 Minimization of Errors in Biexponential T2 Measurements of the Prostate
Nima Gilani1, MS, Andrew B Rosenkrantz2, MD, Paul Malcolm3, MBBS, Glyn Johnson1, PhD.
1Norwich Medical School, University of East Anglia
2NYU Langone Medical Center, New York
3Norfolk and Norwich University Hospital
Corresponding author:	Glyn Johnson
Bob Champion Research and Educational Building
Room 2.18
James Watson Road
University of East Anglia
Norwich Research Park
Norwich  NR4 7UQ
UK
Telephone: + 44 (0)1603 593959
Direct Line: + 44 (0)1603 593682
glyn.johnson@uea.ac.uk
 
Running title: Biexponential T2 measurement of the prostate



Abstract
Purpose: T2 relaxation time measurements in the prostate are complicated by the structure of prostate tissue which consists of fluid filled glands surrounded by epithelial and stromal cells. Since the glands are large relative to diffusion distances, there is little water exchange between the two compartments and T2s are biexponential. Because the relative size and characteristics of the two compartments change in prostate tumours, accurate measurement of the characteristics of each may provide useful information on tumour grade. The purpose of this paper is therefore to determine the echo times that provide the greatest precision in measurements of prostate T2s.
Materials and Methods: T2s were measured in a group of twenty-five men with biopsy-proven prostate cancer. Subjects were scanned at 3T with a sixteen-echo turbo-spin echo T2-mapping sequence. Normal prostate T2s were measured in areas showing no disease. Optimum echo times for measurement of normal prostate T2s were found by calculating the covariance matrix which provides estimates of parameter variance. Echo times that minimize T2 variance were then found by searching over grids of different echo times. Optima for four to eight echo acquisitions were found. Optima were tested by Monte-Carlo simulation.
Results: Fast and slow T2s were 60ms and 360ms respectively. The fast signal fraction was 0.6. Optimum echo times were between 0 and 780ms depending on the number of echoes acquired.
Conclusion: Use of optimum echo times can substantially improve the precision of biexponential T2 measurements. This optimization is anticipated to improve prostate cancer characterization using T2 measurements.
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Introduction
Prostate cancer is the most common internal cancer in men and the second leading cause of cancer death in the US in men (1). Although aggressive tumours should be removed surgically or treated by radiotherapy, most tumours are relatively indolent and can be left untreated but monitored carefully (active surveillance). However, the standard diagnostic test for prostate cancer, ultrasound-guided biopsy, is unreliable so that many tumours that would be suitable for active surveillance are treated aggressively: It is estimated that 37 men undergo prostatectomy to avoid one cancer-related death (2). The side effects of aggressive treatment – sexual and urinary dysfunction – are very common (3). Improved methods of assessing prostate tumours could greatly reduce the expense, anxiety and morbidity associated with excessive treatment.
Magnetic resonance imaging (MRI) is recognized as the most sensitive means of detecting prostate abnormalities but conventional MRI is poor at distinguishing between indolent and aggressive tumours. Although quantitative methods for assessing prostate tumours have shown promise, results are complicated by the microstructural complexity of prostate tissue. 
In MRI experiments, most tissues can be considered to consist of a single compartment exhibiting a single value of, for example, T2. However, a few tissues, in particular the prostate, demonstrate bi-exponential T2 relaxation (4-7). Biophysically this is not surprising since prostate tissue consists cellular epithelium and stroma surrounding fluid filled glands that are large (diameter ~100μm)(7) compared with typical diffusion distances (~4μm) (8). Exchange of spins between the glandular lumen and epithelium/stroma is thus slow and each will demonstrate a characteristic T2. Since the size of the glandular fraction depends on the grade of prostate tumours(7), accurate assessment of T2 relaxation may help distinguish between indolent and aggressive prostate tumours.
T2 measurements are made by acquiring images at multiple different echo times and fitting exponential functions to these signals with a variety of non-linear least squares algorithms. Errors in these measurements will depend both on noise in the signal and in the choice of echo times (9). Previously, Fleysher et al. (10) determined the echo times that minimized noise in monoexponential T2 measurements. In this study, we extend this work to biexponential T2 measurement. The aim is to optimize T2 measurements in the prostate and thus improve the assessment of prostate tumours.
Materials and Methods
There are two methods estimating noise in non-linear least square fitting. Either the co-variance matrix can be used to calculate the sensitivity of parameter estimates to each independent variable (11) or Monte Carlo methods can be used to directly simulate errors in estimates. Here we first use co-variance matrix calculations to minimize parameter errors and then test these results by comparison with Monte Carlo simulations. Since it is not possible to derive general results that are applicable to any combination of T2s we will concentrate on values that are typical of the prostate. Furthermore, since the glandular fraction is likely to be the most diagnostically useful parameter we will derive echo times that minimize errors in estimation of this parameter in particular.
All programs and numerical simulations were performed in MATLAB Release 2013b (The MathWorks, Inc., Natick, Massachusetts, US).
Theory: The co-variance matrix
In general the function relating a set measured signals, yi (i=1,2,...,m), to a set of measurement parameters, xi (e.g., the echo times) is given by
	[1]
where aj (j=1,2,…,n) are the parameters to be estimated (e.g., T2). 
The co-variance matrix, Q, equals where A is an m×n matrix (12):
	[2] 
where  is the acquisition noise which is assumed to be Gaussian and equal for all acquisition points. This is a reasonable assumption provided signal-to-noise ratio (SNR) is greater than about five, below which the Rician nature of noise will become apparent in the low SNR signals. Each row of A corresponds to a single measurement and each column to one of the estimated parameters. Thus m must be greater than or equal to n and the co-variance matrix, Q, is an n×n matrix. Each diagonal element, Qii, is the variance in corresponding parameter ai (11) and the coefficient of variation (CoV), Vi, is therefore given by.
	[3]
The error in the ith parameter may thus be minimized by minimizing Vi.
In principle it might be possible to derive Q analytically. However, this is not generally possible so that the calculations must be performed numerically over a discrete n-dimensional grid of ai values in limited ranges.
Prostate T2 values
This study was approved by the institutional review board. Twenty-five men (age 45 to 80) with biopsy-proven prostate cancer were studied. A study of diffusion kurtosis imaging based on this cohort has previously been published (13). Scanning was performed on a 3T MRI scanner (Siemens Magnetom Trio). Each subject underwent a standard, multi-parametric clinical MRI examination including multi-planar T2-weighted, diffusion-weighted and dynamic, contrast-enhanced imaging. T2 measurements were obtained with a multi-echo turbo-spin echo T2-mapping sequence (TR 8000, 16 echoes at 18ms intervals, TE 18 to 290 ms, slice thickness 5 mm, no interslice gap; FOV 160 x 160 mm; matrix 128 x 129; parallel imaging factor of 2; 1 signal average). Signal measurements were made by a Radiologist (ABR) with three years experience in prostate MRI. Regions of interest (ROIs) were placed in areas that appeared benign in all sequences. Both mono- and bi-exponential expressions were fitted to the data and adjusted R2 calculated to determine whether bi-exponential fits were statistically justified.
Covariance Matrix Calculations
The equation describing biexponential T2 decay is:
 	[4]
where S0 is the total signal at zero TE; TE is the echo-time; Sf and Ss are signal amplitudes of the fast and slow decay components respectively; T2f  and T2s are the T2s of the fast and slow decay components respectively; and ff is the fractional signal of the fast component, i.e., .
Each row of the matrix A is then:

	[5]
Each row  corresponds to one of the measured signals. Total error can be minimized by choosing echo times that minimize the mean square error (MSE) given by the trace of the covariance matrix. Errors in individual parameters (T2f, T2s, etc.) can be minimized by choosing the echo times that minimize the corresponding CoV. Errors in ff can be minimized by choosing echo times that minimize V2 and V4. 
Optimum TEs were found by searching over uniform n-dimensional grids of values between 10ms and 1000ms.  The number of TEs was between four and eight, either freely variable (i.e., separate acquisitions for each echo) or at equally spaced intervals (i.e., a standard Carr-Purcell-Meiboom-Gill [CPMG] acquisition). 
To investigate the sensitivity of optima to the precise values of T2 and ff, CoVs were calculated using the optimum echo times and varying T2s and ff around normal values. CoVs were found with T2s varied from 230 to 700 with T2f and ff normal, T2f varied from 40 to 80 with T2s and ff normal and ff varied from 0.3 to 0.9 with T2s and T2f normal.
Monte-Carlo Simulation
Monte Carlo simulations were used to confirm selected covariance matrix variations. Biexponential signal decays (Eq. [3]) were simulated, and Gaussian noise (variance 1% of peak signal) was added. The biexponential was then fitted to the noisy signals using MATLAB’s non-linear least squares curve fitting, lsqcurvefit. The procedure was repeated with 100,000 different sets of noise and the CoV of each parameter estimate calculated. These calculations were then repeated over the same n-dimensional grids of TE values and the combination of TE values that minimize CoV found.
Results
Prostate T2 values
Biexponentials were found to give statistically better fits in all but one subject (96%, p<0.0001).  Table 1 gives measured values of ff, T2f and T2s along with values found in two previous studies. Based on these measurements normal prostate parameters used for the optimisations were: T2s (prostate glandular lumen) 360 ms; T2f (epithelium/stroma) 60 ms; ff 0.6.
Covariance Matrix Calculations
Tables 2 to 5 show the echo times that minimize variance in T2f, T2s, ff and MSE, respectively. Optimum echo times to measure the fast T2 component tend to favour signal averaging at shorter echo times; conversely optima for measurement of the slow T2 component favour signal averaging at long echo times. That is echo times that maximise are favoured. Optimum echo times for measurement of ff favour signal averaging at long and intermediate echo times. Echo times that minimize total error are distributed across the range that minimizes errors in each of the parameters separately. Overall optimum echo times are similar regardless of which parameter it is we wish to measure.
Figures 1 to 3 show the changes in CoV for the four echo acquisition when one of the measured parameters (ff, T2f , T2s ) is varied around the normal value. CoV values are generally reasonable except in two circumstances. First, when T2f  approaches T2s (or vice versa) all CoVs become very high. Second, when one compartment becomes very small, CoVs of the corresponding parameters become high. In both cases the tissue is becoming more like a single compartment so that the high CoVs are unsurprising. 
Figure 4 plots CoVs for each parameter with an eight echo acquisition with maximum echo time, TEmax, varied from 300 to 1000ms. The optimum maximum echo time for CPMG sequences is, unsurprisingly, similar to that found for freely variable echo times. However, CoVs are substantially larger for equally spaced echoes, again unsurprising given the additional restraints imposed.
Monte-Carlo Confirmation
Monte-Carlo confirmations were found for normal prostate parameters and three different optima: five echoes from Table 2; six from Table 3; and eight from Table 4. In all cases Monte-Carlo optima were identical to within 10ms (the grid spacing over which the search was performed).
Discussion
Our measured T2 values were similar to those of Storas et al. (6) and somewhat different from those of Kjaer et al (5). However, the latter measurements were based on an inaccurate calculation method. Like us, Storas et al. (6) also found that biexponentials provided better fits than monoexponentials in most subjects.
SNR in these calculations was 100. Although this is quite high for pixel based measurements it is reasonably realistic for ROI measurements in which many pixels are averaged. Furthermore, because CoV values scale as 1/noise it is simple to extrapolate from our results to other situations.
Our results are generally compatible with Fleysher et al.’s study of monoexponential decays (10). First, repeated signal averaging at the minimum number of echo times (two for monoexponential; four for biexponentials) gives better results than measurements at multiple different echo times. Second, averaging of late, low SNR, echoes is preferable to distributing averages over all echoes equally.
There are a number of limitations of this study. First, we have not attempted to find expressions that optimize echo times for any combination of T2 parameters. This would require inversion of Eq. [1] to provide a function that gives echo times in terms of signals and T2s. This inversion is mathematically extremely complex and as far as we are aware has never been achieved. 
Second, the main purpose of this study is to find the combination of echo times that minimizes the noise in prostate T2 measurements and thus maximizes our ability to distinguish between normal and cancerous tissue. If the values of ff, T2f, T2s were known for both normal and cancerous tissue, echo times that minimize the combined noise in both sets of estimates could be found. However, in general we do not know a priori what these parameters are for the particular cancer examined. Our approach has therefore been to find echo times that minimize noise in measurements of normal tissue. These echo times will also provide nearly optimal measurements of marginally abnormal tissue but are likely to be suboptimal where T2 parameters are very different from normal tissue. For example, echo times that minimize noise in measurements of tissues with T2 = 100ms will also produce good results when T2 = 110ms but much poorer results when T2 = 500ms. However, since the T2 parameter differences are also much greater this is unlikely to hinder our ability to discriminate between the two tissues. That is, if we use echo times that maximise our ability to identify only marginally abnormal T2 parameters, grossly abnormal parameters should be relatively simple to identify.
Similarly, it would have been preferable to optimize around values typical of indolent tumours to maximize discrimination from aggressive tumours. However, once again, tumour values are not well known. Furthermore tumour and normal T2 parameters, although distinct, are sufficiently close (5) that optima for normal tissues will be work well for indolent tumours. Finally, optimising for any value of ff between 0.3 and 0.8 was found to give identical echo times. 
Third, rather than searching over a grid of echo times, a variety of algorithms could have been used to iteratively minimize errors. This would have produced more accurate results at the cost of increased processing time. However, given the relative insensitivity of CoV to precise echo time, this approach did not seem justified.
Fourth, ideally measurements of normal prostate parameters would have been acquired from healthy volunteers rather than prostate cancer patients. However, measurements were made in areas that appeared normal on multi-parametric MRI which has over 90% negative predictive value for clinically significant prostate cancer (14,15)
Finally, we found that the optima for protocols in which measurements at different echo times are obtained in separate acquisitions (e.g., a variety of spin echo sequences such as conventional, RARE, spin-echo EPI, etc.) perform better than those such as CPMG where all echoes are acquired following a single excitation. However, our consideration of CPMG sequences has been superficial. Depending on gradient strength, SAR considerations and the ability to deal with improperly refocused magnetization, it may be possible to decrease noise in CPMG measurements by acquisition of a larger number of echoes. Non-evenly distributed echo times might also be used. Both these factors may increase the efficiency of CPMG sequences. However, we believe that such considerations are beyond the scope of this paper.
The protocols presented here may offer substantial improvements in the measurement of biexponential T2s in the prostate. These improved measurements have the potential to improve the assessment of prostate tumour grade.
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Table 1: T2 parameters found in this and previous studies
	Source
	N
	Field
	ff  / %
Mean (Range)
	T2f / ms
Mean (Range)
	T2s / ms
Mean (Range)

	This study
	22
	3.0
	58 (18-87)
	60 (22-196)
	360 (123-1150)

	Kjaer et al. (2)*
	5
	1.5
	
	86 (67-102)
	111 (96-137)

	Storas et al. (3)
	16
	1.5
	0.7 (0.2-0.97)
	64 (43-92)
	546 (161-1319)


* T2s estimated from log-linear fitting of first and last echoes.


Table 2: Echo times that minimize T2f estimation errors for N (4 – 8) echo acquisitions. The five echo optima was confirmed by Monte-Carlo simulation.



Table 3: Echo times that minimize T2s estimation errors for N (4 – 8) echo acquisitions. The six echo optima was confirmed by Monte-Carlo simulation.



Table 4: Echo times that minimize ff estimation errors for N (4 – 8) echo acquisitions. The eight echo optima was confirmed by Monte-Carlo simulation.



Table 5: Echo times that minimize mean square error for N (4 – 8) echo acquisitions.



Figure Captions
Figure 1: Change in coefficients of variation (CoV) for estimated parameters in a bi-exponential model when the parameters are varied from the standard values used for the optimization. Echo times are 0, 40, 210 and 780 which minimize the error in estimating T2f. (Table 2). The blue, yellow, green and red lines represent the CoV of Ss, Sf, T2s and T2f respectively. SNR was 100. a) T2s =360, T2f =60 and ff =0.3-0.9. b) T2s =360, T2f =40-80 and ff =0.6. c) T2s =230-700, T2f =60 and ff =0.6. 
Figure 2: Change in coefficients of variation (CoV) for estimated parameters in a bi-exponential model when the parameters are varied from the standard values used for the optimization. Echo times are 0, 30, 160 and 670 which minimize the error in estimating T2s (Table 3). The blue, yellow, green and red lines represent the CoV of Ss, Sf, T2s and T2f respectively. SNR was 100. a) T2s =360, T2f =60 and ff =0.3-0.9. b) T2s =360, T2f =40-80 and ff =0.6. c) T2s =230-700, T2f =60 and ff =0.6.(In Figure a the blue and green lines are very close to each other.)
Figure 3: Change in coefficients of variation (CoV) for estimated parameters in a bi-exponential model when the parameters are varied from the standard values used for the optimization. Echo times are 0, 30, 180 and 740 which minimize CoV of ff = Sf /(Sf + Ss) (Table 4). The blue, yellow, green and red lines represent the CoV of Ss, Sf, T2s and T2f respectively. SNR was 100. a) T2s =360, T2f =60 and ff =0.3-0.9. b) T2s =360, T2f =40-80 and ff =0.6. c) T2s =230-700, T2f =60 and ff =0.6.
Figure 4: CoV of estimates of T2f, T2f, Sf and Ss eight equally spaced echoes where TEmax is the maximum echo time. Blue line, yellow line, green line and red line are respectively for CoV of Ss, Sf, T2s and T2f. SNR=100.
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