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Abstract We have developed a chemical mechanism describing the tropospheric degradation of
chlorine containing very short-lived substances (VSLS). The scheme was included in a global atmospheric
model and used to quantify the stratospheric injection of chlorine from anthropogenic VSLS (ClVSLS

y )
between 2005 and 2013. By constraining the model with surface measurements of chloroform (CHCl3),
dichloromethane (CH2Cl2), tetrachloroethene (C2Cl4), trichloroethene (C2HCl3), and 1,2-dichloroethane
(CH2ClCH2Cl), we infer a 2013 ClVSLS

y mixing ratio of 123 parts per trillion (ppt). Stratospheric injection
of source gases dominates this supply, accounting for ∼83% of the total. The remainder comes from
VSLS-derived organic products, phosgene (COCl2, 7%) and formyl chloride (CHClO, 2%), and also hydrogen
chloride (HCl, 8%). Stratospheric ClVSLS

y increased by ∼52% between 2005 and 2013, with a mean growth
rate of 3.7 ppt Cl/yr. This increase is due to recent and ongoing growth in anthropogenic CH2Cl2—the most
abundant chlorinated VSLS not controlled by the Montreal Protocol.

1. Introduction

In addition to long-lived source gases, such as chlorofluorocarbons and halons, halogenated very short-lived
substances (VSLS) — with lifetimes in the lower troposphere < 6 months — are a source of stratospheric
chlorine and bromine [e.g., Sturges et al., 2000; Mébarki et al., 2010]. VSLS enhance ozone (O3) loss rates in
the lower stratosphere [e.g., Salawitch et al., 2005], where O3 perturbations exert a relatively large impact
on climate [Riese et al., 2012; Saiz-Lopez et al., 2012; Hossaini et al., 2015]. Quantification of stratospheric
VSLS loading has, therefore, been the objective of many recent field measurements and modeling studies
[e.g., Hossaini et al., 2012; Tegtmeier et al., 2013; Kreycy et al., 2013; Sala et al., 2014; Liang et al., 2014; Fernandez
et al., 2014]. In particular, constraining oceanic emissions and the troposphere-to-stratosphere transport of
natural brominated VSLS has been at the forefront, as these VSLS account for a significant portion (∼25%) of
total stratospheric bromine. Chlorinated VSLS contribute a smaller relative contribution to total stratospheric
chlorine (at present a few percent) but are mostly of anthropogenic origin [e.g., Simmonds et al., 2006] and are
not controlled by the Montreal Protocol.

The most abundant chlorinated VSLS are CH2Cl2 and CHCl3 for which anthropogenic activity accounts for
∼90% and ∼25% of their tropospheric abundance, respectively [Montzka et al., 2011]. CHCl3 is used in the
manufacture of certain hydrofluorocarbons (HFCs) and is a by-product of water chlorination and bleaching
processes. CH2Cl2 is a solvent used for paint removal, foam production, and as a feedstock for HFC produc-
tion [Campbell et al., 2005]. Source gas injection (SGI) of these VSLS, together with relatively minor species

HOSSAINI ET AL. STRATOSPHERIC CL FROM SHORT-LIVED GASES 4573

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2015GL063783
http://creativecommons.org/licenses/by/3.0/


Geophysical Research Letters 10.1002/2015GL063783

such as C2Cl4 and C2HCl3, is estimated to provide 72 (50–95) parts per trillion (ppt) Cl to the stratosphere
[Carpenter et al., 2014]. This estimate, based mostly on aircraft VSLS observations, is appropriate for 2012 and
does not reflect the rapid growth in surface CH2Cl2 observed over the 2012–2013 period [Hossaini et al., 2015].

In addition to SGI, it is hypothesized that VSLS-derived phosgene (COCl2) and hydrogen chloride (HCl), pro-
duced in the troposphere, also reach the stratosphere. Based on measured COCl2 and HCl in the tropical
tropopause layer (TTL), the estimated stratospheric product gas injection (PGI) of these gases contributes 25
(0–50) ppt Cl [Carpenter et al., 2014]. However, observations alone cannot distinguish VSLS-derived products
from those derived from other sources and this is reflected in the large uncertainty range given on the above
PGI estimate. This uncertainty has been acknowledged for some time in Ozone Assessment Reports [e.g., Law

et al., 2007; Montzka et al., 2011; Carpenter et al., 2014], though modeling work to resolve the issue has yet to
be performed.

In this study, we developed a chemical degradation mechanism for chlorinated VSLS. The scheme was
included in a global model, and simulations were performed to (1) quantify stratospheric ClVSLS

y , (2) assess the

relative contribution of SGI versus PGI, and (3) examine the trend in stratospheric ClVSLS
y over the 2005–2013

period.

2. Model and Experiments

TOMCAT is an off-line three-dimensional chemical transport model [Chipperfield, 2006]. The model has been
widely used for studies of tropospheric composition, including previously the chemistry and transport of
brominated VSLS [e.g., Hossaini et al., 2010, 2012, 2013]. TOMCAT is forced by meteorological parameters,
including wind and temperature fields, taken from the European Centre for Medium-Range Weather Forecasts
ERA-Interim reanalyses [Dee et al., 2011]. The model contains parameterizations of mixing in the boundary
layer [Holtslag and Boville, 1993] and moist convection [Tiedtke, 1989]. Large-scale vertical transport is calcu-
lated through divergence of the horizontal winds, and tracer advection follows the scheme of Prather [1986].
The model was run at a horizontal resolution of 2.8◦ × 2.8◦ and with 31 vertical (𝜎-p) levels from the surface
to ∼30 km.

The version of TOMCAT used here contains a comprehensive tropospheric chemistry scheme including
Ox-NOy-HOx-C1-C3 nonmethane hydrocarbons, isoprene, and bromine chemistry [Breider et al., 2010]. A
gas-phase chlorine chemistry scheme has been added to the model along with five chlorinated VSLS tracers;
CHCl3, CH2Cl2, C2Cl4, C2HCl3, and CH2ClCH2Cl. Loss of these VSLS, primarily through OH-initiated oxidation,
yields a range of organic products, including phosgene, COCl2, based on the general halocarbon degradation
mechanism outlined in Ko et al. [2003]. A description of tracers and the model chemistry scheme is given in
the supporting information.

In all simulations, background tropospheric chlorine was supplied from the breakdown of (i) ocean-emitted
halocarbons (e.g., CHBr2Cl, CH2BrCl, and CHBrCl2), whose emissions were specified [Ordóñez et al., 2012], and
(ii) the relatively long-lived source gas methyl chloride (CH3Cl). The stratospheric-relevant source gases car-
bon tetrachloride (CCl4) and methyl chloroform (CH3CCl3), not routinely included in this tropospheric model
configuration, were also considered as they, in addition to VSLS, are a COCl2 source.

Three simulations covering the 2005–2013 period were performed. EXP1 (control run) contained no anthro-
pogenic chlorinated VSLS (only natural Cl sources). EXP2 was identical to EXP1 but also contained CHCl3,
CH2Cl2, and C2Cl4. A mixing ratio boundary condition, as opposed to specified emissions, was used to con-
strain their surface abundance in the model. This varied with latitude (five bands, > 60◦N, 30–60◦N, 0–30◦N,
0–30◦S, and > 30◦S) and annually, based on surface observations from the NOAA and AGAGE monitoring
networks [e.g., Prinn et al., 2000; Montzka et al., 2011]; see supporting information. With this boundary con-
dition, the model was then used to simulate the tropospheric distribution and troposphere-to-stratosphere
transport of VSLS and their product gases. EXP3 was identical to EXP2 but also included C2HCl3 and
CH2ClCH2Cl. Long-term surface observations of these VSLS are sparse; therefore, they were only “switched on”
in the model post 2010 and their surface abundance was scaled to give reasonable agreement with observed
upper tropospheric mixing ratios (see section 3.1).
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Figure 1. Time series of simulated tropical mean (a) CH2Cl2, (b) CHCl3, and (c) C2Cl4 mixing ratio (ppt) at the level of
zero radiative heating (LZRH) (grated area, ±1 standard deviation) derived from observed surface values. Equivalent
observed quantities at the LZRH from the 2011 (114◦ to 134◦W longitude and 7◦ to ∼20◦N latitude, November) and
2013 (92◦ to 172◦W longitude and 0.2◦ to ∼20◦N latitude, February/March) NASA ATTREX missions are also shown.
(d) The summed total chlorine in source gases; 3 × CHCl3 + 2 × CH2Cl2 + 4 × C2Cl4, from model run EXP2 and observed
quantity shown with filled stars. The 2011 and 2013 error bars correspond to the total chlorine in source gases when
3 × C2HCl3 + 2 × CH2ClCH2Cl is also considered (i.e., EXP3, equivalent ATTREX quantity shown with open stars).

3. Results and Discussion
3.1. Source Gas Injection
Figure 1 shows the simulated time-varying abundance of CH2Cl2, CHCl3, and C2Cl4 at the level of zero radiative
heating (LZRH, ∼15 km, ∼360K potential temperature) in the TTL – above which air ascends into the strato-
sphere [e.g., Gettelman et al., 2004]. Long-term aircraft [Leedham Elvidge et al., 2015] and surface observations
[Hossaini et al., 2015] of CH2Cl2 have shown a rapid increase in its tropospheric abundance in the last decade,
particularly in the Northern Hemisphere (NH), owing to industrial sources [Carpenter et al., 2014; Hossaini
et al., 2015]. This information is contained in the model forcing data and, as shown in Figure 1, caused a largely
monotonic increase in the stratospheric injection of CH2Cl2 over the simulation period. At the LZRH, CH2Cl2
increased from, on average, 18 ppt in 2005 to 33 ppt in 2013, i.e., an increase of 83%.

Figure 1 also shows high-altitude CH2Cl2 observations from the NASA Airborne Tropical Tropopause Exper-
iment (ATTREX). Whole air samples were collected on board the unmanned Global Hawk aircraft during
deployment in 2011 and 2013 and were analyzed by the University of Miami using gas chromatogra-
phy/mass spectrometry. These observations provide a valuable consistency check of the model. The agree-
ment between modeled and observed CH2Cl2 is excellent. For CHCl3, the model exhibits a low bias of∼15%
compared to the 2013 observations. Due to no significant long-term surface CHCl3 trend, the stratospheric
SGI of CHCl3 varied relatively little over the simulation. C2Cl4 is a relatively minor contributor to chlorine SGI
and its tropospheric abundance has steadily declined in the last decade [Montzka et al., 2011]. Both model
and observation indicate < 1 ppt of this VSLS at the LZRH in 2013.

We estimate that the stratospheric SGI of CHCl3, CH2Cl2, and C2Cl4 provided a total of 87 ppt Cl in 2013.
This agrees well (to within 5%) of the same quantity derived from ATTREX observations (∼91 ppt Cl). Consider-
ation of C2HCl3 and CH2ClCH2Cl (i.e., EXP3) increases the model estimate to∼102 ppt Cl. The observed chlorine
SGI is also greater when these gases are included; shown in Figure 1d, as the difference between the filled
and open stars. This difference is virtually entirely due to CH2ClCH2Cl. Due to a particularly short local tropo-
spheric lifetime (typically several days) and a low tropospheric abundance (<1 ppt), C2HCl3 makes a negligible
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Figure 2. (a) Observed tropical mean profile of COCl2 volume mixing ratio (ppt) from the ACE-FTS satellite instrument
(2006–2012 average). The horizontal bars denote ±1 standard deviation. Also shown are corresponding model profiles
of total COCl2 (from EXP3, solid line, shading ±1 standard deviation) and VSLS-derived COCl2 (from EXP3 minus the
control run, dashed line). (b) Simulated tropical mean profiles of organic chlorine from VSLS-derived COCl2, CHClO,
and their total (shading ±1 standard deviation) in 2013. The location of the tropical tropopause layer (TTL) is indicated.

contribution to chlorine SGI. We find that CH2Cl2, CHCl3, C2Cl4, and CH2ClCH2Cl account for 65%, 17%, 3.5%,
and 14.5% of the total SGI of chlorine in 2013, respectively. Local lifetimes of these VSLS in the tropical
boundary layer are estimated in the range 98–133, 100–136, 60–81, and 42–58 days, respectively [Carpenter
et al., 2014]. The contribution of CH2ClCH2Cl could be larger as the model underestimates measured values in
2013. Long-term observations of this VSLS are needed to constrain its tropospheric abundance.

Our modeled estimate of stratospheric chlorine from the SGI of VSLS in 2013 is 30% larger than that reported
by Carpenter et al. [2014], due to the continued increases in CH2Cl2 mixing ratios. Note that the ocean-emitted
VSLS CHBr2Cl, CH2BrCl, and CHBrCl2 are not included in our estimate, as the focus of this work is on anthro-
pogenic VSLS. Besides, their total SGI is estimated to provide< 0.4 ppt Cl [Carpenter et al., 2014] and is therefore
very small compared to the species considered here.

3.2. Product Gas Injection
Organic products derived from VSLS degradation include halogenated peroxy radicals, hydroperoxides,
peroxynitrates, and carbonyl compounds [e.g., Ko et al., 2003; Hossaini et al., 2010]. We found that the only
organic products simulated with tropospheric mixing ratios >1 ppt were (i) phosgene, COCl2, formed prin-
cipally from CHCl3 (with minor contributions from C2Cl4 and C2HCl3) and (ii) formyl chloride, CHClO, formed
from CH2Cl2. Upper tropospheric COCl2 measurements (Figure 2) are made by the Atmospheric Chemistry
Experiment Fourier transform spectrometer (ACE-FTS) on board the SCISAT satellite [e.g., Fu et al., 2007; Brown
et al., 2011]. Here we use the v3.0 data product for measurements between 2006 and September 2010, and
v3.5 for October 2010 to 2012.

Throughout the observed profile shown in Figure 2a, model-derived COCl2 is within the measurement vari-
ability at all altitudes. In the tropical upper troposphere (∼10 km), VSLS account for virtually all simulated
COCl2 and the agreement between model and observation is good. In the lower part of the TTL, however,
model COCl2 exhibits a low bias. Potential explanations for this include a missing source (e.g., from a VSLS not
considered) or an underestimate of the phosgene yield from C2Cl4 or C2HCl3. The former seems unlikely as the
most abundant chlorinated VSLS known to produce phosgene, i.e., CHCl3, is included, though the underesti-
mate of CHCl3, shown in Figure 1 (albeit small) may contribute to the low COCl2 bias. Alternatively, a dynamical
influence may include an underestimate of the in-mixing of phosgene-containing air from the extratropical
lower stratosphere into the TTL.
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Figure 3. Observed profiles of HCl volume mixing ratio (ppt) from the NASA (a) 2006 INTEX-B mission, (b) 2004 Pre-AVE
mission, and (c) 2006 CR-AVE mission. INTEX-B measurements obtained on board the DC-8 aircraft (0–12 km) between
∼40◦N and 61◦N latitude (Anchorage deployment, Alaska). Pre-AVE and CR-AVE measurements obtained on board the
WB-57 aircraft (10–20 km) within the latitude ranges ∼3◦S to ∼8◦N and ∼1◦S to ∼20◦N. Measured HCl profiles are cam-
paign means calculated in 1 km altitude bins. Horizontal lines on observed data denote ±1 standard deviation. Also
shown are corresponding model mean profiles of HCl derived from all sources (solid profile, ±1 standard deviation) and
HCl derived from anthropogenic VSLS only (dashed line).

Systematic errors in the ACE-FTS COCl2 mixing ratios are dominated by spectroscopic errors, assumed ∼30%
[Fu et al., 2007]; this results from the lack of hot bands in the COCl2 spectroscopic line list and uncertainties
in line intensities. It is therefore particularly challenging to assess the fidelity of simulated COCl2 in the TTL.
We note that around the LZRH (∼15 km), model COCl2 agrees well with the observed values and here VSLS
account for∼95% of total COCl2. Above 20 km, COCl2 production is dominated by the long-lived solvents CCl4
and CH3CCl3.

To our knowledge, no atmospheric observations of the second most abundant product gas, CHClO, exist. Its
simulated surface mixing ratio in the NH, where its primary source in the model (CH2Cl2) is most abundant,
is ∼3–5 ppt (see supporting information). Figure 2b shows that CHClO provides a small, though previously
unidentified, contribution to PGI of ∼2 ppt Cl.

In addition to organic products, VSLS-derived HCl may also enter the stratosphere through PGI. In situ mea-
surements of tropospheric HCl are generally sparse, though measured profiles are available from previous
NASA aircraft missions [Marcy et al., 2004, 2007; Kim et al., 2008], shown in Figure 3, and more recent aircraft
sampling around the tropopause [Jurkat et al., 2014]. In the marine boundary layer, sea salt is the domi-
nant chlorine source [e.g., Saiz-Lopez and von Glasow, 2012]. Here simulated HCl exhibits a low bias against
observed values as sea salt chlorine is not considered (as not relevant for the stratosphere). However, in
the free troposphere and TTL—where chlorine is mostly derived from the breakdown of organic source
gases—agreement between simulated and observed HCl is generally good. In 2013, VSLS accounted for, on
average, ∼40% of total HCl around the LZRH (∼9 ppt of VSLS-derived HCl in absolute terms), with the remain-
der supplied from a combination of stratospheric-influenced air and the in situ oxidation of the relatively
long-lived source gas CH3Cl [e.g., Marcy et al., 2007].

By summing the modeled organic and inorganic contributions, we estimate a total stratospheric PGI of ∼21
ppt Cl in 2013 (EXP3). This value falls within the estimated range of 0–50 ppt Cl reported by Carpenter et al.
[2014] but is slightly lower than their best estimate of 25 ppt Cl. This difference is largely due to the lower
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Table 1. Simulated Source and Product Gas Contributions to Total Stratospheric Chlorine Supplied From VSLS (ppt Cl)a

2005 2006 2007 2008 2009 2010 2011 2012 2013 WMO 2014c

Source Gas Sumb 57.3 59.0 62.4 64.6 63.8 70.3 70.9 75.2 87.4 [102.3] 72(50–95)

Phosgene 8.0 7.7 8.1 8.8 7.9 9.0 8.6 8.9 8.3 [9.1] 15(0–30)

Formyl Chloride 1.1 1.1 1.3 1.3 1.4 1.6 1.5 1.6 2.4 [2.4] Not considered

Hydrogen Chloride 3.0 2.9 3.2 3.6 3.0 3.3 3.3 3.1 7.6 [9.4] 10(0–20)

Product Gas Sum 12.1 11.8 12.7 13.8 12.3 13.9 13.5 13.7 18.4 [20.9] 25(0–50)

TOTAL Cl 69.4 70.8 75.1 78.4 76.1 82.4 84.4 88.9 105.8 [123.2] 95(50–145)

aModel estimates are reported from EXP2. For 2013, values are also reported for EXP3 (square brackets). Estimates from the 2014 WMO/UNEP Scientific
Assessment of Ozone Depletion are compared to the simulated values from this work.

bSum of (3 × CHCl3) + (2 × CH2Cl2) + (4 × C2Cl4); with additional contribution of (3 × C2HCl3) and (2 × CH2ClCH2Cl) (see data in square brackets).
cBest estimate and range reported in WMO/UNEP Scientific Assessment of Ozone Depletion 2014 [Carpenter et al., 2014].

PGI contribution from COCl2 from the model relative to the estimate of Carpenter et al. [2014], as summarized
in Table 1. Note that our total PGI estimate also includes a contribution from CHClO which has been previ-
ously unquantified. Our analysis shows, for the first time, that PGI due to VSLS-derived products constitutes a
nonzero supply of chlorine to the stratosphere. However, further insight into the impact of mechanistic and
kinetic uncertainties in the chemical mechanism employed is required, beyond the scope of this work, in order
to fully constrain the derived chlorine budget. In particular, this includes a need for knowledge of the aque-
ous phase processing of soluble product gases (e.g., COCl2, CHClO) and heterogeneous processes occurring
on, for example, cirrus ice particles within the TTL [e.g., von Hobe et al., 2011].

3.3. Total Chlorine
We estimate the total chlorine injection from anthropogenic VSLS (ClVSLS

y ) — the sum of SGI and PGI

contributions — was 123 ppt Cl in 2013 (EXP3, Table 1). SGI accounts for ∼83% of total ClVSLS
y with the remain-

der supplied from PGI of VSLS-derived COCl2 (7%), CHClO (2%), and HCl (8%). Our simulated ClVSLS
y is larger

than the best estimate of 95 ppt Cl reported by Carpenter et al. [2014], owing to a larger SGI contribution and
the continued increase in CH2Cl2 mixing ratios. However, it falls within their reported 50–145 ppt Cl range.

To estimate the purely anthropogenic component of stratospheric ClVSLS
y , a further sensitivity experiment

(EXP4) was performed, identical to EXP3, but with surface CH2Cl2 and CHCl3 reduced by 10% and 75%,
respectively (to remove the estimated natural component of emissions). C2Cl4, C2HCl3, and CH2ClCH2Cl are
thought to be exclusively anthropogenic and were therefore unchanged. From EXP4 we estimate ∼80% of
the simulated stratospheric ClVSLS

y in 2013 is attributable to anthropogenic activity.

Based on EXP2, as it contained the same VSLS throughout the simulation, ClVSLS
y increased by ∼52% over the

2005–2013 period (Table 1). A linear fit to the data indicates a mean growth rate of ∼3.7 ppt Cl yr−1 (Figure 4),
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Figure 4. Time series of simulated annual mean total stratospheric chlorine from VSLS (sum of source and product gas
contributions, filled circles, left axis). A linear trend line is applied to EXP2 which considered CH2Cl2, CHCl3, and C2Cl4,
and the 2005–2013 mean growth rate (ppt Cl−1) is annotated. EXP3 (blue) also considered C2HCl3 and CH2ClCH2Cl.
Also overlaid are annual mean CH2Cl2 mixing ratios (ppt) in the Northern Hemisphere calculated from NOAA surface
observations (red crosses, right axis).
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driven by the ongoing increase in the surface concentration of CH2Cl2. In addition to causing an enhanced SGI,
CH2Cl2 growth has also enhanced PGI; both CHClO (derived from CH2Cl2) and HCl exhibited a sharp increase
over the 2012–2013 period, coinciding with a particularly sharp increase in surface CH2Cl2 and indeed total
ClVSLS

y (Figure 4). Between 2012 and 2013, ClVSLS
y increased by ∼20%.

4. Concluding Remarks

Knowledge of the stratospheric loading of ozone-depleting substances and their trends is required to predict
the future evolution of stratospheric O3 and recovery of the ozone layer. Constraining the supply of chlorine
from chemicals not regulated by the Montreal Protocol is particularly important. Here, using a global model
supported by atmospheric observations, we show that the contribution of anthropogenic VSLS has increased
significantly in the last decade. A 2013 stratospheric ClVSLS

y loading of >100 ppt is large enough to significantly
impact O3 loss rates in the lower stratosphere [Hossaini et al., 2015], where surface temperature and climate
are particularly sensitive to O3 perturbations. Indeed, trends in anthropogenic chlorine VSLS are suggested
to already have contributed a nonzero amount to the radiative forcing of climate since the preindustrial era
[Hossaini et al., 2015].

Although ClVSLS
y remains small in comparison to the total stratospheric chlorine load from long-lived

ozone-depleting substances (>3000 ppt Cl), it is far larger than that supplied from newly detected chloroflu-
orocarbons and hydrochlorofluorocarbons (<10 ppt Cl) [Laube et al., 2014]. Further, ClVSLS

y will continue to
increase if the observed growth in tropospheric CH2Cl2 continues. This could likely be the case if the upward
CH2Cl2 trend is attributable to the continued industrialization of developing countries and/or release follow-
ing its use as a feedstock in the production of HFCs, the second generation of CFC replacement gases, for
which a global market expansion seems likely in the coming years, or indeed other chemicals.
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