
The Combinatorics of Tandem Duplication

Penso-Dolfin L1 and Greenman CD*1,2

1School of Computing Sciences, University of East Anglia, Norwich, UK, NR4 7TJ.
2The Genome Analysis Center, Norwich Research Park, Norwich, NR4 7UH.

Abstract

Tandem duplication is an evolutionary process whereby a segment of DNA is replicated and proximally
inserted. The different configurations that can arise from this process give rise to some interesting
combinatorial questions. Firstly, we introduce an algebraic formalism to represent this process as a word
producing automaton. The number of words arising from n tandem duplications can then be recursively
derived. Secondly, each single word accounts for multiple evolutions. With the aid of a bi-coloured 2d-
tree, a Hasse diagram corresponding to a partially ordered set is constructed, from which we can count
the number of evolutions corresponding to a given word. Thirdly, we implement some subtree prune and
graft operations on this structure to show that the total number of possible evolutions arising from n

tandem duplications is
n∏

k=1

(4k − (2k + 1)). The space of structures arising from tandem duplication thus

grows at a super-exponential rate with leading order term O(4
1
2n

2

).

1 Introduction

Tandem Duplications (TD) occur when a region of DNA is duplicated and inserted adjacent to the original
segment. This can be seen in Figure 1A where we start with five contiguous regions, labeled ABCDE. This
is the original configuration and is termed the reference. We then have a tandem duplication of BCD to
give sequence ABCDBCDE. We then have a duplication of region DB to finally give ABCDBDBCDE.
This is one process that has long been known to be implicated in the formation of gene clusters [1], [2] and
more recently has been implicated in the formation of amplicons in cancer [3], [4], [5], [6]. In both cases
Darwinian selection may be acting to increase the number of copies of a target gene.

Analyzing tandem duplication leads to some interesting combinatorics, some questions of which have
been considered elsewhere [7], [8], [9]. In particular, [7] and [8] count the number of TD trees consistent
with sequences arising from a TD process. These methods generally assume, firstly, that breakpoints can
be re-used, and secondly, that the full sequences (such as ABCDBDBCDE above) are available. Neither
of these two assumptions necessarily applies to all situations.

Firstly, a breakpoint in this context can mean the gap between two contiguous loci, such as a pair of
genes in a gene cluster, which can cover a wide region and be implicated in more than one duplication
event with reasonable probability, or it can mean the precise end points of the duplicated region, which are
less likely to be implicated on more than one occasion. Modern sequencing (paired-end) data can resolve
breakpoints to the basepair level and reveal tandem duplications to great precision, such as with cancer
data [3]. In such cases, when a tandem duplication occurs, two breakpoints are implicated in a presumably
random process. The chance that precisely the same positions are subsequently implicated in another TD is
likely to be small and assuming unique breakpoint use is reasonable in these circumstances. The questions
considered in this work are restricted to the case of unique breakpoint use.

Secondly, a full TD sequence contains more information than we may be accustomed to. Typically, we
know the reference sequence, the number of copies of each region, and pairwise connectivity. For example,
in Figure 1B, instead of the sequence ABCDBDBCDE, we see that we have [1, 3, 2, 3, 1] copies of the five
originating regions. We refer to this as a CNV (copy number vector). We also see that we have two types
of somatic connection that do not exist in the originating reference ABCDE; one connecting the end of

*Corresponding Author

1

ar
X

iv
:1

40
2.

01
04

v1
 [

m
at

h.
C

O
]

 1
 F

eb
 2

01
4

A EDCB

A EDCB CD B

A EDCB CD B D B
A EDCB

CN=[1,3,2,3,1]

A B

1 3 2 3 1

C
1 1 1 1 1

1 2 2 2 1

TD1

TD2

TD1

TD2

i

ii

iii

Figure 1: A Tandem Duplication Process. A) Three TD sequences arising from two TDs on a reference of five regions;
ABCDE. B) The copy number vector, counting the number of copies of each reference region. C) The corresponding TD-
Evolution containing three TD-Graphs; nodes represent reference regions, numbers at nodes count the number of copies of each
region, and edges indicate connections between segments.

D to the beginning of B, the other connecting the end of B to the beginning of D. We can represent this
as a TD-Graph, such as in Figure 1Ciii, where each node represents a reference region, the numbers at
each node represent the number of copies, and the curved edges represent the somatic connections. This
is representative of the information that is typically available from some sequencing experiments [10] and
represents the data at the end of the TD process. However, the genome at the start of the process will be
represented by the simple TD-Graph in Figure 1Ci which will change every time we have a TD. We thus
have a sequence of TD-Graphs, such as in Figures 1Ci,ii,iii, arising from a TD process. We refer to this as
a TD-Evolution.

The problem we consider is concisely stated; count the number of different TD-Evolutions that arise
from n TDs. This is acheived as follows. Firstly, we consider how to best represent the process. We will
see that by labeling each somatic connection with a number we can turn the process into an automaton
acting upon words consisting of positive integers; any structure produced by n TDs can then be represented
by a word on symbols 1, 2, ..., n. We then explore the size of this space of words. Each word will be seen
to correspond to many different TD-Evolutions. Thus, secondly, we consider how to count the distinct
TD-evolutions that all correspond to a single word. This involves the construction of a suitable partially
ordered set (poset). Thirdly, we combine these two pieces of information and provide an explicit count of
the number of possible evolutions for a given number of tandem duplications. Concluding remarks complete
the paper.

2 Representation

We now introduce representations of the TD process, utilizing three different forms. First we have a visual
zig-zag representation, which is used to describe the final structure relative to the originating reference
structure. Secondly we have an algebraic word evolution representation, which enables the process to be
viewed as an automaton on words composed of integers. Finally we have a 2d-tree representation. Now 2d
trees generalize the notion of trees. Trees can be characterized as connected graphs such that each node has
a single parental node, apart from a single root node. We can define an nd tree to be a graph such that all
nodes (except root nodes) have n parental nodes. This kind of graph has been applied to data forms arising
from search algorithms [11], [12] and have seen other applications in genetics as recombination graphs [13],
and pedigree graphs [14], for example.

We introduce the requisite structure with the example in Figure 2. We start with a single segment; an
interval [0a, 0b], which is represented as a single horizontal line in Figure 2Ai. All coordinates described
below are positioned relative to this interval, as demarcated by the positions at the top of Figure 2A. The
node 0a is assigned a type, a (coloured red), indicating it is the left end of a segment. Node 0b is assigned
a type, b, (coloured blue) indicating a right end of a segment. These labels are associated with the top two
nodes of the 2d-tree in Figure 2B. These are bridged by an edge which will represent their ordering in the
reference; 0a < 0b.

Next we have the first TD event. This involves the duplication of a specific single region (coloured
green in Figure 2Ai), and so implicates two positions; the left and right ends of the duplicated region, with
reference coordinates 1a and 1b, respectively. Now end 1b is connected to 1a in the duplication process,

2

0a 0b1a 1b
A

2a2b3a 3b4a 4b

0a 0b

1a 1b

2a 2b

3a 3b

4a 4b

1

1

1
2

3

1
2

1

3
1

2
4

1
2

1

E

1

121

3121

3124121

G

1

12

12312

1412312

1412352312

B C D

8
2()-1

3
2()-1

5
2()

F

2

232

4232

4235232

0a 0b

1a 1b

2a 2b

3a 3b

4a 4b

H

2
1()

5
2()-1

3
2()

10
4()-1

1b 1a

2a 2b

3a 3b

4a 4b

5a 5b

i

v

iv

iii

ii

Figure 2: Representation of the TD Process. In A) we have zig-zag plots for a sequence of four TDs, resulting in five structures
i)-v). The green regions indicates the region duplicated during each TD. Dashed lines indicate a connection between segments.
Coordinates na and nb indicate the end positions of the nth duplicated region. B) Corresponding 2d-tree. Nodes correspond
to breakpoints and edges demarcate an ordering. Red and blue colours indicate lower and upper bound breakpoints. Dashed
and plain edges indicate minor and major edges. C) Corresponding Hasse diagram. D) The major graph corresponding to
evolution E. F) Increases each symbol of E by 1. G) An induced evolution from F. H) The major graph corresponding to
induced evolution G. The black nodes indicate the corresponding 1-nodeset.

represented by the dashed line in the zig-zag diagram of Figure 2Aii. This is the first somatic connection,
labeled with numerical symbol 1. Thus we have our first word of Figure 2E; 1. Now the two positions 1a
and 1b are both bound between the coordinates of 0a and 0b. In the 2d-tree representation, we have two
nodes representing coordinates 1a and 1b. These nodes both have edges connected to two parental nodes
0a and 0b. We have edges of type a (red) from node 0a to 1a and 1b representing the fact that 0a is a lower
bound of 1a and 1b. Similarly we have edges of type b (blue) from 0b to 1a and 1b, representing the fact that
0b is an upper bound of 1a and 1b. The black edge is a third class of edge, termed a fence, and connects 1a
to 1b, representing the restriction 1a < 1b.

Our second TD then duplicates the green portion in Figure 2Aii, which includes the first somatic
connection, forming two breakpoints 2a and 2b. Position 2a is on the upper segment [0a, 1b] of Figure 2Aii
and so must lie between positions 0a and 1b. These are its two parental nodes. The blue edge from node 1b
to 2a indicates 1b is an upper bound of 2a. The red edge from 0a to 2a indicates 0a is a lower bound of 2a.
The status of major (solid) and minor (dashed) is assigned to each pair of parental edges to a node, where
major and minor refer to the parental nodes with higher and lower TD numbers, respectively. For example,
2a has parents 1b and 0a, the TD numbers satisfy 1 > 0, so the edge from 1b is the major, and that from 0a
is the minor. This distinction will later be important. This results in one new somatic connection, labeled
2, and a duplication of the original connection 1. Reading the somatic connections through the structure
in Figure 2Aiii then produces the second word 121 of Figure 2E.

We then procede through the TDs building up the 2d-tree. In general we have the following:

2d-Tree Construction

Initialize with segment [0a, 0b]. Let na and nb represent the reference positions of the start and end of
the nth duplicated region, where n is the TD-number. Node na is designated type a (coloured red), and nb
is designated type b (coloured blue). If na (resp. nb) lies on the segment [ua, vb] we have a type a (red) edge

3

from ua to na (resp. nb), and a type b (blue) edge from vb to na (resp. nb). If u > v, the edge from ua is
major (solid), the edge from vb is minor (dashed). This is reversed if u < v. If na and nb are formed on the
same segment, no somatic connections are duplicated, and we must have na < nb which we represent with
a fence edge (black) between nodes na and nb.

Note that the choice of major and minor is ambiguous for the first TD. Both 1a and 1b are placed on
the same interval [0a, 0b] so have parental nodes 0a and 0b that have equal TD-number 0. It will prove
consistent to define them as follows; 1a has major (resp. minor) parental nodes 0b (resp. 0a), 1b has major
(resp. minor) parental nodes 0a (resp. 0b). Note that in all other cases either a type a node na is placed
on [ua, vb], where n > {u, v} resulting in new interval [na, vb], with n 6= v, or a type b node nb is placed on
[ua, vb], where n > {u, v} resulting in new interval [ua, nb], with n 6= u. Thus apart from the initial interval,
the TD numbers of the endpoints of any interval are distinct and the major/minor is well defined.

We note that the relative order of positions na and nb distinguishes two types of somatic connection. The
somatic connection of the nth TD is reversed when na < nb and otherwise it is forward. Note, for example,
that the first TD in Figure 1Cii is reversed (1a < 1b) with a backward direction on the corresponding edge
of the TD-Graph. This is the type of connection usually associated with TDs. However, the second TD
is forward (2a > 2b) with a forward direction on the corresponding (lower curved) edge of the TD-Graph
in Figure 1Ciii . This is the type of connection usually associated with dna deletions, but can occur from
multiple TDs.

Finally we comment that the presence of fences implies structures such as Figure 2B take a more general
form than a 2d-tree. For convenience we use the phrase 2d-tree with that understanding in mind.

3 Word Representations

We can describe the evolution in the example of Figure 2A in terms of words (Figure 2E); 1 → 121 →
3121 → 3124121 (duplicated subwords are underlined). Here, the second TD duplicates the first somatic
connection, the third TD duplicates no somatic connections, and the fourth duplicates the sub-word of
somatic connections 12. This evolution of words is an example of an automaton [15]:

TD Word Automaton
Initialize with word W1 = 1. Then the word formed from the nth TD is obtained recursively as:

Wn = Wn−1(1 : a− 1) ·Wn−1(a : b) · n ·Wn−1(a : b) ·Wn−1(b+ 1 : Nn−1)

Here Nk is the length of word Wk, Wk(u : v) is the sub-word formed from the uth letter to the vth letter
(inclusive), and b ≥ a− 1. If b = a− 1 then Wn−1(a : b) is empty. If a = 1 then Wn−1(1 : a− 1) is empty.
If b = Nn−1 then Wn−1(b+ 1 : Nn−1) is empty.

We refer to the sequence W1 → W2 → ... → Wn as a word evolution on n TDs. We let Wn denote the
set of all possible word evolutions on n TDs.

We introduced fences for the situation where na and nb form on the same segment. This means that the
nth TD does not duplicate any somatic connections. In terms of the word automaton, these correspond to
a step where no symbols are duplicated; no symbol is duplicated in the step 121→ 3121 for example.

We next consider how many words can arise from n TDs, that is, the size of the spaceWn. For example,
from the initial word 1, a second TD can produce words 12, 21 or 121, and |W2| = 3; two words of length
2 and one word of length 3. In general we have the following result.

Theorem 3.1. If wm,n is the number of words of length m arising from n TDs, we have the following
recursion,

wm,n =
∑m−1

k=bm−1
2
c(2k −m+ 2)wk,n−1

where we have initial values wi,0 = {1,i=0
0,i≥1

Proof. If we have a word with k symbols then we can duplicate r ∈ {0, 1, .., k} of those symbols. Furthermore
there are k−r+1 sets of r consecutive symbols that we can choose to duplicate. Note that a TD duplication
copies r symbols and also introduces one new TD symbol, resulting in a word with m = k+ r+ 1 symbols.
Then k = m − r − 1 for r ∈ {0, 1, .., k} and any word of length m can derive from a word of length
k ∈ {bm−12 c, ...,m− 1}. Lastly, we note that there are k− (m− k− 1) + 1 = 2k−m+ 2 ways to do this.

4

TDs 1 2 3

Word Length 1

3

4

5

6

7

2

3

1
2

3

1

2

4
3
2
1

Figure 3: Schematic of number of possible TD words. Numbers at nodes indicate the length of TD words. Numbers on edges
indicate the number of choices.

Example 3.1. In Figure 3 we see a graph representation of the possibilities, where values wn,m are equiv-
alently obtained by taking products of the edge values along paths to the associated node, from the node
labeled 0, and summing. For example, the node labeled 5 in the fourth column of nodes corresponds to w3,5

and has two paths, one with product 1 · 2 · 1, the other with 1 · 1 · 3 and we find w3,5 = 2 + 3 = 5, five words
of length five; 12312, 21321, 13121, 12321 and 12131.

It is natural to attempt to find a general formula for the number of words arising from n TDs by
constructing a generating function from this recursion. However, this approach did not prove fruitful
suggesting a closed form expression for the word count is not forthcoming.

The counts |Wn| =
∑

mwm,n of words arising from n TDs can be seen in Table 1.

TDs 1 2 3 4 5 6

Words 1 3 22 377 15,315 1,539,281

CNVs 1 7 225 27,839 - -

TD-Graphs 1 8 288 37,572 - -

TD-Evolutions 1 11 627 154,869 156,882,297 640,550,418,651

Table 1: Counts of TDs, Words, CNVs, TD-Graphs and TD-Evolutions.

4 Counting Evolutions With Posets

Although we can count the number of words with relative ease, there maybe several different TD-Evolutions
that correspond to a single word. We see from Figure 4A, for example, that there are three TD-Evolutions
possible in the word evolution [1 → 12], where the second somatic connection follows one copy of the
first. These cases can be phrased more familiarly in terms of TD sequences. Now two TDs result in
four breakpoints 1a, 1b, 2a and 2b that divide the original interval [0a, 0b] into five regions A, B, C, D
and E. There are three choices that use two pairs of breakpoints uniquely such that the second somatic
connection follows the first. If we underline the duplication and use ‘|i’ for the ith somatic connection;
ABCDE → ABCD|1BCDE → ABCD|1BC|2CDE, ABCDE → ABC|1BCDE → ABC|1BCD|2CDE
and ABCDE → AB|1BCDE → AB|1BCD|2DE. Counting copies of the five regions A, B, C, D and E, we
see that the three cases give rise to CNVs [1, 2, 3, 2, 1], [1, 2, 3, 2, 1] and [1, 2, 1, 2, 1], respectively. Although
the first two are equal, all three can be seen to have distinct TD-Graphs in Figure 4A.

These three cases have the following explanation in terms of breakpoint ordering. Once the first dupli-
cation has occurred, the two breakpoints 2a and 2b associated with the second TD need to be positioned.
Now, the first TD requires 1a < 1b resulting in segments [0a, 1b] and [1a, 0b] (see Figure 2Aii, for example).
To obtain the word 12 from word 1 we find that we must not copy the first somatic connection, and both 2a
and 2b must lie on the second segment [1a, 0b], so we have 1a < 2a < 2b. We then find that the three cases
depend on whether 1b is less than, in between, or greater than 2a and 2b. The three evolutions in Figure
4A i-iii then correspond to the three orders 1a < 2a < 2b < 1b, 1a < 2a < 1b < 2b or 1a < 1b < 2a < 2b.

These distinct orders represent possible breakpoint positions, subject to the restrictions 1a < 1b from
the first TD, and 1a < 2a < 2b from the second TD. Articulating these restrictions more generally requires
the construction of a suitable partially ordered set (poset) [16]. A poset is a set of elements with some order
relationships between the elements. Posets are usually represented by a Hasse diagram. This is a directed

5

graph where nodes represent the poset elements, and a directed edge between two nodes indicates an order
relation between the two corresponding elements. Any single ordering of the elements that satisfies such a
set of restrictions is known as a linear extension. The Hasse diagram for any TD word evolution can be
readily constructed from the corresponding 2d-tree as follows.

Lemma 4.1. If the direction of the type b (blue) edges are reversed in the 2d-tree, and fences are directed
from na to nb whenever they occur, a Hasse diagram with single source node 0a and single sink node 0b is
obtained.

For example, in Figure 2B we see 2d-tree corresponding to the word evolution given in Figure 2E. In
Figure 2C we see the same graph except the blue edge directions have been reversed, and the three fences
are directed. Note that all fully extended, directed paths lead from 0a to 0b. Any linear extension, such as
0a < 3a < 4a < 1a < 2a < 2b < 2b < 4b < 3b < 1b < 0b at the top of Figure 2A, is satisifed by this Hasse
diagram.

Proof. (of Lemma 4.1) When we add any node x ∈ {na, nb} to the 2d-tree, it has two parental nodes ua
and vb. By construction, the node x represents a breakpoint that is placed on the segment [ua, vb] with
leftmost reference position ua and rightmost position vb, thus we have the ordering ua < x < vb in terms
of reference position. Now the type a edge directed from ua to x represents the ordering ua < x. We then
select direction of the edges in the Hasse diagram to represent increasing reference position. Now x < vb,
so we require a directed edge from x to vb, which is obtained by reversing the direction of the type b edge
in the 2d-tree from vb to x. Finally we note that if we have a fence, we are adding two position na and nb
to the same segment. We then have the additional ordering na < nb which is represented by the addition
of a direction from na to nb.

Counting the number of different TD-Evolutions associated with a given word then reduces to counting
the number of linear extensions associated with a poset. Although finding any single linear extension from a
poset can be achieved in polynomial time [17], counting the number of linear extensions is known to be #P-
complete [18] and in general is slow to implement [16]. However, for the problem we have, we will show that
restricting the Hasse diagram to major edges and fence edges (that is, removing the minor edges) contains
all the ordering information. This simplified topology will enable us to obtain a closed form expression for
the number of linear extensions.

For any word evolution E, we will refer to the graph obtained from 2d-tree T (E) by selecting just the
major and fence edges as the major graph, Tmaj(E).

The next result tells us that this simplified structure contains two trees if we also ignore the fences.

Lemma 4.2. The restriction of the Hasse diagram to the major edges results in two trees rooted to nodes
0a and 0b.

Proof. In the construction of the poset graph, every node x 6= {0a, 0b} has two parental nodes, labeled ua
and vb, arising from the segment [ua, vb] that breakpoint x is formed upon. These two nodes are connected
to x by a major and minor parental edge, where max(u, v) and min(u, v) are the major and minor TD
numbers, respectively. Thus if we are restricted to the major edges, each node has one parental node,
resulting in two trees attached to roots 0a and 0b.

The following result describes how major and minor status relates to the segments of the form [ua, vb]
involved in the TD process. It will be used to explain why removing the minor edges from the Hasse diagram
does not lose any information.

Lemma 4.3. If [ua, vb] is any segment arising in the evolution of a TD process then either:
A) Nodes ua and vb are connected by a single directed major edge from the node with TD number

min(u, v) to node with TD number max(u, v). The positions satisfy the single linear extension ua < vb.
Or:
B) Nodes ua and vb are connected by a minor directed edge from the node with TD number min(u, v) to

that with TD number max(u, v). Furthermore there exist nodes with TD numbers in the order min(u, v) <
n1 < n2 < ... < nI < max(u, v) that are connected in a chain of major edges in the same order such that:

i) If u > v, all internal nodes are type a (red) and the positions satisfy the single linear extension,
(n1)a < (n2)a < ... < (nI)a < ua < vb,
ii) If u < v, all internal nodes are type b (blue) and the positions satisfy the single linear extension,
ua < vb < (nI)b < ... < (n2)b < (n1)b.

6

0b0a 1a 1b

[21]

2a 2b

0b0a 1a 1b

[21]

2a 2b

0b0a 1a 1b

[12]

2a 2b

0b0a 1a 1b

[12]

2a 2b

0b0a 1a 1b

[12]

2a 2b

0b0a 1a 1b

[21]

2a 2b

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a2b

1 2 3 2 1

1 2 3 2 1

1 2 1 2 1

1 2 1 2 1

1 2 3 2 1

1 2 3 2 1

1 2 4 3 1

1 2 4 2 1

1 3 4 3 1

1 3 2 3 1

1 3 4 2 1

A

B

C

i

ii

iii

i

ii

iii

i

ii

iii

iv

v

Figure 4: Evolutions arising from two TDs. A) Three structures associated with word 12. B) Three structures associated
with word 21. C) Five structures associated with word 121. In each instance the left hand image is the zig-zig plot, and the
right hand plot the TD-Graph.

Proof. We prove this by induction. Initially we start with a single segment [0a, 0b] and the first TD results
in two segments [0a, 1b] and [1a, 0b] (such as in Figure 2Aii). Now node 1b has major parental node 0a
and 1a has major parental node 0b. Thus each of these segments has a single major edge connecting the
corresponding nodes and so satisfy the conditions of the lemma.

For the induction we next assume that any segment [ua, vb] satisfies the conditions of the lemma for
all u, v < m. For each segment we thus have either a single major edge connecting nodes ua and vb, or a
minor edge connecting them along with a chain of major edges. We then introduce the mth TD duplicating
a region with endpoints ma and mb. We need to check all resulting segments satisfy the Lemma. We have
four cases to check.

Case I: The entire segment [ua, vb] is duplicated or unmodified; then the poset graph is unchanged
between nodes ua and vb and we have nothing to do.

Case II: The breakpoint ma lies in [ua, vb]. We thus obtain a new segment [ma, vb]. A new node ma

then has major and minor parents with TD number max(u, v) and min(u, v). We then have two possibilities
depending on whether u and v are connected by a major or minor edge.

Case IIa: If they are connected by a major edge then we see that if u < v then we have a new major
edge from ma → vb, and segment [ma, vb] satisfies criterion A of the Lemma. If u > v, then we have a minor
edge ma → vb and a chain of two major edges vb → ua → ma, which satisfy ua < ma < vb, and segment
[ma, vb] matches criterion Bi of the Lemma.

Case IIb: Now u and v are connected by a minor edge, along with a chain of major edges as described
in the theorem. Then if u < v we have a single major edge vb → ma, and the conditions of the theorem are
met. If u > v we have a single minor edge vb → ma and major edge ua → ma with order ua < ma < vb. If we
combine this condition with the inductive hypothesis of the theorem; (n1)a < (n2)a < ... < (nI)a < ua < vb,

7

ua

b1

b2

bJ

vb

nb

na
na

nb

vb

ua

a1

a2

aI

ua

vb

nb

na

ua

vb

nb

na

A
i

ii

iii iv

a1

Reference

Positiona2 a6a5a4a3 b1 b5b4b3b2 b6a7

B C
a1

a2

b3

b2

b1

a5

a4

a3
b5

b4

b7

b6

Figure 5: Major and minor edge structure. A) The addition of new nodes preserves major-minor structure. B) The nesting
structure of a branch of a major tree. C) The general major-minor structure.

we obtain (n1)a < (n2)a < ... < (nI)a < ua < ma < vb, which again has the correct structure.
Case III: If the breakpoint mb lies in [ua, vb], a parallel set of reasoning to case II applies.
Case IV: If both breakpoints ma and mb lie in [ua, vb], we obtain segments [ua,mb] and [ma, vb]. These

are the same segments as cases II and III and the same arguments apply to both segments.

We now use this result to describe the inheritance nature of major and minor edges.

Corollary 4.1. If any node has a major parental node of type a (resp. b), its minor parent is the most
recent common ancestor (in the major graph) of opposite type b (resp. a).

Example 4.1. Consider the branch in Figure 5C. Node a3 has a major type a parental node a2. The most
recent type b ancestor of a3 is node b6, which is its minor parent. Node b5 has a major type b parental node
b4, we have to go back to node a1 for its most recent type a ancestor, its minor parental node.

Proof. (of Corollary 4.1) Now by Lemma 4.3 any two nodes ua and vb bridging a segment [ua, vb] are linked
by a major or a minor edge. If a new node x ∈ {na, nb} corresponding to a new breakpoint in this interval
is formed, ua and vb are the major and minor parents, in some order. We have four cases to check:

Case I: (u < v, major edge from ua to vb). Then x has minor parent ua and major parent vb. The minor
parent ua is then connected to x by the chain of major edges ua → vb → x. Node x has a major parent of
type b and the minor parent ua is the most recent ancestor of type a in the major graph (see Figure 5Ai).

Case II: (u > v, major edge from vb to ua). Analogous to Case I; swap u and v, and swap a and b in
argument (see Figure 5Aii).

Case III: (u < v, minor edge from ua to vb). Then by Lemma 4.3 minor node ua is connected to major
vb by a chain of major edges of the form ua → (n1)b → (n2)b → ... → (nI)b → vb for some internal nodes
of type b. Now node x has major parental node vb so there is also a major edge vb → x. Together we have
the chain of major edges ua → (n1)b → (n2)b → ...→ (nI)b → vb → x. We then find x has a major of type
b and the minor ua is the most recent ancestor of type a in the major graph (see Figure 5Aiii).

Case IV: (u > v, minor edge from vb to ua). Analogous to Case III; swap u and v, and swap a and b
in argument (see Figure 5Aiv).

We can now explain the sense in which minor edges can be removed from the Hasse diagram. Specifically,
we find that any set of nodes connected by a directed chain of major edges has a single ordering. More
precisely:

Corollary 4.2. Consider any single directed chain of major edges connecting nodes {ai, bj : i = 1, ..., I, j =
1, ..., J} where ai are nodes of type a and bj are nodes of type b. Suppose furthermore that these nodes are
in some order such that ai is an ancestor of ai+1 for i = 1, 2, ..., I − 1, and bj is an ancestor of bj+1 for
j = 1, 2, ..., J − 1. These nodes have a single linear extension of the form:

a1 < a2 < < aI < bJ < < b2 < b1.

Thus as we follow any single path down the major tree, the types a and b of the nodes can be intermixed.
However, the TD numbers of the a nodes increases down the path, as does the TD numbers of the b nodes.
Furthermore, the reference positions of the a nodes increase and b nodes decrease towards each other (see
Figure 5B for an example).

8

Proof. Now consider any sub-chain of nodes connected by major edges of the form a1 → b1 → b2 → ...→ bn.
Then bi+1 has major parent bi (of type b), so bi+1 < bi. Also, b1 has major parent a1 (of type a) so a1 < b1.
We also know that b2, ..., bn all have a1 as their minor parent by Corollary 4.1, so a1 < bi for i = 2, 3, ..., I.
Together we then have the single order a1 < bn < ... < b2 < b1. If the chain then continues as a chain
of type a nodes bn → a′1 → a′2 → ... → a′m, we similarly find that a′1 < a′2 < ... < a′m < bn. However,
a′1 has minor parent a1 by Corollary 4.1 so a1 < a′1. We then find that these two orders combine into the
single order a1 < a′1 < a′2 < ... < a′m < bn < ... < b2 < b1. Thus we find that as we move down a chain of
nodes connected by major edges, the a and b nodes lie in one single nested structure where the a nodes are
increasing and the b nodes are decreasing in reference position as we move down the major graph; a single
linear extension.

We now explain how to count the linear extensions using the major graph. In all that follows
(
m
r

)
=

m!
r!(m−r)! represent binomial coefficients, and

(
m

m1,...,mI

)
= m!

m1!...mI !
represent multinomial coefficients. There

are two situations we need to deal with.

Lemma 4.4. i) Suppose K branches descend from a single node z in the major graph, such that the kth

branch contains mk descendant nodes, and none of the K daughter nodes of z are connected by a fence.

Then the number of linear extensions involving the associated m+ 1 breakpoints is
(

m
m1,...,mK

) K∏
k=1

φk, where

m =
K∑
k=1

mk, and φk is the number of linear extensions associated with the mk nodes in branch k.

ii) Suppose two of the branches descending from a single node z in the major graph contain m1 and m2

descendant nodes, respectively, and the two daughter nodes of z in these branches are connected by a fence.
Then the number of linear extensions involving the associated m + 1 breakpoints is (

(
m
m1

)
− 1)φ1φ2, where

m = m1 +m2, and φ1 and φ2 are the number of linear extensions associated with the m1 and m2 nodes in
the respective branches.

Proof. i) We have φk linear extensions associated with branch k. If we select one linear extension from each
branch, we have, by Corollary 4.2, K orderings of the form:

(x
(k)
i1

)a < (x
(k)
i2

)a < ... < (x
(k)
imk

)b < (x
(k)
imk+1

)b

Here (x
(k)
ij

)a/b are the breakpoints represented by the nodes in branch k. Now node z is the common

ancestor of the K branches and so arises from the earliest TD. Then by Corollary 4.2 either z = (x
(1)
i1

)a =

... = (x
(K)
i1

)a is the left most node and is of type a, or z = (x
(1)
im1+1

)b = ... = (x
(K)
imK+1

)b is the right most

node and is of type b (in Figure 5B for example, the red node from the earliest TD is type a and has the
lowest position). Now node z is fixed in position and common to all K branches. Any pair of nodes from
different branches are unrestricted relative to each other. Any pair of nodes within a branch k have one
relative order from the linear extension selected from the φk possibilities of that branch. We then need to
count the number of ways of intercalating m1 nodes from branch 1, with m2 nodes from branch 2, through
to mK nodes from the last branch. There are

(
m

m1,m2,...,mK

)
ways to do this.

ii) We now consider the case of a fence between two daughter nodes na and nb of z, which results in the
extra condition na < nb. We have an ordering from each branch. By Corollary 4.2, if z is of type a they
will take the form:

(z)a < na < (x
(1)
i1

)a < ... < (x
(1)
im1−1

)b

(z)a < (x
(2)
i1

)a < ... < (x
(2)
im2−1

)b < nb

Here (x
(1)
ij

)a/b and (x
(2)
ij

)a/b are the breakpoints represented by the nodes descending from na and nb,

respectively. Now there are
(
m
m1

)
ways to interlace these two orders. Furthermore, precisely one of these

interlacements contradicts the extra condition na < nb, and that is:

(z)a < (x
(2)
i1

)a < ... < (x
(2)
im2−1

)b < nb < na < (x
(1)
i1

)a < ... < (x
(1)
im1−1

)b

We subtract this single order from the count
(
m
m1

)
to give the desired result.

The case where z is of type b is similar with the same conclusion.

9

Finally we put this information together to count the number of linear extensions arising from the
2d-tree.

Theorem 4.1. Let the nodes 0a, 0b and daughter edges be removed from the major graph. For each node
x remaining let x1, ..., xK denote the number of nodes that are present in each of K descending branches.
If any pair of daughter nodes are connected by a fence, they contribute a factor

(
y1+y2
y1

)
− 1, where y1 and

y2 count the number of nodes descending down each branch connected by the fence. These two branches are
then treated as a single branch with y1 + y2 daughter nodes. We then associate the number m(x) =

(
x

x1,...,xr

)
with node x. The number of distinct evolutions is then the product of these terms across nodes and fences.

Proof. The TD process starts with segment [0a, 0b] which produces two segments [0a, 1b] and [0b, 1a] after
the first TD. All future segments produced will always have at least one parental node with a TD number
greater then 0 so the only major edge from 0a leads to 1b and the only major edge from 0b leads to 1a.
Then 0a and 0b both have single branches descending. Now, applying Lemma 4.4 to any node with a
single descending branch containing n nodes results in a combinatorial term of the form n!

n! = 1. The
combinatorial factors from 0a and 0b can thus be ignored. For the remaining nodes we see from Lemma 4.4
that the orders φm associated with nodes in individual branches are multiplied into the combinatorial terms
(such as

(
m

m1,...,mK

)
) associated with the parental node. We thus multiply the terms of the form

(
m

m1,...,mK

)
from nodes and

(
m

m1,...,mK

)
− 1 from fences.

Example 4.2. Consider the word evolution E = [1 → 121 → 3121 → 3124121] with 2d-tree in Figure 2B.
Once 0a and 0b are removed we have two fences corresponding to TD numbers 1 and 3. The restriction to
major and fence edges then results in the graph in Figure 2D. The upper fence has two nodes attached to
one side and six nodes to the other. This results in a count

(
8
2

)
− 1 = 27. We note that node 1b has three

branches descending; one fenceless branch with two nodes, and two branches bridged by a fence; one and
two nodes down each branch. The latter two branches with the fence then have

(
3
1

)
− 1 = 2 orders and are

then treated as a single branch of three nodes. There are then
(
5
2

)
= 10 ways of interlacing the five positions

from the remaining branch with two nodes and amalgamated branch with three nodes. The total number
of linear extensions, and so TD-evolutions, associated with word evolution E is then 27 · 2 · 10 = 540.

Note that in the proof we saw that a node with a single descending branch containing n nodes results
in a combinatorial factor n!

n! = 1. This is true in general and explains why combinatorial terms from nodes
with one descending branch were ignored in this example.

We thus now can count both the number of TD words, and the number of distinct evolutions for each
word. We next consider how to combine this information and count the total number of evolutions for a
given number of TDs.

5 The Size of TD Space

We have seen that a TD process can be represented as an automaton on words. Furthermore, the number
of TD-Evolutions represented by any single word evolution can be obtained from the corresponding major
graph using the methods of the previous section. This naturally leads to the problem of determining the
total number of TD-Evolutions. For example, in Figure 4 we see all eleven evolutions that arise from two
TDs; three evolutions corresponding to word 12, three corresponding to 21 and five corresponding to 121.
The aim of this section is to prove our main discovery:

Theorem 5.1. The number Nn of distinct evolutions arising from n TDs is given by:

Nn =
n∏
k=1

(4k − (2k + 1))

Thus N2 = (41 − (2(1) + 1)) · (42 − (2(2) + 1)) = 11, in agreement with Figure 4, for example. The first
few terms in this series can be seen in the bottom row of Table 1.

10

5.1 A Motivating Example

Before constructing a proof of Theorem 5.1, we discuss a motivating example. Recall that Wn is the set of
word evolutions on n TDs. Consider the following examples.

E = [1→ 121→ 3121→ 3124121]
E+ = [2→ 232→ 4232→ 4235232]

E′ = [1→ 12→ 12312→ 1412312→ 1412352312]

The first two word evolutions both use four symbols; E,E+ ∈ W4. These only differ in the labeling
of TDs; all we have done is increase each symbol in E by 1 to get E+. In E′ we have a word evolution
involving one more TD; E′ ∈ W5.

There are two things to note.
Firstly, if we delete the symbol 1 in E′ we recover evolution E+. That is, conversely, introducing a new

first TD event to E ∈ W4 results in E′ ∈ W5. This suggests we can generate TD-Evolutions in general by
the repeated introduction of initial TDs. This leads to the following definition:

Definition 5.1. If a new first TD is introduced to word evolution E ∈ Wn, the resulting evolution E′ ∈ Wn+1

is called an induced evolution.

Secondly, the major graph of E′ is given in Figure 2H. Although we can form this directly from the
word evolution E′ using the 2d-tree construction from the previous section, we note that Figure 2H is a
subgraph of the 2d-tree from the original evolution E (Figure 2B). This suggests we can get the major trees
of induced evolutions from the 2d-trees of the originating evolutions.

This implies in general that there may be a connection between Wn−1 and Wn, both in terms of word
evolutions, and in terms of major graphs. We need to explore both of these links in more detail.

Firstly we observe that for any word evolution there are a range of ways that a new first TD can be
introduced. For example, take the trivial TD-Evolution E = [1], and increase the symbols by 1; E+ = [2].
We can introduce a new first TD in three ways; E′ = [1 → 12], E′ = [1 → 21] or E′ = [1 → 121]. Note
that all three word evolutions reduce back to evolution E+ = [2] if all copies of symbol 1 are deleted. We
will show something stronger in general; each single word evolution E ∈ Wk−1 leads to a unique subset of
induced evolutions E ⊂ Wk.

We will secondly show that all the major graphs for the word evolutions of E can be obtained from the
2d-tree for E. Now for any individual word evolution E, we can use the major graph Tmaj(E) to count the
number of associated TD-Evolutions using Theorem 4.1. We will extend this and show that the number of
TD-Evolutions corresponding to E is equal to the number of TD-Evolutions corresponding to E multiplied
by a constant factor 4n − (2n+ 1). Applying this observation recursively to the spaces W1,W2, ...,Wn will
then be seen to result in Theorem 5.1.

5.2 Induced Evolutions

For induced evolutions to be a useful concept, we must establish that any word evolution E′ ∈ Wn+1 can
be uniquely represented as an induced evolution from some word evolution E ∈ Wn.

Lemma 5.1. Let D(E) be the process where we remove all copies of TD symbol 1 from word evolution E
and reduce each symbol by 1. This process has the following properties:

i) If E ∈ Wn+1, then D(E) ∈ Wn is a valid word evolution.
ii) For any word evolution E ∈ Wn, there exists a word evolution E′ ∈ Wn+1 such that D(E′) = E.

Proof. i) Any evolution E starts with trivial word 1. The next TD in E results in word evolution [1→ 12],
[1 → 21] or [1 → 121]. For all three choices, removing the initial 1 from the evolution leaves us the value
2, which becomes 1 when the symbols are reduced in value by 1, thus we obtain the correct initial word
for D(E). Now the word evolution is constructed by the TD word automaton as a mapping of the form
AXB → AX(n + 1)XB, for possibly empty subwords A, X or B, for the (n + 1)th TD. If we remove all
copies of the symbol 1 from the subwords A, X and B, and reduce all symbols by 1, to give A′, X ′ and B′,
respectively, we get a mapping of the form A′X ′B′ → A′X ′nX ′B′ which is a valid step in the nth iteration
of the TD word automaton, as required.

ii) For any evolution E = [X1 → X2 → X3 → ...→ Xn] fromWn we simply construct E′ = [1→ 1X ′1 →
1X ′2 → 1X ′3 → ... → 1X ′n] where word X ′i is obtained from Xi by increasing each symbol by 1. This is a
valid word evolution in Wn+1. Then applying D to E′ recovers E, as required.

11

This allows us to partition the space Wn as follows:

Corollary 5.1. Let E(E) denote the set of induced evolutions from E. Then:
i) For any two evolutions E1, E2 ∈ Wn, the two corresponding sets of induced evolutions do not overlap;

E(E1) ∩ E(E2) = φ.
ii) The set of induced evolutions satisfies the relation, Wn+1 =

⋃
E∈Wn

E(E).

Proof. i) We have shown from Lemma 5.1i that deletion of symbol 1 creates is a well defined mapping
D : Wn+1 → Wn. Conversely, therefore, we therefore cannot have distinct word evolutions E1, E2 ∈ Wn

that produce the same induced evolution E′ when a new first TD is introduced; E(E1) and E(E2) are thus
distinct.

ii) We know from Lemma 5.1ii that for any E ∈ Wn, E(E) ∈ Wn+1. This implies that
⋃

E∈Wn

E(E) ⊂

Wn+1. Conversely, from Lemma 5.1i we know that
⋃

E∈Wn

E(E) ⊃ Wn+1.

Thus we can generate all of the word evolutions in Wn+1 as a disjoint union of induced evolutions from
Wn.

We wish to construct the major graphs Tmaj(E
′) of all the induced word evolutions E′ ∈ E(E) from the

2d-tree T (E) of the original evolution. To do this we need to relate the positions of new symbol 1 in the
new evolution E′ to the nodes of the 2d-tree T (E). In all that follows X represents unspecified subwords
in a word evolution. We have the following definition.

Definition 5.2. Let Z = {1a, 1b, 2a, 2b, 3a, 3b, ..., na, nb} be the node labels for a 2d-tree T (E+), where E+

is the word evolution after the TD numbers have been increased by 1 in some word evolution E. For any
evolution E′ induced from E, a 1-nodeset N ⊆ Z is defined as follows:

i) If the word XmX in word evolution E+ becomes word X1mX in induced evolution E′, then mb ∈ N .
ii) If the word XmX in word evolution E+ becomes Xm1X in induced evolution E′, then ma ∈ N .
iii) 1a, 1b ∈ N

Example 5.1. In Figure 2F,G we have evolutions:

E+ = [2→ 232→ 4232→ 4235232]
E′ = [1→ 12→ 12312→ 1412312→ 1412352312]

Now 2 in E+ becomes 12 in E′, so 2b ∈ N . Similarly, X3X becomes X31X so 3a ∈ N (see bold
symbols above). We see X4X becomes X141X, the symbol 4 picking up a 1 either side in the induced
evolution, so that 4a, 4b ∈ N . Finally we note that 5 remains isolated from the symbol 1 so 5a, 5b 6∈ N .
Thus N = {1a, 1b, 2b, 3a, 4a, 4b}.

Now each 1-nodeset is a subset of the node labels for the 2d-tree. We find these sets have the following
tree like structure:

Lemma 5.2. Let T (E) be the 2d-tree for a word evolution E, and N be the 1-nodeset corresponding to an
induced evolution E′. Then if x ∈ N ,

i) If x is not a root node, its parents are in N .
ii) If x is the parental node of a fence, at least one of the daughter nodes must be in N .
Conversely, any set of nodes N from T (E) satisying i) and ii) is a 1-nodeset for some induced evolution

E′.

Thus the 1-nodesets have the tree like property that for any node belonging to the 1-nodesets, all
its ancestors are also present. In particular, the root nodes belong to N . Consider the example above;
N = {1a, 1b, 2b, 3a, 4a, 4b}, these are the (solid) nodes in Figure 2H which satisfy these criterion. The two
roots 1a and 1b are in N . There is a fence between 2a and 2b, which have parental nodes 1a, 1b that are
members of node set N . At least one of 2a, 2b must therefore be in N , and in this case 2b is.

Proof. (of Lemma 5.2) Consider the nth TD in evolution E. We have two cases to consider.
Case I: The TD is not a fence. Then we have a node na with parents ua and vb, and node nb with parents

u′a and v′b. We also have step XuvXu′v′X → XuvXu′nvXu′v′X in the corresponding word evolution E,
where the somatic connections from v to u′ (inclusive) are duplicated. Note that subword XuvX represents

12

somatic connections across the region containing the breakpoint na, and Xu′v′X similarly covers breakpoint
nb.

We consider changes to the parts XuvX and Xu′v′X of word XuvXu′v′X when symbol 1 is introduced
in the induced evolution separately.

Case Ia: If we have word XuvX after symbol 1 has been introduced into E′, then by Definition 5.2,
ua, vb 6∈ N . We then find we have evolution step XuvX → XuvXnvX in E′ and so symbol n is not adjacent
and left of symbol 1 and we find that na 6∈ N . That is, if the major parent of na is not in N , na cannot be
in N .

If we have Xu1vX after symbol 1 has been introduced, then by Definition 5.2, ua, vb ∈ N . That is,
the parents of na are in N . Now we have two possibilities. Firstly, we can have evolution step Xu1vX →
Xu1vXnvX in E′, where the somatic connection 1 is not duplicated. In this case we find symbol n is not
adjacent to a 1 so by Definition 5.2, na 6∈ N . Secondly, we can have evolution step Xu1vX → Xu1vXn1vX,
where the somatic connection 1 is duplicated. In this case we find symbol n is adjacent and left of symbol
1 so by Definition 5.2, na ∈ N . Thus if the parents of na are in N , na may or may not be in N depending
upon the choice of the induced evolution.

Note that the converse is also true and if the parents of na are in N , we select the evolution step
depending on whether na is in N .

Case Ib: The argument for node nb, which depends upon Xu′v′X, is analogous, with the same conclu-
sions.

Case II: Consider the case that the nth TD results in a fence.
In that case we have a step XuvX → XunvX in E. Then if we have corresponding step XuvX →

XunvX in induced evolution E′ we find that ua, vb 6∈ N by Definition 5.2 and both na, nb 6∈ N .
Alternatively we may find that we have a step of the form Xu1vX → X in E′. Then parental nodes

ua, vb ∈ N and we have three possibilities to consider.
We may have Xu1vX → Xu1nvX. Here the 1 is not duplicated, but we find n is to the right of a 1 and

so nb ∈ N .
We may have Xu1vX → Xun1vX. Here the 1 is not duplicated, but we find n is to the left of a 1 and

so na ∈ N .
Lastly, we may have Xu1vX → Xu1n1vX. Here the 1 is duplicated and both na, nb ∈ N .
Thus when the parent nodes of a fence are in N , at least one of the daughter nodes na or nb must be.
Conversely, when the parent node and one or more of na or nb are in N , we select the corresponding

evolutionary step.

We can now show how to construct the major graph Tmaj(E
′) from the parental 2d-tree T (E).

Lemma 5.3. For any evolution E′ induced from E, let N be the corresponding 1-nodeset obtained from
Lemma 5.2. Let T (E) be the 2d-tree corresponding to E. The major graph Tmaj(E

′) is constructed as
follows.

i) Select all nodes from T (E) and increase each TD number in the node labels by 1.
ii) If any type a (resp. b) node (that is not a root) is a member of N , select the parental edge of the

same type, a (resp. b).
iii) If any type a (resp. type b) node (that is not a root) is immediately adjacent (but not in) N , select

the parental edge from the opposite type, b (resp. a).
iv) If any node na (resp. nb) is neither a member of, or immediately adjacent to, N , select the major

edge of na from T (E).
v) If na and nb are connected by a fence in T (E) (for TD number n ≥ 2), select the fence if and only if

na 6∈ N or nb 6∈ N .
vi) Place a fence between 1a and 1b and swap these two node labels.

Example 5.2. Consider again the original 2d-tree T (E) in Figure 2B, where E is the evolution in Figure 2E.
We wish to construct and the major graph Tmaj(E

′) (of induced evolution E′) given in Figure 2H by applying
the Lemma. We found the 1-nodeset corresponding to evolution E′ previously as N = {1b, 1a, 2b, 3a, 4a, 4b},
the black nodes in Figure 2H. Then to construct Tmaj(E

′) we take the nodes of T (E) and first increase the
TD numbers by 1, swap the two labels with TD number 1, and place a fence between them. Node 2a 6∈ N is
adjacent to N so we select the edge from the node of opposite b type by Lemma 5.3iii. This was 0b, which
is now mapped to 1a, so we select edge 1a → 2a. Node 2b ∈ N , so we select the parental edge of same node
type b. This was also 0b, so we select the edge from mapped node 1a → 2b. By Lemma 5.3v, we furthermore

13

select the fence between nodes 2a and 2b. Now 3a ∈ N thus we select the edge from type a parent, the node
1b (mapped from 0a). Node 3b is not in or adjacent to N so we select the major edge from T (E); 2a → 3b.
Now 4a, 4b ∈ N so we select the edges from parental nodes of same type; 1b → 4a and 2b → 4b parental node
2b. Nodes 5a, 5b are adjacent to N so we select its parent edges of opposite type; 2b → 5a and 3a → 5b.

Observe that the differences between T (E) and Tmaj(E
′) are a form of subtree prune and graft operations

[19]; when the major edge is swapped for the minor edge we are pruning from the major parental node and
grafting to the minor parental node.

Proof. (of Lemma 5.3)
i) All the breakpoints from evolution E remain in evolution E′ so we inherit the representative break-

points. The introduction of a new first TD increases each TD number by 1.
ii) Consider the case that we have a type a node na ∈ N . Then we have evolution step XuvX →

XuvXnvX in E+, and na has major and minor parents ua and vb in T (E) (in some order, depending upon
whether u > v). This evolution step becomes Xu1vX → Xu1vXn1vX in E′. Then the somatic connection
1 is duplicated and breakpoint na occurs between somatic connections u and 1. The major and minor
parents are then ua, 1b in T (E′). Now u > 1 so the major parent of na in T (E′) is the node ua. Thus if we
have a type a node na ∈ N , we select the parental edge of the same type; ua → na, irrespective of whether
it was the major or minor in T (E). The argument for nb is analogous.

iii) Consider the case that na is adjacent to a node in N , that is, its major and minor parents are in
N . Then we have evolution step XuvX → XuvXnvX in E that becomes Xu1vX → Xu1vXnvX in E′.
This time, in the induced evolution, the major and minor parents of na are 1a, vb. Now v > 1 so the major
parent of na in E′ is node vb. Thus if we have a type a node na ∈ N , we select the parental edge of the
opposite type; vb → na, irrespective of whether it was the major or minor in the original evolution E. The
argument for nb is analogous.

iv) Consider the case that na is neither adjacent to a node in, or a member of N . Then we have evolution
step XuvX → XuvXnvX in E that becomes XuvX → XuvXnvX in E′. Now the major/minor status of
na does not change from the original. The argument for nb is analogous.

v) If na and nb are connected by a fence we have a step of the form XuvX → XunvX in E. The
corresponding step in the induced evolution E′ takes one of four forms. Firstly, if Xu1vX → Xu1n1vX in
E′, then n is adjacent to 1 on both sides, so na, nb ∈ N . Note that n has duplicated symbol 1, so we do not
have a fence in Tmaj(E

′). Secondly, if we have Xu1vX → Xu1nvX in E′, then na 6∈ N and nb ∈ N . Note
that n has not duplicated the symbol 1 and we still have a fence. Thirdly, the evolution Xu1vX → Xun1vX
in E′ similarly preserves the fence, with na ∈ N and nb 6∈ N . Finally, if we have XuvX → XunvX in
E′, the fence is preserved and na, nb 6∈ N . Thus Tmaj(E

′) contains the fence if and only if at least one of
na 6∈ N or nb 6∈ N is true.

vi) Firstly note that the initial TD in any evolution must occur on the single reference segment, and so
must be fence because there are no prior TDs to duplicate, thus we place a fence between nodes 1a and 1b.

Consider the nth TD for some n ≥ 2. Note that the only way that node na or nb can have a parental
node 0a or 0b is to have a step of the form X → nX or X → Xn in word evolution E. Consider first the
step X → nX. Note that n must represent a fence because there are no symbols to the left of n which
could have been duplicated. Then na and nb have minor parents 0a and some major parent vb. The induced
evolution can then be in one of three forms.

Firstly, we can have corresponding step 1X → n1X in E′. In this case, from Definition 5.2 we find na
is in N and so is connected to its type a parent 0a by ii) above. Now because n is a fence, nb has the
same parents as na, so is adjacent to N in T (E). Then using iii) above we find nb is connected to its type
a parent, also 0a. However, constructing the major tree directly from the 2d-tree corresponding to word
evolution E′, we find that n is a fence with major parent 1b. Thus to get an equivalent form from the
original 2d-tree, we map 0a to 1b.

The case for 1X → 1nX is similar, resulting in a map from 0b to 1a.
For the third choice, the step becomes 1X → 1n1X in E′. We then find that na, nb ∈ N by Definition

5.2 as n is adjacent to 1 on both sides. Thus in the major graph for E′, na is connected to its type a parent
0a and nb is connected to its b parent ub. However, direct from E′ we see that na has major parent 1b and
nb has major parent ub, so again we map 0a to 1b for a consistent correspondence.

The argument using step X → Xn and node na from E is entirely similar with parallel conclusions.

14

A B

[6] [18] [4] [5] [5] [18] [12] [6] [6] [8] [12] [3] [3] [2]

4 3

[2]

5 2

[8]

6 1

[20]

3 4

[6]

2 5

[6]

2 5

[6]

1 6

[20]

4 3

[12]

3 4

[6]

3 4

[6]

2 5

[8]

5 2

[12]

4 3

[3]

4 3

[3]

3 4

[2]

5 2 6 1 3 4 2 5 2 5 1 6 4 3 3 4 3 4 2 5 5 2 4 3 4 3 3 4

[20]

n1,6 = 20

n2,5 = 6 + 6 + 8 = 20

n3,4 = 6 + 6 + 6 + 2 = 20

n4,3 = 2 + 12 + 3 + 3 = 20

n5,2 = 8 + 12 = 20

n6,1 = 20

[18]

n1,6 = 18

n2,5 = 5 + 5 + 8 = 18

n3,4 = 4+ 6 + 6 + 2 = 18

n4,3 = 12 + 3 + 3 = 18

n5,2 = 6 + 12 = 18

n6,1 = 18

A

B

i

ii

iii iv v vi

i

ii

iii iv v vi

vii

vii

a1

a2

b1

b3b2

A B

a1

a2

b1

b3b2

f

Figure 6: Full sets of tree operations. In A) we have a fenceless structure, in B) we have the same structure with a fence
f . i) The full 2d-trees; blue are type b nodes or edges, red are type a nodes or edges. Solid lines are major edges, dashed
lines are minor edges. Black edges are fences. ii) The major graph when nodes A and B are contracted. iii)-vi) Major graphs
corresponding to β-subtrees indicated by blackened nodes. β-subtrees are partitioned into subgraphs τA connected to node A
and τB connected to node B. iii) Major graphs when both τA, τB = φ are empty. iv) Major graphs when τA = φ and τB 6= φ.
v) The trees when τA 6= φ and τB = φ. vi) Major graphs when τA, τB 6= φ. vii) The total nr,7−r of combinatorial terms of trees
with r nodes in component connected to node A.

In summary, we now know that for any word evolution E ∈ Wn−1 there is a unique subset of induced
evolutions E(E) ∈ Wn, each member E′ of which corresponds to a 1-nodeset from the 2d-tree of E. We can
now use this to produce the major graph T (E′) for the induced evolution using Lemma 5.3. We can then
calculate the number of TD-Evolutions associated with each E′ from Theorem 4.1. We thus need to sum
the TD-Evolution counts across the set of 1-nodesets corresponding to E(E). Whilst this is possible, leading
to 4n− (2n+ 1) induced TD-Evolutions for each word evolution E, the proof relies on a more general space
of graphs than we have considered so far, which we now introduce.

5.3 β-trees

Firstly we generalize the notion of the 2d-tree obtained from TDs.

Definition 5.3. A β-tree T is any directed graph such that:
i) All nodes and edges are classified as either type a or type b
ii) There is a root node (A) of type a and a root node (B) of type b, and all directed edges point away

from the roots.
iii) All other nodes have a type a parental node and a type b parental node. The two edges from the

parental nodes are also of type a and b, respectively. Either the two parents are the two roots, or one parent
is a descendant of the other. The edge from the more recent ancestor is the major, the other is the minor.

iv) A type a node and type b node may be linked by a fence if they have the same parental nodes, or are
the two roots.

Thus the 2d-trees defined from TDs are β-trees, for example. Note that β-trees are more general; take
Figure 6A,B, for example, they do not have an even number of nodes and cannot arise from a TD process,
but satisfy the requirements of a β-tree.

Similar to the 2d-tree construction, the major graph Tmaj(T) of a β-tree T is the graph obtained when
the minor edges are removed.

Secondly, we generalize the notion of 1-nodesets.

Definition 5.4. A β-subtree τ of a β-tree T is a subset of nodes from T such that:

15

i) The two root nodes are in τ .
ii) If a node in τ is the parent of a fence, one of the two daughter nodes bridged by the fence must also

be in τ .
iii) If a node is in τ , both parental nodes are also in τ .

Example 5.3. Consider Figure 6A,B. Here the original β-trees are in Figures 6A,Bi. The β-subtrees are
indicated in Figure 6A,B iii-iv by the solid nodes. Note that the two roots are always in τ . These are the
parents of the fence f in Figure 6B and so in agreement with Definition 5.4ii we find that at least one of
the two nodes a1 and b1 bridged by f lies in τ .

The β-subtree τ of a β-tree T can be used to define a modified major graph, analogously to the con-
struction of Tmaj(E

′) in Lemma 5.3, as follows:

Definition 5.5. For a β-tree T and β-subtree τ , the induced tree T (τ) is the major graph obtained from T
by the following operations.

i) Select all nodes from T .
ii) For any node (that is not a root) in τ of type a (resp. b), select the parental edge of same type a

(resp. type b).
iii) If any node (that is not a root) of type a (resp. b) is immediately adjacent (but not in) τ , select the

parental edge of opposite type b (resp. type a).
iv) If any node is neither a member of, or immediately adjacent to, τ , select the major parental edge

from T .
v) If two nodes are connected by a fence in T , select the fence if and only if one or both nodes are not

in τ .

Note that this definition differs from Lemma 5.3 in one important way. By Definition 5.4, any β-subtree
contains both root nodes. By Definition 5.5v, any fence between the two root nodes is not selected in T (τ).
However, we find by Lemma 5.3ii that Tmaj(E

′) will contain a fence between the two roots. We will later
see that this difference has an important implication for the calculation of the total number of possible
TD-Evolutions.

In order to introduce the main property of β-trees that will allow us to count TD-Evolutions we need
to introduce some notation.

Terminology

• For any 2d-tree T with major graph T (τ) corresponding to β-subtree τ :

� T (τ) is the graph obtained when the two root nodes of T (τ) are contracted together.

� C(τ) is the product of combinatorial coefficients across nodes and fences of T (τ) given by Theorem
4.1.

• S denotes the set of valid β-subtrees according to Definition 5.4.

• ε denotes the trivial β-subtree containing just the two root nodes.

• For any node or fence x in T :

� Nx(τ) is the number of nodes from x and its descendants in T , attached to the A root in T (τ).

� τx denotes the restriction of τ to x and its descendants.

� Sx denotes the set of possible subsets τx.

� Cx(τ) denotes the product of factors of C(τ) arising from x and its descendants.

� cx(τ) denotes the single factor associated with node (or fence) x.

� Terms with an overline added, such as cx(τ), are the corresponding terms using T (τ) instead of
T (τ).

� When terms, such as cx(τ) (and Cx(τ)), only depend upon x (and its descendants) in T (τ), we
equivalently use notation cx(τx) (and Cx(τx)).

16

Example 5.4. In Figure 6Bii we have a β-tree. The graphs in each of Figures 6Biv-vi are the possible
major graphs T (τ), where each β-subtree τ can be identified from the solid nodes. The counts NA(τ) can
be seen above the A node for each graph. Node b1 in the β-tree in Figure 6Bii has two daughter branches
with one node each, so we write cb1(ε) =

(
2
1

)
= 2. We trivially have cb2(ε) = cb3(ε) = 1 for leaf nodes b2 and

b3; the descendants of b1, so can also write Cb1(ε) = cb1(ε) · cb2(ε) · cb3(ε) = 2.

We are finally in a position to describe the following fundamental result, which will allow us to determined
the total number of TD-Evolutions.

Theorem 5.2. Let T be any β-tree with N nodes, and S the corresponding set of β-subtrees. Then for any
r ∈ {1, 2, ..., N − 1} we have: ∑

{τ∈S:NA(τ)=r}

C(τ) = C(ε) (1)

Example 5.5. We see in Figure 6Bii the major graph T (ε), where the two root nodes have been contracted
together. There are two non-trivial combinatorial terms. One from the fence f below the root, which has two
nodes descending the left side, three the right, resulting in combinatorial coefficient cf (ε) = (

(
5
2

)
− 1) = 9,

by Theorem 4.1. The other term comes from the daughter node b1 to the right of the root, which has two
daughter branches with one node each, resulting in combinatorial term cb1(ε) =

(
2
1

)
= 2. All other nodes

give coefficient 1. Together we get the factor C(ε) = cf (ε) · cb1(ε) · 1 = 18, the number in square brackets
given below the graph. Now there are two major graphs T (τ1), T (τ2) for which NA(τ1) = NA(τ2) = 5; the
first graph in Figure 6Biv, which has combinatorial term C(τ1) = 6, and the fifth graph in Figure 6Bvi,
which has combinatorial term C(τ2) = 12. These add up to the same value 18 we found for the graph with
contracted roots, agreeing with Equation (1) for r = 5.

Proof. (of Theorem 5.2) We prove this by induction on the number of nodes in the β-tree.

Induction Initial Case

Firstly consider β-trees with N = 2 nodes in total. There are two root nodes A and B of type a and
b, respectively. There are only two possible β-trees depending on whether A and B are linked by a fence.
Now any subtree from S must contain the two roots by Definition 5.4i, so there is only the one subtree
ε = {A,B} to consider. If there is a fence between A and B then by Definition 5.5v, the fence does not
belong to T (ε). Thus for both cases T (ε) contains both root nodes and no edges. Now the only value
that r ∈ 1, ..., N − 1 = 1 can take is 1 and NA(τ) = r = 1; the number of nodes attached to node A is 1.
Now from Theorem 4.1, the combinatorial term associated with each node A and B is 1. Furthermore, the
contracted tree T (ε) is a single node, which similarly has a combinatorial term of 1. We then find that:∑

{τ∈S:NA(τ)=r}
C(τ) = 1.1 = 1 = C(ε)

The result is therefore correct for β-trees with N = 2 nodes.

Inductive Assumption

Next we make the inductive hypothesis that the theorem is true for all β-trees with N ≤ K − 1 nodes,
for some K > 2. We now consider a β-tree T with N = K nodes. We have two root nodes, A and B. The
daughter nodes from these two roots may be either type a nodes from root node B, type b nodes from root
node A, or fences descending from both nodes, as portrayed in Figure 7Ai.

Note also that although the original β-tree T can have type a nodes with major parent A, or type b
nodes with major parent B, they can effectively be assumed to have opposite parentage. More specifically,
if we have a daughter node xa of type a descending from either root node, then when any β-subtree τ
not including xa (such as ε) is used, we find xa is attached to B in T (τ) by Definition 5.5iii. Also, for
any β-subtree τ including xa (such as the entire nodeset from T), we find xa is attached to A in T (τ) by
Definition 5.5ii. When the two roots are contracted in T (ε) we find node xa attached to the single root.
Thus the choice of which root to use as the major parent of xa has no affect on the validity of Equation

17

(1) and we take the root B as stated. The argument for daughter node xb is similar. This is equivalent to
assuming T = T (ε).

Although there may be any number of these type of branches descending from the roots, for the sake a
simpler exposition we provide the proof just for the four branches drawn in Figure 7Ai. The generalization
is relatively straightforward (see comment at end of proof).

Now we require a sum over β-subtrees τ such that NA(τ) = r. That is, we require r nodes in the
component of T (τ) attached to root node A. We suppose that in the original tree T (see Figure 7Ai) there
are na, nb and nf nodes contained in each of the two branches containing nodes a and b, and the two
branches containing the fence f , respectively, where nf = na′+nb′ . We suppose that there are subsequently
ra, rb and rf = ra′ + rb′ of these nodes attached to A in major tree T (τ), such as in Figure 7Aii. The count
r includes node A so we require ra + rb + rf = r − 1.

Now C(τ) is a product of terms across the nodes and fences, which can be split into A, B, the nodes in
the two branches containing a and b, and the two branches bridged by fence f . Recalling the terminology
introduced above, we can split the combinatorial term for major tree T (τ) as:

C(τ) = cA(τ) · cB(τ) · Ca(τa) · Cb(τb) · Cf ({τa′ , τb′})

Note that τa, τb, τa′ and τb′ are the subsets of τ the include nodes a, b, a′ and b′ and their descendants,
respectively. Thus when we have trivial β-subtree τ = ε, we find these subsets are empty; τa = τb = τa′ =
τb′ = φ.

The left hand side of Equation (1) can then be split into sums across the four branches as follows:∑
{τ∈S:

nA(τ)=r}

C(τ) =
∑

{ra,rb,rf :
ra+rb+rf
=r−1}

cA(τ)cB(τ) ·
∑
{τa∈Sa:

Na(τa)=ra}

Ca(τa) ·
∑
{τb∈Sb:

Nb(τb)=rb}

Cb(τb) ·
∑

{τa′∈Sa′ ,τb′∈Sb′ :
Nf ({τa′ ,τb′})=rf
∼(τa′ ,τb′=φ)}

Cf ({τa′ , τb′}) (2)

Now the sum is restricted to β-subtrees with r − 1 nodes in the branches descending from A. We have
three branches from node A with node counts ra, rb and rf = ra′ + rb′ , where the two branches containing
a′ and b′ are treated as a single branch in accordance with Theorem 4.1. Thus we find that we associate
node A with the multinomial coefficient:

cA(τ) =

(
r − 1

ra, rb, rf

)
(3)

We similarly find we have:

cB(τ) =

(
K − r − 1

na − ra, nb − rb, nf − rf

)
(4)

We thus have expressions for two terms in Equation (2). To calculate the remaining terms we show
that each branch corresponds to a smaller β-tree (< K − 1 nodes) which will enable us to use the inductive
hypothesis. We have three cases to consider.

Case I: Dealing with Type a Branches

Instead of the full β-tree T (represented in Figure 7Ai), consider the β-tree in Figure 7Bi which we
obtain by removing all branches except the branch containing a, removing edge B → a and contracting
nodes A to a together. We call the resulting β-tree T ′. The corresponding major graphs for T and T ′ are
represented in Figures 7A,Bii.

Now every β-subtree τ ′ of T ′ can be written as τ ′ = {τa, B} for some τa ∈ Sa. This correspondence
applies for every τa 6= φ. For this single case, τa = φ we find the root a for T ′ is missing from {τ,B}, and
we do not have a valid β-subtree of T ′. We thus treat the two cases of τa = φ and τa 6= φ separately.

Case Ia (τa = φ). Now the major branch of 2d-tree T containing a is unmodified in T (τ). Thus all
na nodes in the branch containing the a node are in one component connected to the root B node, and
so Na(τa) = ra = 0. Now for any τa 6= φ, node a is attached to the root A in T (τ) by Definition 5.5ii, so
ra > 0. Thus the only case with ra = 0 is τa = φ. For this case we note that Ca(τa) = Ca(ε), and the
following equation holds true.

18

∑
{τa∈Sa:

Na(τa)=ra}

Ca(τa) = Ca(ε) (5)

Case Ib (τa 6= φ) We next verify Equation (5) for values ra 6= 0.
Now for τa 6= φ we have well defined β-subtrees τ ′ = {τa, B}. Furthermore, the descendants of root

a in the major graph T ′(τ ′) match the descendants of node a in major graph T (τ), and we find that the
combinatorial term associated to tree T ′(τ ′) will be precisely Ca(τa). Noting that T ′ has at least one less
node than T , we can apply the inductive hypothesis using Equation (1) to T ′ and hence derive Equation
(5) for the remaining cases where ra > 0.

Case II: Dealing with Type b Branches

By a symmetric argument on the branch with node b we obtain an analogous equation of the form:∑
{τa∈Sb:

Nb(τb)=rb}

Cb(τb) = Cb(ε) (6)

Case III: Dealing with Daughter Fences

We are interested in the remaining combinatorial term Cf ({τa′ , τb′}) from Equation (2) that we have
yet to examine. This corresponds to the two branches containing nodes a′ and b′, and the fence f between
them. We thus define β-tree T ′ as the restriction of T to these two branches (see Figure 7Ci). If we also
remove the fence f , we get the β-tree in Figure 7Di, which we call T ′′. We use terms, such as C ′ and C ′′

for example, to refer to combinatorial terms associated to T ′ and T ′′.
The reason for doing this is because the combinatorial terms of the two sets of induced major graphs

are closely related, which we will exploit. For example, in Figure 6A we see a β-tree with a fence and in 6B
we see the same β-tree with the fence removed. The combinatorial terms (in square brackets below each
graph in Figures 6A,Biii-vi) are identical in all cases except when either τa′ = φ or τb′ = φ is empty.

First consider T ′′. For the graph in Figure 7Di we have nb′ nodes descending from node A and na′ from
node B. Now because there is no fence f present in T ′′ we have two separate branches; one from root A
down the branch containing node b′, the other from root B down the branch containing node a′. We can
then apply the same methods as Cases I and II above to conclude Equation (1) is valid for T ′′ (Figure 7D).
This gives us: ∑

{τa′∈Sa′
τb′∈Sb′

Nf ({τa′ ,τb′})=rf}

C ′′(τa′ , τb′) = C
′′
a′(ε) · C

′′
b′(ε) ·

(
na′ + nb′

na′

)
= Ca′(ε) · Cb′(ε) ·

(
na′ + nb′

na′

)
(7)

Here we have used the fact that the components C
′′
a′(ε) and C

′′
b′(ε) derived from the β-tree T ′′ (corre-

sponding to the two triangles in Figure 7Diii) are identical to the components Ca′(ε) and Cb′(ε) derived
from the original β-tree T (see Figure 7Aiii). The combinatorial term

(
na′+nb′
na′

)
arises because when the two

root nodes are contracted together the single resulting node has two descending branches containing na′

and nb′ nodes (see Figure 7Diii), and we then apply Theorem 4.1.
Now we want the corresponding sum to Equation (7) for tree T ′. We have four cases to consider de-

pending on whether τa′ or τb′ are empty.

Case IIIi (τa′ , τb′ 6= φ) Now if both subsets τa′ and τb′ are non-empty, we find from Lemma 5.3v that
node a′ is attached to root A and node b′ is attached to root B, and the fence is not part of T ′. This results
in the identical situation to T ′′, where there was no fence f in the first place. We then find that:∑

{τa′ 6=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) =
∑
{τa′ 6=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′′({τa′ , τb′}) (8)

19

A Bi

ii

A

a a’ b’ b

na

Ta’

na’

Ta
TbTb’

nb

nb’

r N-r

n1-r1 rb
rb’

ra ra’
nb-rbna’-ra’

nb’-rb’

Ta Ta’
Tb’

Tb

Bi a

Ta

ii

na-ra
Ta

ra

na

A BiC

a’ b’

Ta’

na

Tb’

nb

ii r’ N-r’

rb’ra’

na’-ra’
nb’-rb’

Ta’ Tb’

AB
iii

a a’ b’ b

na

Ta’

na’

Ta
TbTb’

nbnb’

iii
aB

Ta

na

Ba

B

AB
iii

a’ b’

Ta’

na’

Tb’

nb’

A BiD

a’ b’

Ta’

na

Tb’

nb

ii r’ N-r’

rb’ra’

na’-ra’
nb’-rb’

Ta’ Tb’

AB
iii

a’ b’

Ta’

na’

Tb’

nb’

f f

Figure 7: A) The general form of a 2d-tree. Triangles indicate a 2d-tree substructure. Dashed lines indicate possible presence
of a fence. B) Reduction to a single branch. C) Reduction to a descending fence. D) The graphs of C with the fence removed.
i) 2d-trees. ii) Trees T (τ). iii) Trees T (τ) after root node contraction.

An example of this can be seen in Figure 6A,Bvi, where the combinatorial terms (in square brackets)
are equal between the two groups.

Now from Equation (2) we are interested in the subsets τa′ and τb′ such that the number of nodes either
bridged by, or descending from, fence f is equal to rf = ra′ + rb′ for some value rf . We have just seen that
when τa′ and τb′ are both non-empty, the two sums in Equation (5) corresponding to trees T ′ and T ′′ are
equal for all values of rf . For the remaining three cases, where at lease one of τa′ and τb′ is empty, we will
see that there is a constant difference between the sums arising from trees T ′ and T ′′. Furthermore, the
value rf will be seen to arise in exactly one of these three cases.

Case III ii (τa′ , τb′ = φ and rf = nb′) The β-subtree τ = ε is trivial and there are no changes to the
major graph. We then find there are nb′ nodes present in the branch descending from A in T ′′(τ). We thus
find this case applies if rf = nb′ . Now this situation does not apply to T ′ (when the fence f is present). The
parental nodes of f (the roots in this case) lie in τ = ε, so one of the two nodes bridged by f must lie in the
β-subtree τ by Definition 5.4ii. We thus find that although ε ∈ S ′′ in a valid β-subtree for T ′′, ε 6∈ S ′ is not a
valid β-subtree for T ′ (Figure 6A,Biii only has a contribution for the fenceless graph, for example). For T ′′,
the trivial conditions τa′ , τb′ = φ result in a single induced major tree (corresponding to Figure 7Di), with
major edges that match the original β-tree T , and we obtain combinatorial term C ′′f (ε) = Ca′(ε) · Cb′(ε).
We thus find: ∑

{τa′ 6=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) =
∑
{τa′ 6=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′′(τa′ , τb′)− Ca′(ε) · Cb′(ε) (9)

Case III iii (τa′ = φ, τb′ 6= φ and rf < nb′) Now τa′ is trivial, so the arm descending from B containing
node a′ is unchanged from the original major graph for both trees T ′ and T ′′, and all na′ nodes remain in the
component of the major graph containing B (ra′ = 0). After the changes induced by τb′ , the other arm splits
with rb′ nodes belonging to the component of the major tree containing A, and nb′ − rb′ nodes belonging
to the component containing B. Thus in total there are rf = rb′ nodes from the original two branches that
end up in the component of the major graph containing A, for some rb′ ∈ {1, 2, ..., nb′ − 1}. This case will
thus apply provided rf < nb′ . Now the combinatorial term from the unmodified a′ branch matches those
from the original β-tree; Ca′(ε). Now in the tree T ′′ (without the fence f) the branch containing node b′

can be treated with the inductive hypothesis, like Case II above, and we find that:

20

∑
{τa′=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′′(τa′ , τb′) = Ca′(ε)·
∑
{τb′ 6=φ

Nb′ (τb′)=rf}

C ′′b′(τb′)·
(
nb′ − rb′ + na′

na′

)
= Ca′(ε)·Cb′(ε)·

(
nb′ − rb′ + na′

na′

)

(10)
Here we pick up a combinatorial factor

(
nb′−rb′+na′

na′

)
from the two branches descending from node B.

Now for the tree T ′ (with fence f), the only combinatorial factor that differs between any pair of induced
major trees T ′(τ) and T ′′(τ), is the combinatorial term from node B in T ′′(τ), which becomes the fence
factor for f ;

(
nb′−rb′+na′

na′

)
− 1 in T ′(τ). That is:

C′′({τa′ ,τb′})
(nb′−rb′+na′

na′
)

=
C′({τa′ ,τb′})

(nb′−rb′+na′
na′

)−1
.

Substituting this into Equation (10) gives us:∑
{τa′=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) = Ca′(ε) · Cb′(ε) ·
((

nb′ − rb′ + na′

na′

)
− 1

)
(11)

Then subtracting Equation (11) from Equation (10) reveals the same constant difference observed in the
previous case: ∑

{τa′=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) =
∑
{τa′=φ
τb′ 6=φ

NA=rf+1}

C ′′({τa′ , τb′})− Ca′(ε) · Cb′(ε) (12)

Case III iv: (τb′ = φ, τa′ 6= φ and rf > nb′) The argument is analogous to Case III ii and the same
difference is obtained where we find:∑

{τa′ 6=φ
τb′=φ

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) =
∑
{τa′ 6=φ
τb′=φ

NA=rf+1}

C ′′({τa′ , τb′})− Ca′(ε) · Cb′(ε) (13)

Thus in all three cases (III i-iii) the difference between the tree with and without the fence is Ca′(ε) ·
Cb′(ε). Furthermore, for any single value of rf , one of these three cases is applicable. We thus find, using
Equations (9), (12) and (13) with (8) that:∑

{τa′∈Sa′
τb′∈Sb′

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) =
∑

{τa′∈Sa′
τb′∈Sb′

Nf ({τa′ ,τb′})=rf}

C ′′({τa′ , τb′})− Ca′(ε) · Cb′(ε)

Then substituting this into Equation (7) gives us:∑
{τa′∈Sa′
τb′∈Sb′

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) = Ca′(ε) · Cb′(ε) ·
(
na′+nb′
na′

)
− Ca′(ε) · Cb′(ε)

= Ca′(ε) · Cb′(ε) · (
(
na′+nb′
na′

)
− 1)

(14)

Now C ′({τa′ , τb′}) matches the combinatorial term from the fence and its descendants, Cf ({τa′ , τb′}).
Furthermore Ca′(ε), Cb′(ε) and (

(
na′+nb′
na′

)
− 1) match the terms in the graph T obtained from the branch

containing node a′, the branch containing node b′, and fence f (by Theorem 4.1), and so equal C
′
(ε). Thus

we find that: ∑
{τa′∈Sa
τb′∈Sb′

Nf ({τa′ ,τb′})=rf}

Cf ({τa′ , τb′}) = Cf (ε) (15)

21

Completing the Induction

Thus finally substituting Equations (3), (4), (5), (6) and (15) into Equation (2) we find that we have:∑
{τ∈S:NA(τ)=r}

C(τ) = Ca(ε) · Cb(ε) · Cf (ε) ·
∑

{ra,rb,rf :
ra+rb+rf
=r−1}

(
r−1

ra,rb,rf

)(
K−r−1

na−ra,nb−rb,nf−rf

)

Then applying the multinomial version of the Vandermonde identity [20] results in:∑
{τ∈S:NA(τ)=r}

C(τ) = Ca(ε) · Cb(ε) · Cf (ε) ·
(

K−2
na,nb,nf

)
However, the multinomial coefficient is identical to the combinatorial term we get if nodes A and B are

contracted to a single root. In Figure 7Aiii we see two branches containing nodes na and nb, these have
combinatorial terms equal to Ca(ε) and Cb(ε). We also have fence f bridging the two branches containing
nodes na′ and nb′ . Application of Theorem 4.1 to f for the root contracted graph T (ε) (given in Figure
7Aiii) returns precisely the term

(
K−2

na,nb,nf

)
. We thus find that we have all the coefficients of C(T) and

Equation (1) is obtained.
If we have more than one branch descending from the root nodes, the only change to the argument

above is that we sum over a greater number of ri values. The Vandermonde identity still applies and the
same result is obtained.

5.4 Proving the Main Result

Finally, we can use this inductive relationship to determine the number of different evolutions that arise
from a TD process, and prove our main result.

Proof. (Proof of Theorem 5.1) Let E ∈ Wn−1 be a word evolution on n − 1 TDs with 2d-tree T , and
E(E) ⊂ Wn the corresponding subset of induced evolutions. Let N (E) and N (E(E)) denote the number of
TD-Evolutions corresponding to word evolution E, and set of induced word evolutions E(E), respectively.
Now for every induced evolution E′ we know that there corresponds a 1-nodeset τ such that the major
graph Tmaj(E

′) corresponding to E′ is obtained from Lemma 5.3. By Definition 5.4, τ is also a β-subtree,
and we have an induced major graph T (τ). We also know from Theorem 5.2 that for any induced major
graph T (τ) we can sum C(τ) over the β-subtrees τ to obtain C(ε).

Now the difference between T (τ) and the major graph Tmaj(E) is that the latter has a fence between
the two root nodes, this difference arising from Lemma 5.3vi.

Now E′ is a word evolution on n TDs so Tmaj(τ) has 2n nodes. Furthermore, Tmaj(E
′) can have r nodes

at the type a root, for some r = {1, 2, ..., 2n − 1}, along with 2n − r nodes at the type b root. Then given
the extra fence between the roots, by Theorem 4.1, the number of TD-Evolutions associated with Tmaj(E

′)
is given by (

(
2n
r

)
− 1)C(τ). Then, using Theorem 5.2, the total number of TD-Evolutions induced by E is

given by:

N (E(E)) =
2n−1∑
r=1

∑
{τ∈S:NA(τ)=r}

(
(
2n
r

)
− 1)C(τ) =

2n−1∑
r=1

(
(
2n
r

)
− 1) ·

∑
{τ∈S:NA(τ)=r}

C(τ)

=
2n−1∑
r=1

(
(
2n
r

)
− 1) · C(ε)

= C(ε) · ((
2n∑
r=0

(
2n
r

)
− 2)− (2n− 1))

= C(ε).(22n − (2n+ 1))

Now by Theorem 4.1 C(ε) is the number of TD-Evolutions associated with word evolution E. Thus we
have:

N (E(E)) = N (E) · (4n − (2n+ 1)) (16)

22

Furthermore, by Corollary 5.1, the set of induced evolutions from Wn−1 gives rise to a disjoint union
of Wn. Thus summing Equation (16) across all E ∈ Wn−1 gives Nn = Nn−1 · (4n − (2n + 1)). Starting a
recursion from the single TD-Evolution with N1 = 1 then proves the theorem.

6 Conclusions

We have seen in Table 1 from our main result that the number of different evolutions increases with
uncompromising velocity. This means that beyond five or six tandem duplications it is at present unrealistic
to attempt to computationally explore this space in its entirety. This makes it difficult to compare any
observations to the set of possibilities. This is further compounded by the non-uniqueness of copy number
vectors, which grow at a far slower rate than the number of evolutions. This means that even if the precise
copy number vector is known, it will correspond to a multitude of evolutions, all of which explain the data
equally well. One could attempt to apply the type of analyses of [21] to TDs; it is an open problem to
determine the number of copy number vectors, or even an efficient algorithm to determine whether a copy
number vector can arise from a process of tandem duplication under the assumption of unique breakpoint
use. We see from Table 1 that including the somatic connectivity information of TD-Graphs improves the
situation and more evolutions can be distinguished, however, we still have a degeneracy and the underlying
evolution cannot necessarily be identified. The development of suitable combinatoric approaches to count
the number of possible TD-Graphs (rather than the implemented brute force approach of a computer) also
remains an open problem.

The methods utilized in this work largely parallel those used to examine breakage fusion cycles [22].
These are a distinct form of rearrangement which suggest there may be a more general space in which
rearrangements operate and these methods apply. Given that tandem duplication and breakage fusion
cycles are leading candidate rearrangements in the formation of large scale copy number increases such
as those found in amplicons in cancer, a generalization of these methods to the combined space of these
rearrangement processes may help to better understand their evolution.

In this study we have treated the process in a strictly discrete manner. However, one could consider
TD as a continuous process on the real line (or stretch of DNA) and investigate the relative likelihoods of
different structures arising, as has been done with breakage fusion bridge cycles in [22].

The methods above and in [22] can be viewed as mathematical operations on the real line. It would seem
plausible that other duplication mechanisms beyond those found in biological rearrangements would yield
to similar analyses, which may shed light on the applicability of these methods which link combinatorics,
general automaton on symbolic algebra and duplicating mappings on intervals.

References

[1] Ohno S., 1970, Evolution by gene duplication, Springer-Verlag.

[2] Nye TMW, 2009, Modelling the evolution of multi-gene families, Stat Methods Med Res, 18(5), 487-504.

[3] McBride DJ, Etemadmoghadam D, Cooke SL, Alsop K, George J, Butler A, Cho J, Galappaththige D, Greenman CD,
Howarth KD, Lau KW, Ng CK, Raine K, Teague J, Wedge DC, Australian Ovarian Cancer Study Group, Caubit X,
Stratton MR, Brenton JD, Campbell PJ, Futreal PA, Bowtell DDL, (2012), Tandem duplication of chromosomal segments
is common in ovarian and breast cancer genomes, J. Pathology, 227(4), 446 - 455.

[4] Raphael BJ, Pevzner PA. 2004. Reconstructing tumor amplisomes. Bioinformatics 20: i265–i273.

[5] Raphael BJ, Volik S, Collins C, Pevzner PA. 2003. Reconstructing tumor genome architectures. Bioinformatics 19:
ii162–ii171.

[6] Zhang C, Leibowitz ML and Pellman D, 2013, Chromothripsis and beyond: rapid genome evolution from complex chro-
mosomal rearrangements, Genes Dev., 27, 2513-2530.

[7] Gascuel O, Hendy MD, Jean-Marie A, McLachlan R, 2003, The combinatorics of tandem duplication trees, Syst Biol.,
52(1), 110-8.

[8] Yang J and Zhang L, On Counting Tandem Duplication Trees, 2004, Mol. Biol. Evol., 21(6), 1160-1163.

[9] Bertrand D, Lajoie M, and El-Mabrouk N, 2008, Inferring Ancestral Gene Orders for a Family of Tandemly Arrayed Genes,
J. of Comp. Biology, 15(8), 1063-1077.

[10] Greenman CD, Pleasance ED, Newman S, Yang F, Fu B, Nik-Zainal S, Jones D, Lau KW, Carter N, Edwards PA, Futreal
PA, Stratton MR, Campbell PJ (2011) Estimation of rearrangement phylogeny for cancer genomes, Genome Research,
22(2):346-61.

[11] Bentley JL, 1975, Multidimensional binary search trees used for associative searching, Comm ACM, 18, 509-517.

23

[12] Turtle H and Croft WB, 1991, Evaluation of an Inference Network-Based Retrieval Model, ACM Transactions on Infor-
mation Systems, 9(3), 187-222.

[13] Griffiths RC and Marjoram P, 1996, Ancestral inference from samples of DNA sequences with recombination, J. Comp.
Biol., 3(4), 479-502.

[14] Kirkpatrick B, Reshefy Y, Finucanez H, Jiangx H, Zhu B and Karp RM, 2010, Comparing Pedigree Graphs,
arXiv:1009.0909v2.

[15] Allouche J. and Shallit J. 2003, Automatic Sequences, Theory, Applications, Generalizations, CUP.

[16] Neggers J and Kim H S, 1998, Basic Posets, World Scientfic.

[17] Karzanov A and Khachiyan L, 1991, On the Conductance of Order Markov Chains, Order, 8, 7-15.

[18] Brightwell G and Winkler P, 1991, Counting linear extensions, Order, 8(3), 225-242.

[19] Semple C and Steel M, 2009, Phylogenetics, OUP.

[20] Zeng J, 1996, Multinomial convolution polynomials, Discrete Math., 160 (1–3), 219–228.

[21] Kinsella M and Bafna V, 2012, Modelling the Breakage-Fusion-Bridge Machanism: Combinatorics and cancer Genomics,
RECOMB 2012, LNBI 7262, 148-162.

[22] CD Greenman, SL Cooke, J Marshall, MR Stratton, PJ Campbell, 2013, Modelling Breakage-Fusion-Bridge Cycles as a
Stochastic Paper Folding Process, arXiv:1211.2356.

24

http://arxiv.org/abs/1211.2356

	1 Introduction
	2 Representation
	3 Word Representations
	4 Counting Evolutions With Posets
	5 The Size of TD Space
	5.1 A Motivating Example
	5.2 Induced Evolutions
	5.3 -trees
	5.4 Proving the Main Result

	6 Conclusions
	References

