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Abstract. The UK is one of several countries around the

world that has enacted legislation to reduce its greenhouse

gas emissions. In this study, we present top-down emissions

of methane (CH4) and nitrous oxide (N2O) for the UK and

Ireland over the period August 2012 to August 2014. These

emissions were inferred using measurements from a network

of four sites around the two countries. We used a hierarchi-

cal Bayesian inverse framework to infer fluxes as well as a

set of covariance parameters that describe uncertainties in

the system. We inferred average UK total emissions of 2.09

(1.65–2.67) Tg yr−1 CH4 and 0.101 (0.068–0.150) Tg yr−1

N2O and found our derived UK estimates to be generally

lower than the a priori emissions, which consisted primar-

ily of anthropogenic sources and with a smaller contribution

from natural sources. We used sectoral distributions from the

UK National Atmospheric Emissions Inventory (NAEI) to

determine whether these discrepancies can be attributed to

specific source sectors. Because of the distinct distributions

of the two dominant CH4 emissions sectors in the UK, agri-

culture and waste, we found that the inventory may be over-

estimated in agricultural CH4 emissions. We found that an-

nual mean N2O emissions were consistent with both the prior

and the anthropogenic inventory but we derived a signifi-

cant seasonal cycle in emissions. This seasonality is likely

due to seasonality in fertilizer application and in environ-

mental drivers such as temperature and rainfall, which are

not reflected in the annual resolution inventory. Through the

hierarchical Bayesian inverse framework, we quantified un-

certainty covariance parameters and emphasized their im-

portance for high-resolution emissions estimation. We in-

ferred average model errors of approximately 20 and 0.4 ppb

and correlation timescales of 1.0 (0.72–1.43) and 2.6 (1.9–

3.9) days for CH4 and N2O, respectively. These errors are a

combination of transport model errors as well as errors due

to unresolved emissions processes in the inventory. We found

the largest CH4 errors at the Tacolneston station in eastern

England, which may be due to sporadic emissions from land-

fills and offshore gas in the North Sea.

1 Introduction

Methane (CH4) and nitrous oxide (N2O) are the second and

third most important long-lived greenhouse gases after car-

bon dioxide (CO2) and have 100-year global warming po-

tentials with climate-carbon feedback of 34 and 298, respec-

tively (Myhre et al., 2013). Because of their importance to

climate, there is considerable interest in quantifying emis-

sions at the national level for the purposes of policy and re-

duction measures.

In 2008, the UK brought into legislation the Climate

Change Act 2008 (http://www.legislation.gov.uk/ukpga/

2008/27/contents) with the legally binding target to reduce

the country’s CO2 equivalent emissions (by global warm-

ing potential) by at least 80 % of 1990 levels by 2050. As

part of the efforts over the past several decades to quantify

emissions, the UK government produces the National At-

mospheric Emissions Inventory (NAEI, http://naei.defra.gov.

uk), which currently includes a yearly gridded 1 km× 1 km

sectoral inventory of UK anthropogenic emissions of the ma-
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jor greenhouse gases (Fig. 1). National total emissions from

this inventory are submitted yearly to the United Framework

Convention on Climate Change (UNFCCC, www.unfccc.

int), which requires developed countries to annually report

their emissions of CO2, CH4, N2O, sulfur hexafluoride (SF6),

hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs). In

2012, the UK reported 2.42 Tg yr−1 CH4 with an uncertainty

of 20 % and 0.116 Tg yr−1 N2O with an uncertainty of 69 %

in the UNFCCC 2014 UK National Inventory Report. Of all

the gases in the UK inventory, N2O has the highest emissions

uncertainty. In the same year, Ireland reported 0.575 Tg yr−1

CH4 with an uncertainty of 20 % and 0.024 Tg yr−1 N2O

with an uncertainty of 88 % in the Ireland National Inventory

Report.

Globally, emissions of these gases into the atmosphere

come from both biogenic and anthropogenic sources. In the

UK however, anthropogenic sources dominate over natural

sources (Tables 1 and 2 and references therein). The principal

anthropogenic sources of CH4 in the UK in 2012, as reported

from NAEI inventories, were from agriculture (44 % of an-

thropogenic emissions), waste (40 %) and energy (15 %). For

N2O, NAEI reported emissions were largely from agricul-

tural soils (75 %), followed by fuel combustion (11 %) and

animal waste management (8 %). Tables 3 and 4 provide the

contribution of the major anthropogenic and natural sources

to the UK and Ireland inventory totals.

Alongside efforts to maintain a detailed bottom-up inven-

tory, which compiles information using emissions factors

and source information, four monitoring stations were imple-

mented around the UK and Ireland to infer emissions through

top-down methods using atmospheric observations. Quantifi-

cation of emissions at the national level requires dense mea-

surement networks to provide enough coverage and informa-

tion to constrain fluxes at high resolution. The four green-

house gas stations of the UK DECC (Deriving Emissions

linked to Climate Change) network were situated to constrain

emissions of potent greenhouse gases from the UK. These

four stations are located at Mace Head (MHD, 53.33◦ N,

9.90◦W, 25 ma.s.l.) on the western coast of Ireland, and

telecommunication towers at Ridge Hill (RGL, 52.00◦ N,

2.54◦W, 204 ma.s.l.) in western England, Tacolneston (TAC,

52.52◦ N, 1.14◦ E, 56 ma.s.l.) in eastern England and An-

gus (TTA, 56.56◦ N, 2.99◦W, 400 ma.s.l.) in eastern Scot-

land. While operations at Mace Head have been supported

by the UK government for several decades, the latter three

sites were funded by the UK’s Department of Energy and

Climate Change beginning in 2011. With the exception of

Angus, which currently only measures CO2 and CH4, the re-

maining sites are additionally equipped to monitor N2O and

SF6.

Emissions of CH4 and N2O have previously been esti-

mated both globally and regionally for the UK and north-

west Europe using inverse methods (Manning et al., 2011;

Corazza et al., 2011; Bergamaschi et al., 2015). While global

emissions have been estimated to be around 554± 56 and

15.7± 1.1 Tg-N yr−1 (Prather et al., 2012), respectively, re-

gional and national-scale emissions are significantly more

uncertain. Manning et al. (2011) used a regional approach to

infer emissions for the UK using measurements from Mace

Head, Ireland and found the UK’s contribution in 2007 to be

1.9 (0.8–3.3) Tg yr−1 CH4 and 0.070 (0.055–0.090) Tg yr−1

N2O. Bergamaschi et al. (2015), using a variety of global

and regional approaches, derived 2006–2007 emissions for

the UK and Ireland that ranged between 2.5–4.8 Tg yr−1 for

CH4 and 0.07–0.17 Tg yr−1 for N2O, depending on the in-

version method and chemical transport model (with NAME

derived emissions generally being lower than those from the

other studies). The large range in derived emissions, which

were almost always larger than the individual uncertainties

of each model/inversion, highlights the need for robust uncer-

tainty quantification and investigation into systematic model

errors.

The objectives of this study were to: (1) quantify UK and

Ireland emissions of CH4 and N2O using atmospheric ob-

servations for the period of August 2012 to August 2014;

(2) use spatial patterns in derived emissions to understand

sources of discrepancy between the top-down and bottom-up

inventories at the sectoral and regional levels; (3) quantify

critical uncertainty parameters, including spatially and tem-

porally varying variances and correlations using a hierarchi-

cal Bayesian inverse method (Ganesan et al., 2014); (4) use

the derived parameters to inform development of national-

scale monitoring networks.

2 Measurements

Information about the network stations and measurement

setup has been summarized in Table 5. Observations of at-

mospheric CH4 and N2O mole fraction have been collected

since 1987 and 1978, respectively, at Mace Head, Ireland,

which is one of the core long-term observatories of the Ad-

vanced Global Atmospheric Gases Experiment (AGAGE).

Ambient air measurements were made on a gas chromato-

graph (GC, Agilent 5890) equipped with a flame ionization

detector (FID, Carle) for CH4 and electron capture detec-

tor (ECD, Agilent) for N2O every 40 min. Standards were

filled wet in electropolished stainless steel cylinders and were

calibrated on the Tohoku University and SIO-98 calibration

scales, respectively. A detailed description of the methodol-

ogy can be found in Prinn et al. (2000).

Measurement at the telecommunications towers at

Ridge Hill, Tacolneston and Angus have been made since

March 2012, July 2012 and March 2011, respectively, with

CH4 measurement occurring at all three sites and N2O

measurement occurring only at Ridge Hill and Tacolne-

ston (http://www.metoffice.gov.uk/atmospheric-trends/).

Methane analysis was conducted using a Picarro Cavity

Ring Down spectrometer (CRDS). Ridge Hill and Tacolne-

ston were equipped with the G2301 CRDS instrument
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Figure 1. A priori emissions of CH4 and N2O in log10 (g gridcell−1 s−1). (Left) Major UK anthropogenic source sectors from the National

Atmospheric Emissions Inventory. (Right) Annual average of total a priori emissions, including natural and anthropogenic sources for all

countries. Colored circles show the measurement stations (MHD, yellow; RGL, magenta; TAC, cyan; TTA, green.)

Table 1. Sources of a priori emissions used in the CH4 study. Superscript µ denotes that these are the median values of the distribution.

Parameter Category Prior

xµ

Anthropogenic NAEI or 2008 EDGAR 4.2 scaled to UNFCCC country totals (JRC/PBL, 2011)

Wetlands and rice 2008 emissions from Bloom et al. (2012) scaled by percentage of natural soil (Morton et al., 2011; EEA, 2007)

Biomass burning 2008 emissions from GFED v 3.1 (van der Werf et al., 2010)

Other natural Fung et al. (1991)

Soil sink Bousquet et al. (2006)

xµ
Polynomial baseline Fit to statistically observed baseline at Mace Head over 2012–2013

Offsets Median fraction-weighted difference between upper air influenced observations and baseline / zero for horizontal directions

σ
µ
x Emissions Lognormal SD corresponding to national scale emissions uncertainty of 50 %

σ
µ
x

Polynomial baseline Uncertainties from fit calculation

Offsets 10 ppb

σ
µ
yt SD of observations at all sites in each 2 day period

σ
µ
ys SD of observations at each site over the month

τµ 2 days (typical duration of pollution events)

νµ 0.5 (exponential)

lµ 250 km (smallest distance between the four measurement sites)

continuously over the measurement period and employed

sample drying using a Nafion membrane driven by a dry

countercurrent gas. Angus measurements were made on the

G1301 series until May 2013, after which a G2301 model

was installed. No sample drying was employed at this site.

A water vapor correction (as measured by the instrument)

was used at all sites and all measurements were calibrated

using dry standards filled in aluminum cylinders. Methane

observations were calibrated on the NOAA-2004 calibra-

tion scale and were converted to the Tohoku University

scale for consistency with Mace Head observations using

a calibration factor of 1.0003 (Dlugokencky et al., 2005).

Sampling heights on the towers were 45 and 90 ma.g.l.

at Ridge Hill; 54, 100 and 185 ma.g.l. at Tacolneston and

222 ma.g.l. at Angus. For stations with multiple inlets,

each height was sampled sequentially. In this study, an

average measurement of the two lowest heights was used

(measurements from 185 ma.g.l. at Tacolneston were not

used due to the additional complexity of representing this

height in the boundary layer).

Nitrous oxide observations at the telecommunication

tower sites were made approximately every 10 min on a GC-

ECD system, based on the system described in Ganesan et al.

(2013) and Hall et al. (2011) and were calibrated on the SIO-

98 scale. For the N2O configuration, measurements at Ridge

Hill and Tacolneston were only made at 90 and 100 ma.g.l.,

respectively.
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Table 2. Same as Table 1 but for N2O.

Parameter Category Prior

xµ

Anthropogenic NAEI or 2008 EDGAR 4.2 scaled to UNFCCC country totals (JRC/PBL, 2011)

Natural soils 2008 emissions from Saikawa et al. (2013) scaled by percentage of natural soil (Morton et al., 2011; EEA, 2007)

Biomass burning 2008 emissions from GFED v 3.1 (van der Werf et al., 2010)

Ocean Manizza et al. (2012)

xµ
Polynomial baseline Fit to statistically observed baseline at Mace Head over 2012–2013

Offsets Median fraction-weighted difference between upper air influenced observations and baseline/zero for horizontal directions

σx
µ Emissions Lognormal SD corresponding to national scale emissions uncertainty of 100 %

σx
µ Polynomial baseline Uncertainties from fit calculation

Offsets 2 ppb

σyt
µ SD of observations at all sites in each 2 day period

σys
µ SD of observations at each site over the month

τ 2 days (typical duration of pollution events)

ν 0.5 (exponential function)

l 250 km (smallest distance between the four measurement sites)

Table 3. A priori emissions of major source sectors in Tg yr−1 and percent contribution to UK emissions

Species Prior January emissions July emissions

(% of total) (% of total)

CH4

Anthropogenic, agriculture 1.06 (40) 1.06 (39)

Anthropogenic, waste 0.97 (36) 0.97 (35)

Anthropogenic, energy 0.29 (11) 0.29 (11)

Wetlands and rice 0.19 (7) 0.26 (9)

Other 0.17 (6) 0.17 (6)

N2O

Anthropogenic, agriculture 0.087 (72) 0.087 (68)

Anthropogenic, fuel combustion 0.013 (11) 0.013 (11)

Anthropogenic, animal waste management 0.009 (8) 0.009 (7)

Natural soils 0.006 (5) 0.013 (10)

Other 0.005 (4) 0.005 (4)

Measurements were averaged over 2 h, both day and night.

This period was chosen to minimize data volume and to be

consistent with the sampling period of the halocarbon mea-

surement system in the network. Data were filtered for lo-

cal influence using a transport model. Measurements corre-

sponding to times when there was a high sensitivity of mole

fractions to emissions from the nine grid cells surrounding

the station (at 25 km resolution) were identified as being

likely to be affected by local processes due to the more stag-

nant air. Local processes act on scales that are smaller than

the spatial and temporal resolutions of the model and there-

fore would not be captured by the model. Furthermore, local

processes tend to have a high impact on observations and

would therefore lead to large errors in retrieved fluxes. For

these reasons, measurements considered to be prone to local

effects were removed from the analysis. Approximately 17

(16), 14 (16) , 8 (8) and 4 % of data was filtered from MHD,

RGL, TAC and TTA for CH4 (N2O), respectively.

For CH4 observations, the measurement uncertainty was

described by the variability of 1 min data in the 2 h averaging

period. For N2O observations, measurement uncertainty was

the sum in quadrature of the instrument precision (calculated

as the standard deviation, SD, of the approximately hourly

measurements of the standard each day) and the variability

in the averaging period. Typical measurement uncertainties

were 10 ppb CH4 and 0.3 ppb N2O. Model errors (due to

transport errors as well as errors due to unresolved processes)

were estimated as part of the inversion framework.

3 Atmospheric transport model

The UK Met Office model, NAME III (Numerical Atmo-

spheric dispersion Modelling Environment version 3, hence-

forth called NAME) was used to quantify the relationship

between surface emissions and simulated measurements at

each observation point and time. For each 2 h period, NAME

tracked particles backwards in time for 30 days and as parti-

cles were transported through the three-dimensional model,

recorded the mass of particles and amount of time spent inter-

acting with the first hundred m.a.g.l. (i.e., the surface). This

Atmos. Chem. Phys., 15, 6393–6406, 2015 www.atmos-chem-phys.net/15/6393/2015/
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Table 4. A priori emissions of major source sectors in Tg yr−1 and percent contribution to Ireland emissions.

Species Prior % of Ireland % of Ireland

emissions (January) emissions (July)

CH4

Anthropogenic, agriculture 0.45 (70) 0.45 (68)

Anthropogenic, fugitive emissions 0.07 (11) 0.07 (10)

Anthropogenic, waste 0.05 (7) 0.05 (7)

Wetlands and rice 0.05 (8) 0.08 (12)

Other 0.03 (4) 0.02 (3)

N2O

Anthropogenic, agriculture 0.020 (80) 0.020 (75)

Anthropogenic, chemical production 0.002 (6) 0.002 (6)

Natural soils 0.001 (5) 0.003 (10)

Other 0.002 (9) 0.002 (9)

Table 5. Ancillary measurement information for the data used this study.

Site Lat, Lon, Height Species Instrument Calibration Sampling heights Measurement

(m.a.s.l) scale (m.a.g.l) availability

MHD 53.33◦ N, 9.90◦W, 25
CH4 GC-FID Tohoku University

10
Jan 1987–Aug 2014

N2O GC-ECD SIO-98 Jul 1978–Aug 2014

RGL 52.00◦ N, 2.54◦W, 204
CH4 Picarro G2301 CRDS NOAA-2004 45, 90

Mar 2012–Aug 2014
N2O GC-ECD SIO-98 90

TAC 52.52◦ N, 1.14◦ E, 56
CH4 Picarro G2301 CRDS NOAA-2004 54, 100

Jul 2012–Aug 2014
N2O GC-ECD SIO-98 100

TTA 56.56◦ N, 2.99◦W, 400 CH4
Picarro G1301 CRDS NOAA-2004

220
Mar 2011–Jan 2013

Picarro G2301 CRDS NOAA-2004 May 2013–Aug 2014

directly provided the sensitivity of concentrations at the mea-

surement site to surface emissions. Twenty thousand parti-

cles were released each hour at a source strength of 1 gs−1.

The model was driven by the Met Office’s Unified Model

(UM) analysis meteorology at 0.352◦× 0.234◦ resolution

(∼ 25 km) with 70 vertical levels. After July 2014, the reso-

lution of the UM meteorology was increased to ∼ 17 km but

NAME output retained the original ∼ 25 km resolution. The

inversion domain extended from approximately 36 to 67◦ N

and −14 to 31◦ E, covering the UK and most of continen-

tal Europe. For the purposes of estimating boundary condi-

tions (discussed further in Sect. 4) a second, larger domain

(9 to 81◦ N and −100 to 46◦ E at resolution 0.563× 0.375 ◦)

was used to identify the origins of air masses that entered the

smaller inversion domain.

A complete description of NAME can be found in Ryall

and Maryon (1998), Morrison and Webster (2005) and Jones

et al. (2007) and of its use in trace gas emissions estimation

in Manning et al. (2011).

4 Inversion framework

We followed the hierarchical Bayesian inversion method-

ology outlined in Ganesan et al. (2014) and extended

this method to solve for additional hyper-parameters. This

method allows for the systematic estimation of fluxes and

critical uncertainty parameters, which was shown to result in

a more complete characterization of uncertainties in the sys-

tem.

For each month of this study, we estimated fluxes from

a set of k regions over Europe (with 64 out of 135 regions

for CH4 and 51 out of 116 regions for N2O occurring over

the UK and Ireland) and parameters governing the boundary

conditions to the domain. The sizes of the estimated regions

were based on the model-derived sensitivities for the mea-

surement sites available for each gas (i.e., Scotland is more

highly resolved for CH4 than for N2O owing to the addi-

tional measurement information at Angus). These unknown

parameters comprised vector x. Sensitivities of mole frac-

tions to emissions from these regions were a priori emis-

sions weighted average of the sensitivities from individual

grid cells and so the distribution of the prior within each re-

gion was retained in the inversion.

4.1 Hyper-parameters

We estimated the mean and standard deviation, µx and σ x ,

respectively, which described the emissions PDF and a set of

hyper-parameters that characterized the model-measurement

www.atmos-chem-phys.net/15/6393/2015/ Atmos. Chem. Phys., 15, 6393–6406, 2015
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likelihood. These were σ yt and σ ys, which described tem-

poral and spatial variances of a separable covariance matrix

(described further below) and correlation parameters, τ , ν

and l. These variances described the mismatch between mod-

eled and observed mole fractions and include the effects of

model error and any errors due to unresolved processes. The

correlation timescale, τ , described an exponentially decaying

temporal correlation and the spatial correlation length-scale,

l, and smoothness parameter, ν, described a Matérn covari-

ance function (Stein, 1999).

T and S are the separable time and space components

of covariance R (described further in Sect. 4.3), where σ yt

contains the variances of T and τ forms the off-diagonals

and σ ys contains the variances of S and ν, l form the off-

diagonals. σ yt was estimated for each 2 day period of the

month and σ ys was derived for each site over the month.

Temporal correlation was represented by Eq. (1) with tij rep-

resenting each element in covariance matrix, T for points i

and j separated by time t . The Matérn covariance function is

a commonly used function in spatial statistics to describe co-

variance between two points, i and j separated by Euclidean

distance, d. It is described by Eq. (2), with sij representing

the elements in spatial covariance matrix, S. 0 is the gamma

function andKν is the modified Bessel function of the second

kind. When ν = 0.5, the Matérn function becomes an expo-

nential covariance function and when ν� 0.5, it approaches

a squared exponential function (similar to Gaussian).

tij =
√
tii ·

√
tjj · exp

(
−t

τ

)
(1)

sij =
√
sii ·
√
sjj ·

1

0(ν)2ν−1

(
√

2ν
d

l

)ν
Kν

(
√

2ν
d

l

)
. (2)

Solving for these hyper-parameters allows us to account

for “uncertainties in uncertainties” and reduce the effect of

subjective assumptions on a priori emissions uncertainties,

model uncertainties and correlation scales. Fluxes, boundary

conditions and hyper-parameters were informed by the data,

z, through a Markov chain Monte Carlo (MCMC) frame-

work, which has previously been shown to result in a more

complete uncertainty quantification because these parame-

ters and their uncertainties are passed systematically through

the inversion (Ganesan et al., 2014; Rigby et al., 2011).

4.2 Boundary conditions

Boundary conditions were estimated for each of ten bound-

aries to the domain and represented the part of the mea-

sured concentration not simulated by the 30 day air histories.

A schematic for these boundaries is provided in Fig. 2. Multi-

ple boundary conditions were estimated to represent the vari-

able levels and directions from which air enters the domain

(for example, due to a north–south gradient). The boundary

conditions represent the concentrations on the boundaries of

the outer domain, which is thought to be the direction as-

sociated with the “source” of the air mass (e.g., winds that

Lower / mid troposphere

Upper troposphere / stratosphere

9 km

3 km

WSW

WNW NNW

NNE

ENE

ESE
SSE

SSW

Figure 2. Schematic of boundary conditions (BCs) estimated as

part of the inversion. The inversion domain is represented by the

inner white box. The map shows combined air histories for all four

sites at a given instance and illustrates that the stations can sam-

ple different “baselines” at the same time due to differences in their

meteorology. PDF parameters to 17 BCs were estimated in total;

eight defining the polynomial that governs the WSW boundary and

offsets for seven other horizontal boundaries and two upper atmo-

sphere boundaries (arrows in grey correspond to the BC governing

air entering the 3–9 km box and the arrow in black corresponds to

the BC governing air from above 9 km).

enter the inner inversion domain from the west sometimes

originate from the southern outer boundary). Therefore, the

concentrations entering the inner inversion domain are com-

prised of the concentrations on the outer boundaries plus the

effect of any emissions in between the two domains. For

some directions (in particular the northeast), there could be

significant emissions sources, however, from the predomi-

nant directions (southwest and northwest), emissions sources

are expected to be smaller. These emission sources do not

significantly affect the fluxes derived in the inversion, which

require boundary conditions to simulate the net concentra-

tions outside of the inversion domain; however, physical in-

terpretation of the boundary conditions must account for

these emissions.

The boundary condition to the west-south-west (WSW)

edge was formulated as a polynomial shown by Eq. (3), with

six sinusoidal terms, a linear trend term and an offset term,

for time t over total period T .

BCWSW =

3∑
i

[
ai · sin

(
2πi(t − t0)

T

)
+ bi · cos

(
2πi(t − t0)

T

)]
+ ct + d. (3)

Offsets to this WSW boundary represented the values on

the seven other horizontal boundaries, a boundary from 3 to

9 km (low to mid troposphere) and a boundary at 9 km (upper

troposphere to stratosphere). In total, PDF parameters to 17

boundary conditions were estimated as part of the inversion

each month. Sensitivities to these boundary conditions were

computed for each site by using the model to track which
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direction and height air had entered the domain over the pre-

vious 30 days for each 2 h simulation. It was assumed that

each baseline parameter remained constant over the month

and was the same for all sites, though the effect of air com-

ing from each boundary would be “felt” at different times,

depending on the meteorology of that particular site. A full

description of the boundary condition estimation method is

provided in the Supplement.

4.3 Estimation scheme

The hierarchical estimation scheme can be outlined as fol-

lows:

y =Hx+ ε (4)

ε ∼N(0,R) (5)

z= Cy+ η (6)

η ∼N(0,D), (7)

where y is a vector of model simulated mole fractions of

size mn for all times during the period of interest and for

all sites (including times/locations when no observations ex-

ist), H is a mn× k array of model sensitivities that maps x

to y and ε is a stochastic error term. C is a p×mn matrix

that samples values of y at the p times/locations that obser-

vations exist, z is a vector of p observations with stochastic

error η and D is a p×p “nugget” term of uncorrelated in-

strumental uncertainties. The covariance matrix, R, governs

the model uncertainty for all possible observations in time

and space. For example, if measurements were made every

2 h over a year at four sites, there would be 4380 (365× 12)

possible measurements at four locations and T would be of

size 4380 and S of size four. It is likely, however, that some of

these measurements would be missing due to instrumental or

site problems and y is an additional parameter that is sampled

in the MCMC chain and compared to observations through

matrix C. Therefore, we assume that errors in the model will

be correlated even at times/locations that observations do not

exist.

The joint distribution of x,µx , σ x , σ yt, σ ys, τ , ν, l and y is

expressed through Eq. (8), through the hierarchical propaga-

tion of Bayes’ theorem and the probability chain rule, where

ρ(·) describes the prior PDF and ρ(· | ·) is a conditional of

the first parameter given the second.

ρ(x,µx,σ x,σ yt,σ ys,τ,ν, l,y|z)∝ ρ(z|y,D)

· ρ(y|x,σ yt,σ ys,τ,ν, l)

· ρ(x|µx,σ x)

· ρ(µx) · ρ(σ x) · ρ(σ yt) · ρ(σ ys) · ρ(τ) · ρ(ν) · ρ(l). (8)

As shown in Eq. (8), each hyper-parameter (µx , σ x , σ yt,

σ ys, τ , ν, l) requires an a priori PDF to be specified. Through

MCMC, these PDFs are sampled from and used to form the

posterior PDF. The lognormal distribution (LN) was used for

x, µx , σ x , σ y and σ ys to represent skewed distributions that

are not defined for negative values. This prevents unphysical

solutions from being reached. A discrete uniform distribu-

tion (U) was used as a non-informative prior for correlation

hyper-parameters, τ , ν and l. Model and measurement uncer-

tainties were assumed to be Gaussian (N) as it was assumed

that these random errors were symmetric around the median.

Regions that contained a net sink (for N2O, some oceanic ar-

eas are sinks at certain times of the year) were estimated with

Gaussian distributions.

By assimilating data from multiple sites and at high-

frequency, the size of the estimation problem can get very

large for MCMC. To reduce the computational cost of mul-

tiplying, inverting and computing the determinant of large

matrices over 50 000 iterations, it was assumed that the co-

variance matrix, R, was separable in space and time (Eq. 9).

This has been widely employed in geostatistics, where it is

assumed that correlations in time are not dependent on po-

sition and correlations in space are not dependent on time

(e.g., Meirink et al., 2008; Thompson et al., 2011; Yadav and

Michalak, 2013).

R(t, t +1t , s, s+1s)= T(t, t +1t )S(s,s+1s). (9)

By assuming separability in the covariance matrix, we

could exploit the following properties:

1. R= T ⊗ S, where separable square matrix R of size

mn can be written as the Kronecker product of two ma-

trices governing the temporal and spatial covariances,

respectively. T is a square matrix of size m and S is

a square matrix of size n.

2. R−1 = (T ⊗ S)−1
= T−1

⊗ S−1, so the computa-

tion of the inverse of a square matrix of size mn can

be decomposed into the inverse of two smaller matrices.

3. det(R) = det(T ⊗ S) = det(T)n det(S)m, so the compu-

tation of the determinant of a square matrix of size mn

can be decomposed into the determinant of two smaller

similar matrices.

4. a = R−1b, where a and b are vectors of length mn. In

this analysis, b represents residual vector (y−Hx) and

a represents the vector required to compute the likeli-

hoods in Eq. (8). This operation can now be computed

as A= S−1 B T−1T , where B is an array composed of b

reordered to size n×m and A, also of dimension n×m

can be restacked to form a. The advantage of this com-

putation is that the Kronecker product forming R does

not need to be explicitly computed and the product of

the (large) covariance matrix and vector can be refor-

mulated as the product of smaller arrays.
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Because the computational cost of these operations are ap-

proximately of the order n3, assuming separability makes

a dramatic improvement in efficiency for MCMC.

4.4 A priori values

Tables 1 and 2 describe the a priori median values for all

of the hyper-parameters of the system (with the superscript

µ referring to the median of that respective distribution).

Hyper-parameter SDs of the lognormal distributions (de-

noted by superscript σ ), µx
σ , σ σx , σ σyt and σ σys were calcu-

lated such that the 16th to 84th (cf., 1σ of a Gaussian dis-

tribution) percentile range was equal to 100 % of the median

emissions.

Gridded anthropogenic emissions for the UK were from

the NAEI for 2012. Anthropogenic emissions for other coun-

tries were taken from the Emission Database for Global At-

mospheric Research version 4.2 (EDGAR, JRC/PBL, 2011)

but these emissions were scaled by country to the UNFCCC

reported emissions to maintain consistency with the numbers

reported by individual countries.

Natural emissions were compiled from a variety of sources

outlined in Tables 1 and 2. To account for anthropogenic land

that was classed as natural in these inventories (for exam-

ple, the natural soil N2O source did not mask out agricultural

land), natural emissions were scaled by the fraction of nat-

ural land in each UK and European country based on land

cover maps (Morton et al., 2011; EEA, 2007). While there

are additional complexities with classifying emissions from

land as natural or anthropogenic, we assume that this scal-

ing approach will, to first-order, correct for overestimation

in natural inventories. The contributions of the major source

sectors to the UK and Ireland totals are presented in Tables 3

and 4. Anthropogenic sources were approximately 90 % of

the total for both gases.

A priori, it was assumed that offsets to the horizontal

boundary conditions was zero (i.e., the MHD baseline was

assumed for all horizontal directions). For upper-air bound-

ary conditions, the mean fraction-weighted (based on sen-

sitivities derived by the NAME model) difference between

upper-air influenced observations and baseline was assumed.

5 Results and discussion

We present top-down CH4 and N2O emissions for the UK

and Ireland from August 2012 to August 2014 along with

an analysis of the uncertainty parameters derived in the in-

version. Results are presented as the median of the posterior

PDFs and uncertainties for all parameters correspond to the

5th to 95th percentile range. In addition, the simulated poste-

rior and prior time series, derived baselines and comparison

with observations are provided in the Supplement.
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Figure 3. Median posterior (a) CH4 and (b) N2O emissions in

Tg yr−1 for the UK (blue) and Ireland (red). Solid lines correspond

to top-down estimates, dashed lines to the total prior emissions and

dotted lines to the anthropogenic component of the prior. Shading

on emissions corresponds to the 5th to 95th percentile range of the

posterior distribution. The grey shading corresponds to times where

data from a station were largely missing (TTA for CH4 and RGL

for N2O).

5.1 Emissions and boundary conditions

Figure 3 shows CH4 and N2O emissions by month

over the study period. On average, the UK’s emis-

sions were 2.09 (1.65–2.67) Tg yr−1 CH4 and 0.101

(0.068–0.150) Tg yr−1 N2O and Ireland’s emissions

were 0.62 (0.50–0.74) Tg yr−1 CH4 and 0.025 (0.019–

0.033) Tg yr−1 N2O. Both UK CH4 and N2O emissions

were generally lower than the total and anthropogenic a

priori emissions. The difference in annual average CH4

emissions from the total prior is statistically significant (with

the annual average prior lying outside of the uncertainty

of the posterior) but the N2O difference is not significant

when accounting for uncertainties. A change in natural

emissions, which are only 5–12 % of the prior for both

gases, may explain some of the difference, but is likely not

large enough to account for all of it. Emissions from Ireland

were consistent with the prior for both gases.

The CH4 emissions derived in this study are statistically

consistent with the 2007 UK emissions estimated by Man-

ning et al. (2011), while the N2O emissions are slightly

higher. The uncertainties derived in this study are smaller for

CH4 but larger for N2O and the differences in uncertainties

for the two studies are likely due to the different method-

ologies used as well as the additional measurement stations

in this study. The hierarchical method provides a framework

for more completely and rigorously characterizing random

uncertainties in the system, but does not account for system-
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Figure 4. (a) Median posterior CH4 emissions shown on a logarithmic scale. Emissions have been disaggregated from the larger regions

estimated in the inversion using the prior distribution. (b) Difference between the median posterior emissions and the prior, relative to

the prior. Dots show statistically significant differences, where the prior emissions lie outside of the 5th to 95th percentile range of the

posterior emissions. (c) Posterior emissions uncertainty. This corresponds to the average difference between the median and the 5th and

95th percentiles, relative to the median. (d) Uncertainty reduction from the prior, relative to the prior. Colored circles show the measurement

stations (MHD, yellow; RGL, magenta; TAC, cyan; TTA, green).

atic uncertainties. The emissions and uncertainties derived

here lie in the lower range of results obtained by Bergam-

aschi et al. (2015), and while they could be attributed to the

additional measurement stations used, they likely also point

to large systematic differences between models.

Methane emissions between February and May 2013 were

the most uncertain due to missing data from Angus and sim-

ilarly, N2O emissions in December 2012 and January 2013

had larger uncertainties than other times of the year due

to the fact that the N2O instrumentation at Ridge Hill was

down during those two months. Uncertainties were on aver-

age approximately 36 % larger on UK CH4 emissions during

January–May 2013 and 50 % larger on UK N2O emissions

during December 2013–January 2014, than the average of

months sampled by the full network.

Boundary conditions from the WSW, WNW, NNW, NNE

and the two upper air directions were the most constrained,

as reflected by the significant uncertainty reduction from the

prior (over 50 %), while air from the other directions were al-

most never sampled and thus reflected the prior distributions.

While CH4 emissions do not show significant seasonal-

ity, N2O in contrast has a pronounced seasonal cycle, with

a maximum in the summer months and minimum in the win-

ter. Though the a priori emissions have a small seasonal cy-

cle due to the natural soil and oceanic sources of N2O, the

derived amplitude of approximately 0.05 Tg yr−1 is much

larger in the posterior estimates and is statistically signif-

icant. Thompson et al. (2014) found a seasonal cycle over

Europe with a timing consistent with our findings, however

the magnitude of the seasonal cycle was larger and matched

closely with the prior that was used. The difference in ampli-

tude is likely to do with the greater prevalence of natural soils

in Europe as a whole rather than in the UK. A small seasonal-

ity was found in Ireland’s N2O emissions but this seasonality

was not significant relative to the uncertainties.

Figures 4 and 5 show spatial maps of median derived emis-

sions for the two gases over the study period, the percentage

difference from the prior, fractional uncertainties (ratio of the

difference between 5th and 95th percentiles to the median)

and uncertainty reduction from the prior. Dots in the differ-

ence map indicate regions where the difference was statisti-

cally significant (i.e., the prior was outside the 5th to 95th

percentile range of the posterior emissions).

Spatial maps of the dominant sectors of the UK NAEI are

shown in Fig. 1. Comparison of the posterior emissions dis-

tribution with the sectoral inventory maps allows us to deter-

mine whether differences between the top-down and bottom-

up emissions can be attributed to particular sectors. The two

dominant and approximately equivalent sources of CH4 in

the UK are agriculture (cattle, manure) and waste (land-

fill) sectors, each contributing approximately 40 and 35 %

of the total prior emissions respectively. While agricultural

sources are more diffuse than landfill sources, the maps for

the waste sector show a distinct spatial pattern. The waste
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Figure 5. Same as Fig. 4 but for N2O.

sector dominates emissions from eastern and central Eng-

land. Agricultural emissions are generally well-distributed

around the country with the highest emissions in western

England, Wales, Northern Ireland and southern Scotland, in

grassland regions where livestock production is prevalent.

While emissions from the entire domain are generally lower

than the prior, the largest difference, as a percentage of the

prior, occurs throughout Scotland, western England and east-

ern Ireland. An analysis of the uncertainties derived for each

region for each month shows these differences to be statisti-

cally significant, with the prior lying outside the 5th to 95th

percentile range of the posterior distribution. These results

suggest that the agricultural sector, due to its prevalence in

those regions, may be overestimated in the inventory. The

small natural component, which is less than 10 % of the to-

tal prior, could also be overestimated, but this would not en-

tirely explain the difference between the prior and the poste-

rior emissions.

In our seasonal analysis for N2O (Fig. 6), we find a sig-

nificant difference between the prior and posterior in win-

ter (December–February), which in part is because there is

no seasonal cycle represented in the anthropogenic compo-

nent of the prior. In the winter, this difference is statisti-

cally significant throughout most of the land regions of the

UK and Ireland. The NAEI sectoral distribution for agricul-

tural N2O shows that emissions are relatively evenly spread

around the country, with emissions generally being from fer-

tilized grasslands in the west of England and from fertilized

arable land, pig and poultry production in the east. While

emissions throughout the UK and Ireland grow toward spring

and summer, spatial maps of the posterior emissions show the

largest emissions in eastern England during the spring and
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Figure 6. N2O emissions by season, shown on a logarithmic scale.

Emissions have been disaggregated from the larger regions esti-

mated in the inversion using the prior distribution. Regions with

hashing correspond to sink regions and are plotted as their abso-

lute value. Colored circles show the measurement stations (MHD,

yellow; RGL, magenta; TAC, cyan).

in central England during the summer. A study over one UK

sheep-grazed grassland, which was fertilized three times over

the spring and summer, showed fertilizer N2O emissions to

last from 1 to 3 weeks, following fertilizer application, with

the maximum emission occurring in July (Skiba et al., 2012).

However, emissions depend strongly not only on fertilizer

application, but also on precipitation and temperature and

these can have strong regional differences as well as year-to-
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year variability. These findings suggest that the pronounced

seasonal cycle is likely to due seasonality in fertilized soils

as well as seasonality in environmental drivers, which are

not reflected in the annual resolution NAEI inventory. Further

elucidating the drivers of this seasonality requires process or

empirical models of N2O production.

Analysis of the uncertainties derived in the inversion (pan-

els c and d of Figs. 4 and 5) shows the greatest observational

constraint in the ∼ 100 km around the stations, which pre-

dominantly constrain southern and central England and west-

ern Ireland. Uncertainties for N2O emissions are typically

larger than for CH4 emissions, likely due to the lower signal-

to-noise ratio of N2O observations (i.e., CH4 is measured

with higher precision and pollution events are larger). For

CH4, an increase in emissions was found to occur in Wales.

While the difference from the prior was not statistically sig-

nificant (i.e., the fractional difference from the prior each

month typically lay within the 5 to 95 percentiles), the pos-

terior uncertainty showed that the region is well-constrained

by the network (and primarily by Ridge Hill). For this re-

gion covering eastern Wales, there was considerable month-

to-month variability (about half of the months during the pe-

riod showed this increase and half did not). This is likely

caused by poorly resolved meteorology around two large

point sources (Cardiff and Swansea) that are surrounded by

mountains just to the west of Ridge Hill. This feature could

be improved with a more highly resolved grid and/or meteo-

rology in that region.

Two sensitivity studies are provided in the Supplement to

assess the effect of the prior on the posterior solution. The

first inversion assumed that the prior consisted only of an-

thropogenic emissions and the second assumed that the natu-

ral emissions were not scaled by land-use statistics (an upper-

bound on natural emissions). We found that the majority of

the UK and Ireland were largely insensitive to the choice of

prior and that the four station network has enough data den-

sity to constrain the UK and Ireland totals. While northern

Scotland is not very sensitive in the network, by design this

is an area with low emissions and therefore does not signifi-

cantly impact the UK total.

5.2 Covariance hyper-parameters

Figure 7 shows derived model-measurement uncertainties for

each site. These uncertainties could be due to model error

or any unresolved processes in the inversion. The median

posterior value is shown, with error bars indicating the 5th

and 95th percentile solutions. On average, uncertainties for

the CH4 and N2O studies were ∼ 20 ppb and 0.4 ppb, re-

spectively. For the CH4 study, Tacolneston consistently ex-

hibited the largest error, the cause of which could be from

two factors: the largest CH4 pollution events are measured at

Tacolneston and there are known nearby sources (gas fields

in the North Sea and landfills in east England) with spo-

radic emissions that may not be reflected in the temporally
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Figure 7. Median (a) CH4 and (b) N2O model uncertainties derived

for each site. Errorbars show the 5th to 95th percentile range.

constant NAEI prior or resolved in the monthly inversion.

Mace Head and Angus have the smallest uncertainties, both

due to the smaller magnitude of pollution at these sites and

due to the more constant regional emissions sources. The in-

creased uncertainty at Tacolneston is reflected in the emis-

sions uncertainties shown in panel c of Fig. 4; uncertain-

ties in the regions surrounding Tacolneston are greater than

in the regions surrounding other stations. This feature also

highlights that the uncertainties in the various components

of the inversion are passed systematically through the inver-

sion to emissions and emission uncertainties. Uncertainties

derived for N2O are similar for both Tacolneston and Ridge

Hill, likely due to both sites generally measuring agricultural

emissions, and further suggests that the increased CH4 er-

ror at Tacolneston is due to unresolved emissions processes

rather than model error at that site. NAME has previously

been validated against tracer release experiments, surface and

balloon measurements but parametric and structural uncer-

tainties are not well known (Morrison and Webster, 2005;

Ryall and Maryon, 1998). Further, validation exercises have

not been conducted over the period of this study. While the

results of this study cannot discern specific sources of error in

the model, this is a subject of great interest and future work.

Spatial and temporal correlation scales were also derived

for the two gases. The correlation scales are related to a num-

ber of factors: errors in the model transport (e.g., a misplaced

weather front at one time will likely be misplaced a short

time later) as well as unresolved emissions processes (e.g.,

errors in the assumption of constant emissions). The two
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sources of correlated errors cannot be disentangled but the

time and length scales derived in the inversion are a measure

of the scales of the missing or erroneous processes. Aver-

age correlation scales of 1.0 (0.72–1.43) days and 133 (15–

317) km were derived over the period for the CH4 study and

2.6 (1.9–3.9) days and 228 (25–450) km for the N2O study.

The scales are more tightly constrained for CH4 than for

N2O, likely due to the higher signal-to-noise of the observa-

tions. The spatial correlation scale is not well-constrained for

N2O and reflects the prior distribution, indicating that there

is not enough information in the network to constrain this pa-

rameter. The correlation timescale is smaller for CH4 than for

N2O. Though there are differences in the two networks (i.e.,

N2O is not measured at Angus), a CH4 inversion in which

Angus was excluded was also performed and similar corre-

lation scales were derived (Supplement), suggesting that the

network differences are not the source of differences in corre-

lation scales. Furthermore, because the same transport model

was used for the two studies, model errors were expected to

be similar for the two gases so the differences are likely due

to unresolved emissions in the prior. We noted the increased

variances at Tacolneston and speculated that this was due to

sporadic emissions from landfills and offshore gas that were

not modeled by the constant prior emissions field and not

resolved in the inversion. The longer timescale for N2O sug-

gests that unresolved emission characteristics from fertilizers

acts on a slightly longer timescale (several days). The corre-

lation length scale of 133 km for CH4 suggests that the cur-

rent network, with the nearest two stations being ∼ 250 km

apart, could benefit from additional stations to further con-

strain CH4 emissions. Given the typical correlation scales

that were derived along with knowledge of source distribu-

tions, a network can be intelligently designed (or improved)

to maximize source information, as we have shown in this

study. As measurement networks around the world grow and

as countries move toward using top-down methods to infer

high resolution emissions, the accurate simulation of covari-

ance parameters will become critical for realistically repre-

senting concentrations in the atmosphere and the underlying

processes driving them.

6 Conclusions

We present an estimate of the UK and Ireland’s CH4 and

N2O emissions from 2012–2014 using a network of four

high-frequency and high-precision monitoring stations. We

inferred average CH4 emissions of 2.09 (1.65–2.67) Tg yr−1

and N2O emissions of 0.101 (0.068–0.150) Tg yr−1 from the

UK and 0.62 (0.50–0.74) Tg yr−1 CH4 and 0.025 (0.019–

0.033) Tg yr−1 N2O from Ireland over the 2 years of this

study. Our top-down results were used to highlight areas

where the bottom-up inventory might be improved. We

found that the prior (largely from anthropogenic sources)

was higher than our estimates of CH4 emissions and likely

overestimated from the agriculture sector. The small natural

sources in the UK are not likely large enough to account for

the full discrepancy between the prior and posterior emis-

sions. Our designation of natural sources is based on land

cover statistics but there are additional considerations to be

made when classifying land as natural or anthropogenic (e.g.,

anthropogenic N deposition on natural land), which were not

accounted for here. Average posterior N2O emissions were

consistent with the prior and the anthropogenic inventory

but an enhanced seasonal cycle was found and likely due

to seasonality in fertilizer application and in environmental

drivers, which are not reflected in the annual resolution an-

thropogenic inventories.

One limitation of this study is that source processes could

only be identified based on differences in spatial distribution.

For regions without this separation, such as Ireland, addi-

tional measurements would be necessary for source appor-

tionment. The inclusion of CH4 isotopologue measurements

at these sites could provide an additional constraint into the

gas, landfill and agricultural source partitioning, as has been

shown in Rigby et al. (2012).

This study highlights the benefits of using a network for

estimating emissions at high-resolution and discusses the

considerations that need to be made when using data from

these types of networks. Through this study we show the im-

portance of appropriately quantifying uncertainty and covari-

ance parameters. With growing demand for top-down veri-

fication of emissions at the country-level, methods need to

be employed that account for these important parameters.

Through this hierarchical inversion framework, we inferred

model errors and uncertainty correlation scales and propa-

gated these uncertainties into the emissions estimates. Model

errors for the two studies were on average approximately

20 and 0.4 ppb, respectively, but showed variations from site

to site and for different times depending on the meteorol-

ogy. We derived the largest CH4 model errors at Tacolne-

ston, likely due to its proximity to gas extraction in the North

Sea and landfills in east England, sources which have spo-

radic emissions characteristics that are not simulated. We in-

ferred temporal and spatial correlation scales of 1.0 (0.72–

1.43) days and 133 (15–317) km for the CH4 network and

2.6 (1.9–3.9) days and 228 (25–450) km for the N2O net-

work, with differences in the two studies likely being due to

differences in unresolved emissions processes.

The Supplement related to this article is available online

at doi:10.5194/acp-15-6393-2015-supplement.
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