTGCTCCAAGAAGAGCCCTGTTAAGCTTTTACCACCGCTTGGAG
TCTCCC 

CK2A2 

Site
1 

Forward: 
AGAGGAATATACAAGGGGCTTGGGGAAGAAAATAAGCTTCCCGG
AGCAAGTGTTG 
Reverse: 
CAACACTTGCTCCGGGAAGCTTATTTTCTTCCCCAAGCCCCTTGTA
TATTCCTCT 

Site
2 

Forward: 
TCTCCTCTAATCTATCAGTCTGAGAAGCTTTTCCTCTCTGCAAGGG
AACACATTTGC 
Reverse: 
GCAAATGTGTTCCCTTGCAGAGAGGAAAAGCTTCTCAGACTGATA
GATTAGAGGAGA 

Site
3 

Forward: 
GCGCCTGACTCGAGAAGCTTACCTTTCAGTCCACTGGGACCAATC
CA 
Reverse: 
TGGATTGGTCCCAGTGGACTGAAAGGTAAGCTTCTCGAGTCAGGC
GC 

Site
4 

Forward: 
CTGCTTCCATCCTTATCAACAGAAGCTTTGGGAGAACCTAAGTCA
TTTCCCTGAG 
Reverse: 
TCAGGGAAATGACTTAGGTTCTCCCAAAGCTTCTGTTGATAAGGA
TGGAAGCAG 

DVL3 
Site 
1 

Forward: 
GTGCGCTAACTGCTCGCAGAAGCTTGCGAGGGTGGGGTGCACC 
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Reverse: 
GGTGCACCCCACCCTCGCAAGCTTCTGCGAGCAGTTAGCGCAC 

Site
2 

Forward: 
CCCTTTTGTCTCTGGGACCAGACTTGTTAAGCTTACCCCTTACTCC
CCTCTGC 
Reverse: 
GCAGAGGGGAGTAAGGGGTAAGCTTAACAAGTCTGGTCCCAGAG
ACAAAAGGG 

Site
3 

Forward: 
GCACAGTGCCTGGCACACAGTAGAGTAAAGCTTCAATAAATGGT
AGTCGACC 
Reverse: 
GGTCGACTACCATTTATTGAAGCTTTACTCTACTGTGTGCCAGGCA
CTGTGC 

DICER  
Forward: ACGTGAGCTCGTGTGCAGTAGTGCCAGTCC 
Reverse: ACGTGAGCTCTGCAATCACAGGAACACAGG 

       Table 2: Primers for mutating the binding sites of the miR-29 family 
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Genes Accession number  Primer sequence (5’->3’) Probe  
Arginase-
1 

ENSMUST00000020161 Forward: 
CCTGAAGGAACTGAAAGGAAAG 
Reverse: 
TTGGCAGATATGCAGGGAGT 

2 

IL-6 ENSMUST00000026845 Forward: 
TGATGGATGCTACCAAACTGG 
Reverse: 
TTCATGTACTCCAGGTAGCTATGG 

6 

SAA3 ENAMUST00000006956 Forward: 
GCTCGGGGGAACTATGATG 
Reverse: 
AACTTCTGAACAGCCTCTCTGG 

26 

Axin2 

 

Forward: 
GCTGACGGATGATTCCATGT 
Reverse: 
ACTGCCCACACGATAAGGAG 

56 

SOX9 

ENST00000245479 

Forward: TACCCGCACTTGCACAAC 
Reverse: 
TCTCGCTCTCGTTCAGAAGTC 

61 

FZD3 

NM_017412 

Forward: 
ACAGCAAAGTGAGCAGCTACC 
Reverse: 
CTGTAACTGCAGGGCGTGTA 

75 

FZD5 NM_003468 Forward:ACCCCAGGGGAGAGAAACT  
Reverse: 
TGCAAATTGGGGGAAGTAAG 

83 

DVL3 NM_004423 Forward:CCCTGAGCACCATCACCT  
Reverse: 
GGATGGACAAGTGGAAGTCG 

17 

FRAT2  Forward: 
GTTCAAGGTCACGGTTTGCT 
Reverse: 
GAAAAGACTCCGGGGTGAGT 

14 

CK2A2 NM_001896 Forward: 
CCATGGAGCACCCATACTTC 
Reverse: 
CACAGCATTGTCTGCACAAG 

68 

Table 3: Primer sequence and the Universal Probe Library probe for gene of interest   
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 Genes Accession 
number  

Primer sequence (5’-3’) 

ADAMTS4 MM_005099 Forward: CAAGGTCCCATGTGCAACGT 
Reverse: CATCTGCCACCACCAGTGTCT 
Probe: FAM-CCGAAGAGCCAAGCGCTTTGCTTC-
TAMRA 

ADAMTS6 NM_014273 Forward: GGCTGAATGACACATCCACTGTT 
Reverse: CAAACCGTTCAATGCTCACTGA 
Probe: FAM-AAGCGCTTCCGCCTCTGCAACC-
TAMRA 

ADAMTS10 NM_030957 Forward: AGAGAACGGTGTGGCTAACCA 
Reverse: TCTCTCGCGCTCACACATTC 
Probe: FAM-
CAGTGCTCATCACACGCTATGACATCTGC-TAMRA 

ADAMTS14 AF366351 Forward: CGCTGGATGGGACTGAGTGT 
Reverse: CGCGAACATGACCCAAACTT 
Probe: FAM-CCCGGCAAGTGGTGCTTCAAAGGT-
TAMRA 

ADAMTS17 NM_139057 Forward: GGTCTCAATTTGGCCTTTACCAT 
Reverse: GACCTGCCAGCGGCAAGAT 
Probe: FAM-CCACAACTTGGGCATGAACCACGA-
TAMRA 

ADAMTS19 AJ311904 Forward: GGTGTAAGGCTGGAGAATGTACCA 
Reverse: TGCGCTCTCGACTGCTGAT 
Probe: FAM-CCTCAGCACCTGAACATCTGGCCG-
TAMRA 

MMP3 NM002422 Forward: TTCCGCCTGTCTCAAGATGATAT 
Reverse: AAAGGACAAAGCAGGATCACAGTT 
Probe: FAM-
TCAGTCCCTCTATGGACCTCCCCCTGAC-TAMRA 

Table 4: Primer pairs and probe for gene of interest 
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Genes Primer sequences (5’->3’) 
Pri-miR-29a/b1exon 
1 

Forward: 
TACTGAACTGTCACGGCAGA 
Reverse: 
TGTAGTTAGCGACCTCTGCT 

Pri-miR-
29a/b1Exon4 

Forward: 
TTGCACCCTCACGACATGCT 
Reverse: 
TGACTCTCAGCAGGCCTCA 

Pri-miR-29b2/c 
exon 1 

Forward: 
ACTTCTTTAGGGGTGTGCGTA 
Reverse: 
ACCCATCTCCCTAGCATTCT 

Pri-miR-29b2/c 
Exon6 

Forward: 
TCAGACTTGCCACCTGGACT 
Reverse: 
AGTTGGCATGAGGCTTCGA 

Pre-29a Forward: 
CTGATTTCTTTTGGTGTTCAG 
Reverse: 
AACCGATTTCAGATGGTGC 

Pre-29b1 Forward: 
CATATGGTGGTTTAGATTT 
Reverse: 
AACACTGATTTCAAATGGTG 

Pre-29b2 Forward: 
GCTGGTTTCACATGGTGGC 
Reverse: 
AACACTGATTTCAAATGGTG 

Pre-29c Forward: 
CGATTTCTCCTGGTGTTCA 
Reverse: 
ACCGATTTCAAATGGTGC 

Table 5: Primers for detecting the primary and the premature sequence of the miR-29 family 
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Names 24_DMM_R 24_DMM_L log2 Fold change  
Fold 
change  

CYP2E1 9.0 10.2 -1.2 2.3 
CES3 8.1 9.3 -1.2 2.3 
TMEM45B 7.9 8.6 -0.8 1.7 
CFD 12.9 13.6 -0.7 1.6 
SCD1 10.1 10.7 -0.6 1.6 
IGFBP6 8.9 9.6 -0.6 1.5 
CHAD 12.4 13.0 -0.6 1.5 
LOC100045005 9.6 10.2 -0.6 1.5 
TENS1 8.5 9.1 -0.6 1.5 
C130045I22RIK 8.2 8.8 -0.6 1.5 
LOC667337 9.4 9.9 -0.6 1.5 
CXCL1 9.1 7.3 1.9 3.6 
CCL7 9.2 7.5 1.8 3.4 
SAA3 8.9 7.3 1.6 3.1 
TIMP1 12.0 10.5 1.5 2.9 
SERPINA3N 11.2 9.7 1.5 2.8 
GP38 10.8 9.4 1.4 2.6 
MMP3 8.9 7.6 1.3 2.5 
ARG1 8.0 7.1 0.8 1.8 
CXCL14 9.4 8.8 0.7 1.6 
MB 11.9 11.2 0.7 1.6 
ANGPTL4 9.5 8.9 0.6 1.6 
MT1 13.5 12.9 0.6 1.6 
ANKRD23 9.5 8.9 0.6 1.5 
MS4A6D 9.9 9.3 0.6 1.5 
LOC386330 9.9 9.4 0.5 1.5 
LOC270589 8.9 8.4 0.5 1.5 
CCL9 11.2 10.6 0.5 1.5 
CKM 12.3 11.8 0.5 1.5 
LOC386144 9.6 9.1 0.5 1.4 

Table 6: List genes changed expression at day 1 in DMM model  
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GENES 7_DMM_R 7_DMM_L 
log2 Fold 
change 

Fold 
change  

MYL3 9.8 11.0 -1.2 2.3 

ATP1A2 9.0 10.1 -1.2 2.3 

NDRG2 10.0 11.2 -1.2 2.3 

CKMT2 11.7 12.8 -1.2 2.2 

ANKRD23 10.2 11.4 -1.2 2.2 

2310003M01RIK 9.5 10.6 -1.1 2.2 

ACTN2 11.1 12.2 -1.1 2.2 

2310042D19RIK 9.2 10.3 -1.1 2.2 

MYH2 11.0 12.1 -1.1 2.2 

PFKM 11.5 12.6 -1.1 2.2 

ABRA 8.6 9.7 -1.1 2.1 

COX7A1 11.4 12.5 -1.1 2.1 

ANKRD2 8.0 9.1 -1.1 2.1 

COX8B 11.8 12.8 -1.1 2.1 

MB 12.0 13.1 -1.1 2.1 

ENO3 12.9 14.0 -1.1 2.1 

DUSP26 8.1 9.2 -1.1 2.1 

RTN2 10.0 11.1 -1.0 2.1 

PKIA 10.4 11.5 -1.0 2.1 

TCAP 12.5 13.6 -1.0 2.1 

MYOZ1 10.4 11.5 -1.0 2.0 

MYOM1 9.9 10.9 -1.0 2.0 

ACTN3 11.3 12.3 -1.0 2.0 

2310002L09RIK 8.6 9.6 -1.0 2.0 

HRC 10.3 11.3 -1.0 2.0 

MYOM2 9.1 10.1 -1.0 2.0 

CKM 13.0 14.0 -1.0 2.0 

CSRP3 8.5 9.5 -1.0 2.0 

TMEM38A 9.3 10.3 -1.0 2.0 

1110012N22RIK 9.2 10.2 -1.0 2.0 

TPM2 11.3 12.3 -1.0 2.0 

RYR1 10.1 11.1 -1.0 2.0 

MLF1 9.5 10.5 -1.0 2.0 

TTN 9.7 10.7 -1.0 2.0 

TMOD4 10.7 11.7 -1.0 2.0 

DYSFIP1 8.7 9.7 -1.0 2.0 

NRAP 9.1 10.1 -1.0 2.0 

CMYA5 10.8 11.8 -1.0 2.0 

SMTNL2 8.5 9.5 -1.0 1.9 

MYLK2 9.2 10.2 -1.0 1.9 
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MYL2 9.3 10.3 -0.9 1.9 

LOC669660 8.6 9.6 -0.9 1.9 

KBTBD10 9.8 10.7 -0.9 1.9 

ASB2 10.6 11.5 -0.9 1.9 

A530098C11RIK 8.7 9.6 -0.9 1.9 

F730003H07RIK 9.3 10.3 -0.9 1.9 

ZMYND17 8.5 9.4 -0.9 1.9 

CPT1B 8.3 9.2 -0.9 1.9 

2310079P10RIK 8.5 9.4 -0.9 1.9 

EEF1A2 10.7 11.6 -0.9 1.9 

YIPF7 8.5 9.4 -0.9 1.9 

SCL0003151.1_137
4 8.9 9.8 -0.9 1.9 

INMT 7.6 8.5 -0.9 1.9 

CES3 8.8 9.7 -0.9 1.9 

PYGM 9.2 10.1 -0.9 1.8 

MYBPC2 11.6 12.5 -0.9 1.8 

8030451F13RIK 8.6 9.5 -0.9 1.8 

FABP3 10.6 11.4 -0.9 1.8 

NEURL 9.5 10.4 -0.9 1.8 

PDLIM3 10.4 11.3 -0.9 1.8 

SYPL2 9.6 10.5 -0.9 1.8 

4833419K08RIK 9.0 9.9 -0.9 1.8 

AMPD1 11.1 12.0 -0.8 1.8 

CACNA1S 8.6 9.5 -0.8 1.8 

SCL0002069.1_48 8.1 9.0 -0.8 1.8 

C130073O12RIK 9.0 9.9 -0.8 1.8 

GM1157 7.8 8.6 -0.8 1.8 

MYH1 9.2 10.1 -0.8 1.8 

SLC25A37 11.8 12.6 -0.8 1.8 

LOC638935 8.1 9.0 -0.8 1.8 

LOC386360 10.4 11.2 -0.8 1.8 

BC030476 9.0 9.8 -0.8 1.8 

MYH4 10.0 10.8 -0.8 1.7 

SCL000959.1_2 13.3 14.1 -0.8 1.7 

RPL3L 12.2 13.0 -0.8 1.7 

COX6A2 12.7 13.5 -0.8 1.7 

MTDNA_ND4L 8.7 9.5 -0.8 1.7 

TNNT3 13.1 13.9 -0.8 1.7 

AK1 9.8 10.6 -0.8 1.7 

DES 11.1 11.9 -0.8 1.7 

A2BP1 8.4 9.2 -0.8 1.7 

KY 9.1 9.8 -0.8 1.7 
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UNC45B 8.4 9.2 -0.8 1.7 

AI595366 8.7 9.4 -0.8 1.7 

D830037I21RIK 7.3 8.1 -0.8 1.7 

PGM2 12.0 12.8 -0.8 1.7 

4933421G18RIK 9.7 10.4 -0.8 1.7 

MYF6 8.3 9.0 -0.8 1.7 

SCN4B 8.3 9.1 -0.8 1.7 

ALPK3 8.5 9.3 -0.8 1.7 

PGAM2 12.3 13.1 -0.8 1.7 

ITGA2B 8.9 9.7 -0.8 1.7 

CRYAB 9.8 10.6 -0.7 1.7 

LOC386144 9.1 9.8 -0.7 1.7 

LOC100047934 10.8 11.6 -0.7 1.7 

SRL 9.3 10.0 -0.7 1.7 

PHKG1 8.8 9.5 -0.7 1.7 

ATP1B1 9.5 10.2 -0.7 1.7 

HSPB7 8.2 8.9 -0.7 1.7 

TNNC1 8.3 9.0 -0.7 1.6 

CHCHD10 12.4 13.1 -0.7 1.6 

GMPR 9.0 9.7 -0.7 1.6 

S3-12 9.3 10.0 -0.7 1.6 

9930004G02RIK 9.4 10.1 -0.7 1.6 

TCEA3 10.3 11.0 -0.7 1.6 

PPP1R3C 10.7 11.4 -0.7 1.6 

TRIM54 9.0 9.7 -0.7 1.6 

FBP2 8.3 9.0 -0.7 1.6 

COQ10A 8.8 9.5 -0.7 1.6 

TXLNB 7.8 8.5 -0.7 1.6 

XIRP2 8.4 9.1 -0.7 1.6 

FSD2 8.6 9.3 -0.7 1.6 

PDE4DIP 9.9 10.6 -0.7 1.6 

NDUFC1 10.9 11.6 -0.7 1.6 

MSCP 11.9 12.6 -0.7 1.6 

EG433229 9.2 9.9 -0.7 1.6 

SMARCD3 8.2 8.9 -0.7 1.6 

SCL0003073.1_164 8.2 8.8 -0.7 1.6 

HHATL 8.6 9.3 -0.7 1.6 

DNAJC7 8.9 9.6 -0.7 1.6 

USP13 7.9 8.6 -0.7 1.6 

ADSSL1 11.5 12.2 -0.7 1.6 

ACADM 11.2 11.9 -0.7 1.6 

MT-ATP6 11.3 12.0 -0.7 1.6 

6430573H23RIK 8.2 8.9 -0.7 1.6 

TUBA8 8.6 9.3 -0.7 1.6 
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DEDD2 9.8 10.4 -0.7 1.6 

LOC100041835 12.3 12.9 -0.7 1.6 

1300013J15RIK 7.9 8.6 -0.7 1.6 

MACROD1 9.1 9.8 -0.7 1.6 

ALDOA 13.2 13.9 -0.7 1.6 

LOC667034 8.5 9.2 -0.7 1.6 

MDH2 10.0 10.6 -0.7 1.6 

PDK4 9.3 10.0 -0.7 1.6 

ART5 7.7 8.4 -0.7 1.6 

JSRP1 7.9 8.6 -0.7 1.6 

PPM1L 8.4 9.0 -0.7 1.6 

MFN2 10.1 10.8 -0.7 1.6 

RILPL1 8.8 9.4 -0.6 1.6 

EHBP1L1 8.8 9.4 -0.6 1.6 

NDUFA5 10.3 10.9 -0.6 1.6 

MTDNA_ND2 11.5 12.2 -0.6 1.6 

MTDNA_ND5 11.5 12.2 -0.6 1.6 

TRIM72 9.7 10.4 -0.6 1.6 

B930008G03RIK 10.0 10.7 -0.6 1.6 

2310040G24RIK 7.9 8.5 -0.6 1.6 

ALAD 12.0 12.7 -0.6 1.6 

SGCA 8.4 9.0 -0.6 1.5 

LOC385959 8.3 8.9 -0.6 1.5 

LOC547380 8.3 8.9 -0.6 1.5 

NDUFS7 11.8 12.4 -0.6 1.5 

1300017J02RIK 8.9 9.5 -0.6 1.5 

LOC381792 7.7 8.3 -0.6 1.5 

FLNC 8.5 9.1 -0.6 1.5 

DHRS7C 8.1 8.7 -0.6 1.5 

ART1 8.0 8.6 -0.6 1.5 

EG245190 8.8 9.5 -0.6 1.5 

A530020A01RIK 7.9 8.5 -0.6 1.5 

PRKAA2 7.8 8.4 -0.6 1.5 

VLDLR 8.7 9.3 -0.6 1.5 

1110002E22RIK 8.1 8.7 -0.6 1.5 

NDUFB9 7.8 8.4 -0.6 1.5 

MYO18B 8.1 8.7 -0.6 1.5 

ITGB1BP3 8.3 8.9 -0.6 1.5 

PHLDA3 9.4 10.0 -0.6 1.5 

GPT2 8.5 9.1 -0.6 1.5 

LOC386256 7.9 8.5 -0.6 1.5 

TSC22D3 9.4 10.0 -0.6 1.5 

NDUFA4 12.4 13.0 -0.6 1.5 
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4CYTL1 9.4 10.0 -0.6 1.5 

PTP4A3 9.0 9.6 -0.6 1.5 

FBXO32 7.9 8.5 -0.6 1.5 

CNKSR1 7.7 8.3 -0.6 1.5 

ZXDA 9.0 9.6 -0.6 1.5 

LOC100044934 8.4 9.0 -0.6 1.5 

KBTBD5 7.8 8.4 -0.6 1.5 

SRR 11.0 11.6 -0.6 1.5 

CACNG1 8.1 8.7 -0.6 1.5 

SCL0002124.1_39 7.7 8.3 -0.6 1.5 

DEB1 11.0 11.6 -0.6 1.5 

LMOD3 7.9 8.5 -0.6 1.5 

9830134C10RIK 8.2 8.8 -0.6 1.5 

TYKI 9.3 9.9 -0.6 1.5 

UFSP1 8.6 9.2 -0.6 1.5 

SMPX 7.7 8.2 -0.6 1.5 

LOC100047214 9.1 9.7 -0.6 1.5 

VGLL2 7.6 8.2 -0.6 1.5 

CAR3 10.3 10.9 -0.6 1.5 

SLC25A12 9.1 9.7 -0.6 1.5 

EG622339 13.4 14.0 -0.6 1.5 

CIB2 9.4 9.9 -0.6 1.5 

A630006E02RIK 9.5 10.1 -0.6 1.5 

UGP2 9.4 10.0 -0.6 1.5 

4933428A15RIK 8.6 9.2 -0.6 1.5 

CHKA 9.4 10.0 -0.6 1.5 

SNTA1 8.5 9.0 -0.6 1.5 

SLC6A9 9.3 9.9 -0.6 1.5 

2410076I21RIK 8.4 8.9 -0.6 1.5 

TPI1 12.1 12.6 -0.6 1.5 

SMTNL1 7.9 8.4 -0.6 1.5 

TMOD1 8.7 9.3 -0.6 1.5 

TSPAN8 8.5 9.1 -0.6 1.5 

MTDNA_COXII 12.8 13.4 -0.6 1.5 

NDUFS2 8.7 9.3 -0.6 1.5 

SLC2A4 8.1 8.7 -0.6 1.5 

MYOT 7.8 8.4 -0.6 1.5 

A230005G17RIK 8.3 8.9 -0.6 1.5 

TNNT1 8.9 9.4 -0.6 1.5 

FHL1 11.6 12.1 -0.6 1.5 

SPNB1 9.5 10.0 -0.6 1.5 

5830496L11RIK 9.1 9.6 -0.6 1.5 

ENSMUSG0000005
4212 9.5 10.1 -0.6 1.5 
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5430434G16RIK 8.9 9.4 -0.6 1.5 

IDH3A 8.9 9.4 -0.6 1.5 

SLC38A5 11.1 11.7 -0.6 1.5 

LDB3 8.1 8.6 -0.6 1.5 

E430039I23RIK 11.1 11.6 -0.6 1.5 

KEL 10.5 11.0 -0.6 1.5 

2310039E09RIK 8.2 8.7 -0.6 1.5 

D530007E13RIK 8.9 9.4 -0.6 1.5 

1110018J23RIK 7.9 8.5 -0.6 1.5 

TMEM45B 8.2 8.7 -0.6 1.5 

BC022224 10.2 10.7 -0.6 1.5 

RBM38 9.9 10.5 -0.6 1.5 

2810484G07RIK 10.9 11.5 -0.5 1.5 

ACO2 10.8 11.4 -0.5 1.5 

1700021F05RIK 10.3 10.8 -0.5 1.5 

VEGFB 9.8 10.4 -0.5 1.5 

STXBP3 8.2 8.7 -0.5 1.5 

AGL 9.3 9.8 -0.5 1.5 

TAL1 9.3 9.8 -0.5 1.5 

MYOZ2 7.7 8.2 -0.5 1.5 

NCTC1 7.8 8.3 -0.5 1.5 

ABCA7 9.4 10.0 -0.5 1.5 

SAR1B 10.3 10.9 -0.5 1.5 

3632431M01RIK 8.6 9.1 -0.5 1.5 

FCHO1 10.0 10.5 -0.5 1.5 

P2RY1 8.8 9.3 -0.5 1.5 

B230387C07RIK 9.1 9.7 -0.5 1.5 

TRIM63 7.5 8.0 -0.5 1.5 

1810020D17RIK 9.5 10.0 -0.5 1.4 

FYCO1 8.1 8.6 -0.5 1.4 

RABGEF1 10.3 10.8 -0.5 1.4 

ITGB1BP2 8.2 8.8 -0.5 1.4 

IFT140 9.1 9.6 -0.5 1.4 

SAMD11 8.2 8.7 -0.5 1.4 

ABCB10 8.2 8.8 -0.5 1.4 

LOC100046690 9.0 9.5 -0.5 1.4 

PFN2 8.9 9.5 -0.5 1.4 

C1QTNF3 11.0 7.5 3.5 11.3 

LRRC15 10.6 8.4 2.2 4.7 

ANGPTL1 9.7 7.6 2.1 4.4 

MFAP5 10.2 8.1 2.1 4.4 

THBS2 11.8 9.7 2.1 4.3 

FSTL1 11.1 9.0 2.0 4.1 
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COL6A2 10.4 8.4 2.0 4.1 

MMP2 13.7 11.7 2.0 3.9 

COL6A1 12.4 10.4 2.0 3.9 

CAPN6 9.7 7.7 2.0 3.9 

COL3A1 9.8 7.9 1.9 3.8 

MMP3 9.3 7.4 1.9 3.8 

TIMP1 11.8 9.9 1.9 3.8 

COL5A1 12.6 10.7 1.9 3.7 

CTHRC1 9.5 7.6 1.9 3.7 

AEBP1 10.9 9.1 1.9 3.6 

COL18A1 9.8 8.0 1.8 3.5 

DKK3 10.2 8.5 1.7 3.4 

COL14A1 9.3 7.6 1.7 3.3 

E430002G05RIK 9.9 8.1 1.7 3.3 

PCOLCE 10.9 9.2 1.7 3.3 

LUM 12.2 10.5 1.7 3.3 

DPT 10.3 8.6 1.7 3.2 

MMP14 11.9 10.2 1.7 3.2 

GP38 11.0 9.3 1.7 3.2 

FCRLS 9.9 8.2 1.6 3.1 

MFAP4 9.2 7.6 1.6 3.1 

CSRP2 11.0 9.4 1.6 3.1 

LOX 11.4 9.8 1.6 3.1 

SPON2 11.2 9.6 1.6 3.0 

ITM2A 9.8 8.2 1.6 3.0 

LY6A 12.8 11.3 1.6 3.0 

DDAH1 9.3 7.7 1.6 3.0 

MUP2 9.7 8.2 1.6 3.0 

GPNMB 9.5 8.0 1.6 3.0 

CD248 9.9 8.3 1.5 2.9 

ANTXR1 9.9 8.3 1.5 2.9 

6330406I15RIK 9.7 8.1 1.5 2.9 

LOXL1 10.8 9.2 1.5 2.9 

MUP1 9.2 7.7 1.5 2.9 

NBL1 10.3 8.8 1.5 2.9 

MFAP2 9.2 7.7 1.5 2.8 

CCL21A 10.6 9.1 1.5 2.8 

FN1 10.4 8.9 1.5 2.8 

MEST 8.8 7.3 1.5 2.8 

MRGPRF 9.5 8.0 1.5 2.8 

CCL21C 10.0 8.5 1.5 2.8 

SAA3 8.7 7.2 1.5 2.8 

LOC100048554 9.2 7.7 1.5 2.8 

THY1 10.0 8.5 1.5 2.7 
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HTRA1 10.5 9.1 1.5 2.7 

OSR2 9.3 7.8 1.5 2.7 

LOC100041504 9.9 8.4 1.4 2.7 

GPX7 9.8 8.4 1.4 2.7 

KDELR3 10.4 8.9 1.4 2.7 

H19 11.4 10.0 1.4 2.7 

PDLIM4 10.3 8.9 1.4 2.6 

C1QTNF2 9.3 7.9 1.4 2.6 

COL6A3 11.3 9.9 1.4 2.6 

FBLN2 9.4 8.0 1.4 2.6 

MXRA8 10.5 9.1 1.4 2.6 

SCL0001849.1_227
3 9.0 7.6 1.4 2.6 

VKORC1 11.1 9.7 1.3 2.5 

PPIC 12.3 11.0 1.3 2.5 

ITGBL1 9.6 8.3 1.3 2.5 

EMP1 12.7 11.4 1.3 2.5 

KNSL5 11.8 10.5 1.3 2.5 

SERPINH1 12.8 11.5 1.3 2.5 

2310016C16RIK 10.3 9.0 1.3 2.5 

WISP2 10.4 9.1 1.3 2.5 

MAGED1 11.6 10.3 1.3 2.5 

COL16A1 11.6 10.3 1.3 2.5 

LEPREL2 9.2 7.9 1.3 2.4 

GPX8 10.7 9.4 1.3 2.4 

BGN 14.3 13.0 1.3 2.4 

SRPX2 10.2 8.9 1.3 2.4 

ITGA11 9.9 8.6 1.3 2.4 

CCDC80 11.0 9.7 1.3 2.4 

CLEC11A 10.4 9.2 1.3 2.4 

SMOC1 9.7 8.5 1.2 2.4 

OGN 10.3 9.0 1.2 2.4 

CRTAP 10.1 8.9 1.2 2.4 

VIM 11.1 9.8 1.2 2.3 

COL4A2 11.3 10.0 1.2 2.3 

FKBP11 10.0 8.7 1.2 2.3 

CD276 9.3 8.1 1.2 2.3 

PRKCDBP 10.1 8.9 1.2 2.3 

CCL7 8.4 7.2 1.2 2.3 

NFATC4 9.4 8.1 1.2 2.3 

ECM1 10.8 9.6 1.2 2.3 

COL15A1 9.4 8.2 1.2 2.3 

2610027C15RIK 10.0 8.8 1.2 2.3 
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PRELP 13.1 11.9 1.2 2.3 

TIMP2 12.6 11.4 1.2 2.3 

GRB10 9.4 8.2 1.2 2.3 

FBN1 9.6 8.4 1.2 2.3 

COPZ2 10.0 8.8 1.2 2.3 

SCARF2 12.0 10.8 1.2 2.3 

ENPP1 9.6 8.4 1.2 2.3 

COL4A1 11.7 10.5 1.2 2.3 

IGF1 9.6 8.4 1.2 2.2 

SULF2 9.2 8.0 1.2 2.2 

SERPINA3N 10.2 9.0 1.2 2.2 

FKBP9 11.1 9.9 1.2 2.2 

RNASE4 9.8 8.6 1.2 2.2 

COMP 12.8 11.6 1.2 2.2 

MS4A6D 9.8 8.6 1.2 2.2 

CPXM1 9.3 8.2 1.1 2.2 

DAB2 9.7 8.5 1.1 2.2 

EFEMP2 10.0 8.9 1.1 2.2 

LOC100047053 8.4 7.3 1.1 2.2 

COL8A1 9.5 8.4 1.1 2.2 

SERPING1 11.9 10.7 1.1 2.2 

ANGPTL4 10.2 9.1 1.1 2.2 

THBS3 8.7 7.6 1.1 2.1 

HSPG2 10.5 9.4 1.1 2.1 

PTN 8.9 7.8 1.1 2.1 

GM22 9.3 8.2 1.1 2.1 

NNMT 9.6 8.6 1.1 2.1 

LGMN 10.9 9.8 1.1 2.1 

4930533K18RIK 9.8 8.7 1.1 2.1 

VASN 10.9 9.8 1.1 2.1 

ELN 8.5 7.5 1.1 2.1 

FMOD 10.2 9.1 1.1 2.1 

LOC100046883 10.8 9.8 1.1 2.1 

CLEC4N 8.6 7.6 1.1 2.1 

NDN 10.0 8.9 1.1 2.1 

ACAN 9.7 8.6 1.1 2.1 

OLFML1 8.8 7.8 1.1 2.1 

C1QTNF1 8.7 7.6 1.1 2.1 

SOCS3 9.3 8.3 1.0 2.1 

1500015O10RIK 11.9 10.8 1.0 2.0 

FKBP10 9.7 8.7 1.0 2.0 

TREM2 9.4 8.4 1.0 2.0 

MGP 13.5 12.5 1.0 2.0 

COL10A1 10.7 9.6 1.0 2.0 
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ADAMTS12 8.7 7.7 1.0 2.0 

CRLF1 8.5 7.5 1.0 2.0 

HTRA3 9.6 8.6 1.0 2.0 

P4HA2 9.0 8.0 1.0 2.0 

FSCN1 9.0 8.1 1.0 2.0 

NUPR1 12.0 11.0 1.0 2.0 

SCARA3 11.9 10.9 1.0 2.0 

SYNPO 10.1 9.1 1.0 2.0 

NID2 8.8 7.8 1.0 2.0 

TSPAN6 8.9 7.9 1.0 2.0 

LGALS1 12.5 11.5 1.0 2.0 

IGFBP7 10.5 9.5 1.0 2.0 

TMEM119 9.7 8.7 1.0 2.0 

COL2A1 13.6 12.6 1.0 2.0 

MS4A7 8.8 7.8 1.0 2.0 

ANXA5 12.4 11.4 1.0 2.0 

RAMP2 10.0 9.1 1.0 2.0 

MMP23 9.5 8.5 1.0 1.9 

SLC1A4 8.5 7.6 1.0 1.9 

LOC100047856 9.1 8.2 1.0 1.9 

AHNAK2 9.1 8.2 1.0 1.9 

CDKN1C 11.0 10.0 1.0 1.9 

APOE 11.0 10.0 1.0 1.9 

SPARC 13.1 12.1 1.0 1.9 

BC020108 8.5 7.5 0.9 1.9 

C1QB 11.5 10.5 0.9 1.9 

FNDC3B 10.2 9.3 0.9 1.9 

IGSF10 8.8 7.9 0.9 1.9 

COL12A1 9.1 8.2 0.9 1.9 

9030024J15RIK 9.7 8.7 0.9 1.9 

1110036O03RIK 8.9 8.0 0.9 1.9 

LRIG3 9.4 8.5 0.9 1.9 

FAM129B 10.2 9.3 0.9 1.9 

EDNRA 9.5 8.5 0.9 1.9 

IL33 8.3 7.4 0.9 1.9 

IGFBP6 10.0 9.0 0.9 1.9 

LGALS3BP 10.8 9.9 0.9 1.9 

OLFML3 11.5 10.6 0.9 1.9 

COL1A2 11.1 10.2 0.9 1.9 

GPR176 8.4 7.5 0.9 1.9 

CERCAM 9.9 9.0 0.9 1.9 

CNRIP1 9.7 8.8 0.9 1.9 

GALNTL1 8.5 7.7 0.9 1.9 
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KERA 8.2 7.3 0.9 1.9 

PRG4 12.7 11.8 0.9 1.9 

IGKV3-
2_X16954_IG_KAP
PA_VARIABLE_3-
2_18 9.0 8.1 0.9 1.9 

LOC676136 9.5 8.6 0.9 1.9 

ABI3BP 8.6 7.7 0.9 1.9 

PKD2 8.9 8.0 0.9 1.8 

COL1A1 13.2 12.3 0.9 1.8 

SCX 8.6 7.7 0.9 1.8 

IGF2 10.3 9.4 0.9 1.8 

SFRP1 8.3 7.4 0.9 1.8 

KCTD17 9.1 8.2 0.9 1.8 

IGFBP4 12.0 11.2 0.9 1.8 

MFGE8 12.3 11.5 0.9 1.8 

EFS 9.2 8.4 0.9 1.8 

BC064033 8.4 7.6 0.9 1.8 

LOC243431 9.8 9.0 0.9 1.8 

MAGED2 11.1 10.2 0.9 1.8 

DPYSL3 9.3 8.4 0.9 1.8 

ANPEP 8.4 7.6 0.9 1.8 

A430110N23RIK 8.2 7.4 0.9 1.8 

CXCL1 8.1 7.2 0.8 1.8 

LTBP3 9.0 8.2 0.8 1.8 

LRRC17 8.3 7.4 0.8 1.8 

LOC100047583 9.3 8.5 0.8 1.8 

UTS2R 8.3 7.4 0.8 1.8 

TNN 8.3 7.5 0.8 1.8 

CALU 10.0 9.2 0.8 1.8 

BMP1 9.9 9.1 0.8 1.8 

SCARA5 9.7 8.9 0.8 1.8 

TXNDC5 10.7 9.9 0.8 1.8 

SDC2 10.4 9.6 0.8 1.8 

IFITM2 12.1 11.3 0.8 1.8 

PRDX4 11.0 10.1 0.8 1.8 

DLK1 8.2 7.3 0.8 1.8 

0610007N19RIK 9.4 8.6 0.8 1.8 

TPST1 9.9 9.0 0.8 1.8 

NT5DC2 9.1 8.3 0.8 1.8 

SULF1 8.9 8.1 0.8 1.8 

HTRA4 9.0 8.2 0.8 1.8 

AKR1B8 8.3 7.4 0.8 1.8 

SRPX 8.8 8.0 0.8 1.8 
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MARCKS 11.2 10.4 0.8 1.8 

PARVA 9.6 8.8 0.8 1.7 

TGFB3 8.8 8.0 0.8 1.7 

LOC232060 8.7 7.9 0.8 1.7 

WISP1 9.5 8.7 0.8 1.7 

LXN 10.0 9.2 0.8 1.7 

D14ERTD449E 9.2 8.5 0.8 1.7 

MDK 8.6 7.8 0.8 1.7 

TGFBI 11.3 10.5 0.8 1.7 

SH3PXD2B 9.4 8.6 0.8 1.7 

EMP2 9.0 8.2 0.8 1.7 

IGHG 9.7 9.0 0.8 1.7 

RIN2 9.1 8.3 0.8 1.7 

1700023M03RIK 9.9 9.2 0.8 1.7 

WBP5 10.9 10.1 0.8 1.7 

CD68 10.3 9.5 0.8 1.7 

1200009O22RIK 8.6 7.8 0.8 1.7 

IL1RL1 8.1 7.3 0.8 1.7 

ADAMTS2 11.0 10.2 0.8 1.7 

A730054J21RIK 8.3 7.5 0.8 1.7 

4732462B05RIK 10.0 9.3 0.8 1.7 

LBP 9.9 9.1 0.8 1.7 

IL13RA1 8.7 7.9 0.8 1.7 

FER1L3 8.4 7.6 0.8 1.7 

C4A 10.0 9.2 0.8 1.7 

SOX9 9.8 9.0 0.8 1.7 

1810055G02RIK 10.2 9.4 0.8 1.7 

PANX3 10.7 10.0 0.8 1.7 

FKBP14 8.5 7.7 0.8 1.7 

SERPINF1 12.8 12.1 0.8 1.7 

TUBB6 9.9 9.2 0.8 1.7 

C1QC 10.8 10.0 0.8 1.7 

OLFML2B 11.5 10.7 0.8 1.7 

TCEAL8 9.9 9.2 0.8 1.7 

PDGFRA 9.4 8.6 0.8 1.7 

NOX4 8.3 7.5 0.8 1.7 

SFRP2 8.1 7.3 0.7 1.7 

6720469N11RIK 10.1 9.3 0.7 1.7 

LOC380799 8.7 8.0 0.7 1.7 

CSTB 12.6 11.8 0.7 1.7 

CYB561 8.7 8.0 0.7 1.7 

LHFPL2 9.7 9.0 0.7 1.7 

LOC98434 10.3 9.5 0.7 1.7 
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CD14 8.5 7.7 0.7 1.7 

PMP22 9.4 8.7 0.7 1.7 

RBP1 8.6 7.8 0.7 1.7 

2310008M10RIK 11.4 10.6 0.7 1.7 

MT1 13.4 12.7 0.7 1.7 

EXT1 9.9 9.2 0.7 1.7 

LIMA1 9.0 8.3 0.7 1.7 

MATN4 8.3 7.5 0.7 1.7 

EDG5 9.3 8.6 0.7 1.7 

SPSB1 8.7 8.0 0.7 1.7 

ARMCX2 9.4 8.7 0.7 1.7 

SVEP1 8.3 7.6 0.7 1.7 

HMGN3 10.5 9.8 0.7 1.6 

GPR23 8.7 8.0 0.7 1.6 

FOLR2 8.6 7.8 0.7 1.6 

UBE2E2 9.3 8.6 0.7 1.6 

RHOJ 9.4 8.7 0.7 1.6 

PROS1 9.9 9.2 0.7 1.6 

STAB1 9.6 8.9 0.7 1.6 

LOC637227 9.6 8.8 0.7 1.6 

MYADM 10.8 10.1 0.7 1.6 

ANXA8 8.4 7.7 0.7 1.6 

PLOD1 8.3 7.6 0.7 1.6 

MEOX2 8.9 8.2 0.7 1.6 

LOC381629 10.7 10.0 0.7 1.6 

LOC384413 9.4 8.7 0.7 1.6 

TAX1BP3 10.5 9.8 0.7 1.6 

6330404C01RIK 9.3 8.6 0.7 1.6 

FRMD6 9.8 9.1 0.7 1.6 

COL9A2 10.6 9.9 0.7 1.6 

NT5E 9.0 8.3 0.7 1.6 

MYO1E 9.0 8.3 0.7 1.6 

LMAN1 9.5 8.8 0.7 1.6 

GRN 12.1 11.4 0.7 1.6 

LOC669053 9.3 8.6 0.7 1.6 

CUL7 9.5 8.8 0.7 1.6 

P4HB 13.1 12.4 0.7 1.6 

TWSG1 10.1 9.4 0.7 1.6 

D4BWG0951E 8.3 7.7 0.7 1.6 

BICC1 9.6 8.9 0.7 1.6 

WTIP 9.3 8.6 0.7 1.6 

IL11RA1 11.3 10.7 0.7 1.6 

LOC636944 9.9 9.3 0.7 1.6 

PLVAP 10.2 9.5 0.7 1.6 
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EGFR 8.5 7.8 0.7 1.6 

RFTN2 8.6 8.0 0.7 1.6 

TMED3 9.9 9.2 0.7 1.6 

TUBB2B 8.7 8.1 0.7 1.6 

C130021I20 7.9 7.3 0.7 1.6 

CXCL16 8.2 7.5 0.7 1.6 

CDON 8.2 7.6 0.7 1.6 

SDC3 11.1 10.5 0.7 1.6 

5430435G22RIK 8.4 7.8 0.7 1.6 

ADRA2A 8.6 7.9 0.7 1.6 

C1QA 9.3 8.7 0.7 1.6 

PRRC1 9.8 9.2 0.7 1.6 

TPBG 8.3 7.7 0.6 1.6 

BOK 8.5 7.8 0.6 1.6 

NID1 8.8 8.1 0.6 1.6 

FXYD6 11.3 10.7 0.6 1.6 

TGFBR2 9.8 9.2 0.6 1.6 

LAMC1 9.2 8.5 0.6 1.6 

ZFP521 8.4 7.7 0.6 1.6 

GPR125 9.4 8.8 0.6 1.6 

COL5A2 8.0 7.4 0.6 1.6 

PAPSS2 9.2 8.6 0.6 1.6 

BDH2 9.5 8.9 0.6 1.6 

MIA1 10.1 9.4 0.6 1.6 

SOCS2 9.9 9.2 0.6 1.6 

GLT8D1 9.4 8.8 0.6 1.6 

PLOD2 8.5 7.9 0.6 1.6 

FSTL 8.0 7.4 0.6 1.6 

IGFBP3 8.1 7.5 0.6 1.5 

2410146L05RIK 8.0 7.3 0.6 1.5 

GSTM2 10.2 9.5 0.6 1.5 

ISLR 8.0 7.4 0.6 1.5 

PPIB 11.3 10.7 0.6 1.5 

PDGFRB 8.6 7.9 0.6 1.5 

DLG5 9.5 8.9 0.6 1.5 

CAV1 10.4 9.8 0.6 1.5 

CCL4 8.2 7.6 0.6 1.5 

TMEM176B 10.1 9.4 0.6 1.5 

RAB34 8.4 7.7 0.6 1.5 

CDKN1A 8.7 8.1 0.6 1.5 

CYB5R3 9.6 9.0 0.6 1.5 

SEPN1 10.2 9.6 0.6 1.5 

LOC630253 8.2 7.6 0.6 1.5 
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PRRX2 8.1 7.5 0.6 1.5 

RHOC 8.4 7.8 0.6 1.5 

PRSS35 8.8 8.2 0.6 1.5 

GPRC5B 8.4 7.8 0.6 1.5 

PDIA5 8.1 7.5 0.6 1.5 

PMEPA1 8.2 7.6 0.6 1.5 

ADAMTS4 7.9 7.3 0.6 1.5 

RRBP1 9.3 8.7 0.6 1.5 

FAM171B 8.4 7.8 0.6 1.5 

SERTAD4 8.1 7.5 0.6 1.5 

CRABP2 7.8 7.2 0.6 1.5 

5430433G21RIK 9.4 8.9 0.6 1.5 

RAB11FIP5 9.3 8.7 0.6 1.5 

4933421H10RIK 8.7 8.1 0.6 1.5 

DCN 12.3 11.7 0.6 1.5 

2610009E16RIK 9.1 8.5 0.6 1.5 

3110079O15RIK 12.8 12.2 0.6 1.5 

VAT1 9.6 9.1 0.6 1.5 

COL8A2 8.2 7.6 0.6 1.5 

LOC100047162 9.9 9.4 0.6 1.5 

HOXC6 9.1 8.5 0.6 1.5 

ZFYVE21 10.3 9.7 0.6 1.5 

BGLAP-RS1 13.8 13.2 0.6 1.5 

9430028L06RIK 7.9 7.3 0.6 1.5 

ACTA2 10.3 9.7 0.6 1.5 

GLT25D1 10.7 10.1 0.6 1.5 

RCN3 8.3 7.7 0.6 1.5 

CLEC3B 8.2 7.6 0.6 1.5 

GMDS 8.8 8.2 0.6 1.5 

BMPER 8.3 7.7 0.6 1.5 

2300002D11RIK 8.0 7.4 0.6 1.5 

PLAT 8.0 7.4 0.6 1.5 

TWIST1 8.4 7.8 0.6 1.5 

6230400G14RIK 8.8 8.2 0.6 1.5 

PLOD3 10.2 9.7 0.6 1.5 

CAPG 10.0 9.5 0.6 1.5 

LOC626583 8.1 7.5 0.6 1.5 

ALG14 8.9 8.4 0.6 1.5 

MMP12 7.8 7.2 0.6 1.5 

TNXB 8.5 7.9 0.6 1.5 

TUBA1A 9.4 8.9 0.6 1.5 

CD81 12.8 12.2 0.6 1.5 

TMEM86A 9.9 9.4 0.6 1.5 

C1QTNF5 7.9 7.3 0.6 1.5 
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ERGIC1 9.4 8.8 0.6 1.5 

5031439A09RIK 8.9 8.4 0.6 1.5 

S100A10 9.2 8.6 0.6 1.5 

CBR2 9.1 8.6 0.6 1.5 

FBLN7 7.8 7.3 0.6 1.5 

B9D1 8.3 7.7 0.6 1.5 

ALG5 9.6 9.1 0.6 1.5 

RRAS 9.9 9.3 0.6 1.5 

CHMP4B 10.4 9.8 0.6 1.5 

GNS 10.9 10.4 0.6 1.5 

H47 10.8 10.3 0.6 1.5 

IFITM5 9.2 8.7 0.6 1.5 

WWTR1 8.8 8.2 0.5 1.5 

CRIP2 11.0 10.4 0.5 1.5 

ANXA2 13.6 13.1 0.5 1.5 

A730017D01RIK 8.5 7.9 0.5 1.5 

PRRX1 8.1 7.6 0.5 1.5 

COL22A1 10.4 9.9 0.5 1.5 

MANBAL 10.3 9.8 0.5 1.5 

POFUT2 8.1 7.6 0.5 1.5 

APLNR 8.3 7.7 0.5 1.5 

FBLIM1 8.7 8.2 0.5 1.5 

LMNA 10.4 9.9 0.5 1.5 

PLCD1 8.7 8.1 0.5 1.5 

RHBDF1 9.9 9.4 0.5 1.5 

LOC100039175 8.8 8.2 0.5 1.5 

EBPL 8.8 8.3 0.5 1.5 

KDELR2 8.5 8.0 0.5 1.5 

FAH 8.9 8.3 0.5 1.5 

PDIA3 11.7 11.1 0.5 1.5 

PLA1A 8.1 7.6 0.5 1.5 

GAS6 11.3 10.8 0.5 1.5 

BC065085 8.3 7.8 0.5 1.5 

D10ERTD610E 8.6 8.1 0.5 1.4 

IFIT3 8.5 8.0 0.5 1.4 

PDGFRL 7.9 7.4 0.5 1.4 

3632451O06RIK 8.0 7.5 0.5 1.4 

TPM4 11.3 10.8 0.5 1.4 

PLP2 10.0 9.5 0.5 1.4 

C4B 8.7 8.1 0.5 1.4 

Table 7: Genes changed expression in DMM model at day 7 
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Figure 1: Hierarchical cluster analysis for DMM models at 1, 3, and 7 days after surgery  
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Figure 2: CCL2, Agrinase, IL-6 and SAA-3 were significantly induced expression in DMM 

model at 1, 3, and 7 days after surgery 

Total RNA was reversed transcribed to cDNA and gene expression was measured by real-
time qRT-PCR in individual samples of DMM left knee (un-operated, open bar), and DMM 
right knee (DMM, close bar). 18S was used as endogenous control. The data show mean +/- 
SEM, n=3. The expression of genes of interest between each group was analysed by unpaired 
two-tailed t test * p<0.05, ** p < 0.01, *** p<0.001. 
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Figure 3:  Gene expression in hip avulsion injury model 

The femoral caps of C57Bl/6 mice aged 4 weeks were avulsed and put in culture. At each of 
3, 6, 12, 48 hour time points, the femoral caps were harvested. Total RNA was isolated using 
Trizol and reverse transcribed to cDNA.  Gene expression was measured by real-time qRT-
PCR where 18S was used as an endogenous control. Assays were repeated 3 times. At least 
triplicate samples were measured at each time. Means ± standard errors are presented. 
Difference in expression between each time point against control (t=0) was calculated by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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Figure 4: The expression of the miR-29 family in ATDC5 model  

The embryonic carcinoma cell line ATDC5 was stimulated to from chondrocytes using 
insulin for 42 days. Total RNA was isolated, reverse transcribed to cDNA and used for 
miRNA microarray.  
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Figure 5: Expression of the miR-29 family was not controlled by Wnt3a  
 SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were serum starved for 24 hours before treating with Wnt3a or vehicle 
(0.5% (w/v) BSA) across 24 hour course.   

Relative expression of the precursor miR-29a and axin2 was measured by quantitative RT-
PCR. 18S rRNA was the endogenous control for measuring the precursor transcripts. Open 
bar, control; close bar, WNT3a. (A) Expression level of axin2. (B) Expression level of 
precursor miR-29a. Means ± standard errors are presented. The difference between the 
treatment and the control was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, n=3. 
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Figure 6: Wnt3a does not control the expression from the primary miR-29a/b1 promoter  

The pri-miR-29a/b1 promoter-reporter (100ng) or the empty vector pGL4 (control, 100ng) 
were transfected into SW1353 cells. After transfection, cells were serum starved for 24 hours, 
followed by stimulating for another 6 hours with WNT3a (100ng/ml), or vehicle (0.5% BSA) 
before measuring luciferase activity. Renilla was use as endogenous control. Open bar: 
vehicle, black bar: Wnt3a. Means ± standard errors are presented, n=3. The difference of 
luciferase activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, 
*** p<0.00. 
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Figure 7 The miR-29 family suppress TGFββββ signalling pathway 

(A) The TGFβ signalling reporter (CAGA12-luc) contains 12 binding sites of the Smad2/3/4 
(GAGAC) binding consensus upstream of the firely luciferase-encoding gene in pGL3100ng 
CAGA12-luc vector, and 10ng Renilla vector were co-transfected with either miR-29 family 
mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-targeting 
control (50nM) was also used as the negative control. 24 hours after transfection, cells were 
serum starved for another 24 hours, followed by treatment with TGFβ3 (4ng/ml) for another 
6 hours before measuring luciferase activity. Renilla is the loading control for luciferase 
assay. Open bar: non – treatment control, close bar: TGFβ3 treatment. Means ± standard 
errors are presented, n=6. The difference of luciferase activity was analysed by Student’s 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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Figure 8 The miR-29 family does not target some of its putative targets at mRNA level  
Human primary chondrocytes was cultured in media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were then transfected with either miR-29b mimic (50nM) or non – 
targeting control (50nM) for 48 hours. Total RNA was isolated and the expression levels of 
GOI were measured by qRT-PCR. 18S rRNA was the housekeeping control. Relative 
expression value of each of these genes was normalized to non – targeting control. Means ± 
standard errors are presented, n=3. The difference in expression between miR-29b 
overexpression and non – targeting control was analysed by Student’s unpaired two-tailed t 
test. * p<0.05, ** p < 0.01, ***, p<0.001 
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ABSTRACT 

MicroRNAs are short endogenous non-coding RNA molecules, typically 19-25 

nucleotides in length, which negatively regulate gene expression.  In osteoarthritis (OA), 

several genes necessary for cartilage homeostasis are aberrantly expressed, with a number 

of miRNAs implicated in this process. However, our knowledge of the earliest stages of 

OA, prior to the onset of irreversible changes, remains limited. The purpose of this study 

was to identify miRNAs involved across the time-course of OA using both a murine model 

and human cartilage, and to define their function.   

Expression profile of miRNAs (Exiqon) and mRNAs (Illumina) on total RNA purified 

from whole knee joints taken from mice which underwent destabilisation of the medial 

meniscus (DMM) surgery at day 1, 3 and 7 post-surgery showed: the miRNA expression 

in whole mouse joints post DMM surgery increased over 7 days; at day 1 and 3, the 

expression of only 4 miRNAs altered significantly; at day 7, 19 miRNAs were upregulated 

and 15 downregulated. Among the modulated miRNAs, the miR-29b was the most 

interesting and was chosen to further investigate since integrating analysis of the miRNA 

and mRNA expression array data showed the inverse correlation between miR-29b and its 

potential targets.  In end-stage human OA cartilage and in murine injury model, the miR-

29 family was found to increase expression. Moreover, the miR-29 family was found to be 

the negative regulator in both human and murine chondrogenesis, and was also found to 

involve in murine limb development. Expression of the miR-29 family was found to 

suppress by SOX9 at least in part through directly binding to the promoter of the primary 

miR-29a/b1. Also, TGFβ1/3 decreased expression of the miR-29 family whilst Wnt3a did 

not have any effect. Lipopolysaccharide suppressed the miR-29 family expression in part 

through NFκB signalling pathway while the IL-1 strongly induced its expression partly 

through P38 MAKP signalling. Using luciferase reporter assay, the miR-29 family was 

showed to suppress the TGFβ, NFκB, and WNT/β-catenin signalling pathways. Gene 

expression profiles of gain- and-loss-of-function revealed regulation of a large number of 

previously recognised extracellular matrix-associated genes as well as an additional subset 

of protease and Wnt signalling pathway-related genes.  Among these genes, ADAMTS6, 

ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19, FZD3, DVL3, FRAT2, CK2A2 were 

experimentally validated as direct targets of the miR-29 family.   
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CHAPTER 1 
INTRODUCTION  

 

1.1. Synovial joints  

In mammals, joints are functionally classified into 3 categories: synarthroses (immovable 

joints), amphiarthroses (slightly movable joints), and diarthroses (freely movable joints).  

Most of the main joints of the appendicular skeleton are synovial joints, suggesting this 

type of joint has a crucial role in the body. The main component of synovial joints includes 

the hyaline cartilage, also known as articular cartilage, covering the bone of the synovial 

joint providing the cartilage lubricating and shock absorbing characteristics; a capsule 

enclosing the joint in line with synovial membrane which contains synovial membrane-

resident cells secreting synovial fluid into the synovial cavity helping reduce friction, 

enabling free movement; bones, further held together by ligaments. The characteristics of 

some important components of the synovial joint relevant to this PhD thesis are described 

below.  

1.1.1. Articular cartilage biology  

Articular cartilage, a highly specialized tissue with unique mechanical behaviour, consists 

of (i) chondrocytes, the only cells, responsible for the homeostasis of extracellular matrix 

(ECM), and (ii)  a dense layer of ECM composed primarily of water, collagen and 

proteoglycan.   

1.1.1.1 Cartilage structural organization 

Healthy articular cartilage comprises four different areas: the superficial, intermediate, 

radial or deep, and calcified zones (Buckwalter et al. 2005, Dudhia 2005, Pearle et al. 

2005, Aigner et al. 2006, Martel-Pelletier et al. 2008, Umlauf et al. 2010, Houard et al. 

2013) (Figure 1.0). Each is characterized by a particular chondrocyte phenotype, and by 

distinctive extracellular matrix organization and composition (Buckwalter et al. 2005).  

The superficial zone, the articulating surface and the thinnest of the four, makes up 10%-

20% of articular cartilage thickness (Buckwalter et al. 2005, Pearle et al. 2005). This 
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region contains a high amount of collagen (primary type II, and IX) but very low amount 

of proteoglycan. The collagen fibrils are densely packed and aligned paralleled to the 

articular surface. Chondrocytes in this layer are characterized by an elongated appearance 

(Pearle et al. 2005), express many proteins having lubricating and protective functions (e.g. 

lubricin) but relatively little proteoglycan. This zone is in contact with synovial fluid, and 

is responsible for most of the tensile properties of cartilage that enable cartilage to resist 

shear and the tensile and compressive forces imposed by the movement of the articulation 

(Martel-Pelletier et al. 2008).  

 

 

Figure 1.0: Histology of a healthy cartilage structural  

The articular cartilage is organized into superficial, intermediate, radial, and calcified 
zones. Each zone can be distinguished by the difference in chondrocyte morphologies and 
components of collagen, proteoglycan, mineral and water 

 

The intermediate and the radial zones contain large diameter collagen fibrils oriented 

perpendicular to the articular surface. These regions also have high amount of 

proteoglycan which is mainly aggrecan, a large chondroitin sulphate proteoglycan. 

Chondrocytes in the middle zone are more round than in the superficial zone. In the radial 

zone, the cells are arranged in columnar fashion (Buckwalter et al. 2005).  



 

 

19 

 

The tide mark, a thin line revealed after hematoxylin staining, marks the mineralization 

front between the calcified and non-calcified articular cartilage (Houard et al. 2013). In the 

calcified cartilage zone, the cell population is very scarce and chondrocytes are 

hypertrophic (Pearle et al. 2005, Martel-Pelletier et al. 2008). With aging, bloods vessels 

and nerves can be seen in calcified cartilage arising from the subchondral bones (Lane et al. 

1977). The main function of this zone seems to be to anchor the cartilage to the bone as 

collagen fibrils from the radial zone penetrate into the calcified cartilage.  

Furthermore, it is noteworthy to know that for mechanical protection purposes, in articular 

cartilage, the chondrocyte is surrounded by a pericellular matrix and a territorial cartilage 

matrix forming a capsule-like structure around the cells. Whilst the pericellular matrix is 

made of a thin layer of non-fibrillar material, which most likely represents the synthetic 

products of the chondrocytes, such as proteoglycans and glycoproteins, the pericellular 

matrix also contains a dense meshwork of thin collagen fibers (see below) (Dudhia 2005, 

Aigner et al. 2006, Martel-Pelletier et al. 2008, Heinegard et al. 2011).  

1.1.1.2 Biology of chondrocytes  

As mention above, chondrocytes are the only cellular components of articular cartilage, 

make up 5% of the wet weight of articular cartilage, and are surrounded by a pericellular 

matrix containing type VI collagen, microfibrils, hyaluronic acid, biglycan, and decorin 

but little or no type II collagen (Buckwalter et al. 2005, Dudhia 2005, Heinegard and 

Saxne 2011). The arrangement of chondrocytes and articular cartilage specific organisation 

result from a complex development process called endochondral ossification including 

four steps e.g. chondrogenesis, chondrocyte differentiation and hypertrophy, 

mineralization and invasion of bone cells, and finally the formation of bone (DeLise et al. 

2000, Goldring et al. 2006, Goldring 2012). Chondrocytes arise from mesenchymal 

progenitors as a result of chondrogenesis started with the condensation of mesenchymal 

stem cell (expressing collagens I, III and V), and followed by the differentiation of 

chondroprogenitor cell (expressing cartilage-specific collagens II, IX and XI) (Goldring et 

al. 2006). After chondrogenesis, the chondrocytes remain as resting cells to form the 

articular cartilage or undergo proliferation, terminal differentiation to chondrocyte 

hypertrophy, and apoptosis. 
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There are no blood vessels in articular cartilage, thus the cells rely on diffusion from 

articular surface or subchondral bone for nutrients and metabolites. Importantly, the 

oxygen level in the cartilage matrix is quite low, ranging from 10% at the surface to less 

than 1% in the deep zone (Silver 1975), suggesting the cells have to adapt to this low 

oxygen level. The mechanisms of this adaption remain unclear but some published data 

reported the involvement of hypoxia inducible factor -1 alpha (HF-1α) (Schipani et al. 

2001, Pfander et al. 2003). Hipoxia via HIF-1α can stimulate chondrocytes to express a 

number of genes associated with cartilage anabolism and chondrocyte differentiation like 

SOX9, TGFβ (Amarilio et al. 2007).  

1.1.1.3 Biology of cartilage extracellular matrix  

Together with chondrocytes, extracellular matrix (ECM) produced by these cells is among 

the main components of articular cartilage and its integrity is critical for the cartilage 

biochemical properties and joint physical function.  

About structure, the ECM in articular cartilage is organized into pericellular, territorial, 

interterritorial zones, each of which is represented at specific distance from the 

chondrocytes (Dudhia 2005, Heinegard and Saxne 2011) (Figure 1.1). 
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Figure 1.1: Molecular organisation of normal articular cartila ge. 

The cartilage matrix surrounding chondrocytes in healthy articular cartilage is arranged 
into zones defined by their distance from the cell. Pericellular matrix lies immediately 
around the cell and is the zone where molecules that interact with cell surface receptors are 
located. Next to the pericellular matrix, slightly further from the cell, lies the territorial 
matrix. At largest distance from the cell is the interterritorial matrix (adapted from 
Heinegard et al, 2011) (Heinegard and Saxne 2011) 

Biochemically, of the ECM, approximately 70% is water (Pearle et al. 2005) , and 30% left 

is solid, of which 5-6% are inorganic compounds (hydroxyapatite), and the remaining 25% 

are organic compounds. Of the organic components, type II collagen constitutes 68% and 

the 32% left is formed by proteoglycan (mainly aggrecan) (Martel-Pelletier et al. 2008). 

The biology of aggrecan and collagen and their functions in articular cartilage are 

described as below. 

1.1.1.3.1 Aggrecan  

Molecules made up of a core protein attached to glycosaminoglycan chain are referred as 

proteoglycan. In articular cartilage, the most abundant proteoglycan is aggrecan, composed 

of chondroitin sulphate chains and keratan sulphate chains with N- and O-linked 

oligosaccharides. Aggrecan has three globular domains (G1, G2 and G3) and three 

extended domains (IGD, KS and CS). The N-terminal G1 domain, responsible for 

aggrecan-hyaluronan interaction, is followed after the signal peptide. The inter-globular 

(IGD) connects G1 and G2 domains, whose functions are unclear. Keratan sulphate 

binding (KS) and chondroitin sulphate (CS) domain lie between G2 and G3 domains 

(Kiani et al. 2002, Dudhia 2005, Martel-Pelletier et al. 2008, Heinegard and Saxne 2011) 

(Figure 1.2). 

 



22 

 

Figure 1.2: Aggrecan structure.  

Aggrecan consists of 3 globular domains (G1, G2, and G3) and an attached GAG chain 
structure. The GAG attachment region is separated into keratin sulphate binding (KS) 
domain and chondroitin sulphate (CS) domain (Adapted from Kiani et al, 2002) (Kiani et 
al. 2002).  

 

The chondroitin sulphate domain is the largest domain of aggrecan and is composed of 

around 100 chondroitin sulphate chains (typically around 2kDa each). Each chain is made 

up of some 50 disaccharides of glucuronic acid and N-acetylgalactosamine, with a sulphate 

group in the 4- or 6- position. The negatively-charge chondroitin sulphate chain accounts 

for the major function of aggrecan as a structural proteoglycan. The function of the keratan 

sulphate domain is not very clear but may be involved in the tissue distribution of aggrecan. 

There are about 30 KS chains, usually of small size (5-15 kDa), attached to the mature 

aggrecan molecule.  

Chondroitin sulphate, keratan sulphate, and the interaction of aggrecan and hyaluronic acid 

are responsible for retaining water the cartilage. The interaction between aggrecan and 

collagen fibrils makes the ECM highly hydrophilic, leading to high resistance to 

compressive mechanical loads (Dudhia 2005, Martel-Pelletier et al. 2008).  

1.1.1.3.2 Collagen  

Collagen fibrils are composed of a protein macromolecular providing cartilage with 

resistance to tension. Collagen type II constitutes 85% total collagen content in the ECM 

of articular cartilage. Apart from type II Collagen, ECM also contains other collagens 

called minor collagens since their concentration is low in comparison with the type II 

collagen. A list of these collagens is provided in Table 1.1.  

All fibril collagens are synthesized in the form of three polypeptide α-chains as a 

procollagen in which each chain has an N-terminal extension and a C-terminal extension. 

The three chains are covalently linked via disulphide bridges in the C-terminal propeptide. 

Following or during secretion of procollagens into the extracellular matrix, the terminal 

propeptides are cleaved off by specific proteinases e.g. ADAMTS-2, ADAMTS-3, 

ADAMTS-14 (cleaves the N-terminal) (Lapiere et al. 1971, Fernandes et al. 2001, Colige 

et al. 2002), and BMP-1 (cleaves the C terminal) (Wermter et al. 2007) to produce the 

mature collagen molecules. The mature collagens then spontaneously self-assemble into 
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cross-striated fibrils in the extracellular matrix. The fibrils are stabilized by covalent cross-

linking (Figure 1.3) 

Collagen molecules then associate on a core of two homologous collagen XI and two 

collagen II molecules to form an outer shell of 10 collagen II molecules of the micro fibril. 

In addition to collagen type II, fibers contain other collagens, particular collagen type IX. 

The collagen network is then stabilized by the formation of covalent crosslinks that link 

the collagen II chains. The links formed are both intra- and inter-molecules, for example, 

between the chains of collagen XI, between collagens e.g. collagen II and collagen IX. 

Many other proteins also have a high affinity for collagens including thrombospondins, 

leucine-rich repeat proteins (biglycan, decorin, fibromodulin, lumican), matrillins, and 

fibronectin. Some of these interactions support fibre formation while others modify the 

collagen fibre surface to provide sites for interactions with neighbouring structures 

(Heinegard and Saxne 2011).  
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Collagen 
types 

Characteristics 

Type IX Located on the surface of type II collagen fibrils; promotes the binding of the fibrils 
to other components of the matrix and to each other; carries a glycosaminoglycan 
chain. 

Type XI Forms the core of the same fibrosis. Regulates the formation and the diameter of 
the fibrils  

Type V Sometimes replaces the type XI collagen in cartilage; included in type I collagen 
fibrils in other tissues. Data on the composition and structure of the third a-chain 
are contradictory  

Type III Small amount are covalently bound to type II collagen  
Type XII Very small amounts are present on the surface of type II collagen  
Type XIV Very small amounts are present on the surface of type II collagen 
Type VI As in other tissue, forms a network of microfibrils. Concentrated mainly in the 

pericellular areas, provides a connection between the chondrocytes and the matrix  
Type X Expressed only by hypertrophic chondrocytes in cartilage areas undergoing 

ossification  
Type XXVII Expressed in cartilage tissue  

Table 1.1 Minor collagen of cartilage tissue (adapt from Omelyanenko et al, 
2014)(Petrovich et al. 2014) 
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Figure 1.3: The formation of the fibrillar collagens  

 

Procollagen is secreted from cells and converted into collagen by removal of the N- and C- 
propeptids by pro-collagen metalloproteinases. This produces mature collagen that 
spontaneously self-assembles into cross-striated fibrils which are stabilized by covalent 
cross-linking. Taken from (Kadler et al, 1996)(Kadler et al. 1996). 
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1.1.2. Synovium 

Synovium is a thin tissue only a few cell layers thick (Fell 1978). The synovium acts as the 

controller for the environment within the joint where nutrients for chondrocytes can pass 

into the synovial cavity. Also, the synovium gives the joint its mechanical properties. The 

synovium can be divided into two compartments e.g. the synovial lining and the sub-lining. 

The synovial lining contains two cell types e.g. type A (macrophage-like cells) clearing 

all excess materials and potential pathogens from the joint, producing and secreting a 

number of enzymes and cytokines and chemokines that mediate tissue damage and 

inflammation in disease; type B synoviocytes, fibroblast like cells, producing the main 

component of synovial fluid, hyaluronan. The synovial sublining consists of connective 

tissue containing blood vessels, fibroblasts, adipocytes, and a limited number of resident 

immune cells, such as macrophage and mast cells (Smith et al. 2003). The synovial fluid 

has crucial role for lubrication of the joint and for transporting nutrients and oxygen to the 

cartilage. 

1.1.3. Bone 

Periarticular bone can be separated into distinct anatomic entities e.g. the subchondral 

bone plate, the subchondral trabecular bone, and the bone at the joint margins. The 

subchondral bone plate consists of cortical bone, which is relatively nonporous and poorly 

vascularized. It is separated from the overlying articular cartilage by the zone of calcified 

cartilage.  

Bone is a very dynamic tissue with constantly undergoing remodelling in which bone 

resorption is normally followed by new bone formation. The primary cell responsible for 

bone resorption is the osteoclast, a specialized multinucleated cell of hemopoietic origin 

(Roodman 1999). Bone resorption takes place under a specialized area of the osteoclast 

cell membrane called “ruffled border,” which comprises a sealed lysosomal compartment 

where the acidic pH solubilizes the mineral and proteolytic enzymes digest the matrix.  On 

the contrary, osteoblasts, the bone forming cells, originally from MSCs committed to 

osteoblastic lineage. Osteoblasts synthesize and secrete most of the proteins of the bone 

matrix, including type I collagen and non-collagenous proteins (Caetano-Lopes et al. 

2007). In normal physiological condition, the amount of bone removed during the 

resorption and formation phases is balanced such that bone mass is maintained.  
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1.2. Osteoarthritis  

Osteoarthritis (OA) is defined by the American College of Rheumatology as a 

“heterogeneous group of conditions that lead to joint symptoms and signs which are 

associated with defective integrity of articular cartilage, in addition to related changes in 

the underlying bone at the joint margins’’.  

There are more than 100 types of arthritis. However, OA or degenerative joint disease is 

the most common type. From a clinical point of view, OA can be classified into two 

categories e.g. primary  which refers to its occurrence not related to any prior condition or 

event which is also referred as idiopathic, and secondary which refers to the development 

of the disease after trauma or pre-existing condition.   

The disease most commonly affects the middle-age and elderly, although it may begin 

earlier as result of injury, obesity or congenitally. As a greater proportion of the population 

is old aged and with increasing obesity, OA will have a great impact on society in the 

future with enormous socioeconomic costs.  

1.2.1. Osteoarthritis pathology 

It is now considered that OA is a disease of the whole joint as an organ resulting in “joint 

failure” where all major components of the joint e.g. the cartilage, the synovium, and the 

underlying bone are affected (Loeser et al. 2012). The pathologic changes seen in OA 

include cartilage destruction, fibrosis of the synovial capsule, hyperplasia of the synovial 

membrane, osteophyte formation, the subchondral bone thickening (Figure 1.4) (Aigner et 

al. 2006, Loeser et al. 2012). These changes result from an incompletely understood series 

of functional events. 
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Figure 1.4: Overview of the pathologic changes associated with OA. 

In a normal joint, the subchondral bone is covered by a thick layer of articular cartilage 
and the joint is enclosed in a capsule where the synovial membrane lies. In an OA joint, 
articular cartilage is destroyed, the subchondral bone is remodelled (thickens), the synovial 
capsule is fibrosed and osteophytes are formed (reprinted from Aigner et al, 2006) (Aigner 
et al. 2006) 
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1.2.1.1.Articular cartilage destruction in osteoarthritis  

Biochemical, genetic factors, and mechanical stress contribute to the OA lesion in cartilage, 

leading to articular cartilage degradation, and chondrocyte metabolism disorders as a 

consequence. Articular cartilage degeneration is a two phase process controlled mainly by 

chondrocytes e.g. a short biosynthesis phase where the cells attempt to repair the damaged 

ECM, followed by the degenerative phase, where the cells destroy the articular cartilage by 

increasing the synthesis of matrix degradating proteinases and decreasing their synthesis of 

matrix components, in particular of aggrecan. Besides changes in synthesis and 

degradation, other aberrant behaviours in cell proliferation and death, and phenotypic 

modulation are also observed in OA chondrocytes (Sandell et al. 2001).  

Contrary to normal chondrocytes with no proliferative activity, OA chondrocytes have a 

low proliferative activity (Meachim et al. 1962, Rothwell et al. 1973, Lee et al. 1993), 

explained in part due to the better access to proliferation factors from the synovial fluid as 

well as due to the damage of the ECM (Meachim and Collins 1962, Lee et al. 1993), 

subsequently causing chondrocyte clustering, a characteristic feature of OA cartilage. 

Chondrocyte death, caused by apoptosis, necrosis, or other cell death mechanisms such as 

chondroptosis, is another known feature of OA.  Many studies have demonstrated the 

significant correlations between chondrocyte death and severity of OA and aging. These 

changes are associated with the production of reactive oxygen species, a lack of growth 

factors, release of glycosaminoglycan and mechanical injury. However, which of these 

types of cell death predominate in OA is debatable. The detection of specific form of cell 

death in articular cartilage is difficult in which current gold standard for detecting 

chondrocyte death is electron microscopy which suggests that the morphological changes 

of chondrocytes in OA cartilage are attributed to apoptosis and / or chondroptosis.  

Chondrocyte death by apoptosis has been reported play an important role: normal cartilage 

explants or chondrocyte culture exposed to nitric oxide, collagenase, anti CD-59, or 

mechanical factors e.g. shear strain, loading strain induced apoptosis; cartilage from 

equine joints have shown that chondrocyte apoptosis is positively correlated with early 

stages of OA and severity of cartilage damage (Zamli et al. 2011).  
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When the damage occurs, the chondrocytes attempt to repair the damaged matrix by 

increasing their anabolic activity to enhance ECM synthesis. However, a net loss of ECM 

content is one of the hallmarks of all stages of OA, suggesting the dominance of ECM 

degradation over the synthesis. This is characterized by the increase in expression and 

activation of matrix-degrading enzymes e.g. matrix metalloproteinase (MMPs) and 

aggrecanases (from the ADAMTS family) (Buckwalter et al. 2005, Pearle et al. 2005, 

Aigner et al. 2006, Umlauf et al. 2010, Loeser et al. 2012). The MMPs, belonging to a 

family of zinc-dependent proteases, show activation correlating with cartilage degradation. 

Among these, the groups of collagenases 1, 2, 3 (MMP-1, MMP-8, and MMP-13, 

respectively), stromelysins (MMP-3, MMP-10, MMP-11) and gelatinases (MMP-2, MMP-

9) have the highest impact on OA cartilage breakdown (Burrage et al. 2006). The MMP-1, 

MMP-8 and MMP-13 which cleave native fibrillar collagen, contribute to the pathological 

cleavage of collagen fibrils in OA (Burrage et al. 2006). Of the collagenase group, MMP-

13 is deemed to be responsible for most of the collagen II breakdown whilst MMP-1 

cleaves type II collagen stronger than MMP-8 (Billinghurst et al. 1997) has a pivotal role 

for collagen cleavage in OA (Knauper et al. 1996). In addition to collagenases, others 

MMPs degrading non-collagen have also been shown to be elevated in OA cartilage e.g. 

the gelatinases (which cleave denatured collagen, gelatin, type V collagen) and the 

stromelysins (having substrate preference for proteoglycans, elastin, laminin, fibronectin) 

(Umlauf et al. 2010) The aggrecanases (the ADAMTS family), are also of particular 

importance in cartilage turnover, and have activity against the proteoglycan aggrecan. Of 

all ADAMTS members, ADAMTS-4 and ADAMTS-5 are most active against aggrecan 

(Arner 2002). ADAMTS-5 is constitutively expressed in chondrocytes whereas 

ADAMTS-4 expression is stimulated by proinflammatory cytokines IL-1β, and TNF-α 

(Umlauf et al. 2010) (Tortorella et al. 2001). In vitro studies with human cartilage show 

that both ADAMTS-4 and ADAMTS-5 contribute to ECM breakdown during the disease 

progression even though human recombinant ADAMTS-5 has higher rate of aggrecan 

cleavage than ADAMTS-4 (Song et al. 2007). In mice, ADAMTS-5 has been shown to be 

the major aggrecanase, by studies with ADAMTS-4 and ADAMTS-5 knockout mice in 

which only ADAMTS-5 deficiency prevented the mice from cartilage degradation in both 

inflammatory and a joint-instability model of arthritis (Glasson et al. 2005, Stanton et al. 

2005) .  
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As mentioned above, despite the attempt at repairing the ECM, the damage to the cartilage 

becomes irreversible because the adult chondrocytes fail in regenerating the normal 

cartilage matrix structure. This failure could be, in part, attributed to the phenotypic 

alteration of chondrocytes. Chondrocyte phenotypes are categorized largely by subtyping 

collagen expression e.g. chondroprogenitor cells express type IIA procollagen. The 

alternative splice variant) (Sandell et al. 1991), mature chondrocytes are marked by 

expressing type IIB procollagen, IX, and XI, aggrecan and link protein (Sandell and 

Aigner 2001), and hypertrophic chondrocytes express type X collagen (Schmid et al. 

1985). In OA cartilage degeneration, an important proportion of adult articular cartilage 

chondrocytes, found mostly in the middle zone, re-expressed type IIA procollagen 

(chondroprogenitor cells) in both early and late OA stages (Sandell and Aigner 2001). 

Cells in the upper middle zone mainly express type III collagen which is a fibroblast-like 

phenotype. This phenotype is normally observed in vitro, where the chondrocyte 

phenotypes are modulated through so-called “dedifferentiation” process by several factors 

like retinoic acid or IL-1. Dedifferentiated chondrocytes are still very active, express 

collagen types I, III and V but stop expressing aggrecan and collagen type II (Sandell and 

Aigner 2001). In the deepest zone of OA cartilage, the cells start to express type X 

collagen, specific marker for hypertrophy of growth-plate chondrocytes (Girkontaite et al. 

1996). Indeed, the hypertrophic chondrocytes in OA cartilage and in the growth-plate 

share similarities and the subsequent functional event associated with hypertrophic 

differentiation is cartilage mineralization which is also a feature of OA. However, the 

mechanism involved in pathological cartilage calcification during OA is not completely 

understood.  

 

1.2.1.2. Synovium in osteoarthritis  

Inflammation of the synovial membrane (synovitis) is identified in many OA patients 

despite lower severity and greater variability as compared to rheumatoid arthritis. It is 

reported that synovitis can occur even in early stages of the disease (Benito et al. 2005). 

Synovitis is associated with symptoms such as pain, the degree of joint dysfunction, the 

rapid degeneration of cartilage, and is characterized by the thickening of the synovial 

lining layer, leukocyte infiltration, and thickening of the sub-lining stroma. The 
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mechanisms underlying the development of synovitis in OA remain unclear. It is however 

well known that this inflammatory process is triggered by ECM degradation products, 

which engage Toll-like receptors and the complement cascade (Scanzello et al. 2012). 

Noteworthy, the synovial reaction may produce a variety of cytokines and chemokines, in 

turn affecting catabolism of chondrocytes (Scanzello and Goldring 2012).  

 Of all cell types in the inflamed OA synovium, the macrophages are among the most 

abundant and depletion of synovial macrophages has been shown to result in decreased 

osteophyte formation, and IL-1, TNF-α, IL-6, IL-8, MMP-1, MMP-3 production 

(Bondeson et al. 2010). Natural killer cells and dendritic cells are also reported to present 

in synovial tissue. However, the role of both of them in OA pathogenesis has not yet been 

elucidated in detail.  

1.2.1.3. Subchondral bone in osteoarthritis  

Articular cartilage helps to distribute load across the whole joint surface. Any alteration in 

the properties of cartilage leads to alter load experience by the underlying bone and 

probably causes a tissue remodelling response. The properties of bone might also modulate 

how the overlying cartilage reacts to load. 

Although OA is often characterized as a disease of articular cartilage, the alteration of 

bone metabolism is increasingly recognised as a mediator of pain and OA progression. 

Subchondral bone consists of a dome-like subchondral plate and underlying trabeculae, 

having a close biomechanical and biochemical relationship with the overlying cartilage. 

Strong evidence associates subchondral bone alterations with cartilage damage and loss in 

OA (Karsdal et al. 2014). However, there is still an incomplete understanding of the 

mechanisms for the numerous pathophysiological alterations detected in subchondral bone 

with OA.  

The pathological cascade may be started when the normal subchondral bone suffers from a 

non-physiological strain. In early-stage OA, the subchondral plate becomes thinner and 

more porous, together with initial cartilage degeneration.  Subchondral trabecular bone 

also deteriorates, with increased separation and thinner trabeculae. At the same time, 

microdamage begins to appear in both calcified cartilage and subchondral bone, which will 

persist throughout the whole pathological process. In late-stage OA, calcified cartilage and 

the subchondral plate become thicker, with duplicated tidemarks and progressive non-

calcified cartilage damage.  Subchondral trabecular bone becomes sclerotic (Li et al. 2013). 
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The sclerosis of periarticular mineralized tissues may be a biomechanical compensational 

adaption to the widespread cysts and microdamage in subchondral bone, which render 

subchondral bone structure more fragile (Figure 1.5).  

Despite increased bone volume density in the sclerotic subchondral bone, its 

mineralization is reduced and lower than in normal joints. Although collagen synthesis is 

elevated in subchondral bone, the deposited collagen is hypomineralized and has a 

markedly reduced calcium-to-collagen ratio [42].  

 

Figure 1.5: Alteration in subchonral bone in Osteoarthritis  

In early stage of OA, subchondral microdamage occurs, the subchondral plate is thinner 
with increased porosity, and subchondral trabeculae are deteriorated. At OA later stage, the 
calcified cartilage and subchondral plate is thicker, with reduplicated tidemarks. 
Subchondral trabecular bone becomes sclerotic (adapted from Li et al, 2013)(Li et al. 2013) 
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1.2.1.4. Osteophytes 

Osteophytes, considered as an adaptation to the altered biomechanics, are non-neoplastic 

osteo-cartilaginous protrusions growing at the margins of OA joints, and represent areas of 

new cartilage and bone formation. Osteophytes limit joint movement, represent a source of 

joint pain, and are a radiographic hallmark of OA. However, it is noteworthy that when 

osteophytes appear in the absence of other bony changes, e.g. subchondral cysts or 

subchondral sclerosis, they may be a manifestation of aging, rather than of OA. 

Osteophytes derive from precursor cells within periosteal or synovial tissue (van der Kraan 

et al. 2007) but the initial stimuli for osteophyte formation remains unclear, probably 

involving both mechanical and humoral factors as repeated injections of mouse joints with 

TGFβ or BMP induced or enhanced osteophyte formation in animals with experimentally 

induced OA (van Beuningen et al. 1998).  

Osteophytes are composed of cells that express type I procollagen mRNA, mesenchymal 

prechondrocytes that express type IIA procollagen mRNA, and maturing chondrocytes that 

express type IIB procollagen mRNA. Based on the spatial pattern of gene expression and 

cytomorphology, the neochondrogenesis associated with osteophyte formation closely 

resembles that of healing fracture callus (Matyas et al. 1997) and is also similar to the 

growth plate. Thus, osteophytes may represent an excellent in vivo model for induced 

cartilage repair processes. 

1.2.2. Anabolic and catabolic signalling in OA  

Anabolic and catabolic activation are largely the result of exposing cells to various 

cytokines and growth factors e.g. TGFβ, BMPs, IGF-1, TNF-α, IL-1β, Wnt3a. In OA 

cartilage, the catabolic and anabolic equilibrium is broken and favours the activation of 

catabolic pathways or mechanisms leading to matrix degradation.  

1.2.2.1.Anabolic signalling in OA 

As previously mentioned, the early phase of the response to mechanical injury is 

characterized by the attempt to repair the damage matrix by increasing the anabolic 

activity of chondrocytes, enhancing synthesis of extracellular matrix components. This is 

facilitated by enhancing levels of anabolic factors e.g. TGFβ, FGF, and BMPs, and Wnt.  

1.2.2.1.1. TGFβ signalling  
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The TGFβ family, consisting of over 35 members including TGFβ and BMPs, has been 

widely known to play a crucial role in the development and homeostasis of various tissues. 

Activated TGFβ (TGFβ-1, -2, -3) binds to their two receptor complex, TGFβ-R1 and 

TGFβ-RII and phosphorylates members of the receptor-specific Smad family, Smad2 and 

Smad3. Upon phosphorylation, Smad2/3 subsequently forms a complex with the common 

mediator Smad4. This complex then translocates into the nucleus where it can act as a 

transcription factor. Unlike TGFβ-1, -2, -3 which signal via Smad2/3/4, BMPs transduce 

their signal through Smad-1, -5 and -8 (Miyazawa et al. 2002, Verrecchia et al. 2002).  

Members of the TGFβ family are considered potent mediators of cartilage matrix synthesis, 

in which they up-regulate the expression of several types of collagens and proteoglycan 

but down-regulate cartilage degrading enzymes (Verrecchia et al. 2001, Verrecchia and 

Mauviel 2002). Despite such promising data, therapeutic studies with TGFβ revealed 

major side effects e.g. injection or adenovirus–mediated delivery of TGFβ1 into normal 

murine knee joint resulted in joint fibrosis and osteophyte formation (van Beuningen et al. 

1998) .  

1.2.2.1.2. Wnt signalling 

The human Wnt family includes 19 members which mostly exert their function by binding 

to Frizzled (FZD) receptor proteins and LRP-5/6 co-receptor proteins, in turn activating 

several signal transduction pathways e.g. canonical, and non-canonical signalling 

pathways. In the canonical Wnt pathway, most β-catenin in the cytoplasm is sequestered 

and targeted for proteasome-mediated degradation within a multi-protein complex of 

casein kinase, axin, the adenomatous polyposis coli tumour suppressor protein (APC) and 

glycogen synthase kinase 3β (GSK3β). With the presence of appropriate Wnt ligands, 

signalling through the Frizzled receptors inhibits this degradation process, and thereby 

leads to β-catenin accumulation and translocation into the nucleus (Clevers 2006). Within 

the nucleus, it acts in concert with Tcf/Lef transcription factors to generate a 

transcriptionally active complex that regulates a number of genes e.g. MYC, cyclin D1, 

MMP3 and CD44, E-cadherin, MMP7, MMP26(Dell'accio et al. 2008, Umlauf et al. 2010). 

In contrast to the canonical pathway, non-canonical Wnt signalling is mostly a β-catenin 

independent mechanism like the Wnt/calcium and Wnt/JNK pathways in vertebrates and 

the Wnt/planar cell polarity pathway (PCP) in flies (Willert et al. 2006). In addition, there 
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are some natural extracellular inhibitory factors for Wnt signalling. One of the best 

characterized families is the Dickkopf (Dkk) family which bind to LRP-5/6 and antagonize 

the canonical pathway. Other antagonists are the secreted frizzled-related protein (sFRP) 

family which bind directly to Wnt ligands and inhibiting both canonical and non-canonical 

Wnt pathways (Kawano et al. 2003).  

A number of published data provide evidence of the critical role of Wnt signalling in OA 

development. Direct evidences come from animal model studies where β-catenin is 

conditionally activated or inhibited in articular cartilage chondrocyte of adult mice (Zhu et 

al. 2008, Zhu et al. 2009). Mice with β-catenin activated had OA-like cartilage 

degradation, osteophyte formation, associated with accelerated chondrocyte maturation 

and MMP13 expression (Zhu et al. 2009). Similarly, selective suppression of β-catenin 

signalling in Col2a1-ICAT (inhibitor of β-catenin and TCF) transgenic mice also causes 

OA-like cartilage degradation(Zhu et al. 2008). In line with these reports, in vitro culture 

of human primary chondrocyte, either activation or blockade of β-catenin signalling all 

resulted in cartilage loss (Nalesso et al. 2011).  These data suggest that balanced β-catenin 

levels are essential for maintaining homeostasis of articular chondrocytes and that any 

factors impairing this balance could lead to pathological changes. Moreover, LRP5 is 

located in chromosome 11q12-13, which is thought to be an OA susceptibility locus. 

LRP5-/- mice displayed increased cartilage degradation, probably due to low bone mass 

density (Lodewyckx et al. 2012). Another study in a mouse OA model also demonstrated 

that control of Dkk1 expression, a negative regulator of β-catenin/Wnt signalling, prevents 

joint cartilage deterioration in OA knees through attenuating the apoptosis regulator Bax, 

MMP3 and RANKL (Weng et al. 2010). Also, the inhibition of Dkk1, has been reported to 

be able to reverse the bone-destructive characteristics of rheumatoid arthritis to the bone-

forming characteristics of OA (Diarra et al. 2007). This evidence further supports the 

crucial role of β-catenin/Wnt signalling in OA. Wnt signalling is also reported to function 

as an OA initiation factor e.g. a down-regulation of Wnt antagonist FRZB and an up-

regulation of the ligand Wnt16 and target genes encoding β-catenin, Axin-2, C-JUN and 

LEF-1 was observed in mouse model of mechanical injury, a major cause of OA; 

expression of WNT1-inducible signalling protein (WISP-1) was also increased twofold in 

cartilage lesions compared to healthy intact cartilage (Blom et al. 2009).  
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Human studies also observed the critical role of WNT signalling in OA development. A 

loss-of-function allelic Arg200Trp and Arg324Gly Frzb variants, encoding sFRP-3, a β-

catenin/Wnt signalling inhibitor, contributed to genetic susceptibility of women to hip OA 

(Loughlin et al. 2004, Lane et al. 2006). Given the close relationship between bone shape 

and OA development, Baker-Lepain et al proposed that SNPs in Frzb are associated with 

the shape of proximal femur and further contribute to hip OA development (Baker-Lepain 

et al. 2012). Moreover, the Frzb knockout mice increased articular cartilage loss during 

arthritis triggered and this damage was associated with increased WNT signalling and 

MMP-3 expression and activity. Also, the FRZB deficiency resulted in the cortical bone 

thickness and density with stiffer bones (Lories et al. 2007). 

1.2.2.2. Catabolic signalling in OA 

Opposing the anabolic effects of growth factors are pro-inflammatory cytokines and a 

variety of mediators associated with inflammation e.g. NO, prostaglandins, IL-1β, TNF-α, 

IL-6, IL-8 These factors are first produced by the synovial membrane and diffuse into the 

cartilage through synovial fluid, together with activate chondrocytes which also have the 

capacity to produce a variety of cytokines and mediators, responsible for functional 

alterations in the synovium, the cartilage, and the subchondral bone. Their role in OA has 

attracted considerable attention.   

Of pro-inflammatory cytokines, IL-1β, TNF-α seem prominent and of major importance to 

cartilage destruction. The biologic activation of cells by IL-1 is mediated through the 

association with its specific receptors e.g. type I and II IL-1R. Especially, the type I IL-1R, 

responsible for signal transduction, was found to increase in OA chondrocytes and 

synovial fibroblasts. IL-1β is a critical mediator, and stimulation of chondrocytes by IL-1β 

causes gene expression patterns similar to those in OA cartilage (Goldring et al. 1988, 

Lefebvre et al. 1990). IL-1β localizes to the site of cartilage degradation in OA joints, 

providing evidence of its key role in the pathogenesis of OA (Tetlow et al. 2001, Pujol et 

al. 2008). IL-1β was reported to suppress aggrecan and collagen and up-regulate the 

proteolytic enzymes e.g. ADAMTS4 and MMP13 (Goldring 2000, Kobayashi et al. 2005).  

In addition, IL-1β, or IL-1β-converting enzyme knockout mice showed the accelerated 

development of OA lesions in response to OA surgical induced compared to wild type 

mice (Clements et al. 2003).  The blocking effects of IL-1β by IL-1 receptor antagonist 
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(IL-1ra), which is the natural inhibitor of IL-1β by competing with IL-1β for occupancy of 

the IL-1β cell surface receptors but cannot initiate cellular signals protect against the 

development of experimentally induced OA lesions in animal models e.g. dogs, horses 

(Pelletier et al. 1997, Frisbie et al. 2002).  Interestingly, it was reported that the IL-1β 

concentration is low in inflamed joints and a level from 10-1000 fold excess of IL-1ra over 

IL-1β was required to efficiency block all of the available IL-1β  receptors enough to 

inhibit joint degradation (Pelletier et al. 1997). 

1.2.2.2.1. NFκB Signalling  

The transcription factor NFκB is the master regulator of expression of a number of genes 

critical to innate and adaptive immunity, cell proliferation, and inflammation. NFκB is 

held in the cytoplasm in an inactive form associated with the inhibitory κB (IκB) protein. 

A broad range of stimuli, including TNF-α, IL-1β, bacteria and viruses trigger a cascade of 

signalling, leading to release of NFκB from IκB. The activated NFκB will then translocate 

to the nucleus, bind to DNA elements present in its target genes and facilitate their 

transcription.  

Numerous published data support the central role of NFκB signalling in cartilage 

metabolism and development of OA e.g. IκB overexpression in human OA synovial 

fibroblasts resulted in a decrease in expression of IL-6, IL-8, MPC-1/CCL-2, and MMPs 

(Amos et al. 2006) as well as abolishing the IL-1β-induced effect on expression of 

ADAMTS-4 (Bondeson et al. 2007); In a mouse surgically induced OA model, siRNA 

inhibiting NFκB/p65 resulted in reducing the amount of IL-1βand TNF-α in synovial fluid, 

reducing the level of inflammation in the synovium, and decreasing cartilage damage 

(Chen et al. 2008).  

1.2.3. Risk factors for Osteoarthritis  

The pathogenesis of OA is complex and poorly understood but involves the interaction of 

multiple factors ranging from genetic predisposition to mechanical and environmental 

components. Studies are in progress to define the molecular mechanisms involved in 

initiation and progression of OA. 

1.2.3.1.Trauma and altered mechanical load  

Mechanical factors and trauma have a central role in the initiation and propagation of OA: 

Excessive load and trauma which lead to injury of the menisci or ligaments predispose to 
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the development of the disease; the level and nature of the load experienced might also 

influence the progression of joint damage: an acute trauma leading to rupture of the 

meniscus or the cruciate ligaments might precipitate the development of OA. However, the 

differing contributions to this effect of the initial trauma and the ensuing mechanical 

instability have not been clearly delineated; also, in immobilized joints, there is lack of OA: 

further supporting the importance of mechanical triggers in the disease process (Riordan et 

al. 2014).   

After joint trauma, the onset and progression of clinical symptoms differs even among 

groups with the same type of injury and physical activity profile, pointing to the 

involvement of other factors apart from the trauma.  

1.2.3.2. Inflammation 

Histologically, the disease was denominated osteoarthrosis, a term that implied the absence 

of inflammation. However, data acquired using high-sensitivity assays for inflammatory 

markers (such as C-reactive protein) demonstrate that low-grade inflammation is present 

(Pearle et al. 2007). Numerous inflammatory cytokines are found at increased levels in 

joint tissues during the acute post-injury phase, including IL-1, IL-6, IL-17, and TNFα 

(Lee et al. 2009). Inflammation seems to be a very early event in OA since the increase of 

CRP levels precedes the release of other OA indicators or molecular markers of matrix 

breakdown, and is observed well before clinical disease. 

Inflammatory might be of particular importance to the onset and propagation of the 

primary and secondary OA. However, why the inflammation triggered in OA remains 

controversial. It was hypothesized that it was caused by traumatic joint injury or an age – 

related process. Joint injury leads to cartilage degradation and tissue damage. Once 

degraded, cartilage fragments accumulate in the joint and contact the synovium. 

Considered foreign bodies, synovial cells react by producing inflammatory mediators, 

found in synovial fluid. These mediators can activate chondrocytes present in the 

superficial layer of cartilage, which leads to metalloproteinase synthesis and, eventually, 

increase cartilage degradation. Published data support for the hypothesis that inflammation 

was triggered by aging process: advance glycation endproducts (AGEs), produced by a 

non-enzymatic process in aging tissue, weaken cartilage by modifying its mechanical 

properties triggering chondrocyte activation by binding to specific receptors present at the 
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surface of the chondrocytes, called RAGE (receptor for AGEs) lead to an overproduction 

of proinflammatory cytokines and MMPs (Nah et al. 2007); or after a period of vigorous 

proliferation, chondrocyte division rate declines but has high capacity to synthesize soluble 

mediators which in turn induces several inflammatory and pro-degradative mediators.   

1.2.3.3. Obesity  

Obesity is a well known risk factor for the initiation and progression of OA. This 

association is obvious because any overload on a weight – bearing joint would provoke 

tear and wear at the surface of the cartilage.  

The molecular mechanisms explaining why obesity is one of the major risk factors for OA 

(Messier et al. 2005) is not exactly known. It is possible that the excess weight increases 

the load borne by all parts of the joint.  However, the association between overweight and 

OA is not simply a question of increased mechanical load because obesity acts as a risk 

factor for developing hand OA (Grotle et al. 2008). Together with this, published data 

from animal studies: knee cartilage from rabbits fed a high – fat diet showed lower 

glycosaminoglycan content and aggrecan-1 than cartilage from rabbits fed a normal – fat 

diet independently of animal weight (Brunner et al. 2012); OA surgical induced mice fed a 

high – fat diet from 4 weeks of age showed higher OA cartilage degeneration at 8 weeks 

after surgery than those fed a normal diet (Mooney et al. 2011); in mice transgenic for 

human C – reactive protein (CRP) on a high – fat diet, there is a lack of correlation 

between OA severity and body weight (Gierman et al. 2012). 

Many studies suggest that systemic inflammatory mediators contribute to the increased 

risk of OA with obesity. Adipose tissue, especially from the abdomen, is a rich source of 

pro-inflammatory cytokines, which are often referred to as adipokines. Many adipokines 

elevated with obesity have also been shown to mediate synovial tissue inflammation. For 

example, leptin is a 16-kd polypeptide hormone encoded by the obese (ob) gene and is 

primarily secreted by adipocytes. Female C57BL/6J mice with impaired leptin signalling 

are protected from obesity – induced OA, suggesting elevated body fat in the absence of 

leptin signalling is insufficient to induce systemic inflammation and OA (Griffin et al. 

2009).  Leptin has been found to exist at higher concentrations in the synovial fluid 

compared to serum (Presle et al. 2006). Leptin, alone or in synergy with IL-1, induced 

collagen release from bovine cartilage explants and upregulated MMP-1 and MMP-13 

expression in bovine chondrocytes(Hui et al. 2012). 



 

 

41 

 

1.2.3.4. Aging  

Aging is the most important risk factor for OA. After 40 year old, many people will appear 

to have some damage to their joints which may lead to OA, and approximately 50% of 

individuals greater than the age of 65 suffer from OA. The incidence of the disease 

through age has been observed: the prevalence of OA rises from 4% in people under the 

age of 24 to as high as 85% for those at 75-79 years of age. The common justification is 

the long-term effect of mechanical load on all joint components. Also, the regenerative 

capability of cartilage is reduced and cellular apoptosis is enhanced with age (Goldring et 

al. 2007).  

1.2.3.5.Genetic factors 

Evidence from family clustering and twin studies indicates that the risk of OA has an 

inherited component. Genetic factors may influence between 39% and 65% in 

radiographic OA of the hand and knee in OA, about 60% in OA of the hip, and about 70% 

in OA of the spine. Mutations to genes that play a role in the ECM, proteases and 

inhibitors, cytokines, and growth factors have been found to affect one’s susceptibility to 

develop of OA (Sulzbacher 2013). However, the individual effects are relatively small. For 

example, a genome – wide association study showing that the C allele of rs3815148 on chr 

7q22 was associated with a 1.14- fold increased prevalence of knee and/ or hand 

OA(Kerkhof et al. 2010). 

1.3. MicroRNAs in osteoarthritis  

1.3.1. The basic biology of miRNA  

miRNAs are an abundant class of evolutionarily conserved, short (~22nt long), single – 

stranded RNA molecules that have emerged as important post transcriptional regulators of 

gene expression by binding to specific sequences within a target mRNA (Ambros 2004, 

Bartel 2004). To date, 1424 miRNAs have been identified in human cells and each is 

predicted to regulate several target genes (Lim et al. 2005, Kozomara et al. 2011). 

Computational predictions indicate that more than 50% of all human protein – coding 

genes are potentially regulated by miRNAs (Lewis et al. 2005, Friedman et al. 2009). The 

abundance of mature miRNAs varies extensively from as few as ten to more than 80,000 

copies in a single cell, which provides a high degree of flexibility in the regulation of gene 

expression (Chen et al. 2005, Suomi et al. 2008). The regulation exerted by miRNAs is 
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reversible, as feedback/forward regulatory loops have been shown to exert modifying 

effects during translation (Inui et al. 2010) . 

1.3.1.1. MicroRNA discovery  

In 1981, the first miRNA: lin-4 was discovered in Caenorhabditis elegans (Chalfie 1981). 

In the early 1990s, Ambros and Ruvkun revealed that lin-4 controlled a specific step in 

developmental timing in C.elegans by downregulating lin-14 (a conventional protein – 

coding gene) (Chalfie 1981, Lee et al. 1993, Wightman et al. 1993). They recognized that 

the lin-14 3’UTR harbours multiple sites of imperfect complementarity to lin-4 and 

proposed that lin-4 binds to these sites and blocks lin-14 translation.  

Forward genetics also discovered a second miRNA in C.elegans, known as let-7 (Reinhart 

et al. 2000) which targets lin-41 and hbl-1 (Abrahante et al. 2003, Lin et al. 2003). The 

concept of miRNAs then jumped from worms to higher species, since let-7 had well-

known homologues even in human and fly. In 2001, the term “microRNA” was coined for 

this class of non-coding gene regulators (Lagos-Quintana et al. 2001, Lau et al. 2001, Lee 

et al. 2001). The discovery of miRNAs had crossed over to human, and finding miRNA 

targets became a high priority. 

1.3.1.2. MicroRNA biogenesis  

Most of the currently known miRNA sequences are located in introns of protein coding 

genes; a lower percentage of miRNAs originate from exons or non-coding mRNA-like 

regions (Rodriguez et al. 2004). In addition, a significant number of miRNA are found in 

polycistronic units that encode more than one miRNA. The miRNAs within clusters are 

often functionally related (Lagos-Quintana et al. 2001, Lau et al. 2001).  

Despite the obvious differences between the biology of miRNAs and mRNAs, all available 

evidence suggests that these transcripts share common mechanisms of transcriptional 

regulation. Generally, the generation of a miRNA is a multi-step process that starts in the 

nucleus and finishes in the cytoplasm (Lee et al. 2002). First, miRNAs are transcribed by 

the RNA polymerase II complex (Lee et al. 2004) and subsequently capped, 

polyadenylated, and spliced (Cai et al. 2004). Transcription results in a primary miRNA 

transcript (pri-miRNA) that harbors a hairpin structure (Lee et al. 2002, Kim 2005). Within 
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the nucleus, the RNAse II–type molecule Drosha and its cofactor DGCR8 process the pri-

miRNAs into 70- to 100-nt-long pre-miRNA structures (Lee et al. 2003, Han et al. 2004), 

which in turn are exported to the cytoplasm through the nuclear pores by Exportin-5 (Yi et 

al. 2003, Bohnsack et al. 2004, Lund et al. 2004, Zeng et al. 2004). Subsequently, the 

RNAse III-type protein Dicer generates a double stranded short RNA in the cytoplasm that 

consists of the leading – strand miRNA and its complementary sequence (Grishok et al. 

2001, Hutvágner et al. 2001, Ketting et al. 2001, Chendrimada et al. 2005). This duplex 

miRNA is unwound by a helicase into a single stranded short RNA in the cytoplasm and 

the leading strand is incorporated into the argonaute protein (Ago 2)-containing 

ribonucleoprotein complex known as the miRNA-induced silencing complex, mRISC 

(Hammond et al. 2000, Hutvagner et al. 2008, Bossé et al. 2010). During this process, one 

strand of the miRNA duplex is selected as the guide miRNA and remains stably associated 

with mRISC, while the other strand, known as the passenger strand is rapidly removed and 

degraded (Martinez et al. 2002) (Figure 1.5). Selection of the appropriate strand is 

primarily determined by the strength of base pairing at the ends of the miRNA duplex. The 

strand with less-stable base pairing at its 5’ end is usually destined to become the mature 

miRNA (Khvorova et al. 2003, Schwarz et al. 2003, Hutvagner 2005). However, some 

miRNA passenger strands are thought themselves to negatively regulate gene expression. 

One hypothesis is that both strands could be used differently in response to extracellular or 

intracellular cues, to regulate a more diverse set of protein –coding genes as needed, or 

strand selection could be tissue specific (Ro et al. 2007). The mature miRNA guides the 

RISC complex to the 3’UTR of its target miRNA (Lai 2002, Bartel 2009) . The seed 

sequence, comprising nucleotides 2-8 at 5’-end of the mature miRNA, is important for 

binding of the miRNA to its target site in the mRNA (Lewis et al. 2005). Association of 

miRNA with its target results in mRNA cleavage (if sequence complementarity is high) or 

more usually in higher eukaryotes, blockade of translation (Zeng and Cullen 2004) (see 

below). 

In an alternative pathway for miRNA biogenesis, short hairpin introns termed mirtrons are 

spliced and debranched to generate pre-miRNA hairpin mimics (Berezikov et al. 2007, 

Okamura et al. 2007, Ruby et al. 2007, Westholm et al. 2011, Sibley et al. 2012). These 

are then cleaved by Dicer in the cytoplasm and incorporated into typical miRNA silencing 
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complexes (Berezikov et al. 2007, Okamura et al. 2007, Ruby et al. 2007, Westholm and 

Lai 2011, Sibley et al. 2012). The presence of mirtrons may be an evolutionary strategy to 

diversify miRNA-based gene silencing (Lau et al. 2009). 

1.3.1.3. Mechanisms of action of miRNAs 

Mammalian miRNAs often have several isoforms encoded from one or more chromosome, 

suggesting that they are functionally redundant (Heimberg et al. 2008, Kim et al. 2009).  

They may exert variable roles in vivo via differences in their expression pattern and 3’-end 

binding (Ventura et al. 2008).  

Regulation is mainly exerted by the binding of the miRNA to the 3’UTR of the target 

mRNA, but binding to other positions on the target mRNA, e.g. in 5’UTR or coding 

sequence has also been reported (Lytle et al. 2007, Lee et al. 2009, Li et al. 2009). 

Interestingly, miRNA binding sites within the coding region of a transcript are reported as 

less effective at mediating translational repression.  Aside from the location of miRNA 

binding sites, factors including the sequence context of the miRNA binding site, the 

number of target sites within the mRNA, the focal RNA structure, the distance between 

target sites, all contribute to the efficacy of repression mediated by miRNAs (Brennecke et 

al. 2005, Sætrom et al. 2007). 

 The degree of base pairing between the miRNA and its target in the mRISC complex 

determines the fate of the transcript. If there is perfect binding between the miRNA and 

target, the mRNA target is cleaved by Ago2 at the annealing site, with subsequent 

degradation of the mRNA.  In contrast, in cases where the miRNA is only partially 

complementary to its corresponding 3’UTR, inhibition of target mRNA translation occurs 

via Ago1. Repression may be exerted either at the initiation step of mRNA translation in 

which Ago competes with eIF4E or at some stage subsequent to initiation (Kiriakidou et al. 

2007) (Figure 1.6). This is because miRNA-mRISC complex can bind to actively 

translating mRNAs, reducing translational elongation and/ or enhancing termination, 

concomitant with a reduction in ribosome initiation and nascent peptide destablilization 

(Petersen et al. 2006). 
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Interestingly, besides generally promoting mRNA cleavage or translational repression, 

miRNA binding to 3’UTR can also induce translation of some target mRNAs. MicroRNAs 

have been identified which activate translation on cell cycle arrest by directing AGO-

containing protein complexes to AU-rich elements in the 3’UTR (Vasudevan et al. 2007, 

Vasudevan et al. 2007) 
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Figure 1.6: Biogenesis of miRNAs.  

MicroRNAs are transcribed as RNA precursor molecules (pri-miRNA), which are 
processed by Drosha and its cofactor DGCR8 into short hairpin structure (pre-miRNA). 
These are exported into the cytoplasm by Exportin 5, where they are further processed by 
Dicer and TRBP (Dicer-TAR RNA binding protein) into a miRNA duplex. The duplex is 
unwound by a helicase and the “guide” strand is incorporated into the RNA–induced 
silencing complex (RISC) whilst the “passenger” strand undergoes degradation. This 
miRNA-RISC complex acts by two possible mechanisms: (A) Degradation of target 
mRNA occurs when miRNA is near-perfectly complementary with 3’ untranslated region 
of target mRNA; (B) Translation inhibition occurs when miRNA is only partially 
complementary to its target mRNA.  
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1.3.2. MicroRNAs in skeletal development     

It is evident that miRNAs are essential for skeletal development, however, our current 

knowledge of expression and function of specific miRNAs is still limited. Experimentally 

removing the majority of miRNAs by a block in miRNA biogenesis through mutating or 

deleting Dicer, reveals that the miRNA pathway plays a prominent role in skeletal 

development. An excellent example is the conditional knockout of Dicer in limb 

mesenchyme at the early stages of embryonic development, which leads to the formation 

of a much smaller limb. Dicer-null growth plates display a pronounced lack of 

chondrocyte proliferation in conjunction with enhanced differentiation to postmiototic 

hypertrophic chondrocytes; this latter may be explained by Dicer having distinct functional 

effects at different stages of chondrocyte development (Harfe et al. 2005). Recently, 

Kobayashi et al. reported that mice null for Dicer in chondrocytes resulted in skeletal 

growth defects and premature death (Kobayashi et al. 2008), again pointing to essential 

role of miRNAs in skeletal development.  

Further evidence of the important role of miRNAs in skeletogenesis is that some miRNAs 

were found to exhibit bone-specific and cartilage-specific expression in late development. 

Wienholds et al. first provided evidence for miR-140 specifically expressed in cartilage of 

the jaw, head, and fins in zebrafish cartilage during embryonic development (Wienholds et 

al. 2003). Later, Tuddenham et al found that miR-140 is specifically expressed in cartilage 

tissues during mouse embryonic development (Tuddenham et al. 2006). Importantly, 

Miyaki et al and then Nakamura et al reported that universal knockout of miR-140 lead to 

mild dwarfism, probably as a result of impaired chondrocyte proliferation (Miyaki et al. 

2010, Nakamura et al. 2011). Recently, Swingler et al found that miR-455-3p was 

expressed in developing long bones during chick development, restricted to cartilage and 

perichondrium, and in mouse embryos, where expression was selective in long bones and 

joints (Swingler et al. 2011). 

These studies emphasize the importance of the miRNA pathway in skeletal development 

and revealed that some miRNAs are expressed with precise tissue and developmental stage 

specificity. Intensive research will uncover a complete spectrum of skeletally associated 

miRNAs as well as elucidate their biological function.  
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Figure 1.7: An overview of miRNAs involved in chondrogenesis, osteoarthritis and 

their direct and indirect targets                                                                                                                                                                                   
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1.3.3. MicroRNAs in mechanotransduction  

Articular cartilage has the unique capacity to resist significant mechanical loading during 

the lifetime of the organism (Guilak et al. 2001). The surface, middle and deep zones 

within articular cartilage are distinct domains, and they exhibit differential gene expression 

and attendant functional roles (Neu et al. 2007).  

Mechano-responsive miRNAs are being identified in chondrocytes, the sole cell type of 

articular cartilage and evidence that specific miRNAs may impact on stress-related 

articular cartilage mechanotransduction has also been reported.  MicroRNA-365 was the 

first identified mechanically responsive miRNA in chondrocytes, regulating chondrocyte 

differentiation through inhibiting HDAC4 (Guan et al. 2011). MicroRNA-221, miR-222 

were postulated as potential regulators of the articular cartilage mechanotransduction 

pathway, since their expression patterns in bovine articular cartilage are higher in the 

weight-bearing anterior medial condyle as compared with the posterior non-weight-bearing 

medial condyle (Dunn et al. 2009). Recently, Li et al. reported that miR-146a was induced 

by joint instability resulting from medial collateral ligament transection and medial 

meniscal tear in the knee joints of an OA mouse model, suggesting that miR-146a might 

be a regulatory factor of the mechanical transduction process in articular cartilage (Li et al. 

2012). All of these studies are useful for enriching the data on the regulatory mechanism 

for miRNAs in chondrocyte homeostasis. 

1.3.4. MicroRNAs in chondrogenesis  

Differential disruption of the Dicer gene in mice resulting in highly abnormal cartilage 

development suggests miRNAs play a significant role in chondrogenic differentiation. 

Furthermore, many studies profiled the expression of miRNAs to investigate their function 

in differentiating MSCs and showed that once they differentiate into chondrocytes, 

miRNA expression significantly altered (Sorrentino et al. 2008, Suomi et al. 2008, Lin et 

al. 2009, Miyaki et al. 2009, Karlsen et al. 2011, Lin et al. 2011, Yan et al. 2011, Yang et 

al. 2011) (Table1.2). However, there is no consensus expression signature of any miRNAs 

amongst these and we attribute this to the design of experiment including inducers of 

differentiation, cell types, numbers of detected miRNA probes and organism (Table1.2).  
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Table 1.2: Studies performing miRNA profile comparing between MSC and chondrocytes 

 Sorrentino  
et al 
 2007 

Suomi  
et al 
 2008 

Lin  
et al 
 2009 

Miyaki  
et al 
2009 

Yang 
 et al, 
 2010 

Lin  
et al 2011 

Yang  
et al 
2011 

Karlsen  
et al 
 2011 

 

Stimulators - TGF-β3 BMP-2 BMP-2 
TGF-β3 

TGF-β3 - - -  

Cells  BM MSC BM MSC C12C2 BM 
MSC 

BM 
MSC 

DAC BM MSC 
AC 

DAC  

Organisms Human  Mice  - Human Mice Human  Mice Human  
Probes 226  35 - - 7,815 - - 875  
Cutoff(fold) 1.3 - 1.5 1.5  5  4 - -  
Platform microarray qPCR microarray microarray microarray microarray microarray microarray  
miRNAs 
up- 
regulated 

31 
32 
136 
146 
149 
185 
Pre-mir 
192 
199a-2-5 
204 
212 
Pre-mir-212 
Pre-miR- 
214 

24  
101 
124a  
199b 
199a 

199* 
221  
298  
374  
let-7e  
 

15b 
16 
23b  
27b 
140 
148 
197  
222 
328  
505  
 

30a 
81a-1 
99a 
125* 
127 
140 
140* 
Let-7f 
 

26a 
140*  
140  
222 
320a  
320d 
491*  
547-5p 
720 
1308 
let-7d  
let-7f  
let-7a  
 
 

21  
22 
27b 
27a 
140 
140*  
152  
291b* 
 330  
431  
433 
455 
let-7b  
let-7d 
let-7l  

30d  
140*  
210 
451  
563  
 

 

miRNAs 
down 
-regulated 

10a 
10b  
21 
23a 
24-1-3p 
24-2 
26b 
29b 
30a-5p 
34 
100 
103-2 
107 
130a 
138-1 
Pre-miR- 
143 
145 
181a-1 
191-5p 
let-7a-1 
let-7a-2 
let-7a-3 
let-7c 
let-7d 

18 
96 

21 
125a  
125b 
143 
145 
210 
 

 125b* 
132 
143 
145 
212 
 

18a 
27a  
146a 
193b  
220b  
342-5p 
335 
365 
519e 
548e  
1248  
1284  
 

1 
23a 
23b 
24  
26b 
99a  
99b 
99b*  
125a-5p  
143 
144 
145 
146a 
181a  
181d 
191 
199a  
199a* 
210  
320 
355-5p 
431 
503 
652 
Let-7a  
Let-7c 
Let-7g 
Let-7f 

15b 
31  
132 
138 
143  
145  
221  
222  
379  
382 
432  
494  
654* 
1308 
let-7e  
 

 

AC: Articular chondrocytes; BM MSC: Bone marrow mesenchymal cells; DAC: 
dedifferentiated articular chondrocytes.  
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The regulation of chondrogenesis of murine MSCs in response to stimulation of TGF-β3 

was investigated (Suomi et al. 2008, Yang et al. 2011) (Table1.2).  Suomi et al compared 

the expression of 35 miRNAs in chondroblasts derived from MSCs, and found that miR-

199a, miR-124a were strongly up-regulated while miR-96 was substantially suppressed 

(Suomi et al. 2008). They demonstrated how miRNAs and transcription factors could be 

capable of fine-tuning cellular differentiation by showing that miR-199a, miR-124a, miR-

96 could target HIF-α, RFX1, Sox5, respectively (Suomi et al. 2008). Similarly, Yang et 

al , revealed eight significantly up-regulated and five down-regulated miRNAs (Yang et al. 

2011) in this process. The miRNA clusters, miR-143/145 and miR-132/212 were down-

regulated, with miR-132 the most down-regulated whilst miR-140* was the most up-

regulated (Yang et al. 2011). Similar expression patterns of miR-145, miR-143 were also 

described in other studies (Lin et al. 2009, Karlsen et al. 2011, Lin et al. 2011, Yan et al. 

2011).  Corresponding targets of these differentially expressed miRNAs were predicted 

including: ADAMTS5 (miR-140*), ACVR1B (miR143/145), SMAD family members: 

SMAD1 (miR-30a), SMAD2 (miR-132/212), SMAD3 and SMAD5 (miR-145), Sox 

family members: Sox9 (miR-145); Sox6 (miR-143, miR-132/212), Runx2 (miR-30a and 

miR-140*) (Yang et al. 2011).  

Further study has confirmed miR-145 as a key mediator which antagonizes early 

chondrogenic differentiation in mice via attenuating Sox9 at post-transcriptional level. 

(Yang et al. 2011).  Interestingly, cells over-expressing miR-145 significantly decreased 

the expression of chondrogenic markers at the mRNA level including Col2a1, Agc1, 

COMP, Col9a2 and Col11a1. Consistent with this,, Martinez-Sanchez et al. reported miR-

145 as a direct regulator of Sox9 in normal human articular chondrocytes though binding 

to a specific site in its 3’UTR, which is not conserved in mice (Martinez-Sanchez et al. 

2012). Similarly, over-expression of miR-145 in articular cartilage chondrocytes reduced 

the levels of Sox9, the cartilage matrix components Col2a1 and Agc1 in combination with 

a significant increase of the hypertrophic markers Runx2 and MMP-13 (Martinez-Sanchez 

et al. 2012)  (Figure 1.7). 

This group also reported that miR-675, processed from H19, a non-coding RNA, was 

tightly regulated by Sox9 during chondrocyte differentiation. MicroRNA-675 could up-

regulate expression of Col2a1, albeit indirectly, indicating its potential importance in 
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maintaining cartilage integrity and homeostasis. Forced over-expression of miR-675  

rescued Col2a1 mRNA levels in either Sox9- or H19-depleted primary human articular 

chondrocytes (Dudek et al. 2010). Although its target mRNAs remain unknown, these data 

suggest that miR-675 may modulate cartilage homeostasis by suppressing a Col2a1 

transcriptional repressor (Dudek et al. 2010) (Figure 1.7). Moreover, by performing 

miRNA expression profile during human primary chondrocyte dedifferentiation, Martinez-

Sanchez found that 29 miRNAs were up-regulated more than two-fold and 18 miRNAs 

were down-regulated. Among these up-regulated miRNAs, miR-1247, transcribed from 

the DLK1-DIO3 locus, was of particular interest as its expression pattern still increased 

under hypoxia condition, together with miR-140. Also, miR-1247 level was found to 

correlate with cartilage-associated miR-675 across a range of 15 different mouse tissues 

(Martinez-Sanchez et al. 2013). Interestingly, SOX9, directly target of miR-1247 via 

coding sequence, inhibit this miRNA expression, suggesting a negative feedback loop 

between miR-1247 and its target SOX9 (Martinez-Sanchez and Murphy 2013).  

Another study performed miRNA profiling to find expression signatures of nearly 380 

miRNAs in C2C12 cells induced by BMP-2 for 24 hours and found  that 5 miRNAs 

including miR-199a* and miR-221 were positively regulated while miR-125a, miR-210, 

miR-125b, miR-21, miR-145, miR-143 were repressed (Lin et al. 2009).  Interestingly, 

using C3H10T1/2 cells, a well-established in vitro cell model of chondrogenesis, showed 

that miR-199a* expression was reduced significantly within several hours following BMP-

2 treatment and then rose dramatically at 24 hours and remained higher thereafter, 

indicating that miR-199a* may function as a suppressor of the early steps of chondrogenic 

differentiation (Lin et al. 2009). Indeed, enforced miR-199a* expression in C3H10T1/2 

cells or in the prechondrogenic cell line ATDC5, suppresses multiple markers of early 

chondrogenesis, including Col2a1 and COMP, whereas the antagomir blocking miR-199a* 

function has the opposite stimulatory effect (Lin et al. 2009). Consistent with these 

observations, Smad1, a positive downstream mediator of BMP-2 signalling, was shown to 

be a direct miR-199a* target. Moreover, miR-199a*, through its inhibition of the Smad 

pathway, is able to inhibit the expression of downstream genes such as p204 (Lin et al. 

2009) (Figure 1.7). 

The change in expression pattern of miRNAs across the dedifferentiation of chondrocytes 

also, adds to our understanding of the biology of in vitro human chondrogenesis (Karlsen 
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et al. 2011, Lin et al. 2011). MicroRNA-451, miR-140-3p, miR-210, miR-30d, and miR-

563 were reported to be highly expressed on human primary articular chondrocytes at early 

passage compared with their dedifferentiated counterparts, suggesting their role as 

inhibitors of differentiation in vitro (Lin et al. 2011). Of these miRNAs, miR-140-3p had 

the highest expression. Conversely, 16 miRNAs were significantly up-regulated in 

dedifferentiated articular chondrocytes, reflecting their potential as modulators of the 

chondrogenenic process. Notably, miR-143, miR-145 also had similar expression patterns 

as previously reported (Lin et al. 2011). A second study also reported a group of 5 

miRNAs:  miR-451, miR140-3p, miR-210, miR-30d, and miR-563 upregulated on 

differentiation which may inhibit molecules participating in the dedifferentiation process 

whilst a further 16 miRNAs were downregulated and may potentially act conversely.  

Recently, performing miRNA profiling across ATDC5 cell induced differentiation within 

42 days to identify miRNAs with functions in cartilage development, we identified 7 

cluster groups of miRNAs which may function cooperatively (Swingler et al. 2011). 

Among these, 39 miRNAs were found potentially co-regulated with miR-140 with 

expression increase during chondrogenic process (Swingler et al. 2011). Especially 

interesting is miR-455, located in an intron of the protein coding gene Col27a1, a 

cartilage-expressed collagen, which showed similar expression kinetics to collagen XXVII 

and to miR-140.  Consistent with role for miR-140 in modulating TGFβ signalling, miR-

455-3p was also found to directly target Smad2, ACVR2B and CHRDL1, again potentially 

attenuating the TGFβ pathway (Swingler et al. 2011) (Figure 1.7). 

MicroRNA-140 shows a generally consistent expression pattern between studies.  Indeed, 

cartilage miRNA research to date has focused heavily on miR-140 and has successfully 

shown the key roles of miR-140 in chondrocyte proliferation and differentiation. Miyaki et 

al compared gene expression profiling using miRNA microarrays and quantitative 

polymerase chain reaction in human articular chondrocytes and human mesenchymal stem 

cells. They demonstrated that miR-140 had the largest difference in expression between 

chondrocytes and MSCs (Miyaki et al. 2009), and this is in agreement with latter 

publications in human, rat and mice (Karlsen et al. 2011, Lin et al. 2011, Yan et al. 2011, 

Yang et al. 2011).  MicroRNA-140 was first shown to target Hdac4, a known co-repressor 

of Runx2 and MEF2C transcription factors essential for chondrocyte hypertrophy and bone 
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development (Tuddenham et al. 2006).  miR-140 also targets Cxcl12 (Nicolas et al. 2008) 

and Smad3 (Pais et al. 2010), both of which are implicated in chondrocyte differentiation. 

Interestingly, miR-140 is reported to suppress Dnpep, an aspartyl aminopeptidase, which 

has been suggested to antagonize BMP signalling downstream of Smad activation 

(Nakamura et al. 2011). Moreover, Sox9 a major transcription factor in maintaining 

cellular phenotype and preventing hypertrophy, particularly with L-Sox5 and Sox6, 

(Yamashita et al. 2012), is shown to control the expression of miR-140 (Yang et al. 2011, 

Nakamura et al. 2012).  

The miR-194 is a key mediator during chondrogenic differentiation via suppression of the 

transcription factor Sox5 (Xu et al. 2012). The expression of miR-194 was significantly 

decreased in chondrogenic differentiation of adipose-derived stem cells (ASCs). 

Importantly, chondrogenic differentiation of ASCs could be achieved through controlling 

miR-194 expression (Xu et al. 2012) (Figure 1.7). 

Using three rat models e.g. bone matrix gelatin-induced endochondral ossification, 

collagen-induced arthritis and pristane-induced arthritis, Zhong et al. further demonstrated 

that miR-337 was directly implicated with chondrogenesis. miR-337 acted as a repressor 

for TGFBR2 expression at the protein level (Zhong et al. 2012). Moreover, aggrecan was 

differentially expressed in both gain- or loss-of function of miR-337 experiments,  

providing evidence that miR-337 could influence cartilage specific gene expression in 

chondrocytes (Zhong et al. 2012) (Figure 1.7). 

Kim et al. used chick as a model of chondrogenesis and focused on initiation, namely 

precartilage condensation, proliferation and migration. They reported that miR-221 and 

miR-34a, induced by c-Jun N-terminal kinase (JNK) signaling, played pivotal roles (Kim 

et al. 2010, Kim et al. 2011). Treatment of chick wing bud MSCs with a JNK inhibitor 

lead to the suppression of cell migration and stimulation of apoptosis with concurrent 

significant increase in expression of miR-221 and miR-34a (Kim et al. 2010, Kim et al. 

2011). Notably, miR-221 may be involved in apoptosis, since treatment of MSCs with a 

miR-221 inhibitor increased cell proliferation and this could be rescued by the JNK 

inhibitor (Kim et al. 2010).  MicroRNA-221 is reported to directly target Mdm2, which 

encodes for an oncoprotein with E3 ubiquitin ligase activity (Kim et al. 2010). Inhibition 

of Mdm2 expression via miR-221 suppresses ubiquitination leading to accumulation of 
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Slug protein, whose expression is associated with an increase in apoptosis (Kim et al. 

2010). Conversely, miR-34a affects MSC migration, not proliferation (Kim et al. 2011). 

EphA5, a receptor in Eph/Ephrin signaling which mediates cell-to-cell interaction, has 

been proven to be a miR-34a target (Kim et al. 2011). Moreover, via regulating 

RhoA/Rac1 cross-talk, miR-34a negatively modulated reorganization of the actin 

cytoskeleton (Kim et al. 2012), one of the essential processes for establishing chondrocyte-

specific morphology. MicroRNA-488 expression is up-regulated at the pre-condensation 

stage and then down-regulated at the post-condensation stage in chick limb chondrogenesis, 

suggested a key role in this process (Song et al. 2011). Interestingly, mir-488 could 

regulate cell–to-ECM interaction via modulation of focal adhesion activity by indirectly 

targeting MMP-2 (Song et al. 2011). More recently, this group reported that miR-142-3p 

was an important modulator in position-dependent chondrogenesis and was reported to 

regulate ADAM9 (Kim et al. 2011) (Figure 1.7). 

1.3.5.  MicroRNAs in osteoarthritis 

The effects of miRNA deregulation on OA are evident through studies comparing the 

expression of miRNAs between OA tissues and their normal articular counterparts 

(Iliopoulos et al. 2008, Jones et al. 2009). Illopoulos et al. tested the expression of 365 

miRNAs and identified a signature of 16 miRNAs, with 9 miRNAs significantly 

upregulated and 7 miRNAs downregulated in OA cartilage compared with normal controls. 

Some of these were postulated to  be involved in obesity and inflammation (Iliopoulos et al. 

2008). Interestingly, functional experiments implicated miR-9 in the regulation of MMP13 

expression, as well as miR-9, miR-98 and miR-146 in the control of TNF-α expression, 

suggesting that these miRNAs may play a protective role in OA. Moreover, miR-22, 

whose expression correlated with body mass index, directly targets PPARA and BMP-7 at 

the mRNA and protein levels, respectively. Enforced miR-22 overexpression or siRNA-

mediated suppression of either PPARA or BMP-7 resulted in increases in IL-1β and 

MMP-13 protein levels, again suggesting that miRNA deregulation can have effects on 

OA (Iliopoulos et al. 2008) (Figure 1.7).  

Additionally, Jones et al. investigated the expression of 157 human miRNAs and identified 

17 miRNAs whose expression varied by 4-fold or more when comparing normal versus 
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late-stage OA cartilage (Jones et al. 2009). Consistent with the Illopoulos data, the altered 

expression of miR-9, miR-98 and miR-146 in OA cartilage are highlighted. The over-

expression of these miRNAs also reduced IL-1β-induced TNF-α production, whilst 

inhibition or over-expression of miR-9 modulated MMP-13 secretion (Jones et al. 2009) 

(Figure 1.7). 

The miR-140 gene, located in an intron of the E3 ubiquitin protein ligase gene Wwp2 on 

murine chromosome 8 and the small arm of chromosome 16 in humans, is evolutionarily 

conserved among vertebrates. MicroRNA-140 expression in the cartilage of patients with 

OA was significantly lower than in normal cartilage (Miyaki et al. 2009, Tardif et al. 2009) 

and decreased miR-140 expression was reported also in OA chondrocytes  (Tardif et al. 

2009).                                                                                                                                                                                                                                         

Deletion of miR-140 in mice predisposes to the development of age-related OA-like 

changes (Miyaki et al. 2010, Nakamura et al. 2011) and gives a significant increase in 

cartilage destruction in surgically induced OA. Conversely, in an antigen-induced arthritis 

model, transgenic over-expression of miR-140 in chondrocytes protects against cartilage 

damage (Miyaki et al. 2010).  The ADAMTS5 gene has been shown to be a direct target of 

miR-140, whilst reciprocal regulation of ADAMTS5 in the in vivo models above suggests 

that suppression of OA may involve regulation of ADAMTS5 (Miyaki et al. 2010). 

Swingler et al. show that miR-140 is increased in expression in hip OA cartilage compared 

to fracture controls (Swingler et al. 2011), but ADAMTS5 expression is decreased in the 

former samples.  As above, Nakamura et al. identified the aspartyl aminopeptidase Dnpep 

as a key target for miR-140 essential for skeletal defects in miR-140 null mice (Nakamura 

et al. 2011).  Using functional interference, Tardif et al. confirmed IGFBP-5, whose 

expression in human chondrocytes was significantly higher in OA, as a direct target of 

miR-140 (Tardif et al. 2009). More recently, miR-140 was shown to directly mediate 

MMP13 expression in vitro by luciferase reporter assay (Liang et al. 2012) (Figure 1.7). 

The human genome contains two miR-27 genes [mir-27a and miR-27b] on chromosomes 

19 and 9, respectively, and their major products differ by only 1 nucleotide in the 3’ region. 

MicroRNA-27a expression was shown to be decreased in OA compared to normal 

chondrocytes (Tardif et al. 2009). Down-regulation of miR-27a was proposed to be 

connected with adipose tissue dysregulation in obesity, a strong risk factor for OA. Tardif 
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et al. suggested that miR-27a may indirectly regulate the levels of both MMP-13 and 

IGFBP-5 by targeting upstream positive effectors of both genes (Tardif et al. 2009).  

Conversely, expression miR-27b was found to be significantly lower in OA cartilage 

samples compared with normal counterparts where it inversely correlated with MMP13, a 

direct target (Akhtar et al. 2010). This points to the possibility of novel avenues for OA 

therapeutic strategies (Figure 1.7).  

MicroRNA-146a was strongly expressed in chondrocytes residing in the superficial layer 

of cartilage and in low-grade OA cartilage (Yamasaki et al. 2009, Li et al. 2012). Its 

expression level gradually decreased with progressive tissue degeneration. Interestingly, 

when miR-146 was highly expressed, the expression of MMP13 is low, suggesting that 

miR-146a has target genes that play a role in OA cartilage pathogenesis (Yamasaki et al. 

2009). MicroRNA-146a has recently been implicated in the control of knee joint 

homeostasis and OA-associated algesia by balancing the inflammatory response in 

cartilage and synovium with pain-related factors in glial cells (Li et al. 2011). As such, it 

may be useful for the treatment of both cartilage regeneration and the pain symptoms 

caused by OA (Figure 1.7). 

Park et al reported the miR-127-5p, an important mediator in OA whose expression was 

significant decreased in OA articular cartilage compared to the control counterpart, 

directly target MMP13. Noteworthy, pre-treatment with MAPK inhibitors and NFκβ 

inhibitor attenuated the inhibitory effects of IL-1 on miR-127-5p expression while 

overexpression of miR-127-5p significantly inhibited the phosphorylation of JNK, p38 and 

Iκβα in the human chondrocytes. These data suggest a reciprocal regulatory loop between 

NFκβ, MAP kinase, and IL-1β in controlling MMP13 expression  (Park et al. 2013).  

1.3.6.  MicroRNAs in inflammation 

Some miRNAs could be of importance in the inflammatory events of osteoarthritis. 

MicroRNA-140 was suppressed by IL-1β signaling, and transfection of human 

chondrocytes with miR-140 downregulated IL-1β driven induction of ADAMTS5 (Miyaki 

et al. 2009).  However, contrary to this, Liang et al. reported that expression of miR-140 
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and MMP-13 was elevated in IL-1β-stimulated C28/I2 and expression of miR-140 was 

shown to be NF-κB-dependent (Liang et al. 2012) (Figure 1.7). 

Expression of miR-34a was significantly induced by IL-1β while antagonism of miR-34a 

prevented IL-1β-induced chondrocyte apoptosis (Abouheif et al. 2010), as well as IL-1β-

induced down regulation of type II collagen in rat chondrocytes (Abouheif et al. 2010).  

Other relevant miRNAs reported to be induced by IL-1β are miR-146a (Yamasaki et al. 

2009, Li et al. 2012), miR-34a (Abouheif et al. 2010), miR-194  (Xu et al. 2012), miR-27b 

(Akhtar et al. 2010)  (Figure 1.7). 

1.3.7. Utility of microRNAs for diagnosis  

It is evident that miRNAs in serum may become a powerful tool in the development of 

diagnostic biomarkers. MicroRNAs are relatively stable with enzymatic, freezing, thawing 

or extreme pH conditions (Mitchell et al. 2008, Link et al. 2010) due to lipid or lipoprotein 

complexes (Esau et al. 2006). Moreover, extracellular miRNAs are detectable in almost all 

body fluids and excretions including urine, faeces, saliva, tears, ascetic, pleural and 

amniotic fluid (Chen et al. 2008, Gilad et al. 2008). Interestingly, miRNAs in plasma have 

the capacity to interact with intact cells with some degree of specificity, and modify 

recipient cell gene expression and protein production via a miRNA-related mechanism 

(Arroyo et al. 2011). This opens up the possibility of genetic exchange between cells and 

the exogenous regulation of gene expression.  MicroRNA-21 was the first serum miRNA 

biomarker to be discovered: patients with diffuse large B cell lymphoma had high serum 

levels of miR-21, which was associated with increased relapse-free survival (Lawrie et al. 

2008). Subsequently, the usefulness of serum miRNAs for diagnosis and prognosis has 

been reported for solid cancers and leukemia (Ferracin et al. 2010, Kosaka et al. 2010, 

Wittmann et al. 2010). For OA,  Murata et al. examined the potential of miRNA as 

diagnostic biomarkers and found a number of miRNA in plasma some of which were 

found at different levels between RA and OA patients (Murata et al. 2010). Recently, let-

7e, miR-454, miR-886 were identified differentially expressed crilculating miRNAs in OA 

patient necessitating arthroplasty in a large, population – based cohort. Especially, let – 7e 

emerged as potential predictor for severe knee or hip OA (Beyer et al. 2014). 
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Besides the measurement of miRNAs in plasma, PBMCs could also be useful in 

developing a biomarker for OA. Circulating PBMCs such as macrophages and T cells 

accumulate in the synovium of OA patients, producing proinflammatory cytokines and 

proteinases associated with synovitis, linked to the early stages of OA progression.  It has 

been demonstrated that the high expression of miR-146a, miR-155, miR-181a and miR-

223 in PBMCs from OA patients versus normal controls may be related to the 

pathogenesis of OA (Okuhara et al. 2011). Interestingly, miR-146 and miR-223 are highly 

expressed in early-stage OA (Yamasaki et al. 2009), with expression gradually decreasing 

with OA progression with the promise for diagnosis of early OA is specificity can be 

demonstrated. 

Taken together, there is growing evidence for future miRNA-based diagnostics.  However, 

there is a requirement for detailed investigations directed at diagnostic performance 

(sensitivity, specificity, accuracy) of these promising novel biomarkers before the 

measurement of miRNAs can enter the clinic.  

1.3.8.  Utility of microRNAs in therapeutic treatment 

Currently there is no disease-modifying therapeutics available for patients suffering from 

OA. Therapeutic options are limited to oral and intra-articularly injected analgesic 

medications, and joint replacement surgery (Wieland et al. 2005). OA patients often 

present with cartilage that already exhibits a damaged matrix, and in which 

repair/regeneration is. Although cartilage seems a relatively simple tissue type to engineer 

because of its single cell type and its lack of a blood, nerve or lymph system, regenerating 

cartilage in a form that can function effectively after implantation has proven difficult. 

Several approaches are currently being investigated to utilize a miRNA-based therapy to 

overcome these problems, and these may represent a novel therapeutic application for 

pharmacological control. Currently there are over 70 clinical trials worldwide based on 

miRNA manipulation to treat a range of conditions including various cancers and 

cardiovascular disease; however, none of these to date are for arthritis. 

The targeting of miRNAs represents a novel therapeutic opportunity for OA treatment in 

which miRNA deficiencies could be corrected by either antagonizing (antagomirs) or 
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restoring (mimics) miRNA function.  Poorly expressed miRNAs could be restored by over 

expression using stable vector transfection or transfection by double-stranded miRNA, 

whilst over-expressed miRNAs could be antagonized by modified DNA oligonucleotides. 

Particularly, it has been proven that the systematic administration of antagonist miRNAs 

modified with locked nucleic acids (LNA) could function without toxicity in non-human 

primates (Elmen et al. 2008). Evidence on efficacy was also demonstrated in mouse 

models using miR-122 antisense oligonucleotides, which resulted in a decrease in hepatic 

fatty acid and cholesterol synthesis (Esau et al. 2006). In man, when miR-143/miR-145 

activity was restored in pancreatic cancer cells (in which their levels were repressed), the 

cell was no longer tumourigenic (Kent et al. 2010). Although this type of therapy has not 

been applied in OA, there is very promising evidence for therapeutic potential, e.g. the 

silencing of miR-34a by LNA-modified antisense oligonucleotides could effectively 

reduce rat chondrocyte apoptosis induced by IL-1β (Kongcharoensombat et al. 2010). This 

study revealed that silencing of miR-34a might be a novel intervention for OA treatment if 

this could be appropriately targeted.  

Another approach is to combine miRNA technology with stem cell engineering. In vivo 

MSCs participate in chondrogenesis. MSCs can be conveniently obtained with less injury 

than primary cells and manipulated in vitro and hence they are promising cells in cartilage 

regeneration. At present, autologous MSCs have been transplanted in human injured or 

osteoarthritis knees for repair of articular cartilage defects.  However, unexpected results 

from the ectopic transplantation of MSCs also have been reported, such as hypertrophy, 

mineralization, and vascularisation. Deciphering the role of miRNA regulation in the 

chondrogenesis of MSCs may open a new era of research and pave the way for the 

development of new treatments for OA  

A growing body of evidence indicates that miRNAs convey a novel and efficient way for 

the regulation of gene expression, being involved in multiple aspects of cellular processes. 

Understanding their expression profile and dynamic regulation may be the key to 

enhancing chondrogenic differentiation, or maintaining phenotype in the treatment of OA. 

Recent advances in miRNA research have provided new perspectives on the regulation of 

OA and novel insight into the potential development of therapeutic treatments. Using 

miRNAs as therapeutic targets may well become a powerful tool in the development of 
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new therapeutic approaches. However, numerous questions including potential off-target 

effects and efficient and targeted delivery in vivo need to be solved before using miRNAs 

in therapeutics  
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SCOPE OF THE THESIS 
 

OA is the most prevalent degenerative joint pathology leading to considerable problems 

with disability and pain in a huge number of people, especially the elderly population. As 

the population ages and with increased life expectancy, the burden of osteoarthritis will 

continue to rise. However, there is currently a lack of biomarkers and sensitive techniques 

for identifying and assessing patients with early changes. Also, clinical treatment for OA 

still remains unsatisfactory. Thus, deepening our understanding and gain further insights 

into the molecular mechanisms in OA would be very important for long term purpose of 

diagnosis and therapeutic treatment.  

Several hundred miRNAs have been identified so far and initial studies have linked 

specific miRNAs to OA. However, there are no key miRNAs identified so far which 

functionally impact on early human OA onset and disease progression. Thus, I undertook 

this project to identify miRNAs mediating initiation and progression of OA and dissect 

their biological function in order to identify new signalling pathways involved in the 

pathogenesis of OA. The hypothesis and specific aims of the project were: 

Hypothesis: The dysregulated expression of specific microRNAs contributes to the onset 

or progression of OA. 

 Specific aim 1: Profile miRNA and mRNA expressions in whole knee joint in DMM 

model to identify the potential miRNAs involved in the early stage of OA  

Specific aim 2: Determine the involvement of the miRNA in human end stage OA 

cartilage, in murine injury model, in chondrogenesis.  

Specific aim 3: Identify factors control the miRNA expression in articular cartilage 

Specific aim 4: Identify miRNA direct targets to identify new signaling pathways 

involved in homeostasis of articular cartilage.  
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CHAPTER 2 
MATERIALS AND METHODS 

 

2.1.Materials  

2.1.1. Murine models  

2.1.1.1. Destabilization of the medial meniscus murine model (DMM model) 

Induction of OA by destabilization of the medial meniscus (DMM) was kindly performed 

by Professor Tonia Vincent Kennedy Institute for Rheumatology, Oxford University, U.K. 

Protocols using C57Bl/6 mice were as described previously in (Burleigh et al. 2012, 

Chong et al. 2013).  

Briefly, C57Bl/6 male mice were housed 3-5 per cage in 63x54x30 cm3 standard 

individually vented cages and maintained with a 12h/12h light/dark cycle at an ambient 

temperature of 21oC. Mice were fed a certified mouse diet (RM3 from Special Dietary 

Systems, Essex, UK) and water ad libitum. 10 week old mice were anaesthetized by intra-

peritoneal injection of a 1:1:2 mixture of Hypnorm (0.315mg/ml fentanyl citrate and 

10mg/ml fluanisone; VetaPharma Ltd, Leeds, UK), Hypnovol (5mg/ml midazolam; 

Roche), and sterile water for injection, at a dose of 10ml/kg body weight. The ventral 

portion of the right knee was shaved and swabbed with iodine to prepare a sterile surgical 

field. The medial meniscus was identified and the attachment of its anterior horn to the 

tibial plateau was cut. Care was taken to avoid injury to the anterior cruciate ligament and 

the cartilage surfaces. The mice were fully mobile within 2-4 hours after surgery. After 1, 

3, 7 days after surgery, the mice were culled and knees harvested. 

2.1.1.2. Murine hip avulsion injury model  

The femoral caps of C57Bl/6 mice ages 4 weeks were avulsed using forceps as described 

in (Chong et al. 2013). After washing three times with sterile phosphate-buffered saline 

(PBS) (Life Technologies, 10010023), the femoral caps were immediately put in either 

500µl Trizol® reagent (Invitrogen, 15569-026) (for time point 0) or in 24-well plate for 

(other time points e.g. 3, 6, 12, 48 hours). 200µl of Dulbecco’s modified Eagle’s medium 

(DMEM) (Life Technologies, 10566-016) containing 100 IU/ml penicillin and 100µg/ml 
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streptomycin (Sigma, P4333) was added to each well and the plate was incubated at 37oC 

in 5% (v/v) CO2.  At the desired time points, the femoral caps were harvested (with Trizol 

reagent) and total RNA was isolated.   

2.1.2. Human end stage OA specimens and normal counterparts  

Ethical Committee approval for using discarded human tissue was received prior to the 

initiation of the studies. Full informed consent was obtained from all donors. Human 

articular cartilage was obtained from patients undergoing total hip/ knee replacement 

surgery at the Norfolk and Norwich University Hospital. In total, 8 hip and 7 knee OA 

cartilage samples were collected. 7 healthy articular cartilages were harvested from total 

hip replacement following fracture to the neck of femur. None of the healthy individuals 

had a clinical history of arthritis or other diseases affecting cartilage, no macroscopic 

lesions to the cartilage were seen.  

2.1.3. Cell lines  

All cell lines were maintained in DMEM high glucose, GlutaMAX supplement (Life 

Technologies, 10566-016) containing 10% (v/v) heat-inactivated fetal bovine serum (FCS) 

(PAA, UK), 100U/ml penicillin, and 100µg/ml streptomycin (Sigma, P4333) at 37oC in 5% 

(v/v) CO2.  

2.1.3.1.  Chondrosarcoma SW1353  

The SW1353 cell line was initiated from a primary grade II chondrosarcoma of the right 

humerus obtained from a 72 year old female Caucasian. SW1353 cells were purchased 

from the American Type Culture Collection (ATCC) (no.HTB-94).   

2.1.3.2.  Chicken dermal fibroblasts DF1 

DF-1 is a spontaneously immortalized chicken fibroblast cell line without viral or chemical 

treatment derived from 10 day old East Lansing Line (ELL-0) embryo.  DF1 was a kind 

gift from Professor Andrea Munsterberg, University of East Anglia, U.K.  

2.1.3.3.  Dicer knockdown cell lines 
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DLD-1 Parental and DLD-1 Dicer null cell lines were a kind gift from Professor Tamas 

Dalmay, University of East Anglia, U.K. These cell lines were originally purchased from 

Horizon Discovery (Cambridge, U.K.). Both cell lines were originally isolated from a 

colorectal adenocarcinoma.  
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2.2.Methods  

2.2.1. Molecular biology- based methods 

2.2.2.2. Human genomic DNA isolation 

Buffer 

Extraction Buffer: 10mM Tris-HCl pH 8 (Fisher Scientific, BP152-500), 5mM NaCl 

(Fisher Scientific, BP3581), 0.5% (w/v) SDS (Fisher Scientific, 10356463). 

DNA extraction protocol 

Human chondrosarcoma SW1353 cells were harvested from a 75cm2 flask by trypsin-

EDTA treatment (Life Technologies, 25200072) and pelleted by centrifugation at 17.3xg, 

5 minutes.  

The cell pellet was mixed well with 100µl nuclease-free water (Sigma, W4502), 400µl 

extraction buffer, 10µl Proteinase K (20mg/ml) (Sigma, P6556) and incubated at 50oC, 2 

hours.  

500µl of PCI (phenol: chloroform: isoamyl alcohol 25:24:1) (Sigma, P2069) was added, 

mixed gently and centrifuged, 10 minutes at 130,000xg. 

 The top phase was transferred to a new tube, 1 ml of chloroform (Sigma, 288306) was 

added and after vortex, the mixture was again centrifuged at 130,000xg for 10 minutes.  

The upper phase was transferred to a new tube and two volumes of 100% (v/v) ethanol 

(Sigma, 459844) were added, followed by centrifugation at 130,000xg for 5 minutes. 

 The DNA pellet was washed with 700µl of 70% (v/v) ethanol, and then centrifuged at 

130,000xg for 1 minute. Discard the ethanol. 

Finally, the pellet was dried at room temperature and dissolved in 100µl of nuclease-free 

water (Sigma, W4502). 

2.2.2.3. PCR amplification for 3’UTR regions 



 

 

67 

 

3’UTR regions of all genes including ADAMTS6, ADAMTS14, ADAMTS17, ADAMTS19, 

FZD3, FZD5, DVL3, FRAT2, and CK2A2 were downloaded from the Ensembl Genome 

Browser: http://www.ensembl.org/index.html. Primers were specifically designed to 

amplify a 1-2 kb region of 3’UTR of these genes including the miR-29 family binding 

sites. A restriction site of SacI (5’GAGCTC3’), XbaI (5’TCTAGA3’) or SalI 

(5’GTCGAC3’) are added to the 5’ end of each primer. Primer sequences are listed in 

Appendix, Table 1. 

 All 3’UTR regions were amplified from human genomic DNA, isolated from the SW1353 

cell line. 100ng genomic DNA was added together with 5µl 10X reaction buffer, 5 units 

accuTaqTM LA DNA polymerase (Sigma, D8045), 0.5µl dNTP 10µM (Bioline, BIO-

39044), 1µl forward primer 10µM (Sigma), 1µl reverse primer 10µM (Sigma) in a 50µl 

reaction volume. The reaction was run on a VeritiR 96-well thermal cycler (Applied 

Biosystems, 4375786) at 98oC, 30 seconds to denature DNA and follows by 32 cycles: 10 

seconds at 98oC, 20 seconds at annealing temperature (depending on each primer pair), 1-2 

minutes at 68oC. Finally, the reaction was left 2 minutes at 68oC for final extension.  

The PCR reaction was confirmed by loading 3µl PCR product on 1% (w/v) agarose gels, 

which were prepared by heating 1% (w/v) agarose (Sigma, A9639) in Tris-acetate-EDTA 

(TAE) buffer, and run at 120V. After staining in ethidium bromide solution (Sigma, E1510) 

for 20 minutes, the product was visualized under UV-light. 

2.2.2.4.  Phenol/chloroform clean up  

 Nuclease- free water (Sigma, W4502) was added to a PCR reaction to 200µl, followed by 

200µl of phenol: chloroform: isoamyl alcohol (Sigma, P2069). The reaction was mixed 

well and centrifuged at 130,000xg for 10 minutes. The upper phase was collected to a fresh 

tube and a 2.5 volume of 100% (v/v) ethanol (Sigma, 459844) and 1/10 volume of 5M 

NaOAc (sodium acetate, Sigma, S2889) were added, followed by centrifugation at 

130,000xg for 10 minutes. The DNA pellet was washed with 500µl of 70% (v/v) ethanol 

(Sigma, 459844), and centrifuged at 130,000xg for 10 minutes. Finally, the pellet was 

dried at room temperature for 5 minutes and dissolved in 27µl nuclease- free water (Sigma, 

W4502). 
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2.2.2.5.  Plasmid isolation  

A single colony from LB (Luria Bertani) agar plate supplemented with 100µg/ml 

ampicillin (Sigma, A0166) was inoculated into 5ml of LB broth medium also 

supplemented with 100µg/ml ampicillin incubated at 37°C, 180rpm overnight. The 

bacterial culture was pelleted by centrifugation at maximum speed for 5 minutes. Plasmids 

were isolated using the QIAprep Spin Miniprep Kit (Qiagen, 27104): The pellet was 

resuspended in 250µl of P1 buffer.  250µl of P2 buffer was added to the suspension which 

was then mixed thoroughly by vigorously inverting 4-6 times and incubated at room 

temperature for 5 minutes. After that, 50µl of P3 buffer was added and the mixture was 

inverted until a homogenous suspension containing a white flocculate was formed. The 

bacterial lysate was cleared by centrifugation at 130,000xg, 10 minutes and the supernatant 

was transferred to a spin column. The column was washed two times with 500µl of wash 

buffer. Finally, the plasmid was then eluted with 30µl nuclease free water (Sigma, W4502).  

For preparation of large quantities of plasmid DNA, the QIAGEN Plasmid MIDI Kit was 

used (Qiagen, 12143): A single colony from LB ampicillin agar plate was inoculated into 

100ml of LB medium supplemented with 100µg/ml ampicillin (Sigma, A0166), incubated 

at 37°C, 180rpm overnight and harvested by centrifugation at maximum speed for 10 

minutes at 4°C. The bacterial pellet was resuspended in 4 ml of P1 buffer, followed by 4 

ml of P2 buffer, and the suspension was thoroughly mixed by vigorously inverting the 

sealed tube 4-6 times and incubated at room temperature for 5 minutes. 4 ml of chilled P3 

buffer was added, and the suspension was thoroughly mixed by vigorously inverting 4-6 

times and incubated on ice for 15 min, followed by centrifugation at 130,000xg for 30 

minutes at 4°C. The QIAGEN-tip was equilibrated by applying 3 ml of QBT buffer, and 

the column was allowed to empty by gravity flow. The supernatant (above) was applied to 

the QIAGEN-tip. The QIAGENtip was washed twice with 10ml of wash buffer. The DNA 

was eluted with 5 ml of elution buffer and precipitated by adding 5 ml of room 

temperature 100% (v/v) isopropanol (Sigma, 190764) to the eluted DNA, followed by 

centrifugation immediately at 130,000xg for 10 minutes at 4 °C. The supernatant was 

carefully decanted. The DNA pellet was washed with 2 ml of room temperature 70% (v/v) 

ethanol (Sigma, 459844), followed by centrifugation at 130,000xg for 5 minutes. The 

supernatant was carefully decanted without disturbing the pellet. The pellet was dried for 
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5-10 min. Finally, the plasmid pellet was dissolved in 500µl of nuclease free water and the 

plasmid concentration was determined using a Nanodrop spectrophotometer.  

2.2.2.6.  Digestion  

2µg of plasmid pmiR-Glo or all PCR products after phenol/chloroform clean up was 

incubated with 1µl either SalI (10 units/ µl) (Promega, R6061), SacI (10 units/ µl) 

(Promega, R6051), or XbaI (Promega, R6181) in the recommended buffer in a final 

volume 20µl for 3 hours at 37oC. The digestion reaction was terminated by heating at 75oC 

for 15 minutes.  

After digestion, the 5’ phosphate of plasmid was removed to prevent self-ligating by 

incubating the digestion mix with 1µl Antarctic Phosphatase (5 units/µl) (NEB, M0289S) 

and 3µl Antarctic Phosphatase buffer 10X, in a final volume 30µl.The reaction was carried 

out at 37oC for 15 minutes and followed 5 minutes at 70oC to inactivate the enzyme.  

2.2.2.7.  Gel purification  

The digestion mix was applied to 1% (w/v) SeaKem® LE Agarose (Lonza, 50002). DNA 

fragments were visualized by staining with ethidium bromide (Sigma, E1510). Under UV-

light, the appropriate DNA band was excised from the gel with a clean scalpel and 

transferred into an Eppendorf tube. The Zymoclean Gel DNA Recovery Kit (Zymo 

Research, D4001) was used to purify DNA from the agarose gel. Briefly, 3 volumes of 

ADB were added to each volume of agarose excised from the gel and incubated at 37-55oC 

for 5-10 minutes until the gel slice was completely dissolved. For DNA fragments higher 

than 8kb, 1 addition volume of water was also added to the agarose. The dissolved agarose 

solution was transferred to the Zymo-spin column and centrifuged for 30 seconds at full 

speed. The flow-though was discarded. The column was washed two times with 200µl 

DNA wash buffer and centrifuged at full speed at 30 seconds. The flow-though was 

discarded. DNA was eluted with 13µl nuclease-free water (Sigma, W4502) and quantified 

using a NanoDrop spectrophotometer. 
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2.2.2.8.  Ligation 

Ligation of DNA fragments was performed with a ratio of 1:3 of plasmid DNA: insert. The 

reaction mixture was incubated with 1µl of T4-DNA Ligase (1 unit/µl) (Life Technologies, 

15224-017), 1µl of ligation buffer (10X) in a final volume of 10µl ddH2O. The reaction 

was left at 14oC for 24hours. 

2.2.2.9. Transformation 

To 100µl of competent E.coli DH5α, either 50-100ng of plasmid DNA or 10 µl of ligation 

reaction were added and incubated for 20 minutes on ice. A heat shock at 42°C for 30 

seconds was followed by incubation on ice for another 2 minutes. 500µl of LB medium 

was added to the bacteria and the bacterial suspension was shaken at 37°C and 180rpm for 

60 minutes. The bacteria were then spread on LB-agar plates containing 100µg/ml 

ampicillin (Sigma, A9393). Plates were incubated at 37°C overnight. 

2.2.2.10.  MicroRNA 29 family binding site mutagenesis  

QuikChange II XL site-directed mutagenesis kit (Agilent, 200521) was used to replace 5 

nucleotides in the binding site of the miR-29 family to either XbaI (5’TCTAGA3’), SalI 

(5’GTCGAC3’), SacI (5’GAGCTC3’) depending on which restriction enzymes were used 

in subcloning. The basic procedure utilizes PfuUltra high fidelity (HF) DNA polymerase 

for extending two mutagenic oligonucleotide primers which have desire mutations in the 

middle of their sequences and the rest of the sequence complementary to opposite strands 

of miR-GLO- 3’UTR. After cycling, PfuUltra HF DNA polymerase will generate a 

mutated plasmid containing staggered nicks (Figure 2.1). The product is then treated with 

Dpn I nuclease targeting sequence 5’-Gm6ATC-3’. Dpn I, specific for methylated and 

hemimethylated DNA, will digest the parental DNA template and select for mutant-

containing synthesized DNA. The nicked vector DNA incorporating the desire mutant of 

the miR-29 family binding site is then transformed into XL10 Gold ultracompetent cells 

(Figure 2.1). 
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Mutangenic primers were designed using Agilent’s website: QuikChange primer design 

program: www.agilent.com/genomics/qcpd. The lists of primer mutants used are listed in 

Appendix, Table 2.  
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Figure 2.1: QuikChange II XL site-direct mutagenesis method 

The reaction is prepared in a final volume of 50µl with 10ng of pmiR-Glo-3’UTR, 1.5µl 

primer mutant forward (100ng/µl), 1.5µl primer mutant reverse (100ng/µl), 1µl of dNTP 

mix (10mM), 5µl of reaction buffer (10X), 1µl of PfuUltra HP DNA polymerase (2.5 

units/µl). The reaction is cycled at 1 minute at 95oC, followed by 18 cycles at 95oC 50 

seconds, 68oC 1 minute/1 kb plasmid length, and finally extension at 68oC for 7 minutes. 

The amplification reaction was further incubated with 1µl of DpnI restriction enzyme 

(10units/µl) at 37oC for another 1 hour. To 50µl of XL10-Gold Ultracompetent cells, 5µl 

of Dpn I-treated DNA was added and the transformation protocol followed as above.  

2.2.2.11.   Sequencing  

DNA Sequencing was performed by Source BioScience 

(http://www.lifesciences.sourcebioscience.com/). The sequencing signal was read by 

Chromas 2.4. 

 

 

2.2.2.12.  Total RNA isolation 
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2.2.2.12.1. Total RNA isolation from cultured cells 

500ml of Trizol® reagent (Invitrogen, 15569-026) were added directly to adherent cells 

after removing the growth media from a 6-well plate. The cells were lysed by pipetting up 

and down several times. 250µl chloroform (Sigma, 288306) was added per 500µl Trizol®, 

vortexed for 15 seconds and incubated at room temperature for 10mins. The 

Trizol®/Chloroform mixture was centrifuged at 130,000xg, 10min, at 4oC and the aqueous 

layer recovered into a fresh tube. 500µl of 100% (v/v) isopropanol (Sigma, 190764) was 

added, mixed, left 10min at room temperature and centrifuged at 130,000xg, 10min, at 4oC 

then the supernatant was discarded. RNA pellets were washed with 75% (v/v) ethanol 

(Sigma, 459844), and centrifuged at 130,000xg, 2min, at 4oC. The supernatant was 

discarded, the pellet air dried and then suspended in 50µl RNase-free water and stored at -

80oC until further use. 

2.2.2.12.2. Total RNA isolation from murine whole knee joint 

All materials used were RNase free. Whole knee joints were ground under liquid nitrogen 

using BioPulverizer (Biospec). Trizol® reagent (Invitrogen, 15569-026) were added 

immediately to ground samples (1.5ml/50mg samples) and mixed thoroughly for 5 minutes. 

Ground knee joints were pelleted at 130,000xg for 2min at 4oC and the supernatant 

recovered. 250µl chloroform (Sigma, 288306) was added per 500µl Trizol®, vortexed for 

15 seconds and incubated at room temperature for 10mins. Samples were then treated as 

cultured cells above.  

2.2.2.12.3. Total RNA isolated from murine hip or knee cartilage  

Murine hip femoral caps were fully homogenized with 500µl Trizol® reagent (Invitrogen, 

15569-026) using a disposable pestle. Then, 200µl chloroform (Sigma, 288306) was added, 

vortexed for 15 seconds, and left at room temperature for 10mins. The Trizol®/chloroform 

mixture was centrifuged at 130,000xg for 10 minutes at 4oC, and the aqueous layer 

collected into a fresh tube. The RNA purification step was performed using mirVana™ 

miRNA Isolation Kit (AM1560, Life Technology) according to the manufactures 

recommendation for total RNA recovery. Briefly, 1.25x aqueous layer volume of 100% 

(v/v) RT ethanol was added to the aqueous phase and the samples were loaded onto 
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columns. The flow through was discarded after centrifuging 15 seconds at 130,000xg. 

Then three wash steps were followed by applying wash solution 1 (700µl), and then wash 

solution 2/3 (500µl) (twice) to the column. For each washing, the column was centrifuged 

at 130,000xg for 15 seconds followed by discarding the flow through. The columns was 

then placed in RNase-free collection tubes and 30µl of RNas-free water added. Columns 

were then left to stand for 2 minutes and centrifuged at 2 minutes, 13,000xg. RNA was 

then stored at -80oC until used.  

2.2.2.13. MicroRNA quantification and integrity  

The concentration of RNA samples was determined by measuring the absorbance at 

260nm using the NanoDrop spectrophotometer (NanoDrop Technologies). The purity of 

RNA is determined from the ratio A260/A280 and A260/A230. 

The integrity of total RNA was determined using the ExperionTM automated 

electrophoresis system (Bio-Rad, USA). This method measures fluorescence of a 

fluorophore bound to RNA. RNA integrity can be evaluated automatically by comparing 

the area of the peaks corresponding to the rRNAs. A 28S/18S rRNA ratio close to 2 

indicates for intact RNA. 

2.2.2.14.  cDNA synthesis  

2.2.2.14.1. SuperScript II reverse transcriptase cDNA synthesis 

Total RNA was isolated from cells, whole knee joints, human or murine cartilages as 

above and reverse transcribed to cDNA using SuperScript II reverse transcriptase (Life 

Technologies, 18064-014). Briefly, in a total volume of 11µl in 96-well PCR plate, 1µg 

total RNA and 0.2µg random hexamer primer (Life Technologies, 48190-011) was mixed 

together and the plate was incubated at 70oC for 10mins. Samples were chilled on ice, then, 

a master mix containing 1µl SuperScript II reverse transcriptase (200 units/µl) (Life 

Technologies, 18064-014), 4µl First Strand buffer (5X) (Life Technologies, 28028-013), 

2µl 0.1M dithiothreitol (DTT) (Life Technologies, 18057-018), 2µl of 10mM dNTP mix 

(Bioline, BIO-39044), 1µl Recombinant RNasin Ribonuclease Inhibitor (20-40 units/µl) 

(Promega, N2511) was added to the randomly primed RNA to give a total volume of 20µl 

and incubated for 1 hour at 42oC followed by a heat inactivation step at 70oC, for 10mins. 
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cDNA was diluted to 0.5µg/ml in nuclease-free water (Sigma, W4502). 5µg cDNA was 

used for qRT-PCR analysis of genes of interest and 1µg cDNA was used for analysis of 

18S rRNA. QRT-PCR is described in 2.2.2.15. 

2.2.2.14.2. M-MLV reverse transcriptase cDNA synthesis  

Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase was used to perform 

cDNA synthesis straight from cell lysate without the need of purifying total RNA. This 

method was used for cell plated in 96-well plate where a number of cells are too small for 

RNA extraction. 

Briefly, medium was removed and the cells in 96-well plate were washed with ice cold 

PBS (Life Technologies, 10010023). Then, 30µl cells to Cells-II-cDNA lysis buffer (Life 

Technologies, AM8723) was added to each well, providing a cell lysate which can 

immediately be reverse transcribed without the need for RNA isolation. Lysates were 

transferred to 96-well PCR plate and heated to 75oC for 15 minutes to inactivate RNases. 

Lysates can be stored at -80oC until reverse transcription. For genomic DNA digestion, 1µl 

DNase I 1 units/µl (Life Technologies, AM2222) and 3µl DNase I buffer (10X) were 

added per well. The plate was heated to 37oC for 15 minutes, followed by an inactivation 

step at 75oC for 5 minutes.  

For reverse transcription, 8µl of DNase-treated samples were transferred to a new ice cold 

PCR plate. Following this, 3µl of 10mM dNTP mix (Bioline, BIO-39044) and 0.2µg 

random hexamer primers (50µM) (Life Technologies, 48190-011) were added per well and 

samples were heated to 70oC for 5 minutes. Samples were chilled on ice and a master mix 

including 0.5µl Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase 200 

units/µl (Life Technologies, 28028-013), 4µl First Strand buffer (5X) (Life Technologies, 

28028-013), 2µl 0.1M dithiothreitol (DTT) (Life Technologies, 18057-018), 0.5µl 

Recombinant RNasin Ribonuclease Inhibitor (20-40 units/µl) (Promega, N2511), 1µl 

nuclease-free water (Sigma, W4502) was added per well. Samples were then heated to 

37oC for 50 minutes, followed by an inactivation step of 75oC for 15 minutes. After that, 

30µl of nuclease-free water (Sigma, W4502) was added per sample. For quantitative real-

time PCR (qRT-PCR) analysis of genes of interest, 5µl of each sample was used. For the 
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house keeping gene 18S rRNA, samples were diluted 1:10 and 5µl was used. QRT-PCR is 

described in 2.2.2.15. 

2.2.2.14.3. miRCURY LNA TM  Universal cDNA synthesis 

MicroRNA cDNA was synthesized by the miRCURY LNATM Universal cDNA synthesis 

kit (Exiqon, 203300). This step provides templates for all miRNA real-time PCR assays by 

one first-strand cDNA synthesis reaction. The basis principal is in Figure 2.2. 
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Figure 2.2: Outline of the miRCURY LNA Universal RT miRNAsynthesis. 

 A poly-A tail is added to the mature miRNA template (step 1A). cDNA was synthesized 
using a poly-T primer with a 3’degenerate anchor and a 5’universal tag (step1B). Then the 
cDNA template is amplified using miRNA-specific and LNATM-enhanced forward and 
reverse primers (step 2A). Sybr green is used for detection (step 2B). Reprinted from 
miRCURY LNATM Universal RT microRNA PCR instruction manual (Exiqon). 

Total RNA was adjusted to 5ng/µl using nuclease-free water (Sigma, W4502). 10ng of 

RNA was transferred to an ice cold 96-well PCR plate. A master mix contained 2µl 

Reaction Buffer (5X) (Exiqon, 203300), 1µl enzyme mix was added to each well. The 

reaction was brought to 10µl with nuclease-free water and the plate was heated to 42oC for 

1 hour followed by a heat inactivation step at 95oC for 5minutes. cDNA was then diluted 

to 12.5 pg/µl by nuclease free water (Sigma, W4502) and 50pg of cDNA was used for 

qRT-PCR analysis of miRNA of interest.  
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2.2.2.15.  Real-time quantitative RT-PCR 

2.2.2.15.1. Universal Probe Library Real-Time qRT-PCR 

The Universal Probe Library (UPL) (Roche Diagnostics) enables extensive transcript 

coverage due to the short 8-9 nucleotide-long probes. Each probe has a fluorescein 

(FAM™) label at the 5’ end and a dark quencher dye at the 3’ end; shorter (typically 8-9 

nucleotide) than conventional probe (25-35 nucleotides); locked nucleic acids (LNATM) 

are incorporated into it sequence. Each probe can detect ~7,000 transcripts and each 

transcript is detected by ~16 probes.  

Primers were designed using the freely available ProbeFinder web-based software 

provided by Roche Applied Science in which the ‘exon boundary spanning’ option was 

selected. Primers were subjected to short sequence BLASTn search to confirm specificity. 

All the primers were purchased from Sigma and reconstituted in nuclease free water 

(Sigma, W4502) at 100nM. Primer sequences and UPL probe numbers are in Appendix, 

Table 3. 

For quantitative RT-PCR using the universal primers and probes, the qRT-PCR was 

carried out using the ABI Prism 7900 HT Sequence Detector (Applied Biosystems) in a 

microAmp® optical 96-well plate (Life technologies, N8010560). When RNA quantity was 

known, the qRT-PCR was run using 5ng cDNA for genes of interest and 1ng cDNA for 

18S rRNA. For M-MLV-reverse-transcribed- cDNA transcript samples, 5µl samples was 

used for gene of interest or diluted 1:10 and used 5µl for detecting 18S rRNA.   

Each qRT-PCR reaction contained Kappa Fast Universal qPCR Master Mix (2X) (Kappa 

Biosystems, KK4703), a final concentration of 100nM of each of forward and reverse 

primers, 200nM of Universal Probe (Roche Diagnostics). The reaction was carried out in a 

final volume of 25µl. The plate was sealed with microAmp® optical adhesive film (Life 

Technologies, 4311971) and run with the following PCR cycles: 50oC 2 minutes, 95oC 10 

minutes, 40 cycles for 95oC 15 seconds, 60oC 1 minute.  
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2.2.2.15.2. Standard probe-based Real-time qRT-PCR 

The probe-based quantitative real-time PCR method was used to detect the expression of 

ADAMTS genes including ADAMTS4, ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, 

ADAMTS19. These primer and probe sequences were described in (Davidson et al. 2006). 

Briefly, the primers and probes were designed by Primer Express® 1.0 software (Life 

Technologies, 4363991) and were closed to intron/exon boundaries to control 

amplification of genomic DNA. Where possible, the probes were designed to span two 

neighbouring exons. Specificity of primers and probes were validated thought BLASTn. 

Primer sequences and probe sequences are in Appendix, Table 4 

The qRT-PCR reaction was also carried out in a final volume 25µl of Kappa Fast 

Universal qPCR Master Mix (2X) (Kappa Biosystems, KK4703), 100nM final 

concentration of each of forward and reverse primers, 200nM genes of interest-specific 

probe. Reaction set up and cycling conditions were as in 2.2.2.15.1. 

2.2.2.15.3.  SYBR® Green Real-time PCR  

A combination of SYBR® green dye fluorescence with gene-of-interest specific primers 

enabled double stranded-DNA amplification measurement during PCR. SYBR® green 

real-time qRT-PCR was used to detect primary and pre sequences of the miR-29 family 

(which were described in (Eyholzer et al. 2010)) and other genes as below. Full primer 

sequences and list of genes detected by SYBR® green real-time PCR are listed in 

Appendix, Table 5. All primers were purchased from Sigma.  

For SYBR® green qRT-PCR reaction, the amount of cDNA for genes of interest and 18S 

rRNA is as 2.2.2.15.1. The reaction contained 0.18µl SYBR® green I dye, Kappa Fast 

Universal qPCR Master Mix (2X) (Kappa Biosystems, KK4703), 100nM final 

concentration of each of forward and reverse primers. The PCR cycle conditions are as 

2.2.2.15.1 followed by another dissociation step which produces the melting curve for the 

PCR amplification product.  

2.2.2.15.4. SYBR® Green Real-time PCR for the mature miR-29 family detection 
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LNA primers for detecting miR-29 family mature sequence 

All LNA primers were designed for optimal performance with the miRCURY LNATM 

Universal cDNA synthesis kit. The LNA primers are Hsa-miR-29b-3p LNATM PCR primer 

sets (Exiqon, 204679), Hsa-miR-29a-3p LNATM PCR primer sets (Exiqon, 204698), Hsa-

miR-29c-3p LNATM PCR primer sets (Exiqon, 204729). 

Real-time PCR protocol  

The qRT-PCR reaction used SYBR® green I dye in combination with LNATM PCR primer 

sets to quantify the original mature miR-29 family. The reactions contained 50pg of 

miRCURY-LNATM-Universal cDNAs for either the miR-29 family or U6. The PCR 

reaction mix contained 0.18µl SYBR® Green I dye, 5µl Kappa Fast Universal qPCR 

Master Mix (2X) (Kappa Biosystems, KK4703), and 1µl of forward and reverse primer 

mix (as recommend by the manufacture (Exiqon)) in a final volume of 10µl. PCR cycles: 

10 minutes at 95°C, 40 cycles for 10 seconds at 95°C, 1 minute at 60°C and a dissociation 

step. The dissociation step produces a melting curve for the PCR amplification product and 

ensures there is only amplification of the target gene.  

2.2.2.15.5. Quantitative RT-PCR Data analysis  

2.2.2.15.5.1. Control genes  

The constitutively expressed “housekeeping” 18S rRNA was used as the control for 

relative mRNA gene expression while U6 was used as endogenous control for relative 

miRNA gene expression. 

2.2.2.15.5.2. Relative gene expression – comparative Ct method 

Raw fluorescence data was analyzed by the 7000HT SDS 2.2 software to produce 

threshold cycle (Ct) values, which is the cycle number at which the signal is detectable 

above the baseline. The Ct values were transformed using the comparative Ct method to 

obtain relative quantification (RQ) of gene expression:  

RQ=2-∆Ct 

 Where: for mRNA expression: ∆Ct= target gene Ct - 18S Ct 
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         Or for miRNA expression: ∆Ct= the miR-29 family Ct - U6 Ct
  

This method assumed that all primers and probe sets are working at the same efficiency.  

2.2.2.15.6. Western Blot 

Buffer and antibody 

Radio immunoprecipitation assay (RIPA) buffer: The buffer was made (final 

concentration) with 50mM Tris base (Fisher Scientific, BP152-500) (which was adjusted 

to pH 7.6 with hydrochloric acid (Sigma, 258148)),150mM NaCl (Fisher Scientific, 

BP3581), 1% (v/v) Triton X-100 (Sigma, X100), 1% (w/v) sodium deoxycholate (Sigma, 

D6750), 0.1% (w/v) sodium dodecyl sulfate (SDS) (Fisher Scientific, 10356463), 10mM 

sodium fluoride (NaF) (Sigma, 201154), 2mM sodium orthovanadate (Na3VO4) (Sigma, 

S6508), 1X protease inhibitor cocktail (Fisher Scientific, PI-78410).  

Resolving buffer: To make up 4X buffer: 91g Tris base (Fisher Scientific, BP152-500) 

was dissolved in Milli-Q Ultrapure water (Merck Millipore) and adjusted to pH 8.8 with 

hydrochloric acid (Sigma, 258148). The solution was then made up to 500ml. 2g SDS 

(Fisher Scientific, 10356463) was added and dissolved. 

Staking buffer: To make up 4X buffer: 6.05g Tris base (Fisher Scientific, BP152-500) 

was dissolved in Milli-Q Ultrapure water and adjusted to pH 6.8 with hydrochloric acid 

(Sigma, 258148). Milli-Q water was added to 100ml volume. 0.4g SDS (Fisher Scientific, 

10356463) was added and dissolved. 

Running buffer:  To make up 10X buffer: 30.2g Tris base (Fisher Scientific, BP152-500), 

144g glycine (Fisher Scientific, 10467963), 10g SDS (Fisher Scientific, 10356463) were 

dissolved in Milli-Q water to a final volume 1L. 

Transfer buffer:  To make up 1X buffer: 5.8g Tris base (Fisher Scientific, BP152-500), 

2.9g glycine (Fisher Scientific, 10467963), 0.37g SDS (Fisher Scientific, 10356463) were 

dissolved in Milli-Q water, 200ml 100% (v/v) methanol (Sigma, 322415) were added then 

Milli-Q water to a final volume of 1L. 
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Tris-buffered saline (TBS): To make up 10X buffer: 24.2g Tris base (Fisher Scientific, 

BP152-500), 80g NaCl (Fisher Scientific, BP3581) were dissolved in 900ml Milli-Q water 

and adjusted to pH 7.6 with hydrochloric acid (Sigma, 258148). Milli-Q water was added 

to 1L volume. 

Blocking buffer:  For 150ml, 15ml 10X TBS was diluted in 135ml Milli-Q water. 7,5g 

non-fat dry milk (OXOID, LP0031) was added and stirred to mix. Finally, 0.15ml 

Tween®-20 was added (Sigma, P5927).  

Primary antibody dilution buffer:   For 20 ml, 2 ml 10X TBS was diluted to 18 ml with 

Milli-Q water. 1.0 g BSA (Sigma, A9418) was added and dissolved by stirring. While 

stirring, 20µl Tween-20 (Sigma, P5927) was added. 

Wash Buffer (TBST): TBS with a final concentration 0.1% (v/v) Tween-20 (Sigma, 

P5927). 

Antibody:  GAPDH antibody (Cell Signaling, #2118S), DVL3 antibody (Cell Signaling, 

#3218), FZD5 antibody (Cell Signaling, #3795) 

Western blot protocol  

SW1353 cells were plated in 6-well plates (1.5x105cells/well) and transfected with Syn-

Hsa-miR-29b miScript miRNA mimic (Qiagen, MSY0000100) as referred in 2.2.2.7.2.5. 

At desired time post transfection, cells in each well of 6-well plate were washed twice with 

ice cold PBS (Life Technologies, 10010023) before adding 100µl RIPA buffer to each 

well and harvesting by scraping. The cell lysate was transferred to a fresh ice-cold 1.5ml 

tube and centrifuged at full speech in 10 minutes. The supernatant was collected and stored 

at -20oC.  

Protein was quantified using the Bio-Rad Protein Assay (Bio-Rad, #500-0006) which is 

based on the method of Bradford. Briefly, 200µl dye reagent concentrate was diluted 5 

times with Milli-Q water before adding 20µl sample lysate. The mixture was incubated at 

room temperature for 10 minutes and absorbance measured at 595nm. Comparison of this 

value to a standard curve provided a relative concentration of solubilized protein. The 
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standard curve was created with five dilutions of proteins standards of bovine serum 

albumin (Bio-Rad, 500-0002) from 0.2 to 0.9 mg/ml. 

Samples was adjusted to 20µg solubilized protein in a 30µl with nuclease-free water 

(Sigma, W4502), followed by adding 20ng/µl Bromophenol Blue (Sigma, 114391) and 

1.2µl 1M DTT (Thermal Scientific, # R0861).  The sample was gently mixed and heated to 

95oC for 5 minutes. Samples were then electrophoresed on 10% (w/v) polyacrylamide gels.  

The resolving gel was cast with the following components: 5ml 30% (w/v) Acrylamide/ 

Bis Acrylamide solution 37:5:1 (Bio-Rad, #161-0154), 3.75ml resolving buffer (4X), 

6.25ml Milli-Q water, 50µl 10% (w/v) ammonium persulfate (APS) (Sigma, A3678), 10µl 

TEMED (Sigma, T9281). Resolving gels were topped with isopropanol (Sigma, 190764) 

until set. Then isopropanol was removed and the stacking gel was cast on top of the 

resolving gel and a comb was inserted. For 1 gel, the stacking gel was made with 0.71ml 

stacking buffer (4X), 0.41ml 30% (w/v) acrylamide/ bis acrylamide solution 37:5:1 (Bio-

Rad, #161-0154), 1.91ml Milli-Q water, 16µl 10% (w/v) APS (Sigma, A3678), 3.2µl 

TEMED (Sigma, T9281). Samples were loaded on the gel and were electrophoresed at 

50V until the bromophenol blue passed through the stacking gel and then 80V for 1.5 

hours.  

Immobilon®-FL PVDF membrane (Merck Millipore, IPFL00010) was incubated in 100% 

(v/v) methanol (Sigma, 322415) for 15 seconds and washed with Milli-Q water. Then, 

Immobilon®-FL PVDF membrane, gel, extra thick blotting paper (Bio-Rad, #170-3966) 

were incubated in transfer buffer for 5 minutes. The gel was plated on top of Immobilon®-

FL PVDF membrane in Trans-blot® SD semi-Dry Electrophoretic transfer cell (Bio-Rad, 

#170-3940) with extra thick blotting paper underneath and on top and run for 25V for 30 

minutes (for 2 gels,1 mm thick).  

After transfer, the membranes were briefly washed with TBS and incubated in blocking 

buffer for 1 hour, with gently rocking at room temperature. Membranes were then washed 

in TBST three times for 5 minutes. Primary antibody and membrane was incubated with 

gentle agitation overnight at 4oC. Membranes were then washed in TBST three times for 5 

minutes and incubated with IRDye® 800CW goat polyclonal anti-rabbit IgG (Li-Cor, 926-

32211) (50µg) for 1 hour at room temperature with gently rock. Membranes were washed 



84 

 

with TBST for another three times for 5 minutes. The membrane was visualized using a 

Li-Cor Odyssey InfraRed Scanner. 

2.2.2.15.7. Whole mount in situ hybridization  

Reagents and buffers 

Sodium chloride (NaCl) (Fisher Scientific, BP3581), tri-sodium citrate (Fisher Scientific, 

10637174), magnesium chloride hexahydrate (MgCl2.6.H2O) (Fisher Scientific, M35-500), 

potassium chloride (KCl) (Fisher Scientific, BP366-500), heparin (Sigma, H3393), yeast 

tRNA (Fisher Scientific, 10523043), paraformaldehyde (Sigma, P6148), normal goat 

serum (heat inactivated), Triton-X100 (Sigma, X100), Tween-20 (Sigma, P5927), BSA 

(Sigma, A9418) 

Saline sodium citrate buffer (SSC): 20X SSC buffer was made up with 175.3 g of NaCl 

and 88.2 g of sodium citrate, pH 7, in a total volume of 1000ml. 

Development solution (DS): The solution was made up with: 100 mM Tris-HCl pH9.5,  

50mM magnesium chloride hexahydrate (MgCl2.6.H2O),  100mM sodium chloride (NaCl) 

+ 0.1% (v/v)Tween 20. 

Blocking solution: The solution was made up with: 2% (v/v) NGS, 2 mg/ml BSA, 0.1% 

(v/v)  Triton X-100 + 0.05% )v/v) Tween 20 in PBS. 

Hybridisation Buffer (HB):  The buffer was made up with 50% (v/v) formamide, 5xSSC, 

0.1% (v/v) Tween 20 + 10 mM citric acid pH6.0 + 50 µg/ml heparin + 100 µg/ml tRNA in 

PBS 

Tris-buffered saline with Tween 20 (TBST):  for 100ml (10X) buffer was made up with 

8g NaCl, 25ml Tris-HCl pH7.5, 0.2g KCl, 10ml Tween 20  

Phosphate-buffered saline with Tween 20 (PBST):  PBS with 0.1% (v/v) Tween 20 

Probe: miRCURY LNATM miR-29b-3p detection probe, 250pmol, 5’-DIG and 3’-DIG 

labelled (Exiqon, 38131-15) 

Fixation 
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Mouse embryos at desired stages were dissected and fixed in 4% PFA-PBS on a rolling 

platform overnight at 4oC. Then next day, the embryos were washed 4 times with PBST 

and dehydrated through increasing MeOH concentration washes e.g. 25%, 50%, 75% and 

100% MeOH on the gentle rocking platform. The embryos can then store in 100% MeOH 

at -20oC until required.   

In situ hybridization protocol  

On a gently rocking platform, the embryos were washed with decreasing MeOH 

concentration i.e. 75% (v/v), 50% (v/v), 25% (v/v), 0 (v/v) % MeOH for 15 minutes each 

time to dehydrate. After that, the embryos were digested with Proteinase K (10µg/ml final 

concentration) for 30 minutes, followed by rinsing twice in PBST and fixing in 4% (v/v) 

PFA for 20 minutes. To get rid of the remaining PBST, the embryo was washed 4 times in 

PBST for 5-7 minutes. The embryo was prehybridized in hybridization buffer at 54oC for 3 

hours and the “nape” of the neck of embryo was pricked to facilitate the probe penetration. 

After prehybridisation step, the buffer was removed and replaced with fresh warm 

hybridisation buffer containing 20 pmol of the miR-29b LNA probe (Exiqon, 38131-15) 

and left at 54oC overnight with gentle rocking. The probe hybridisation solution was 

removed followed by washes at 54oC and 15 minutes each wash e.g. 75% HB: 25% 2xSSC, 

50% HB:50% 2xSSC, 25% HB:75% 2xSSC, 2xSSC, 0.2xSSC. Following these washes, at 

room temperature, another 4 washes were carried on gently rocking platform, 10 minutes 

for each wash e.g. 75% 0.2xSSC:25% PBST, 50% 0.2xSSC:50% PBST, 25% 0.2xSSC:75% 

PBST, PBST. The embryo was then put in blocking solution for several hours at room 

temperature and incubated at 4°C O/N with the pre-absorbed antibody at a final dilution of 

1:5000 in Blocking Solution. After that, the Blocking Solution was removed and washed 

throughout 2 or 3 days at RT in PBST with gentle rocking. To get rid of all remaining 

PBST, the embryos were washed twice with TBST and with development solution for 15 

minutes each wash. Colour development was carried out at room temperature in 3.5ml 

development solution plus 15-50µl substrates. 

The antibody was pre-adsorbed using previously fixed and dehydrated tissue that is not 

suitable for in situ hybridization. These tissues were dehydrated and washed 15 minutes in 
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blocking solution, followed by incubating with blocking solution containing the antibody 

at 1:1000 dilution for three hours.  

2.2.2. Cell culture and cell-based assays 

2.2.2.1. Human primary chondrocyte isolation 

Human cartilage chips were incubated with digestion medium including DMEM 

GlutaMAXTM (Life Technologies, 10566-016), 1mg/ml collagenase (Sigma, C1639), 0.4% 

(w/v) Hepes (Fisher Scientific, BP310-100), 100 IU/ml penicillin, 100µg/ml streptomycin 

(Sigma, P4333) at 37oC, 180rpm overnight. The digestion mixture was then strained 

through a 70µm cell strainer. Cells were plated at 4x104cells/cm2 and grown to 80% 

confluence. Cells were used by passage 2.  

2.2.2.2. Human de-differentiation assay 

Human primary chondrocytes were isolated from human knee OA articular cartilage as 

described in 2.2.2.1. The cells were then subjected to serial subculture in monolayer. The 

de-differentiation assay was performed by Dr Natalie Crowe (Clark lab, University of East 

Anglia). 

2.2.2.3.  Chondrogenesis model 

The human chondrogenesis model was performed by Dr Matthew Barter, Newcastle 

University. Briefly, human bone marrow stem cells (from seven donors, 18-25 years of age) 

were isolated from human bone marrow mononuclear cells (purchased from Lonza 

Biosciences) and resuspended in chondrogenic culture medium consisting of high glucose 

Dulbecco’s modified Eagle’s medium containing 100 µg/ml sodium pyruvate (Lonza), 10 

ng/ml TGF-β3 (Peprotech), 100 nM dexamethasone, 1x ITS-1 premix, 40 µg/ml proline, 

and 25 µg/ml ascorbate-2-phosphate (Sigma). 5x105 hMSC in 100µl medium were 

pipetted onto 6.5mm diameter, 0.4-µm pore size polycarbonate Transwell filters (Merck 

Millipore), centrifuged in a 24-well plate (200g, 5 minutes), then 0.5 ml of chondrogenic 

medium was added to the lower well as described. Media were replaced every 2 or 3 days 

up to 14 days. 
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The murine chondrogenesis model was performed by Dr Tracey Swingler, University of 

East Anglia. Briefly, ATDC5 cells were seeded at 6x104/well of a 6-well plate in 

DMEM/Ham’s F-12 medium (Life technologies, 11320-033) containing 5% (v/v) FCS 

(PAA), 2mM glutamine, 100 IU/ml penicillin, 100µm/ml streptomycin (Sigma, P4333), 

5ng/ml sodium selenite, 10µg/ml human transferrin (Sigma, I3146), and 10µg/ml bovine 

pancreatic insulin at 37oC, in an atmosphere of 5% CO2. Media was replaced every 2 days 

up to 42 days. After 21 days, the medium was replaced with α-minimal essential medium 

with the same supplements, and the atmosphere was changed to 3% CO2.  

2.2.2.4. Monolayer cell culture and storage  

All cells were cultured at 37°C with 5% (v/v) CO2. Cells were usually grown in 

Dulbecco’s modified Eagle’s medium (DMEM) High Glucose, GlutaMAX supplement 

(Life technologies, 10566-016) with 10% (v/v) heat-inactivated Fetal Calf Serum (FCS) 

(PAA) and 100 IU/ml penicillin and 100µg/ml streptomycin (Sigma, P4333). For 

maintenance, medium was refreshed at least three times weekly. Cells were passaged at 

around 80-90% confluence. Adherent cells were detached by washing x2 with HBSS (Life 

Technologies, 14025092) then treated with 2 ml of trypsin/EDTA (Life Technologies, 

25200072) for 2-3 minutes at 37°C. After centrifugation (17.3xg, 5 minutes), the cell pellet 

was gently resuspended in fresh medium. Cells were replated at a ratio of 1: 20. For long 

term storage, cells were detached and pelleted by centrifugation at 17.3xg for 5 minutes. 

The pellets were resuspended in cryo-preservation medium including 90% (v/v) FCS 

(ATCC) and 10% (v/v) DMSO (Fisher, BP231-100), slowly frozen down at approximately 

1oC/minute, and stored in liquid nitrogen.  

2.2.2.5. Micromass culture  

Media 

Growth medium: Dulbecco’s modified Eagle’s medium (DMEM) High Glucose, 

GlutaMAX supplement (Life technologies, 10566-016) with 10% (v/v) heat-inactivated 

Fetal Calf Serum (FCS) (ATCC) and 100 IU/ml penicillin and 100µg/ml streptomycin 

(Sigma, P4333). 
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Different medium were prepared: the DMEM high glucose, GlutaMAX supplement (Life 

technologies, 10566-016) adding 1X Insulin- Transferrin-Selenium (ITS-G) (Life 

Technologies, 41400-045). 

Micromass culture  

The protocol was described in (Greco et al. 2011) with some modifications. Human 

primary chondrocytes was isolated from human OA knee cartilage as described in 2.2.2.1 

and cultured in monolayer with growth medium. Whenever reaching confluence, the cells 

were passaged two times. Confluent passage 2 monolayer culture of human primary 

chondrocytes were released by trypsin/EDTA (Life Technologies, 25200072), and 

resuspended in growth media at a density of 2.5x107 cells/ml. Micromass was obtained by 

pipetting 20µl of cell suspension into individual wells of 24 well-plates and leaving for 3 

hours to attach without additional medium. Then, 1ml growth medium was gently added 

and the micromass was left for another 24 hours before stimulating with cytokines or 

growth factors.  

2.2.2.6.Induction cells with regulatory factors: major cytokines and growth factors 

Cytokines and growth factors: 

Human recombinant TGFβ1 (R&D Systems, 240-B-002/CF) and human recombinant 

TGFβ3 (R&D Systems, 243-B-002/CF) were reconstituted in sterile 4mM HCl (Sigma, 

258148) containing 0.5% (w/v) bovine serum albumin (Sigma, A2058). 

Human recombinant Wnt3a (R&D Systems, 5036-WN-010/CF) was reconstituted in 

sterile Phosphate Buffered Saline (PBS) (Life Technologies, 10010023). 

Human Recombinant Interleukin-1β (IL-1β) (First Link, ILB4551) was reconstituted in 

sterile Phosphate Buffered Saline (PBS) containing 0.5% (w/v) bovine serum albumin 

(Sigma, A2058).  

NFκB activation inhibitor II JSH-23 (Calbiochem, 481408) is a cell-permeable diamino 

compound that selectively blocks nuclear translocation of NF-κB p65 and its transcription 

activity without affecting IκB degradation.  
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Lipopolysaccharides (LPS) (Sigma, L3012) are components of the cell wall of gram 

negative bacteria. LPS are extracted from E.coli serotype O111:B4 and purified by gel 

filtration. LPS is reconstituted in sterile (PBS) (Life Technologies, 10010023). 

P38 inhibitor SB203580 (Sigma, S8307) is a pyridinyl imidazole that suppresses the 

activation of MAPKAP kinase-2. The P38 inhibitor, therefore, inhibits the MAPKAP 

kinase-2 cascade which is activated by cellular stress, bacterial infection and pro-

inflammatory cytokines. SB203580 was resuspended in DMSO (Fisher, BP231-100).  

2.2.2.6.1. Stimulation of cells in monolayer with cytokines and growth factors  

Human chondrosarcoma SW1353 and human primary chondrocytes were maintained as 

described above. For stimulation, either 5x103 SW1353 cells or 104 human primary 

chondrocytes were seeded into each well of a 96-well plate with 100µl DMEM GlutaMax 

(Life Technologies, 10566-016) with 10% (v/v) FCS (ATCC) and 100 units/ml penicillin 

and 100µg/ml streptomycin (Sigma, P4333). Cells were serum starved for 14 hours and 

were stimulated with different cytokines and growth factors at final concentration: TGFβ1, 

TGFβ3 4ng/ml, IL-1 5ng/ml, Wnt3a 100ng/ml, LPS 1µg/ml at 4, 8, 12, 24, 48 hours. All 

treatments were performed in triplicate. At each time point, cells in each well were washed 

with ice cold PBS (Life Technologies, 10010023) and harvested with 30µl Cells-to-cDNA 

lysis buffer (Life Technologies, AM8723).  

2.2.2.6.2. Stimulation of cells in micromass culture with cytokines and growth 

factors  

After the micromass was rested in growth medium for 24 hours, the different medium with 

either TGFβ1 (10ng/ml), IL-1 (20ng/ml), Wnt3a (50ng/ml) or LPS (1µg/ml) was added. 

All treatments were performed in triplicate. After different time points as desired, some of 

micromasses were harvested for Alcian blue matrix staining and others for quantitative 

RT-PCR.  
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2.2.2.7. Mammalian cell transfection 

2.2.2.7.1.  Plasmids, constructs, siRNAs and microRNA mimic and inhibitor 

Sox9 expression vector: The vector was kindly provided by Dr Simon Tew (University of 

Liverpool, UK). The vector was described in (Lefebvre et al. 1997). Briefly, an almost 

full-length coding sequence of human SOX9 which is from codon 27 (directly from the 

first ATG associated with the Kozak sequence) up to 39bp of 3’unstranslated region was 

subcloned into pCDNA-5’UT-FLAG. pCDNA-5’UT-FLAG is pCDNA 3.1 with a FLAG 

sequence.  

The miR-29a/b1 promoter construct: The construct was kindly provided by Dr Anne 

Delany (University of Connecticut Health Center, US) and was described in (Kapinas et al. 

2010). The 2kb region upstream from the transcriptional start site of the human miR-

29a/b1 putative promoter (EU154353) was subcloned into the luciferase reporter pGL4.10 

(Promega). 

p(CAGA)12-luc plasmid: The construct was a kind gift of Dr Andrew Chantry, University 

of East Anglia, UK and is described in (Pais et al. 2010). 12 binding sites of the complex 

Smad3/4 (GAGAC) was cloned upstream of the luciferase encoding gene in luciferase 

reporter pGL3 (Promega).  

I κκκκBα promoter reporter plasmid: The plasmid was a kind gift from Prof. Derek Mann, 

(Newcastle University, UK), (originally from Prof. Ronald Hay, University of Dundee, 

UK). The plasmid contains 5 binding sites of P65 cloned upstream of the luciferase gene.  

TOPflash and FOPflash reporter plasmids: The TOPflash reporter is a kind gift from 

Prof. Andrea Munsterberg (University of East Anglia, UK), and was originally from Prof. 

Randall Moon (University of Washington, USA). The FOPflash vector is provided by Dr 

Sarah Snelling (University of Oxford, UK). TOPflash contains 7 binding sites of TCF/LEF 

(AGATCAAAGG) driving the expression of the firefly luciferase. The back bone is the 

pTA-luc vector. The FOPflash vector is the control of TOPflash where all 7 binding sites 

of TCF/LEF are mutated.  
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The miR-29 mimic:  

• Syn-hsa-miR-29a-3p miScript miRNA mimic (Qiagen, MSY000086): 

5'UAGCACCAUCUGAAAUCGGUUA 

• Syn-hsa-miR-29b miScript miRNA mimic (Qiagen, MSY0000100): 

5'UAGCACCAUUUGAAAUCAGUGUU 

• Syn-hsa-miR-29c miScript miRNA mimic (Qiagen, MSY0000681) 

5'UAGCACCAUUUGAAAUCGGUUA 

• AllStars negative control siRNA (Qiagen, SI03650318) 

The 29b inhibitor control  

• Anti-hsa-miR-29b miScipt miRNA inhibitor (Qiagen, MIN000100) 

• miScript Inhibitor negative control (Qiagen, 1027271) 

siRNA 

• SOX9 siRNA: Dharmacon siRNA SMARTpool® (Fisher Scientific)  

• Control: non-targeting siRNA 2  (Dharmacon, 001210-02) 

2.2.2.7.2. Transient transfection protocol  

2.2.2.7.2.1. SOX9 overexpression  

SW1353 cells were plated in a 96-well plate (5x103cells/well) in growth medium without 

antibiotics one day before transfection. The cells were 80% confluent at the time of 

transfection. Before addition of the transfection complexes, the growth medium was 

removed from the cells and the cells were covered with 50µl of fresh growth medium 

without antibiotics. For each transfection, two tubes are prepared as follows: Tube 1: 

100ng SOX9 expression vector was diluted in 25µl DMEM GlutaMax (Life Technologies, 

10566-016) without serum and antibiotics; Tube 2: 0.2µl transfection reagent 

Lipofectamine 2000 (Life Technologies, 11668027) was diluted in 25µl DMEM GlutaMax 

(Life technologies, 10566-016) no serum and antibiotics. After 5 min of incubation, the 

diluted DNA and the diluted transfection reagent were combined and incubated at room 

temperature for 20 min. Then, 50µl of complexes were added to each well. The plate was 
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gently rocked back and forth and incubated at 37°C in a CO2 incubator. All transfection 

was performed in triplicate. The pcDNA3.1 vector was used as control. After 6 hours of 

transfection, transfection medium was replaced with fresh growth medium without 

antibiotics for another 24 hours. For harvesting, cells were washed with ice cold PBS (Life 

Technologies, 10010023) and harvested with 30µl Cells-to-cDNA lysis buffer (Life 

Technologies, AM8723). 

2.2.2.7.2.2. SOX9 and miR-29a/b1 promoter cotransfection  

To cotransfect SOX9 and the promoter miR-29a/b1, the SW1353 cells were prepared as 

described above one day before transfection. For each transfection, two tubes are prepared 

as follows: Tube 1: 100ng of 29a/b1 promoter, and either 100ng SOX9/200ng pcDNA3 or 

300ng SOX9/100ng pcDNA3 was diluted in 25µl DMEM GlutaMax (Life Technologies, 

10566-016) without serum and antibiotics; Tube 2: 0.2µl transfection reagent 

Lipofectamine 2000 (Life Technologies, 11668027) was diluted in 25µl DMEM GlutaMax 

(Life Technologies, 10566-016) no serum and antibiotics. The diluted DNA and the 

diluted transfection reagent were combined after 5 min of incubation and incubated at 

room temperature for another 20 min. Then, 50µl of complexes were added to each well. 

The plate was incubated at 37°C in a CO2 incubator and transfection medium was changed 

with fresh medium without antibiotics for another 24 hours. Then, cells were washed with 

ice cold PBS (Life Technologies, 10010023) and a luciferase assay performed. All 

transfection were performed in triplicate. 

2.2.2.7.2.3. Transfection of the miR-29a/b1 promoter with cytokines and growth 

factors 

SW1353 cells were plated and transfected with 100ng miR-29a/b1 promoter as described 

above. Cells were incubated with the promoter for 24 hours. The medium was then 

removed and replaced with serum, antibiotic-free DMEM GlutaMAX medium (Life 

technologies, 10566-016), and cells were serum-starved overnight. Cells was stimulated 

for 6 hours with TGFβ1/3 (4ng/ml), IL-1 (5ng/ml), Wnt3a (100ng/ml), LPS (1µg/ml) in 

the presence or absence of 50nM NFκB inhibitor or 10nM p38 inhibitor (Sigma, S8307). 

Medium was removed 6 hours post stimulation and cells were washed twice with ice cold 

PBS (Life Technologies, 10010023) and then harvested for luciferase assay. 
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2.2.2.7.2.4. Short interfering RNA SOX9 mRNA knockdown 

SW1353 cells were plated and transfected with either 100nM SOX9 siRNA (Dharmacon) 

or non-targeting siRNA 2 (Dharmacon, 001210-02) as section 2.2.2.7.2.1. To detect 

siRNA-mediated mRNA SOX9 knockdown, cells were incubated for 48 hours post 

transfection, then harvested in 30µl Cells-to-cDNA lysis buffer (Life Technologies, 

AM8723).  

2.2.2.7.2.5.  Human primary chondrocyte gain- and loss-of-function experiments 

One day before transfection, human primary chondrocytes at passage 1 was plated in 6-

well plate at 2x105 cells/ wells in fresh growth medium without antibiotics so that the cells 

will be around 80% confluent. Complexes were prepared as followed for transfection: 

Tube 1: miR-29b mimic/ inhibitor/ AllStar negative control/ inhibitor negative control 

(50nM) was diluted in 250µl of serum, antibiotic-free DMEM GlutaMAX (Life 

Technologies, 10566-016). Tube 2: 5µl of Lipofectamine 2000 (Life Technologies, 

11668027) was diluted in 250µl serum, antibiotic-free DMEM GlutaMax (Life technology, 

10566-016). Time for incubation and transfection mixture was prepared similar to section 

2.2.2.7.2.2. The original medium was aspirated from the wells, 500µl transfection mixture 

was added to each well and the final volume was made to 1ml with DMEM GlutaMAX 

with 10% (v/v) heat-inactivated FCS, without antibiotics. All transfections were performed 

in triplicated. Cells were incubated for 48 hours, then, supernatant was removed and cells 

was washed with ice cold PBS and 1ml Trizol reagent was added.  Samples were stored at 

-20oC until RNA extraction.  

2.2.2.7.2.6. Transfection of human primary chondrocytes with miR-29 family 

mimics and treatment cytokines and growth factors  

50nM either miR-29a/b/c mimics or AllStar negative control was transfected to human 

primary chondrocytes in 6-well plate as in section 2.2.2.7.2.5. After 24 hours, medium was 

removed from the wells and replaced with DMEM GlutaMAX with 0.5% (v/v) heat 

inactivated FCS overnight. Then, cells were stimulated with TGFβ1 (4ng/ml), IL-1 

(5ng/ml), Wnt3a (100ng/ml). At desired times post stimulation as in Chapter 5, medium 

was removed, the cells were washed with ice cold PBS and harvested in 1ml Trizol reagent.  
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2.2.2.7.2.7. Transfection of the miR-29b mimic in micromass culture with 

cytokines and growth factors 

Confluent passage 2 monolayer culture of human primary chondrocytes were released by 

trypsin/EDTA and plated in 175 cm2 flask with growth medium with 10% (v/v) heat 

inactivated FCS, no antibiotics one day before transfection to give cells at 90-100% 

confluence. 100nM miR-29b mimic or non-targeting control was diluted in 500µl medium 

(tube1) and 4 µl Lipofectamine 2000 was also diluted in 500µl medium (tube 2). 

Transfection was carried out as in 2.2.2.7.2.2. The original medium from the flask was 

removed before adding 1ml transfection mixture and the flask was further covered with 

another 14ml growth medium with 10% (v/v) heat inactivated FCS. After incubating with 

miR-29b mimic for 48 hours, cells was detached by trypsin/EDTA and put in micromass 

culture as in 2.2.2.5. After 24 hours of resting, miR-29b transfected micromasses were 

treated with either TGFβ1 (10ng/ml), IL-1 (5ng/ml), Wnt3a (100ng/ml) in different media 

(referred in 2.2.2.5) with 10% (v/v) heat inactivated FCS without antibiotics. At desired 

time, micromasses were harvested in 500µl Trizol reagent.  

2.2.2.7.2.8. Co-transfection of reporter vectors with the miR-29 family mimic/ 

miR-29b inhibitor and stimulation with cytokines and growth factors  

SW1353 were seeded into 96-well plate 1 day before transfection as in 2.2.2.7.2.1 and 

transiently co-transfected with: (1)100ng of reporter plasmids of either p(CAGAC)12- luc, 

IκB3-luc, TOPflash, FOPflash, (2) 10ng of renilla luciferase reporter, and (3) 50nM of 

either miR-29a/b/c mimic, AllStar non-targeting negative control, miR-29b inhibitor, or 

inhibitor negative control.  The protocol for transfection is as in 2.2.2.7.2.5. After 24 hours 

of transfection, cells was serum starved overnight and were treated with recombinant 

human TGFβ1 (4ng/ml), IL-1β (5ng/ml), Wnt3a (100ng/ml) for 6 hours. After stimulation, 

cells were harvested and a luciferase assay performed as in 2.2.2.8. 

2.2.2.7.2.9. Cotransfection of pmiR-Glo-3’UTR reporter with the miR-29 family 

mimic  

Chicken fibroblasts DF1 were plated in a 96-well plate (104cells/well) in antibiotic free 

growth media with 10% (v/v) FCS overnight. 100ng of either pmiR-Glo-3’UTR wild type 



 

 

95 

 

or mutant constructs were co-transfected with 50nM miR-29a/b/c mimic using the non-

targeting Allstars as control. The protocol for transfection was described in 2.2.2.7.2.5. 

After 24 hours post transfection. DF1 cells were harvested for luciferase assay as in 2.2.2.8. 

2.2.2.8. Luciferase reporter assay 

At desire times post transfection, the plate was removed from the incubator. Luminescence 

was detected using the Dual-Luciferase Reporter Assay system (Promega, E1980). Briefly, 

the medium on the cells was removed. The cells were washed twice with ice cold PBS and 

70µl of cell lysis buffer provided in the kit (Promega, E1980) was added to each well. The 

plate was gently rocked back and forth for 30 minutes. Then, 10µl cell lysates were 

transferred to a 96- well white microplate. For measuring firefly luciferase activity, 50µl of 

Dual Luciferase Reagent was added to each well. The firefly luminescence was measured 

using a microplate reader. For measuring Renilla luciferase activity, 50 µl of Dual Stop & 

Glo Reagent was added to each well and mixed gently then the luminescence measured.  

After measurement of the firefly luciferase luminescence and Renilla luciferase 

luminescence, the relative luciferase activity was calculated as the ratio of the firefly 

activity normalized to the Renilla luciferase activity. 

2.2.3. MicroRNA and mRNA microarray   

2.2.3.1. MicroRNA and mRNA microarray for destabilization of  medial menicus 

(DMM) model  

Whole knee joints from mice which underwent DMM surgery (e.g. DMM-operated right 

knee and unoperated left knee) were subjected to total RNA isolation and grouped as 

DMM left (referred to as control) or DMM right (referred as treatment). At each time point 

(1, 3, 7 days after surgery), equal amounts of total RNA from each sample in the same 

group was pooled together. The integrity of the new pooled samples was checked before 

sending to Exiqon Services (Denmark) or Source Bioscience (UK) to perform miRNA 

microarray or mRNA microarray, respectively.  

The miRCURY LNATM microRNA Hi-Power Labelling Kit Hy3TM/Hy5TM was used for 

miRNA microarray in which the Hy3TM labelled samples and Hy5TM labelled samples 
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were mixed pair-wise and hybridized to capture probes targeting all miRNAs or human, 

mouse and rat registered in the miBASE 18.0. For whole genome array, Illumina’s  

BeadArray-based technology was employed by using MouseWG-6 v2.0 Expression 

BeadChips whose feature content derived mainly from NCBI reference sequence (NCBI 

refseq), and simultaneously profiles more than 45,000 mouse transcripts. The BeadChips 

consists of oligonucleotides immobilized to bead held in microwells on the surface of any 

array substrate, and made up with 50-mer-gene-specific probe plus 29-mer address 

sequences. Especially, the chip has high level of bead type redundancy (average 30 beads 

per probe) to control the quality and reproducibility of the direct hybridization assay.  

2.2.3.2. Whole genome array for miR-29b gain and loss-of-function experiment 

Human primary chondrocytes were transiently transfected with either miR-29b mimic or 

miR-29b inhibitor for 48 hours in triplicate. Then, total RNA was isolated and equal 

amounts of total RNA of each sample in the triplicate was pooled together. After checking 

the quality and integrity, the new pooled samples were sent to Source Bioscience (UK) to 

perform human whole genome profile. Again, the Illumina’s BeadArray-based technology 

was employed but using humanHT-12 V4.0 expression BeadChips. Similarly, the feature 

content derived mainly from NCBI reference sequence (NCBI refseq) which 

simultaneously profile more than 47,000 human transcripts. 

2.2.4. Data analysis  

2.2.4.1.   Pre-processing microRNA array data 

2.2.4.1.1. VST transformation and quantile normalization  

It is necessary to do background correction to remove non-specific signal from total signal. 

However, the initial data-pre-processing in the Illumina GenomeStudio solfware provides 

users with bead summary data in the form of a single signal intensity value for each probe. 

This value is calculated by subtracting the local background from the signal intensity of 

each bead, then taking the means of all beads containing a given probe. This means 

BeadStudio output data has undergone background correction. Thus, no further 

background correction need to be done for the Bead summary data, received from Source 

Bioscience (UK).  
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To reliably detect changes in expression from the whole genome array, it is important to 

remove sources of variation of non-biological origin between arrays to make data 

comparable. There are two types of variations might be seen when comparing arrays e.g. 

interesting variation (biological differences), and obscuring variation. Sources of obscuring 

variation were introduced during the process of carrying out the experiments e.g. during 

preparing the samples including mRNA extraction and isolation, variation in 

introduction and incorporation of dye, effected by pipetting error, temperature fluctuations 

and reagent quality; during manufacturing of the array  including variation in the 

amount of probe present at each feature or spot and variation in the hybridization 

efficiency of the probes for their mRNA targets; during hybridization of the sample on 

the array including variation in the amount of samples applied to the array and variation 

in the amount of target hybridized to the probe; and after array hybridization including 

variation in optical measurement and intensity computed from the scan image. So, 

comparisons between different biological samples can be made, it is important to remove 

these obscuring variations to ensure the values being analysed reflect the biology. For 

Beadchip array data, the two steps to achieve this are commonly referred to as between-

array normalization, and transformation. Two popular methods that implement these steps 

are VST transformation and quantile normalization for the Lumi packages. Briefly, for 

analysing, bead summary array data was imported into R studio (http://www.rstudio.com/). 

Array data was then transformed and normalized using Lumi package.  

2.2.4.1.2. Sequence data 

The miR-29 family mature sequence data was retrieved from miRbase database 

(http://www.mirbase.org/). 3’UTR sequences were downloaded from UCSC 

(https://genome.ucsc.edu/) and Ensembl (http://www.ensembl.org/index.html). RefSeq IDs 

were used to map probe sets to UCSC database and Ensembl Gene IDs were used to map 

probesets to the Ensembl database.  

2.2.4.1.3. The MicroRNA-29 family target prediction 

Three types of seed matches in the 3’UTR were considered when predicting direct 

miRNA-29 targets e.g. 6-mer seed match which is 6nt in length and was complementary 
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to nucleotides 2 to 7 in the miR-29 family; 7-mer seed match which is 7nt length and is 

complementary to nucleotides 1–7 in the miRNA or nucleotides 2–7 in the miRNA with 

“A” at the first position; and 8-mer seed match which is 8nt length, and matched 

nucleotides 1–8 in the miRNA or nucleotides 2–8 in the miRNA with an “A” at the first 

position. For searching these seed matches in the 3’UTR, 3’UTR sequences were imported 

and read in R studios using the “readDNAStringSet” function in Biostring package. Also, 

three types of miR-29 family seed matches were searched using “vcountPattern”function.   

In line with using R studios, some miRNA target prediction programs available were also 

used to predict targets for miR-29 including TargetScan (http://www.targetscan.org/), 

miRNA body map (http://www.mirnabodymap.org/), miRDB (http://mirdb.org/miRDB/), 

DIANA (http://diana.cslab.ece.ntua.gr/), Pictar (http://pictar.mdc-berlin.de/), miRbase 

(http://www.mirbase.org/).  

2.2.4.1.4. Functional pathway analysis  

DAVID (Database for Annotation, Visualization and Integrated Discovery) functional 

annotation tool (http://david.abcc.ncifcrf.gov/) was used to perform functional analysis for 

particular gene groups.  

2.2.4.1.5. Statistical analysis 

Unless otherwise stated, for the whole thesis, Student’s unpaired t-test (two-tail) was 

performed to compare difference between two groups. All values are given as mean values 

of replicates with error bar representing the standard error of the mean. The statistical 

analysis was carried using GraphPad Prism version 4.0 for Windows.  Levels of statistical 

significant are represented as * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. 
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CHAPTER III 

IDENTIFICATION OF THE MIR-29 FAMILY IN 

CARTILAGE HOMEOSTASIS AND OSTEOARTHRITIS 

 

3.1. Introduction  

MicroRNAs are referred to as the master regulators for gene expression: they exert their 

suppressive functions on targeting genes at the post transcriptional level through a 

sequence-complementary mechanism (Bartel 2009). In human chondrocytes, many 

different miRNAs are found and each of them are shown to directly and/or indirectly 

regulate hundreds of target genes, implicating a complex gene regulatory network in which 

miRNAs are involved (Le et al. 2013). This means that miRNAs take a crucial part in 

controlling the balance of the mRNA network in cartilage homeostasis; and the 

dysregulation of miRNA expression could trigger OA onset by disrupting this regulatory 

network.  

Indeed, an essential role of miRNAs has been reported in various aspects of cartilage 

development, cartilage homeostasis, and also in OA pathogenesis (Le et al. 2013). For 

instance, knockout of Dicer, the pre-miRNA processing enzyme, in a cartilage-specific 

manner resulted in skeletal growth defects, premature death of mice, reduction in growth 

plate chondrocytes, and an increase in hypertrophic chondrocytes (Kobayashi et al. 2008).   

Mutation of the Dnm3 locus, transcribing the miRNAs miR-199a, miR-199*, and miR-214, 

resulted in growth retardation including craniofacial hypoplasia (Watanabe et al. 2008). 

Universal knockout of miR-140, a cartilage and skeletal-restricted miRNA lead to: mild 

craniofacial deformities and dwarfism; early onset of age-related OA development; greater 

susceptibility to OA with accelerated proteoglycan loss and fibrillation of articular 

cartilage (Miyaki et al. 2010, Nakamura et al. 2011). Transgenic mice overexpressing 

miR-240 in cartilage were resistant to antigen-induced arthritis-associated loss of 

proteoglycan and type II collagen (Miyaki et al. 2010). Other specific miRNAs: miR-9, 

miR-98, and miR-146 were highlighted to be expressed differentially in miRNA profiles 

between human OA cartilage and its normal articular counterpart (Iliopoulos et al. 2008, 

Jones et al. 2009); miR-199a, miR-675, miR-145, miR-140, miR-455 have been proven to 

function in chondrogenesis and cartilage homeostasis (Lin et al. 2009, Miyaki et al. 2009, 

Dudek et al. 2010, Martinez-Sanchez et al. 2012, Swingler et al. 2012); miR-222 is 
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reported to play a potential role in the articular cartilage mechanotransduction pathway 

(Dunn et al. 2009); miR-146a and miR-146b, whose expression is regulated by NFκB, 

appear to be the key miRNAs in the inflammatory response (Taganov et al. 2006); miR-

34a, miR-194, miR-27b were reported to be induced by IL-1β (Abouheif et al. 2010, 

Akhtar et al. 2010, Xu et al. 2012). All of these data reveal miRNAs as important 

modulators of various aspects of articular cartilage homeostasis and OA pathogenesis.  

OA develops slowly with time and may not be symptomatic until significant joint damage 

has occurred. Currently, there is a lack of effective approaches to OA prevention or 

treatment. Available treatments are limited to pain management, and joint replacement 

surgery, this latter in the late phase of the disease. MicroRNAs, with the ability to fine-

tune the expression of multiple genes, could be a promising tool for therapeutic 

applications for a complex disease like OA. The down regulation of gene expression by 

miRNAs is relatively modest, thus the approach of combining multiple miRNAs to 

simultaneously target OA pathogenesis-relevant networks may be needed. Furthermore, 

There is growing evidence for future miRNA-based diagnostics: a number of miRNA in 

plasma were found at different levels between RA and OA patients (Murata et al. 2010); 

let-7e, miR-454, miR-886 were identified as differentially expressed circulating miRNAs 

in OA patients necessitating arthroplasty, especially, let–7e emerged as potential predictor 

for severe knee or hip OA (Beyer et al. 2014). However, there is a requirement for detailed 

investigations directed at diagnostic performance (sensitivity, specificity, accuracy) of 

these promising novel biomarkers before the measurement of miRNAs can enter the clinic. 

With all of the above information, the essential roles of miRNAs in cartilage homeostasis 

and OA are shown with potential for clinical application. The insights into the roles of 

miRNAs in chondrogenesis, articular cartilage homeostasis, and OA initiation and 

progression are, nevertheless, still insufficient. Thus, there is a continuing need to deepen 

our understanding of the molecular mechanisms miRNAs are involved in cartilage 

homeostasis and OA. Investigating the disease directly in man is challenging due to e.g. 

the inability to harvest articular tissue at an early stage; the slow disease progression; the 

absence of symptoms in the early stage of the disease; the variety of symptoms; the variety 

of causes and environmental influence. Animal models mimicking features of OA are, 

therefore, an important alternative solution.  
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In an effort to identify novel miRNAs important in the development of OA, the murine 

Destabilization of Medial Meniscus (DMM) model was used to identify miRNAs 

differentially expressed at 1, 3, 7 days (i.e. early stages) after the surgery. Performing 

miRNA and mRNA profiling followed with an integrated analysis highlighted miR-29b as 

a candidate miRNA participating in the early onset of OA in DMM model. Alongside the 

DMM model, the role of the miR-29 family in cartilage homeostasis and OA was also 

investigated in other human and mouse models e.g. human end-stage OA cartilage, the 

murine hip avulsion injury model, a human primary chondrocyte dedifferentiation model, a 

human chondrogenesis model, and murine limb development. 
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Aims 

• Performing miRNA and mRNA profiling in DMM model at very early time points 

1, 3, 7 days after surgery 

• Identifying miRNA potentially involve in OA onset by bioinformatics analysis  

• Investigating the regulation of the miR-29 family which is highlighted from 

bioinformatics analysis above in human end-stage OA cartilage   

• Determining the expression pattern of the miR-29 family in injury model  

• Establishing if the miR-29 family involving in chondrocyte phenotype  

• Determining the role of miR-29 in human and murine chondrogenesis  

• Investigating the involvement of miR-29 in murine limb development 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

103 

 

3.2. Results  

3.2.1. The microRNA profile in the DMM model at 1, 3, 7 days after surgery    

As little is known about the involvement of miRNAs at the early stage of OA, identifying 

miRNAs modulated in OA initiation was a major aim.  Since mRNA profiles have shown 

large changes in gene expression even at 24 hours post surgery, the DMM model was used 

to investigate this. 

Alongside DMM mice (mice whose medial meniscal tibial ligament of the right knee was 

transected whilst the left knee was untouched), naïve mice (receiving no treatment), and 

sham-operated mice (mice whose right knees were operated to visualize the medial 

meniscal tibia ligament but not transected) were used.  Total RNA was first isolated from 

the whole knee joints of DMM mice (both right and left knees) and their controls at 3 

different time points i.e. 1, 3, 7 days after surgery, and subsequently checked for quality 

and integrity.  Unfortunately, RNA from naïve mice was degraded and not further studied. 

For miRNA profiling, an equal amount of total RNA from individual in each triplicate in 

the DMM right knee and DMM left knee group at 1, 3, and 7 days after surgery was 

pooled and these pools were subsequently subjected to miRNA microarray using the 

miRCURY LNATM microRNA Hi-Power Labelling Kit Hy3TM/Hy5TM, containing probes 

targeting all human, mouse and rat miRNAs registered in the miRBase 18.0.  

Clustering analysis showed that: the miRNA profiles of the DMM right or left knees were 

clustered quite closely to each other at day 1 and 3 but far apart at day 7 (Appendix, Figure 

1), suggesting that more miRNAs were modulated at the later time point than the earlier. In 

line with this, calculating the number of miRNAs which changed expression at each time 

point revealed the same pattern: only small changes were observed until 7 days post-

surgery (Figure 3.1). Using 1.5 fold-change (FC) as the cut off, only four miRNAs 

significantly increased expression at day 1 and 3 whilst more than 30 miRNAs were 

modulated at day 7.  The list of miRNAs which changed expression is listed in Table 3.1.  

To visualize the expression pattern of miRNAs across the time course of the DMM model, 

unsupervised hierarchical clustering analysis was carried out for miRNAs that met the 

filtering criteria e.g. absolute FC > 1.3 in each time point. Several clusters of miRNAs 

were identified comparing between DMM right and left knee i.e. (i) miRNAs which 

increased expression across the time course (cluster 1, 2, 3) (Figure 3.2a, b, c),  (ii) 
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miRNAs which decreased expression across the time course (cluster 5, 6) (Figure 3.2.e, f), 

(iii) miRNAs which decreased expression across 3 days but increased at day 7 (cluster 4) 

(Figure 3.2d) and (iv) miRNAs which increased until 3 days but decreased at day 7 

(cluster 7) (Figure 3.2.g).  

A subset of miRNA differentially expressed by microarray analysis was selected for 

revalidating the array data by quantitative real-time RT-PCR. The result confirmed the 

miRNA array data since a similar expression pattern between the two platforms for miR-

140, miR-455 (data not shown) and miR-29b (which will be discussed below) was 

observed.  
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Figure 3.1: Modulation of miRNA expression across a 7 day time course 

From the array data, for each miRNA, fold change (FC) was calculated by comparing its 
expression level in DMM right versus left knee. The number of regulated miRNAs were 
calculated for each of 0.05 interval of a (0.4, 2.5) range of FC. FC:  > 1: increase 
expression; < 1: decrease expression. The difference in number of miRNAs modulated was 
calculated by unpaired two-tailed t test: * p<0.05, ** p < 0.01, *** p<0.001. 
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Table 3.1: The list of miRNAs regulated in the DMM model with fold change higher than 
1.5 (increase or decrease) at 1, 3, and 7 days after surgery.  

Fold change (FC) was calculated by comparing between the DMM operated right and un-
operated left knee. Down-regulated miRNAs are presented as negative FC.   
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Figure 3.2: Unsupervised hierarchical clustering analysis for miRNAs with absolute fold 
change higher than 1.3. 

Comparing DMM right versus left knee at 1, 3, 7 day time points: cluster 1, 2, 3: all the 
miRNAs induced expression; cluster 5, 6: all miRNAs decreased expression; cluster 4: 
miRNAs decreased across 3 days but increased at day 7; cluster 7: miRNAs increased 
across 3 days but decreased at day 7. Comparing between three time points: cluster 1: 
miRNAs increased across 7 days; cluster 2, 6: miRNAs decreased at day 3; cluster 3, 5: 
miRNAs decreased at day 7. SNORD: small nucleolar RNA.  
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3.2.2. Expression profile of mRNAs in DMM right and left knee 

The microRNA microarray profiling revealed approximately 35 miRNAs modulated in the 

DMM model at 3 different time points, and whilst changes in expression are small, this 

may suggest that these miRNAs may have a role in regulating the onset of OA.  For further 

filtering of miRNAs having important roles amongst these modulated miRNAs, examining 

the mRNA expression profile would be useful since miRNAs exert their function by 

directly targeting and subsequently inhibiting mRNA expression. Additionally, since no 

major modulation of miRNA expression level was observed until 7 days after DMM 

surgery, it was sufficient to profile mRNA expression for two time points i.e. 1 and 7 day 

following DMM surgery.  

The Illumina BeadArray-based: MouseWG-6 v2.0 Expression BeadChip was used to 

profile more than 45,000 mouse transcripts in the pooled total RNA samples (DMM right 

and left knee), previously subjected to miRNA profiling. Consistent with the miRNA 

profile, mRNA array data also showed a similar expression pattern: no major change in 

mRNA expression level until day 7 when comparing between DMM right and left knee 

(Figure 3.3). If the absolute fold change cutoff is set at 1.5, only 30 mRNAs changed 

expression at day 1 whilst at day 7, more than 683 mRNAs were modulated. The full lists 

of mRNA which changed expression are in Appendix, Table 6, 7.  

A subset of mRNA differentially expressed by microarray analysis was selected for 

revalidating the array data. Comparison of the expression levels between the mRNA 

microarray and quantitative real-time qRT-PCR demonstrated a similar expression pattern 

between the two platform for 4 genes i.e. CCL2, IL6, SAA3, Arginase-1 (Appendix, Figure 

2). These results confirmed the mRNA array data. 
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 Figure 3.3 Total numbers of mRNAs at different fold change value at day 1 and day 7 
following surgery in DMM model.   

At each time point, Fold change = intensity value in DMM right - intensity value in DMM 
left. Numbers of mRNAs were calculated as fold change ranging from -3 to 7 for each 
increase of 0.05. Fold change:  > 1: increase expression; < 1: decrease expression.  
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3.2.3. Integrated miRNA and mRNA expression profiles of the DMM model identify 

miR-29b as a miRNA associated with OA onset  

To prioritize miRNAs which might have a role in OA onset in the DMM model, an integrated 

analysis between miRNA and mRNA profiles at 1 and 7 day of the DMM model was 

performed. This approach took advantage of inverse correlation analysis in which a miRNA 

was considered as a potential candidate if it was differentially expressed, and inversely 

correlated with the expression of its putative targets in the same biological samples.  

Steps for the miRNA and mRNA profile integrating analysis include: (i) predicting miRNA 

putative targets by searching for 4 different types of seed sequences e.g. 6-, 7 match 8-, 7 A1-, 

and 8-mer seed sequences located in the 3' UTR; (ii) integrating expression levels at each 

time point in the DMM model for all miRNA targets; (iii) searching for a miRNA’s putative 

target enrichment which is given more detail below.  

If a miRNA has an impact in the pathological changes in the DMM model and could exert its 

suppressive function on variety of targets, then when it is down-regulated, there should be an 

enrichment of its predicted targets among up-regulated mRNA and vice versa. This means 

that for downregulated miRNAs, a greater percentage of upregulated mRNAs will be their 

targets and the inverse pattern will be observed for an upregulated miRNA. This should also 

be true when comparing between different time points, 1 and 7 days in the DMM model. For 

instance, if a miRNA was repressed across the 7 day time course, the percentage of its targets 

amongst up-regulated mRNA at day 7 should be higher than at day 1. Together with this, for 

a downregulated miRNA, an enrichment of miRNA targets in up-regulated mRNAs over 

unmodulated mRNAs should also be observed at each time point or across the time course.  

Additionally, fold change threshold is another challenge faced in integrating analysis. In fact, 

it is almost impossible to choose the “right” cut off as the normal 1.5 fold change would be 

too stringent, and consequently, the power to detect potential miRNAs would be very low. To 

overcome this, in this study, all calculations were done for all fold change values greater than 

1 at 0.05 fold intervals. 

The integrating analysis for the miRNA and mRNA array data in the DMM model showed 

that amongst the differentially expressed miRNAs, miRNA-29b is the most interesting. 

Indeed, a substantial enrichment of miR-29b putative targets which was inversely correlated 
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with the miRNA expression level was observed at each time points (Figure 3.4, Figure 3.5).  

At day 1, when miR-29b increased expression, 6mer- and 7mer match 8- targets in the down-

regulated section were dominant compared with the up-regulated section (Figure 3.4). 

Conversely, at day 7, when miR-29b decreased expression, there was a strong enrichment of 

targets with 4 different types of seed sites in the up-regulated section over the down-regulated 

(figure 3.4). Also at day 7, the ratio up-regulated targets/unchanged targets was substantially 

higher than the ratio down-regulated targets/unchanged targets (Figure 3.5).  

The inverse correlation between miR-29b and its potential targets was also observed across 

the time course: whilst miR-29b level was down-regulated from day 1 to day 7, there was a 

substantial increase of miR-29 targets in the up-regulated mRNAs at day 7 compared with 

day 1. Consistent with this, the ratio up-regulated targets/unchanged targets showed an 

enrichment at day 7 (Figure 3.5). All of the data above suggest that miRNA-29b has a 

potential functional role in OA onset in the DMM model and was selected as the candidate 

miRNA for further functional studies.   

From miRNA microarray data, miR-29b is the one on two miRNAs increased expression 

with 1.5 fold change at day 1 following DMM surgery. Real-time qRT-PCR was used to re-

measure expression level of miR-29b in the DMM samples and sham surgery samples. The 

Real-time qRT-PCR data confirmed miRNA microarray data and showed a significant 

increase of miR-29b expression level in DMM right compared with left knee or sham surgery 

(Figure 3.6).  

MicroRNA-29b is a member of the miR-29 family including miR-29a and miR-29c with the 

mature sequences differing at nucleotide positions 10, 18, 21, 22, or 23 but sharing a common 

seed sequence for target recognition. We hypothesized that not just miR-29b but all members 

of miR-29s may contribute to OA onset, as all miRNA-29s showed a downward trend at all 3 

time points even though the difference did not reach statistical significance. Therefore, in this 

study, we investigated the link between all miR-29 members with OA rather than just miR-

29b alone.  
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Figure 3.4 Percentage of miR-29 predicted targets in differentially expressed mRNA at day 1 
and day 7 after surgery in DMM model.  

The calculation was done for all the fold changes ± 0.05 from -2.5 to 4.0 and for each type of 
seed sequence e.g. 6mer, 7mer match 8, 7mer a1, 8mer. The mRNA having more than one 
binding site for each type of seed sequence was always assigned as 1. At k fold change, the 
percentage of 6mer-seed-site targets in modulated mRNAs was calculated: a_6mer= sum of 
mRNA having 6mer-seed site sequence in their 3’UTR with the fold change in the range (k, 
k+0.05); b_k= sum of mRNA with the fold change in the rank (k, k+0.05); Freq= 
a_6mer/b_k. The percentage of other seed site targets was calculated similarly. Day1: closed 
bar, day 7: opened bar.  
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Figure 3.5 Percentage of miR-29 targets that changed expression compared to unchanged 
expression at day 1 and day 7 after surgery in DMM model.  

The calculation was done for all the fold change (FC) ± 0.05 from each other from -2.5 to 4.0 
and for each types of seed sequence e.g. 6mer, 7mer match 8, 7mer a1, 8mer. The mRNA 
having more than one binding site for each type of seed sequence was always assigned as 1. 
When FC=k, the percentage of 6mer-seed-site targets which increased or decreased 
expression was calculated: 6mer_changed = sum of mRNA having 6mer-seed site sequence 
in their 3’UTR with FC in the range (k, FC max) if k >0, or (FC min, k) if k<0; 
6mer_unchanged = sum of mRNA having 6mer-seed site sequence in their 3’UTR with FC 
range in (0,k]  if k>0, or (k, 0] if k< 0;  1/Per.different = 6mer_unchange/6mer_changed. 
The percentage of other seed site targets was calculated similarly. Day1: red line, day 7: blue 
line.  
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Figure 3.6: MicroRNA 29b was significantly induced in the DMM model at 1 day after 

surgery 

Total RNA was reversed transcribed to cDNA and miR-29b expression was measured by 
real-time qRT-PCR in individual samples of sham right knee (sham surgery), DMM left knee 
(un-operated), and DMM right knee (DMM) at 1 day after surgery. U6 was used as 
endogenous control. Expression level of miR-29b in DMM and sham surgery was normalized 
to un-operated control. The data show mean +/- SEM, n=3.  The expression of miR-29b 
between each group was analysed by unpaired two-tailed t test * p<0.05, ** p < 0.01, *** 
p<0.001. 
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3.2.4. Up-regulation of miR-29s in the murine hip avulsion injury model  

Traumatic joint injury and joint magliment are linked to OA initiation. Patients with 

traumatic joint injury show an increased risk of OA, implicating the early events post-injury 

as important in the long term. To investigate the role of miR-29s in the onset of OA, a murine 

hip cartilage avulsion injury model, where the murine hip femoral cap cartilage was sub-

cultured in serum-free media across a 48 hour-time course, was used. Total RNA was isolated 

from the explants using Trizol, reverse transcribed to cDNA by either SuperScript II reverse 

transcriptase (for mRNA detection) or miRCURY LNATM  Universal cDNA synthesis (for 

miRNA detection). Expression levels were measured by real-time qRT-PCR. 

The majority of the genes rapidly induced in murine joints following surgical destabilization 

(DMM model) were also regulated in murine hip cartilage explants upon injury (Chong et al. 

2013). Interestingly, some genes such as Dkk3, Ccl2, Il6 were significantly regulated after 3 

hours in culture (Appendix, Figure 3) though likely regulating genes which are modulated at 

later time points. The expression pattern of the miR-29 family is similar to each other and 

tends to increase across the 48 hour time course (Figure 3.7): miR-29b and 29c significantly 

increased expression after 12 hours in culture; miR-29a significantly after 6 hours. This 

suggests that the regulation of the miR-29s may contribute to the molecular mechanism 

underlying the initiation of OA. 
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Figure 3.7: Expression of the miR-29 family in the hip avulsion injury model  

The femoral caps of C57Bl/6 mice aged 4 weeks were avulsed and put in culture. At each of 
3, 6, 12, 48 hour time points, the femoral caps were harvested. Total RNA was isolated using 
Trizol and reverse transcribed to cDNA.  Expression of the mature miR-29 family was 
measured by real-time q-RTPCR where U6 was used as an endogenous control. At least 
triplicate samples were measured at each time. Means ± standard errors are presented, n=6. 
Difference in expression between each time point against control (t=0) was calculated by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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3.2.5. Up-regulation of the miR-29 family in human end-stage OA cartilage  

To determine whether the miR-29 family could play a role in human OA, its expression level 

was compared between hip / knee OA cartilage and non-disease tissue controls (hip cartilage 

followingfracture to the neck of femur).  

Human articular cartilage samples (total: 8 hip and 7 knee OA cartilage, 7 healthy fracture to 

the neck of femur) were obtained from patients undergoing total hip/ knee replacement 

surgery at the Norfolk and Norwich University Hospital. Total RNA was isolated from all 

cartilage samples using Trizol and followed by a purification step through column using 

miRVana kit. The total RNA was reverse transcribed to cDNA using miRCURY LNATM 

Universal cDNA synthesis. Expression of all miR-29 members was measured by real-time 

qRT-PCR with U6 as the endogenous control. 

Data (Figure 3.8) showed an increase in miR-29 expression in hip OA but decrease in knee 

OA cartilage compared to fracture control. This reached significance, or close to significance 

in each case. Whilst there is no comparison with normal knee cartilage, these data show that 

the miR-29 family is regulated in human end-stage OA cartilage. 
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Figure 3.8: Expression of the miR-29 family in human OA cartilage  

Total RNA was isolated from human articular cartilage of either end-stage OA patients or 
healthy controls and reverse transcribed to cDNA. Expression of the mature miR-29 family 
was measured by real-time qRT-PCR using U6 as an endogenous control. HOA (hip 
osteoarthritis cartilage, n=8), KOA (knee osteoarthritis, n=7), NOF (neck of the femur, n=7). 
Means ± standard errors are presented. Difference in expression between each time point 
against control (NOF) was calculated by unpaired two-tailed Student’s t test. * p<0.05, ** p < 
0.01, *** p<0.001. 
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3.2.6. The miR-29 family is regulated with chondrocyte phenotype 

Dedifferentiation and the loss of phenotype is an obstacle in expanding human chondrocytes: 

the cells stop expressing aggrecan and collagen type II, and this limits capacity to form 

cartilage. In line with this, alteration chondrocyte phenotype is one of the characteristics of 

OA. As compared with normal articular cartilage, the chondrocytes embedded in different 

zones of OA cartilage were shown to express different markers of chondrocyte differentiation: 

chondrocytes in the middle zone re-expressing chondroprogenitor phenotype; cells in the 

upper middle zone expressing type III collagen (dedifferentiated phenotype) (Aigner et al. 

1993). Assessing whether the miR-29 family is regulated with chondrocyte phenotype, 

therefore, would help to further determine the relevance of the miR-29 family in cartilage 

function.  

This was investigated using human primary chondrocyte dedifferentiation model. After 

isolation from human knee OA cartilage by collagenase (collagenase-post digested HACs 

(PD)), primary chondrocytes were cultured in monolayer (primary culture HACs (P0), and 

three sequential passages were performed at 1: 3 dilution of cells (passage 1 to passage 3). 

Total RNA was isolated from cartilage, PD, P0 to P3 chondrocytes and reverse transcribed to 

cDNA. The expression level of all the miR-29 family was then measured by real-time qRT-

PCR. 

The expression of the miR-29 family was found to significantly decrease when HACs were 

passaged in monolayer (Figure 3.9), indicating the putative role of the miR-29 family in 

chondrocytic phenotype.  
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Figure 3.9: Expression of the miR-29 family in a chondrocyte dedifferentiation model  

Human primary chondrocytes were isolated from the articular cartilage of 8 knee OA patients 
using collagenase digest. The cells were put in culture and passaged 3 times. Total RNA was 
isolated from either human articular cartilage (cart) or chondrocytes post digestion with 
collagenase (PD) or each passage 0, 1, 2, 3 (P0, P1, P2, P3).  After reverse transcribing to 
cDNA, expression of the mature miR-29 family was measured by real-time qRT-PCR (U6 
was used as an endogenous control). Mean ± standard errors are presented, n=8. Different in 
expression between was calculated by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001. 
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3.2.7. MicroRNA-29s expression in chondrogenesis  

Chondrogenesis is the earliest phase of skeletal development, occuring as a result of: 

mesenchymal cell condensation, chondroprogenitor cell differentiation, chondrocyte 

differentiation and maturation. Chondrogenesis results in the formation of cartilage and bone 

in the process of endochondral ossification (Goldring et al. 2006). It is pertinent to examine 

the role of miR-29 in chondrogenesis, particularly since the replay of this developmental 

process may contribute to osteoarthritis.   

To determine the expression and therefore possible role of the miR-29 family in 

chondrogenesis both human and mouse chondrogenesis models were used. Human 

chondrogenesis model: human bone marrow stem cells were differentiated to form a 

cartilage disc (the model was kindly developed by Dr Matt J. Barter (Newcastle University, 

UK)); Mouse chondrogenesis model: the embryonic carcinoma cell line ATDC5 was 

stimulated to from chondrocytes using insulin for 42 days (this model was developed by Dr 

Tracey Swingler (University of East Anglia)). Total RNA was isolated, reverse transcribed to 

cDNA and used for measuring expression level of the miRNA by real-time qRT-PCR. 

In the human chondrogenesis model, a significant down-regulation of the miR-29s after 3 

days of differentiation was observed; after that, miR-29s return to the original expression 

levels (Figure 3.10). A similar expression pattern was also observed in the murine ATDC5 

chondrocyte differentiation model: significantly decreased expression of all the miR-29 

members after 14 days differentiation; with a return after 36 days, to the original level 

(Appendix, Figure 4). These data imply that miR-29 may be a negative regulator of the early 

stage of chondrogenesis.  

Indeed, the miR-29 family was not the only miRNA regulated in either the human or murine 

chondrogenic process, many other miRNAs were strongly modulated e.g. (Barter et al, 

unpublished data) (Swingler et al. 2012). However, it can be postulated that the miRNA 

would have a functional role in chondrogenesis if it had affected on mRNA expression. To 

test this hypothesis, again an integrating analysis approachs (using mRNA expression profile 

data to analyse miR-29 putative target genes) was used. A substantial enrichment of miR-29 

targets was inversely associated with the expression of miR-29s was observed (Data not 

shown). Together, these data suggest that the miR-29 family acts as the negative regulator of 

chondrogenesis, leading to an increase in mRNA to enable the process.  
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Figure 3.10: Expression of the miR-29 family in the human chondrogenesis model. 

Human bone marrow stem cells (from 3 donors, 18-25 years of age, 5x105 cells in 100µl 
growth medium) were put into polycarbonate Transwell filters and centrifuged in 24 well 
plates. 0.5ml chondrogenic culture medium containing 100µg/ml sodium pyruvate, 10ng/ml 
TGFβ3, 100nM dexamethasone, 1x ITS, 40µg/ml proline, and 25µg/ml ascorbate-2 
phosphate was added to the lower well. Media were replaced every 2 or 3 days up to 14 days. 
At 0, 3, 7, 14 days, the cells were harvested and total RNA was extracted using Trizol. The 
RNA was then reverse transcribed to cDNA and was used for measuring the expression level 
of the mature miR-29 family by real-time qRT-PCR (U6 was used as an endogenous control). 
Assays were repeated 3 times. At least triplicate samples were in each time. Means ± 
standard errors are presented. Difference in expression between each time point was 
calculated by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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3.2.8. The miR-29b is expressed in murine limb development 

The formation of the skeleton first is initiated with the formation of a precartilage 

condensation (anlagen) which is followed by chondrogenesis triggered in the precartilage 

condensation and ultimately cartilage is formed. This process involves the cooperation of 

many cell activities e.g. migration, adhesion, intracellular signalling, and proliferation 

(Goldring et al. 2006). Given the likely involvement of the miR-29 family in chondrogenesis, 

it is pertinent to ask whether miR-29s are expressed in murine limb development. 

Additionally, the miR-29 family or its members have been shown to control cell proliferation 

and apoptosis in different tumour types. A murine model would thus be a useful model to 

study the role of the miR-29 family in cell proliferation and apoptosis limb development. 

In mice, the forelimb starts to develop at stage E9.5 whilst the hindlimb starts behind by 

about half a day. Five days later, a miniature model of the adult limb is formed (E14.5 and 

E15 for fore and hindlimb, respectively). At stage E11, a distinct apical ectodermal ridge at 

the limb tip is formed in the forelimb and the handplate is beginning to form at E11.5.  

Similarly events happen in the hindlimb at half a day later (at E11.5 and E12) (Martin 1990).  

Whole mount in situ hybridization was conducted using amiRCURY LNATM miR-29b-3p 

double-DIG labelled probe to detect the expression of miR-29b in the mouse embryo stage 

E11.5 and E15. The data showed that: at stage E11.5, miR29b was expressed in the cartilage 

of both fore and hindlimb; at stage E15 when the small scale the adult limb was formed, miR-

29b was strongly expressed, implicating miR-29b playing a role in murine limb development. 

Besides limbs, miR-29b was also found on the brain and the spine of embryo stage E11.5 

(Figure 3.11).  
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Figure 3.11: Whole mount in situ hybridization of miRNA-29b in murine embryo stage 

E11.5 and E.15.   

Using a miRCURY LNATM double-DIG labelled miR-29b probe, miR-29b was found to be 

expressed: in the embryo stage E11.5 in the brain (A), mouth (B), spine (C-D), hindlimb (E), 

forelimb (F); in the embryo stage E15 in hindlimb (G) and  forelimb (H).  
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3.3. DISCUSSION 

The principal aim of this study was to begin to identify the miRNAs which were implicated 

in the early stages of OA and elucidate their function.  Whilst there have been a number of 

studies on the role of miRNAs in OA pathogenesis, they have not focused on the disease 

onset. In the present study, for the first time, the miRNA expression profile was reported for 

the DMM mouse model at early time points e.g. 1, 3, 7 days following surgery. The fact that 

only a small number of miRNAs changed expression across the first three days after DMM 

surgery might indicate miRNAs mainly contribute in disease progression rather than 

initiation. However, there are some limitations of the study which prevent a firm conclusion 

about the role of miRNAs in the early stages of the disease. Total RNA for the miRNA 

microarray was isolated from whole knee joints of DMM mice. Thus, if a miRNA is 

expressed in a single tissue e.g. cartilage, bone, meniscus, ligament or synovium, pooling of 

tissues will reduce the signal to a lower level than in the individual tissue and that could be 

the explanation for the overall low levels of modulated miRNAs observed in the present 

study. Moreover, insufficient controls, e.g. naïve samples and genes responding to sham 

surgery in this study may also have been problematic.  The DMM model does not completely 

recapitulate human OA pathogenesis, e.g. with more synovial involvement in the latter.  

However, it remains unlikely that the miRNA microarray data acquired from the DMM 

model in this study is incorrect. The DMM left knee (no surgery) used as a control would 

show the consequence of surgery, even if it can’t distinguish injury per se from early OA. 

Moreover, Burleigh et al (2012)  reported a large and significant difference in expression 

levels of e.g. Ccl2, Arg1e, Il6, Saa-3 in the same DMM model just 6 hours following surgery, 

which was interpreted as response to surgical destabilization rather than reaction to injury 

(Burleigh et al. 2012). In this study, such an increase in expression was also observed when 

comparing between the DMM right and DMM left, suggesting that the DMM left knee can 

act as a suitable control. Hence, it was expected that the changes in miRNA expression at 

early time points would be greater.   

MicroRNA-29b, one of only two miRNAs significantly increased in expression at day one 

post-surgery and inversely correlated with expression of its putative targets, was investigated 

in detail. The miR-29b is encoded by two loci in the human genome e.g. the primary miR-29-

a/b1 cluster in chromosome 7, and the primary miR-29b2/c cluster in chromosome 1. 
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Normally, clustered miRNAs in humans work in combination to accomplish their function. 

At the transcriptional level, at least one of the other miR-29 family members i.e. miR-29a or 

miR-29c will be co-transcribed with miR-29b.  In addition, miR-29b is reported to have a 

short half-life (the time taken for the miRNA to fall to half of its original value) which is 

linked to the presence of uracil bases at positions 9-11, compared with miR-29a (more stable 

with a reported half-life of > 12 hours) (Zhang et al. 2011). Thus, in the DMM model at 1 

day after surgery it would be expected that a significant increase in either miR-29a or miR-

29c would accompany that of miR-29b. However, only miR-29b increased in expression (1.5 

fold change in array data) but not any of the other miR-29 family members, perhaps 

implicating another post-transcriptional regulatory mechanism controlling miRNA processing. 

In line with the DMM model data, in a murine hip avulsion injury model, an increasing 

expression level was also observed for all miR-29 members post injury. Interestingly, a 

similar pattern of expression of some genes strongly induced in the DMM model at 6 hours 

after surgery (Burleigh et al. 2012) was seen in the injury model suggesting some molecular 

similarities between the two models. In line with this, Chong et al (2013) also observed a 

similar pattern when measuring the expression of the set of gene induced expression in DMM 

model 6 hours after surgery and in murine injury model in which the hip cartilages cultured 

for 6 hours (Chong et al. 2013). Since mechanical factors following traumatic joint injury 

may mediate OA onset, these data suggest for the first time an important role for the miR-29 

family in the initiation of OA. The fact that the miR-29 family increased in expression in 

human OA end-stage cartilage supports a role for the miR-29s in the disease. In this study, 

human knee cartilage normal controls were not available, and the difference in hip and knee 

cartilage may explain in part why the miR-29 family levels increased in hip but decreased in 

knee OA cartilage compared to human hip fracture control. Also, in this project, the miR-29 

family expression level is very variable across a human tissue panel e.g. heart, brain, lung, 

spleen (data not shown). In supporting these data, previous published data also demonstrated 

the different expression level of the miR-29 family in different tissues in zebrafish 

(Wienholds et al. 2005). These data suggest that the mechanisms controlling the miR-29 

family expression in different tissues are not similar. The fact that miR-29 family expression 

was modulated in different mouse models and in human OA cartilage implies a role for the 

miR-29 family in cartilage, and suggest that the two pri-miR-29a/b1 and pri-miR-29b2/c 

clusters may be involved in both early and late stages of the disease. The direct mechanism 
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controlling miR-29 family expression and the extent to which each cluster contributes to OA 

remains unknown and is worthy of further investigation.  

This study also provides evidence for the role of the miR-29 family in cartilage formation as 

its expression was regulated during human and mouse chondrogenesis and inversely 

correlated with its putative targets. In fact, such decreased expression level at an early stage 

of chondrogenesis is in line with published data e.g. Guerit et al (2013) showed the decreased 

expression of miR-29a is essential for chondrogenesis via its regulation of FOXO3a (Guerit 

et al. 2014); Sorentino et al (2008) found miR-29b was among miRNAs down-regulated 

when differentiating human MSCs through chondrogenesis (Sorrentino et al. 2008); Yan et al 

(2011) demonstrated that both miR-29a and miR-29b were significantly decreased in a 

chondrogenesis model where mouse MSC were grown on polyhydroxyalkanoates (Yan et al. 

2011). However, I have demonstrated for the first time that all miR-29 family members are 

involved in chondrogenesis, stressing the important role of both miR-29 clusters in 

controlling cartilage homeostasis in human and mouse. In contrast to this data, there are 

others studies profiling the expression of miRNAs in murine and human chondrogenesis 

model (Suomi et al. 2008, Lin et al. 2009, Miyaki et al. 2009, Lin et al. 2011, Yang et al. 

2011). The miR-29 family, nevertheless, was not amongst the miRNAs which had altered 

expression. This is not surprising and could be attributed to differing design of experiments 

including inducers of differentiation, cell type, numbers of detected miRNA probes and 

organism.  In addition, despite of being a negative regulator of chondrogenesis, miR-29b was 

found to express in murine limb development. A number of published data report that the 

miR-29 family can act as oncogenes whose expression induces cell proliferation but inhibits 

apoptosis. Whether the miR-29 family is involved in murine limb development through 

inducing chondrocyte proliferation in the growth plate remains unknown. Therefore, 

examination of the role of miR-29 family in limb development in vivo will be a priority for 

future studies.  

Another piece of data supporting the role of the miR-29 family in OA comes from the fact 

that expression of the miR-29 family is decreased during chondrocyte dedifferentiation. 

Again, other groups have profiled miRNAs in human dedifferentiation models (Karlsen et al. 

2011, Lin et al. 2011) but the miR-29 family has not shown up in any of them. As mentioned 

above, this could be attributed to many different factors.   
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Taken together, all of these data show that the miR-29 family may modulate both cartilage 

homeostasis and OA and make a compelling case for further investigation. In this PhD thesis, 

for the first time, the whole miR-29 family is reported to be involved in OA although the 

increase of the miR-29b in OA had been shown (Moulin et al. 2012). Nevertheless, the 

miRNA-29 family has been implicated in many other areas of pathology. Many publications 

have reported the involvement of the miR-29 family in cancers where the miRNA family or a 

single member could serve as either a tumour suppressor or an oncogene. In 

rhabdomyosarcoma (Wang et al. 2008), nasopharyngeal carcinoma (Sengupta et al. 2008), 

hepatocellular carcinoma (Xiong et al. 2010), acute myeloid leukemia (Eyholzer et al. 2010) , 

multiple myeloma (Zhang et al. 2011, Amodio et al. 2012), chronic lymphocytic leukemia 

(Santanam et al. 2010), glioblastoma (Cortez et al. 2010), and lung (Fabbri et al. 2007) and 

pancreatic cancer (Muniyappa et al. 2009), miR-29 was described as a tumor suppressor 

whilst in acute myeloid leukemia , colorectal liver metastasis (Wang et al. 2012), and breast 

cancer (Chou et al. 2013) , miR-29 was shown to be as tumour promoter. 

Besides cancers, the miR-29 family has been shown to participate in a number of 

physiological processes including (i) muscle development e.g. knockdown of miR-29b in 

vivo induced cardiac fibrosis in mice; miR-29a/b1 inhibition induced vascular smooth muscle 

cell calcification; miR-29 family expression was developmentally up-regulated in porcine 

skeletal muscle from fetal to adult, and this was also true in mice and human; the miR-29 

family was found to be down-regulated in myotonic dystrophy type I and Duchenne muscular 

dystrophy (Wei et al. 2013), (ii) bone formation e.g. miR-29a increased bone mass, induced 

osteoblast differentiation, and inhibited osteoclast differentiation; reduced miR-29a 

expression was associated with low bone mass and poor skeletal microarchitecture in rats 

treated with glucocorticoids (Wang et al. 2013), (iii) HIV virus infection  e.g. ectopic 

expression of miRNA-29a resulted in reduction of HIV virus levels, implicating this miRNA 

as a potential strategy in developing anti-HIV therapeutics  (Ahluwalia et al. 2008), (iv) 

aging e.g. miR-29 family up-regulation was observed in a number of different organs e.g. 

liver, muscle, and brain of several aging models (Ugalde et al. 2011, Fenn et al. 2013, Hu et 

al. 2014), (v) diabetes e.g. the miR-29 family was up-regulated in diabetic rats and forced 

expression of miR-29 inhibited insulin induced glucose imported by 3T3-L1 adipocytes (He 

et al. 2007);  reduced miR-29b in plasma samples of type 2 diabetes patients anticipated the 
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manifestation of the disease (Zampetaki et al. 2010); miR-29c was found up-regulated the 

kidney glomeruli from diabetic mice (Long et al. 2011); the continued expression of miR-29 

isoforms in the pancreatic β-cell seems to be required for normal and selective stimulation of 

insulin secretion by glucose (Pullen et al. 2011); (vi) fibrosis development, the miR-29 

family has been shown to be implicated in the development of fibrosis of many organs 

including heart, kidney, lung, liver, and systemic sclerosis; (vii) Alzheimer disease, the miR-

29a/b1 cluster or miR-29a was significantly decreased in Alzheimer patients (Hebert et al. 

2008, Shioya et al. 2010). 

In conclusion, with all of the data above, the miR-29 family may play a key role in 

Osteoarthritis and of is worthy of further investigation. The mechanisms which control its 

expression together with its function in chondrocytes will be described in the next chapters.  
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CHAPTER IV 
FACTORS THAT CONTROL EXPRESSION OF THE MICRORNA-29 FAMILY  

 

4.1. Introduction  

In the previous chapter, evidence for the involvement of the miR-29 family in cartilage 

homeostasis and OA was presented. The increased expression of the all family members is 

apparent in both early and late stages of OA. However, which factors or mechanisms are 

responsible for miR-29 induction or repression in chondrocytes remains unknown and is 

worthy of further investigation.   

The miR-29 family is intergenic miRNAs and is encoded in two gene clusters e.g. one for the 

primary miR-29a/b1 on chr.7q32, and the other for the primary miR-29b2/c on chr.1q32.2 

(Saini et al. 2007, Chang et al. 2008). The miR-29b1 and miR-29a precursors are processed 

from the pri-miR-29a/b1 last intron (Genbank accession EU154353) whist the miR-29b2 and 

miR-29c precursors are from the pri-miR-29b2/c last exon (Genbank accession EU154352 

and EU154351) (Chang et al. 2008) (Figure 4.1). These precursors are all transcribed as 

polycistronic primary transcripts (Chang et al. 2008, Mott et al. 2010) upon which various 

transcriptional regulators e.g. NFκB (Liu et al. 2010, Mott et al. 2010), supressors (c-Myc 

(Mott et al. 2010, Parpart et al. 2014), Sp1(Liu et al. 2010, Amodio et al. 2012), Gli (Mott et 

al. 2010), Yin-Yang-1, Smad3 (Qin et al. 2011), Ezh, H3K27, HDAC1, HDAC3), or inducers 

(Gli, SRF, Mef2, TCF/LEF, GATA3 (Chou et al. 2013), CEBPA (Eyholzer et al. 2010)), and 

signalling pathways e.g, Wnt , TGFβ, TLR/NFκB, TNFα/NFκB, hedgehog signalling have 

been reported to be directly and/or indirectly involved. For instance, both canonical and 

non-canonical Wnt signalling was reported to induce the miR-29 family level in different 

cellular contexts: Wnt3a rapidly induces miR-29 levels in osteoblastic cells (Kapinas et al. 

2009, Kapinas et al. 2010) or in muscle progenitor cells (MPCs) (Hu et al. 2014), 

respectively, at least in part through the two putative TCF/LEF-binding sites in the miR-29a 

promoter (Kapinas et al. 2010); non-canonical Wnt signalling through Wnt7a/Frizzled 9 

resulted in increased expression of only the mature miR-29b but not miR-29a or c or any 

miR-29b primary or precursor forms in non-small lung cancer cell lines H661 and H15 

(Avasarala et al. 2013). In addition, ERK5 and PPARγ, key effectors of the Wnt7a/Frizzled 9 

pathway, were also observed to be strong inducers of miR-29b expression (Avasarala et al. 
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2013). In contrast to Wnt signalling, TGFβ/Smad3 signalling was shown to negatively 

regulate miR-29 family expression in different cell lines e.g. human aortic adventitial  
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Figure 4.1: Genomic organization of the miR-29 family 

The miR-29 family includes three members miR-29a, miR-29b and miR-29c. The primary 
pri-29a/b1 is located in chromosome 7 containing pre-29a and pre-29b1. The primary pri-
29b2/c is located in chromosome 1 including pre-29b2 and pre-29c. The hairpins indicate the 
locations of the sequence encoding precursors of miR-29s. Pre-29a and pre-29c will process 
into mature miR-29a and miR-29c, respectively. Pre-29b1 and pre-29b2 will process into 
mature miR29b. The mature sequences of the miR-29 family members share identical seed 
regions. Nucleotides that differ among miR-29s are indicated in italics.  
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fibroblasts (Maegdefessel et al. 2012), renal fibrosis cells (Wang et al. 2012, Ramdas et al. 

2013), murine hepatic stellate cells (Roderburg et al. 2011), rat hepatic stellate cells 

(Kwiecinski et al. 2011), human skin fibroblasts (Maurer et al. 2010), human tenon’s 

fibroblast (Li et al. 2012), human lung fibroblast cell line (Cushing et al. 2011, Yang et al. 

2013). The suppressive effect of TGFβ/Smad3 signalling on miR-29 expression was partly 

mediated through a Smad3 binding site in the highly conserved region around 22kb upstream 

of the miR-29b2/c promoter as showed by chromatin immunoprecipitation assay (Qin et al. 

2011, Ramdas et al. 2013). Similar to TGFβ, Toll-like receptor (TLR) signalling and 

TNFαααα signalling have been shown to mediate suppressive effects on miR-29 family 

expression. In man,  treating human cholangiocarcinoma cells with TLR ligands e.g. TLR3 

(Poly (I:C)), TLR4 (LPS), TLR5 (flagellin), TLR6 (MALP-2) showed a significant decrease 

in the miR-29 level beginning after 4 hours of LPS treatment but increasing to 24 hours (Mott 

et al. 2010); treating human stellate cells with LPS strongly decreased all miR-29 family 

expression after 1 hour (Roderburg et al. 2011); treating C2C12 myoblasts with TNFα 

substantially reduced miR-29b and miR-29c expression (Wang et al. 2008); stimulating the 

choroidal-retinal pigment epithelial cell line ARPE-19 with TNFα resulted in significant 

down regulation of all miR-29s; conversely, transfecting with a synthetic NFκB decoy, 

(NFκB inhibitor), rescued the down regulation of miR-29 by TNFα (Χαι ετ αλ. 2014). The 

activation of NFκB through TLR signalling with its three binding sites in the miR-29a/b1 

cluster promoter (-561, -110, and +134) was proven to be the mechanism for the suppression 

of miR-29a/b1 promoter function (Mott et al. 2010). In mice, miR-29a and miR-29b 

significantly decreased expression in murine natural killer (NK) cells stimulated with the 

TLR3 ligand (Poly (I:C)) or phorbol ester (PMA) as well as in splenocytes, NK and T cells of 

mice infected with L. monocytogenes or Mycobacterium bovis bacillus Calmette-Guérin (Ma 

et al. 2011). Consistent with the human miRNA, a region about 25 kb upstream of the murine 

promoter of miR-29a/b1 contains two NFκB binding sites. The second binding site is more 

conserved between human and mouse and it has been shown to be key for suppression of the 

miR-29a/b1 promoter (Ma et al. 2011). Importantly, other transcriptional factors, co-

operating with NFκB to suppress or induce miR-29 family expression, have also been 

reported e.g. YY1, Sp1, Ezh, H3K27, HDAC1, HADC3, Mef2, SFR.  Forced expression of 

YY1 in C2C12 lead to a 2-fold decrease of miR-29b and miR-29c levels; similarly, siRNA 

knockdown of YY1 significantly enhanced expression of miRNA expression.  ChIP analysis 

showed that YY1 did not bind to the miR-29b2/c locus in cells in the absence of NFκB, 
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suggesting that both pathways are necessarye for silencing the miR-29b2/c locus. Amongst 4 

putative binding sites of YY1 in highly a conserved region ~20kb upstream of miR-29b2/c, 

only one site is bound by YY1 on ChIP assay whereas all 4 sites produced a binding complex 

with EMSAs using nucleus extract from C2C12. Notably, Ezh, H3K27, HDAC1, whose 

expression is associated with repression of muscle-specific genes, and recruited by YY1, was 

also detected by ChIP assay. In line of these transcription factors, Mef2 and SFR, well-known 

for activating muscle genes, were also found binding to the miR-29b2/c promoter. Again 

using luciferase reporter assay, a reporter containing a 4.5 kb fragment spanning YY1, Mef2, 

SFR binding sites was repressed by YY1 or loss of the YY1 binding site but stimulated with 

either YY1 knockdown or SRF or Mef2 (Wang et al. 2008). In addition, forced expression of 

Sp1 or NFκB (p65) reduced miR-29b expression; conversely, knockdown of Sp1 or NFκB 

(p65) by siRNAs resulted in induced miR-29b level (Liu et al. 2010). EMSA assay using 

probes spanning the -125/-75 miR-29b sequence yielded two major complexes, suggesting 

Sp1/NFκB acts as a repressive complex interacting with an element of the miR-29b enhancer 

(Liu et al. 2010). Interestingly, histone deacetylase (HDAC) 1 and 3 contribute to the 

repressor activity of Sp1/NFκB on miR-29b expression (Liu et al. 2010). Incubation of 

HDAC1/HDAC3 with 32P-labelled probe from the miR-29a/b1 cluster region together with 

NFκB p50/p65 and Sp1 showed a delayed and more intense band; HDAC1/3 inhibitors 

increase miR-29b expression, supporting the interaction of HDAC1 and 3 and Sp1/NFκB 

with the miR-29b regulatory sequence (Liu et al. 2010). Similar to other signalling mentioned 

previously, hedgehog signalling pathway was also shown to repress miR-29 expression: 

cells treated with cyclopamine, an inhibitor of Smoothened (a hedgehog signalling 

component), or transfected with siRNA to knockdown Gli-3, the expression of miR-29b 

increased (Mott et al. 2010). Along with the transcription factors mentioned above, there are 

other transcriptional factors controlling miR-29 family expression. The serum 

alphafetoprotein (AFP), a membrane-secreted protein associated with poor patient outcome in 

hepatocellular carcinoma, was reported to inhibit miR-29a expression through facilitating c-

MYC binding to the promoter of the pri-miR-29a/b. This conclusion was supported by: the 

inability of AFP to decrease the miR-29a level in the absence of c-MYC protein; c-MYC was 

abundantly bound to the miR-29a/b1 promoter in the presence of AFP, but did not bind 

without AFP (Parpart et al. 2014); c-MYC promoter binding protein (MBP), originally 

described to bind to and repress c-MYC promoter function, up-regulated miR-29b expression 
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by 6 fold in prostate cancer cells (Steele et al. 2010). The haematopoietic master transcription 

factor, CCAAT/enhancer-binding protein-α (CEBPA), was also reported to activate the 

expression of miR-29a and miR-29b. Forced expression of CEBPA in acute myeloid 

leukaemic cells lead to two-fold induced expression of the primary miR-29a/b1 and the 

mature miR-29a and miR-29b whereas the expression of miR-29b2/c primary transcript 

remained stable. Using luciferase reporter assays, the sequence, having the conserved region 

spanning -682 bp upstream to +296 bp downstream of the miR-29a/b1 transcriptional start 

site and containing 6 potential CEBPA sites, was also strongly induced with CEBPA. Among 

these binding sites,  the one located at +15 to +29 bp was identified to be responsible for 

CEBPA-mediated activation of the pri-miR-29a/b1 promoter on ChIP assay (Eyholzer et al. 

2010). Another transcriptional factor, GATA3, specifying and maintaining luminal epithelial 

cell differentiation in the mammary gland, was also found to induce miR-29 expression 

directly by binding to three GATA3 sites in the miR-29a/b1 promoter. Interestingly, GATA3 

can induce miR-29s expression by inhibiting the TGFβ and NFκB signalling pathway. 

Additionally, STAT1 (signal transducer and activator of transcription) a transcription factor 

induced by interferon γ signalling, was reported to upregulate primary 29a/b1, the pre-29a, 

pre-29b1, and the mature miR-29a, miR-29b in melanoma cell and T cells (Schmitt et al. 

2013).  

With all the information above, it is likely that in different cellular contexts, the miR-29 

family expression is controlled by different transcription factors and signalling pathways. 

Which factors control its expression in human chondrocytes remains unknown. The effects of 

a variety of anabolic and catabolic factors e.g. TGFβ, Wnt3a, IL-1, LPS on miR-29 family 

expression in human chondrocytes were thus investigated. Also, the effect of SOX9, a major 

specifier of chondrocyte phenotype was also investigated.  
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Aims: 

• Analyse the promoter region (approximately 2kb upstream of the transcription starting 

site) of the miR-29 family for SOX9 binding sites. Experimentally validate the impact 

of SOX9 on miR-29 expression. 

• Test major anabolic and catabolic cytokines controlling the miR-29 expression in 

chondocytes.  

 

 

 



140 

 

4.2. Results 

4.2.1. The master regulator of chondrogenesis SOX9 suppresses expression of the miR-

29 family  

The master regulator for chondrogenesis SOX9 has a critical function in a number of 

development processes e.g. skeletal formation, sex determination, pre-B and T cell 

development. SOX9 was found to be expressed in all chondroprogenitors and differentiated 

chondrocytes, but not in hypertrophic chondrocytes (Ng et al. 1997, Zhao et al. 1997). 

Importantly, SOX9 is considered as the critical transcriptional factor for chondrogenic 

differentiation, partly owing to the fact that its functions are required for differentiating 

chondrogenic mesenchymal condensations into chondrocytes, and for all stages of 

chondrocyte differentiation: in mouse chimera, Sox9 knockout cells were excluded from all 

cartilage and no cartilage developed in teratomas derived from Sox9 -/- embryonic stem cells 

(Bi et al. 1999); Sox9 deletion from chondrocytes at later stages of development resulted in 

decrease in chondrocyte development, cartilage matrix gene transcriptional inhibition, and 

prematurely conversion from proliferating chondrocytes to hypertrophic chondrocytes 

(Akiyama et al. 2002). Considering the critical role of SOX9 in chondrocytes, I explored the 

connection between this factor and expression of the miR-29 family.  Initial evidence 

suggested a link: in the DMM model mRNA profiling data, at 7 days after the surgery, Sox9 

expression was greatly induced (Appendix, Table 7) whilst the miR-29s expression was 

suppressed; in both human and mouse chondrogenesis models, the level of Sox9 was 

inversely correlated with the level of miR-29 expression (data not shown). Thus, SOX9 could 

be a miRNA-29 target or SOX9 could regulate miRNA-29 expression.  

To test the postulate that SOX9 is a miR-29 target, the effect of the miR-29 members on 

SOX9 transcriptional expression was examined: after sub-cloning the SOX9 3’UTR 

downstream of the luciferase gene, this SOX9-3’UTR reporter vector was co-transfected with 

the miR-29 family into SW1353 cells; 24 hours after transfection, luciferase activity was 

measured. Luciferase activity showed that miR-29 family have no effect on the SOX9 3’UTR 

even though bioinformatics analysis found one 6-mer seed site for miR-29 in the SOX9 

3’UTR (data not shown), suggesting that SOX9 is not a miR-29 family direct target. Also, 

whether SOX9 is a miR-29 indirect target was also determined: relative expression of SOX9 

was checked in human primary chondrocytes transfected with miR-29 family for 48 hours. 

Quantitative RT-PCR confirmed that the SOX9 level was not changed with miR-29 
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transfection in chondrocytes (data not shown). Thus, SOX9 is not a direct or indirect target of 

miR-29s at least at the transcriptional level.  

For testing the second hypothesis SOX9 is a suppressor of miR-29 expression, the effect of 

overexpression or knockdown of SOX9 on miR-29 expression was studied: a SOX9 

expression construct or siRNA was transiently transfected into the human chondrosarcoma 

SW1353, 48 hours after transfection, the level of the mature miR-29 family was measured by 

quantitative RT-PCR. The data (Figure 4.2) show that SOX9 suppressed miR-29 transcription: 

the miR-29 family levels were significantly reduced when SOX9 was overexpressed (Figure 

4.2.a,c) but induced when SOX9 was knocked down (Figure 4.2.b,c).   

To further explore the regulatory mechanism by which SOX9 suppressed miR-29 expression, 

the 2kb region upstream from the primary miR-29a/b1 and miR-29b2/c transcription start 

sites were analysed by searching for the SOX9 DNA-binding motif ([A/T][A/T]CAA[A/T]). 

This analysis revealed 5 putative binding sites for SOX9 in the promoter regions of pri-miR-

29a/b1 and pri-miR-29b2/c, respectively (Figure 4.3.a). A reporter construct with the primary 

miR-29a/b1 2kb promoter, kindly provided by Dr Anne Delany (University of Connecticut, 

USA) was used to further validate the direct effect of SOX9: the reporter was co-transfected 

with increasing amounts of SOX9-expression plasmid into SW1353 cells and luciferase 

activity measured after 24 hours of transfection. Luciferase activity in SW1353 cells 

significantly decreased in a dose-dependent manner (Figure 4.3.b) showing that SOX9 

directly regulated the primary miR-29a/b1 promoter.  

The data above demonstrate that SOX9 is a miR-29 family suppressor. 
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Figure 4.2: Sox9 suppresses miR-29 family expression.  

(A) SOX9 gain-of-function: transiently transfection of a SOX9-expression vector or pcDNA3 
empty vector (control) into SW1353 cells; (B) SOX9 loss-of-function: transiently transfection 
of SOX9 siRNA or a non-targeting control into SW1353 cells. Relative expression of SOX9 
in (A) and (B) was measured 48 hours after transfection by quantitative RT-PCR using18S as 
the endogenous control; (C) The miR-29 family expression levels after overexpression or 
knockdown of SOX9 in SW1353 cells was measured by quantitative RT-PCR. Using U6 as 
the endogenous control. Red bar: miR-29a, green bar: miR-29b, black bar: miR-29c, open bar: 
control. Means ± standard errors are presented. Difference in expression was analysed by 
unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.3: Sox9 suppresses primary miR-29a/b1 transcription by directly binding to 
the proximal miR-29a/b1 promoter. 
 

(A) Structure of the miR-29a/b1 promoter reporter: 5 putative binding sites of SOX9 were 
identified by analysing the 2kb region upstream of the transcription start site of miR-29a/b1 
by JASPAR. This 2kb region was sub-cloned upstream of the luciferase gene in a pGL4 
vector.   
(B) Suppressive effect of SOX9 on the primary miR-29a/b1 promoter reporter: transiently co-
transfection of primary miR-29a/b1 promoter (100ng) with increasing amount of SOX9-
expression vector (0, 100, 300ng) or pcDNA.3 to equalise DNA into SW1353. A 
constitutively expressed Renilla lucierase was used as a control for transfection efficiency. 
Luciferase activity was measured 24 hours after transfection. Means ± standard errors are 
presented. The difference in luciferase activity was analysed by unpaired two-tailed Student’s 
t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6. 

(B) 

(A) 
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4.2.2.  TGFββββ1 inhibits expression of the miR-29 family    

TGFβ signalling has many important roles in chondrocytes and articular cartilage: TGFβ 

induces extracellular matrix formation; stimulates chondrocyte proliferation; inhibits the 

terminal differentiation of chondrocytes; retains chondrocytes in the pre hypertrophic stage; 

increases total glycosaminoglycan synthesis; maintains the matrix component in immature 

cartilage (Li et al. 2005). Animal studies showed that: transgenic mice overexpressing a 

cytoplasmically truncated, dominant-negative form of the TβRII in cartilage, resulted in a 

joint disease similar to human osteoarthritis (Serra et al. 1997); Smad3 deficient mice 

showed premature chondrocyte maturation with increased length of the hypertrophic region, 

disorganization of the chondrocyte columns, early expression of collagen type X in the 

growth plate; and null mice gradually developed an end-stage OA phenotype  (Li et al. 

2005). These essential roles of TGFβ signalling in chondrocytes suggest the necessity of 

examining whether the miR-29 family is regulated by TGFβ signalling in human 

chondrocytes. Moreover, a number of published data show that TGFβ signalling negatively 

regulates miR-29 family expression in different human fibroses e.g. renal, lung, liver 

fibrosis. The impact of TGFβ signalling in human chondrocytes on the miR-29 family was 

thus checked.  

To address the above question, expression of the miR-29 family with TGFβ1 treatment in 

human primary chondrocytes was compared both in monolayer and micromass culture. In 

monolayer culture: HACs were put in high glucose media containing 10% (v/v) FCS until 

the cells reached 90% confluence; medium was replaced with that containing 0.5% (v/v)  

FCS) prior to stimulating with 4ng/ml TGFβ or vehicle control (4mM HCl with 0.5% (w/v) 

BSA). In micromass culture: HACs were put in high glucose media containing 10% (v/v) 

FCS in monolayer following two sequential passages to increase cell number; the 

micromass (2.5x107cells/ml) was cultured in high glucose media with 10% (v/v) FCS for 24 

hours before treating with 10ng/ml TGFβ or vehicle control (4mM HCl with 0.5% (w/v) 

BSA). Cells were harvested for qRT-PCR after 24 hours or 48 hours treatment in monolayer 

or micromass cultures, respectively. Quantitative RT-PCR primers for measuring the miR-

29 family were described before. For the primary transcripts: two primer pairs specific for 

exon 1 and exon 3 were used; for the precursor transcripts: primers directly bind to the 

precursor sequence (Appendix, Table 5); the mature transcripts were measure by LNA-

primers.   
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The qRT-PCR data show that expression of the miR-29 family was suppressed by TGFβ 

signalling (Figure 4.4). However, each culture system gave a different response. The pri-

29b2/c transcript was significantly decreased after stimulating HACs for 24 hours with 

TGFβ1 in monolayer culture, whilst the pri-29a/b1 transcript was unchanged (Figure 4.4 a); 

the pri-29a/b1 transcript was significantly decreased in micromass culture after 48 hours 

with TGFβ1 whilst the pri-29b2/c transcript was unchanged or even increased (Figure 4.4 b). 

Notably, the levels of all mature forms of miR-29 were significantly decreased by TGFβ1 in 

both systems. These data suggest a hypothesis that the primary and the precursor miRNAs 

may be rapidly regulated and then processed into mature miRNAs. In order to test this 

hypothesis, SW1353 cells were treated with TGFβ1 (4ng/ml) in monolayer in a time course. 

Since the expression levels of the primary and pre miRNAs modulated by TGFβ1 in human 

primary chondrocyte were similar and ahead the mature miRNAs, it might be sufficient to 

measure only the pre-miRNA rather than both the primary and precursor sequences. 

Consistent with above data, qRT-PCR showed that TGFβ1 suppressed miR-29 family 

expression in SW1353 cells (Figure 4.5). Interestingly, significantly suppressive effects of 

TGFβ1 on precursor miRNAs were observed after 4 hours till the end of the time course 

(Figure 4.5.a) whilst significant change in the mature miRNAs was only seen after 12 hour 

treatment (Figure 4.5.b). This data, thus, confirms the hypothesis above. Together with 

TGFβ1, the effect of TGFβ3 on the miR-29 family expression also checked on SW1353 in 

monolayer across the time course. Quantitative RT-PCR data (Figure 4.5) showed that 

TGFβ3 also strongly supressed the expression of the miR-29s.  However, the TGFβ3 

significant decrease the precursor and the mature miRNAs were observed at 12 hour time 

point though at 4 hours a  

The suppressive effect of TGFβ on expression of the miR-29 family was also investigated 

on the proximal promoter of the primary miR-29a/b1 gene. The promoter-reporter was 

transfected into SW1353 cells, cells were serum starved for 24 hours and treated with 

TGFβ1 (4ng/ml) for another 6 hours before performing the luciferase assay. In line with the 

expression data, TGFβ1 significantly suppressed the promoter activity of pri-miR-29a/b1 

(Figure 4.6).  



146 

 

0.0

0.5

1.0

***

**

****

*
* *

exon1 exon4

pri-miR29a/b1 pri-miR29b2/c

29a 29b1 29b2 29c 29a 29b 29c

pre-29s mature 29s

F
ol

d 
ch

an
ge

(T
re

at
m

en
t 

vs
 c

on
tr

ol
)

exon1 exon4

 

0

1

2

3

exon1 exon4

pri-miR29a/b1 pri-miR29b2/c
29a 29b1 29b2 29c

pre-29s

*** ***

*

* ** * * *

29c29b29a
mature

F
ol

d 
ch

an
ge

(T
re

at
m

en
t 

vs
 c

on
tr

ol
)

exon1 exon4

 

Figure 4.4 TGFβ1 suppresses expression of the miR-29 family in human primary 
chondrocyte  
 

(A) TGFβ1suppresses expression of the miR-29 family in monolayer culture: Human primary 
chondrocytes were cultured in high glucose media with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were switched to high glucose media with 0.5% (v/v) FCS for 24 hours 
before treating with TGFβ1 (4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) for another 24 
hours.  

(B) TGFβ1suppresses expression of the miR-29 family in micromass culture: Human primary 
chondrocytes were cultured in high glucose media with 10% (v/v) FCS in monolayer. After 2 
sequential passages, cells were put in micromass culture (2.5x107cells/ml) in high glucose 
media with 10% (v/v) FCS. After 24 hours in micromass, cells were stimulated for 48 hours 
with TGFβ (10ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) in 10% (v/v) FCS media.  

Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a, b, c were measured by quantitative RT-PCR. 18S rRNA was the 
endogenous control for measuring primary and precursor transcripts; U6 was the endogenous 
control for measuring miR-29 mature transcripts. The horizontal line at 1 represents the mean 
of the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-29b2/c 
transcripts; black bar, precursor transcripts; yellow bar, mature transcripts. Means ± standard 
errors are presented. The difference between the treatment and the control was analysed by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.5 TGFβ1/3 suppresses expression of the miR-29 family in SW1353 cells  

SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were serum starved for 24 hours before treating with TGFβ1or TGFβ3 
(4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) across 24 hour course.   

Relative expression of the precursor miR-29a, -29b2, -29c, the mature miR-29a, b, c were 
measured by quantitative RT-PCR. 18S rRNA was the endogenous control for measuring the 
precursor transcripts; U6 was the endogenous control for measuring miR-29 mature 
transcripts. Open bar, control; brick bar, TGFβ1; close bar, TGFβ3. (A) Expression level of 
pre-miR-29a, 29b2, 29c. (B) Expression level of mature miR-29a, b, c. Means ± standard 
errors are presented. The difference between the treatment and the control was analysed by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.6: TGFβ1decreases expression from the primary miR-29a/b1 promoter  

The pri-miR-29a/b1 promoter-reporter (100ng) or the empty vector pGL4 (control, 100ng) 
were transfected into SW1353 cells. After transfection, cells were serum starved for 24 hours, 
followed by stimulating for another 6 hours with TGFβ1 (4ng/ml), or vehicle (4mM HCl+0.5% 
BSA) before measuring luciferase activity. Renilla was use as endogenous control. Open bar: 
vehicle, black bar: TGFβ1. Means ± standard errors are presented. The difference of 
luciferase activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, 
*** p<0.001, n=6. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

149 

 

4.2.3. Expression of the miR-29 family is not regulated by canonical Wnt signalling  

As shown in the section above, the TGFβ signalling pathway, stimulated by TGFβ1 (or 

TGFβ3, data not shown), negatively regulated the expression of themiR-29 family. 

Signalling cross talk between TGFβ and Wnt signalling pathways has been previously 

reported, e.g. after TGFβ stimulation, Smad3 interacts with LEF1 to activate target gene 

transcription independently of β-catenin (Letamendia et al. 2001); TGFβ was shown to up-

regulate the expression of many Wnt ligands e.g. Wnt2, 4, 5a, 7a, 10a, and Wnt co-receptors 

e.g. LRP5 (Zhou et al. 2004);  TGFβ was found to increase nuclear accumulation and 

stability of β-catenin; interestingly, working synergistically with Wnt signalling pathways, 

TGFβ was reported to stimulate chondrocyte differentiation from mesenchymal cell (Zhou 

et al. 2004). Wnt signalling is also known to have a key role in cartilage homeostasis and 

osteoarthritis (Zhu et al. 2008, Zhu et al. 2009). Thus, it was pertinent to investigate the 

effect of Wnt signalling onexpression of the miR-29 family in chondrocytes, and then 

potential synergy with TGFβ signalling.  

The effect of canonical Wnt signalling stimulated by Wnt3a (50 or 100ng/ml) on the miR-

29 family was investigated in HACs cultured in monolayer or micromass after 24 hours or 

48 hours, respectively; or in SW1353 cells in monolayer culture across a 24 hour time 

course. In addition, the effect of Wnt3a on the proximal pri-miR-29a/b1 promoter was also 

examined after 6 hour treatment with Wnt3a (50 or 100ng/ml). Quantitative RT-PCR data 

for all transcripts of miR-29 family and luciferase assay data for the miR-29a/b1 promoter 

showed canonical Wnt signalling did not regulate expression of the miR-29 family 

(Appendix, Figure 5). Wnt3a did regulate Axin2 expression in the same experiments, 

showing induction of the canonical Wnt pathway (Appendix, Figure 6).  
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4.2.4. IL-1 induces expression of the miR-29 family in part via the p38 signalling 

pathway.  

IL-1 is a catabolic and anti-anabolic cytokines, it down regulates the expression of cartilage 

matrix components e.g. aggrecan and type II collagen and induces expression of matrix 

degrading enzymes e.g. MMP-3, MMP-13, ADAMTS4 (Koshy et al. 2002). Il-1β, or Il-1β-

converting enzyme knockout mice showed the accelerated development of OA lesions in 

response to OA surgical induced in compared with wide type mice (Clements et al. 2003). It 

is considered to be a major cytokine driving the pathology of OA (Goldring et al. 2004).  

Thus, it was pertinent to examine whether IL-1 controls the expression of the miR-29 

family in human chondrocytes.  

The effect of IL-1 on the expression of the miR-29 family was first measured in IL-1-treated 

SW1353 for 48 hour time course in monolayer culture: SW1353 cells were cultured in high 

glucose media with 10% (v/v) FCS until reach confluence and followed by serum starved 

for 24 hours before treating with 5ng/ml IL-1 or vehicle (0.5% (w/v) BSA) for 48 hour time 

course. Relative expressions of the precursor and mature miRNA-29 transcripts were 

measured by qRT-PCR. Data (Figure 4.7) showed that IL-1 induced the expression of miR-

29 family: the biggest induction on miR-29 precursors was observed at 4 hours; at later time 

point, the level of miR-29a precursors was decreased as compare with 4 hours (pre-29a) 

whilst other precursors did not change expression (Figure 4.7a); the induction of mature 

miR-29s were only observed significantly after 48 hours (Figure 4.7b). These data 

suggested that the increase in expression after IL-1 treatment of the miR-29 derivatives is 

time-dependent. The induction of IL-1 on the miR-29 family was again checked on the 

HACs in micromass culture: The micromass containing (2.5x107cells/ml) of passage 2 HAC 

was cultured in high glucose media with 10% (v/v) FCS for 48 hours before treating with 

20ng/ml IL-1 or vehicle control (0.5% (w/v) BSA). Quantitative RT-PCR primers for 

measuring the miR-29 family were described before (Appendix, Table 5). Real-time RT-

PCR data (Figure 4.8) showed that IL-1 strongly induced expression of the miR-29 family, 

with all processed transcripts significantly up-regulated by IL-1. The fold increase was 

highest for the pri-miR-29a/b1 locus in which the primary miR-29a/b1 and pre-miR29a and 

b1 were increased with 9 and 5 fold, respectively.  

The molecular pathways induced by IL-1 can be the three classical MAPK-signalling 

pathways i.e. ERK, p38, JNK and through NFκB (Aigner et al. 2006, Fan et al. 2007). The 
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signalling pathway through which IL-1 regulated miR-29 family expression was 

investigated. SW1353 cells were stimulated with IL-1 together with an NFκB inhibitor 

(10µM) or a p38 inhibitor (SB203580) (10µM) or 6 hours in monolayer and the relative 

expression of the precursor miRNAs were again measured. The data showed that inhibition 

of the NFκB pathway further induced expression of the pre-miR-29a and b1 (Figure 4.9).  

Inhibition of p38 suppressed IL-1 induction of pre-miR-29a and b1, with a similar pattern 

for pre-miR-29b2 and c (Figure 4.10), suggesting that IL-1 induces expression of the miR-

29 family at least in part through p38 MAPK signalling. 

Furthermore, the effect of IL-1 on the promoter of pri-miR-29a/b1 was also examined by 

luciferase assay. The pri-miR-29a/b1 promoter-reporter was transfected into SW1353 cells 

for 24 hours before stimulation with IL-1 (5ng/ml) with or without the NFκB inhibitor 

(10nM) or p38 inhibitor (10µM) for another 6 hours. Luciferase data showed that the 

activity of the pri-miR-29a/b1 promoter was significantly decreased by IL-1 and that this 

effect was abolished by treatment with the NFκB inhibitor (Figure 4.11). However, the p38 

inhibitor had no effect on the suppressive effect of IL-1 on the promoter of pri-miR-29a/b1 

(data not shown). 
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Figure 4.7: IL-1 induces expression of the miR-29 family in SW1353 in monolayer 

culture 

SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were serum starved for 24 hours before treating with IL-1 (5ng/ml) 
or vehicle (0.5% (w/v) BSA) across 48 hour course.   
Relative expression of the precursor miR-29a, -b1, -b2, -c, the mature miR-29a, b, c were 
measured by quantitative RT-PCR. 18S rRNA was the endogenous control for measuring 
the precursor transcripts; U6 was the endogenous control for measuring miR-29 mature 
transcripts. The horizontal line at 1 serves as the vehicle control. 
(A) Expression level of pre-miR-29a, 29b2, 29c. Red bar, pre-miR-29a; blue bar, pre-miR-

29b1; black bar, pre-miR-29b2; yellow bar, pre-miR-29c 
(B) Expression level of mature miR-29a, b, c. Red bar, miR-29a; blue bar, miR-29b; black 

bar, miR-29c 
Means ± standard errors are presented. The difference between the treatment and the control 
was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 

 

 

 

  

(A) 

(B) 



 

 

153 

 

 

0
1
2
3
4
5
6
7
8
9

10
11
12

exon1 exon4 exon1 exon4

pri-miR29a/b1 pri-miR29b2/c

29a 29b1 29b2 29c

pre-29s

*** ***

******
***

***

***

**
** *

**

29a 29b 29c

mature

F
ol

d 
ch

an
ge

(T
re

at
m

en
t 

vs
 c

on
tr

ol
)

 

Figure 4.8: IL-1 induces expression of the miR-29 family in human primary 
chondrocyte in micromass culture 

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer. After 2 sequential passages, cells were put in micromass culture 
(2.5x107cells/ml) in high glucose media with 10% (v/v) FCS. After 24 hours in micromass, 
cells were stimulated for 48 hours with IL-1β (10ng/ml) or vehicle (0.5% (w/v) BSA).  
Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a,- 29b, -29c were measured by quantitative RT-PCR. 18S rRNA 
was the endogenous control for measuring primary and precursor transcripts; U6 was the 
endogenous control for measuring miR-29 mature transcripts. The horizontal line at 1 
serves as the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-
29b2/c transcripts; black bar, precursor transcripts; yellow bar, mature transcripts. Means ± 
standard errors are presented. The difference between the treatment and the control was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.9 NFκκκκB inhibition further increases the IL-1-induced expression of pre-miR-
29a and pre-miR-29b1 
 

SW1353 cells were plated in high glucose media with 10% (v/v) FCS in a 6 well-plate in 
monolayer and serum starved for 24 hours before treating with IL-1β (10ng/ml) in the 
presence or absence of NFκB inhibitor JSH-23 (10µM) for a further 8 hours. Cells were then 
harvested and the total RNA was isolated by Trizol. Relative expression of pre-miR-29a, -
29b1 were measured by quantitative RT-PCR. 18S rRNA was the endogenous control. Red 
bar, pre-miR-29a; blue bar, pre-miR-29b1. Means ± standard errors are presented. The 
difference between the treatment and the control was analysed by unpaired two-tailed 
Student’s t test * p<0.05, ** p < 0.01, *** p<0.001, n=6. 
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Figure 4.10 P38 inhibition suppresses the IL-1 induction of pre-miR-29s  
 

SW1353 cells were plated in high glucose media with 10% (v/v) FCS in a 6 well-plate in 
monolayer and serum starved for 24 hours before treating with IL-1β (10ng/ml) in the 
presence or absence of p38 inhibitor SB203580 (10µM) for a further 8 hours. Cells were 
then harvested and the total RNA was isolated by Trizol. Relative expression of pre-miR-
29a, -29b1, -29b2, -29c were measured by quantitative RT-PCR. 18S rRNA was the 
endogenous control. Red bar, pre-miR-29a; blue bar, pre-miR-29b1; black bar, pre-miR-
29b2; white bar, pre-miR-29c. Means ± standard errors are presented. The difference 
between the treatment and the control was analysed by unpaired two-tailed Student’s t test * 
p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.11: IL-1 suppresses the primary miR-29a/b1 promoter through NFκκκκB 

Pri-miR-29a/b1 promoter reporter (100ng) or pGL4 (control, 100ng) were transfected into 
SW1353 cells. After transfection, cells were serum starved for 24 hours, and followed by 
stimulating for another 6 hours with IL-1β (5ng/ml), IL-1β and NFκB inhibitor JSH-23 
(10µM) or vehicle (0.5% (w/v) BSA) before measuring luciferase activity. Renilla was the 
endogenous control. Means ± standard errors are presented. The difference of luciferase 
activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** 
p<0.001, n=6. 
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4.2.1. LPS suppressed the miR-29 family expression through NFκκκκB signalling 

pathway  

Toll-like receptors (TLRs) have important roles in activation of the innate and adaptive host 

defence against infections. TLR can bind to various damage-associated molecular patterns, 

which are endogenous danger signals or alarmins, leading to autoinflammatory conditions, 

and contributing to production of co-stimulatory signals necessary for adaptive immune 

reactions (Janeway et al. 2002). Lipopolysaccharide (endotoxin) (LPS) from bacteria is an 

example of a TLR-stimulating molecule. Chondrocytes are a potential source of several 

proinflammatory substances which may be TLR ligands: high-mobility group box 1, heat-

shock proteins, and several components of the cartilage extracellular matrix (ECM) - e.g. 

low-molecular-weight hyaluronan, heparin sulphate, biglycan, and fibronectin fragments 

(Konttinen et al. 2012). From this point of view, OA could be considered as an 

autoinflammatory disease with the chondrocyte as its primary inflammatory cell (Konttinen 

et al. 2012). On this basis it was hypothesized that the activation of TLR-4, a receptor for 

LPS, may directly affect the biosynthetic activity of chondrocytes, including expression of 

the miR-29 family.  

The level of miR-29 family expression was measured by qRT-PCR in HACs stimulated 

LPS (1µg/ml) in monolayer or micromass culture for a 24 hours or a 48 hour time course, 

respectively. Real-time PCR showed that the miR-29 family was significantly suppressed 

by LPS (Figure 4.12). Interesting, the levels of all processed miRNAs were strongly 

regulated by LPS in a time dependent manner: a significant decrease of the two miR-29 

family clusters and their precursors were detected after 4 hours of treatment whilst decrease 

of the mature miRNAs was not detected until 24 hours.  However, after 48 hours treating 

with LPS, all miR-29 family was tended to increase (Figure 4.12) 

Again, the effect of LPS on the promoter of pri-miR-29a/b1 was also examined by 

luciferase assay.  The pri-miR-29a/b1 promoter reporter was transfected into SW1353 cells 

for 24 hours before stimulation with LPS (1µg/ml) in the presence or absence of an NFκB 

inhibitor JSH-23 (10µM) for another 6 hours. Luciferase assay data showed that promoter 

activity of pri-miR-29a/b1 was significantly decreased by LPS and this effect was abolished 

with the NFκB inhibitor (Figure 4.13).  
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Figure 4.12: LPS suppresses expression of the miR-29 family  

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer. After 2 sequential passages, cells were put in micromass culture 
(2.5x107cells/ml) in high glucose media with 10% (v/v) FCS. After 24 hours in micromass, 
cells were stimulated for 4, 24, and 48 hours with LPS (1µg/ml) or vehicle (0.5% (w/v) 
BSA).  
Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a,- 29b, -29c was measured by quantitative RT-PCR. 18S rRNA was 
the endogenous control for measuring primary and precursor transcripts; U6 was the 
endogenous control for measuring miR-29 mature transcripts. The horizontal line at 1 
serves as the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-
29b2/c transcripts; black bar, pre-miR transcripts; yellow bar, mature miR transcripts. 
Means ± standard errors are presented. The difference between the treatment and the control 
was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, 
n=3.  
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Figure 4.13: LPS suppresss the primary miR-29a/b1 promoter through NFκκκκB 

Pri-miR-29a/b1 promoter-reporter (100ng) or pGL4 (control, 100ng) was transfected into 
SW1353 cells. After transfection, cells were serum starved for 24 hours, followed by 
stimulatiion for another 6 hours with LPS (1µg/ml) in the absence or presence of an NFκB 
inhibitor JSH-23 (10µM) before measuring luciferase activity. Renilla was the endogenous 
control. Means ± standard errors are presented. The difference of luciferase activity was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6. 
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4.2.2. The microRNA-29 family targets Dicer giving a negative feedback loop for 

maturation of pre-miR-29 

Previous data showed that expression of the miR-29 family was regulated by TGFβ, IL-1, 

LPS in which primary microRNA and precursor microRNA were modulated far ahead the 

mature microRNAs. In order to explain this, the 3’UTR regions of genes encoding for 

proteins involved in miRNA biogenesis were searched for putative binding site of the miR-

29 family. Among these, of particular interest is the ribonuclease III enzyme Dicer, 

renowned for its central role in the biogenesis of microRNAs, converting the stem-loop pre-

miRNA to mature miRNA (Bartel 2004). Bioinformatic analysis showed that there was a 

putative binding site of miR-29 in the DICER 3’UTR, suggesting the miR-29 family may 

regulate Dicer expression leading to the down-regulation of the Dicer level and as the 

consequence, the processing from precursors to mature miRNAs would potentially be 

slowed down. The 3’UTR region of DICER was therefore sub-cloned downstream of the 

firefly luciferase gene in the pmiR-GLO vector. The effect of the miR-29 family on the 

DICER 3’UTR was measured by luciferase assay after 24 hour co-transfection of the 

DICER 3’UTR- pmiR-GLO and the miR-29 family in SW1353 cells. Dual-luciferase 

reporter analysis showed the co-transfection of miR-29s significantly inhibited the wild type 

construct, whereas when the target site was mutated, the construct was not inhibited (Figure 

4.14). This indicates that miR-29 may suppress expression of Dicer. The effect of the miR-

29 family in DICER expression at transcriptional level was also investigated. Human 

primary chondrocyte was transfected with either miR-29b mimic (50nM) or non – targeting 

control (50nM). The transfected cells were then put in either monolayer or micromass 

culture for a further 48 hours. The expression of DICER was measured by qRT-PCR. Real-

time qRT-PCR data showed that the expression of Dicer was not affected by miR-29s (data 

not shown), suggesting that the miR-29s does not control Dicer expression at mRNA level.   

There is a growing body of work demonstrating that microRNAs can be processed 

independently of Dicer via Argonaute2 (Dueck et al. 2010). To evaluate whether or not 

miR-29s required Dicer to mature, the level of pre-miR-29s and mature miR-29s were 

measured in DLD, a Dicer-knockdown cell line. Data (Figure 4.15) showed that the levels 

of mature miR-29s were strongly reduced whilst the level of pre-miR-29s was not affected 

(Figure 4.15), demonstrating miR-29 processing is Dicer-dependent.  
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Taken together, these data show that the miR-29 family targets Dicer giving a negative 

feedback loop for its maturation. 
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Figure 4.14: The miR-29 family targets Dicer  

(A) Bioinformatic analysis reveals one binding site of the miR-29 family in the 3’UTR of 
Dicer. (B) miR-29 family targets Dicer: The Dicer 3’UTR containing the binding site of the 
miR-29 family (wild type) or a mutated, non-functional binding site for miR-29 family 
(mutant) were sub-cloned into the pmiR-GLO vector and were co-transfected with either 
miR-29a, -29b, -29c mimic (50nM) or non-targeting control (50nM) into SW1353 cells for 
24 hours and luciferase activity was measured. Renilla was the endogenous control. (C) miR-
29 targets Dicer giving a negative feedback loop for its maturation. Means ± standard errors 
are presented. The difference of luciferase activity was analysed by unpaired two-tailed 
Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6.  
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Figure 4.15: Dicer is required for the miR-29 family maturation  

２２２２ 

Level of Dicer, precursor and mature miR-29 were measured in DLD, Dicer knockdown 
cell line or parental control by quantitative RT-PCR. (A) Relative expression of Dicer; (B) 
Relative expression of precursor miR-29s (normalised to expression in parental control). 
18S rRNA is endogenous control. Red, pre-29a; blue, pre-29b1; black, pre-29b2; green, pre-
29c; white, levels of all precursors in control (set at 1); (C) Relative expression of mature 
miR-29 family (normalised to expression in parental control).  U6 is endogenous control. 
Red, miR-29a; blue, miR-29b; black, miR-29c; white, levels of all mature miR-29 in control 
(set at 1). Means ± standard errors are presented. The difference of relative expression was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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4.3. Discussion  

Since miRNAs have broad effects on cartilage homeostasis, and OA, it is particularly 

interesting to work out how miRNAs themselves are being regulated. Such data could 

provide crucial information for further understanding the mechanism underlying OA and for 

being able to manipulate these miRNAs in chondrocytes therapeutically. Generally, the 

expression of miRNAs can be regulated transcriptionally, epigenetically, or controlled by 

different stimuli e.g. cytokines and growth factors. In this study, just transcription factors, 

cytokines, and growth factors controlling the miR-29 family expression in chondrocytes were 

for the first time investigated. These studies were able to show that, in human chondrocytes, 

the master transcriptional regulator SOX9, TGFβ and LPS suppressed whilst IL-1 strongly 

induced the miRNA-29 family expression.  

Several published data report the suppressive effect of SOX9 on the expression of individual 

members of the miR-29 family in other cellular contexts: in murine stem cells, 

overexpression of SOX9 or knockdown SOX9 in cell lines e.g. C3H10T1/2 or ATDC5 leads 

to suppression or induction of miR-29a and miR-29b expression (Yan et al. 2011), 

respectively; in human C-20/A4 chondrocytes, overexpression of SOX9 strongly down-

regulated the level of miR-29a (Guerit et al. 2014). Herein, for the first time, suppressive 

effect of SOX9 on the expression of all members of the miR-29 family in primary human 

chondrocytes was shown. The effect was exerted, at least in part, through directly targeting 

the promoter of the miR-29a/b1 locus. In line with these data, Guerit et al (2014) reported 

that SOX9 can physically bind to at least 3 out of 4 putative binding sites within the proximal 

promoter of miR-29a/b1 cluster; also, another transcription factor YY1, was shown not to 

bind directly to the miR-29a/b1 promoter, but, physically interacted with SOX9 to suppress 

miR-29a/b1 expression (Guerit et al. 2014). The mechanism by which SOX9 negatively 

regulates the pri-miR-29b2/c cluster is still unknown. Several putative binding sites of SOX9 

are found in the promoter of the pri-miR-29b2/c cluster, implicating a possible direct 

mechanism. However, this needs further investigation.  

Alongside SOX9, other transcriptional regulatory mechanisms responsible for expression of 

the miR-29 family have also been reported: the pri-miR-29a/b1 locus was stimulated by the 

transcription factors CEBPA (Eyholzer et al, 2010), GATA3 (Chou et al. 2013), STAT1 

(Schmitt et al, 2012) but suppressed by c-MYC (Mott et al. 2010, Parpart et al. 2014), NFκB 
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(Liu et al. 2010, Mott et al. 2010), Sp1(Liu et al. 2010, Amodio et al. 2012), HDAC1, 

HDAC3, and Gli (Mott et al. 2010); the pri-miR-29b2/c locus was inhibited by Smad3 (Qin 

et al. 2011), NFκB, YY1, Ezh2, H3K37, HDAC1 (Wang et al. 2008). Thus, it is likely that 

the transcriptional regulation of the miR-29a/b1 cluster is controlled by a combination of 

different transcription factors. Interestingly, in the chondrocyte context, miR-1247 together 

with miR-145 were reported to directly target and repress expression of SOX9 (Yang et al. 

2011, Martinez-Sanchez and Murphy 2013), suggesting these miRNAs could contribute to 

the induction of the miR-29 family level in chondrocytes. Additionally, throughout the 

current project, the miR-29 family members exhibit different expression levels between the 

primary miR-29a/b1 and primary miR-29b2/c loci in different cellular contexts. This 

discrepancy could be explained in part by different transcription factor binding to each 

promoter.   

Together with SOX9, TGFβ signalling was found to suppress the expression of all miR-29 

family members in chondrocytes. Since TGFβ signalling induces SOX9 expression (Greco et 

al. 2011), the suppressive effect of TGFβ on the miR-29 family could be exerted through 

SOX9 and this TGFβ-SOX9 signalling could in part explain the down-regulation of the miR-

29 family by TGFβ. The suppressive effect of TGFβ on the miR-29 family expression has 

also been observed in various cell types associated with fibrosis e.g. human aortic adventitial 

fibroblasts (Maegdefessel et al. 2012), renal fibrosis cells (Wang et al. 2012, Ramdas et al. 

2013), murine hepatic stellate cells (Roderburg et al. 2011), rat hepatic stellate cells 

(Kwiecinski et al. 2011), human skin fibroblasts (Maurer et al. 2010), human tenon’s 

fibroblast (Li et al. 2012), human lung fibroblast cell line (Cushing et al. 2011, Yang et al. 

2013) in which either some members or the whole miR-29 family significantly decreased 

expression with TGFβ treatment. Apart from TGFβ-SOX9 signalling, the mechanism for the 

inhibition of TGFβ on the miR-29 family expression is currently unknown.  There is some 

evidence that TGFβ inhibits miR-29 expression through SMAD3 signalling e.g. the inhibition 

effect of TGFβ on miR-29 expression was abolished when Smad3 was knocked out in mouse 

embryonic fibroblast (Qin et al. 2011); SMAD3 could directly interact with at least two 

conserved SMAD3-binding sites in the promoter region of miR-29b2/c locus (Qin et al. 

2011); activated TGFβ signalling induced SMAD3 translocate into nucleus and bind to miR-

29b2/c promoter, resulting in the dissociation of MyoD and the stabilization of YY1 whose 

expression negatively regulated the miR-29b2/c expression through a conserved binding site 
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(Qin et al. 2011). However, this needs to be validated in chondrocytes. Besides the 

suppressive role, TGFβ also exerted an inductive effect on miR-29 expression at late time 

points. For instance, the primary miR-29b2/c locus was induced in human primary 

chondrocyte in micromass cultured with TGFβ1 for 48 hours (Figure 4.4b) though this 

increase did not reach significantly; the miR-29 family expression was increased at a late 

stage in the human chondrogenesis model with TGFβ3 as the major driver among others 

(Figure 3.12). That TGFβ induces miR-29 family expression suggests that there are may be 

several TGFβ-triggered signalling pathways, apart from TGFβ-SOX9, regulating the miRNA-

29 expression. However, in this project, the molecular mechanisms by which TGFβ controls 

expression of the miR-29s are again not fully understood.  

The TLR4 ligand, LPS, was found to repress the miR-29 family expression in chondrocytes. 

Importantly, this inhibition was facilitated by NFκB (p50/p65). Supporting the finding of this 

study, published data in cholangiocarcinoma cells and murine hepatic stellate cells also 

showed that LPS down-regulated expression of the miR-29 family (Mott et al. 2010, 

Roderburg et al. 2011) . Moreover, NFκB, activated by TLR ligands, was revealed to both 

directly or indirectly (cooperating with YY1) suppress the miR-29a/b1 or the miR-29b2/c 

locus, respectively (Wang et al. 2008, Mott et al. 2010). In contrast to LPS, it was surprising 

to find that IL-1β increased miR-29 expression and this stimulation was not NFκB but p38-

dependent. However, the effect of inhibiting p38 signalling was only observed for miR-29a 

and miR-29b but not miR-29c, although all miR-29 family members were found strongly 

induced by IL-1β. Since IL-1β could activate the NFκB signalling pathway alongside p38 

MAPK signalling (Aigner et al. 2006), the fact that an NFκB inhibitor further increased the 

IL-1 induction of the miR-29a/b1 locus implicates NFκB signalling in suppressing miR-29.  

It is likely that in human chondrocyte, for the period of time examined (48 hours), induction 

through 38 MAPK signalling was dominant over the NFκB, explaining why IL-1β induced 

(not suppressed) miR-29 expression. It therefore, made sense to expect a similar induction of 

the proximal promoter of miR-29a/b1 by IL-1β. However, a suppressive effect was observed. 

These data could be explained if the inductive p38-dependent transcription factors do not 

work through this 2kb proximal promoter of the miR-29a/b1, whilst several binding sites of 

NFκB in this promoter region are seen. This hypothesis needs experimental data to validate it. 

The mechanism responsible for the IL-1β induced miR-29b2/c cluster is still unclear and 

needed to be further explored. Notably, the IL-1β mRNA expression level was increased by 
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LPS/ TLR-4 and this is mediated by p38 MAP kinase in human chondrocytes (Bobacz et al. 

2007). Therefore, that the miR-29 family expression was increased after 48 hours treatment 

with LPS could be explained in part by the accumulation of IL-1β which in turn up-regulated 

the miR-29 family expression.   

This study also showed that the expression of all miR-29 members was not modulated by 

Wnt3a (β-catenin, canonical Wnt signalling), neither at the mRNA level by qRT-PCR or in 

the promoter assay. There are, several publications which have reported that either some 

members or the whole miR-29 family were Wnt3a-induced: In osteoblasts, Wnt3a positively 

modulates the expression of miR-29a and miR-29c though two T-cell factor/LEF-binding 

sites within the miR-29a/b1 promoter (Kapinas et al. 2009, Kapinas et al. 2010); in muscle 

progenitor cells (MPCs), Wnt3a treatment increased miR-29s expression in a time dependent 

manner (Hu et al. 2014); the promoter activities of both the miR-29a/b1 and miR-29b2/c 

cluster were strongly induced in MPCs where Wnt3a was overexpressed or added to media 

(Hu et al. 2014).Therefore, an interesting question that remains to be answered is why miR-

29 expression is not modulated by Wnt3a in chondrocytes. 

In contrast to the rapid change in expression of the pri-miR-29 or pre-miR-29 in response to 

stimuli, the modulation of the miR-29 family mature is quite slow. The posttranscriptional 

processing from the precursor to the mature form of the miR-29 family may be tightly 

controlled. Since the miR-29s has significant impact on a functional phenotype by regulating 

multiple genes that fall into the same or related pathways (which will be discussed more in 

Chapter 5), its expression must be regulated, potentially at more than one level. Interestingly, 

herein, Dicer was found to be the direct target of the miR29 family, suggesting a negative 

feedback loop for its maturation. In supporting this data, in T47D breast cancer cells, Dicer 1 

was also reported as a miR-29a target (Cochrane et al. 2010). Apart from Dicer, other 

components of the microRNA precursor processing machinery e.g. Helicase, Exportin 4 and 

5 are also predicted to be putative targets of the miR-29s as they have several binding sites in 

their 3’UTR regions (data not shown). Even though these have not been experimentally 

validated as the direct targets, this further supports the idea that miR-29 is involved in a 

negative feedback loop for its maturation.   

In conclusion, the miR-29 family was found to be negatively regulated by the master 

regulator of chondrogensis SOX9, by TGFβ signalling and by LPS-NFκB signalling.  It is 
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positively regulated by IL-1-p38 MAPK signalling. Interestingly, the canonical Wnt 

signalling pathway does not control expression of the miR-29 family. Furthermore, 

expression of the miR-29 family was tightly controlled at the level of posttranscriptional 

processing in which miR-29 directly targets Dicer, giving a negative feedback loop for its 

maturation. 
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CHAPTER 5 
FUNCTIONS OF THE MICRORNA 29 FAMILY IN CHONDROCYTES  

 

5.1 Introduction  

The ability of a single miRNA to target multiple mRNAs especially those that function in the 

same intracellular pathways and/or diseases, adds an additional layer of regulation to gene 

expression. The aberrant expression of the miR-29 family has been found in multiple 

malignancies and fibroses, carcinogenesis. Also, an understanding of how miR-29 contributes 

to these processes has been revealed: miR-29 targets genes are involved in cellular 

proliferation, cell cycle, cell differentiation, and apoptosis at genetic and epigenetic levels. 

The following summarizes some functions of miR-29s in human disease.   

In chondrogenesis or OA, around 30 miRNAs have been shown to have functions in cartilage 

homeostasis (Le et al, 2013), which is relatively small compared to the total number of 

miRNAs. Moreover, as mentioned in the previous chapter, for any potential miRNA 

therapeutic application, a combination of different miRNAs might be required for a complex 

disease like OA. Identifying novel miRNA targets and the cell signalling pathways and 

networks by which miRNAs exert their functions on disease phenotype are therefore, of 

particular importance both to have an insight into OA pathogenesis and also to ensure the 

specificity in any miRNA-based drug delivery method. Thus, this chapter places emphasis on 

identifying the function of the miR-29 family in chondrocytes including identifying the 

function of the miR-29 family in TGFβ/Smad, NFκB, and Wnt/β-catenin signalling pathways 

and novel targets of the miR-29s.  
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Aims:  

• Investigate signalling pathways involved in chondrogenesis and osteoarthritis which 

are regulated by the miR-29 family  

• Perform gain-and-loss of function of miR-29b experiments to identify potential 

targets of the miR-29 family  

• Identify and validate novel direct targets of the miR-29 family 
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5.2  Results  

5.2.1 The miR-29 family supress TGFβ/β/β/β/Smad signalling pathway 

In articular cartilage, the canonical TGFβ/Smad signalling pathway has been shown to play a 

pivotal role in the maintenance of normal cartilage: it up-regulates the expression of several 

types of collagens and proteoglycan; and it down-regulates cartilage degrading enzymes. 

Importantly, disruption of the TGFβ pathway has been shown to lead to OA. Mice expressing 

a dominant negative TGFβRII exhibit articular cartilage degeneration similar to that observed 

in human OA with abnormal expression of type X collagen, an indicator of chondrocyte 

hypertrophy; mutant mice with targeted disruption of Smad3 (Smad3−/−) show a similar 

pathology in chondrocytes, including aberrant type X collagen expression in vivo; primary 

chondrocytes isolated from Smad3−/− mice demonstrate an accelerated differentiation 

process with up-regulated BMP signalling. 

In Chapter 4, expression of the miR-29 family was found to be suppressed by TGFβ 

signalling. Here, I measure the impact of the miR-29 family on Smad signalling. The 

TGFβ/Smad signalling reporter (CAGA)12-luc (Figure 5.1a) containing 12 binding sites of 

the Smad2/3/4 (GAGAC) binding site upstream of the firefly luciferase-encoding gene was 

used. The principle of this experiment is based on the fact that: signals are transduced from 

TGFβ ligands to the Smad2/3/4 complex which subsequently regulates gene expression; the 

miR-29 family may change the expression or transcriptional activity of Smad2/3/4; thus 

altering luciferase levels. (CAGA)12-luc (100ng) and Renilla (10ng) were co-transfected with 

either miR-29 mimic (50nM) or non-targeting control (50nM) into SW1353 cells for 24 hours 

and followed by serum starvation for another 24 hours.  Cells were then treated with either 

TGFβ1 or TGFβ3 (4ng/ml) for another 6 hours before measuring the luciferase activity. 

Luciferase assay data (Figure 5.1b) showed that: stimulating cells with TGFβ1 strongly 

induced luciferase activity as compared with non-treatment control; pre-treatment with all 

members of the miR-29 family significantly decreased the luciferase activity at this 6 hour 

time point. A similar pattern was observed when treating cells with TGFβ3 (Appendix, 

Figure 7a). These data demonstrate that Smad signalling was successfully activated in 

SW1353 cells by TGFβ1or TGFβ3 and that the miR-29 family is a negative regulator of this 

signalling.  As all miR-29 family members supressed the signalling, an experiment using only 

an inhibitor of miR-29b (50nM) was performed. Consistent with the mimic data above, 
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luciferase activity was significantly increased with the miR-29b inhibitor compared to control 

(Figure 5.1c and Appendix, Figure 7b).  

The suppressive effect of the miR-29 family on the TGFβ signalling pathway was further 

confirmed by measuring the effect of the miR-29 family on a TGFβ responsive gene. 

ADAMTS4 was chosen since it is induced by TGFβ in chondrocytes, but was not a putative 

direct target of the miR-29 family.  Human primary chondrocytes were transfected with miR-

29 family mimics (50nM) in monolayer for 24 hours with 10% (v/v) FCS. The media was 

then replaced with media with 0.5% (v/v) FCS for another 24 hours before stimulating with 

TGFβ (4ng/ml) for a further 6 hours. The expression of ADAMTS4 was measured by qRT-

PCR (Figure 5.2) showing that ADAMTS4 was strongly induced by TGFβ; the miR-29 

mimics significantly decreased the expression of ADAMTS4 as compared with non-targeting 

control. These data again confirmed the suppressive effect of the miR-29 family on TGFβ 

signalling pathway. 
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Figure 5.1 The miR-29 family suppress TGFββββ signalling pathway 

(A) The TGFβ signalling reporter (CAGA12-luc) contains 12 binding sites of the Smad2/3/4 
(GAGAC) binding consensus upstream of the firely luciferase-encoding gene in pGL3100ng 
CAGA12-luc vector, and 10ng Renilla vector were co-transfected with either miR-29 family 
mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-targeting 
control (50nM) was also used as the negative control. 24 hours after transfection, cells were 
serum starved for another 24 hours, followed by treatment with TGFβ (4ng/ml) for another 6 
hours before measuring luciferase activity. Renilla is the loading control for luciferase assay. 
Open bar: non – treatment control, close bar: TGFβ treatment. Means ± standard errors are 
presented, n=6. The difference of luciferase activity was analysed by Student’s unpaired two-
tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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Figure 5.2 The miR-29 family suppresses the TGFβ induced gene ADAMTS4  
 

Human primary chondrocytes were transfected with either miR-29 family mimics (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then changed into 0.5% (v/v) FCS 
for 24 hours and followed by stimulating with TGFβ1 (4ng/ml) for another 6 hours. Total 
RNA was isolated and the expression level of ADAMTS4 was measured by qRT-PCR. 18S 
rRNA was used as the endogenous control. Data were normalized to untreated, mock 
transfected cells.  Open bar: non – treatment control, close bars: TGFβ treatment. Means ± 
standard errors are presented, n=3. The difference in expression level of ADAMTS was 
analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.00 
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5.2.2 The miR-29 family suppresses the NFκκκκB signalling pathway  

In Chapter 4, IL-1β was found to increase expression of the miR-29 family. It is, therefore, of 

importance to investigate how the miR-29 family regulates the signalling pathways triggered 

by IL-1β. There are at least three pathways triggered by IL-1β including NFκB, JNK, and 

p38 MAPK pathways. Nevertheless, in this project, just the interaction between the miR-29 

family and NFκB signalling was investigated. The transcription factor NFκB is held in the 

cytoplasm in an inactive form associated with the inhibtory κB (IκB) protein. In response to 

IL-1β binding of the receptor, NFκB releases from IκB and the activated NFκB will then 

translocate to the nuclear, bind to DNA elements present in its target genes and facilitate their 

transcription.  

Similar to the experiment for investigating the interacting between the miR-29 family and 

TGFβ signalling,  the NFκB signalling reporter containing multiple binding sites for NFκB 

upstream of a luciferase-encoding gene was utilized (Figure 5.3a). The signal cascade from 

IL-1β will activate NFκB which consequently induces the transcription of the luciferase gene 

in the reporter and this may be modulated by the miR-29 family. The luciferase assay was set 

up similar to the experiment in 5.1.1 except the cells were treated with IL-1β (5ng/ml) instead 

of TGFβ1 (4ng/ml). Luciferase data (Figure 5.3b, c) showed that IL-1β strongly induced the 

luciferase activity of the κB reporter; all miR-29 family mimics significantly decreased 

activity (B) but the miR-29b inhibitor induced activity (C). These data show that NFκB 

signalling was successfully triggered in SW1353 cells by IL-1and that the miR-29 family is a 

negative regulator of the NFκB signalling pathway.  

The suppressive effect of the miR-29 family on the NFκB signalling pathway was further 

confirmed by measuring the effect of the miR-29 family on an NFκB responsive gene.  

MMP3, which is induced expression by IL-1 and is not a putative direct target of the miR-29 

family, was chosen. Again, the experiment was set up similar to the experiment in 5.1.1 

except cells were stimulated with IL-1 (5ng/ml). The Taqman qRT-PCR (Figure 5.4) showed 

that MMP3 was strongly induced expression by IL-1β; the miR-29b and miR-29c mimics 

significantly decreased the expression of MMP3 as compared with non-targeting control, 

though the miR-29a mimic had no effect.  
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Figure 5.3 The miR-29 family suppresses NFκκκκB signalling pathway 

(A) The NFκB signalling reporter (κB vector) contains 5 binding sites of NFκB upstream of 
the firely luciferase-encoding gene in pGL3 
 
100ng κB vector, and 10ng Renilla expression vector were co-transfected with either miR-29 
family mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-
targeting control (50nM) was also used as a negative control. 24 hours after transfection, cells 
were serum starved for further 24 hours, and followed by treating with IL-1 (5ng/ml) for 
another 6 hours before measuring luciferase activity. Renilla is the endogenous control for 
luciferase assay. Means ± standard errors are presented, n=6. The difference of luciferase 
activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001 
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Figure 5.4 The miR-29 family suppresses expression of the IL-1-induced gene MMP3 
Human primary chondrocytes were transfected with either miR-29 family mimic (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then changed into 0.5% (v/v) FCS 
for 24 hours, followed by stimulating with IL-1β (5ng/ml) for a further 6 hours. Total RNA 
was isolated and the expression of MMP3 was measured by qRT-PCR. 18S rRNA expression 
was used as the housekeeping gene. Open bar: non – treatment control, close bar: IL-1β 
treatment. Means ± standard errors are presented, n=3. The difference in expression level of 
IL-1β was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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5.2.3 The miR-29 family supresses the canonical Wnt signalling pathway 

Even though expression of the miR-29 family is not regulated by Wnt3a in human 

chondrocyte, it is still of interest to investigate whether the WNT/β-catenin signalling is 

modulated by the miR-29 family because of the critical role of this signalling in OA 

development: balanced β-catenin levels are essential for maintaining homeostasis of articular 

cartilage and any factors impairing this balance could lead to pathological changes.  

For investigating the interaction between the miR-29 family with the WNT/β-catenin 

signalling, the TOPFlash reporter (containing 7 binding sites of TCF/LEF driving the 

expression of the luciferase encoding gene) and FOPFlash reporter (control for TOPFlash 

where all the TCF/LEF binding sites are mutated) were used (Figure 5.5a). With the presence 

of e.g. Wnt3a, the signal transduced from the FZD receptor and LRP-5/6 co-receptor proteins 

will lead to the accumulation of β-catenin in the nucleus where it acts in concert with 

TCF/LEF transcription factors to generate a transcriptionally active complex inducing the 

expression of cognate genes and also therefore the TOPFlash reporter. Thus, any modulation 

of luciferase activity in the presence of the miR-29 family indicates that the miRNA family 

impacts on canonical signalling. Again the luciferase assay experiment was set up similarly to 

the assay in 5.1.1 but the TOPFlash (100ng) or FOPFlash (100ng) and Wnt3a (50ng/ml) were 

utilized. Luciferase assay data (Figure 5.5b, c) showed that Wnt3a strongly induced the 

luciferase activity from TOPFlash but not FOPFlash reporters; all members of the miR-29 

family significantly decreased luciferase activity, whilst a miR-29b inhibitor increased the 

luciferase activity compared to control. These data show that the WNT/β-catenin pathway 

was induced in SW1353 cell with Wnt3a and that the miR-29 family is a negative regulator 

of this signalling. 

The suppressive effect of the miR-29 family on the WNT/β-catenin signalling pathway was 

further confirmed by measuring the effect of the miR-29 family on the expression of AXIN2, 

a WNT/β-catenin responsive gene and not a putative direct target of the miR-29 family. The 

experiment was set up similarly to the experiment in 5.1.1 except cells were stimulated with 

Wnt3a (50ng/ml). The qRT-PCR data (Figure 5.6) showed that AXIN2 expression was 

strongly induced by Wnt3a; the miR-29 family mimics significantly decreased the expression 

of AXIN2 as compared with non-targeting control.  
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Figure 5.5 The miR-29 family suppresses the WNT/β-catenin signalling pathway  

(A) The canonical WNT signalling reporter (TOPFlash vector) contains 7 binding sites of 
TCF/LEF upstream of the firely luciferase encoding gene in the pTAL-Luc vector. The 
FOPFlash vector is the control in which all binding sites of TCF/LEF are mutated. 
 
100ng TOPFlash or FOPFlash vectors, and 10ng Renilla vector was co-transfected with 
either miR-29 family mimic (50nM) (B) or miR-29b inhibitor (50nM) (C) into SW1353 cells 
in monolayer. The non-targeting control (50nM) was also used as the control. 24 hours after 
transfection, cells were serum starved for another 24 hours, and followed by treatment with 
WNT3a (50ng/ml) for another 6 hours before measuring luciferase activity. Renilla is the 
endogenous control for luciferase assay. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001 
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Figure 5.6 The miR-29 family suppresses expression of the WNT/β-catenin induced gene 

AXIN2 

Human primary chondrocytes were transfected with either miR-29 family mimic (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then serum starved for 24 hours and 
followed by stimulating with Wnt3a (50ng/ml) for another 6 hours. The expression level of 
Axin2 was measured by qRT-PCR. 18S rRNA was used as the housekeeping gene. Open bar: 
non – treatment control, close bar: WNT3a treatment. Means ± standard errors are presented, 
n=3. The difference in expression level of AXIN2 was analysed by unpaired two-tailed t test. 
* p<0.05, ** p < 0.01, *** p<0.001 
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5.2.4 Identification of  miR-29 family targets 

The miR-29 family was found to suppress the TGFβ/Smad, NFκB, and WNT/β-catenin 

signalling pathways. Nonetheless, it still remained unclear the direct mechanism by which the 

miR-29 family controlled these pathways. I therefore sought to identify novel targets of the 

miR-29 family to explain how the miR-29 family interacts with these pathways.  

5.2.4.1  Gain- and loss- of function of miR-29b 

For identifying new targets, a gain- and loss- of function experiment was performed. Since 

the miR-29 family shares the same seed binding site, it was deemed sufficient just to 

overexpress or silence miR-29b rather than all members of the family. Human primary 

chondrocytes were transiently transfected with miR-29b mimic or miR-29b inhibitor (50nM) 

and their non-targeting controls for 48 hours in triplicate and then total RNA was isolated. 

The transfection experiment was validated by measuring the miR-29b level by qRT-PCR. 

The data (data not shown) showed that the level of miR-29b strongly increased or decreased 

after transfection with either miR-29b mimic or inhibitor, respectively. These data suggest a 

good transfection efficiency into human chondrocytes. For performing a whole genome 

profile, an equal amount of total RNA from each sample in the triplicate was pooled together. 

These pooled samples were then subjected to whole genome array using Illumina human HT-

12 V4.0 expression BeadChips to profile more than 47,000 human transcripts.  

The global effect of the miR-29b mimic and inhibitor transfection on whole genome 

expression was first investigated by plotting the distribution of different expression values for 

all mRNAs in the miR-29b overexpression or knockdown experiments. Since the miRNA 

will exert its function by suppressing target gene expression, it was expected that the 

overexpression of miR-29b would significantly suppress target gene expression; conversely, 

a strong induction of target gene expression would be observed with the silencing of the miR-

29b. Consistent with this hypothesis, data (Figure 5.7A) showed that in the miR-29b silencing 

experiment, the distribution of modulated genes was slightly skewed towards higher 

expression. Using an absolute 1.3 fold change (FC) as the cut off, there are 213 and 144 

mRNA going up and down, respectively in this experiment (whilst just 9 and 10 mRNA 

going up and down respectively if the FC cut off was 1.5). Surprisingly, this pattern was also 

observed with the overexpression of the miR-29b (Figure 5.7B) with 703 and 518 mRNA 
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going up and down with 1.5 FC cut off, respectively. These data suggest that the miR-29b 

mimic has stronger effect than miR-29b inhibitor in chondrocytes and that the transfection 

with the miR-29b mimic strongly induced rather than supressed gene expression. Further 

analysis of the mRNAs strongly increased with miR-29b overexpression showed that the 

majority of these induced genes do not contain a binding site for the miR-29 family in their 

3’UTR, suggesting that they are not direct targets of the miR-29 family.  Indeed, a number of 

interferon responsive genes were strongly increased (Appendix, Table 7), suggesting a non-

specific response to the synthetic oligonucleotide.  This has been previously noted even for 

small RNAs (Karlsen et al. 2011). Interestingly, these genes were not modulated in the miR-

29b silencing experiment, suggesting that a specific sequence in the miR-29b mimic is 

responsible.  

The effect of the miR-29b mimic or inhibitor on whole genome expression was further 

analysed by examining the potential targets of the miR-29 family. The array data (Figure 5.8) 

revealed there were 12215 mRNAs in the intersection of the two experiments that increased 

in the miR-29b knockdown and decreased in miR-29b overexpression experiments. To 

further explore the effect of modulation of miR-29b on the transcriptome, the percentage of 

mRNAs containing seed sites (e.g. 6-mer, 7-mer, 8-mer) was calculated. It was a postulated 

that potential direct targets of miR-29s (those mRNA containing miR-29 seed sites) should be 

enriched in mRNA down-regulated by miR-29b and in mRNA up-regulated by miRNA-29b 

silencing.  Particularly, this enrichment should be highest in genes that are decreased by miR-

29b mimic and increased by miR-29b inhibitor. Data (Figure 5.8) showed that regardless of 

the length of the seed sequence, the percentage of mRNAs with seed sites is higher in the 

mRNAs which are decreased on overexpression or increased on silencing of miR-29b than in 

total mRNA.  The percentage of mRNAs with seed sites is the highest in the intersection of 

the two experiments. These data confirm the hypothesis that taking the intersection 

containing mRNAs which decrease with the overexpression and increase with silencing of 

miR-29b is an effective way to filter the relevant miRNA targets. 

Also, a subset of mRNA which was differentially expressed in the microarray analysis was 

selected for validating using RT-qPCR. Comparison of the expression levels between the 

microarray and RT-PCR results demonstrated a similar expression pattern between the two 

platforms (data not shown). These results confirmed the mRNA array data.  
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Figure 5.7 Gain- and loss- of function of miR-29b experiments 

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer until reaching 90% confluence. Cells were transfected with miR-29b mimic 
(50nM), miR-29b inhibitor (50nM), or non – targeting control (50nM) for 48 hours in 
triplicate. Cells were then harvested and total RNA was isolated from each sample. An equal 
amount of total RNA from each sample was pooled together. Pooled samples were subjected 
to whole genome array using Illumina humanHT-12 V4.0 expression BeadChip array. The 
Global effect of the miR-29b overexpression or silencing on whole genome expression was 
presented in (A) for the miR-29b silencing experiment and in (B) for the miR-29b 
overexpression experiment. Both datasets were plotted together on the same chart (C). The 
mRNAs which decreased in the miR-29 overexpression and increased in the miR-29b 
silencing experiment are highlighted in red.  
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Figure 5.8: Enrichment of miR-29 putative direct targets in miR-29b gain – and loss – 
of function experiment. 

From whole genome array data, the percentage of miR-29 putative direct targets was 
calculated for (i) mRNA decreased by the miR-29b mimic ; (ii) mRNA increased by the miR-
29b inhibitor ; (iii) mRNA in the intersection of the two (decreased by miRN-29b mimic and 
increased by inhibitor) (iv) all the mRNAs detected from the whole genome array. The 
calculation was performed for the range of fold change (FC) and for each types of seed 
sequence e.g. 6-mer, 7-mer, 8-mer. The mRNA having more than one binding site for each 
type of seed sequence was always assigned as 1. When FC=k, the percentage of 6mer-seed-
site targets increasing or decreasing expression was calculated: 6mer = sum of mRNA having 
6mer-seed site sequence in the 3’UTR with FC in the range of (k, FC max) if k >0, or (FC 
min, k) if k<0; Total mRNA = sum of mRNA with FC in the range of (k, FC max)  if k>0, or 
(FC min, k) if k< 0;  mRNA with binding site/ total mRNA = 6mer/total mRNA. The 
percentage of other seed site targets was calculated similarly. Here, calculation for the 
absolute FC 1.3 is presented.  
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5.2.4.2 Known targets of the miR-29 family  

The miR-29 family has emerged as an important miRNA in a number of pathologic settings 

by regulating multiple genes that fall into the same or related pathways.  

In the whole genome array of the overexpression and silencing of the miR-29b, a number of 

known direct targets of the miR-29 family were also identified in human chondrocytes (e.g. 

Table 5.1).  
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Gene  

Binding sites Fold change 
mimic 

(decrease) 

Fold change 
inhibitor 
(increase) s6 s7m8 s7a1 s8 

COL1A1 3 1 3 1 2.53 1.69 
COL1A2 3 1 2 1 1.26 1.05 
COL2A1 1 1 1 1 1.17 1.39 
COL3A1 3 2 2 2 1.36 1.26 
COL4A1 2 1 2 1 1.22 1.41 
COL5A1 5 4 2 2 1.15 1.15 
COL5A2 2 1 2 1 2.20 1.27 
COL6A1 1 0 1 0 1.27 1.08 
COL6A2 1 1 1 1 1.12 1.01 
COL6A3 1 1 1 1 1.20 1.14 
COL8A1 1 1 1 1 1.35 1.07 
COL11A1 2 2 0 0 1.80 1.25 
COL15A1 2 1 1 1 1.73 1.22 
COL16A1 1 1 0 0 1.35 1.05 
COL20A1 3 0 0 0 1.01 1.13 
ADAM19  6 2 0 0 1.64 1.28 
CDK6 3 2 1 0 1.61 1.07 

 

Table 5.1: Fold change expression of known targets of the miR-29 family in the miR-29b 

gain- and loss- of function experiment in human articular chondrocytes  
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5.2.4.3 Novel targets of the miR-29 family  

5.2.4.3.1 The ADAMTS family 

The miR-29 family is one example of the fact that a miRNA can regulate many functionally 

related genes. As shown above, a number of extracellular matrix-related genes were found to 

be direct targets of the miR-29 family. Since a miRNA can regulate the expression of several 

hundred genes, it was likely that the miR-29 family could directly target sets of novel genes 

within families. In chapter 4, TGFβ was found to suppress miR-29 family expression and the 

miR-29 family itself was also found to supress TGFβ signalling. These data suggest that the 

level of miR-29 and TGFβ-induced genes, may be inversely correlated and the miR-29 

family might further inhibit the effect of TGFβ signalling on gene expression by exerting a 

second suppressive effect on the pathway through directly targeting inducible genes. This 

means that a number of TGFβ-inducible genes could potentially be direct targets of the miR-

29 family. Herein, the ADAMTS family investigated as TGFβ inducible genes (except 

ADAMTS 19) (Figure 5.9) and genes which have roles in cartilage.  

Human primary chondrocytes were stimulated with TGFβ1 for 24 hours in monolayer culture. 

The expression levels of members of the ADAMTS families were measured by qRT-PCR 

showing that ADAMTS6, ADAMTS10, ADAMTS14 and ADAMTS17 were significantly 

induced by TGFβ (Figure 5.9). Moreover, bioinformatic analysis found that there were a 

number of miR-29 binding sites in the 3’UTR regions of these ADAMTS genes (Table 5.2). 

Together with this, these TGFβ induced ADAMTS genes were predicted to be miR-29 

potential direct targets by different bioinformatics algorithms e.g. Diana, Targetscan, 

Microcosm, miRDB, Picta (Table 5.2). Taken together, all of these data demonstrated that 

ADAMTS genes, including ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19 

are miR-29 potential direct targets.  

In order to validate these ADAMTS genes as miR-29 direct targets, the expression levels of 

these genes were measured by qRT-PCR in human chondrocytes transfected with the miR-

29b mimic for 48 hours. qRT-PCR (Figure 5.10) showed that the expression of these 

ADAMTS genes was significantly suppressed by overexpression of the miR-29b, again 

supporting that these genes are the miR-29 direct targets. To further validate these ADAMTS 

genes as miR-29 direct targets, the 3’UTR regions containing the miR-29 binding sties were 
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subcloned downstream of the luciferase encoding gene in pmiRGLO. These 

ADAMTS3’UTR-pmiRGLO reporter vectors (100ng) were co-transfected with the miR-29 

family mimic (50nM) to DF1 cells. After 24 hours of transfection, the cells were harvested 

and luciferase assays were performed. Together with the ADAMTS 3’UTR-pmiRGLO 

reporter vectors, mutant vectors in which the miR-29 binding sites were mutated were 

constructed and tested. A 3’UTR was a direct target for the miR-29 family if the luciferase 

activity was suppressed with the overexpression of the miRNA in the wild-type construct and 

this effect was abolished when the miRNA binding sites were mutated. Luciferase assay data 

showed that ADAMTS6 (Figure 5.14), ADAMTS10 (Figure 5.15), ADAMTS14 (Figure 5.11), 

ADAMTS17 (Figure 5.12), ADAMTS19 (Figure 5.13) were all direct targets of the miR-29 

family. 
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Table 5.2: ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19 are predicted 
to be miR-29 targets  

A number of different binding sites for miR-29 were found in the 3’UTR regions of 
ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, and ADAMTS19. These ADAMTSs were 
predicted to be miR-29 family targets by different bioinformatics algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Genes 8 
-mer  

7 
-mer 

6  
-mer 

Bioinformatic algorithm  

ADAMTS6   2  Diana, Targetscan, Microcosm, 
miRDB,Picta 

ADAMTS10  2  Diana, Microcosm, Picta 

ADAMTS14  2 2 Diana, Picta 

ADAMTS17  2 3 Targetscan, Microcosm, miRDB,Picta 

ADAMTS19  2  Picta 
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Figure 5.9 Members of ADAMTS family are TGFβ inducible genes  

Human primary chondrocytes was cultured with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were switched to media with 0.5% (v/v) FCS for 24 hours before treating 
with TGFβ1 (4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) for another 24 hours. Cells 
were harvested and subjected to total RNA isolation. Relative expression of the ADAMTS 
genes was measured by quantitative RT-PCR. 18S rRNA was the housekeeping control. 
Relative expression value of each of the ADAMTSs in TGFβ stimulated cells was normalized 
to the vehicle control. The horizontal line at 1 serves as the vehicle control. Closed bar: TGFβ 
treatment, open bar: vehicle. Means ± standard errors are presented, n=3. The difference 
between the treatment and the control was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, ***, p<0.001. 
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Figure 5.10 The expressions of members of the ADAMTS family were suppressed by 
miR-29b mimic 

Human primary chondrocytes was cultured in media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were then transfected with either miR-29b mimic (50nM) or non – 
targeting control (50nM) for 48 hours. Total RNA was isolated and the expression levels of 
the ADAMTS genes were measured by qRT-PCR. 18S rRNA was the housekeeping control. 
Relative expression value of each of the ADAMTS genes was normalized to non – targeting 
control. The horizontal line at 1 serves as the non-targeting control. Means ± standard errors 
are presented, n=3. The difference in expression between miR-29b overexpression and non – 
targeting control was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
***, p<0.001 
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Figure 5.11: ADAMTS14 is a direct target of the miR-29 family 

The ADAMTS14 3’UTR region containing 4 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS14 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or quadruplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.12: ADAMTS17 is a direct target of the miR-29 family 
 

The ADAMTS17 3’UTR region containing 5 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS17 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or quadruplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.13: ADAMTS19 is a direct target of the miR-29 family 
 

The ADAMTS19 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS19 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or duplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
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miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.14: ADAMTS6 is a direct target of the miR-29 family 
 

The ADAMTS6 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS6 3’UTR-pmiRGLO wide type (WT) vector. The WT vector (100ng) was co-
transfected into chicken fibroblast DF1 cells with either miR-29b mimic (50nM) or non – 
targeting control (50nM). Luciferase assays were performed 24 hours after transfection. The 
relative luciferase value was normalised to the non-targeting control Open bar: non-targeting 
control, closed bar: miR-29 family mimic. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c 
mimic.  
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Figure 5.15: ADAMTS10 is a direct target of the miR-29 family 
The ADAMTS10 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS10 3’UTR-pmiRGLO wide type (WT) vector. The WT vector (100ng) was co-
transfected into chicken fibroblast DF1 cells with either miR-29b mimic (50nM) or non – 
targeting control (50nM). Luciferase assays were performed 24 hours after transfection. The 
relative luciferase value was normalised to the non-targeting control Open bar: non-targeting 
control, closed bar: miR-29 family mimic. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c 
mimic.  
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5.2.4.3.2 WNT signalling pathway related genes  

As shown previously, the miR-29 family was found to negatively regulate the TGFβ, NFκB, 

and WNT/β-catenin signalling pathways. The remaining question is how the miR-29 family 

supress these signalling pathways.  

The whole genome array from the miR-29b gain – and loss – of function experiment found 

12215 mRNAs that were the miR-29 putative targets. These consisted of 6925 mRNAs 

containing at least one 6-mer, 3400 mRNAs containing 7-mer, and 728 mRNAs containing 8-

mer binding sites in their 3’UTR. Those mRNAs with miR-29 binding sites were considered 

as putative direct targets of the miR-29 family; the others without the miR-29 binding site 

were considered as indirect targets.   

The miR-29 family suppression of TGFβ, NFκB, and WNT/β-catenin signalling pathways 

could be through a direct mechanism by targeting the mRNAs in the signalling cascade. In 

order to verify how miR-29 suppresses these signalling pathways, both putative miRNA-29 

indirect and direct targets were analysed with DAVID functional analysis (web address) 

software to identify the most represented gene ontology (GO) categories. Analysing the miR-

29 direct target sections found the enrichment for the Wnt signalling pathway together with 

MAPK kinase signalling pathway, apoptosis pathways, P53 signalling pathways. Since, 

NFκB and TGFβ pathways did not come up in this analysis, the miR-29 indirect targets were 

further analysed. However, neither NFκB nor TGFβ signalling pathways were enriched. In 

the scope of this project, the mechanisms by which the miR-29 suppressed these two 

signalling pathways remains unclear and need to be further explored.  

All the miR-29 putative direct targets were selected regardless of the fold change cut off.  In 

this manner, the Wnt signalling-related direct targets e.g. Dishevelled 3 (DVL3), casein 

kinase 2 alpha 2 polypeptide (CSNK2A2), GSK-3 binding protein frat2 (FRAT2), Frizzled 

family receptor 3 (FZD3), and Frizzled family receptor 5 (FZD5) were only modulated with a 

small fold change in the array (Fold change between 1 to 1.2). The expression of these 

mRNAs were measured by qRT-PCR, however in triplicate samples these data showed that 

the modulation of these genes under the control of the miR-29b did not reach statistical 

significance (Appendix, Figure 8).  
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Even though expression of these Wnt-related genes was not significantly modulated at the 

mRNA level, the genes were explored as miR-29 direct targets since miR-29 might exert its 

functions on these genes at the protein level. To verify these genes as the miR-29 direct 

targets, 3’UTR regions containing miR-29 binding sites of these genes were subcloned 

downstream of a luciferase encoding gene in the pmiRGLO vector. Constructs in which the 

miR-29 binding sites were mutated were also created. Either the 3’UTR-pmiRGLO vectors or 

the mutant 3’UTR-pmiRGLO vectors were co-transfected with the miR-29 family mimic 

(50nM) into DF1 cells for 24 hours. Then cells were harvested and the luciferase assays were 

performed. Luciferase assay data showed that FZD3 (Figure 5.19 ), FZD5 (Figure 5.18), 

FRAT2 (Figure 5.17), CK2A2 (Figure 5.16), DVL3 (Figure 5.15) were the direct targets of 

the miR-29 family since the luciferase activities were significantly decreased with the miR-29 

family mimics and this effects were abolished when the miR-29 binding sites were mutated.  

As mentioned above, qRT-PCR showed that the expression levels of these WNT signalling 

related genes were not significantly modulated with the miR-29b mimic at the mRNA level. 

However, the luciferase assay showed that miR-29 family could directly bind to the 3’UTR 

regions of these genes. It was postulated that the miR-29 family could directly target these 

genes at the protein level. Since all members of the miR-29 family directly targeted these 

genes, it was sufficient to check the effect of the miR-29b mimic on these genes at the protein 

level. In order to test this hypothesis, SW1353 cells were transfected with miR-29b mimic for 

72 hours. Cells were then harvested and subjected to western blot. Time limitations meant 

that only expression levels of DVL3 were examined. Western blot data (Figure 5.15) showed 

that miR-29b supressed DVL3 expression level to 50% as compared to the non – targeting 

control, again confirming DVL3 is a direct target of miR-29 family.  

Taken together, all of these data provide good evidence that the miR-29 family can inhibit the 

Wnt signalling, at least in part, via repression of these targets. Interestingly, DVL3, 

CSNK2A2 and FRAT2 were decreased in expression in hip OA cartilage compared to 

fracture controls, where the miR-29 family were increased in expression.  Fzd3 expression 

however, was higher in expression in hip OA (Figure 5.20).  
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Figure 5.16: DVL3 is a direct target of the miR-29 family 
 

(A) The DVL3 3’UTR region containing 3 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the DVL3 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or triplicate binding sites of the miR-29 family were mutated. Either the 
WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with 
either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays were 
performed 24 hours after transfection. The relative luciferase value was normalised to the 
non-targetting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
 
(B) SW1353 was transfected with a miR-29b mimic (50nM) or non-targeting control (50nM) 
for 3 days. Protein was extracted and separated on 10 (w/v) SDS-PAGE, blotted onto PVDF 
and probed with an anti DVL3 antibody.  The blot was stripped and re-probed with a 
GAPDH antibody to assess loading, n=2. 
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Figure 5.17: CK2A2 is a direct target of the miR-29 family 
 

The CK2A2 3’UTR region containing 4 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the CK2A2 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or quadruplicate binding sites of the miR-29 family were mutated. Either 
the WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells 
with either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays 
were performed 24 hours after transfection. The relative luciferase value was normalised to 
the non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.18: FRAT2 is a direct target of the miR-29 family 
 

The FRAT2 3’UTR region containing 4 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FRAT2 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or triplicate binding sites of the miR-29 family were mutated. Either the 
WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with 
either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays were 
performed 24 hours after transfection. The relative luciferase value was normalised to the 
non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.19: FZD5 is a direct target of the miR-29 family 
 
The FZD5 3’UTR region containing 5 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FZD5 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or quintuplicate binding sites of the miR-29 family were mutated. Either 
the WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells 
with either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays 
were performed 24 hours after transfection. The relative luciferase value was normalised to 
the non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.20: FZD3 is a direct target of the miR-29 family 
 

The FZD3 3’UTR region containing 1 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FZD3 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which binding site of the miR-29 family were mutated. Either the WT or the mutants 
vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with either miR-29b 
mimic (50nM) or non – targeting control (50nM). Luciferase assays were performed 24 hours 
after transfection. The relative luciferase value was normalised to the non-targeting control. 
Means ± standard errors are presented, n=6. The difference of luciferase activity was 
analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, Ctr, 
non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.21: Expression of FZD3, FZD5, DVL3, and CK2A2 in human cartilage  
 

Total RNA was isolated from human hip articular cartilage of either end-stage OA patients or 
fracture controls and reverse transcribed to cDNA. Relative expressions of FZD3, FZD5, 
DVL3, and CK2A2 were measured by real-time PCR where 18S rRNA was used as 
housekeeping control in hip osteoarthritis cartilage (HOA, n=8) and fracture to the neck of 
the femur (NOF, n=7). The horizontal line at 1 is the expression of these genes in NOF. 
Means ± standard errors are presented. Different in expression between HOA and control 
NOF was calculated by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001  
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5.3 Discussion  

Previously, the miR-29 family has been shown to negatively interact with TGFβ signalling in 

several pathologic settings in which fibrosis development was the outcome of the disease 

such as liver, cardiac, renal fibrosis (van Rooij et al. 2008, Kwiecinski et al. 2011, Qin et al. 

2011). In line with these studies, in the present study, the miR-29 family was also found to 

suppress the TGFβ signalling pathway in human chondrocytes. Noteworthy, miR-29 is one 

downstream mediator of TGFβ signalling in which the miRNA blocks the effect of the 

growth factor on gene expression. However, the direct mechanism by which miR-29 

interferes with TGFβ signalling remains unclear in human chondrocytes. In fact, Smad3 was 

demonstrated to be a direct target of miR-29 in thyroid cells (Leone et al. 2012). In human 

chondrocytes, nevertheless, with transfection of miR-29 family mimics, the Smad3 mRNA 

level was not changed (data not shown); similarly, any decrease in luciferase activity when 

co-transfecting a Smad3-3’UTR reporter with miR-29 mimics was not statistically significant 

(data not shown), suggesting that Smad3 is not the target of miR-29 in the context of the 

chondrocyte. In addition, no obvious components of TGFβ signalling were regulated in the 

miR-29b gain- and loss-of function experiment with the whole genome array. This leads to 

the hypotheses that miR-29 may directly targets TGFβ signalling components at the protein 

level rather than mRNA level (similar to miR-140 (Pais et al. 2010)) or that the inhibition of 

miR-29 on TGFβ signalling is the consequence of the direct suppression of other factors 

inducing TGFβ signalling. To test this hypothesis, it may be best to perform miR-29b gain-

and loss-of function experiment together with a proteomic assay.  It may also be instructive to 

perform array experiments in the presence or absence of TGFβ itself  

It has been shown that in the development and progression of OA, NFκB plays an active role 

e.g. mediating articular chondrocyte responses to proinflammatory cytokines (IL-1, TNF-α); 

inducing MMPs (e.g. MMP-1, MMP-3, MMP-13), cytokines (e,g, IL-6, IL-8) and chemokine 

expression (Marcu et al. 2010). Thus, NFκB is an attractive target for the treatment of OA. In 

this project, for the first time, NFκB signalling was confirmed as negatively regulated by the 

miR-29 family and miR-29 is also likely to serve as a downstream inhibitor of the signalling. 

Similar to TGFβ signalling, it is still not clear the direct mechanism by which miR-29 

regulates NFκB signalling pathway. However, it suggests a potential therapeutic strategy for 

targeting NFκB signalling using miR-29. Further studies are needed to dissect the direct 

mechanism by which miR-29 interferes with NFκB signalling. 
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In this project, the miR-29 family was found to suppress the Wnt/β-catenin signalling 

pathway. In line with my data, the negative effect of the miR-29 on this signalling pathway is 

also reported. In human non-small-cell lung cancer cells, miR-29 directly targets DNMTs 

which in turn inhibited the methylation of Wnt inhibitory factor-1 (WIF-1) promoter; 

accordingly, miR-29 over-expression down-regulated β-catenin expression (Tan et al. 2013). 

In human colorectal cancer cells, miR-29b negatively regulated Wnt signalling and targeted 

B-cell CLL/lymphoma 9-like (BCL9L), thus decreasing its expression with a consequent 

decrease in nuclear translocation of β-catenin (Subramanian et al. 2014). In contrast to these 

studies, published data reports that the miR-29 family positively regulated canonical Wnt 

signalling by directly targeting its inhibitors in human embryonic kidney cells (Liu et al. 

2011) and human fetal osteoblastic cells (Kapinas et al. 2010). This contradiction is not 

surprising as many miRNAs are known to act in a context-dependent manner depending on 

the relative availability of their targets in any cell type and this discordance could be a 

reflection of the differences in the miR-29 family regulatory networks in different cell lines.   

Besides exerting function on several crucial signalling pathways implicated on 

chondrogenesis and OA, the crucial role of the miR-29 family was clearly shown through 

their target genes. In this project, miR-29b gain- and loss-of-function was applied to find 

miR-29 potential targets. Together with some novel and known targets which will be 

discussed later, the liposome – mediated transient transfection of the miR-29b-3p mimic 

surprisingly induced the expression of a number of immune genes which are not the miRNA 

targets. The Qiagen miR-29b-3p mimic used in the present study is double-stranded, 23 

nucleotides in length with sequence identical to the sequence of the mature endogenous 

miRNA-29b-3p and does not contain any chemical modifications or overhangs, which makes 

it unlikely for any sequence difference between endogenous miRNA and Qiagen mimic to be 

responsible for the immune response. Moreover, the lack of immune response against the 

controls and the miR-29b inhibitor confirms that the immune response was specific and not 

due to a general response to small RNA. Indeed, it is likely that some specific GU- rich 4-mer 

sequences e.g. AUUU, UUGA, UGUU in the miR-29b-3p mature sequence 

(5’UAGCACCAUUUGAAAUCAGUGUU3’) might be important for the immune gene up-

regulation since these sequences have been shown to be potent immunostimulatory motifs 

mediated through TLR7 or TLR7/8 (Forsbach et al. 2008). Especially, it has been shown that 

the main effects induced upon activation of TLR7 in human immune cells are IFN- dependent 
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effects, proinflammatory cytokines and chemokines from cell expression only TLR7 or both 

TLR7 and 8 (Hertzog et al. 2003). Also, it is possible that this up-regulation of the immune 

genes could be attributed to the liposome alone besides the sequence of the synthetic miRNA 

since the levels of the immune genes were higher than the levels obtained for electroporation, 

and those observed in un-transfected controls (Karlsen et al. 2013). The explanation for this 

could be because liposomes fuse with the plasma membrane, which may trigger membrane – 

associated lipid receptors and/or distort the actin cytoskeleton which in turn up-regulates 

immune genes. However, it may depend on cellular context since electroporation could 

strongly trigger the increase of the immune genes in some cell types.  

This study identifies FZD3, FZD5, FRAT2, CK2A2 and DVL3 as the critical targets of the 

miR-29 family in the Wnt signalling pathway. These genes have important roles in both 

canonical and/or non-canonical Wnt signalling pathways. FZD3 and FZD5 belong to the 

Frizzled proteins, which are the receptors for Wnt ligands. Wnt3a, Wnt5a, and Wnt2 can bind 

to FZD3 which in turn can activate both canonical and non-canonical WNT signalling 

pathways: Wnt3a activates the TOPFlash reporter in HEK293 cells overexpressing 

Wnt3a/FZD3/LRP6 (Lu et al. 2004) whist Wnt5a binding to FZD3 triggers downstream 

pathways independent of β-catenin (Hansen et al. 2009); Wnt2 can interact with FZD3 in 

human cumulus cells, but it is not known which downstream signalling pathways are 

activated after this binding interaction (Wang et al. 2009). FZD5 functions as the receptor for 

Wnt5a, Wnt9b, and Wnt7a. Co-injection of hFZD5 and XWnt-5a induced the formation of 

dorsal axis duplication in X. laevis embryos; this axis duplication was suppressed after co-

injection of RNA for human GSK-3β, suggesting the involvement β-catenin-dependent 

signalling in this receptor – ligand combination (He et al. 1997). Wnt9b was found in 

HEK293 cells as a binding partner for FZD5 to activate the TOPFlash reporter (Liu et al. 

2008). Wnt7a was found to bind to FZD5 to activate the β-catenin signalling pathway and 

increase the proliferation of epithelial cells in the endometrium (Carmon et al. 2008). By 

targeting these two Frizzled proteins, miR-29 can interfere with Wnt signalling pathways. 

However, it will depend on the cellular context, whichWnt ligands are available to partner 

with, which will determine outcome. In line with these Frizzled proteins, another novel target 

of the miR-29 family, DVL3 (Disheveled 3), belonging to the Disheveled family including 

DVL1, 2 and 3, is a central component in mediating downstream events of both canonical 

and non-canonical Wnt signalling. Wnt ligands binding to Frizzled protein recruit Disheveled 

to the plasma membrane which leads to activation of downstream pathways. Disheveleds 
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includes DIX, PD2, and DEP domains: DIX and PDZ domains function together in canonical 

Wnt signalling to stabilize β-catenin; the DIX domain binds with Axin and results in 

inhibition of the β-catenin degradation complex in canonical Wnt signalling; PDZ and DEP 

domains cooperate in different subpathways of noncanonical Wnt signalling. Moreover, the 

other two targets FRAT2 and CSNK2A2 are potent activators of canonical Wnt signalling. 

FRAT2 (Frequently rearranged in advanced T-cell lymphomas -2) belongs to the FRAT 

family including FRAT 1, 2, 3. By binding to GSK3, Frat prevents the phosphorylation and 

concomitant degradation of β – catenin (van Amerongen et al. 2005). CSNK2A2 encodes for 

the subunit CK2α’ of casein kinase 2 (CK2). CK2 has been shown to act as a positive 

modulator of WNT/β-catenin pathway, suppressing β-catenin degradation and β-catenin 

binding to APC (Price 2006). Several keys components of the WNT/β-catenin signalling are 

known substrates of CK2 in vitro including DVL (Willert et al. 1997), TEF/TCF (Homma et 

al. 2002, Miravet et al. 2002, Hammerlein et al. 2005), and β-catenin (Song et al. 2003). 

Taken together, it is likely that by directly targeting FZD3, FZD5, DVL3, FRAT2 and 

CSNK2A2, miR-29 could in part or in specific contexts, suppress the Wnt signalling pathway. 

Interestingly, in human cartilage, the expression levels of FZD5, CSNK2A2, and DLV3 were 

found to be down regulated in human OA, inversely correlating with the miR-29 expression 

level, suggesting a direct mechanism in which the suppression of these genes are controlled 

by miR-29 in human OA cartilage. However, FZD3 expression level was up-regulated in 

human OA cartilage which could be explained by the fact that there are many other factors 

which are involved in controlling gene expression together with miRNAs. Since the dys-

regulation (either up-regulation or down-regulation) of the canonical Wnt signalling pathway 

can both lead to OA, there is a possible explanation for the disease development: the 

excessive amount of the miR-29 down-regulates the expression levels of a number of Wnt 

signalling related genes which consequently suppress the Wnt signalling pathway. 

Nevertheless, whether miR-29 targets all of these genes at the same time and the level at 

which the suppression of each gene contributing to the disease are still not explained in this 

project.  

MicroRNA 29 has been suggested to serve as a master regulator in complex regulatory 

networks through fine-tuning a large set of functionally related genes, probably best 

illustrated by its extracellular matrix-related targets, whereby at least 16 ECM related genes 

are experimentally validated including collagen isoforms (van Rooij et al. 2008, Luna et al. 
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2009, Kwiecinski et al. 2011, Qin et al. 2011, Wang et al. 2012), laminin γ1 (Luna et al. 2009, 

Nishikawa et al. 2014), fibrillin 1, elastin (van Rooij et al. 2008), integrin β1 (Cushing et al. 

2011). In line with these data, in this project, a number of ECM- related genes were 

highlighted as the direct targets of the miR-29 in human OA chondrocytes. However, there is 

not complete overlap since there are a number of genes that have been experimentally 

validated as direct targets of miR29 but not regulated when miR-29b was overexpressed or 

inhibited in human chondrocytes. For example, validated miR-29 direct target genes include 

DNMT3A, DNMT3B (Fabbri et al. 2007, Garzon et al. 2009, Amodio et al. 2012, Morita et 

al. 2013, Tan et al. 2013, Parpart et al. 2014), MMP2 (Liu et al. 2010, Steele et al. 2010, Fang 

et al. 2011), MMP9, ADAM12, ADAM19 (Luna et al. 2009, Ramdas et al. 2013), 

ADAMTS9 (Cushing et al. 2011). Nonetheless, in human chondrocyte, the expression levels 

of these genes were not modulated by the miR-29 family. The precise explanation for this 

difference is still not clear.  

In this PhD thesis, members of ADAMTS family including ADAMTS6, ADAMTS10 

ADAMTS14, ADAMTS17, ADAMTS19 have been confirmed as novel direct targets of the 

miR-29 family. Interestingly, the miR-29 family is suppressed by TGFβ whist its direct 

targets, the ADAMTS family are strongly induced by TGFβ.  However, except ADAMTS14 

described as a procollagen N-propeptidase for pro-collagen type I, type II, and type III, the 

functions of ADAMTS 6, -17, and-19 remain unknown. Thus, further investigating the 

suppressive effect of miR-29 family on these ADAMTS becomes difficult both in vitro and in 

vivo. Moreover, ADAMTS14 and ADAMTS17 levels were reported to largely increase in hip 

OA cartilage and hip OA synovium, respectively (Davidson et al. 2006); the rs4747096 

nsSNP in ADAMTS14 was over-represented in women requiring joint replacement because 

of knee OA and in patients with symptomatic hand OA (Rodriguez-Lopez et al. 2009, 

Poonpet et al. 2013), implicating the involvement of these ADAMTS on OA. The microRNA 

29 family is, nevertheless, found to increase expression in hip OA cartilage in our sample set. 

Again, this could be explained in part by the fact that in cellular context, a miRNA is just one 

factor amongst others e.g. transcription, epigenetic silencing, differential biosynthesis, and 

extracellular stimuli controlling gene expression.  

In summary, the miR-29 family was found to suppress the TGFβ/Smad3, NFκB, and Wnt/β-

catenin signalling pathways. Gene expression profiles of gain- and-loss-of-function revealed 

the regulation of a large number of previously recognised extracellular matrix-associated 
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genes as well as an additional subset of protease and Wnt signalling pathway-related genes.  

Among these genes, the ADAMTS family e.g. ADAMTS6, ADAMTS10, ADAMTS14, 

ADAMTS17, ADAMTS19, and Wnt signalling related genes e.g. FZD3, FZD5, DVL3, FRAT2, 

CK2A2 were validated as direct targets of the miR-29 family.   
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CHAPTER 6 
GENERAL DISCUSSION 

6.1 Summary 

This project has identified the miR-29 family as important miRNAs involved in both 

cartilage homeostasis and OA (Chapter 3). In the murine DMM model of OA at 1, 3, and 7 

days after surgery, miRNA profile data from total RNA isolated from the whole knee joints 

showed that miR-29b was significantly increased at day 1 and showed a trend to decrease at 

day 3 and 7 after surgery. Integrating analysis between the mRNA profiling and miRNA 

profiling data from the DMM model strongly highlighted the role of the miR-29 family since 

the expression of its putative targets inversely correlated with its expression across the time 

course. In human end-stage hip OA cartilage, the miR-29 family was increased compared 

with the facture to neck of femur controls. Furthermore, in a murine hip injury model, the 

expression of the miR-29 family was increased across a 48 hour time course. The miR-29 

family was also found to be involved in chondrocyte phenotype since the expression of all 

members of the miR-29 family decreased across dedifferentiation of human chondrocytes. In 

chondrogenesis, the miR-29 family was found to significantly decrease at an early stage, 

suggesting a negative role in this phase of chondrogenesis in both human and murine models. 

The miR-29 family was also found to be expressed in murine limb development. 

The factors controlling miR-29 family expression are another important finding of this 

project (Chapter 4). The master regulator of chondrogenesis SOX9 was found to negatively 

regulate miR-29 expression, at least in part through directly binding to the promoter region of 

miR-29a/b1. A number of growth factors and cytokines were identified which regulate 

expression of the miR-29 family in both human primary chondrocytes and SW1353 cell line: 

TGFβ supressed miR-29 family expression; IL-1 strongly increased the miRNA expression 

through the p38 MAPK signalling pathway; treatment with LPS for less than 24 hours 

decreased expression of miR-29 through NFκB signalling whilst treatment with LPS for 

longer times increased miR-29 expression. Interestingly, in response to cytokines and growth 

factors, the miR-29 primary and precursor transcripts were regulated ahead the mature 

transcripts. This was explained in part by the fact that several components taking part in the 

miRNA precursor processing were possibly the miR-29 targets. Among these, Dicer-1 was 

proven as a miR-29 direct target.  
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Crucially, the functions of the miR-29 family in chondrocyte were also revealed in which 

miR-29 served as the negative regulator of the TGFβ/SMAD, NFκB and WNT/β-catenin 

signalling pathways. A number of novel direct targets of the miR-29 family have been found 

e.g. the ADAMTS family (ADAMTS6, -10, -14, -17, -19) and components of the Wnt 

signalling pathway (FZD3, -5, FRAT2, CK2A2, DVL3) (Chapter 5).   
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Figure 6.1. Summary of the role of the miR-29 family in chondrocytes  

 

 

 
 
 
 
 
 
 
 
 

6.2 General discussion  
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6.2.1 Increased expression of the miR-29 family may contribute to the onset or 

progression of OA 

The tight regulation of miRNA expression is crucial for cartilage homeostasis since the 

dysregulation of miRNAs may lead to OA. Especially, it has been shown that the aberrant 

expression of a single miRNA could have a profound effect on cartilage i.e. miR-140, with 

absence of miR-140 leading to premature OA (Miyaki et al. 2010). In the present study, all 

members of the miR-29 family have been implicated in cartilage homeostasis and OA. In 

both early and late stages of OA, an increase level of the miR-29 family was observed, 

suggesting that miR-29 may be involved in the onset of the disease. Moreover, in this study, 

the molecular mechanisms controlling this increased expression of miR-29 and the 

mechanisms by which increased miR-29 expression may lead to OA have been investigated: 

the miR-29 expression was up-regulated by IL-1, which is induced in both early and end 

stage OA, consequently suppressing both TGFβ and WNT/β-catenin signalling pathways. 

Since alteration of these two signalling pathways has been shown to be involved in OA 

development (Verrecchia et al. 2001, Verrecchia and Mauviel 2002, Zhu et al. 2008, Zhu et al. 

2009), the increased expression level of the miR-29 family may contribute to this. In line 

with this, the miR-29 family was found to strongly suppress a number of ECM-related genes, 

especially collagens. Aggrecan was also found to be indirectly decreased by miR-29 (data not 

shown). However, more evidence is required to support this premise. If the increased 

expression level of miR-29 is a common observation in different OA models, this may also 

suggest that circulating miR-29 could be a biomarker for detecting early stage OA and also 

offers the possibility of using a miR-29 inhibitor as a novel treatment for OA.  We are 

investigating the expression of the miR-29 family in the Str/ort model in collaboration with 

Dr Blandine Poulet (University College London, UK) and Professor Andy Pitsillides (Royal 

Veterinary College, London, UK). 
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The increased level of the miR-29 family may not be the only microRNA underlying the 

development of OA. In this project, miRNA profiling in the DMM model at 1, 3, and 7 days 

after surgery found a number of miRNAs modulated apart from miR-29s, suggesting these 

may also contribute to the pathogenesis of OA. Also, a number of miRNAs have been 

identified as differently expressed in human end stage OA cartilage as compared to the 

control counterparts. It is clear that in order to maintain cartilage homeostasis, miRNAs will 

interact with each other and mRNAs in a complex network that is tightly regulated. Thus, the 

up-regulation of miR-29 might be either the reason or the consequence of the deregulation of 

other networks of miRNAs. The question is how the other miRNAs interact with miR-29 and 

the effect of the increase expression of miR-29 on the miRNA/mRNA network in OA. This 

requires a computer modelling approach to resolve. 

6.2.2 The signalling cascade IL-1/p38, IL-1/NFκκκκB and the miR-29 family  

Interestingly, in this study, it was found that whist IL-1 induced miR-29 expression through 

p38/MAPK, the NFκB pathway appears suppressive to miR-29 expression. In addition, the 

miRNA itself was found to suppress NFκB signalling. These data suggest that in response to 

the signalling cascade triggered by IL-1, the miR-29 expression level was induced through (i) 

induced expression of p38 MAPK and (ii) escape from the suppressive effect of NFκB 

through inhibiting the NFκB signalling pathway. However, the mechanism by which miR-29 

suppressed NFκB signalling was not fully understood since the miR-29b gain- and loss- of 

function mRNA profiling experiment in human primary chondrocytes did not identify any 

potential targets related to the NFκB signalling pathway. It is a hypothesis that this 

suppressive effect could be an indirect effect or some potential targets could alter only at the 

protein level. Also, the direct mechanism through which  p38 induced the miR-29 expression 

is not clear, even though in the promoter of miR-29a/b1 there are several binding sites for 

AP1 (data not shown).  Interestingly, it is reported that p38 activation was found to induce 

NFκB activity in a dual way: by reducing IκB levels and by potentiating the translocation of 

p65/p50 (Baeza-Raja et al. 2004). Though evidence for this activation in human chondrocytes 

was not clear, the network controlling miR-29 expression in response to IL-1 becomes more 

complicated if this interaction is true in chondrocytes. Moreover, in this study, miR-29 was 

found to inhibit the pre-miRNA processing machinery to target Dicer and may also directly 

target other pre-miRNA processing genes, suggesting another regulatory layer for tightly 
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controlling the level of miR-29 in human chondrocytes. This could partly explain that the 

excessive amount of the miRNA in chondrocytes may lead to OA. Multiple regulatory layers 

are therefore needed for controlling miR-29 levels, clearly showed when the level of the 

primary miR-29 family was induced ahead of the level of mature miR-29 in chondrocytes 

stimulated with IL-1, TGFβ, and LPS. In the DMM model, miR-29 expression was induced 1 

day after surgery together with the IL-1β expression level though this latter was not 

significant (data not shown), suggesting one possible explanation for the increase level of 

miR-29. However, it is unlikely that miR-29 was solely induced by IL-1 in the DMM model 

since the IL-1 level would have to be induced very early in order to then stimulate miR-29 

expression. In line with this, mRNA profiling of DMM model 6 hours after surgery did not 

find a strongly induced expression of IL-1 (Burleigh et al. 2012). Similarly, in the murine hip 

injury model, the miR-29 expression level was also found to increase across the time course 

(reaching significance at 12 hours in culture). The precise mechanism for the increase 

expression of miR-29s in both DMM model and murine hip injury model are not clear and 

require further investigation.  

6.2.3 The signalling cascade TGFβ/ Smad3 signalling pathway and the miR-29 family  

In contrast with IL-1, TGFβ suppresses miR-29 expression. Since the miR-29 family directly 

targets a number of ECM-related genes, the suppressive effect TGFβ exerted on the miR-29 

family is consistent with the well described protective effect of TGFβ in chondrocytes (Li et 

al. 2005). Interestingly, the miRNA itself gave a negative feedback loop on the TGFβ/Smad 

signalling pathway. This could be explained as an attempt to maintain miR-29 at homeostatic 

levels as TGFβ signalling becomes aberrant. This may also in part support the fact that an 

excessive amount of the miR-29 family could lead to OA: through suppressing Smad 

signalling and directly inhibiting responsive genes e.g. ECM related genes, the up-regulation 

of the miR-29s could strongly diminish the function of TGFβ in chondrocytes.  

The precise mechanism by which TGFβ suppressed miR-29 expression and the mechanism 

by which miR-29 inhibited the TGFβ/Smad signalling were unclear. The miR-29b gain- and 

loss- of function mRNA profiling did not identify any TGFβ related potential targets, 

suggesting that this may also be at the protein level. Moreover, regarding the cellular context, 

when both IL-1 and TGFβ may be present, the cross talk between the two cytokines as well 
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as with other cytokines and growth factors in controlling the miR-29s expression levels are 

still unclear.   

6.2.4 The canonical Wnt signalling and the miR-29 family  

In this project, expression of the miR-29 family was not controlled by Wnt3a in chondrocytes. 

Since Wnt3a could trigger both canonical Wnt/β-catenin and CaMKII signalling pathways 

(Nalesso et al. 2011), it is likely that these two signalling pathways do not modulate the miR-

29 levels in chondrocyte. However, expression ofmiR-29 was found to be induced by 

WNT3a in osteoblasts, suggesting a different mechanism controlling the miRNA-29 

expression in the two cells types. The answer to this difference remains unknown and needs 

further investigation.  

The canonical Wnt/β-catenin signalling pathway was inhibited by the miR-29 family in 

which some Wnt signalling related genes were validated as direct targets of the miRNA. Both 

over-activation and inhibition of Wnt signalling can lead to skeletal deformities and an early 

onset OA (Zhu et al. 2008, Zhu et al. 2009), illustrating that Wnt signalling needs to be 

tightly regulated in cartilage homeostasis. However, whether the decreasing of these direct 

targets is the mechanism for inhibition of the Wnt/β-catenin signalling pathway has not been 

confirmed in this study. This could be facilitated by utilizing siRNA to suppress the 

expression of each of these genes and measure this effect on the signalling though TOPFlash 

reporter. 

6.2.5 Therapeautic applications for treating OA by targeting the miR-29 family  

MicroRNAs have many advantages as a therapeutic modality. The mature miRNA sequences 

are short and often completely conserved across species. These characteristics make miRNAs 

relatively easy to target therapeutically and allow for using the same miRNA-modulating 

compound in preclinical efficacy and safety studies as well as in clinical trials. Moreover, 

miRNAs have typically many targets within cellular networks, which, in turn, enable 

modulation of entire pathways in a disease state via therapeutic targeting of disease – 

associated miRNAs.  

The increase of the miR-29 family in OA potentially opens the door to develop a novel 

therapeutic strategy for OA. The therapeutic approach using miRNA sponges (transgenic 
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overexpression of RNA molecules harbouring complementary binding sites to a miRNA) or 

miRNA-29 antagonists to block the function of the endogenous miRNA-29s may have great 

promise as a novel treatment. The miRNA sponges have been proved to be successful in vivo 

whist the antagonists might have greater promise from a therapeutic perspective.  

However, detailed examination of the miRNA therapy should be conducted before clinical 

use. Especially, the antagonists should have high binding affinity, and bio-stability. Indeed, 

this could be facilitated by chemically modifying them to increase the duplex melting 

temperature and improving nuclease resistance. Sugar modifications e.g. the 2’-O-methyl (2’-

O-Me), 2’-O-Methoxyethyl (2’-MOE) 2’-fluoro and the bicyclic locked nucleic acid (LNA) 

modification are commonly used. Among these, the LNA exhibits the highest affinity toward 

complementary RNA with an increase in Tm of +2-8oC per introduced LNA modification. In 

addition, by substituting the phosphodiester (PO) backbone linkages with phosphorothioate 

(PS) linkages in the antagonist oligonucleotides or by using peptide nucleic acid (PNA) or 

morpholino oligomers, respectively, their nuclease resistance properties might increase. Apart 

from nuclease resistance, PS backbone modifications also enhance binding to plasma proteins, 

leading to reduced clearance by glomerular filtration and urinary excretion. PNA oligomers 

are uncharged oligonucleotide analogues, in which the sugar-phosphate backbone has been 

replaced by a peptide-like backbone consisting of N-(2-aminoethyl)-glycine units. 

Polylysine-conjugated and nanoparticle-encapsulated PNA antimiRs have been shown to 

efficiently inhibit miRNA function in cultured cells and in mice (van Rooij et al. 2014). 

Morpholinos are uncharged and with slightly increased binding affinity to complementary 

miRNAs.  

An effective way to deliver the miRNA-29 inhibitor to the arthritis joint to inhibit the 

endogenous miRNA-29 is needed. In particular, it is likely that the uptake of a synthetic 

antagonist into chondrocytes surrounded by the abundant matrix would be difficult in the 

treatment of damaged cartilage. The main challenge for development of miRNA - based 

therapeutics is efficient and safe delivery. Two strategies have been utilized to enhance in 

vivo delivery of antagonists: cholesterol conjugation and modification of the phosphate 

backbone with PS linkages. The 3’ cholesterol conjugated, 2’-O-Me-modified antagonists 

have become a well-validated experimental tool for in vivo inhibition of miRNAs. PS 

backbone linkages can be employed to enhance the pharmacokinetic properties of antisense 
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oligonucleotides. The antagonist approach contains 2 PS modifications at the 5’ end and 4 at 

the 3’ end, which have been shown to be important for their in vivo activity, whereas 

complete replacement of the PO backbone by PS linkages decreased the antagonist efficiency. 

An increasing number of reports have described silencing of miRNA in vivo by unconjugated 

LNA-modified antagonists ranging from 8nt to 16nt in length as described in previous section. 

Administration of such antimiRs is either by intraperitoneal or subcutaneous injection 

resulted in antimiR uptake in the tissue of interest, which led to inhibition of miRNA function 

and derepression of direct target mRNAs. However, the mechanism of cellular uptake and 

distribution are still poorly understood. Directing uptake to cartilage is likely still to be 

difficult, and delivery by injection not pragmatic in OA. 

6.3  Future direction 

6.3.1 The modulation of the miR-29 family in OA 

The miR-29 family was found to modulate expression in different animal models e.g. the 

DMM model, hip avulsion injury model, as well as human end stage OA cartilage. These data 

suggest that the increase in expression of the miR-29 family could be a common event in both 

early onset and end stage OA. However, care must be applied to conclude the up-regulation 

of miR-29s will lead to OA, with the expression level of miR-29s during OA progression 

remaining unclear. Thus, it is of importance to examine miR-29 expression in naturally 

occurring OA models too.   

The miR-29 expression pattern increased in the hip avulsion injury across the time course in 

this study. Nonetheless, whether miR-29 potential targets were inversely correlated with the 

miR-29 expression level in this model has not been proven. Thus, we are performing mRNA 

profiling in the same samples in which the miR-29 expression was found to increase. This 

may also reveal additional mechanisms which lead to the increased expression of miR-29. 

6.3.2 Biological functions of the miR-29 family in chondrocytes 

The miR-29 family was found to suppress TGFβ/Smad, NFκB, and Wnt/β-catenin signalling 

pathways through using the reporters of these pathways together with measuring expression 

level of the responsive genes. However, whether interfering with the miR-29 effect on these 

signalling will lead to alter chondrocyte phenotype remains unclear.  Overexpression and 
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knockdown of the miR-29 family in HACs in micromass culture in combination with 

measurement of chondrocyte markers e.g. MMP13, COL2A1, SOX9, ADAMTS5 will help to 

address this.   

From the miR-29b gain- and loss- of function mRNA data, apart from the Wnt signalling 

pathway, enrichment of some miR-29 potential targets which are related to MAPK signalling 

and apoptosis pathways was evident. Thus, validating these genes as the direct targets of the 

miR-29s is a priority in the future. It is now clear that miRNAs regulate gene expression at 

both mRNAs and protein levels. Also, the direct mechanisms the miR-29 supressing the two 

TGFβ and NFκB signalling pathways are unclear. Therefore, there is a need for proteomic 

analysis of the miR-29b gain- and loss- of function in HACs, likely in micromass culture. In 

addition, performing miR-29b gain – and loss - of function together with treatment with IL-1 

and TGFβ could greatly help to find the mechanism miR-29 family interfering with NFκB 

and Smad signalling pathways. All of these experiments will give more information about 

biological functions of miR-29 in chondrocyte and the complex regulatory network the miR-

29 is within.  

A key step in understanding the biological functions of the miR-29 family in cartilage 

homeostasis and OA will be the development of multiple in vivo molecular tools to access 

gain – of – functions or loss – of – function in mouse models: A number of gain- of –function 

where the miR-29 family members are overexpressed through a transgenic model, such as the 

B cell – specific overexpression of the miR-29a/b1 cluster (Santanam et al. 2010), a viral 

transfection model such as the retroviral transfection of bone-marrow stem cells with miR-

29a (Han et al. 2010) or systemic delivery of miR-29a have been reported (Wang et al. 2012). 

Also, loss-of-function models have been developed as a Cre-Lox-inducible knockout of the 

miR-29a/b-1 cluster or the expression of the miR-29 “sponge” sequence (either by transgene 

or lentivirus) (Ma et al. 2011). However, there is no information whether gain – and loss- of 

function of the miR-29s lead to OA in these models. Therefore, future studies in which these 

mice put on OA models e.g. DMM will provide more detail about the function of the miR-29 

family.  

6.3.3 The involvement of the miR-29 family expression in chick limb bud development 

and Zebrafish cartilage development.  
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The miR-29 family was suggested to be a negative regulator of early stage of chondrogenesis 

in both human and murine chondrogenesis models in this study. Nearly 16 collagen genes 

were validated as miR-29 direct targets in this study and others. Also, this miRNA was also 

expressed in murine limb development. It is likely that miR-29 would have a crucial role in 

cartilage and limb bud development and it is worthy of further investigation. This could be 

facilitated by again using the gain- and loss- of function of all members of the miR-29 family: 

a 500bp region around the mature sequence of the miR-29s or a sequence complementary to 

miR-29 can be subcloned and injected into the chicken limb. However, the involvement of 

the miR-29 family in chick limb development by in situ hybridization might be required to 

determine the stage in which miR-29 was expressed in the development process. In addition, 

ADAMTS14, a pro-collagen pro-peptidase, was validated as the miR-29 direct target. 

Overexpression or knockdown of the miR-29 family in chick limb could help to further 

investigate the functional outcome of the suppressive effect of the miR-29s on ADAMTS14 

though the ADAMTS14 will need to be verified to be expressed in the chick limb first. This 

method could be useful for investigating the functional outcome of the interaction between 

miR-29 and other novel targets.  

Interesting, the miR-29 family was found to be express in the cartilage of zebrafish 

(Wienholds et al. 2005). Thus, zebrafish might be a useful model for investigating the role of 

the miR-29s in cartilage development. Overexpression and knockdown of the miR-29 family 

could greatly help for answering this question. 

6.3.4 The miR-29 family as the biomarker for OA  

MicroRNAs exist in human body fluids such as plasma, urine, and saliva in a stable form 

which has the potential to be a novel diagnostic and prognostic biomarker. OA can be 

difficult to diagnose, but it is important to diagnose OA early and start treatment to prevent 

joint destruction in which the miR-29 based therapy could be an option. Indeed, there is 

growing evidence for future miRNA-based diagnostics: a number of miRNA in plasma were 

found at different levels between RA and OA patients. For examples, let-7e, miR-454, miR-

886 were identified as differentially expressed circulating miRNAs in OA patients who 

underwent arthroplasty especially, let–7e emerged as potential predictor for severe knee or 

hip OA (Beyer et al. 2014). Since the miR-29 family was modulated at an early stage in 

DMM model, it could be a useful biomarker for OA in clinical use. Thus the expression level 
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of the miR-29 family in plasma should be determined to have an overview expression pattern 

of the miRNA.  
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ENDICES 
 

Genes Accession 
number  

Sequences (5’->3’) 

ADAMTS6 ENSG000000491
92 

Forward: ACGTGAGCTCTCTCATCGTCATGGTTCTGC 
Reverse: 
ACGTGAGCTCCAAGCAGGAGAATGAATGTAGG 

ADAMTS1
4 

ENSG000001383
16 

Forward: GAGCTCGCTGTGCCCTGCCATC 
GAGCTCGGGTCCAATGGCGATGTTA 

ADAMTS1
7 

ENSG000001404
70 

Forward: ACGTTCTAGAAACATGAGCGTGGACTTGG 
Reverse: ACGTTCTAGATGTAATGCAAGTTAACGAATGG 

ADAMTS1
9 

ENSG000001458
08 

Forward: ACGTGAGCTCAATCACAGCTCCAGGTAATC 
Reverse: 
ACGTGAGCTCCCAAGAGACATACTATCTTCCAAGG 

FZD3 ENSG000001042
90 

Forward: ATGCGTCGACTATTAGATGCCCAGCCTTTCTC 
Reverse: 
ATGCGTCGACATGCCTACCAAGAGGATAACATTC 

FZD5 ENSG000001632
51 

Forward: ATGCGTCGACGGCATCGGCTACAACCTGAC 
Reverse: ATGCGTCGACAGACCACACAGTTCAAAGA 
AACCTG 

FRAT2 ENSG000001812
74 

Forward: ATGCGTCGACCAACAGCGTCCAGTTCCTAC 
Reverse: ATGCGTCGACGCCGTCAAGTTTCATACAGC 

CK2A2 ENSG000000707
70 

Forward: 
ATGCGTCGACATGCAGGTACTAGAGTTGTGTGG 
Reverse: 
ATGCGTCGACAATAAGTTTGCTTGTTTCTGTGG 

DVL3 ENSG000001612
02 

Forward: ATGCGTCGACGCTGCGTTCCTCTCTCCATC 
Reverse: 
ATGCGTCGACTACCATTTATTGAGCACCTACTCTACTG
TG 

Table 1: Primer sequences for PCR amplification 3’UTR region of potential targets of the 
miR-29 family. For subcloning purpose, restriction sites (bases underlined) were added to the 
5’P of the primers. SacI (GAGCTC), SalI (GTCGAC), XbaI (TCTAGA). 
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Genes 
Mut
ant 

Primer sequence  (5’->3’) 

ADAMT
S6 

Site 
1 

Forward: 
TATGTGATGCACTGACATGTAATTTAAGAAGCTTATGATGGAATC
AAGTCAAACATGCTGTTTAACTGAAAG 
Reverse: 
CTTTCAGTTAAACAGCATGTTTGACTTGATTCCATCATAAGCTTCT
TAAATTACATGTCAGTGCATCACATA 

 
Site 
2 

Forward: 
TATTTATTTCACCAGGGCACATTAAGCTTAAGTTAACTGTTCTTTG
AAAAGGCGCAAGGGAATTCAGT 
Reverse: 
ACTGAATTCCCTTGCGCCTTTTCAAAGAACAGTTAACTTAAGCTTA
ATGTGCCCTGGTGAAATAAATA 

ADAMT
S10 

Site 
1 

Forward: 
GGGGACACAGACCCGTTTGTAAGCTTACCCCTTGTCGATGGTGTG
CG 
Reverse: 
CGCACACCATCGACAAGGGGTAAGCTTACAAACGGGTCTGTGTCC
CC 

Site 
2 

Forward: 
GCTCGGTCCGGGCCAAGCTTATGACGATGAGAGATGCATTAATCG
GTCC 
Reverse: 
GGACCGATTAATGCATCTCTCATCGTCATAAGCTTGGCCCGGACC
GAGC 

ADAMT
S14 

Site 
1 

Forward: 
GTTTGTCTTTGCTGGCCAGAAGAGTCGACTCATGGCCATACTCTG
GCCTTG 
Reverse: 
CAAGGCCAGAGTATGGCCATGAGTCGACTCTTCTGGCCAGCAAAG
AC 

Site
2 

Forward: 
GGGTGCCAGCCCCTGGCCGTCGACTGGAGTGGGGAAGACAC 
Reverse: 
GTGTCTTCCCCACTCCAGTCGACGGCCAGGGGCTGGCACCC 

Site 
3 

Forward: 
CTAAACTCCTGCCAGGTGATAGAGAGCTCTCTCACTTCTTCCTTCC
CCAAGGC 
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Reverse: 
GCCTTGGGGAAGGAAGAAGTGAGAGAGCTCTCTATCACCTGGCA
GGAGTTTAG 

Site 
4 

Forward: 
CTAAACTCCTGCCAGGTGATAGAGAGCTCTCTCACTTCTTCCTTCC
CCAAGGC 
Reverse: 
GCCTTGGGGAAGGAAGAAGTGAGAGAGCTCTCTATCACCTGGCA
GGAGTTTAG 

ADAMT
S17 

Site 
1 

Forward: 
GCAATTACCGTTTCTTATGTCACAGTCGACTGAAGAGAGGCCCTT
CTGTTTCCC 
Reverse: 
GGGAAACAGAAGGGCCTCTCTTCAGTCGACTGTGACATAAGAAA
CGGTAATTGC 

Site
2 

Forward: 
CACCAACTTGGTGGGCATTTCATGTCGACTTATGTTCTAGGACTTT
ACCGTA 
Reverse: 
TACGGTAAAGTCCTAGAACATAAGTCGACATGAAATGCCCACCA
AGTTGGTG 

 

Site 
3 

Forward: 
TAACAAAACAAAACACAGAAACACAGTCGACATAAATCAAGAAG
CACAGGGAGATGATCCCATGG 
Reverse: 
CCATGGGATCATCTCCCTGTGCTTCTTGATTTATGTCGACTGTGTT
TCTGTGTTTTGTTTTGTTA 

Site 
4 

Forward: 
GAAGTGTTGAGAAACTTCCGTGTCGACTCTGTGGAAAGAACCGAG
GGT 
Reverse: 
ACCCTCGGTTCTTTCCACAGAGTCGACACGGAAGTTTCTCAACAC
TTC 

Site
5 

Forward: 
CCAGAGTCTCACGACCCTACGGTCGCCTTTTTATTGGTGCAAAATT
AAACC 
Reverse: 
GGTTTAATTTTGCACCAATAAAAAGGCGACCGTAGGGTCGTGAGA
CTCTGG 

ADAMT
S 

Site 
1 

Forward: 
ATCAAATTAATTTATTTTTTTGCCTGCCAAACATCCAATGGTCGAC
TTGTTTTGGTTACACAAACATTTTGATTTATACTATATG 
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19 Reverse: 
CATATAGTATAAATCAAAATGTTTGTGTAACCAAAACAAGTCGAC
CATTGGATGTTTGGCAGGCAAAAAAATAAATTAATTTGAT 

Site 
2 

Forward: 
GTTGTTTGTTAGGGCTATCTCTAAGTCGACCCTCTCTCCCCACCAA
TAACATTGAATTATC 
Reverse: 
ATAATTCAATGTTATTGGTGGGGAGAGAGGGTCGACTTAGAGATA
GCCCTAACAAACAACG 

FZD3  

Forward: 
GGATTTAGTCTAACTCACAGCTAAGGTAGAAAAGTACTCTGATGG
CAAGAGAATGTCCAGACTAATATTTTC 
Reverse: 
GAAAATATTAGTCTGGACATTCTCTTGCCATCAGAGTACTTTTCTA
CCTTAGCTGTGAGTTAGACTAAATCC 

FZD5 

Site 
1 

Forward: CGGCGTCGCGGCCCAAGCTTGGGAGGCGGTCGCAG 
Reverse: CTGCGACCGCCTCCCAAGCTTGGGCCGCGACGCCG 

Site
2 

Forward: 
GTGGACGTGGAGATGAAGCACAAGCTTGACCACAGGCCTATCCA
GAAGG 
Reverse: 
CCTTCTGGATAGGCCTGTGGTCAAGCTTGTGCTTCATCTCCACGTC
CAC 

Site 
3 

Forward: 
GCCCACCAGCAGGTAGAAGCTTAGCGGGCCCAGCACGAAGCC 
Reverse: 
GGCTTCGTGCTGGGCCCGCTAAGCTTCTACCTGCTGGTGGGC 

Site 
4 

Forward: 
CACATGAAGTACTTGAGCATGAAGCTTCAGTACTCGGGCTTGGCG
CGCG 
Reverse: 
CGCGCGCCAAGCCCGAGTACTGAAGCTTCATGCTCAAGTACTTCA
TGTG 

Site 
5 

Forward: 
CGGGAGGGGGCAACAAGCTTATGAAGGTAAACGGAAGTGACCTT
GGCA 
Reverse: 
TGCCAAGGTCACTTCCGTTTACCTTCATAAGCTTGTTGCCCCCTCC
CG 

FRAT2 
Site
1 

Forward: 
GCGTGGAGAAATGTATGCGCCAGAAGCTTTCCGTGGGGCATGAG
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AATTTCC 
Reverse: 
GGAAATTCTCATGCCCCACGGAAAGCTTCTGGCGCATACATTTCT
CCACGC 

Site
2 

Forward: 
CTTATTTTCTGGTGGAGGAGCTTAGTAAGTAAGCTTACAATTGCT
GTGCAAAGAAATTCCAGAGG-3' 
Reverse: 
CCTCTGGAATTTCTTTGCACAGCAATTGTAAGCTTACTTACTAAGC
TCCTCCACCAGAAAATAAG 

Site
3 

Forward: 
GGGAGACTCCAAGCGGTGGTAAAAGCTTAACAGGGCTCTTCTTGG
AGCAAG 
Reverse: 
CTTGCTCCAAGAAGAGCCCTGTTAAGCTTTTACCACCGCTTGGAG
TCTCCC 

CK2A2 

Site
1 

Forward: 
AGAGGAATATACAAGGGGCTTGGGGAAGAAAATAAGCTTCCCGG
AGCAAGTGTTG 
Reverse: 
CAACACTTGCTCCGGGAAGCTTATTTTCTTCCCCAAGCCCCTTGTA
TATTCCTCT 

Site
2 

Forward: 
TCTCCTCTAATCTATCAGTCTGAGAAGCTTTTCCTCTCTGCAAGGG
AACACATTTGC 
Reverse: 
GCAAATGTGTTCCCTTGCAGAGAGGAAAAGCTTCTCAGACTGATA
GATTAGAGGAGA 

Site
3 

Forward: 
GCGCCTGACTCGAGAAGCTTACCTTTCAGTCCACTGGGACCAATC
CA 
Reverse: 
TGGATTGGTCCCAGTGGACTGAAAGGTAAGCTTCTCGAGTCAGGC
GC 

Site
4 

Forward: 
CTGCTTCCATCCTTATCAACAGAAGCTTTGGGAGAACCTAAGTCA
TTTCCCTGAG 
Reverse: 
TCAGGGAAATGACTTAGGTTCTCCCAAAGCTTCTGTTGATAAGGA
TGGAAGCAG 

DVL3 
Site 
1 

Forward: 
GTGCGCTAACTGCTCGCAGAAGCTTGCGAGGGTGGGGTGCACC 
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Reverse: 
GGTGCACCCCACCCTCGCAAGCTTCTGCGAGCAGTTAGCGCAC 

Site
2 

Forward: 
CCCTTTTGTCTCTGGGACCAGACTTGTTAAGCTTACCCCTTACTCC
CCTCTGC 
Reverse: 
GCAGAGGGGAGTAAGGGGTAAGCTTAACAAGTCTGGTCCCAGAG
ACAAAAGGG 

Site
3 

Forward: 
GCACAGTGCCTGGCACACAGTAGAGTAAAGCTTCAATAAATGGT
AGTCGACC 
Reverse: 
GGTCGACTACCATTTATTGAAGCTTTACTCTACTGTGTGCCAGGCA
CTGTGC 

DICER  
Forward: ACGTGAGCTCGTGTGCAGTAGTGCCAGTCC 
Reverse: ACGTGAGCTCTGCAATCACAGGAACACAGG 

       Table 2: Primers for mutating the binding sites of the miR-29 family 
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Genes Accession number  Primer sequence (5’->3’) Probe  
Arginase-
1 

ENSMUST00000020161 Forward: 
CCTGAAGGAACTGAAAGGAAAG 
Reverse: 
TTGGCAGATATGCAGGGAGT 

2 

IL-6 ENSMUST00000026845 Forward: 
TGATGGATGCTACCAAACTGG 
Reverse: 
TTCATGTACTCCAGGTAGCTATGG 

6 

SAA3 ENAMUST00000006956 Forward: 
GCTCGGGGGAACTATGATG 
Reverse: 
AACTTCTGAACAGCCTCTCTGG 

26 

Axin2 

 

Forward: 
GCTGACGGATGATTCCATGT 
Reverse: 
ACTGCCCACACGATAAGGAG 

56 

SOX9 

ENST00000245479 

Forward: TACCCGCACTTGCACAAC 
Reverse: 
TCTCGCTCTCGTTCAGAAGTC 

61 

FZD3 

NM_017412 

Forward: 
ACAGCAAAGTGAGCAGCTACC 
Reverse: 
CTGTAACTGCAGGGCGTGTA 

75 

FZD5 NM_003468 Forward:ACCCCAGGGGAGAGAAACT  
Reverse: 
TGCAAATTGGGGGAAGTAAG 

83 

DVL3 NM_004423 Forward:CCCTGAGCACCATCACCT  
Reverse: 
GGATGGACAAGTGGAAGTCG 

17 

FRAT2  Forward: 
GTTCAAGGTCACGGTTTGCT 
Reverse: 
GAAAAGACTCCGGGGTGAGT 

14 

CK2A2 NM_001896 Forward: 
CCATGGAGCACCCATACTTC 
Reverse: 
CACAGCATTGTCTGCACAAG 

68 

Table 3: Primer sequence and the Universal Probe Library probe for gene of interest   

 



 

 

251 

 

 

 Genes Accession 
number  

Primer sequence (5’-3’) 

ADAMTS4 MM_005099 Forward: CAAGGTCCCATGTGCAACGT 
Reverse: CATCTGCCACCACCAGTGTCT 
Probe: FAM-CCGAAGAGCCAAGCGCTTTGCTTC-
TAMRA 

ADAMTS6 NM_014273 Forward: GGCTGAATGACACATCCACTGTT 
Reverse: CAAACCGTTCAATGCTCACTGA 
Probe: FAM-AAGCGCTTCCGCCTCTGCAACC-
TAMRA 

ADAMTS10 NM_030957 Forward: AGAGAACGGTGTGGCTAACCA 
Reverse: TCTCTCGCGCTCACACATTC 
Probe: FAM-
CAGTGCTCATCACACGCTATGACATCTGC-TAMRA 

ADAMTS14 AF366351 Forward: CGCTGGATGGGACTGAGTGT 
Reverse: CGCGAACATGACCCAAACTT 
Probe: FAM-CCCGGCAAGTGGTGCTTCAAAGGT-
TAMRA 

ADAMTS17 NM_139057 Forward: GGTCTCAATTTGGCCTTTACCAT 
Reverse: GACCTGCCAGCGGCAAGAT 
Probe: FAM-CCACAACTTGGGCATGAACCACGA-
TAMRA 

ADAMTS19 AJ311904 Forward: GGTGTAAGGCTGGAGAATGTACCA 
Reverse: TGCGCTCTCGACTGCTGAT 
Probe: FAM-CCTCAGCACCTGAACATCTGGCCG-
TAMRA 

MMP3 NM002422 Forward: TTCCGCCTGTCTCAAGATGATAT 
Reverse: AAAGGACAAAGCAGGATCACAGTT 
Probe: FAM-
TCAGTCCCTCTATGGACCTCCCCCTGAC-TAMRA 

Table 4: Primer pairs and probe for gene of interest 
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Genes Primer sequences (5’->3’) 
Pri-miR-29a/b1exon 
1 

Forward: 
TACTGAACTGTCACGGCAGA 
Reverse: 
TGTAGTTAGCGACCTCTGCT 

Pri-miR-
29a/b1Exon4 

Forward: 
TTGCACCCTCACGACATGCT 
Reverse: 
TGACTCTCAGCAGGCCTCA 

Pri-miR-29b2/c 
exon 1 

Forward: 
ACTTCTTTAGGGGTGTGCGTA 
Reverse: 
ACCCATCTCCCTAGCATTCT 

Pri-miR-29b2/c 
Exon6 

Forward: 
TCAGACTTGCCACCTGGACT 
Reverse: 
AGTTGGCATGAGGCTTCGA 

Pre-29a Forward: 
CTGATTTCTTTTGGTGTTCAG 
Reverse: 
AACCGATTTCAGATGGTGC 

Pre-29b1 Forward: 
CATATGGTGGTTTAGATTT 
Reverse: 
AACACTGATTTCAAATGGTG 

Pre-29b2 Forward: 
GCTGGTTTCACATGGTGGC 
Reverse: 
AACACTGATTTCAAATGGTG 

Pre-29c Forward: 
CGATTTCTCCTGGTGTTCA 
Reverse: 
ACCGATTTCAAATGGTGC 

Table 5: Primers for detecting the primary and the premature sequence of the miR-29 family 
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Names 24_DMM_R 24_DMM_L log2 Fold change  
Fold 
change  

CYP2E1 9.0 10.2 -1.2 2.3 
CES3 8.1 9.3 -1.2 2.3 
TMEM45B 7.9 8.6 -0.8 1.7 
CFD 12.9 13.6 -0.7 1.6 
SCD1 10.1 10.7 -0.6 1.6 
IGFBP6 8.9 9.6 -0.6 1.5 
CHAD 12.4 13.0 -0.6 1.5 
LOC100045005 9.6 10.2 -0.6 1.5 
TENS1 8.5 9.1 -0.6 1.5 
C130045I22RIK 8.2 8.8 -0.6 1.5 
LOC667337 9.4 9.9 -0.6 1.5 
CXCL1 9.1 7.3 1.9 3.6 
CCL7 9.2 7.5 1.8 3.4 
SAA3 8.9 7.3 1.6 3.1 
TIMP1 12.0 10.5 1.5 2.9 
SERPINA3N 11.2 9.7 1.5 2.8 
GP38 10.8 9.4 1.4 2.6 
MMP3 8.9 7.6 1.3 2.5 
ARG1 8.0 7.1 0.8 1.8 
CXCL14 9.4 8.8 0.7 1.6 
MB 11.9 11.2 0.7 1.6 
ANGPTL4 9.5 8.9 0.6 1.6 
MT1 13.5 12.9 0.6 1.6 
ANKRD23 9.5 8.9 0.6 1.5 
MS4A6D 9.9 9.3 0.6 1.5 
LOC386330 9.9 9.4 0.5 1.5 
LOC270589 8.9 8.4 0.5 1.5 
CCL9 11.2 10.6 0.5 1.5 
CKM 12.3 11.8 0.5 1.5 
LOC386144 9.6 9.1 0.5 1.4 

Table 6: List genes changed expression at day 1 in DMM model  
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GENES 7_DMM_R 7_DMM_L 
log2 Fold 
change 

Fold 
change  

MYL3 9.8 11.0 -1.2 2.3 

ATP1A2 9.0 10.1 -1.2 2.3 

NDRG2 10.0 11.2 -1.2 2.3 

CKMT2 11.7 12.8 -1.2 2.2 

ANKRD23 10.2 11.4 -1.2 2.2 

2310003M01RIK 9.5 10.6 -1.1 2.2 

ACTN2 11.1 12.2 -1.1 2.2 

2310042D19RIK 9.2 10.3 -1.1 2.2 

MYH2 11.0 12.1 -1.1 2.2 

PFKM 11.5 12.6 -1.1 2.2 

ABRA 8.6 9.7 -1.1 2.1 

COX7A1 11.4 12.5 -1.1 2.1 

ANKRD2 8.0 9.1 -1.1 2.1 

COX8B 11.8 12.8 -1.1 2.1 

MB 12.0 13.1 -1.1 2.1 

ENO3 12.9 14.0 -1.1 2.1 

DUSP26 8.1 9.2 -1.1 2.1 

RTN2 10.0 11.1 -1.0 2.1 

PKIA 10.4 11.5 -1.0 2.1 

TCAP 12.5 13.6 -1.0 2.1 

MYOZ1 10.4 11.5 -1.0 2.0 

MYOM1 9.9 10.9 -1.0 2.0 

ACTN3 11.3 12.3 -1.0 2.0 

2310002L09RIK 8.6 9.6 -1.0 2.0 

HRC 10.3 11.3 -1.0 2.0 

MYOM2 9.1 10.1 -1.0 2.0 

CKM 13.0 14.0 -1.0 2.0 

CSRP3 8.5 9.5 -1.0 2.0 

TMEM38A 9.3 10.3 -1.0 2.0 

1110012N22RIK 9.2 10.2 -1.0 2.0 

TPM2 11.3 12.3 -1.0 2.0 

RYR1 10.1 11.1 -1.0 2.0 

MLF1 9.5 10.5 -1.0 2.0 

TTN 9.7 10.7 -1.0 2.0 

TMOD4 10.7 11.7 -1.0 2.0 

DYSFIP1 8.7 9.7 -1.0 2.0 

NRAP 9.1 10.1 -1.0 2.0 

CMYA5 10.8 11.8 -1.0 2.0 

SMTNL2 8.5 9.5 -1.0 1.9 

MYLK2 9.2 10.2 -1.0 1.9 
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MYL2 9.3 10.3 -0.9 1.9 

LOC669660 8.6 9.6 -0.9 1.9 

KBTBD10 9.8 10.7 -0.9 1.9 

ASB2 10.6 11.5 -0.9 1.9 

A530098C11RIK 8.7 9.6 -0.9 1.9 

F730003H07RIK 9.3 10.3 -0.9 1.9 

ZMYND17 8.5 9.4 -0.9 1.9 

CPT1B 8.3 9.2 -0.9 1.9 

2310079P10RIK 8.5 9.4 -0.9 1.9 

EEF1A2 10.7 11.6 -0.9 1.9 

YIPF7 8.5 9.4 -0.9 1.9 

SCL0003151.1_137
4 8.9 9.8 -0.9 1.9 

INMT 7.6 8.5 -0.9 1.9 

CES3 8.8 9.7 -0.9 1.9 

PYGM 9.2 10.1 -0.9 1.8 

MYBPC2 11.6 12.5 -0.9 1.8 

8030451F13RIK 8.6 9.5 -0.9 1.8 

FABP3 10.6 11.4 -0.9 1.8 

NEURL 9.5 10.4 -0.9 1.8 

PDLIM3 10.4 11.3 -0.9 1.8 

SYPL2 9.6 10.5 -0.9 1.8 

4833419K08RIK 9.0 9.9 -0.9 1.8 

AMPD1 11.1 12.0 -0.8 1.8 

CACNA1S 8.6 9.5 -0.8 1.8 

SCL0002069.1_48 8.1 9.0 -0.8 1.8 

C130073O12RIK 9.0 9.9 -0.8 1.8 

GM1157 7.8 8.6 -0.8 1.8 

MYH1 9.2 10.1 -0.8 1.8 

SLC25A37 11.8 12.6 -0.8 1.8 

LOC638935 8.1 9.0 -0.8 1.8 

LOC386360 10.4 11.2 -0.8 1.8 

BC030476 9.0 9.8 -0.8 1.8 

MYH4 10.0 10.8 -0.8 1.7 

SCL000959.1_2 13.3 14.1 -0.8 1.7 

RPL3L 12.2 13.0 -0.8 1.7 

COX6A2 12.7 13.5 -0.8 1.7 

MTDNA_ND4L 8.7 9.5 -0.8 1.7 

TNNT3 13.1 13.9 -0.8 1.7 

AK1 9.8 10.6 -0.8 1.7 

DES 11.1 11.9 -0.8 1.7 

A2BP1 8.4 9.2 -0.8 1.7 

KY 9.1 9.8 -0.8 1.7 
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UNC45B 8.4 9.2 -0.8 1.7 

AI595366 8.7 9.4 -0.8 1.7 

D830037I21RIK 7.3 8.1 -0.8 1.7 

PGM2 12.0 12.8 -0.8 1.7 

4933421G18RIK 9.7 10.4 -0.8 1.7 

MYF6 8.3 9.0 -0.8 1.7 

SCN4B 8.3 9.1 -0.8 1.7 

ALPK3 8.5 9.3 -0.8 1.7 

PGAM2 12.3 13.1 -0.8 1.7 

ITGA2B 8.9 9.7 -0.8 1.7 

CRYAB 9.8 10.6 -0.7 1.7 

LOC386144 9.1 9.8 -0.7 1.7 

LOC100047934 10.8 11.6 -0.7 1.7 

SRL 9.3 10.0 -0.7 1.7 

PHKG1 8.8 9.5 -0.7 1.7 

ATP1B1 9.5 10.2 -0.7 1.7 

HSPB7 8.2 8.9 -0.7 1.7 

TNNC1 8.3 9.0 -0.7 1.6 

CHCHD10 12.4 13.1 -0.7 1.6 

GMPR 9.0 9.7 -0.7 1.6 

S3-12 9.3 10.0 -0.7 1.6 

9930004G02RIK 9.4 10.1 -0.7 1.6 

TCEA3 10.3 11.0 -0.7 1.6 

PPP1R3C 10.7 11.4 -0.7 1.6 

TRIM54 9.0 9.7 -0.7 1.6 

FBP2 8.3 9.0 -0.7 1.6 

COQ10A 8.8 9.5 -0.7 1.6 

TXLNB 7.8 8.5 -0.7 1.6 

XIRP2 8.4 9.1 -0.7 1.6 

FSD2 8.6 9.3 -0.7 1.6 

PDE4DIP 9.9 10.6 -0.7 1.6 

NDUFC1 10.9 11.6 -0.7 1.6 

MSCP 11.9 12.6 -0.7 1.6 

EG433229 9.2 9.9 -0.7 1.6 

SMARCD3 8.2 8.9 -0.7 1.6 

SCL0003073.1_164 8.2 8.8 -0.7 1.6 

HHATL 8.6 9.3 -0.7 1.6 

DNAJC7 8.9 9.6 -0.7 1.6 

USP13 7.9 8.6 -0.7 1.6 

ADSSL1 11.5 12.2 -0.7 1.6 

ACADM 11.2 11.9 -0.7 1.6 

MT-ATP6 11.3 12.0 -0.7 1.6 

6430573H23RIK 8.2 8.9 -0.7 1.6 

TUBA8 8.6 9.3 -0.7 1.6 
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DEDD2 9.8 10.4 -0.7 1.6 

LOC100041835 12.3 12.9 -0.7 1.6 

1300013J15RIK 7.9 8.6 -0.7 1.6 

MACROD1 9.1 9.8 -0.7 1.6 

ALDOA 13.2 13.9 -0.7 1.6 

LOC667034 8.5 9.2 -0.7 1.6 

MDH2 10.0 10.6 -0.7 1.6 

PDK4 9.3 10.0 -0.7 1.6 

ART5 7.7 8.4 -0.7 1.6 

JSRP1 7.9 8.6 -0.7 1.6 

PPM1L 8.4 9.0 -0.7 1.6 

MFN2 10.1 10.8 -0.7 1.6 

RILPL1 8.8 9.4 -0.6 1.6 

EHBP1L1 8.8 9.4 -0.6 1.6 

NDUFA5 10.3 10.9 -0.6 1.6 

MTDNA_ND2 11.5 12.2 -0.6 1.6 

MTDNA_ND5 11.5 12.2 -0.6 1.6 

TRIM72 9.7 10.4 -0.6 1.6 

B930008G03RIK 10.0 10.7 -0.6 1.6 

2310040G24RIK 7.9 8.5 -0.6 1.6 

ALAD 12.0 12.7 -0.6 1.6 

SGCA 8.4 9.0 -0.6 1.5 

LOC385959 8.3 8.9 -0.6 1.5 

LOC547380 8.3 8.9 -0.6 1.5 

NDUFS7 11.8 12.4 -0.6 1.5 

1300017J02RIK 8.9 9.5 -0.6 1.5 

LOC381792 7.7 8.3 -0.6 1.5 

FLNC 8.5 9.1 -0.6 1.5 

DHRS7C 8.1 8.7 -0.6 1.5 

ART1 8.0 8.6 -0.6 1.5 

EG245190 8.8 9.5 -0.6 1.5 

A530020A01RIK 7.9 8.5 -0.6 1.5 

PRKAA2 7.8 8.4 -0.6 1.5 

VLDLR 8.7 9.3 -0.6 1.5 

1110002E22RIK 8.1 8.7 -0.6 1.5 

NDUFB9 7.8 8.4 -0.6 1.5 

MYO18B 8.1 8.7 -0.6 1.5 

ITGB1BP3 8.3 8.9 -0.6 1.5 

PHLDA3 9.4 10.0 -0.6 1.5 

GPT2 8.5 9.1 -0.6 1.5 

LOC386256 7.9 8.5 -0.6 1.5 

TSC22D3 9.4 10.0 -0.6 1.5 

NDUFA4 12.4 13.0 -0.6 1.5 
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4CYTL1 9.4 10.0 -0.6 1.5 

PTP4A3 9.0 9.6 -0.6 1.5 

FBXO32 7.9 8.5 -0.6 1.5 

CNKSR1 7.7 8.3 -0.6 1.5 

ZXDA 9.0 9.6 -0.6 1.5 

LOC100044934 8.4 9.0 -0.6 1.5 

KBTBD5 7.8 8.4 -0.6 1.5 

SRR 11.0 11.6 -0.6 1.5 

CACNG1 8.1 8.7 -0.6 1.5 

SCL0002124.1_39 7.7 8.3 -0.6 1.5 

DEB1 11.0 11.6 -0.6 1.5 

LMOD3 7.9 8.5 -0.6 1.5 

9830134C10RIK 8.2 8.8 -0.6 1.5 

TYKI 9.3 9.9 -0.6 1.5 

UFSP1 8.6 9.2 -0.6 1.5 

SMPX 7.7 8.2 -0.6 1.5 

LOC100047214 9.1 9.7 -0.6 1.5 

VGLL2 7.6 8.2 -0.6 1.5 

CAR3 10.3 10.9 -0.6 1.5 

SLC25A12 9.1 9.7 -0.6 1.5 

EG622339 13.4 14.0 -0.6 1.5 

CIB2 9.4 9.9 -0.6 1.5 

A630006E02RIK 9.5 10.1 -0.6 1.5 

UGP2 9.4 10.0 -0.6 1.5 

4933428A15RIK 8.6 9.2 -0.6 1.5 

CHKA 9.4 10.0 -0.6 1.5 

SNTA1 8.5 9.0 -0.6 1.5 

SLC6A9 9.3 9.9 -0.6 1.5 

2410076I21RIK 8.4 8.9 -0.6 1.5 

TPI1 12.1 12.6 -0.6 1.5 

SMTNL1 7.9 8.4 -0.6 1.5 

TMOD1 8.7 9.3 -0.6 1.5 

TSPAN8 8.5 9.1 -0.6 1.5 

MTDNA_COXII 12.8 13.4 -0.6 1.5 

NDUFS2 8.7 9.3 -0.6 1.5 

SLC2A4 8.1 8.7 -0.6 1.5 

MYOT 7.8 8.4 -0.6 1.5 

A230005G17RIK 8.3 8.9 -0.6 1.5 

TNNT1 8.9 9.4 -0.6 1.5 

FHL1 11.6 12.1 -0.6 1.5 

SPNB1 9.5 10.0 -0.6 1.5 

5830496L11RIK 9.1 9.6 -0.6 1.5 

ENSMUSG0000005
4212 9.5 10.1 -0.6 1.5 
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5430434G16RIK 8.9 9.4 -0.6 1.5 

IDH3A 8.9 9.4 -0.6 1.5 

SLC38A5 11.1 11.7 -0.6 1.5 

LDB3 8.1 8.6 -0.6 1.5 

E430039I23RIK 11.1 11.6 -0.6 1.5 

KEL 10.5 11.0 -0.6 1.5 

2310039E09RIK 8.2 8.7 -0.6 1.5 

D530007E13RIK 8.9 9.4 -0.6 1.5 

1110018J23RIK 7.9 8.5 -0.6 1.5 

TMEM45B 8.2 8.7 -0.6 1.5 

BC022224 10.2 10.7 -0.6 1.5 

RBM38 9.9 10.5 -0.6 1.5 

2810484G07RIK 10.9 11.5 -0.5 1.5 

ACO2 10.8 11.4 -0.5 1.5 

1700021F05RIK 10.3 10.8 -0.5 1.5 

VEGFB 9.8 10.4 -0.5 1.5 

STXBP3 8.2 8.7 -0.5 1.5 

AGL 9.3 9.8 -0.5 1.5 

TAL1 9.3 9.8 -0.5 1.5 

MYOZ2 7.7 8.2 -0.5 1.5 

NCTC1 7.8 8.3 -0.5 1.5 

ABCA7 9.4 10.0 -0.5 1.5 

SAR1B 10.3 10.9 -0.5 1.5 

3632431M01RIK 8.6 9.1 -0.5 1.5 

FCHO1 10.0 10.5 -0.5 1.5 

P2RY1 8.8 9.3 -0.5 1.5 

B230387C07RIK 9.1 9.7 -0.5 1.5 

TRIM63 7.5 8.0 -0.5 1.5 

1810020D17RIK 9.5 10.0 -0.5 1.4 

FYCO1 8.1 8.6 -0.5 1.4 

RABGEF1 10.3 10.8 -0.5 1.4 

ITGB1BP2 8.2 8.8 -0.5 1.4 

IFT140 9.1 9.6 -0.5 1.4 

SAMD11 8.2 8.7 -0.5 1.4 

ABCB10 8.2 8.8 -0.5 1.4 

LOC100046690 9.0 9.5 -0.5 1.4 

PFN2 8.9 9.5 -0.5 1.4 

C1QTNF3 11.0 7.5 3.5 11.3 

LRRC15 10.6 8.4 2.2 4.7 

ANGPTL1 9.7 7.6 2.1 4.4 

MFAP5 10.2 8.1 2.1 4.4 

THBS2 11.8 9.7 2.1 4.3 

FSTL1 11.1 9.0 2.0 4.1 
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COL6A2 10.4 8.4 2.0 4.1 

MMP2 13.7 11.7 2.0 3.9 

COL6A1 12.4 10.4 2.0 3.9 

CAPN6 9.7 7.7 2.0 3.9 

COL3A1 9.8 7.9 1.9 3.8 

MMP3 9.3 7.4 1.9 3.8 

TIMP1 11.8 9.9 1.9 3.8 

COL5A1 12.6 10.7 1.9 3.7 

CTHRC1 9.5 7.6 1.9 3.7 

AEBP1 10.9 9.1 1.9 3.6 

COL18A1 9.8 8.0 1.8 3.5 

DKK3 10.2 8.5 1.7 3.4 

COL14A1 9.3 7.6 1.7 3.3 

E430002G05RIK 9.9 8.1 1.7 3.3 

PCOLCE 10.9 9.2 1.7 3.3 

LUM 12.2 10.5 1.7 3.3 

DPT 10.3 8.6 1.7 3.2 

MMP14 11.9 10.2 1.7 3.2 

GP38 11.0 9.3 1.7 3.2 

FCRLS 9.9 8.2 1.6 3.1 

MFAP4 9.2 7.6 1.6 3.1 

CSRP2 11.0 9.4 1.6 3.1 

LOX 11.4 9.8 1.6 3.1 

SPON2 11.2 9.6 1.6 3.0 

ITM2A 9.8 8.2 1.6 3.0 

LY6A 12.8 11.3 1.6 3.0 

DDAH1 9.3 7.7 1.6 3.0 

MUP2 9.7 8.2 1.6 3.0 

GPNMB 9.5 8.0 1.6 3.0 

CD248 9.9 8.3 1.5 2.9 

ANTXR1 9.9 8.3 1.5 2.9 

6330406I15RIK 9.7 8.1 1.5 2.9 

LOXL1 10.8 9.2 1.5 2.9 

MUP1 9.2 7.7 1.5 2.9 

NBL1 10.3 8.8 1.5 2.9 

MFAP2 9.2 7.7 1.5 2.8 

CCL21A 10.6 9.1 1.5 2.8 

FN1 10.4 8.9 1.5 2.8 

MEST 8.8 7.3 1.5 2.8 

MRGPRF 9.5 8.0 1.5 2.8 

CCL21C 10.0 8.5 1.5 2.8 

SAA3 8.7 7.2 1.5 2.8 

LOC100048554 9.2 7.7 1.5 2.8 

THY1 10.0 8.5 1.5 2.7 
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HTRA1 10.5 9.1 1.5 2.7 

OSR2 9.3 7.8 1.5 2.7 

LOC100041504 9.9 8.4 1.4 2.7 

GPX7 9.8 8.4 1.4 2.7 

KDELR3 10.4 8.9 1.4 2.7 

H19 11.4 10.0 1.4 2.7 

PDLIM4 10.3 8.9 1.4 2.6 

C1QTNF2 9.3 7.9 1.4 2.6 

COL6A3 11.3 9.9 1.4 2.6 

FBLN2 9.4 8.0 1.4 2.6 

MXRA8 10.5 9.1 1.4 2.6 

SCL0001849.1_227
3 9.0 7.6 1.4 2.6 

VKORC1 11.1 9.7 1.3 2.5 

PPIC 12.3 11.0 1.3 2.5 

ITGBL1 9.6 8.3 1.3 2.5 

EMP1 12.7 11.4 1.3 2.5 

KNSL5 11.8 10.5 1.3 2.5 

SERPINH1 12.8 11.5 1.3 2.5 

2310016C16RIK 10.3 9.0 1.3 2.5 

WISP2 10.4 9.1 1.3 2.5 

MAGED1 11.6 10.3 1.3 2.5 

COL16A1 11.6 10.3 1.3 2.5 

LEPREL2 9.2 7.9 1.3 2.4 

GPX8 10.7 9.4 1.3 2.4 

BGN 14.3 13.0 1.3 2.4 

SRPX2 10.2 8.9 1.3 2.4 

ITGA11 9.9 8.6 1.3 2.4 

CCDC80 11.0 9.7 1.3 2.4 

CLEC11A 10.4 9.2 1.3 2.4 

SMOC1 9.7 8.5 1.2 2.4 

OGN 10.3 9.0 1.2 2.4 

CRTAP 10.1 8.9 1.2 2.4 

VIM 11.1 9.8 1.2 2.3 

COL4A2 11.3 10.0 1.2 2.3 

FKBP11 10.0 8.7 1.2 2.3 

CD276 9.3 8.1 1.2 2.3 

PRKCDBP 10.1 8.9 1.2 2.3 

CCL7 8.4 7.2 1.2 2.3 

NFATC4 9.4 8.1 1.2 2.3 

ECM1 10.8 9.6 1.2 2.3 

COL15A1 9.4 8.2 1.2 2.3 

2610027C15RIK 10.0 8.8 1.2 2.3 
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PRELP 13.1 11.9 1.2 2.3 

TIMP2 12.6 11.4 1.2 2.3 

GRB10 9.4 8.2 1.2 2.3 

FBN1 9.6 8.4 1.2 2.3 

COPZ2 10.0 8.8 1.2 2.3 

SCARF2 12.0 10.8 1.2 2.3 

ENPP1 9.6 8.4 1.2 2.3 

COL4A1 11.7 10.5 1.2 2.3 

IGF1 9.6 8.4 1.2 2.2 

SULF2 9.2 8.0 1.2 2.2 

SERPINA3N 10.2 9.0 1.2 2.2 

FKBP9 11.1 9.9 1.2 2.2 

RNASE4 9.8 8.6 1.2 2.2 

COMP 12.8 11.6 1.2 2.2 

MS4A6D 9.8 8.6 1.2 2.2 

CPXM1 9.3 8.2 1.1 2.2 

DAB2 9.7 8.5 1.1 2.2 

EFEMP2 10.0 8.9 1.1 2.2 

LOC100047053 8.4 7.3 1.1 2.2 

COL8A1 9.5 8.4 1.1 2.2 

SERPING1 11.9 10.7 1.1 2.2 

ANGPTL4 10.2 9.1 1.1 2.2 

THBS3 8.7 7.6 1.1 2.1 

HSPG2 10.5 9.4 1.1 2.1 

PTN 8.9 7.8 1.1 2.1 

GM22 9.3 8.2 1.1 2.1 

NNMT 9.6 8.6 1.1 2.1 

LGMN 10.9 9.8 1.1 2.1 

4930533K18RIK 9.8 8.7 1.1 2.1 

VASN 10.9 9.8 1.1 2.1 

ELN 8.5 7.5 1.1 2.1 

FMOD 10.2 9.1 1.1 2.1 

LOC100046883 10.8 9.8 1.1 2.1 

CLEC4N 8.6 7.6 1.1 2.1 

NDN 10.0 8.9 1.1 2.1 

ACAN 9.7 8.6 1.1 2.1 

OLFML1 8.8 7.8 1.1 2.1 

C1QTNF1 8.7 7.6 1.1 2.1 

SOCS3 9.3 8.3 1.0 2.1 

1500015O10RIK 11.9 10.8 1.0 2.0 

FKBP10 9.7 8.7 1.0 2.0 

TREM2 9.4 8.4 1.0 2.0 

MGP 13.5 12.5 1.0 2.0 

COL10A1 10.7 9.6 1.0 2.0 
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ADAMTS12 8.7 7.7 1.0 2.0 

CRLF1 8.5 7.5 1.0 2.0 

HTRA3 9.6 8.6 1.0 2.0 

P4HA2 9.0 8.0 1.0 2.0 

FSCN1 9.0 8.1 1.0 2.0 

NUPR1 12.0 11.0 1.0 2.0 

SCARA3 11.9 10.9 1.0 2.0 

SYNPO 10.1 9.1 1.0 2.0 

NID2 8.8 7.8 1.0 2.0 

TSPAN6 8.9 7.9 1.0 2.0 

LGALS1 12.5 11.5 1.0 2.0 

IGFBP7 10.5 9.5 1.0 2.0 

TMEM119 9.7 8.7 1.0 2.0 

COL2A1 13.6 12.6 1.0 2.0 

MS4A7 8.8 7.8 1.0 2.0 

ANXA5 12.4 11.4 1.0 2.0 

RAMP2 10.0 9.1 1.0 2.0 

MMP23 9.5 8.5 1.0 1.9 

SLC1A4 8.5 7.6 1.0 1.9 

LOC100047856 9.1 8.2 1.0 1.9 

AHNAK2 9.1 8.2 1.0 1.9 

CDKN1C 11.0 10.0 1.0 1.9 

APOE 11.0 10.0 1.0 1.9 

SPARC 13.1 12.1 1.0 1.9 

BC020108 8.5 7.5 0.9 1.9 

C1QB 11.5 10.5 0.9 1.9 

FNDC3B 10.2 9.3 0.9 1.9 

IGSF10 8.8 7.9 0.9 1.9 

COL12A1 9.1 8.2 0.9 1.9 

9030024J15RIK 9.7 8.7 0.9 1.9 

1110036O03RIK 8.9 8.0 0.9 1.9 

LRIG3 9.4 8.5 0.9 1.9 

FAM129B 10.2 9.3 0.9 1.9 

EDNRA 9.5 8.5 0.9 1.9 

IL33 8.3 7.4 0.9 1.9 

IGFBP6 10.0 9.0 0.9 1.9 

LGALS3BP 10.8 9.9 0.9 1.9 

OLFML3 11.5 10.6 0.9 1.9 

COL1A2 11.1 10.2 0.9 1.9 

GPR176 8.4 7.5 0.9 1.9 

CERCAM 9.9 9.0 0.9 1.9 

CNRIP1 9.7 8.8 0.9 1.9 

GALNTL1 8.5 7.7 0.9 1.9 
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KERA 8.2 7.3 0.9 1.9 

PRG4 12.7 11.8 0.9 1.9 

IGKV3-
2_X16954_IG_KAP
PA_VARIABLE_3-
2_18 9.0 8.1 0.9 1.9 

LOC676136 9.5 8.6 0.9 1.9 

ABI3BP 8.6 7.7 0.9 1.9 

PKD2 8.9 8.0 0.9 1.8 

COL1A1 13.2 12.3 0.9 1.8 

SCX 8.6 7.7 0.9 1.8 

IGF2 10.3 9.4 0.9 1.8 

SFRP1 8.3 7.4 0.9 1.8 

KCTD17 9.1 8.2 0.9 1.8 

IGFBP4 12.0 11.2 0.9 1.8 

MFGE8 12.3 11.5 0.9 1.8 

EFS 9.2 8.4 0.9 1.8 

BC064033 8.4 7.6 0.9 1.8 

LOC243431 9.8 9.0 0.9 1.8 

MAGED2 11.1 10.2 0.9 1.8 

DPYSL3 9.3 8.4 0.9 1.8 

ANPEP 8.4 7.6 0.9 1.8 

A430110N23RIK 8.2 7.4 0.9 1.8 

CXCL1 8.1 7.2 0.8 1.8 

LTBP3 9.0 8.2 0.8 1.8 

LRRC17 8.3 7.4 0.8 1.8 

LOC100047583 9.3 8.5 0.8 1.8 

UTS2R 8.3 7.4 0.8 1.8 

TNN 8.3 7.5 0.8 1.8 

CALU 10.0 9.2 0.8 1.8 

BMP1 9.9 9.1 0.8 1.8 

SCARA5 9.7 8.9 0.8 1.8 

TXNDC5 10.7 9.9 0.8 1.8 

SDC2 10.4 9.6 0.8 1.8 

IFITM2 12.1 11.3 0.8 1.8 

PRDX4 11.0 10.1 0.8 1.8 

DLK1 8.2 7.3 0.8 1.8 

0610007N19RIK 9.4 8.6 0.8 1.8 

TPST1 9.9 9.0 0.8 1.8 

NT5DC2 9.1 8.3 0.8 1.8 

SULF1 8.9 8.1 0.8 1.8 

HTRA4 9.0 8.2 0.8 1.8 

AKR1B8 8.3 7.4 0.8 1.8 

SRPX 8.8 8.0 0.8 1.8 
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MARCKS 11.2 10.4 0.8 1.8 

PARVA 9.6 8.8 0.8 1.7 

TGFB3 8.8 8.0 0.8 1.7 

LOC232060 8.7 7.9 0.8 1.7 

WISP1 9.5 8.7 0.8 1.7 

LXN 10.0 9.2 0.8 1.7 

D14ERTD449E 9.2 8.5 0.8 1.7 

MDK 8.6 7.8 0.8 1.7 

TGFBI 11.3 10.5 0.8 1.7 

SH3PXD2B 9.4 8.6 0.8 1.7 

EMP2 9.0 8.2 0.8 1.7 

IGHG 9.7 9.0 0.8 1.7 

RIN2 9.1 8.3 0.8 1.7 

1700023M03RIK 9.9 9.2 0.8 1.7 

WBP5 10.9 10.1 0.8 1.7 

CD68 10.3 9.5 0.8 1.7 

1200009O22RIK 8.6 7.8 0.8 1.7 

IL1RL1 8.1 7.3 0.8 1.7 

ADAMTS2 11.0 10.2 0.8 1.7 

A730054J21RIK 8.3 7.5 0.8 1.7 

4732462B05RIK 10.0 9.3 0.8 1.7 

LBP 9.9 9.1 0.8 1.7 

IL13RA1 8.7 7.9 0.8 1.7 

FER1L3 8.4 7.6 0.8 1.7 

C4A 10.0 9.2 0.8 1.7 

SOX9 9.8 9.0 0.8 1.7 

1810055G02RIK 10.2 9.4 0.8 1.7 

PANX3 10.7 10.0 0.8 1.7 

FKBP14 8.5 7.7 0.8 1.7 

SERPINF1 12.8 12.1 0.8 1.7 

TUBB6 9.9 9.2 0.8 1.7 

C1QC 10.8 10.0 0.8 1.7 

OLFML2B 11.5 10.7 0.8 1.7 

TCEAL8 9.9 9.2 0.8 1.7 

PDGFRA 9.4 8.6 0.8 1.7 

NOX4 8.3 7.5 0.8 1.7 

SFRP2 8.1 7.3 0.7 1.7 

6720469N11RIK 10.1 9.3 0.7 1.7 

LOC380799 8.7 8.0 0.7 1.7 

CSTB 12.6 11.8 0.7 1.7 

CYB561 8.7 8.0 0.7 1.7 

LHFPL2 9.7 9.0 0.7 1.7 

LOC98434 10.3 9.5 0.7 1.7 
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CD14 8.5 7.7 0.7 1.7 

PMP22 9.4 8.7 0.7 1.7 

RBP1 8.6 7.8 0.7 1.7 

2310008M10RIK 11.4 10.6 0.7 1.7 

MT1 13.4 12.7 0.7 1.7 

EXT1 9.9 9.2 0.7 1.7 

LIMA1 9.0 8.3 0.7 1.7 

MATN4 8.3 7.5 0.7 1.7 

EDG5 9.3 8.6 0.7 1.7 

SPSB1 8.7 8.0 0.7 1.7 

ARMCX2 9.4 8.7 0.7 1.7 

SVEP1 8.3 7.6 0.7 1.7 

HMGN3 10.5 9.8 0.7 1.6 

GPR23 8.7 8.0 0.7 1.6 

FOLR2 8.6 7.8 0.7 1.6 

UBE2E2 9.3 8.6 0.7 1.6 

RHOJ 9.4 8.7 0.7 1.6 

PROS1 9.9 9.2 0.7 1.6 

STAB1 9.6 8.9 0.7 1.6 

LOC637227 9.6 8.8 0.7 1.6 

MYADM 10.8 10.1 0.7 1.6 

ANXA8 8.4 7.7 0.7 1.6 

PLOD1 8.3 7.6 0.7 1.6 

MEOX2 8.9 8.2 0.7 1.6 

LOC381629 10.7 10.0 0.7 1.6 

LOC384413 9.4 8.7 0.7 1.6 

TAX1BP3 10.5 9.8 0.7 1.6 

6330404C01RIK 9.3 8.6 0.7 1.6 

FRMD6 9.8 9.1 0.7 1.6 

COL9A2 10.6 9.9 0.7 1.6 

NT5E 9.0 8.3 0.7 1.6 

MYO1E 9.0 8.3 0.7 1.6 

LMAN1 9.5 8.8 0.7 1.6 

GRN 12.1 11.4 0.7 1.6 

LOC669053 9.3 8.6 0.7 1.6 

CUL7 9.5 8.8 0.7 1.6 

P4HB 13.1 12.4 0.7 1.6 

TWSG1 10.1 9.4 0.7 1.6 

D4BWG0951E 8.3 7.7 0.7 1.6 

BICC1 9.6 8.9 0.7 1.6 

WTIP 9.3 8.6 0.7 1.6 

IL11RA1 11.3 10.7 0.7 1.6 

LOC636944 9.9 9.3 0.7 1.6 

PLVAP 10.2 9.5 0.7 1.6 
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EGFR 8.5 7.8 0.7 1.6 

RFTN2 8.6 8.0 0.7 1.6 

TMED3 9.9 9.2 0.7 1.6 

TUBB2B 8.7 8.1 0.7 1.6 

C130021I20 7.9 7.3 0.7 1.6 

CXCL16 8.2 7.5 0.7 1.6 

CDON 8.2 7.6 0.7 1.6 

SDC3 11.1 10.5 0.7 1.6 

5430435G22RIK 8.4 7.8 0.7 1.6 

ADRA2A 8.6 7.9 0.7 1.6 

C1QA 9.3 8.7 0.7 1.6 

PRRC1 9.8 9.2 0.7 1.6 

TPBG 8.3 7.7 0.6 1.6 

BOK 8.5 7.8 0.6 1.6 

NID1 8.8 8.1 0.6 1.6 

FXYD6 11.3 10.7 0.6 1.6 

TGFBR2 9.8 9.2 0.6 1.6 

LAMC1 9.2 8.5 0.6 1.6 

ZFP521 8.4 7.7 0.6 1.6 

GPR125 9.4 8.8 0.6 1.6 

COL5A2 8.0 7.4 0.6 1.6 

PAPSS2 9.2 8.6 0.6 1.6 

BDH2 9.5 8.9 0.6 1.6 

MIA1 10.1 9.4 0.6 1.6 

SOCS2 9.9 9.2 0.6 1.6 

GLT8D1 9.4 8.8 0.6 1.6 

PLOD2 8.5 7.9 0.6 1.6 

FSTL 8.0 7.4 0.6 1.6 

IGFBP3 8.1 7.5 0.6 1.5 

2410146L05RIK 8.0 7.3 0.6 1.5 

GSTM2 10.2 9.5 0.6 1.5 

ISLR 8.0 7.4 0.6 1.5 

PPIB 11.3 10.7 0.6 1.5 

PDGFRB 8.6 7.9 0.6 1.5 

DLG5 9.5 8.9 0.6 1.5 

CAV1 10.4 9.8 0.6 1.5 

CCL4 8.2 7.6 0.6 1.5 

TMEM176B 10.1 9.4 0.6 1.5 

RAB34 8.4 7.7 0.6 1.5 

CDKN1A 8.7 8.1 0.6 1.5 

CYB5R3 9.6 9.0 0.6 1.5 

SEPN1 10.2 9.6 0.6 1.5 

LOC630253 8.2 7.6 0.6 1.5 
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PRRX2 8.1 7.5 0.6 1.5 

RHOC 8.4 7.8 0.6 1.5 

PRSS35 8.8 8.2 0.6 1.5 

GPRC5B 8.4 7.8 0.6 1.5 

PDIA5 8.1 7.5 0.6 1.5 

PMEPA1 8.2 7.6 0.6 1.5 

ADAMTS4 7.9 7.3 0.6 1.5 

RRBP1 9.3 8.7 0.6 1.5 

FAM171B 8.4 7.8 0.6 1.5 

SERTAD4 8.1 7.5 0.6 1.5 

CRABP2 7.8 7.2 0.6 1.5 

5430433G21RIK 9.4 8.9 0.6 1.5 

RAB11FIP5 9.3 8.7 0.6 1.5 

4933421H10RIK 8.7 8.1 0.6 1.5 

DCN 12.3 11.7 0.6 1.5 

2610009E16RIK 9.1 8.5 0.6 1.5 

3110079O15RIK 12.8 12.2 0.6 1.5 

VAT1 9.6 9.1 0.6 1.5 

COL8A2 8.2 7.6 0.6 1.5 

LOC100047162 9.9 9.4 0.6 1.5 

HOXC6 9.1 8.5 0.6 1.5 

ZFYVE21 10.3 9.7 0.6 1.5 

BGLAP-RS1 13.8 13.2 0.6 1.5 

9430028L06RIK 7.9 7.3 0.6 1.5 

ACTA2 10.3 9.7 0.6 1.5 

GLT25D1 10.7 10.1 0.6 1.5 

RCN3 8.3 7.7 0.6 1.5 

CLEC3B 8.2 7.6 0.6 1.5 

GMDS 8.8 8.2 0.6 1.5 

BMPER 8.3 7.7 0.6 1.5 

2300002D11RIK 8.0 7.4 0.6 1.5 

PLAT 8.0 7.4 0.6 1.5 

TWIST1 8.4 7.8 0.6 1.5 

6230400G14RIK 8.8 8.2 0.6 1.5 

PLOD3 10.2 9.7 0.6 1.5 

CAPG 10.0 9.5 0.6 1.5 

LOC626583 8.1 7.5 0.6 1.5 

ALG14 8.9 8.4 0.6 1.5 

MMP12 7.8 7.2 0.6 1.5 

TNXB 8.5 7.9 0.6 1.5 

TUBA1A 9.4 8.9 0.6 1.5 

CD81 12.8 12.2 0.6 1.5 

TMEM86A 9.9 9.4 0.6 1.5 

C1QTNF5 7.9 7.3 0.6 1.5 
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ERGIC1 9.4 8.8 0.6 1.5 

5031439A09RIK 8.9 8.4 0.6 1.5 

S100A10 9.2 8.6 0.6 1.5 

CBR2 9.1 8.6 0.6 1.5 

FBLN7 7.8 7.3 0.6 1.5 

B9D1 8.3 7.7 0.6 1.5 

ALG5 9.6 9.1 0.6 1.5 

RRAS 9.9 9.3 0.6 1.5 

CHMP4B 10.4 9.8 0.6 1.5 

GNS 10.9 10.4 0.6 1.5 

H47 10.8 10.3 0.6 1.5 

IFITM5 9.2 8.7 0.6 1.5 

WWTR1 8.8 8.2 0.5 1.5 

CRIP2 11.0 10.4 0.5 1.5 

ANXA2 13.6 13.1 0.5 1.5 

A730017D01RIK 8.5 7.9 0.5 1.5 

PRRX1 8.1 7.6 0.5 1.5 

COL22A1 10.4 9.9 0.5 1.5 

MANBAL 10.3 9.8 0.5 1.5 

POFUT2 8.1 7.6 0.5 1.5 

APLNR 8.3 7.7 0.5 1.5 

FBLIM1 8.7 8.2 0.5 1.5 

LMNA 10.4 9.9 0.5 1.5 

PLCD1 8.7 8.1 0.5 1.5 

RHBDF1 9.9 9.4 0.5 1.5 

LOC100039175 8.8 8.2 0.5 1.5 

EBPL 8.8 8.3 0.5 1.5 

KDELR2 8.5 8.0 0.5 1.5 

FAH 8.9 8.3 0.5 1.5 

PDIA3 11.7 11.1 0.5 1.5 

PLA1A 8.1 7.6 0.5 1.5 

GAS6 11.3 10.8 0.5 1.5 

BC065085 8.3 7.8 0.5 1.5 

D10ERTD610E 8.6 8.1 0.5 1.4 

IFIT3 8.5 8.0 0.5 1.4 

PDGFRL 7.9 7.4 0.5 1.4 

3632451O06RIK 8.0 7.5 0.5 1.4 

TPM4 11.3 10.8 0.5 1.4 

PLP2 10.0 9.5 0.5 1.4 

C4B 8.7 8.1 0.5 1.4 

Table 7: Genes changed expression in DMM model at day 7 
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Figure 1: Hierarchical cluster analysis for DMM models at 1, 3, and 7 days after surgery  
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Figure 2: CCL2, Agrinase, IL-6 and SAA-3 were significantly induced expression in DMM 

model at 1, 3, and 7 days after surgery 

Total RNA was reversed transcribed to cDNA and gene expression was measured by real-
time qRT-PCR in individual samples of DMM left knee (un-operated, open bar), and DMM 
right knee (DMM, close bar). 18S was used as endogenous control. The data show mean +/- 
SEM, n=3. The expression of genes of interest between each group was analysed by unpaired 
two-tailed t test * p<0.05, ** p < 0.01, *** p<0.001. 
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Figure 3:  Gene expression in hip avulsion injury model 

The femoral caps of C57Bl/6 mice aged 4 weeks were avulsed and put in culture. At each of 
3, 6, 12, 48 hour time points, the femoral caps were harvested. Total RNA was isolated using 
Trizol and reverse transcribed to cDNA.  Gene expression was measured by real-time qRT-
PCR where 18S was used as an endogenous control. Assays were repeated 3 times. At least 
triplicate samples were measured at each time. Means ± standard errors are presented. 
Difference in expression between each time point against control (t=0) was calculated by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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Figure 4: The expression of the miR-29 family in ATDC5 model  

The embryonic carcinoma cell line ATDC5 was stimulated to from chondrocytes using 
insulin for 42 days. Total RNA was isolated, reverse transcribed to cDNA and used for 
miRNA microarray.  
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Figure 5: Expression of the miR-29 family was not controlled by Wnt3a  
 SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were serum starved for 24 hours before treating with Wnt3a or vehicle 
(0.5% (w/v) BSA) across 24 hour course.   

Relative expression of the precursor miR-29a and axin2 was measured by quantitative RT-
PCR. 18S rRNA was the endogenous control for measuring the precursor transcripts. Open 
bar, control; close bar, WNT3a. (A) Expression level of axin2. (B) Expression level of 
precursor miR-29a. Means ± standard errors are presented. The difference between the 
treatment and the control was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, n=3. 
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Figure 6: Wnt3a does not control the expression from the primary miR-29a/b1 promoter  

The pri-miR-29a/b1 promoter-reporter (100ng) or the empty vector pGL4 (control, 100ng) 
were transfected into SW1353 cells. After transfection, cells were serum starved for 24 hours, 
followed by stimulating for another 6 hours with WNT3a (100ng/ml), or vehicle (0.5% BSA) 
before measuring luciferase activity. Renilla was use as endogenous control. Open bar: 
vehicle, black bar: Wnt3a. Means ± standard errors are presented, n=3. The difference of 
luciferase activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, 
*** p<0.00. 
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Figure 7 The miR-29 family suppress TGFββββ signalling pathway 

(A) The TGFβ signalling reporter (CAGA12-luc) contains 12 binding sites of the Smad2/3/4 
(GAGAC) binding consensus upstream of the firely luciferase-encoding gene in pGL3100ng 
CAGA12-luc vector, and 10ng Renilla vector were co-transfected with either miR-29 family 
mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-targeting 
control (50nM) was also used as the negative control. 24 hours after transfection, cells were 
serum starved for another 24 hours, followed by treatment with TGFβ3 (4ng/ml) for another 
6 hours before measuring luciferase activity. Renilla is the loading control for luciferase 
assay. Open bar: non – treatment control, close bar: TGFβ3 treatment. Means ± standard 
errors are presented, n=6. The difference of luciferase activity was analysed by Student’s 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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Figure 8 The miR-29 family does not target some of its putative targets at mRNA level  
Human primary chondrocytes was cultured in media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were then transfected with either miR-29b mimic (50nM) or non – 
targeting control (50nM) for 48 hours. Total RNA was isolated and the expression levels of 
GOI were measured by qRT-PCR. 18S rRNA was the housekeeping control. Relative 
expression value of each of these genes was normalized to non – targeting control. Means ± 
standard errors are presented, n=3. The difference in expression between miR-29b 
overexpression and non – targeting control was analysed by Student’s unpaired two-tailed t 
test. * p<0.05, ** p < 0.01, ***, p<0.001 
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ABSTRACT 

MicroRNAs are short endogenous non-coding RNA molecules, typically 19-25 

nucleotides in length, which negatively regulate gene expression.  In osteoarthritis (OA), 

several genes necessary for cartilage homeostasis are aberrantly expressed, with a number 

of miRNAs implicated in this process. However, our knowledge of the earliest stages of 

OA, prior to the onset of irreversible changes, remains limited. The purpose of this study 

was to identify miRNAs involved across the time-course of OA using both a murine model 

and human cartilage, and to define their function.   

Expression profile of miRNAs (Exiqon) and mRNAs (Illumina) on total RNA purified 

from whole knee joints taken from mice which underwent destabilisation of the medial 

meniscus (DMM) surgery at day 1, 3 and 7 post-surgery showed: the miRNA expression 

in whole mouse joints post DMM surgery increased over 7 days; at day 1 and 3, the 

expression of only 4 miRNAs altered significantly; at day 7, 19 miRNAs were upregulated 

and 15 downregulated. Among the modulated miRNAs, the miR-29b was the most 

interesting and was chosen to further investigate since integrating analysis of the miRNA 

and mRNA expression array data showed the inverse correlation between miR-29b and its 

potential targets.  In end-stage human OA cartilage and in murine injury model, the miR-

29 family was found to increase expression. Moreover, the miR-29 family was found to be 

the negative regulator in both human and murine chondrogenesis, and was also found to 

involve in murine limb development. Expression of the miR-29 family was found to 

suppress by SOX9 at least in part through directly binding to the promoter of the primary 

miR-29a/b1. Also, TGFβ1/3 decreased expression of the miR-29 family whilst Wnt3a did 

not have any effect. Lipopolysaccharide suppressed the miR-29 family expression in part 

through NFκB signalling pathway while the IL-1 strongly induced its expression partly 

through P38 MAKP signalling. Using luciferase reporter assay, the miR-29 family was 

showed to suppress the TGFβ, NFκB, and WNT/β-catenin signalling pathways. Gene 

expression profiles of gain- and-loss-of-function revealed regulation of a large number of 

previously recognised extracellular matrix-associated genes as well as an additional subset 

of protease and Wnt signalling pathway-related genes.  Among these genes, ADAMTS6, 

ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19, FZD3, DVL3, FRAT2, CK2A2 were 

experimentally validated as direct targets of the miR-29 family.   
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CHAPTER 1 
INTRODUCTION  

 

1.1. Synovial joints  

In mammals, joints are functionally classified into 3 categories: synarthroses (immovable 

joints), amphiarthroses (slightly movable joints), and diarthroses (freely movable joints).  

Most of the main joints of the appendicular skeleton are synovial joints, suggesting this 

type of joint has a crucial role in the body. The main component of synovial joints includes 

the hyaline cartilage, also known as articular cartilage, covering the bone of the synovial 

joint providing the cartilage lubricating and shock absorbing characteristics; a capsule 

enclosing the joint in line with synovial membrane which contains synovial membrane-

resident cells secreting synovial fluid into the synovial cavity helping reduce friction, 

enabling free movement; bones, further held together by ligaments. The characteristics of 

some important components of the synovial joint relevant to this PhD thesis are described 

below.  

1.1.1. Articular cartilage biology  

Articular cartilage, a highly specialized tissue with unique mechanical behaviour, consists 

of (i) chondrocytes, the only cells, responsible for the homeostasis of extracellular matrix 

(ECM), and (ii)  a dense layer of ECM composed primarily of water, collagen and 

proteoglycan.   

1.1.1.1 Cartilage structural organization 

Healthy articular cartilage comprises four different areas: the superficial, intermediate, 

radial or deep, and calcified zones (Buckwalter et al. 2005, Dudhia 2005, Pearle et al. 

2005, Aigner et al. 2006, Martel-Pelletier et al. 2008, Umlauf et al. 2010, Houard et al. 

2013) (Figure 1.0). Each is characterized by a particular chondrocyte phenotype, and by 

distinctive extracellular matrix organization and composition (Buckwalter et al. 2005).  

The superficial zone, the articulating surface and the thinnest of the four, makes up 10%-

20% of articular cartilage thickness (Buckwalter et al. 2005, Pearle et al. 2005). This 
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region contains a high amount of collagen (primary type II, and IX) but very low amount 

of proteoglycan. The collagen fibrils are densely packed and aligned paralleled to the 

articular surface. Chondrocytes in this layer are characterized by an elongated appearance 

(Pearle et al. 2005), express many proteins having lubricating and protective functions (e.g. 

lubricin) but relatively little proteoglycan. This zone is in contact with synovial fluid, and 

is responsible for most of the tensile properties of cartilage that enable cartilage to resist 

shear and the tensile and compressive forces imposed by the movement of the articulation 

(Martel-Pelletier et al. 2008).  

 

 

Figure 1.0: Histology of a healthy cartilage structural  

The articular cartilage is organized into superficial, intermediate, radial, and calcified 
zones. Each zone can be distinguished by the difference in chondrocyte morphologies and 
components of collagen, proteoglycan, mineral and water 

 

The intermediate and the radial zones contain large diameter collagen fibrils oriented 

perpendicular to the articular surface. These regions also have high amount of 

proteoglycan which is mainly aggrecan, a large chondroitin sulphate proteoglycan. 

Chondrocytes in the middle zone are more round than in the superficial zone. In the radial 

zone, the cells are arranged in columnar fashion (Buckwalter et al. 2005).  
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The tide mark, a thin line revealed after hematoxylin staining, marks the mineralization 

front between the calcified and non-calcified articular cartilage (Houard et al. 2013). In the 

calcified cartilage zone, the cell population is very scarce and chondrocytes are 

hypertrophic (Pearle et al. 2005, Martel-Pelletier et al. 2008). With aging, bloods vessels 

and nerves can be seen in calcified cartilage arising from the subchondral bones (Lane et al. 

1977). The main function of this zone seems to be to anchor the cartilage to the bone as 

collagen fibrils from the radial zone penetrate into the calcified cartilage.  

Furthermore, it is noteworthy to know that for mechanical protection purposes, in articular 

cartilage, the chondrocyte is surrounded by a pericellular matrix and a territorial cartilage 

matrix forming a capsule-like structure around the cells. Whilst the pericellular matrix is 

made of a thin layer of non-fibrillar material, which most likely represents the synthetic 

products of the chondrocytes, such as proteoglycans and glycoproteins, the pericellular 

matrix also contains a dense meshwork of thin collagen fibers (see below) (Dudhia 2005, 

Aigner et al. 2006, Martel-Pelletier et al. 2008, Heinegard et al. 2011).  

1.1.1.2 Biology of chondrocytes  

As mention above, chondrocytes are the only cellular components of articular cartilage, 

make up 5% of the wet weight of articular cartilage, and are surrounded by a pericellular 

matrix containing type VI collagen, microfibrils, hyaluronic acid, biglycan, and decorin 

but little or no type II collagen (Buckwalter et al. 2005, Dudhia 2005, Heinegard and 

Saxne 2011). The arrangement of chondrocytes and articular cartilage specific organisation 

result from a complex development process called endochondral ossification including 

four steps e.g. chondrogenesis, chondrocyte differentiation and hypertrophy, 

mineralization and invasion of bone cells, and finally the formation of bone (DeLise et al. 

2000, Goldring et al. 2006, Goldring 2012). Chondrocytes arise from mesenchymal 

progenitors as a result of chondrogenesis started with the condensation of mesenchymal 

stem cell (expressing collagens I, III and V), and followed by the differentiation of 

chondroprogenitor cell (expressing cartilage-specific collagens II, IX and XI) (Goldring et 

al. 2006). After chondrogenesis, the chondrocytes remain as resting cells to form the 

articular cartilage or undergo proliferation, terminal differentiation to chondrocyte 

hypertrophy, and apoptosis. 
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There are no blood vessels in articular cartilage, thus the cells rely on diffusion from 

articular surface or subchondral bone for nutrients and metabolites. Importantly, the 

oxygen level in the cartilage matrix is quite low, ranging from 10% at the surface to less 

than 1% in the deep zone (Silver 1975), suggesting the cells have to adapt to this low 

oxygen level. The mechanisms of this adaption remain unclear but some published data 

reported the involvement of hypoxia inducible factor -1 alpha (HF-1α) (Schipani et al. 

2001, Pfander et al. 2003). Hipoxia via HIF-1α can stimulate chondrocytes to express a 

number of genes associated with cartilage anabolism and chondrocyte differentiation like 

SOX9, TGFβ (Amarilio et al. 2007).  

1.1.1.3 Biology of cartilage extracellular matrix  

Together with chondrocytes, extracellular matrix (ECM) produced by these cells is among 

the main components of articular cartilage and its integrity is critical for the cartilage 

biochemical properties and joint physical function.  

About structure, the ECM in articular cartilage is organized into pericellular, territorial, 

interterritorial zones, each of which is represented at specific distance from the 

chondrocytes (Dudhia 2005, Heinegard and Saxne 2011) (Figure 1.1). 
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Figure 1.1: Molecular organisation of normal articular cartila ge. 

The cartilage matrix surrounding chondrocytes in healthy articular cartilage is arranged 
into zones defined by their distance from the cell. Pericellular matrix lies immediately 
around the cell and is the zone where molecules that interact with cell surface receptors are 
located. Next to the pericellular matrix, slightly further from the cell, lies the territorial 
matrix. At largest distance from the cell is the interterritorial matrix (adapted from 
Heinegard et al, 2011) (Heinegard and Saxne 2011) 

Biochemically, of the ECM, approximately 70% is water (Pearle et al. 2005) , and 30% left 

is solid, of which 5-6% are inorganic compounds (hydroxyapatite), and the remaining 25% 

are organic compounds. Of the organic components, type II collagen constitutes 68% and 

the 32% left is formed by proteoglycan (mainly aggrecan) (Martel-Pelletier et al. 2008). 

The biology of aggrecan and collagen and their functions in articular cartilage are 

described as below. 

1.1.1.3.1 Aggrecan  

Molecules made up of a core protein attached to glycosaminoglycan chain are referred as 

proteoglycan. In articular cartilage, the most abundant proteoglycan is aggrecan, composed 

of chondroitin sulphate chains and keratan sulphate chains with N- and O-linked 

oligosaccharides. Aggrecan has three globular domains (G1, G2 and G3) and three 

extended domains (IGD, KS and CS). The N-terminal G1 domain, responsible for 

aggrecan-hyaluronan interaction, is followed after the signal peptide. The inter-globular 

(IGD) connects G1 and G2 domains, whose functions are unclear. Keratan sulphate 

binding (KS) and chondroitin sulphate (CS) domain lie between G2 and G3 domains 

(Kiani et al. 2002, Dudhia 2005, Martel-Pelletier et al. 2008, Heinegard and Saxne 2011) 

(Figure 1.2). 
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Figure 1.2: Aggrecan structure.  

Aggrecan consists of 3 globular domains (G1, G2, and G3) and an attached GAG chain 
structure. The GAG attachment region is separated into keratin sulphate binding (KS) 
domain and chondroitin sulphate (CS) domain (Adapted from Kiani et al, 2002) (Kiani et 
al. 2002).  

 

The chondroitin sulphate domain is the largest domain of aggrecan and is composed of 

around 100 chondroitin sulphate chains (typically around 2kDa each). Each chain is made 

up of some 50 disaccharides of glucuronic acid and N-acetylgalactosamine, with a sulphate 

group in the 4- or 6- position. The negatively-charge chondroitin sulphate chain accounts 

for the major function of aggrecan as a structural proteoglycan. The function of the keratan 

sulphate domain is not very clear but may be involved in the tissue distribution of aggrecan. 

There are about 30 KS chains, usually of small size (5-15 kDa), attached to the mature 

aggrecan molecule.  

Chondroitin sulphate, keratan sulphate, and the interaction of aggrecan and hyaluronic acid 

are responsible for retaining water the cartilage. The interaction between aggrecan and 

collagen fibrils makes the ECM highly hydrophilic, leading to high resistance to 

compressive mechanical loads (Dudhia 2005, Martel-Pelletier et al. 2008).  

1.1.1.3.2 Collagen  

Collagen fibrils are composed of a protein macromolecular providing cartilage with 

resistance to tension. Collagen type II constitutes 85% total collagen content in the ECM 

of articular cartilage. Apart from type II Collagen, ECM also contains other collagens 

called minor collagens since their concentration is low in comparison with the type II 

collagen. A list of these collagens is provided in Table 1.1.  

All fibril collagens are synthesized in the form of three polypeptide α-chains as a 

procollagen in which each chain has an N-terminal extension and a C-terminal extension. 

The three chains are covalently linked via disulphide bridges in the C-terminal propeptide. 

Following or during secretion of procollagens into the extracellular matrix, the terminal 

propeptides are cleaved off by specific proteinases e.g. ADAMTS-2, ADAMTS-3, 

ADAMTS-14 (cleaves the N-terminal) (Lapiere et al. 1971, Fernandes et al. 2001, Colige 

et al. 2002), and BMP-1 (cleaves the C terminal) (Wermter et al. 2007) to produce the 

mature collagen molecules. The mature collagens then spontaneously self-assemble into 
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cross-striated fibrils in the extracellular matrix. The fibrils are stabilized by covalent cross-

linking (Figure 1.3) 

Collagen molecules then associate on a core of two homologous collagen XI and two 

collagen II molecules to form an outer shell of 10 collagen II molecules of the micro fibril. 

In addition to collagen type II, fibers contain other collagens, particular collagen type IX. 

The collagen network is then stabilized by the formation of covalent crosslinks that link 

the collagen II chains. The links formed are both intra- and inter-molecules, for example, 

between the chains of collagen XI, between collagens e.g. collagen II and collagen IX. 

Many other proteins also have a high affinity for collagens including thrombospondins, 

leucine-rich repeat proteins (biglycan, decorin, fibromodulin, lumican), matrillins, and 

fibronectin. Some of these interactions support fibre formation while others modify the 

collagen fibre surface to provide sites for interactions with neighbouring structures 

(Heinegard and Saxne 2011).  
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Collagen 
types 

Characteristics 

Type IX Located on the surface of type II collagen fibrils; promotes the binding of the fibrils 
to other components of the matrix and to each other; carries a glycosaminoglycan 
chain. 

Type XI Forms the core of the same fibrosis. Regulates the formation and the diameter of 
the fibrils  

Type V Sometimes replaces the type XI collagen in cartilage; included in type I collagen 
fibrils in other tissues. Data on the composition and structure of the third a-chain 
are contradictory  

Type III Small amount are covalently bound to type II collagen  
Type XII Very small amounts are present on the surface of type II collagen  
Type XIV Very small amounts are present on the surface of type II collagen 
Type VI As in other tissue, forms a network of microfibrils. Concentrated mainly in the 

pericellular areas, provides a connection between the chondrocytes and the matrix  
Type X Expressed only by hypertrophic chondrocytes in cartilage areas undergoing 

ossification  
Type XXVII Expressed in cartilage tissue  

Table 1.1 Minor collagen of cartilage tissue (adapt from Omelyanenko et al, 
2014)(Petrovich et al. 2014) 
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Figure 1.3: The formation of the fibrillar collagens  

 

Procollagen is secreted from cells and converted into collagen by removal of the N- and C- 
propeptids by pro-collagen metalloproteinases. This produces mature collagen that 
spontaneously self-assembles into cross-striated fibrils which are stabilized by covalent 
cross-linking. Taken from (Kadler et al, 1996)(Kadler et al. 1996). 
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1.1.2. Synovium 

Synovium is a thin tissue only a few cell layers thick (Fell 1978). The synovium acts as the 

controller for the environment within the joint where nutrients for chondrocytes can pass 

into the synovial cavity. Also, the synovium gives the joint its mechanical properties. The 

synovium can be divided into two compartments e.g. the synovial lining and the sub-lining. 

The synovial lining contains two cell types e.g. type A (macrophage-like cells) clearing 

all excess materials and potential pathogens from the joint, producing and secreting a 

number of enzymes and cytokines and chemokines that mediate tissue damage and 

inflammation in disease; type B synoviocytes, fibroblast like cells, producing the main 

component of synovial fluid, hyaluronan. The synovial sublining consists of connective 

tissue containing blood vessels, fibroblasts, adipocytes, and a limited number of resident 

immune cells, such as macrophage and mast cells (Smith et al. 2003). The synovial fluid 

has crucial role for lubrication of the joint and for transporting nutrients and oxygen to the 

cartilage. 

1.1.3. Bone 

Periarticular bone can be separated into distinct anatomic entities e.g. the subchondral 

bone plate, the subchondral trabecular bone, and the bone at the joint margins. The 

subchondral bone plate consists of cortical bone, which is relatively nonporous and poorly 

vascularized. It is separated from the overlying articular cartilage by the zone of calcified 

cartilage.  

Bone is a very dynamic tissue with constantly undergoing remodelling in which bone 

resorption is normally followed by new bone formation. The primary cell responsible for 

bone resorption is the osteoclast, a specialized multinucleated cell of hemopoietic origin 

(Roodman 1999). Bone resorption takes place under a specialized area of the osteoclast 

cell membrane called “ruffled border,” which comprises a sealed lysosomal compartment 

where the acidic pH solubilizes the mineral and proteolytic enzymes digest the matrix.  On 

the contrary, osteoblasts, the bone forming cells, originally from MSCs committed to 

osteoblastic lineage. Osteoblasts synthesize and secrete most of the proteins of the bone 

matrix, including type I collagen and non-collagenous proteins (Caetano-Lopes et al. 

2007). In normal physiological condition, the amount of bone removed during the 

resorption and formation phases is balanced such that bone mass is maintained.  
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1.2. Osteoarthritis  

Osteoarthritis (OA) is defined by the American College of Rheumatology as a 

“heterogeneous group of conditions that lead to joint symptoms and signs which are 

associated with defective integrity of articular cartilage, in addition to related changes in 

the underlying bone at the joint margins’’.  

There are more than 100 types of arthritis. However, OA or degenerative joint disease is 

the most common type. From a clinical point of view, OA can be classified into two 

categories e.g. primary  which refers to its occurrence not related to any prior condition or 

event which is also referred as idiopathic, and secondary which refers to the development 

of the disease after trauma or pre-existing condition.   

The disease most commonly affects the middle-age and elderly, although it may begin 

earlier as result of injury, obesity or congenitally. As a greater proportion of the population 

is old aged and with increasing obesity, OA will have a great impact on society in the 

future with enormous socioeconomic costs.  

1.2.1. Osteoarthritis pathology 

It is now considered that OA is a disease of the whole joint as an organ resulting in “joint 

failure” where all major components of the joint e.g. the cartilage, the synovium, and the 

underlying bone are affected (Loeser et al. 2012). The pathologic changes seen in OA 

include cartilage destruction, fibrosis of the synovial capsule, hyperplasia of the synovial 

membrane, osteophyte formation, the subchondral bone thickening (Figure 1.4) (Aigner et 

al. 2006, Loeser et al. 2012). These changes result from an incompletely understood series 

of functional events. 
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Figure 1.4: Overview of the pathologic changes associated with OA. 

In a normal joint, the subchondral bone is covered by a thick layer of articular cartilage 
and the joint is enclosed in a capsule where the synovial membrane lies. In an OA joint, 
articular cartilage is destroyed, the subchondral bone is remodelled (thickens), the synovial 
capsule is fibrosed and osteophytes are formed (reprinted from Aigner et al, 2006) (Aigner 
et al. 2006) 
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1.2.1.1.Articular cartilage destruction in osteoarthritis  

Biochemical, genetic factors, and mechanical stress contribute to the OA lesion in cartilage, 

leading to articular cartilage degradation, and chondrocyte metabolism disorders as a 

consequence. Articular cartilage degeneration is a two phase process controlled mainly by 

chondrocytes e.g. a short biosynthesis phase where the cells attempt to repair the damaged 

ECM, followed by the degenerative phase, where the cells destroy the articular cartilage by 

increasing the synthesis of matrix degradating proteinases and decreasing their synthesis of 

matrix components, in particular of aggrecan. Besides changes in synthesis and 

degradation, other aberrant behaviours in cell proliferation and death, and phenotypic 

modulation are also observed in OA chondrocytes (Sandell et al. 2001).  

Contrary to normal chondrocytes with no proliferative activity, OA chondrocytes have a 

low proliferative activity (Meachim et al. 1962, Rothwell et al. 1973, Lee et al. 1993), 

explained in part due to the better access to proliferation factors from the synovial fluid as 

well as due to the damage of the ECM (Meachim and Collins 1962, Lee et al. 1993), 

subsequently causing chondrocyte clustering, a characteristic feature of OA cartilage. 

Chondrocyte death, caused by apoptosis, necrosis, or other cell death mechanisms such as 

chondroptosis, is another known feature of OA.  Many studies have demonstrated the 

significant correlations between chondrocyte death and severity of OA and aging. These 

changes are associated with the production of reactive oxygen species, a lack of growth 

factors, release of glycosaminoglycan and mechanical injury. However, which of these 

types of cell death predominate in OA is debatable. The detection of specific form of cell 

death in articular cartilage is difficult in which current gold standard for detecting 

chondrocyte death is electron microscopy which suggests that the morphological changes 

of chondrocytes in OA cartilage are attributed to apoptosis and / or chondroptosis.  

Chondrocyte death by apoptosis has been reported play an important role: normal cartilage 

explants or chondrocyte culture exposed to nitric oxide, collagenase, anti CD-59, or 

mechanical factors e.g. shear strain, loading strain induced apoptosis; cartilage from 

equine joints have shown that chondrocyte apoptosis is positively correlated with early 

stages of OA and severity of cartilage damage (Zamli et al. 2011).  
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When the damage occurs, the chondrocytes attempt to repair the damaged matrix by 

increasing their anabolic activity to enhance ECM synthesis. However, a net loss of ECM 

content is one of the hallmarks of all stages of OA, suggesting the dominance of ECM 

degradation over the synthesis. This is characterized by the increase in expression and 

activation of matrix-degrading enzymes e.g. matrix metalloproteinase (MMPs) and 

aggrecanases (from the ADAMTS family) (Buckwalter et al. 2005, Pearle et al. 2005, 

Aigner et al. 2006, Umlauf et al. 2010, Loeser et al. 2012). The MMPs, belonging to a 

family of zinc-dependent proteases, show activation correlating with cartilage degradation. 

Among these, the groups of collagenases 1, 2, 3 (MMP-1, MMP-8, and MMP-13, 

respectively), stromelysins (MMP-3, MMP-10, MMP-11) and gelatinases (MMP-2, MMP-

9) have the highest impact on OA cartilage breakdown (Burrage et al. 2006). The MMP-1, 

MMP-8 and MMP-13 which cleave native fibrillar collagen, contribute to the pathological 

cleavage of collagen fibrils in OA (Burrage et al. 2006). Of the collagenase group, MMP-

13 is deemed to be responsible for most of the collagen II breakdown whilst MMP-1 

cleaves type II collagen stronger than MMP-8 (Billinghurst et al. 1997) has a pivotal role 

for collagen cleavage in OA (Knauper et al. 1996). In addition to collagenases, others 

MMPs degrading non-collagen have also been shown to be elevated in OA cartilage e.g. 

the gelatinases (which cleave denatured collagen, gelatin, type V collagen) and the 

stromelysins (having substrate preference for proteoglycans, elastin, laminin, fibronectin) 

(Umlauf et al. 2010) The aggrecanases (the ADAMTS family), are also of particular 

importance in cartilage turnover, and have activity against the proteoglycan aggrecan. Of 

all ADAMTS members, ADAMTS-4 and ADAMTS-5 are most active against aggrecan 

(Arner 2002). ADAMTS-5 is constitutively expressed in chondrocytes whereas 

ADAMTS-4 expression is stimulated by proinflammatory cytokines IL-1β, and TNF-α 

(Umlauf et al. 2010) (Tortorella et al. 2001). In vitro studies with human cartilage show 

that both ADAMTS-4 and ADAMTS-5 contribute to ECM breakdown during the disease 

progression even though human recombinant ADAMTS-5 has higher rate of aggrecan 

cleavage than ADAMTS-4 (Song et al. 2007). In mice, ADAMTS-5 has been shown to be 

the major aggrecanase, by studies with ADAMTS-4 and ADAMTS-5 knockout mice in 

which only ADAMTS-5 deficiency prevented the mice from cartilage degradation in both 

inflammatory and a joint-instability model of arthritis (Glasson et al. 2005, Stanton et al. 

2005) .  
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As mentioned above, despite the attempt at repairing the ECM, the damage to the cartilage 

becomes irreversible because the adult chondrocytes fail in regenerating the normal 

cartilage matrix structure. This failure could be, in part, attributed to the phenotypic 

alteration of chondrocytes. Chondrocyte phenotypes are categorized largely by subtyping 

collagen expression e.g. chondroprogenitor cells express type IIA procollagen. The 

alternative splice variant) (Sandell et al. 1991), mature chondrocytes are marked by 

expressing type IIB procollagen, IX, and XI, aggrecan and link protein (Sandell and 

Aigner 2001), and hypertrophic chondrocytes express type X collagen (Schmid et al. 

1985). In OA cartilage degeneration, an important proportion of adult articular cartilage 

chondrocytes, found mostly in the middle zone, re-expressed type IIA procollagen 

(chondroprogenitor cells) in both early and late OA stages (Sandell and Aigner 2001). 

Cells in the upper middle zone mainly express type III collagen which is a fibroblast-like 

phenotype. This phenotype is normally observed in vitro, where the chondrocyte 

phenotypes are modulated through so-called “dedifferentiation” process by several factors 

like retinoic acid or IL-1. Dedifferentiated chondrocytes are still very active, express 

collagen types I, III and V but stop expressing aggrecan and collagen type II (Sandell and 

Aigner 2001). In the deepest zone of OA cartilage, the cells start to express type X 

collagen, specific marker for hypertrophy of growth-plate chondrocytes (Girkontaite et al. 

1996). Indeed, the hypertrophic chondrocytes in OA cartilage and in the growth-plate 

share similarities and the subsequent functional event associated with hypertrophic 

differentiation is cartilage mineralization which is also a feature of OA. However, the 

mechanism involved in pathological cartilage calcification during OA is not completely 

understood.  

 

1.2.1.2. Synovium in osteoarthritis  

Inflammation of the synovial membrane (synovitis) is identified in many OA patients 

despite lower severity and greater variability as compared to rheumatoid arthritis. It is 

reported that synovitis can occur even in early stages of the disease (Benito et al. 2005). 

Synovitis is associated with symptoms such as pain, the degree of joint dysfunction, the 

rapid degeneration of cartilage, and is characterized by the thickening of the synovial 

lining layer, leukocyte infiltration, and thickening of the sub-lining stroma. The 
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mechanisms underlying the development of synovitis in OA remain unclear. It is however 

well known that this inflammatory process is triggered by ECM degradation products, 

which engage Toll-like receptors and the complement cascade (Scanzello et al. 2012). 

Noteworthy, the synovial reaction may produce a variety of cytokines and chemokines, in 

turn affecting catabolism of chondrocytes (Scanzello and Goldring 2012).  

 Of all cell types in the inflamed OA synovium, the macrophages are among the most 

abundant and depletion of synovial macrophages has been shown to result in decreased 

osteophyte formation, and IL-1, TNF-α, IL-6, IL-8, MMP-1, MMP-3 production 

(Bondeson et al. 2010). Natural killer cells and dendritic cells are also reported to present 

in synovial tissue. However, the role of both of them in OA pathogenesis has not yet been 

elucidated in detail.  

1.2.1.3. Subchondral bone in osteoarthritis  

Articular cartilage helps to distribute load across the whole joint surface. Any alteration in 

the properties of cartilage leads to alter load experience by the underlying bone and 

probably causes a tissue remodelling response. The properties of bone might also modulate 

how the overlying cartilage reacts to load. 

Although OA is often characterized as a disease of articular cartilage, the alteration of 

bone metabolism is increasingly recognised as a mediator of pain and OA progression. 

Subchondral bone consists of a dome-like subchondral plate and underlying trabeculae, 

having a close biomechanical and biochemical relationship with the overlying cartilage. 

Strong evidence associates subchondral bone alterations with cartilage damage and loss in 

OA (Karsdal et al. 2014). However, there is still an incomplete understanding of the 

mechanisms for the numerous pathophysiological alterations detected in subchondral bone 

with OA.  

The pathological cascade may be started when the normal subchondral bone suffers from a 

non-physiological strain. In early-stage OA, the subchondral plate becomes thinner and 

more porous, together with initial cartilage degeneration.  Subchondral trabecular bone 

also deteriorates, with increased separation and thinner trabeculae. At the same time, 

microdamage begins to appear in both calcified cartilage and subchondral bone, which will 

persist throughout the whole pathological process. In late-stage OA, calcified cartilage and 

the subchondral plate become thicker, with duplicated tidemarks and progressive non-

calcified cartilage damage.  Subchondral trabecular bone becomes sclerotic (Li et al. 2013). 
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The sclerosis of periarticular mineralized tissues may be a biomechanical compensational 

adaption to the widespread cysts and microdamage in subchondral bone, which render 

subchondral bone structure more fragile (Figure 1.5).  

Despite increased bone volume density in the sclerotic subchondral bone, its 

mineralization is reduced and lower than in normal joints. Although collagen synthesis is 

elevated in subchondral bone, the deposited collagen is hypomineralized and has a 

markedly reduced calcium-to-collagen ratio [42].  

 

Figure 1.5: Alteration in subchonral bone in Osteoarthritis  

In early stage of OA, subchondral microdamage occurs, the subchondral plate is thinner 
with increased porosity, and subchondral trabeculae are deteriorated. At OA later stage, the 
calcified cartilage and subchondral plate is thicker, with reduplicated tidemarks. 
Subchondral trabecular bone becomes sclerotic (adapted from Li et al, 2013)(Li et al. 2013) 
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1.2.1.4. Osteophytes 

Osteophytes, considered as an adaptation to the altered biomechanics, are non-neoplastic 

osteo-cartilaginous protrusions growing at the margins of OA joints, and represent areas of 

new cartilage and bone formation. Osteophytes limit joint movement, represent a source of 

joint pain, and are a radiographic hallmark of OA. However, it is noteworthy that when 

osteophytes appear in the absence of other bony changes, e.g. subchondral cysts or 

subchondral sclerosis, they may be a manifestation of aging, rather than of OA. 

Osteophytes derive from precursor cells within periosteal or synovial tissue (van der Kraan 

et al. 2007) but the initial stimuli for osteophyte formation remains unclear, probably 

involving both mechanical and humoral factors as repeated injections of mouse joints with 

TGFβ or BMP induced or enhanced osteophyte formation in animals with experimentally 

induced OA (van Beuningen et al. 1998).  

Osteophytes are composed of cells that express type I procollagen mRNA, mesenchymal 

prechondrocytes that express type IIA procollagen mRNA, and maturing chondrocytes that 

express type IIB procollagen mRNA. Based on the spatial pattern of gene expression and 

cytomorphology, the neochondrogenesis associated with osteophyte formation closely 

resembles that of healing fracture callus (Matyas et al. 1997) and is also similar to the 

growth plate. Thus, osteophytes may represent an excellent in vivo model for induced 

cartilage repair processes. 

1.2.2. Anabolic and catabolic signalling in OA  

Anabolic and catabolic activation are largely the result of exposing cells to various 

cytokines and growth factors e.g. TGFβ, BMPs, IGF-1, TNF-α, IL-1β, Wnt3a. In OA 

cartilage, the catabolic and anabolic equilibrium is broken and favours the activation of 

catabolic pathways or mechanisms leading to matrix degradation.  

1.2.2.1.Anabolic signalling in OA 

As previously mentioned, the early phase of the response to mechanical injury is 

characterized by the attempt to repair the damage matrix by increasing the anabolic 

activity of chondrocytes, enhancing synthesis of extracellular matrix components. This is 

facilitated by enhancing levels of anabolic factors e.g. TGFβ, FGF, and BMPs, and Wnt.  

1.2.2.1.1. TGFβ signalling  
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The TGFβ family, consisting of over 35 members including TGFβ and BMPs, has been 

widely known to play a crucial role in the development and homeostasis of various tissues. 

Activated TGFβ (TGFβ-1, -2, -3) binds to their two receptor complex, TGFβ-R1 and 

TGFβ-RII and phosphorylates members of the receptor-specific Smad family, Smad2 and 

Smad3. Upon phosphorylation, Smad2/3 subsequently forms a complex with the common 

mediator Smad4. This complex then translocates into the nucleus where it can act as a 

transcription factor. Unlike TGFβ-1, -2, -3 which signal via Smad2/3/4, BMPs transduce 

their signal through Smad-1, -5 and -8 (Miyazawa et al. 2002, Verrecchia et al. 2002).  

Members of the TGFβ family are considered potent mediators of cartilage matrix synthesis, 

in which they up-regulate the expression of several types of collagens and proteoglycan 

but down-regulate cartilage degrading enzymes (Verrecchia et al. 2001, Verrecchia and 

Mauviel 2002). Despite such promising data, therapeutic studies with TGFβ revealed 

major side effects e.g. injection or adenovirus–mediated delivery of TGFβ1 into normal 

murine knee joint resulted in joint fibrosis and osteophyte formation (van Beuningen et al. 

1998) .  

1.2.2.1.2. Wnt signalling 

The human Wnt family includes 19 members which mostly exert their function by binding 

to Frizzled (FZD) receptor proteins and LRP-5/6 co-receptor proteins, in turn activating 

several signal transduction pathways e.g. canonical, and non-canonical signalling 

pathways. In the canonical Wnt pathway, most β-catenin in the cytoplasm is sequestered 

and targeted for proteasome-mediated degradation within a multi-protein complex of 

casein kinase, axin, the adenomatous polyposis coli tumour suppressor protein (APC) and 

glycogen synthase kinase 3β (GSK3β). With the presence of appropriate Wnt ligands, 

signalling through the Frizzled receptors inhibits this degradation process, and thereby 

leads to β-catenin accumulation and translocation into the nucleus (Clevers 2006). Within 

the nucleus, it acts in concert with Tcf/Lef transcription factors to generate a 

transcriptionally active complex that regulates a number of genes e.g. MYC, cyclin D1, 

MMP3 and CD44, E-cadherin, MMP7, MMP26(Dell'accio et al. 2008, Umlauf et al. 2010). 

In contrast to the canonical pathway, non-canonical Wnt signalling is mostly a β-catenin 

independent mechanism like the Wnt/calcium and Wnt/JNK pathways in vertebrates and 

the Wnt/planar cell polarity pathway (PCP) in flies (Willert et al. 2006). In addition, there 
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are some natural extracellular inhibitory factors for Wnt signalling. One of the best 

characterized families is the Dickkopf (Dkk) family which bind to LRP-5/6 and antagonize 

the canonical pathway. Other antagonists are the secreted frizzled-related protein (sFRP) 

family which bind directly to Wnt ligands and inhibiting both canonical and non-canonical 

Wnt pathways (Kawano et al. 2003).  

A number of published data provide evidence of the critical role of Wnt signalling in OA 

development. Direct evidences come from animal model studies where β-catenin is 

conditionally activated or inhibited in articular cartilage chondrocyte of adult mice (Zhu et 

al. 2008, Zhu et al. 2009). Mice with β-catenin activated had OA-like cartilage 

degradation, osteophyte formation, associated with accelerated chondrocyte maturation 

and MMP13 expression (Zhu et al. 2009). Similarly, selective suppression of β-catenin 

signalling in Col2a1-ICAT (inhibitor of β-catenin and TCF) transgenic mice also causes 

OA-like cartilage degradation(Zhu et al. 2008). In line with these reports, in vitro culture 

of human primary chondrocyte, either activation or blockade of β-catenin signalling all 

resulted in cartilage loss (Nalesso et al. 2011).  These data suggest that balanced β-catenin 

levels are essential for maintaining homeostasis of articular chondrocytes and that any 

factors impairing this balance could lead to pathological changes. Moreover, LRP5 is 

located in chromosome 11q12-13, which is thought to be an OA susceptibility locus. 

LRP5-/- mice displayed increased cartilage degradation, probably due to low bone mass 

density (Lodewyckx et al. 2012). Another study in a mouse OA model also demonstrated 

that control of Dkk1 expression, a negative regulator of β-catenin/Wnt signalling, prevents 

joint cartilage deterioration in OA knees through attenuating the apoptosis regulator Bax, 

MMP3 and RANKL (Weng et al. 2010). Also, the inhibition of Dkk1, has been reported to 

be able to reverse the bone-destructive characteristics of rheumatoid arthritis to the bone-

forming characteristics of OA (Diarra et al. 2007). This evidence further supports the 

crucial role of β-catenin/Wnt signalling in OA. Wnt signalling is also reported to function 

as an OA initiation factor e.g. a down-regulation of Wnt antagonist FRZB and an up-

regulation of the ligand Wnt16 and target genes encoding β-catenin, Axin-2, C-JUN and 

LEF-1 was observed in mouse model of mechanical injury, a major cause of OA; 

expression of WNT1-inducible signalling protein (WISP-1) was also increased twofold in 

cartilage lesions compared to healthy intact cartilage (Blom et al. 2009).  
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Human studies also observed the critical role of WNT signalling in OA development. A 

loss-of-function allelic Arg200Trp and Arg324Gly Frzb variants, encoding sFRP-3, a β-

catenin/Wnt signalling inhibitor, contributed to genetic susceptibility of women to hip OA 

(Loughlin et al. 2004, Lane et al. 2006). Given the close relationship between bone shape 

and OA development, Baker-Lepain et al proposed that SNPs in Frzb are associated with 

the shape of proximal femur and further contribute to hip OA development (Baker-Lepain 

et al. 2012). Moreover, the Frzb knockout mice increased articular cartilage loss during 

arthritis triggered and this damage was associated with increased WNT signalling and 

MMP-3 expression and activity. Also, the FRZB deficiency resulted in the cortical bone 

thickness and density with stiffer bones (Lories et al. 2007). 

1.2.2.2. Catabolic signalling in OA 

Opposing the anabolic effects of growth factors are pro-inflammatory cytokines and a 

variety of mediators associated with inflammation e.g. NO, prostaglandins, IL-1β, TNF-α, 

IL-6, IL-8 These factors are first produced by the synovial membrane and diffuse into the 

cartilage through synovial fluid, together with activate chondrocytes which also have the 

capacity to produce a variety of cytokines and mediators, responsible for functional 

alterations in the synovium, the cartilage, and the subchondral bone. Their role in OA has 

attracted considerable attention.   

Of pro-inflammatory cytokines, IL-1β, TNF-α seem prominent and of major importance to 

cartilage destruction. The biologic activation of cells by IL-1 is mediated through the 

association with its specific receptors e.g. type I and II IL-1R. Especially, the type I IL-1R, 

responsible for signal transduction, was found to increase in OA chondrocytes and 

synovial fibroblasts. IL-1β is a critical mediator, and stimulation of chondrocytes by IL-1β 

causes gene expression patterns similar to those in OA cartilage (Goldring et al. 1988, 

Lefebvre et al. 1990). IL-1β localizes to the site of cartilage degradation in OA joints, 

providing evidence of its key role in the pathogenesis of OA (Tetlow et al. 2001, Pujol et 

al. 2008). IL-1β was reported to suppress aggrecan and collagen and up-regulate the 

proteolytic enzymes e.g. ADAMTS4 and MMP13 (Goldring 2000, Kobayashi et al. 2005).  

In addition, IL-1β, or IL-1β-converting enzyme knockout mice showed the accelerated 

development of OA lesions in response to OA surgical induced compared to wild type 

mice (Clements et al. 2003).  The blocking effects of IL-1β by IL-1 receptor antagonist 
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(IL-1ra), which is the natural inhibitor of IL-1β by competing with IL-1β for occupancy of 

the IL-1β cell surface receptors but cannot initiate cellular signals protect against the 

development of experimentally induced OA lesions in animal models e.g. dogs, horses 

(Pelletier et al. 1997, Frisbie et al. 2002).  Interestingly, it was reported that the IL-1β 

concentration is low in inflamed joints and a level from 10-1000 fold excess of IL-1ra over 

IL-1β was required to efficiency block all of the available IL-1β  receptors enough to 

inhibit joint degradation (Pelletier et al. 1997). 

1.2.2.2.1. NFκB Signalling  

The transcription factor NFκB is the master regulator of expression of a number of genes 

critical to innate and adaptive immunity, cell proliferation, and inflammation. NFκB is 

held in the cytoplasm in an inactive form associated with the inhibitory κB (IκB) protein. 

A broad range of stimuli, including TNF-α, IL-1β, bacteria and viruses trigger a cascade of 

signalling, leading to release of NFκB from IκB. The activated NFκB will then translocate 

to the nucleus, bind to DNA elements present in its target genes and facilitate their 

transcription.  

Numerous published data support the central role of NFκB signalling in cartilage 

metabolism and development of OA e.g. IκB overexpression in human OA synovial 

fibroblasts resulted in a decrease in expression of IL-6, IL-8, MPC-1/CCL-2, and MMPs 

(Amos et al. 2006) as well as abolishing the IL-1β-induced effect on expression of 

ADAMTS-4 (Bondeson et al. 2007); In a mouse surgically induced OA model, siRNA 

inhibiting NFκB/p65 resulted in reducing the amount of IL-1βand TNF-α in synovial fluid, 

reducing the level of inflammation in the synovium, and decreasing cartilage damage 

(Chen et al. 2008).  

1.2.3. Risk factors for Osteoarthritis  

The pathogenesis of OA is complex and poorly understood but involves the interaction of 

multiple factors ranging from genetic predisposition to mechanical and environmental 

components. Studies are in progress to define the molecular mechanisms involved in 

initiation and progression of OA. 

1.2.3.1.Trauma and altered mechanical load  

Mechanical factors and trauma have a central role in the initiation and propagation of OA: 

Excessive load and trauma which lead to injury of the menisci or ligaments predispose to 
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the development of the disease; the level and nature of the load experienced might also 

influence the progression of joint damage: an acute trauma leading to rupture of the 

meniscus or the cruciate ligaments might precipitate the development of OA. However, the 

differing contributions to this effect of the initial trauma and the ensuing mechanical 

instability have not been clearly delineated; also, in immobilized joints, there is lack of OA: 

further supporting the importance of mechanical triggers in the disease process (Riordan et 

al. 2014).   

After joint trauma, the onset and progression of clinical symptoms differs even among 

groups with the same type of injury and physical activity profile, pointing to the 

involvement of other factors apart from the trauma.  

1.2.3.2. Inflammation 

Histologically, the disease was denominated osteoarthrosis, a term that implied the absence 

of inflammation. However, data acquired using high-sensitivity assays for inflammatory 

markers (such as C-reactive protein) demonstrate that low-grade inflammation is present 

(Pearle et al. 2007). Numerous inflammatory cytokines are found at increased levels in 

joint tissues during the acute post-injury phase, including IL-1, IL-6, IL-17, and TNFα 

(Lee et al. 2009). Inflammation seems to be a very early event in OA since the increase of 

CRP levels precedes the release of other OA indicators or molecular markers of matrix 

breakdown, and is observed well before clinical disease. 

Inflammatory might be of particular importance to the onset and propagation of the 

primary and secondary OA. However, why the inflammation triggered in OA remains 

controversial. It was hypothesized that it was caused by traumatic joint injury or an age – 

related process. Joint injury leads to cartilage degradation and tissue damage. Once 

degraded, cartilage fragments accumulate in the joint and contact the synovium. 

Considered foreign bodies, synovial cells react by producing inflammatory mediators, 

found in synovial fluid. These mediators can activate chondrocytes present in the 

superficial layer of cartilage, which leads to metalloproteinase synthesis and, eventually, 

increase cartilage degradation. Published data support for the hypothesis that inflammation 

was triggered by aging process: advance glycation endproducts (AGEs), produced by a 

non-enzymatic process in aging tissue, weaken cartilage by modifying its mechanical 

properties triggering chondrocyte activation by binding to specific receptors present at the 
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surface of the chondrocytes, called RAGE (receptor for AGEs) lead to an overproduction 

of proinflammatory cytokines and MMPs (Nah et al. 2007); or after a period of vigorous 

proliferation, chondrocyte division rate declines but has high capacity to synthesize soluble 

mediators which in turn induces several inflammatory and pro-degradative mediators.   

1.2.3.3. Obesity  

Obesity is a well known risk factor for the initiation and progression of OA. This 

association is obvious because any overload on a weight – bearing joint would provoke 

tear and wear at the surface of the cartilage.  

The molecular mechanisms explaining why obesity is one of the major risk factors for OA 

(Messier et al. 2005) is not exactly known. It is possible that the excess weight increases 

the load borne by all parts of the joint.  However, the association between overweight and 

OA is not simply a question of increased mechanical load because obesity acts as a risk 

factor for developing hand OA (Grotle et al. 2008). Together with this, published data 

from animal studies: knee cartilage from rabbits fed a high – fat diet showed lower 

glycosaminoglycan content and aggrecan-1 than cartilage from rabbits fed a normal – fat 

diet independently of animal weight (Brunner et al. 2012); OA surgical induced mice fed a 

high – fat diet from 4 weeks of age showed higher OA cartilage degeneration at 8 weeks 

after surgery than those fed a normal diet (Mooney et al. 2011); in mice transgenic for 

human C – reactive protein (CRP) on a high – fat diet, there is a lack of correlation 

between OA severity and body weight (Gierman et al. 2012). 

Many studies suggest that systemic inflammatory mediators contribute to the increased 

risk of OA with obesity. Adipose tissue, especially from the abdomen, is a rich source of 

pro-inflammatory cytokines, which are often referred to as adipokines. Many adipokines 

elevated with obesity have also been shown to mediate synovial tissue inflammation. For 

example, leptin is a 16-kd polypeptide hormone encoded by the obese (ob) gene and is 

primarily secreted by adipocytes. Female C57BL/6J mice with impaired leptin signalling 

are protected from obesity – induced OA, suggesting elevated body fat in the absence of 

leptin signalling is insufficient to induce systemic inflammation and OA (Griffin et al. 

2009).  Leptin has been found to exist at higher concentrations in the synovial fluid 

compared to serum (Presle et al. 2006). Leptin, alone or in synergy with IL-1, induced 

collagen release from bovine cartilage explants and upregulated MMP-1 and MMP-13 

expression in bovine chondrocytes(Hui et al. 2012). 



 

 

41 

 

1.2.3.4. Aging  

Aging is the most important risk factor for OA. After 40 year old, many people will appear 

to have some damage to their joints which may lead to OA, and approximately 50% of 

individuals greater than the age of 65 suffer from OA. The incidence of the disease 

through age has been observed: the prevalence of OA rises from 4% in people under the 

age of 24 to as high as 85% for those at 75-79 years of age. The common justification is 

the long-term effect of mechanical load on all joint components. Also, the regenerative 

capability of cartilage is reduced and cellular apoptosis is enhanced with age (Goldring et 

al. 2007).  

1.2.3.5.Genetic factors 

Evidence from family clustering and twin studies indicates that the risk of OA has an 

inherited component. Genetic factors may influence between 39% and 65% in 

radiographic OA of the hand and knee in OA, about 60% in OA of the hip, and about 70% 

in OA of the spine. Mutations to genes that play a role in the ECM, proteases and 

inhibitors, cytokines, and growth factors have been found to affect one’s susceptibility to 

develop of OA (Sulzbacher 2013). However, the individual effects are relatively small. For 

example, a genome – wide association study showing that the C allele of rs3815148 on chr 

7q22 was associated with a 1.14- fold increased prevalence of knee and/ or hand 

OA(Kerkhof et al. 2010). 

1.3. MicroRNAs in osteoarthritis  

1.3.1. The basic biology of miRNA  

miRNAs are an abundant class of evolutionarily conserved, short (~22nt long), single – 

stranded RNA molecules that have emerged as important post transcriptional regulators of 

gene expression by binding to specific sequences within a target mRNA (Ambros 2004, 

Bartel 2004). To date, 1424 miRNAs have been identified in human cells and each is 

predicted to regulate several target genes (Lim et al. 2005, Kozomara et al. 2011). 

Computational predictions indicate that more than 50% of all human protein – coding 

genes are potentially regulated by miRNAs (Lewis et al. 2005, Friedman et al. 2009). The 

abundance of mature miRNAs varies extensively from as few as ten to more than 80,000 

copies in a single cell, which provides a high degree of flexibility in the regulation of gene 

expression (Chen et al. 2005, Suomi et al. 2008). The regulation exerted by miRNAs is 
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reversible, as feedback/forward regulatory loops have been shown to exert modifying 

effects during translation (Inui et al. 2010) . 

1.3.1.1. MicroRNA discovery  

In 1981, the first miRNA: lin-4 was discovered in Caenorhabditis elegans (Chalfie 1981). 

In the early 1990s, Ambros and Ruvkun revealed that lin-4 controlled a specific step in 

developmental timing in C.elegans by downregulating lin-14 (a conventional protein – 

coding gene) (Chalfie 1981, Lee et al. 1993, Wightman et al. 1993). They recognized that 

the lin-14 3’UTR harbours multiple sites of imperfect complementarity to lin-4 and 

proposed that lin-4 binds to these sites and blocks lin-14 translation.  

Forward genetics also discovered a second miRNA in C.elegans, known as let-7 (Reinhart 

et al. 2000) which targets lin-41 and hbl-1 (Abrahante et al. 2003, Lin et al. 2003). The 

concept of miRNAs then jumped from worms to higher species, since let-7 had well-

known homologues even in human and fly. In 2001, the term “microRNA” was coined for 

this class of non-coding gene regulators (Lagos-Quintana et al. 2001, Lau et al. 2001, Lee 

et al. 2001). The discovery of miRNAs had crossed over to human, and finding miRNA 

targets became a high priority. 

1.3.1.2. MicroRNA biogenesis  

Most of the currently known miRNA sequences are located in introns of protein coding 

genes; a lower percentage of miRNAs originate from exons or non-coding mRNA-like 

regions (Rodriguez et al. 2004). In addition, a significant number of miRNA are found in 

polycistronic units that encode more than one miRNA. The miRNAs within clusters are 

often functionally related (Lagos-Quintana et al. 2001, Lau et al. 2001).  

Despite the obvious differences between the biology of miRNAs and mRNAs, all available 

evidence suggests that these transcripts share common mechanisms of transcriptional 

regulation. Generally, the generation of a miRNA is a multi-step process that starts in the 

nucleus and finishes in the cytoplasm (Lee et al. 2002). First, miRNAs are transcribed by 

the RNA polymerase II complex (Lee et al. 2004) and subsequently capped, 

polyadenylated, and spliced (Cai et al. 2004). Transcription results in a primary miRNA 

transcript (pri-miRNA) that harbors a hairpin structure (Lee et al. 2002, Kim 2005). Within 
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the nucleus, the RNAse II–type molecule Drosha and its cofactor DGCR8 process the pri-

miRNAs into 70- to 100-nt-long pre-miRNA structures (Lee et al. 2003, Han et al. 2004), 

which in turn are exported to the cytoplasm through the nuclear pores by Exportin-5 (Yi et 

al. 2003, Bohnsack et al. 2004, Lund et al. 2004, Zeng et al. 2004). Subsequently, the 

RNAse III-type protein Dicer generates a double stranded short RNA in the cytoplasm that 

consists of the leading – strand miRNA and its complementary sequence (Grishok et al. 

2001, Hutvágner et al. 2001, Ketting et al. 2001, Chendrimada et al. 2005). This duplex 

miRNA is unwound by a helicase into a single stranded short RNA in the cytoplasm and 

the leading strand is incorporated into the argonaute protein (Ago 2)-containing 

ribonucleoprotein complex known as the miRNA-induced silencing complex, mRISC 

(Hammond et al. 2000, Hutvagner et al. 2008, Bossé et al. 2010). During this process, one 

strand of the miRNA duplex is selected as the guide miRNA and remains stably associated 

with mRISC, while the other strand, known as the passenger strand is rapidly removed and 

degraded (Martinez et al. 2002) (Figure 1.5). Selection of the appropriate strand is 

primarily determined by the strength of base pairing at the ends of the miRNA duplex. The 

strand with less-stable base pairing at its 5’ end is usually destined to become the mature 

miRNA (Khvorova et al. 2003, Schwarz et al. 2003, Hutvagner 2005). However, some 

miRNA passenger strands are thought themselves to negatively regulate gene expression. 

One hypothesis is that both strands could be used differently in response to extracellular or 

intracellular cues, to regulate a more diverse set of protein –coding genes as needed, or 

strand selection could be tissue specific (Ro et al. 2007). The mature miRNA guides the 

RISC complex to the 3’UTR of its target miRNA (Lai 2002, Bartel 2009) . The seed 

sequence, comprising nucleotides 2-8 at 5’-end of the mature miRNA, is important for 

binding of the miRNA to its target site in the mRNA (Lewis et al. 2005). Association of 

miRNA with its target results in mRNA cleavage (if sequence complementarity is high) or 

more usually in higher eukaryotes, blockade of translation (Zeng and Cullen 2004) (see 

below). 

In an alternative pathway for miRNA biogenesis, short hairpin introns termed mirtrons are 

spliced and debranched to generate pre-miRNA hairpin mimics (Berezikov et al. 2007, 

Okamura et al. 2007, Ruby et al. 2007, Westholm et al. 2011, Sibley et al. 2012). These 

are then cleaved by Dicer in the cytoplasm and incorporated into typical miRNA silencing 
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complexes (Berezikov et al. 2007, Okamura et al. 2007, Ruby et al. 2007, Westholm and 

Lai 2011, Sibley et al. 2012). The presence of mirtrons may be an evolutionary strategy to 

diversify miRNA-based gene silencing (Lau et al. 2009). 

1.3.1.3. Mechanisms of action of miRNAs 

Mammalian miRNAs often have several isoforms encoded from one or more chromosome, 

suggesting that they are functionally redundant (Heimberg et al. 2008, Kim et al. 2009).  

They may exert variable roles in vivo via differences in their expression pattern and 3’-end 

binding (Ventura et al. 2008).  

Regulation is mainly exerted by the binding of the miRNA to the 3’UTR of the target 

mRNA, but binding to other positions on the target mRNA, e.g. in 5’UTR or coding 

sequence has also been reported (Lytle et al. 2007, Lee et al. 2009, Li et al. 2009). 

Interestingly, miRNA binding sites within the coding region of a transcript are reported as 

less effective at mediating translational repression.  Aside from the location of miRNA 

binding sites, factors including the sequence context of the miRNA binding site, the 

number of target sites within the mRNA, the focal RNA structure, the distance between 

target sites, all contribute to the efficacy of repression mediated by miRNAs (Brennecke et 

al. 2005, Sætrom et al. 2007). 

 The degree of base pairing between the miRNA and its target in the mRISC complex 

determines the fate of the transcript. If there is perfect binding between the miRNA and 

target, the mRNA target is cleaved by Ago2 at the annealing site, with subsequent 

degradation of the mRNA.  In contrast, in cases where the miRNA is only partially 

complementary to its corresponding 3’UTR, inhibition of target mRNA translation occurs 

via Ago1. Repression may be exerted either at the initiation step of mRNA translation in 

which Ago competes with eIF4E or at some stage subsequent to initiation (Kiriakidou et al. 

2007) (Figure 1.6). This is because miRNA-mRISC complex can bind to actively 

translating mRNAs, reducing translational elongation and/ or enhancing termination, 

concomitant with a reduction in ribosome initiation and nascent peptide destablilization 

(Petersen et al. 2006). 
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Interestingly, besides generally promoting mRNA cleavage or translational repression, 

miRNA binding to 3’UTR can also induce translation of some target mRNAs. MicroRNAs 

have been identified which activate translation on cell cycle arrest by directing AGO-

containing protein complexes to AU-rich elements in the 3’UTR (Vasudevan et al. 2007, 

Vasudevan et al. 2007) 
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Figure 1.6: Biogenesis of miRNAs.  

MicroRNAs are transcribed as RNA precursor molecules (pri-miRNA), which are 
processed by Drosha and its cofactor DGCR8 into short hairpin structure (pre-miRNA). 
These are exported into the cytoplasm by Exportin 5, where they are further processed by 
Dicer and TRBP (Dicer-TAR RNA binding protein) into a miRNA duplex. The duplex is 
unwound by a helicase and the “guide” strand is incorporated into the RNA–induced 
silencing complex (RISC) whilst the “passenger” strand undergoes degradation. This 
miRNA-RISC complex acts by two possible mechanisms: (A) Degradation of target 
mRNA occurs when miRNA is near-perfectly complementary with 3’ untranslated region 
of target mRNA; (B) Translation inhibition occurs when miRNA is only partially 
complementary to its target mRNA.  
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1.3.2. MicroRNAs in skeletal development     

It is evident that miRNAs are essential for skeletal development, however, our current 

knowledge of expression and function of specific miRNAs is still limited. Experimentally 

removing the majority of miRNAs by a block in miRNA biogenesis through mutating or 

deleting Dicer, reveals that the miRNA pathway plays a prominent role in skeletal 

development. An excellent example is the conditional knockout of Dicer in limb 

mesenchyme at the early stages of embryonic development, which leads to the formation 

of a much smaller limb. Dicer-null growth plates display a pronounced lack of 

chondrocyte proliferation in conjunction with enhanced differentiation to postmiototic 

hypertrophic chondrocytes; this latter may be explained by Dicer having distinct functional 

effects at different stages of chondrocyte development (Harfe et al. 2005). Recently, 

Kobayashi et al. reported that mice null for Dicer in chondrocytes resulted in skeletal 

growth defects and premature death (Kobayashi et al. 2008), again pointing to essential 

role of miRNAs in skeletal development.  

Further evidence of the important role of miRNAs in skeletogenesis is that some miRNAs 

were found to exhibit bone-specific and cartilage-specific expression in late development. 

Wienholds et al. first provided evidence for miR-140 specifically expressed in cartilage of 

the jaw, head, and fins in zebrafish cartilage during embryonic development (Wienholds et 

al. 2003). Later, Tuddenham et al found that miR-140 is specifically expressed in cartilage 

tissues during mouse embryonic development (Tuddenham et al. 2006). Importantly, 

Miyaki et al and then Nakamura et al reported that universal knockout of miR-140 lead to 

mild dwarfism, probably as a result of impaired chondrocyte proliferation (Miyaki et al. 

2010, Nakamura et al. 2011). Recently, Swingler et al found that miR-455-3p was 

expressed in developing long bones during chick development, restricted to cartilage and 

perichondrium, and in mouse embryos, where expression was selective in long bones and 

joints (Swingler et al. 2011). 

These studies emphasize the importance of the miRNA pathway in skeletal development 

and revealed that some miRNAs are expressed with precise tissue and developmental stage 

specificity. Intensive research will uncover a complete spectrum of skeletally associated 

miRNAs as well as elucidate their biological function.  
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Figure 1.7: An overview of miRNAs involved in chondrogenesis, osteoarthritis and 

their direct and indirect targets                                                                                                                                                                                   
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1.3.3. MicroRNAs in mechanotransduction  

Articular cartilage has the unique capacity to resist significant mechanical loading during 

the lifetime of the organism (Guilak et al. 2001). The surface, middle and deep zones 

within articular cartilage are distinct domains, and they exhibit differential gene expression 

and attendant functional roles (Neu et al. 2007).  

Mechano-responsive miRNAs are being identified in chondrocytes, the sole cell type of 

articular cartilage and evidence that specific miRNAs may impact on stress-related 

articular cartilage mechanotransduction has also been reported.  MicroRNA-365 was the 

first identified mechanically responsive miRNA in chondrocytes, regulating chondrocyte 

differentiation through inhibiting HDAC4 (Guan et al. 2011). MicroRNA-221, miR-222 

were postulated as potential regulators of the articular cartilage mechanotransduction 

pathway, since their expression patterns in bovine articular cartilage are higher in the 

weight-bearing anterior medial condyle as compared with the posterior non-weight-bearing 

medial condyle (Dunn et al. 2009). Recently, Li et al. reported that miR-146a was induced 

by joint instability resulting from medial collateral ligament transection and medial 

meniscal tear in the knee joints of an OA mouse model, suggesting that miR-146a might 

be a regulatory factor of the mechanical transduction process in articular cartilage (Li et al. 

2012). All of these studies are useful for enriching the data on the regulatory mechanism 

for miRNAs in chondrocyte homeostasis. 

1.3.4. MicroRNAs in chondrogenesis  

Differential disruption of the Dicer gene in mice resulting in highly abnormal cartilage 

development suggests miRNAs play a significant role in chondrogenic differentiation. 

Furthermore, many studies profiled the expression of miRNAs to investigate their function 

in differentiating MSCs and showed that once they differentiate into chondrocytes, 

miRNA expression significantly altered (Sorrentino et al. 2008, Suomi et al. 2008, Lin et 

al. 2009, Miyaki et al. 2009, Karlsen et al. 2011, Lin et al. 2011, Yan et al. 2011, Yang et 

al. 2011) (Table1.2). However, there is no consensus expression signature of any miRNAs 

amongst these and we attribute this to the design of experiment including inducers of 

differentiation, cell types, numbers of detected miRNA probes and organism (Table1.2).  
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Table 1.2: Studies performing miRNA profile comparing between MSC and chondrocytes 

 Sorrentino  
et al 
 2007 

Suomi  
et al 
 2008 

Lin  
et al 
 2009 

Miyaki  
et al 
2009 

Yang 
 et al, 
 2010 

Lin  
et al 2011 

Yang  
et al 
2011 

Karlsen  
et al 
 2011 

 

Stimulators - TGF-β3 BMP-2 BMP-2 
TGF-β3 

TGF-β3 - - -  

Cells  BM MSC BM MSC C12C2 BM 
MSC 

BM 
MSC 

DAC BM MSC 
AC 

DAC  

Organisms Human  Mice  - Human Mice Human  Mice Human  
Probes 226  35 - - 7,815 - - 875  
Cutoff(fold) 1.3 - 1.5 1.5  5  4 - -  
Platform microarray qPCR microarray microarray microarray microarray microarray microarray  
miRNAs 
up- 
regulated 

31 
32 
136 
146 
149 
185 
Pre-mir 
192 
199a-2-5 
204 
212 
Pre-mir-212 
Pre-miR- 
214 

24  
101 
124a  
199b 
199a 

199* 
221  
298  
374  
let-7e  
 

15b 
16 
23b  
27b 
140 
148 
197  
222 
328  
505  
 

30a 
81a-1 
99a 
125* 
127 
140 
140* 
Let-7f 
 

26a 
140*  
140  
222 
320a  
320d 
491*  
547-5p 
720 
1308 
let-7d  
let-7f  
let-7a  
 
 

21  
22 
27b 
27a 
140 
140*  
152  
291b* 
 330  
431  
433 
455 
let-7b  
let-7d 
let-7l  

30d  
140*  
210 
451  
563  
 

 

miRNAs 
down 
-regulated 

10a 
10b  
21 
23a 
24-1-3p 
24-2 
26b 
29b 
30a-5p 
34 
100 
103-2 
107 
130a 
138-1 
Pre-miR- 
143 
145 
181a-1 
191-5p 
let-7a-1 
let-7a-2 
let-7a-3 
let-7c 
let-7d 

18 
96 

21 
125a  
125b 
143 
145 
210 
 

 125b* 
132 
143 
145 
212 
 

18a 
27a  
146a 
193b  
220b  
342-5p 
335 
365 
519e 
548e  
1248  
1284  
 

1 
23a 
23b 
24  
26b 
99a  
99b 
99b*  
125a-5p  
143 
144 
145 
146a 
181a  
181d 
191 
199a  
199a* 
210  
320 
355-5p 
431 
503 
652 
Let-7a  
Let-7c 
Let-7g 
Let-7f 

15b 
31  
132 
138 
143  
145  
221  
222  
379  
382 
432  
494  
654* 
1308 
let-7e  
 

 

AC: Articular chondrocytes; BM MSC: Bone marrow mesenchymal cells; DAC: 
dedifferentiated articular chondrocytes.  
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The regulation of chondrogenesis of murine MSCs in response to stimulation of TGF-β3 

was investigated (Suomi et al. 2008, Yang et al. 2011) (Table1.2).  Suomi et al compared 

the expression of 35 miRNAs in chondroblasts derived from MSCs, and found that miR-

199a, miR-124a were strongly up-regulated while miR-96 was substantially suppressed 

(Suomi et al. 2008). They demonstrated how miRNAs and transcription factors could be 

capable of fine-tuning cellular differentiation by showing that miR-199a, miR-124a, miR-

96 could target HIF-α, RFX1, Sox5, respectively (Suomi et al. 2008). Similarly, Yang et 

al , revealed eight significantly up-regulated and five down-regulated miRNAs (Yang et al. 

2011) in this process. The miRNA clusters, miR-143/145 and miR-132/212 were down-

regulated, with miR-132 the most down-regulated whilst miR-140* was the most up-

regulated (Yang et al. 2011). Similar expression patterns of miR-145, miR-143 were also 

described in other studies (Lin et al. 2009, Karlsen et al. 2011, Lin et al. 2011, Yan et al. 

2011).  Corresponding targets of these differentially expressed miRNAs were predicted 

including: ADAMTS5 (miR-140*), ACVR1B (miR143/145), SMAD family members: 

SMAD1 (miR-30a), SMAD2 (miR-132/212), SMAD3 and SMAD5 (miR-145), Sox 

family members: Sox9 (miR-145); Sox6 (miR-143, miR-132/212), Runx2 (miR-30a and 

miR-140*) (Yang et al. 2011).  

Further study has confirmed miR-145 as a key mediator which antagonizes early 

chondrogenic differentiation in mice via attenuating Sox9 at post-transcriptional level. 

(Yang et al. 2011).  Interestingly, cells over-expressing miR-145 significantly decreased 

the expression of chondrogenic markers at the mRNA level including Col2a1, Agc1, 

COMP, Col9a2 and Col11a1. Consistent with this,, Martinez-Sanchez et al. reported miR-

145 as a direct regulator of Sox9 in normal human articular chondrocytes though binding 

to a specific site in its 3’UTR, which is not conserved in mice (Martinez-Sanchez et al. 

2012). Similarly, over-expression of miR-145 in articular cartilage chondrocytes reduced 

the levels of Sox9, the cartilage matrix components Col2a1 and Agc1 in combination with 

a significant increase of the hypertrophic markers Runx2 and MMP-13 (Martinez-Sanchez 

et al. 2012)  (Figure 1.7). 

This group also reported that miR-675, processed from H19, a non-coding RNA, was 

tightly regulated by Sox9 during chondrocyte differentiation. MicroRNA-675 could up-

regulate expression of Col2a1, albeit indirectly, indicating its potential importance in 
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maintaining cartilage integrity and homeostasis. Forced over-expression of miR-675  

rescued Col2a1 mRNA levels in either Sox9- or H19-depleted primary human articular 

chondrocytes (Dudek et al. 2010). Although its target mRNAs remain unknown, these data 

suggest that miR-675 may modulate cartilage homeostasis by suppressing a Col2a1 

transcriptional repressor (Dudek et al. 2010) (Figure 1.7). Moreover, by performing 

miRNA expression profile during human primary chondrocyte dedifferentiation, Martinez-

Sanchez found that 29 miRNAs were up-regulated more than two-fold and 18 miRNAs 

were down-regulated. Among these up-regulated miRNAs, miR-1247, transcribed from 

the DLK1-DIO3 locus, was of particular interest as its expression pattern still increased 

under hypoxia condition, together with miR-140. Also, miR-1247 level was found to 

correlate with cartilage-associated miR-675 across a range of 15 different mouse tissues 

(Martinez-Sanchez et al. 2013). Interestingly, SOX9, directly target of miR-1247 via 

coding sequence, inhibit this miRNA expression, suggesting a negative feedback loop 

between miR-1247 and its target SOX9 (Martinez-Sanchez and Murphy 2013).  

Another study performed miRNA profiling to find expression signatures of nearly 380 

miRNAs in C2C12 cells induced by BMP-2 for 24 hours and found  that 5 miRNAs 

including miR-199a* and miR-221 were positively regulated while miR-125a, miR-210, 

miR-125b, miR-21, miR-145, miR-143 were repressed (Lin et al. 2009).  Interestingly, 

using C3H10T1/2 cells, a well-established in vitro cell model of chondrogenesis, showed 

that miR-199a* expression was reduced significantly within several hours following BMP-

2 treatment and then rose dramatically at 24 hours and remained higher thereafter, 

indicating that miR-199a* may function as a suppressor of the early steps of chondrogenic 

differentiation (Lin et al. 2009). Indeed, enforced miR-199a* expression in C3H10T1/2 

cells or in the prechondrogenic cell line ATDC5, suppresses multiple markers of early 

chondrogenesis, including Col2a1 and COMP, whereas the antagomir blocking miR-199a* 

function has the opposite stimulatory effect (Lin et al. 2009). Consistent with these 

observations, Smad1, a positive downstream mediator of BMP-2 signalling, was shown to 

be a direct miR-199a* target. Moreover, miR-199a*, through its inhibition of the Smad 

pathway, is able to inhibit the expression of downstream genes such as p204 (Lin et al. 

2009) (Figure 1.7). 

The change in expression pattern of miRNAs across the dedifferentiation of chondrocytes 

also, adds to our understanding of the biology of in vitro human chondrogenesis (Karlsen 
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et al. 2011, Lin et al. 2011). MicroRNA-451, miR-140-3p, miR-210, miR-30d, and miR-

563 were reported to be highly expressed on human primary articular chondrocytes at early 

passage compared with their dedifferentiated counterparts, suggesting their role as 

inhibitors of differentiation in vitro (Lin et al. 2011). Of these miRNAs, miR-140-3p had 

the highest expression. Conversely, 16 miRNAs were significantly up-regulated in 

dedifferentiated articular chondrocytes, reflecting their potential as modulators of the 

chondrogenenic process. Notably, miR-143, miR-145 also had similar expression patterns 

as previously reported (Lin et al. 2011). A second study also reported a group of 5 

miRNAs:  miR-451, miR140-3p, miR-210, miR-30d, and miR-563 upregulated on 

differentiation which may inhibit molecules participating in the dedifferentiation process 

whilst a further 16 miRNAs were downregulated and may potentially act conversely.  

Recently, performing miRNA profiling across ATDC5 cell induced differentiation within 

42 days to identify miRNAs with functions in cartilage development, we identified 7 

cluster groups of miRNAs which may function cooperatively (Swingler et al. 2011). 

Among these, 39 miRNAs were found potentially co-regulated with miR-140 with 

expression increase during chondrogenic process (Swingler et al. 2011). Especially 

interesting is miR-455, located in an intron of the protein coding gene Col27a1, a 

cartilage-expressed collagen, which showed similar expression kinetics to collagen XXVII 

and to miR-140.  Consistent with role for miR-140 in modulating TGFβ signalling, miR-

455-3p was also found to directly target Smad2, ACVR2B and CHRDL1, again potentially 

attenuating the TGFβ pathway (Swingler et al. 2011) (Figure 1.7). 

MicroRNA-140 shows a generally consistent expression pattern between studies.  Indeed, 

cartilage miRNA research to date has focused heavily on miR-140 and has successfully 

shown the key roles of miR-140 in chondrocyte proliferation and differentiation. Miyaki et 

al compared gene expression profiling using miRNA microarrays and quantitative 

polymerase chain reaction in human articular chondrocytes and human mesenchymal stem 

cells. They demonstrated that miR-140 had the largest difference in expression between 

chondrocytes and MSCs (Miyaki et al. 2009), and this is in agreement with latter 

publications in human, rat and mice (Karlsen et al. 2011, Lin et al. 2011, Yan et al. 2011, 

Yang et al. 2011).  MicroRNA-140 was first shown to target Hdac4, a known co-repressor 

of Runx2 and MEF2C transcription factors essential for chondrocyte hypertrophy and bone 
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development (Tuddenham et al. 2006).  miR-140 also targets Cxcl12 (Nicolas et al. 2008) 

and Smad3 (Pais et al. 2010), both of which are implicated in chondrocyte differentiation. 

Interestingly, miR-140 is reported to suppress Dnpep, an aspartyl aminopeptidase, which 

has been suggested to antagonize BMP signalling downstream of Smad activation 

(Nakamura et al. 2011). Moreover, Sox9 a major transcription factor in maintaining 

cellular phenotype and preventing hypertrophy, particularly with L-Sox5 and Sox6, 

(Yamashita et al. 2012), is shown to control the expression of miR-140 (Yang et al. 2011, 

Nakamura et al. 2012).  

The miR-194 is a key mediator during chondrogenic differentiation via suppression of the 

transcription factor Sox5 (Xu et al. 2012). The expression of miR-194 was significantly 

decreased in chondrogenic differentiation of adipose-derived stem cells (ASCs). 

Importantly, chondrogenic differentiation of ASCs could be achieved through controlling 

miR-194 expression (Xu et al. 2012) (Figure 1.7). 

Using three rat models e.g. bone matrix gelatin-induced endochondral ossification, 

collagen-induced arthritis and pristane-induced arthritis, Zhong et al. further demonstrated 

that miR-337 was directly implicated with chondrogenesis. miR-337 acted as a repressor 

for TGFBR2 expression at the protein level (Zhong et al. 2012). Moreover, aggrecan was 

differentially expressed in both gain- or loss-of function of miR-337 experiments,  

providing evidence that miR-337 could influence cartilage specific gene expression in 

chondrocytes (Zhong et al. 2012) (Figure 1.7). 

Kim et al. used chick as a model of chondrogenesis and focused on initiation, namely 

precartilage condensation, proliferation and migration. They reported that miR-221 and 

miR-34a, induced by c-Jun N-terminal kinase (JNK) signaling, played pivotal roles (Kim 

et al. 2010, Kim et al. 2011). Treatment of chick wing bud MSCs with a JNK inhibitor 

lead to the suppression of cell migration and stimulation of apoptosis with concurrent 

significant increase in expression of miR-221 and miR-34a (Kim et al. 2010, Kim et al. 

2011). Notably, miR-221 may be involved in apoptosis, since treatment of MSCs with a 

miR-221 inhibitor increased cell proliferation and this could be rescued by the JNK 

inhibitor (Kim et al. 2010).  MicroRNA-221 is reported to directly target Mdm2, which 

encodes for an oncoprotein with E3 ubiquitin ligase activity (Kim et al. 2010). Inhibition 

of Mdm2 expression via miR-221 suppresses ubiquitination leading to accumulation of 
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Slug protein, whose expression is associated with an increase in apoptosis (Kim et al. 

2010). Conversely, miR-34a affects MSC migration, not proliferation (Kim et al. 2011). 

EphA5, a receptor in Eph/Ephrin signaling which mediates cell-to-cell interaction, has 

been proven to be a miR-34a target (Kim et al. 2011). Moreover, via regulating 

RhoA/Rac1 cross-talk, miR-34a negatively modulated reorganization of the actin 

cytoskeleton (Kim et al. 2012), one of the essential processes for establishing chondrocyte-

specific morphology. MicroRNA-488 expression is up-regulated at the pre-condensation 

stage and then down-regulated at the post-condensation stage in chick limb chondrogenesis, 

suggested a key role in this process (Song et al. 2011). Interestingly, mir-488 could 

regulate cell–to-ECM interaction via modulation of focal adhesion activity by indirectly 

targeting MMP-2 (Song et al. 2011). More recently, this group reported that miR-142-3p 

was an important modulator in position-dependent chondrogenesis and was reported to 

regulate ADAM9 (Kim et al. 2011) (Figure 1.7). 

1.3.5.  MicroRNAs in osteoarthritis 

The effects of miRNA deregulation on OA are evident through studies comparing the 

expression of miRNAs between OA tissues and their normal articular counterparts 

(Iliopoulos et al. 2008, Jones et al. 2009). Illopoulos et al. tested the expression of 365 

miRNAs and identified a signature of 16 miRNAs, with 9 miRNAs significantly 

upregulated and 7 miRNAs downregulated in OA cartilage compared with normal controls. 

Some of these were postulated to  be involved in obesity and inflammation (Iliopoulos et al. 

2008). Interestingly, functional experiments implicated miR-9 in the regulation of MMP13 

expression, as well as miR-9, miR-98 and miR-146 in the control of TNF-α expression, 

suggesting that these miRNAs may play a protective role in OA. Moreover, miR-22, 

whose expression correlated with body mass index, directly targets PPARA and BMP-7 at 

the mRNA and protein levels, respectively. Enforced miR-22 overexpression or siRNA-

mediated suppression of either PPARA or BMP-7 resulted in increases in IL-1β and 

MMP-13 protein levels, again suggesting that miRNA deregulation can have effects on 

OA (Iliopoulos et al. 2008) (Figure 1.7).  

Additionally, Jones et al. investigated the expression of 157 human miRNAs and identified 

17 miRNAs whose expression varied by 4-fold or more when comparing normal versus 
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late-stage OA cartilage (Jones et al. 2009). Consistent with the Illopoulos data, the altered 

expression of miR-9, miR-98 and miR-146 in OA cartilage are highlighted. The over-

expression of these miRNAs also reduced IL-1β-induced TNF-α production, whilst 

inhibition or over-expression of miR-9 modulated MMP-13 secretion (Jones et al. 2009) 

(Figure 1.7). 

The miR-140 gene, located in an intron of the E3 ubiquitin protein ligase gene Wwp2 on 

murine chromosome 8 and the small arm of chromosome 16 in humans, is evolutionarily 

conserved among vertebrates. MicroRNA-140 expression in the cartilage of patients with 

OA was significantly lower than in normal cartilage (Miyaki et al. 2009, Tardif et al. 2009) 

and decreased miR-140 expression was reported also in OA chondrocytes  (Tardif et al. 

2009).                                                                                                                                                                                                                                         

Deletion of miR-140 in mice predisposes to the development of age-related OA-like 

changes (Miyaki et al. 2010, Nakamura et al. 2011) and gives a significant increase in 

cartilage destruction in surgically induced OA. Conversely, in an antigen-induced arthritis 

model, transgenic over-expression of miR-140 in chondrocytes protects against cartilage 

damage (Miyaki et al. 2010).  The ADAMTS5 gene has been shown to be a direct target of 

miR-140, whilst reciprocal regulation of ADAMTS5 in the in vivo models above suggests 

that suppression of OA may involve regulation of ADAMTS5 (Miyaki et al. 2010). 

Swingler et al. show that miR-140 is increased in expression in hip OA cartilage compared 

to fracture controls (Swingler et al. 2011), but ADAMTS5 expression is decreased in the 

former samples.  As above, Nakamura et al. identified the aspartyl aminopeptidase Dnpep 

as a key target for miR-140 essential for skeletal defects in miR-140 null mice (Nakamura 

et al. 2011).  Using functional interference, Tardif et al. confirmed IGFBP-5, whose 

expression in human chondrocytes was significantly higher in OA, as a direct target of 

miR-140 (Tardif et al. 2009). More recently, miR-140 was shown to directly mediate 

MMP13 expression in vitro by luciferase reporter assay (Liang et al. 2012) (Figure 1.7). 

The human genome contains two miR-27 genes [mir-27a and miR-27b] on chromosomes 

19 and 9, respectively, and their major products differ by only 1 nucleotide in the 3’ region. 

MicroRNA-27a expression was shown to be decreased in OA compared to normal 

chondrocytes (Tardif et al. 2009). Down-regulation of miR-27a was proposed to be 

connected with adipose tissue dysregulation in obesity, a strong risk factor for OA. Tardif 
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et al. suggested that miR-27a may indirectly regulate the levels of both MMP-13 and 

IGFBP-5 by targeting upstream positive effectors of both genes (Tardif et al. 2009).  

Conversely, expression miR-27b was found to be significantly lower in OA cartilage 

samples compared with normal counterparts where it inversely correlated with MMP13, a 

direct target (Akhtar et al. 2010). This points to the possibility of novel avenues for OA 

therapeutic strategies (Figure 1.7).  

MicroRNA-146a was strongly expressed in chondrocytes residing in the superficial layer 

of cartilage and in low-grade OA cartilage (Yamasaki et al. 2009, Li et al. 2012). Its 

expression level gradually decreased with progressive tissue degeneration. Interestingly, 

when miR-146 was highly expressed, the expression of MMP13 is low, suggesting that 

miR-146a has target genes that play a role in OA cartilage pathogenesis (Yamasaki et al. 

2009). MicroRNA-146a has recently been implicated in the control of knee joint 

homeostasis and OA-associated algesia by balancing the inflammatory response in 

cartilage and synovium with pain-related factors in glial cells (Li et al. 2011). As such, it 

may be useful for the treatment of both cartilage regeneration and the pain symptoms 

caused by OA (Figure 1.7). 

Park et al reported the miR-127-5p, an important mediator in OA whose expression was 

significant decreased in OA articular cartilage compared to the control counterpart, 

directly target MMP13. Noteworthy, pre-treatment with MAPK inhibitors and NFκβ 

inhibitor attenuated the inhibitory effects of IL-1 on miR-127-5p expression while 

overexpression of miR-127-5p significantly inhibited the phosphorylation of JNK, p38 and 

Iκβα in the human chondrocytes. These data suggest a reciprocal regulatory loop between 

NFκβ, MAP kinase, and IL-1β in controlling MMP13 expression  (Park et al. 2013).  

1.3.6.  MicroRNAs in inflammation 

Some miRNAs could be of importance in the inflammatory events of osteoarthritis. 

MicroRNA-140 was suppressed by IL-1β signaling, and transfection of human 

chondrocytes with miR-140 downregulated IL-1β driven induction of ADAMTS5 (Miyaki 

et al. 2009).  However, contrary to this, Liang et al. reported that expression of miR-140 
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and MMP-13 was elevated in IL-1β-stimulated C28/I2 and expression of miR-140 was 

shown to be NF-κB-dependent (Liang et al. 2012) (Figure 1.7). 

Expression of miR-34a was significantly induced by IL-1β while antagonism of miR-34a 

prevented IL-1β-induced chondrocyte apoptosis (Abouheif et al. 2010), as well as IL-1β-

induced down regulation of type II collagen in rat chondrocytes (Abouheif et al. 2010).  

Other relevant miRNAs reported to be induced by IL-1β are miR-146a (Yamasaki et al. 

2009, Li et al. 2012), miR-34a (Abouheif et al. 2010), miR-194  (Xu et al. 2012), miR-27b 

(Akhtar et al. 2010)  (Figure 1.7). 

1.3.7. Utility of microRNAs for diagnosis  

It is evident that miRNAs in serum may become a powerful tool in the development of 

diagnostic biomarkers. MicroRNAs are relatively stable with enzymatic, freezing, thawing 

or extreme pH conditions (Mitchell et al. 2008, Link et al. 2010) due to lipid or lipoprotein 

complexes (Esau et al. 2006). Moreover, extracellular miRNAs are detectable in almost all 

body fluids and excretions including urine, faeces, saliva, tears, ascetic, pleural and 

amniotic fluid (Chen et al. 2008, Gilad et al. 2008). Interestingly, miRNAs in plasma have 

the capacity to interact with intact cells with some degree of specificity, and modify 

recipient cell gene expression and protein production via a miRNA-related mechanism 

(Arroyo et al. 2011). This opens up the possibility of genetic exchange between cells and 

the exogenous regulation of gene expression.  MicroRNA-21 was the first serum miRNA 

biomarker to be discovered: patients with diffuse large B cell lymphoma had high serum 

levels of miR-21, which was associated with increased relapse-free survival (Lawrie et al. 

2008). Subsequently, the usefulness of serum miRNAs for diagnosis and prognosis has 

been reported for solid cancers and leukemia (Ferracin et al. 2010, Kosaka et al. 2010, 

Wittmann et al. 2010). For OA,  Murata et al. examined the potential of miRNA as 

diagnostic biomarkers and found a number of miRNA in plasma some of which were 

found at different levels between RA and OA patients (Murata et al. 2010). Recently, let-

7e, miR-454, miR-886 were identified differentially expressed crilculating miRNAs in OA 

patient necessitating arthroplasty in a large, population – based cohort. Especially, let – 7e 

emerged as potential predictor for severe knee or hip OA (Beyer et al. 2014). 
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Besides the measurement of miRNAs in plasma, PBMCs could also be useful in 

developing a biomarker for OA. Circulating PBMCs such as macrophages and T cells 

accumulate in the synovium of OA patients, producing proinflammatory cytokines and 

proteinases associated with synovitis, linked to the early stages of OA progression.  It has 

been demonstrated that the high expression of miR-146a, miR-155, miR-181a and miR-

223 in PBMCs from OA patients versus normal controls may be related to the 

pathogenesis of OA (Okuhara et al. 2011). Interestingly, miR-146 and miR-223 are highly 

expressed in early-stage OA (Yamasaki et al. 2009), with expression gradually decreasing 

with OA progression with the promise for diagnosis of early OA is specificity can be 

demonstrated. 

Taken together, there is growing evidence for future miRNA-based diagnostics.  However, 

there is a requirement for detailed investigations directed at diagnostic performance 

(sensitivity, specificity, accuracy) of these promising novel biomarkers before the 

measurement of miRNAs can enter the clinic.  

1.3.8.  Utility of microRNAs in therapeutic treatment 

Currently there is no disease-modifying therapeutics available for patients suffering from 

OA. Therapeutic options are limited to oral and intra-articularly injected analgesic 

medications, and joint replacement surgery (Wieland et al. 2005). OA patients often 

present with cartilage that already exhibits a damaged matrix, and in which 

repair/regeneration is. Although cartilage seems a relatively simple tissue type to engineer 

because of its single cell type and its lack of a blood, nerve or lymph system, regenerating 

cartilage in a form that can function effectively after implantation has proven difficult. 

Several approaches are currently being investigated to utilize a miRNA-based therapy to 

overcome these problems, and these may represent a novel therapeutic application for 

pharmacological control. Currently there are over 70 clinical trials worldwide based on 

miRNA manipulation to treat a range of conditions including various cancers and 

cardiovascular disease; however, none of these to date are for arthritis. 

The targeting of miRNAs represents a novel therapeutic opportunity for OA treatment in 

which miRNA deficiencies could be corrected by either antagonizing (antagomirs) or 
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restoring (mimics) miRNA function.  Poorly expressed miRNAs could be restored by over 

expression using stable vector transfection or transfection by double-stranded miRNA, 

whilst over-expressed miRNAs could be antagonized by modified DNA oligonucleotides. 

Particularly, it has been proven that the systematic administration of antagonist miRNAs 

modified with locked nucleic acids (LNA) could function without toxicity in non-human 

primates (Elmen et al. 2008). Evidence on efficacy was also demonstrated in mouse 

models using miR-122 antisense oligonucleotides, which resulted in a decrease in hepatic 

fatty acid and cholesterol synthesis (Esau et al. 2006). In man, when miR-143/miR-145 

activity was restored in pancreatic cancer cells (in which their levels were repressed), the 

cell was no longer tumourigenic (Kent et al. 2010). Although this type of therapy has not 

been applied in OA, there is very promising evidence for therapeutic potential, e.g. the 

silencing of miR-34a by LNA-modified antisense oligonucleotides could effectively 

reduce rat chondrocyte apoptosis induced by IL-1β (Kongcharoensombat et al. 2010). This 

study revealed that silencing of miR-34a might be a novel intervention for OA treatment if 

this could be appropriately targeted.  

Another approach is to combine miRNA technology with stem cell engineering. In vivo 

MSCs participate in chondrogenesis. MSCs can be conveniently obtained with less injury 

than primary cells and manipulated in vitro and hence they are promising cells in cartilage 

regeneration. At present, autologous MSCs have been transplanted in human injured or 

osteoarthritis knees for repair of articular cartilage defects.  However, unexpected results 

from the ectopic transplantation of MSCs also have been reported, such as hypertrophy, 

mineralization, and vascularisation. Deciphering the role of miRNA regulation in the 

chondrogenesis of MSCs may open a new era of research and pave the way for the 

development of new treatments for OA  

A growing body of evidence indicates that miRNAs convey a novel and efficient way for 

the regulation of gene expression, being involved in multiple aspects of cellular processes. 

Understanding their expression profile and dynamic regulation may be the key to 

enhancing chondrogenic differentiation, or maintaining phenotype in the treatment of OA. 

Recent advances in miRNA research have provided new perspectives on the regulation of 

OA and novel insight into the potential development of therapeutic treatments. Using 

miRNAs as therapeutic targets may well become a powerful tool in the development of 
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new therapeutic approaches. However, numerous questions including potential off-target 

effects and efficient and targeted delivery in vivo need to be solved before using miRNAs 

in therapeutics  
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SCOPE OF THE THESIS 
 

OA is the most prevalent degenerative joint pathology leading to considerable problems 

with disability and pain in a huge number of people, especially the elderly population. As 

the population ages and with increased life expectancy, the burden of osteoarthritis will 

continue to rise. However, there is currently a lack of biomarkers and sensitive techniques 

for identifying and assessing patients with early changes. Also, clinical treatment for OA 

still remains unsatisfactory. Thus, deepening our understanding and gain further insights 

into the molecular mechanisms in OA would be very important for long term purpose of 

diagnosis and therapeutic treatment.  

Several hundred miRNAs have been identified so far and initial studies have linked 

specific miRNAs to OA. However, there are no key miRNAs identified so far which 

functionally impact on early human OA onset and disease progression. Thus, I undertook 

this project to identify miRNAs mediating initiation and progression of OA and dissect 

their biological function in order to identify new signalling pathways involved in the 

pathogenesis of OA. The hypothesis and specific aims of the project were: 

Hypothesis: The dysregulated expression of specific microRNAs contributes to the onset 

or progression of OA. 

 Specific aim 1: Profile miRNA and mRNA expressions in whole knee joint in DMM 

model to identify the potential miRNAs involved in the early stage of OA  

Specific aim 2: Determine the involvement of the miRNA in human end stage OA 

cartilage, in murine injury model, in chondrogenesis.  

Specific aim 3: Identify factors control the miRNA expression in articular cartilage 

Specific aim 4: Identify miRNA direct targets to identify new signaling pathways 

involved in homeostasis of articular cartilage.  
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CHAPTER 2 
MATERIALS AND METHODS 

 

2.1.Materials  

2.1.1. Murine models  

2.1.1.1. Destabilization of the medial meniscus murine model (DMM model) 

Induction of OA by destabilization of the medial meniscus (DMM) was kindly performed 

by Professor Tonia Vincent Kennedy Institute for Rheumatology, Oxford University, U.K. 

Protocols using C57Bl/6 mice were as described previously in (Burleigh et al. 2012, 

Chong et al. 2013).  

Briefly, C57Bl/6 male mice were housed 3-5 per cage in 63x54x30 cm3 standard 

individually vented cages and maintained with a 12h/12h light/dark cycle at an ambient 

temperature of 21oC. Mice were fed a certified mouse diet (RM3 from Special Dietary 

Systems, Essex, UK) and water ad libitum. 10 week old mice were anaesthetized by intra-

peritoneal injection of a 1:1:2 mixture of Hypnorm (0.315mg/ml fentanyl citrate and 

10mg/ml fluanisone; VetaPharma Ltd, Leeds, UK), Hypnovol (5mg/ml midazolam; 

Roche), and sterile water for injection, at a dose of 10ml/kg body weight. The ventral 

portion of the right knee was shaved and swabbed with iodine to prepare a sterile surgical 

field. The medial meniscus was identified and the attachment of its anterior horn to the 

tibial plateau was cut. Care was taken to avoid injury to the anterior cruciate ligament and 

the cartilage surfaces. The mice were fully mobile within 2-4 hours after surgery. After 1, 

3, 7 days after surgery, the mice were culled and knees harvested. 

2.1.1.2. Murine hip avulsion injury model  

The femoral caps of C57Bl/6 mice ages 4 weeks were avulsed using forceps as described 

in (Chong et al. 2013). After washing three times with sterile phosphate-buffered saline 

(PBS) (Life Technologies, 10010023), the femoral caps were immediately put in either 

500µl Trizol® reagent (Invitrogen, 15569-026) (for time point 0) or in 24-well plate for 

(other time points e.g. 3, 6, 12, 48 hours). 200µl of Dulbecco’s modified Eagle’s medium 

(DMEM) (Life Technologies, 10566-016) containing 100 IU/ml penicillin and 100µg/ml 
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streptomycin (Sigma, P4333) was added to each well and the plate was incubated at 37oC 

in 5% (v/v) CO2.  At the desired time points, the femoral caps were harvested (with Trizol 

reagent) and total RNA was isolated.   

2.1.2. Human end stage OA specimens and normal counterparts  

Ethical Committee approval for using discarded human tissue was received prior to the 

initiation of the studies. Full informed consent was obtained from all donors. Human 

articular cartilage was obtained from patients undergoing total hip/ knee replacement 

surgery at the Norfolk and Norwich University Hospital. In total, 8 hip and 7 knee OA 

cartilage samples were collected. 7 healthy articular cartilages were harvested from total 

hip replacement following fracture to the neck of femur. None of the healthy individuals 

had a clinical history of arthritis or other diseases affecting cartilage, no macroscopic 

lesions to the cartilage were seen.  

2.1.3. Cell lines  

All cell lines were maintained in DMEM high glucose, GlutaMAX supplement (Life 

Technologies, 10566-016) containing 10% (v/v) heat-inactivated fetal bovine serum (FCS) 

(PAA, UK), 100U/ml penicillin, and 100µg/ml streptomycin (Sigma, P4333) at 37oC in 5% 

(v/v) CO2.  

2.1.3.1.  Chondrosarcoma SW1353  

The SW1353 cell line was initiated from a primary grade II chondrosarcoma of the right 

humerus obtained from a 72 year old female Caucasian. SW1353 cells were purchased 

from the American Type Culture Collection (ATCC) (no.HTB-94).   

2.1.3.2.  Chicken dermal fibroblasts DF1 

DF-1 is a spontaneously immortalized chicken fibroblast cell line without viral or chemical 

treatment derived from 10 day old East Lansing Line (ELL-0) embryo.  DF1 was a kind 

gift from Professor Andrea Munsterberg, University of East Anglia, U.K.  

2.1.3.3.  Dicer knockdown cell lines 
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DLD-1 Parental and DLD-1 Dicer null cell lines were a kind gift from Professor Tamas 

Dalmay, University of East Anglia, U.K. These cell lines were originally purchased from 

Horizon Discovery (Cambridge, U.K.). Both cell lines were originally isolated from a 

colorectal adenocarcinoma.  
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2.2.Methods  

2.2.1. Molecular biology- based methods 

2.2.2.2. Human genomic DNA isolation 

Buffer 

Extraction Buffer: 10mM Tris-HCl pH 8 (Fisher Scientific, BP152-500), 5mM NaCl 

(Fisher Scientific, BP3581), 0.5% (w/v) SDS (Fisher Scientific, 10356463). 

DNA extraction protocol 

Human chondrosarcoma SW1353 cells were harvested from a 75cm2 flask by trypsin-

EDTA treatment (Life Technologies, 25200072) and pelleted by centrifugation at 17.3xg, 

5 minutes.  

The cell pellet was mixed well with 100µl nuclease-free water (Sigma, W4502), 400µl 

extraction buffer, 10µl Proteinase K (20mg/ml) (Sigma, P6556) and incubated at 50oC, 2 

hours.  

500µl of PCI (phenol: chloroform: isoamyl alcohol 25:24:1) (Sigma, P2069) was added, 

mixed gently and centrifuged, 10 minutes at 130,000xg. 

 The top phase was transferred to a new tube, 1 ml of chloroform (Sigma, 288306) was 

added and after vortex, the mixture was again centrifuged at 130,000xg for 10 minutes.  

The upper phase was transferred to a new tube and two volumes of 100% (v/v) ethanol 

(Sigma, 459844) were added, followed by centrifugation at 130,000xg for 5 minutes. 

 The DNA pellet was washed with 700µl of 70% (v/v) ethanol, and then centrifuged at 

130,000xg for 1 minute. Discard the ethanol. 

Finally, the pellet was dried at room temperature and dissolved in 100µl of nuclease-free 

water (Sigma, W4502). 

2.2.2.3. PCR amplification for 3’UTR regions 
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3’UTR regions of all genes including ADAMTS6, ADAMTS14, ADAMTS17, ADAMTS19, 

FZD3, FZD5, DVL3, FRAT2, and CK2A2 were downloaded from the Ensembl Genome 

Browser: http://www.ensembl.org/index.html. Primers were specifically designed to 

amplify a 1-2 kb region of 3’UTR of these genes including the miR-29 family binding 

sites. A restriction site of SacI (5’GAGCTC3’), XbaI (5’TCTAGA3’) or SalI 

(5’GTCGAC3’) are added to the 5’ end of each primer. Primer sequences are listed in 

Appendix, Table 1. 

 All 3’UTR regions were amplified from human genomic DNA, isolated from the SW1353 

cell line. 100ng genomic DNA was added together with 5µl 10X reaction buffer, 5 units 

accuTaqTM LA DNA polymerase (Sigma, D8045), 0.5µl dNTP 10µM (Bioline, BIO-

39044), 1µl forward primer 10µM (Sigma), 1µl reverse primer 10µM (Sigma) in a 50µl 

reaction volume. The reaction was run on a VeritiR 96-well thermal cycler (Applied 

Biosystems, 4375786) at 98oC, 30 seconds to denature DNA and follows by 32 cycles: 10 

seconds at 98oC, 20 seconds at annealing temperature (depending on each primer pair), 1-2 

minutes at 68oC. Finally, the reaction was left 2 minutes at 68oC for final extension.  

The PCR reaction was confirmed by loading 3µl PCR product on 1% (w/v) agarose gels, 

which were prepared by heating 1% (w/v) agarose (Sigma, A9639) in Tris-acetate-EDTA 

(TAE) buffer, and run at 120V. After staining in ethidium bromide solution (Sigma, E1510) 

for 20 minutes, the product was visualized under UV-light. 

2.2.2.4.  Phenol/chloroform clean up  

 Nuclease- free water (Sigma, W4502) was added to a PCR reaction to 200µl, followed by 

200µl of phenol: chloroform: isoamyl alcohol (Sigma, P2069). The reaction was mixed 

well and centrifuged at 130,000xg for 10 minutes. The upper phase was collected to a fresh 

tube and a 2.5 volume of 100% (v/v) ethanol (Sigma, 459844) and 1/10 volume of 5M 

NaOAc (sodium acetate, Sigma, S2889) were added, followed by centrifugation at 

130,000xg for 10 minutes. The DNA pellet was washed with 500µl of 70% (v/v) ethanol 

(Sigma, 459844), and centrifuged at 130,000xg for 10 minutes. Finally, the pellet was 

dried at room temperature for 5 minutes and dissolved in 27µl nuclease- free water (Sigma, 

W4502). 
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2.2.2.5.  Plasmid isolation  

A single colony from LB (Luria Bertani) agar plate supplemented with 100µg/ml 

ampicillin (Sigma, A0166) was inoculated into 5ml of LB broth medium also 

supplemented with 100µg/ml ampicillin incubated at 37°C, 180rpm overnight. The 

bacterial culture was pelleted by centrifugation at maximum speed for 5 minutes. Plasmids 

were isolated using the QIAprep Spin Miniprep Kit (Qiagen, 27104): The pellet was 

resuspended in 250µl of P1 buffer.  250µl of P2 buffer was added to the suspension which 

was then mixed thoroughly by vigorously inverting 4-6 times and incubated at room 

temperature for 5 minutes. After that, 50µl of P3 buffer was added and the mixture was 

inverted until a homogenous suspension containing a white flocculate was formed. The 

bacterial lysate was cleared by centrifugation at 130,000xg, 10 minutes and the supernatant 

was transferred to a spin column. The column was washed two times with 500µl of wash 

buffer. Finally, the plasmid was then eluted with 30µl nuclease free water (Sigma, W4502).  

For preparation of large quantities of plasmid DNA, the QIAGEN Plasmid MIDI Kit was 

used (Qiagen, 12143): A single colony from LB ampicillin agar plate was inoculated into 

100ml of LB medium supplemented with 100µg/ml ampicillin (Sigma, A0166), incubated 

at 37°C, 180rpm overnight and harvested by centrifugation at maximum speed for 10 

minutes at 4°C. The bacterial pellet was resuspended in 4 ml of P1 buffer, followed by 4 

ml of P2 buffer, and the suspension was thoroughly mixed by vigorously inverting the 

sealed tube 4-6 times and incubated at room temperature for 5 minutes. 4 ml of chilled P3 

buffer was added, and the suspension was thoroughly mixed by vigorously inverting 4-6 

times and incubated on ice for 15 min, followed by centrifugation at 130,000xg for 30 

minutes at 4°C. The QIAGEN-tip was equilibrated by applying 3 ml of QBT buffer, and 

the column was allowed to empty by gravity flow. The supernatant (above) was applied to 

the QIAGEN-tip. The QIAGENtip was washed twice with 10ml of wash buffer. The DNA 

was eluted with 5 ml of elution buffer and precipitated by adding 5 ml of room 

temperature 100% (v/v) isopropanol (Sigma, 190764) to the eluted DNA, followed by 

centrifugation immediately at 130,000xg for 10 minutes at 4 °C. The supernatant was 

carefully decanted. The DNA pellet was washed with 2 ml of room temperature 70% (v/v) 

ethanol (Sigma, 459844), followed by centrifugation at 130,000xg for 5 minutes. The 

supernatant was carefully decanted without disturbing the pellet. The pellet was dried for 
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5-10 min. Finally, the plasmid pellet was dissolved in 500µl of nuclease free water and the 

plasmid concentration was determined using a Nanodrop spectrophotometer.  

2.2.2.6.  Digestion  

2µg of plasmid pmiR-Glo or all PCR products after phenol/chloroform clean up was 

incubated with 1µl either SalI (10 units/ µl) (Promega, R6061), SacI (10 units/ µl) 

(Promega, R6051), or XbaI (Promega, R6181) in the recommended buffer in a final 

volume 20µl for 3 hours at 37oC. The digestion reaction was terminated by heating at 75oC 

for 15 minutes.  

After digestion, the 5’ phosphate of plasmid was removed to prevent self-ligating by 

incubating the digestion mix with 1µl Antarctic Phosphatase (5 units/µl) (NEB, M0289S) 

and 3µl Antarctic Phosphatase buffer 10X, in a final volume 30µl.The reaction was carried 

out at 37oC for 15 minutes and followed 5 minutes at 70oC to inactivate the enzyme.  

2.2.2.7.  Gel purification  

The digestion mix was applied to 1% (w/v) SeaKem® LE Agarose (Lonza, 50002). DNA 

fragments were visualized by staining with ethidium bromide (Sigma, E1510). Under UV-

light, the appropriate DNA band was excised from the gel with a clean scalpel and 

transferred into an Eppendorf tube. The Zymoclean Gel DNA Recovery Kit (Zymo 

Research, D4001) was used to purify DNA from the agarose gel. Briefly, 3 volumes of 

ADB were added to each volume of agarose excised from the gel and incubated at 37-55oC 

for 5-10 minutes until the gel slice was completely dissolved. For DNA fragments higher 

than 8kb, 1 addition volume of water was also added to the agarose. The dissolved agarose 

solution was transferred to the Zymo-spin column and centrifuged for 30 seconds at full 

speed. The flow-though was discarded. The column was washed two times with 200µl 

DNA wash buffer and centrifuged at full speed at 30 seconds. The flow-though was 

discarded. DNA was eluted with 13µl nuclease-free water (Sigma, W4502) and quantified 

using a NanoDrop spectrophotometer. 
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2.2.2.8.  Ligation 

Ligation of DNA fragments was performed with a ratio of 1:3 of plasmid DNA: insert. The 

reaction mixture was incubated with 1µl of T4-DNA Ligase (1 unit/µl) (Life Technologies, 

15224-017), 1µl of ligation buffer (10X) in a final volume of 10µl ddH2O. The reaction 

was left at 14oC for 24hours. 

2.2.2.9. Transformation 

To 100µl of competent E.coli DH5α, either 50-100ng of plasmid DNA or 10 µl of ligation 

reaction were added and incubated for 20 minutes on ice. A heat shock at 42°C for 30 

seconds was followed by incubation on ice for another 2 minutes. 500µl of LB medium 

was added to the bacteria and the bacterial suspension was shaken at 37°C and 180rpm for 

60 minutes. The bacteria were then spread on LB-agar plates containing 100µg/ml 

ampicillin (Sigma, A9393). Plates were incubated at 37°C overnight. 

2.2.2.10.  MicroRNA 29 family binding site mutagenesis  

QuikChange II XL site-directed mutagenesis kit (Agilent, 200521) was used to replace 5 

nucleotides in the binding site of the miR-29 family to either XbaI (5’TCTAGA3’), SalI 

(5’GTCGAC3’), SacI (5’GAGCTC3’) depending on which restriction enzymes were used 

in subcloning. The basic procedure utilizes PfuUltra high fidelity (HF) DNA polymerase 

for extending two mutagenic oligonucleotide primers which have desire mutations in the 

middle of their sequences and the rest of the sequence complementary to opposite strands 

of miR-GLO- 3’UTR. After cycling, PfuUltra HF DNA polymerase will generate a 

mutated plasmid containing staggered nicks (Figure 2.1). The product is then treated with 

Dpn I nuclease targeting sequence 5’-Gm6ATC-3’. Dpn I, specific for methylated and 

hemimethylated DNA, will digest the parental DNA template and select for mutant-

containing synthesized DNA. The nicked vector DNA incorporating the desire mutant of 

the miR-29 family binding site is then transformed into XL10 Gold ultracompetent cells 

(Figure 2.1). 
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Mutangenic primers were designed using Agilent’s website: QuikChange primer design 

program: www.agilent.com/genomics/qcpd. The lists of primer mutants used are listed in 

Appendix, Table 2.  
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Figure 2.1: QuikChange II XL site-direct mutagenesis method 

The reaction is prepared in a final volume of 50µl with 10ng of pmiR-Glo-3’UTR, 1.5µl 

primer mutant forward (100ng/µl), 1.5µl primer mutant reverse (100ng/µl), 1µl of dNTP 

mix (10mM), 5µl of reaction buffer (10X), 1µl of PfuUltra HP DNA polymerase (2.5 

units/µl). The reaction is cycled at 1 minute at 95oC, followed by 18 cycles at 95oC 50 

seconds, 68oC 1 minute/1 kb plasmid length, and finally extension at 68oC for 7 minutes. 

The amplification reaction was further incubated with 1µl of DpnI restriction enzyme 

(10units/µl) at 37oC for another 1 hour. To 50µl of XL10-Gold Ultracompetent cells, 5µl 

of Dpn I-treated DNA was added and the transformation protocol followed as above.  

2.2.2.11.   Sequencing  

DNA Sequencing was performed by Source BioScience 

(http://www.lifesciences.sourcebioscience.com/). The sequencing signal was read by 

Chromas 2.4. 

 

 

2.2.2.12.  Total RNA isolation 
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2.2.2.12.1. Total RNA isolation from cultured cells 

500ml of Trizol® reagent (Invitrogen, 15569-026) were added directly to adherent cells 

after removing the growth media from a 6-well plate. The cells were lysed by pipetting up 

and down several times. 250µl chloroform (Sigma, 288306) was added per 500µl Trizol®, 

vortexed for 15 seconds and incubated at room temperature for 10mins. The 

Trizol®/Chloroform mixture was centrifuged at 130,000xg, 10min, at 4oC and the aqueous 

layer recovered into a fresh tube. 500µl of 100% (v/v) isopropanol (Sigma, 190764) was 

added, mixed, left 10min at room temperature and centrifuged at 130,000xg, 10min, at 4oC 

then the supernatant was discarded. RNA pellets were washed with 75% (v/v) ethanol 

(Sigma, 459844), and centrifuged at 130,000xg, 2min, at 4oC. The supernatant was 

discarded, the pellet air dried and then suspended in 50µl RNase-free water and stored at -

80oC until further use. 

2.2.2.12.2. Total RNA isolation from murine whole knee joint 

All materials used were RNase free. Whole knee joints were ground under liquid nitrogen 

using BioPulverizer (Biospec). Trizol® reagent (Invitrogen, 15569-026) were added 

immediately to ground samples (1.5ml/50mg samples) and mixed thoroughly for 5 minutes. 

Ground knee joints were pelleted at 130,000xg for 2min at 4oC and the supernatant 

recovered. 250µl chloroform (Sigma, 288306) was added per 500µl Trizol®, vortexed for 

15 seconds and incubated at room temperature for 10mins. Samples were then treated as 

cultured cells above.  

2.2.2.12.3. Total RNA isolated from murine hip or knee cartilage  

Murine hip femoral caps were fully homogenized with 500µl Trizol® reagent (Invitrogen, 

15569-026) using a disposable pestle. Then, 200µl chloroform (Sigma, 288306) was added, 

vortexed for 15 seconds, and left at room temperature for 10mins. The Trizol®/chloroform 

mixture was centrifuged at 130,000xg for 10 minutes at 4oC, and the aqueous layer 

collected into a fresh tube. The RNA purification step was performed using mirVana™ 

miRNA Isolation Kit (AM1560, Life Technology) according to the manufactures 

recommendation for total RNA recovery. Briefly, 1.25x aqueous layer volume of 100% 

(v/v) RT ethanol was added to the aqueous phase and the samples were loaded onto 



74 

 

columns. The flow through was discarded after centrifuging 15 seconds at 130,000xg. 

Then three wash steps were followed by applying wash solution 1 (700µl), and then wash 

solution 2/3 (500µl) (twice) to the column. For each washing, the column was centrifuged 

at 130,000xg for 15 seconds followed by discarding the flow through. The columns was 

then placed in RNase-free collection tubes and 30µl of RNas-free water added. Columns 

were then left to stand for 2 minutes and centrifuged at 2 minutes, 13,000xg. RNA was 

then stored at -80oC until used.  

2.2.2.13. MicroRNA quantification and integrity  

The concentration of RNA samples was determined by measuring the absorbance at 

260nm using the NanoDrop spectrophotometer (NanoDrop Technologies). The purity of 

RNA is determined from the ratio A260/A280 and A260/A230. 

The integrity of total RNA was determined using the ExperionTM automated 

electrophoresis system (Bio-Rad, USA). This method measures fluorescence of a 

fluorophore bound to RNA. RNA integrity can be evaluated automatically by comparing 

the area of the peaks corresponding to the rRNAs. A 28S/18S rRNA ratio close to 2 

indicates for intact RNA. 

2.2.2.14.  cDNA synthesis  

2.2.2.14.1. SuperScript II reverse transcriptase cDNA synthesis 

Total RNA was isolated from cells, whole knee joints, human or murine cartilages as 

above and reverse transcribed to cDNA using SuperScript II reverse transcriptase (Life 

Technologies, 18064-014). Briefly, in a total volume of 11µl in 96-well PCR plate, 1µg 

total RNA and 0.2µg random hexamer primer (Life Technologies, 48190-011) was mixed 

together and the plate was incubated at 70oC for 10mins. Samples were chilled on ice, then, 

a master mix containing 1µl SuperScript II reverse transcriptase (200 units/µl) (Life 

Technologies, 18064-014), 4µl First Strand buffer (5X) (Life Technologies, 28028-013), 

2µl 0.1M dithiothreitol (DTT) (Life Technologies, 18057-018), 2µl of 10mM dNTP mix 

(Bioline, BIO-39044), 1µl Recombinant RNasin Ribonuclease Inhibitor (20-40 units/µl) 

(Promega, N2511) was added to the randomly primed RNA to give a total volume of 20µl 

and incubated for 1 hour at 42oC followed by a heat inactivation step at 70oC, for 10mins. 
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cDNA was diluted to 0.5µg/ml in nuclease-free water (Sigma, W4502). 5µg cDNA was 

used for qRT-PCR analysis of genes of interest and 1µg cDNA was used for analysis of 

18S rRNA. QRT-PCR is described in 2.2.2.15. 

2.2.2.14.2. M-MLV reverse transcriptase cDNA synthesis  

Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase was used to perform 

cDNA synthesis straight from cell lysate without the need of purifying total RNA. This 

method was used for cell plated in 96-well plate where a number of cells are too small for 

RNA extraction. 

Briefly, medium was removed and the cells in 96-well plate were washed with ice cold 

PBS (Life Technologies, 10010023). Then, 30µl cells to Cells-II-cDNA lysis buffer (Life 

Technologies, AM8723) was added to each well, providing a cell lysate which can 

immediately be reverse transcribed without the need for RNA isolation. Lysates were 

transferred to 96-well PCR plate and heated to 75oC for 15 minutes to inactivate RNases. 

Lysates can be stored at -80oC until reverse transcription. For genomic DNA digestion, 1µl 

DNase I 1 units/µl (Life Technologies, AM2222) and 3µl DNase I buffer (10X) were 

added per well. The plate was heated to 37oC for 15 minutes, followed by an inactivation 

step at 75oC for 5 minutes.  

For reverse transcription, 8µl of DNase-treated samples were transferred to a new ice cold 

PCR plate. Following this, 3µl of 10mM dNTP mix (Bioline, BIO-39044) and 0.2µg 

random hexamer primers (50µM) (Life Technologies, 48190-011) were added per well and 

samples were heated to 70oC for 5 minutes. Samples were chilled on ice and a master mix 

including 0.5µl Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase 200 

units/µl (Life Technologies, 28028-013), 4µl First Strand buffer (5X) (Life Technologies, 

28028-013), 2µl 0.1M dithiothreitol (DTT) (Life Technologies, 18057-018), 0.5µl 

Recombinant RNasin Ribonuclease Inhibitor (20-40 units/µl) (Promega, N2511), 1µl 

nuclease-free water (Sigma, W4502) was added per well. Samples were then heated to 

37oC for 50 minutes, followed by an inactivation step of 75oC for 15 minutes. After that, 

30µl of nuclease-free water (Sigma, W4502) was added per sample. For quantitative real-

time PCR (qRT-PCR) analysis of genes of interest, 5µl of each sample was used. For the 
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house keeping gene 18S rRNA, samples were diluted 1:10 and 5µl was used. QRT-PCR is 

described in 2.2.2.15. 

2.2.2.14.3. miRCURY LNA TM  Universal cDNA synthesis 

MicroRNA cDNA was synthesized by the miRCURY LNATM Universal cDNA synthesis 

kit (Exiqon, 203300). This step provides templates for all miRNA real-time PCR assays by 

one first-strand cDNA synthesis reaction. The basis principal is in Figure 2.2. 
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Figure 2.2: Outline of the miRCURY LNA Universal RT miRNAsynthesis. 

 A poly-A tail is added to the mature miRNA template (step 1A). cDNA was synthesized 
using a poly-T primer with a 3’degenerate anchor and a 5’universal tag (step1B). Then the 
cDNA template is amplified using miRNA-specific and LNATM-enhanced forward and 
reverse primers (step 2A). Sybr green is used for detection (step 2B). Reprinted from 
miRCURY LNATM Universal RT microRNA PCR instruction manual (Exiqon). 

Total RNA was adjusted to 5ng/µl using nuclease-free water (Sigma, W4502). 10ng of 

RNA was transferred to an ice cold 96-well PCR plate. A master mix contained 2µl 

Reaction Buffer (5X) (Exiqon, 203300), 1µl enzyme mix was added to each well. The 

reaction was brought to 10µl with nuclease-free water and the plate was heated to 42oC for 

1 hour followed by a heat inactivation step at 95oC for 5minutes. cDNA was then diluted 

to 12.5 pg/µl by nuclease free water (Sigma, W4502) and 50pg of cDNA was used for 

qRT-PCR analysis of miRNA of interest.  
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2.2.2.15.  Real-time quantitative RT-PCR 

2.2.2.15.1. Universal Probe Library Real-Time qRT-PCR 

The Universal Probe Library (UPL) (Roche Diagnostics) enables extensive transcript 

coverage due to the short 8-9 nucleotide-long probes. Each probe has a fluorescein 

(FAM™) label at the 5’ end and a dark quencher dye at the 3’ end; shorter (typically 8-9 

nucleotide) than conventional probe (25-35 nucleotides); locked nucleic acids (LNATM) 

are incorporated into it sequence. Each probe can detect ~7,000 transcripts and each 

transcript is detected by ~16 probes.  

Primers were designed using the freely available ProbeFinder web-based software 

provided by Roche Applied Science in which the ‘exon boundary spanning’ option was 

selected. Primers were subjected to short sequence BLASTn search to confirm specificity. 

All the primers were purchased from Sigma and reconstituted in nuclease free water 

(Sigma, W4502) at 100nM. Primer sequences and UPL probe numbers are in Appendix, 

Table 3. 

For quantitative RT-PCR using the universal primers and probes, the qRT-PCR was 

carried out using the ABI Prism 7900 HT Sequence Detector (Applied Biosystems) in a 

microAmp® optical 96-well plate (Life technologies, N8010560). When RNA quantity was 

known, the qRT-PCR was run using 5ng cDNA for genes of interest and 1ng cDNA for 

18S rRNA. For M-MLV-reverse-transcribed- cDNA transcript samples, 5µl samples was 

used for gene of interest or diluted 1:10 and used 5µl for detecting 18S rRNA.   

Each qRT-PCR reaction contained Kappa Fast Universal qPCR Master Mix (2X) (Kappa 

Biosystems, KK4703), a final concentration of 100nM of each of forward and reverse 

primers, 200nM of Universal Probe (Roche Diagnostics). The reaction was carried out in a 

final volume of 25µl. The plate was sealed with microAmp® optical adhesive film (Life 

Technologies, 4311971) and run with the following PCR cycles: 50oC 2 minutes, 95oC 10 

minutes, 40 cycles for 95oC 15 seconds, 60oC 1 minute.  
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2.2.2.15.2. Standard probe-based Real-time qRT-PCR 

The probe-based quantitative real-time PCR method was used to detect the expression of 

ADAMTS genes including ADAMTS4, ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, 

ADAMTS19. These primer and probe sequences were described in (Davidson et al. 2006). 

Briefly, the primers and probes were designed by Primer Express® 1.0 software (Life 

Technologies, 4363991) and were closed to intron/exon boundaries to control 

amplification of genomic DNA. Where possible, the probes were designed to span two 

neighbouring exons. Specificity of primers and probes were validated thought BLASTn. 

Primer sequences and probe sequences are in Appendix, Table 4 

The qRT-PCR reaction was also carried out in a final volume 25µl of Kappa Fast 

Universal qPCR Master Mix (2X) (Kappa Biosystems, KK4703), 100nM final 

concentration of each of forward and reverse primers, 200nM genes of interest-specific 

probe. Reaction set up and cycling conditions were as in 2.2.2.15.1. 

2.2.2.15.3.  SYBR® Green Real-time PCR  

A combination of SYBR® green dye fluorescence with gene-of-interest specific primers 

enabled double stranded-DNA amplification measurement during PCR. SYBR® green 

real-time qRT-PCR was used to detect primary and pre sequences of the miR-29 family 

(which were described in (Eyholzer et al. 2010)) and other genes as below. Full primer 

sequences and list of genes detected by SYBR® green real-time PCR are listed in 

Appendix, Table 5. All primers were purchased from Sigma.  

For SYBR® green qRT-PCR reaction, the amount of cDNA for genes of interest and 18S 

rRNA is as 2.2.2.15.1. The reaction contained 0.18µl SYBR® green I dye, Kappa Fast 

Universal qPCR Master Mix (2X) (Kappa Biosystems, KK4703), 100nM final 

concentration of each of forward and reverse primers. The PCR cycle conditions are as 

2.2.2.15.1 followed by another dissociation step which produces the melting curve for the 

PCR amplification product.  

2.2.2.15.4. SYBR® Green Real-time PCR for the mature miR-29 family detection 
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LNA primers for detecting miR-29 family mature sequence 

All LNA primers were designed for optimal performance with the miRCURY LNATM 

Universal cDNA synthesis kit. The LNA primers are Hsa-miR-29b-3p LNATM PCR primer 

sets (Exiqon, 204679), Hsa-miR-29a-3p LNATM PCR primer sets (Exiqon, 204698), Hsa-

miR-29c-3p LNATM PCR primer sets (Exiqon, 204729). 

Real-time PCR protocol  

The qRT-PCR reaction used SYBR® green I dye in combination with LNATM PCR primer 

sets to quantify the original mature miR-29 family. The reactions contained 50pg of 

miRCURY-LNATM-Universal cDNAs for either the miR-29 family or U6. The PCR 

reaction mix contained 0.18µl SYBR® Green I dye, 5µl Kappa Fast Universal qPCR 

Master Mix (2X) (Kappa Biosystems, KK4703), and 1µl of forward and reverse primer 

mix (as recommend by the manufacture (Exiqon)) in a final volume of 10µl. PCR cycles: 

10 minutes at 95°C, 40 cycles for 10 seconds at 95°C, 1 minute at 60°C and a dissociation 

step. The dissociation step produces a melting curve for the PCR amplification product and 

ensures there is only amplification of the target gene.  

2.2.2.15.5. Quantitative RT-PCR Data analysis  

2.2.2.15.5.1. Control genes  

The constitutively expressed “housekeeping” 18S rRNA was used as the control for 

relative mRNA gene expression while U6 was used as endogenous control for relative 

miRNA gene expression. 

2.2.2.15.5.2. Relative gene expression – comparative Ct method 

Raw fluorescence data was analyzed by the 7000HT SDS 2.2 software to produce 

threshold cycle (Ct) values, which is the cycle number at which the signal is detectable 

above the baseline. The Ct values were transformed using the comparative Ct method to 

obtain relative quantification (RQ) of gene expression:  

RQ=2-∆Ct 

 Where: for mRNA expression: ∆Ct= target gene Ct - 18S Ct 
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         Or for miRNA expression: ∆Ct= the miR-29 family Ct - U6 Ct
  

This method assumed that all primers and probe sets are working at the same efficiency.  

2.2.2.15.6. Western Blot 

Buffer and antibody 

Radio immunoprecipitation assay (RIPA) buffer: The buffer was made (final 

concentration) with 50mM Tris base (Fisher Scientific, BP152-500) (which was adjusted 

to pH 7.6 with hydrochloric acid (Sigma, 258148)),150mM NaCl (Fisher Scientific, 

BP3581), 1% (v/v) Triton X-100 (Sigma, X100), 1% (w/v) sodium deoxycholate (Sigma, 

D6750), 0.1% (w/v) sodium dodecyl sulfate (SDS) (Fisher Scientific, 10356463), 10mM 

sodium fluoride (NaF) (Sigma, 201154), 2mM sodium orthovanadate (Na3VO4) (Sigma, 

S6508), 1X protease inhibitor cocktail (Fisher Scientific, PI-78410).  

Resolving buffer: To make up 4X buffer: 91g Tris base (Fisher Scientific, BP152-500) 

was dissolved in Milli-Q Ultrapure water (Merck Millipore) and adjusted to pH 8.8 with 

hydrochloric acid (Sigma, 258148). The solution was then made up to 500ml. 2g SDS 

(Fisher Scientific, 10356463) was added and dissolved. 

Staking buffer: To make up 4X buffer: 6.05g Tris base (Fisher Scientific, BP152-500) 

was dissolved in Milli-Q Ultrapure water and adjusted to pH 6.8 with hydrochloric acid 

(Sigma, 258148). Milli-Q water was added to 100ml volume. 0.4g SDS (Fisher Scientific, 

10356463) was added and dissolved. 

Running buffer:  To make up 10X buffer: 30.2g Tris base (Fisher Scientific, BP152-500), 

144g glycine (Fisher Scientific, 10467963), 10g SDS (Fisher Scientific, 10356463) were 

dissolved in Milli-Q water to a final volume 1L. 

Transfer buffer:  To make up 1X buffer: 5.8g Tris base (Fisher Scientific, BP152-500), 

2.9g glycine (Fisher Scientific, 10467963), 0.37g SDS (Fisher Scientific, 10356463) were 

dissolved in Milli-Q water, 200ml 100% (v/v) methanol (Sigma, 322415) were added then 

Milli-Q water to a final volume of 1L. 
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Tris-buffered saline (TBS): To make up 10X buffer: 24.2g Tris base (Fisher Scientific, 

BP152-500), 80g NaCl (Fisher Scientific, BP3581) were dissolved in 900ml Milli-Q water 

and adjusted to pH 7.6 with hydrochloric acid (Sigma, 258148). Milli-Q water was added 

to 1L volume. 

Blocking buffer:  For 150ml, 15ml 10X TBS was diluted in 135ml Milli-Q water. 7,5g 

non-fat dry milk (OXOID, LP0031) was added and stirred to mix. Finally, 0.15ml 

Tween®-20 was added (Sigma, P5927).  

Primary antibody dilution buffer:   For 20 ml, 2 ml 10X TBS was diluted to 18 ml with 

Milli-Q water. 1.0 g BSA (Sigma, A9418) was added and dissolved by stirring. While 

stirring, 20µl Tween-20 (Sigma, P5927) was added. 

Wash Buffer (TBST): TBS with a final concentration 0.1% (v/v) Tween-20 (Sigma, 

P5927). 

Antibody:  GAPDH antibody (Cell Signaling, #2118S), DVL3 antibody (Cell Signaling, 

#3218), FZD5 antibody (Cell Signaling, #3795) 

Western blot protocol  

SW1353 cells were plated in 6-well plates (1.5x105cells/well) and transfected with Syn-

Hsa-miR-29b miScript miRNA mimic (Qiagen, MSY0000100) as referred in 2.2.2.7.2.5. 

At desired time post transfection, cells in each well of 6-well plate were washed twice with 

ice cold PBS (Life Technologies, 10010023) before adding 100µl RIPA buffer to each 

well and harvesting by scraping. The cell lysate was transferred to a fresh ice-cold 1.5ml 

tube and centrifuged at full speech in 10 minutes. The supernatant was collected and stored 

at -20oC.  

Protein was quantified using the Bio-Rad Protein Assay (Bio-Rad, #500-0006) which is 

based on the method of Bradford. Briefly, 200µl dye reagent concentrate was diluted 5 

times with Milli-Q water before adding 20µl sample lysate. The mixture was incubated at 

room temperature for 10 minutes and absorbance measured at 595nm. Comparison of this 

value to a standard curve provided a relative concentration of solubilized protein. The 
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standard curve was created with five dilutions of proteins standards of bovine serum 

albumin (Bio-Rad, 500-0002) from 0.2 to 0.9 mg/ml. 

Samples was adjusted to 20µg solubilized protein in a 30µl with nuclease-free water 

(Sigma, W4502), followed by adding 20ng/µl Bromophenol Blue (Sigma, 114391) and 

1.2µl 1M DTT (Thermal Scientific, # R0861).  The sample was gently mixed and heated to 

95oC for 5 minutes. Samples were then electrophoresed on 10% (w/v) polyacrylamide gels.  

The resolving gel was cast with the following components: 5ml 30% (w/v) Acrylamide/ 

Bis Acrylamide solution 37:5:1 (Bio-Rad, #161-0154), 3.75ml resolving buffer (4X), 

6.25ml Milli-Q water, 50µl 10% (w/v) ammonium persulfate (APS) (Sigma, A3678), 10µl 

TEMED (Sigma, T9281). Resolving gels were topped with isopropanol (Sigma, 190764) 

until set. Then isopropanol was removed and the stacking gel was cast on top of the 

resolving gel and a comb was inserted. For 1 gel, the stacking gel was made with 0.71ml 

stacking buffer (4X), 0.41ml 30% (w/v) acrylamide/ bis acrylamide solution 37:5:1 (Bio-

Rad, #161-0154), 1.91ml Milli-Q water, 16µl 10% (w/v) APS (Sigma, A3678), 3.2µl 

TEMED (Sigma, T9281). Samples were loaded on the gel and were electrophoresed at 

50V until the bromophenol blue passed through the stacking gel and then 80V for 1.5 

hours.  

Immobilon®-FL PVDF membrane (Merck Millipore, IPFL00010) was incubated in 100% 

(v/v) methanol (Sigma, 322415) for 15 seconds and washed with Milli-Q water. Then, 

Immobilon®-FL PVDF membrane, gel, extra thick blotting paper (Bio-Rad, #170-3966) 

were incubated in transfer buffer for 5 minutes. The gel was plated on top of Immobilon®-

FL PVDF membrane in Trans-blot® SD semi-Dry Electrophoretic transfer cell (Bio-Rad, 

#170-3940) with extra thick blotting paper underneath and on top and run for 25V for 30 

minutes (for 2 gels,1 mm thick).  

After transfer, the membranes were briefly washed with TBS and incubated in blocking 

buffer for 1 hour, with gently rocking at room temperature. Membranes were then washed 

in TBST three times for 5 minutes. Primary antibody and membrane was incubated with 

gentle agitation overnight at 4oC. Membranes were then washed in TBST three times for 5 

minutes and incubated with IRDye® 800CW goat polyclonal anti-rabbit IgG (Li-Cor, 926-

32211) (50µg) for 1 hour at room temperature with gently rock. Membranes were washed 
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with TBST for another three times for 5 minutes. The membrane was visualized using a 

Li-Cor Odyssey InfraRed Scanner. 

2.2.2.15.7. Whole mount in situ hybridization  

Reagents and buffers 

Sodium chloride (NaCl) (Fisher Scientific, BP3581), tri-sodium citrate (Fisher Scientific, 

10637174), magnesium chloride hexahydrate (MgCl2.6.H2O) (Fisher Scientific, M35-500), 

potassium chloride (KCl) (Fisher Scientific, BP366-500), heparin (Sigma, H3393), yeast 

tRNA (Fisher Scientific, 10523043), paraformaldehyde (Sigma, P6148), normal goat 

serum (heat inactivated), Triton-X100 (Sigma, X100), Tween-20 (Sigma, P5927), BSA 

(Sigma, A9418) 

Saline sodium citrate buffer (SSC): 20X SSC buffer was made up with 175.3 g of NaCl 

and 88.2 g of sodium citrate, pH 7, in a total volume of 1000ml. 

Development solution (DS): The solution was made up with: 100 mM Tris-HCl pH9.5,  

50mM magnesium chloride hexahydrate (MgCl2.6.H2O),  100mM sodium chloride (NaCl) 

+ 0.1% (v/v)Tween 20. 

Blocking solution: The solution was made up with: 2% (v/v) NGS, 2 mg/ml BSA, 0.1% 

(v/v)  Triton X-100 + 0.05% )v/v) Tween 20 in PBS. 

Hybridisation Buffer (HB):  The buffer was made up with 50% (v/v) formamide, 5xSSC, 

0.1% (v/v) Tween 20 + 10 mM citric acid pH6.0 + 50 µg/ml heparin + 100 µg/ml tRNA in 

PBS 

Tris-buffered saline with Tween 20 (TBST):  for 100ml (10X) buffer was made up with 

8g NaCl, 25ml Tris-HCl pH7.5, 0.2g KCl, 10ml Tween 20  

Phosphate-buffered saline with Tween 20 (PBST):  PBS with 0.1% (v/v) Tween 20 

Probe: miRCURY LNATM miR-29b-3p detection probe, 250pmol, 5’-DIG and 3’-DIG 

labelled (Exiqon, 38131-15) 

Fixation 
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Mouse embryos at desired stages were dissected and fixed in 4% PFA-PBS on a rolling 

platform overnight at 4oC. Then next day, the embryos were washed 4 times with PBST 

and dehydrated through increasing MeOH concentration washes e.g. 25%, 50%, 75% and 

100% MeOH on the gentle rocking platform. The embryos can then store in 100% MeOH 

at -20oC until required.   

In situ hybridization protocol  

On a gently rocking platform, the embryos were washed with decreasing MeOH 

concentration i.e. 75% (v/v), 50% (v/v), 25% (v/v), 0 (v/v) % MeOH for 15 minutes each 

time to dehydrate. After that, the embryos were digested with Proteinase K (10µg/ml final 

concentration) for 30 minutes, followed by rinsing twice in PBST and fixing in 4% (v/v) 

PFA for 20 minutes. To get rid of the remaining PBST, the embryo was washed 4 times in 

PBST for 5-7 minutes. The embryo was prehybridized in hybridization buffer at 54oC for 3 

hours and the “nape” of the neck of embryo was pricked to facilitate the probe penetration. 

After prehybridisation step, the buffer was removed and replaced with fresh warm 

hybridisation buffer containing 20 pmol of the miR-29b LNA probe (Exiqon, 38131-15) 

and left at 54oC overnight with gentle rocking. The probe hybridisation solution was 

removed followed by washes at 54oC and 15 minutes each wash e.g. 75% HB: 25% 2xSSC, 

50% HB:50% 2xSSC, 25% HB:75% 2xSSC, 2xSSC, 0.2xSSC. Following these washes, at 

room temperature, another 4 washes were carried on gently rocking platform, 10 minutes 

for each wash e.g. 75% 0.2xSSC:25% PBST, 50% 0.2xSSC:50% PBST, 25% 0.2xSSC:75% 

PBST, PBST. The embryo was then put in blocking solution for several hours at room 

temperature and incubated at 4°C O/N with the pre-absorbed antibody at a final dilution of 

1:5000 in Blocking Solution. After that, the Blocking Solution was removed and washed 

throughout 2 or 3 days at RT in PBST with gentle rocking. To get rid of all remaining 

PBST, the embryos were washed twice with TBST and with development solution for 15 

minutes each wash. Colour development was carried out at room temperature in 3.5ml 

development solution plus 15-50µl substrates. 

The antibody was pre-adsorbed using previously fixed and dehydrated tissue that is not 

suitable for in situ hybridization. These tissues were dehydrated and washed 15 minutes in 



86 

 

blocking solution, followed by incubating with blocking solution containing the antibody 

at 1:1000 dilution for three hours.  

2.2.2. Cell culture and cell-based assays 

2.2.2.1. Human primary chondrocyte isolation 

Human cartilage chips were incubated with digestion medium including DMEM 

GlutaMAXTM (Life Technologies, 10566-016), 1mg/ml collagenase (Sigma, C1639), 0.4% 

(w/v) Hepes (Fisher Scientific, BP310-100), 100 IU/ml penicillin, 100µg/ml streptomycin 

(Sigma, P4333) at 37oC, 180rpm overnight. The digestion mixture was then strained 

through a 70µm cell strainer. Cells were plated at 4x104cells/cm2 and grown to 80% 

confluence. Cells were used by passage 2.  

2.2.2.2. Human de-differentiation assay 

Human primary chondrocytes were isolated from human knee OA articular cartilage as 

described in 2.2.2.1. The cells were then subjected to serial subculture in monolayer. The 

de-differentiation assay was performed by Dr Natalie Crowe (Clark lab, University of East 

Anglia). 

2.2.2.3.  Chondrogenesis model 

The human chondrogenesis model was performed by Dr Matthew Barter, Newcastle 

University. Briefly, human bone marrow stem cells (from seven donors, 18-25 years of age) 

were isolated from human bone marrow mononuclear cells (purchased from Lonza 

Biosciences) and resuspended in chondrogenic culture medium consisting of high glucose 

Dulbecco’s modified Eagle’s medium containing 100 µg/ml sodium pyruvate (Lonza), 10 

ng/ml TGF-β3 (Peprotech), 100 nM dexamethasone, 1x ITS-1 premix, 40 µg/ml proline, 

and 25 µg/ml ascorbate-2-phosphate (Sigma). 5x105 hMSC in 100µl medium were 

pipetted onto 6.5mm diameter, 0.4-µm pore size polycarbonate Transwell filters (Merck 

Millipore), centrifuged in a 24-well plate (200g, 5 minutes), then 0.5 ml of chondrogenic 

medium was added to the lower well as described. Media were replaced every 2 or 3 days 

up to 14 days. 
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The murine chondrogenesis model was performed by Dr Tracey Swingler, University of 

East Anglia. Briefly, ATDC5 cells were seeded at 6x104/well of a 6-well plate in 

DMEM/Ham’s F-12 medium (Life technologies, 11320-033) containing 5% (v/v) FCS 

(PAA), 2mM glutamine, 100 IU/ml penicillin, 100µm/ml streptomycin (Sigma, P4333), 

5ng/ml sodium selenite, 10µg/ml human transferrin (Sigma, I3146), and 10µg/ml bovine 

pancreatic insulin at 37oC, in an atmosphere of 5% CO2. Media was replaced every 2 days 

up to 42 days. After 21 days, the medium was replaced with α-minimal essential medium 

with the same supplements, and the atmosphere was changed to 3% CO2.  

2.2.2.4. Monolayer cell culture and storage  

All cells were cultured at 37°C with 5% (v/v) CO2. Cells were usually grown in 

Dulbecco’s modified Eagle’s medium (DMEM) High Glucose, GlutaMAX supplement 

(Life technologies, 10566-016) with 10% (v/v) heat-inactivated Fetal Calf Serum (FCS) 

(PAA) and 100 IU/ml penicillin and 100µg/ml streptomycin (Sigma, P4333). For 

maintenance, medium was refreshed at least three times weekly. Cells were passaged at 

around 80-90% confluence. Adherent cells were detached by washing x2 with HBSS (Life 

Technologies, 14025092) then treated with 2 ml of trypsin/EDTA (Life Technologies, 

25200072) for 2-3 minutes at 37°C. After centrifugation (17.3xg, 5 minutes), the cell pellet 

was gently resuspended in fresh medium. Cells were replated at a ratio of 1: 20. For long 

term storage, cells were detached and pelleted by centrifugation at 17.3xg for 5 minutes. 

The pellets were resuspended in cryo-preservation medium including 90% (v/v) FCS 

(ATCC) and 10% (v/v) DMSO (Fisher, BP231-100), slowly frozen down at approximately 

1oC/minute, and stored in liquid nitrogen.  

2.2.2.5. Micromass culture  

Media 

Growth medium: Dulbecco’s modified Eagle’s medium (DMEM) High Glucose, 

GlutaMAX supplement (Life technologies, 10566-016) with 10% (v/v) heat-inactivated 

Fetal Calf Serum (FCS) (ATCC) and 100 IU/ml penicillin and 100µg/ml streptomycin 

(Sigma, P4333). 
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Different medium were prepared: the DMEM high glucose, GlutaMAX supplement (Life 

technologies, 10566-016) adding 1X Insulin- Transferrin-Selenium (ITS-G) (Life 

Technologies, 41400-045). 

Micromass culture  

The protocol was described in (Greco et al. 2011) with some modifications. Human 

primary chondrocytes was isolated from human OA knee cartilage as described in 2.2.2.1 

and cultured in monolayer with growth medium. Whenever reaching confluence, the cells 

were passaged two times. Confluent passage 2 monolayer culture of human primary 

chondrocytes were released by trypsin/EDTA (Life Technologies, 25200072), and 

resuspended in growth media at a density of 2.5x107 cells/ml. Micromass was obtained by 

pipetting 20µl of cell suspension into individual wells of 24 well-plates and leaving for 3 

hours to attach without additional medium. Then, 1ml growth medium was gently added 

and the micromass was left for another 24 hours before stimulating with cytokines or 

growth factors.  

2.2.2.6.Induction cells with regulatory factors: major cytokines and growth factors 

Cytokines and growth factors: 

Human recombinant TGFβ1 (R&D Systems, 240-B-002/CF) and human recombinant 

TGFβ3 (R&D Systems, 243-B-002/CF) were reconstituted in sterile 4mM HCl (Sigma, 

258148) containing 0.5% (w/v) bovine serum albumin (Sigma, A2058). 

Human recombinant Wnt3a (R&D Systems, 5036-WN-010/CF) was reconstituted in 

sterile Phosphate Buffered Saline (PBS) (Life Technologies, 10010023). 

Human Recombinant Interleukin-1β (IL-1β) (First Link, ILB4551) was reconstituted in 

sterile Phosphate Buffered Saline (PBS) containing 0.5% (w/v) bovine serum albumin 

(Sigma, A2058).  

NFκB activation inhibitor II JSH-23 (Calbiochem, 481408) is a cell-permeable diamino 

compound that selectively blocks nuclear translocation of NF-κB p65 and its transcription 

activity without affecting IκB degradation.  
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Lipopolysaccharides (LPS) (Sigma, L3012) are components of the cell wall of gram 

negative bacteria. LPS are extracted from E.coli serotype O111:B4 and purified by gel 

filtration. LPS is reconstituted in sterile (PBS) (Life Technologies, 10010023). 

P38 inhibitor SB203580 (Sigma, S8307) is a pyridinyl imidazole that suppresses the 

activation of MAPKAP kinase-2. The P38 inhibitor, therefore, inhibits the MAPKAP 

kinase-2 cascade which is activated by cellular stress, bacterial infection and pro-

inflammatory cytokines. SB203580 was resuspended in DMSO (Fisher, BP231-100).  

2.2.2.6.1. Stimulation of cells in monolayer with cytokines and growth factors  

Human chondrosarcoma SW1353 and human primary chondrocytes were maintained as 

described above. For stimulation, either 5x103 SW1353 cells or 104 human primary 

chondrocytes were seeded into each well of a 96-well plate with 100µl DMEM GlutaMax 

(Life Technologies, 10566-016) with 10% (v/v) FCS (ATCC) and 100 units/ml penicillin 

and 100µg/ml streptomycin (Sigma, P4333). Cells were serum starved for 14 hours and 

were stimulated with different cytokines and growth factors at final concentration: TGFβ1, 

TGFβ3 4ng/ml, IL-1 5ng/ml, Wnt3a 100ng/ml, LPS 1µg/ml at 4, 8, 12, 24, 48 hours. All 

treatments were performed in triplicate. At each time point, cells in each well were washed 

with ice cold PBS (Life Technologies, 10010023) and harvested with 30µl Cells-to-cDNA 

lysis buffer (Life Technologies, AM8723).  

2.2.2.6.2. Stimulation of cells in micromass culture with cytokines and growth 

factors  

After the micromass was rested in growth medium for 24 hours, the different medium with 

either TGFβ1 (10ng/ml), IL-1 (20ng/ml), Wnt3a (50ng/ml) or LPS (1µg/ml) was added. 

All treatments were performed in triplicate. After different time points as desired, some of 

micromasses were harvested for Alcian blue matrix staining and others for quantitative 

RT-PCR.  
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2.2.2.7. Mammalian cell transfection 

2.2.2.7.1.  Plasmids, constructs, siRNAs and microRNA mimic and inhibitor 

Sox9 expression vector: The vector was kindly provided by Dr Simon Tew (University of 

Liverpool, UK). The vector was described in (Lefebvre et al. 1997). Briefly, an almost 

full-length coding sequence of human SOX9 which is from codon 27 (directly from the 

first ATG associated with the Kozak sequence) up to 39bp of 3’unstranslated region was 

subcloned into pCDNA-5’UT-FLAG. pCDNA-5’UT-FLAG is pCDNA 3.1 with a FLAG 

sequence.  

The miR-29a/b1 promoter construct: The construct was kindly provided by Dr Anne 

Delany (University of Connecticut Health Center, US) and was described in (Kapinas et al. 

2010). The 2kb region upstream from the transcriptional start site of the human miR-

29a/b1 putative promoter (EU154353) was subcloned into the luciferase reporter pGL4.10 

(Promega). 

p(CAGA)12-luc plasmid: The construct was a kind gift of Dr Andrew Chantry, University 

of East Anglia, UK and is described in (Pais et al. 2010). 12 binding sites of the complex 

Smad3/4 (GAGAC) was cloned upstream of the luciferase encoding gene in luciferase 

reporter pGL3 (Promega).  

I κκκκBα promoter reporter plasmid: The plasmid was a kind gift from Prof. Derek Mann, 

(Newcastle University, UK), (originally from Prof. Ronald Hay, University of Dundee, 

UK). The plasmid contains 5 binding sites of P65 cloned upstream of the luciferase gene.  

TOPflash and FOPflash reporter plasmids: The TOPflash reporter is a kind gift from 

Prof. Andrea Munsterberg (University of East Anglia, UK), and was originally from Prof. 

Randall Moon (University of Washington, USA). The FOPflash vector is provided by Dr 

Sarah Snelling (University of Oxford, UK). TOPflash contains 7 binding sites of TCF/LEF 

(AGATCAAAGG) driving the expression of the firefly luciferase. The back bone is the 

pTA-luc vector. The FOPflash vector is the control of TOPflash where all 7 binding sites 

of TCF/LEF are mutated.  
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The miR-29 mimic:  

• Syn-hsa-miR-29a-3p miScript miRNA mimic (Qiagen, MSY000086): 

5'UAGCACCAUCUGAAAUCGGUUA 

• Syn-hsa-miR-29b miScript miRNA mimic (Qiagen, MSY0000100): 

5'UAGCACCAUUUGAAAUCAGUGUU 

• Syn-hsa-miR-29c miScript miRNA mimic (Qiagen, MSY0000681) 

5'UAGCACCAUUUGAAAUCGGUUA 

• AllStars negative control siRNA (Qiagen, SI03650318) 

The 29b inhibitor control  

• Anti-hsa-miR-29b miScipt miRNA inhibitor (Qiagen, MIN000100) 

• miScript Inhibitor negative control (Qiagen, 1027271) 

siRNA 

• SOX9 siRNA: Dharmacon siRNA SMARTpool® (Fisher Scientific)  

• Control: non-targeting siRNA 2  (Dharmacon, 001210-02) 

2.2.2.7.2. Transient transfection protocol  

2.2.2.7.2.1. SOX9 overexpression  

SW1353 cells were plated in a 96-well plate (5x103cells/well) in growth medium without 

antibiotics one day before transfection. The cells were 80% confluent at the time of 

transfection. Before addition of the transfection complexes, the growth medium was 

removed from the cells and the cells were covered with 50µl of fresh growth medium 

without antibiotics. For each transfection, two tubes are prepared as follows: Tube 1: 

100ng SOX9 expression vector was diluted in 25µl DMEM GlutaMax (Life Technologies, 

10566-016) without serum and antibiotics; Tube 2: 0.2µl transfection reagent 

Lipofectamine 2000 (Life Technologies, 11668027) was diluted in 25µl DMEM GlutaMax 

(Life technologies, 10566-016) no serum and antibiotics. After 5 min of incubation, the 

diluted DNA and the diluted transfection reagent were combined and incubated at room 

temperature for 20 min. Then, 50µl of complexes were added to each well. The plate was 
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gently rocked back and forth and incubated at 37°C in a CO2 incubator. All transfection 

was performed in triplicate. The pcDNA3.1 vector was used as control. After 6 hours of 

transfection, transfection medium was replaced with fresh growth medium without 

antibiotics for another 24 hours. For harvesting, cells were washed with ice cold PBS (Life 

Technologies, 10010023) and harvested with 30µl Cells-to-cDNA lysis buffer (Life 

Technologies, AM8723). 

2.2.2.7.2.2. SOX9 and miR-29a/b1 promoter cotransfection  

To cotransfect SOX9 and the promoter miR-29a/b1, the SW1353 cells were prepared as 

described above one day before transfection. For each transfection, two tubes are prepared 

as follows: Tube 1: 100ng of 29a/b1 promoter, and either 100ng SOX9/200ng pcDNA3 or 

300ng SOX9/100ng pcDNA3 was diluted in 25µl DMEM GlutaMax (Life Technologies, 

10566-016) without serum and antibiotics; Tube 2: 0.2µl transfection reagent 

Lipofectamine 2000 (Life Technologies, 11668027) was diluted in 25µl DMEM GlutaMax 

(Life Technologies, 10566-016) no serum and antibiotics. The diluted DNA and the 

diluted transfection reagent were combined after 5 min of incubation and incubated at 

room temperature for another 20 min. Then, 50µl of complexes were added to each well. 

The plate was incubated at 37°C in a CO2 incubator and transfection medium was changed 

with fresh medium without antibiotics for another 24 hours. Then, cells were washed with 

ice cold PBS (Life Technologies, 10010023) and a luciferase assay performed. All 

transfection were performed in triplicate. 

2.2.2.7.2.3. Transfection of the miR-29a/b1 promoter with cytokines and growth 

factors 

SW1353 cells were plated and transfected with 100ng miR-29a/b1 promoter as described 

above. Cells were incubated with the promoter for 24 hours. The medium was then 

removed and replaced with serum, antibiotic-free DMEM GlutaMAX medium (Life 

technologies, 10566-016), and cells were serum-starved overnight. Cells was stimulated 

for 6 hours with TGFβ1/3 (4ng/ml), IL-1 (5ng/ml), Wnt3a (100ng/ml), LPS (1µg/ml) in 

the presence or absence of 50nM NFκB inhibitor or 10nM p38 inhibitor (Sigma, S8307). 

Medium was removed 6 hours post stimulation and cells were washed twice with ice cold 

PBS (Life Technologies, 10010023) and then harvested for luciferase assay. 
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2.2.2.7.2.4. Short interfering RNA SOX9 mRNA knockdown 

SW1353 cells were plated and transfected with either 100nM SOX9 siRNA (Dharmacon) 

or non-targeting siRNA 2 (Dharmacon, 001210-02) as section 2.2.2.7.2.1. To detect 

siRNA-mediated mRNA SOX9 knockdown, cells were incubated for 48 hours post 

transfection, then harvested in 30µl Cells-to-cDNA lysis buffer (Life Technologies, 

AM8723).  

2.2.2.7.2.5.  Human primary chondrocyte gain- and loss-of-function experiments 

One day before transfection, human primary chondrocytes at passage 1 was plated in 6-

well plate at 2x105 cells/ wells in fresh growth medium without antibiotics so that the cells 

will be around 80% confluent. Complexes were prepared as followed for transfection: 

Tube 1: miR-29b mimic/ inhibitor/ AllStar negative control/ inhibitor negative control 

(50nM) was diluted in 250µl of serum, antibiotic-free DMEM GlutaMAX (Life 

Technologies, 10566-016). Tube 2: 5µl of Lipofectamine 2000 (Life Technologies, 

11668027) was diluted in 250µl serum, antibiotic-free DMEM GlutaMax (Life technology, 

10566-016). Time for incubation and transfection mixture was prepared similar to section 

2.2.2.7.2.2. The original medium was aspirated from the wells, 500µl transfection mixture 

was added to each well and the final volume was made to 1ml with DMEM GlutaMAX 

with 10% (v/v) heat-inactivated FCS, without antibiotics. All transfections were performed 

in triplicated. Cells were incubated for 48 hours, then, supernatant was removed and cells 

was washed with ice cold PBS and 1ml Trizol reagent was added.  Samples were stored at 

-20oC until RNA extraction.  

2.2.2.7.2.6. Transfection of human primary chondrocytes with miR-29 family 

mimics and treatment cytokines and growth factors  

50nM either miR-29a/b/c mimics or AllStar negative control was transfected to human 

primary chondrocytes in 6-well plate as in section 2.2.2.7.2.5. After 24 hours, medium was 

removed from the wells and replaced with DMEM GlutaMAX with 0.5% (v/v) heat 

inactivated FCS overnight. Then, cells were stimulated with TGFβ1 (4ng/ml), IL-1 

(5ng/ml), Wnt3a (100ng/ml). At desired times post stimulation as in Chapter 5, medium 

was removed, the cells were washed with ice cold PBS and harvested in 1ml Trizol reagent.  
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2.2.2.7.2.7. Transfection of the miR-29b mimic in micromass culture with 

cytokines and growth factors 

Confluent passage 2 monolayer culture of human primary chondrocytes were released by 

trypsin/EDTA and plated in 175 cm2 flask with growth medium with 10% (v/v) heat 

inactivated FCS, no antibiotics one day before transfection to give cells at 90-100% 

confluence. 100nM miR-29b mimic or non-targeting control was diluted in 500µl medium 

(tube1) and 4 µl Lipofectamine 2000 was also diluted in 500µl medium (tube 2). 

Transfection was carried out as in 2.2.2.7.2.2. The original medium from the flask was 

removed before adding 1ml transfection mixture and the flask was further covered with 

another 14ml growth medium with 10% (v/v) heat inactivated FCS. After incubating with 

miR-29b mimic for 48 hours, cells was detached by trypsin/EDTA and put in micromass 

culture as in 2.2.2.5. After 24 hours of resting, miR-29b transfected micromasses were 

treated with either TGFβ1 (10ng/ml), IL-1 (5ng/ml), Wnt3a (100ng/ml) in different media 

(referred in 2.2.2.5) with 10% (v/v) heat inactivated FCS without antibiotics. At desired 

time, micromasses were harvested in 500µl Trizol reagent.  

2.2.2.7.2.8. Co-transfection of reporter vectors with the miR-29 family mimic/ 

miR-29b inhibitor and stimulation with cytokines and growth factors  

SW1353 were seeded into 96-well plate 1 day before transfection as in 2.2.2.7.2.1 and 

transiently co-transfected with: (1)100ng of reporter plasmids of either p(CAGAC)12- luc, 

IκB3-luc, TOPflash, FOPflash, (2) 10ng of renilla luciferase reporter, and (3) 50nM of 

either miR-29a/b/c mimic, AllStar non-targeting negative control, miR-29b inhibitor, or 

inhibitor negative control.  The protocol for transfection is as in 2.2.2.7.2.5. After 24 hours 

of transfection, cells was serum starved overnight and were treated with recombinant 

human TGFβ1 (4ng/ml), IL-1β (5ng/ml), Wnt3a (100ng/ml) for 6 hours. After stimulation, 

cells were harvested and a luciferase assay performed as in 2.2.2.8. 

2.2.2.7.2.9. Cotransfection of pmiR-Glo-3’UTR reporter with the miR-29 family 

mimic  

Chicken fibroblasts DF1 were plated in a 96-well plate (104cells/well) in antibiotic free 

growth media with 10% (v/v) FCS overnight. 100ng of either pmiR-Glo-3’UTR wild type 
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or mutant constructs were co-transfected with 50nM miR-29a/b/c mimic using the non-

targeting Allstars as control. The protocol for transfection was described in 2.2.2.7.2.5. 

After 24 hours post transfection. DF1 cells were harvested for luciferase assay as in 2.2.2.8. 

2.2.2.8. Luciferase reporter assay 

At desire times post transfection, the plate was removed from the incubator. Luminescence 

was detected using the Dual-Luciferase Reporter Assay system (Promega, E1980). Briefly, 

the medium on the cells was removed. The cells were washed twice with ice cold PBS and 

70µl of cell lysis buffer provided in the kit (Promega, E1980) was added to each well. The 

plate was gently rocked back and forth for 30 minutes. Then, 10µl cell lysates were 

transferred to a 96- well white microplate. For measuring firefly luciferase activity, 50µl of 

Dual Luciferase Reagent was added to each well. The firefly luminescence was measured 

using a microplate reader. For measuring Renilla luciferase activity, 50 µl of Dual Stop & 

Glo Reagent was added to each well and mixed gently then the luminescence measured.  

After measurement of the firefly luciferase luminescence and Renilla luciferase 

luminescence, the relative luciferase activity was calculated as the ratio of the firefly 

activity normalized to the Renilla luciferase activity. 

2.2.3. MicroRNA and mRNA microarray   

2.2.3.1. MicroRNA and mRNA microarray for destabilization of  medial menicus 

(DMM) model  

Whole knee joints from mice which underwent DMM surgery (e.g. DMM-operated right 

knee and unoperated left knee) were subjected to total RNA isolation and grouped as 

DMM left (referred to as control) or DMM right (referred as treatment). At each time point 

(1, 3, 7 days after surgery), equal amounts of total RNA from each sample in the same 

group was pooled together. The integrity of the new pooled samples was checked before 

sending to Exiqon Services (Denmark) or Source Bioscience (UK) to perform miRNA 

microarray or mRNA microarray, respectively.  

The miRCURY LNATM microRNA Hi-Power Labelling Kit Hy3TM/Hy5TM was used for 

miRNA microarray in which the Hy3TM labelled samples and Hy5TM labelled samples 
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were mixed pair-wise and hybridized to capture probes targeting all miRNAs or human, 

mouse and rat registered in the miBASE 18.0. For whole genome array, Illumina’s  

BeadArray-based technology was employed by using MouseWG-6 v2.0 Expression 

BeadChips whose feature content derived mainly from NCBI reference sequence (NCBI 

refseq), and simultaneously profiles more than 45,000 mouse transcripts. The BeadChips 

consists of oligonucleotides immobilized to bead held in microwells on the surface of any 

array substrate, and made up with 50-mer-gene-specific probe plus 29-mer address 

sequences. Especially, the chip has high level of bead type redundancy (average 30 beads 

per probe) to control the quality and reproducibility of the direct hybridization assay.  

2.2.3.2. Whole genome array for miR-29b gain and loss-of-function experiment 

Human primary chondrocytes were transiently transfected with either miR-29b mimic or 

miR-29b inhibitor for 48 hours in triplicate. Then, total RNA was isolated and equal 

amounts of total RNA of each sample in the triplicate was pooled together. After checking 

the quality and integrity, the new pooled samples were sent to Source Bioscience (UK) to 

perform human whole genome profile. Again, the Illumina’s BeadArray-based technology 

was employed but using humanHT-12 V4.0 expression BeadChips. Similarly, the feature 

content derived mainly from NCBI reference sequence (NCBI refseq) which 

simultaneously profile more than 47,000 human transcripts. 

2.2.4. Data analysis  

2.2.4.1.   Pre-processing microRNA array data 

2.2.4.1.1. VST transformation and quantile normalization  

It is necessary to do background correction to remove non-specific signal from total signal. 

However, the initial data-pre-processing in the Illumina GenomeStudio solfware provides 

users with bead summary data in the form of a single signal intensity value for each probe. 

This value is calculated by subtracting the local background from the signal intensity of 

each bead, then taking the means of all beads containing a given probe. This means 

BeadStudio output data has undergone background correction. Thus, no further 

background correction need to be done for the Bead summary data, received from Source 

Bioscience (UK).  
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To reliably detect changes in expression from the whole genome array, it is important to 

remove sources of variation of non-biological origin between arrays to make data 

comparable. There are two types of variations might be seen when comparing arrays e.g. 

interesting variation (biological differences), and obscuring variation. Sources of obscuring 

variation were introduced during the process of carrying out the experiments e.g. during 

preparing the samples including mRNA extraction and isolation, variation in 

introduction and incorporation of dye, effected by pipetting error, temperature fluctuations 

and reagent quality; during manufacturing of the array  including variation in the 

amount of probe present at each feature or spot and variation in the hybridization 

efficiency of the probes for their mRNA targets; during hybridization of the sample on 

the array including variation in the amount of samples applied to the array and variation 

in the amount of target hybridized to the probe; and after array hybridization including 

variation in optical measurement and intensity computed from the scan image. So, 

comparisons between different biological samples can be made, it is important to remove 

these obscuring variations to ensure the values being analysed reflect the biology. For 

Beadchip array data, the two steps to achieve this are commonly referred to as between-

array normalization, and transformation. Two popular methods that implement these steps 

are VST transformation and quantile normalization for the Lumi packages. Briefly, for 

analysing, bead summary array data was imported into R studio (http://www.rstudio.com/). 

Array data was then transformed and normalized using Lumi package.  

2.2.4.1.2. Sequence data 

The miR-29 family mature sequence data was retrieved from miRbase database 

(http://www.mirbase.org/). 3’UTR sequences were downloaded from UCSC 

(https://genome.ucsc.edu/) and Ensembl (http://www.ensembl.org/index.html). RefSeq IDs 

were used to map probe sets to UCSC database and Ensembl Gene IDs were used to map 

probesets to the Ensembl database.  

2.2.4.1.3. The MicroRNA-29 family target prediction 

Three types of seed matches in the 3’UTR were considered when predicting direct 

miRNA-29 targets e.g. 6-mer seed match which is 6nt in length and was complementary 
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to nucleotides 2 to 7 in the miR-29 family; 7-mer seed match which is 7nt length and is 

complementary to nucleotides 1–7 in the miRNA or nucleotides 2–7 in the miRNA with 

“A” at the first position; and 8-mer seed match which is 8nt length, and matched 

nucleotides 1–8 in the miRNA or nucleotides 2–8 in the miRNA with an “A” at the first 

position. For searching these seed matches in the 3’UTR, 3’UTR sequences were imported 

and read in R studios using the “readDNAStringSet” function in Biostring package. Also, 

three types of miR-29 family seed matches were searched using “vcountPattern”function.   

In line with using R studios, some miRNA target prediction programs available were also 

used to predict targets for miR-29 including TargetScan (http://www.targetscan.org/), 

miRNA body map (http://www.mirnabodymap.org/), miRDB (http://mirdb.org/miRDB/), 

DIANA (http://diana.cslab.ece.ntua.gr/), Pictar (http://pictar.mdc-berlin.de/), miRbase 

(http://www.mirbase.org/).  

2.2.4.1.4. Functional pathway analysis  

DAVID (Database for Annotation, Visualization and Integrated Discovery) functional 

annotation tool (http://david.abcc.ncifcrf.gov/) was used to perform functional analysis for 

particular gene groups.  

2.2.4.1.5. Statistical analysis 

Unless otherwise stated, for the whole thesis, Student’s unpaired t-test (two-tail) was 

performed to compare difference between two groups. All values are given as mean values 

of replicates with error bar representing the standard error of the mean. The statistical 

analysis was carried using GraphPad Prism version 4.0 for Windows.  Levels of statistical 

significant are represented as * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. 
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CHAPTER III 

IDENTIFICATION OF THE MIR-29 FAMILY IN 

CARTILAGE HOMEOSTASIS AND OSTEOARTHRITIS 

 

3.1. Introduction  

MicroRNAs are referred to as the master regulators for gene expression: they exert their 

suppressive functions on targeting genes at the post transcriptional level through a 

sequence-complementary mechanism (Bartel 2009). In human chondrocytes, many 

different miRNAs are found and each of them are shown to directly and/or indirectly 

regulate hundreds of target genes, implicating a complex gene regulatory network in which 

miRNAs are involved (Le et al. 2013). This means that miRNAs take a crucial part in 

controlling the balance of the mRNA network in cartilage homeostasis; and the 

dysregulation of miRNA expression could trigger OA onset by disrupting this regulatory 

network.  

Indeed, an essential role of miRNAs has been reported in various aspects of cartilage 

development, cartilage homeostasis, and also in OA pathogenesis (Le et al. 2013). For 

instance, knockout of Dicer, the pre-miRNA processing enzyme, in a cartilage-specific 

manner resulted in skeletal growth defects, premature death of mice, reduction in growth 

plate chondrocytes, and an increase in hypertrophic chondrocytes (Kobayashi et al. 2008).   

Mutation of the Dnm3 locus, transcribing the miRNAs miR-199a, miR-199*, and miR-214, 

resulted in growth retardation including craniofacial hypoplasia (Watanabe et al. 2008). 

Universal knockout of miR-140, a cartilage and skeletal-restricted miRNA lead to: mild 

craniofacial deformities and dwarfism; early onset of age-related OA development; greater 

susceptibility to OA with accelerated proteoglycan loss and fibrillation of articular 

cartilage (Miyaki et al. 2010, Nakamura et al. 2011). Transgenic mice overexpressing 

miR-240 in cartilage were resistant to antigen-induced arthritis-associated loss of 

proteoglycan and type II collagen (Miyaki et al. 2010). Other specific miRNAs: miR-9, 

miR-98, and miR-146 were highlighted to be expressed differentially in miRNA profiles 

between human OA cartilage and its normal articular counterpart (Iliopoulos et al. 2008, 

Jones et al. 2009); miR-199a, miR-675, miR-145, miR-140, miR-455 have been proven to 

function in chondrogenesis and cartilage homeostasis (Lin et al. 2009, Miyaki et al. 2009, 

Dudek et al. 2010, Martinez-Sanchez et al. 2012, Swingler et al. 2012); miR-222 is 
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reported to play a potential role in the articular cartilage mechanotransduction pathway 

(Dunn et al. 2009); miR-146a and miR-146b, whose expression is regulated by NFκB, 

appear to be the key miRNAs in the inflammatory response (Taganov et al. 2006); miR-

34a, miR-194, miR-27b were reported to be induced by IL-1β (Abouheif et al. 2010, 

Akhtar et al. 2010, Xu et al. 2012). All of these data reveal miRNAs as important 

modulators of various aspects of articular cartilage homeostasis and OA pathogenesis.  

OA develops slowly with time and may not be symptomatic until significant joint damage 

has occurred. Currently, there is a lack of effective approaches to OA prevention or 

treatment. Available treatments are limited to pain management, and joint replacement 

surgery, this latter in the late phase of the disease. MicroRNAs, with the ability to fine-

tune the expression of multiple genes, could be a promising tool for therapeutic 

applications for a complex disease like OA. The down regulation of gene expression by 

miRNAs is relatively modest, thus the approach of combining multiple miRNAs to 

simultaneously target OA pathogenesis-relevant networks may be needed. Furthermore, 

There is growing evidence for future miRNA-based diagnostics: a number of miRNA in 

plasma were found at different levels between RA and OA patients (Murata et al. 2010); 

let-7e, miR-454, miR-886 were identified as differentially expressed circulating miRNAs 

in OA patients necessitating arthroplasty, especially, let–7e emerged as potential predictor 

for severe knee or hip OA (Beyer et al. 2014). However, there is a requirement for detailed 

investigations directed at diagnostic performance (sensitivity, specificity, accuracy) of 

these promising novel biomarkers before the measurement of miRNAs can enter the clinic. 

With all of the above information, the essential roles of miRNAs in cartilage homeostasis 

and OA are shown with potential for clinical application. The insights into the roles of 

miRNAs in chondrogenesis, articular cartilage homeostasis, and OA initiation and 

progression are, nevertheless, still insufficient. Thus, there is a continuing need to deepen 

our understanding of the molecular mechanisms miRNAs are involved in cartilage 

homeostasis and OA. Investigating the disease directly in man is challenging due to e.g. 

the inability to harvest articular tissue at an early stage; the slow disease progression; the 

absence of symptoms in the early stage of the disease; the variety of symptoms; the variety 

of causes and environmental influence. Animal models mimicking features of OA are, 

therefore, an important alternative solution.  
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In an effort to identify novel miRNAs important in the development of OA, the murine 

Destabilization of Medial Meniscus (DMM) model was used to identify miRNAs 

differentially expressed at 1, 3, 7 days (i.e. early stages) after the surgery. Performing 

miRNA and mRNA profiling followed with an integrated analysis highlighted miR-29b as 

a candidate miRNA participating in the early onset of OA in DMM model. Alongside the 

DMM model, the role of the miR-29 family in cartilage homeostasis and OA was also 

investigated in other human and mouse models e.g. human end-stage OA cartilage, the 

murine hip avulsion injury model, a human primary chondrocyte dedifferentiation model, a 

human chondrogenesis model, and murine limb development. 
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Aims 

• Performing miRNA and mRNA profiling in DMM model at very early time points 

1, 3, 7 days after surgery 

• Identifying miRNA potentially involve in OA onset by bioinformatics analysis  

• Investigating the regulation of the miR-29 family which is highlighted from 

bioinformatics analysis above in human end-stage OA cartilage   

• Determining the expression pattern of the miR-29 family in injury model  

• Establishing if the miR-29 family involving in chondrocyte phenotype  

• Determining the role of miR-29 in human and murine chondrogenesis  

• Investigating the involvement of miR-29 in murine limb development 
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3.2. Results  

3.2.1. The microRNA profile in the DMM model at 1, 3, 7 days after surgery    

As little is known about the involvement of miRNAs at the early stage of OA, identifying 

miRNAs modulated in OA initiation was a major aim.  Since mRNA profiles have shown 

large changes in gene expression even at 24 hours post surgery, the DMM model was used 

to investigate this. 

Alongside DMM mice (mice whose medial meniscal tibial ligament of the right knee was 

transected whilst the left knee was untouched), naïve mice (receiving no treatment), and 

sham-operated mice (mice whose right knees were operated to visualize the medial 

meniscal tibia ligament but not transected) were used.  Total RNA was first isolated from 

the whole knee joints of DMM mice (both right and left knees) and their controls at 3 

different time points i.e. 1, 3, 7 days after surgery, and subsequently checked for quality 

and integrity.  Unfortunately, RNA from naïve mice was degraded and not further studied. 

For miRNA profiling, an equal amount of total RNA from individual in each triplicate in 

the DMM right knee and DMM left knee group at 1, 3, and 7 days after surgery was 

pooled and these pools were subsequently subjected to miRNA microarray using the 

miRCURY LNATM microRNA Hi-Power Labelling Kit Hy3TM/Hy5TM, containing probes 

targeting all human, mouse and rat miRNAs registered in the miRBase 18.0.  

Clustering analysis showed that: the miRNA profiles of the DMM right or left knees were 

clustered quite closely to each other at day 1 and 3 but far apart at day 7 (Appendix, Figure 

1), suggesting that more miRNAs were modulated at the later time point than the earlier. In 

line with this, calculating the number of miRNAs which changed expression at each time 

point revealed the same pattern: only small changes were observed until 7 days post-

surgery (Figure 3.1). Using 1.5 fold-change (FC) as the cut off, only four miRNAs 

significantly increased expression at day 1 and 3 whilst more than 30 miRNAs were 

modulated at day 7.  The list of miRNAs which changed expression is listed in Table 3.1.  

To visualize the expression pattern of miRNAs across the time course of the DMM model, 

unsupervised hierarchical clustering analysis was carried out for miRNAs that met the 

filtering criteria e.g. absolute FC > 1.3 in each time point. Several clusters of miRNAs 

were identified comparing between DMM right and left knee i.e. (i) miRNAs which 

increased expression across the time course (cluster 1, 2, 3) (Figure 3.2a, b, c),  (ii) 
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miRNAs which decreased expression across the time course (cluster 5, 6) (Figure 3.2.e, f), 

(iii) miRNAs which decreased expression across 3 days but increased at day 7 (cluster 4) 

(Figure 3.2d) and (iv) miRNAs which increased until 3 days but decreased at day 7 

(cluster 7) (Figure 3.2.g).  

A subset of miRNA differentially expressed by microarray analysis was selected for 

revalidating the array data by quantitative real-time RT-PCR. The result confirmed the 

miRNA array data since a similar expression pattern between the two platforms for miR-

140, miR-455 (data not shown) and miR-29b (which will be discussed below) was 

observed.  
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Figure 3.1: Modulation of miRNA expression across a 7 day time course 

From the array data, for each miRNA, fold change (FC) was calculated by comparing its 
expression level in DMM right versus left knee. The number of regulated miRNAs were 
calculated for each of 0.05 interval of a (0.4, 2.5) range of FC. FC:  > 1: increase 
expression; < 1: decrease expression. The difference in number of miRNAs modulated was 
calculated by unpaired two-tailed t test: * p<0.05, ** p < 0.01, *** p<0.001. 
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Table 3.1: The list of miRNAs regulated in the DMM model with fold change higher than 
1.5 (increase or decrease) at 1, 3, and 7 days after surgery.  

Fold change (FC) was calculated by comparing between the DMM operated right and un-
operated left knee. Down-regulated miRNAs are presented as negative FC.   

 

  



 

 

107 

 

              

 

 

 

 

 

 

 

 

 

 

 

  

Cluster 1

-0.3

-0.2

-0.1

-0.0

0.1

0.2
Left
Right

in
te

ns
ity

Cluster 2

-0.6

-0.4

-0.2

-0.0

0.2

0.4
left
right

d1            d3        d7

in
te

ns
ity



108 

 

          

 

 

Cluster 3

-0.3

-0.2

-0.1

0.0

0.1
Left
Right

d1            d3        d7

in
te

ns
ity

Cluster 4

-0.4

-0.3

-0.2

-0.1

0.0

0.1
Legend
Legend

d1            d3        d7

in
te

ns
ity



 

 

109 

 

 

          

 

 

 

 

 

cluster 5

-0.3

-0.2

-0.1

0.0

0.1
Left
Right

d1            d3        d7
in

te
ns

ity



110 

 

           

Cluster 6

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3
Left
Right

d1            d3        d7

in
te

ns
ity

 

                  

Cluster 7

-0.6

-0.4

-0.2

-0.0

0.2
left
right

d1            d3        d7

in
te

ns
ity

 

Figure 3.2: Unsupervised hierarchical clustering analysis for miRNAs with absolute fold 
change higher than 1.3. 

Comparing DMM right versus left knee at 1, 3, 7 day time points: cluster 1, 2, 3: all the 
miRNAs induced expression; cluster 5, 6: all miRNAs decreased expression; cluster 4: 
miRNAs decreased across 3 days but increased at day 7; cluster 7: miRNAs increased 
across 3 days but decreased at day 7. Comparing between three time points: cluster 1: 
miRNAs increased across 7 days; cluster 2, 6: miRNAs decreased at day 3; cluster 3, 5: 
miRNAs decreased at day 7. SNORD: small nucleolar RNA.  
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3.2.2. Expression profile of mRNAs in DMM right and left knee 

The microRNA microarray profiling revealed approximately 35 miRNAs modulated in the 

DMM model at 3 different time points, and whilst changes in expression are small, this 

may suggest that these miRNAs may have a role in regulating the onset of OA.  For further 

filtering of miRNAs having important roles amongst these modulated miRNAs, examining 

the mRNA expression profile would be useful since miRNAs exert their function by 

directly targeting and subsequently inhibiting mRNA expression. Additionally, since no 

major modulation of miRNA expression level was observed until 7 days after DMM 

surgery, it was sufficient to profile mRNA expression for two time points i.e. 1 and 7 day 

following DMM surgery.  

The Illumina BeadArray-based: MouseWG-6 v2.0 Expression BeadChip was used to 

profile more than 45,000 mouse transcripts in the pooled total RNA samples (DMM right 

and left knee), previously subjected to miRNA profiling. Consistent with the miRNA 

profile, mRNA array data also showed a similar expression pattern: no major change in 

mRNA expression level until day 7 when comparing between DMM right and left knee 

(Figure 3.3). If the absolute fold change cutoff is set at 1.5, only 30 mRNAs changed 

expression at day 1 whilst at day 7, more than 683 mRNAs were modulated. The full lists 

of mRNA which changed expression are in Appendix, Table 6, 7.  

A subset of mRNA differentially expressed by microarray analysis was selected for 

revalidating the array data. Comparison of the expression levels between the mRNA 

microarray and quantitative real-time qRT-PCR demonstrated a similar expression pattern 

between the two platform for 4 genes i.e. CCL2, IL6, SAA3, Arginase-1 (Appendix, Figure 

2). These results confirmed the mRNA array data. 
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 Figure 3.3 Total numbers of mRNAs at different fold change value at day 1 and day 7 
following surgery in DMM model.   

At each time point, Fold change = intensity value in DMM right - intensity value in DMM 
left. Numbers of mRNAs were calculated as fold change ranging from -3 to 7 for each 
increase of 0.05. Fold change:  > 1: increase expression; < 1: decrease expression.  
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3.2.3. Integrated miRNA and mRNA expression profiles of the DMM model identify 

miR-29b as a miRNA associated with OA onset  

To prioritize miRNAs which might have a role in OA onset in the DMM model, an integrated 

analysis between miRNA and mRNA profiles at 1 and 7 day of the DMM model was 

performed. This approach took advantage of inverse correlation analysis in which a miRNA 

was considered as a potential candidate if it was differentially expressed, and inversely 

correlated with the expression of its putative targets in the same biological samples.  

Steps for the miRNA and mRNA profile integrating analysis include: (i) predicting miRNA 

putative targets by searching for 4 different types of seed sequences e.g. 6-, 7 match 8-, 7 A1-, 

and 8-mer seed sequences located in the 3' UTR; (ii) integrating expression levels at each 

time point in the DMM model for all miRNA targets; (iii) searching for a miRNA’s putative 

target enrichment which is given more detail below.  

If a miRNA has an impact in the pathological changes in the DMM model and could exert its 

suppressive function on variety of targets, then when it is down-regulated, there should be an 

enrichment of its predicted targets among up-regulated mRNA and vice versa. This means 

that for downregulated miRNAs, a greater percentage of upregulated mRNAs will be their 

targets and the inverse pattern will be observed for an upregulated miRNA. This should also 

be true when comparing between different time points, 1 and 7 days in the DMM model. For 

instance, if a miRNA was repressed across the 7 day time course, the percentage of its targets 

amongst up-regulated mRNA at day 7 should be higher than at day 1. Together with this, for 

a downregulated miRNA, an enrichment of miRNA targets in up-regulated mRNAs over 

unmodulated mRNAs should also be observed at each time point or across the time course.  

Additionally, fold change threshold is another challenge faced in integrating analysis. In fact, 

it is almost impossible to choose the “right” cut off as the normal 1.5 fold change would be 

too stringent, and consequently, the power to detect potential miRNAs would be very low. To 

overcome this, in this study, all calculations were done for all fold change values greater than 

1 at 0.05 fold intervals. 

The integrating analysis for the miRNA and mRNA array data in the DMM model showed 

that amongst the differentially expressed miRNAs, miRNA-29b is the most interesting. 

Indeed, a substantial enrichment of miR-29b putative targets which was inversely correlated 
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with the miRNA expression level was observed at each time points (Figure 3.4, Figure 3.5).  

At day 1, when miR-29b increased expression, 6mer- and 7mer match 8- targets in the down-

regulated section were dominant compared with the up-regulated section (Figure 3.4). 

Conversely, at day 7, when miR-29b decreased expression, there was a strong enrichment of 

targets with 4 different types of seed sites in the up-regulated section over the down-regulated 

(figure 3.4). Also at day 7, the ratio up-regulated targets/unchanged targets was substantially 

higher than the ratio down-regulated targets/unchanged targets (Figure 3.5).  

The inverse correlation between miR-29b and its potential targets was also observed across 

the time course: whilst miR-29b level was down-regulated from day 1 to day 7, there was a 

substantial increase of miR-29 targets in the up-regulated mRNAs at day 7 compared with 

day 1. Consistent with this, the ratio up-regulated targets/unchanged targets showed an 

enrichment at day 7 (Figure 3.5). All of the data above suggest that miRNA-29b has a 

potential functional role in OA onset in the DMM model and was selected as the candidate 

miRNA for further functional studies.   

From miRNA microarray data, miR-29b is the one on two miRNAs increased expression 

with 1.5 fold change at day 1 following DMM surgery. Real-time qRT-PCR was used to re-

measure expression level of miR-29b in the DMM samples and sham surgery samples. The 

Real-time qRT-PCR data confirmed miRNA microarray data and showed a significant 

increase of miR-29b expression level in DMM right compared with left knee or sham surgery 

(Figure 3.6).  

MicroRNA-29b is a member of the miR-29 family including miR-29a and miR-29c with the 

mature sequences differing at nucleotide positions 10, 18, 21, 22, or 23 but sharing a common 

seed sequence for target recognition. We hypothesized that not just miR-29b but all members 

of miR-29s may contribute to OA onset, as all miRNA-29s showed a downward trend at all 3 

time points even though the difference did not reach statistical significance. Therefore, in this 

study, we investigated the link between all miR-29 members with OA rather than just miR-

29b alone.  
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Figure 3.4 Percentage of miR-29 predicted targets in differentially expressed mRNA at day 1 
and day 7 after surgery in DMM model.  

The calculation was done for all the fold changes ± 0.05 from -2.5 to 4.0 and for each type of 
seed sequence e.g. 6mer, 7mer match 8, 7mer a1, 8mer. The mRNA having more than one 
binding site for each type of seed sequence was always assigned as 1. At k fold change, the 
percentage of 6mer-seed-site targets in modulated mRNAs was calculated: a_6mer= sum of 
mRNA having 6mer-seed site sequence in their 3’UTR with the fold change in the range (k, 
k+0.05); b_k= sum of mRNA with the fold change in the rank (k, k+0.05); Freq= 
a_6mer/b_k. The percentage of other seed site targets was calculated similarly. Day1: closed 
bar, day 7: opened bar.  
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Figure 3.5 Percentage of miR-29 targets that changed expression compared to unchanged 
expression at day 1 and day 7 after surgery in DMM model.  

The calculation was done for all the fold change (FC) ± 0.05 from each other from -2.5 to 4.0 
and for each types of seed sequence e.g. 6mer, 7mer match 8, 7mer a1, 8mer. The mRNA 
having more than one binding site for each type of seed sequence was always assigned as 1. 
When FC=k, the percentage of 6mer-seed-site targets which increased or decreased 
expression was calculated: 6mer_changed = sum of mRNA having 6mer-seed site sequence 
in their 3’UTR with FC in the range (k, FC max) if k >0, or (FC min, k) if k<0; 
6mer_unchanged = sum of mRNA having 6mer-seed site sequence in their 3’UTR with FC 
range in (0,k]  if k>0, or (k, 0] if k< 0;  1/Per.different = 6mer_unchange/6mer_changed. 
The percentage of other seed site targets was calculated similarly. Day1: red line, day 7: blue 
line.  
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Figure 3.6: MicroRNA 29b was significantly induced in the DMM model at 1 day after 

surgery 

Total RNA was reversed transcribed to cDNA and miR-29b expression was measured by 
real-time qRT-PCR in individual samples of sham right knee (sham surgery), DMM left knee 
(un-operated), and DMM right knee (DMM) at 1 day after surgery. U6 was used as 
endogenous control. Expression level of miR-29b in DMM and sham surgery was normalized 
to un-operated control. The data show mean +/- SEM, n=3.  The expression of miR-29b 
between each group was analysed by unpaired two-tailed t test * p<0.05, ** p < 0.01, *** 
p<0.001. 
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3.2.4. Up-regulation of miR-29s in the murine hip avulsion injury model  

Traumatic joint injury and joint magliment are linked to OA initiation. Patients with 

traumatic joint injury show an increased risk of OA, implicating the early events post-injury 

as important in the long term. To investigate the role of miR-29s in the onset of OA, a murine 

hip cartilage avulsion injury model, where the murine hip femoral cap cartilage was sub-

cultured in serum-free media across a 48 hour-time course, was used. Total RNA was isolated 

from the explants using Trizol, reverse transcribed to cDNA by either SuperScript II reverse 

transcriptase (for mRNA detection) or miRCURY LNATM  Universal cDNA synthesis (for 

miRNA detection). Expression levels were measured by real-time qRT-PCR. 

The majority of the genes rapidly induced in murine joints following surgical destabilization 

(DMM model) were also regulated in murine hip cartilage explants upon injury (Chong et al. 

2013). Interestingly, some genes such as Dkk3, Ccl2, Il6 were significantly regulated after 3 

hours in culture (Appendix, Figure 3) though likely regulating genes which are modulated at 

later time points. The expression pattern of the miR-29 family is similar to each other and 

tends to increase across the 48 hour time course (Figure 3.7): miR-29b and 29c significantly 

increased expression after 12 hours in culture; miR-29a significantly after 6 hours. This 

suggests that the regulation of the miR-29s may contribute to the molecular mechanism 

underlying the initiation of OA. 

 

 

 

  



 

 

119 

 

 

Figure 3.7: Expression of the miR-29 family in the hip avulsion injury model  

The femoral caps of C57Bl/6 mice aged 4 weeks were avulsed and put in culture. At each of 
3, 6, 12, 48 hour time points, the femoral caps were harvested. Total RNA was isolated using 
Trizol and reverse transcribed to cDNA.  Expression of the mature miR-29 family was 
measured by real-time q-RTPCR where U6 was used as an endogenous control. At least 
triplicate samples were measured at each time. Means ± standard errors are presented, n=6. 
Difference in expression between each time point against control (t=0) was calculated by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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3.2.5. Up-regulation of the miR-29 family in human end-stage OA cartilage  

To determine whether the miR-29 family could play a role in human OA, its expression level 

was compared between hip / knee OA cartilage and non-disease tissue controls (hip cartilage 

followingfracture to the neck of femur).  

Human articular cartilage samples (total: 8 hip and 7 knee OA cartilage, 7 healthy fracture to 

the neck of femur) were obtained from patients undergoing total hip/ knee replacement 

surgery at the Norfolk and Norwich University Hospital. Total RNA was isolated from all 

cartilage samples using Trizol and followed by a purification step through column using 

miRVana kit. The total RNA was reverse transcribed to cDNA using miRCURY LNATM 

Universal cDNA synthesis. Expression of all miR-29 members was measured by real-time 

qRT-PCR with U6 as the endogenous control. 

Data (Figure 3.8) showed an increase in miR-29 expression in hip OA but decrease in knee 

OA cartilage compared to fracture control. This reached significance, or close to significance 

in each case. Whilst there is no comparison with normal knee cartilage, these data show that 

the miR-29 family is regulated in human end-stage OA cartilage. 
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Figure 3.8: Expression of the miR-29 family in human OA cartilage  

Total RNA was isolated from human articular cartilage of either end-stage OA patients or 
healthy controls and reverse transcribed to cDNA. Expression of the mature miR-29 family 
was measured by real-time qRT-PCR using U6 as an endogenous control. HOA (hip 
osteoarthritis cartilage, n=8), KOA (knee osteoarthritis, n=7), NOF (neck of the femur, n=7). 
Means ± standard errors are presented. Difference in expression between each time point 
against control (NOF) was calculated by unpaired two-tailed Student’s t test. * p<0.05, ** p < 
0.01, *** p<0.001. 
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3.2.6. The miR-29 family is regulated with chondrocyte phenotype 

Dedifferentiation and the loss of phenotype is an obstacle in expanding human chondrocytes: 

the cells stop expressing aggrecan and collagen type II, and this limits capacity to form 

cartilage. In line with this, alteration chondrocyte phenotype is one of the characteristics of 

OA. As compared with normal articular cartilage, the chondrocytes embedded in different 

zones of OA cartilage were shown to express different markers of chondrocyte differentiation: 

chondrocytes in the middle zone re-expressing chondroprogenitor phenotype; cells in the 

upper middle zone expressing type III collagen (dedifferentiated phenotype) (Aigner et al. 

1993). Assessing whether the miR-29 family is regulated with chondrocyte phenotype, 

therefore, would help to further determine the relevance of the miR-29 family in cartilage 

function.  

This was investigated using human primary chondrocyte dedifferentiation model. After 

isolation from human knee OA cartilage by collagenase (collagenase-post digested HACs 

(PD)), primary chondrocytes were cultured in monolayer (primary culture HACs (P0), and 

three sequential passages were performed at 1: 3 dilution of cells (passage 1 to passage 3). 

Total RNA was isolated from cartilage, PD, P0 to P3 chondrocytes and reverse transcribed to 

cDNA. The expression level of all the miR-29 family was then measured by real-time qRT-

PCR. 

The expression of the miR-29 family was found to significantly decrease when HACs were 

passaged in monolayer (Figure 3.9), indicating the putative role of the miR-29 family in 

chondrocytic phenotype.  
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Figure 3.9: Expression of the miR-29 family in a chondrocyte dedifferentiation model  

Human primary chondrocytes were isolated from the articular cartilage of 8 knee OA patients 
using collagenase digest. The cells were put in culture and passaged 3 times. Total RNA was 
isolated from either human articular cartilage (cart) or chondrocytes post digestion with 
collagenase (PD) or each passage 0, 1, 2, 3 (P0, P1, P2, P3).  After reverse transcribing to 
cDNA, expression of the mature miR-29 family was measured by real-time qRT-PCR (U6 
was used as an endogenous control). Mean ± standard errors are presented, n=8. Different in 
expression between was calculated by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001. 
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3.2.7. MicroRNA-29s expression in chondrogenesis  

Chondrogenesis is the earliest phase of skeletal development, occuring as a result of: 

mesenchymal cell condensation, chondroprogenitor cell differentiation, chondrocyte 

differentiation and maturation. Chondrogenesis results in the formation of cartilage and bone 

in the process of endochondral ossification (Goldring et al. 2006). It is pertinent to examine 

the role of miR-29 in chondrogenesis, particularly since the replay of this developmental 

process may contribute to osteoarthritis.   

To determine the expression and therefore possible role of the miR-29 family in 

chondrogenesis both human and mouse chondrogenesis models were used. Human 

chondrogenesis model: human bone marrow stem cells were differentiated to form a 

cartilage disc (the model was kindly developed by Dr Matt J. Barter (Newcastle University, 

UK)); Mouse chondrogenesis model: the embryonic carcinoma cell line ATDC5 was 

stimulated to from chondrocytes using insulin for 42 days (this model was developed by Dr 

Tracey Swingler (University of East Anglia)). Total RNA was isolated, reverse transcribed to 

cDNA and used for measuring expression level of the miRNA by real-time qRT-PCR. 

In the human chondrogenesis model, a significant down-regulation of the miR-29s after 3 

days of differentiation was observed; after that, miR-29s return to the original expression 

levels (Figure 3.10). A similar expression pattern was also observed in the murine ATDC5 

chondrocyte differentiation model: significantly decreased expression of all the miR-29 

members after 14 days differentiation; with a return after 36 days, to the original level 

(Appendix, Figure 4). These data imply that miR-29 may be a negative regulator of the early 

stage of chondrogenesis.  

Indeed, the miR-29 family was not the only miRNA regulated in either the human or murine 

chondrogenic process, many other miRNAs were strongly modulated e.g. (Barter et al, 

unpublished data) (Swingler et al. 2012). However, it can be postulated that the miRNA 

would have a functional role in chondrogenesis if it had affected on mRNA expression. To 

test this hypothesis, again an integrating analysis approachs (using mRNA expression profile 

data to analyse miR-29 putative target genes) was used. A substantial enrichment of miR-29 

targets was inversely associated with the expression of miR-29s was observed (Data not 

shown). Together, these data suggest that the miR-29 family acts as the negative regulator of 

chondrogenesis, leading to an increase in mRNA to enable the process.  
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Figure 3.10: Expression of the miR-29 family in the human chondrogenesis model. 

Human bone marrow stem cells (from 3 donors, 18-25 years of age, 5x105 cells in 100µl 
growth medium) were put into polycarbonate Transwell filters and centrifuged in 24 well 
plates. 0.5ml chondrogenic culture medium containing 100µg/ml sodium pyruvate, 10ng/ml 
TGFβ3, 100nM dexamethasone, 1x ITS, 40µg/ml proline, and 25µg/ml ascorbate-2 
phosphate was added to the lower well. Media were replaced every 2 or 3 days up to 14 days. 
At 0, 3, 7, 14 days, the cells were harvested and total RNA was extracted using Trizol. The 
RNA was then reverse transcribed to cDNA and was used for measuring the expression level 
of the mature miR-29 family by real-time qRT-PCR (U6 was used as an endogenous control). 
Assays were repeated 3 times. At least triplicate samples were in each time. Means ± 
standard errors are presented. Difference in expression between each time point was 
calculated by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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3.2.8. The miR-29b is expressed in murine limb development 

The formation of the skeleton first is initiated with the formation of a precartilage 

condensation (anlagen) which is followed by chondrogenesis triggered in the precartilage 

condensation and ultimately cartilage is formed. This process involves the cooperation of 

many cell activities e.g. migration, adhesion, intracellular signalling, and proliferation 

(Goldring et al. 2006). Given the likely involvement of the miR-29 family in chondrogenesis, 

it is pertinent to ask whether miR-29s are expressed in murine limb development. 

Additionally, the miR-29 family or its members have been shown to control cell proliferation 

and apoptosis in different tumour types. A murine model would thus be a useful model to 

study the role of the miR-29 family in cell proliferation and apoptosis limb development. 

In mice, the forelimb starts to develop at stage E9.5 whilst the hindlimb starts behind by 

about half a day. Five days later, a miniature model of the adult limb is formed (E14.5 and 

E15 for fore and hindlimb, respectively). At stage E11, a distinct apical ectodermal ridge at 

the limb tip is formed in the forelimb and the handplate is beginning to form at E11.5.  

Similarly events happen in the hindlimb at half a day later (at E11.5 and E12) (Martin 1990).  

Whole mount in situ hybridization was conducted using amiRCURY LNATM miR-29b-3p 

double-DIG labelled probe to detect the expression of miR-29b in the mouse embryo stage 

E11.5 and E15. The data showed that: at stage E11.5, miR29b was expressed in the cartilage 

of both fore and hindlimb; at stage E15 when the small scale the adult limb was formed, miR-

29b was strongly expressed, implicating miR-29b playing a role in murine limb development. 

Besides limbs, miR-29b was also found on the brain and the spine of embryo stage E11.5 

(Figure 3.11).  

  

 



 

 

127 

 

 

 

 

Figure 3.11: Whole mount in situ hybridization of miRNA-29b in murine embryo stage 

E11.5 and E.15.   

Using a miRCURY LNATM double-DIG labelled miR-29b probe, miR-29b was found to be 

expressed: in the embryo stage E11.5 in the brain (A), mouth (B), spine (C-D), hindlimb (E), 

forelimb (F); in the embryo stage E15 in hindlimb (G) and  forelimb (H).  
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3.3. DISCUSSION 

The principal aim of this study was to begin to identify the miRNAs which were implicated 

in the early stages of OA and elucidate their function.  Whilst there have been a number of 

studies on the role of miRNAs in OA pathogenesis, they have not focused on the disease 

onset. In the present study, for the first time, the miRNA expression profile was reported for 

the DMM mouse model at early time points e.g. 1, 3, 7 days following surgery. The fact that 

only a small number of miRNAs changed expression across the first three days after DMM 

surgery might indicate miRNAs mainly contribute in disease progression rather than 

initiation. However, there are some limitations of the study which prevent a firm conclusion 

about the role of miRNAs in the early stages of the disease. Total RNA for the miRNA 

microarray was isolated from whole knee joints of DMM mice. Thus, if a miRNA is 

expressed in a single tissue e.g. cartilage, bone, meniscus, ligament or synovium, pooling of 

tissues will reduce the signal to a lower level than in the individual tissue and that could be 

the explanation for the overall low levels of modulated miRNAs observed in the present 

study. Moreover, insufficient controls, e.g. naïve samples and genes responding to sham 

surgery in this study may also have been problematic.  The DMM model does not completely 

recapitulate human OA pathogenesis, e.g. with more synovial involvement in the latter.  

However, it remains unlikely that the miRNA microarray data acquired from the DMM 

model in this study is incorrect. The DMM left knee (no surgery) used as a control would 

show the consequence of surgery, even if it can’t distinguish injury per se from early OA. 

Moreover, Burleigh et al (2012)  reported a large and significant difference in expression 

levels of e.g. Ccl2, Arg1e, Il6, Saa-3 in the same DMM model just 6 hours following surgery, 

which was interpreted as response to surgical destabilization rather than reaction to injury 

(Burleigh et al. 2012). In this study, such an increase in expression was also observed when 

comparing between the DMM right and DMM left, suggesting that the DMM left knee can 

act as a suitable control. Hence, it was expected that the changes in miRNA expression at 

early time points would be greater.   

MicroRNA-29b, one of only two miRNAs significantly increased in expression at day one 

post-surgery and inversely correlated with expression of its putative targets, was investigated 

in detail. The miR-29b is encoded by two loci in the human genome e.g. the primary miR-29-

a/b1 cluster in chromosome 7, and the primary miR-29b2/c cluster in chromosome 1. 
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Normally, clustered miRNAs in humans work in combination to accomplish their function. 

At the transcriptional level, at least one of the other miR-29 family members i.e. miR-29a or 

miR-29c will be co-transcribed with miR-29b.  In addition, miR-29b is reported to have a 

short half-life (the time taken for the miRNA to fall to half of its original value) which is 

linked to the presence of uracil bases at positions 9-11, compared with miR-29a (more stable 

with a reported half-life of > 12 hours) (Zhang et al. 2011). Thus, in the DMM model at 1 

day after surgery it would be expected that a significant increase in either miR-29a or miR-

29c would accompany that of miR-29b. However, only miR-29b increased in expression (1.5 

fold change in array data) but not any of the other miR-29 family members, perhaps 

implicating another post-transcriptional regulatory mechanism controlling miRNA processing. 

In line with the DMM model data, in a murine hip avulsion injury model, an increasing 

expression level was also observed for all miR-29 members post injury. Interestingly, a 

similar pattern of expression of some genes strongly induced in the DMM model at 6 hours 

after surgery (Burleigh et al. 2012) was seen in the injury model suggesting some molecular 

similarities between the two models. In line with this, Chong et al (2013) also observed a 

similar pattern when measuring the expression of the set of gene induced expression in DMM 

model 6 hours after surgery and in murine injury model in which the hip cartilages cultured 

for 6 hours (Chong et al. 2013). Since mechanical factors following traumatic joint injury 

may mediate OA onset, these data suggest for the first time an important role for the miR-29 

family in the initiation of OA. The fact that the miR-29 family increased in expression in 

human OA end-stage cartilage supports a role for the miR-29s in the disease. In this study, 

human knee cartilage normal controls were not available, and the difference in hip and knee 

cartilage may explain in part why the miR-29 family levels increased in hip but decreased in 

knee OA cartilage compared to human hip fracture control. Also, in this project, the miR-29 

family expression level is very variable across a human tissue panel e.g. heart, brain, lung, 

spleen (data not shown). In supporting these data, previous published data also demonstrated 

the different expression level of the miR-29 family in different tissues in zebrafish 

(Wienholds et al. 2005). These data suggest that the mechanisms controlling the miR-29 

family expression in different tissues are not similar. The fact that miR-29 family expression 

was modulated in different mouse models and in human OA cartilage implies a role for the 

miR-29 family in cartilage, and suggest that the two pri-miR-29a/b1 and pri-miR-29b2/c 

clusters may be involved in both early and late stages of the disease. The direct mechanism 
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controlling miR-29 family expression and the extent to which each cluster contributes to OA 

remains unknown and is worthy of further investigation.  

This study also provides evidence for the role of the miR-29 family in cartilage formation as 

its expression was regulated during human and mouse chondrogenesis and inversely 

correlated with its putative targets. In fact, such decreased expression level at an early stage 

of chondrogenesis is in line with published data e.g. Guerit et al (2013) showed the decreased 

expression of miR-29a is essential for chondrogenesis via its regulation of FOXO3a (Guerit 

et al. 2014); Sorentino et al (2008) found miR-29b was among miRNAs down-regulated 

when differentiating human MSCs through chondrogenesis (Sorrentino et al. 2008); Yan et al 

(2011) demonstrated that both miR-29a and miR-29b were significantly decreased in a 

chondrogenesis model where mouse MSC were grown on polyhydroxyalkanoates (Yan et al. 

2011). However, I have demonstrated for the first time that all miR-29 family members are 

involved in chondrogenesis, stressing the important role of both miR-29 clusters in 

controlling cartilage homeostasis in human and mouse. In contrast to this data, there are 

others studies profiling the expression of miRNAs in murine and human chondrogenesis 

model (Suomi et al. 2008, Lin et al. 2009, Miyaki et al. 2009, Lin et al. 2011, Yang et al. 

2011). The miR-29 family, nevertheless, was not amongst the miRNAs which had altered 

expression. This is not surprising and could be attributed to differing design of experiments 

including inducers of differentiation, cell type, numbers of detected miRNA probes and 

organism.  In addition, despite of being a negative regulator of chondrogenesis, miR-29b was 

found to express in murine limb development. A number of published data report that the 

miR-29 family can act as oncogenes whose expression induces cell proliferation but inhibits 

apoptosis. Whether the miR-29 family is involved in murine limb development through 

inducing chondrocyte proliferation in the growth plate remains unknown. Therefore, 

examination of the role of miR-29 family in limb development in vivo will be a priority for 

future studies.  

Another piece of data supporting the role of the miR-29 family in OA comes from the fact 

that expression of the miR-29 family is decreased during chondrocyte dedifferentiation. 

Again, other groups have profiled miRNAs in human dedifferentiation models (Karlsen et al. 

2011, Lin et al. 2011) but the miR-29 family has not shown up in any of them. As mentioned 

above, this could be attributed to many different factors.   
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Taken together, all of these data show that the miR-29 family may modulate both cartilage 

homeostasis and OA and make a compelling case for further investigation. In this PhD thesis, 

for the first time, the whole miR-29 family is reported to be involved in OA although the 

increase of the miR-29b in OA had been shown (Moulin et al. 2012). Nevertheless, the 

miRNA-29 family has been implicated in many other areas of pathology. Many publications 

have reported the involvement of the miR-29 family in cancers where the miRNA family or a 

single member could serve as either a tumour suppressor or an oncogene. In 

rhabdomyosarcoma (Wang et al. 2008), nasopharyngeal carcinoma (Sengupta et al. 2008), 

hepatocellular carcinoma (Xiong et al. 2010), acute myeloid leukemia (Eyholzer et al. 2010) , 

multiple myeloma (Zhang et al. 2011, Amodio et al. 2012), chronic lymphocytic leukemia 

(Santanam et al. 2010), glioblastoma (Cortez et al. 2010), and lung (Fabbri et al. 2007) and 

pancreatic cancer (Muniyappa et al. 2009), miR-29 was described as a tumor suppressor 

whilst in acute myeloid leukemia , colorectal liver metastasis (Wang et al. 2012), and breast 

cancer (Chou et al. 2013) , miR-29 was shown to be as tumour promoter. 

Besides cancers, the miR-29 family has been shown to participate in a number of 

physiological processes including (i) muscle development e.g. knockdown of miR-29b in 

vivo induced cardiac fibrosis in mice; miR-29a/b1 inhibition induced vascular smooth muscle 

cell calcification; miR-29 family expression was developmentally up-regulated in porcine 

skeletal muscle from fetal to adult, and this was also true in mice and human; the miR-29 

family was found to be down-regulated in myotonic dystrophy type I and Duchenne muscular 

dystrophy (Wei et al. 2013), (ii) bone formation e.g. miR-29a increased bone mass, induced 

osteoblast differentiation, and inhibited osteoclast differentiation; reduced miR-29a 

expression was associated with low bone mass and poor skeletal microarchitecture in rats 

treated with glucocorticoids (Wang et al. 2013), (iii) HIV virus infection  e.g. ectopic 

expression of miRNA-29a resulted in reduction of HIV virus levels, implicating this miRNA 

as a potential strategy in developing anti-HIV therapeutics  (Ahluwalia et al. 2008), (iv) 

aging e.g. miR-29 family up-regulation was observed in a number of different organs e.g. 

liver, muscle, and brain of several aging models (Ugalde et al. 2011, Fenn et al. 2013, Hu et 

al. 2014), (v) diabetes e.g. the miR-29 family was up-regulated in diabetic rats and forced 

expression of miR-29 inhibited insulin induced glucose imported by 3T3-L1 adipocytes (He 

et al. 2007);  reduced miR-29b in plasma samples of type 2 diabetes patients anticipated the 
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manifestation of the disease (Zampetaki et al. 2010); miR-29c was found up-regulated the 

kidney glomeruli from diabetic mice (Long et al. 2011); the continued expression of miR-29 

isoforms in the pancreatic β-cell seems to be required for normal and selective stimulation of 

insulin secretion by glucose (Pullen et al. 2011); (vi) fibrosis development, the miR-29 

family has been shown to be implicated in the development of fibrosis of many organs 

including heart, kidney, lung, liver, and systemic sclerosis; (vii) Alzheimer disease, the miR-

29a/b1 cluster or miR-29a was significantly decreased in Alzheimer patients (Hebert et al. 

2008, Shioya et al. 2010). 

In conclusion, with all of the data above, the miR-29 family may play a key role in 

Osteoarthritis and of is worthy of further investigation. The mechanisms which control its 

expression together with its function in chondrocytes will be described in the next chapters.  
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CHAPTER IV 
FACTORS THAT CONTROL EXPRESSION OF THE MICRORNA-29 FAMILY  

 

4.1. Introduction  

In the previous chapter, evidence for the involvement of the miR-29 family in cartilage 

homeostasis and OA was presented. The increased expression of the all family members is 

apparent in both early and late stages of OA. However, which factors or mechanisms are 

responsible for miR-29 induction or repression in chondrocytes remains unknown and is 

worthy of further investigation.   

The miR-29 family is intergenic miRNAs and is encoded in two gene clusters e.g. one for the 

primary miR-29a/b1 on chr.7q32, and the other for the primary miR-29b2/c on chr.1q32.2 

(Saini et al. 2007, Chang et al. 2008). The miR-29b1 and miR-29a precursors are processed 

from the pri-miR-29a/b1 last intron (Genbank accession EU154353) whist the miR-29b2 and 

miR-29c precursors are from the pri-miR-29b2/c last exon (Genbank accession EU154352 

and EU154351) (Chang et al. 2008) (Figure 4.1). These precursors are all transcribed as 

polycistronic primary transcripts (Chang et al. 2008, Mott et al. 2010) upon which various 

transcriptional regulators e.g. NFκB (Liu et al. 2010, Mott et al. 2010), supressors (c-Myc 

(Mott et al. 2010, Parpart et al. 2014), Sp1(Liu et al. 2010, Amodio et al. 2012), Gli (Mott et 

al. 2010), Yin-Yang-1, Smad3 (Qin et al. 2011), Ezh, H3K27, HDAC1, HDAC3), or inducers 

(Gli, SRF, Mef2, TCF/LEF, GATA3 (Chou et al. 2013), CEBPA (Eyholzer et al. 2010)), and 

signalling pathways e.g, Wnt , TGFβ, TLR/NFκB, TNFα/NFκB, hedgehog signalling have 

been reported to be directly and/or indirectly involved. For instance, both canonical and 

non-canonical Wnt signalling was reported to induce the miR-29 family level in different 

cellular contexts: Wnt3a rapidly induces miR-29 levels in osteoblastic cells (Kapinas et al. 

2009, Kapinas et al. 2010) or in muscle progenitor cells (MPCs) (Hu et al. 2014), 

respectively, at least in part through the two putative TCF/LEF-binding sites in the miR-29a 

promoter (Kapinas et al. 2010); non-canonical Wnt signalling through Wnt7a/Frizzled 9 

resulted in increased expression of only the mature miR-29b but not miR-29a or c or any 

miR-29b primary or precursor forms in non-small lung cancer cell lines H661 and H15 

(Avasarala et al. 2013). In addition, ERK5 and PPARγ, key effectors of the Wnt7a/Frizzled 9 

pathway, were also observed to be strong inducers of miR-29b expression (Avasarala et al. 
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2013). In contrast to Wnt signalling, TGFβ/Smad3 signalling was shown to negatively 

regulate miR-29 family expression in different cell lines e.g. human aortic adventitial  
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Figure 4.1: Genomic organization of the miR-29 family 

The miR-29 family includes three members miR-29a, miR-29b and miR-29c. The primary 
pri-29a/b1 is located in chromosome 7 containing pre-29a and pre-29b1. The primary pri-
29b2/c is located in chromosome 1 including pre-29b2 and pre-29c. The hairpins indicate the 
locations of the sequence encoding precursors of miR-29s. Pre-29a and pre-29c will process 
into mature miR-29a and miR-29c, respectively. Pre-29b1 and pre-29b2 will process into 
mature miR29b. The mature sequences of the miR-29 family members share identical seed 
regions. Nucleotides that differ among miR-29s are indicated in italics.  
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fibroblasts (Maegdefessel et al. 2012), renal fibrosis cells (Wang et al. 2012, Ramdas et al. 

2013), murine hepatic stellate cells (Roderburg et al. 2011), rat hepatic stellate cells 

(Kwiecinski et al. 2011), human skin fibroblasts (Maurer et al. 2010), human tenon’s 

fibroblast (Li et al. 2012), human lung fibroblast cell line (Cushing et al. 2011, Yang et al. 

2013). The suppressive effect of TGFβ/Smad3 signalling on miR-29 expression was partly 

mediated through a Smad3 binding site in the highly conserved region around 22kb upstream 

of the miR-29b2/c promoter as showed by chromatin immunoprecipitation assay (Qin et al. 

2011, Ramdas et al. 2013). Similar to TGFβ, Toll-like receptor (TLR) signalling and 

TNFαααα signalling have been shown to mediate suppressive effects on miR-29 family 

expression. In man,  treating human cholangiocarcinoma cells with TLR ligands e.g. TLR3 

(Poly (I:C)), TLR4 (LPS), TLR5 (flagellin), TLR6 (MALP-2) showed a significant decrease 

in the miR-29 level beginning after 4 hours of LPS treatment but increasing to 24 hours (Mott 

et al. 2010); treating human stellate cells with LPS strongly decreased all miR-29 family 

expression after 1 hour (Roderburg et al. 2011); treating C2C12 myoblasts with TNFα 

substantially reduced miR-29b and miR-29c expression (Wang et al. 2008); stimulating the 

choroidal-retinal pigment epithelial cell line ARPE-19 with TNFα resulted in significant 

down regulation of all miR-29s; conversely, transfecting with a synthetic NFκB decoy, 

(NFκB inhibitor), rescued the down regulation of miR-29 by TNFα (Χαι ετ αλ. 2014). The 

activation of NFκB through TLR signalling with its three binding sites in the miR-29a/b1 

cluster promoter (-561, -110, and +134) was proven to be the mechanism for the suppression 

of miR-29a/b1 promoter function (Mott et al. 2010). In mice, miR-29a and miR-29b 

significantly decreased expression in murine natural killer (NK) cells stimulated with the 

TLR3 ligand (Poly (I:C)) or phorbol ester (PMA) as well as in splenocytes, NK and T cells of 

mice infected with L. monocytogenes or Mycobacterium bovis bacillus Calmette-Guérin (Ma 

et al. 2011). Consistent with the human miRNA, a region about 25 kb upstream of the murine 

promoter of miR-29a/b1 contains two NFκB binding sites. The second binding site is more 

conserved between human and mouse and it has been shown to be key for suppression of the 

miR-29a/b1 promoter (Ma et al. 2011). Importantly, other transcriptional factors, co-

operating with NFκB to suppress or induce miR-29 family expression, have also been 

reported e.g. YY1, Sp1, Ezh, H3K27, HDAC1, HADC3, Mef2, SFR.  Forced expression of 

YY1 in C2C12 lead to a 2-fold decrease of miR-29b and miR-29c levels; similarly, siRNA 

knockdown of YY1 significantly enhanced expression of miRNA expression.  ChIP analysis 

showed that YY1 did not bind to the miR-29b2/c locus in cells in the absence of NFκB, 
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suggesting that both pathways are necessarye for silencing the miR-29b2/c locus. Amongst 4 

putative binding sites of YY1 in highly a conserved region ~20kb upstream of miR-29b2/c, 

only one site is bound by YY1 on ChIP assay whereas all 4 sites produced a binding complex 

with EMSAs using nucleus extract from C2C12. Notably, Ezh, H3K27, HDAC1, whose 

expression is associated with repression of muscle-specific genes, and recruited by YY1, was 

also detected by ChIP assay. In line of these transcription factors, Mef2 and SFR, well-known 

for activating muscle genes, were also found binding to the miR-29b2/c promoter. Again 

using luciferase reporter assay, a reporter containing a 4.5 kb fragment spanning YY1, Mef2, 

SFR binding sites was repressed by YY1 or loss of the YY1 binding site but stimulated with 

either YY1 knockdown or SRF or Mef2 (Wang et al. 2008). In addition, forced expression of 

Sp1 or NFκB (p65) reduced miR-29b expression; conversely, knockdown of Sp1 or NFκB 

(p65) by siRNAs resulted in induced miR-29b level (Liu et al. 2010). EMSA assay using 

probes spanning the -125/-75 miR-29b sequence yielded two major complexes, suggesting 

Sp1/NFκB acts as a repressive complex interacting with an element of the miR-29b enhancer 

(Liu et al. 2010). Interestingly, histone deacetylase (HDAC) 1 and 3 contribute to the 

repressor activity of Sp1/NFκB on miR-29b expression (Liu et al. 2010). Incubation of 

HDAC1/HDAC3 with 32P-labelled probe from the miR-29a/b1 cluster region together with 

NFκB p50/p65 and Sp1 showed a delayed and more intense band; HDAC1/3 inhibitors 

increase miR-29b expression, supporting the interaction of HDAC1 and 3 and Sp1/NFκB 

with the miR-29b regulatory sequence (Liu et al. 2010). Similar to other signalling mentioned 

previously, hedgehog signalling pathway was also shown to repress miR-29 expression: 

cells treated with cyclopamine, an inhibitor of Smoothened (a hedgehog signalling 

component), or transfected with siRNA to knockdown Gli-3, the expression of miR-29b 

increased (Mott et al. 2010). Along with the transcription factors mentioned above, there are 

other transcriptional factors controlling miR-29 family expression. The serum 

alphafetoprotein (AFP), a membrane-secreted protein associated with poor patient outcome in 

hepatocellular carcinoma, was reported to inhibit miR-29a expression through facilitating c-

MYC binding to the promoter of the pri-miR-29a/b. This conclusion was supported by: the 

inability of AFP to decrease the miR-29a level in the absence of c-MYC protein; c-MYC was 

abundantly bound to the miR-29a/b1 promoter in the presence of AFP, but did not bind 

without AFP (Parpart et al. 2014); c-MYC promoter binding protein (MBP), originally 

described to bind to and repress c-MYC promoter function, up-regulated miR-29b expression 
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by 6 fold in prostate cancer cells (Steele et al. 2010). The haematopoietic master transcription 

factor, CCAAT/enhancer-binding protein-α (CEBPA), was also reported to activate the 

expression of miR-29a and miR-29b. Forced expression of CEBPA in acute myeloid 

leukaemic cells lead to two-fold induced expression of the primary miR-29a/b1 and the 

mature miR-29a and miR-29b whereas the expression of miR-29b2/c primary transcript 

remained stable. Using luciferase reporter assays, the sequence, having the conserved region 

spanning -682 bp upstream to +296 bp downstream of the miR-29a/b1 transcriptional start 

site and containing 6 potential CEBPA sites, was also strongly induced with CEBPA. Among 

these binding sites,  the one located at +15 to +29 bp was identified to be responsible for 

CEBPA-mediated activation of the pri-miR-29a/b1 promoter on ChIP assay (Eyholzer et al. 

2010). Another transcriptional factor, GATA3, specifying and maintaining luminal epithelial 

cell differentiation in the mammary gland, was also found to induce miR-29 expression 

directly by binding to three GATA3 sites in the miR-29a/b1 promoter. Interestingly, GATA3 

can induce miR-29s expression by inhibiting the TGFβ and NFκB signalling pathway. 

Additionally, STAT1 (signal transducer and activator of transcription) a transcription factor 

induced by interferon γ signalling, was reported to upregulate primary 29a/b1, the pre-29a, 

pre-29b1, and the mature miR-29a, miR-29b in melanoma cell and T cells (Schmitt et al. 

2013).  

With all the information above, it is likely that in different cellular contexts, the miR-29 

family expression is controlled by different transcription factors and signalling pathways. 

Which factors control its expression in human chondrocytes remains unknown. The effects of 

a variety of anabolic and catabolic factors e.g. TGFβ, Wnt3a, IL-1, LPS on miR-29 family 

expression in human chondrocytes were thus investigated. Also, the effect of SOX9, a major 

specifier of chondrocyte phenotype was also investigated.  
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Aims: 

• Analyse the promoter region (approximately 2kb upstream of the transcription starting 

site) of the miR-29 family for SOX9 binding sites. Experimentally validate the impact 

of SOX9 on miR-29 expression. 

• Test major anabolic and catabolic cytokines controlling the miR-29 expression in 

chondocytes.  
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4.2. Results 

4.2.1. The master regulator of chondrogenesis SOX9 suppresses expression of the miR-

29 family  

The master regulator for chondrogenesis SOX9 has a critical function in a number of 

development processes e.g. skeletal formation, sex determination, pre-B and T cell 

development. SOX9 was found to be expressed in all chondroprogenitors and differentiated 

chondrocytes, but not in hypertrophic chondrocytes (Ng et al. 1997, Zhao et al. 1997). 

Importantly, SOX9 is considered as the critical transcriptional factor for chondrogenic 

differentiation, partly owing to the fact that its functions are required for differentiating 

chondrogenic mesenchymal condensations into chondrocytes, and for all stages of 

chondrocyte differentiation: in mouse chimera, Sox9 knockout cells were excluded from all 

cartilage and no cartilage developed in teratomas derived from Sox9 -/- embryonic stem cells 

(Bi et al. 1999); Sox9 deletion from chondrocytes at later stages of development resulted in 

decrease in chondrocyte development, cartilage matrix gene transcriptional inhibition, and 

prematurely conversion from proliferating chondrocytes to hypertrophic chondrocytes 

(Akiyama et al. 2002). Considering the critical role of SOX9 in chondrocytes, I explored the 

connection between this factor and expression of the miR-29 family.  Initial evidence 

suggested a link: in the DMM model mRNA profiling data, at 7 days after the surgery, Sox9 

expression was greatly induced (Appendix, Table 7) whilst the miR-29s expression was 

suppressed; in both human and mouse chondrogenesis models, the level of Sox9 was 

inversely correlated with the level of miR-29 expression (data not shown). Thus, SOX9 could 

be a miRNA-29 target or SOX9 could regulate miRNA-29 expression.  

To test the postulate that SOX9 is a miR-29 target, the effect of the miR-29 members on 

SOX9 transcriptional expression was examined: after sub-cloning the SOX9 3’UTR 

downstream of the luciferase gene, this SOX9-3’UTR reporter vector was co-transfected with 

the miR-29 family into SW1353 cells; 24 hours after transfection, luciferase activity was 

measured. Luciferase activity showed that miR-29 family have no effect on the SOX9 3’UTR 

even though bioinformatics analysis found one 6-mer seed site for miR-29 in the SOX9 

3’UTR (data not shown), suggesting that SOX9 is not a miR-29 family direct target. Also, 

whether SOX9 is a miR-29 indirect target was also determined: relative expression of SOX9 

was checked in human primary chondrocytes transfected with miR-29 family for 48 hours. 

Quantitative RT-PCR confirmed that the SOX9 level was not changed with miR-29 
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transfection in chondrocytes (data not shown). Thus, SOX9 is not a direct or indirect target of 

miR-29s at least at the transcriptional level.  

For testing the second hypothesis SOX9 is a suppressor of miR-29 expression, the effect of 

overexpression or knockdown of SOX9 on miR-29 expression was studied: a SOX9 

expression construct or siRNA was transiently transfected into the human chondrosarcoma 

SW1353, 48 hours after transfection, the level of the mature miR-29 family was measured by 

quantitative RT-PCR. The data (Figure 4.2) show that SOX9 suppressed miR-29 transcription: 

the miR-29 family levels were significantly reduced when SOX9 was overexpressed (Figure 

4.2.a,c) but induced when SOX9 was knocked down (Figure 4.2.b,c).   

To further explore the regulatory mechanism by which SOX9 suppressed miR-29 expression, 

the 2kb region upstream from the primary miR-29a/b1 and miR-29b2/c transcription start 

sites were analysed by searching for the SOX9 DNA-binding motif ([A/T][A/T]CAA[A/T]). 

This analysis revealed 5 putative binding sites for SOX9 in the promoter regions of pri-miR-

29a/b1 and pri-miR-29b2/c, respectively (Figure 4.3.a). A reporter construct with the primary 

miR-29a/b1 2kb promoter, kindly provided by Dr Anne Delany (University of Connecticut, 

USA) was used to further validate the direct effect of SOX9: the reporter was co-transfected 

with increasing amounts of SOX9-expression plasmid into SW1353 cells and luciferase 

activity measured after 24 hours of transfection. Luciferase activity in SW1353 cells 

significantly decreased in a dose-dependent manner (Figure 4.3.b) showing that SOX9 

directly regulated the primary miR-29a/b1 promoter.  

The data above demonstrate that SOX9 is a miR-29 family suppressor. 
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Figure 4.2: Sox9 suppresses miR-29 family expression.  

(A) SOX9 gain-of-function: transiently transfection of a SOX9-expression vector or pcDNA3 
empty vector (control) into SW1353 cells; (B) SOX9 loss-of-function: transiently transfection 
of SOX9 siRNA or a non-targeting control into SW1353 cells. Relative expression of SOX9 
in (A) and (B) was measured 48 hours after transfection by quantitative RT-PCR using18S as 
the endogenous control; (C) The miR-29 family expression levels after overexpression or 
knockdown of SOX9 in SW1353 cells was measured by quantitative RT-PCR. Using U6 as 
the endogenous control. Red bar: miR-29a, green bar: miR-29b, black bar: miR-29c, open bar: 
control. Means ± standard errors are presented. Difference in expression was analysed by 
unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.3: Sox9 suppresses primary miR-29a/b1 transcription by directly binding to 
the proximal miR-29a/b1 promoter. 
 

(A) Structure of the miR-29a/b1 promoter reporter: 5 putative binding sites of SOX9 were 
identified by analysing the 2kb region upstream of the transcription start site of miR-29a/b1 
by JASPAR. This 2kb region was sub-cloned upstream of the luciferase gene in a pGL4 
vector.   
(B) Suppressive effect of SOX9 on the primary miR-29a/b1 promoter reporter: transiently co-
transfection of primary miR-29a/b1 promoter (100ng) with increasing amount of SOX9-
expression vector (0, 100, 300ng) or pcDNA.3 to equalise DNA into SW1353. A 
constitutively expressed Renilla lucierase was used as a control for transfection efficiency. 
Luciferase activity was measured 24 hours after transfection. Means ± standard errors are 
presented. The difference in luciferase activity was analysed by unpaired two-tailed Student’s 
t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6. 

(B) 
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4.2.2.  TGFββββ1 inhibits expression of the miR-29 family    

TGFβ signalling has many important roles in chondrocytes and articular cartilage: TGFβ 

induces extracellular matrix formation; stimulates chondrocyte proliferation; inhibits the 

terminal differentiation of chondrocytes; retains chondrocytes in the pre hypertrophic stage; 

increases total glycosaminoglycan synthesis; maintains the matrix component in immature 

cartilage (Li et al. 2005). Animal studies showed that: transgenic mice overexpressing a 

cytoplasmically truncated, dominant-negative form of the TβRII in cartilage, resulted in a 

joint disease similar to human osteoarthritis (Serra et al. 1997); Smad3 deficient mice 

showed premature chondrocyte maturation with increased length of the hypertrophic region, 

disorganization of the chondrocyte columns, early expression of collagen type X in the 

growth plate; and null mice gradually developed an end-stage OA phenotype  (Li et al. 

2005). These essential roles of TGFβ signalling in chondrocytes suggest the necessity of 

examining whether the miR-29 family is regulated by TGFβ signalling in human 

chondrocytes. Moreover, a number of published data show that TGFβ signalling negatively 

regulates miR-29 family expression in different human fibroses e.g. renal, lung, liver 

fibrosis. The impact of TGFβ signalling in human chondrocytes on the miR-29 family was 

thus checked.  

To address the above question, expression of the miR-29 family with TGFβ1 treatment in 

human primary chondrocytes was compared both in monolayer and micromass culture. In 

monolayer culture: HACs were put in high glucose media containing 10% (v/v) FCS until 

the cells reached 90% confluence; medium was replaced with that containing 0.5% (v/v)  

FCS) prior to stimulating with 4ng/ml TGFβ or vehicle control (4mM HCl with 0.5% (w/v) 

BSA). In micromass culture: HACs were put in high glucose media containing 10% (v/v) 

FCS in monolayer following two sequential passages to increase cell number; the 

micromass (2.5x107cells/ml) was cultured in high glucose media with 10% (v/v) FCS for 24 

hours before treating with 10ng/ml TGFβ or vehicle control (4mM HCl with 0.5% (w/v) 

BSA). Cells were harvested for qRT-PCR after 24 hours or 48 hours treatment in monolayer 

or micromass cultures, respectively. Quantitative RT-PCR primers for measuring the miR-

29 family were described before. For the primary transcripts: two primer pairs specific for 

exon 1 and exon 3 were used; for the precursor transcripts: primers directly bind to the 

precursor sequence (Appendix, Table 5); the mature transcripts were measure by LNA-

primers.   
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The qRT-PCR data show that expression of the miR-29 family was suppressed by TGFβ 

signalling (Figure 4.4). However, each culture system gave a different response. The pri-

29b2/c transcript was significantly decreased after stimulating HACs for 24 hours with 

TGFβ1 in monolayer culture, whilst the pri-29a/b1 transcript was unchanged (Figure 4.4 a); 

the pri-29a/b1 transcript was significantly decreased in micromass culture after 48 hours 

with TGFβ1 whilst the pri-29b2/c transcript was unchanged or even increased (Figure 4.4 b). 

Notably, the levels of all mature forms of miR-29 were significantly decreased by TGFβ1 in 

both systems. These data suggest a hypothesis that the primary and the precursor miRNAs 

may be rapidly regulated and then processed into mature miRNAs. In order to test this 

hypothesis, SW1353 cells were treated with TGFβ1 (4ng/ml) in monolayer in a time course. 

Since the expression levels of the primary and pre miRNAs modulated by TGFβ1 in human 

primary chondrocyte were similar and ahead the mature miRNAs, it might be sufficient to 

measure only the pre-miRNA rather than both the primary and precursor sequences. 

Consistent with above data, qRT-PCR showed that TGFβ1 suppressed miR-29 family 

expression in SW1353 cells (Figure 4.5). Interestingly, significantly suppressive effects of 

TGFβ1 on precursor miRNAs were observed after 4 hours till the end of the time course 

(Figure 4.5.a) whilst significant change in the mature miRNAs was only seen after 12 hour 

treatment (Figure 4.5.b). This data, thus, confirms the hypothesis above. Together with 

TGFβ1, the effect of TGFβ3 on the miR-29 family expression also checked on SW1353 in 

monolayer across the time course. Quantitative RT-PCR data (Figure 4.5) showed that 

TGFβ3 also strongly supressed the expression of the miR-29s.  However, the TGFβ3 

significant decrease the precursor and the mature miRNAs were observed at 12 hour time 

point though at 4 hours a  

The suppressive effect of TGFβ on expression of the miR-29 family was also investigated 

on the proximal promoter of the primary miR-29a/b1 gene. The promoter-reporter was 

transfected into SW1353 cells, cells were serum starved for 24 hours and treated with 

TGFβ1 (4ng/ml) for another 6 hours before performing the luciferase assay. In line with the 

expression data, TGFβ1 significantly suppressed the promoter activity of pri-miR-29a/b1 

(Figure 4.6).  
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Figure 4.4 TGFβ1 suppresses expression of the miR-29 family in human primary 
chondrocyte  
 

(A) TGFβ1suppresses expression of the miR-29 family in monolayer culture: Human primary 
chondrocytes were cultured in high glucose media with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were switched to high glucose media with 0.5% (v/v) FCS for 24 hours 
before treating with TGFβ1 (4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) for another 24 
hours.  

(B) TGFβ1suppresses expression of the miR-29 family in micromass culture: Human primary 
chondrocytes were cultured in high glucose media with 10% (v/v) FCS in monolayer. After 2 
sequential passages, cells were put in micromass culture (2.5x107cells/ml) in high glucose 
media with 10% (v/v) FCS. After 24 hours in micromass, cells were stimulated for 48 hours 
with TGFβ (10ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) in 10% (v/v) FCS media.  

Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a, b, c were measured by quantitative RT-PCR. 18S rRNA was the 
endogenous control for measuring primary and precursor transcripts; U6 was the endogenous 
control for measuring miR-29 mature transcripts. The horizontal line at 1 represents the mean 
of the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-29b2/c 
transcripts; black bar, precursor transcripts; yellow bar, mature transcripts. Means ± standard 
errors are presented. The difference between the treatment and the control was analysed by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 

  

(A) 

(B) 
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Figure 4.5 TGFβ1/3 suppresses expression of the miR-29 family in SW1353 cells  

SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were serum starved for 24 hours before treating with TGFβ1or TGFβ3 
(4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) across 24 hour course.   

Relative expression of the precursor miR-29a, -29b2, -29c, the mature miR-29a, b, c were 
measured by quantitative RT-PCR. 18S rRNA was the endogenous control for measuring the 
precursor transcripts; U6 was the endogenous control for measuring miR-29 mature 
transcripts. Open bar, control; brick bar, TGFβ1; close bar, TGFβ3. (A) Expression level of 
pre-miR-29a, 29b2, 29c. (B) Expression level of mature miR-29a, b, c. Means ± standard 
errors are presented. The difference between the treatment and the control was analysed by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.6: TGFβ1decreases expression from the primary miR-29a/b1 promoter  

The pri-miR-29a/b1 promoter-reporter (100ng) or the empty vector pGL4 (control, 100ng) 
were transfected into SW1353 cells. After transfection, cells were serum starved for 24 hours, 
followed by stimulating for another 6 hours with TGFβ1 (4ng/ml), or vehicle (4mM HCl+0.5% 
BSA) before measuring luciferase activity. Renilla was use as endogenous control. Open bar: 
vehicle, black bar: TGFβ1. Means ± standard errors are presented. The difference of 
luciferase activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, 
*** p<0.001, n=6. 
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4.2.3. Expression of the miR-29 family is not regulated by canonical Wnt signalling  

As shown in the section above, the TGFβ signalling pathway, stimulated by TGFβ1 (or 

TGFβ3, data not shown), negatively regulated the expression of themiR-29 family. 

Signalling cross talk between TGFβ and Wnt signalling pathways has been previously 

reported, e.g. after TGFβ stimulation, Smad3 interacts with LEF1 to activate target gene 

transcription independently of β-catenin (Letamendia et al. 2001); TGFβ was shown to up-

regulate the expression of many Wnt ligands e.g. Wnt2, 4, 5a, 7a, 10a, and Wnt co-receptors 

e.g. LRP5 (Zhou et al. 2004);  TGFβ was found to increase nuclear accumulation and 

stability of β-catenin; interestingly, working synergistically with Wnt signalling pathways, 

TGFβ was reported to stimulate chondrocyte differentiation from mesenchymal cell (Zhou 

et al. 2004). Wnt signalling is also known to have a key role in cartilage homeostasis and 

osteoarthritis (Zhu et al. 2008, Zhu et al. 2009). Thus, it was pertinent to investigate the 

effect of Wnt signalling onexpression of the miR-29 family in chondrocytes, and then 

potential synergy with TGFβ signalling.  

The effect of canonical Wnt signalling stimulated by Wnt3a (50 or 100ng/ml) on the miR-

29 family was investigated in HACs cultured in monolayer or micromass after 24 hours or 

48 hours, respectively; or in SW1353 cells in monolayer culture across a 24 hour time 

course. In addition, the effect of Wnt3a on the proximal pri-miR-29a/b1 promoter was also 

examined after 6 hour treatment with Wnt3a (50 or 100ng/ml). Quantitative RT-PCR data 

for all transcripts of miR-29 family and luciferase assay data for the miR-29a/b1 promoter 

showed canonical Wnt signalling did not regulate expression of the miR-29 family 

(Appendix, Figure 5). Wnt3a did regulate Axin2 expression in the same experiments, 

showing induction of the canonical Wnt pathway (Appendix, Figure 6).  
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4.2.4. IL-1 induces expression of the miR-29 family in part via the p38 signalling 

pathway.  

IL-1 is a catabolic and anti-anabolic cytokines, it down regulates the expression of cartilage 

matrix components e.g. aggrecan and type II collagen and induces expression of matrix 

degrading enzymes e.g. MMP-3, MMP-13, ADAMTS4 (Koshy et al. 2002). Il-1β, or Il-1β-

converting enzyme knockout mice showed the accelerated development of OA lesions in 

response to OA surgical induced in compared with wide type mice (Clements et al. 2003). It 

is considered to be a major cytokine driving the pathology of OA (Goldring et al. 2004).  

Thus, it was pertinent to examine whether IL-1 controls the expression of the miR-29 

family in human chondrocytes.  

The effect of IL-1 on the expression of the miR-29 family was first measured in IL-1-treated 

SW1353 for 48 hour time course in monolayer culture: SW1353 cells were cultured in high 

glucose media with 10% (v/v) FCS until reach confluence and followed by serum starved 

for 24 hours before treating with 5ng/ml IL-1 or vehicle (0.5% (w/v) BSA) for 48 hour time 

course. Relative expressions of the precursor and mature miRNA-29 transcripts were 

measured by qRT-PCR. Data (Figure 4.7) showed that IL-1 induced the expression of miR-

29 family: the biggest induction on miR-29 precursors was observed at 4 hours; at later time 

point, the level of miR-29a precursors was decreased as compare with 4 hours (pre-29a) 

whilst other precursors did not change expression (Figure 4.7a); the induction of mature 

miR-29s were only observed significantly after 48 hours (Figure 4.7b). These data 

suggested that the increase in expression after IL-1 treatment of the miR-29 derivatives is 

time-dependent. The induction of IL-1 on the miR-29 family was again checked on the 

HACs in micromass culture: The micromass containing (2.5x107cells/ml) of passage 2 HAC 

was cultured in high glucose media with 10% (v/v) FCS for 48 hours before treating with 

20ng/ml IL-1 or vehicle control (0.5% (w/v) BSA). Quantitative RT-PCR primers for 

measuring the miR-29 family were described before (Appendix, Table 5). Real-time RT-

PCR data (Figure 4.8) showed that IL-1 strongly induced expression of the miR-29 family, 

with all processed transcripts significantly up-regulated by IL-1. The fold increase was 

highest for the pri-miR-29a/b1 locus in which the primary miR-29a/b1 and pre-miR29a and 

b1 were increased with 9 and 5 fold, respectively.  

The molecular pathways induced by IL-1 can be the three classical MAPK-signalling 

pathways i.e. ERK, p38, JNK and through NFκB (Aigner et al. 2006, Fan et al. 2007). The 
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signalling pathway through which IL-1 regulated miR-29 family expression was 

investigated. SW1353 cells were stimulated with IL-1 together with an NFκB inhibitor 

(10µM) or a p38 inhibitor (SB203580) (10µM) or 6 hours in monolayer and the relative 

expression of the precursor miRNAs were again measured. The data showed that inhibition 

of the NFκB pathway further induced expression of the pre-miR-29a and b1 (Figure 4.9).  

Inhibition of p38 suppressed IL-1 induction of pre-miR-29a and b1, with a similar pattern 

for pre-miR-29b2 and c (Figure 4.10), suggesting that IL-1 induces expression of the miR-

29 family at least in part through p38 MAPK signalling. 

Furthermore, the effect of IL-1 on the promoter of pri-miR-29a/b1 was also examined by 

luciferase assay. The pri-miR-29a/b1 promoter-reporter was transfected into SW1353 cells 

for 24 hours before stimulation with IL-1 (5ng/ml) with or without the NFκB inhibitor 

(10nM) or p38 inhibitor (10µM) for another 6 hours. Luciferase data showed that the 

activity of the pri-miR-29a/b1 promoter was significantly decreased by IL-1 and that this 

effect was abolished by treatment with the NFκB inhibitor (Figure 4.11). However, the p38 

inhibitor had no effect on the suppressive effect of IL-1 on the promoter of pri-miR-29a/b1 

(data not shown). 
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Figure 4.7: IL-1 induces expression of the miR-29 family in SW1353 in monolayer 

culture 

SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were serum starved for 24 hours before treating with IL-1 (5ng/ml) 
or vehicle (0.5% (w/v) BSA) across 48 hour course.   
Relative expression of the precursor miR-29a, -b1, -b2, -c, the mature miR-29a, b, c were 
measured by quantitative RT-PCR. 18S rRNA was the endogenous control for measuring 
the precursor transcripts; U6 was the endogenous control for measuring miR-29 mature 
transcripts. The horizontal line at 1 serves as the vehicle control. 
(A) Expression level of pre-miR-29a, 29b2, 29c. Red bar, pre-miR-29a; blue bar, pre-miR-

29b1; black bar, pre-miR-29b2; yellow bar, pre-miR-29c 
(B) Expression level of mature miR-29a, b, c. Red bar, miR-29a; blue bar, miR-29b; black 

bar, miR-29c 
Means ± standard errors are presented. The difference between the treatment and the control 
was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.8: IL-1 induces expression of the miR-29 family in human primary 
chondrocyte in micromass culture 

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer. After 2 sequential passages, cells were put in micromass culture 
(2.5x107cells/ml) in high glucose media with 10% (v/v) FCS. After 24 hours in micromass, 
cells were stimulated for 48 hours with IL-1β (10ng/ml) or vehicle (0.5% (w/v) BSA).  
Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a,- 29b, -29c were measured by quantitative RT-PCR. 18S rRNA 
was the endogenous control for measuring primary and precursor transcripts; U6 was the 
endogenous control for measuring miR-29 mature transcripts. The horizontal line at 1 
serves as the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-
29b2/c transcripts; black bar, precursor transcripts; yellow bar, mature transcripts. Means ± 
standard errors are presented. The difference between the treatment and the control was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.9 NFκκκκB inhibition further increases the IL-1-induced expression of pre-miR-
29a and pre-miR-29b1 
 

SW1353 cells were plated in high glucose media with 10% (v/v) FCS in a 6 well-plate in 
monolayer and serum starved for 24 hours before treating with IL-1β (10ng/ml) in the 
presence or absence of NFκB inhibitor JSH-23 (10µM) for a further 8 hours. Cells were then 
harvested and the total RNA was isolated by Trizol. Relative expression of pre-miR-29a, -
29b1 were measured by quantitative RT-PCR. 18S rRNA was the endogenous control. Red 
bar, pre-miR-29a; blue bar, pre-miR-29b1. Means ± standard errors are presented. The 
difference between the treatment and the control was analysed by unpaired two-tailed 
Student’s t test * p<0.05, ** p < 0.01, *** p<0.001, n=6. 
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Figure 4.10 P38 inhibition suppresses the IL-1 induction of pre-miR-29s  
 

SW1353 cells were plated in high glucose media with 10% (v/v) FCS in a 6 well-plate in 
monolayer and serum starved for 24 hours before treating with IL-1β (10ng/ml) in the 
presence or absence of p38 inhibitor SB203580 (10µM) for a further 8 hours. Cells were 
then harvested and the total RNA was isolated by Trizol. Relative expression of pre-miR-
29a, -29b1, -29b2, -29c were measured by quantitative RT-PCR. 18S rRNA was the 
endogenous control. Red bar, pre-miR-29a; blue bar, pre-miR-29b1; black bar, pre-miR-
29b2; white bar, pre-miR-29c. Means ± standard errors are presented. The difference 
between the treatment and the control was analysed by unpaired two-tailed Student’s t test * 
p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.11: IL-1 suppresses the primary miR-29a/b1 promoter through NFκκκκB 

Pri-miR-29a/b1 promoter reporter (100ng) or pGL4 (control, 100ng) were transfected into 
SW1353 cells. After transfection, cells were serum starved for 24 hours, and followed by 
stimulating for another 6 hours with IL-1β (5ng/ml), IL-1β and NFκB inhibitor JSH-23 
(10µM) or vehicle (0.5% (w/v) BSA) before measuring luciferase activity. Renilla was the 
endogenous control. Means ± standard errors are presented. The difference of luciferase 
activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** 
p<0.001, n=6. 
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4.2.1. LPS suppressed the miR-29 family expression through NFκκκκB signalling 

pathway  

Toll-like receptors (TLRs) have important roles in activation of the innate and adaptive host 

defence against infections. TLR can bind to various damage-associated molecular patterns, 

which are endogenous danger signals or alarmins, leading to autoinflammatory conditions, 

and contributing to production of co-stimulatory signals necessary for adaptive immune 

reactions (Janeway et al. 2002). Lipopolysaccharide (endotoxin) (LPS) from bacteria is an 

example of a TLR-stimulating molecule. Chondrocytes are a potential source of several 

proinflammatory substances which may be TLR ligands: high-mobility group box 1, heat-

shock proteins, and several components of the cartilage extracellular matrix (ECM) - e.g. 

low-molecular-weight hyaluronan, heparin sulphate, biglycan, and fibronectin fragments 

(Konttinen et al. 2012). From this point of view, OA could be considered as an 

autoinflammatory disease with the chondrocyte as its primary inflammatory cell (Konttinen 

et al. 2012). On this basis it was hypothesized that the activation of TLR-4, a receptor for 

LPS, may directly affect the biosynthetic activity of chondrocytes, including expression of 

the miR-29 family.  

The level of miR-29 family expression was measured by qRT-PCR in HACs stimulated 

LPS (1µg/ml) in monolayer or micromass culture for a 24 hours or a 48 hour time course, 

respectively. Real-time PCR showed that the miR-29 family was significantly suppressed 

by LPS (Figure 4.12). Interesting, the levels of all processed miRNAs were strongly 

regulated by LPS in a time dependent manner: a significant decrease of the two miR-29 

family clusters and their precursors were detected after 4 hours of treatment whilst decrease 

of the mature miRNAs was not detected until 24 hours.  However, after 48 hours treating 

with LPS, all miR-29 family was tended to increase (Figure 4.12) 

Again, the effect of LPS on the promoter of pri-miR-29a/b1 was also examined by 

luciferase assay.  The pri-miR-29a/b1 promoter reporter was transfected into SW1353 cells 

for 24 hours before stimulation with LPS (1µg/ml) in the presence or absence of an NFκB 

inhibitor JSH-23 (10µM) for another 6 hours. Luciferase assay data showed that promoter 

activity of pri-miR-29a/b1 was significantly decreased by LPS and this effect was abolished 

with the NFκB inhibitor (Figure 4.13).  

 



158 

 

 

primary/pre/mature 29s/ LPS/ HAC

4 24 48 4 24 48 4 24 48 4 24 48 4 24 48 4 24 48 4 24 48 4 24 48 4 24 48 4 24 48 4 24 48
0.0

0.5

1.0

1.5

2.0

hours
exon1 exon 4 exon1 exon 6

pri-miR29a/b1 pri-miR29b2/c
pre29a pre29b1 pre29b2 pre29bc miR-29a miR-29b miR-29c

F
ol

dc
ha

ng
e

(T
re

at
m

en
t v

s 
co

nt
ro

l)

Figure 4.12: LPS suppresses expression of the miR-29 family  

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer. After 2 sequential passages, cells were put in micromass culture 
(2.5x107cells/ml) in high glucose media with 10% (v/v) FCS. After 24 hours in micromass, 
cells were stimulated for 4, 24, and 48 hours with LPS (1µg/ml) or vehicle (0.5% (w/v) 
BSA).  
Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a,- 29b, -29c was measured by quantitative RT-PCR. 18S rRNA was 
the endogenous control for measuring primary and precursor transcripts; U6 was the 
endogenous control for measuring miR-29 mature transcripts. The horizontal line at 1 
serves as the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-
29b2/c transcripts; black bar, pre-miR transcripts; yellow bar, mature miR transcripts. 
Means ± standard errors are presented. The difference between the treatment and the control 
was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, 
n=3.  
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Figure 4.13: LPS suppresss the primary miR-29a/b1 promoter through NFκκκκB 

Pri-miR-29a/b1 promoter-reporter (100ng) or pGL4 (control, 100ng) was transfected into 
SW1353 cells. After transfection, cells were serum starved for 24 hours, followed by 
stimulatiion for another 6 hours with LPS (1µg/ml) in the absence or presence of an NFκB 
inhibitor JSH-23 (10µM) before measuring luciferase activity. Renilla was the endogenous 
control. Means ± standard errors are presented. The difference of luciferase activity was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6. 
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4.2.2. The microRNA-29 family targets Dicer giving a negative feedback loop for 

maturation of pre-miR-29 

Previous data showed that expression of the miR-29 family was regulated by TGFβ, IL-1, 

LPS in which primary microRNA and precursor microRNA were modulated far ahead the 

mature microRNAs. In order to explain this, the 3’UTR regions of genes encoding for 

proteins involved in miRNA biogenesis were searched for putative binding site of the miR-

29 family. Among these, of particular interest is the ribonuclease III enzyme Dicer, 

renowned for its central role in the biogenesis of microRNAs, converting the stem-loop pre-

miRNA to mature miRNA (Bartel 2004). Bioinformatic analysis showed that there was a 

putative binding site of miR-29 in the DICER 3’UTR, suggesting the miR-29 family may 

regulate Dicer expression leading to the down-regulation of the Dicer level and as the 

consequence, the processing from precursors to mature miRNAs would potentially be 

slowed down. The 3’UTR region of DICER was therefore sub-cloned downstream of the 

firefly luciferase gene in the pmiR-GLO vector. The effect of the miR-29 family on the 

DICER 3’UTR was measured by luciferase assay after 24 hour co-transfection of the 

DICER 3’UTR- pmiR-GLO and the miR-29 family in SW1353 cells. Dual-luciferase 

reporter analysis showed the co-transfection of miR-29s significantly inhibited the wild type 

construct, whereas when the target site was mutated, the construct was not inhibited (Figure 

4.14). This indicates that miR-29 may suppress expression of Dicer. The effect of the miR-

29 family in DICER expression at transcriptional level was also investigated. Human 

primary chondrocyte was transfected with either miR-29b mimic (50nM) or non – targeting 

control (50nM). The transfected cells were then put in either monolayer or micromass 

culture for a further 48 hours. The expression of DICER was measured by qRT-PCR. Real-

time qRT-PCR data showed that the expression of Dicer was not affected by miR-29s (data 

not shown), suggesting that the miR-29s does not control Dicer expression at mRNA level.   

There is a growing body of work demonstrating that microRNAs can be processed 

independently of Dicer via Argonaute2 (Dueck et al. 2010). To evaluate whether or not 

miR-29s required Dicer to mature, the level of pre-miR-29s and mature miR-29s were 

measured in DLD, a Dicer-knockdown cell line. Data (Figure 4.15) showed that the levels 

of mature miR-29s were strongly reduced whilst the level of pre-miR-29s was not affected 

(Figure 4.15), demonstrating miR-29 processing is Dicer-dependent.  
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Taken together, these data show that the miR-29 family targets Dicer giving a negative 

feedback loop for its maturation. 
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Figure 4.14: The miR-29 family targets Dicer  

(A) Bioinformatic analysis reveals one binding site of the miR-29 family in the 3’UTR of 
Dicer. (B) miR-29 family targets Dicer: The Dicer 3’UTR containing the binding site of the 
miR-29 family (wild type) or a mutated, non-functional binding site for miR-29 family 
(mutant) were sub-cloned into the pmiR-GLO vector and were co-transfected with either 
miR-29a, -29b, -29c mimic (50nM) or non-targeting control (50nM) into SW1353 cells for 
24 hours and luciferase activity was measured. Renilla was the endogenous control. (C) miR-
29 targets Dicer giving a negative feedback loop for its maturation. Means ± standard errors 
are presented. The difference of luciferase activity was analysed by unpaired two-tailed 
Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6.  
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Figure 4.15: Dicer is required for the miR-29 family maturation  

２２２２ 

Level of Dicer, precursor and mature miR-29 were measured in DLD, Dicer knockdown 
cell line or parental control by quantitative RT-PCR. (A) Relative expression of Dicer; (B) 
Relative expression of precursor miR-29s (normalised to expression in parental control). 
18S rRNA is endogenous control. Red, pre-29a; blue, pre-29b1; black, pre-29b2; green, pre-
29c; white, levels of all precursors in control (set at 1); (C) Relative expression of mature 
miR-29 family (normalised to expression in parental control).  U6 is endogenous control. 
Red, miR-29a; blue, miR-29b; black, miR-29c; white, levels of all mature miR-29 in control 
(set at 1). Means ± standard errors are presented. The difference of relative expression was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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4.3. Discussion  

Since miRNAs have broad effects on cartilage homeostasis, and OA, it is particularly 

interesting to work out how miRNAs themselves are being regulated. Such data could 

provide crucial information for further understanding the mechanism underlying OA and for 

being able to manipulate these miRNAs in chondrocytes therapeutically. Generally, the 

expression of miRNAs can be regulated transcriptionally, epigenetically, or controlled by 

different stimuli e.g. cytokines and growth factors. In this study, just transcription factors, 

cytokines, and growth factors controlling the miR-29 family expression in chondrocytes were 

for the first time investigated. These studies were able to show that, in human chondrocytes, 

the master transcriptional regulator SOX9, TGFβ and LPS suppressed whilst IL-1 strongly 

induced the miRNA-29 family expression.  

Several published data report the suppressive effect of SOX9 on the expression of individual 

members of the miR-29 family in other cellular contexts: in murine stem cells, 

overexpression of SOX9 or knockdown SOX9 in cell lines e.g. C3H10T1/2 or ATDC5 leads 

to suppression or induction of miR-29a and miR-29b expression (Yan et al. 2011), 

respectively; in human C-20/A4 chondrocytes, overexpression of SOX9 strongly down-

regulated the level of miR-29a (Guerit et al. 2014). Herein, for the first time, suppressive 

effect of SOX9 on the expression of all members of the miR-29 family in primary human 

chondrocytes was shown. The effect was exerted, at least in part, through directly targeting 

the promoter of the miR-29a/b1 locus. In line with these data, Guerit et al (2014) reported 

that SOX9 can physically bind to at least 3 out of 4 putative binding sites within the proximal 

promoter of miR-29a/b1 cluster; also, another transcription factor YY1, was shown not to 

bind directly to the miR-29a/b1 promoter, but, physically interacted with SOX9 to suppress 

miR-29a/b1 expression (Guerit et al. 2014). The mechanism by which SOX9 negatively 

regulates the pri-miR-29b2/c cluster is still unknown. Several putative binding sites of SOX9 

are found in the promoter of the pri-miR-29b2/c cluster, implicating a possible direct 

mechanism. However, this needs further investigation.  

Alongside SOX9, other transcriptional regulatory mechanisms responsible for expression of 

the miR-29 family have also been reported: the pri-miR-29a/b1 locus was stimulated by the 

transcription factors CEBPA (Eyholzer et al, 2010), GATA3 (Chou et al. 2013), STAT1 

(Schmitt et al, 2012) but suppressed by c-MYC (Mott et al. 2010, Parpart et al. 2014), NFκB 
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(Liu et al. 2010, Mott et al. 2010), Sp1(Liu et al. 2010, Amodio et al. 2012), HDAC1, 

HDAC3, and Gli (Mott et al. 2010); the pri-miR-29b2/c locus was inhibited by Smad3 (Qin 

et al. 2011), NFκB, YY1, Ezh2, H3K37, HDAC1 (Wang et al. 2008). Thus, it is likely that 

the transcriptional regulation of the miR-29a/b1 cluster is controlled by a combination of 

different transcription factors. Interestingly, in the chondrocyte context, miR-1247 together 

with miR-145 were reported to directly target and repress expression of SOX9 (Yang et al. 

2011, Martinez-Sanchez and Murphy 2013), suggesting these miRNAs could contribute to 

the induction of the miR-29 family level in chondrocytes. Additionally, throughout the 

current project, the miR-29 family members exhibit different expression levels between the 

primary miR-29a/b1 and primary miR-29b2/c loci in different cellular contexts. This 

discrepancy could be explained in part by different transcription factor binding to each 

promoter.   

Together with SOX9, TGFβ signalling was found to suppress the expression of all miR-29 

family members in chondrocytes. Since TGFβ signalling induces SOX9 expression (Greco et 

al. 2011), the suppressive effect of TGFβ on the miR-29 family could be exerted through 

SOX9 and this TGFβ-SOX9 signalling could in part explain the down-regulation of the miR-

29 family by TGFβ. The suppressive effect of TGFβ on the miR-29 family expression has 

also been observed in various cell types associated with fibrosis e.g. human aortic adventitial 

fibroblasts (Maegdefessel et al. 2012), renal fibrosis cells (Wang et al. 2012, Ramdas et al. 

2013), murine hepatic stellate cells (Roderburg et al. 2011), rat hepatic stellate cells 

(Kwiecinski et al. 2011), human skin fibroblasts (Maurer et al. 2010), human tenon’s 

fibroblast (Li et al. 2012), human lung fibroblast cell line (Cushing et al. 2011, Yang et al. 

2013) in which either some members or the whole miR-29 family significantly decreased 

expression with TGFβ treatment. Apart from TGFβ-SOX9 signalling, the mechanism for the 

inhibition of TGFβ on the miR-29 family expression is currently unknown.  There is some 

evidence that TGFβ inhibits miR-29 expression through SMAD3 signalling e.g. the inhibition 

effect of TGFβ on miR-29 expression was abolished when Smad3 was knocked out in mouse 

embryonic fibroblast (Qin et al. 2011); SMAD3 could directly interact with at least two 

conserved SMAD3-binding sites in the promoter region of miR-29b2/c locus (Qin et al. 

2011); activated TGFβ signalling induced SMAD3 translocate into nucleus and bind to miR-

29b2/c promoter, resulting in the dissociation of MyoD and the stabilization of YY1 whose 

expression negatively regulated the miR-29b2/c expression through a conserved binding site 
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(Qin et al. 2011). However, this needs to be validated in chondrocytes. Besides the 

suppressive role, TGFβ also exerted an inductive effect on miR-29 expression at late time 

points. For instance, the primary miR-29b2/c locus was induced in human primary 

chondrocyte in micromass cultured with TGFβ1 for 48 hours (Figure 4.4b) though this 

increase did not reach significantly; the miR-29 family expression was increased at a late 

stage in the human chondrogenesis model with TGFβ3 as the major driver among others 

(Figure 3.12). That TGFβ induces miR-29 family expression suggests that there are may be 

several TGFβ-triggered signalling pathways, apart from TGFβ-SOX9, regulating the miRNA-

29 expression. However, in this project, the molecular mechanisms by which TGFβ controls 

expression of the miR-29s are again not fully understood.  

The TLR4 ligand, LPS, was found to repress the miR-29 family expression in chondrocytes. 

Importantly, this inhibition was facilitated by NFκB (p50/p65). Supporting the finding of this 

study, published data in cholangiocarcinoma cells and murine hepatic stellate cells also 

showed that LPS down-regulated expression of the miR-29 family (Mott et al. 2010, 

Roderburg et al. 2011) . Moreover, NFκB, activated by TLR ligands, was revealed to both 

directly or indirectly (cooperating with YY1) suppress the miR-29a/b1 or the miR-29b2/c 

locus, respectively (Wang et al. 2008, Mott et al. 2010). In contrast to LPS, it was surprising 

to find that IL-1β increased miR-29 expression and this stimulation was not NFκB but p38-

dependent. However, the effect of inhibiting p38 signalling was only observed for miR-29a 

and miR-29b but not miR-29c, although all miR-29 family members were found strongly 

induced by IL-1β. Since IL-1β could activate the NFκB signalling pathway alongside p38 

MAPK signalling (Aigner et al. 2006), the fact that an NFκB inhibitor further increased the 

IL-1 induction of the miR-29a/b1 locus implicates NFκB signalling in suppressing miR-29.  

It is likely that in human chondrocyte, for the period of time examined (48 hours), induction 

through 38 MAPK signalling was dominant over the NFκB, explaining why IL-1β induced 

(not suppressed) miR-29 expression. It therefore, made sense to expect a similar induction of 

the proximal promoter of miR-29a/b1 by IL-1β. However, a suppressive effect was observed. 

These data could be explained if the inductive p38-dependent transcription factors do not 

work through this 2kb proximal promoter of the miR-29a/b1, whilst several binding sites of 

NFκB in this promoter region are seen. This hypothesis needs experimental data to validate it. 

The mechanism responsible for the IL-1β induced miR-29b2/c cluster is still unclear and 

needed to be further explored. Notably, the IL-1β mRNA expression level was increased by 
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LPS/ TLR-4 and this is mediated by p38 MAP kinase in human chondrocytes (Bobacz et al. 

2007). Therefore, that the miR-29 family expression was increased after 48 hours treatment 

with LPS could be explained in part by the accumulation of IL-1β which in turn up-regulated 

the miR-29 family expression.   

This study also showed that the expression of all miR-29 members was not modulated by 

Wnt3a (β-catenin, canonical Wnt signalling), neither at the mRNA level by qRT-PCR or in 

the promoter assay. There are, several publications which have reported that either some 

members or the whole miR-29 family were Wnt3a-induced: In osteoblasts, Wnt3a positively 

modulates the expression of miR-29a and miR-29c though two T-cell factor/LEF-binding 

sites within the miR-29a/b1 promoter (Kapinas et al. 2009, Kapinas et al. 2010); in muscle 

progenitor cells (MPCs), Wnt3a treatment increased miR-29s expression in a time dependent 

manner (Hu et al. 2014); the promoter activities of both the miR-29a/b1 and miR-29b2/c 

cluster were strongly induced in MPCs where Wnt3a was overexpressed or added to media 

(Hu et al. 2014).Therefore, an interesting question that remains to be answered is why miR-

29 expression is not modulated by Wnt3a in chondrocytes. 

In contrast to the rapid change in expression of the pri-miR-29 or pre-miR-29 in response to 

stimuli, the modulation of the miR-29 family mature is quite slow. The posttranscriptional 

processing from the precursor to the mature form of the miR-29 family may be tightly 

controlled. Since the miR-29s has significant impact on a functional phenotype by regulating 

multiple genes that fall into the same or related pathways (which will be discussed more in 

Chapter 5), its expression must be regulated, potentially at more than one level. Interestingly, 

herein, Dicer was found to be the direct target of the miR29 family, suggesting a negative 

feedback loop for its maturation. In supporting this data, in T47D breast cancer cells, Dicer 1 

was also reported as a miR-29a target (Cochrane et al. 2010). Apart from Dicer, other 

components of the microRNA precursor processing machinery e.g. Helicase, Exportin 4 and 

5 are also predicted to be putative targets of the miR-29s as they have several binding sites in 

their 3’UTR regions (data not shown). Even though these have not been experimentally 

validated as the direct targets, this further supports the idea that miR-29 is involved in a 

negative feedback loop for its maturation.   

In conclusion, the miR-29 family was found to be negatively regulated by the master 

regulator of chondrogensis SOX9, by TGFβ signalling and by LPS-NFκB signalling.  It is 
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positively regulated by IL-1-p38 MAPK signalling. Interestingly, the canonical Wnt 

signalling pathway does not control expression of the miR-29 family. Furthermore, 

expression of the miR-29 family was tightly controlled at the level of posttranscriptional 

processing in which miR-29 directly targets Dicer, giving a negative feedback loop for its 

maturation. 
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CHAPTER 5 
FUNCTIONS OF THE MICRORNA 29 FAMILY IN CHONDROCYTES  

 

5.1 Introduction  

The ability of a single miRNA to target multiple mRNAs especially those that function in the 

same intracellular pathways and/or diseases, adds an additional layer of regulation to gene 

expression. The aberrant expression of the miR-29 family has been found in multiple 

malignancies and fibroses, carcinogenesis. Also, an understanding of how miR-29 contributes 

to these processes has been revealed: miR-29 targets genes are involved in cellular 

proliferation, cell cycle, cell differentiation, and apoptosis at genetic and epigenetic levels. 

The following summarizes some functions of miR-29s in human disease.   

In chondrogenesis or OA, around 30 miRNAs have been shown to have functions in cartilage 

homeostasis (Le et al, 2013), which is relatively small compared to the total number of 

miRNAs. Moreover, as mentioned in the previous chapter, for any potential miRNA 

therapeutic application, a combination of different miRNAs might be required for a complex 

disease like OA. Identifying novel miRNA targets and the cell signalling pathways and 

networks by which miRNAs exert their functions on disease phenotype are therefore, of 

particular importance both to have an insight into OA pathogenesis and also to ensure the 

specificity in any miRNA-based drug delivery method. Thus, this chapter places emphasis on 

identifying the function of the miR-29 family in chondrocytes including identifying the 

function of the miR-29 family in TGFβ/Smad, NFκB, and Wnt/β-catenin signalling pathways 

and novel targets of the miR-29s.  
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Aims:  

• Investigate signalling pathways involved in chondrogenesis and osteoarthritis which 

are regulated by the miR-29 family  

• Perform gain-and-loss of function of miR-29b experiments to identify potential 

targets of the miR-29 family  

• Identify and validate novel direct targets of the miR-29 family 
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5.2  Results  

5.2.1 The miR-29 family supress TGFβ/β/β/β/Smad signalling pathway 

In articular cartilage, the canonical TGFβ/Smad signalling pathway has been shown to play a 

pivotal role in the maintenance of normal cartilage: it up-regulates the expression of several 

types of collagens and proteoglycan; and it down-regulates cartilage degrading enzymes. 

Importantly, disruption of the TGFβ pathway has been shown to lead to OA. Mice expressing 

a dominant negative TGFβRII exhibit articular cartilage degeneration similar to that observed 

in human OA with abnormal expression of type X collagen, an indicator of chondrocyte 

hypertrophy; mutant mice with targeted disruption of Smad3 (Smad3−/−) show a similar 

pathology in chondrocytes, including aberrant type X collagen expression in vivo; primary 

chondrocytes isolated from Smad3−/− mice demonstrate an accelerated differentiation 

process with up-regulated BMP signalling. 

In Chapter 4, expression of the miR-29 family was found to be suppressed by TGFβ 

signalling. Here, I measure the impact of the miR-29 family on Smad signalling. The 

TGFβ/Smad signalling reporter (CAGA)12-luc (Figure 5.1a) containing 12 binding sites of 

the Smad2/3/4 (GAGAC) binding site upstream of the firefly luciferase-encoding gene was 

used. The principle of this experiment is based on the fact that: signals are transduced from 

TGFβ ligands to the Smad2/3/4 complex which subsequently regulates gene expression; the 

miR-29 family may change the expression or transcriptional activity of Smad2/3/4; thus 

altering luciferase levels. (CAGA)12-luc (100ng) and Renilla (10ng) were co-transfected with 

either miR-29 mimic (50nM) or non-targeting control (50nM) into SW1353 cells for 24 hours 

and followed by serum starvation for another 24 hours.  Cells were then treated with either 

TGFβ1 or TGFβ3 (4ng/ml) for another 6 hours before measuring the luciferase activity. 

Luciferase assay data (Figure 5.1b) showed that: stimulating cells with TGFβ1 strongly 

induced luciferase activity as compared with non-treatment control; pre-treatment with all 

members of the miR-29 family significantly decreased the luciferase activity at this 6 hour 

time point. A similar pattern was observed when treating cells with TGFβ3 (Appendix, 

Figure 7a). These data demonstrate that Smad signalling was successfully activated in 

SW1353 cells by TGFβ1or TGFβ3 and that the miR-29 family is a negative regulator of this 

signalling.  As all miR-29 family members supressed the signalling, an experiment using only 

an inhibitor of miR-29b (50nM) was performed. Consistent with the mimic data above, 
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luciferase activity was significantly increased with the miR-29b inhibitor compared to control 

(Figure 5.1c and Appendix, Figure 7b).  

The suppressive effect of the miR-29 family on the TGFβ signalling pathway was further 

confirmed by measuring the effect of the miR-29 family on a TGFβ responsive gene. 

ADAMTS4 was chosen since it is induced by TGFβ in chondrocytes, but was not a putative 

direct target of the miR-29 family.  Human primary chondrocytes were transfected with miR-

29 family mimics (50nM) in monolayer for 24 hours with 10% (v/v) FCS. The media was 

then replaced with media with 0.5% (v/v) FCS for another 24 hours before stimulating with 

TGFβ (4ng/ml) for a further 6 hours. The expression of ADAMTS4 was measured by qRT-

PCR (Figure 5.2) showing that ADAMTS4 was strongly induced by TGFβ; the miR-29 

mimics significantly decreased the expression of ADAMTS4 as compared with non-targeting 

control. These data again confirmed the suppressive effect of the miR-29 family on TGFβ 

signalling pathway. 
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Figure 5.1 The miR-29 family suppress TGFββββ signalling pathway 

(A) The TGFβ signalling reporter (CAGA12-luc) contains 12 binding sites of the Smad2/3/4 
(GAGAC) binding consensus upstream of the firely luciferase-encoding gene in pGL3100ng 
CAGA12-luc vector, and 10ng Renilla vector were co-transfected with either miR-29 family 
mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-targeting 
control (50nM) was also used as the negative control. 24 hours after transfection, cells were 
serum starved for another 24 hours, followed by treatment with TGFβ (4ng/ml) for another 6 
hours before measuring luciferase activity. Renilla is the loading control for luciferase assay. 
Open bar: non – treatment control, close bar: TGFβ treatment. Means ± standard errors are 
presented, n=6. The difference of luciferase activity was analysed by Student’s unpaired two-
tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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Figure 5.2 The miR-29 family suppresses the TGFβ induced gene ADAMTS4  
 

Human primary chondrocytes were transfected with either miR-29 family mimics (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then changed into 0.5% (v/v) FCS 
for 24 hours and followed by stimulating with TGFβ1 (4ng/ml) for another 6 hours. Total 
RNA was isolated and the expression level of ADAMTS4 was measured by qRT-PCR. 18S 
rRNA was used as the endogenous control. Data were normalized to untreated, mock 
transfected cells.  Open bar: non – treatment control, close bars: TGFβ treatment. Means ± 
standard errors are presented, n=3. The difference in expression level of ADAMTS was 
analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.00 
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5.2.2 The miR-29 family suppresses the NFκκκκB signalling pathway  

In Chapter 4, IL-1β was found to increase expression of the miR-29 family. It is, therefore, of 

importance to investigate how the miR-29 family regulates the signalling pathways triggered 

by IL-1β. There are at least three pathways triggered by IL-1β including NFκB, JNK, and 

p38 MAPK pathways. Nevertheless, in this project, just the interaction between the miR-29 

family and NFκB signalling was investigated. The transcription factor NFκB is held in the 

cytoplasm in an inactive form associated with the inhibtory κB (IκB) protein. In response to 

IL-1β binding of the receptor, NFκB releases from IκB and the activated NFκB will then 

translocate to the nuclear, bind to DNA elements present in its target genes and facilitate their 

transcription.  

Similar to the experiment for investigating the interacting between the miR-29 family and 

TGFβ signalling,  the NFκB signalling reporter containing multiple binding sites for NFκB 

upstream of a luciferase-encoding gene was utilized (Figure 5.3a). The signal cascade from 

IL-1β will activate NFκB which consequently induces the transcription of the luciferase gene 

in the reporter and this may be modulated by the miR-29 family. The luciferase assay was set 

up similar to the experiment in 5.1.1 except the cells were treated with IL-1β (5ng/ml) instead 

of TGFβ1 (4ng/ml). Luciferase data (Figure 5.3b, c) showed that IL-1β strongly induced the 

luciferase activity of the κB reporter; all miR-29 family mimics significantly decreased 

activity (B) but the miR-29b inhibitor induced activity (C). These data show that NFκB 

signalling was successfully triggered in SW1353 cells by IL-1and that the miR-29 family is a 

negative regulator of the NFκB signalling pathway.  

The suppressive effect of the miR-29 family on the NFκB signalling pathway was further 

confirmed by measuring the effect of the miR-29 family on an NFκB responsive gene.  

MMP3, which is induced expression by IL-1 and is not a putative direct target of the miR-29 

family, was chosen. Again, the experiment was set up similar to the experiment in 5.1.1 

except cells were stimulated with IL-1 (5ng/ml). The Taqman qRT-PCR (Figure 5.4) showed 

that MMP3 was strongly induced expression by IL-1β; the miR-29b and miR-29c mimics 

significantly decreased the expression of MMP3 as compared with non-targeting control, 

though the miR-29a mimic had no effect.  
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Figure 5.3 The miR-29 family suppresses NFκκκκB signalling pathway 

(A) The NFκB signalling reporter (κB vector) contains 5 binding sites of NFκB upstream of 
the firely luciferase-encoding gene in pGL3 
 
100ng κB vector, and 10ng Renilla expression vector were co-transfected with either miR-29 
family mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-
targeting control (50nM) was also used as a negative control. 24 hours after transfection, cells 
were serum starved for further 24 hours, and followed by treating with IL-1 (5ng/ml) for 
another 6 hours before measuring luciferase activity. Renilla is the endogenous control for 
luciferase assay. Means ± standard errors are presented, n=6. The difference of luciferase 
activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001 
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Figure 5.4 The miR-29 family suppresses expression of the IL-1-induced gene MMP3 
Human primary chondrocytes were transfected with either miR-29 family mimic (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then changed into 0.5% (v/v) FCS 
for 24 hours, followed by stimulating with IL-1β (5ng/ml) for a further 6 hours. Total RNA 
was isolated and the expression of MMP3 was measured by qRT-PCR. 18S rRNA expression 
was used as the housekeeping gene. Open bar: non – treatment control, close bar: IL-1β 
treatment. Means ± standard errors are presented, n=3. The difference in expression level of 
IL-1β was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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5.2.3 The miR-29 family supresses the canonical Wnt signalling pathway 

Even though expression of the miR-29 family is not regulated by Wnt3a in human 

chondrocyte, it is still of interest to investigate whether the WNT/β-catenin signalling is 

modulated by the miR-29 family because of the critical role of this signalling in OA 

development: balanced β-catenin levels are essential for maintaining homeostasis of articular 

cartilage and any factors impairing this balance could lead to pathological changes.  

For investigating the interaction between the miR-29 family with the WNT/β-catenin 

signalling, the TOPFlash reporter (containing 7 binding sites of TCF/LEF driving the 

expression of the luciferase encoding gene) and FOPFlash reporter (control for TOPFlash 

where all the TCF/LEF binding sites are mutated) were used (Figure 5.5a). With the presence 

of e.g. Wnt3a, the signal transduced from the FZD receptor and LRP-5/6 co-receptor proteins 

will lead to the accumulation of β-catenin in the nucleus where it acts in concert with 

TCF/LEF transcription factors to generate a transcriptionally active complex inducing the 

expression of cognate genes and also therefore the TOPFlash reporter. Thus, any modulation 

of luciferase activity in the presence of the miR-29 family indicates that the miRNA family 

impacts on canonical signalling. Again the luciferase assay experiment was set up similarly to 

the assay in 5.1.1 but the TOPFlash (100ng) or FOPFlash (100ng) and Wnt3a (50ng/ml) were 

utilized. Luciferase assay data (Figure 5.5b, c) showed that Wnt3a strongly induced the 

luciferase activity from TOPFlash but not FOPFlash reporters; all members of the miR-29 

family significantly decreased luciferase activity, whilst a miR-29b inhibitor increased the 

luciferase activity compared to control. These data show that the WNT/β-catenin pathway 

was induced in SW1353 cell with Wnt3a and that the miR-29 family is a negative regulator 

of this signalling. 

The suppressive effect of the miR-29 family on the WNT/β-catenin signalling pathway was 

further confirmed by measuring the effect of the miR-29 family on the expression of AXIN2, 

a WNT/β-catenin responsive gene and not a putative direct target of the miR-29 family. The 

experiment was set up similarly to the experiment in 5.1.1 except cells were stimulated with 

Wnt3a (50ng/ml). The qRT-PCR data (Figure 5.6) showed that AXIN2 expression was 

strongly induced by Wnt3a; the miR-29 family mimics significantly decreased the expression 

of AXIN2 as compared with non-targeting control.  
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Figure 5.5 The miR-29 family suppresses the WNT/β-catenin signalling pathway  

(A) The canonical WNT signalling reporter (TOPFlash vector) contains 7 binding sites of 
TCF/LEF upstream of the firely luciferase encoding gene in the pTAL-Luc vector. The 
FOPFlash vector is the control in which all binding sites of TCF/LEF are mutated. 
 
100ng TOPFlash or FOPFlash vectors, and 10ng Renilla vector was co-transfected with 
either miR-29 family mimic (50nM) (B) or miR-29b inhibitor (50nM) (C) into SW1353 cells 
in monolayer. The non-targeting control (50nM) was also used as the control. 24 hours after 
transfection, cells were serum starved for another 24 hours, and followed by treatment with 
WNT3a (50ng/ml) for another 6 hours before measuring luciferase activity. Renilla is the 
endogenous control for luciferase assay. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001 
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Figure 5.6 The miR-29 family suppresses expression of the WNT/β-catenin induced gene 

AXIN2 

Human primary chondrocytes were transfected with either miR-29 family mimic (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then serum starved for 24 hours and 
followed by stimulating with Wnt3a (50ng/ml) for another 6 hours. The expression level of 
Axin2 was measured by qRT-PCR. 18S rRNA was used as the housekeeping gene. Open bar: 
non – treatment control, close bar: WNT3a treatment. Means ± standard errors are presented, 
n=3. The difference in expression level of AXIN2 was analysed by unpaired two-tailed t test. 
* p<0.05, ** p < 0.01, *** p<0.001 
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5.2.4 Identification of  miR-29 family targets 

The miR-29 family was found to suppress the TGFβ/Smad, NFκB, and WNT/β-catenin 

signalling pathways. Nonetheless, it still remained unclear the direct mechanism by which the 

miR-29 family controlled these pathways. I therefore sought to identify novel targets of the 

miR-29 family to explain how the miR-29 family interacts with these pathways.  

5.2.4.1  Gain- and loss- of function of miR-29b 

For identifying new targets, a gain- and loss- of function experiment was performed. Since 

the miR-29 family shares the same seed binding site, it was deemed sufficient just to 

overexpress or silence miR-29b rather than all members of the family. Human primary 

chondrocytes were transiently transfected with miR-29b mimic or miR-29b inhibitor (50nM) 

and their non-targeting controls for 48 hours in triplicate and then total RNA was isolated. 

The transfection experiment was validated by measuring the miR-29b level by qRT-PCR. 

The data (data not shown) showed that the level of miR-29b strongly increased or decreased 

after transfection with either miR-29b mimic or inhibitor, respectively. These data suggest a 

good transfection efficiency into human chondrocytes. For performing a whole genome 

profile, an equal amount of total RNA from each sample in the triplicate was pooled together. 

These pooled samples were then subjected to whole genome array using Illumina human HT-

12 V4.0 expression BeadChips to profile more than 47,000 human transcripts.  

The global effect of the miR-29b mimic and inhibitor transfection on whole genome 

expression was first investigated by plotting the distribution of different expression values for 

all mRNAs in the miR-29b overexpression or knockdown experiments. Since the miRNA 

will exert its function by suppressing target gene expression, it was expected that the 

overexpression of miR-29b would significantly suppress target gene expression; conversely, 

a strong induction of target gene expression would be observed with the silencing of the miR-

29b. Consistent with this hypothesis, data (Figure 5.7A) showed that in the miR-29b silencing 

experiment, the distribution of modulated genes was slightly skewed towards higher 

expression. Using an absolute 1.3 fold change (FC) as the cut off, there are 213 and 144 

mRNA going up and down, respectively in this experiment (whilst just 9 and 10 mRNA 

going up and down respectively if the FC cut off was 1.5). Surprisingly, this pattern was also 

observed with the overexpression of the miR-29b (Figure 5.7B) with 703 and 518 mRNA 
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going up and down with 1.5 FC cut off, respectively. These data suggest that the miR-29b 

mimic has stronger effect than miR-29b inhibitor in chondrocytes and that the transfection 

with the miR-29b mimic strongly induced rather than supressed gene expression. Further 

analysis of the mRNAs strongly increased with miR-29b overexpression showed that the 

majority of these induced genes do not contain a binding site for the miR-29 family in their 

3’UTR, suggesting that they are not direct targets of the miR-29 family.  Indeed, a number of 

interferon responsive genes were strongly increased (Appendix, Table 7), suggesting a non-

specific response to the synthetic oligonucleotide.  This has been previously noted even for 

small RNAs (Karlsen et al. 2011). Interestingly, these genes were not modulated in the miR-

29b silencing experiment, suggesting that a specific sequence in the miR-29b mimic is 

responsible.  

The effect of the miR-29b mimic or inhibitor on whole genome expression was further 

analysed by examining the potential targets of the miR-29 family. The array data (Figure 5.8) 

revealed there were 12215 mRNAs in the intersection of the two experiments that increased 

in the miR-29b knockdown and decreased in miR-29b overexpression experiments. To 

further explore the effect of modulation of miR-29b on the transcriptome, the percentage of 

mRNAs containing seed sites (e.g. 6-mer, 7-mer, 8-mer) was calculated. It was a postulated 

that potential direct targets of miR-29s (those mRNA containing miR-29 seed sites) should be 

enriched in mRNA down-regulated by miR-29b and in mRNA up-regulated by miRNA-29b 

silencing.  Particularly, this enrichment should be highest in genes that are decreased by miR-

29b mimic and increased by miR-29b inhibitor. Data (Figure 5.8) showed that regardless of 

the length of the seed sequence, the percentage of mRNAs with seed sites is higher in the 

mRNAs which are decreased on overexpression or increased on silencing of miR-29b than in 

total mRNA.  The percentage of mRNAs with seed sites is the highest in the intersection of 

the two experiments. These data confirm the hypothesis that taking the intersection 

containing mRNAs which decrease with the overexpression and increase with silencing of 

miR-29b is an effective way to filter the relevant miRNA targets. 

Also, a subset of mRNA which was differentially expressed in the microarray analysis was 

selected for validating using RT-qPCR. Comparison of the expression levels between the 

microarray and RT-PCR results demonstrated a similar expression pattern between the two 

platforms (data not shown). These results confirmed the mRNA array data.  
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Figure 5.7 Gain- and loss- of function of miR-29b experiments 

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer until reaching 90% confluence. Cells were transfected with miR-29b mimic 
(50nM), miR-29b inhibitor (50nM), or non – targeting control (50nM) for 48 hours in 
triplicate. Cells were then harvested and total RNA was isolated from each sample. An equal 
amount of total RNA from each sample was pooled together. Pooled samples were subjected 
to whole genome array using Illumina humanHT-12 V4.0 expression BeadChip array. The 
Global effect of the miR-29b overexpression or silencing on whole genome expression was 
presented in (A) for the miR-29b silencing experiment and in (B) for the miR-29b 
overexpression experiment. Both datasets were plotted together on the same chart (C). The 
mRNAs which decreased in the miR-29 overexpression and increased in the miR-29b 
silencing experiment are highlighted in red.  
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Figure 5.8: Enrichment of miR-29 putative direct targets in miR-29b gain – and loss – 
of function experiment. 

From whole genome array data, the percentage of miR-29 putative direct targets was 
calculated for (i) mRNA decreased by the miR-29b mimic ; (ii) mRNA increased by the miR-
29b inhibitor ; (iii) mRNA in the intersection of the two (decreased by miRN-29b mimic and 
increased by inhibitor) (iv) all the mRNAs detected from the whole genome array. The 
calculation was performed for the range of fold change (FC) and for each types of seed 
sequence e.g. 6-mer, 7-mer, 8-mer. The mRNA having more than one binding site for each 
type of seed sequence was always assigned as 1. When FC=k, the percentage of 6mer-seed-
site targets increasing or decreasing expression was calculated: 6mer = sum of mRNA having 
6mer-seed site sequence in the 3’UTR with FC in the range of (k, FC max) if k >0, or (FC 
min, k) if k<0; Total mRNA = sum of mRNA with FC in the range of (k, FC max)  if k>0, or 
(FC min, k) if k< 0;  mRNA with binding site/ total mRNA = 6mer/total mRNA. The 
percentage of other seed site targets was calculated similarly. Here, calculation for the 
absolute FC 1.3 is presented.  
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5.2.4.2 Known targets of the miR-29 family  

The miR-29 family has emerged as an important miRNA in a number of pathologic settings 

by regulating multiple genes that fall into the same or related pathways.  

In the whole genome array of the overexpression and silencing of the miR-29b, a number of 

known direct targets of the miR-29 family were also identified in human chondrocytes (e.g. 

Table 5.1).  
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Gene  

Binding sites Fold change 
mimic 

(decrease) 

Fold change 
inhibitor 
(increase) s6 s7m8 s7a1 s8 

COL1A1 3 1 3 1 2.53 1.69 
COL1A2 3 1 2 1 1.26 1.05 
COL2A1 1 1 1 1 1.17 1.39 
COL3A1 3 2 2 2 1.36 1.26 
COL4A1 2 1 2 1 1.22 1.41 
COL5A1 5 4 2 2 1.15 1.15 
COL5A2 2 1 2 1 2.20 1.27 
COL6A1 1 0 1 0 1.27 1.08 
COL6A2 1 1 1 1 1.12 1.01 
COL6A3 1 1 1 1 1.20 1.14 
COL8A1 1 1 1 1 1.35 1.07 
COL11A1 2 2 0 0 1.80 1.25 
COL15A1 2 1 1 1 1.73 1.22 
COL16A1 1 1 0 0 1.35 1.05 
COL20A1 3 0 0 0 1.01 1.13 
ADAM19  6 2 0 0 1.64 1.28 
CDK6 3 2 1 0 1.61 1.07 

 

Table 5.1: Fold change expression of known targets of the miR-29 family in the miR-29b 

gain- and loss- of function experiment in human articular chondrocytes  
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5.2.4.3 Novel targets of the miR-29 family  

5.2.4.3.1 The ADAMTS family 

The miR-29 family is one example of the fact that a miRNA can regulate many functionally 

related genes. As shown above, a number of extracellular matrix-related genes were found to 

be direct targets of the miR-29 family. Since a miRNA can regulate the expression of several 

hundred genes, it was likely that the miR-29 family could directly target sets of novel genes 

within families. In chapter 4, TGFβ was found to suppress miR-29 family expression and the 

miR-29 family itself was also found to supress TGFβ signalling. These data suggest that the 

level of miR-29 and TGFβ-induced genes, may be inversely correlated and the miR-29 

family might further inhibit the effect of TGFβ signalling on gene expression by exerting a 

second suppressive effect on the pathway through directly targeting inducible genes. This 

means that a number of TGFβ-inducible genes could potentially be direct targets of the miR-

29 family. Herein, the ADAMTS family investigated as TGFβ inducible genes (except 

ADAMTS 19) (Figure 5.9) and genes which have roles in cartilage.  

Human primary chondrocytes were stimulated with TGFβ1 for 24 hours in monolayer culture. 

The expression levels of members of the ADAMTS families were measured by qRT-PCR 

showing that ADAMTS6, ADAMTS10, ADAMTS14 and ADAMTS17 were significantly 

induced by TGFβ (Figure 5.9). Moreover, bioinformatic analysis found that there were a 

number of miR-29 binding sites in the 3’UTR regions of these ADAMTS genes (Table 5.2). 

Together with this, these TGFβ induced ADAMTS genes were predicted to be miR-29 

potential direct targets by different bioinformatics algorithms e.g. Diana, Targetscan, 

Microcosm, miRDB, Picta (Table 5.2). Taken together, all of these data demonstrated that 

ADAMTS genes, including ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19 

are miR-29 potential direct targets.  

In order to validate these ADAMTS genes as miR-29 direct targets, the expression levels of 

these genes were measured by qRT-PCR in human chondrocytes transfected with the miR-

29b mimic for 48 hours. qRT-PCR (Figure 5.10) showed that the expression of these 

ADAMTS genes was significantly suppressed by overexpression of the miR-29b, again 

supporting that these genes are the miR-29 direct targets. To further validate these ADAMTS 

genes as miR-29 direct targets, the 3’UTR regions containing the miR-29 binding sties were 
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subcloned downstream of the luciferase encoding gene in pmiRGLO. These 

ADAMTS3’UTR-pmiRGLO reporter vectors (100ng) were co-transfected with the miR-29 

family mimic (50nM) to DF1 cells. After 24 hours of transfection, the cells were harvested 

and luciferase assays were performed. Together with the ADAMTS 3’UTR-pmiRGLO 

reporter vectors, mutant vectors in which the miR-29 binding sites were mutated were 

constructed and tested. A 3’UTR was a direct target for the miR-29 family if the luciferase 

activity was suppressed with the overexpression of the miRNA in the wild-type construct and 

this effect was abolished when the miRNA binding sites were mutated. Luciferase assay data 

showed that ADAMTS6 (Figure 5.14), ADAMTS10 (Figure 5.15), ADAMTS14 (Figure 5.11), 

ADAMTS17 (Figure 5.12), ADAMTS19 (Figure 5.13) were all direct targets of the miR-29 

family. 
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Table 5.2: ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19 are predicted 
to be miR-29 targets  

A number of different binding sites for miR-29 were found in the 3’UTR regions of 
ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, and ADAMTS19. These ADAMTSs were 
predicted to be miR-29 family targets by different bioinformatics algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Genes 8 
-mer  

7 
-mer 

6  
-mer 

Bioinformatic algorithm  

ADAMTS6   2  Diana, Targetscan, Microcosm, 
miRDB,Picta 

ADAMTS10  2  Diana, Microcosm, Picta 

ADAMTS14  2 2 Diana, Picta 

ADAMTS17  2 3 Targetscan, Microcosm, miRDB,Picta 

ADAMTS19  2  Picta 
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Figure 5.9 Members of ADAMTS family are TGFβ inducible genes  

Human primary chondrocytes was cultured with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were switched to media with 0.5% (v/v) FCS for 24 hours before treating 
with TGFβ1 (4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) for another 24 hours. Cells 
were harvested and subjected to total RNA isolation. Relative expression of the ADAMTS 
genes was measured by quantitative RT-PCR. 18S rRNA was the housekeeping control. 
Relative expression value of each of the ADAMTSs in TGFβ stimulated cells was normalized 
to the vehicle control. The horizontal line at 1 serves as the vehicle control. Closed bar: TGFβ 
treatment, open bar: vehicle. Means ± standard errors are presented, n=3. The difference 
between the treatment and the control was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, ***, p<0.001. 
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Figure 5.10 The expressions of members of the ADAMTS family were suppressed by 
miR-29b mimic 

Human primary chondrocytes was cultured in media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were then transfected with either miR-29b mimic (50nM) or non – 
targeting control (50nM) for 48 hours. Total RNA was isolated and the expression levels of 
the ADAMTS genes were measured by qRT-PCR. 18S rRNA was the housekeeping control. 
Relative expression value of each of the ADAMTS genes was normalized to non – targeting 
control. The horizontal line at 1 serves as the non-targeting control. Means ± standard errors 
are presented, n=3. The difference in expression between miR-29b overexpression and non – 
targeting control was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
***, p<0.001 
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Figure 5.11: ADAMTS14 is a direct target of the miR-29 family 

The ADAMTS14 3’UTR region containing 4 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS14 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or quadruplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
 
 



 

 

193 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ctr 29a 29b 29c Ctr 29a 29b 29c Ctr 29a 29b 29c Ctr 29a 29b 29c Ctr 29a 29b 29c Ctr 29a 29b 29c Scr 29a 29b 29c
0.0

0.5

1.0

*** *** ***

*** *** ***

***
*** ***

***
*** ***

*** *** ***

Wide type Mutant site1 Mutant site 3Mutant site 2 Mutant site 5 Mutant site12345Mutant site 4

*** ***
***

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

 
 
Figure 5.12: ADAMTS17 is a direct target of the miR-29 family 
 

The ADAMTS17 3’UTR region containing 5 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS17 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or quadruplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.13: ADAMTS19 is a direct target of the miR-29 family 
 

The ADAMTS19 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS19 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or duplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
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miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.14: ADAMTS6 is a direct target of the miR-29 family 
 

The ADAMTS6 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS6 3’UTR-pmiRGLO wide type (WT) vector. The WT vector (100ng) was co-
transfected into chicken fibroblast DF1 cells with either miR-29b mimic (50nM) or non – 
targeting control (50nM). Luciferase assays were performed 24 hours after transfection. The 
relative luciferase value was normalised to the non-targeting control Open bar: non-targeting 
control, closed bar: miR-29 family mimic. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c 
mimic.  
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Figure 5.15: ADAMTS10 is a direct target of the miR-29 family 
The ADAMTS10 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS10 3’UTR-pmiRGLO wide type (WT) vector. The WT vector (100ng) was co-
transfected into chicken fibroblast DF1 cells with either miR-29b mimic (50nM) or non – 
targeting control (50nM). Luciferase assays were performed 24 hours after transfection. The 
relative luciferase value was normalised to the non-targeting control Open bar: non-targeting 
control, closed bar: miR-29 family mimic. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c 
mimic.  
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5.2.4.3.2 WNT signalling pathway related genes  

As shown previously, the miR-29 family was found to negatively regulate the TGFβ, NFκB, 

and WNT/β-catenin signalling pathways. The remaining question is how the miR-29 family 

supress these signalling pathways.  

The whole genome array from the miR-29b gain – and loss – of function experiment found 

12215 mRNAs that were the miR-29 putative targets. These consisted of 6925 mRNAs 

containing at least one 6-mer, 3400 mRNAs containing 7-mer, and 728 mRNAs containing 8-

mer binding sites in their 3’UTR. Those mRNAs with miR-29 binding sites were considered 

as putative direct targets of the miR-29 family; the others without the miR-29 binding site 

were considered as indirect targets.   

The miR-29 family suppression of TGFβ, NFκB, and WNT/β-catenin signalling pathways 

could be through a direct mechanism by targeting the mRNAs in the signalling cascade. In 

order to verify how miR-29 suppresses these signalling pathways, both putative miRNA-29 

indirect and direct targets were analysed with DAVID functional analysis (web address) 

software to identify the most represented gene ontology (GO) categories. Analysing the miR-

29 direct target sections found the enrichment for the Wnt signalling pathway together with 

MAPK kinase signalling pathway, apoptosis pathways, P53 signalling pathways. Since, 

NFκB and TGFβ pathways did not come up in this analysis, the miR-29 indirect targets were 

further analysed. However, neither NFκB nor TGFβ signalling pathways were enriched. In 

the scope of this project, the mechanisms by which the miR-29 suppressed these two 

signalling pathways remains unclear and need to be further explored.  

All the miR-29 putative direct targets were selected regardless of the fold change cut off.  In 

this manner, the Wnt signalling-related direct targets e.g. Dishevelled 3 (DVL3), casein 

kinase 2 alpha 2 polypeptide (CSNK2A2), GSK-3 binding protein frat2 (FRAT2), Frizzled 

family receptor 3 (FZD3), and Frizzled family receptor 5 (FZD5) were only modulated with a 

small fold change in the array (Fold change between 1 to 1.2). The expression of these 

mRNAs were measured by qRT-PCR, however in triplicate samples these data showed that 

the modulation of these genes under the control of the miR-29b did not reach statistical 

significance (Appendix, Figure 8).  
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Even though expression of these Wnt-related genes was not significantly modulated at the 

mRNA level, the genes were explored as miR-29 direct targets since miR-29 might exert its 

functions on these genes at the protein level. To verify these genes as the miR-29 direct 

targets, 3’UTR regions containing miR-29 binding sites of these genes were subcloned 

downstream of a luciferase encoding gene in the pmiRGLO vector. Constructs in which the 

miR-29 binding sites were mutated were also created. Either the 3’UTR-pmiRGLO vectors or 

the mutant 3’UTR-pmiRGLO vectors were co-transfected with the miR-29 family mimic 

(50nM) into DF1 cells for 24 hours. Then cells were harvested and the luciferase assays were 

performed. Luciferase assay data showed that FZD3 (Figure 5.19 ), FZD5 (Figure 5.18), 

FRAT2 (Figure 5.17), CK2A2 (Figure 5.16), DVL3 (Figure 5.15) were the direct targets of 

the miR-29 family since the luciferase activities were significantly decreased with the miR-29 

family mimics and this effects were abolished when the miR-29 binding sites were mutated.  

As mentioned above, qRT-PCR showed that the expression levels of these WNT signalling 

related genes were not significantly modulated with the miR-29b mimic at the mRNA level. 

However, the luciferase assay showed that miR-29 family could directly bind to the 3’UTR 

regions of these genes. It was postulated that the miR-29 family could directly target these 

genes at the protein level. Since all members of the miR-29 family directly targeted these 

genes, it was sufficient to check the effect of the miR-29b mimic on these genes at the protein 

level. In order to test this hypothesis, SW1353 cells were transfected with miR-29b mimic for 

72 hours. Cells were then harvested and subjected to western blot. Time limitations meant 

that only expression levels of DVL3 were examined. Western blot data (Figure 5.15) showed 

that miR-29b supressed DVL3 expression level to 50% as compared to the non – targeting 

control, again confirming DVL3 is a direct target of miR-29 family.  

Taken together, all of these data provide good evidence that the miR-29 family can inhibit the 

Wnt signalling, at least in part, via repression of these targets. Interestingly, DVL3, 

CSNK2A2 and FRAT2 were decreased in expression in hip OA cartilage compared to 

fracture controls, where the miR-29 family were increased in expression.  Fzd3 expression 

however, was higher in expression in hip OA (Figure 5.20).  
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Figure 5.16: DVL3 is a direct target of the miR-29 family 
 

(A) The DVL3 3’UTR region containing 3 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the DVL3 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or triplicate binding sites of the miR-29 family were mutated. Either the 
WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with 
either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays were 
performed 24 hours after transfection. The relative luciferase value was normalised to the 
non-targetting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
 
(B) SW1353 was transfected with a miR-29b mimic (50nM) or non-targeting control (50nM) 
for 3 days. Protein was extracted and separated on 10 (w/v) SDS-PAGE, blotted onto PVDF 
and probed with an anti DVL3 antibody.  The blot was stripped and re-probed with a 
GAPDH antibody to assess loading, n=2. 
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Figure 5.17: CK2A2 is a direct target of the miR-29 family 
 

The CK2A2 3’UTR region containing 4 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the CK2A2 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or quadruplicate binding sites of the miR-29 family were mutated. Either 
the WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells 
with either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays 
were performed 24 hours after transfection. The relative luciferase value was normalised to 
the non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.18: FRAT2 is a direct target of the miR-29 family 
 

The FRAT2 3’UTR region containing 4 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FRAT2 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or triplicate binding sites of the miR-29 family were mutated. Either the 
WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with 
either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays were 
performed 24 hours after transfection. The relative luciferase value was normalised to the 
non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.19: FZD5 is a direct target of the miR-29 family 
 
The FZD5 3’UTR region containing 5 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FZD5 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or quintuplicate binding sites of the miR-29 family were mutated. Either 
the WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells 
with either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays 
were performed 24 hours after transfection. The relative luciferase value was normalised to 
the non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.20: FZD3 is a direct target of the miR-29 family 
 

The FZD3 3’UTR region containing 1 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FZD3 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which binding site of the miR-29 family were mutated. Either the WT or the mutants 
vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with either miR-29b 
mimic (50nM) or non – targeting control (50nM). Luciferase assays were performed 24 hours 
after transfection. The relative luciferase value was normalised to the non-targeting control. 
Means ± standard errors are presented, n=6. The difference of luciferase activity was 
analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, Ctr, 
non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.21: Expression of FZD3, FZD5, DVL3, and CK2A2 in human cartilage  
 

Total RNA was isolated from human hip articular cartilage of either end-stage OA patients or 
fracture controls and reverse transcribed to cDNA. Relative expressions of FZD3, FZD5, 
DVL3, and CK2A2 were measured by real-time PCR where 18S rRNA was used as 
housekeeping control in hip osteoarthritis cartilage (HOA, n=8) and fracture to the neck of 
the femur (NOF, n=7). The horizontal line at 1 is the expression of these genes in NOF. 
Means ± standard errors are presented. Different in expression between HOA and control 
NOF was calculated by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001  
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5.3 Discussion  

Previously, the miR-29 family has been shown to negatively interact with TGFβ signalling in 

several pathologic settings in which fibrosis development was the outcome of the disease 

such as liver, cardiac, renal fibrosis (van Rooij et al. 2008, Kwiecinski et al. 2011, Qin et al. 

2011). In line with these studies, in the present study, the miR-29 family was also found to 

suppress the TGFβ signalling pathway in human chondrocytes. Noteworthy, miR-29 is one 

downstream mediator of TGFβ signalling in which the miRNA blocks the effect of the 

growth factor on gene expression. However, the direct mechanism by which miR-29 

interferes with TGFβ signalling remains unclear in human chondrocytes. In fact, Smad3 was 

demonstrated to be a direct target of miR-29 in thyroid cells (Leone et al. 2012). In human 

chondrocytes, nevertheless, with transfection of miR-29 family mimics, the Smad3 mRNA 

level was not changed (data not shown); similarly, any decrease in luciferase activity when 

co-transfecting a Smad3-3’UTR reporter with miR-29 mimics was not statistically significant 

(data not shown), suggesting that Smad3 is not the target of miR-29 in the context of the 

chondrocyte. In addition, no obvious components of TGFβ signalling were regulated in the 

miR-29b gain- and loss-of function experiment with the whole genome array. This leads to 

the hypotheses that miR-29 may directly targets TGFβ signalling components at the protein 

level rather than mRNA level (similar to miR-140 (Pais et al. 2010)) or that the inhibition of 

miR-29 on TGFβ signalling is the consequence of the direct suppression of other factors 

inducing TGFβ signalling. To test this hypothesis, it may be best to perform miR-29b gain-

and loss-of function experiment together with a proteomic assay.  It may also be instructive to 

perform array experiments in the presence or absence of TGFβ itself  

It has been shown that in the development and progression of OA, NFκB plays an active role 

e.g. mediating articular chondrocyte responses to proinflammatory cytokines (IL-1, TNF-α); 

inducing MMPs (e.g. MMP-1, MMP-3, MMP-13), cytokines (e,g, IL-6, IL-8) and chemokine 

expression (Marcu et al. 2010). Thus, NFκB is an attractive target for the treatment of OA. In 

this project, for the first time, NFκB signalling was confirmed as negatively regulated by the 

miR-29 family and miR-29 is also likely to serve as a downstream inhibitor of the signalling. 

Similar to TGFβ signalling, it is still not clear the direct mechanism by which miR-29 

regulates NFκB signalling pathway. However, it suggests a potential therapeutic strategy for 

targeting NFκB signalling using miR-29. Further studies are needed to dissect the direct 

mechanism by which miR-29 interferes with NFκB signalling. 
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In this project, the miR-29 family was found to suppress the Wnt/β-catenin signalling 

pathway. In line with my data, the negative effect of the miR-29 on this signalling pathway is 

also reported. In human non-small-cell lung cancer cells, miR-29 directly targets DNMTs 

which in turn inhibited the methylation of Wnt inhibitory factor-1 (WIF-1) promoter; 

accordingly, miR-29 over-expression down-regulated β-catenin expression (Tan et al. 2013). 

In human colorectal cancer cells, miR-29b negatively regulated Wnt signalling and targeted 

B-cell CLL/lymphoma 9-like (BCL9L), thus decreasing its expression with a consequent 

decrease in nuclear translocation of β-catenin (Subramanian et al. 2014). In contrast to these 

studies, published data reports that the miR-29 family positively regulated canonical Wnt 

signalling by directly targeting its inhibitors in human embryonic kidney cells (Liu et al. 

2011) and human fetal osteoblastic cells (Kapinas et al. 2010). This contradiction is not 

surprising as many miRNAs are known to act in a context-dependent manner depending on 

the relative availability of their targets in any cell type and this discordance could be a 

reflection of the differences in the miR-29 family regulatory networks in different cell lines.   

Besides exerting function on several crucial signalling pathways implicated on 

chondrogenesis and OA, the crucial role of the miR-29 family was clearly shown through 

their target genes. In this project, miR-29b gain- and loss-of-function was applied to find 

miR-29 potential targets. Together with some novel and known targets which will be 

discussed later, the liposome – mediated transient transfection of the miR-29b-3p mimic 

surprisingly induced the expression of a number of immune genes which are not the miRNA 

targets. The Qiagen miR-29b-3p mimic used in the present study is double-stranded, 23 

nucleotides in length with sequence identical to the sequence of the mature endogenous 

miRNA-29b-3p and does not contain any chemical modifications or overhangs, which makes 

it unlikely for any sequence difference between endogenous miRNA and Qiagen mimic to be 

responsible for the immune response. Moreover, the lack of immune response against the 

controls and the miR-29b inhibitor confirms that the immune response was specific and not 

due to a general response to small RNA. Indeed, it is likely that some specific GU- rich 4-mer 

sequences e.g. AUUU, UUGA, UGUU in the miR-29b-3p mature sequence 

(5’UAGCACCAUUUGAAAUCAGUGUU3’) might be important for the immune gene up-

regulation since these sequences have been shown to be potent immunostimulatory motifs 

mediated through TLR7 or TLR7/8 (Forsbach et al. 2008). Especially, it has been shown that 

the main effects induced upon activation of TLR7 in human immune cells are IFN- dependent 
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effects, proinflammatory cytokines and chemokines from cell expression only TLR7 or both 

TLR7 and 8 (Hertzog et al. 2003). Also, it is possible that this up-regulation of the immune 

genes could be attributed to the liposome alone besides the sequence of the synthetic miRNA 

since the levels of the immune genes were higher than the levels obtained for electroporation, 

and those observed in un-transfected controls (Karlsen et al. 2013). The explanation for this 

could be because liposomes fuse with the plasma membrane, which may trigger membrane – 

associated lipid receptors and/or distort the actin cytoskeleton which in turn up-regulates 

immune genes. However, it may depend on cellular context since electroporation could 

strongly trigger the increase of the immune genes in some cell types.  

This study identifies FZD3, FZD5, FRAT2, CK2A2 and DVL3 as the critical targets of the 

miR-29 family in the Wnt signalling pathway. These genes have important roles in both 

canonical and/or non-canonical Wnt signalling pathways. FZD3 and FZD5 belong to the 

Frizzled proteins, which are the receptors for Wnt ligands. Wnt3a, Wnt5a, and Wnt2 can bind 

to FZD3 which in turn can activate both canonical and non-canonical WNT signalling 

pathways: Wnt3a activates the TOPFlash reporter in HEK293 cells overexpressing 

Wnt3a/FZD3/LRP6 (Lu et al. 2004) whist Wnt5a binding to FZD3 triggers downstream 

pathways independent of β-catenin (Hansen et al. 2009); Wnt2 can interact with FZD3 in 

human cumulus cells, but it is not known which downstream signalling pathways are 

activated after this binding interaction (Wang et al. 2009). FZD5 functions as the receptor for 

Wnt5a, Wnt9b, and Wnt7a. Co-injection of hFZD5 and XWnt-5a induced the formation of 

dorsal axis duplication in X. laevis embryos; this axis duplication was suppressed after co-

injection of RNA for human GSK-3β, suggesting the involvement β-catenin-dependent 

signalling in this receptor – ligand combination (He et al. 1997). Wnt9b was found in 

HEK293 cells as a binding partner for FZD5 to activate the TOPFlash reporter (Liu et al. 

2008). Wnt7a was found to bind to FZD5 to activate the β-catenin signalling pathway and 

increase the proliferation of epithelial cells in the endometrium (Carmon et al. 2008). By 

targeting these two Frizzled proteins, miR-29 can interfere with Wnt signalling pathways. 

However, it will depend on the cellular context, whichWnt ligands are available to partner 

with, which will determine outcome. In line with these Frizzled proteins, another novel target 

of the miR-29 family, DVL3 (Disheveled 3), belonging to the Disheveled family including 

DVL1, 2 and 3, is a central component in mediating downstream events of both canonical 

and non-canonical Wnt signalling. Wnt ligands binding to Frizzled protein recruit Disheveled 

to the plasma membrane which leads to activation of downstream pathways. Disheveleds 
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includes DIX, PD2, and DEP domains: DIX and PDZ domains function together in canonical 

Wnt signalling to stabilize β-catenin; the DIX domain binds with Axin and results in 

inhibition of the β-catenin degradation complex in canonical Wnt signalling; PDZ and DEP 

domains cooperate in different subpathways of noncanonical Wnt signalling. Moreover, the 

other two targets FRAT2 and CSNK2A2 are potent activators of canonical Wnt signalling. 

FRAT2 (Frequently rearranged in advanced T-cell lymphomas -2) belongs to the FRAT 

family including FRAT 1, 2, 3. By binding to GSK3, Frat prevents the phosphorylation and 

concomitant degradation of β – catenin (van Amerongen et al. 2005). CSNK2A2 encodes for 

the subunit CK2α’ of casein kinase 2 (CK2). CK2 has been shown to act as a positive 

modulator of WNT/β-catenin pathway, suppressing β-catenin degradation and β-catenin 

binding to APC (Price 2006). Several keys components of the WNT/β-catenin signalling are 

known substrates of CK2 in vitro including DVL (Willert et al. 1997), TEF/TCF (Homma et 

al. 2002, Miravet et al. 2002, Hammerlein et al. 2005), and β-catenin (Song et al. 2003). 

Taken together, it is likely that by directly targeting FZD3, FZD5, DVL3, FRAT2 and 

CSNK2A2, miR-29 could in part or in specific contexts, suppress the Wnt signalling pathway. 

Interestingly, in human cartilage, the expression levels of FZD5, CSNK2A2, and DLV3 were 

found to be down regulated in human OA, inversely correlating with the miR-29 expression 

level, suggesting a direct mechanism in which the suppression of these genes are controlled 

by miR-29 in human OA cartilage. However, FZD3 expression level was up-regulated in 

human OA cartilage which could be explained by the fact that there are many other factors 

which are involved in controlling gene expression together with miRNAs. Since the dys-

regulation (either up-regulation or down-regulation) of the canonical Wnt signalling pathway 

can both lead to OA, there is a possible explanation for the disease development: the 

excessive amount of the miR-29 down-regulates the expression levels of a number of Wnt 

signalling related genes which consequently suppress the Wnt signalling pathway. 

Nevertheless, whether miR-29 targets all of these genes at the same time and the level at 

which the suppression of each gene contributing to the disease are still not explained in this 

project.  

MicroRNA 29 has been suggested to serve as a master regulator in complex regulatory 

networks through fine-tuning a large set of functionally related genes, probably best 

illustrated by its extracellular matrix-related targets, whereby at least 16 ECM related genes 

are experimentally validated including collagen isoforms (van Rooij et al. 2008, Luna et al. 
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2009, Kwiecinski et al. 2011, Qin et al. 2011, Wang et al. 2012), laminin γ1 (Luna et al. 2009, 

Nishikawa et al. 2014), fibrillin 1, elastin (van Rooij et al. 2008), integrin β1 (Cushing et al. 

2011). In line with these data, in this project, a number of ECM- related genes were 

highlighted as the direct targets of the miR-29 in human OA chondrocytes. However, there is 

not complete overlap since there are a number of genes that have been experimentally 

validated as direct targets of miR29 but not regulated when miR-29b was overexpressed or 

inhibited in human chondrocytes. For example, validated miR-29 direct target genes include 

DNMT3A, DNMT3B (Fabbri et al. 2007, Garzon et al. 2009, Amodio et al. 2012, Morita et 

al. 2013, Tan et al. 2013, Parpart et al. 2014), MMP2 (Liu et al. 2010, Steele et al. 2010, Fang 

et al. 2011), MMP9, ADAM12, ADAM19 (Luna et al. 2009, Ramdas et al. 2013), 

ADAMTS9 (Cushing et al. 2011). Nonetheless, in human chondrocyte, the expression levels 

of these genes were not modulated by the miR-29 family. The precise explanation for this 

difference is still not clear.  

In this PhD thesis, members of ADAMTS family including ADAMTS6, ADAMTS10 

ADAMTS14, ADAMTS17, ADAMTS19 have been confirmed as novel direct targets of the 

miR-29 family. Interestingly, the miR-29 family is suppressed by TGFβ whist its direct 

targets, the ADAMTS family are strongly induced by TGFβ.  However, except ADAMTS14 

described as a procollagen N-propeptidase for pro-collagen type I, type II, and type III, the 

functions of ADAMTS 6, -17, and-19 remain unknown. Thus, further investigating the 

suppressive effect of miR-29 family on these ADAMTS becomes difficult both in vitro and in 

vivo. Moreover, ADAMTS14 and ADAMTS17 levels were reported to largely increase in hip 

OA cartilage and hip OA synovium, respectively (Davidson et al. 2006); the rs4747096 

nsSNP in ADAMTS14 was over-represented in women requiring joint replacement because 

of knee OA and in patients with symptomatic hand OA (Rodriguez-Lopez et al. 2009, 

Poonpet et al. 2013), implicating the involvement of these ADAMTS on OA. The microRNA 

29 family is, nevertheless, found to increase expression in hip OA cartilage in our sample set. 

Again, this could be explained in part by the fact that in cellular context, a miRNA is just one 

factor amongst others e.g. transcription, epigenetic silencing, differential biosynthesis, and 

extracellular stimuli controlling gene expression.  

In summary, the miR-29 family was found to suppress the TGFβ/Smad3, NFκB, and Wnt/β-

catenin signalling pathways. Gene expression profiles of gain- and-loss-of-function revealed 

the regulation of a large number of previously recognised extracellular matrix-associated 
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genes as well as an additional subset of protease and Wnt signalling pathway-related genes.  

Among these genes, the ADAMTS family e.g. ADAMTS6, ADAMTS10, ADAMTS14, 

ADAMTS17, ADAMTS19, and Wnt signalling related genes e.g. FZD3, FZD5, DVL3, FRAT2, 

CK2A2 were validated as direct targets of the miR-29 family.   
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CHAPTER 6 
GENERAL DISCUSSION 

6.1 Summary 

This project has identified the miR-29 family as important miRNAs involved in both 

cartilage homeostasis and OA (Chapter 3). In the murine DMM model of OA at 1, 3, and 7 

days after surgery, miRNA profile data from total RNA isolated from the whole knee joints 

showed that miR-29b was significantly increased at day 1 and showed a trend to decrease at 

day 3 and 7 after surgery. Integrating analysis between the mRNA profiling and miRNA 

profiling data from the DMM model strongly highlighted the role of the miR-29 family since 

the expression of its putative targets inversely correlated with its expression across the time 

course. In human end-stage hip OA cartilage, the miR-29 family was increased compared 

with the facture to neck of femur controls. Furthermore, in a murine hip injury model, the 

expression of the miR-29 family was increased across a 48 hour time course. The miR-29 

family was also found to be involved in chondrocyte phenotype since the expression of all 

members of the miR-29 family decreased across dedifferentiation of human chondrocytes. In 

chondrogenesis, the miR-29 family was found to significantly decrease at an early stage, 

suggesting a negative role in this phase of chondrogenesis in both human and murine models. 

The miR-29 family was also found to be expressed in murine limb development. 

The factors controlling miR-29 family expression are another important finding of this 

project (Chapter 4). The master regulator of chondrogenesis SOX9 was found to negatively 

regulate miR-29 expression, at least in part through directly binding to the promoter region of 

miR-29a/b1. A number of growth factors and cytokines were identified which regulate 

expression of the miR-29 family in both human primary chondrocytes and SW1353 cell line: 

TGFβ supressed miR-29 family expression; IL-1 strongly increased the miRNA expression 

through the p38 MAPK signalling pathway; treatment with LPS for less than 24 hours 

decreased expression of miR-29 through NFκB signalling whilst treatment with LPS for 

longer times increased miR-29 expression. Interestingly, in response to cytokines and growth 

factors, the miR-29 primary and precursor transcripts were regulated ahead the mature 

transcripts. This was explained in part by the fact that several components taking part in the 

miRNA precursor processing were possibly the miR-29 targets. Among these, Dicer-1 was 

proven as a miR-29 direct target.  
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Crucially, the functions of the miR-29 family in chondrocyte were also revealed in which 

miR-29 served as the negative regulator of the TGFβ/SMAD, NFκB and WNT/β-catenin 

signalling pathways. A number of novel direct targets of the miR-29 family have been found 

e.g. the ADAMTS family (ADAMTS6, -10, -14, -17, -19) and components of the Wnt 

signalling pathway (FZD3, -5, FRAT2, CK2A2, DVL3) (Chapter 5).   
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Figure 6.1. Summary of the role of the miR-29 family in chondrocytes  

 

 

 
 
 
 
 
 
 
 
 

6.2 General discussion  
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6.2.1 Increased expression of the miR-29 family may contribute to the onset or 

progression of OA 

The tight regulation of miRNA expression is crucial for cartilage homeostasis since the 

dysregulation of miRNAs may lead to OA. Especially, it has been shown that the aberrant 

expression of a single miRNA could have a profound effect on cartilage i.e. miR-140, with 

absence of miR-140 leading to premature OA (Miyaki et al. 2010). In the present study, all 

members of the miR-29 family have been implicated in cartilage homeostasis and OA. In 

both early and late stages of OA, an increase level of the miR-29 family was observed, 

suggesting that miR-29 may be involved in the onset of the disease. Moreover, in this study, 

the molecular mechanisms controlling this increased expression of miR-29 and the 

mechanisms by which increased miR-29 expression may lead to OA have been investigated: 

the miR-29 expression was up-regulated by IL-1, which is induced in both early and end 

stage OA, consequently suppressing both TGFβ and WNT/β-catenin signalling pathways. 

Since alteration of these two signalling pathways has been shown to be involved in OA 

development (Verrecchia et al. 2001, Verrecchia and Mauviel 2002, Zhu et al. 2008, Zhu et al. 

2009), the increased expression level of the miR-29 family may contribute to this. In line 

with this, the miR-29 family was found to strongly suppress a number of ECM-related genes, 

especially collagens. Aggrecan was also found to be indirectly decreased by miR-29 (data not 

shown). However, more evidence is required to support this premise. If the increased 

expression level of miR-29 is a common observation in different OA models, this may also 

suggest that circulating miR-29 could be a biomarker for detecting early stage OA and also 

offers the possibility of using a miR-29 inhibitor as a novel treatment for OA.  We are 

investigating the expression of the miR-29 family in the Str/ort model in collaboration with 

Dr Blandine Poulet (University College London, UK) and Professor Andy Pitsillides (Royal 

Veterinary College, London, UK). 

 

 

 



216 

 

The increased level of the miR-29 family may not be the only microRNA underlying the 

development of OA. In this project, miRNA profiling in the DMM model at 1, 3, and 7 days 

after surgery found a number of miRNAs modulated apart from miR-29s, suggesting these 

may also contribute to the pathogenesis of OA. Also, a number of miRNAs have been 

identified as differently expressed in human end stage OA cartilage as compared to the 

control counterparts. It is clear that in order to maintain cartilage homeostasis, miRNAs will 

interact with each other and mRNAs in a complex network that is tightly regulated. Thus, the 

up-regulation of miR-29 might be either the reason or the consequence of the deregulation of 

other networks of miRNAs. The question is how the other miRNAs interact with miR-29 and 

the effect of the increase expression of miR-29 on the miRNA/mRNA network in OA. This 

requires a computer modelling approach to resolve. 

6.2.2 The signalling cascade IL-1/p38, IL-1/NFκκκκB and the miR-29 family  

Interestingly, in this study, it was found that whist IL-1 induced miR-29 expression through 

p38/MAPK, the NFκB pathway appears suppressive to miR-29 expression. In addition, the 

miRNA itself was found to suppress NFκB signalling. These data suggest that in response to 

the signalling cascade triggered by IL-1, the miR-29 expression level was induced through (i) 

induced expression of p38 MAPK and (ii) escape from the suppressive effect of NFκB 

through inhibiting the NFκB signalling pathway. However, the mechanism by which miR-29 

suppressed NFκB signalling was not fully understood since the miR-29b gain- and loss- of 

function mRNA profiling experiment in human primary chondrocytes did not identify any 

potential targets related to the NFκB signalling pathway. It is a hypothesis that this 

suppressive effect could be an indirect effect or some potential targets could alter only at the 

protein level. Also, the direct mechanism through which  p38 induced the miR-29 expression 

is not clear, even though in the promoter of miR-29a/b1 there are several binding sites for 

AP1 (data not shown).  Interestingly, it is reported that p38 activation was found to induce 

NFκB activity in a dual way: by reducing IκB levels and by potentiating the translocation of 

p65/p50 (Baeza-Raja et al. 2004). Though evidence for this activation in human chondrocytes 

was not clear, the network controlling miR-29 expression in response to IL-1 becomes more 

complicated if this interaction is true in chondrocytes. Moreover, in this study, miR-29 was 

found to inhibit the pre-miRNA processing machinery to target Dicer and may also directly 

target other pre-miRNA processing genes, suggesting another regulatory layer for tightly 
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controlling the level of miR-29 in human chondrocytes. This could partly explain that the 

excessive amount of the miRNA in chondrocytes may lead to OA. Multiple regulatory layers 

are therefore needed for controlling miR-29 levels, clearly showed when the level of the 

primary miR-29 family was induced ahead of the level of mature miR-29 in chondrocytes 

stimulated with IL-1, TGFβ, and LPS. In the DMM model, miR-29 expression was induced 1 

day after surgery together with the IL-1β expression level though this latter was not 

significant (data not shown), suggesting one possible explanation for the increase level of 

miR-29. However, it is unlikely that miR-29 was solely induced by IL-1 in the DMM model 

since the IL-1 level would have to be induced very early in order to then stimulate miR-29 

expression. In line with this, mRNA profiling of DMM model 6 hours after surgery did not 

find a strongly induced expression of IL-1 (Burleigh et al. 2012). Similarly, in the murine hip 

injury model, the miR-29 expression level was also found to increase across the time course 

(reaching significance at 12 hours in culture). The precise mechanism for the increase 

expression of miR-29s in both DMM model and murine hip injury model are not clear and 

require further investigation.  

6.2.3 The signalling cascade TGFβ/ Smad3 signalling pathway and the miR-29 family  

In contrast with IL-1, TGFβ suppresses miR-29 expression. Since the miR-29 family directly 

targets a number of ECM-related genes, the suppressive effect TGFβ exerted on the miR-29 

family is consistent with the well described protective effect of TGFβ in chondrocytes (Li et 

al. 2005). Interestingly, the miRNA itself gave a negative feedback loop on the TGFβ/Smad 

signalling pathway. This could be explained as an attempt to maintain miR-29 at homeostatic 

levels as TGFβ signalling becomes aberrant. This may also in part support the fact that an 

excessive amount of the miR-29 family could lead to OA: through suppressing Smad 

signalling and directly inhibiting responsive genes e.g. ECM related genes, the up-regulation 

of the miR-29s could strongly diminish the function of TGFβ in chondrocytes.  

The precise mechanism by which TGFβ suppressed miR-29 expression and the mechanism 

by which miR-29 inhibited the TGFβ/Smad signalling were unclear. The miR-29b gain- and 

loss- of function mRNA profiling did not identify any TGFβ related potential targets, 

suggesting that this may also be at the protein level. Moreover, regarding the cellular context, 

when both IL-1 and TGFβ may be present, the cross talk between the two cytokines as well 
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as with other cytokines and growth factors in controlling the miR-29s expression levels are 

still unclear.   

6.2.4 The canonical Wnt signalling and the miR-29 family  

In this project, expression of the miR-29 family was not controlled by Wnt3a in chondrocytes. 

Since Wnt3a could trigger both canonical Wnt/β-catenin and CaMKII signalling pathways 

(Nalesso et al. 2011), it is likely that these two signalling pathways do not modulate the miR-

29 levels in chondrocyte. However, expression ofmiR-29 was found to be induced by 

WNT3a in osteoblasts, suggesting a different mechanism controlling the miRNA-29 

expression in the two cells types. The answer to this difference remains unknown and needs 

further investigation.  

The canonical Wnt/β-catenin signalling pathway was inhibited by the miR-29 family in 

which some Wnt signalling related genes were validated as direct targets of the miRNA. Both 

over-activation and inhibition of Wnt signalling can lead to skeletal deformities and an early 

onset OA (Zhu et al. 2008, Zhu et al. 2009), illustrating that Wnt signalling needs to be 

tightly regulated in cartilage homeostasis. However, whether the decreasing of these direct 

targets is the mechanism for inhibition of the Wnt/β-catenin signalling pathway has not been 

confirmed in this study. This could be facilitated by utilizing siRNA to suppress the 

expression of each of these genes and measure this effect on the signalling though TOPFlash 

reporter. 

6.2.5 Therapeautic applications for treating OA by targeting the miR-29 family  

MicroRNAs have many advantages as a therapeutic modality. The mature miRNA sequences 

are short and often completely conserved across species. These characteristics make miRNAs 

relatively easy to target therapeutically and allow for using the same miRNA-modulating 

compound in preclinical efficacy and safety studies as well as in clinical trials. Moreover, 

miRNAs have typically many targets within cellular networks, which, in turn, enable 

modulation of entire pathways in a disease state via therapeutic targeting of disease – 

associated miRNAs.  

The increase of the miR-29 family in OA potentially opens the door to develop a novel 

therapeutic strategy for OA. The therapeutic approach using miRNA sponges (transgenic 
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overexpression of RNA molecules harbouring complementary binding sites to a miRNA) or 

miRNA-29 antagonists to block the function of the endogenous miRNA-29s may have great 

promise as a novel treatment. The miRNA sponges have been proved to be successful in vivo 

whist the antagonists might have greater promise from a therapeutic perspective.  

However, detailed examination of the miRNA therapy should be conducted before clinical 

use. Especially, the antagonists should have high binding affinity, and bio-stability. Indeed, 

this could be facilitated by chemically modifying them to increase the duplex melting 

temperature and improving nuclease resistance. Sugar modifications e.g. the 2’-O-methyl (2’-

O-Me), 2’-O-Methoxyethyl (2’-MOE) 2’-fluoro and the bicyclic locked nucleic acid (LNA) 

modification are commonly used. Among these, the LNA exhibits the highest affinity toward 

complementary RNA with an increase in Tm of +2-8oC per introduced LNA modification. In 

addition, by substituting the phosphodiester (PO) backbone linkages with phosphorothioate 

(PS) linkages in the antagonist oligonucleotides or by using peptide nucleic acid (PNA) or 

morpholino oligomers, respectively, their nuclease resistance properties might increase. Apart 

from nuclease resistance, PS backbone modifications also enhance binding to plasma proteins, 

leading to reduced clearance by glomerular filtration and urinary excretion. PNA oligomers 

are uncharged oligonucleotide analogues, in which the sugar-phosphate backbone has been 

replaced by a peptide-like backbone consisting of N-(2-aminoethyl)-glycine units. 

Polylysine-conjugated and nanoparticle-encapsulated PNA antimiRs have been shown to 

efficiently inhibit miRNA function in cultured cells and in mice (van Rooij et al. 2014). 

Morpholinos are uncharged and with slightly increased binding affinity to complementary 

miRNAs.  

An effective way to deliver the miRNA-29 inhibitor to the arthritis joint to inhibit the 

endogenous miRNA-29 is needed. In particular, it is likely that the uptake of a synthetic 

antagonist into chondrocytes surrounded by the abundant matrix would be difficult in the 

treatment of damaged cartilage. The main challenge for development of miRNA - based 

therapeutics is efficient and safe delivery. Two strategies have been utilized to enhance in 

vivo delivery of antagonists: cholesterol conjugation and modification of the phosphate 

backbone with PS linkages. The 3’ cholesterol conjugated, 2’-O-Me-modified antagonists 

have become a well-validated experimental tool for in vivo inhibition of miRNAs. PS 

backbone linkages can be employed to enhance the pharmacokinetic properties of antisense 
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oligonucleotides. The antagonist approach contains 2 PS modifications at the 5’ end and 4 at 

the 3’ end, which have been shown to be important for their in vivo activity, whereas 

complete replacement of the PO backbone by PS linkages decreased the antagonist efficiency. 

An increasing number of reports have described silencing of miRNA in vivo by unconjugated 

LNA-modified antagonists ranging from 8nt to 16nt in length as described in previous section. 

Administration of such antimiRs is either by intraperitoneal or subcutaneous injection 

resulted in antimiR uptake in the tissue of interest, which led to inhibition of miRNA function 

and derepression of direct target mRNAs. However, the mechanism of cellular uptake and 

distribution are still poorly understood. Directing uptake to cartilage is likely still to be 

difficult, and delivery by injection not pragmatic in OA. 

6.3  Future direction 

6.3.1 The modulation of the miR-29 family in OA 

The miR-29 family was found to modulate expression in different animal models e.g. the 

DMM model, hip avulsion injury model, as well as human end stage OA cartilage. These data 

suggest that the increase in expression of the miR-29 family could be a common event in both 

early onset and end stage OA. However, care must be applied to conclude the up-regulation 

of miR-29s will lead to OA, with the expression level of miR-29s during OA progression 

remaining unclear. Thus, it is of importance to examine miR-29 expression in naturally 

occurring OA models too.   

The miR-29 expression pattern increased in the hip avulsion injury across the time course in 

this study. Nonetheless, whether miR-29 potential targets were inversely correlated with the 

miR-29 expression level in this model has not been proven. Thus, we are performing mRNA 

profiling in the same samples in which the miR-29 expression was found to increase. This 

may also reveal additional mechanisms which lead to the increased expression of miR-29. 

6.3.2 Biological functions of the miR-29 family in chondrocytes 

The miR-29 family was found to suppress TGFβ/Smad, NFκB, and Wnt/β-catenin signalling 

pathways through using the reporters of these pathways together with measuring expression 

level of the responsive genes. However, whether interfering with the miR-29 effect on these 

signalling will lead to alter chondrocyte phenotype remains unclear.  Overexpression and 
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knockdown of the miR-29 family in HACs in micromass culture in combination with 

measurement of chondrocyte markers e.g. MMP13, COL2A1, SOX9, ADAMTS5 will help to 

address this.   

From the miR-29b gain- and loss- of function mRNA data, apart from the Wnt signalling 

pathway, enrichment of some miR-29 potential targets which are related to MAPK signalling 

and apoptosis pathways was evident. Thus, validating these genes as the direct targets of the 

miR-29s is a priority in the future. It is now clear that miRNAs regulate gene expression at 

both mRNAs and protein levels. Also, the direct mechanisms the miR-29 supressing the two 

TGFβ and NFκB signalling pathways are unclear. Therefore, there is a need for proteomic 

analysis of the miR-29b gain- and loss- of function in HACs, likely in micromass culture. In 

addition, performing miR-29b gain – and loss - of function together with treatment with IL-1 

and TGFβ could greatly help to find the mechanism miR-29 family interfering with NFκB 

and Smad signalling pathways. All of these experiments will give more information about 

biological functions of miR-29 in chondrocyte and the complex regulatory network the miR-

29 is within.  

A key step in understanding the biological functions of the miR-29 family in cartilage 

homeostasis and OA will be the development of multiple in vivo molecular tools to access 

gain – of – functions or loss – of – function in mouse models: A number of gain- of –function 

where the miR-29 family members are overexpressed through a transgenic model, such as the 

B cell – specific overexpression of the miR-29a/b1 cluster (Santanam et al. 2010), a viral 

transfection model such as the retroviral transfection of bone-marrow stem cells with miR-

29a (Han et al. 2010) or systemic delivery of miR-29a have been reported (Wang et al. 2012). 

Also, loss-of-function models have been developed as a Cre-Lox-inducible knockout of the 

miR-29a/b-1 cluster or the expression of the miR-29 “sponge” sequence (either by transgene 

or lentivirus) (Ma et al. 2011). However, there is no information whether gain – and loss- of 

function of the miR-29s lead to OA in these models. Therefore, future studies in which these 

mice put on OA models e.g. DMM will provide more detail about the function of the miR-29 

family.  

6.3.3 The involvement of the miR-29 family expression in chick limb bud development 

and Zebrafish cartilage development.  
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The miR-29 family was suggested to be a negative regulator of early stage of chondrogenesis 

in both human and murine chondrogenesis models in this study. Nearly 16 collagen genes 

were validated as miR-29 direct targets in this study and others. Also, this miRNA was also 

expressed in murine limb development. It is likely that miR-29 would have a crucial role in 

cartilage and limb bud development and it is worthy of further investigation. This could be 

facilitated by again using the gain- and loss- of function of all members of the miR-29 family: 

a 500bp region around the mature sequence of the miR-29s or a sequence complementary to 

miR-29 can be subcloned and injected into the chicken limb. However, the involvement of 

the miR-29 family in chick limb development by in situ hybridization might be required to 

determine the stage in which miR-29 was expressed in the development process. In addition, 

ADAMTS14, a pro-collagen pro-peptidase, was validated as the miR-29 direct target. 

Overexpression or knockdown of the miR-29 family in chick limb could help to further 

investigate the functional outcome of the suppressive effect of the miR-29s on ADAMTS14 

though the ADAMTS14 will need to be verified to be expressed in the chick limb first. This 

method could be useful for investigating the functional outcome of the interaction between 

miR-29 and other novel targets.  

Interesting, the miR-29 family was found to be express in the cartilage of zebrafish 

(Wienholds et al. 2005). Thus, zebrafish might be a useful model for investigating the role of 

the miR-29s in cartilage development. Overexpression and knockdown of the miR-29 family 

could greatly help for answering this question. 

6.3.4 The miR-29 family as the biomarker for OA  

MicroRNAs exist in human body fluids such as plasma, urine, and saliva in a stable form 

which has the potential to be a novel diagnostic and prognostic biomarker. OA can be 

difficult to diagnose, but it is important to diagnose OA early and start treatment to prevent 

joint destruction in which the miR-29 based therapy could be an option. Indeed, there is 

growing evidence for future miRNA-based diagnostics: a number of miRNA in plasma were 

found at different levels between RA and OA patients. For examples, let-7e, miR-454, miR-

886 were identified as differentially expressed circulating miRNAs in OA patients who 

underwent arthroplasty especially, let–7e emerged as potential predictor for severe knee or 

hip OA (Beyer et al. 2014). Since the miR-29 family was modulated at an early stage in 

DMM model, it could be a useful biomarker for OA in clinical use. Thus the expression level 
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of the miR-29 family in plasma should be determined to have an overview expression pattern 

of the miRNA.  
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ENDICES 
 

Genes Accession 
number  

Sequences (5’->3’) 

ADAMTS6 ENSG000000491
92 

Forward: ACGTGAGCTCTCTCATCGTCATGGTTCTGC 
Reverse: 
ACGTGAGCTCCAAGCAGGAGAATGAATGTAGG 

ADAMTS1
4 

ENSG000001383
16 

Forward: GAGCTCGCTGTGCCCTGCCATC 
GAGCTCGGGTCCAATGGCGATGTTA 

ADAMTS1
7 

ENSG000001404
70 

Forward: ACGTTCTAGAAACATGAGCGTGGACTTGG 
Reverse: ACGTTCTAGATGTAATGCAAGTTAACGAATGG 

ADAMTS1
9 

ENSG000001458
08 

Forward: ACGTGAGCTCAATCACAGCTCCAGGTAATC 
Reverse: 
ACGTGAGCTCCCAAGAGACATACTATCTTCCAAGG 

FZD3 ENSG000001042
90 

Forward: ATGCGTCGACTATTAGATGCCCAGCCTTTCTC 
Reverse: 
ATGCGTCGACATGCCTACCAAGAGGATAACATTC 

FZD5 ENSG000001632
51 

Forward: ATGCGTCGACGGCATCGGCTACAACCTGAC 
Reverse: ATGCGTCGACAGACCACACAGTTCAAAGA 
AACCTG 

FRAT2 ENSG000001812
74 

Forward: ATGCGTCGACCAACAGCGTCCAGTTCCTAC 
Reverse: ATGCGTCGACGCCGTCAAGTTTCATACAGC 

CK2A2 ENSG000000707
70 

Forward: 
ATGCGTCGACATGCAGGTACTAGAGTTGTGTGG 
Reverse: 
ATGCGTCGACAATAAGTTTGCTTGTTTCTGTGG 

DVL3 ENSG000001612
02 

Forward: ATGCGTCGACGCTGCGTTCCTCTCTCCATC 
Reverse: 
ATGCGTCGACTACCATTTATTGAGCACCTACTCTACTG
TG 

Table 1: Primer sequences for PCR amplification 3’UTR region of potential targets of the 
miR-29 family. For subcloning purpose, restriction sites (bases underlined) were added to the 
5’P of the primers. SacI (GAGCTC), SalI (GTCGAC), XbaI (TCTAGA). 
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Genes 
Mut
ant 

Primer sequence  (5’->3’) 

ADAMT
S6 

Site 
1 

Forward: 
TATGTGATGCACTGACATGTAATTTAAGAAGCTTATGATGGAATC
AAGTCAAACATGCTGTTTAACTGAAAG 
Reverse: 
CTTTCAGTTAAACAGCATGTTTGACTTGATTCCATCATAAGCTTCT
TAAATTACATGTCAGTGCATCACATA 

 
Site 
2 

Forward: 
TATTTATTTCACCAGGGCACATTAAGCTTAAGTTAACTGTTCTTTG
AAAAGGCGCAAGGGAATTCAGT 
Reverse: 
ACTGAATTCCCTTGCGCCTTTTCAAAGAACAGTTAACTTAAGCTTA
ATGTGCCCTGGTGAAATAAATA 

ADAMT
S10 

Site 
1 

Forward: 
GGGGACACAGACCCGTTTGTAAGCTTACCCCTTGTCGATGGTGTG
CG 
Reverse: 
CGCACACCATCGACAAGGGGTAAGCTTACAAACGGGTCTGTGTCC
CC 

Site 
2 

Forward: 
GCTCGGTCCGGGCCAAGCTTATGACGATGAGAGATGCATTAATCG
GTCC 
Reverse: 
GGACCGATTAATGCATCTCTCATCGTCATAAGCTTGGCCCGGACC
GAGC 

ADAMT
S14 

Site 
1 

Forward: 
GTTTGTCTTTGCTGGCCAGAAGAGTCGACTCATGGCCATACTCTG
GCCTTG 
Reverse: 
CAAGGCCAGAGTATGGCCATGAGTCGACTCTTCTGGCCAGCAAAG
AC 

Site
2 

Forward: 
GGGTGCCAGCCCCTGGCCGTCGACTGGAGTGGGGAAGACAC 
Reverse: 
GTGTCTTCCCCACTCCAGTCGACGGCCAGGGGCTGGCACCC 

Site 
3 

Forward: 
CTAAACTCCTGCCAGGTGATAGAGAGCTCTCTCACTTCTTCCTTCC
CCAAGGC 
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Reverse: 
GCCTTGGGGAAGGAAGAAGTGAGAGAGCTCTCTATCACCTGGCA
GGAGTTTAG 

Site 
4 

Forward: 
CTAAACTCCTGCCAGGTGATAGAGAGCTCTCTCACTTCTTCCTTCC
CCAAGGC 
Reverse: 
GCCTTGGGGAAGGAAGAAGTGAGAGAGCTCTCTATCACCTGGCA
GGAGTTTAG 

ADAMT
S17 

Site 
1 

Forward: 
GCAATTACCGTTTCTTATGTCACAGTCGACTGAAGAGAGGCCCTT
CTGTTTCCC 
Reverse: 
GGGAAACAGAAGGGCCTCTCTTCAGTCGACTGTGACATAAGAAA
CGGTAATTGC 

Site
2 

Forward: 
CACCAACTTGGTGGGCATTTCATGTCGACTTATGTTCTAGGACTTT
ACCGTA 
Reverse: 
TACGGTAAAGTCCTAGAACATAAGTCGACATGAAATGCCCACCA
AGTTGGTG 

 

Site 
3 

Forward: 
TAACAAAACAAAACACAGAAACACAGTCGACATAAATCAAGAAG
CACAGGGAGATGATCCCATGG 
Reverse: 
CCATGGGATCATCTCCCTGTGCTTCTTGATTTATGTCGACTGTGTT
TCTGTGTTTTGTTTTGTTA 

Site 
4 

Forward: 
GAAGTGTTGAGAAACTTCCGTGTCGACTCTGTGGAAAGAACCGAG
GGT 
Reverse: 
ACCCTCGGTTCTTTCCACAGAGTCGACACGGAAGTTTCTCAACAC
TTC 

Site
5 

Forward: 
CCAGAGTCTCACGACCCTACGGTCGCCTTTTTATTGGTGCAAAATT
AAACC 
Reverse: 
GGTTTAATTTTGCACCAATAAAAAGGCGACCGTAGGGTCGTGAGA
CTCTGG 

ADAMT
S 

Site 
1 

Forward: 
ATCAAATTAATTTATTTTTTTGCCTGCCAAACATCCAATGGTCGAC
TTGTTTTGGTTACACAAACATTTTGATTTATACTATATG 
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19 Reverse: 
CATATAGTATAAATCAAAATGTTTGTGTAACCAAAACAAGTCGAC
CATTGGATGTTTGGCAGGCAAAAAAATAAATTAATTTGAT 

Site 
2 

Forward: 
GTTGTTTGTTAGGGCTATCTCTAAGTCGACCCTCTCTCCCCACCAA
TAACATTGAATTATC 
Reverse: 
ATAATTCAATGTTATTGGTGGGGAGAGAGGGTCGACTTAGAGATA
GCCCTAACAAACAACG 

FZD3  

Forward: 
GGATTTAGTCTAACTCACAGCTAAGGTAGAAAAGTACTCTGATGG
CAAGAGAATGTCCAGACTAATATTTTC 
Reverse: 
GAAAATATTAGTCTGGACATTCTCTTGCCATCAGAGTACTTTTCTA
CCTTAGCTGTGAGTTAGACTAAATCC 

FZD5 

Site 
1 

Forward: CGGCGTCGCGGCCCAAGCTTGGGAGGCGGTCGCAG 
Reverse: CTGCGACCGCCTCCCAAGCTTGGGCCGCGACGCCG 

Site
2 

Forward: 
GTGGACGTGGAGATGAAGCACAAGCTTGACCACAGGCCTATCCA
GAAGG 
Reverse: 
CCTTCTGGATAGGCCTGTGGTCAAGCTTGTGCTTCATCTCCACGTC
CAC 

Site 
3 

Forward: 
GCCCACCAGCAGGTAGAAGCTTAGCGGGCCCAGCACGAAGCC 
Reverse: 
GGCTTCGTGCTGGGCCCGCTAAGCTTCTACCTGCTGGTGGGC 

Site 
4 

Forward: 
CACATGAAGTACTTGAGCATGAAGCTTCAGTACTCGGGCTTGGCG
CGCG 
Reverse: 
CGCGCGCCAAGCCCGAGTACTGAAGCTTCATGCTCAAGTACTTCA
TGTG 

Site 
5 

Forward: 
CGGGAGGGGGCAACAAGCTTATGAAGGTAAACGGAAGTGACCTT
GGCA 
Reverse: 
TGCCAAGGTCACTTCCGTTTACCTTCATAAGCTTGTTGCCCCCTCC
CG 

FRAT2 
Site
1 

Forward: 
GCGTGGAGAAATGTATGCGCCAGAAGCTTTCCGTGGGGCATGAG
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AATTTCC 
Reverse: 
GGAAATTCTCATGCCCCACGGAAAGCTTCTGGCGCATACATTTCT
CCACGC 

Site
2 

Forward: 
CTTATTTTCTGGTGGAGGAGCTTAGTAAGTAAGCTTACAATTGCT
GTGCAAAGAAATTCCAGAGG-3' 
Reverse: 
CCTCTGGAATTTCTTTGCACAGCAATTGTAAGCTTACTTACTAAGC
TCCTCCACCAGAAAATAAG 

Site
3 

Forward: 
GGGAGACTCCAAGCGGTGGTAAAAGCTTAACAGGGCTCTTCTTGG
AGCAAG 
Reverse: 
CTTGCTCCAAGAAGAGCCCTGTTAAGCTTTTACCACCGCTTGGAG
TCTCCC 

CK2A2 

Site
1 

Forward: 
AGAGGAATATACAAGGGGCTTGGGGAAGAAAATAAGCTTCCCGG
AGCAAGTGTTG 
Reverse: 
CAACACTTGCTCCGGGAAGCTTATTTTCTTCCCCAAGCCCCTTGTA
TATTCCTCT 

Site
2 

Forward: 
TCTCCTCTAATCTATCAGTCTGAGAAGCTTTTCCTCTCTGCAAGGG
AACACATTTGC 
Reverse: 
GCAAATGTGTTCCCTTGCAGAGAGGAAAAGCTTCTCAGACTGATA
GATTAGAGGAGA 

Site
3 

Forward: 
GCGCCTGACTCGAGAAGCTTACCTTTCAGTCCACTGGGACCAATC
CA 
Reverse: 
TGGATTGGTCCCAGTGGACTGAAAGGTAAGCTTCTCGAGTCAGGC
GC 

Site
4 

Forward: 
CTGCTTCCATCCTTATCAACAGAAGCTTTGGGAGAACCTAAGTCA
TTTCCCTGAG 
Reverse: 
TCAGGGAAATGACTTAGGTTCTCCCAAAGCTTCTGTTGATAAGGA
TGGAAGCAG 

DVL3 
Site 
1 

Forward: 
GTGCGCTAACTGCTCGCAGAAGCTTGCGAGGGTGGGGTGCACC 
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Reverse: 
GGTGCACCCCACCCTCGCAAGCTTCTGCGAGCAGTTAGCGCAC 

Site
2 

Forward: 
CCCTTTTGTCTCTGGGACCAGACTTGTTAAGCTTACCCCTTACTCC
CCTCTGC 
Reverse: 
GCAGAGGGGAGTAAGGGGTAAGCTTAACAAGTCTGGTCCCAGAG
ACAAAAGGG 

Site
3 

Forward: 
GCACAGTGCCTGGCACACAGTAGAGTAAAGCTTCAATAAATGGT
AGTCGACC 
Reverse: 
GGTCGACTACCATTTATTGAAGCTTTACTCTACTGTGTGCCAGGCA
CTGTGC 

DICER  
Forward: ACGTGAGCTCGTGTGCAGTAGTGCCAGTCC 
Reverse: ACGTGAGCTCTGCAATCACAGGAACACAGG 

       Table 2: Primers for mutating the binding sites of the miR-29 family 
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Genes Accession number  Primer sequence (5’->3’) Probe  
Arginase-
1 

ENSMUST00000020161 Forward: 
CCTGAAGGAACTGAAAGGAAAG 
Reverse: 
TTGGCAGATATGCAGGGAGT 

2 

IL-6 ENSMUST00000026845 Forward: 
TGATGGATGCTACCAAACTGG 
Reverse: 
TTCATGTACTCCAGGTAGCTATGG 

6 

SAA3 ENAMUST00000006956 Forward: 
GCTCGGGGGAACTATGATG 
Reverse: 
AACTTCTGAACAGCCTCTCTGG 

26 

Axin2 

 

Forward: 
GCTGACGGATGATTCCATGT 
Reverse: 
ACTGCCCACACGATAAGGAG 

56 

SOX9 

ENST00000245479 

Forward: TACCCGCACTTGCACAAC 
Reverse: 
TCTCGCTCTCGTTCAGAAGTC 

61 

FZD3 

NM_017412 

Forward: 
ACAGCAAAGTGAGCAGCTACC 
Reverse: 
CTGTAACTGCAGGGCGTGTA 

75 

FZD5 NM_003468 Forward:ACCCCAGGGGAGAGAAACT  
Reverse: 
TGCAAATTGGGGGAAGTAAG 

83 

DVL3 NM_004423 Forward:CCCTGAGCACCATCACCT  
Reverse: 
GGATGGACAAGTGGAAGTCG 

17 

FRAT2  Forward: 
GTTCAAGGTCACGGTTTGCT 
Reverse: 
GAAAAGACTCCGGGGTGAGT 

14 

CK2A2 NM_001896 Forward: 
CCATGGAGCACCCATACTTC 
Reverse: 
CACAGCATTGTCTGCACAAG 

68 

Table 3: Primer sequence and the Universal Probe Library probe for gene of interest   
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 Genes Accession 
number  

Primer sequence (5’-3’) 

ADAMTS4 MM_005099 Forward: CAAGGTCCCATGTGCAACGT 
Reverse: CATCTGCCACCACCAGTGTCT 
Probe: FAM-CCGAAGAGCCAAGCGCTTTGCTTC-
TAMRA 

ADAMTS6 NM_014273 Forward: GGCTGAATGACACATCCACTGTT 
Reverse: CAAACCGTTCAATGCTCACTGA 
Probe: FAM-AAGCGCTTCCGCCTCTGCAACC-
TAMRA 

ADAMTS10 NM_030957 Forward: AGAGAACGGTGTGGCTAACCA 
Reverse: TCTCTCGCGCTCACACATTC 
Probe: FAM-
CAGTGCTCATCACACGCTATGACATCTGC-TAMRA 

ADAMTS14 AF366351 Forward: CGCTGGATGGGACTGAGTGT 
Reverse: CGCGAACATGACCCAAACTT 
Probe: FAM-CCCGGCAAGTGGTGCTTCAAAGGT-
TAMRA 

ADAMTS17 NM_139057 Forward: GGTCTCAATTTGGCCTTTACCAT 
Reverse: GACCTGCCAGCGGCAAGAT 
Probe: FAM-CCACAACTTGGGCATGAACCACGA-
TAMRA 

ADAMTS19 AJ311904 Forward: GGTGTAAGGCTGGAGAATGTACCA 
Reverse: TGCGCTCTCGACTGCTGAT 
Probe: FAM-CCTCAGCACCTGAACATCTGGCCG-
TAMRA 

MMP3 NM002422 Forward: TTCCGCCTGTCTCAAGATGATAT 
Reverse: AAAGGACAAAGCAGGATCACAGTT 
Probe: FAM-
TCAGTCCCTCTATGGACCTCCCCCTGAC-TAMRA 

Table 4: Primer pairs and probe for gene of interest 
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Genes Primer sequences (5’->3’) 
Pri-miR-29a/b1exon 
1 

Forward: 
TACTGAACTGTCACGGCAGA 
Reverse: 
TGTAGTTAGCGACCTCTGCT 

Pri-miR-
29a/b1Exon4 

Forward: 
TTGCACCCTCACGACATGCT 
Reverse: 
TGACTCTCAGCAGGCCTCA 

Pri-miR-29b2/c 
exon 1 

Forward: 
ACTTCTTTAGGGGTGTGCGTA 
Reverse: 
ACCCATCTCCCTAGCATTCT 

Pri-miR-29b2/c 
Exon6 

Forward: 
TCAGACTTGCCACCTGGACT 
Reverse: 
AGTTGGCATGAGGCTTCGA 

Pre-29a Forward: 
CTGATTTCTTTTGGTGTTCAG 
Reverse: 
AACCGATTTCAGATGGTGC 

Pre-29b1 Forward: 
CATATGGTGGTTTAGATTT 
Reverse: 
AACACTGATTTCAAATGGTG 

Pre-29b2 Forward: 
GCTGGTTTCACATGGTGGC 
Reverse: 
AACACTGATTTCAAATGGTG 

Pre-29c Forward: 
CGATTTCTCCTGGTGTTCA 
Reverse: 
ACCGATTTCAAATGGTGC 

Table 5: Primers for detecting the primary and the premature sequence of the miR-29 family 
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Names 24_DMM_R 24_DMM_L log2 Fold change  
Fold 
change  

CYP2E1 9.0 10.2 -1.2 2.3 
CES3 8.1 9.3 -1.2 2.3 
TMEM45B 7.9 8.6 -0.8 1.7 
CFD 12.9 13.6 -0.7 1.6 
SCD1 10.1 10.7 -0.6 1.6 
IGFBP6 8.9 9.6 -0.6 1.5 
CHAD 12.4 13.0 -0.6 1.5 
LOC100045005 9.6 10.2 -0.6 1.5 
TENS1 8.5 9.1 -0.6 1.5 
C130045I22RIK 8.2 8.8 -0.6 1.5 
LOC667337 9.4 9.9 -0.6 1.5 
CXCL1 9.1 7.3 1.9 3.6 
CCL7 9.2 7.5 1.8 3.4 
SAA3 8.9 7.3 1.6 3.1 
TIMP1 12.0 10.5 1.5 2.9 
SERPINA3N 11.2 9.7 1.5 2.8 
GP38 10.8 9.4 1.4 2.6 
MMP3 8.9 7.6 1.3 2.5 
ARG1 8.0 7.1 0.8 1.8 
CXCL14 9.4 8.8 0.7 1.6 
MB 11.9 11.2 0.7 1.6 
ANGPTL4 9.5 8.9 0.6 1.6 
MT1 13.5 12.9 0.6 1.6 
ANKRD23 9.5 8.9 0.6 1.5 
MS4A6D 9.9 9.3 0.6 1.5 
LOC386330 9.9 9.4 0.5 1.5 
LOC270589 8.9 8.4 0.5 1.5 
CCL9 11.2 10.6 0.5 1.5 
CKM 12.3 11.8 0.5 1.5 
LOC386144 9.6 9.1 0.5 1.4 

Table 6: List genes changed expression at day 1 in DMM model  
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GENES 7_DMM_R 7_DMM_L 
log2 Fold 
change 

Fold 
change  

MYL3 9.8 11.0 -1.2 2.3 

ATP1A2 9.0 10.1 -1.2 2.3 

NDRG2 10.0 11.2 -1.2 2.3 

CKMT2 11.7 12.8 -1.2 2.2 

ANKRD23 10.2 11.4 -1.2 2.2 

2310003M01RIK 9.5 10.6 -1.1 2.2 

ACTN2 11.1 12.2 -1.1 2.2 

2310042D19RIK 9.2 10.3 -1.1 2.2 

MYH2 11.0 12.1 -1.1 2.2 

PFKM 11.5 12.6 -1.1 2.2 

ABRA 8.6 9.7 -1.1 2.1 

COX7A1 11.4 12.5 -1.1 2.1 

ANKRD2 8.0 9.1 -1.1 2.1 

COX8B 11.8 12.8 -1.1 2.1 

MB 12.0 13.1 -1.1 2.1 

ENO3 12.9 14.0 -1.1 2.1 

DUSP26 8.1 9.2 -1.1 2.1 

RTN2 10.0 11.1 -1.0 2.1 

PKIA 10.4 11.5 -1.0 2.1 

TCAP 12.5 13.6 -1.0 2.1 

MYOZ1 10.4 11.5 -1.0 2.0 

MYOM1 9.9 10.9 -1.0 2.0 

ACTN3 11.3 12.3 -1.0 2.0 

2310002L09RIK 8.6 9.6 -1.0 2.0 

HRC 10.3 11.3 -1.0 2.0 

MYOM2 9.1 10.1 -1.0 2.0 

CKM 13.0 14.0 -1.0 2.0 

CSRP3 8.5 9.5 -1.0 2.0 

TMEM38A 9.3 10.3 -1.0 2.0 

1110012N22RIK 9.2 10.2 -1.0 2.0 

TPM2 11.3 12.3 -1.0 2.0 

RYR1 10.1 11.1 -1.0 2.0 

MLF1 9.5 10.5 -1.0 2.0 

TTN 9.7 10.7 -1.0 2.0 

TMOD4 10.7 11.7 -1.0 2.0 

DYSFIP1 8.7 9.7 -1.0 2.0 

NRAP 9.1 10.1 -1.0 2.0 

CMYA5 10.8 11.8 -1.0 2.0 

SMTNL2 8.5 9.5 -1.0 1.9 

MYLK2 9.2 10.2 -1.0 1.9 
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MYL2 9.3 10.3 -0.9 1.9 

LOC669660 8.6 9.6 -0.9 1.9 

KBTBD10 9.8 10.7 -0.9 1.9 

ASB2 10.6 11.5 -0.9 1.9 

A530098C11RIK 8.7 9.6 -0.9 1.9 

F730003H07RIK 9.3 10.3 -0.9 1.9 

ZMYND17 8.5 9.4 -0.9 1.9 

CPT1B 8.3 9.2 -0.9 1.9 

2310079P10RIK 8.5 9.4 -0.9 1.9 

EEF1A2 10.7 11.6 -0.9 1.9 

YIPF7 8.5 9.4 -0.9 1.9 

SCL0003151.1_137
4 8.9 9.8 -0.9 1.9 

INMT 7.6 8.5 -0.9 1.9 

CES3 8.8 9.7 -0.9 1.9 

PYGM 9.2 10.1 -0.9 1.8 

MYBPC2 11.6 12.5 -0.9 1.8 

8030451F13RIK 8.6 9.5 -0.9 1.8 

FABP3 10.6 11.4 -0.9 1.8 

NEURL 9.5 10.4 -0.9 1.8 

PDLIM3 10.4 11.3 -0.9 1.8 

SYPL2 9.6 10.5 -0.9 1.8 

4833419K08RIK 9.0 9.9 -0.9 1.8 

AMPD1 11.1 12.0 -0.8 1.8 

CACNA1S 8.6 9.5 -0.8 1.8 

SCL0002069.1_48 8.1 9.0 -0.8 1.8 

C130073O12RIK 9.0 9.9 -0.8 1.8 

GM1157 7.8 8.6 -0.8 1.8 

MYH1 9.2 10.1 -0.8 1.8 

SLC25A37 11.8 12.6 -0.8 1.8 

LOC638935 8.1 9.0 -0.8 1.8 

LOC386360 10.4 11.2 -0.8 1.8 

BC030476 9.0 9.8 -0.8 1.8 

MYH4 10.0 10.8 -0.8 1.7 

SCL000959.1_2 13.3 14.1 -0.8 1.7 

RPL3L 12.2 13.0 -0.8 1.7 

COX6A2 12.7 13.5 -0.8 1.7 

MTDNA_ND4L 8.7 9.5 -0.8 1.7 

TNNT3 13.1 13.9 -0.8 1.7 

AK1 9.8 10.6 -0.8 1.7 

DES 11.1 11.9 -0.8 1.7 

A2BP1 8.4 9.2 -0.8 1.7 

KY 9.1 9.8 -0.8 1.7 
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UNC45B 8.4 9.2 -0.8 1.7 

AI595366 8.7 9.4 -0.8 1.7 

D830037I21RIK 7.3 8.1 -0.8 1.7 

PGM2 12.0 12.8 -0.8 1.7 

4933421G18RIK 9.7 10.4 -0.8 1.7 

MYF6 8.3 9.0 -0.8 1.7 

SCN4B 8.3 9.1 -0.8 1.7 

ALPK3 8.5 9.3 -0.8 1.7 

PGAM2 12.3 13.1 -0.8 1.7 

ITGA2B 8.9 9.7 -0.8 1.7 

CRYAB 9.8 10.6 -0.7 1.7 

LOC386144 9.1 9.8 -0.7 1.7 

LOC100047934 10.8 11.6 -0.7 1.7 

SRL 9.3 10.0 -0.7 1.7 

PHKG1 8.8 9.5 -0.7 1.7 

ATP1B1 9.5 10.2 -0.7 1.7 

HSPB7 8.2 8.9 -0.7 1.7 

TNNC1 8.3 9.0 -0.7 1.6 

CHCHD10 12.4 13.1 -0.7 1.6 

GMPR 9.0 9.7 -0.7 1.6 

S3-12 9.3 10.0 -0.7 1.6 

9930004G02RIK 9.4 10.1 -0.7 1.6 

TCEA3 10.3 11.0 -0.7 1.6 

PPP1R3C 10.7 11.4 -0.7 1.6 

TRIM54 9.0 9.7 -0.7 1.6 

FBP2 8.3 9.0 -0.7 1.6 

COQ10A 8.8 9.5 -0.7 1.6 

TXLNB 7.8 8.5 -0.7 1.6 

XIRP2 8.4 9.1 -0.7 1.6 

FSD2 8.6 9.3 -0.7 1.6 

PDE4DIP 9.9 10.6 -0.7 1.6 

NDUFC1 10.9 11.6 -0.7 1.6 

MSCP 11.9 12.6 -0.7 1.6 

EG433229 9.2 9.9 -0.7 1.6 

SMARCD3 8.2 8.9 -0.7 1.6 

SCL0003073.1_164 8.2 8.8 -0.7 1.6 

HHATL 8.6 9.3 -0.7 1.6 

DNAJC7 8.9 9.6 -0.7 1.6 

USP13 7.9 8.6 -0.7 1.6 

ADSSL1 11.5 12.2 -0.7 1.6 

ACADM 11.2 11.9 -0.7 1.6 

MT-ATP6 11.3 12.0 -0.7 1.6 

6430573H23RIK 8.2 8.9 -0.7 1.6 

TUBA8 8.6 9.3 -0.7 1.6 
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DEDD2 9.8 10.4 -0.7 1.6 

LOC100041835 12.3 12.9 -0.7 1.6 

1300013J15RIK 7.9 8.6 -0.7 1.6 

MACROD1 9.1 9.8 -0.7 1.6 

ALDOA 13.2 13.9 -0.7 1.6 

LOC667034 8.5 9.2 -0.7 1.6 

MDH2 10.0 10.6 -0.7 1.6 

PDK4 9.3 10.0 -0.7 1.6 

ART5 7.7 8.4 -0.7 1.6 

JSRP1 7.9 8.6 -0.7 1.6 

PPM1L 8.4 9.0 -0.7 1.6 

MFN2 10.1 10.8 -0.7 1.6 

RILPL1 8.8 9.4 -0.6 1.6 

EHBP1L1 8.8 9.4 -0.6 1.6 

NDUFA5 10.3 10.9 -0.6 1.6 

MTDNA_ND2 11.5 12.2 -0.6 1.6 

MTDNA_ND5 11.5 12.2 -0.6 1.6 

TRIM72 9.7 10.4 -0.6 1.6 

B930008G03RIK 10.0 10.7 -0.6 1.6 

2310040G24RIK 7.9 8.5 -0.6 1.6 

ALAD 12.0 12.7 -0.6 1.6 

SGCA 8.4 9.0 -0.6 1.5 

LOC385959 8.3 8.9 -0.6 1.5 

LOC547380 8.3 8.9 -0.6 1.5 

NDUFS7 11.8 12.4 -0.6 1.5 

1300017J02RIK 8.9 9.5 -0.6 1.5 

LOC381792 7.7 8.3 -0.6 1.5 

FLNC 8.5 9.1 -0.6 1.5 

DHRS7C 8.1 8.7 -0.6 1.5 

ART1 8.0 8.6 -0.6 1.5 

EG245190 8.8 9.5 -0.6 1.5 

A530020A01RIK 7.9 8.5 -0.6 1.5 

PRKAA2 7.8 8.4 -0.6 1.5 

VLDLR 8.7 9.3 -0.6 1.5 

1110002E22RIK 8.1 8.7 -0.6 1.5 

NDUFB9 7.8 8.4 -0.6 1.5 

MYO18B 8.1 8.7 -0.6 1.5 

ITGB1BP3 8.3 8.9 -0.6 1.5 

PHLDA3 9.4 10.0 -0.6 1.5 

GPT2 8.5 9.1 -0.6 1.5 

LOC386256 7.9 8.5 -0.6 1.5 

TSC22D3 9.4 10.0 -0.6 1.5 

NDUFA4 12.4 13.0 -0.6 1.5 
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4CYTL1 9.4 10.0 -0.6 1.5 

PTP4A3 9.0 9.6 -0.6 1.5 

FBXO32 7.9 8.5 -0.6 1.5 

CNKSR1 7.7 8.3 -0.6 1.5 

ZXDA 9.0 9.6 -0.6 1.5 

LOC100044934 8.4 9.0 -0.6 1.5 

KBTBD5 7.8 8.4 -0.6 1.5 

SRR 11.0 11.6 -0.6 1.5 

CACNG1 8.1 8.7 -0.6 1.5 

SCL0002124.1_39 7.7 8.3 -0.6 1.5 

DEB1 11.0 11.6 -0.6 1.5 

LMOD3 7.9 8.5 -0.6 1.5 

9830134C10RIK 8.2 8.8 -0.6 1.5 

TYKI 9.3 9.9 -0.6 1.5 

UFSP1 8.6 9.2 -0.6 1.5 

SMPX 7.7 8.2 -0.6 1.5 

LOC100047214 9.1 9.7 -0.6 1.5 

VGLL2 7.6 8.2 -0.6 1.5 

CAR3 10.3 10.9 -0.6 1.5 

SLC25A12 9.1 9.7 -0.6 1.5 

EG622339 13.4 14.0 -0.6 1.5 

CIB2 9.4 9.9 -0.6 1.5 

A630006E02RIK 9.5 10.1 -0.6 1.5 

UGP2 9.4 10.0 -0.6 1.5 

4933428A15RIK 8.6 9.2 -0.6 1.5 

CHKA 9.4 10.0 -0.6 1.5 

SNTA1 8.5 9.0 -0.6 1.5 

SLC6A9 9.3 9.9 -0.6 1.5 

2410076I21RIK 8.4 8.9 -0.6 1.5 

TPI1 12.1 12.6 -0.6 1.5 

SMTNL1 7.9 8.4 -0.6 1.5 

TMOD1 8.7 9.3 -0.6 1.5 

TSPAN8 8.5 9.1 -0.6 1.5 

MTDNA_COXII 12.8 13.4 -0.6 1.5 

NDUFS2 8.7 9.3 -0.6 1.5 

SLC2A4 8.1 8.7 -0.6 1.5 

MYOT 7.8 8.4 -0.6 1.5 

A230005G17RIK 8.3 8.9 -0.6 1.5 

TNNT1 8.9 9.4 -0.6 1.5 

FHL1 11.6 12.1 -0.6 1.5 

SPNB1 9.5 10.0 -0.6 1.5 

5830496L11RIK 9.1 9.6 -0.6 1.5 

ENSMUSG0000005
4212 9.5 10.1 -0.6 1.5 
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5430434G16RIK 8.9 9.4 -0.6 1.5 

IDH3A 8.9 9.4 -0.6 1.5 

SLC38A5 11.1 11.7 -0.6 1.5 

LDB3 8.1 8.6 -0.6 1.5 

E430039I23RIK 11.1 11.6 -0.6 1.5 

KEL 10.5 11.0 -0.6 1.5 

2310039E09RIK 8.2 8.7 -0.6 1.5 

D530007E13RIK 8.9 9.4 -0.6 1.5 

1110018J23RIK 7.9 8.5 -0.6 1.5 

TMEM45B 8.2 8.7 -0.6 1.5 

BC022224 10.2 10.7 -0.6 1.5 

RBM38 9.9 10.5 -0.6 1.5 

2810484G07RIK 10.9 11.5 -0.5 1.5 

ACO2 10.8 11.4 -0.5 1.5 

1700021F05RIK 10.3 10.8 -0.5 1.5 

VEGFB 9.8 10.4 -0.5 1.5 

STXBP3 8.2 8.7 -0.5 1.5 

AGL 9.3 9.8 -0.5 1.5 

TAL1 9.3 9.8 -0.5 1.5 

MYOZ2 7.7 8.2 -0.5 1.5 

NCTC1 7.8 8.3 -0.5 1.5 

ABCA7 9.4 10.0 -0.5 1.5 

SAR1B 10.3 10.9 -0.5 1.5 

3632431M01RIK 8.6 9.1 -0.5 1.5 

FCHO1 10.0 10.5 -0.5 1.5 

P2RY1 8.8 9.3 -0.5 1.5 

B230387C07RIK 9.1 9.7 -0.5 1.5 

TRIM63 7.5 8.0 -0.5 1.5 

1810020D17RIK 9.5 10.0 -0.5 1.4 

FYCO1 8.1 8.6 -0.5 1.4 

RABGEF1 10.3 10.8 -0.5 1.4 

ITGB1BP2 8.2 8.8 -0.5 1.4 

IFT140 9.1 9.6 -0.5 1.4 

SAMD11 8.2 8.7 -0.5 1.4 

ABCB10 8.2 8.8 -0.5 1.4 

LOC100046690 9.0 9.5 -0.5 1.4 

PFN2 8.9 9.5 -0.5 1.4 

C1QTNF3 11.0 7.5 3.5 11.3 

LRRC15 10.6 8.4 2.2 4.7 

ANGPTL1 9.7 7.6 2.1 4.4 

MFAP5 10.2 8.1 2.1 4.4 

THBS2 11.8 9.7 2.1 4.3 

FSTL1 11.1 9.0 2.0 4.1 
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COL6A2 10.4 8.4 2.0 4.1 

MMP2 13.7 11.7 2.0 3.9 

COL6A1 12.4 10.4 2.0 3.9 

CAPN6 9.7 7.7 2.0 3.9 

COL3A1 9.8 7.9 1.9 3.8 

MMP3 9.3 7.4 1.9 3.8 

TIMP1 11.8 9.9 1.9 3.8 

COL5A1 12.6 10.7 1.9 3.7 

CTHRC1 9.5 7.6 1.9 3.7 

AEBP1 10.9 9.1 1.9 3.6 

COL18A1 9.8 8.0 1.8 3.5 

DKK3 10.2 8.5 1.7 3.4 

COL14A1 9.3 7.6 1.7 3.3 

E430002G05RIK 9.9 8.1 1.7 3.3 

PCOLCE 10.9 9.2 1.7 3.3 

LUM 12.2 10.5 1.7 3.3 

DPT 10.3 8.6 1.7 3.2 

MMP14 11.9 10.2 1.7 3.2 

GP38 11.0 9.3 1.7 3.2 

FCRLS 9.9 8.2 1.6 3.1 

MFAP4 9.2 7.6 1.6 3.1 

CSRP2 11.0 9.4 1.6 3.1 

LOX 11.4 9.8 1.6 3.1 

SPON2 11.2 9.6 1.6 3.0 

ITM2A 9.8 8.2 1.6 3.0 

LY6A 12.8 11.3 1.6 3.0 

DDAH1 9.3 7.7 1.6 3.0 

MUP2 9.7 8.2 1.6 3.0 

GPNMB 9.5 8.0 1.6 3.0 

CD248 9.9 8.3 1.5 2.9 

ANTXR1 9.9 8.3 1.5 2.9 

6330406I15RIK 9.7 8.1 1.5 2.9 

LOXL1 10.8 9.2 1.5 2.9 

MUP1 9.2 7.7 1.5 2.9 

NBL1 10.3 8.8 1.5 2.9 

MFAP2 9.2 7.7 1.5 2.8 

CCL21A 10.6 9.1 1.5 2.8 

FN1 10.4 8.9 1.5 2.8 

MEST 8.8 7.3 1.5 2.8 

MRGPRF 9.5 8.0 1.5 2.8 

CCL21C 10.0 8.5 1.5 2.8 

SAA3 8.7 7.2 1.5 2.8 

LOC100048554 9.2 7.7 1.5 2.8 

THY1 10.0 8.5 1.5 2.7 
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HTRA1 10.5 9.1 1.5 2.7 

OSR2 9.3 7.8 1.5 2.7 

LOC100041504 9.9 8.4 1.4 2.7 

GPX7 9.8 8.4 1.4 2.7 

KDELR3 10.4 8.9 1.4 2.7 

H19 11.4 10.0 1.4 2.7 

PDLIM4 10.3 8.9 1.4 2.6 

C1QTNF2 9.3 7.9 1.4 2.6 

COL6A3 11.3 9.9 1.4 2.6 

FBLN2 9.4 8.0 1.4 2.6 

MXRA8 10.5 9.1 1.4 2.6 

SCL0001849.1_227
3 9.0 7.6 1.4 2.6 

VKORC1 11.1 9.7 1.3 2.5 

PPIC 12.3 11.0 1.3 2.5 

ITGBL1 9.6 8.3 1.3 2.5 

EMP1 12.7 11.4 1.3 2.5 

KNSL5 11.8 10.5 1.3 2.5 

SERPINH1 12.8 11.5 1.3 2.5 

2310016C16RIK 10.3 9.0 1.3 2.5 

WISP2 10.4 9.1 1.3 2.5 

MAGED1 11.6 10.3 1.3 2.5 

COL16A1 11.6 10.3 1.3 2.5 

LEPREL2 9.2 7.9 1.3 2.4 

GPX8 10.7 9.4 1.3 2.4 

BGN 14.3 13.0 1.3 2.4 

SRPX2 10.2 8.9 1.3 2.4 

ITGA11 9.9 8.6 1.3 2.4 

CCDC80 11.0 9.7 1.3 2.4 

CLEC11A 10.4 9.2 1.3 2.4 

SMOC1 9.7 8.5 1.2 2.4 

OGN 10.3 9.0 1.2 2.4 

CRTAP 10.1 8.9 1.2 2.4 

VIM 11.1 9.8 1.2 2.3 

COL4A2 11.3 10.0 1.2 2.3 

FKBP11 10.0 8.7 1.2 2.3 

CD276 9.3 8.1 1.2 2.3 

PRKCDBP 10.1 8.9 1.2 2.3 

CCL7 8.4 7.2 1.2 2.3 

NFATC4 9.4 8.1 1.2 2.3 

ECM1 10.8 9.6 1.2 2.3 

COL15A1 9.4 8.2 1.2 2.3 

2610027C15RIK 10.0 8.8 1.2 2.3 
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PRELP 13.1 11.9 1.2 2.3 

TIMP2 12.6 11.4 1.2 2.3 

GRB10 9.4 8.2 1.2 2.3 

FBN1 9.6 8.4 1.2 2.3 

COPZ2 10.0 8.8 1.2 2.3 

SCARF2 12.0 10.8 1.2 2.3 

ENPP1 9.6 8.4 1.2 2.3 

COL4A1 11.7 10.5 1.2 2.3 

IGF1 9.6 8.4 1.2 2.2 

SULF2 9.2 8.0 1.2 2.2 

SERPINA3N 10.2 9.0 1.2 2.2 

FKBP9 11.1 9.9 1.2 2.2 

RNASE4 9.8 8.6 1.2 2.2 

COMP 12.8 11.6 1.2 2.2 

MS4A6D 9.8 8.6 1.2 2.2 

CPXM1 9.3 8.2 1.1 2.2 

DAB2 9.7 8.5 1.1 2.2 

EFEMP2 10.0 8.9 1.1 2.2 

LOC100047053 8.4 7.3 1.1 2.2 

COL8A1 9.5 8.4 1.1 2.2 

SERPING1 11.9 10.7 1.1 2.2 

ANGPTL4 10.2 9.1 1.1 2.2 

THBS3 8.7 7.6 1.1 2.1 

HSPG2 10.5 9.4 1.1 2.1 

PTN 8.9 7.8 1.1 2.1 

GM22 9.3 8.2 1.1 2.1 

NNMT 9.6 8.6 1.1 2.1 

LGMN 10.9 9.8 1.1 2.1 

4930533K18RIK 9.8 8.7 1.1 2.1 

VASN 10.9 9.8 1.1 2.1 

ELN 8.5 7.5 1.1 2.1 

FMOD 10.2 9.1 1.1 2.1 

LOC100046883 10.8 9.8 1.1 2.1 

CLEC4N 8.6 7.6 1.1 2.1 

NDN 10.0 8.9 1.1 2.1 

ACAN 9.7 8.6 1.1 2.1 

OLFML1 8.8 7.8 1.1 2.1 

C1QTNF1 8.7 7.6 1.1 2.1 

SOCS3 9.3 8.3 1.0 2.1 

1500015O10RIK 11.9 10.8 1.0 2.0 

FKBP10 9.7 8.7 1.0 2.0 

TREM2 9.4 8.4 1.0 2.0 

MGP 13.5 12.5 1.0 2.0 

COL10A1 10.7 9.6 1.0 2.0 
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ADAMTS12 8.7 7.7 1.0 2.0 

CRLF1 8.5 7.5 1.0 2.0 

HTRA3 9.6 8.6 1.0 2.0 

P4HA2 9.0 8.0 1.0 2.0 

FSCN1 9.0 8.1 1.0 2.0 

NUPR1 12.0 11.0 1.0 2.0 

SCARA3 11.9 10.9 1.0 2.0 

SYNPO 10.1 9.1 1.0 2.0 

NID2 8.8 7.8 1.0 2.0 

TSPAN6 8.9 7.9 1.0 2.0 

LGALS1 12.5 11.5 1.0 2.0 

IGFBP7 10.5 9.5 1.0 2.0 

TMEM119 9.7 8.7 1.0 2.0 

COL2A1 13.6 12.6 1.0 2.0 

MS4A7 8.8 7.8 1.0 2.0 

ANXA5 12.4 11.4 1.0 2.0 

RAMP2 10.0 9.1 1.0 2.0 

MMP23 9.5 8.5 1.0 1.9 

SLC1A4 8.5 7.6 1.0 1.9 

LOC100047856 9.1 8.2 1.0 1.9 

AHNAK2 9.1 8.2 1.0 1.9 

CDKN1C 11.0 10.0 1.0 1.9 

APOE 11.0 10.0 1.0 1.9 

SPARC 13.1 12.1 1.0 1.9 

BC020108 8.5 7.5 0.9 1.9 

C1QB 11.5 10.5 0.9 1.9 

FNDC3B 10.2 9.3 0.9 1.9 

IGSF10 8.8 7.9 0.9 1.9 

COL12A1 9.1 8.2 0.9 1.9 

9030024J15RIK 9.7 8.7 0.9 1.9 

1110036O03RIK 8.9 8.0 0.9 1.9 

LRIG3 9.4 8.5 0.9 1.9 

FAM129B 10.2 9.3 0.9 1.9 

EDNRA 9.5 8.5 0.9 1.9 

IL33 8.3 7.4 0.9 1.9 

IGFBP6 10.0 9.0 0.9 1.9 

LGALS3BP 10.8 9.9 0.9 1.9 

OLFML3 11.5 10.6 0.9 1.9 

COL1A2 11.1 10.2 0.9 1.9 

GPR176 8.4 7.5 0.9 1.9 

CERCAM 9.9 9.0 0.9 1.9 

CNRIP1 9.7 8.8 0.9 1.9 

GALNTL1 8.5 7.7 0.9 1.9 
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KERA 8.2 7.3 0.9 1.9 

PRG4 12.7 11.8 0.9 1.9 

IGKV3-
2_X16954_IG_KAP
PA_VARIABLE_3-
2_18 9.0 8.1 0.9 1.9 

LOC676136 9.5 8.6 0.9 1.9 

ABI3BP 8.6 7.7 0.9 1.9 

PKD2 8.9 8.0 0.9 1.8 

COL1A1 13.2 12.3 0.9 1.8 

SCX 8.6 7.7 0.9 1.8 

IGF2 10.3 9.4 0.9 1.8 

SFRP1 8.3 7.4 0.9 1.8 

KCTD17 9.1 8.2 0.9 1.8 

IGFBP4 12.0 11.2 0.9 1.8 

MFGE8 12.3 11.5 0.9 1.8 

EFS 9.2 8.4 0.9 1.8 

BC064033 8.4 7.6 0.9 1.8 

LOC243431 9.8 9.0 0.9 1.8 

MAGED2 11.1 10.2 0.9 1.8 

DPYSL3 9.3 8.4 0.9 1.8 

ANPEP 8.4 7.6 0.9 1.8 

A430110N23RIK 8.2 7.4 0.9 1.8 

CXCL1 8.1 7.2 0.8 1.8 

LTBP3 9.0 8.2 0.8 1.8 

LRRC17 8.3 7.4 0.8 1.8 

LOC100047583 9.3 8.5 0.8 1.8 

UTS2R 8.3 7.4 0.8 1.8 

TNN 8.3 7.5 0.8 1.8 

CALU 10.0 9.2 0.8 1.8 

BMP1 9.9 9.1 0.8 1.8 

SCARA5 9.7 8.9 0.8 1.8 

TXNDC5 10.7 9.9 0.8 1.8 

SDC2 10.4 9.6 0.8 1.8 

IFITM2 12.1 11.3 0.8 1.8 

PRDX4 11.0 10.1 0.8 1.8 

DLK1 8.2 7.3 0.8 1.8 

0610007N19RIK 9.4 8.6 0.8 1.8 

TPST1 9.9 9.0 0.8 1.8 

NT5DC2 9.1 8.3 0.8 1.8 

SULF1 8.9 8.1 0.8 1.8 

HTRA4 9.0 8.2 0.8 1.8 

AKR1B8 8.3 7.4 0.8 1.8 

SRPX 8.8 8.0 0.8 1.8 



 

 

265 

 

MARCKS 11.2 10.4 0.8 1.8 

PARVA 9.6 8.8 0.8 1.7 

TGFB3 8.8 8.0 0.8 1.7 

LOC232060 8.7 7.9 0.8 1.7 

WISP1 9.5 8.7 0.8 1.7 

LXN 10.0 9.2 0.8 1.7 

D14ERTD449E 9.2 8.5 0.8 1.7 

MDK 8.6 7.8 0.8 1.7 

TGFBI 11.3 10.5 0.8 1.7 

SH3PXD2B 9.4 8.6 0.8 1.7 

EMP2 9.0 8.2 0.8 1.7 

IGHG 9.7 9.0 0.8 1.7 

RIN2 9.1 8.3 0.8 1.7 

1700023M03RIK 9.9 9.2 0.8 1.7 

WBP5 10.9 10.1 0.8 1.7 

CD68 10.3 9.5 0.8 1.7 

1200009O22RIK 8.6 7.8 0.8 1.7 

IL1RL1 8.1 7.3 0.8 1.7 

ADAMTS2 11.0 10.2 0.8 1.7 

A730054J21RIK 8.3 7.5 0.8 1.7 

4732462B05RIK 10.0 9.3 0.8 1.7 

LBP 9.9 9.1 0.8 1.7 

IL13RA1 8.7 7.9 0.8 1.7 

FER1L3 8.4 7.6 0.8 1.7 

C4A 10.0 9.2 0.8 1.7 

SOX9 9.8 9.0 0.8 1.7 

1810055G02RIK 10.2 9.4 0.8 1.7 

PANX3 10.7 10.0 0.8 1.7 

FKBP14 8.5 7.7 0.8 1.7 

SERPINF1 12.8 12.1 0.8 1.7 

TUBB6 9.9 9.2 0.8 1.7 

C1QC 10.8 10.0 0.8 1.7 

OLFML2B 11.5 10.7 0.8 1.7 

TCEAL8 9.9 9.2 0.8 1.7 

PDGFRA 9.4 8.6 0.8 1.7 

NOX4 8.3 7.5 0.8 1.7 

SFRP2 8.1 7.3 0.7 1.7 

6720469N11RIK 10.1 9.3 0.7 1.7 

LOC380799 8.7 8.0 0.7 1.7 

CSTB 12.6 11.8 0.7 1.7 

CYB561 8.7 8.0 0.7 1.7 

LHFPL2 9.7 9.0 0.7 1.7 

LOC98434 10.3 9.5 0.7 1.7 
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CD14 8.5 7.7 0.7 1.7 

PMP22 9.4 8.7 0.7 1.7 

RBP1 8.6 7.8 0.7 1.7 

2310008M10RIK 11.4 10.6 0.7 1.7 

MT1 13.4 12.7 0.7 1.7 

EXT1 9.9 9.2 0.7 1.7 

LIMA1 9.0 8.3 0.7 1.7 

MATN4 8.3 7.5 0.7 1.7 

EDG5 9.3 8.6 0.7 1.7 

SPSB1 8.7 8.0 0.7 1.7 

ARMCX2 9.4 8.7 0.7 1.7 

SVEP1 8.3 7.6 0.7 1.7 

HMGN3 10.5 9.8 0.7 1.6 

GPR23 8.7 8.0 0.7 1.6 

FOLR2 8.6 7.8 0.7 1.6 

UBE2E2 9.3 8.6 0.7 1.6 

RHOJ 9.4 8.7 0.7 1.6 

PROS1 9.9 9.2 0.7 1.6 

STAB1 9.6 8.9 0.7 1.6 

LOC637227 9.6 8.8 0.7 1.6 

MYADM 10.8 10.1 0.7 1.6 

ANXA8 8.4 7.7 0.7 1.6 

PLOD1 8.3 7.6 0.7 1.6 

MEOX2 8.9 8.2 0.7 1.6 

LOC381629 10.7 10.0 0.7 1.6 

LOC384413 9.4 8.7 0.7 1.6 

TAX1BP3 10.5 9.8 0.7 1.6 

6330404C01RIK 9.3 8.6 0.7 1.6 

FRMD6 9.8 9.1 0.7 1.6 

COL9A2 10.6 9.9 0.7 1.6 

NT5E 9.0 8.3 0.7 1.6 

MYO1E 9.0 8.3 0.7 1.6 

LMAN1 9.5 8.8 0.7 1.6 

GRN 12.1 11.4 0.7 1.6 

LOC669053 9.3 8.6 0.7 1.6 

CUL7 9.5 8.8 0.7 1.6 

P4HB 13.1 12.4 0.7 1.6 

TWSG1 10.1 9.4 0.7 1.6 

D4BWG0951E 8.3 7.7 0.7 1.6 

BICC1 9.6 8.9 0.7 1.6 

WTIP 9.3 8.6 0.7 1.6 

IL11RA1 11.3 10.7 0.7 1.6 

LOC636944 9.9 9.3 0.7 1.6 

PLVAP 10.2 9.5 0.7 1.6 
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EGFR 8.5 7.8 0.7 1.6 

RFTN2 8.6 8.0 0.7 1.6 

TMED3 9.9 9.2 0.7 1.6 

TUBB2B 8.7 8.1 0.7 1.6 

C130021I20 7.9 7.3 0.7 1.6 

CXCL16 8.2 7.5 0.7 1.6 

CDON 8.2 7.6 0.7 1.6 

SDC3 11.1 10.5 0.7 1.6 

5430435G22RIK 8.4 7.8 0.7 1.6 

ADRA2A 8.6 7.9 0.7 1.6 

C1QA 9.3 8.7 0.7 1.6 

PRRC1 9.8 9.2 0.7 1.6 

TPBG 8.3 7.7 0.6 1.6 

BOK 8.5 7.8 0.6 1.6 

NID1 8.8 8.1 0.6 1.6 

FXYD6 11.3 10.7 0.6 1.6 

TGFBR2 9.8 9.2 0.6 1.6 

LAMC1 9.2 8.5 0.6 1.6 

ZFP521 8.4 7.7 0.6 1.6 

GPR125 9.4 8.8 0.6 1.6 

COL5A2 8.0 7.4 0.6 1.6 

PAPSS2 9.2 8.6 0.6 1.6 

BDH2 9.5 8.9 0.6 1.6 

MIA1 10.1 9.4 0.6 1.6 

SOCS2 9.9 9.2 0.6 1.6 

GLT8D1 9.4 8.8 0.6 1.6 

PLOD2 8.5 7.9 0.6 1.6 

FSTL 8.0 7.4 0.6 1.6 

IGFBP3 8.1 7.5 0.6 1.5 

2410146L05RIK 8.0 7.3 0.6 1.5 

GSTM2 10.2 9.5 0.6 1.5 

ISLR 8.0 7.4 0.6 1.5 

PPIB 11.3 10.7 0.6 1.5 

PDGFRB 8.6 7.9 0.6 1.5 

DLG5 9.5 8.9 0.6 1.5 

CAV1 10.4 9.8 0.6 1.5 

CCL4 8.2 7.6 0.6 1.5 

TMEM176B 10.1 9.4 0.6 1.5 

RAB34 8.4 7.7 0.6 1.5 

CDKN1A 8.7 8.1 0.6 1.5 

CYB5R3 9.6 9.0 0.6 1.5 

SEPN1 10.2 9.6 0.6 1.5 

LOC630253 8.2 7.6 0.6 1.5 
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PRRX2 8.1 7.5 0.6 1.5 

RHOC 8.4 7.8 0.6 1.5 

PRSS35 8.8 8.2 0.6 1.5 

GPRC5B 8.4 7.8 0.6 1.5 

PDIA5 8.1 7.5 0.6 1.5 

PMEPA1 8.2 7.6 0.6 1.5 

ADAMTS4 7.9 7.3 0.6 1.5 

RRBP1 9.3 8.7 0.6 1.5 

FAM171B 8.4 7.8 0.6 1.5 

SERTAD4 8.1 7.5 0.6 1.5 

CRABP2 7.8 7.2 0.6 1.5 

5430433G21RIK 9.4 8.9 0.6 1.5 

RAB11FIP5 9.3 8.7 0.6 1.5 

4933421H10RIK 8.7 8.1 0.6 1.5 

DCN 12.3 11.7 0.6 1.5 

2610009E16RIK 9.1 8.5 0.6 1.5 

3110079O15RIK 12.8 12.2 0.6 1.5 

VAT1 9.6 9.1 0.6 1.5 

COL8A2 8.2 7.6 0.6 1.5 

LOC100047162 9.9 9.4 0.6 1.5 

HOXC6 9.1 8.5 0.6 1.5 

ZFYVE21 10.3 9.7 0.6 1.5 

BGLAP-RS1 13.8 13.2 0.6 1.5 

9430028L06RIK 7.9 7.3 0.6 1.5 

ACTA2 10.3 9.7 0.6 1.5 

GLT25D1 10.7 10.1 0.6 1.5 

RCN3 8.3 7.7 0.6 1.5 

CLEC3B 8.2 7.6 0.6 1.5 

GMDS 8.8 8.2 0.6 1.5 

BMPER 8.3 7.7 0.6 1.5 

2300002D11RIK 8.0 7.4 0.6 1.5 

PLAT 8.0 7.4 0.6 1.5 

TWIST1 8.4 7.8 0.6 1.5 

6230400G14RIK 8.8 8.2 0.6 1.5 

PLOD3 10.2 9.7 0.6 1.5 

CAPG 10.0 9.5 0.6 1.5 

LOC626583 8.1 7.5 0.6 1.5 

ALG14 8.9 8.4 0.6 1.5 

MMP12 7.8 7.2 0.6 1.5 

TNXB 8.5 7.9 0.6 1.5 

TUBA1A 9.4 8.9 0.6 1.5 

CD81 12.8 12.2 0.6 1.5 

TMEM86A 9.9 9.4 0.6 1.5 

C1QTNF5 7.9 7.3 0.6 1.5 
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ERGIC1 9.4 8.8 0.6 1.5 

5031439A09RIK 8.9 8.4 0.6 1.5 

S100A10 9.2 8.6 0.6 1.5 

CBR2 9.1 8.6 0.6 1.5 

FBLN7 7.8 7.3 0.6 1.5 

B9D1 8.3 7.7 0.6 1.5 

ALG5 9.6 9.1 0.6 1.5 

RRAS 9.9 9.3 0.6 1.5 

CHMP4B 10.4 9.8 0.6 1.5 

GNS 10.9 10.4 0.6 1.5 

H47 10.8 10.3 0.6 1.5 

IFITM5 9.2 8.7 0.6 1.5 

WWTR1 8.8 8.2 0.5 1.5 

CRIP2 11.0 10.4 0.5 1.5 

ANXA2 13.6 13.1 0.5 1.5 

A730017D01RIK 8.5 7.9 0.5 1.5 

PRRX1 8.1 7.6 0.5 1.5 

COL22A1 10.4 9.9 0.5 1.5 

MANBAL 10.3 9.8 0.5 1.5 

POFUT2 8.1 7.6 0.5 1.5 

APLNR 8.3 7.7 0.5 1.5 

FBLIM1 8.7 8.2 0.5 1.5 

LMNA 10.4 9.9 0.5 1.5 

PLCD1 8.7 8.1 0.5 1.5 

RHBDF1 9.9 9.4 0.5 1.5 

LOC100039175 8.8 8.2 0.5 1.5 

EBPL 8.8 8.3 0.5 1.5 

KDELR2 8.5 8.0 0.5 1.5 

FAH 8.9 8.3 0.5 1.5 

PDIA3 11.7 11.1 0.5 1.5 

PLA1A 8.1 7.6 0.5 1.5 

GAS6 11.3 10.8 0.5 1.5 

BC065085 8.3 7.8 0.5 1.5 

D10ERTD610E 8.6 8.1 0.5 1.4 

IFIT3 8.5 8.0 0.5 1.4 

PDGFRL 7.9 7.4 0.5 1.4 

3632451O06RIK 8.0 7.5 0.5 1.4 

TPM4 11.3 10.8 0.5 1.4 

PLP2 10.0 9.5 0.5 1.4 

C4B 8.7 8.1 0.5 1.4 

Table 7: Genes changed expression in DMM model at day 7 
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Figure 1: Hierarchical cluster analysis for DMM models at 1, 3, and 7 days after surgery  
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Figure 2: CCL2, Agrinase, IL-6 and SAA-3 were significantly induced expression in DMM 

model at 1, 3, and 7 days after surgery 

Total RNA was reversed transcribed to cDNA and gene expression was measured by real-
time qRT-PCR in individual samples of DMM left knee (un-operated, open bar), and DMM 
right knee (DMM, close bar). 18S was used as endogenous control. The data show mean +/- 
SEM, n=3. The expression of genes of interest between each group was analysed by unpaired 
two-tailed t test * p<0.05, ** p < 0.01, *** p<0.001. 
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Figure 3:  Gene expression in hip avulsion injury model 

The femoral caps of C57Bl/6 mice aged 4 weeks were avulsed and put in culture. At each of 
3, 6, 12, 48 hour time points, the femoral caps were harvested. Total RNA was isolated using 
Trizol and reverse transcribed to cDNA.  Gene expression was measured by real-time qRT-
PCR where 18S was used as an endogenous control. Assays were repeated 3 times. At least 
triplicate samples were measured at each time. Means ± standard errors are presented. 
Difference in expression between each time point against control (t=0) was calculated by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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Figure 4: The expression of the miR-29 family in ATDC5 model  

The embryonic carcinoma cell line ATDC5 was stimulated to from chondrocytes using 
insulin for 42 days. Total RNA was isolated, reverse transcribed to cDNA and used for 
miRNA microarray.  
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Figure 5: Expression of the miR-29 family was not controlled by Wnt3a  
 SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were serum starved for 24 hours before treating with Wnt3a or vehicle 
(0.5% (w/v) BSA) across 24 hour course.   

Relative expression of the precursor miR-29a and axin2 was measured by quantitative RT-
PCR. 18S rRNA was the endogenous control for measuring the precursor transcripts. Open 
bar, control; close bar, WNT3a. (A) Expression level of axin2. (B) Expression level of 
precursor miR-29a. Means ± standard errors are presented. The difference between the 
treatment and the control was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, n=3. 
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Figure 6: Wnt3a does not control the expression from the primary miR-29a/b1 promoter  

The pri-miR-29a/b1 promoter-reporter (100ng) or the empty vector pGL4 (control, 100ng) 
were transfected into SW1353 cells. After transfection, cells were serum starved for 24 hours, 
followed by stimulating for another 6 hours with WNT3a (100ng/ml), or vehicle (0.5% BSA) 
before measuring luciferase activity. Renilla was use as endogenous control. Open bar: 
vehicle, black bar: Wnt3a. Means ± standard errors are presented, n=3. The difference of 
luciferase activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, 
*** p<0.00. 
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Figure 7 The miR-29 family suppress TGFββββ signalling pathway 

(A) The TGFβ signalling reporter (CAGA12-luc) contains 12 binding sites of the Smad2/3/4 
(GAGAC) binding consensus upstream of the firely luciferase-encoding gene in pGL3100ng 
CAGA12-luc vector, and 10ng Renilla vector were co-transfected with either miR-29 family 
mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-targeting 
control (50nM) was also used as the negative control. 24 hours after transfection, cells were 
serum starved for another 24 hours, followed by treatment with TGFβ3 (4ng/ml) for another 
6 hours before measuring luciferase activity. Renilla is the loading control for luciferase 
assay. Open bar: non – treatment control, close bar: TGFβ3 treatment. Means ± standard 
errors are presented, n=6. The difference of luciferase activity was analysed by Student’s 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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Figure 8 The miR-29 family does not target some of its putative targets at mRNA level  
Human primary chondrocytes was cultured in media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were then transfected with either miR-29b mimic (50nM) or non – 
targeting control (50nM) for 48 hours. Total RNA was isolated and the expression levels of 
GOI were measured by qRT-PCR. 18S rRNA was the housekeeping control. Relative 
expression value of each of these genes was normalized to non – targeting control. Means ± 
standard errors are presented, n=3. The difference in expression between miR-29b 
overexpression and non – targeting control was analysed by Student’s unpaired two-tailed t 
test. * p<0.05, ** p < 0.01, ***, p<0.001 
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ABSTRACT 

MicroRNAs are short endogenous non-coding RNA molecules, typically 19-25 

nucleotides in length, which negatively regulate gene expression.  In osteoarthritis (OA), 

several genes necessary for cartilage homeostasis are aberrantly expressed, with a number 

of miRNAs implicated in this process. However, our knowledge of the earliest stages of 

OA, prior to the onset of irreversible changes, remains limited. The purpose of this study 

was to identify miRNAs involved across the time-course of OA using both a murine model 

and human cartilage, and to define their function.   

Expression profile of miRNAs (Exiqon) and mRNAs (Illumina) on total RNA purified 

from whole knee joints taken from mice which underwent destabilisation of the medial 

meniscus (DMM) surgery at day 1, 3 and 7 post-surgery showed: the miRNA expression 

in whole mouse joints post DMM surgery increased over 7 days; at day 1 and 3, the 

expression of only 4 miRNAs altered significantly; at day 7, 19 miRNAs were upregulated 

and 15 downregulated. Among the modulated miRNAs, the miR-29b was the most 

interesting and was chosen to further investigate since integrating analysis of the miRNA 

and mRNA expression array data showed the inverse correlation between miR-29b and its 

potential targets.  In end-stage human OA cartilage and in murine injury model, the miR-

29 family was found to increase expression. Moreover, the miR-29 family was found to be 

the negative regulator in both human and murine chondrogenesis, and was also found to 

involve in murine limb development. Expression of the miR-29 family was found to 

suppress by SOX9 at least in part through directly binding to the promoter of the primary 

miR-29a/b1. Also, TGFβ1/3 decreased expression of the miR-29 family whilst Wnt3a did 

not have any effect. Lipopolysaccharide suppressed the miR-29 family expression in part 

through NFκB signalling pathway while the IL-1 strongly induced its expression partly 

through P38 MAKP signalling. Using luciferase reporter assay, the miR-29 family was 

showed to suppress the TGFβ, NFκB, and WNT/β-catenin signalling pathways. Gene 

expression profiles of gain- and-loss-of-function revealed regulation of a large number of 

previously recognised extracellular matrix-associated genes as well as an additional subset 

of protease and Wnt signalling pathway-related genes.  Among these genes, ADAMTS6, 

ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19, FZD3, DVL3, FRAT2, CK2A2 were 

experimentally validated as direct targets of the miR-29 family.   
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CHAPTER 1 
INTRODUCTION  

 

1.1. Synovial joints  

In mammals, joints are functionally classified into 3 categories: synarthroses (immovable 

joints), amphiarthroses (slightly movable joints), and diarthroses (freely movable joints).  

Most of the main joints of the appendicular skeleton are synovial joints, suggesting this 

type of joint has a crucial role in the body. The main component of synovial joints includes 

the hyaline cartilage, also known as articular cartilage, covering the bone of the synovial 

joint providing the cartilage lubricating and shock absorbing characteristics; a capsule 

enclosing the joint in line with synovial membrane which contains synovial membrane-

resident cells secreting synovial fluid into the synovial cavity helping reduce friction, 

enabling free movement; bones, further held together by ligaments. The characteristics of 

some important components of the synovial joint relevant to this PhD thesis are described 

below.  

1.1.1. Articular cartilage biology  

Articular cartilage, a highly specialized tissue with unique mechanical behaviour, consists 

of (i) chondrocytes, the only cells, responsible for the homeostasis of extracellular matrix 

(ECM), and (ii)  a dense layer of ECM composed primarily of water, collagen and 

proteoglycan.   

1.1.1.1 Cartilage structural organization 

Healthy articular cartilage comprises four different areas: the superficial, intermediate, 

radial or deep, and calcified zones (Buckwalter et al. 2005, Dudhia 2005, Pearle et al. 

2005, Aigner et al. 2006, Martel-Pelletier et al. 2008, Umlauf et al. 2010, Houard et al. 

2013) (Figure 1.0). Each is characterized by a particular chondrocyte phenotype, and by 

distinctive extracellular matrix organization and composition (Buckwalter et al. 2005).  

The superficial zone, the articulating surface and the thinnest of the four, makes up 10%-

20% of articular cartilage thickness (Buckwalter et al. 2005, Pearle et al. 2005). This 
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region contains a high amount of collagen (primary type II, and IX) but very low amount 

of proteoglycan. The collagen fibrils are densely packed and aligned paralleled to the 

articular surface. Chondrocytes in this layer are characterized by an elongated appearance 

(Pearle et al. 2005), express many proteins having lubricating and protective functions (e.g. 

lubricin) but relatively little proteoglycan. This zone is in contact with synovial fluid, and 

is responsible for most of the tensile properties of cartilage that enable cartilage to resist 

shear and the tensile and compressive forces imposed by the movement of the articulation 

(Martel-Pelletier et al. 2008).  

 

 

Figure 1.0: Histology of a healthy cartilage structural  

The articular cartilage is organized into superficial, intermediate, radial, and calcified 
zones. Each zone can be distinguished by the difference in chondrocyte morphologies and 
components of collagen, proteoglycan, mineral and water 

 

The intermediate and the radial zones contain large diameter collagen fibrils oriented 

perpendicular to the articular surface. These regions also have high amount of 

proteoglycan which is mainly aggrecan, a large chondroitin sulphate proteoglycan. 

Chondrocytes in the middle zone are more round than in the superficial zone. In the radial 

zone, the cells are arranged in columnar fashion (Buckwalter et al. 2005).  
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The tide mark, a thin line revealed after hematoxylin staining, marks the mineralization 

front between the calcified and non-calcified articular cartilage (Houard et al. 2013). In the 

calcified cartilage zone, the cell population is very scarce and chondrocytes are 

hypertrophic (Pearle et al. 2005, Martel-Pelletier et al. 2008). With aging, bloods vessels 

and nerves can be seen in calcified cartilage arising from the subchondral bones (Lane et al. 

1977). The main function of this zone seems to be to anchor the cartilage to the bone as 

collagen fibrils from the radial zone penetrate into the calcified cartilage.  

Furthermore, it is noteworthy to know that for mechanical protection purposes, in articular 

cartilage, the chondrocyte is surrounded by a pericellular matrix and a territorial cartilage 

matrix forming a capsule-like structure around the cells. Whilst the pericellular matrix is 

made of a thin layer of non-fibrillar material, which most likely represents the synthetic 

products of the chondrocytes, such as proteoglycans and glycoproteins, the pericellular 

matrix also contains a dense meshwork of thin collagen fibers (see below) (Dudhia 2005, 

Aigner et al. 2006, Martel-Pelletier et al. 2008, Heinegard et al. 2011).  

1.1.1.2 Biology of chondrocytes  

As mention above, chondrocytes are the only cellular components of articular cartilage, 

make up 5% of the wet weight of articular cartilage, and are surrounded by a pericellular 

matrix containing type VI collagen, microfibrils, hyaluronic acid, biglycan, and decorin 

but little or no type II collagen (Buckwalter et al. 2005, Dudhia 2005, Heinegard and 

Saxne 2011). The arrangement of chondrocytes and articular cartilage specific organisation 

result from a complex development process called endochondral ossification including 

four steps e.g. chondrogenesis, chondrocyte differentiation and hypertrophy, 

mineralization and invasion of bone cells, and finally the formation of bone (DeLise et al. 

2000, Goldring et al. 2006, Goldring 2012). Chondrocytes arise from mesenchymal 

progenitors as a result of chondrogenesis started with the condensation of mesenchymal 

stem cell (expressing collagens I, III and V), and followed by the differentiation of 

chondroprogenitor cell (expressing cartilage-specific collagens II, IX and XI) (Goldring et 

al. 2006). After chondrogenesis, the chondrocytes remain as resting cells to form the 

articular cartilage or undergo proliferation, terminal differentiation to chondrocyte 

hypertrophy, and apoptosis. 
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There are no blood vessels in articular cartilage, thus the cells rely on diffusion from 

articular surface or subchondral bone for nutrients and metabolites. Importantly, the 

oxygen level in the cartilage matrix is quite low, ranging from 10% at the surface to less 

than 1% in the deep zone (Silver 1975), suggesting the cells have to adapt to this low 

oxygen level. The mechanisms of this adaption remain unclear but some published data 

reported the involvement of hypoxia inducible factor -1 alpha (HF-1α) (Schipani et al. 

2001, Pfander et al. 2003). Hipoxia via HIF-1α can stimulate chondrocytes to express a 

number of genes associated with cartilage anabolism and chondrocyte differentiation like 

SOX9, TGFβ (Amarilio et al. 2007).  

1.1.1.3 Biology of cartilage extracellular matrix  

Together with chondrocytes, extracellular matrix (ECM) produced by these cells is among 

the main components of articular cartilage and its integrity is critical for the cartilage 

biochemical properties and joint physical function.  

About structure, the ECM in articular cartilage is organized into pericellular, territorial, 

interterritorial zones, each of which is represented at specific distance from the 

chondrocytes (Dudhia 2005, Heinegard and Saxne 2011) (Figure 1.1). 
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Figure 1.1: Molecular organisation of normal articular cartila ge. 

The cartilage matrix surrounding chondrocytes in healthy articular cartilage is arranged 
into zones defined by their distance from the cell. Pericellular matrix lies immediately 
around the cell and is the zone where molecules that interact with cell surface receptors are 
located. Next to the pericellular matrix, slightly further from the cell, lies the territorial 
matrix. At largest distance from the cell is the interterritorial matrix (adapted from 
Heinegard et al, 2011) (Heinegard and Saxne 2011) 

Biochemically, of the ECM, approximately 70% is water (Pearle et al. 2005) , and 30% left 

is solid, of which 5-6% are inorganic compounds (hydroxyapatite), and the remaining 25% 

are organic compounds. Of the organic components, type II collagen constitutes 68% and 

the 32% left is formed by proteoglycan (mainly aggrecan) (Martel-Pelletier et al. 2008). 

The biology of aggrecan and collagen and their functions in articular cartilage are 

described as below. 

1.1.1.3.1 Aggrecan  

Molecules made up of a core protein attached to glycosaminoglycan chain are referred as 

proteoglycan. In articular cartilage, the most abundant proteoglycan is aggrecan, composed 

of chondroitin sulphate chains and keratan sulphate chains with N- and O-linked 

oligosaccharides. Aggrecan has three globular domains (G1, G2 and G3) and three 

extended domains (IGD, KS and CS). The N-terminal G1 domain, responsible for 

aggrecan-hyaluronan interaction, is followed after the signal peptide. The inter-globular 

(IGD) connects G1 and G2 domains, whose functions are unclear. Keratan sulphate 

binding (KS) and chondroitin sulphate (CS) domain lie between G2 and G3 domains 

(Kiani et al. 2002, Dudhia 2005, Martel-Pelletier et al. 2008, Heinegard and Saxne 2011) 

(Figure 1.2). 
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Figure 1.2: Aggrecan structure.  

Aggrecan consists of 3 globular domains (G1, G2, and G3) and an attached GAG chain 
structure. The GAG attachment region is separated into keratin sulphate binding (KS) 
domain and chondroitin sulphate (CS) domain (Adapted from Kiani et al, 2002) (Kiani et 
al. 2002).  

 

The chondroitin sulphate domain is the largest domain of aggrecan and is composed of 

around 100 chondroitin sulphate chains (typically around 2kDa each). Each chain is made 

up of some 50 disaccharides of glucuronic acid and N-acetylgalactosamine, with a sulphate 

group in the 4- or 6- position. The negatively-charge chondroitin sulphate chain accounts 

for the major function of aggrecan as a structural proteoglycan. The function of the keratan 

sulphate domain is not very clear but may be involved in the tissue distribution of aggrecan. 

There are about 30 KS chains, usually of small size (5-15 kDa), attached to the mature 

aggrecan molecule.  

Chondroitin sulphate, keratan sulphate, and the interaction of aggrecan and hyaluronic acid 

are responsible for retaining water the cartilage. The interaction between aggrecan and 

collagen fibrils makes the ECM highly hydrophilic, leading to high resistance to 

compressive mechanical loads (Dudhia 2005, Martel-Pelletier et al. 2008).  

1.1.1.3.2 Collagen  

Collagen fibrils are composed of a protein macromolecular providing cartilage with 

resistance to tension. Collagen type II constitutes 85% total collagen content in the ECM 

of articular cartilage. Apart from type II Collagen, ECM also contains other collagens 

called minor collagens since their concentration is low in comparison with the type II 

collagen. A list of these collagens is provided in Table 1.1.  

All fibril collagens are synthesized in the form of three polypeptide α-chains as a 

procollagen in which each chain has an N-terminal extension and a C-terminal extension. 

The three chains are covalently linked via disulphide bridges in the C-terminal propeptide. 

Following or during secretion of procollagens into the extracellular matrix, the terminal 

propeptides are cleaved off by specific proteinases e.g. ADAMTS-2, ADAMTS-3, 

ADAMTS-14 (cleaves the N-terminal) (Lapiere et al. 1971, Fernandes et al. 2001, Colige 

et al. 2002), and BMP-1 (cleaves the C terminal) (Wermter et al. 2007) to produce the 

mature collagen molecules. The mature collagens then spontaneously self-assemble into 
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cross-striated fibrils in the extracellular matrix. The fibrils are stabilized by covalent cross-

linking (Figure 1.3) 

Collagen molecules then associate on a core of two homologous collagen XI and two 

collagen II molecules to form an outer shell of 10 collagen II molecules of the micro fibril. 

In addition to collagen type II, fibers contain other collagens, particular collagen type IX. 

The collagen network is then stabilized by the formation of covalent crosslinks that link 

the collagen II chains. The links formed are both intra- and inter-molecules, for example, 

between the chains of collagen XI, between collagens e.g. collagen II and collagen IX. 

Many other proteins also have a high affinity for collagens including thrombospondins, 

leucine-rich repeat proteins (biglycan, decorin, fibromodulin, lumican), matrillins, and 

fibronectin. Some of these interactions support fibre formation while others modify the 

collagen fibre surface to provide sites for interactions with neighbouring structures 

(Heinegard and Saxne 2011).  
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Collagen 
types 

Characteristics 

Type IX Located on the surface of type II collagen fibrils; promotes the binding of the fibrils 
to other components of the matrix and to each other; carries a glycosaminoglycan 
chain. 

Type XI Forms the core of the same fibrosis. Regulates the formation and the diameter of 
the fibrils  

Type V Sometimes replaces the type XI collagen in cartilage; included in type I collagen 
fibrils in other tissues. Data on the composition and structure of the third a-chain 
are contradictory  

Type III Small amount are covalently bound to type II collagen  
Type XII Very small amounts are present on the surface of type II collagen  
Type XIV Very small amounts are present on the surface of type II collagen 
Type VI As in other tissue, forms a network of microfibrils. Concentrated mainly in the 

pericellular areas, provides a connection between the chondrocytes and the matrix  
Type X Expressed only by hypertrophic chondrocytes in cartilage areas undergoing 

ossification  
Type XXVII Expressed in cartilage tissue  

Table 1.1 Minor collagen of cartilage tissue (adapt from Omelyanenko et al, 
2014)(Petrovich et al. 2014) 
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Figure 1.3: The formation of the fibrillar collagens  

 

Procollagen is secreted from cells and converted into collagen by removal of the N- and C- 
propeptids by pro-collagen metalloproteinases. This produces mature collagen that 
spontaneously self-assembles into cross-striated fibrils which are stabilized by covalent 
cross-linking. Taken from (Kadler et al, 1996)(Kadler et al. 1996). 
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1.1.2. Synovium 

Synovium is a thin tissue only a few cell layers thick (Fell 1978). The synovium acts as the 

controller for the environment within the joint where nutrients for chondrocytes can pass 

into the synovial cavity. Also, the synovium gives the joint its mechanical properties. The 

synovium can be divided into two compartments e.g. the synovial lining and the sub-lining. 

The synovial lining contains two cell types e.g. type A (macrophage-like cells) clearing 

all excess materials and potential pathogens from the joint, producing and secreting a 

number of enzymes and cytokines and chemokines that mediate tissue damage and 

inflammation in disease; type B synoviocytes, fibroblast like cells, producing the main 

component of synovial fluid, hyaluronan. The synovial sublining consists of connective 

tissue containing blood vessels, fibroblasts, adipocytes, and a limited number of resident 

immune cells, such as macrophage and mast cells (Smith et al. 2003). The synovial fluid 

has crucial role for lubrication of the joint and for transporting nutrients and oxygen to the 

cartilage. 

1.1.3. Bone 

Periarticular bone can be separated into distinct anatomic entities e.g. the subchondral 

bone plate, the subchondral trabecular bone, and the bone at the joint margins. The 

subchondral bone plate consists of cortical bone, which is relatively nonporous and poorly 

vascularized. It is separated from the overlying articular cartilage by the zone of calcified 

cartilage.  

Bone is a very dynamic tissue with constantly undergoing remodelling in which bone 

resorption is normally followed by new bone formation. The primary cell responsible for 

bone resorption is the osteoclast, a specialized multinucleated cell of hemopoietic origin 

(Roodman 1999). Bone resorption takes place under a specialized area of the osteoclast 

cell membrane called “ruffled border,” which comprises a sealed lysosomal compartment 

where the acidic pH solubilizes the mineral and proteolytic enzymes digest the matrix.  On 

the contrary, osteoblasts, the bone forming cells, originally from MSCs committed to 

osteoblastic lineage. Osteoblasts synthesize and secrete most of the proteins of the bone 

matrix, including type I collagen and non-collagenous proteins (Caetano-Lopes et al. 

2007). In normal physiological condition, the amount of bone removed during the 

resorption and formation phases is balanced such that bone mass is maintained.  
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1.2. Osteoarthritis  

Osteoarthritis (OA) is defined by the American College of Rheumatology as a 

“heterogeneous group of conditions that lead to joint symptoms and signs which are 

associated with defective integrity of articular cartilage, in addition to related changes in 

the underlying bone at the joint margins’’.  

There are more than 100 types of arthritis. However, OA or degenerative joint disease is 

the most common type. From a clinical point of view, OA can be classified into two 

categories e.g. primary  which refers to its occurrence not related to any prior condition or 

event which is also referred as idiopathic, and secondary which refers to the development 

of the disease after trauma or pre-existing condition.   

The disease most commonly affects the middle-age and elderly, although it may begin 

earlier as result of injury, obesity or congenitally. As a greater proportion of the population 

is old aged and with increasing obesity, OA will have a great impact on society in the 

future with enormous socioeconomic costs.  

1.2.1. Osteoarthritis pathology 

It is now considered that OA is a disease of the whole joint as an organ resulting in “joint 

failure” where all major components of the joint e.g. the cartilage, the synovium, and the 

underlying bone are affected (Loeser et al. 2012). The pathologic changes seen in OA 

include cartilage destruction, fibrosis of the synovial capsule, hyperplasia of the synovial 

membrane, osteophyte formation, the subchondral bone thickening (Figure 1.4) (Aigner et 

al. 2006, Loeser et al. 2012). These changes result from an incompletely understood series 

of functional events. 
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Figure 1.4: Overview of the pathologic changes associated with OA. 

In a normal joint, the subchondral bone is covered by a thick layer of articular cartilage 
and the joint is enclosed in a capsule where the synovial membrane lies. In an OA joint, 
articular cartilage is destroyed, the subchondral bone is remodelled (thickens), the synovial 
capsule is fibrosed and osteophytes are formed (reprinted from Aigner et al, 2006) (Aigner 
et al. 2006) 
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1.2.1.1.Articular cartilage destruction in osteoarthritis  

Biochemical, genetic factors, and mechanical stress contribute to the OA lesion in cartilage, 

leading to articular cartilage degradation, and chondrocyte metabolism disorders as a 

consequence. Articular cartilage degeneration is a two phase process controlled mainly by 

chondrocytes e.g. a short biosynthesis phase where the cells attempt to repair the damaged 

ECM, followed by the degenerative phase, where the cells destroy the articular cartilage by 

increasing the synthesis of matrix degradating proteinases and decreasing their synthesis of 

matrix components, in particular of aggrecan. Besides changes in synthesis and 

degradation, other aberrant behaviours in cell proliferation and death, and phenotypic 

modulation are also observed in OA chondrocytes (Sandell et al. 2001).  

Contrary to normal chondrocytes with no proliferative activity, OA chondrocytes have a 

low proliferative activity (Meachim et al. 1962, Rothwell et al. 1973, Lee et al. 1993), 

explained in part due to the better access to proliferation factors from the synovial fluid as 

well as due to the damage of the ECM (Meachim and Collins 1962, Lee et al. 1993), 

subsequently causing chondrocyte clustering, a characteristic feature of OA cartilage. 

Chondrocyte death, caused by apoptosis, necrosis, or other cell death mechanisms such as 

chondroptosis, is another known feature of OA.  Many studies have demonstrated the 

significant correlations between chondrocyte death and severity of OA and aging. These 

changes are associated with the production of reactive oxygen species, a lack of growth 

factors, release of glycosaminoglycan and mechanical injury. However, which of these 

types of cell death predominate in OA is debatable. The detection of specific form of cell 

death in articular cartilage is difficult in which current gold standard for detecting 

chondrocyte death is electron microscopy which suggests that the morphological changes 

of chondrocytes in OA cartilage are attributed to apoptosis and / or chondroptosis.  

Chondrocyte death by apoptosis has been reported play an important role: normal cartilage 

explants or chondrocyte culture exposed to nitric oxide, collagenase, anti CD-59, or 

mechanical factors e.g. shear strain, loading strain induced apoptosis; cartilage from 

equine joints have shown that chondrocyte apoptosis is positively correlated with early 

stages of OA and severity of cartilage damage (Zamli et al. 2011).  
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When the damage occurs, the chondrocytes attempt to repair the damaged matrix by 

increasing their anabolic activity to enhance ECM synthesis. However, a net loss of ECM 

content is one of the hallmarks of all stages of OA, suggesting the dominance of ECM 

degradation over the synthesis. This is characterized by the increase in expression and 

activation of matrix-degrading enzymes e.g. matrix metalloproteinase (MMPs) and 

aggrecanases (from the ADAMTS family) (Buckwalter et al. 2005, Pearle et al. 2005, 

Aigner et al. 2006, Umlauf et al. 2010, Loeser et al. 2012). The MMPs, belonging to a 

family of zinc-dependent proteases, show activation correlating with cartilage degradation. 

Among these, the groups of collagenases 1, 2, 3 (MMP-1, MMP-8, and MMP-13, 

respectively), stromelysins (MMP-3, MMP-10, MMP-11) and gelatinases (MMP-2, MMP-

9) have the highest impact on OA cartilage breakdown (Burrage et al. 2006). The MMP-1, 

MMP-8 and MMP-13 which cleave native fibrillar collagen, contribute to the pathological 

cleavage of collagen fibrils in OA (Burrage et al. 2006). Of the collagenase group, MMP-

13 is deemed to be responsible for most of the collagen II breakdown whilst MMP-1 

cleaves type II collagen stronger than MMP-8 (Billinghurst et al. 1997) has a pivotal role 

for collagen cleavage in OA (Knauper et al. 1996). In addition to collagenases, others 

MMPs degrading non-collagen have also been shown to be elevated in OA cartilage e.g. 

the gelatinases (which cleave denatured collagen, gelatin, type V collagen) and the 

stromelysins (having substrate preference for proteoglycans, elastin, laminin, fibronectin) 

(Umlauf et al. 2010) The aggrecanases (the ADAMTS family), are also of particular 

importance in cartilage turnover, and have activity against the proteoglycan aggrecan. Of 

all ADAMTS members, ADAMTS-4 and ADAMTS-5 are most active against aggrecan 

(Arner 2002). ADAMTS-5 is constitutively expressed in chondrocytes whereas 

ADAMTS-4 expression is stimulated by proinflammatory cytokines IL-1β, and TNF-α 

(Umlauf et al. 2010) (Tortorella et al. 2001). In vitro studies with human cartilage show 

that both ADAMTS-4 and ADAMTS-5 contribute to ECM breakdown during the disease 

progression even though human recombinant ADAMTS-5 has higher rate of aggrecan 

cleavage than ADAMTS-4 (Song et al. 2007). In mice, ADAMTS-5 has been shown to be 

the major aggrecanase, by studies with ADAMTS-4 and ADAMTS-5 knockout mice in 

which only ADAMTS-5 deficiency prevented the mice from cartilage degradation in both 

inflammatory and a joint-instability model of arthritis (Glasson et al. 2005, Stanton et al. 

2005) .  
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As mentioned above, despite the attempt at repairing the ECM, the damage to the cartilage 

becomes irreversible because the adult chondrocytes fail in regenerating the normal 

cartilage matrix structure. This failure could be, in part, attributed to the phenotypic 

alteration of chondrocytes. Chondrocyte phenotypes are categorized largely by subtyping 

collagen expression e.g. chondroprogenitor cells express type IIA procollagen. The 

alternative splice variant) (Sandell et al. 1991), mature chondrocytes are marked by 

expressing type IIB procollagen, IX, and XI, aggrecan and link protein (Sandell and 

Aigner 2001), and hypertrophic chondrocytes express type X collagen (Schmid et al. 

1985). In OA cartilage degeneration, an important proportion of adult articular cartilage 

chondrocytes, found mostly in the middle zone, re-expressed type IIA procollagen 

(chondroprogenitor cells) in both early and late OA stages (Sandell and Aigner 2001). 

Cells in the upper middle zone mainly express type III collagen which is a fibroblast-like 

phenotype. This phenotype is normally observed in vitro, where the chondrocyte 

phenotypes are modulated through so-called “dedifferentiation” process by several factors 

like retinoic acid or IL-1. Dedifferentiated chondrocytes are still very active, express 

collagen types I, III and V but stop expressing aggrecan and collagen type II (Sandell and 

Aigner 2001). In the deepest zone of OA cartilage, the cells start to express type X 

collagen, specific marker for hypertrophy of growth-plate chondrocytes (Girkontaite et al. 

1996). Indeed, the hypertrophic chondrocytes in OA cartilage and in the growth-plate 

share similarities and the subsequent functional event associated with hypertrophic 

differentiation is cartilage mineralization which is also a feature of OA. However, the 

mechanism involved in pathological cartilage calcification during OA is not completely 

understood.  

 

1.2.1.2. Synovium in osteoarthritis  

Inflammation of the synovial membrane (synovitis) is identified in many OA patients 

despite lower severity and greater variability as compared to rheumatoid arthritis. It is 

reported that synovitis can occur even in early stages of the disease (Benito et al. 2005). 

Synovitis is associated with symptoms such as pain, the degree of joint dysfunction, the 

rapid degeneration of cartilage, and is characterized by the thickening of the synovial 

lining layer, leukocyte infiltration, and thickening of the sub-lining stroma. The 
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mechanisms underlying the development of synovitis in OA remain unclear. It is however 

well known that this inflammatory process is triggered by ECM degradation products, 

which engage Toll-like receptors and the complement cascade (Scanzello et al. 2012). 

Noteworthy, the synovial reaction may produce a variety of cytokines and chemokines, in 

turn affecting catabolism of chondrocytes (Scanzello and Goldring 2012).  

 Of all cell types in the inflamed OA synovium, the macrophages are among the most 

abundant and depletion of synovial macrophages has been shown to result in decreased 

osteophyte formation, and IL-1, TNF-α, IL-6, IL-8, MMP-1, MMP-3 production 

(Bondeson et al. 2010). Natural killer cells and dendritic cells are also reported to present 

in synovial tissue. However, the role of both of them in OA pathogenesis has not yet been 

elucidated in detail.  

1.2.1.3. Subchondral bone in osteoarthritis  

Articular cartilage helps to distribute load across the whole joint surface. Any alteration in 

the properties of cartilage leads to alter load experience by the underlying bone and 

probably causes a tissue remodelling response. The properties of bone might also modulate 

how the overlying cartilage reacts to load. 

Although OA is often characterized as a disease of articular cartilage, the alteration of 

bone metabolism is increasingly recognised as a mediator of pain and OA progression. 

Subchondral bone consists of a dome-like subchondral plate and underlying trabeculae, 

having a close biomechanical and biochemical relationship with the overlying cartilage. 

Strong evidence associates subchondral bone alterations with cartilage damage and loss in 

OA (Karsdal et al. 2014). However, there is still an incomplete understanding of the 

mechanisms for the numerous pathophysiological alterations detected in subchondral bone 

with OA.  

The pathological cascade may be started when the normal subchondral bone suffers from a 

non-physiological strain. In early-stage OA, the subchondral plate becomes thinner and 

more porous, together with initial cartilage degeneration.  Subchondral trabecular bone 

also deteriorates, with increased separation and thinner trabeculae. At the same time, 

microdamage begins to appear in both calcified cartilage and subchondral bone, which will 

persist throughout the whole pathological process. In late-stage OA, calcified cartilage and 

the subchondral plate become thicker, with duplicated tidemarks and progressive non-

calcified cartilage damage.  Subchondral trabecular bone becomes sclerotic (Li et al. 2013). 
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The sclerosis of periarticular mineralized tissues may be a biomechanical compensational 

adaption to the widespread cysts and microdamage in subchondral bone, which render 

subchondral bone structure more fragile (Figure 1.5).  

Despite increased bone volume density in the sclerotic subchondral bone, its 

mineralization is reduced and lower than in normal joints. Although collagen synthesis is 

elevated in subchondral bone, the deposited collagen is hypomineralized and has a 

markedly reduced calcium-to-collagen ratio [42].  

 

Figure 1.5: Alteration in subchonral bone in Osteoarthritis  

In early stage of OA, subchondral microdamage occurs, the subchondral plate is thinner 
with increased porosity, and subchondral trabeculae are deteriorated. At OA later stage, the 
calcified cartilage and subchondral plate is thicker, with reduplicated tidemarks. 
Subchondral trabecular bone becomes sclerotic (adapted from Li et al, 2013)(Li et al. 2013) 
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1.2.1.4. Osteophytes 

Osteophytes, considered as an adaptation to the altered biomechanics, are non-neoplastic 

osteo-cartilaginous protrusions growing at the margins of OA joints, and represent areas of 

new cartilage and bone formation. Osteophytes limit joint movement, represent a source of 

joint pain, and are a radiographic hallmark of OA. However, it is noteworthy that when 

osteophytes appear in the absence of other bony changes, e.g. subchondral cysts or 

subchondral sclerosis, they may be a manifestation of aging, rather than of OA. 

Osteophytes derive from precursor cells within periosteal or synovial tissue (van der Kraan 

et al. 2007) but the initial stimuli for osteophyte formation remains unclear, probably 

involving both mechanical and humoral factors as repeated injections of mouse joints with 

TGFβ or BMP induced or enhanced osteophyte formation in animals with experimentally 

induced OA (van Beuningen et al. 1998).  

Osteophytes are composed of cells that express type I procollagen mRNA, mesenchymal 

prechondrocytes that express type IIA procollagen mRNA, and maturing chondrocytes that 

express type IIB procollagen mRNA. Based on the spatial pattern of gene expression and 

cytomorphology, the neochondrogenesis associated with osteophyte formation closely 

resembles that of healing fracture callus (Matyas et al. 1997) and is also similar to the 

growth plate. Thus, osteophytes may represent an excellent in vivo model for induced 

cartilage repair processes. 

1.2.2. Anabolic and catabolic signalling in OA  

Anabolic and catabolic activation are largely the result of exposing cells to various 

cytokines and growth factors e.g. TGFβ, BMPs, IGF-1, TNF-α, IL-1β, Wnt3a. In OA 

cartilage, the catabolic and anabolic equilibrium is broken and favours the activation of 

catabolic pathways or mechanisms leading to matrix degradation.  

1.2.2.1.Anabolic signalling in OA 

As previously mentioned, the early phase of the response to mechanical injury is 

characterized by the attempt to repair the damage matrix by increasing the anabolic 

activity of chondrocytes, enhancing synthesis of extracellular matrix components. This is 

facilitated by enhancing levels of anabolic factors e.g. TGFβ, FGF, and BMPs, and Wnt.  

1.2.2.1.1. TGFβ signalling  
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The TGFβ family, consisting of over 35 members including TGFβ and BMPs, has been 

widely known to play a crucial role in the development and homeostasis of various tissues. 

Activated TGFβ (TGFβ-1, -2, -3) binds to their two receptor complex, TGFβ-R1 and 

TGFβ-RII and phosphorylates members of the receptor-specific Smad family, Smad2 and 

Smad3. Upon phosphorylation, Smad2/3 subsequently forms a complex with the common 

mediator Smad4. This complex then translocates into the nucleus where it can act as a 

transcription factor. Unlike TGFβ-1, -2, -3 which signal via Smad2/3/4, BMPs transduce 

their signal through Smad-1, -5 and -8 (Miyazawa et al. 2002, Verrecchia et al. 2002).  

Members of the TGFβ family are considered potent mediators of cartilage matrix synthesis, 

in which they up-regulate the expression of several types of collagens and proteoglycan 

but down-regulate cartilage degrading enzymes (Verrecchia et al. 2001, Verrecchia and 

Mauviel 2002). Despite such promising data, therapeutic studies with TGFβ revealed 

major side effects e.g. injection or adenovirus–mediated delivery of TGFβ1 into normal 

murine knee joint resulted in joint fibrosis and osteophyte formation (van Beuningen et al. 

1998) .  

1.2.2.1.2. Wnt signalling 

The human Wnt family includes 19 members which mostly exert their function by binding 

to Frizzled (FZD) receptor proteins and LRP-5/6 co-receptor proteins, in turn activating 

several signal transduction pathways e.g. canonical, and non-canonical signalling 

pathways. In the canonical Wnt pathway, most β-catenin in the cytoplasm is sequestered 

and targeted for proteasome-mediated degradation within a multi-protein complex of 

casein kinase, axin, the adenomatous polyposis coli tumour suppressor protein (APC) and 

glycogen synthase kinase 3β (GSK3β). With the presence of appropriate Wnt ligands, 

signalling through the Frizzled receptors inhibits this degradation process, and thereby 

leads to β-catenin accumulation and translocation into the nucleus (Clevers 2006). Within 

the nucleus, it acts in concert with Tcf/Lef transcription factors to generate a 

transcriptionally active complex that regulates a number of genes e.g. MYC, cyclin D1, 

MMP3 and CD44, E-cadherin, MMP7, MMP26(Dell'accio et al. 2008, Umlauf et al. 2010). 

In contrast to the canonical pathway, non-canonical Wnt signalling is mostly a β-catenin 

independent mechanism like the Wnt/calcium and Wnt/JNK pathways in vertebrates and 

the Wnt/planar cell polarity pathway (PCP) in flies (Willert et al. 2006). In addition, there 
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are some natural extracellular inhibitory factors for Wnt signalling. One of the best 

characterized families is the Dickkopf (Dkk) family which bind to LRP-5/6 and antagonize 

the canonical pathway. Other antagonists are the secreted frizzled-related protein (sFRP) 

family which bind directly to Wnt ligands and inhibiting both canonical and non-canonical 

Wnt pathways (Kawano et al. 2003).  

A number of published data provide evidence of the critical role of Wnt signalling in OA 

development. Direct evidences come from animal model studies where β-catenin is 

conditionally activated or inhibited in articular cartilage chondrocyte of adult mice (Zhu et 

al. 2008, Zhu et al. 2009). Mice with β-catenin activated had OA-like cartilage 

degradation, osteophyte formation, associated with accelerated chondrocyte maturation 

and MMP13 expression (Zhu et al. 2009). Similarly, selective suppression of β-catenin 

signalling in Col2a1-ICAT (inhibitor of β-catenin and TCF) transgenic mice also causes 

OA-like cartilage degradation(Zhu et al. 2008). In line with these reports, in vitro culture 

of human primary chondrocyte, either activation or blockade of β-catenin signalling all 

resulted in cartilage loss (Nalesso et al. 2011).  These data suggest that balanced β-catenin 

levels are essential for maintaining homeostasis of articular chondrocytes and that any 

factors impairing this balance could lead to pathological changes. Moreover, LRP5 is 

located in chromosome 11q12-13, which is thought to be an OA susceptibility locus. 

LRP5-/- mice displayed increased cartilage degradation, probably due to low bone mass 

density (Lodewyckx et al. 2012). Another study in a mouse OA model also demonstrated 

that control of Dkk1 expression, a negative regulator of β-catenin/Wnt signalling, prevents 

joint cartilage deterioration in OA knees through attenuating the apoptosis regulator Bax, 

MMP3 and RANKL (Weng et al. 2010). Also, the inhibition of Dkk1, has been reported to 

be able to reverse the bone-destructive characteristics of rheumatoid arthritis to the bone-

forming characteristics of OA (Diarra et al. 2007). This evidence further supports the 

crucial role of β-catenin/Wnt signalling in OA. Wnt signalling is also reported to function 

as an OA initiation factor e.g. a down-regulation of Wnt antagonist FRZB and an up-

regulation of the ligand Wnt16 and target genes encoding β-catenin, Axin-2, C-JUN and 

LEF-1 was observed in mouse model of mechanical injury, a major cause of OA; 

expression of WNT1-inducible signalling protein (WISP-1) was also increased twofold in 

cartilage lesions compared to healthy intact cartilage (Blom et al. 2009).  
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Human studies also observed the critical role of WNT signalling in OA development. A 

loss-of-function allelic Arg200Trp and Arg324Gly Frzb variants, encoding sFRP-3, a β-

catenin/Wnt signalling inhibitor, contributed to genetic susceptibility of women to hip OA 

(Loughlin et al. 2004, Lane et al. 2006). Given the close relationship between bone shape 

and OA development, Baker-Lepain et al proposed that SNPs in Frzb are associated with 

the shape of proximal femur and further contribute to hip OA development (Baker-Lepain 

et al. 2012). Moreover, the Frzb knockout mice increased articular cartilage loss during 

arthritis triggered and this damage was associated with increased WNT signalling and 

MMP-3 expression and activity. Also, the FRZB deficiency resulted in the cortical bone 

thickness and density with stiffer bones (Lories et al. 2007). 

1.2.2.2. Catabolic signalling in OA 

Opposing the anabolic effects of growth factors are pro-inflammatory cytokines and a 

variety of mediators associated with inflammation e.g. NO, prostaglandins, IL-1β, TNF-α, 

IL-6, IL-8 These factors are first produced by the synovial membrane and diffuse into the 

cartilage through synovial fluid, together with activate chondrocytes which also have the 

capacity to produce a variety of cytokines and mediators, responsible for functional 

alterations in the synovium, the cartilage, and the subchondral bone. Their role in OA has 

attracted considerable attention.   

Of pro-inflammatory cytokines, IL-1β, TNF-α seem prominent and of major importance to 

cartilage destruction. The biologic activation of cells by IL-1 is mediated through the 

association with its specific receptors e.g. type I and II IL-1R. Especially, the type I IL-1R, 

responsible for signal transduction, was found to increase in OA chondrocytes and 

synovial fibroblasts. IL-1β is a critical mediator, and stimulation of chondrocytes by IL-1β 

causes gene expression patterns similar to those in OA cartilage (Goldring et al. 1988, 

Lefebvre et al. 1990). IL-1β localizes to the site of cartilage degradation in OA joints, 

providing evidence of its key role in the pathogenesis of OA (Tetlow et al. 2001, Pujol et 

al. 2008). IL-1β was reported to suppress aggrecan and collagen and up-regulate the 

proteolytic enzymes e.g. ADAMTS4 and MMP13 (Goldring 2000, Kobayashi et al. 2005).  

In addition, IL-1β, or IL-1β-converting enzyme knockout mice showed the accelerated 

development of OA lesions in response to OA surgical induced compared to wild type 

mice (Clements et al. 2003).  The blocking effects of IL-1β by IL-1 receptor antagonist 
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(IL-1ra), which is the natural inhibitor of IL-1β by competing with IL-1β for occupancy of 

the IL-1β cell surface receptors but cannot initiate cellular signals protect against the 

development of experimentally induced OA lesions in animal models e.g. dogs, horses 

(Pelletier et al. 1997, Frisbie et al. 2002).  Interestingly, it was reported that the IL-1β 

concentration is low in inflamed joints and a level from 10-1000 fold excess of IL-1ra over 

IL-1β was required to efficiency block all of the available IL-1β  receptors enough to 

inhibit joint degradation (Pelletier et al. 1997). 

1.2.2.2.1. NFκB Signalling  

The transcription factor NFκB is the master regulator of expression of a number of genes 

critical to innate and adaptive immunity, cell proliferation, and inflammation. NFκB is 

held in the cytoplasm in an inactive form associated with the inhibitory κB (IκB) protein. 

A broad range of stimuli, including TNF-α, IL-1β, bacteria and viruses trigger a cascade of 

signalling, leading to release of NFκB from IκB. The activated NFκB will then translocate 

to the nucleus, bind to DNA elements present in its target genes and facilitate their 

transcription.  

Numerous published data support the central role of NFκB signalling in cartilage 

metabolism and development of OA e.g. IκB overexpression in human OA synovial 

fibroblasts resulted in a decrease in expression of IL-6, IL-8, MPC-1/CCL-2, and MMPs 

(Amos et al. 2006) as well as abolishing the IL-1β-induced effect on expression of 

ADAMTS-4 (Bondeson et al. 2007); In a mouse surgically induced OA model, siRNA 

inhibiting NFκB/p65 resulted in reducing the amount of IL-1βand TNF-α in synovial fluid, 

reducing the level of inflammation in the synovium, and decreasing cartilage damage 

(Chen et al. 2008).  

1.2.3. Risk factors for Osteoarthritis  

The pathogenesis of OA is complex and poorly understood but involves the interaction of 

multiple factors ranging from genetic predisposition to mechanical and environmental 

components. Studies are in progress to define the molecular mechanisms involved in 

initiation and progression of OA. 

1.2.3.1.Trauma and altered mechanical load  

Mechanical factors and trauma have a central role in the initiation and propagation of OA: 

Excessive load and trauma which lead to injury of the menisci or ligaments predispose to 
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the development of the disease; the level and nature of the load experienced might also 

influence the progression of joint damage: an acute trauma leading to rupture of the 

meniscus or the cruciate ligaments might precipitate the development of OA. However, the 

differing contributions to this effect of the initial trauma and the ensuing mechanical 

instability have not been clearly delineated; also, in immobilized joints, there is lack of OA: 

further supporting the importance of mechanical triggers in the disease process (Riordan et 

al. 2014).   

After joint trauma, the onset and progression of clinical symptoms differs even among 

groups with the same type of injury and physical activity profile, pointing to the 

involvement of other factors apart from the trauma.  

1.2.3.2. Inflammation 

Histologically, the disease was denominated osteoarthrosis, a term that implied the absence 

of inflammation. However, data acquired using high-sensitivity assays for inflammatory 

markers (such as C-reactive protein) demonstrate that low-grade inflammation is present 

(Pearle et al. 2007). Numerous inflammatory cytokines are found at increased levels in 

joint tissues during the acute post-injury phase, including IL-1, IL-6, IL-17, and TNFα 

(Lee et al. 2009). Inflammation seems to be a very early event in OA since the increase of 

CRP levels precedes the release of other OA indicators or molecular markers of matrix 

breakdown, and is observed well before clinical disease. 

Inflammatory might be of particular importance to the onset and propagation of the 

primary and secondary OA. However, why the inflammation triggered in OA remains 

controversial. It was hypothesized that it was caused by traumatic joint injury or an age – 

related process. Joint injury leads to cartilage degradation and tissue damage. Once 

degraded, cartilage fragments accumulate in the joint and contact the synovium. 

Considered foreign bodies, synovial cells react by producing inflammatory mediators, 

found in synovial fluid. These mediators can activate chondrocytes present in the 

superficial layer of cartilage, which leads to metalloproteinase synthesis and, eventually, 

increase cartilage degradation. Published data support for the hypothesis that inflammation 

was triggered by aging process: advance glycation endproducts (AGEs), produced by a 

non-enzymatic process in aging tissue, weaken cartilage by modifying its mechanical 

properties triggering chondrocyte activation by binding to specific receptors present at the 
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surface of the chondrocytes, called RAGE (receptor for AGEs) lead to an overproduction 

of proinflammatory cytokines and MMPs (Nah et al. 2007); or after a period of vigorous 

proliferation, chondrocyte division rate declines but has high capacity to synthesize soluble 

mediators which in turn induces several inflammatory and pro-degradative mediators.   

1.2.3.3. Obesity  

Obesity is a well known risk factor for the initiation and progression of OA. This 

association is obvious because any overload on a weight – bearing joint would provoke 

tear and wear at the surface of the cartilage.  

The molecular mechanisms explaining why obesity is one of the major risk factors for OA 

(Messier et al. 2005) is not exactly known. It is possible that the excess weight increases 

the load borne by all parts of the joint.  However, the association between overweight and 

OA is not simply a question of increased mechanical load because obesity acts as a risk 

factor for developing hand OA (Grotle et al. 2008). Together with this, published data 

from animal studies: knee cartilage from rabbits fed a high – fat diet showed lower 

glycosaminoglycan content and aggrecan-1 than cartilage from rabbits fed a normal – fat 

diet independently of animal weight (Brunner et al. 2012); OA surgical induced mice fed a 

high – fat diet from 4 weeks of age showed higher OA cartilage degeneration at 8 weeks 

after surgery than those fed a normal diet (Mooney et al. 2011); in mice transgenic for 

human C – reactive protein (CRP) on a high – fat diet, there is a lack of correlation 

between OA severity and body weight (Gierman et al. 2012). 

Many studies suggest that systemic inflammatory mediators contribute to the increased 

risk of OA with obesity. Adipose tissue, especially from the abdomen, is a rich source of 

pro-inflammatory cytokines, which are often referred to as adipokines. Many adipokines 

elevated with obesity have also been shown to mediate synovial tissue inflammation. For 

example, leptin is a 16-kd polypeptide hormone encoded by the obese (ob) gene and is 

primarily secreted by adipocytes. Female C57BL/6J mice with impaired leptin signalling 

are protected from obesity – induced OA, suggesting elevated body fat in the absence of 

leptin signalling is insufficient to induce systemic inflammation and OA (Griffin et al. 

2009).  Leptin has been found to exist at higher concentrations in the synovial fluid 

compared to serum (Presle et al. 2006). Leptin, alone or in synergy with IL-1, induced 

collagen release from bovine cartilage explants and upregulated MMP-1 and MMP-13 

expression in bovine chondrocytes(Hui et al. 2012). 
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1.2.3.4. Aging  

Aging is the most important risk factor for OA. After 40 year old, many people will appear 

to have some damage to their joints which may lead to OA, and approximately 50% of 

individuals greater than the age of 65 suffer from OA. The incidence of the disease 

through age has been observed: the prevalence of OA rises from 4% in people under the 

age of 24 to as high as 85% for those at 75-79 years of age. The common justification is 

the long-term effect of mechanical load on all joint components. Also, the regenerative 

capability of cartilage is reduced and cellular apoptosis is enhanced with age (Goldring et 

al. 2007).  

1.2.3.5.Genetic factors 

Evidence from family clustering and twin studies indicates that the risk of OA has an 

inherited component. Genetic factors may influence between 39% and 65% in 

radiographic OA of the hand and knee in OA, about 60% in OA of the hip, and about 70% 

in OA of the spine. Mutations to genes that play a role in the ECM, proteases and 

inhibitors, cytokines, and growth factors have been found to affect one’s susceptibility to 

develop of OA (Sulzbacher 2013). However, the individual effects are relatively small. For 

example, a genome – wide association study showing that the C allele of rs3815148 on chr 

7q22 was associated with a 1.14- fold increased prevalence of knee and/ or hand 

OA(Kerkhof et al. 2010). 

1.3. MicroRNAs in osteoarthritis  

1.3.1. The basic biology of miRNA  

miRNAs are an abundant class of evolutionarily conserved, short (~22nt long), single – 

stranded RNA molecules that have emerged as important post transcriptional regulators of 

gene expression by binding to specific sequences within a target mRNA (Ambros 2004, 

Bartel 2004). To date, 1424 miRNAs have been identified in human cells and each is 

predicted to regulate several target genes (Lim et al. 2005, Kozomara et al. 2011). 

Computational predictions indicate that more than 50% of all human protein – coding 

genes are potentially regulated by miRNAs (Lewis et al. 2005, Friedman et al. 2009). The 

abundance of mature miRNAs varies extensively from as few as ten to more than 80,000 

copies in a single cell, which provides a high degree of flexibility in the regulation of gene 

expression (Chen et al. 2005, Suomi et al. 2008). The regulation exerted by miRNAs is 
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reversible, as feedback/forward regulatory loops have been shown to exert modifying 

effects during translation (Inui et al. 2010) . 

1.3.1.1. MicroRNA discovery  

In 1981, the first miRNA: lin-4 was discovered in Caenorhabditis elegans (Chalfie 1981). 

In the early 1990s, Ambros and Ruvkun revealed that lin-4 controlled a specific step in 

developmental timing in C.elegans by downregulating lin-14 (a conventional protein – 

coding gene) (Chalfie 1981, Lee et al. 1993, Wightman et al. 1993). They recognized that 

the lin-14 3’UTR harbours multiple sites of imperfect complementarity to lin-4 and 

proposed that lin-4 binds to these sites and blocks lin-14 translation.  

Forward genetics also discovered a second miRNA in C.elegans, known as let-7 (Reinhart 

et al. 2000) which targets lin-41 and hbl-1 (Abrahante et al. 2003, Lin et al. 2003). The 

concept of miRNAs then jumped from worms to higher species, since let-7 had well-

known homologues even in human and fly. In 2001, the term “microRNA” was coined for 

this class of non-coding gene regulators (Lagos-Quintana et al. 2001, Lau et al. 2001, Lee 

et al. 2001). The discovery of miRNAs had crossed over to human, and finding miRNA 

targets became a high priority. 

1.3.1.2. MicroRNA biogenesis  

Most of the currently known miRNA sequences are located in introns of protein coding 

genes; a lower percentage of miRNAs originate from exons or non-coding mRNA-like 

regions (Rodriguez et al. 2004). In addition, a significant number of miRNA are found in 

polycistronic units that encode more than one miRNA. The miRNAs within clusters are 

often functionally related (Lagos-Quintana et al. 2001, Lau et al. 2001).  

Despite the obvious differences between the biology of miRNAs and mRNAs, all available 

evidence suggests that these transcripts share common mechanisms of transcriptional 

regulation. Generally, the generation of a miRNA is a multi-step process that starts in the 

nucleus and finishes in the cytoplasm (Lee et al. 2002). First, miRNAs are transcribed by 

the RNA polymerase II complex (Lee et al. 2004) and subsequently capped, 

polyadenylated, and spliced (Cai et al. 2004). Transcription results in a primary miRNA 

transcript (pri-miRNA) that harbors a hairpin structure (Lee et al. 2002, Kim 2005). Within 
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the nucleus, the RNAse II–type molecule Drosha and its cofactor DGCR8 process the pri-

miRNAs into 70- to 100-nt-long pre-miRNA structures (Lee et al. 2003, Han et al. 2004), 

which in turn are exported to the cytoplasm through the nuclear pores by Exportin-5 (Yi et 

al. 2003, Bohnsack et al. 2004, Lund et al. 2004, Zeng et al. 2004). Subsequently, the 

RNAse III-type protein Dicer generates a double stranded short RNA in the cytoplasm that 

consists of the leading – strand miRNA and its complementary sequence (Grishok et al. 

2001, Hutvágner et al. 2001, Ketting et al. 2001, Chendrimada et al. 2005). This duplex 

miRNA is unwound by a helicase into a single stranded short RNA in the cytoplasm and 

the leading strand is incorporated into the argonaute protein (Ago 2)-containing 

ribonucleoprotein complex known as the miRNA-induced silencing complex, mRISC 

(Hammond et al. 2000, Hutvagner et al. 2008, Bossé et al. 2010). During this process, one 

strand of the miRNA duplex is selected as the guide miRNA and remains stably associated 

with mRISC, while the other strand, known as the passenger strand is rapidly removed and 

degraded (Martinez et al. 2002) (Figure 1.5). Selection of the appropriate strand is 

primarily determined by the strength of base pairing at the ends of the miRNA duplex. The 

strand with less-stable base pairing at its 5’ end is usually destined to become the mature 

miRNA (Khvorova et al. 2003, Schwarz et al. 2003, Hutvagner 2005). However, some 

miRNA passenger strands are thought themselves to negatively regulate gene expression. 

One hypothesis is that both strands could be used differently in response to extracellular or 

intracellular cues, to regulate a more diverse set of protein –coding genes as needed, or 

strand selection could be tissue specific (Ro et al. 2007). The mature miRNA guides the 

RISC complex to the 3’UTR of its target miRNA (Lai 2002, Bartel 2009) . The seed 

sequence, comprising nucleotides 2-8 at 5’-end of the mature miRNA, is important for 

binding of the miRNA to its target site in the mRNA (Lewis et al. 2005). Association of 

miRNA with its target results in mRNA cleavage (if sequence complementarity is high) or 

more usually in higher eukaryotes, blockade of translation (Zeng and Cullen 2004) (see 

below). 

In an alternative pathway for miRNA biogenesis, short hairpin introns termed mirtrons are 

spliced and debranched to generate pre-miRNA hairpin mimics (Berezikov et al. 2007, 

Okamura et al. 2007, Ruby et al. 2007, Westholm et al. 2011, Sibley et al. 2012). These 

are then cleaved by Dicer in the cytoplasm and incorporated into typical miRNA silencing 
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complexes (Berezikov et al. 2007, Okamura et al. 2007, Ruby et al. 2007, Westholm and 

Lai 2011, Sibley et al. 2012). The presence of mirtrons may be an evolutionary strategy to 

diversify miRNA-based gene silencing (Lau et al. 2009). 

1.3.1.3. Mechanisms of action of miRNAs 

Mammalian miRNAs often have several isoforms encoded from one or more chromosome, 

suggesting that they are functionally redundant (Heimberg et al. 2008, Kim et al. 2009).  

They may exert variable roles in vivo via differences in their expression pattern and 3’-end 

binding (Ventura et al. 2008).  

Regulation is mainly exerted by the binding of the miRNA to the 3’UTR of the target 

mRNA, but binding to other positions on the target mRNA, e.g. in 5’UTR or coding 

sequence has also been reported (Lytle et al. 2007, Lee et al. 2009, Li et al. 2009). 

Interestingly, miRNA binding sites within the coding region of a transcript are reported as 

less effective at mediating translational repression.  Aside from the location of miRNA 

binding sites, factors including the sequence context of the miRNA binding site, the 

number of target sites within the mRNA, the focal RNA structure, the distance between 

target sites, all contribute to the efficacy of repression mediated by miRNAs (Brennecke et 

al. 2005, Sætrom et al. 2007). 

 The degree of base pairing between the miRNA and its target in the mRISC complex 

determines the fate of the transcript. If there is perfect binding between the miRNA and 

target, the mRNA target is cleaved by Ago2 at the annealing site, with subsequent 

degradation of the mRNA.  In contrast, in cases where the miRNA is only partially 

complementary to its corresponding 3’UTR, inhibition of target mRNA translation occurs 

via Ago1. Repression may be exerted either at the initiation step of mRNA translation in 

which Ago competes with eIF4E or at some stage subsequent to initiation (Kiriakidou et al. 

2007) (Figure 1.6). This is because miRNA-mRISC complex can bind to actively 

translating mRNAs, reducing translational elongation and/ or enhancing termination, 

concomitant with a reduction in ribosome initiation and nascent peptide destablilization 

(Petersen et al. 2006). 
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Interestingly, besides generally promoting mRNA cleavage or translational repression, 

miRNA binding to 3’UTR can also induce translation of some target mRNAs. MicroRNAs 

have been identified which activate translation on cell cycle arrest by directing AGO-

containing protein complexes to AU-rich elements in the 3’UTR (Vasudevan et al. 2007, 

Vasudevan et al. 2007) 
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Figure 1.6: Biogenesis of miRNAs.  

MicroRNAs are transcribed as RNA precursor molecules (pri-miRNA), which are 
processed by Drosha and its cofactor DGCR8 into short hairpin structure (pre-miRNA). 
These are exported into the cytoplasm by Exportin 5, where they are further processed by 
Dicer and TRBP (Dicer-TAR RNA binding protein) into a miRNA duplex. The duplex is 
unwound by a helicase and the “guide” strand is incorporated into the RNA–induced 
silencing complex (RISC) whilst the “passenger” strand undergoes degradation. This 
miRNA-RISC complex acts by two possible mechanisms: (A) Degradation of target 
mRNA occurs when miRNA is near-perfectly complementary with 3’ untranslated region 
of target mRNA; (B) Translation inhibition occurs when miRNA is only partially 
complementary to its target mRNA.  
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1.3.2. MicroRNAs in skeletal development     

It is evident that miRNAs are essential for skeletal development, however, our current 

knowledge of expression and function of specific miRNAs is still limited. Experimentally 

removing the majority of miRNAs by a block in miRNA biogenesis through mutating or 

deleting Dicer, reveals that the miRNA pathway plays a prominent role in skeletal 

development. An excellent example is the conditional knockout of Dicer in limb 

mesenchyme at the early stages of embryonic development, which leads to the formation 

of a much smaller limb. Dicer-null growth plates display a pronounced lack of 

chondrocyte proliferation in conjunction with enhanced differentiation to postmiototic 

hypertrophic chondrocytes; this latter may be explained by Dicer having distinct functional 

effects at different stages of chondrocyte development (Harfe et al. 2005). Recently, 

Kobayashi et al. reported that mice null for Dicer in chondrocytes resulted in skeletal 

growth defects and premature death (Kobayashi et al. 2008), again pointing to essential 

role of miRNAs in skeletal development.  

Further evidence of the important role of miRNAs in skeletogenesis is that some miRNAs 

were found to exhibit bone-specific and cartilage-specific expression in late development. 

Wienholds et al. first provided evidence for miR-140 specifically expressed in cartilage of 

the jaw, head, and fins in zebrafish cartilage during embryonic development (Wienholds et 

al. 2003). Later, Tuddenham et al found that miR-140 is specifically expressed in cartilage 

tissues during mouse embryonic development (Tuddenham et al. 2006). Importantly, 

Miyaki et al and then Nakamura et al reported that universal knockout of miR-140 lead to 

mild dwarfism, probably as a result of impaired chondrocyte proliferation (Miyaki et al. 

2010, Nakamura et al. 2011). Recently, Swingler et al found that miR-455-3p was 

expressed in developing long bones during chick development, restricted to cartilage and 

perichondrium, and in mouse embryos, where expression was selective in long bones and 

joints (Swingler et al. 2011). 

These studies emphasize the importance of the miRNA pathway in skeletal development 

and revealed that some miRNAs are expressed with precise tissue and developmental stage 

specificity. Intensive research will uncover a complete spectrum of skeletally associated 

miRNAs as well as elucidate their biological function.  
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Figure 1.7: An overview of miRNAs involved in chondrogenesis, osteoarthritis and 

their direct and indirect targets                                                                                                                                                                                   
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1.3.3. MicroRNAs in mechanotransduction  

Articular cartilage has the unique capacity to resist significant mechanical loading during 

the lifetime of the organism (Guilak et al. 2001). The surface, middle and deep zones 

within articular cartilage are distinct domains, and they exhibit differential gene expression 

and attendant functional roles (Neu et al. 2007).  

Mechano-responsive miRNAs are being identified in chondrocytes, the sole cell type of 

articular cartilage and evidence that specific miRNAs may impact on stress-related 

articular cartilage mechanotransduction has also been reported.  MicroRNA-365 was the 

first identified mechanically responsive miRNA in chondrocytes, regulating chondrocyte 

differentiation through inhibiting HDAC4 (Guan et al. 2011). MicroRNA-221, miR-222 

were postulated as potential regulators of the articular cartilage mechanotransduction 

pathway, since their expression patterns in bovine articular cartilage are higher in the 

weight-bearing anterior medial condyle as compared with the posterior non-weight-bearing 

medial condyle (Dunn et al. 2009). Recently, Li et al. reported that miR-146a was induced 

by joint instability resulting from medial collateral ligament transection and medial 

meniscal tear in the knee joints of an OA mouse model, suggesting that miR-146a might 

be a regulatory factor of the mechanical transduction process in articular cartilage (Li et al. 

2012). All of these studies are useful for enriching the data on the regulatory mechanism 

for miRNAs in chondrocyte homeostasis. 

1.3.4. MicroRNAs in chondrogenesis  

Differential disruption of the Dicer gene in mice resulting in highly abnormal cartilage 

development suggests miRNAs play a significant role in chondrogenic differentiation. 

Furthermore, many studies profiled the expression of miRNAs to investigate their function 

in differentiating MSCs and showed that once they differentiate into chondrocytes, 

miRNA expression significantly altered (Sorrentino et al. 2008, Suomi et al. 2008, Lin et 

al. 2009, Miyaki et al. 2009, Karlsen et al. 2011, Lin et al. 2011, Yan et al. 2011, Yang et 

al. 2011) (Table1.2). However, there is no consensus expression signature of any miRNAs 

amongst these and we attribute this to the design of experiment including inducers of 

differentiation, cell types, numbers of detected miRNA probes and organism (Table1.2).  
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Table 1.2: Studies performing miRNA profile comparing between MSC and chondrocytes 

 Sorrentino  
et al 
 2007 

Suomi  
et al 
 2008 

Lin  
et al 
 2009 

Miyaki  
et al 
2009 

Yang 
 et al, 
 2010 

Lin  
et al 2011 

Yang  
et al 
2011 

Karlsen  
et al 
 2011 

 

Stimulators - TGF-β3 BMP-2 BMP-2 
TGF-β3 

TGF-β3 - - -  

Cells  BM MSC BM MSC C12C2 BM 
MSC 

BM 
MSC 

DAC BM MSC 
AC 

DAC  

Organisms Human  Mice  - Human Mice Human  Mice Human  
Probes 226  35 - - 7,815 - - 875  
Cutoff(fold) 1.3 - 1.5 1.5  5  4 - -  
Platform microarray qPCR microarray microarray microarray microarray microarray microarray  
miRNAs 
up- 
regulated 

31 
32 
136 
146 
149 
185 
Pre-mir 
192 
199a-2-5 
204 
212 
Pre-mir-212 
Pre-miR- 
214 

24  
101 
124a  
199b 
199a 

199* 
221  
298  
374  
let-7e  
 

15b 
16 
23b  
27b 
140 
148 
197  
222 
328  
505  
 

30a 
81a-1 
99a 
125* 
127 
140 
140* 
Let-7f 
 

26a 
140*  
140  
222 
320a  
320d 
491*  
547-5p 
720 
1308 
let-7d  
let-7f  
let-7a  
 
 

21  
22 
27b 
27a 
140 
140*  
152  
291b* 
 330  
431  
433 
455 
let-7b  
let-7d 
let-7l  

30d  
140*  
210 
451  
563  
 

 

miRNAs 
down 
-regulated 

10a 
10b  
21 
23a 
24-1-3p 
24-2 
26b 
29b 
30a-5p 
34 
100 
103-2 
107 
130a 
138-1 
Pre-miR- 
143 
145 
181a-1 
191-5p 
let-7a-1 
let-7a-2 
let-7a-3 
let-7c 
let-7d 

18 
96 

21 
125a  
125b 
143 
145 
210 
 

 125b* 
132 
143 
145 
212 
 

18a 
27a  
146a 
193b  
220b  
342-5p 
335 
365 
519e 
548e  
1248  
1284  
 

1 
23a 
23b 
24  
26b 
99a  
99b 
99b*  
125a-5p  
143 
144 
145 
146a 
181a  
181d 
191 
199a  
199a* 
210  
320 
355-5p 
431 
503 
652 
Let-7a  
Let-7c 
Let-7g 
Let-7f 

15b 
31  
132 
138 
143  
145  
221  
222  
379  
382 
432  
494  
654* 
1308 
let-7e  
 

 

AC: Articular chondrocytes; BM MSC: Bone marrow mesenchymal cells; DAC: 
dedifferentiated articular chondrocytes.  
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The regulation of chondrogenesis of murine MSCs in response to stimulation of TGF-β3 

was investigated (Suomi et al. 2008, Yang et al. 2011) (Table1.2).  Suomi et al compared 

the expression of 35 miRNAs in chondroblasts derived from MSCs, and found that miR-

199a, miR-124a were strongly up-regulated while miR-96 was substantially suppressed 

(Suomi et al. 2008). They demonstrated how miRNAs and transcription factors could be 

capable of fine-tuning cellular differentiation by showing that miR-199a, miR-124a, miR-

96 could target HIF-α, RFX1, Sox5, respectively (Suomi et al. 2008). Similarly, Yang et 

al , revealed eight significantly up-regulated and five down-regulated miRNAs (Yang et al. 

2011) in this process. The miRNA clusters, miR-143/145 and miR-132/212 were down-

regulated, with miR-132 the most down-regulated whilst miR-140* was the most up-

regulated (Yang et al. 2011). Similar expression patterns of miR-145, miR-143 were also 

described in other studies (Lin et al. 2009, Karlsen et al. 2011, Lin et al. 2011, Yan et al. 

2011).  Corresponding targets of these differentially expressed miRNAs were predicted 

including: ADAMTS5 (miR-140*), ACVR1B (miR143/145), SMAD family members: 

SMAD1 (miR-30a), SMAD2 (miR-132/212), SMAD3 and SMAD5 (miR-145), Sox 

family members: Sox9 (miR-145); Sox6 (miR-143, miR-132/212), Runx2 (miR-30a and 

miR-140*) (Yang et al. 2011).  

Further study has confirmed miR-145 as a key mediator which antagonizes early 

chondrogenic differentiation in mice via attenuating Sox9 at post-transcriptional level. 

(Yang et al. 2011).  Interestingly, cells over-expressing miR-145 significantly decreased 

the expression of chondrogenic markers at the mRNA level including Col2a1, Agc1, 

COMP, Col9a2 and Col11a1. Consistent with this,, Martinez-Sanchez et al. reported miR-

145 as a direct regulator of Sox9 in normal human articular chondrocytes though binding 

to a specific site in its 3’UTR, which is not conserved in mice (Martinez-Sanchez et al. 

2012). Similarly, over-expression of miR-145 in articular cartilage chondrocytes reduced 

the levels of Sox9, the cartilage matrix components Col2a1 and Agc1 in combination with 

a significant increase of the hypertrophic markers Runx2 and MMP-13 (Martinez-Sanchez 

et al. 2012)  (Figure 1.7). 

This group also reported that miR-675, processed from H19, a non-coding RNA, was 

tightly regulated by Sox9 during chondrocyte differentiation. MicroRNA-675 could up-

regulate expression of Col2a1, albeit indirectly, indicating its potential importance in 
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maintaining cartilage integrity and homeostasis. Forced over-expression of miR-675  

rescued Col2a1 mRNA levels in either Sox9- or H19-depleted primary human articular 

chondrocytes (Dudek et al. 2010). Although its target mRNAs remain unknown, these data 

suggest that miR-675 may modulate cartilage homeostasis by suppressing a Col2a1 

transcriptional repressor (Dudek et al. 2010) (Figure 1.7). Moreover, by performing 

miRNA expression profile during human primary chondrocyte dedifferentiation, Martinez-

Sanchez found that 29 miRNAs were up-regulated more than two-fold and 18 miRNAs 

were down-regulated. Among these up-regulated miRNAs, miR-1247, transcribed from 

the DLK1-DIO3 locus, was of particular interest as its expression pattern still increased 

under hypoxia condition, together with miR-140. Also, miR-1247 level was found to 

correlate with cartilage-associated miR-675 across a range of 15 different mouse tissues 

(Martinez-Sanchez et al. 2013). Interestingly, SOX9, directly target of miR-1247 via 

coding sequence, inhibit this miRNA expression, suggesting a negative feedback loop 

between miR-1247 and its target SOX9 (Martinez-Sanchez and Murphy 2013).  

Another study performed miRNA profiling to find expression signatures of nearly 380 

miRNAs in C2C12 cells induced by BMP-2 for 24 hours and found  that 5 miRNAs 

including miR-199a* and miR-221 were positively regulated while miR-125a, miR-210, 

miR-125b, miR-21, miR-145, miR-143 were repressed (Lin et al. 2009).  Interestingly, 

using C3H10T1/2 cells, a well-established in vitro cell model of chondrogenesis, showed 

that miR-199a* expression was reduced significantly within several hours following BMP-

2 treatment and then rose dramatically at 24 hours and remained higher thereafter, 

indicating that miR-199a* may function as a suppressor of the early steps of chondrogenic 

differentiation (Lin et al. 2009). Indeed, enforced miR-199a* expression in C3H10T1/2 

cells or in the prechondrogenic cell line ATDC5, suppresses multiple markers of early 

chondrogenesis, including Col2a1 and COMP, whereas the antagomir blocking miR-199a* 

function has the opposite stimulatory effect (Lin et al. 2009). Consistent with these 

observations, Smad1, a positive downstream mediator of BMP-2 signalling, was shown to 

be a direct miR-199a* target. Moreover, miR-199a*, through its inhibition of the Smad 

pathway, is able to inhibit the expression of downstream genes such as p204 (Lin et al. 

2009) (Figure 1.7). 

The change in expression pattern of miRNAs across the dedifferentiation of chondrocytes 

also, adds to our understanding of the biology of in vitro human chondrogenesis (Karlsen 
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et al. 2011, Lin et al. 2011). MicroRNA-451, miR-140-3p, miR-210, miR-30d, and miR-

563 were reported to be highly expressed on human primary articular chondrocytes at early 

passage compared with their dedifferentiated counterparts, suggesting their role as 

inhibitors of differentiation in vitro (Lin et al. 2011). Of these miRNAs, miR-140-3p had 

the highest expression. Conversely, 16 miRNAs were significantly up-regulated in 

dedifferentiated articular chondrocytes, reflecting their potential as modulators of the 

chondrogenenic process. Notably, miR-143, miR-145 also had similar expression patterns 

as previously reported (Lin et al. 2011). A second study also reported a group of 5 

miRNAs:  miR-451, miR140-3p, miR-210, miR-30d, and miR-563 upregulated on 

differentiation which may inhibit molecules participating in the dedifferentiation process 

whilst a further 16 miRNAs were downregulated and may potentially act conversely.  

Recently, performing miRNA profiling across ATDC5 cell induced differentiation within 

42 days to identify miRNAs with functions in cartilage development, we identified 7 

cluster groups of miRNAs which may function cooperatively (Swingler et al. 2011). 

Among these, 39 miRNAs were found potentially co-regulated with miR-140 with 

expression increase during chondrogenic process (Swingler et al. 2011). Especially 

interesting is miR-455, located in an intron of the protein coding gene Col27a1, a 

cartilage-expressed collagen, which showed similar expression kinetics to collagen XXVII 

and to miR-140.  Consistent with role for miR-140 in modulating TGFβ signalling, miR-

455-3p was also found to directly target Smad2, ACVR2B and CHRDL1, again potentially 

attenuating the TGFβ pathway (Swingler et al. 2011) (Figure 1.7). 

MicroRNA-140 shows a generally consistent expression pattern between studies.  Indeed, 

cartilage miRNA research to date has focused heavily on miR-140 and has successfully 

shown the key roles of miR-140 in chondrocyte proliferation and differentiation. Miyaki et 

al compared gene expression profiling using miRNA microarrays and quantitative 

polymerase chain reaction in human articular chondrocytes and human mesenchymal stem 

cells. They demonstrated that miR-140 had the largest difference in expression between 

chondrocytes and MSCs (Miyaki et al. 2009), and this is in agreement with latter 

publications in human, rat and mice (Karlsen et al. 2011, Lin et al. 2011, Yan et al. 2011, 

Yang et al. 2011).  MicroRNA-140 was first shown to target Hdac4, a known co-repressor 

of Runx2 and MEF2C transcription factors essential for chondrocyte hypertrophy and bone 
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development (Tuddenham et al. 2006).  miR-140 also targets Cxcl12 (Nicolas et al. 2008) 

and Smad3 (Pais et al. 2010), both of which are implicated in chondrocyte differentiation. 

Interestingly, miR-140 is reported to suppress Dnpep, an aspartyl aminopeptidase, which 

has been suggested to antagonize BMP signalling downstream of Smad activation 

(Nakamura et al. 2011). Moreover, Sox9 a major transcription factor in maintaining 

cellular phenotype and preventing hypertrophy, particularly with L-Sox5 and Sox6, 

(Yamashita et al. 2012), is shown to control the expression of miR-140 (Yang et al. 2011, 

Nakamura et al. 2012).  

The miR-194 is a key mediator during chondrogenic differentiation via suppression of the 

transcription factor Sox5 (Xu et al. 2012). The expression of miR-194 was significantly 

decreased in chondrogenic differentiation of adipose-derived stem cells (ASCs). 

Importantly, chondrogenic differentiation of ASCs could be achieved through controlling 

miR-194 expression (Xu et al. 2012) (Figure 1.7). 

Using three rat models e.g. bone matrix gelatin-induced endochondral ossification, 

collagen-induced arthritis and pristane-induced arthritis, Zhong et al. further demonstrated 

that miR-337 was directly implicated with chondrogenesis. miR-337 acted as a repressor 

for TGFBR2 expression at the protein level (Zhong et al. 2012). Moreover, aggrecan was 

differentially expressed in both gain- or loss-of function of miR-337 experiments,  

providing evidence that miR-337 could influence cartilage specific gene expression in 

chondrocytes (Zhong et al. 2012) (Figure 1.7). 

Kim et al. used chick as a model of chondrogenesis and focused on initiation, namely 

precartilage condensation, proliferation and migration. They reported that miR-221 and 

miR-34a, induced by c-Jun N-terminal kinase (JNK) signaling, played pivotal roles (Kim 

et al. 2010, Kim et al. 2011). Treatment of chick wing bud MSCs with a JNK inhibitor 

lead to the suppression of cell migration and stimulation of apoptosis with concurrent 

significant increase in expression of miR-221 and miR-34a (Kim et al. 2010, Kim et al. 

2011). Notably, miR-221 may be involved in apoptosis, since treatment of MSCs with a 

miR-221 inhibitor increased cell proliferation and this could be rescued by the JNK 

inhibitor (Kim et al. 2010).  MicroRNA-221 is reported to directly target Mdm2, which 

encodes for an oncoprotein with E3 ubiquitin ligase activity (Kim et al. 2010). Inhibition 

of Mdm2 expression via miR-221 suppresses ubiquitination leading to accumulation of 
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Slug protein, whose expression is associated with an increase in apoptosis (Kim et al. 

2010). Conversely, miR-34a affects MSC migration, not proliferation (Kim et al. 2011). 

EphA5, a receptor in Eph/Ephrin signaling which mediates cell-to-cell interaction, has 

been proven to be a miR-34a target (Kim et al. 2011). Moreover, via regulating 

RhoA/Rac1 cross-talk, miR-34a negatively modulated reorganization of the actin 

cytoskeleton (Kim et al. 2012), one of the essential processes for establishing chondrocyte-

specific morphology. MicroRNA-488 expression is up-regulated at the pre-condensation 

stage and then down-regulated at the post-condensation stage in chick limb chondrogenesis, 

suggested a key role in this process (Song et al. 2011). Interestingly, mir-488 could 

regulate cell–to-ECM interaction via modulation of focal adhesion activity by indirectly 

targeting MMP-2 (Song et al. 2011). More recently, this group reported that miR-142-3p 

was an important modulator in position-dependent chondrogenesis and was reported to 

regulate ADAM9 (Kim et al. 2011) (Figure 1.7). 

1.3.5.  MicroRNAs in osteoarthritis 

The effects of miRNA deregulation on OA are evident through studies comparing the 

expression of miRNAs between OA tissues and their normal articular counterparts 

(Iliopoulos et al. 2008, Jones et al. 2009). Illopoulos et al. tested the expression of 365 

miRNAs and identified a signature of 16 miRNAs, with 9 miRNAs significantly 

upregulated and 7 miRNAs downregulated in OA cartilage compared with normal controls. 

Some of these were postulated to  be involved in obesity and inflammation (Iliopoulos et al. 

2008). Interestingly, functional experiments implicated miR-9 in the regulation of MMP13 

expression, as well as miR-9, miR-98 and miR-146 in the control of TNF-α expression, 

suggesting that these miRNAs may play a protective role in OA. Moreover, miR-22, 

whose expression correlated with body mass index, directly targets PPARA and BMP-7 at 

the mRNA and protein levels, respectively. Enforced miR-22 overexpression or siRNA-

mediated suppression of either PPARA or BMP-7 resulted in increases in IL-1β and 

MMP-13 protein levels, again suggesting that miRNA deregulation can have effects on 

OA (Iliopoulos et al. 2008) (Figure 1.7).  

Additionally, Jones et al. investigated the expression of 157 human miRNAs and identified 

17 miRNAs whose expression varied by 4-fold or more when comparing normal versus 
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late-stage OA cartilage (Jones et al. 2009). Consistent with the Illopoulos data, the altered 

expression of miR-9, miR-98 and miR-146 in OA cartilage are highlighted. The over-

expression of these miRNAs also reduced IL-1β-induced TNF-α production, whilst 

inhibition or over-expression of miR-9 modulated MMP-13 secretion (Jones et al. 2009) 

(Figure 1.7). 

The miR-140 gene, located in an intron of the E3 ubiquitin protein ligase gene Wwp2 on 

murine chromosome 8 and the small arm of chromosome 16 in humans, is evolutionarily 

conserved among vertebrates. MicroRNA-140 expression in the cartilage of patients with 

OA was significantly lower than in normal cartilage (Miyaki et al. 2009, Tardif et al. 2009) 

and decreased miR-140 expression was reported also in OA chondrocytes  (Tardif et al. 

2009).                                                                                                                                                                                                                                         

Deletion of miR-140 in mice predisposes to the development of age-related OA-like 

changes (Miyaki et al. 2010, Nakamura et al. 2011) and gives a significant increase in 

cartilage destruction in surgically induced OA. Conversely, in an antigen-induced arthritis 

model, transgenic over-expression of miR-140 in chondrocytes protects against cartilage 

damage (Miyaki et al. 2010).  The ADAMTS5 gene has been shown to be a direct target of 

miR-140, whilst reciprocal regulation of ADAMTS5 in the in vivo models above suggests 

that suppression of OA may involve regulation of ADAMTS5 (Miyaki et al. 2010). 

Swingler et al. show that miR-140 is increased in expression in hip OA cartilage compared 

to fracture controls (Swingler et al. 2011), but ADAMTS5 expression is decreased in the 

former samples.  As above, Nakamura et al. identified the aspartyl aminopeptidase Dnpep 

as a key target for miR-140 essential for skeletal defects in miR-140 null mice (Nakamura 

et al. 2011).  Using functional interference, Tardif et al. confirmed IGFBP-5, whose 

expression in human chondrocytes was significantly higher in OA, as a direct target of 

miR-140 (Tardif et al. 2009). More recently, miR-140 was shown to directly mediate 

MMP13 expression in vitro by luciferase reporter assay (Liang et al. 2012) (Figure 1.7). 

The human genome contains two miR-27 genes [mir-27a and miR-27b] on chromosomes 

19 and 9, respectively, and their major products differ by only 1 nucleotide in the 3’ region. 

MicroRNA-27a expression was shown to be decreased in OA compared to normal 

chondrocytes (Tardif et al. 2009). Down-regulation of miR-27a was proposed to be 

connected with adipose tissue dysregulation in obesity, a strong risk factor for OA. Tardif 



 

 

57 

 

et al. suggested that miR-27a may indirectly regulate the levels of both MMP-13 and 

IGFBP-5 by targeting upstream positive effectors of both genes (Tardif et al. 2009).  

Conversely, expression miR-27b was found to be significantly lower in OA cartilage 

samples compared with normal counterparts where it inversely correlated with MMP13, a 

direct target (Akhtar et al. 2010). This points to the possibility of novel avenues for OA 

therapeutic strategies (Figure 1.7).  

MicroRNA-146a was strongly expressed in chondrocytes residing in the superficial layer 

of cartilage and in low-grade OA cartilage (Yamasaki et al. 2009, Li et al. 2012). Its 

expression level gradually decreased with progressive tissue degeneration. Interestingly, 

when miR-146 was highly expressed, the expression of MMP13 is low, suggesting that 

miR-146a has target genes that play a role in OA cartilage pathogenesis (Yamasaki et al. 

2009). MicroRNA-146a has recently been implicated in the control of knee joint 

homeostasis and OA-associated algesia by balancing the inflammatory response in 

cartilage and synovium with pain-related factors in glial cells (Li et al. 2011). As such, it 

may be useful for the treatment of both cartilage regeneration and the pain symptoms 

caused by OA (Figure 1.7). 

Park et al reported the miR-127-5p, an important mediator in OA whose expression was 

significant decreased in OA articular cartilage compared to the control counterpart, 

directly target MMP13. Noteworthy, pre-treatment with MAPK inhibitors and NFκβ 

inhibitor attenuated the inhibitory effects of IL-1 on miR-127-5p expression while 

overexpression of miR-127-5p significantly inhibited the phosphorylation of JNK, p38 and 

Iκβα in the human chondrocytes. These data suggest a reciprocal regulatory loop between 

NFκβ, MAP kinase, and IL-1β in controlling MMP13 expression  (Park et al. 2013).  

1.3.6.  MicroRNAs in inflammation 

Some miRNAs could be of importance in the inflammatory events of osteoarthritis. 

MicroRNA-140 was suppressed by IL-1β signaling, and transfection of human 

chondrocytes with miR-140 downregulated IL-1β driven induction of ADAMTS5 (Miyaki 

et al. 2009).  However, contrary to this, Liang et al. reported that expression of miR-140 
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and MMP-13 was elevated in IL-1β-stimulated C28/I2 and expression of miR-140 was 

shown to be NF-κB-dependent (Liang et al. 2012) (Figure 1.7). 

Expression of miR-34a was significantly induced by IL-1β while antagonism of miR-34a 

prevented IL-1β-induced chondrocyte apoptosis (Abouheif et al. 2010), as well as IL-1β-

induced down regulation of type II collagen in rat chondrocytes (Abouheif et al. 2010).  

Other relevant miRNAs reported to be induced by IL-1β are miR-146a (Yamasaki et al. 

2009, Li et al. 2012), miR-34a (Abouheif et al. 2010), miR-194  (Xu et al. 2012), miR-27b 

(Akhtar et al. 2010)  (Figure 1.7). 

1.3.7. Utility of microRNAs for diagnosis  

It is evident that miRNAs in serum may become a powerful tool in the development of 

diagnostic biomarkers. MicroRNAs are relatively stable with enzymatic, freezing, thawing 

or extreme pH conditions (Mitchell et al. 2008, Link et al. 2010) due to lipid or lipoprotein 

complexes (Esau et al. 2006). Moreover, extracellular miRNAs are detectable in almost all 

body fluids and excretions including urine, faeces, saliva, tears, ascetic, pleural and 

amniotic fluid (Chen et al. 2008, Gilad et al. 2008). Interestingly, miRNAs in plasma have 

the capacity to interact with intact cells with some degree of specificity, and modify 

recipient cell gene expression and protein production via a miRNA-related mechanism 

(Arroyo et al. 2011). This opens up the possibility of genetic exchange between cells and 

the exogenous regulation of gene expression.  MicroRNA-21 was the first serum miRNA 

biomarker to be discovered: patients with diffuse large B cell lymphoma had high serum 

levels of miR-21, which was associated with increased relapse-free survival (Lawrie et al. 

2008). Subsequently, the usefulness of serum miRNAs for diagnosis and prognosis has 

been reported for solid cancers and leukemia (Ferracin et al. 2010, Kosaka et al. 2010, 

Wittmann et al. 2010). For OA,  Murata et al. examined the potential of miRNA as 

diagnostic biomarkers and found a number of miRNA in plasma some of which were 

found at different levels between RA and OA patients (Murata et al. 2010). Recently, let-

7e, miR-454, miR-886 were identified differentially expressed crilculating miRNAs in OA 

patient necessitating arthroplasty in a large, population – based cohort. Especially, let – 7e 

emerged as potential predictor for severe knee or hip OA (Beyer et al. 2014). 
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Besides the measurement of miRNAs in plasma, PBMCs could also be useful in 

developing a biomarker for OA. Circulating PBMCs such as macrophages and T cells 

accumulate in the synovium of OA patients, producing proinflammatory cytokines and 

proteinases associated with synovitis, linked to the early stages of OA progression.  It has 

been demonstrated that the high expression of miR-146a, miR-155, miR-181a and miR-

223 in PBMCs from OA patients versus normal controls may be related to the 

pathogenesis of OA (Okuhara et al. 2011). Interestingly, miR-146 and miR-223 are highly 

expressed in early-stage OA (Yamasaki et al. 2009), with expression gradually decreasing 

with OA progression with the promise for diagnosis of early OA is specificity can be 

demonstrated. 

Taken together, there is growing evidence for future miRNA-based diagnostics.  However, 

there is a requirement for detailed investigations directed at diagnostic performance 

(sensitivity, specificity, accuracy) of these promising novel biomarkers before the 

measurement of miRNAs can enter the clinic.  

1.3.8.  Utility of microRNAs in therapeutic treatment 

Currently there is no disease-modifying therapeutics available for patients suffering from 

OA. Therapeutic options are limited to oral and intra-articularly injected analgesic 

medications, and joint replacement surgery (Wieland et al. 2005). OA patients often 

present with cartilage that already exhibits a damaged matrix, and in which 

repair/regeneration is. Although cartilage seems a relatively simple tissue type to engineer 

because of its single cell type and its lack of a blood, nerve or lymph system, regenerating 

cartilage in a form that can function effectively after implantation has proven difficult. 

Several approaches are currently being investigated to utilize a miRNA-based therapy to 

overcome these problems, and these may represent a novel therapeutic application for 

pharmacological control. Currently there are over 70 clinical trials worldwide based on 

miRNA manipulation to treat a range of conditions including various cancers and 

cardiovascular disease; however, none of these to date are for arthritis. 

The targeting of miRNAs represents a novel therapeutic opportunity for OA treatment in 

which miRNA deficiencies could be corrected by either antagonizing (antagomirs) or 



60 

 

restoring (mimics) miRNA function.  Poorly expressed miRNAs could be restored by over 

expression using stable vector transfection or transfection by double-stranded miRNA, 

whilst over-expressed miRNAs could be antagonized by modified DNA oligonucleotides. 

Particularly, it has been proven that the systematic administration of antagonist miRNAs 

modified with locked nucleic acids (LNA) could function without toxicity in non-human 

primates (Elmen et al. 2008). Evidence on efficacy was also demonstrated in mouse 

models using miR-122 antisense oligonucleotides, which resulted in a decrease in hepatic 

fatty acid and cholesterol synthesis (Esau et al. 2006). In man, when miR-143/miR-145 

activity was restored in pancreatic cancer cells (in which their levels were repressed), the 

cell was no longer tumourigenic (Kent et al. 2010). Although this type of therapy has not 

been applied in OA, there is very promising evidence for therapeutic potential, e.g. the 

silencing of miR-34a by LNA-modified antisense oligonucleotides could effectively 

reduce rat chondrocyte apoptosis induced by IL-1β (Kongcharoensombat et al. 2010). This 

study revealed that silencing of miR-34a might be a novel intervention for OA treatment if 

this could be appropriately targeted.  

Another approach is to combine miRNA technology with stem cell engineering. In vivo 

MSCs participate in chondrogenesis. MSCs can be conveniently obtained with less injury 

than primary cells and manipulated in vitro and hence they are promising cells in cartilage 

regeneration. At present, autologous MSCs have been transplanted in human injured or 

osteoarthritis knees for repair of articular cartilage defects.  However, unexpected results 

from the ectopic transplantation of MSCs also have been reported, such as hypertrophy, 

mineralization, and vascularisation. Deciphering the role of miRNA regulation in the 

chondrogenesis of MSCs may open a new era of research and pave the way for the 

development of new treatments for OA  

A growing body of evidence indicates that miRNAs convey a novel and efficient way for 

the regulation of gene expression, being involved in multiple aspects of cellular processes. 

Understanding their expression profile and dynamic regulation may be the key to 

enhancing chondrogenic differentiation, or maintaining phenotype in the treatment of OA. 

Recent advances in miRNA research have provided new perspectives on the regulation of 

OA and novel insight into the potential development of therapeutic treatments. Using 

miRNAs as therapeutic targets may well become a powerful tool in the development of 



 

 

61 

 

new therapeutic approaches. However, numerous questions including potential off-target 

effects and efficient and targeted delivery in vivo need to be solved before using miRNAs 

in therapeutics  
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SCOPE OF THE THESIS 
 

OA is the most prevalent degenerative joint pathology leading to considerable problems 

with disability and pain in a huge number of people, especially the elderly population. As 

the population ages and with increased life expectancy, the burden of osteoarthritis will 

continue to rise. However, there is currently a lack of biomarkers and sensitive techniques 

for identifying and assessing patients with early changes. Also, clinical treatment for OA 

still remains unsatisfactory. Thus, deepening our understanding and gain further insights 

into the molecular mechanisms in OA would be very important for long term purpose of 

diagnosis and therapeutic treatment.  

Several hundred miRNAs have been identified so far and initial studies have linked 

specific miRNAs to OA. However, there are no key miRNAs identified so far which 

functionally impact on early human OA onset and disease progression. Thus, I undertook 

this project to identify miRNAs mediating initiation and progression of OA and dissect 

their biological function in order to identify new signalling pathways involved in the 

pathogenesis of OA. The hypothesis and specific aims of the project were: 

Hypothesis: The dysregulated expression of specific microRNAs contributes to the onset 

or progression of OA. 

 Specific aim 1: Profile miRNA and mRNA expressions in whole knee joint in DMM 

model to identify the potential miRNAs involved in the early stage of OA  

Specific aim 2: Determine the involvement of the miRNA in human end stage OA 

cartilage, in murine injury model, in chondrogenesis.  

Specific aim 3: Identify factors control the miRNA expression in articular cartilage 

Specific aim 4: Identify miRNA direct targets to identify new signaling pathways 

involved in homeostasis of articular cartilage.  
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CHAPTER 2 
MATERIALS AND METHODS 

 

2.1.Materials  

2.1.1. Murine models  

2.1.1.1. Destabilization of the medial meniscus murine model (DMM model) 

Induction of OA by destabilization of the medial meniscus (DMM) was kindly performed 

by Professor Tonia Vincent Kennedy Institute for Rheumatology, Oxford University, U.K. 

Protocols using C57Bl/6 mice were as described previously in (Burleigh et al. 2012, 

Chong et al. 2013).  

Briefly, C57Bl/6 male mice were housed 3-5 per cage in 63x54x30 cm3 standard 

individually vented cages and maintained with a 12h/12h light/dark cycle at an ambient 

temperature of 21oC. Mice were fed a certified mouse diet (RM3 from Special Dietary 

Systems, Essex, UK) and water ad libitum. 10 week old mice were anaesthetized by intra-

peritoneal injection of a 1:1:2 mixture of Hypnorm (0.315mg/ml fentanyl citrate and 

10mg/ml fluanisone; VetaPharma Ltd, Leeds, UK), Hypnovol (5mg/ml midazolam; 

Roche), and sterile water for injection, at a dose of 10ml/kg body weight. The ventral 

portion of the right knee was shaved and swabbed with iodine to prepare a sterile surgical 

field. The medial meniscus was identified and the attachment of its anterior horn to the 

tibial plateau was cut. Care was taken to avoid injury to the anterior cruciate ligament and 

the cartilage surfaces. The mice were fully mobile within 2-4 hours after surgery. After 1, 

3, 7 days after surgery, the mice were culled and knees harvested. 

2.1.1.2. Murine hip avulsion injury model  

The femoral caps of C57Bl/6 mice ages 4 weeks were avulsed using forceps as described 

in (Chong et al. 2013). After washing three times with sterile phosphate-buffered saline 

(PBS) (Life Technologies, 10010023), the femoral caps were immediately put in either 

500µl Trizol® reagent (Invitrogen, 15569-026) (for time point 0) or in 24-well plate for 

(other time points e.g. 3, 6, 12, 48 hours). 200µl of Dulbecco’s modified Eagle’s medium 

(DMEM) (Life Technologies, 10566-016) containing 100 IU/ml penicillin and 100µg/ml 
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streptomycin (Sigma, P4333) was added to each well and the plate was incubated at 37oC 

in 5% (v/v) CO2.  At the desired time points, the femoral caps were harvested (with Trizol 

reagent) and total RNA was isolated.   

2.1.2. Human end stage OA specimens and normal counterparts  

Ethical Committee approval for using discarded human tissue was received prior to the 

initiation of the studies. Full informed consent was obtained from all donors. Human 

articular cartilage was obtained from patients undergoing total hip/ knee replacement 

surgery at the Norfolk and Norwich University Hospital. In total, 8 hip and 7 knee OA 

cartilage samples were collected. 7 healthy articular cartilages were harvested from total 

hip replacement following fracture to the neck of femur. None of the healthy individuals 

had a clinical history of arthritis or other diseases affecting cartilage, no macroscopic 

lesions to the cartilage were seen.  

2.1.3. Cell lines  

All cell lines were maintained in DMEM high glucose, GlutaMAX supplement (Life 

Technologies, 10566-016) containing 10% (v/v) heat-inactivated fetal bovine serum (FCS) 

(PAA, UK), 100U/ml penicillin, and 100µg/ml streptomycin (Sigma, P4333) at 37oC in 5% 

(v/v) CO2.  

2.1.3.1.  Chondrosarcoma SW1353  

The SW1353 cell line was initiated from a primary grade II chondrosarcoma of the right 

humerus obtained from a 72 year old female Caucasian. SW1353 cells were purchased 

from the American Type Culture Collection (ATCC) (no.HTB-94).   

2.1.3.2.  Chicken dermal fibroblasts DF1 

DF-1 is a spontaneously immortalized chicken fibroblast cell line without viral or chemical 

treatment derived from 10 day old East Lansing Line (ELL-0) embryo.  DF1 was a kind 

gift from Professor Andrea Munsterberg, University of East Anglia, U.K.  

2.1.3.3.  Dicer knockdown cell lines 
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DLD-1 Parental and DLD-1 Dicer null cell lines were a kind gift from Professor Tamas 

Dalmay, University of East Anglia, U.K. These cell lines were originally purchased from 

Horizon Discovery (Cambridge, U.K.). Both cell lines were originally isolated from a 

colorectal adenocarcinoma.  
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2.2.Methods  

2.2.1. Molecular biology- based methods 

2.2.2.2. Human genomic DNA isolation 

Buffer 

Extraction Buffer: 10mM Tris-HCl pH 8 (Fisher Scientific, BP152-500), 5mM NaCl 

(Fisher Scientific, BP3581), 0.5% (w/v) SDS (Fisher Scientific, 10356463). 

DNA extraction protocol 

Human chondrosarcoma SW1353 cells were harvested from a 75cm2 flask by trypsin-

EDTA treatment (Life Technologies, 25200072) and pelleted by centrifugation at 17.3xg, 

5 minutes.  

The cell pellet was mixed well with 100µl nuclease-free water (Sigma, W4502), 400µl 

extraction buffer, 10µl Proteinase K (20mg/ml) (Sigma, P6556) and incubated at 50oC, 2 

hours.  

500µl of PCI (phenol: chloroform: isoamyl alcohol 25:24:1) (Sigma, P2069) was added, 

mixed gently and centrifuged, 10 minutes at 130,000xg. 

 The top phase was transferred to a new tube, 1 ml of chloroform (Sigma, 288306) was 

added and after vortex, the mixture was again centrifuged at 130,000xg for 10 minutes.  

The upper phase was transferred to a new tube and two volumes of 100% (v/v) ethanol 

(Sigma, 459844) were added, followed by centrifugation at 130,000xg for 5 minutes. 

 The DNA pellet was washed with 700µl of 70% (v/v) ethanol, and then centrifuged at 

130,000xg for 1 minute. Discard the ethanol. 

Finally, the pellet was dried at room temperature and dissolved in 100µl of nuclease-free 

water (Sigma, W4502). 

2.2.2.3. PCR amplification for 3’UTR regions 
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3’UTR regions of all genes including ADAMTS6, ADAMTS14, ADAMTS17, ADAMTS19, 

FZD3, FZD5, DVL3, FRAT2, and CK2A2 were downloaded from the Ensembl Genome 

Browser: http://www.ensembl.org/index.html. Primers were specifically designed to 

amplify a 1-2 kb region of 3’UTR of these genes including the miR-29 family binding 

sites. A restriction site of SacI (5’GAGCTC3’), XbaI (5’TCTAGA3’) or SalI 

(5’GTCGAC3’) are added to the 5’ end of each primer. Primer sequences are listed in 

Appendix, Table 1. 

 All 3’UTR regions were amplified from human genomic DNA, isolated from the SW1353 

cell line. 100ng genomic DNA was added together with 5µl 10X reaction buffer, 5 units 

accuTaqTM LA DNA polymerase (Sigma, D8045), 0.5µl dNTP 10µM (Bioline, BIO-

39044), 1µl forward primer 10µM (Sigma), 1µl reverse primer 10µM (Sigma) in a 50µl 

reaction volume. The reaction was run on a VeritiR 96-well thermal cycler (Applied 

Biosystems, 4375786) at 98oC, 30 seconds to denature DNA and follows by 32 cycles: 10 

seconds at 98oC, 20 seconds at annealing temperature (depending on each primer pair), 1-2 

minutes at 68oC. Finally, the reaction was left 2 minutes at 68oC for final extension.  

The PCR reaction was confirmed by loading 3µl PCR product on 1% (w/v) agarose gels, 

which were prepared by heating 1% (w/v) agarose (Sigma, A9639) in Tris-acetate-EDTA 

(TAE) buffer, and run at 120V. After staining in ethidium bromide solution (Sigma, E1510) 

for 20 minutes, the product was visualized under UV-light. 

2.2.2.4.  Phenol/chloroform clean up  

 Nuclease- free water (Sigma, W4502) was added to a PCR reaction to 200µl, followed by 

200µl of phenol: chloroform: isoamyl alcohol (Sigma, P2069). The reaction was mixed 

well and centrifuged at 130,000xg for 10 minutes. The upper phase was collected to a fresh 

tube and a 2.5 volume of 100% (v/v) ethanol (Sigma, 459844) and 1/10 volume of 5M 

NaOAc (sodium acetate, Sigma, S2889) were added, followed by centrifugation at 

130,000xg for 10 minutes. The DNA pellet was washed with 500µl of 70% (v/v) ethanol 

(Sigma, 459844), and centrifuged at 130,000xg for 10 minutes. Finally, the pellet was 

dried at room temperature for 5 minutes and dissolved in 27µl nuclease- free water (Sigma, 

W4502). 
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2.2.2.5.  Plasmid isolation  

A single colony from LB (Luria Bertani) agar plate supplemented with 100µg/ml 

ampicillin (Sigma, A0166) was inoculated into 5ml of LB broth medium also 

supplemented with 100µg/ml ampicillin incubated at 37°C, 180rpm overnight. The 

bacterial culture was pelleted by centrifugation at maximum speed for 5 minutes. Plasmids 

were isolated using the QIAprep Spin Miniprep Kit (Qiagen, 27104): The pellet was 

resuspended in 250µl of P1 buffer.  250µl of P2 buffer was added to the suspension which 

was then mixed thoroughly by vigorously inverting 4-6 times and incubated at room 

temperature for 5 minutes. After that, 50µl of P3 buffer was added and the mixture was 

inverted until a homogenous suspension containing a white flocculate was formed. The 

bacterial lysate was cleared by centrifugation at 130,000xg, 10 minutes and the supernatant 

was transferred to a spin column. The column was washed two times with 500µl of wash 

buffer. Finally, the plasmid was then eluted with 30µl nuclease free water (Sigma, W4502).  

For preparation of large quantities of plasmid DNA, the QIAGEN Plasmid MIDI Kit was 

used (Qiagen, 12143): A single colony from LB ampicillin agar plate was inoculated into 

100ml of LB medium supplemented with 100µg/ml ampicillin (Sigma, A0166), incubated 

at 37°C, 180rpm overnight and harvested by centrifugation at maximum speed for 10 

minutes at 4°C. The bacterial pellet was resuspended in 4 ml of P1 buffer, followed by 4 

ml of P2 buffer, and the suspension was thoroughly mixed by vigorously inverting the 

sealed tube 4-6 times and incubated at room temperature for 5 minutes. 4 ml of chilled P3 

buffer was added, and the suspension was thoroughly mixed by vigorously inverting 4-6 

times and incubated on ice for 15 min, followed by centrifugation at 130,000xg for 30 

minutes at 4°C. The QIAGEN-tip was equilibrated by applying 3 ml of QBT buffer, and 

the column was allowed to empty by gravity flow. The supernatant (above) was applied to 

the QIAGEN-tip. The QIAGENtip was washed twice with 10ml of wash buffer. The DNA 

was eluted with 5 ml of elution buffer and precipitated by adding 5 ml of room 

temperature 100% (v/v) isopropanol (Sigma, 190764) to the eluted DNA, followed by 

centrifugation immediately at 130,000xg for 10 minutes at 4 °C. The supernatant was 

carefully decanted. The DNA pellet was washed with 2 ml of room temperature 70% (v/v) 

ethanol (Sigma, 459844), followed by centrifugation at 130,000xg for 5 minutes. The 

supernatant was carefully decanted without disturbing the pellet. The pellet was dried for 
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5-10 min. Finally, the plasmid pellet was dissolved in 500µl of nuclease free water and the 

plasmid concentration was determined using a Nanodrop spectrophotometer.  

2.2.2.6.  Digestion  

2µg of plasmid pmiR-Glo or all PCR products after phenol/chloroform clean up was 

incubated with 1µl either SalI (10 units/ µl) (Promega, R6061), SacI (10 units/ µl) 

(Promega, R6051), or XbaI (Promega, R6181) in the recommended buffer in a final 

volume 20µl for 3 hours at 37oC. The digestion reaction was terminated by heating at 75oC 

for 15 minutes.  

After digestion, the 5’ phosphate of plasmid was removed to prevent self-ligating by 

incubating the digestion mix with 1µl Antarctic Phosphatase (5 units/µl) (NEB, M0289S) 

and 3µl Antarctic Phosphatase buffer 10X, in a final volume 30µl.The reaction was carried 

out at 37oC for 15 minutes and followed 5 minutes at 70oC to inactivate the enzyme.  

2.2.2.7.  Gel purification  

The digestion mix was applied to 1% (w/v) SeaKem® LE Agarose (Lonza, 50002). DNA 

fragments were visualized by staining with ethidium bromide (Sigma, E1510). Under UV-

light, the appropriate DNA band was excised from the gel with a clean scalpel and 

transferred into an Eppendorf tube. The Zymoclean Gel DNA Recovery Kit (Zymo 

Research, D4001) was used to purify DNA from the agarose gel. Briefly, 3 volumes of 

ADB were added to each volume of agarose excised from the gel and incubated at 37-55oC 

for 5-10 minutes until the gel slice was completely dissolved. For DNA fragments higher 

than 8kb, 1 addition volume of water was also added to the agarose. The dissolved agarose 

solution was transferred to the Zymo-spin column and centrifuged for 30 seconds at full 

speed. The flow-though was discarded. The column was washed two times with 200µl 

DNA wash buffer and centrifuged at full speed at 30 seconds. The flow-though was 

discarded. DNA was eluted with 13µl nuclease-free water (Sigma, W4502) and quantified 

using a NanoDrop spectrophotometer. 
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2.2.2.8.  Ligation 

Ligation of DNA fragments was performed with a ratio of 1:3 of plasmid DNA: insert. The 

reaction mixture was incubated with 1µl of T4-DNA Ligase (1 unit/µl) (Life Technologies, 

15224-017), 1µl of ligation buffer (10X) in a final volume of 10µl ddH2O. The reaction 

was left at 14oC for 24hours. 

2.2.2.9. Transformation 

To 100µl of competent E.coli DH5α, either 50-100ng of plasmid DNA or 10 µl of ligation 

reaction were added and incubated for 20 minutes on ice. A heat shock at 42°C for 30 

seconds was followed by incubation on ice for another 2 minutes. 500µl of LB medium 

was added to the bacteria and the bacterial suspension was shaken at 37°C and 180rpm for 

60 minutes. The bacteria were then spread on LB-agar plates containing 100µg/ml 

ampicillin (Sigma, A9393). Plates were incubated at 37°C overnight. 

2.2.2.10.  MicroRNA 29 family binding site mutagenesis  

QuikChange II XL site-directed mutagenesis kit (Agilent, 200521) was used to replace 5 

nucleotides in the binding site of the miR-29 family to either XbaI (5’TCTAGA3’), SalI 

(5’GTCGAC3’), SacI (5’GAGCTC3’) depending on which restriction enzymes were used 

in subcloning. The basic procedure utilizes PfuUltra high fidelity (HF) DNA polymerase 

for extending two mutagenic oligonucleotide primers which have desire mutations in the 

middle of their sequences and the rest of the sequence complementary to opposite strands 

of miR-GLO- 3’UTR. After cycling, PfuUltra HF DNA polymerase will generate a 

mutated plasmid containing staggered nicks (Figure 2.1). The product is then treated with 

Dpn I nuclease targeting sequence 5’-Gm6ATC-3’. Dpn I, specific for methylated and 

hemimethylated DNA, will digest the parental DNA template and select for mutant-

containing synthesized DNA. The nicked vector DNA incorporating the desire mutant of 

the miR-29 family binding site is then transformed into XL10 Gold ultracompetent cells 

(Figure 2.1). 
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Mutangenic primers were designed using Agilent’s website: QuikChange primer design 

program: www.agilent.com/genomics/qcpd. The lists of primer mutants used are listed in 

Appendix, Table 2.  
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Figure 2.1: QuikChange II XL site-direct mutagenesis method 

The reaction is prepared in a final volume of 50µl with 10ng of pmiR-Glo-3’UTR, 1.5µl 

primer mutant forward (100ng/µl), 1.5µl primer mutant reverse (100ng/µl), 1µl of dNTP 

mix (10mM), 5µl of reaction buffer (10X), 1µl of PfuUltra HP DNA polymerase (2.5 

units/µl). The reaction is cycled at 1 minute at 95oC, followed by 18 cycles at 95oC 50 

seconds, 68oC 1 minute/1 kb plasmid length, and finally extension at 68oC for 7 minutes. 

The amplification reaction was further incubated with 1µl of DpnI restriction enzyme 

(10units/µl) at 37oC for another 1 hour. To 50µl of XL10-Gold Ultracompetent cells, 5µl 

of Dpn I-treated DNA was added and the transformation protocol followed as above.  

2.2.2.11.   Sequencing  

DNA Sequencing was performed by Source BioScience 

(http://www.lifesciences.sourcebioscience.com/). The sequencing signal was read by 

Chromas 2.4. 

 

 

2.2.2.12.  Total RNA isolation 
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2.2.2.12.1. Total RNA isolation from cultured cells 

500ml of Trizol® reagent (Invitrogen, 15569-026) were added directly to adherent cells 

after removing the growth media from a 6-well plate. The cells were lysed by pipetting up 

and down several times. 250µl chloroform (Sigma, 288306) was added per 500µl Trizol®, 

vortexed for 15 seconds and incubated at room temperature for 10mins. The 

Trizol®/Chloroform mixture was centrifuged at 130,000xg, 10min, at 4oC and the aqueous 

layer recovered into a fresh tube. 500µl of 100% (v/v) isopropanol (Sigma, 190764) was 

added, mixed, left 10min at room temperature and centrifuged at 130,000xg, 10min, at 4oC 

then the supernatant was discarded. RNA pellets were washed with 75% (v/v) ethanol 

(Sigma, 459844), and centrifuged at 130,000xg, 2min, at 4oC. The supernatant was 

discarded, the pellet air dried and then suspended in 50µl RNase-free water and stored at -

80oC until further use. 

2.2.2.12.2. Total RNA isolation from murine whole knee joint 

All materials used were RNase free. Whole knee joints were ground under liquid nitrogen 

using BioPulverizer (Biospec). Trizol® reagent (Invitrogen, 15569-026) were added 

immediately to ground samples (1.5ml/50mg samples) and mixed thoroughly for 5 minutes. 

Ground knee joints were pelleted at 130,000xg for 2min at 4oC and the supernatant 

recovered. 250µl chloroform (Sigma, 288306) was added per 500µl Trizol®, vortexed for 

15 seconds and incubated at room temperature for 10mins. Samples were then treated as 

cultured cells above.  

2.2.2.12.3. Total RNA isolated from murine hip or knee cartilage  

Murine hip femoral caps were fully homogenized with 500µl Trizol® reagent (Invitrogen, 

15569-026) using a disposable pestle. Then, 200µl chloroform (Sigma, 288306) was added, 

vortexed for 15 seconds, and left at room temperature for 10mins. The Trizol®/chloroform 

mixture was centrifuged at 130,000xg for 10 minutes at 4oC, and the aqueous layer 

collected into a fresh tube. The RNA purification step was performed using mirVana™ 

miRNA Isolation Kit (AM1560, Life Technology) according to the manufactures 

recommendation for total RNA recovery. Briefly, 1.25x aqueous layer volume of 100% 

(v/v) RT ethanol was added to the aqueous phase and the samples were loaded onto 
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columns. The flow through was discarded after centrifuging 15 seconds at 130,000xg. 

Then three wash steps were followed by applying wash solution 1 (700µl), and then wash 

solution 2/3 (500µl) (twice) to the column. For each washing, the column was centrifuged 

at 130,000xg for 15 seconds followed by discarding the flow through. The columns was 

then placed in RNase-free collection tubes and 30µl of RNas-free water added. Columns 

were then left to stand for 2 minutes and centrifuged at 2 minutes, 13,000xg. RNA was 

then stored at -80oC until used.  

2.2.2.13. MicroRNA quantification and integrity  

The concentration of RNA samples was determined by measuring the absorbance at 

260nm using the NanoDrop spectrophotometer (NanoDrop Technologies). The purity of 

RNA is determined from the ratio A260/A280 and A260/A230. 

The integrity of total RNA was determined using the ExperionTM automated 

electrophoresis system (Bio-Rad, USA). This method measures fluorescence of a 

fluorophore bound to RNA. RNA integrity can be evaluated automatically by comparing 

the area of the peaks corresponding to the rRNAs. A 28S/18S rRNA ratio close to 2 

indicates for intact RNA. 

2.2.2.14.  cDNA synthesis  

2.2.2.14.1. SuperScript II reverse transcriptase cDNA synthesis 

Total RNA was isolated from cells, whole knee joints, human or murine cartilages as 

above and reverse transcribed to cDNA using SuperScript II reverse transcriptase (Life 

Technologies, 18064-014). Briefly, in a total volume of 11µl in 96-well PCR plate, 1µg 

total RNA and 0.2µg random hexamer primer (Life Technologies, 48190-011) was mixed 

together and the plate was incubated at 70oC for 10mins. Samples were chilled on ice, then, 

a master mix containing 1µl SuperScript II reverse transcriptase (200 units/µl) (Life 

Technologies, 18064-014), 4µl First Strand buffer (5X) (Life Technologies, 28028-013), 

2µl 0.1M dithiothreitol (DTT) (Life Technologies, 18057-018), 2µl of 10mM dNTP mix 

(Bioline, BIO-39044), 1µl Recombinant RNasin Ribonuclease Inhibitor (20-40 units/µl) 

(Promega, N2511) was added to the randomly primed RNA to give a total volume of 20µl 

and incubated for 1 hour at 42oC followed by a heat inactivation step at 70oC, for 10mins. 
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cDNA was diluted to 0.5µg/ml in nuclease-free water (Sigma, W4502). 5µg cDNA was 

used for qRT-PCR analysis of genes of interest and 1µg cDNA was used for analysis of 

18S rRNA. QRT-PCR is described in 2.2.2.15. 

2.2.2.14.2. M-MLV reverse transcriptase cDNA synthesis  

Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase was used to perform 

cDNA synthesis straight from cell lysate without the need of purifying total RNA. This 

method was used for cell plated in 96-well plate where a number of cells are too small for 

RNA extraction. 

Briefly, medium was removed and the cells in 96-well plate were washed with ice cold 

PBS (Life Technologies, 10010023). Then, 30µl cells to Cells-II-cDNA lysis buffer (Life 

Technologies, AM8723) was added to each well, providing a cell lysate which can 

immediately be reverse transcribed without the need for RNA isolation. Lysates were 

transferred to 96-well PCR plate and heated to 75oC for 15 minutes to inactivate RNases. 

Lysates can be stored at -80oC until reverse transcription. For genomic DNA digestion, 1µl 

DNase I 1 units/µl (Life Technologies, AM2222) and 3µl DNase I buffer (10X) were 

added per well. The plate was heated to 37oC for 15 minutes, followed by an inactivation 

step at 75oC for 5 minutes.  

For reverse transcription, 8µl of DNase-treated samples were transferred to a new ice cold 

PCR plate. Following this, 3µl of 10mM dNTP mix (Bioline, BIO-39044) and 0.2µg 

random hexamer primers (50µM) (Life Technologies, 48190-011) were added per well and 

samples were heated to 70oC for 5 minutes. Samples were chilled on ice and a master mix 

including 0.5µl Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase 200 

units/µl (Life Technologies, 28028-013), 4µl First Strand buffer (5X) (Life Technologies, 

28028-013), 2µl 0.1M dithiothreitol (DTT) (Life Technologies, 18057-018), 0.5µl 

Recombinant RNasin Ribonuclease Inhibitor (20-40 units/µl) (Promega, N2511), 1µl 

nuclease-free water (Sigma, W4502) was added per well. Samples were then heated to 

37oC for 50 minutes, followed by an inactivation step of 75oC for 15 minutes. After that, 

30µl of nuclease-free water (Sigma, W4502) was added per sample. For quantitative real-

time PCR (qRT-PCR) analysis of genes of interest, 5µl of each sample was used. For the 
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house keeping gene 18S rRNA, samples were diluted 1:10 and 5µl was used. QRT-PCR is 

described in 2.2.2.15. 

2.2.2.14.3. miRCURY LNA TM  Universal cDNA synthesis 

MicroRNA cDNA was synthesized by the miRCURY LNATM Universal cDNA synthesis 

kit (Exiqon, 203300). This step provides templates for all miRNA real-time PCR assays by 

one first-strand cDNA synthesis reaction. The basis principal is in Figure 2.2. 
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Figure 2.2: Outline of the miRCURY LNA Universal RT miRNAsynthesis. 

 A poly-A tail is added to the mature miRNA template (step 1A). cDNA was synthesized 
using a poly-T primer with a 3’degenerate anchor and a 5’universal tag (step1B). Then the 
cDNA template is amplified using miRNA-specific and LNATM-enhanced forward and 
reverse primers (step 2A). Sybr green is used for detection (step 2B). Reprinted from 
miRCURY LNATM Universal RT microRNA PCR instruction manual (Exiqon). 

Total RNA was adjusted to 5ng/µl using nuclease-free water (Sigma, W4502). 10ng of 

RNA was transferred to an ice cold 96-well PCR plate. A master mix contained 2µl 

Reaction Buffer (5X) (Exiqon, 203300), 1µl enzyme mix was added to each well. The 

reaction was brought to 10µl with nuclease-free water and the plate was heated to 42oC for 

1 hour followed by a heat inactivation step at 95oC for 5minutes. cDNA was then diluted 

to 12.5 pg/µl by nuclease free water (Sigma, W4502) and 50pg of cDNA was used for 

qRT-PCR analysis of miRNA of interest.  
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2.2.2.15.  Real-time quantitative RT-PCR 

2.2.2.15.1. Universal Probe Library Real-Time qRT-PCR 

The Universal Probe Library (UPL) (Roche Diagnostics) enables extensive transcript 

coverage due to the short 8-9 nucleotide-long probes. Each probe has a fluorescein 

(FAM™) label at the 5’ end and a dark quencher dye at the 3’ end; shorter (typically 8-9 

nucleotide) than conventional probe (25-35 nucleotides); locked nucleic acids (LNATM) 

are incorporated into it sequence. Each probe can detect ~7,000 transcripts and each 

transcript is detected by ~16 probes.  

Primers were designed using the freely available ProbeFinder web-based software 

provided by Roche Applied Science in which the ‘exon boundary spanning’ option was 

selected. Primers were subjected to short sequence BLASTn search to confirm specificity. 

All the primers were purchased from Sigma and reconstituted in nuclease free water 

(Sigma, W4502) at 100nM. Primer sequences and UPL probe numbers are in Appendix, 

Table 3. 

For quantitative RT-PCR using the universal primers and probes, the qRT-PCR was 

carried out using the ABI Prism 7900 HT Sequence Detector (Applied Biosystems) in a 

microAmp® optical 96-well plate (Life technologies, N8010560). When RNA quantity was 

known, the qRT-PCR was run using 5ng cDNA for genes of interest and 1ng cDNA for 

18S rRNA. For M-MLV-reverse-transcribed- cDNA transcript samples, 5µl samples was 

used for gene of interest or diluted 1:10 and used 5µl for detecting 18S rRNA.   

Each qRT-PCR reaction contained Kappa Fast Universal qPCR Master Mix (2X) (Kappa 

Biosystems, KK4703), a final concentration of 100nM of each of forward and reverse 

primers, 200nM of Universal Probe (Roche Diagnostics). The reaction was carried out in a 

final volume of 25µl. The plate was sealed with microAmp® optical adhesive film (Life 

Technologies, 4311971) and run with the following PCR cycles: 50oC 2 minutes, 95oC 10 

minutes, 40 cycles for 95oC 15 seconds, 60oC 1 minute.  
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2.2.2.15.2. Standard probe-based Real-time qRT-PCR 

The probe-based quantitative real-time PCR method was used to detect the expression of 

ADAMTS genes including ADAMTS4, ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, 

ADAMTS19. These primer and probe sequences were described in (Davidson et al. 2006). 

Briefly, the primers and probes were designed by Primer Express® 1.0 software (Life 

Technologies, 4363991) and were closed to intron/exon boundaries to control 

amplification of genomic DNA. Where possible, the probes were designed to span two 

neighbouring exons. Specificity of primers and probes were validated thought BLASTn. 

Primer sequences and probe sequences are in Appendix, Table 4 

The qRT-PCR reaction was also carried out in a final volume 25µl of Kappa Fast 

Universal qPCR Master Mix (2X) (Kappa Biosystems, KK4703), 100nM final 

concentration of each of forward and reverse primers, 200nM genes of interest-specific 

probe. Reaction set up and cycling conditions were as in 2.2.2.15.1. 

2.2.2.15.3.  SYBR® Green Real-time PCR  

A combination of SYBR® green dye fluorescence with gene-of-interest specific primers 

enabled double stranded-DNA amplification measurement during PCR. SYBR® green 

real-time qRT-PCR was used to detect primary and pre sequences of the miR-29 family 

(which were described in (Eyholzer et al. 2010)) and other genes as below. Full primer 

sequences and list of genes detected by SYBR® green real-time PCR are listed in 

Appendix, Table 5. All primers were purchased from Sigma.  

For SYBR® green qRT-PCR reaction, the amount of cDNA for genes of interest and 18S 

rRNA is as 2.2.2.15.1. The reaction contained 0.18µl SYBR® green I dye, Kappa Fast 

Universal qPCR Master Mix (2X) (Kappa Biosystems, KK4703), 100nM final 

concentration of each of forward and reverse primers. The PCR cycle conditions are as 

2.2.2.15.1 followed by another dissociation step which produces the melting curve for the 

PCR amplification product.  

2.2.2.15.4. SYBR® Green Real-time PCR for the mature miR-29 family detection 
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LNA primers for detecting miR-29 family mature sequence 

All LNA primers were designed for optimal performance with the miRCURY LNATM 

Universal cDNA synthesis kit. The LNA primers are Hsa-miR-29b-3p LNATM PCR primer 

sets (Exiqon, 204679), Hsa-miR-29a-3p LNATM PCR primer sets (Exiqon, 204698), Hsa-

miR-29c-3p LNATM PCR primer sets (Exiqon, 204729). 

Real-time PCR protocol  

The qRT-PCR reaction used SYBR® green I dye in combination with LNATM PCR primer 

sets to quantify the original mature miR-29 family. The reactions contained 50pg of 

miRCURY-LNATM-Universal cDNAs for either the miR-29 family or U6. The PCR 

reaction mix contained 0.18µl SYBR® Green I dye, 5µl Kappa Fast Universal qPCR 

Master Mix (2X) (Kappa Biosystems, KK4703), and 1µl of forward and reverse primer 

mix (as recommend by the manufacture (Exiqon)) in a final volume of 10µl. PCR cycles: 

10 minutes at 95°C, 40 cycles for 10 seconds at 95°C, 1 minute at 60°C and a dissociation 

step. The dissociation step produces a melting curve for the PCR amplification product and 

ensures there is only amplification of the target gene.  

2.2.2.15.5. Quantitative RT-PCR Data analysis  

2.2.2.15.5.1. Control genes  

The constitutively expressed “housekeeping” 18S rRNA was used as the control for 

relative mRNA gene expression while U6 was used as endogenous control for relative 

miRNA gene expression. 

2.2.2.15.5.2. Relative gene expression – comparative Ct method 

Raw fluorescence data was analyzed by the 7000HT SDS 2.2 software to produce 

threshold cycle (Ct) values, which is the cycle number at which the signal is detectable 

above the baseline. The Ct values were transformed using the comparative Ct method to 

obtain relative quantification (RQ) of gene expression:  

RQ=2-∆Ct 

 Where: for mRNA expression: ∆Ct= target gene Ct - 18S Ct 
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         Or for miRNA expression: ∆Ct= the miR-29 family Ct - U6 Ct
  

This method assumed that all primers and probe sets are working at the same efficiency.  

2.2.2.15.6. Western Blot 

Buffer and antibody 

Radio immunoprecipitation assay (RIPA) buffer: The buffer was made (final 

concentration) with 50mM Tris base (Fisher Scientific, BP152-500) (which was adjusted 

to pH 7.6 with hydrochloric acid (Sigma, 258148)),150mM NaCl (Fisher Scientific, 

BP3581), 1% (v/v) Triton X-100 (Sigma, X100), 1% (w/v) sodium deoxycholate (Sigma, 

D6750), 0.1% (w/v) sodium dodecyl sulfate (SDS) (Fisher Scientific, 10356463), 10mM 

sodium fluoride (NaF) (Sigma, 201154), 2mM sodium orthovanadate (Na3VO4) (Sigma, 

S6508), 1X protease inhibitor cocktail (Fisher Scientific, PI-78410).  

Resolving buffer: To make up 4X buffer: 91g Tris base (Fisher Scientific, BP152-500) 

was dissolved in Milli-Q Ultrapure water (Merck Millipore) and adjusted to pH 8.8 with 

hydrochloric acid (Sigma, 258148). The solution was then made up to 500ml. 2g SDS 

(Fisher Scientific, 10356463) was added and dissolved. 

Staking buffer: To make up 4X buffer: 6.05g Tris base (Fisher Scientific, BP152-500) 

was dissolved in Milli-Q Ultrapure water and adjusted to pH 6.8 with hydrochloric acid 

(Sigma, 258148). Milli-Q water was added to 100ml volume. 0.4g SDS (Fisher Scientific, 

10356463) was added and dissolved. 

Running buffer:  To make up 10X buffer: 30.2g Tris base (Fisher Scientific, BP152-500), 

144g glycine (Fisher Scientific, 10467963), 10g SDS (Fisher Scientific, 10356463) were 

dissolved in Milli-Q water to a final volume 1L. 

Transfer buffer:  To make up 1X buffer: 5.8g Tris base (Fisher Scientific, BP152-500), 

2.9g glycine (Fisher Scientific, 10467963), 0.37g SDS (Fisher Scientific, 10356463) were 

dissolved in Milli-Q water, 200ml 100% (v/v) methanol (Sigma, 322415) were added then 

Milli-Q water to a final volume of 1L. 
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Tris-buffered saline (TBS): To make up 10X buffer: 24.2g Tris base (Fisher Scientific, 

BP152-500), 80g NaCl (Fisher Scientific, BP3581) were dissolved in 900ml Milli-Q water 

and adjusted to pH 7.6 with hydrochloric acid (Sigma, 258148). Milli-Q water was added 

to 1L volume. 

Blocking buffer:  For 150ml, 15ml 10X TBS was diluted in 135ml Milli-Q water. 7,5g 

non-fat dry milk (OXOID, LP0031) was added and stirred to mix. Finally, 0.15ml 

Tween®-20 was added (Sigma, P5927).  

Primary antibody dilution buffer:   For 20 ml, 2 ml 10X TBS was diluted to 18 ml with 

Milli-Q water. 1.0 g BSA (Sigma, A9418) was added and dissolved by stirring. While 

stirring, 20µl Tween-20 (Sigma, P5927) was added. 

Wash Buffer (TBST): TBS with a final concentration 0.1% (v/v) Tween-20 (Sigma, 

P5927). 

Antibody:  GAPDH antibody (Cell Signaling, #2118S), DVL3 antibody (Cell Signaling, 

#3218), FZD5 antibody (Cell Signaling, #3795) 

Western blot protocol  

SW1353 cells were plated in 6-well plates (1.5x105cells/well) and transfected with Syn-

Hsa-miR-29b miScript miRNA mimic (Qiagen, MSY0000100) as referred in 2.2.2.7.2.5. 

At desired time post transfection, cells in each well of 6-well plate were washed twice with 

ice cold PBS (Life Technologies, 10010023) before adding 100µl RIPA buffer to each 

well and harvesting by scraping. The cell lysate was transferred to a fresh ice-cold 1.5ml 

tube and centrifuged at full speech in 10 minutes. The supernatant was collected and stored 

at -20oC.  

Protein was quantified using the Bio-Rad Protein Assay (Bio-Rad, #500-0006) which is 

based on the method of Bradford. Briefly, 200µl dye reagent concentrate was diluted 5 

times with Milli-Q water before adding 20µl sample lysate. The mixture was incubated at 

room temperature for 10 minutes and absorbance measured at 595nm. Comparison of this 

value to a standard curve provided a relative concentration of solubilized protein. The 
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standard curve was created with five dilutions of proteins standards of bovine serum 

albumin (Bio-Rad, 500-0002) from 0.2 to 0.9 mg/ml. 

Samples was adjusted to 20µg solubilized protein in a 30µl with nuclease-free water 

(Sigma, W4502), followed by adding 20ng/µl Bromophenol Blue (Sigma, 114391) and 

1.2µl 1M DTT (Thermal Scientific, # R0861).  The sample was gently mixed and heated to 

95oC for 5 minutes. Samples were then electrophoresed on 10% (w/v) polyacrylamide gels.  

The resolving gel was cast with the following components: 5ml 30% (w/v) Acrylamide/ 

Bis Acrylamide solution 37:5:1 (Bio-Rad, #161-0154), 3.75ml resolving buffer (4X), 

6.25ml Milli-Q water, 50µl 10% (w/v) ammonium persulfate (APS) (Sigma, A3678), 10µl 

TEMED (Sigma, T9281). Resolving gels were topped with isopropanol (Sigma, 190764) 

until set. Then isopropanol was removed and the stacking gel was cast on top of the 

resolving gel and a comb was inserted. For 1 gel, the stacking gel was made with 0.71ml 

stacking buffer (4X), 0.41ml 30% (w/v) acrylamide/ bis acrylamide solution 37:5:1 (Bio-

Rad, #161-0154), 1.91ml Milli-Q water, 16µl 10% (w/v) APS (Sigma, A3678), 3.2µl 

TEMED (Sigma, T9281). Samples were loaded on the gel and were electrophoresed at 

50V until the bromophenol blue passed through the stacking gel and then 80V for 1.5 

hours.  

Immobilon®-FL PVDF membrane (Merck Millipore, IPFL00010) was incubated in 100% 

(v/v) methanol (Sigma, 322415) for 15 seconds and washed with Milli-Q water. Then, 

Immobilon®-FL PVDF membrane, gel, extra thick blotting paper (Bio-Rad, #170-3966) 

were incubated in transfer buffer for 5 minutes. The gel was plated on top of Immobilon®-

FL PVDF membrane in Trans-blot® SD semi-Dry Electrophoretic transfer cell (Bio-Rad, 

#170-3940) with extra thick blotting paper underneath and on top and run for 25V for 30 

minutes (for 2 gels,1 mm thick).  

After transfer, the membranes were briefly washed with TBS and incubated in blocking 

buffer for 1 hour, with gently rocking at room temperature. Membranes were then washed 

in TBST three times for 5 minutes. Primary antibody and membrane was incubated with 

gentle agitation overnight at 4oC. Membranes were then washed in TBST three times for 5 

minutes and incubated with IRDye® 800CW goat polyclonal anti-rabbit IgG (Li-Cor, 926-

32211) (50µg) for 1 hour at room temperature with gently rock. Membranes were washed 
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with TBST for another three times for 5 minutes. The membrane was visualized using a 

Li-Cor Odyssey InfraRed Scanner. 

2.2.2.15.7. Whole mount in situ hybridization  

Reagents and buffers 

Sodium chloride (NaCl) (Fisher Scientific, BP3581), tri-sodium citrate (Fisher Scientific, 

10637174), magnesium chloride hexahydrate (MgCl2.6.H2O) (Fisher Scientific, M35-500), 

potassium chloride (KCl) (Fisher Scientific, BP366-500), heparin (Sigma, H3393), yeast 

tRNA (Fisher Scientific, 10523043), paraformaldehyde (Sigma, P6148), normal goat 

serum (heat inactivated), Triton-X100 (Sigma, X100), Tween-20 (Sigma, P5927), BSA 

(Sigma, A9418) 

Saline sodium citrate buffer (SSC): 20X SSC buffer was made up with 175.3 g of NaCl 

and 88.2 g of sodium citrate, pH 7, in a total volume of 1000ml. 

Development solution (DS): The solution was made up with: 100 mM Tris-HCl pH9.5,  

50mM magnesium chloride hexahydrate (MgCl2.6.H2O),  100mM sodium chloride (NaCl) 

+ 0.1% (v/v)Tween 20. 

Blocking solution: The solution was made up with: 2% (v/v) NGS, 2 mg/ml BSA, 0.1% 

(v/v)  Triton X-100 + 0.05% )v/v) Tween 20 in PBS. 

Hybridisation Buffer (HB):  The buffer was made up with 50% (v/v) formamide, 5xSSC, 

0.1% (v/v) Tween 20 + 10 mM citric acid pH6.0 + 50 µg/ml heparin + 100 µg/ml tRNA in 

PBS 

Tris-buffered saline with Tween 20 (TBST):  for 100ml (10X) buffer was made up with 

8g NaCl, 25ml Tris-HCl pH7.5, 0.2g KCl, 10ml Tween 20  

Phosphate-buffered saline with Tween 20 (PBST):  PBS with 0.1% (v/v) Tween 20 

Probe: miRCURY LNATM miR-29b-3p detection probe, 250pmol, 5’-DIG and 3’-DIG 

labelled (Exiqon, 38131-15) 

Fixation 
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Mouse embryos at desired stages were dissected and fixed in 4% PFA-PBS on a rolling 

platform overnight at 4oC. Then next day, the embryos were washed 4 times with PBST 

and dehydrated through increasing MeOH concentration washes e.g. 25%, 50%, 75% and 

100% MeOH on the gentle rocking platform. The embryos can then store in 100% MeOH 

at -20oC until required.   

In situ hybridization protocol  

On a gently rocking platform, the embryos were washed with decreasing MeOH 

concentration i.e. 75% (v/v), 50% (v/v), 25% (v/v), 0 (v/v) % MeOH for 15 minutes each 

time to dehydrate. After that, the embryos were digested with Proteinase K (10µg/ml final 

concentration) for 30 minutes, followed by rinsing twice in PBST and fixing in 4% (v/v) 

PFA for 20 minutes. To get rid of the remaining PBST, the embryo was washed 4 times in 

PBST for 5-7 minutes. The embryo was prehybridized in hybridization buffer at 54oC for 3 

hours and the “nape” of the neck of embryo was pricked to facilitate the probe penetration. 

After prehybridisation step, the buffer was removed and replaced with fresh warm 

hybridisation buffer containing 20 pmol of the miR-29b LNA probe (Exiqon, 38131-15) 

and left at 54oC overnight with gentle rocking. The probe hybridisation solution was 

removed followed by washes at 54oC and 15 minutes each wash e.g. 75% HB: 25% 2xSSC, 

50% HB:50% 2xSSC, 25% HB:75% 2xSSC, 2xSSC, 0.2xSSC. Following these washes, at 

room temperature, another 4 washes were carried on gently rocking platform, 10 minutes 

for each wash e.g. 75% 0.2xSSC:25% PBST, 50% 0.2xSSC:50% PBST, 25% 0.2xSSC:75% 

PBST, PBST. The embryo was then put in blocking solution for several hours at room 

temperature and incubated at 4°C O/N with the pre-absorbed antibody at a final dilution of 

1:5000 in Blocking Solution. After that, the Blocking Solution was removed and washed 

throughout 2 or 3 days at RT in PBST with gentle rocking. To get rid of all remaining 

PBST, the embryos were washed twice with TBST and with development solution for 15 

minutes each wash. Colour development was carried out at room temperature in 3.5ml 

development solution plus 15-50µl substrates. 

The antibody was pre-adsorbed using previously fixed and dehydrated tissue that is not 

suitable for in situ hybridization. These tissues were dehydrated and washed 15 minutes in 
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blocking solution, followed by incubating with blocking solution containing the antibody 

at 1:1000 dilution for three hours.  

2.2.2. Cell culture and cell-based assays 

2.2.2.1. Human primary chondrocyte isolation 

Human cartilage chips were incubated with digestion medium including DMEM 

GlutaMAXTM (Life Technologies, 10566-016), 1mg/ml collagenase (Sigma, C1639), 0.4% 

(w/v) Hepes (Fisher Scientific, BP310-100), 100 IU/ml penicillin, 100µg/ml streptomycin 

(Sigma, P4333) at 37oC, 180rpm overnight. The digestion mixture was then strained 

through a 70µm cell strainer. Cells were plated at 4x104cells/cm2 and grown to 80% 

confluence. Cells were used by passage 2.  

2.2.2.2. Human de-differentiation assay 

Human primary chondrocytes were isolated from human knee OA articular cartilage as 

described in 2.2.2.1. The cells were then subjected to serial subculture in monolayer. The 

de-differentiation assay was performed by Dr Natalie Crowe (Clark lab, University of East 

Anglia). 

2.2.2.3.  Chondrogenesis model 

The human chondrogenesis model was performed by Dr Matthew Barter, Newcastle 

University. Briefly, human bone marrow stem cells (from seven donors, 18-25 years of age) 

were isolated from human bone marrow mononuclear cells (purchased from Lonza 

Biosciences) and resuspended in chondrogenic culture medium consisting of high glucose 

Dulbecco’s modified Eagle’s medium containing 100 µg/ml sodium pyruvate (Lonza), 10 

ng/ml TGF-β3 (Peprotech), 100 nM dexamethasone, 1x ITS-1 premix, 40 µg/ml proline, 

and 25 µg/ml ascorbate-2-phosphate (Sigma). 5x105 hMSC in 100µl medium were 

pipetted onto 6.5mm diameter, 0.4-µm pore size polycarbonate Transwell filters (Merck 

Millipore), centrifuged in a 24-well plate (200g, 5 minutes), then 0.5 ml of chondrogenic 

medium was added to the lower well as described. Media were replaced every 2 or 3 days 

up to 14 days. 
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The murine chondrogenesis model was performed by Dr Tracey Swingler, University of 

East Anglia. Briefly, ATDC5 cells were seeded at 6x104/well of a 6-well plate in 

DMEM/Ham’s F-12 medium (Life technologies, 11320-033) containing 5% (v/v) FCS 

(PAA), 2mM glutamine, 100 IU/ml penicillin, 100µm/ml streptomycin (Sigma, P4333), 

5ng/ml sodium selenite, 10µg/ml human transferrin (Sigma, I3146), and 10µg/ml bovine 

pancreatic insulin at 37oC, in an atmosphere of 5% CO2. Media was replaced every 2 days 

up to 42 days. After 21 days, the medium was replaced with α-minimal essential medium 

with the same supplements, and the atmosphere was changed to 3% CO2.  

2.2.2.4. Monolayer cell culture and storage  

All cells were cultured at 37°C with 5% (v/v) CO2. Cells were usually grown in 

Dulbecco’s modified Eagle’s medium (DMEM) High Glucose, GlutaMAX supplement 

(Life technologies, 10566-016) with 10% (v/v) heat-inactivated Fetal Calf Serum (FCS) 

(PAA) and 100 IU/ml penicillin and 100µg/ml streptomycin (Sigma, P4333). For 

maintenance, medium was refreshed at least three times weekly. Cells were passaged at 

around 80-90% confluence. Adherent cells were detached by washing x2 with HBSS (Life 

Technologies, 14025092) then treated with 2 ml of trypsin/EDTA (Life Technologies, 

25200072) for 2-3 minutes at 37°C. After centrifugation (17.3xg, 5 minutes), the cell pellet 

was gently resuspended in fresh medium. Cells were replated at a ratio of 1: 20. For long 

term storage, cells were detached and pelleted by centrifugation at 17.3xg for 5 minutes. 

The pellets were resuspended in cryo-preservation medium including 90% (v/v) FCS 

(ATCC) and 10% (v/v) DMSO (Fisher, BP231-100), slowly frozen down at approximately 

1oC/minute, and stored in liquid nitrogen.  

2.2.2.5. Micromass culture  

Media 

Growth medium: Dulbecco’s modified Eagle’s medium (DMEM) High Glucose, 

GlutaMAX supplement (Life technologies, 10566-016) with 10% (v/v) heat-inactivated 

Fetal Calf Serum (FCS) (ATCC) and 100 IU/ml penicillin and 100µg/ml streptomycin 

(Sigma, P4333). 
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Different medium were prepared: the DMEM high glucose, GlutaMAX supplement (Life 

technologies, 10566-016) adding 1X Insulin- Transferrin-Selenium (ITS-G) (Life 

Technologies, 41400-045). 

Micromass culture  

The protocol was described in (Greco et al. 2011) with some modifications. Human 

primary chondrocytes was isolated from human OA knee cartilage as described in 2.2.2.1 

and cultured in monolayer with growth medium. Whenever reaching confluence, the cells 

were passaged two times. Confluent passage 2 monolayer culture of human primary 

chondrocytes were released by trypsin/EDTA (Life Technologies, 25200072), and 

resuspended in growth media at a density of 2.5x107 cells/ml. Micromass was obtained by 

pipetting 20µl of cell suspension into individual wells of 24 well-plates and leaving for 3 

hours to attach without additional medium. Then, 1ml growth medium was gently added 

and the micromass was left for another 24 hours before stimulating with cytokines or 

growth factors.  

2.2.2.6.Induction cells with regulatory factors: major cytokines and growth factors 

Cytokines and growth factors: 

Human recombinant TGFβ1 (R&D Systems, 240-B-002/CF) and human recombinant 

TGFβ3 (R&D Systems, 243-B-002/CF) were reconstituted in sterile 4mM HCl (Sigma, 

258148) containing 0.5% (w/v) bovine serum albumin (Sigma, A2058). 

Human recombinant Wnt3a (R&D Systems, 5036-WN-010/CF) was reconstituted in 

sterile Phosphate Buffered Saline (PBS) (Life Technologies, 10010023). 

Human Recombinant Interleukin-1β (IL-1β) (First Link, ILB4551) was reconstituted in 

sterile Phosphate Buffered Saline (PBS) containing 0.5% (w/v) bovine serum albumin 

(Sigma, A2058).  

NFκB activation inhibitor II JSH-23 (Calbiochem, 481408) is a cell-permeable diamino 

compound that selectively blocks nuclear translocation of NF-κB p65 and its transcription 

activity without affecting IκB degradation.  
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Lipopolysaccharides (LPS) (Sigma, L3012) are components of the cell wall of gram 

negative bacteria. LPS are extracted from E.coli serotype O111:B4 and purified by gel 

filtration. LPS is reconstituted in sterile (PBS) (Life Technologies, 10010023). 

P38 inhibitor SB203580 (Sigma, S8307) is a pyridinyl imidazole that suppresses the 

activation of MAPKAP kinase-2. The P38 inhibitor, therefore, inhibits the MAPKAP 

kinase-2 cascade which is activated by cellular stress, bacterial infection and pro-

inflammatory cytokines. SB203580 was resuspended in DMSO (Fisher, BP231-100).  

2.2.2.6.1. Stimulation of cells in monolayer with cytokines and growth factors  

Human chondrosarcoma SW1353 and human primary chondrocytes were maintained as 

described above. For stimulation, either 5x103 SW1353 cells or 104 human primary 

chondrocytes were seeded into each well of a 96-well plate with 100µl DMEM GlutaMax 

(Life Technologies, 10566-016) with 10% (v/v) FCS (ATCC) and 100 units/ml penicillin 

and 100µg/ml streptomycin (Sigma, P4333). Cells were serum starved for 14 hours and 

were stimulated with different cytokines and growth factors at final concentration: TGFβ1, 

TGFβ3 4ng/ml, IL-1 5ng/ml, Wnt3a 100ng/ml, LPS 1µg/ml at 4, 8, 12, 24, 48 hours. All 

treatments were performed in triplicate. At each time point, cells in each well were washed 

with ice cold PBS (Life Technologies, 10010023) and harvested with 30µl Cells-to-cDNA 

lysis buffer (Life Technologies, AM8723).  

2.2.2.6.2. Stimulation of cells in micromass culture with cytokines and growth 

factors  

After the micromass was rested in growth medium for 24 hours, the different medium with 

either TGFβ1 (10ng/ml), IL-1 (20ng/ml), Wnt3a (50ng/ml) or LPS (1µg/ml) was added. 

All treatments were performed in triplicate. After different time points as desired, some of 

micromasses were harvested for Alcian blue matrix staining and others for quantitative 

RT-PCR.  
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2.2.2.7. Mammalian cell transfection 

2.2.2.7.1.  Plasmids, constructs, siRNAs and microRNA mimic and inhibitor 

Sox9 expression vector: The vector was kindly provided by Dr Simon Tew (University of 

Liverpool, UK). The vector was described in (Lefebvre et al. 1997). Briefly, an almost 

full-length coding sequence of human SOX9 which is from codon 27 (directly from the 

first ATG associated with the Kozak sequence) up to 39bp of 3’unstranslated region was 

subcloned into pCDNA-5’UT-FLAG. pCDNA-5’UT-FLAG is pCDNA 3.1 with a FLAG 

sequence.  

The miR-29a/b1 promoter construct: The construct was kindly provided by Dr Anne 

Delany (University of Connecticut Health Center, US) and was described in (Kapinas et al. 

2010). The 2kb region upstream from the transcriptional start site of the human miR-

29a/b1 putative promoter (EU154353) was subcloned into the luciferase reporter pGL4.10 

(Promega). 

p(CAGA)12-luc plasmid: The construct was a kind gift of Dr Andrew Chantry, University 

of East Anglia, UK and is described in (Pais et al. 2010). 12 binding sites of the complex 

Smad3/4 (GAGAC) was cloned upstream of the luciferase encoding gene in luciferase 

reporter pGL3 (Promega).  

I κκκκBα promoter reporter plasmid: The plasmid was a kind gift from Prof. Derek Mann, 

(Newcastle University, UK), (originally from Prof. Ronald Hay, University of Dundee, 

UK). The plasmid contains 5 binding sites of P65 cloned upstream of the luciferase gene.  

TOPflash and FOPflash reporter plasmids: The TOPflash reporter is a kind gift from 

Prof. Andrea Munsterberg (University of East Anglia, UK), and was originally from Prof. 

Randall Moon (University of Washington, USA). The FOPflash vector is provided by Dr 

Sarah Snelling (University of Oxford, UK). TOPflash contains 7 binding sites of TCF/LEF 

(AGATCAAAGG) driving the expression of the firefly luciferase. The back bone is the 

pTA-luc vector. The FOPflash vector is the control of TOPflash where all 7 binding sites 

of TCF/LEF are mutated.  
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The miR-29 mimic:  

• Syn-hsa-miR-29a-3p miScript miRNA mimic (Qiagen, MSY000086): 

5'UAGCACCAUCUGAAAUCGGUUA 

• Syn-hsa-miR-29b miScript miRNA mimic (Qiagen, MSY0000100): 

5'UAGCACCAUUUGAAAUCAGUGUU 

• Syn-hsa-miR-29c miScript miRNA mimic (Qiagen, MSY0000681) 

5'UAGCACCAUUUGAAAUCGGUUA 

• AllStars negative control siRNA (Qiagen, SI03650318) 

The 29b inhibitor control  

• Anti-hsa-miR-29b miScipt miRNA inhibitor (Qiagen, MIN000100) 

• miScript Inhibitor negative control (Qiagen, 1027271) 

siRNA 

• SOX9 siRNA: Dharmacon siRNA SMARTpool® (Fisher Scientific)  

• Control: non-targeting siRNA 2  (Dharmacon, 001210-02) 

2.2.2.7.2. Transient transfection protocol  

2.2.2.7.2.1. SOX9 overexpression  

SW1353 cells were plated in a 96-well plate (5x103cells/well) in growth medium without 

antibiotics one day before transfection. The cells were 80% confluent at the time of 

transfection. Before addition of the transfection complexes, the growth medium was 

removed from the cells and the cells were covered with 50µl of fresh growth medium 

without antibiotics. For each transfection, two tubes are prepared as follows: Tube 1: 

100ng SOX9 expression vector was diluted in 25µl DMEM GlutaMax (Life Technologies, 

10566-016) without serum and antibiotics; Tube 2: 0.2µl transfection reagent 

Lipofectamine 2000 (Life Technologies, 11668027) was diluted in 25µl DMEM GlutaMax 

(Life technologies, 10566-016) no serum and antibiotics. After 5 min of incubation, the 

diluted DNA and the diluted transfection reagent were combined and incubated at room 

temperature for 20 min. Then, 50µl of complexes were added to each well. The plate was 
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gently rocked back and forth and incubated at 37°C in a CO2 incubator. All transfection 

was performed in triplicate. The pcDNA3.1 vector was used as control. After 6 hours of 

transfection, transfection medium was replaced with fresh growth medium without 

antibiotics for another 24 hours. For harvesting, cells were washed with ice cold PBS (Life 

Technologies, 10010023) and harvested with 30µl Cells-to-cDNA lysis buffer (Life 

Technologies, AM8723). 

2.2.2.7.2.2. SOX9 and miR-29a/b1 promoter cotransfection  

To cotransfect SOX9 and the promoter miR-29a/b1, the SW1353 cells were prepared as 

described above one day before transfection. For each transfection, two tubes are prepared 

as follows: Tube 1: 100ng of 29a/b1 promoter, and either 100ng SOX9/200ng pcDNA3 or 

300ng SOX9/100ng pcDNA3 was diluted in 25µl DMEM GlutaMax (Life Technologies, 

10566-016) without serum and antibiotics; Tube 2: 0.2µl transfection reagent 

Lipofectamine 2000 (Life Technologies, 11668027) was diluted in 25µl DMEM GlutaMax 

(Life Technologies, 10566-016) no serum and antibiotics. The diluted DNA and the 

diluted transfection reagent were combined after 5 min of incubation and incubated at 

room temperature for another 20 min. Then, 50µl of complexes were added to each well. 

The plate was incubated at 37°C in a CO2 incubator and transfection medium was changed 

with fresh medium without antibiotics for another 24 hours. Then, cells were washed with 

ice cold PBS (Life Technologies, 10010023) and a luciferase assay performed. All 

transfection were performed in triplicate. 

2.2.2.7.2.3. Transfection of the miR-29a/b1 promoter with cytokines and growth 

factors 

SW1353 cells were plated and transfected with 100ng miR-29a/b1 promoter as described 

above. Cells were incubated with the promoter for 24 hours. The medium was then 

removed and replaced with serum, antibiotic-free DMEM GlutaMAX medium (Life 

technologies, 10566-016), and cells were serum-starved overnight. Cells was stimulated 

for 6 hours with TGFβ1/3 (4ng/ml), IL-1 (5ng/ml), Wnt3a (100ng/ml), LPS (1µg/ml) in 

the presence or absence of 50nM NFκB inhibitor or 10nM p38 inhibitor (Sigma, S8307). 

Medium was removed 6 hours post stimulation and cells were washed twice with ice cold 

PBS (Life Technologies, 10010023) and then harvested for luciferase assay. 
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2.2.2.7.2.4. Short interfering RNA SOX9 mRNA knockdown 

SW1353 cells were plated and transfected with either 100nM SOX9 siRNA (Dharmacon) 

or non-targeting siRNA 2 (Dharmacon, 001210-02) as section 2.2.2.7.2.1. To detect 

siRNA-mediated mRNA SOX9 knockdown, cells were incubated for 48 hours post 

transfection, then harvested in 30µl Cells-to-cDNA lysis buffer (Life Technologies, 

AM8723).  

2.2.2.7.2.5.  Human primary chondrocyte gain- and loss-of-function experiments 

One day before transfection, human primary chondrocytes at passage 1 was plated in 6-

well plate at 2x105 cells/ wells in fresh growth medium without antibiotics so that the cells 

will be around 80% confluent. Complexes were prepared as followed for transfection: 

Tube 1: miR-29b mimic/ inhibitor/ AllStar negative control/ inhibitor negative control 

(50nM) was diluted in 250µl of serum, antibiotic-free DMEM GlutaMAX (Life 

Technologies, 10566-016). Tube 2: 5µl of Lipofectamine 2000 (Life Technologies, 

11668027) was diluted in 250µl serum, antibiotic-free DMEM GlutaMax (Life technology, 

10566-016). Time for incubation and transfection mixture was prepared similar to section 

2.2.2.7.2.2. The original medium was aspirated from the wells, 500µl transfection mixture 

was added to each well and the final volume was made to 1ml with DMEM GlutaMAX 

with 10% (v/v) heat-inactivated FCS, without antibiotics. All transfections were performed 

in triplicated. Cells were incubated for 48 hours, then, supernatant was removed and cells 

was washed with ice cold PBS and 1ml Trizol reagent was added.  Samples were stored at 

-20oC until RNA extraction.  

2.2.2.7.2.6. Transfection of human primary chondrocytes with miR-29 family 

mimics and treatment cytokines and growth factors  

50nM either miR-29a/b/c mimics or AllStar negative control was transfected to human 

primary chondrocytes in 6-well plate as in section 2.2.2.7.2.5. After 24 hours, medium was 

removed from the wells and replaced with DMEM GlutaMAX with 0.5% (v/v) heat 

inactivated FCS overnight. Then, cells were stimulated with TGFβ1 (4ng/ml), IL-1 

(5ng/ml), Wnt3a (100ng/ml). At desired times post stimulation as in Chapter 5, medium 

was removed, the cells were washed with ice cold PBS and harvested in 1ml Trizol reagent.  
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2.2.2.7.2.7. Transfection of the miR-29b mimic in micromass culture with 

cytokines and growth factors 

Confluent passage 2 monolayer culture of human primary chondrocytes were released by 

trypsin/EDTA and plated in 175 cm2 flask with growth medium with 10% (v/v) heat 

inactivated FCS, no antibiotics one day before transfection to give cells at 90-100% 

confluence. 100nM miR-29b mimic or non-targeting control was diluted in 500µl medium 

(tube1) and 4 µl Lipofectamine 2000 was also diluted in 500µl medium (tube 2). 

Transfection was carried out as in 2.2.2.7.2.2. The original medium from the flask was 

removed before adding 1ml transfection mixture and the flask was further covered with 

another 14ml growth medium with 10% (v/v) heat inactivated FCS. After incubating with 

miR-29b mimic for 48 hours, cells was detached by trypsin/EDTA and put in micromass 

culture as in 2.2.2.5. After 24 hours of resting, miR-29b transfected micromasses were 

treated with either TGFβ1 (10ng/ml), IL-1 (5ng/ml), Wnt3a (100ng/ml) in different media 

(referred in 2.2.2.5) with 10% (v/v) heat inactivated FCS without antibiotics. At desired 

time, micromasses were harvested in 500µl Trizol reagent.  

2.2.2.7.2.8. Co-transfection of reporter vectors with the miR-29 family mimic/ 

miR-29b inhibitor and stimulation with cytokines and growth factors  

SW1353 were seeded into 96-well plate 1 day before transfection as in 2.2.2.7.2.1 and 

transiently co-transfected with: (1)100ng of reporter plasmids of either p(CAGAC)12- luc, 

IκB3-luc, TOPflash, FOPflash, (2) 10ng of renilla luciferase reporter, and (3) 50nM of 

either miR-29a/b/c mimic, AllStar non-targeting negative control, miR-29b inhibitor, or 

inhibitor negative control.  The protocol for transfection is as in 2.2.2.7.2.5. After 24 hours 

of transfection, cells was serum starved overnight and were treated with recombinant 

human TGFβ1 (4ng/ml), IL-1β (5ng/ml), Wnt3a (100ng/ml) for 6 hours. After stimulation, 

cells were harvested and a luciferase assay performed as in 2.2.2.8. 

2.2.2.7.2.9. Cotransfection of pmiR-Glo-3’UTR reporter with the miR-29 family 

mimic  

Chicken fibroblasts DF1 were plated in a 96-well plate (104cells/well) in antibiotic free 

growth media with 10% (v/v) FCS overnight. 100ng of either pmiR-Glo-3’UTR wild type 
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or mutant constructs were co-transfected with 50nM miR-29a/b/c mimic using the non-

targeting Allstars as control. The protocol for transfection was described in 2.2.2.7.2.5. 

After 24 hours post transfection. DF1 cells were harvested for luciferase assay as in 2.2.2.8. 

2.2.2.8. Luciferase reporter assay 

At desire times post transfection, the plate was removed from the incubator. Luminescence 

was detected using the Dual-Luciferase Reporter Assay system (Promega, E1980). Briefly, 

the medium on the cells was removed. The cells were washed twice with ice cold PBS and 

70µl of cell lysis buffer provided in the kit (Promega, E1980) was added to each well. The 

plate was gently rocked back and forth for 30 minutes. Then, 10µl cell lysates were 

transferred to a 96- well white microplate. For measuring firefly luciferase activity, 50µl of 

Dual Luciferase Reagent was added to each well. The firefly luminescence was measured 

using a microplate reader. For measuring Renilla luciferase activity, 50 µl of Dual Stop & 

Glo Reagent was added to each well and mixed gently then the luminescence measured.  

After measurement of the firefly luciferase luminescence and Renilla luciferase 

luminescence, the relative luciferase activity was calculated as the ratio of the firefly 

activity normalized to the Renilla luciferase activity. 

2.2.3. MicroRNA and mRNA microarray   

2.2.3.1. MicroRNA and mRNA microarray for destabilization of  medial menicus 

(DMM) model  

Whole knee joints from mice which underwent DMM surgery (e.g. DMM-operated right 

knee and unoperated left knee) were subjected to total RNA isolation and grouped as 

DMM left (referred to as control) or DMM right (referred as treatment). At each time point 

(1, 3, 7 days after surgery), equal amounts of total RNA from each sample in the same 

group was pooled together. The integrity of the new pooled samples was checked before 

sending to Exiqon Services (Denmark) or Source Bioscience (UK) to perform miRNA 

microarray or mRNA microarray, respectively.  

The miRCURY LNATM microRNA Hi-Power Labelling Kit Hy3TM/Hy5TM was used for 

miRNA microarray in which the Hy3TM labelled samples and Hy5TM labelled samples 
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were mixed pair-wise and hybridized to capture probes targeting all miRNAs or human, 

mouse and rat registered in the miBASE 18.0. For whole genome array, Illumina’s  

BeadArray-based technology was employed by using MouseWG-6 v2.0 Expression 

BeadChips whose feature content derived mainly from NCBI reference sequence (NCBI 

refseq), and simultaneously profiles more than 45,000 mouse transcripts. The BeadChips 

consists of oligonucleotides immobilized to bead held in microwells on the surface of any 

array substrate, and made up with 50-mer-gene-specific probe plus 29-mer address 

sequences. Especially, the chip has high level of bead type redundancy (average 30 beads 

per probe) to control the quality and reproducibility of the direct hybridization assay.  

2.2.3.2. Whole genome array for miR-29b gain and loss-of-function experiment 

Human primary chondrocytes were transiently transfected with either miR-29b mimic or 

miR-29b inhibitor for 48 hours in triplicate. Then, total RNA was isolated and equal 

amounts of total RNA of each sample in the triplicate was pooled together. After checking 

the quality and integrity, the new pooled samples were sent to Source Bioscience (UK) to 

perform human whole genome profile. Again, the Illumina’s BeadArray-based technology 

was employed but using humanHT-12 V4.0 expression BeadChips. Similarly, the feature 

content derived mainly from NCBI reference sequence (NCBI refseq) which 

simultaneously profile more than 47,000 human transcripts. 

2.2.4. Data analysis  

2.2.4.1.   Pre-processing microRNA array data 

2.2.4.1.1. VST transformation and quantile normalization  

It is necessary to do background correction to remove non-specific signal from total signal. 

However, the initial data-pre-processing in the Illumina GenomeStudio solfware provides 

users with bead summary data in the form of a single signal intensity value for each probe. 

This value is calculated by subtracting the local background from the signal intensity of 

each bead, then taking the means of all beads containing a given probe. This means 

BeadStudio output data has undergone background correction. Thus, no further 

background correction need to be done for the Bead summary data, received from Source 

Bioscience (UK).  
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To reliably detect changes in expression from the whole genome array, it is important to 

remove sources of variation of non-biological origin between arrays to make data 

comparable. There are two types of variations might be seen when comparing arrays e.g. 

interesting variation (biological differences), and obscuring variation. Sources of obscuring 

variation were introduced during the process of carrying out the experiments e.g. during 

preparing the samples including mRNA extraction and isolation, variation in 

introduction and incorporation of dye, effected by pipetting error, temperature fluctuations 

and reagent quality; during manufacturing of the array  including variation in the 

amount of probe present at each feature or spot and variation in the hybridization 

efficiency of the probes for their mRNA targets; during hybridization of the sample on 

the array including variation in the amount of samples applied to the array and variation 

in the amount of target hybridized to the probe; and after array hybridization including 

variation in optical measurement and intensity computed from the scan image. So, 

comparisons between different biological samples can be made, it is important to remove 

these obscuring variations to ensure the values being analysed reflect the biology. For 

Beadchip array data, the two steps to achieve this are commonly referred to as between-

array normalization, and transformation. Two popular methods that implement these steps 

are VST transformation and quantile normalization for the Lumi packages. Briefly, for 

analysing, bead summary array data was imported into R studio (http://www.rstudio.com/). 

Array data was then transformed and normalized using Lumi package.  

2.2.4.1.2. Sequence data 

The miR-29 family mature sequence data was retrieved from miRbase database 

(http://www.mirbase.org/). 3’UTR sequences were downloaded from UCSC 

(https://genome.ucsc.edu/) and Ensembl (http://www.ensembl.org/index.html). RefSeq IDs 

were used to map probe sets to UCSC database and Ensembl Gene IDs were used to map 

probesets to the Ensembl database.  

2.2.4.1.3. The MicroRNA-29 family target prediction 

Three types of seed matches in the 3’UTR were considered when predicting direct 

miRNA-29 targets e.g. 6-mer seed match which is 6nt in length and was complementary 
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to nucleotides 2 to 7 in the miR-29 family; 7-mer seed match which is 7nt length and is 

complementary to nucleotides 1–7 in the miRNA or nucleotides 2–7 in the miRNA with 

“A” at the first position; and 8-mer seed match which is 8nt length, and matched 

nucleotides 1–8 in the miRNA or nucleotides 2–8 in the miRNA with an “A” at the first 

position. For searching these seed matches in the 3’UTR, 3’UTR sequences were imported 

and read in R studios using the “readDNAStringSet” function in Biostring package. Also, 

three types of miR-29 family seed matches were searched using “vcountPattern”function.   

In line with using R studios, some miRNA target prediction programs available were also 

used to predict targets for miR-29 including TargetScan (http://www.targetscan.org/), 

miRNA body map (http://www.mirnabodymap.org/), miRDB (http://mirdb.org/miRDB/), 

DIANA (http://diana.cslab.ece.ntua.gr/), Pictar (http://pictar.mdc-berlin.de/), miRbase 

(http://www.mirbase.org/).  

2.2.4.1.4. Functional pathway analysis  

DAVID (Database for Annotation, Visualization and Integrated Discovery) functional 

annotation tool (http://david.abcc.ncifcrf.gov/) was used to perform functional analysis for 

particular gene groups.  

2.2.4.1.5. Statistical analysis 

Unless otherwise stated, for the whole thesis, Student’s unpaired t-test (two-tail) was 

performed to compare difference between two groups. All values are given as mean values 

of replicates with error bar representing the standard error of the mean. The statistical 

analysis was carried using GraphPad Prism version 4.0 for Windows.  Levels of statistical 

significant are represented as * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. 
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CHAPTER III 

IDENTIFICATION OF THE MIR-29 FAMILY IN 

CARTILAGE HOMEOSTASIS AND OSTEOARTHRITIS 

 

3.1. Introduction  

MicroRNAs are referred to as the master regulators for gene expression: they exert their 

suppressive functions on targeting genes at the post transcriptional level through a 

sequence-complementary mechanism (Bartel 2009). In human chondrocytes, many 

different miRNAs are found and each of them are shown to directly and/or indirectly 

regulate hundreds of target genes, implicating a complex gene regulatory network in which 

miRNAs are involved (Le et al. 2013). This means that miRNAs take a crucial part in 

controlling the balance of the mRNA network in cartilage homeostasis; and the 

dysregulation of miRNA expression could trigger OA onset by disrupting this regulatory 

network.  

Indeed, an essential role of miRNAs has been reported in various aspects of cartilage 

development, cartilage homeostasis, and also in OA pathogenesis (Le et al. 2013). For 

instance, knockout of Dicer, the pre-miRNA processing enzyme, in a cartilage-specific 

manner resulted in skeletal growth defects, premature death of mice, reduction in growth 

plate chondrocytes, and an increase in hypertrophic chondrocytes (Kobayashi et al. 2008).   

Mutation of the Dnm3 locus, transcribing the miRNAs miR-199a, miR-199*, and miR-214, 

resulted in growth retardation including craniofacial hypoplasia (Watanabe et al. 2008). 

Universal knockout of miR-140, a cartilage and skeletal-restricted miRNA lead to: mild 

craniofacial deformities and dwarfism; early onset of age-related OA development; greater 

susceptibility to OA with accelerated proteoglycan loss and fibrillation of articular 

cartilage (Miyaki et al. 2010, Nakamura et al. 2011). Transgenic mice overexpressing 

miR-240 in cartilage were resistant to antigen-induced arthritis-associated loss of 

proteoglycan and type II collagen (Miyaki et al. 2010). Other specific miRNAs: miR-9, 

miR-98, and miR-146 were highlighted to be expressed differentially in miRNA profiles 

between human OA cartilage and its normal articular counterpart (Iliopoulos et al. 2008, 

Jones et al. 2009); miR-199a, miR-675, miR-145, miR-140, miR-455 have been proven to 

function in chondrogenesis and cartilage homeostasis (Lin et al. 2009, Miyaki et al. 2009, 

Dudek et al. 2010, Martinez-Sanchez et al. 2012, Swingler et al. 2012); miR-222 is 
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reported to play a potential role in the articular cartilage mechanotransduction pathway 

(Dunn et al. 2009); miR-146a and miR-146b, whose expression is regulated by NFκB, 

appear to be the key miRNAs in the inflammatory response (Taganov et al. 2006); miR-

34a, miR-194, miR-27b were reported to be induced by IL-1β (Abouheif et al. 2010, 

Akhtar et al. 2010, Xu et al. 2012). All of these data reveal miRNAs as important 

modulators of various aspects of articular cartilage homeostasis and OA pathogenesis.  

OA develops slowly with time and may not be symptomatic until significant joint damage 

has occurred. Currently, there is a lack of effective approaches to OA prevention or 

treatment. Available treatments are limited to pain management, and joint replacement 

surgery, this latter in the late phase of the disease. MicroRNAs, with the ability to fine-

tune the expression of multiple genes, could be a promising tool for therapeutic 

applications for a complex disease like OA. The down regulation of gene expression by 

miRNAs is relatively modest, thus the approach of combining multiple miRNAs to 

simultaneously target OA pathogenesis-relevant networks may be needed. Furthermore, 

There is growing evidence for future miRNA-based diagnostics: a number of miRNA in 

plasma were found at different levels between RA and OA patients (Murata et al. 2010); 

let-7e, miR-454, miR-886 were identified as differentially expressed circulating miRNAs 

in OA patients necessitating arthroplasty, especially, let–7e emerged as potential predictor 

for severe knee or hip OA (Beyer et al. 2014). However, there is a requirement for detailed 

investigations directed at diagnostic performance (sensitivity, specificity, accuracy) of 

these promising novel biomarkers before the measurement of miRNAs can enter the clinic. 

With all of the above information, the essential roles of miRNAs in cartilage homeostasis 

and OA are shown with potential for clinical application. The insights into the roles of 

miRNAs in chondrogenesis, articular cartilage homeostasis, and OA initiation and 

progression are, nevertheless, still insufficient. Thus, there is a continuing need to deepen 

our understanding of the molecular mechanisms miRNAs are involved in cartilage 

homeostasis and OA. Investigating the disease directly in man is challenging due to e.g. 

the inability to harvest articular tissue at an early stage; the slow disease progression; the 

absence of symptoms in the early stage of the disease; the variety of symptoms; the variety 

of causes and environmental influence. Animal models mimicking features of OA are, 

therefore, an important alternative solution.  
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In an effort to identify novel miRNAs important in the development of OA, the murine 

Destabilization of Medial Meniscus (DMM) model was used to identify miRNAs 

differentially expressed at 1, 3, 7 days (i.e. early stages) after the surgery. Performing 

miRNA and mRNA profiling followed with an integrated analysis highlighted miR-29b as 

a candidate miRNA participating in the early onset of OA in DMM model. Alongside the 

DMM model, the role of the miR-29 family in cartilage homeostasis and OA was also 

investigated in other human and mouse models e.g. human end-stage OA cartilage, the 

murine hip avulsion injury model, a human primary chondrocyte dedifferentiation model, a 

human chondrogenesis model, and murine limb development. 



102 

 

 

Aims 

• Performing miRNA and mRNA profiling in DMM model at very early time points 

1, 3, 7 days after surgery 

• Identifying miRNA potentially involve in OA onset by bioinformatics analysis  

• Investigating the regulation of the miR-29 family which is highlighted from 

bioinformatics analysis above in human end-stage OA cartilage   

• Determining the expression pattern of the miR-29 family in injury model  

• Establishing if the miR-29 family involving in chondrocyte phenotype  

• Determining the role of miR-29 in human and murine chondrogenesis  

• Investigating the involvement of miR-29 in murine limb development 
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3.2. Results  

3.2.1. The microRNA profile in the DMM model at 1, 3, 7 days after surgery    

As little is known about the involvement of miRNAs at the early stage of OA, identifying 

miRNAs modulated in OA initiation was a major aim.  Since mRNA profiles have shown 

large changes in gene expression even at 24 hours post surgery, the DMM model was used 

to investigate this. 

Alongside DMM mice (mice whose medial meniscal tibial ligament of the right knee was 

transected whilst the left knee was untouched), naïve mice (receiving no treatment), and 

sham-operated mice (mice whose right knees were operated to visualize the medial 

meniscal tibia ligament but not transected) were used.  Total RNA was first isolated from 

the whole knee joints of DMM mice (both right and left knees) and their controls at 3 

different time points i.e. 1, 3, 7 days after surgery, and subsequently checked for quality 

and integrity.  Unfortunately, RNA from naïve mice was degraded and not further studied. 

For miRNA profiling, an equal amount of total RNA from individual in each triplicate in 

the DMM right knee and DMM left knee group at 1, 3, and 7 days after surgery was 

pooled and these pools were subsequently subjected to miRNA microarray using the 

miRCURY LNATM microRNA Hi-Power Labelling Kit Hy3TM/Hy5TM, containing probes 

targeting all human, mouse and rat miRNAs registered in the miRBase 18.0.  

Clustering analysis showed that: the miRNA profiles of the DMM right or left knees were 

clustered quite closely to each other at day 1 and 3 but far apart at day 7 (Appendix, Figure 

1), suggesting that more miRNAs were modulated at the later time point than the earlier. In 

line with this, calculating the number of miRNAs which changed expression at each time 

point revealed the same pattern: only small changes were observed until 7 days post-

surgery (Figure 3.1). Using 1.5 fold-change (FC) as the cut off, only four miRNAs 

significantly increased expression at day 1 and 3 whilst more than 30 miRNAs were 

modulated at day 7.  The list of miRNAs which changed expression is listed in Table 3.1.  

To visualize the expression pattern of miRNAs across the time course of the DMM model, 

unsupervised hierarchical clustering analysis was carried out for miRNAs that met the 

filtering criteria e.g. absolute FC > 1.3 in each time point. Several clusters of miRNAs 

were identified comparing between DMM right and left knee i.e. (i) miRNAs which 

increased expression across the time course (cluster 1, 2, 3) (Figure 3.2a, b, c),  (ii) 
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miRNAs which decreased expression across the time course (cluster 5, 6) (Figure 3.2.e, f), 

(iii) miRNAs which decreased expression across 3 days but increased at day 7 (cluster 4) 

(Figure 3.2d) and (iv) miRNAs which increased until 3 days but decreased at day 7 

(cluster 7) (Figure 3.2.g).  

A subset of miRNA differentially expressed by microarray analysis was selected for 

revalidating the array data by quantitative real-time RT-PCR. The result confirmed the 

miRNA array data since a similar expression pattern between the two platforms for miR-

140, miR-455 (data not shown) and miR-29b (which will be discussed below) was 

observed.  
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Figure 3.1: Modulation of miRNA expression across a 7 day time course 

From the array data, for each miRNA, fold change (FC) was calculated by comparing its 
expression level in DMM right versus left knee. The number of regulated miRNAs were 
calculated for each of 0.05 interval of a (0.4, 2.5) range of FC. FC:  > 1: increase 
expression; < 1: decrease expression. The difference in number of miRNAs modulated was 
calculated by unpaired two-tailed t test: * p<0.05, ** p < 0.01, *** p<0.001. 
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Table 3.1: The list of miRNAs regulated in the DMM model with fold change higher than 
1.5 (increase or decrease) at 1, 3, and 7 days after surgery.  

Fold change (FC) was calculated by comparing between the DMM operated right and un-
operated left knee. Down-regulated miRNAs are presented as negative FC.   
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Figure 3.2: Unsupervised hierarchical clustering analysis for miRNAs with absolute fold 
change higher than 1.3. 

Comparing DMM right versus left knee at 1, 3, 7 day time points: cluster 1, 2, 3: all the 
miRNAs induced expression; cluster 5, 6: all miRNAs decreased expression; cluster 4: 
miRNAs decreased across 3 days but increased at day 7; cluster 7: miRNAs increased 
across 3 days but decreased at day 7. Comparing between three time points: cluster 1: 
miRNAs increased across 7 days; cluster 2, 6: miRNAs decreased at day 3; cluster 3, 5: 
miRNAs decreased at day 7. SNORD: small nucleolar RNA.  
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3.2.2. Expression profile of mRNAs in DMM right and left knee 

The microRNA microarray profiling revealed approximately 35 miRNAs modulated in the 

DMM model at 3 different time points, and whilst changes in expression are small, this 

may suggest that these miRNAs may have a role in regulating the onset of OA.  For further 

filtering of miRNAs having important roles amongst these modulated miRNAs, examining 

the mRNA expression profile would be useful since miRNAs exert their function by 

directly targeting and subsequently inhibiting mRNA expression. Additionally, since no 

major modulation of miRNA expression level was observed until 7 days after DMM 

surgery, it was sufficient to profile mRNA expression for two time points i.e. 1 and 7 day 

following DMM surgery.  

The Illumina BeadArray-based: MouseWG-6 v2.0 Expression BeadChip was used to 

profile more than 45,000 mouse transcripts in the pooled total RNA samples (DMM right 

and left knee), previously subjected to miRNA profiling. Consistent with the miRNA 

profile, mRNA array data also showed a similar expression pattern: no major change in 

mRNA expression level until day 7 when comparing between DMM right and left knee 

(Figure 3.3). If the absolute fold change cutoff is set at 1.5, only 30 mRNAs changed 

expression at day 1 whilst at day 7, more than 683 mRNAs were modulated. The full lists 

of mRNA which changed expression are in Appendix, Table 6, 7.  

A subset of mRNA differentially expressed by microarray analysis was selected for 

revalidating the array data. Comparison of the expression levels between the mRNA 

microarray and quantitative real-time qRT-PCR demonstrated a similar expression pattern 

between the two platform for 4 genes i.e. CCL2, IL6, SAA3, Arginase-1 (Appendix, Figure 

2). These results confirmed the mRNA array data. 

 

 



112 

 

-2 -1.5 1 1.5 2 2.5 3 4 5
0
5

10
15
20
50

100
150
200

10000
20000
30000

Fold change

N
um

be
r 

of
 m

iR
N

A
s

-2 -1.5 1 1.5 2 2.5 3 4 5

Fold change

day 1 day 7

 Figure 3.3 Total numbers of mRNAs at different fold change value at day 1 and day 7 
following surgery in DMM model.   

At each time point, Fold change = intensity value in DMM right - intensity value in DMM 
left. Numbers of mRNAs were calculated as fold change ranging from -3 to 7 for each 
increase of 0.05. Fold change:  > 1: increase expression; < 1: decrease expression.  
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3.2.3. Integrated miRNA and mRNA expression profiles of the DMM model identify 

miR-29b as a miRNA associated with OA onset  

To prioritize miRNAs which might have a role in OA onset in the DMM model, an integrated 

analysis between miRNA and mRNA profiles at 1 and 7 day of the DMM model was 

performed. This approach took advantage of inverse correlation analysis in which a miRNA 

was considered as a potential candidate if it was differentially expressed, and inversely 

correlated with the expression of its putative targets in the same biological samples.  

Steps for the miRNA and mRNA profile integrating analysis include: (i) predicting miRNA 

putative targets by searching for 4 different types of seed sequences e.g. 6-, 7 match 8-, 7 A1-, 

and 8-mer seed sequences located in the 3' UTR; (ii) integrating expression levels at each 

time point in the DMM model for all miRNA targets; (iii) searching for a miRNA’s putative 

target enrichment which is given more detail below.  

If a miRNA has an impact in the pathological changes in the DMM model and could exert its 

suppressive function on variety of targets, then when it is down-regulated, there should be an 

enrichment of its predicted targets among up-regulated mRNA and vice versa. This means 

that for downregulated miRNAs, a greater percentage of upregulated mRNAs will be their 

targets and the inverse pattern will be observed for an upregulated miRNA. This should also 

be true when comparing between different time points, 1 and 7 days in the DMM model. For 

instance, if a miRNA was repressed across the 7 day time course, the percentage of its targets 

amongst up-regulated mRNA at day 7 should be higher than at day 1. Together with this, for 

a downregulated miRNA, an enrichment of miRNA targets in up-regulated mRNAs over 

unmodulated mRNAs should also be observed at each time point or across the time course.  

Additionally, fold change threshold is another challenge faced in integrating analysis. In fact, 

it is almost impossible to choose the “right” cut off as the normal 1.5 fold change would be 

too stringent, and consequently, the power to detect potential miRNAs would be very low. To 

overcome this, in this study, all calculations were done for all fold change values greater than 

1 at 0.05 fold intervals. 

The integrating analysis for the miRNA and mRNA array data in the DMM model showed 

that amongst the differentially expressed miRNAs, miRNA-29b is the most interesting. 

Indeed, a substantial enrichment of miR-29b putative targets which was inversely correlated 
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with the miRNA expression level was observed at each time points (Figure 3.4, Figure 3.5).  

At day 1, when miR-29b increased expression, 6mer- and 7mer match 8- targets in the down-

regulated section were dominant compared with the up-regulated section (Figure 3.4). 

Conversely, at day 7, when miR-29b decreased expression, there was a strong enrichment of 

targets with 4 different types of seed sites in the up-regulated section over the down-regulated 

(figure 3.4). Also at day 7, the ratio up-regulated targets/unchanged targets was substantially 

higher than the ratio down-regulated targets/unchanged targets (Figure 3.5).  

The inverse correlation between miR-29b and its potential targets was also observed across 

the time course: whilst miR-29b level was down-regulated from day 1 to day 7, there was a 

substantial increase of miR-29 targets in the up-regulated mRNAs at day 7 compared with 

day 1. Consistent with this, the ratio up-regulated targets/unchanged targets showed an 

enrichment at day 7 (Figure 3.5). All of the data above suggest that miRNA-29b has a 

potential functional role in OA onset in the DMM model and was selected as the candidate 

miRNA for further functional studies.   

From miRNA microarray data, miR-29b is the one on two miRNAs increased expression 

with 1.5 fold change at day 1 following DMM surgery. Real-time qRT-PCR was used to re-

measure expression level of miR-29b in the DMM samples and sham surgery samples. The 

Real-time qRT-PCR data confirmed miRNA microarray data and showed a significant 

increase of miR-29b expression level in DMM right compared with left knee or sham surgery 

(Figure 3.6).  

MicroRNA-29b is a member of the miR-29 family including miR-29a and miR-29c with the 

mature sequences differing at nucleotide positions 10, 18, 21, 22, or 23 but sharing a common 

seed sequence for target recognition. We hypothesized that not just miR-29b but all members 

of miR-29s may contribute to OA onset, as all miRNA-29s showed a downward trend at all 3 

time points even though the difference did not reach statistical significance. Therefore, in this 

study, we investigated the link between all miR-29 members with OA rather than just miR-

29b alone.  
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Figure 3.4 Percentage of miR-29 predicted targets in differentially expressed mRNA at day 1 
and day 7 after surgery in DMM model.  

The calculation was done for all the fold changes ± 0.05 from -2.5 to 4.0 and for each type of 
seed sequence e.g. 6mer, 7mer match 8, 7mer a1, 8mer. The mRNA having more than one 
binding site for each type of seed sequence was always assigned as 1. At k fold change, the 
percentage of 6mer-seed-site targets in modulated mRNAs was calculated: a_6mer= sum of 
mRNA having 6mer-seed site sequence in their 3’UTR with the fold change in the range (k, 
k+0.05); b_k= sum of mRNA with the fold change in the rank (k, k+0.05); Freq= 
a_6mer/b_k. The percentage of other seed site targets was calculated similarly. Day1: closed 
bar, day 7: opened bar.  
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Figure 3.5 Percentage of miR-29 targets that changed expression compared to unchanged 
expression at day 1 and day 7 after surgery in DMM model.  

The calculation was done for all the fold change (FC) ± 0.05 from each other from -2.5 to 4.0 
and for each types of seed sequence e.g. 6mer, 7mer match 8, 7mer a1, 8mer. The mRNA 
having more than one binding site for each type of seed sequence was always assigned as 1. 
When FC=k, the percentage of 6mer-seed-site targets which increased or decreased 
expression was calculated: 6mer_changed = sum of mRNA having 6mer-seed site sequence 
in their 3’UTR with FC in the range (k, FC max) if k >0, or (FC min, k) if k<0; 
6mer_unchanged = sum of mRNA having 6mer-seed site sequence in their 3’UTR with FC 
range in (0,k]  if k>0, or (k, 0] if k< 0;  1/Per.different = 6mer_unchange/6mer_changed. 
The percentage of other seed site targets was calculated similarly. Day1: red line, day 7: blue 
line.  
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Figure 3.6: MicroRNA 29b was significantly induced in the DMM model at 1 day after 

surgery 

Total RNA was reversed transcribed to cDNA and miR-29b expression was measured by 
real-time qRT-PCR in individual samples of sham right knee (sham surgery), DMM left knee 
(un-operated), and DMM right knee (DMM) at 1 day after surgery. U6 was used as 
endogenous control. Expression level of miR-29b in DMM and sham surgery was normalized 
to un-operated control. The data show mean +/- SEM, n=3.  The expression of miR-29b 
between each group was analysed by unpaired two-tailed t test * p<0.05, ** p < 0.01, *** 
p<0.001. 
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3.2.4. Up-regulation of miR-29s in the murine hip avulsion injury model  

Traumatic joint injury and joint magliment are linked to OA initiation. Patients with 

traumatic joint injury show an increased risk of OA, implicating the early events post-injury 

as important in the long term. To investigate the role of miR-29s in the onset of OA, a murine 

hip cartilage avulsion injury model, where the murine hip femoral cap cartilage was sub-

cultured in serum-free media across a 48 hour-time course, was used. Total RNA was isolated 

from the explants using Trizol, reverse transcribed to cDNA by either SuperScript II reverse 

transcriptase (for mRNA detection) or miRCURY LNATM  Universal cDNA synthesis (for 

miRNA detection). Expression levels were measured by real-time qRT-PCR. 

The majority of the genes rapidly induced in murine joints following surgical destabilization 

(DMM model) were also regulated in murine hip cartilage explants upon injury (Chong et al. 

2013). Interestingly, some genes such as Dkk3, Ccl2, Il6 were significantly regulated after 3 

hours in culture (Appendix, Figure 3) though likely regulating genes which are modulated at 

later time points. The expression pattern of the miR-29 family is similar to each other and 

tends to increase across the 48 hour time course (Figure 3.7): miR-29b and 29c significantly 

increased expression after 12 hours in culture; miR-29a significantly after 6 hours. This 

suggests that the regulation of the miR-29s may contribute to the molecular mechanism 

underlying the initiation of OA. 
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Figure 3.7: Expression of the miR-29 family in the hip avulsion injury model  

The femoral caps of C57Bl/6 mice aged 4 weeks were avulsed and put in culture. At each of 
3, 6, 12, 48 hour time points, the femoral caps were harvested. Total RNA was isolated using 
Trizol and reverse transcribed to cDNA.  Expression of the mature miR-29 family was 
measured by real-time q-RTPCR where U6 was used as an endogenous control. At least 
triplicate samples were measured at each time. Means ± standard errors are presented, n=6. 
Difference in expression between each time point against control (t=0) was calculated by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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3.2.5. Up-regulation of the miR-29 family in human end-stage OA cartilage  

To determine whether the miR-29 family could play a role in human OA, its expression level 

was compared between hip / knee OA cartilage and non-disease tissue controls (hip cartilage 

followingfracture to the neck of femur).  

Human articular cartilage samples (total: 8 hip and 7 knee OA cartilage, 7 healthy fracture to 

the neck of femur) were obtained from patients undergoing total hip/ knee replacement 

surgery at the Norfolk and Norwich University Hospital. Total RNA was isolated from all 

cartilage samples using Trizol and followed by a purification step through column using 

miRVana kit. The total RNA was reverse transcribed to cDNA using miRCURY LNATM 

Universal cDNA synthesis. Expression of all miR-29 members was measured by real-time 

qRT-PCR with U6 as the endogenous control. 

Data (Figure 3.8) showed an increase in miR-29 expression in hip OA but decrease in knee 

OA cartilage compared to fracture control. This reached significance, or close to significance 

in each case. Whilst there is no comparison with normal knee cartilage, these data show that 

the miR-29 family is regulated in human end-stage OA cartilage. 
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Figure 3.8: Expression of the miR-29 family in human OA cartilage  

Total RNA was isolated from human articular cartilage of either end-stage OA patients or 
healthy controls and reverse transcribed to cDNA. Expression of the mature miR-29 family 
was measured by real-time qRT-PCR using U6 as an endogenous control. HOA (hip 
osteoarthritis cartilage, n=8), KOA (knee osteoarthritis, n=7), NOF (neck of the femur, n=7). 
Means ± standard errors are presented. Difference in expression between each time point 
against control (NOF) was calculated by unpaired two-tailed Student’s t test. * p<0.05, ** p < 
0.01, *** p<0.001. 
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3.2.6. The miR-29 family is regulated with chondrocyte phenotype 

Dedifferentiation and the loss of phenotype is an obstacle in expanding human chondrocytes: 

the cells stop expressing aggrecan and collagen type II, and this limits capacity to form 

cartilage. In line with this, alteration chondrocyte phenotype is one of the characteristics of 

OA. As compared with normal articular cartilage, the chondrocytes embedded in different 

zones of OA cartilage were shown to express different markers of chondrocyte differentiation: 

chondrocytes in the middle zone re-expressing chondroprogenitor phenotype; cells in the 

upper middle zone expressing type III collagen (dedifferentiated phenotype) (Aigner et al. 

1993). Assessing whether the miR-29 family is regulated with chondrocyte phenotype, 

therefore, would help to further determine the relevance of the miR-29 family in cartilage 

function.  

This was investigated using human primary chondrocyte dedifferentiation model. After 

isolation from human knee OA cartilage by collagenase (collagenase-post digested HACs 

(PD)), primary chondrocytes were cultured in monolayer (primary culture HACs (P0), and 

three sequential passages were performed at 1: 3 dilution of cells (passage 1 to passage 3). 

Total RNA was isolated from cartilage, PD, P0 to P3 chondrocytes and reverse transcribed to 

cDNA. The expression level of all the miR-29 family was then measured by real-time qRT-

PCR. 

The expression of the miR-29 family was found to significantly decrease when HACs were 

passaged in monolayer (Figure 3.9), indicating the putative role of the miR-29 family in 

chondrocytic phenotype.  
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Figure 3.9: Expression of the miR-29 family in a chondrocyte dedifferentiation model  

Human primary chondrocytes were isolated from the articular cartilage of 8 knee OA patients 
using collagenase digest. The cells were put in culture and passaged 3 times. Total RNA was 
isolated from either human articular cartilage (cart) or chondrocytes post digestion with 
collagenase (PD) or each passage 0, 1, 2, 3 (P0, P1, P2, P3).  After reverse transcribing to 
cDNA, expression of the mature miR-29 family was measured by real-time qRT-PCR (U6 
was used as an endogenous control). Mean ± standard errors are presented, n=8. Different in 
expression between was calculated by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001. 
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3.2.7. MicroRNA-29s expression in chondrogenesis  

Chondrogenesis is the earliest phase of skeletal development, occuring as a result of: 

mesenchymal cell condensation, chondroprogenitor cell differentiation, chondrocyte 

differentiation and maturation. Chondrogenesis results in the formation of cartilage and bone 

in the process of endochondral ossification (Goldring et al. 2006). It is pertinent to examine 

the role of miR-29 in chondrogenesis, particularly since the replay of this developmental 

process may contribute to osteoarthritis.   

To determine the expression and therefore possible role of the miR-29 family in 

chondrogenesis both human and mouse chondrogenesis models were used. Human 

chondrogenesis model: human bone marrow stem cells were differentiated to form a 

cartilage disc (the model was kindly developed by Dr Matt J. Barter (Newcastle University, 

UK)); Mouse chondrogenesis model: the embryonic carcinoma cell line ATDC5 was 

stimulated to from chondrocytes using insulin for 42 days (this model was developed by Dr 

Tracey Swingler (University of East Anglia)). Total RNA was isolated, reverse transcribed to 

cDNA and used for measuring expression level of the miRNA by real-time qRT-PCR. 

In the human chondrogenesis model, a significant down-regulation of the miR-29s after 3 

days of differentiation was observed; after that, miR-29s return to the original expression 

levels (Figure 3.10). A similar expression pattern was also observed in the murine ATDC5 

chondrocyte differentiation model: significantly decreased expression of all the miR-29 

members after 14 days differentiation; with a return after 36 days, to the original level 

(Appendix, Figure 4). These data imply that miR-29 may be a negative regulator of the early 

stage of chondrogenesis.  

Indeed, the miR-29 family was not the only miRNA regulated in either the human or murine 

chondrogenic process, many other miRNAs were strongly modulated e.g. (Barter et al, 

unpublished data) (Swingler et al. 2012). However, it can be postulated that the miRNA 

would have a functional role in chondrogenesis if it had affected on mRNA expression. To 

test this hypothesis, again an integrating analysis approachs (using mRNA expression profile 

data to analyse miR-29 putative target genes) was used. A substantial enrichment of miR-29 

targets was inversely associated with the expression of miR-29s was observed (Data not 

shown). Together, these data suggest that the miR-29 family acts as the negative regulator of 

chondrogenesis, leading to an increase in mRNA to enable the process.  
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Figure 3.10: Expression of the miR-29 family in the human chondrogenesis model. 

Human bone marrow stem cells (from 3 donors, 18-25 years of age, 5x105 cells in 100µl 
growth medium) were put into polycarbonate Transwell filters and centrifuged in 24 well 
plates. 0.5ml chondrogenic culture medium containing 100µg/ml sodium pyruvate, 10ng/ml 
TGFβ3, 100nM dexamethasone, 1x ITS, 40µg/ml proline, and 25µg/ml ascorbate-2 
phosphate was added to the lower well. Media were replaced every 2 or 3 days up to 14 days. 
At 0, 3, 7, 14 days, the cells were harvested and total RNA was extracted using Trizol. The 
RNA was then reverse transcribed to cDNA and was used for measuring the expression level 
of the mature miR-29 family by real-time qRT-PCR (U6 was used as an endogenous control). 
Assays were repeated 3 times. At least triplicate samples were in each time. Means ± 
standard errors are presented. Difference in expression between each time point was 
calculated by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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3.2.8. The miR-29b is expressed in murine limb development 

The formation of the skeleton first is initiated with the formation of a precartilage 

condensation (anlagen) which is followed by chondrogenesis triggered in the precartilage 

condensation and ultimately cartilage is formed. This process involves the cooperation of 

many cell activities e.g. migration, adhesion, intracellular signalling, and proliferation 

(Goldring et al. 2006). Given the likely involvement of the miR-29 family in chondrogenesis, 

it is pertinent to ask whether miR-29s are expressed in murine limb development. 

Additionally, the miR-29 family or its members have been shown to control cell proliferation 

and apoptosis in different tumour types. A murine model would thus be a useful model to 

study the role of the miR-29 family in cell proliferation and apoptosis limb development. 

In mice, the forelimb starts to develop at stage E9.5 whilst the hindlimb starts behind by 

about half a day. Five days later, a miniature model of the adult limb is formed (E14.5 and 

E15 for fore and hindlimb, respectively). At stage E11, a distinct apical ectodermal ridge at 

the limb tip is formed in the forelimb and the handplate is beginning to form at E11.5.  

Similarly events happen in the hindlimb at half a day later (at E11.5 and E12) (Martin 1990).  

Whole mount in situ hybridization was conducted using amiRCURY LNATM miR-29b-3p 

double-DIG labelled probe to detect the expression of miR-29b in the mouse embryo stage 

E11.5 and E15. The data showed that: at stage E11.5, miR29b was expressed in the cartilage 

of both fore and hindlimb; at stage E15 when the small scale the adult limb was formed, miR-

29b was strongly expressed, implicating miR-29b playing a role in murine limb development. 

Besides limbs, miR-29b was also found on the brain and the spine of embryo stage E11.5 

(Figure 3.11).  
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Figure 3.11: Whole mount in situ hybridization of miRNA-29b in murine embryo stage 

E11.5 and E.15.   

Using a miRCURY LNATM double-DIG labelled miR-29b probe, miR-29b was found to be 

expressed: in the embryo stage E11.5 in the brain (A), mouth (B), spine (C-D), hindlimb (E), 

forelimb (F); in the embryo stage E15 in hindlimb (G) and  forelimb (H).  
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3.3. DISCUSSION 

The principal aim of this study was to begin to identify the miRNAs which were implicated 

in the early stages of OA and elucidate their function.  Whilst there have been a number of 

studies on the role of miRNAs in OA pathogenesis, they have not focused on the disease 

onset. In the present study, for the first time, the miRNA expression profile was reported for 

the DMM mouse model at early time points e.g. 1, 3, 7 days following surgery. The fact that 

only a small number of miRNAs changed expression across the first three days after DMM 

surgery might indicate miRNAs mainly contribute in disease progression rather than 

initiation. However, there are some limitations of the study which prevent a firm conclusion 

about the role of miRNAs in the early stages of the disease. Total RNA for the miRNA 

microarray was isolated from whole knee joints of DMM mice. Thus, if a miRNA is 

expressed in a single tissue e.g. cartilage, bone, meniscus, ligament or synovium, pooling of 

tissues will reduce the signal to a lower level than in the individual tissue and that could be 

the explanation for the overall low levels of modulated miRNAs observed in the present 

study. Moreover, insufficient controls, e.g. naïve samples and genes responding to sham 

surgery in this study may also have been problematic.  The DMM model does not completely 

recapitulate human OA pathogenesis, e.g. with more synovial involvement in the latter.  

However, it remains unlikely that the miRNA microarray data acquired from the DMM 

model in this study is incorrect. The DMM left knee (no surgery) used as a control would 

show the consequence of surgery, even if it can’t distinguish injury per se from early OA. 

Moreover, Burleigh et al (2012)  reported a large and significant difference in expression 

levels of e.g. Ccl2, Arg1e, Il6, Saa-3 in the same DMM model just 6 hours following surgery, 

which was interpreted as response to surgical destabilization rather than reaction to injury 

(Burleigh et al. 2012). In this study, such an increase in expression was also observed when 

comparing between the DMM right and DMM left, suggesting that the DMM left knee can 

act as a suitable control. Hence, it was expected that the changes in miRNA expression at 

early time points would be greater.   

MicroRNA-29b, one of only two miRNAs significantly increased in expression at day one 

post-surgery and inversely correlated with expression of its putative targets, was investigated 

in detail. The miR-29b is encoded by two loci in the human genome e.g. the primary miR-29-

a/b1 cluster in chromosome 7, and the primary miR-29b2/c cluster in chromosome 1. 
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Normally, clustered miRNAs in humans work in combination to accomplish their function. 

At the transcriptional level, at least one of the other miR-29 family members i.e. miR-29a or 

miR-29c will be co-transcribed with miR-29b.  In addition, miR-29b is reported to have a 

short half-life (the time taken for the miRNA to fall to half of its original value) which is 

linked to the presence of uracil bases at positions 9-11, compared with miR-29a (more stable 

with a reported half-life of > 12 hours) (Zhang et al. 2011). Thus, in the DMM model at 1 

day after surgery it would be expected that a significant increase in either miR-29a or miR-

29c would accompany that of miR-29b. However, only miR-29b increased in expression (1.5 

fold change in array data) but not any of the other miR-29 family members, perhaps 

implicating another post-transcriptional regulatory mechanism controlling miRNA processing. 

In line with the DMM model data, in a murine hip avulsion injury model, an increasing 

expression level was also observed for all miR-29 members post injury. Interestingly, a 

similar pattern of expression of some genes strongly induced in the DMM model at 6 hours 

after surgery (Burleigh et al. 2012) was seen in the injury model suggesting some molecular 

similarities between the two models. In line with this, Chong et al (2013) also observed a 

similar pattern when measuring the expression of the set of gene induced expression in DMM 

model 6 hours after surgery and in murine injury model in which the hip cartilages cultured 

for 6 hours (Chong et al. 2013). Since mechanical factors following traumatic joint injury 

may mediate OA onset, these data suggest for the first time an important role for the miR-29 

family in the initiation of OA. The fact that the miR-29 family increased in expression in 

human OA end-stage cartilage supports a role for the miR-29s in the disease. In this study, 

human knee cartilage normal controls were not available, and the difference in hip and knee 

cartilage may explain in part why the miR-29 family levels increased in hip but decreased in 

knee OA cartilage compared to human hip fracture control. Also, in this project, the miR-29 

family expression level is very variable across a human tissue panel e.g. heart, brain, lung, 

spleen (data not shown). In supporting these data, previous published data also demonstrated 

the different expression level of the miR-29 family in different tissues in zebrafish 

(Wienholds et al. 2005). These data suggest that the mechanisms controlling the miR-29 

family expression in different tissues are not similar. The fact that miR-29 family expression 

was modulated in different mouse models and in human OA cartilage implies a role for the 

miR-29 family in cartilage, and suggest that the two pri-miR-29a/b1 and pri-miR-29b2/c 

clusters may be involved in both early and late stages of the disease. The direct mechanism 
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controlling miR-29 family expression and the extent to which each cluster contributes to OA 

remains unknown and is worthy of further investigation.  

This study also provides evidence for the role of the miR-29 family in cartilage formation as 

its expression was regulated during human and mouse chondrogenesis and inversely 

correlated with its putative targets. In fact, such decreased expression level at an early stage 

of chondrogenesis is in line with published data e.g. Guerit et al (2013) showed the decreased 

expression of miR-29a is essential for chondrogenesis via its regulation of FOXO3a (Guerit 

et al. 2014); Sorentino et al (2008) found miR-29b was among miRNAs down-regulated 

when differentiating human MSCs through chondrogenesis (Sorrentino et al. 2008); Yan et al 

(2011) demonstrated that both miR-29a and miR-29b were significantly decreased in a 

chondrogenesis model where mouse MSC were grown on polyhydroxyalkanoates (Yan et al. 

2011). However, I have demonstrated for the first time that all miR-29 family members are 

involved in chondrogenesis, stressing the important role of both miR-29 clusters in 

controlling cartilage homeostasis in human and mouse. In contrast to this data, there are 

others studies profiling the expression of miRNAs in murine and human chondrogenesis 

model (Suomi et al. 2008, Lin et al. 2009, Miyaki et al. 2009, Lin et al. 2011, Yang et al. 

2011). The miR-29 family, nevertheless, was not amongst the miRNAs which had altered 

expression. This is not surprising and could be attributed to differing design of experiments 

including inducers of differentiation, cell type, numbers of detected miRNA probes and 

organism.  In addition, despite of being a negative regulator of chondrogenesis, miR-29b was 

found to express in murine limb development. A number of published data report that the 

miR-29 family can act as oncogenes whose expression induces cell proliferation but inhibits 

apoptosis. Whether the miR-29 family is involved in murine limb development through 

inducing chondrocyte proliferation in the growth plate remains unknown. Therefore, 

examination of the role of miR-29 family in limb development in vivo will be a priority for 

future studies.  

Another piece of data supporting the role of the miR-29 family in OA comes from the fact 

that expression of the miR-29 family is decreased during chondrocyte dedifferentiation. 

Again, other groups have profiled miRNAs in human dedifferentiation models (Karlsen et al. 

2011, Lin et al. 2011) but the miR-29 family has not shown up in any of them. As mentioned 

above, this could be attributed to many different factors.   
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Taken together, all of these data show that the miR-29 family may modulate both cartilage 

homeostasis and OA and make a compelling case for further investigation. In this PhD thesis, 

for the first time, the whole miR-29 family is reported to be involved in OA although the 

increase of the miR-29b in OA had been shown (Moulin et al. 2012). Nevertheless, the 

miRNA-29 family has been implicated in many other areas of pathology. Many publications 

have reported the involvement of the miR-29 family in cancers where the miRNA family or a 

single member could serve as either a tumour suppressor or an oncogene. In 

rhabdomyosarcoma (Wang et al. 2008), nasopharyngeal carcinoma (Sengupta et al. 2008), 

hepatocellular carcinoma (Xiong et al. 2010), acute myeloid leukemia (Eyholzer et al. 2010) , 

multiple myeloma (Zhang et al. 2011, Amodio et al. 2012), chronic lymphocytic leukemia 

(Santanam et al. 2010), glioblastoma (Cortez et al. 2010), and lung (Fabbri et al. 2007) and 

pancreatic cancer (Muniyappa et al. 2009), miR-29 was described as a tumor suppressor 

whilst in acute myeloid leukemia , colorectal liver metastasis (Wang et al. 2012), and breast 

cancer (Chou et al. 2013) , miR-29 was shown to be as tumour promoter. 

Besides cancers, the miR-29 family has been shown to participate in a number of 

physiological processes including (i) muscle development e.g. knockdown of miR-29b in 

vivo induced cardiac fibrosis in mice; miR-29a/b1 inhibition induced vascular smooth muscle 

cell calcification; miR-29 family expression was developmentally up-regulated in porcine 

skeletal muscle from fetal to adult, and this was also true in mice and human; the miR-29 

family was found to be down-regulated in myotonic dystrophy type I and Duchenne muscular 

dystrophy (Wei et al. 2013), (ii) bone formation e.g. miR-29a increased bone mass, induced 

osteoblast differentiation, and inhibited osteoclast differentiation; reduced miR-29a 

expression was associated with low bone mass and poor skeletal microarchitecture in rats 

treated with glucocorticoids (Wang et al. 2013), (iii) HIV virus infection  e.g. ectopic 

expression of miRNA-29a resulted in reduction of HIV virus levels, implicating this miRNA 

as a potential strategy in developing anti-HIV therapeutics  (Ahluwalia et al. 2008), (iv) 

aging e.g. miR-29 family up-regulation was observed in a number of different organs e.g. 

liver, muscle, and brain of several aging models (Ugalde et al. 2011, Fenn et al. 2013, Hu et 

al. 2014), (v) diabetes e.g. the miR-29 family was up-regulated in diabetic rats and forced 

expression of miR-29 inhibited insulin induced glucose imported by 3T3-L1 adipocytes (He 

et al. 2007);  reduced miR-29b in plasma samples of type 2 diabetes patients anticipated the 
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manifestation of the disease (Zampetaki et al. 2010); miR-29c was found up-regulated the 

kidney glomeruli from diabetic mice (Long et al. 2011); the continued expression of miR-29 

isoforms in the pancreatic β-cell seems to be required for normal and selective stimulation of 

insulin secretion by glucose (Pullen et al. 2011); (vi) fibrosis development, the miR-29 

family has been shown to be implicated in the development of fibrosis of many organs 

including heart, kidney, lung, liver, and systemic sclerosis; (vii) Alzheimer disease, the miR-

29a/b1 cluster or miR-29a was significantly decreased in Alzheimer patients (Hebert et al. 

2008, Shioya et al. 2010). 

In conclusion, with all of the data above, the miR-29 family may play a key role in 

Osteoarthritis and of is worthy of further investigation. The mechanisms which control its 

expression together with its function in chondrocytes will be described in the next chapters.  
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CHAPTER IV 
FACTORS THAT CONTROL EXPRESSION OF THE MICRORNA-29 FAMILY  

 

4.1. Introduction  

In the previous chapter, evidence for the involvement of the miR-29 family in cartilage 

homeostasis and OA was presented. The increased expression of the all family members is 

apparent in both early and late stages of OA. However, which factors or mechanisms are 

responsible for miR-29 induction or repression in chondrocytes remains unknown and is 

worthy of further investigation.   

The miR-29 family is intergenic miRNAs and is encoded in two gene clusters e.g. one for the 

primary miR-29a/b1 on chr.7q32, and the other for the primary miR-29b2/c on chr.1q32.2 

(Saini et al. 2007, Chang et al. 2008). The miR-29b1 and miR-29a precursors are processed 

from the pri-miR-29a/b1 last intron (Genbank accession EU154353) whist the miR-29b2 and 

miR-29c precursors are from the pri-miR-29b2/c last exon (Genbank accession EU154352 

and EU154351) (Chang et al. 2008) (Figure 4.1). These precursors are all transcribed as 

polycistronic primary transcripts (Chang et al. 2008, Mott et al. 2010) upon which various 

transcriptional regulators e.g. NFκB (Liu et al. 2010, Mott et al. 2010), supressors (c-Myc 

(Mott et al. 2010, Parpart et al. 2014), Sp1(Liu et al. 2010, Amodio et al. 2012), Gli (Mott et 

al. 2010), Yin-Yang-1, Smad3 (Qin et al. 2011), Ezh, H3K27, HDAC1, HDAC3), or inducers 

(Gli, SRF, Mef2, TCF/LEF, GATA3 (Chou et al. 2013), CEBPA (Eyholzer et al. 2010)), and 

signalling pathways e.g, Wnt , TGFβ, TLR/NFκB, TNFα/NFκB, hedgehog signalling have 

been reported to be directly and/or indirectly involved. For instance, both canonical and 

non-canonical Wnt signalling was reported to induce the miR-29 family level in different 

cellular contexts: Wnt3a rapidly induces miR-29 levels in osteoblastic cells (Kapinas et al. 

2009, Kapinas et al. 2010) or in muscle progenitor cells (MPCs) (Hu et al. 2014), 

respectively, at least in part through the two putative TCF/LEF-binding sites in the miR-29a 

promoter (Kapinas et al. 2010); non-canonical Wnt signalling through Wnt7a/Frizzled 9 

resulted in increased expression of only the mature miR-29b but not miR-29a or c or any 

miR-29b primary or precursor forms in non-small lung cancer cell lines H661 and H15 

(Avasarala et al. 2013). In addition, ERK5 and PPARγ, key effectors of the Wnt7a/Frizzled 9 

pathway, were also observed to be strong inducers of miR-29b expression (Avasarala et al. 
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2013). In contrast to Wnt signalling, TGFβ/Smad3 signalling was shown to negatively 

regulate miR-29 family expression in different cell lines e.g. human aortic adventitial  
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Figure 4.1: Genomic organization of the miR-29 family 

The miR-29 family includes three members miR-29a, miR-29b and miR-29c. The primary 
pri-29a/b1 is located in chromosome 7 containing pre-29a and pre-29b1. The primary pri-
29b2/c is located in chromosome 1 including pre-29b2 and pre-29c. The hairpins indicate the 
locations of the sequence encoding precursors of miR-29s. Pre-29a and pre-29c will process 
into mature miR-29a and miR-29c, respectively. Pre-29b1 and pre-29b2 will process into 
mature miR29b. The mature sequences of the miR-29 family members share identical seed 
regions. Nucleotides that differ among miR-29s are indicated in italics.  
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fibroblasts (Maegdefessel et al. 2012), renal fibrosis cells (Wang et al. 2012, Ramdas et al. 

2013), murine hepatic stellate cells (Roderburg et al. 2011), rat hepatic stellate cells 

(Kwiecinski et al. 2011), human skin fibroblasts (Maurer et al. 2010), human tenon’s 

fibroblast (Li et al. 2012), human lung fibroblast cell line (Cushing et al. 2011, Yang et al. 

2013). The suppressive effect of TGFβ/Smad3 signalling on miR-29 expression was partly 

mediated through a Smad3 binding site in the highly conserved region around 22kb upstream 

of the miR-29b2/c promoter as showed by chromatin immunoprecipitation assay (Qin et al. 

2011, Ramdas et al. 2013). Similar to TGFβ, Toll-like receptor (TLR) signalling and 

TNFαααα signalling have been shown to mediate suppressive effects on miR-29 family 

expression. In man,  treating human cholangiocarcinoma cells with TLR ligands e.g. TLR3 

(Poly (I:C)), TLR4 (LPS), TLR5 (flagellin), TLR6 (MALP-2) showed a significant decrease 

in the miR-29 level beginning after 4 hours of LPS treatment but increasing to 24 hours (Mott 

et al. 2010); treating human stellate cells with LPS strongly decreased all miR-29 family 

expression after 1 hour (Roderburg et al. 2011); treating C2C12 myoblasts with TNFα 

substantially reduced miR-29b and miR-29c expression (Wang et al. 2008); stimulating the 

choroidal-retinal pigment epithelial cell line ARPE-19 with TNFα resulted in significant 

down regulation of all miR-29s; conversely, transfecting with a synthetic NFκB decoy, 

(NFκB inhibitor), rescued the down regulation of miR-29 by TNFα (Χαι ετ αλ. 2014). The 

activation of NFκB through TLR signalling with its three binding sites in the miR-29a/b1 

cluster promoter (-561, -110, and +134) was proven to be the mechanism for the suppression 

of miR-29a/b1 promoter function (Mott et al. 2010). In mice, miR-29a and miR-29b 

significantly decreased expression in murine natural killer (NK) cells stimulated with the 

TLR3 ligand (Poly (I:C)) or phorbol ester (PMA) as well as in splenocytes, NK and T cells of 

mice infected with L. monocytogenes or Mycobacterium bovis bacillus Calmette-Guérin (Ma 

et al. 2011). Consistent with the human miRNA, a region about 25 kb upstream of the murine 

promoter of miR-29a/b1 contains two NFκB binding sites. The second binding site is more 

conserved between human and mouse and it has been shown to be key for suppression of the 

miR-29a/b1 promoter (Ma et al. 2011). Importantly, other transcriptional factors, co-

operating with NFκB to suppress or induce miR-29 family expression, have also been 

reported e.g. YY1, Sp1, Ezh, H3K27, HDAC1, HADC3, Mef2, SFR.  Forced expression of 

YY1 in C2C12 lead to a 2-fold decrease of miR-29b and miR-29c levels; similarly, siRNA 

knockdown of YY1 significantly enhanced expression of miRNA expression.  ChIP analysis 

showed that YY1 did not bind to the miR-29b2/c locus in cells in the absence of NFκB, 
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suggesting that both pathways are necessarye for silencing the miR-29b2/c locus. Amongst 4 

putative binding sites of YY1 in highly a conserved region ~20kb upstream of miR-29b2/c, 

only one site is bound by YY1 on ChIP assay whereas all 4 sites produced a binding complex 

with EMSAs using nucleus extract from C2C12. Notably, Ezh, H3K27, HDAC1, whose 

expression is associated with repression of muscle-specific genes, and recruited by YY1, was 

also detected by ChIP assay. In line of these transcription factors, Mef2 and SFR, well-known 

for activating muscle genes, were also found binding to the miR-29b2/c promoter. Again 

using luciferase reporter assay, a reporter containing a 4.5 kb fragment spanning YY1, Mef2, 

SFR binding sites was repressed by YY1 or loss of the YY1 binding site but stimulated with 

either YY1 knockdown or SRF or Mef2 (Wang et al. 2008). In addition, forced expression of 

Sp1 or NFκB (p65) reduced miR-29b expression; conversely, knockdown of Sp1 or NFκB 

(p65) by siRNAs resulted in induced miR-29b level (Liu et al. 2010). EMSA assay using 

probes spanning the -125/-75 miR-29b sequence yielded two major complexes, suggesting 

Sp1/NFκB acts as a repressive complex interacting with an element of the miR-29b enhancer 

(Liu et al. 2010). Interestingly, histone deacetylase (HDAC) 1 and 3 contribute to the 

repressor activity of Sp1/NFκB on miR-29b expression (Liu et al. 2010). Incubation of 

HDAC1/HDAC3 with 32P-labelled probe from the miR-29a/b1 cluster region together with 

NFκB p50/p65 and Sp1 showed a delayed and more intense band; HDAC1/3 inhibitors 

increase miR-29b expression, supporting the interaction of HDAC1 and 3 and Sp1/NFκB 

with the miR-29b regulatory sequence (Liu et al. 2010). Similar to other signalling mentioned 

previously, hedgehog signalling pathway was also shown to repress miR-29 expression: 

cells treated with cyclopamine, an inhibitor of Smoothened (a hedgehog signalling 

component), or transfected with siRNA to knockdown Gli-3, the expression of miR-29b 

increased (Mott et al. 2010). Along with the transcription factors mentioned above, there are 

other transcriptional factors controlling miR-29 family expression. The serum 

alphafetoprotein (AFP), a membrane-secreted protein associated with poor patient outcome in 

hepatocellular carcinoma, was reported to inhibit miR-29a expression through facilitating c-

MYC binding to the promoter of the pri-miR-29a/b. This conclusion was supported by: the 

inability of AFP to decrease the miR-29a level in the absence of c-MYC protein; c-MYC was 

abundantly bound to the miR-29a/b1 promoter in the presence of AFP, but did not bind 

without AFP (Parpart et al. 2014); c-MYC promoter binding protein (MBP), originally 

described to bind to and repress c-MYC promoter function, up-regulated miR-29b expression 
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by 6 fold in prostate cancer cells (Steele et al. 2010). The haematopoietic master transcription 

factor, CCAAT/enhancer-binding protein-α (CEBPA), was also reported to activate the 

expression of miR-29a and miR-29b. Forced expression of CEBPA in acute myeloid 

leukaemic cells lead to two-fold induced expression of the primary miR-29a/b1 and the 

mature miR-29a and miR-29b whereas the expression of miR-29b2/c primary transcript 

remained stable. Using luciferase reporter assays, the sequence, having the conserved region 

spanning -682 bp upstream to +296 bp downstream of the miR-29a/b1 transcriptional start 

site and containing 6 potential CEBPA sites, was also strongly induced with CEBPA. Among 

these binding sites,  the one located at +15 to +29 bp was identified to be responsible for 

CEBPA-mediated activation of the pri-miR-29a/b1 promoter on ChIP assay (Eyholzer et al. 

2010). Another transcriptional factor, GATA3, specifying and maintaining luminal epithelial 

cell differentiation in the mammary gland, was also found to induce miR-29 expression 

directly by binding to three GATA3 sites in the miR-29a/b1 promoter. Interestingly, GATA3 

can induce miR-29s expression by inhibiting the TGFβ and NFκB signalling pathway. 

Additionally, STAT1 (signal transducer and activator of transcription) a transcription factor 

induced by interferon γ signalling, was reported to upregulate primary 29a/b1, the pre-29a, 

pre-29b1, and the mature miR-29a, miR-29b in melanoma cell and T cells (Schmitt et al. 

2013).  

With all the information above, it is likely that in different cellular contexts, the miR-29 

family expression is controlled by different transcription factors and signalling pathways. 

Which factors control its expression in human chondrocytes remains unknown. The effects of 

a variety of anabolic and catabolic factors e.g. TGFβ, Wnt3a, IL-1, LPS on miR-29 family 

expression in human chondrocytes were thus investigated. Also, the effect of SOX9, a major 

specifier of chondrocyte phenotype was also investigated.  
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Aims: 

• Analyse the promoter region (approximately 2kb upstream of the transcription starting 

site) of the miR-29 family for SOX9 binding sites. Experimentally validate the impact 

of SOX9 on miR-29 expression. 

• Test major anabolic and catabolic cytokines controlling the miR-29 expression in 

chondocytes.  
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4.2. Results 

4.2.1. The master regulator of chondrogenesis SOX9 suppresses expression of the miR-

29 family  

The master regulator for chondrogenesis SOX9 has a critical function in a number of 

development processes e.g. skeletal formation, sex determination, pre-B and T cell 

development. SOX9 was found to be expressed in all chondroprogenitors and differentiated 

chondrocytes, but not in hypertrophic chondrocytes (Ng et al. 1997, Zhao et al. 1997). 

Importantly, SOX9 is considered as the critical transcriptional factor for chondrogenic 

differentiation, partly owing to the fact that its functions are required for differentiating 

chondrogenic mesenchymal condensations into chondrocytes, and for all stages of 

chondrocyte differentiation: in mouse chimera, Sox9 knockout cells were excluded from all 

cartilage and no cartilage developed in teratomas derived from Sox9 -/- embryonic stem cells 

(Bi et al. 1999); Sox9 deletion from chondrocytes at later stages of development resulted in 

decrease in chondrocyte development, cartilage matrix gene transcriptional inhibition, and 

prematurely conversion from proliferating chondrocytes to hypertrophic chondrocytes 

(Akiyama et al. 2002). Considering the critical role of SOX9 in chondrocytes, I explored the 

connection between this factor and expression of the miR-29 family.  Initial evidence 

suggested a link: in the DMM model mRNA profiling data, at 7 days after the surgery, Sox9 

expression was greatly induced (Appendix, Table 7) whilst the miR-29s expression was 

suppressed; in both human and mouse chondrogenesis models, the level of Sox9 was 

inversely correlated with the level of miR-29 expression (data not shown). Thus, SOX9 could 

be a miRNA-29 target or SOX9 could regulate miRNA-29 expression.  

To test the postulate that SOX9 is a miR-29 target, the effect of the miR-29 members on 

SOX9 transcriptional expression was examined: after sub-cloning the SOX9 3’UTR 

downstream of the luciferase gene, this SOX9-3’UTR reporter vector was co-transfected with 

the miR-29 family into SW1353 cells; 24 hours after transfection, luciferase activity was 

measured. Luciferase activity showed that miR-29 family have no effect on the SOX9 3’UTR 

even though bioinformatics analysis found one 6-mer seed site for miR-29 in the SOX9 

3’UTR (data not shown), suggesting that SOX9 is not a miR-29 family direct target. Also, 

whether SOX9 is a miR-29 indirect target was also determined: relative expression of SOX9 

was checked in human primary chondrocytes transfected with miR-29 family for 48 hours. 

Quantitative RT-PCR confirmed that the SOX9 level was not changed with miR-29 
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transfection in chondrocytes (data not shown). Thus, SOX9 is not a direct or indirect target of 

miR-29s at least at the transcriptional level.  

For testing the second hypothesis SOX9 is a suppressor of miR-29 expression, the effect of 

overexpression or knockdown of SOX9 on miR-29 expression was studied: a SOX9 

expression construct or siRNA was transiently transfected into the human chondrosarcoma 

SW1353, 48 hours after transfection, the level of the mature miR-29 family was measured by 

quantitative RT-PCR. The data (Figure 4.2) show that SOX9 suppressed miR-29 transcription: 

the miR-29 family levels were significantly reduced when SOX9 was overexpressed (Figure 

4.2.a,c) but induced when SOX9 was knocked down (Figure 4.2.b,c).   

To further explore the regulatory mechanism by which SOX9 suppressed miR-29 expression, 

the 2kb region upstream from the primary miR-29a/b1 and miR-29b2/c transcription start 

sites were analysed by searching for the SOX9 DNA-binding motif ([A/T][A/T]CAA[A/T]). 

This analysis revealed 5 putative binding sites for SOX9 in the promoter regions of pri-miR-

29a/b1 and pri-miR-29b2/c, respectively (Figure 4.3.a). A reporter construct with the primary 

miR-29a/b1 2kb promoter, kindly provided by Dr Anne Delany (University of Connecticut, 

USA) was used to further validate the direct effect of SOX9: the reporter was co-transfected 

with increasing amounts of SOX9-expression plasmid into SW1353 cells and luciferase 

activity measured after 24 hours of transfection. Luciferase activity in SW1353 cells 

significantly decreased in a dose-dependent manner (Figure 4.3.b) showing that SOX9 

directly regulated the primary miR-29a/b1 promoter.  

The data above demonstrate that SOX9 is a miR-29 family suppressor. 
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Figure 4.2: Sox9 suppresses miR-29 family expression.  

(A) SOX9 gain-of-function: transiently transfection of a SOX9-expression vector or pcDNA3 
empty vector (control) into SW1353 cells; (B) SOX9 loss-of-function: transiently transfection 
of SOX9 siRNA or a non-targeting control into SW1353 cells. Relative expression of SOX9 
in (A) and (B) was measured 48 hours after transfection by quantitative RT-PCR using18S as 
the endogenous control; (C) The miR-29 family expression levels after overexpression or 
knockdown of SOX9 in SW1353 cells was measured by quantitative RT-PCR. Using U6 as 
the endogenous control. Red bar: miR-29a, green bar: miR-29b, black bar: miR-29c, open bar: 
control. Means ± standard errors are presented. Difference in expression was analysed by 
unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.3: Sox9 suppresses primary miR-29a/b1 transcription by directly binding to 
the proximal miR-29a/b1 promoter. 
 

(A) Structure of the miR-29a/b1 promoter reporter: 5 putative binding sites of SOX9 were 
identified by analysing the 2kb region upstream of the transcription start site of miR-29a/b1 
by JASPAR. This 2kb region was sub-cloned upstream of the luciferase gene in a pGL4 
vector.   
(B) Suppressive effect of SOX9 on the primary miR-29a/b1 promoter reporter: transiently co-
transfection of primary miR-29a/b1 promoter (100ng) with increasing amount of SOX9-
expression vector (0, 100, 300ng) or pcDNA.3 to equalise DNA into SW1353. A 
constitutively expressed Renilla lucierase was used as a control for transfection efficiency. 
Luciferase activity was measured 24 hours after transfection. Means ± standard errors are 
presented. The difference in luciferase activity was analysed by unpaired two-tailed Student’s 
t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6. 

(B) 

(A) 
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4.2.2.  TGFββββ1 inhibits expression of the miR-29 family    

TGFβ signalling has many important roles in chondrocytes and articular cartilage: TGFβ 

induces extracellular matrix formation; stimulates chondrocyte proliferation; inhibits the 

terminal differentiation of chondrocytes; retains chondrocytes in the pre hypertrophic stage; 

increases total glycosaminoglycan synthesis; maintains the matrix component in immature 

cartilage (Li et al. 2005). Animal studies showed that: transgenic mice overexpressing a 

cytoplasmically truncated, dominant-negative form of the TβRII in cartilage, resulted in a 

joint disease similar to human osteoarthritis (Serra et al. 1997); Smad3 deficient mice 

showed premature chondrocyte maturation with increased length of the hypertrophic region, 

disorganization of the chondrocyte columns, early expression of collagen type X in the 

growth plate; and null mice gradually developed an end-stage OA phenotype  (Li et al. 

2005). These essential roles of TGFβ signalling in chondrocytes suggest the necessity of 

examining whether the miR-29 family is regulated by TGFβ signalling in human 

chondrocytes. Moreover, a number of published data show that TGFβ signalling negatively 

regulates miR-29 family expression in different human fibroses e.g. renal, lung, liver 

fibrosis. The impact of TGFβ signalling in human chondrocytes on the miR-29 family was 

thus checked.  

To address the above question, expression of the miR-29 family with TGFβ1 treatment in 

human primary chondrocytes was compared both in monolayer and micromass culture. In 

monolayer culture: HACs were put in high glucose media containing 10% (v/v) FCS until 

the cells reached 90% confluence; medium was replaced with that containing 0.5% (v/v)  

FCS) prior to stimulating with 4ng/ml TGFβ or vehicle control (4mM HCl with 0.5% (w/v) 

BSA). In micromass culture: HACs were put in high glucose media containing 10% (v/v) 

FCS in monolayer following two sequential passages to increase cell number; the 

micromass (2.5x107cells/ml) was cultured in high glucose media with 10% (v/v) FCS for 24 

hours before treating with 10ng/ml TGFβ or vehicle control (4mM HCl with 0.5% (w/v) 

BSA). Cells were harvested for qRT-PCR after 24 hours or 48 hours treatment in monolayer 

or micromass cultures, respectively. Quantitative RT-PCR primers for measuring the miR-

29 family were described before. For the primary transcripts: two primer pairs specific for 

exon 1 and exon 3 were used; for the precursor transcripts: primers directly bind to the 

precursor sequence (Appendix, Table 5); the mature transcripts were measure by LNA-

primers.   
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The qRT-PCR data show that expression of the miR-29 family was suppressed by TGFβ 

signalling (Figure 4.4). However, each culture system gave a different response. The pri-

29b2/c transcript was significantly decreased after stimulating HACs for 24 hours with 

TGFβ1 in monolayer culture, whilst the pri-29a/b1 transcript was unchanged (Figure 4.4 a); 

the pri-29a/b1 transcript was significantly decreased in micromass culture after 48 hours 

with TGFβ1 whilst the pri-29b2/c transcript was unchanged or even increased (Figure 4.4 b). 

Notably, the levels of all mature forms of miR-29 were significantly decreased by TGFβ1 in 

both systems. These data suggest a hypothesis that the primary and the precursor miRNAs 

may be rapidly regulated and then processed into mature miRNAs. In order to test this 

hypothesis, SW1353 cells were treated with TGFβ1 (4ng/ml) in monolayer in a time course. 

Since the expression levels of the primary and pre miRNAs modulated by TGFβ1 in human 

primary chondrocyte were similar and ahead the mature miRNAs, it might be sufficient to 

measure only the pre-miRNA rather than both the primary and precursor sequences. 

Consistent with above data, qRT-PCR showed that TGFβ1 suppressed miR-29 family 

expression in SW1353 cells (Figure 4.5). Interestingly, significantly suppressive effects of 

TGFβ1 on precursor miRNAs were observed after 4 hours till the end of the time course 

(Figure 4.5.a) whilst significant change in the mature miRNAs was only seen after 12 hour 

treatment (Figure 4.5.b). This data, thus, confirms the hypothesis above. Together with 

TGFβ1, the effect of TGFβ3 on the miR-29 family expression also checked on SW1353 in 

monolayer across the time course. Quantitative RT-PCR data (Figure 4.5) showed that 

TGFβ3 also strongly supressed the expression of the miR-29s.  However, the TGFβ3 

significant decrease the precursor and the mature miRNAs were observed at 12 hour time 

point though at 4 hours a  

The suppressive effect of TGFβ on expression of the miR-29 family was also investigated 

on the proximal promoter of the primary miR-29a/b1 gene. The promoter-reporter was 

transfected into SW1353 cells, cells were serum starved for 24 hours and treated with 

TGFβ1 (4ng/ml) for another 6 hours before performing the luciferase assay. In line with the 

expression data, TGFβ1 significantly suppressed the promoter activity of pri-miR-29a/b1 

(Figure 4.6).  
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Figure 4.4 TGFβ1 suppresses expression of the miR-29 family in human primary 
chondrocyte  
 

(A) TGFβ1suppresses expression of the miR-29 family in monolayer culture: Human primary 
chondrocytes were cultured in high glucose media with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were switched to high glucose media with 0.5% (v/v) FCS for 24 hours 
before treating with TGFβ1 (4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) for another 24 
hours.  

(B) TGFβ1suppresses expression of the miR-29 family in micromass culture: Human primary 
chondrocytes were cultured in high glucose media with 10% (v/v) FCS in monolayer. After 2 
sequential passages, cells were put in micromass culture (2.5x107cells/ml) in high glucose 
media with 10% (v/v) FCS. After 24 hours in micromass, cells were stimulated for 48 hours 
with TGFβ (10ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) in 10% (v/v) FCS media.  

Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a, b, c were measured by quantitative RT-PCR. 18S rRNA was the 
endogenous control for measuring primary and precursor transcripts; U6 was the endogenous 
control for measuring miR-29 mature transcripts. The horizontal line at 1 represents the mean 
of the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-29b2/c 
transcripts; black bar, precursor transcripts; yellow bar, mature transcripts. Means ± standard 
errors are presented. The difference between the treatment and the control was analysed by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 

  

(A) 
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Figure 4.5 TGFβ1/3 suppresses expression of the miR-29 family in SW1353 cells  

SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were serum starved for 24 hours before treating with TGFβ1or TGFβ3 
(4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) across 24 hour course.   

Relative expression of the precursor miR-29a, -29b2, -29c, the mature miR-29a, b, c were 
measured by quantitative RT-PCR. 18S rRNA was the endogenous control for measuring the 
precursor transcripts; U6 was the endogenous control for measuring miR-29 mature 
transcripts. Open bar, control; brick bar, TGFβ1; close bar, TGFβ3. (A) Expression level of 
pre-miR-29a, 29b2, 29c. (B) Expression level of mature miR-29a, b, c. Means ± standard 
errors are presented. The difference between the treatment and the control was analysed by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.6: TGFβ1decreases expression from the primary miR-29a/b1 promoter  

The pri-miR-29a/b1 promoter-reporter (100ng) or the empty vector pGL4 (control, 100ng) 
were transfected into SW1353 cells. After transfection, cells were serum starved for 24 hours, 
followed by stimulating for another 6 hours with TGFβ1 (4ng/ml), or vehicle (4mM HCl+0.5% 
BSA) before measuring luciferase activity. Renilla was use as endogenous control. Open bar: 
vehicle, black bar: TGFβ1. Means ± standard errors are presented. The difference of 
luciferase activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, 
*** p<0.001, n=6. 
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4.2.3. Expression of the miR-29 family is not regulated by canonical Wnt signalling  

As shown in the section above, the TGFβ signalling pathway, stimulated by TGFβ1 (or 

TGFβ3, data not shown), negatively regulated the expression of themiR-29 family. 

Signalling cross talk between TGFβ and Wnt signalling pathways has been previously 

reported, e.g. after TGFβ stimulation, Smad3 interacts with LEF1 to activate target gene 

transcription independently of β-catenin (Letamendia et al. 2001); TGFβ was shown to up-

regulate the expression of many Wnt ligands e.g. Wnt2, 4, 5a, 7a, 10a, and Wnt co-receptors 

e.g. LRP5 (Zhou et al. 2004);  TGFβ was found to increase nuclear accumulation and 

stability of β-catenin; interestingly, working synergistically with Wnt signalling pathways, 

TGFβ was reported to stimulate chondrocyte differentiation from mesenchymal cell (Zhou 

et al. 2004). Wnt signalling is also known to have a key role in cartilage homeostasis and 

osteoarthritis (Zhu et al. 2008, Zhu et al. 2009). Thus, it was pertinent to investigate the 

effect of Wnt signalling onexpression of the miR-29 family in chondrocytes, and then 

potential synergy with TGFβ signalling.  

The effect of canonical Wnt signalling stimulated by Wnt3a (50 or 100ng/ml) on the miR-

29 family was investigated in HACs cultured in monolayer or micromass after 24 hours or 

48 hours, respectively; or in SW1353 cells in monolayer culture across a 24 hour time 

course. In addition, the effect of Wnt3a on the proximal pri-miR-29a/b1 promoter was also 

examined after 6 hour treatment with Wnt3a (50 or 100ng/ml). Quantitative RT-PCR data 

for all transcripts of miR-29 family and luciferase assay data for the miR-29a/b1 promoter 

showed canonical Wnt signalling did not regulate expression of the miR-29 family 

(Appendix, Figure 5). Wnt3a did regulate Axin2 expression in the same experiments, 

showing induction of the canonical Wnt pathway (Appendix, Figure 6).  
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4.2.4. IL-1 induces expression of the miR-29 family in part via the p38 signalling 

pathway.  

IL-1 is a catabolic and anti-anabolic cytokines, it down regulates the expression of cartilage 

matrix components e.g. aggrecan and type II collagen and induces expression of matrix 

degrading enzymes e.g. MMP-3, MMP-13, ADAMTS4 (Koshy et al. 2002). Il-1β, or Il-1β-

converting enzyme knockout mice showed the accelerated development of OA lesions in 

response to OA surgical induced in compared with wide type mice (Clements et al. 2003). It 

is considered to be a major cytokine driving the pathology of OA (Goldring et al. 2004).  

Thus, it was pertinent to examine whether IL-1 controls the expression of the miR-29 

family in human chondrocytes.  

The effect of IL-1 on the expression of the miR-29 family was first measured in IL-1-treated 

SW1353 for 48 hour time course in monolayer culture: SW1353 cells were cultured in high 

glucose media with 10% (v/v) FCS until reach confluence and followed by serum starved 

for 24 hours before treating with 5ng/ml IL-1 or vehicle (0.5% (w/v) BSA) for 48 hour time 

course. Relative expressions of the precursor and mature miRNA-29 transcripts were 

measured by qRT-PCR. Data (Figure 4.7) showed that IL-1 induced the expression of miR-

29 family: the biggest induction on miR-29 precursors was observed at 4 hours; at later time 

point, the level of miR-29a precursors was decreased as compare with 4 hours (pre-29a) 

whilst other precursors did not change expression (Figure 4.7a); the induction of mature 

miR-29s were only observed significantly after 48 hours (Figure 4.7b). These data 

suggested that the increase in expression after IL-1 treatment of the miR-29 derivatives is 

time-dependent. The induction of IL-1 on the miR-29 family was again checked on the 

HACs in micromass culture: The micromass containing (2.5x107cells/ml) of passage 2 HAC 

was cultured in high glucose media with 10% (v/v) FCS for 48 hours before treating with 

20ng/ml IL-1 or vehicle control (0.5% (w/v) BSA). Quantitative RT-PCR primers for 

measuring the miR-29 family were described before (Appendix, Table 5). Real-time RT-

PCR data (Figure 4.8) showed that IL-1 strongly induced expression of the miR-29 family, 

with all processed transcripts significantly up-regulated by IL-1. The fold increase was 

highest for the pri-miR-29a/b1 locus in which the primary miR-29a/b1 and pre-miR29a and 

b1 were increased with 9 and 5 fold, respectively.  

The molecular pathways induced by IL-1 can be the three classical MAPK-signalling 

pathways i.e. ERK, p38, JNK and through NFκB (Aigner et al. 2006, Fan et al. 2007). The 
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signalling pathway through which IL-1 regulated miR-29 family expression was 

investigated. SW1353 cells were stimulated with IL-1 together with an NFκB inhibitor 

(10µM) or a p38 inhibitor (SB203580) (10µM) or 6 hours in monolayer and the relative 

expression of the precursor miRNAs were again measured. The data showed that inhibition 

of the NFκB pathway further induced expression of the pre-miR-29a and b1 (Figure 4.9).  

Inhibition of p38 suppressed IL-1 induction of pre-miR-29a and b1, with a similar pattern 

for pre-miR-29b2 and c (Figure 4.10), suggesting that IL-1 induces expression of the miR-

29 family at least in part through p38 MAPK signalling. 

Furthermore, the effect of IL-1 on the promoter of pri-miR-29a/b1 was also examined by 

luciferase assay. The pri-miR-29a/b1 promoter-reporter was transfected into SW1353 cells 

for 24 hours before stimulation with IL-1 (5ng/ml) with or without the NFκB inhibitor 

(10nM) or p38 inhibitor (10µM) for another 6 hours. Luciferase data showed that the 

activity of the pri-miR-29a/b1 promoter was significantly decreased by IL-1 and that this 

effect was abolished by treatment with the NFκB inhibitor (Figure 4.11). However, the p38 

inhibitor had no effect on the suppressive effect of IL-1 on the promoter of pri-miR-29a/b1 

(data not shown). 
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Figure 4.7: IL-1 induces expression of the miR-29 family in SW1353 in monolayer 

culture 

SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were serum starved for 24 hours before treating with IL-1 (5ng/ml) 
or vehicle (0.5% (w/v) BSA) across 48 hour course.   
Relative expression of the precursor miR-29a, -b1, -b2, -c, the mature miR-29a, b, c were 
measured by quantitative RT-PCR. 18S rRNA was the endogenous control for measuring 
the precursor transcripts; U6 was the endogenous control for measuring miR-29 mature 
transcripts. The horizontal line at 1 serves as the vehicle control. 
(A) Expression level of pre-miR-29a, 29b2, 29c. Red bar, pre-miR-29a; blue bar, pre-miR-

29b1; black bar, pre-miR-29b2; yellow bar, pre-miR-29c 
(B) Expression level of mature miR-29a, b, c. Red bar, miR-29a; blue bar, miR-29b; black 

bar, miR-29c 
Means ± standard errors are presented. The difference between the treatment and the control 
was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.8: IL-1 induces expression of the miR-29 family in human primary 
chondrocyte in micromass culture 

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer. After 2 sequential passages, cells were put in micromass culture 
(2.5x107cells/ml) in high glucose media with 10% (v/v) FCS. After 24 hours in micromass, 
cells were stimulated for 48 hours with IL-1β (10ng/ml) or vehicle (0.5% (w/v) BSA).  
Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a,- 29b, -29c were measured by quantitative RT-PCR. 18S rRNA 
was the endogenous control for measuring primary and precursor transcripts; U6 was the 
endogenous control for measuring miR-29 mature transcripts. The horizontal line at 1 
serves as the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-
29b2/c transcripts; black bar, precursor transcripts; yellow bar, mature transcripts. Means ± 
standard errors are presented. The difference between the treatment and the control was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.9 NFκκκκB inhibition further increases the IL-1-induced expression of pre-miR-
29a and pre-miR-29b1 
 

SW1353 cells were plated in high glucose media with 10% (v/v) FCS in a 6 well-plate in 
monolayer and serum starved for 24 hours before treating with IL-1β (10ng/ml) in the 
presence or absence of NFκB inhibitor JSH-23 (10µM) for a further 8 hours. Cells were then 
harvested and the total RNA was isolated by Trizol. Relative expression of pre-miR-29a, -
29b1 were measured by quantitative RT-PCR. 18S rRNA was the endogenous control. Red 
bar, pre-miR-29a; blue bar, pre-miR-29b1. Means ± standard errors are presented. The 
difference between the treatment and the control was analysed by unpaired two-tailed 
Student’s t test * p<0.05, ** p < 0.01, *** p<0.001, n=6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 P38 inhibition suppresses the IL-1 induction of pre-miR-29s  
 

SW1353 cells were plated in high glucose media with 10% (v/v) FCS in a 6 well-plate in 
monolayer and serum starved for 24 hours before treating with IL-1β (10ng/ml) in the 
presence or absence of p38 inhibitor SB203580 (10µM) for a further 8 hours. Cells were 
then harvested and the total RNA was isolated by Trizol. Relative expression of pre-miR-
29a, -29b1, -29b2, -29c were measured by quantitative RT-PCR. 18S rRNA was the 
endogenous control. Red bar, pre-miR-29a; blue bar, pre-miR-29b1; black bar, pre-miR-
29b2; white bar, pre-miR-29c. Means ± standard errors are presented. The difference 
between the treatment and the control was analysed by unpaired two-tailed Student’s t test * 
p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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Figure 4.11: IL-1 suppresses the primary miR-29a/b1 promoter through NFκκκκB 

Pri-miR-29a/b1 promoter reporter (100ng) or pGL4 (control, 100ng) were transfected into 
SW1353 cells. After transfection, cells were serum starved for 24 hours, and followed by 
stimulating for another 6 hours with IL-1β (5ng/ml), IL-1β and NFκB inhibitor JSH-23 
(10µM) or vehicle (0.5% (w/v) BSA) before measuring luciferase activity. Renilla was the 
endogenous control. Means ± standard errors are presented. The difference of luciferase 
activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** 
p<0.001, n=6. 
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4.2.1. LPS suppressed the miR-29 family expression through NFκκκκB signalling 

pathway  

Toll-like receptors (TLRs) have important roles in activation of the innate and adaptive host 

defence against infections. TLR can bind to various damage-associated molecular patterns, 

which are endogenous danger signals or alarmins, leading to autoinflammatory conditions, 

and contributing to production of co-stimulatory signals necessary for adaptive immune 

reactions (Janeway et al. 2002). Lipopolysaccharide (endotoxin) (LPS) from bacteria is an 

example of a TLR-stimulating molecule. Chondrocytes are a potential source of several 

proinflammatory substances which may be TLR ligands: high-mobility group box 1, heat-

shock proteins, and several components of the cartilage extracellular matrix (ECM) - e.g. 

low-molecular-weight hyaluronan, heparin sulphate, biglycan, and fibronectin fragments 

(Konttinen et al. 2012). From this point of view, OA could be considered as an 

autoinflammatory disease with the chondrocyte as its primary inflammatory cell (Konttinen 

et al. 2012). On this basis it was hypothesized that the activation of TLR-4, a receptor for 

LPS, may directly affect the biosynthetic activity of chondrocytes, including expression of 

the miR-29 family.  

The level of miR-29 family expression was measured by qRT-PCR in HACs stimulated 

LPS (1µg/ml) in monolayer or micromass culture for a 24 hours or a 48 hour time course, 

respectively. Real-time PCR showed that the miR-29 family was significantly suppressed 

by LPS (Figure 4.12). Interesting, the levels of all processed miRNAs were strongly 

regulated by LPS in a time dependent manner: a significant decrease of the two miR-29 

family clusters and their precursors were detected after 4 hours of treatment whilst decrease 

of the mature miRNAs was not detected until 24 hours.  However, after 48 hours treating 

with LPS, all miR-29 family was tended to increase (Figure 4.12) 

Again, the effect of LPS on the promoter of pri-miR-29a/b1 was also examined by 

luciferase assay.  The pri-miR-29a/b1 promoter reporter was transfected into SW1353 cells 

for 24 hours before stimulation with LPS (1µg/ml) in the presence or absence of an NFκB 

inhibitor JSH-23 (10µM) for another 6 hours. Luciferase assay data showed that promoter 

activity of pri-miR-29a/b1 was significantly decreased by LPS and this effect was abolished 

with the NFκB inhibitor (Figure 4.13).  
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Figure 4.12: LPS suppresses expression of the miR-29 family  

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer. After 2 sequential passages, cells were put in micromass culture 
(2.5x107cells/ml) in high glucose media with 10% (v/v) FCS. After 24 hours in micromass, 
cells were stimulated for 4, 24, and 48 hours with LPS (1µg/ml) or vehicle (0.5% (w/v) 
BSA).  
Relative expression of the primary miR-29a/b1, -29b2/c, precursor miR-29a, -29b1, -29b2, -
29c, the mature miR-29a,- 29b, -29c was measured by quantitative RT-PCR. 18S rRNA was 
the endogenous control for measuring primary and precursor transcripts; U6 was the 
endogenous control for measuring miR-29 mature transcripts. The horizontal line at 1 
serves as the vehicle control. Brown bar, pri-miR-29a/b1 transcripts; blue bar, pri-miR-
29b2/c transcripts; black bar, pre-miR transcripts; yellow bar, mature miR transcripts. 
Means ± standard errors are presented. The difference between the treatment and the control 
was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, 
n=3.  
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Figure 4.13: LPS suppresss the primary miR-29a/b1 promoter through NFκκκκB 

Pri-miR-29a/b1 promoter-reporter (100ng) or pGL4 (control, 100ng) was transfected into 
SW1353 cells. After transfection, cells were serum starved for 24 hours, followed by 
stimulatiion for another 6 hours with LPS (1µg/ml) in the absence or presence of an NFκB 
inhibitor JSH-23 (10µM) before measuring luciferase activity. Renilla was the endogenous 
control. Means ± standard errors are presented. The difference of luciferase activity was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6. 
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4.2.2. The microRNA-29 family targets Dicer giving a negative feedback loop for 

maturation of pre-miR-29 

Previous data showed that expression of the miR-29 family was regulated by TGFβ, IL-1, 

LPS in which primary microRNA and precursor microRNA were modulated far ahead the 

mature microRNAs. In order to explain this, the 3’UTR regions of genes encoding for 

proteins involved in miRNA biogenesis were searched for putative binding site of the miR-

29 family. Among these, of particular interest is the ribonuclease III enzyme Dicer, 

renowned for its central role in the biogenesis of microRNAs, converting the stem-loop pre-

miRNA to mature miRNA (Bartel 2004). Bioinformatic analysis showed that there was a 

putative binding site of miR-29 in the DICER 3’UTR, suggesting the miR-29 family may 

regulate Dicer expression leading to the down-regulation of the Dicer level and as the 

consequence, the processing from precursors to mature miRNAs would potentially be 

slowed down. The 3’UTR region of DICER was therefore sub-cloned downstream of the 

firefly luciferase gene in the pmiR-GLO vector. The effect of the miR-29 family on the 

DICER 3’UTR was measured by luciferase assay after 24 hour co-transfection of the 

DICER 3’UTR- pmiR-GLO and the miR-29 family in SW1353 cells. Dual-luciferase 

reporter analysis showed the co-transfection of miR-29s significantly inhibited the wild type 

construct, whereas when the target site was mutated, the construct was not inhibited (Figure 

4.14). This indicates that miR-29 may suppress expression of Dicer. The effect of the miR-

29 family in DICER expression at transcriptional level was also investigated. Human 

primary chondrocyte was transfected with either miR-29b mimic (50nM) or non – targeting 

control (50nM). The transfected cells were then put in either monolayer or micromass 

culture for a further 48 hours. The expression of DICER was measured by qRT-PCR. Real-

time qRT-PCR data showed that the expression of Dicer was not affected by miR-29s (data 

not shown), suggesting that the miR-29s does not control Dicer expression at mRNA level.   

There is a growing body of work demonstrating that microRNAs can be processed 

independently of Dicer via Argonaute2 (Dueck et al. 2010). To evaluate whether or not 

miR-29s required Dicer to mature, the level of pre-miR-29s and mature miR-29s were 

measured in DLD, a Dicer-knockdown cell line. Data (Figure 4.15) showed that the levels 

of mature miR-29s were strongly reduced whilst the level of pre-miR-29s was not affected 

(Figure 4.15), demonstrating miR-29 processing is Dicer-dependent.  
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Taken together, these data show that the miR-29 family targets Dicer giving a negative 

feedback loop for its maturation. 
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Figure 4.14: The miR-29 family targets Dicer  

(A) Bioinformatic analysis reveals one binding site of the miR-29 family in the 3’UTR of 
Dicer. (B) miR-29 family targets Dicer: The Dicer 3’UTR containing the binding site of the 
miR-29 family (wild type) or a mutated, non-functional binding site for miR-29 family 
(mutant) were sub-cloned into the pmiR-GLO vector and were co-transfected with either 
miR-29a, -29b, -29c mimic (50nM) or non-targeting control (50nM) into SW1353 cells for 
24 hours and luciferase activity was measured. Renilla was the endogenous control. (C) miR-
29 targets Dicer giving a negative feedback loop for its maturation. Means ± standard errors 
are presented. The difference of luciferase activity was analysed by unpaired two-tailed 
Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=6.  
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Figure 4.15: Dicer is required for the miR-29 family maturation  

２２２２ 

Level of Dicer, precursor and mature miR-29 were measured in DLD, Dicer knockdown 
cell line or parental control by quantitative RT-PCR. (A) Relative expression of Dicer; (B) 
Relative expression of precursor miR-29s (normalised to expression in parental control). 
18S rRNA is endogenous control. Red, pre-29a; blue, pre-29b1; black, pre-29b2; green, pre-
29c; white, levels of all precursors in control (set at 1); (C) Relative expression of mature 
miR-29 family (normalised to expression in parental control).  U6 is endogenous control. 
Red, miR-29a; blue, miR-29b; black, miR-29c; white, levels of all mature miR-29 in control 
(set at 1). Means ± standard errors are presented. The difference of relative expression was 
analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, *** p<0.001, n=3. 
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4.3. Discussion  

Since miRNAs have broad effects on cartilage homeostasis, and OA, it is particularly 

interesting to work out how miRNAs themselves are being regulated. Such data could 

provide crucial information for further understanding the mechanism underlying OA and for 

being able to manipulate these miRNAs in chondrocytes therapeutically. Generally, the 

expression of miRNAs can be regulated transcriptionally, epigenetically, or controlled by 

different stimuli e.g. cytokines and growth factors. In this study, just transcription factors, 

cytokines, and growth factors controlling the miR-29 family expression in chondrocytes were 

for the first time investigated. These studies were able to show that, in human chondrocytes, 

the master transcriptional regulator SOX9, TGFβ and LPS suppressed whilst IL-1 strongly 

induced the miRNA-29 family expression.  

Several published data report the suppressive effect of SOX9 on the expression of individual 

members of the miR-29 family in other cellular contexts: in murine stem cells, 

overexpression of SOX9 or knockdown SOX9 in cell lines e.g. C3H10T1/2 or ATDC5 leads 

to suppression or induction of miR-29a and miR-29b expression (Yan et al. 2011), 

respectively; in human C-20/A4 chondrocytes, overexpression of SOX9 strongly down-

regulated the level of miR-29a (Guerit et al. 2014). Herein, for the first time, suppressive 

effect of SOX9 on the expression of all members of the miR-29 family in primary human 

chondrocytes was shown. The effect was exerted, at least in part, through directly targeting 

the promoter of the miR-29a/b1 locus. In line with these data, Guerit et al (2014) reported 

that SOX9 can physically bind to at least 3 out of 4 putative binding sites within the proximal 

promoter of miR-29a/b1 cluster; also, another transcription factor YY1, was shown not to 

bind directly to the miR-29a/b1 promoter, but, physically interacted with SOX9 to suppress 

miR-29a/b1 expression (Guerit et al. 2014). The mechanism by which SOX9 negatively 

regulates the pri-miR-29b2/c cluster is still unknown. Several putative binding sites of SOX9 

are found in the promoter of the pri-miR-29b2/c cluster, implicating a possible direct 

mechanism. However, this needs further investigation.  

Alongside SOX9, other transcriptional regulatory mechanisms responsible for expression of 

the miR-29 family have also been reported: the pri-miR-29a/b1 locus was stimulated by the 

transcription factors CEBPA (Eyholzer et al, 2010), GATA3 (Chou et al. 2013), STAT1 

(Schmitt et al, 2012) but suppressed by c-MYC (Mott et al. 2010, Parpart et al. 2014), NFκB 
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(Liu et al. 2010, Mott et al. 2010), Sp1(Liu et al. 2010, Amodio et al. 2012), HDAC1, 

HDAC3, and Gli (Mott et al. 2010); the pri-miR-29b2/c locus was inhibited by Smad3 (Qin 

et al. 2011), NFκB, YY1, Ezh2, H3K37, HDAC1 (Wang et al. 2008). Thus, it is likely that 

the transcriptional regulation of the miR-29a/b1 cluster is controlled by a combination of 

different transcription factors. Interestingly, in the chondrocyte context, miR-1247 together 

with miR-145 were reported to directly target and repress expression of SOX9 (Yang et al. 

2011, Martinez-Sanchez and Murphy 2013), suggesting these miRNAs could contribute to 

the induction of the miR-29 family level in chondrocytes. Additionally, throughout the 

current project, the miR-29 family members exhibit different expression levels between the 

primary miR-29a/b1 and primary miR-29b2/c loci in different cellular contexts. This 

discrepancy could be explained in part by different transcription factor binding to each 

promoter.   

Together with SOX9, TGFβ signalling was found to suppress the expression of all miR-29 

family members in chondrocytes. Since TGFβ signalling induces SOX9 expression (Greco et 

al. 2011), the suppressive effect of TGFβ on the miR-29 family could be exerted through 

SOX9 and this TGFβ-SOX9 signalling could in part explain the down-regulation of the miR-

29 family by TGFβ. The suppressive effect of TGFβ on the miR-29 family expression has 

also been observed in various cell types associated with fibrosis e.g. human aortic adventitial 

fibroblasts (Maegdefessel et al. 2012), renal fibrosis cells (Wang et al. 2012, Ramdas et al. 

2013), murine hepatic stellate cells (Roderburg et al. 2011), rat hepatic stellate cells 

(Kwiecinski et al. 2011), human skin fibroblasts (Maurer et al. 2010), human tenon’s 

fibroblast (Li et al. 2012), human lung fibroblast cell line (Cushing et al. 2011, Yang et al. 

2013) in which either some members or the whole miR-29 family significantly decreased 

expression with TGFβ treatment. Apart from TGFβ-SOX9 signalling, the mechanism for the 

inhibition of TGFβ on the miR-29 family expression is currently unknown.  There is some 

evidence that TGFβ inhibits miR-29 expression through SMAD3 signalling e.g. the inhibition 

effect of TGFβ on miR-29 expression was abolished when Smad3 was knocked out in mouse 

embryonic fibroblast (Qin et al. 2011); SMAD3 could directly interact with at least two 

conserved SMAD3-binding sites in the promoter region of miR-29b2/c locus (Qin et al. 

2011); activated TGFβ signalling induced SMAD3 translocate into nucleus and bind to miR-

29b2/c promoter, resulting in the dissociation of MyoD and the stabilization of YY1 whose 

expression negatively regulated the miR-29b2/c expression through a conserved binding site 
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(Qin et al. 2011). However, this needs to be validated in chondrocytes. Besides the 

suppressive role, TGFβ also exerted an inductive effect on miR-29 expression at late time 

points. For instance, the primary miR-29b2/c locus was induced in human primary 

chondrocyte in micromass cultured with TGFβ1 for 48 hours (Figure 4.4b) though this 

increase did not reach significantly; the miR-29 family expression was increased at a late 

stage in the human chondrogenesis model with TGFβ3 as the major driver among others 

(Figure 3.12). That TGFβ induces miR-29 family expression suggests that there are may be 

several TGFβ-triggered signalling pathways, apart from TGFβ-SOX9, regulating the miRNA-

29 expression. However, in this project, the molecular mechanisms by which TGFβ controls 

expression of the miR-29s are again not fully understood.  

The TLR4 ligand, LPS, was found to repress the miR-29 family expression in chondrocytes. 

Importantly, this inhibition was facilitated by NFκB (p50/p65). Supporting the finding of this 

study, published data in cholangiocarcinoma cells and murine hepatic stellate cells also 

showed that LPS down-regulated expression of the miR-29 family (Mott et al. 2010, 

Roderburg et al. 2011) . Moreover, NFκB, activated by TLR ligands, was revealed to both 

directly or indirectly (cooperating with YY1) suppress the miR-29a/b1 or the miR-29b2/c 

locus, respectively (Wang et al. 2008, Mott et al. 2010). In contrast to LPS, it was surprising 

to find that IL-1β increased miR-29 expression and this stimulation was not NFκB but p38-

dependent. However, the effect of inhibiting p38 signalling was only observed for miR-29a 

and miR-29b but not miR-29c, although all miR-29 family members were found strongly 

induced by IL-1β. Since IL-1β could activate the NFκB signalling pathway alongside p38 

MAPK signalling (Aigner et al. 2006), the fact that an NFκB inhibitor further increased the 

IL-1 induction of the miR-29a/b1 locus implicates NFκB signalling in suppressing miR-29.  

It is likely that in human chondrocyte, for the period of time examined (48 hours), induction 

through 38 MAPK signalling was dominant over the NFκB, explaining why IL-1β induced 

(not suppressed) miR-29 expression. It therefore, made sense to expect a similar induction of 

the proximal promoter of miR-29a/b1 by IL-1β. However, a suppressive effect was observed. 

These data could be explained if the inductive p38-dependent transcription factors do not 

work through this 2kb proximal promoter of the miR-29a/b1, whilst several binding sites of 

NFκB in this promoter region are seen. This hypothesis needs experimental data to validate it. 

The mechanism responsible for the IL-1β induced miR-29b2/c cluster is still unclear and 

needed to be further explored. Notably, the IL-1β mRNA expression level was increased by 
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LPS/ TLR-4 and this is mediated by p38 MAP kinase in human chondrocytes (Bobacz et al. 

2007). Therefore, that the miR-29 family expression was increased after 48 hours treatment 

with LPS could be explained in part by the accumulation of IL-1β which in turn up-regulated 

the miR-29 family expression.   

This study also showed that the expression of all miR-29 members was not modulated by 

Wnt3a (β-catenin, canonical Wnt signalling), neither at the mRNA level by qRT-PCR or in 

the promoter assay. There are, several publications which have reported that either some 

members or the whole miR-29 family were Wnt3a-induced: In osteoblasts, Wnt3a positively 

modulates the expression of miR-29a and miR-29c though two T-cell factor/LEF-binding 

sites within the miR-29a/b1 promoter (Kapinas et al. 2009, Kapinas et al. 2010); in muscle 

progenitor cells (MPCs), Wnt3a treatment increased miR-29s expression in a time dependent 

manner (Hu et al. 2014); the promoter activities of both the miR-29a/b1 and miR-29b2/c 

cluster were strongly induced in MPCs where Wnt3a was overexpressed or added to media 

(Hu et al. 2014).Therefore, an interesting question that remains to be answered is why miR-

29 expression is not modulated by Wnt3a in chondrocytes. 

In contrast to the rapid change in expression of the pri-miR-29 or pre-miR-29 in response to 

stimuli, the modulation of the miR-29 family mature is quite slow. The posttranscriptional 

processing from the precursor to the mature form of the miR-29 family may be tightly 

controlled. Since the miR-29s has significant impact on a functional phenotype by regulating 

multiple genes that fall into the same or related pathways (which will be discussed more in 

Chapter 5), its expression must be regulated, potentially at more than one level. Interestingly, 

herein, Dicer was found to be the direct target of the miR29 family, suggesting a negative 

feedback loop for its maturation. In supporting this data, in T47D breast cancer cells, Dicer 1 

was also reported as a miR-29a target (Cochrane et al. 2010). Apart from Dicer, other 

components of the microRNA precursor processing machinery e.g. Helicase, Exportin 4 and 

5 are also predicted to be putative targets of the miR-29s as they have several binding sites in 

their 3’UTR regions (data not shown). Even though these have not been experimentally 

validated as the direct targets, this further supports the idea that miR-29 is involved in a 

negative feedback loop for its maturation.   

In conclusion, the miR-29 family was found to be negatively regulated by the master 

regulator of chondrogensis SOX9, by TGFβ signalling and by LPS-NFκB signalling.  It is 
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positively regulated by IL-1-p38 MAPK signalling. Interestingly, the canonical Wnt 

signalling pathway does not control expression of the miR-29 family. Furthermore, 

expression of the miR-29 family was tightly controlled at the level of posttranscriptional 

processing in which miR-29 directly targets Dicer, giving a negative feedback loop for its 

maturation. 
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CHAPTER 5 
FUNCTIONS OF THE MICRORNA 29 FAMILY IN CHONDROCYTES  

 

5.1 Introduction  

The ability of a single miRNA to target multiple mRNAs especially those that function in the 

same intracellular pathways and/or diseases, adds an additional layer of regulation to gene 

expression. The aberrant expression of the miR-29 family has been found in multiple 

malignancies and fibroses, carcinogenesis. Also, an understanding of how miR-29 contributes 

to these processes has been revealed: miR-29 targets genes are involved in cellular 

proliferation, cell cycle, cell differentiation, and apoptosis at genetic and epigenetic levels. 

The following summarizes some functions of miR-29s in human disease.   

In chondrogenesis or OA, around 30 miRNAs have been shown to have functions in cartilage 

homeostasis (Le et al, 2013), which is relatively small compared to the total number of 

miRNAs. Moreover, as mentioned in the previous chapter, for any potential miRNA 

therapeutic application, a combination of different miRNAs might be required for a complex 

disease like OA. Identifying novel miRNA targets and the cell signalling pathways and 

networks by which miRNAs exert their functions on disease phenotype are therefore, of 

particular importance both to have an insight into OA pathogenesis and also to ensure the 

specificity in any miRNA-based drug delivery method. Thus, this chapter places emphasis on 

identifying the function of the miR-29 family in chondrocytes including identifying the 

function of the miR-29 family in TGFβ/Smad, NFκB, and Wnt/β-catenin signalling pathways 

and novel targets of the miR-29s.  

 

 

 

 

 

 

 

 



170 

 

 

Aims:  

• Investigate signalling pathways involved in chondrogenesis and osteoarthritis which 

are regulated by the miR-29 family  

• Perform gain-and-loss of function of miR-29b experiments to identify potential 

targets of the miR-29 family  

• Identify and validate novel direct targets of the miR-29 family 
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5.2  Results  

5.2.1 The miR-29 family supress TGFβ/β/β/β/Smad signalling pathway 

In articular cartilage, the canonical TGFβ/Smad signalling pathway has been shown to play a 

pivotal role in the maintenance of normal cartilage: it up-regulates the expression of several 

types of collagens and proteoglycan; and it down-regulates cartilage degrading enzymes. 

Importantly, disruption of the TGFβ pathway has been shown to lead to OA. Mice expressing 

a dominant negative TGFβRII exhibit articular cartilage degeneration similar to that observed 

in human OA with abnormal expression of type X collagen, an indicator of chondrocyte 

hypertrophy; mutant mice with targeted disruption of Smad3 (Smad3−/−) show a similar 

pathology in chondrocytes, including aberrant type X collagen expression in vivo; primary 

chondrocytes isolated from Smad3−/− mice demonstrate an accelerated differentiation 

process with up-regulated BMP signalling. 

In Chapter 4, expression of the miR-29 family was found to be suppressed by TGFβ 

signalling. Here, I measure the impact of the miR-29 family on Smad signalling. The 

TGFβ/Smad signalling reporter (CAGA)12-luc (Figure 5.1a) containing 12 binding sites of 

the Smad2/3/4 (GAGAC) binding site upstream of the firefly luciferase-encoding gene was 

used. The principle of this experiment is based on the fact that: signals are transduced from 

TGFβ ligands to the Smad2/3/4 complex which subsequently regulates gene expression; the 

miR-29 family may change the expression or transcriptional activity of Smad2/3/4; thus 

altering luciferase levels. (CAGA)12-luc (100ng) and Renilla (10ng) were co-transfected with 

either miR-29 mimic (50nM) or non-targeting control (50nM) into SW1353 cells for 24 hours 

and followed by serum starvation for another 24 hours.  Cells were then treated with either 

TGFβ1 or TGFβ3 (4ng/ml) for another 6 hours before measuring the luciferase activity. 

Luciferase assay data (Figure 5.1b) showed that: stimulating cells with TGFβ1 strongly 

induced luciferase activity as compared with non-treatment control; pre-treatment with all 

members of the miR-29 family significantly decreased the luciferase activity at this 6 hour 

time point. A similar pattern was observed when treating cells with TGFβ3 (Appendix, 

Figure 7a). These data demonstrate that Smad signalling was successfully activated in 

SW1353 cells by TGFβ1or TGFβ3 and that the miR-29 family is a negative regulator of this 

signalling.  As all miR-29 family members supressed the signalling, an experiment using only 

an inhibitor of miR-29b (50nM) was performed. Consistent with the mimic data above, 
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luciferase activity was significantly increased with the miR-29b inhibitor compared to control 

(Figure 5.1c and Appendix, Figure 7b).  

The suppressive effect of the miR-29 family on the TGFβ signalling pathway was further 

confirmed by measuring the effect of the miR-29 family on a TGFβ responsive gene. 

ADAMTS4 was chosen since it is induced by TGFβ in chondrocytes, but was not a putative 

direct target of the miR-29 family.  Human primary chondrocytes were transfected with miR-

29 family mimics (50nM) in monolayer for 24 hours with 10% (v/v) FCS. The media was 

then replaced with media with 0.5% (v/v) FCS for another 24 hours before stimulating with 

TGFβ (4ng/ml) for a further 6 hours. The expression of ADAMTS4 was measured by qRT-

PCR (Figure 5.2) showing that ADAMTS4 was strongly induced by TGFβ; the miR-29 

mimics significantly decreased the expression of ADAMTS4 as compared with non-targeting 

control. These data again confirmed the suppressive effect of the miR-29 family on TGFβ 

signalling pathway. 
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Figure 5.1 The miR-29 family suppress TGFββββ signalling pathway 

(A) The TGFβ signalling reporter (CAGA12-luc) contains 12 binding sites of the Smad2/3/4 
(GAGAC) binding consensus upstream of the firely luciferase-encoding gene in pGL3100ng 
CAGA12-luc vector, and 10ng Renilla vector were co-transfected with either miR-29 family 
mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-targeting 
control (50nM) was also used as the negative control. 24 hours after transfection, cells were 
serum starved for another 24 hours, followed by treatment with TGFβ (4ng/ml) for another 6 
hours before measuring luciferase activity. Renilla is the loading control for luciferase assay. 
Open bar: non – treatment control, close bar: TGFβ treatment. Means ± standard errors are 
presented, n=6. The difference of luciferase activity was analysed by Student’s unpaired two-
tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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Figure 5.2 The miR-29 family suppresses the TGFβ induced gene ADAMTS4  
 

Human primary chondrocytes were transfected with either miR-29 family mimics (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then changed into 0.5% (v/v) FCS 
for 24 hours and followed by stimulating with TGFβ1 (4ng/ml) for another 6 hours. Total 
RNA was isolated and the expression level of ADAMTS4 was measured by qRT-PCR. 18S 
rRNA was used as the endogenous control. Data were normalized to untreated, mock 
transfected cells.  Open bar: non – treatment control, close bars: TGFβ treatment. Means ± 
standard errors are presented, n=3. The difference in expression level of ADAMTS was 
analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.00 
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5.2.2 The miR-29 family suppresses the NFκκκκB signalling pathway  

In Chapter 4, IL-1β was found to increase expression of the miR-29 family. It is, therefore, of 

importance to investigate how the miR-29 family regulates the signalling pathways triggered 

by IL-1β. There are at least three pathways triggered by IL-1β including NFκB, JNK, and 

p38 MAPK pathways. Nevertheless, in this project, just the interaction between the miR-29 

family and NFκB signalling was investigated. The transcription factor NFκB is held in the 

cytoplasm in an inactive form associated with the inhibtory κB (IκB) protein. In response to 

IL-1β binding of the receptor, NFκB releases from IκB and the activated NFκB will then 

translocate to the nuclear, bind to DNA elements present in its target genes and facilitate their 

transcription.  

Similar to the experiment for investigating the interacting between the miR-29 family and 

TGFβ signalling,  the NFκB signalling reporter containing multiple binding sites for NFκB 

upstream of a luciferase-encoding gene was utilized (Figure 5.3a). The signal cascade from 

IL-1β will activate NFκB which consequently induces the transcription of the luciferase gene 

in the reporter and this may be modulated by the miR-29 family. The luciferase assay was set 

up similar to the experiment in 5.1.1 except the cells were treated with IL-1β (5ng/ml) instead 

of TGFβ1 (4ng/ml). Luciferase data (Figure 5.3b, c) showed that IL-1β strongly induced the 

luciferase activity of the κB reporter; all miR-29 family mimics significantly decreased 

activity (B) but the miR-29b inhibitor induced activity (C). These data show that NFκB 

signalling was successfully triggered in SW1353 cells by IL-1and that the miR-29 family is a 

negative regulator of the NFκB signalling pathway.  

The suppressive effect of the miR-29 family on the NFκB signalling pathway was further 

confirmed by measuring the effect of the miR-29 family on an NFκB responsive gene.  

MMP3, which is induced expression by IL-1 and is not a putative direct target of the miR-29 

family, was chosen. Again, the experiment was set up similar to the experiment in 5.1.1 

except cells were stimulated with IL-1 (5ng/ml). The Taqman qRT-PCR (Figure 5.4) showed 

that MMP3 was strongly induced expression by IL-1β; the miR-29b and miR-29c mimics 

significantly decreased the expression of MMP3 as compared with non-targeting control, 

though the miR-29a mimic had no effect.  
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Figure 5.3 The miR-29 family suppresses NFκκκκB signalling pathway 

(A) The NFκB signalling reporter (κB vector) contains 5 binding sites of NFκB upstream of 
the firely luciferase-encoding gene in pGL3 
 
100ng κB vector, and 10ng Renilla expression vector were co-transfected with either miR-29 
family mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-
targeting control (50nM) was also used as a negative control. 24 hours after transfection, cells 
were serum starved for further 24 hours, and followed by treating with IL-1 (5ng/ml) for 
another 6 hours before measuring luciferase activity. Renilla is the endogenous control for 
luciferase assay. Means ± standard errors are presented, n=6. The difference of luciferase 
activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001 
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Figure 5.4 The miR-29 family suppresses expression of the IL-1-induced gene MMP3 
Human primary chondrocytes were transfected with either miR-29 family mimic (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then changed into 0.5% (v/v) FCS 
for 24 hours, followed by stimulating with IL-1β (5ng/ml) for a further 6 hours. Total RNA 
was isolated and the expression of MMP3 was measured by qRT-PCR. 18S rRNA expression 
was used as the housekeeping gene. Open bar: non – treatment control, close bar: IL-1β 
treatment. Means ± standard errors are presented, n=3. The difference in expression level of 
IL-1β was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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5.2.3 The miR-29 family supresses the canonical Wnt signalling pathway 

Even though expression of the miR-29 family is not regulated by Wnt3a in human 

chondrocyte, it is still of interest to investigate whether the WNT/β-catenin signalling is 

modulated by the miR-29 family because of the critical role of this signalling in OA 

development: balanced β-catenin levels are essential for maintaining homeostasis of articular 

cartilage and any factors impairing this balance could lead to pathological changes.  

For investigating the interaction between the miR-29 family with the WNT/β-catenin 

signalling, the TOPFlash reporter (containing 7 binding sites of TCF/LEF driving the 

expression of the luciferase encoding gene) and FOPFlash reporter (control for TOPFlash 

where all the TCF/LEF binding sites are mutated) were used (Figure 5.5a). With the presence 

of e.g. Wnt3a, the signal transduced from the FZD receptor and LRP-5/6 co-receptor proteins 

will lead to the accumulation of β-catenin in the nucleus where it acts in concert with 

TCF/LEF transcription factors to generate a transcriptionally active complex inducing the 

expression of cognate genes and also therefore the TOPFlash reporter. Thus, any modulation 

of luciferase activity in the presence of the miR-29 family indicates that the miRNA family 

impacts on canonical signalling. Again the luciferase assay experiment was set up similarly to 

the assay in 5.1.1 but the TOPFlash (100ng) or FOPFlash (100ng) and Wnt3a (50ng/ml) were 

utilized. Luciferase assay data (Figure 5.5b, c) showed that Wnt3a strongly induced the 

luciferase activity from TOPFlash but not FOPFlash reporters; all members of the miR-29 

family significantly decreased luciferase activity, whilst a miR-29b inhibitor increased the 

luciferase activity compared to control. These data show that the WNT/β-catenin pathway 

was induced in SW1353 cell with Wnt3a and that the miR-29 family is a negative regulator 

of this signalling. 

The suppressive effect of the miR-29 family on the WNT/β-catenin signalling pathway was 

further confirmed by measuring the effect of the miR-29 family on the expression of AXIN2, 

a WNT/β-catenin responsive gene and not a putative direct target of the miR-29 family. The 

experiment was set up similarly to the experiment in 5.1.1 except cells were stimulated with 

Wnt3a (50ng/ml). The qRT-PCR data (Figure 5.6) showed that AXIN2 expression was 

strongly induced by Wnt3a; the miR-29 family mimics significantly decreased the expression 

of AXIN2 as compared with non-targeting control.  
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Figure 5.5 The miR-29 family suppresses the WNT/β-catenin signalling pathway  

(A) The canonical WNT signalling reporter (TOPFlash vector) contains 7 binding sites of 
TCF/LEF upstream of the firely luciferase encoding gene in the pTAL-Luc vector. The 
FOPFlash vector is the control in which all binding sites of TCF/LEF are mutated. 
 
100ng TOPFlash or FOPFlash vectors, and 10ng Renilla vector was co-transfected with 
either miR-29 family mimic (50nM) (B) or miR-29b inhibitor (50nM) (C) into SW1353 cells 
in monolayer. The non-targeting control (50nM) was also used as the control. 24 hours after 
transfection, cells were serum starved for another 24 hours, and followed by treatment with 
WNT3a (50ng/ml) for another 6 hours before measuring luciferase activity. Renilla is the 
endogenous control for luciferase assay. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001 
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Figure 5.6 The miR-29 family suppresses expression of the WNT/β-catenin induced gene 

AXIN2 

Human primary chondrocytes were transfected with either miR-29 family mimic (50nM) or 
non – targeting control (50nM) for 24 hours. Cells were then serum starved for 24 hours and 
followed by stimulating with Wnt3a (50ng/ml) for another 6 hours. The expression level of 
Axin2 was measured by qRT-PCR. 18S rRNA was used as the housekeeping gene. Open bar: 
non – treatment control, close bar: WNT3a treatment. Means ± standard errors are presented, 
n=3. The difference in expression level of AXIN2 was analysed by unpaired two-tailed t test. 
* p<0.05, ** p < 0.01, *** p<0.001 
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5.2.4 Identification of  miR-29 family targets 

The miR-29 family was found to suppress the TGFβ/Smad, NFκB, and WNT/β-catenin 

signalling pathways. Nonetheless, it still remained unclear the direct mechanism by which the 

miR-29 family controlled these pathways. I therefore sought to identify novel targets of the 

miR-29 family to explain how the miR-29 family interacts with these pathways.  

5.2.4.1  Gain- and loss- of function of miR-29b 

For identifying new targets, a gain- and loss- of function experiment was performed. Since 

the miR-29 family shares the same seed binding site, it was deemed sufficient just to 

overexpress or silence miR-29b rather than all members of the family. Human primary 

chondrocytes were transiently transfected with miR-29b mimic or miR-29b inhibitor (50nM) 

and their non-targeting controls for 48 hours in triplicate and then total RNA was isolated. 

The transfection experiment was validated by measuring the miR-29b level by qRT-PCR. 

The data (data not shown) showed that the level of miR-29b strongly increased or decreased 

after transfection with either miR-29b mimic or inhibitor, respectively. These data suggest a 

good transfection efficiency into human chondrocytes. For performing a whole genome 

profile, an equal amount of total RNA from each sample in the triplicate was pooled together. 

These pooled samples were then subjected to whole genome array using Illumina human HT-

12 V4.0 expression BeadChips to profile more than 47,000 human transcripts.  

The global effect of the miR-29b mimic and inhibitor transfection on whole genome 

expression was first investigated by plotting the distribution of different expression values for 

all mRNAs in the miR-29b overexpression or knockdown experiments. Since the miRNA 

will exert its function by suppressing target gene expression, it was expected that the 

overexpression of miR-29b would significantly suppress target gene expression; conversely, 

a strong induction of target gene expression would be observed with the silencing of the miR-

29b. Consistent with this hypothesis, data (Figure 5.7A) showed that in the miR-29b silencing 

experiment, the distribution of modulated genes was slightly skewed towards higher 

expression. Using an absolute 1.3 fold change (FC) as the cut off, there are 213 and 144 

mRNA going up and down, respectively in this experiment (whilst just 9 and 10 mRNA 

going up and down respectively if the FC cut off was 1.5). Surprisingly, this pattern was also 

observed with the overexpression of the miR-29b (Figure 5.7B) with 703 and 518 mRNA 
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going up and down with 1.5 FC cut off, respectively. These data suggest that the miR-29b 

mimic has stronger effect than miR-29b inhibitor in chondrocytes and that the transfection 

with the miR-29b mimic strongly induced rather than supressed gene expression. Further 

analysis of the mRNAs strongly increased with miR-29b overexpression showed that the 

majority of these induced genes do not contain a binding site for the miR-29 family in their 

3’UTR, suggesting that they are not direct targets of the miR-29 family.  Indeed, a number of 

interferon responsive genes were strongly increased (Appendix, Table 7), suggesting a non-

specific response to the synthetic oligonucleotide.  This has been previously noted even for 

small RNAs (Karlsen et al. 2011). Interestingly, these genes were not modulated in the miR-

29b silencing experiment, suggesting that a specific sequence in the miR-29b mimic is 

responsible.  

The effect of the miR-29b mimic or inhibitor on whole genome expression was further 

analysed by examining the potential targets of the miR-29 family. The array data (Figure 5.8) 

revealed there were 12215 mRNAs in the intersection of the two experiments that increased 

in the miR-29b knockdown and decreased in miR-29b overexpression experiments. To 

further explore the effect of modulation of miR-29b on the transcriptome, the percentage of 

mRNAs containing seed sites (e.g. 6-mer, 7-mer, 8-mer) was calculated. It was a postulated 

that potential direct targets of miR-29s (those mRNA containing miR-29 seed sites) should be 

enriched in mRNA down-regulated by miR-29b and in mRNA up-regulated by miRNA-29b 

silencing.  Particularly, this enrichment should be highest in genes that are decreased by miR-

29b mimic and increased by miR-29b inhibitor. Data (Figure 5.8) showed that regardless of 

the length of the seed sequence, the percentage of mRNAs with seed sites is higher in the 

mRNAs which are decreased on overexpression or increased on silencing of miR-29b than in 

total mRNA.  The percentage of mRNAs with seed sites is the highest in the intersection of 

the two experiments. These data confirm the hypothesis that taking the intersection 

containing mRNAs which decrease with the overexpression and increase with silencing of 

miR-29b is an effective way to filter the relevant miRNA targets. 

Also, a subset of mRNA which was differentially expressed in the microarray analysis was 

selected for validating using RT-qPCR. Comparison of the expression levels between the 

microarray and RT-PCR results demonstrated a similar expression pattern between the two 

platforms (data not shown). These results confirmed the mRNA array data.  
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Figure 5.7 Gain- and loss- of function of miR-29b experiments 

Human primary chondrocytes were cultured in high glucose media with 10% (v/v) FCS in 
monolayer until reaching 90% confluence. Cells were transfected with miR-29b mimic 
(50nM), miR-29b inhibitor (50nM), or non – targeting control (50nM) for 48 hours in 
triplicate. Cells were then harvested and total RNA was isolated from each sample. An equal 
amount of total RNA from each sample was pooled together. Pooled samples were subjected 
to whole genome array using Illumina humanHT-12 V4.0 expression BeadChip array. The 
Global effect of the miR-29b overexpression or silencing on whole genome expression was 
presented in (A) for the miR-29b silencing experiment and in (B) for the miR-29b 
overexpression experiment. Both datasets were plotted together on the same chart (C). The 
mRNAs which decreased in the miR-29 overexpression and increased in the miR-29b 
silencing experiment are highlighted in red.  
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Figure 5.8: Enrichment of miR-29 putative direct targets in miR-29b gain – and loss – 
of function experiment. 

From whole genome array data, the percentage of miR-29 putative direct targets was 
calculated for (i) mRNA decreased by the miR-29b mimic ; (ii) mRNA increased by the miR-
29b inhibitor ; (iii) mRNA in the intersection of the two (decreased by miRN-29b mimic and 
increased by inhibitor) (iv) all the mRNAs detected from the whole genome array. The 
calculation was performed for the range of fold change (FC) and for each types of seed 
sequence e.g. 6-mer, 7-mer, 8-mer. The mRNA having more than one binding site for each 
type of seed sequence was always assigned as 1. When FC=k, the percentage of 6mer-seed-
site targets increasing or decreasing expression was calculated: 6mer = sum of mRNA having 
6mer-seed site sequence in the 3’UTR with FC in the range of (k, FC max) if k >0, or (FC 
min, k) if k<0; Total mRNA = sum of mRNA with FC in the range of (k, FC max)  if k>0, or 
(FC min, k) if k< 0;  mRNA with binding site/ total mRNA = 6mer/total mRNA. The 
percentage of other seed site targets was calculated similarly. Here, calculation for the 
absolute FC 1.3 is presented.  
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5.2.4.2 Known targets of the miR-29 family  

The miR-29 family has emerged as an important miRNA in a number of pathologic settings 

by regulating multiple genes that fall into the same or related pathways.  

In the whole genome array of the overexpression and silencing of the miR-29b, a number of 

known direct targets of the miR-29 family were also identified in human chondrocytes (e.g. 

Table 5.1).  
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Gene  

Binding sites Fold change 
mimic 

(decrease) 

Fold change 
inhibitor 
(increase) s6 s7m8 s7a1 s8 

COL1A1 3 1 3 1 2.53 1.69 
COL1A2 3 1 2 1 1.26 1.05 
COL2A1 1 1 1 1 1.17 1.39 
COL3A1 3 2 2 2 1.36 1.26 
COL4A1 2 1 2 1 1.22 1.41 
COL5A1 5 4 2 2 1.15 1.15 
COL5A2 2 1 2 1 2.20 1.27 
COL6A1 1 0 1 0 1.27 1.08 
COL6A2 1 1 1 1 1.12 1.01 
COL6A3 1 1 1 1 1.20 1.14 
COL8A1 1 1 1 1 1.35 1.07 
COL11A1 2 2 0 0 1.80 1.25 
COL15A1 2 1 1 1 1.73 1.22 
COL16A1 1 1 0 0 1.35 1.05 
COL20A1 3 0 0 0 1.01 1.13 
ADAM19  6 2 0 0 1.64 1.28 
CDK6 3 2 1 0 1.61 1.07 

 

Table 5.1: Fold change expression of known targets of the miR-29 family in the miR-29b 

gain- and loss- of function experiment in human articular chondrocytes  
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5.2.4.3 Novel targets of the miR-29 family  

5.2.4.3.1 The ADAMTS family 

The miR-29 family is one example of the fact that a miRNA can regulate many functionally 

related genes. As shown above, a number of extracellular matrix-related genes were found to 

be direct targets of the miR-29 family. Since a miRNA can regulate the expression of several 

hundred genes, it was likely that the miR-29 family could directly target sets of novel genes 

within families. In chapter 4, TGFβ was found to suppress miR-29 family expression and the 

miR-29 family itself was also found to supress TGFβ signalling. These data suggest that the 

level of miR-29 and TGFβ-induced genes, may be inversely correlated and the miR-29 

family might further inhibit the effect of TGFβ signalling on gene expression by exerting a 

second suppressive effect on the pathway through directly targeting inducible genes. This 

means that a number of TGFβ-inducible genes could potentially be direct targets of the miR-

29 family. Herein, the ADAMTS family investigated as TGFβ inducible genes (except 

ADAMTS 19) (Figure 5.9) and genes which have roles in cartilage.  

Human primary chondrocytes were stimulated with TGFβ1 for 24 hours in monolayer culture. 

The expression levels of members of the ADAMTS families were measured by qRT-PCR 

showing that ADAMTS6, ADAMTS10, ADAMTS14 and ADAMTS17 were significantly 

induced by TGFβ (Figure 5.9). Moreover, bioinformatic analysis found that there were a 

number of miR-29 binding sites in the 3’UTR regions of these ADAMTS genes (Table 5.2). 

Together with this, these TGFβ induced ADAMTS genes were predicted to be miR-29 

potential direct targets by different bioinformatics algorithms e.g. Diana, Targetscan, 

Microcosm, miRDB, Picta (Table 5.2). Taken together, all of these data demonstrated that 

ADAMTS genes, including ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19 

are miR-29 potential direct targets.  

In order to validate these ADAMTS genes as miR-29 direct targets, the expression levels of 

these genes were measured by qRT-PCR in human chondrocytes transfected with the miR-

29b mimic for 48 hours. qRT-PCR (Figure 5.10) showed that the expression of these 

ADAMTS genes was significantly suppressed by overexpression of the miR-29b, again 

supporting that these genes are the miR-29 direct targets. To further validate these ADAMTS 

genes as miR-29 direct targets, the 3’UTR regions containing the miR-29 binding sties were 
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subcloned downstream of the luciferase encoding gene in pmiRGLO. These 

ADAMTS3’UTR-pmiRGLO reporter vectors (100ng) were co-transfected with the miR-29 

family mimic (50nM) to DF1 cells. After 24 hours of transfection, the cells were harvested 

and luciferase assays were performed. Together with the ADAMTS 3’UTR-pmiRGLO 

reporter vectors, mutant vectors in which the miR-29 binding sites were mutated were 

constructed and tested. A 3’UTR was a direct target for the miR-29 family if the luciferase 

activity was suppressed with the overexpression of the miRNA in the wild-type construct and 

this effect was abolished when the miRNA binding sites were mutated. Luciferase assay data 

showed that ADAMTS6 (Figure 5.14), ADAMTS10 (Figure 5.15), ADAMTS14 (Figure 5.11), 

ADAMTS17 (Figure 5.12), ADAMTS19 (Figure 5.13) were all direct targets of the miR-29 

family. 
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Table 5.2: ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, ADAMTS19 are predicted 
to be miR-29 targets  

A number of different binding sites for miR-29 were found in the 3’UTR regions of 
ADAMTS6, ADAMTS10, ADAMTS14, ADAMTS17, and ADAMTS19. These ADAMTSs were 
predicted to be miR-29 family targets by different bioinformatics algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Genes 8 
-mer  

7 
-mer 

6  
-mer 

Bioinformatic algorithm  

ADAMTS6   2  Diana, Targetscan, Microcosm, 
miRDB,Picta 

ADAMTS10  2  Diana, Microcosm, Picta 

ADAMTS14  2 2 Diana, Picta 

ADAMTS17  2 3 Targetscan, Microcosm, miRDB,Picta 

ADAMTS19  2  Picta 
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Figure 5.9 Members of ADAMTS family are TGFβ inducible genes  

Human primary chondrocytes was cultured with 10% (v/v) FCS in monolayer until 90% 
confluence. Cells were switched to media with 0.5% (v/v) FCS for 24 hours before treating 
with TGFβ1 (4ng/ml) or vehicle (4mM HCl+0.5% (w/v) BSA) for another 24 hours. Cells 
were harvested and subjected to total RNA isolation. Relative expression of the ADAMTS 
genes was measured by quantitative RT-PCR. 18S rRNA was the housekeeping control. 
Relative expression value of each of the ADAMTSs in TGFβ stimulated cells was normalized 
to the vehicle control. The horizontal line at 1 serves as the vehicle control. Closed bar: TGFβ 
treatment, open bar: vehicle. Means ± standard errors are presented, n=3. The difference 
between the treatment and the control was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, ***, p<0.001. 
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Figure 5.10 The expressions of members of the ADAMTS family were suppressed by 
miR-29b mimic 

Human primary chondrocytes was cultured in media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were then transfected with either miR-29b mimic (50nM) or non – 
targeting control (50nM) for 48 hours. Total RNA was isolated and the expression levels of 
the ADAMTS genes were measured by qRT-PCR. 18S rRNA was the housekeeping control. 
Relative expression value of each of the ADAMTS genes was normalized to non – targeting 
control. The horizontal line at 1 serves as the non-targeting control. Means ± standard errors 
are presented, n=3. The difference in expression between miR-29b overexpression and non – 
targeting control was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
***, p<0.001 
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Figure 5.11: ADAMTS14 is a direct target of the miR-29 family 

The ADAMTS14 3’UTR region containing 4 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS14 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or quadruplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.12: ADAMTS17 is a direct target of the miR-29 family 
 

The ADAMTS17 3’UTR region containing 5 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS17 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or quadruplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.13: ADAMTS19 is a direct target of the miR-29 family 
 

The ADAMTS19 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS19 3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created 
from WT vector in which just single or duplicate binding sites of the miR-29 family were 
mutated. Either the WT or the mutants vectors (100ng) were co-transfected into chicken 
fibroblast DF1 cells with either miR-29b mimic (50nM) or non – targeting control (50nM). 
Luciferase assays were performed 24 hours after transfection. The relative luciferase value 
was normalised to the non-targetting control Open bar: non-targetting control, closed bar: 
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miR-29 family mimic. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.14: ADAMTS6 is a direct target of the miR-29 family 
 

The ADAMTS6 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS6 3’UTR-pmiRGLO wide type (WT) vector. The WT vector (100ng) was co-
transfected into chicken fibroblast DF1 cells with either miR-29b mimic (50nM) or non – 
targeting control (50nM). Luciferase assays were performed 24 hours after transfection. The 
relative luciferase value was normalised to the non-targeting control Open bar: non-targeting 
control, closed bar: miR-29 family mimic. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c 
mimic.  
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Figure 5.15: ADAMTS10 is a direct target of the miR-29 family 
The ADAMTS10 3’UTR region containing 2 binding sites of the miR-29 family was 
subcloned downstream of the luciferase encoding gene in the pmiRGLO vector to create the 
ADAMTS10 3’UTR-pmiRGLO wide type (WT) vector. The WT vector (100ng) was co-
transfected into chicken fibroblast DF1 cells with either miR-29b mimic (50nM) or non – 
targeting control (50nM). Luciferase assays were performed 24 hours after transfection. The 
relative luciferase value was normalised to the non-targeting control Open bar: non-targeting 
control, closed bar: miR-29 family mimic. Means ± standard errors are presented, n=6. The 
difference of luciferase activity was analysed by Student’s unpaired two-tailed t test. * 
p<0.05, ** p < 0.01, *** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c 
mimic.  
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5.2.4.3.2 WNT signalling pathway related genes  

As shown previously, the miR-29 family was found to negatively regulate the TGFβ, NFκB, 

and WNT/β-catenin signalling pathways. The remaining question is how the miR-29 family 

supress these signalling pathways.  

The whole genome array from the miR-29b gain – and loss – of function experiment found 

12215 mRNAs that were the miR-29 putative targets. These consisted of 6925 mRNAs 

containing at least one 6-mer, 3400 mRNAs containing 7-mer, and 728 mRNAs containing 8-

mer binding sites in their 3’UTR. Those mRNAs with miR-29 binding sites were considered 

as putative direct targets of the miR-29 family; the others without the miR-29 binding site 

were considered as indirect targets.   

The miR-29 family suppression of TGFβ, NFκB, and WNT/β-catenin signalling pathways 

could be through a direct mechanism by targeting the mRNAs in the signalling cascade. In 

order to verify how miR-29 suppresses these signalling pathways, both putative miRNA-29 

indirect and direct targets were analysed with DAVID functional analysis (web address) 

software to identify the most represented gene ontology (GO) categories. Analysing the miR-

29 direct target sections found the enrichment for the Wnt signalling pathway together with 

MAPK kinase signalling pathway, apoptosis pathways, P53 signalling pathways. Since, 

NFκB and TGFβ pathways did not come up in this analysis, the miR-29 indirect targets were 

further analysed. However, neither NFκB nor TGFβ signalling pathways were enriched. In 

the scope of this project, the mechanisms by which the miR-29 suppressed these two 

signalling pathways remains unclear and need to be further explored.  

All the miR-29 putative direct targets were selected regardless of the fold change cut off.  In 

this manner, the Wnt signalling-related direct targets e.g. Dishevelled 3 (DVL3), casein 

kinase 2 alpha 2 polypeptide (CSNK2A2), GSK-3 binding protein frat2 (FRAT2), Frizzled 

family receptor 3 (FZD3), and Frizzled family receptor 5 (FZD5) were only modulated with a 

small fold change in the array (Fold change between 1 to 1.2). The expression of these 

mRNAs were measured by qRT-PCR, however in triplicate samples these data showed that 

the modulation of these genes under the control of the miR-29b did not reach statistical 

significance (Appendix, Figure 8).  
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Even though expression of these Wnt-related genes was not significantly modulated at the 

mRNA level, the genes were explored as miR-29 direct targets since miR-29 might exert its 

functions on these genes at the protein level. To verify these genes as the miR-29 direct 

targets, 3’UTR regions containing miR-29 binding sites of these genes were subcloned 

downstream of a luciferase encoding gene in the pmiRGLO vector. Constructs in which the 

miR-29 binding sites were mutated were also created. Either the 3’UTR-pmiRGLO vectors or 

the mutant 3’UTR-pmiRGLO vectors were co-transfected with the miR-29 family mimic 

(50nM) into DF1 cells for 24 hours. Then cells were harvested and the luciferase assays were 

performed. Luciferase assay data showed that FZD3 (Figure 5.19 ), FZD5 (Figure 5.18), 

FRAT2 (Figure 5.17), CK2A2 (Figure 5.16), DVL3 (Figure 5.15) were the direct targets of 

the miR-29 family since the luciferase activities were significantly decreased with the miR-29 

family mimics and this effects were abolished when the miR-29 binding sites were mutated.  

As mentioned above, qRT-PCR showed that the expression levels of these WNT signalling 

related genes were not significantly modulated with the miR-29b mimic at the mRNA level. 

However, the luciferase assay showed that miR-29 family could directly bind to the 3’UTR 

regions of these genes. It was postulated that the miR-29 family could directly target these 

genes at the protein level. Since all members of the miR-29 family directly targeted these 

genes, it was sufficient to check the effect of the miR-29b mimic on these genes at the protein 

level. In order to test this hypothesis, SW1353 cells were transfected with miR-29b mimic for 

72 hours. Cells were then harvested and subjected to western blot. Time limitations meant 

that only expression levels of DVL3 were examined. Western blot data (Figure 5.15) showed 

that miR-29b supressed DVL3 expression level to 50% as compared to the non – targeting 

control, again confirming DVL3 is a direct target of miR-29 family.  

Taken together, all of these data provide good evidence that the miR-29 family can inhibit the 

Wnt signalling, at least in part, via repression of these targets. Interestingly, DVL3, 

CSNK2A2 and FRAT2 were decreased in expression in hip OA cartilage compared to 

fracture controls, where the miR-29 family were increased in expression.  Fzd3 expression 

however, was higher in expression in hip OA (Figure 5.20).  
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Figure 5.16: DVL3 is a direct target of the miR-29 family 
 

(A) The DVL3 3’UTR region containing 3 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the DVL3 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or triplicate binding sites of the miR-29 family were mutated. Either the 
WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with 
either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays were 
performed 24 hours after transfection. The relative luciferase value was normalised to the 
non-targetting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targetting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
 
(B) SW1353 was transfected with a miR-29b mimic (50nM) or non-targeting control (50nM) 
for 3 days. Protein was extracted and separated on 10 (w/v) SDS-PAGE, blotted onto PVDF 
and probed with an anti DVL3 antibody.  The blot was stripped and re-probed with a 
GAPDH antibody to assess loading, n=2. 
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Figure 5.17: CK2A2 is a direct target of the miR-29 family 
 

The CK2A2 3’UTR region containing 4 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the CK2A2 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or quadruplicate binding sites of the miR-29 family were mutated. Either 
the WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells 
with either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays 
were performed 24 hours after transfection. The relative luciferase value was normalised to 
the non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.18: FRAT2 is a direct target of the miR-29 family 
 

The FRAT2 3’UTR region containing 4 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FRAT2 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or triplicate binding sites of the miR-29 family were mutated. Either the 
WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with 
either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays were 
performed 24 hours after transfection. The relative luciferase value was normalised to the 
non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.19: FZD5 is a direct target of the miR-29 family 
 
The FZD5 3’UTR region containing 5 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FZD5 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which just single or quintuplicate binding sites of the miR-29 family were mutated. Either 
the WT or the mutants vectors (100ng) were co-transfected into chicken fibroblast DF1 cells 
with either miR-29b mimic (50nM) or non – targeting control (50nM). Luciferase assays 
were performed 24 hours after transfection. The relative luciferase value was normalised to 
the non-targeting control. Means ± standard errors are presented, n=6. The difference of 
luciferase activity was analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, Ctr, non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.20: FZD3 is a direct target of the miR-29 family 
 

The FZD3 3’UTR region containing 1 binding sites of the miR-29 family was subcloned 
downstream of the luciferase encoding gene in the pmiRGLO vector to create the FZD3 
3’UTR-pmiRGLO wide type (WT) vector. The mutant vectors were created from WT vector 
in which binding site of the miR-29 family were mutated. Either the WT or the mutants 
vectors (100ng) were co-transfected into chicken fibroblast DF1 cells with either miR-29b 
mimic (50nM) or non – targeting control (50nM). Luciferase assays were performed 24 hours 
after transfection. The relative luciferase value was normalised to the non-targeting control. 
Means ± standard errors are presented, n=6. The difference of luciferase activity was 
analysed by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001, Ctr, 
non-targeting control, 29a, 29b, 29c: miR-29a,-b,-c mimic.  
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Figure 5.21: Expression of FZD3, FZD5, DVL3, and CK2A2 in human cartilage  
 

Total RNA was isolated from human hip articular cartilage of either end-stage OA patients or 
fracture controls and reverse transcribed to cDNA. Relative expressions of FZD3, FZD5, 
DVL3, and CK2A2 were measured by real-time PCR where 18S rRNA was used as 
housekeeping control in hip osteoarthritis cartilage (HOA, n=8) and fracture to the neck of 
the femur (NOF, n=7). The horizontal line at 1 is the expression of these genes in NOF. 
Means ± standard errors are presented. Different in expression between HOA and control 
NOF was calculated by Student’s unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** 
p<0.001  
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5.3 Discussion  

Previously, the miR-29 family has been shown to negatively interact with TGFβ signalling in 

several pathologic settings in which fibrosis development was the outcome of the disease 

such as liver, cardiac, renal fibrosis (van Rooij et al. 2008, Kwiecinski et al. 2011, Qin et al. 

2011). In line with these studies, in the present study, the miR-29 family was also found to 

suppress the TGFβ signalling pathway in human chondrocytes. Noteworthy, miR-29 is one 

downstream mediator of TGFβ signalling in which the miRNA blocks the effect of the 

growth factor on gene expression. However, the direct mechanism by which miR-29 

interferes with TGFβ signalling remains unclear in human chondrocytes. In fact, Smad3 was 

demonstrated to be a direct target of miR-29 in thyroid cells (Leone et al. 2012). In human 

chondrocytes, nevertheless, with transfection of miR-29 family mimics, the Smad3 mRNA 

level was not changed (data not shown); similarly, any decrease in luciferase activity when 

co-transfecting a Smad3-3’UTR reporter with miR-29 mimics was not statistically significant 

(data not shown), suggesting that Smad3 is not the target of miR-29 in the context of the 

chondrocyte. In addition, no obvious components of TGFβ signalling were regulated in the 

miR-29b gain- and loss-of function experiment with the whole genome array. This leads to 

the hypotheses that miR-29 may directly targets TGFβ signalling components at the protein 

level rather than mRNA level (similar to miR-140 (Pais et al. 2010)) or that the inhibition of 

miR-29 on TGFβ signalling is the consequence of the direct suppression of other factors 

inducing TGFβ signalling. To test this hypothesis, it may be best to perform miR-29b gain-

and loss-of function experiment together with a proteomic assay.  It may also be instructive to 

perform array experiments in the presence or absence of TGFβ itself  

It has been shown that in the development and progression of OA, NFκB plays an active role 

e.g. mediating articular chondrocyte responses to proinflammatory cytokines (IL-1, TNF-α); 

inducing MMPs (e.g. MMP-1, MMP-3, MMP-13), cytokines (e,g, IL-6, IL-8) and chemokine 

expression (Marcu et al. 2010). Thus, NFκB is an attractive target for the treatment of OA. In 

this project, for the first time, NFκB signalling was confirmed as negatively regulated by the 

miR-29 family and miR-29 is also likely to serve as a downstream inhibitor of the signalling. 

Similar to TGFβ signalling, it is still not clear the direct mechanism by which miR-29 

regulates NFκB signalling pathway. However, it suggests a potential therapeutic strategy for 

targeting NFκB signalling using miR-29. Further studies are needed to dissect the direct 

mechanism by which miR-29 interferes with NFκB signalling. 
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In this project, the miR-29 family was found to suppress the Wnt/β-catenin signalling 

pathway. In line with my data, the negative effect of the miR-29 on this signalling pathway is 

also reported. In human non-small-cell lung cancer cells, miR-29 directly targets DNMTs 

which in turn inhibited the methylation of Wnt inhibitory factor-1 (WIF-1) promoter; 

accordingly, miR-29 over-expression down-regulated β-catenin expression (Tan et al. 2013). 

In human colorectal cancer cells, miR-29b negatively regulated Wnt signalling and targeted 

B-cell CLL/lymphoma 9-like (BCL9L), thus decreasing its expression with a consequent 

decrease in nuclear translocation of β-catenin (Subramanian et al. 2014). In contrast to these 

studies, published data reports that the miR-29 family positively regulated canonical Wnt 

signalling by directly targeting its inhibitors in human embryonic kidney cells (Liu et al. 

2011) and human fetal osteoblastic cells (Kapinas et al. 2010). This contradiction is not 

surprising as many miRNAs are known to act in a context-dependent manner depending on 

the relative availability of their targets in any cell type and this discordance could be a 

reflection of the differences in the miR-29 family regulatory networks in different cell lines.   

Besides exerting function on several crucial signalling pathways implicated on 

chondrogenesis and OA, the crucial role of the miR-29 family was clearly shown through 

their target genes. In this project, miR-29b gain- and loss-of-function was applied to find 

miR-29 potential targets. Together with some novel and known targets which will be 

discussed later, the liposome – mediated transient transfection of the miR-29b-3p mimic 

surprisingly induced the expression of a number of immune genes which are not the miRNA 

targets. The Qiagen miR-29b-3p mimic used in the present study is double-stranded, 23 

nucleotides in length with sequence identical to the sequence of the mature endogenous 

miRNA-29b-3p and does not contain any chemical modifications or overhangs, which makes 

it unlikely for any sequence difference between endogenous miRNA and Qiagen mimic to be 

responsible for the immune response. Moreover, the lack of immune response against the 

controls and the miR-29b inhibitor confirms that the immune response was specific and not 

due to a general response to small RNA. Indeed, it is likely that some specific GU- rich 4-mer 

sequences e.g. AUUU, UUGA, UGUU in the miR-29b-3p mature sequence 

(5’UAGCACCAUUUGAAAUCAGUGUU3’) might be important for the immune gene up-

regulation since these sequences have been shown to be potent immunostimulatory motifs 

mediated through TLR7 or TLR7/8 (Forsbach et al. 2008). Especially, it has been shown that 

the main effects induced upon activation of TLR7 in human immune cells are IFN- dependent 
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effects, proinflammatory cytokines and chemokines from cell expression only TLR7 or both 

TLR7 and 8 (Hertzog et al. 2003). Also, it is possible that this up-regulation of the immune 

genes could be attributed to the liposome alone besides the sequence of the synthetic miRNA 

since the levels of the immune genes were higher than the levels obtained for electroporation, 

and those observed in un-transfected controls (Karlsen et al. 2013). The explanation for this 

could be because liposomes fuse with the plasma membrane, which may trigger membrane – 

associated lipid receptors and/or distort the actin cytoskeleton which in turn up-regulates 

immune genes. However, it may depend on cellular context since electroporation could 

strongly trigger the increase of the immune genes in some cell types.  

This study identifies FZD3, FZD5, FRAT2, CK2A2 and DVL3 as the critical targets of the 

miR-29 family in the Wnt signalling pathway. These genes have important roles in both 

canonical and/or non-canonical Wnt signalling pathways. FZD3 and FZD5 belong to the 

Frizzled proteins, which are the receptors for Wnt ligands. Wnt3a, Wnt5a, and Wnt2 can bind 

to FZD3 which in turn can activate both canonical and non-canonical WNT signalling 

pathways: Wnt3a activates the TOPFlash reporter in HEK293 cells overexpressing 

Wnt3a/FZD3/LRP6 (Lu et al. 2004) whist Wnt5a binding to FZD3 triggers downstream 

pathways independent of β-catenin (Hansen et al. 2009); Wnt2 can interact with FZD3 in 

human cumulus cells, but it is not known which downstream signalling pathways are 

activated after this binding interaction (Wang et al. 2009). FZD5 functions as the receptor for 

Wnt5a, Wnt9b, and Wnt7a. Co-injection of hFZD5 and XWnt-5a induced the formation of 

dorsal axis duplication in X. laevis embryos; this axis duplication was suppressed after co-

injection of RNA for human GSK-3β, suggesting the involvement β-catenin-dependent 

signalling in this receptor – ligand combination (He et al. 1997). Wnt9b was found in 

HEK293 cells as a binding partner for FZD5 to activate the TOPFlash reporter (Liu et al. 

2008). Wnt7a was found to bind to FZD5 to activate the β-catenin signalling pathway and 

increase the proliferation of epithelial cells in the endometrium (Carmon et al. 2008). By 

targeting these two Frizzled proteins, miR-29 can interfere with Wnt signalling pathways. 

However, it will depend on the cellular context, whichWnt ligands are available to partner 

with, which will determine outcome. In line with these Frizzled proteins, another novel target 

of the miR-29 family, DVL3 (Disheveled 3), belonging to the Disheveled family including 

DVL1, 2 and 3, is a central component in mediating downstream events of both canonical 

and non-canonical Wnt signalling. Wnt ligands binding to Frizzled protein recruit Disheveled 

to the plasma membrane which leads to activation of downstream pathways. Disheveleds 
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includes DIX, PD2, and DEP domains: DIX and PDZ domains function together in canonical 

Wnt signalling to stabilize β-catenin; the DIX domain binds with Axin and results in 

inhibition of the β-catenin degradation complex in canonical Wnt signalling; PDZ and DEP 

domains cooperate in different subpathways of noncanonical Wnt signalling. Moreover, the 

other two targets FRAT2 and CSNK2A2 are potent activators of canonical Wnt signalling. 

FRAT2 (Frequently rearranged in advanced T-cell lymphomas -2) belongs to the FRAT 

family including FRAT 1, 2, 3. By binding to GSK3, Frat prevents the phosphorylation and 

concomitant degradation of β – catenin (van Amerongen et al. 2005). CSNK2A2 encodes for 

the subunit CK2α’ of casein kinase 2 (CK2). CK2 has been shown to act as a positive 

modulator of WNT/β-catenin pathway, suppressing β-catenin degradation and β-catenin 

binding to APC (Price 2006). Several keys components of the WNT/β-catenin signalling are 

known substrates of CK2 in vitro including DVL (Willert et al. 1997), TEF/TCF (Homma et 

al. 2002, Miravet et al. 2002, Hammerlein et al. 2005), and β-catenin (Song et al. 2003). 

Taken together, it is likely that by directly targeting FZD3, FZD5, DVL3, FRAT2 and 

CSNK2A2, miR-29 could in part or in specific contexts, suppress the Wnt signalling pathway. 

Interestingly, in human cartilage, the expression levels of FZD5, CSNK2A2, and DLV3 were 

found to be down regulated in human OA, inversely correlating with the miR-29 expression 

level, suggesting a direct mechanism in which the suppression of these genes are controlled 

by miR-29 in human OA cartilage. However, FZD3 expression level was up-regulated in 

human OA cartilage which could be explained by the fact that there are many other factors 

which are involved in controlling gene expression together with miRNAs. Since the dys-

regulation (either up-regulation or down-regulation) of the canonical Wnt signalling pathway 

can both lead to OA, there is a possible explanation for the disease development: the 

excessive amount of the miR-29 down-regulates the expression levels of a number of Wnt 

signalling related genes which consequently suppress the Wnt signalling pathway. 

Nevertheless, whether miR-29 targets all of these genes at the same time and the level at 

which the suppression of each gene contributing to the disease are still not explained in this 

project.  

MicroRNA 29 has been suggested to serve as a master regulator in complex regulatory 

networks through fine-tuning a large set of functionally related genes, probably best 

illustrated by its extracellular matrix-related targets, whereby at least 16 ECM related genes 

are experimentally validated including collagen isoforms (van Rooij et al. 2008, Luna et al. 
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2009, Kwiecinski et al. 2011, Qin et al. 2011, Wang et al. 2012), laminin γ1 (Luna et al. 2009, 

Nishikawa et al. 2014), fibrillin 1, elastin (van Rooij et al. 2008), integrin β1 (Cushing et al. 

2011). In line with these data, in this project, a number of ECM- related genes were 

highlighted as the direct targets of the miR-29 in human OA chondrocytes. However, there is 

not complete overlap since there are a number of genes that have been experimentally 

validated as direct targets of miR29 but not regulated when miR-29b was overexpressed or 

inhibited in human chondrocytes. For example, validated miR-29 direct target genes include 

DNMT3A, DNMT3B (Fabbri et al. 2007, Garzon et al. 2009, Amodio et al. 2012, Morita et 

al. 2013, Tan et al. 2013, Parpart et al. 2014), MMP2 (Liu et al. 2010, Steele et al. 2010, Fang 

et al. 2011), MMP9, ADAM12, ADAM19 (Luna et al. 2009, Ramdas et al. 2013), 

ADAMTS9 (Cushing et al. 2011). Nonetheless, in human chondrocyte, the expression levels 

of these genes were not modulated by the miR-29 family. The precise explanation for this 

difference is still not clear.  

In this PhD thesis, members of ADAMTS family including ADAMTS6, ADAMTS10 

ADAMTS14, ADAMTS17, ADAMTS19 have been confirmed as novel direct targets of the 

miR-29 family. Interestingly, the miR-29 family is suppressed by TGFβ whist its direct 

targets, the ADAMTS family are strongly induced by TGFβ.  However, except ADAMTS14 

described as a procollagen N-propeptidase for pro-collagen type I, type II, and type III, the 

functions of ADAMTS 6, -17, and-19 remain unknown. Thus, further investigating the 

suppressive effect of miR-29 family on these ADAMTS becomes difficult both in vitro and in 

vivo. Moreover, ADAMTS14 and ADAMTS17 levels were reported to largely increase in hip 

OA cartilage and hip OA synovium, respectively (Davidson et al. 2006); the rs4747096 

nsSNP in ADAMTS14 was over-represented in women requiring joint replacement because 

of knee OA and in patients with symptomatic hand OA (Rodriguez-Lopez et al. 2009, 

Poonpet et al. 2013), implicating the involvement of these ADAMTS on OA. The microRNA 

29 family is, nevertheless, found to increase expression in hip OA cartilage in our sample set. 

Again, this could be explained in part by the fact that in cellular context, a miRNA is just one 

factor amongst others e.g. transcription, epigenetic silencing, differential biosynthesis, and 

extracellular stimuli controlling gene expression.  

In summary, the miR-29 family was found to suppress the TGFβ/Smad3, NFκB, and Wnt/β-

catenin signalling pathways. Gene expression profiles of gain- and-loss-of-function revealed 

the regulation of a large number of previously recognised extracellular matrix-associated 
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genes as well as an additional subset of protease and Wnt signalling pathway-related genes.  

Among these genes, the ADAMTS family e.g. ADAMTS6, ADAMTS10, ADAMTS14, 

ADAMTS17, ADAMTS19, and Wnt signalling related genes e.g. FZD3, FZD5, DVL3, FRAT2, 

CK2A2 were validated as direct targets of the miR-29 family.   
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CHAPTER 6 
GENERAL DISCUSSION 

6.1 Summary 

This project has identified the miR-29 family as important miRNAs involved in both 

cartilage homeostasis and OA (Chapter 3). In the murine DMM model of OA at 1, 3, and 7 

days after surgery, miRNA profile data from total RNA isolated from the whole knee joints 

showed that miR-29b was significantly increased at day 1 and showed a trend to decrease at 

day 3 and 7 after surgery. Integrating analysis between the mRNA profiling and miRNA 

profiling data from the DMM model strongly highlighted the role of the miR-29 family since 

the expression of its putative targets inversely correlated with its expression across the time 

course. In human end-stage hip OA cartilage, the miR-29 family was increased compared 

with the facture to neck of femur controls. Furthermore, in a murine hip injury model, the 

expression of the miR-29 family was increased across a 48 hour time course. The miR-29 

family was also found to be involved in chondrocyte phenotype since the expression of all 

members of the miR-29 family decreased across dedifferentiation of human chondrocytes. In 

chondrogenesis, the miR-29 family was found to significantly decrease at an early stage, 

suggesting a negative role in this phase of chondrogenesis in both human and murine models. 

The miR-29 family was also found to be expressed in murine limb development. 

The factors controlling miR-29 family expression are another important finding of this 

project (Chapter 4). The master regulator of chondrogenesis SOX9 was found to negatively 

regulate miR-29 expression, at least in part through directly binding to the promoter region of 

miR-29a/b1. A number of growth factors and cytokines were identified which regulate 

expression of the miR-29 family in both human primary chondrocytes and SW1353 cell line: 

TGFβ supressed miR-29 family expression; IL-1 strongly increased the miRNA expression 

through the p38 MAPK signalling pathway; treatment with LPS for less than 24 hours 

decreased expression of miR-29 through NFκB signalling whilst treatment with LPS for 

longer times increased miR-29 expression. Interestingly, in response to cytokines and growth 

factors, the miR-29 primary and precursor transcripts were regulated ahead the mature 

transcripts. This was explained in part by the fact that several components taking part in the 

miRNA precursor processing were possibly the miR-29 targets. Among these, Dicer-1 was 

proven as a miR-29 direct target.  
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Crucially, the functions of the miR-29 family in chondrocyte were also revealed in which 

miR-29 served as the negative regulator of the TGFβ/SMAD, NFκB and WNT/β-catenin 

signalling pathways. A number of novel direct targets of the miR-29 family have been found 

e.g. the ADAMTS family (ADAMTS6, -10, -14, -17, -19) and components of the Wnt 

signalling pathway (FZD3, -5, FRAT2, CK2A2, DVL3) (Chapter 5).   
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Figure 6.1. Summary of the role of the miR-29 family in chondrocytes  

 

 

 
 
 
 
 
 
 
 
 

6.2 General discussion  
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6.2.1 Increased expression of the miR-29 family may contribute to the onset or 

progression of OA 

The tight regulation of miRNA expression is crucial for cartilage homeostasis since the 

dysregulation of miRNAs may lead to OA. Especially, it has been shown that the aberrant 

expression of a single miRNA could have a profound effect on cartilage i.e. miR-140, with 

absence of miR-140 leading to premature OA (Miyaki et al. 2010). In the present study, all 

members of the miR-29 family have been implicated in cartilage homeostasis and OA. In 

both early and late stages of OA, an increase level of the miR-29 family was observed, 

suggesting that miR-29 may be involved in the onset of the disease. Moreover, in this study, 

the molecular mechanisms controlling this increased expression of miR-29 and the 

mechanisms by which increased miR-29 expression may lead to OA have been investigated: 

the miR-29 expression was up-regulated by IL-1, which is induced in both early and end 

stage OA, consequently suppressing both TGFβ and WNT/β-catenin signalling pathways. 

Since alteration of these two signalling pathways has been shown to be involved in OA 

development (Verrecchia et al. 2001, Verrecchia and Mauviel 2002, Zhu et al. 2008, Zhu et al. 

2009), the increased expression level of the miR-29 family may contribute to this. In line 

with this, the miR-29 family was found to strongly suppress a number of ECM-related genes, 

especially collagens. Aggrecan was also found to be indirectly decreased by miR-29 (data not 

shown). However, more evidence is required to support this premise. If the increased 

expression level of miR-29 is a common observation in different OA models, this may also 

suggest that circulating miR-29 could be a biomarker for detecting early stage OA and also 

offers the possibility of using a miR-29 inhibitor as a novel treatment for OA.  We are 

investigating the expression of the miR-29 family in the Str/ort model in collaboration with 

Dr Blandine Poulet (University College London, UK) and Professor Andy Pitsillides (Royal 

Veterinary College, London, UK). 
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The increased level of the miR-29 family may not be the only microRNA underlying the 

development of OA. In this project, miRNA profiling in the DMM model at 1, 3, and 7 days 

after surgery found a number of miRNAs modulated apart from miR-29s, suggesting these 

may also contribute to the pathogenesis of OA. Also, a number of miRNAs have been 

identified as differently expressed in human end stage OA cartilage as compared to the 

control counterparts. It is clear that in order to maintain cartilage homeostasis, miRNAs will 

interact with each other and mRNAs in a complex network that is tightly regulated. Thus, the 

up-regulation of miR-29 might be either the reason or the consequence of the deregulation of 

other networks of miRNAs. The question is how the other miRNAs interact with miR-29 and 

the effect of the increase expression of miR-29 on the miRNA/mRNA network in OA. This 

requires a computer modelling approach to resolve. 

6.2.2 The signalling cascade IL-1/p38, IL-1/NFκκκκB and the miR-29 family  

Interestingly, in this study, it was found that whist IL-1 induced miR-29 expression through 

p38/MAPK, the NFκB pathway appears suppressive to miR-29 expression. In addition, the 

miRNA itself was found to suppress NFκB signalling. These data suggest that in response to 

the signalling cascade triggered by IL-1, the miR-29 expression level was induced through (i) 

induced expression of p38 MAPK and (ii) escape from the suppressive effect of NFκB 

through inhibiting the NFκB signalling pathway. However, the mechanism by which miR-29 

suppressed NFκB signalling was not fully understood since the miR-29b gain- and loss- of 

function mRNA profiling experiment in human primary chondrocytes did not identify any 

potential targets related to the NFκB signalling pathway. It is a hypothesis that this 

suppressive effect could be an indirect effect or some potential targets could alter only at the 

protein level. Also, the direct mechanism through which  p38 induced the miR-29 expression 

is not clear, even though in the promoter of miR-29a/b1 there are several binding sites for 

AP1 (data not shown).  Interestingly, it is reported that p38 activation was found to induce 

NFκB activity in a dual way: by reducing IκB levels and by potentiating the translocation of 

p65/p50 (Baeza-Raja et al. 2004). Though evidence for this activation in human chondrocytes 

was not clear, the network controlling miR-29 expression in response to IL-1 becomes more 

complicated if this interaction is true in chondrocytes. Moreover, in this study, miR-29 was 

found to inhibit the pre-miRNA processing machinery to target Dicer and may also directly 

target other pre-miRNA processing genes, suggesting another regulatory layer for tightly 
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controlling the level of miR-29 in human chondrocytes. This could partly explain that the 

excessive amount of the miRNA in chondrocytes may lead to OA. Multiple regulatory layers 

are therefore needed for controlling miR-29 levels, clearly showed when the level of the 

primary miR-29 family was induced ahead of the level of mature miR-29 in chondrocytes 

stimulated with IL-1, TGFβ, and LPS. In the DMM model, miR-29 expression was induced 1 

day after surgery together with the IL-1β expression level though this latter was not 

significant (data not shown), suggesting one possible explanation for the increase level of 

miR-29. However, it is unlikely that miR-29 was solely induced by IL-1 in the DMM model 

since the IL-1 level would have to be induced very early in order to then stimulate miR-29 

expression. In line with this, mRNA profiling of DMM model 6 hours after surgery did not 

find a strongly induced expression of IL-1 (Burleigh et al. 2012). Similarly, in the murine hip 

injury model, the miR-29 expression level was also found to increase across the time course 

(reaching significance at 12 hours in culture). The precise mechanism for the increase 

expression of miR-29s in both DMM model and murine hip injury model are not clear and 

require further investigation.  

6.2.3 The signalling cascade TGFβ/ Smad3 signalling pathway and the miR-29 family  

In contrast with IL-1, TGFβ suppresses miR-29 expression. Since the miR-29 family directly 

targets a number of ECM-related genes, the suppressive effect TGFβ exerted on the miR-29 

family is consistent with the well described protective effect of TGFβ in chondrocytes (Li et 

al. 2005). Interestingly, the miRNA itself gave a negative feedback loop on the TGFβ/Smad 

signalling pathway. This could be explained as an attempt to maintain miR-29 at homeostatic 

levels as TGFβ signalling becomes aberrant. This may also in part support the fact that an 

excessive amount of the miR-29 family could lead to OA: through suppressing Smad 

signalling and directly inhibiting responsive genes e.g. ECM related genes, the up-regulation 

of the miR-29s could strongly diminish the function of TGFβ in chondrocytes.  

The precise mechanism by which TGFβ suppressed miR-29 expression and the mechanism 

by which miR-29 inhibited the TGFβ/Smad signalling were unclear. The miR-29b gain- and 

loss- of function mRNA profiling did not identify any TGFβ related potential targets, 

suggesting that this may also be at the protein level. Moreover, regarding the cellular context, 

when both IL-1 and TGFβ may be present, the cross talk between the two cytokines as well 
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as with other cytokines and growth factors in controlling the miR-29s expression levels are 

still unclear.   

6.2.4 The canonical Wnt signalling and the miR-29 family  

In this project, expression of the miR-29 family was not controlled by Wnt3a in chondrocytes. 

Since Wnt3a could trigger both canonical Wnt/β-catenin and CaMKII signalling pathways 

(Nalesso et al. 2011), it is likely that these two signalling pathways do not modulate the miR-

29 levels in chondrocyte. However, expression ofmiR-29 was found to be induced by 

WNT3a in osteoblasts, suggesting a different mechanism controlling the miRNA-29 

expression in the two cells types. The answer to this difference remains unknown and needs 

further investigation.  

The canonical Wnt/β-catenin signalling pathway was inhibited by the miR-29 family in 

which some Wnt signalling related genes were validated as direct targets of the miRNA. Both 

over-activation and inhibition of Wnt signalling can lead to skeletal deformities and an early 

onset OA (Zhu et al. 2008, Zhu et al. 2009), illustrating that Wnt signalling needs to be 

tightly regulated in cartilage homeostasis. However, whether the decreasing of these direct 

targets is the mechanism for inhibition of the Wnt/β-catenin signalling pathway has not been 

confirmed in this study. This could be facilitated by utilizing siRNA to suppress the 

expression of each of these genes and measure this effect on the signalling though TOPFlash 

reporter. 

6.2.5 Therapeautic applications for treating OA by targeting the miR-29 family  

MicroRNAs have many advantages as a therapeutic modality. The mature miRNA sequences 

are short and often completely conserved across species. These characteristics make miRNAs 

relatively easy to target therapeutically and allow for using the same miRNA-modulating 

compound in preclinical efficacy and safety studies as well as in clinical trials. Moreover, 

miRNAs have typically many targets within cellular networks, which, in turn, enable 

modulation of entire pathways in a disease state via therapeutic targeting of disease – 

associated miRNAs.  

The increase of the miR-29 family in OA potentially opens the door to develop a novel 

therapeutic strategy for OA. The therapeutic approach using miRNA sponges (transgenic 
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overexpression of RNA molecules harbouring complementary binding sites to a miRNA) or 

miRNA-29 antagonists to block the function of the endogenous miRNA-29s may have great 

promise as a novel treatment. The miRNA sponges have been proved to be successful in vivo 

whist the antagonists might have greater promise from a therapeutic perspective.  

However, detailed examination of the miRNA therapy should be conducted before clinical 

use. Especially, the antagonists should have high binding affinity, and bio-stability. Indeed, 

this could be facilitated by chemically modifying them to increase the duplex melting 

temperature and improving nuclease resistance. Sugar modifications e.g. the 2’-O-methyl (2’-

O-Me), 2’-O-Methoxyethyl (2’-MOE) 2’-fluoro and the bicyclic locked nucleic acid (LNA) 

modification are commonly used. Among these, the LNA exhibits the highest affinity toward 

complementary RNA with an increase in Tm of +2-8oC per introduced LNA modification. In 

addition, by substituting the phosphodiester (PO) backbone linkages with phosphorothioate 

(PS) linkages in the antagonist oligonucleotides or by using peptide nucleic acid (PNA) or 

morpholino oligomers, respectively, their nuclease resistance properties might increase. Apart 

from nuclease resistance, PS backbone modifications also enhance binding to plasma proteins, 

leading to reduced clearance by glomerular filtration and urinary excretion. PNA oligomers 

are uncharged oligonucleotide analogues, in which the sugar-phosphate backbone has been 

replaced by a peptide-like backbone consisting of N-(2-aminoethyl)-glycine units. 

Polylysine-conjugated and nanoparticle-encapsulated PNA antimiRs have been shown to 

efficiently inhibit miRNA function in cultured cells and in mice (van Rooij et al. 2014). 

Morpholinos are uncharged and with slightly increased binding affinity to complementary 

miRNAs.  

An effective way to deliver the miRNA-29 inhibitor to the arthritis joint to inhibit the 

endogenous miRNA-29 is needed. In particular, it is likely that the uptake of a synthetic 

antagonist into chondrocytes surrounded by the abundant matrix would be difficult in the 

treatment of damaged cartilage. The main challenge for development of miRNA - based 

therapeutics is efficient and safe delivery. Two strategies have been utilized to enhance in 

vivo delivery of antagonists: cholesterol conjugation and modification of the phosphate 

backbone with PS linkages. The 3’ cholesterol conjugated, 2’-O-Me-modified antagonists 

have become a well-validated experimental tool for in vivo inhibition of miRNAs. PS 

backbone linkages can be employed to enhance the pharmacokinetic properties of antisense 
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oligonucleotides. The antagonist approach contains 2 PS modifications at the 5’ end and 4 at 

the 3’ end, which have been shown to be important for their in vivo activity, whereas 

complete replacement of the PO backbone by PS linkages decreased the antagonist efficiency. 

An increasing number of reports have described silencing of miRNA in vivo by unconjugated 

LNA-modified antagonists ranging from 8nt to 16nt in length as described in previous section. 

Administration of such antimiRs is either by intraperitoneal or subcutaneous injection 

resulted in antimiR uptake in the tissue of interest, which led to inhibition of miRNA function 

and derepression of direct target mRNAs. However, the mechanism of cellular uptake and 

distribution are still poorly understood. Directing uptake to cartilage is likely still to be 

difficult, and delivery by injection not pragmatic in OA. 

6.3  Future direction 

6.3.1 The modulation of the miR-29 family in OA 

The miR-29 family was found to modulate expression in different animal models e.g. the 

DMM model, hip avulsion injury model, as well as human end stage OA cartilage. These data 

suggest that the increase in expression of the miR-29 family could be a common event in both 

early onset and end stage OA. However, care must be applied to conclude the up-regulation 

of miR-29s will lead to OA, with the expression level of miR-29s during OA progression 

remaining unclear. Thus, it is of importance to examine miR-29 expression in naturally 

occurring OA models too.   

The miR-29 expression pattern increased in the hip avulsion injury across the time course in 

this study. Nonetheless, whether miR-29 potential targets were inversely correlated with the 

miR-29 expression level in this model has not been proven. Thus, we are performing mRNA 

profiling in the same samples in which the miR-29 expression was found to increase. This 

may also reveal additional mechanisms which lead to the increased expression of miR-29. 

6.3.2 Biological functions of the miR-29 family in chondrocytes 

The miR-29 family was found to suppress TGFβ/Smad, NFκB, and Wnt/β-catenin signalling 

pathways through using the reporters of these pathways together with measuring expression 

level of the responsive genes. However, whether interfering with the miR-29 effect on these 

signalling will lead to alter chondrocyte phenotype remains unclear.  Overexpression and 
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knockdown of the miR-29 family in HACs in micromass culture in combination with 

measurement of chondrocyte markers e.g. MMP13, COL2A1, SOX9, ADAMTS5 will help to 

address this.   

From the miR-29b gain- and loss- of function mRNA data, apart from the Wnt signalling 

pathway, enrichment of some miR-29 potential targets which are related to MAPK signalling 

and apoptosis pathways was evident. Thus, validating these genes as the direct targets of the 

miR-29s is a priority in the future. It is now clear that miRNAs regulate gene expression at 

both mRNAs and protein levels. Also, the direct mechanisms the miR-29 supressing the two 

TGFβ and NFκB signalling pathways are unclear. Therefore, there is a need for proteomic 

analysis of the miR-29b gain- and loss- of function in HACs, likely in micromass culture. In 

addition, performing miR-29b gain – and loss - of function together with treatment with IL-1 

and TGFβ could greatly help to find the mechanism miR-29 family interfering with NFκB 

and Smad signalling pathways. All of these experiments will give more information about 

biological functions of miR-29 in chondrocyte and the complex regulatory network the miR-

29 is within.  

A key step in understanding the biological functions of the miR-29 family in cartilage 

homeostasis and OA will be the development of multiple in vivo molecular tools to access 

gain – of – functions or loss – of – function in mouse models: A number of gain- of –function 

where the miR-29 family members are overexpressed through a transgenic model, such as the 

B cell – specific overexpression of the miR-29a/b1 cluster (Santanam et al. 2010), a viral 

transfection model such as the retroviral transfection of bone-marrow stem cells with miR-

29a (Han et al. 2010) or systemic delivery of miR-29a have been reported (Wang et al. 2012). 

Also, loss-of-function models have been developed as a Cre-Lox-inducible knockout of the 

miR-29a/b-1 cluster or the expression of the miR-29 “sponge” sequence (either by transgene 

or lentivirus) (Ma et al. 2011). However, there is no information whether gain – and loss- of 

function of the miR-29s lead to OA in these models. Therefore, future studies in which these 

mice put on OA models e.g. DMM will provide more detail about the function of the miR-29 

family.  

6.3.3 The involvement of the miR-29 family expression in chick limb bud development 

and Zebrafish cartilage development.  
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The miR-29 family was suggested to be a negative regulator of early stage of chondrogenesis 

in both human and murine chondrogenesis models in this study. Nearly 16 collagen genes 

were validated as miR-29 direct targets in this study and others. Also, this miRNA was also 

expressed in murine limb development. It is likely that miR-29 would have a crucial role in 

cartilage and limb bud development and it is worthy of further investigation. This could be 

facilitated by again using the gain- and loss- of function of all members of the miR-29 family: 

a 500bp region around the mature sequence of the miR-29s or a sequence complementary to 

miR-29 can be subcloned and injected into the chicken limb. However, the involvement of 

the miR-29 family in chick limb development by in situ hybridization might be required to 

determine the stage in which miR-29 was expressed in the development process. In addition, 

ADAMTS14, a pro-collagen pro-peptidase, was validated as the miR-29 direct target. 

Overexpression or knockdown of the miR-29 family in chick limb could help to further 

investigate the functional outcome of the suppressive effect of the miR-29s on ADAMTS14 

though the ADAMTS14 will need to be verified to be expressed in the chick limb first. This 

method could be useful for investigating the functional outcome of the interaction between 

miR-29 and other novel targets.  

Interesting, the miR-29 family was found to be express in the cartilage of zebrafish 

(Wienholds et al. 2005). Thus, zebrafish might be a useful model for investigating the role of 

the miR-29s in cartilage development. Overexpression and knockdown of the miR-29 family 

could greatly help for answering this question. 

6.3.4 The miR-29 family as the biomarker for OA  

MicroRNAs exist in human body fluids such as plasma, urine, and saliva in a stable form 

which has the potential to be a novel diagnostic and prognostic biomarker. OA can be 

difficult to diagnose, but it is important to diagnose OA early and start treatment to prevent 

joint destruction in which the miR-29 based therapy could be an option. Indeed, there is 

growing evidence for future miRNA-based diagnostics: a number of miRNA in plasma were 

found at different levels between RA and OA patients. For examples, let-7e, miR-454, miR-

886 were identified as differentially expressed circulating miRNAs in OA patients who 

underwent arthroplasty especially, let–7e emerged as potential predictor for severe knee or 

hip OA (Beyer et al. 2014). Since the miR-29 family was modulated at an early stage in 

DMM model, it could be a useful biomarker for OA in clinical use. Thus the expression level 
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of the miR-29 family in plasma should be determined to have an overview expression pattern 

of the miRNA.  
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ENDICES 
 

Genes Accession 
number  

Sequences (5’->3’) 

ADAMTS6 ENSG000000491
92 

Forward: ACGTGAGCTCTCTCATCGTCATGGTTCTGC 
Reverse: 
ACGTGAGCTCCAAGCAGGAGAATGAATGTAGG 

ADAMTS1
4 

ENSG000001383
16 

Forward: GAGCTCGCTGTGCCCTGCCATC 
GAGCTCGGGTCCAATGGCGATGTTA 

ADAMTS1
7 

ENSG000001404
70 

Forward: ACGTTCTAGAAACATGAGCGTGGACTTGG 
Reverse: ACGTTCTAGATGTAATGCAAGTTAACGAATGG 

ADAMTS1
9 

ENSG000001458
08 

Forward: ACGTGAGCTCAATCACAGCTCCAGGTAATC 
Reverse: 
ACGTGAGCTCCCAAGAGACATACTATCTTCCAAGG 

FZD3 ENSG000001042
90 

Forward: ATGCGTCGACTATTAGATGCCCAGCCTTTCTC 
Reverse: 
ATGCGTCGACATGCCTACCAAGAGGATAACATTC 

FZD5 ENSG000001632
51 

Forward: ATGCGTCGACGGCATCGGCTACAACCTGAC 
Reverse: ATGCGTCGACAGACCACACAGTTCAAAGA 
AACCTG 

FRAT2 ENSG000001812
74 

Forward: ATGCGTCGACCAACAGCGTCCAGTTCCTAC 
Reverse: ATGCGTCGACGCCGTCAAGTTTCATACAGC 

CK2A2 ENSG000000707
70 

Forward: 
ATGCGTCGACATGCAGGTACTAGAGTTGTGTGG 
Reverse: 
ATGCGTCGACAATAAGTTTGCTTGTTTCTGTGG 

DVL3 ENSG000001612
02 

Forward: ATGCGTCGACGCTGCGTTCCTCTCTCCATC 
Reverse: 
ATGCGTCGACTACCATTTATTGAGCACCTACTCTACTG
TG 

Table 1: Primer sequences for PCR amplification 3’UTR region of potential targets of the 
miR-29 family. For subcloning purpose, restriction sites (bases underlined) were added to the 
5’P of the primers. SacI (GAGCTC), SalI (GTCGAC), XbaI (TCTAGA). 
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Genes 
Mut
ant 

Primer sequence  (5’->3’) 

ADAMT
S6 

Site 
1 

Forward: 
TATGTGATGCACTGACATGTAATTTAAGAAGCTTATGATGGAATC
AAGTCAAACATGCTGTTTAACTGAAAG 
Reverse: 
CTTTCAGTTAAACAGCATGTTTGACTTGATTCCATCATAAGCTTCT
TAAATTACATGTCAGTGCATCACATA 

 
Site 
2 

Forward: 
TATTTATTTCACCAGGGCACATTAAGCTTAAGTTAACTGTTCTTTG
AAAAGGCGCAAGGGAATTCAGT 
Reverse: 
ACTGAATTCCCTTGCGCCTTTTCAAAGAACAGTTAACTTAAGCTTA
ATGTGCCCTGGTGAAATAAATA 

ADAMT
S10 

Site 
1 

Forward: 
GGGGACACAGACCCGTTTGTAAGCTTACCCCTTGTCGATGGTGTG
CG 
Reverse: 
CGCACACCATCGACAAGGGGTAAGCTTACAAACGGGTCTGTGTCC
CC 

Site 
2 

Forward: 
GCTCGGTCCGGGCCAAGCTTATGACGATGAGAGATGCATTAATCG
GTCC 
Reverse: 
GGACCGATTAATGCATCTCTCATCGTCATAAGCTTGGCCCGGACC
GAGC 

ADAMT
S14 

Site 
1 

Forward: 
GTTTGTCTTTGCTGGCCAGAAGAGTCGACTCATGGCCATACTCTG
GCCTTG 
Reverse: 
CAAGGCCAGAGTATGGCCATGAGTCGACTCTTCTGGCCAGCAAAG
AC 

Site
2 

Forward: 
GGGTGCCAGCCCCTGGCCGTCGACTGGAGTGGGGAAGACAC 
Reverse: 
GTGTCTTCCCCACTCCAGTCGACGGCCAGGGGCTGGCACCC 

Site 
3 

Forward: 
CTAAACTCCTGCCAGGTGATAGAGAGCTCTCTCACTTCTTCCTTCC
CCAAGGC 
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Reverse: 
GCCTTGGGGAAGGAAGAAGTGAGAGAGCTCTCTATCACCTGGCA
GGAGTTTAG 

Site 
4 

Forward: 
CTAAACTCCTGCCAGGTGATAGAGAGCTCTCTCACTTCTTCCTTCC
CCAAGGC 
Reverse: 
GCCTTGGGGAAGGAAGAAGTGAGAGAGCTCTCTATCACCTGGCA
GGAGTTTAG 

ADAMT
S17 

Site 
1 

Forward: 
GCAATTACCGTTTCTTATGTCACAGTCGACTGAAGAGAGGCCCTT
CTGTTTCCC 
Reverse: 
GGGAAACAGAAGGGCCTCTCTTCAGTCGACTGTGACATAAGAAA
CGGTAATTGC 

Site
2 

Forward: 
CACCAACTTGGTGGGCATTTCATGTCGACTTATGTTCTAGGACTTT
ACCGTA 
Reverse: 
TACGGTAAAGTCCTAGAACATAAGTCGACATGAAATGCCCACCA
AGTTGGTG 

 

Site 
3 

Forward: 
TAACAAAACAAAACACAGAAACACAGTCGACATAAATCAAGAAG
CACAGGGAGATGATCCCATGG 
Reverse: 
CCATGGGATCATCTCCCTGTGCTTCTTGATTTATGTCGACTGTGTT
TCTGTGTTTTGTTTTGTTA 

Site 
4 

Forward: 
GAAGTGTTGAGAAACTTCCGTGTCGACTCTGTGGAAAGAACCGAG
GGT 
Reverse: 
ACCCTCGGTTCTTTCCACAGAGTCGACACGGAAGTTTCTCAACAC
TTC 

Site
5 

Forward: 
CCAGAGTCTCACGACCCTACGGTCGCCTTTTTATTGGTGCAAAATT
AAACC 
Reverse: 
GGTTTAATTTTGCACCAATAAAAAGGCGACCGTAGGGTCGTGAGA
CTCTGG 

ADAMT
S 

Site 
1 

Forward: 
ATCAAATTAATTTATTTTTTTGCCTGCCAAACATCCAATGGTCGAC
TTGTTTTGGTTACACAAACATTTTGATTTATACTATATG 
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19 Reverse: 
CATATAGTATAAATCAAAATGTTTGTGTAACCAAAACAAGTCGAC
CATTGGATGTTTGGCAGGCAAAAAAATAAATTAATTTGAT 

Site 
2 

Forward: 
GTTGTTTGTTAGGGCTATCTCTAAGTCGACCCTCTCTCCCCACCAA
TAACATTGAATTATC 
Reverse: 
ATAATTCAATGTTATTGGTGGGGAGAGAGGGTCGACTTAGAGATA
GCCCTAACAAACAACG 

FZD3  

Forward: 
GGATTTAGTCTAACTCACAGCTAAGGTAGAAAAGTACTCTGATGG
CAAGAGAATGTCCAGACTAATATTTTC 
Reverse: 
GAAAATATTAGTCTGGACATTCTCTTGCCATCAGAGTACTTTTCTA
CCTTAGCTGTGAGTTAGACTAAATCC 

FZD5 

Site 
1 

Forward: CGGCGTCGCGGCCCAAGCTTGGGAGGCGGTCGCAG 
Reverse: CTGCGACCGCCTCCCAAGCTTGGGCCGCGACGCCG 

Site
2 

Forward: 
GTGGACGTGGAGATGAAGCACAAGCTTGACCACAGGCCTATCCA
GAAGG 
Reverse: 
CCTTCTGGATAGGCCTGTGGTCAAGCTTGTGCTTCATCTCCACGTC
CAC 

Site 
3 

Forward: 
GCCCACCAGCAGGTAGAAGCTTAGCGGGCCCAGCACGAAGCC 
Reverse: 
GGCTTCGTGCTGGGCCCGCTAAGCTTCTACCTGCTGGTGGGC 

Site 
4 

Forward: 
CACATGAAGTACTTGAGCATGAAGCTTCAGTACTCGGGCTTGGCG
CGCG 
Reverse: 
CGCGCGCCAAGCCCGAGTACTGAAGCTTCATGCTCAAGTACTTCA
TGTG 

Site 
5 

Forward: 
CGGGAGGGGGCAACAAGCTTATGAAGGTAAACGGAAGTGACCTT
GGCA 
Reverse: 
TGCCAAGGTCACTTCCGTTTACCTTCATAAGCTTGTTGCCCCCTCC
CG 

FRAT2 
Site
1 

Forward: 
GCGTGGAGAAATGTATGCGCCAGAAGCTTTCCGTGGGGCATGAG
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AATTTCC 
Reverse: 
GGAAATTCTCATGCCCCACGGAAAGCTTCTGGCGCATACATTTCT
CCACGC 

Site
2 

Forward: 
CTTATTTTCTGGTGGAGGAGCTTAGTAAGTAAGCTTACAATTGCT
GTGCAAAGAAATTCCAGAGG-3' 
Reverse: 
CCTCTGGAATTTCTTTGCACAGCAATTGTAAGCTTACTTACTAAGC
TCCTCCACCAGAAAATAAG 

Site
3 

Forward: 
GGGAGACTCCAAGCGGTGGTAAAAGCTTAACAGGGCTCTTCTTGG
AGCAAG 
Reverse: 
CTTGCTCCAAGAAGAGCCCTGTTAAGCTTTTACCACCGCTTGGAG
TCTCCC 

CK2A2 

Site
1 

Forward: 
AGAGGAATATACAAGGGGCTTGGGGAAGAAAATAAGCTTCCCGG
AGCAAGTGTTG 
Reverse: 
CAACACTTGCTCCGGGAAGCTTATTTTCTTCCCCAAGCCCCTTGTA
TATTCCTCT 

Site
2 

Forward: 
TCTCCTCTAATCTATCAGTCTGAGAAGCTTTTCCTCTCTGCAAGGG
AACACATTTGC 
Reverse: 
GCAAATGTGTTCCCTTGCAGAGAGGAAAAGCTTCTCAGACTGATA
GATTAGAGGAGA 

Site
3 

Forward: 
GCGCCTGACTCGAGAAGCTTACCTTTCAGTCCACTGGGACCAATC
CA 
Reverse: 
TGGATTGGTCCCAGTGGACTGAAAGGTAAGCTTCTCGAGTCAGGC
GC 

Site
4 

Forward: 
CTGCTTCCATCCTTATCAACAGAAGCTTTGGGAGAACCTAAGTCA
TTTCCCTGAG 
Reverse: 
TCAGGGAAATGACTTAGGTTCTCCCAAAGCTTCTGTTGATAAGGA
TGGAAGCAG 

DVL3 
Site 
1 

Forward: 
GTGCGCTAACTGCTCGCAGAAGCTTGCGAGGGTGGGGTGCACC 
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Reverse: 
GGTGCACCCCACCCTCGCAAGCTTCTGCGAGCAGTTAGCGCAC 

Site
2 

Forward: 
CCCTTTTGTCTCTGGGACCAGACTTGTTAAGCTTACCCCTTACTCC
CCTCTGC 
Reverse: 
GCAGAGGGGAGTAAGGGGTAAGCTTAACAAGTCTGGTCCCAGAG
ACAAAAGGG 

Site
3 

Forward: 
GCACAGTGCCTGGCACACAGTAGAGTAAAGCTTCAATAAATGGT
AGTCGACC 
Reverse: 
GGTCGACTACCATTTATTGAAGCTTTACTCTACTGTGTGCCAGGCA
CTGTGC 

DICER  
Forward: ACGTGAGCTCGTGTGCAGTAGTGCCAGTCC 
Reverse: ACGTGAGCTCTGCAATCACAGGAACACAGG 

       Table 2: Primers for mutating the binding sites of the miR-29 family 
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Genes Accession number  Primer sequence (5’->3’) Probe  
Arginase-
1 

ENSMUST00000020161 Forward: 
CCTGAAGGAACTGAAAGGAAAG 
Reverse: 
TTGGCAGATATGCAGGGAGT 

2 

IL-6 ENSMUST00000026845 Forward: 
TGATGGATGCTACCAAACTGG 
Reverse: 
TTCATGTACTCCAGGTAGCTATGG 

6 

SAA3 ENAMUST00000006956 Forward: 
GCTCGGGGGAACTATGATG 
Reverse: 
AACTTCTGAACAGCCTCTCTGG 

26 

Axin2 

 

Forward: 
GCTGACGGATGATTCCATGT 
Reverse: 
ACTGCCCACACGATAAGGAG 

56 

SOX9 

ENST00000245479 

Forward: TACCCGCACTTGCACAAC 
Reverse: 
TCTCGCTCTCGTTCAGAAGTC 

61 

FZD3 

NM_017412 

Forward: 
ACAGCAAAGTGAGCAGCTACC 
Reverse: 
CTGTAACTGCAGGGCGTGTA 

75 

FZD5 NM_003468 Forward:ACCCCAGGGGAGAGAAACT  
Reverse: 
TGCAAATTGGGGGAAGTAAG 

83 

DVL3 NM_004423 Forward:CCCTGAGCACCATCACCT  
Reverse: 
GGATGGACAAGTGGAAGTCG 

17 

FRAT2  Forward: 
GTTCAAGGTCACGGTTTGCT 
Reverse: 
GAAAAGACTCCGGGGTGAGT 

14 

CK2A2 NM_001896 Forward: 
CCATGGAGCACCCATACTTC 
Reverse: 
CACAGCATTGTCTGCACAAG 

68 

Table 3: Primer sequence and the Universal Probe Library probe for gene of interest   
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 Genes Accession 
number  

Primer sequence (5’-3’) 

ADAMTS4 MM_005099 Forward: CAAGGTCCCATGTGCAACGT 
Reverse: CATCTGCCACCACCAGTGTCT 
Probe: FAM-CCGAAGAGCCAAGCGCTTTGCTTC-
TAMRA 

ADAMTS6 NM_014273 Forward: GGCTGAATGACACATCCACTGTT 
Reverse: CAAACCGTTCAATGCTCACTGA 
Probe: FAM-AAGCGCTTCCGCCTCTGCAACC-
TAMRA 

ADAMTS10 NM_030957 Forward: AGAGAACGGTGTGGCTAACCA 
Reverse: TCTCTCGCGCTCACACATTC 
Probe: FAM-
CAGTGCTCATCACACGCTATGACATCTGC-TAMRA 

ADAMTS14 AF366351 Forward: CGCTGGATGGGACTGAGTGT 
Reverse: CGCGAACATGACCCAAACTT 
Probe: FAM-CCCGGCAAGTGGTGCTTCAAAGGT-
TAMRA 

ADAMTS17 NM_139057 Forward: GGTCTCAATTTGGCCTTTACCAT 
Reverse: GACCTGCCAGCGGCAAGAT 
Probe: FAM-CCACAACTTGGGCATGAACCACGA-
TAMRA 

ADAMTS19 AJ311904 Forward: GGTGTAAGGCTGGAGAATGTACCA 
Reverse: TGCGCTCTCGACTGCTGAT 
Probe: FAM-CCTCAGCACCTGAACATCTGGCCG-
TAMRA 

MMP3 NM002422 Forward: TTCCGCCTGTCTCAAGATGATAT 
Reverse: AAAGGACAAAGCAGGATCACAGTT 
Probe: FAM-
TCAGTCCCTCTATGGACCTCCCCCTGAC-TAMRA 

Table 4: Primer pairs and probe for gene of interest 
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Genes Primer sequences (5’->3’) 
Pri-miR-29a/b1exon 
1 

Forward: 
TACTGAACTGTCACGGCAGA 
Reverse: 
TGTAGTTAGCGACCTCTGCT 

Pri-miR-
29a/b1Exon4 

Forward: 
TTGCACCCTCACGACATGCT 
Reverse: 
TGACTCTCAGCAGGCCTCA 

Pri-miR-29b2/c 
exon 1 

Forward: 
ACTTCTTTAGGGGTGTGCGTA 
Reverse: 
ACCCATCTCCCTAGCATTCT 

Pri-miR-29b2/c 
Exon6 

Forward: 
TCAGACTTGCCACCTGGACT 
Reverse: 
AGTTGGCATGAGGCTTCGA 

Pre-29a Forward: 
CTGATTTCTTTTGGTGTTCAG 
Reverse: 
AACCGATTTCAGATGGTGC 

Pre-29b1 Forward: 
CATATGGTGGTTTAGATTT 
Reverse: 
AACACTGATTTCAAATGGTG 

Pre-29b2 Forward: 
GCTGGTTTCACATGGTGGC 
Reverse: 
AACACTGATTTCAAATGGTG 

Pre-29c Forward: 
CGATTTCTCCTGGTGTTCA 
Reverse: 
ACCGATTTCAAATGGTGC 

Table 5: Primers for detecting the primary and the premature sequence of the miR-29 family 
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Names 24_DMM_R 24_DMM_L log2 Fold change  
Fold 
change  

CYP2E1 9.0 10.2 -1.2 2.3 
CES3 8.1 9.3 -1.2 2.3 
TMEM45B 7.9 8.6 -0.8 1.7 
CFD 12.9 13.6 -0.7 1.6 
SCD1 10.1 10.7 -0.6 1.6 
IGFBP6 8.9 9.6 -0.6 1.5 
CHAD 12.4 13.0 -0.6 1.5 
LOC100045005 9.6 10.2 -0.6 1.5 
TENS1 8.5 9.1 -0.6 1.5 
C130045I22RIK 8.2 8.8 -0.6 1.5 
LOC667337 9.4 9.9 -0.6 1.5 
CXCL1 9.1 7.3 1.9 3.6 
CCL7 9.2 7.5 1.8 3.4 
SAA3 8.9 7.3 1.6 3.1 
TIMP1 12.0 10.5 1.5 2.9 
SERPINA3N 11.2 9.7 1.5 2.8 
GP38 10.8 9.4 1.4 2.6 
MMP3 8.9 7.6 1.3 2.5 
ARG1 8.0 7.1 0.8 1.8 
CXCL14 9.4 8.8 0.7 1.6 
MB 11.9 11.2 0.7 1.6 
ANGPTL4 9.5 8.9 0.6 1.6 
MT1 13.5 12.9 0.6 1.6 
ANKRD23 9.5 8.9 0.6 1.5 
MS4A6D 9.9 9.3 0.6 1.5 
LOC386330 9.9 9.4 0.5 1.5 
LOC270589 8.9 8.4 0.5 1.5 
CCL9 11.2 10.6 0.5 1.5 
CKM 12.3 11.8 0.5 1.5 
LOC386144 9.6 9.1 0.5 1.4 

Table 6: List genes changed expression at day 1 in DMM model  
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GENES 7_DMM_R 7_DMM_L 
log2 Fold 
change 

Fold 
change  

MYL3 9.8 11.0 -1.2 2.3 

ATP1A2 9.0 10.1 -1.2 2.3 

NDRG2 10.0 11.2 -1.2 2.3 

CKMT2 11.7 12.8 -1.2 2.2 

ANKRD23 10.2 11.4 -1.2 2.2 

2310003M01RIK 9.5 10.6 -1.1 2.2 

ACTN2 11.1 12.2 -1.1 2.2 

2310042D19RIK 9.2 10.3 -1.1 2.2 

MYH2 11.0 12.1 -1.1 2.2 

PFKM 11.5 12.6 -1.1 2.2 

ABRA 8.6 9.7 -1.1 2.1 

COX7A1 11.4 12.5 -1.1 2.1 

ANKRD2 8.0 9.1 -1.1 2.1 

COX8B 11.8 12.8 -1.1 2.1 

MB 12.0 13.1 -1.1 2.1 

ENO3 12.9 14.0 -1.1 2.1 

DUSP26 8.1 9.2 -1.1 2.1 

RTN2 10.0 11.1 -1.0 2.1 

PKIA 10.4 11.5 -1.0 2.1 

TCAP 12.5 13.6 -1.0 2.1 

MYOZ1 10.4 11.5 -1.0 2.0 

MYOM1 9.9 10.9 -1.0 2.0 

ACTN3 11.3 12.3 -1.0 2.0 

2310002L09RIK 8.6 9.6 -1.0 2.0 

HRC 10.3 11.3 -1.0 2.0 

MYOM2 9.1 10.1 -1.0 2.0 

CKM 13.0 14.0 -1.0 2.0 

CSRP3 8.5 9.5 -1.0 2.0 

TMEM38A 9.3 10.3 -1.0 2.0 

1110012N22RIK 9.2 10.2 -1.0 2.0 

TPM2 11.3 12.3 -1.0 2.0 

RYR1 10.1 11.1 -1.0 2.0 

MLF1 9.5 10.5 -1.0 2.0 

TTN 9.7 10.7 -1.0 2.0 

TMOD4 10.7 11.7 -1.0 2.0 

DYSFIP1 8.7 9.7 -1.0 2.0 

NRAP 9.1 10.1 -1.0 2.0 

CMYA5 10.8 11.8 -1.0 2.0 

SMTNL2 8.5 9.5 -1.0 1.9 

MYLK2 9.2 10.2 -1.0 1.9 
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MYL2 9.3 10.3 -0.9 1.9 

LOC669660 8.6 9.6 -0.9 1.9 

KBTBD10 9.8 10.7 -0.9 1.9 

ASB2 10.6 11.5 -0.9 1.9 

A530098C11RIK 8.7 9.6 -0.9 1.9 

F730003H07RIK 9.3 10.3 -0.9 1.9 

ZMYND17 8.5 9.4 -0.9 1.9 

CPT1B 8.3 9.2 -0.9 1.9 

2310079P10RIK 8.5 9.4 -0.9 1.9 

EEF1A2 10.7 11.6 -0.9 1.9 

YIPF7 8.5 9.4 -0.9 1.9 

SCL0003151.1_137
4 8.9 9.8 -0.9 1.9 

INMT 7.6 8.5 -0.9 1.9 

CES3 8.8 9.7 -0.9 1.9 

PYGM 9.2 10.1 -0.9 1.8 

MYBPC2 11.6 12.5 -0.9 1.8 

8030451F13RIK 8.6 9.5 -0.9 1.8 

FABP3 10.6 11.4 -0.9 1.8 

NEURL 9.5 10.4 -0.9 1.8 

PDLIM3 10.4 11.3 -0.9 1.8 

SYPL2 9.6 10.5 -0.9 1.8 

4833419K08RIK 9.0 9.9 -0.9 1.8 

AMPD1 11.1 12.0 -0.8 1.8 

CACNA1S 8.6 9.5 -0.8 1.8 

SCL0002069.1_48 8.1 9.0 -0.8 1.8 

C130073O12RIK 9.0 9.9 -0.8 1.8 

GM1157 7.8 8.6 -0.8 1.8 

MYH1 9.2 10.1 -0.8 1.8 

SLC25A37 11.8 12.6 -0.8 1.8 

LOC638935 8.1 9.0 -0.8 1.8 

LOC386360 10.4 11.2 -0.8 1.8 

BC030476 9.0 9.8 -0.8 1.8 

MYH4 10.0 10.8 -0.8 1.7 

SCL000959.1_2 13.3 14.1 -0.8 1.7 

RPL3L 12.2 13.0 -0.8 1.7 

COX6A2 12.7 13.5 -0.8 1.7 

MTDNA_ND4L 8.7 9.5 -0.8 1.7 

TNNT3 13.1 13.9 -0.8 1.7 

AK1 9.8 10.6 -0.8 1.7 

DES 11.1 11.9 -0.8 1.7 

A2BP1 8.4 9.2 -0.8 1.7 

KY 9.1 9.8 -0.8 1.7 
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UNC45B 8.4 9.2 -0.8 1.7 

AI595366 8.7 9.4 -0.8 1.7 

D830037I21RIK 7.3 8.1 -0.8 1.7 

PGM2 12.0 12.8 -0.8 1.7 

4933421G18RIK 9.7 10.4 -0.8 1.7 

MYF6 8.3 9.0 -0.8 1.7 

SCN4B 8.3 9.1 -0.8 1.7 

ALPK3 8.5 9.3 -0.8 1.7 

PGAM2 12.3 13.1 -0.8 1.7 

ITGA2B 8.9 9.7 -0.8 1.7 

CRYAB 9.8 10.6 -0.7 1.7 

LOC386144 9.1 9.8 -0.7 1.7 

LOC100047934 10.8 11.6 -0.7 1.7 

SRL 9.3 10.0 -0.7 1.7 

PHKG1 8.8 9.5 -0.7 1.7 

ATP1B1 9.5 10.2 -0.7 1.7 

HSPB7 8.2 8.9 -0.7 1.7 

TNNC1 8.3 9.0 -0.7 1.6 

CHCHD10 12.4 13.1 -0.7 1.6 

GMPR 9.0 9.7 -0.7 1.6 

S3-12 9.3 10.0 -0.7 1.6 

9930004G02RIK 9.4 10.1 -0.7 1.6 

TCEA3 10.3 11.0 -0.7 1.6 

PPP1R3C 10.7 11.4 -0.7 1.6 

TRIM54 9.0 9.7 -0.7 1.6 

FBP2 8.3 9.0 -0.7 1.6 

COQ10A 8.8 9.5 -0.7 1.6 

TXLNB 7.8 8.5 -0.7 1.6 

XIRP2 8.4 9.1 -0.7 1.6 

FSD2 8.6 9.3 -0.7 1.6 

PDE4DIP 9.9 10.6 -0.7 1.6 

NDUFC1 10.9 11.6 -0.7 1.6 

MSCP 11.9 12.6 -0.7 1.6 

EG433229 9.2 9.9 -0.7 1.6 

SMARCD3 8.2 8.9 -0.7 1.6 

SCL0003073.1_164 8.2 8.8 -0.7 1.6 

HHATL 8.6 9.3 -0.7 1.6 

DNAJC7 8.9 9.6 -0.7 1.6 

USP13 7.9 8.6 -0.7 1.6 

ADSSL1 11.5 12.2 -0.7 1.6 

ACADM 11.2 11.9 -0.7 1.6 

MT-ATP6 11.3 12.0 -0.7 1.6 

6430573H23RIK 8.2 8.9 -0.7 1.6 

TUBA8 8.6 9.3 -0.7 1.6 
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DEDD2 9.8 10.4 -0.7 1.6 

LOC100041835 12.3 12.9 -0.7 1.6 

1300013J15RIK 7.9 8.6 -0.7 1.6 

MACROD1 9.1 9.8 -0.7 1.6 

ALDOA 13.2 13.9 -0.7 1.6 

LOC667034 8.5 9.2 -0.7 1.6 

MDH2 10.0 10.6 -0.7 1.6 

PDK4 9.3 10.0 -0.7 1.6 

ART5 7.7 8.4 -0.7 1.6 

JSRP1 7.9 8.6 -0.7 1.6 

PPM1L 8.4 9.0 -0.7 1.6 

MFN2 10.1 10.8 -0.7 1.6 

RILPL1 8.8 9.4 -0.6 1.6 

EHBP1L1 8.8 9.4 -0.6 1.6 

NDUFA5 10.3 10.9 -0.6 1.6 

MTDNA_ND2 11.5 12.2 -0.6 1.6 

MTDNA_ND5 11.5 12.2 -0.6 1.6 

TRIM72 9.7 10.4 -0.6 1.6 

B930008G03RIK 10.0 10.7 -0.6 1.6 

2310040G24RIK 7.9 8.5 -0.6 1.6 

ALAD 12.0 12.7 -0.6 1.6 

SGCA 8.4 9.0 -0.6 1.5 

LOC385959 8.3 8.9 -0.6 1.5 

LOC547380 8.3 8.9 -0.6 1.5 

NDUFS7 11.8 12.4 -0.6 1.5 

1300017J02RIK 8.9 9.5 -0.6 1.5 

LOC381792 7.7 8.3 -0.6 1.5 

FLNC 8.5 9.1 -0.6 1.5 

DHRS7C 8.1 8.7 -0.6 1.5 

ART1 8.0 8.6 -0.6 1.5 

EG245190 8.8 9.5 -0.6 1.5 

A530020A01RIK 7.9 8.5 -0.6 1.5 

PRKAA2 7.8 8.4 -0.6 1.5 

VLDLR 8.7 9.3 -0.6 1.5 

1110002E22RIK 8.1 8.7 -0.6 1.5 

NDUFB9 7.8 8.4 -0.6 1.5 

MYO18B 8.1 8.7 -0.6 1.5 

ITGB1BP3 8.3 8.9 -0.6 1.5 

PHLDA3 9.4 10.0 -0.6 1.5 

GPT2 8.5 9.1 -0.6 1.5 

LOC386256 7.9 8.5 -0.6 1.5 

TSC22D3 9.4 10.0 -0.6 1.5 

NDUFA4 12.4 13.0 -0.6 1.5 
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4CYTL1 9.4 10.0 -0.6 1.5 

PTP4A3 9.0 9.6 -0.6 1.5 

FBXO32 7.9 8.5 -0.6 1.5 

CNKSR1 7.7 8.3 -0.6 1.5 

ZXDA 9.0 9.6 -0.6 1.5 

LOC100044934 8.4 9.0 -0.6 1.5 

KBTBD5 7.8 8.4 -0.6 1.5 

SRR 11.0 11.6 -0.6 1.5 

CACNG1 8.1 8.7 -0.6 1.5 

SCL0002124.1_39 7.7 8.3 -0.6 1.5 

DEB1 11.0 11.6 -0.6 1.5 

LMOD3 7.9 8.5 -0.6 1.5 

9830134C10RIK 8.2 8.8 -0.6 1.5 

TYKI 9.3 9.9 -0.6 1.5 

UFSP1 8.6 9.2 -0.6 1.5 

SMPX 7.7 8.2 -0.6 1.5 

LOC100047214 9.1 9.7 -0.6 1.5 

VGLL2 7.6 8.2 -0.6 1.5 

CAR3 10.3 10.9 -0.6 1.5 

SLC25A12 9.1 9.7 -0.6 1.5 

EG622339 13.4 14.0 -0.6 1.5 

CIB2 9.4 9.9 -0.6 1.5 

A630006E02RIK 9.5 10.1 -0.6 1.5 

UGP2 9.4 10.0 -0.6 1.5 

4933428A15RIK 8.6 9.2 -0.6 1.5 

CHKA 9.4 10.0 -0.6 1.5 

SNTA1 8.5 9.0 -0.6 1.5 

SLC6A9 9.3 9.9 -0.6 1.5 

2410076I21RIK 8.4 8.9 -0.6 1.5 

TPI1 12.1 12.6 -0.6 1.5 

SMTNL1 7.9 8.4 -0.6 1.5 

TMOD1 8.7 9.3 -0.6 1.5 

TSPAN8 8.5 9.1 -0.6 1.5 

MTDNA_COXII 12.8 13.4 -0.6 1.5 

NDUFS2 8.7 9.3 -0.6 1.5 

SLC2A4 8.1 8.7 -0.6 1.5 

MYOT 7.8 8.4 -0.6 1.5 

A230005G17RIK 8.3 8.9 -0.6 1.5 

TNNT1 8.9 9.4 -0.6 1.5 

FHL1 11.6 12.1 -0.6 1.5 

SPNB1 9.5 10.0 -0.6 1.5 

5830496L11RIK 9.1 9.6 -0.6 1.5 

ENSMUSG0000005
4212 9.5 10.1 -0.6 1.5 
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5430434G16RIK 8.9 9.4 -0.6 1.5 

IDH3A 8.9 9.4 -0.6 1.5 

SLC38A5 11.1 11.7 -0.6 1.5 

LDB3 8.1 8.6 -0.6 1.5 

E430039I23RIK 11.1 11.6 -0.6 1.5 

KEL 10.5 11.0 -0.6 1.5 

2310039E09RIK 8.2 8.7 -0.6 1.5 

D530007E13RIK 8.9 9.4 -0.6 1.5 

1110018J23RIK 7.9 8.5 -0.6 1.5 

TMEM45B 8.2 8.7 -0.6 1.5 

BC022224 10.2 10.7 -0.6 1.5 

RBM38 9.9 10.5 -0.6 1.5 

2810484G07RIK 10.9 11.5 -0.5 1.5 

ACO2 10.8 11.4 -0.5 1.5 

1700021F05RIK 10.3 10.8 -0.5 1.5 

VEGFB 9.8 10.4 -0.5 1.5 

STXBP3 8.2 8.7 -0.5 1.5 

AGL 9.3 9.8 -0.5 1.5 

TAL1 9.3 9.8 -0.5 1.5 

MYOZ2 7.7 8.2 -0.5 1.5 

NCTC1 7.8 8.3 -0.5 1.5 

ABCA7 9.4 10.0 -0.5 1.5 

SAR1B 10.3 10.9 -0.5 1.5 

3632431M01RIK 8.6 9.1 -0.5 1.5 

FCHO1 10.0 10.5 -0.5 1.5 

P2RY1 8.8 9.3 -0.5 1.5 

B230387C07RIK 9.1 9.7 -0.5 1.5 

TRIM63 7.5 8.0 -0.5 1.5 

1810020D17RIK 9.5 10.0 -0.5 1.4 

FYCO1 8.1 8.6 -0.5 1.4 

RABGEF1 10.3 10.8 -0.5 1.4 

ITGB1BP2 8.2 8.8 -0.5 1.4 

IFT140 9.1 9.6 -0.5 1.4 

SAMD11 8.2 8.7 -0.5 1.4 

ABCB10 8.2 8.8 -0.5 1.4 

LOC100046690 9.0 9.5 -0.5 1.4 

PFN2 8.9 9.5 -0.5 1.4 

C1QTNF3 11.0 7.5 3.5 11.3 

LRRC15 10.6 8.4 2.2 4.7 

ANGPTL1 9.7 7.6 2.1 4.4 

MFAP5 10.2 8.1 2.1 4.4 

THBS2 11.8 9.7 2.1 4.3 

FSTL1 11.1 9.0 2.0 4.1 
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COL6A2 10.4 8.4 2.0 4.1 

MMP2 13.7 11.7 2.0 3.9 

COL6A1 12.4 10.4 2.0 3.9 

CAPN6 9.7 7.7 2.0 3.9 

COL3A1 9.8 7.9 1.9 3.8 

MMP3 9.3 7.4 1.9 3.8 

TIMP1 11.8 9.9 1.9 3.8 

COL5A1 12.6 10.7 1.9 3.7 

CTHRC1 9.5 7.6 1.9 3.7 

AEBP1 10.9 9.1 1.9 3.6 

COL18A1 9.8 8.0 1.8 3.5 

DKK3 10.2 8.5 1.7 3.4 

COL14A1 9.3 7.6 1.7 3.3 

E430002G05RIK 9.9 8.1 1.7 3.3 

PCOLCE 10.9 9.2 1.7 3.3 

LUM 12.2 10.5 1.7 3.3 

DPT 10.3 8.6 1.7 3.2 

MMP14 11.9 10.2 1.7 3.2 

GP38 11.0 9.3 1.7 3.2 

FCRLS 9.9 8.2 1.6 3.1 

MFAP4 9.2 7.6 1.6 3.1 

CSRP2 11.0 9.4 1.6 3.1 

LOX 11.4 9.8 1.6 3.1 

SPON2 11.2 9.6 1.6 3.0 

ITM2A 9.8 8.2 1.6 3.0 

LY6A 12.8 11.3 1.6 3.0 

DDAH1 9.3 7.7 1.6 3.0 

MUP2 9.7 8.2 1.6 3.0 

GPNMB 9.5 8.0 1.6 3.0 

CD248 9.9 8.3 1.5 2.9 

ANTXR1 9.9 8.3 1.5 2.9 

6330406I15RIK 9.7 8.1 1.5 2.9 

LOXL1 10.8 9.2 1.5 2.9 

MUP1 9.2 7.7 1.5 2.9 

NBL1 10.3 8.8 1.5 2.9 

MFAP2 9.2 7.7 1.5 2.8 

CCL21A 10.6 9.1 1.5 2.8 

FN1 10.4 8.9 1.5 2.8 

MEST 8.8 7.3 1.5 2.8 

MRGPRF 9.5 8.0 1.5 2.8 

CCL21C 10.0 8.5 1.5 2.8 

SAA3 8.7 7.2 1.5 2.8 

LOC100048554 9.2 7.7 1.5 2.8 

THY1 10.0 8.5 1.5 2.7 
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HTRA1 10.5 9.1 1.5 2.7 

OSR2 9.3 7.8 1.5 2.7 

LOC100041504 9.9 8.4 1.4 2.7 

GPX7 9.8 8.4 1.4 2.7 

KDELR3 10.4 8.9 1.4 2.7 

H19 11.4 10.0 1.4 2.7 

PDLIM4 10.3 8.9 1.4 2.6 

C1QTNF2 9.3 7.9 1.4 2.6 

COL6A3 11.3 9.9 1.4 2.6 

FBLN2 9.4 8.0 1.4 2.6 

MXRA8 10.5 9.1 1.4 2.6 

SCL0001849.1_227
3 9.0 7.6 1.4 2.6 

VKORC1 11.1 9.7 1.3 2.5 

PPIC 12.3 11.0 1.3 2.5 

ITGBL1 9.6 8.3 1.3 2.5 

EMP1 12.7 11.4 1.3 2.5 

KNSL5 11.8 10.5 1.3 2.5 

SERPINH1 12.8 11.5 1.3 2.5 

2310016C16RIK 10.3 9.0 1.3 2.5 

WISP2 10.4 9.1 1.3 2.5 

MAGED1 11.6 10.3 1.3 2.5 

COL16A1 11.6 10.3 1.3 2.5 

LEPREL2 9.2 7.9 1.3 2.4 

GPX8 10.7 9.4 1.3 2.4 

BGN 14.3 13.0 1.3 2.4 

SRPX2 10.2 8.9 1.3 2.4 

ITGA11 9.9 8.6 1.3 2.4 

CCDC80 11.0 9.7 1.3 2.4 

CLEC11A 10.4 9.2 1.3 2.4 

SMOC1 9.7 8.5 1.2 2.4 

OGN 10.3 9.0 1.2 2.4 

CRTAP 10.1 8.9 1.2 2.4 

VIM 11.1 9.8 1.2 2.3 

COL4A2 11.3 10.0 1.2 2.3 

FKBP11 10.0 8.7 1.2 2.3 

CD276 9.3 8.1 1.2 2.3 

PRKCDBP 10.1 8.9 1.2 2.3 

CCL7 8.4 7.2 1.2 2.3 

NFATC4 9.4 8.1 1.2 2.3 

ECM1 10.8 9.6 1.2 2.3 

COL15A1 9.4 8.2 1.2 2.3 

2610027C15RIK 10.0 8.8 1.2 2.3 
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PRELP 13.1 11.9 1.2 2.3 

TIMP2 12.6 11.4 1.2 2.3 

GRB10 9.4 8.2 1.2 2.3 

FBN1 9.6 8.4 1.2 2.3 

COPZ2 10.0 8.8 1.2 2.3 

SCARF2 12.0 10.8 1.2 2.3 

ENPP1 9.6 8.4 1.2 2.3 

COL4A1 11.7 10.5 1.2 2.3 

IGF1 9.6 8.4 1.2 2.2 

SULF2 9.2 8.0 1.2 2.2 

SERPINA3N 10.2 9.0 1.2 2.2 

FKBP9 11.1 9.9 1.2 2.2 

RNASE4 9.8 8.6 1.2 2.2 

COMP 12.8 11.6 1.2 2.2 

MS4A6D 9.8 8.6 1.2 2.2 

CPXM1 9.3 8.2 1.1 2.2 

DAB2 9.7 8.5 1.1 2.2 

EFEMP2 10.0 8.9 1.1 2.2 

LOC100047053 8.4 7.3 1.1 2.2 

COL8A1 9.5 8.4 1.1 2.2 

SERPING1 11.9 10.7 1.1 2.2 

ANGPTL4 10.2 9.1 1.1 2.2 

THBS3 8.7 7.6 1.1 2.1 

HSPG2 10.5 9.4 1.1 2.1 

PTN 8.9 7.8 1.1 2.1 

GM22 9.3 8.2 1.1 2.1 

NNMT 9.6 8.6 1.1 2.1 

LGMN 10.9 9.8 1.1 2.1 

4930533K18RIK 9.8 8.7 1.1 2.1 

VASN 10.9 9.8 1.1 2.1 

ELN 8.5 7.5 1.1 2.1 

FMOD 10.2 9.1 1.1 2.1 

LOC100046883 10.8 9.8 1.1 2.1 

CLEC4N 8.6 7.6 1.1 2.1 

NDN 10.0 8.9 1.1 2.1 

ACAN 9.7 8.6 1.1 2.1 

OLFML1 8.8 7.8 1.1 2.1 

C1QTNF1 8.7 7.6 1.1 2.1 

SOCS3 9.3 8.3 1.0 2.1 

1500015O10RIK 11.9 10.8 1.0 2.0 

FKBP10 9.7 8.7 1.0 2.0 

TREM2 9.4 8.4 1.0 2.0 

MGP 13.5 12.5 1.0 2.0 

COL10A1 10.7 9.6 1.0 2.0 



 

 

263 

 

ADAMTS12 8.7 7.7 1.0 2.0 

CRLF1 8.5 7.5 1.0 2.0 

HTRA3 9.6 8.6 1.0 2.0 

P4HA2 9.0 8.0 1.0 2.0 

FSCN1 9.0 8.1 1.0 2.0 

NUPR1 12.0 11.0 1.0 2.0 

SCARA3 11.9 10.9 1.0 2.0 

SYNPO 10.1 9.1 1.0 2.0 

NID2 8.8 7.8 1.0 2.0 

TSPAN6 8.9 7.9 1.0 2.0 

LGALS1 12.5 11.5 1.0 2.0 

IGFBP7 10.5 9.5 1.0 2.0 

TMEM119 9.7 8.7 1.0 2.0 

COL2A1 13.6 12.6 1.0 2.0 

MS4A7 8.8 7.8 1.0 2.0 

ANXA5 12.4 11.4 1.0 2.0 

RAMP2 10.0 9.1 1.0 2.0 

MMP23 9.5 8.5 1.0 1.9 

SLC1A4 8.5 7.6 1.0 1.9 

LOC100047856 9.1 8.2 1.0 1.9 

AHNAK2 9.1 8.2 1.0 1.9 

CDKN1C 11.0 10.0 1.0 1.9 

APOE 11.0 10.0 1.0 1.9 

SPARC 13.1 12.1 1.0 1.9 

BC020108 8.5 7.5 0.9 1.9 

C1QB 11.5 10.5 0.9 1.9 

FNDC3B 10.2 9.3 0.9 1.9 

IGSF10 8.8 7.9 0.9 1.9 

COL12A1 9.1 8.2 0.9 1.9 

9030024J15RIK 9.7 8.7 0.9 1.9 

1110036O03RIK 8.9 8.0 0.9 1.9 

LRIG3 9.4 8.5 0.9 1.9 

FAM129B 10.2 9.3 0.9 1.9 

EDNRA 9.5 8.5 0.9 1.9 

IL33 8.3 7.4 0.9 1.9 

IGFBP6 10.0 9.0 0.9 1.9 

LGALS3BP 10.8 9.9 0.9 1.9 

OLFML3 11.5 10.6 0.9 1.9 

COL1A2 11.1 10.2 0.9 1.9 

GPR176 8.4 7.5 0.9 1.9 

CERCAM 9.9 9.0 0.9 1.9 

CNRIP1 9.7 8.8 0.9 1.9 

GALNTL1 8.5 7.7 0.9 1.9 
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KERA 8.2 7.3 0.9 1.9 

PRG4 12.7 11.8 0.9 1.9 

IGKV3-
2_X16954_IG_KAP
PA_VARIABLE_3-
2_18 9.0 8.1 0.9 1.9 

LOC676136 9.5 8.6 0.9 1.9 

ABI3BP 8.6 7.7 0.9 1.9 

PKD2 8.9 8.0 0.9 1.8 

COL1A1 13.2 12.3 0.9 1.8 

SCX 8.6 7.7 0.9 1.8 

IGF2 10.3 9.4 0.9 1.8 

SFRP1 8.3 7.4 0.9 1.8 

KCTD17 9.1 8.2 0.9 1.8 

IGFBP4 12.0 11.2 0.9 1.8 

MFGE8 12.3 11.5 0.9 1.8 

EFS 9.2 8.4 0.9 1.8 

BC064033 8.4 7.6 0.9 1.8 

LOC243431 9.8 9.0 0.9 1.8 

MAGED2 11.1 10.2 0.9 1.8 

DPYSL3 9.3 8.4 0.9 1.8 

ANPEP 8.4 7.6 0.9 1.8 

A430110N23RIK 8.2 7.4 0.9 1.8 

CXCL1 8.1 7.2 0.8 1.8 

LTBP3 9.0 8.2 0.8 1.8 

LRRC17 8.3 7.4 0.8 1.8 

LOC100047583 9.3 8.5 0.8 1.8 

UTS2R 8.3 7.4 0.8 1.8 

TNN 8.3 7.5 0.8 1.8 

CALU 10.0 9.2 0.8 1.8 

BMP1 9.9 9.1 0.8 1.8 

SCARA5 9.7 8.9 0.8 1.8 

TXNDC5 10.7 9.9 0.8 1.8 

SDC2 10.4 9.6 0.8 1.8 

IFITM2 12.1 11.3 0.8 1.8 

PRDX4 11.0 10.1 0.8 1.8 

DLK1 8.2 7.3 0.8 1.8 

0610007N19RIK 9.4 8.6 0.8 1.8 

TPST1 9.9 9.0 0.8 1.8 

NT5DC2 9.1 8.3 0.8 1.8 

SULF1 8.9 8.1 0.8 1.8 

HTRA4 9.0 8.2 0.8 1.8 

AKR1B8 8.3 7.4 0.8 1.8 

SRPX 8.8 8.0 0.8 1.8 
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MARCKS 11.2 10.4 0.8 1.8 

PARVA 9.6 8.8 0.8 1.7 

TGFB3 8.8 8.0 0.8 1.7 

LOC232060 8.7 7.9 0.8 1.7 

WISP1 9.5 8.7 0.8 1.7 

LXN 10.0 9.2 0.8 1.7 

D14ERTD449E 9.2 8.5 0.8 1.7 

MDK 8.6 7.8 0.8 1.7 

TGFBI 11.3 10.5 0.8 1.7 

SH3PXD2B 9.4 8.6 0.8 1.7 

EMP2 9.0 8.2 0.8 1.7 

IGHG 9.7 9.0 0.8 1.7 

RIN2 9.1 8.3 0.8 1.7 

1700023M03RIK 9.9 9.2 0.8 1.7 

WBP5 10.9 10.1 0.8 1.7 

CD68 10.3 9.5 0.8 1.7 

1200009O22RIK 8.6 7.8 0.8 1.7 

IL1RL1 8.1 7.3 0.8 1.7 

ADAMTS2 11.0 10.2 0.8 1.7 

A730054J21RIK 8.3 7.5 0.8 1.7 

4732462B05RIK 10.0 9.3 0.8 1.7 

LBP 9.9 9.1 0.8 1.7 

IL13RA1 8.7 7.9 0.8 1.7 

FER1L3 8.4 7.6 0.8 1.7 

C4A 10.0 9.2 0.8 1.7 

SOX9 9.8 9.0 0.8 1.7 

1810055G02RIK 10.2 9.4 0.8 1.7 

PANX3 10.7 10.0 0.8 1.7 

FKBP14 8.5 7.7 0.8 1.7 

SERPINF1 12.8 12.1 0.8 1.7 

TUBB6 9.9 9.2 0.8 1.7 

C1QC 10.8 10.0 0.8 1.7 

OLFML2B 11.5 10.7 0.8 1.7 

TCEAL8 9.9 9.2 0.8 1.7 

PDGFRA 9.4 8.6 0.8 1.7 

NOX4 8.3 7.5 0.8 1.7 

SFRP2 8.1 7.3 0.7 1.7 

6720469N11RIK 10.1 9.3 0.7 1.7 

LOC380799 8.7 8.0 0.7 1.7 

CSTB 12.6 11.8 0.7 1.7 

CYB561 8.7 8.0 0.7 1.7 

LHFPL2 9.7 9.0 0.7 1.7 

LOC98434 10.3 9.5 0.7 1.7 
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CD14 8.5 7.7 0.7 1.7 

PMP22 9.4 8.7 0.7 1.7 

RBP1 8.6 7.8 0.7 1.7 

2310008M10RIK 11.4 10.6 0.7 1.7 

MT1 13.4 12.7 0.7 1.7 

EXT1 9.9 9.2 0.7 1.7 

LIMA1 9.0 8.3 0.7 1.7 

MATN4 8.3 7.5 0.7 1.7 

EDG5 9.3 8.6 0.7 1.7 

SPSB1 8.7 8.0 0.7 1.7 

ARMCX2 9.4 8.7 0.7 1.7 

SVEP1 8.3 7.6 0.7 1.7 

HMGN3 10.5 9.8 0.7 1.6 

GPR23 8.7 8.0 0.7 1.6 

FOLR2 8.6 7.8 0.7 1.6 

UBE2E2 9.3 8.6 0.7 1.6 

RHOJ 9.4 8.7 0.7 1.6 

PROS1 9.9 9.2 0.7 1.6 

STAB1 9.6 8.9 0.7 1.6 

LOC637227 9.6 8.8 0.7 1.6 

MYADM 10.8 10.1 0.7 1.6 

ANXA8 8.4 7.7 0.7 1.6 

PLOD1 8.3 7.6 0.7 1.6 

MEOX2 8.9 8.2 0.7 1.6 

LOC381629 10.7 10.0 0.7 1.6 

LOC384413 9.4 8.7 0.7 1.6 

TAX1BP3 10.5 9.8 0.7 1.6 

6330404C01RIK 9.3 8.6 0.7 1.6 

FRMD6 9.8 9.1 0.7 1.6 

COL9A2 10.6 9.9 0.7 1.6 

NT5E 9.0 8.3 0.7 1.6 

MYO1E 9.0 8.3 0.7 1.6 

LMAN1 9.5 8.8 0.7 1.6 

GRN 12.1 11.4 0.7 1.6 

LOC669053 9.3 8.6 0.7 1.6 

CUL7 9.5 8.8 0.7 1.6 

P4HB 13.1 12.4 0.7 1.6 

TWSG1 10.1 9.4 0.7 1.6 

D4BWG0951E 8.3 7.7 0.7 1.6 

BICC1 9.6 8.9 0.7 1.6 

WTIP 9.3 8.6 0.7 1.6 

IL11RA1 11.3 10.7 0.7 1.6 

LOC636944 9.9 9.3 0.7 1.6 

PLVAP 10.2 9.5 0.7 1.6 
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EGFR 8.5 7.8 0.7 1.6 

RFTN2 8.6 8.0 0.7 1.6 

TMED3 9.9 9.2 0.7 1.6 

TUBB2B 8.7 8.1 0.7 1.6 

C130021I20 7.9 7.3 0.7 1.6 

CXCL16 8.2 7.5 0.7 1.6 

CDON 8.2 7.6 0.7 1.6 

SDC3 11.1 10.5 0.7 1.6 

5430435G22RIK 8.4 7.8 0.7 1.6 

ADRA2A 8.6 7.9 0.7 1.6 

C1QA 9.3 8.7 0.7 1.6 

PRRC1 9.8 9.2 0.7 1.6 

TPBG 8.3 7.7 0.6 1.6 

BOK 8.5 7.8 0.6 1.6 

NID1 8.8 8.1 0.6 1.6 

FXYD6 11.3 10.7 0.6 1.6 

TGFBR2 9.8 9.2 0.6 1.6 

LAMC1 9.2 8.5 0.6 1.6 

ZFP521 8.4 7.7 0.6 1.6 

GPR125 9.4 8.8 0.6 1.6 

COL5A2 8.0 7.4 0.6 1.6 

PAPSS2 9.2 8.6 0.6 1.6 

BDH2 9.5 8.9 0.6 1.6 

MIA1 10.1 9.4 0.6 1.6 

SOCS2 9.9 9.2 0.6 1.6 

GLT8D1 9.4 8.8 0.6 1.6 

PLOD2 8.5 7.9 0.6 1.6 

FSTL 8.0 7.4 0.6 1.6 

IGFBP3 8.1 7.5 0.6 1.5 

2410146L05RIK 8.0 7.3 0.6 1.5 

GSTM2 10.2 9.5 0.6 1.5 

ISLR 8.0 7.4 0.6 1.5 

PPIB 11.3 10.7 0.6 1.5 

PDGFRB 8.6 7.9 0.6 1.5 

DLG5 9.5 8.9 0.6 1.5 

CAV1 10.4 9.8 0.6 1.5 

CCL4 8.2 7.6 0.6 1.5 

TMEM176B 10.1 9.4 0.6 1.5 

RAB34 8.4 7.7 0.6 1.5 

CDKN1A 8.7 8.1 0.6 1.5 

CYB5R3 9.6 9.0 0.6 1.5 

SEPN1 10.2 9.6 0.6 1.5 

LOC630253 8.2 7.6 0.6 1.5 
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PRRX2 8.1 7.5 0.6 1.5 

RHOC 8.4 7.8 0.6 1.5 

PRSS35 8.8 8.2 0.6 1.5 

GPRC5B 8.4 7.8 0.6 1.5 

PDIA5 8.1 7.5 0.6 1.5 

PMEPA1 8.2 7.6 0.6 1.5 

ADAMTS4 7.9 7.3 0.6 1.5 

RRBP1 9.3 8.7 0.6 1.5 

FAM171B 8.4 7.8 0.6 1.5 

SERTAD4 8.1 7.5 0.6 1.5 

CRABP2 7.8 7.2 0.6 1.5 

5430433G21RIK 9.4 8.9 0.6 1.5 

RAB11FIP5 9.3 8.7 0.6 1.5 

4933421H10RIK 8.7 8.1 0.6 1.5 

DCN 12.3 11.7 0.6 1.5 

2610009E16RIK 9.1 8.5 0.6 1.5 

3110079O15RIK 12.8 12.2 0.6 1.5 

VAT1 9.6 9.1 0.6 1.5 

COL8A2 8.2 7.6 0.6 1.5 

LOC100047162 9.9 9.4 0.6 1.5 

HOXC6 9.1 8.5 0.6 1.5 

ZFYVE21 10.3 9.7 0.6 1.5 

BGLAP-RS1 13.8 13.2 0.6 1.5 

9430028L06RIK 7.9 7.3 0.6 1.5 

ACTA2 10.3 9.7 0.6 1.5 

GLT25D1 10.7 10.1 0.6 1.5 

RCN3 8.3 7.7 0.6 1.5 

CLEC3B 8.2 7.6 0.6 1.5 

GMDS 8.8 8.2 0.6 1.5 

BMPER 8.3 7.7 0.6 1.5 

2300002D11RIK 8.0 7.4 0.6 1.5 

PLAT 8.0 7.4 0.6 1.5 

TWIST1 8.4 7.8 0.6 1.5 

6230400G14RIK 8.8 8.2 0.6 1.5 

PLOD3 10.2 9.7 0.6 1.5 

CAPG 10.0 9.5 0.6 1.5 

LOC626583 8.1 7.5 0.6 1.5 

ALG14 8.9 8.4 0.6 1.5 

MMP12 7.8 7.2 0.6 1.5 

TNXB 8.5 7.9 0.6 1.5 

TUBA1A 9.4 8.9 0.6 1.5 

CD81 12.8 12.2 0.6 1.5 

TMEM86A 9.9 9.4 0.6 1.5 

C1QTNF5 7.9 7.3 0.6 1.5 
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ERGIC1 9.4 8.8 0.6 1.5 

5031439A09RIK 8.9 8.4 0.6 1.5 

S100A10 9.2 8.6 0.6 1.5 

CBR2 9.1 8.6 0.6 1.5 

FBLN7 7.8 7.3 0.6 1.5 

B9D1 8.3 7.7 0.6 1.5 

ALG5 9.6 9.1 0.6 1.5 

RRAS 9.9 9.3 0.6 1.5 

CHMP4B 10.4 9.8 0.6 1.5 

GNS 10.9 10.4 0.6 1.5 

H47 10.8 10.3 0.6 1.5 

IFITM5 9.2 8.7 0.6 1.5 

WWTR1 8.8 8.2 0.5 1.5 

CRIP2 11.0 10.4 0.5 1.5 

ANXA2 13.6 13.1 0.5 1.5 

A730017D01RIK 8.5 7.9 0.5 1.5 

PRRX1 8.1 7.6 0.5 1.5 

COL22A1 10.4 9.9 0.5 1.5 

MANBAL 10.3 9.8 0.5 1.5 

POFUT2 8.1 7.6 0.5 1.5 

APLNR 8.3 7.7 0.5 1.5 

FBLIM1 8.7 8.2 0.5 1.5 

LMNA 10.4 9.9 0.5 1.5 

PLCD1 8.7 8.1 0.5 1.5 

RHBDF1 9.9 9.4 0.5 1.5 

LOC100039175 8.8 8.2 0.5 1.5 

EBPL 8.8 8.3 0.5 1.5 

KDELR2 8.5 8.0 0.5 1.5 

FAH 8.9 8.3 0.5 1.5 

PDIA3 11.7 11.1 0.5 1.5 

PLA1A 8.1 7.6 0.5 1.5 

GAS6 11.3 10.8 0.5 1.5 

BC065085 8.3 7.8 0.5 1.5 

D10ERTD610E 8.6 8.1 0.5 1.4 

IFIT3 8.5 8.0 0.5 1.4 

PDGFRL 7.9 7.4 0.5 1.4 

3632451O06RIK 8.0 7.5 0.5 1.4 

TPM4 11.3 10.8 0.5 1.4 

PLP2 10.0 9.5 0.5 1.4 

C4B 8.7 8.1 0.5 1.4 

Table 7: Genes changed expression in DMM model at day 7 
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Figure 1: Hierarchical cluster analysis for DMM models at 1, 3, and 7 days after surgery  
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Figure 2: CCL2, Agrinase, IL-6 and SAA-3 were significantly induced expression in DMM 

model at 1, 3, and 7 days after surgery 

Total RNA was reversed transcribed to cDNA and gene expression was measured by real-
time qRT-PCR in individual samples of DMM left knee (un-operated, open bar), and DMM 
right knee (DMM, close bar). 18S was used as endogenous control. The data show mean +/- 
SEM, n=3. The expression of genes of interest between each group was analysed by unpaired 
two-tailed t test * p<0.05, ** p < 0.01, *** p<0.001. 
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Figure 3:  Gene expression in hip avulsion injury model 

The femoral caps of C57Bl/6 mice aged 4 weeks were avulsed and put in culture. At each of 
3, 6, 12, 48 hour time points, the femoral caps were harvested. Total RNA was isolated using 
Trizol and reverse transcribed to cDNA.  Gene expression was measured by real-time qRT-
PCR where 18S was used as an endogenous control. Assays were repeated 3 times. At least 
triplicate samples were measured at each time. Means ± standard errors are presented. 
Difference in expression between each time point against control (t=0) was calculated by 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001. 
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Figure 4: The expression of the miR-29 family in ATDC5 model  

The embryonic carcinoma cell line ATDC5 was stimulated to from chondrocytes using 
insulin for 42 days. Total RNA was isolated, reverse transcribed to cDNA and used for 
miRNA microarray.  
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Figure 5: Expression of the miR-29 family was not controlled by Wnt3a  
 SW1353 cells were cultured in high glucose media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were serum starved for 24 hours before treating with Wnt3a or vehicle 
(0.5% (w/v) BSA) across 24 hour course.   

Relative expression of the precursor miR-29a and axin2 was measured by quantitative RT-
PCR. 18S rRNA was the endogenous control for measuring the precursor transcripts. Open 
bar, control; close bar, WNT3a. (A) Expression level of axin2. (B) Expression level of 
precursor miR-29a. Means ± standard errors are presented. The difference between the 
treatment and the control was analysed by unpaired two-tailed t test. * p<0.05, ** p < 0.01, 
*** p<0.001, n=3. 
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Figure 6: Wnt3a does not control the expression from the primary miR-29a/b1 promoter  

The pri-miR-29a/b1 promoter-reporter (100ng) or the empty vector pGL4 (control, 100ng) 
were transfected into SW1353 cells. After transfection, cells were serum starved for 24 hours, 
followed by stimulating for another 6 hours with WNT3a (100ng/ml), or vehicle (0.5% BSA) 
before measuring luciferase activity. Renilla was use as endogenous control. Open bar: 
vehicle, black bar: Wnt3a. Means ± standard errors are presented, n=3. The difference of 
luciferase activity was analysed by unpaired two-tailed Student’s t test. * p<0.05, ** p < 0.01, 
*** p<0.00. 
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Figure 7 The miR-29 family suppress TGFββββ signalling pathway 

(A) The TGFβ signalling reporter (CAGA12-luc) contains 12 binding sites of the Smad2/3/4 
(GAGAC) binding consensus upstream of the firely luciferase-encoding gene in pGL3100ng 
CAGA12-luc vector, and 10ng Renilla vector were co-transfected with either miR-29 family 
mimic (B) or miR-29b inhibitor (C) into SW1353 cells in monolayer. The non-targeting 
control (50nM) was also used as the negative control. 24 hours after transfection, cells were 
serum starved for another 24 hours, followed by treatment with TGFβ3 (4ng/ml) for another 
6 hours before measuring luciferase activity. Renilla is the loading control for luciferase 
assay. Open bar: non – treatment control, close bar: TGFβ3 treatment. Means ± standard 
errors are presented, n=6. The difference of luciferase activity was analysed by Student’s 
unpaired two-tailed t test. * p<0.05, ** p < 0.01, *** p<0.001 
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Figure 8 The miR-29 family does not target some of its putative targets at mRNA level  
Human primary chondrocytes was cultured in media with 10% (v/v) FCS in monolayer until 
90% confluence. Cells were then transfected with either miR-29b mimic (50nM) or non – 
targeting control (50nM) for 48 hours. Total RNA was isolated and the expression levels of 
GOI were measured by qRT-PCR. 18S rRNA was the housekeeping control. Relative 
expression value of each of these genes was normalized to non – targeting control. Means ± 
standard errors are presented, n=3. The difference in expression between miR-29b 
overexpression and non – targeting control was analysed by Student’s unpaired two-tailed t 
test. * p<0.05, ** p < 0.01, ***, p<0.001 
 

 

 

 

 

 

 

 

 

 

 

 


