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Abstract 

This thesis investigates the impact of future climate change upon species vulnerability.  

Reports of shifts in species distributions are already numerous, but the pattern of 

change is not fully understood.  This thesis looks to predict which species are likely to 

be most at risk under climate change and why? This thesis takes the equation; 

Vulnerability= Sensitivity + Exposure to better discover which species are most 

vulnerable to climate change.  Additionally, this research explores how mitigation has a 

role in determining the degree to which species are vulnerable in the future.    

Determining a specie’s vulnerability to climate change required the creation of values 

representing each side of the equation, both a measure of sensitivity and exposure.  The 

construction of a sensitivity measure required the creation of a life history and 

ecological traits database, and required the use of multiple methods of statistical 

analysis. Exposure was calculated using projections of future suitable climate space 

created using species distribution model Maxent.  To explore the impact of mitigation 

on species vulnerability exposure was calculated under a range of climate change 

scenarios.  The sensitivity and exposure scores are synthesised into a measure of 

vulnerability.       

The result of the equation, Vulnerability= Exposure + Sensitivity, has revealed which 

Mammal species are most vulnerable; those which will be exposed to a high degree of 

climate change and which life history and ecological traits make them sensitive.  The 

most vulnerable species are those which are highly exposed and which have ‘slow’ life 

history traits, are range restricted, or, are climate specialist.  The regions in which 

species are identified as most vulnerable include the Neotropical and Afrotropical 

zones.  Mitigation is found to reduce potential vulnerability with early mitigation being 

the most beneficial.    The deeper understanding gained through this research will help 

us prioritise species for conservation based on their vulnerability.  
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1 Introduction 

 

The phenomenon of Human-induced climate change has been recognised for several 

decades. The first global assessment of climate change and its observed and predicted 

future impacts was completed by the IPPC in 1990 (IPPC 1990).  Over the past 100 

years global mean temperature has risen by 0.6°C  (Fischlin et al 2007) and is projected 

to rise between 2-6°C during this century (Fischlin et al 2007).  The influence of climate 

change on biodiversity is widely recognised, with observations of i) shifts in species 

phenology(Walther et al. 2002; Parmesan and Yohe 2003), ii) shifts in species ranges 

and associated changes in abundance and extinction risk (Walther 2002; Root 2003); 

iii) disruption of ecological interactions (Tylianakis 2008) and iv) changes in primary 

productivity (Fischlin et al 2007).  It is acknowledged that climate change is altering the 

context in which we consider conservation planning (Pressey et al 2007) thus, the 

challenge for biologists is to identify potential approaches to mitigate future 

biodiversity loss (Helmuth et al. 2005).  

The recognition that biodiversity is at risk from future climate change has led to a 

proliferation of studies investigating the observed impacts of recent climate change, and 

the projected future impacts of climate change on biodiversity (Walther 2002). One 

method commonly used in the prediction of future impacts are species distribution 

models.  These are statistical or mechanistic models which seek to describe how species 

distributions are realised using physiological and environmental parameters (Guisan 

and Zimmermann 2000).  The hypothesised relationship between species distributions 

and the environment form the basis for the statistical species distribution models 

(Pearson 2003) that are of most interest in this study.  These models are particularly 

attractive because of their ability to provide testable hypotheses of species distributions 

(Guisan and Zimmermann 2000), which is particularly relevant in the face of global 

climate change (Thomas et al. 2004).  These statistical species distribution models are 

also popular because they are less data intensive than mechanistic models.  They 

require only observed species occurrence data and environmental variables 

representing current and projected future climates to run (Pearson 2003).          

The relative ease of running species distribution models to project the impacts of future 

climate change has meant that there are multitude projections of future extinction risk. 
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These analyses range from individual species to entire taxon and from regional to global 

biodiversity (Thomas et al. 2004; Fischlin et al. 2007)).  Projections of future global 

extinctions estimate that 20-30% of species experiencing 2-3°C warming above pre-

industrial levels will be increasingly at risk of extinction (Fischlin et al. 2007).  Large 

variation among regional biota means that this extinction figure may be as low as 1% 

and as high as 80%. (Fischlin et al. 2007).  It has been predicted that between 25% and 

40% of existing ecosystems will undergo significant and recognisable change by 2100 

(Fischlin et al. 2007).  Extinctions and local extinctions are predicted to be especially 

prevalent among range-restricted or isolated species and populations (Fischlin et al. 

2007). Each of these studies builds on our understanding of the impacts of future 

climate change.  However, there is recognition that species distribution models only go 

part way in describing the likely impacts of climate change and overlook significant and 

ecologically-relevant processes (Pearson & Dawson 2003; Thuiller 2004; Austin 2007).     

These ecologically-relevant processes include large-scale alternative drivers of 

biodiversity change, such as land use changes, resource exploitation and pollution 

(Brooks et al 2002). Importantly, they also include intrinsic species mechanisms 

including local adaptation, dispersal capacity and phenotypic and genetic adaptations 

(Williams et al 2008).  Understanding the complexity of species’ distributions is 

notoriously difficult, accounting for all of these processes is beyond the scope of current 

techniques (Fielding and Bell 1997; Dormann 2007).  However, attempts have been 

made to characterise some of these processes within the current bounds of modelling 

techniques.       

Recently, the focus in correlative modelling has been on the incorporation of alternative 

drivers.  Focusing on incorporating environmental change and biotic processes which 

interact with climate change, and their effect on species’ future range shifts (Pearson 

and Dawson 2003).  These alternative drivers and processes involve the inclusion of 

land cover data, demography, dispersal capacity, and biotic interactions (Heikkinen et 

al. 2006; Wiens et al. 2009).  Thus, these hybrid-models incorporate mechanistic 

properties into normally static correlative models to add further realism to these 

projections and to reduce uncertainty (Heikkinen et al. 2006).   

Models provide relevant hypotheses when examining the complexities of biological 

patterns (Guisan and Zimmermann 2000), conferring valuable insight into how to 
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approach future conservation challenges under climate change (Wiens et al. 2009).  The 

current literature encompasses examples of hybrid models projecting the impacts of 

future climate change on individual species and biodiversity as a whole.  However, these 

examples have mainly focused on representing changes in species distribution based on 

projections of future climate variables.  Therefore do not account for innate species’ 

adaptation capacity and resilience.  There are a few studies that have investigated 

species adaptation or resilience to climate change but these have mainly been limited in 

scale, concentrating on a few well studied species, or have relied on expert opinion.  

This thesis aims to account for the impacts of climate change on species distributions 

whilst also recognising that species have innate characteristics which determine their 

ability to survive and respond to future climate change.   

This analysis has vulnerability theory at its foundation, ‘Vulnerability’ is a function of 

three factors; exposure, sensitivity and adaptive capacity (Adger 2006; Williams et al. 

2008; Dawson et al. 2011).  In examining the potential of incorporating species’ life 

history and ecological characteristics, Sensitivity, into the assessment of the impact of 

future climate change this thesis will provide further understanding of this issue.  In 

exploring Sensitivity this study will provide insight into the characteristics which make 

a species more or less vulnerable allowing the prioritization of those species for 

conservation which are most vulnerable to future climate change.           

Such studies are critical to our understanding of the impacts of future climate change on 

species biodiversity. They inform and support conservation policymakers and 

practitioners in their attempts to moderate the impacts of climate change through 

mitigation and adaptation policy, and conservation planning.         

 

1.1 Research Objectives 
 

This thesis will contribute evidence to the assessment of climate change impacts on 

biodiversity, highlighting the terrestrial mammal species projected to be most and least 

vulnerable and the attributes which determine this vulnerability.  Previous research, as 

reviewed in Chapter Two, has concentrated on the observed and predicted impacts of 

climate change by considering individual species’ climate change exposure.  Although, it 
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is recognised that species have particular attributes which impact their capacity to 

persist under climate change, these have rarely been investigated.  This thesis 

contributes timely evidence on this question of whether species can persist under 

climate change, providing a holistic approach to the assessment of risk to species from 

climate change.  It provides targeted assessment of individual species of Mammals 

vulnerability to future climate change whilst also providing theoretical evidence 

concerning the life history and ecological traits which confer sensitivity.                 

There are three hypotheses relevant to investigation of the impact of future climate 

change on species biodiversity: 

1) That species possess a unique tolerance to climate change shaped by their life 

histories and ecological traits i.e. its sensitivity. A species’ sensitivity influences 

the species’ potential response to future climate change by partially determining 

the level to which they are vulnerable.     

2) That the species’ sensitivity to future climate change is likely to affect the species 

future available climate space, its potential distribution, and will determine how 

vulnerable that species is to climate change.     

3) That the degree to which a species is vulnerable to climate change will be 

partially governed by the amount of climate change to which it is exposed in 

concert with its unique tolerance to climate change.  Consequently, mitigation of 

climate change impacts by reducing greenhouse gas emissions will lessen the 

degree to which a species is vulnerable. 

 

These hypotheses are neatly described in the equation: 

                                        

Where Sensitivity describes the species’ innate tolerance to future climate change and 

where the term Exposure describes the degree to which it will be exposed to future 

climate change.  When combined with the literature gaps highlighted above, these 

hypotheses allow the research questions to be framed in detail with relevance to this 

thesis.  
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 Sensitivity: Species Unique Tolerances to Future Climate Change – “How can 

species’ sensitivity be determined and which life history and ecological traits cause 

species to be more or less Sensitive?”  

 Vulnerability – “What effect does knowledge on species’ sensitivity have in the 

assessment of species Vulnerability to future climate change? “ 

 Vulnerability and Mitigation- “Does mitigation of climate change, through the 

reduction of greenhouse gas emissions, influence species’ overall Vulnerability into the 

future?”   

 

1.2 An Overview of the Thesis 
 

This thesis is divided into six chapters.  The following chapter introduces the context in 

which the foundation of this thesis is based, highlighting the research gaps existing in 

the literature and the research questions that arise. Chapter Three concerns the 

development of the Sensitivity measure, including an introduction to the conceptual 

framework of this Vulnerability analysis, the methods undertaken to create the measure, 

the results and a discussion of the findings and their importance in defining 

Vulnerability.  A description of the process used to develop the Exposure measure, the 

creation of the Vulnerability measure and the subsequent analysis of future 

vulnerability are described in Chapter Four.  Chapter Five investigates the impact of 

mitigation on species’ future vulnerability.  Chapter Six concludes the thesis with a 

summary of the key findings and implications for research and policy.   

The three Appendices provide contextual information relevant to the Vulnerability 

equation.  They are provided as appendices so that the logical flow of the Vulnerability 

equation runs as a thread through the main text. However, they should be considered as 

a valuable addition important for understanding the broader environment in which this 

thesis sits.  Appendix One provides a review of species distribution modelling including 

model comparison, selection, evaluation and understanding uncertainty.  Appendix Two, 

describes the Maxent Model and provides a case study which explores the effect of 

changing the Maxent settings.  Appendix Three, explores uncertainty associated with 

climate projections and discuss the potential impact of uncertainty on predictions of 

future species distributions. 
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1.3 Conceptual Contribution of this Thesis 
 

This thesis contributes to the literature by taking a holistic approach to exploring the 

impact of climate change using the basic constructs of Vulnerability theory (Adger, 

2006). It explores the precepts of vulnerability outlined by Williams et al (2008), with 

specific attention to the definition of sensitivity and exposure.    

 This thesis investigates methods of quantifying levels of species’ vulnerability to 

climate change by creating a method to assess species’ sensitivity.  This compliments 

the already well-established measure of Exposure calculated using species distribution 

modelling.  This thesis contributes to the conceptual literature by identifying species’ 

traits which increase vulnerability to climate change and those which promote species’ 

survival and potential to thrive under a changing climate.  This thesis contributes to the 

evidence-base by identifying which species of Mammal are most vulnerable to future 

climate change.    

Further, this thesis explores the impact of mitigation on species’ vulnerability an 

important factor in determining a species vulnerability to climate change (Williams et al 

2008).   
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2 Impacts of Climate Change on Ecosystems and Biodiversity 

 

This chapter presents an overview of the academic literature concerning the impact of 

climate change on biodiversity and ecosystems.  It summarises the state of knowledge 

within this field and highlights research gaps in the literature. This area has a large 

academic literature although many questions remain to be investigated.  This chapter 

presents the research questions this thesis will answer, highlighting the novelty of this 

thesis and the contributions to knowledge it will make.   

2.1 Ecosystems and Climate Change 
 

Ecosystems are likely to undergo divergent responses to climate change dependent on 

the extent to which they are already degraded, and the degree of future climate change 

they are likely to experience (Fischlin et al. 2007).  There is already evidence that the 

structure and dynamics of ecosystems are being redrawn as species adapt, disperse or 

become locally extinct (Walther et al. 2002).  Dynamic and structural changes in 

terrestrial ecosystems have been observed including decoupling of coevolved 

interactions,  changes in community composition, impacts of direct warming,  and loss 

of habitat due to altered weather patterns, increased fire frequency, sea-level rise and  

glacial recession (Walther 2010). 

It is forecast that between 25-40% of existing ecosystems globally will undergo 

significant and recognisable changes by 2100AD (representative of 3.2-4.4°C warming 

respectively) (Fischlin et al. 2007).  This loosely corresponds with the projection that 

under a scenario representing 2.0-5.4°C warming between 10-48% of terrestrial 

surfaces will encounter novel and disappearing climates by the same period (Williams, 

Jackson and Kutzbacht 2007).  Unique and currently threatened ecosystems will 

become increasingly vulnerable under climate change, with a 1.5-2.5°C rise in global 

mean temperature from 1990 levels predicted to move many of these ecosystems into a 

high risk state (Smith et al. 2009).    

 

During the recent past and to the present time ecosystem-degradation has been driven 

by a variety of non-climatic stressors, natural and human-induced, direct and indirect. 

Habitat fragmentation, overexploitation and pollution can be considered as direct 
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drivers, whilst human population change and socio-political changes are indirect (MEA 

2005).  Climate change, therefore, must not be thought of as acting in isolation, but 

occurring in concert with these stressors (Fischlin et al. 2007).  

For example, over the past 50 years humans have affected ecosystems more rapidly and 

on a wider scale than any comparable period in our history (MEA 2005).   Land use 

changes have had, and continue to have the most detrimental impact on terrestrial 

biodiversity (Sala et al. 2000).  The degree of past degradation of ecosystems means that 

the modern landscape holds little inherent capacity for ecosystems to adapt under rapid 

environmental changes (Walther et al. 2005).  Centres of endemism, the world’s 

biodiversity hotspots, are already recognised as being disproportionately threatened by 

human activities (Brooks et al. 2002).  The additive pressure of climate change on these 

already vulnerable ecosystems could serve as a tipping point beyond which these 

ecosystems can no longer recover or adapt (Lenton et al. 2008).  

Ecosystems are dynamic entities which have the potential to transition through 

different states (Walther 2010).  The term ‘tipping point’ describes the critical threshold 

beyond which a system is no longer stable and will undergo transition to an altered and 

potentially novel state (Fischlin et al. 2007; Lenton et al. 2008).  These transitions can 

be rapid (1-10yrs), gradual (50-100yrs) or slow (300yrs+) (Lenton et al. 2008). The 

restriction of this natural flux within the system, i.e. through habitat loss and 

fragmentation, might ultimately reduce the ecosystems adaptive capacity (Folke et al. 

2004).  Transitions in some systems are expected to be triggered with warming of 1°C 

to 2°C, with several more being triggered as global warming ranges upward towards 

3°C to 5°C (Ramanathan and Feng 2008).  Climate change is expected to at the least 

perturb ecosystems toward their tipping points, if not to ultimately cause the transition 

(Fischlin et al. 2007). 

  

Several large-scale ecosystem and meteorological components which are liable to 

exceed their natural stable state and transition under climate change have been 

identified (Lenton et al. 2008).  These components have been termed, ‘tipping elements’ 

and include, but are not limited to, the Amazon rainforest, the Sahel/Sahara and the 

West African Monsoon, Arctic summer sea ice and the El Niño southern oscillation 

(ENSO).  One such example, is the Amazon rainforest, where warming of 3-4°C is 
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predicted to limit the forests’ ability to re-establish, as a product of a reduction in 

precipitation, an increase in summer temperatures and the length of the dry season, the 

result of which is forest dieback (Lenton et al. 2008).  The consequence of forest dieback 

is in this case predicted to be a decrease in biodiversity and further reduction in 

precipitation(Lenton et al. 2008).  At a more localised scale changes in species 

assemblages can also trigger ecosystem transitions, or even complete ecosystem 

collapse, by undergoing rapid transition to species-poor, less productive assemblages 

(Fischlin et al. 2007).  The consequence of which has implications beyond the bounds of 

the ecosystem because assemblages of species in ecosystems not only reflect 

interactions among organisms but also between organisms and the abiotic environment  

(Walther et al. 2002).  In many cases, however, the proximity of an ecosystems current 

state to ecosystem-specific critical-thresholds is unknown (Fischlin et al. 2007).   

 

The Paleoecological Record 

There is general agreement that climatic regimes have influenced species’ distributions  

(Walther et al. 2002).  Over past millennia distributions fluctuated between range 

expansion and contractions as a species experienced glacial cycling (Walther et al. 

2002).  Often a species’ distribution is the result of oscillations in temperature and 

precipitation, where these fluctuations confer an advantage or disadvantage to a 

species.  Past episodes of climate change have differed in the rate and extent to which 

they occurred, however, across the paleoecological record there is corresponding 

evidence that species assemblages have changed with novel communities arising in 

their stead (Williams and Jackson 2007; Williams, Jackson and Kutzbacht 2007; Prentice 

et al. 2011).  Although past climate change events have occurred at a slower rate than 

that predicted for the 21st century, observations exist of abrupt and non-linear changes 

in terrestrial systems associated with these periods (Williams et al. 2011). 

 

2.1.1 Global Change Drivers 

 

Climate change will exacerbate the threat to biodiversity, in and of itself, but also in 

concert with a series of other global change, often human-mediated stressors  (Fischlin 

et al. 2007).  The main drivers of global change are; climate change, land-use change, 



23 
 

CO2 enrichment, nitrogen deposition and species invasions (Tylianakis et al. 2008).,  

Their associated impacts are well documented in isolation, but their collective effects 

are less well researched (Leuzinger et al. 2011).  These drivers, although occurring in 

consort, have the potential to have non-additive impacts. (Leuzinger et al. 2011).  

Leuzinger et al (2011) analysed the impact of multiple stressors (Ozone, CO2, water 

availability and temperature changes) on factors such as total biomass, carbon and 

nitrogen deposition at 160 climate manipulation sites.  They reported a reduction in the 

negative impact of the factors when analysed in combination compared to the factors 

affected in isolation.  The accumulation of stresses can quickly degrade the systems 

resilience making them vulnerable to replacement by better adapted ones (van Vliet 

and Leemans et al 2006).  Degradation can occur rapidly, within days to decades, but 

recovery is often very slow, taking decades to millennia, and is frequently hampered by 

other stressors (van Vliet and Leemans  2006).  The complexity in understanding how 

these drivers interact challenges our ability to predict their effect on future responses to 

climate change (Tylianakis et al. 2008).  This section reviews the drivers and stressors 

which often act alongside climate change in mediating global change.  

 

Changes in CO2, Nitrogen Deposition and Tropospheric Ozone  

Rises in atmospheric CO2, nitrogen deposition and tropospheric ozone are highly 

intertwined with climate change  (Tylianakis et al. 2008).  By 2100AD it is predicted 

that ecosystems will experience atmospheric CO2 levels higher than at any point in the 

past 650,000 years (Fischlin et al. 2007).  Human activity has roughly doubled the 

yearly creation of reactive nitrogen since preindustrial times (MEA 2005).  All three 

interact with plants physiological processes and evidently will have acute implications 

for the global carbon cycle with consequences for terrestrial and water-based 

ecosystems (MEA 2005).  The increasing addition of CO2 and nitrogen into the 

atmosphere has the effect of increasing short-term plant growth, a process known as 

CO2 fertilisation  (Tylianakis et al. 2008).  These physiological changes may increase the 

resilience of individual species to other stressors, such as higher temperatures, drought 

and ozone (Tylianakis et al. 2008).  However, the interaction of nitrogen with other 

factors is strong and multifaceted, particularly in relation to the complex dynamics of 

the carbon, nitrogen and phosphorus cycles (Tylianakis et al. 2008).  For example, it is 

important to note that the CO2 fertilisation effect has been found to be nitrogen-limited, 
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lessened in mature trees and over time reduced due to acclimation (Tylianakis et al. 

2008).  Conversely, the rise in tropospheric ozone (O3) over the past 160 years, mainly 

through anthropogenic emissions and to a lesser degree climate change,  is known to 

negatively affect tree growth, by reducing the plants ability to photosynthesise and 

assimilate carbon (MEA 2005).  Forests are currently a net sink for both CO2 and O3, 

however warming may increase both gases beyond the capacity of trees to absorb them, 

causing forests to become a net source (MEA 2005).  Terrestrial ecosystems, 

particularly forests (Fischlin et al. 2007), store carbon, approximately three times more 

efficiently than the atmosphere does, this carbon sink is likely to become saturated mid-

century (Lucht et al. 2006) and become a net  source of carbon releasing it into the 

atmosphere by the century’s end (Levy et al. 2004; Scholze et al. 2006).   

 

Change in Land-use and Cover  

Over the past 50 years humans have affected ecosystems  more rapidly and on a wider 

scale during any comparable period in our history (MEA 2005).  There are few 

ecosystems in which human activity hasn’t had an impact  (MEA 2005).  Land use 

change continues to have the most detrimental impact on terrestrial ecosystems and 

their associated biodiversity, due to habitat loss and fragmentation (Sala et al. 2000).  

This trend is predicted to continue into the future (MEA 2005). 

 

Deforestation to make way for agriculture is not only impeding forest ecosystems’ 

ability to provide but also has accounted for a quarter of all anthropogenic CO2 release 

(Fischlin et al. 2007).  Land-use and cover change influences climate change, through 

changes in sinks and sources of CO2 and changes in the relative absorption of radiation 

by the land surface (Fischlin et al. 2007).  Land-use change has also been found to 

reduce rainfall, and trigger changes in precipitation patterns as a result of conversion of 

forests to pastures (MEA 2005).     

 

Invasive and Alien Species  

Over the past decade an increase in the rate of spread of invasive species has been 

observed, and evidence suggests that climate change effects have augmented this 

expansion in range (Thomas, 2004; Hellman et al, 2008).  Species, including plants, 
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animals and pathogens, have been observed exceeding their historical ranges as climatic 

conditions becomes more attuned to their habitat requirements (Tylianakis et al. 2008). 

Invasive alien species are of particular concern as they often detrimentally impact 

native biodiversity (Vitousek et al. 1996; Rödder and Weinsheimer 2009).  Invasive 

species are often able to outcompete native species, for example through their greater 

ability to exploit prey or nutrients, however,  it is thought that invasive species are likely 

to cause extinctions through trophic as opposed to competitive interactions  (Tylianakis 

et al. 2008).  There are several recognised traits that invasive species possess, for 

example they are mainly generalists; having broad dietary and habitat niches (Rödder 

and Weinsheimer 2009) and they often have a high reproductive rate, are fast growing 

and are successful dispersers (Vitousek et al. 1996).  The successful establishment of 

non-native species into an ecosystem requires a suite of favourable conditions (i.e. 

climate and food availability) and is often dependent on the presence of competitors 

and predators, and the degree of human disturbance (Rödder and Weinsheimer 2009).  

Disturbances, such as extreme events, may create such favourable conditions, by 

opening up the landscape for colonisation (Connell and Slatyer 1977).  The expansion of 

invasive species will trigger the re-organisations of communities and result in the 

formation of novel ecosystems and interactions (Rödder and Weinsheimer 2009).  One 

observed effect of recent climate change is that species are colonizing previously ‘cool’ 

regions, as environmental conditions begin to fall within these species niche 

requirements; an phenomenon particularly prevalent in the arctic, where arctic 

specialists ranges are contracting (Parmesan and Yohe 2003). 

 

2.1.2 Impact of Climate Change on Terrestrial Ecosystems  

 

The species composition of an ecosystem is determined by the individual species’ 

physiological tolerances to the climate at its specific location, the interactions among 

organisms (i.e. interspecific competition, predator-prey) and those between organisms 

and the abiotic environment (Walther et al. 2002; Williams et al. 2008).  Changes in 

species behaviour and distribution will not occur in isolation having far reaching 

consequences across the ecosystem in which they appear (Walther 2010).  Three key 

factors have been identified which are thought will affect the way in which species react 
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to climate change (Helmuth et al. 2005).  Firstly, the relative importance of the 

environmental variables which limit a species’ geographic or local distribution will flux 

in space and time (Helmuth et al. 2005).  Second, a species’ physiological ability to 

endure and recover from environmental stress can vary radically in time and space 

(Deutsch et al. 2008).  And thirdly, climate change is inherently variable; it will not 

purely produce an increase in average global temperature, but vary weather patterns, 

such as precipitation, spatially, daily and seasonally (Helmuth et al. 2005).  These 

factors will determine whether a species will be vulnerable to new conditions, or able to 

adapt independently and flourish (Williams et al. 2008).   

 

Disturbance Regimes  

The predicted increase in extreme events associated with climate change is expected to 

further compromise species’ abilities to survive and reproduce (Kearney and Porter 

2009).  In the recent past observations suggest that extreme weather events have 

changed more markedly than average weather, and thus have elicited stronger 

responses from ecosystems (van Vliet  and Leemans et al 2006).  Hot extremes, heat 

waves, heavy precipitation events and tropical cyclones are all predicted to increase 

with further warming (Solomon et al. 2007).  These changes are unlikely to be spatially 

homogenous and will be characterized by patterns in large scale climate (Meehl and 

Tebaldi 2004).  Climate extremes- linked to natural fluctuations and underlying long-

term trends- are the dominant determinant of a species’ range, and are an important 

driver in ecosystem change (Walther et al. 2002).  Thus, this increase in extreme events 

has led to climate change impact levels which have exceeded that expected in the early 

decades of change (van Vliet  and Leemans et al 2006).  In fact, when linking observed 

ecosystem responses to recorded changes in weather patterns, van Vliet and Leemans 

(2006) found most appeared to be relatable to extreme events.  Extreme weather events 

can abruptly change conditions in a species’ habitat breaching the species’ natural range 

of tolerances, leading to local mortalities and population extinctions (Hoegh-Guldberg et 

al. 2008).  The root cause of degradation and loss of living coral cover, known as coral 

bleaching, has been identified as the occurrence of extreme ocean temperatures which 

surpassed the corals physiological tolerances (Hoegh-Guldberg et al. 2008). 
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Disturbance regimen such as fire, avalanche and wind are known to be climatically 

sensitive, and increases in frequency or severity will be to the detriment of those 

ecosystems in which they have a controlling impact (Fischlin et al. 2007).  Ecosystems 

which are strongly controlled by disturbance regimes, such as savannah and grassland, 

are likely to experience variation in the timing and degree of disturbances, which has 

the potential to elicit major changes in the ecosystem structure.  For instance, fire 

exclusion due to a predicted increase in precipitation, has the potential to transform 

savannah to forest (Fischlin et al. 2007).  Temperate and boreal forests are projected to 

exhibit large range shifts under a 3°C rise in global mean temperature, with only 50-

86% of these ecosystems remaining stable (Leemans and Eickhout 2004).  However, 

predicted changes in the fire and drought frequency and severity in the short term are 

likely to be more critical for these ecosystems (Fischlin et al. 2007). 

 

2.2 Impacts of Climate Change on Species 

 

A temperature rise between 1-2°C by 2100 is predicted to severely limit adaptive 

capacity of ecosystems and species within them, escalating the already high rate of 

biodiversity decline and compromising ecosystem service provision (Leemans and 

Eickhout 2004).  

Species and ecosystem-wide responses to climate change are likely to be non-linear and 

be observable only after a significant time lag, meaning that we cannot see the full affect 

that climate change has already had (Parmesan and Yohe 2003).  For example, the 

adverse impact of climate change on individuals may appear minor but exert sizeable 

impacts on the entire system, through impacting crucial biological interactions between 

species (Tylianakis et al. 2008).  The rate of climate change occurring is not equally 

distributed across the Earth’s surface, with some regions experiencing high warming 

trends (such as the Arctic bioregions) and others experiencing much smaller rates of 

warming (Burrows et al. 2011).  Thus, the impact of climate change on ecosystems and 

biodiversity will also not be equally distributed (Burrows et al. 2011).  It is predicted 

that anticipated climate change is likely to disproportionately impact terrestrial species 

at higher latitudes, in parallel with the rate of warming at these latitudes (Deutsch et al. 

2008).  However, evidence suggests that tropical species are equally vulnerable because  
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they are adapted to persist under a narrow range of environmental conditions (Vamosi 

and Vamosi 2008).  This section reviews the observed impacts and those predicted to 

occur in association with climate change. 

 

2.2.1 Phenology 

 

Global warming, a chief aspect of climate change, is associated with the advancement of 

species’ life history events  (Memmott et al. 2007).  Climate change will alter species’ 

phenologies by 1) speeding or slowing the development rate of species, or by 2) 

modifying the timing of environmental cues which preclude the appearance of species 

into the community (Yang and Rudolf 2010).  Many examples have been recorded which 

show that significant changes in species phenologies have occurred in relation to 

climate change (van Vliet  and Leemans et al 2006).  These phenological changes have 

concerned shifts in timing of migration, flowering, egg laying and developmental rate, 

(Root et al. 2003) and have included species across all the major taxonomic groups 

(Parmesan 2007).  Parmesan (2007) estimated a mean advance in phenological events, 

across plants and animals, of 2.8 days (±0.35/ 203 species) per decade.   

Phenological responses to climate change have been particularly strong in higher 

latitudes which have warmed more than lower latitudes (Root et al. 2003), and more 

such shifts are reported for Northern hemisphere species than for the Southern 

hemisphere species (Root et al. 2003).  The phenological advances resulting from a 

constant rate of warming will be highly variable due to the physiological constraints of 

the species in question (Angilletta 2009), as well as the location.  Species’ phenological 

responses show considerable variation across the community (Yang and Rudolf 2010).  

This is apparent at the large scale across the taxonomic classes where the average 

advancement in phenology for Amphibians is 7.6 (±3.09) days but for Birds is 3.7 

(±0.70) (Parmesan 2007).   

Climate warming has been observed to shift timings in plant phenologies.  In a study of 

385 British plant species, 16% flowered earlier than previously with only 3% having 

delayed flowering (Angilletta 2009).  The early flowering of several spring plants caused 

by an abnormally warm spring in northern Japan affected a mismatch in phenologies 
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between the plants and their bee pollinators resulting in a decreased seed yield for that 

season (Yang and Rudolf 2010).  It has been predicted that by the end of the 21st century 

plant and pollinator phenologies will advance between 1 and 3 weeks, and display 

significant variation between individual species (Memmott et al. 2007). 

Shifts in timing of breeding have been observed across a number of taxa, including 

birds, insects, mammals and amphibians, in response to climate change (Parmesan 

2006; Primack et al. 2009).  Egg-laying dates for Northern hemisphere birds were 

observed to have advanced by 3.70 days/decade ±0.3 (n=41 species), and have been 

attributed to an increase in spring temperatures (Parmesan 2007).  However, wide 

intraspecific variation has been observed because species’ populations are responding 

to localised as opposed to global rates of warming , for example, species of birds, from 

the same continent, were observed to show variation in timing of egg laying due to the 

seasonal variation in the degree of warming  they experienced just before breeding 

(Angilletta 2009).  

There are also many studies which show that migratory species are arriving earlier 

(Root et al. 2003).  Migratory species respond to annual seasonal cues, such as day-

length and temperature (Primack et al. 2009), thus their behaviours, including 

migratory routes are sensitive to changes in the timing of these cues caused by climate 

warming (Fischlin et al. 2007).  For example the Sooty Shearwater (Puffinus griseus), a 

pole to pole migrant, was observed to shift its migratory route by hundreds of 

kilometres in relation to changes in the sea surface temperature of the Pacific 

(Parmesan 2006).  The fact that many species will breed at one location before 

migrating to another area to spend the nonbreeding period means that there is an 

inherent risk in such change in migratory strategy (Fischlin et al. 2007).  Migratory 

species are predicted to be more vulnerable to climate change than permanent 

residents because of the heightened risk of asynchrony between species and resources 

(Fischlin et al. 2007).  This is particularly relevant in relation to food availability, where 

many species may experience detrimental shortages due to mismatches in their 

phenologies with their food species (Root et al. 2003).  For example, changes in timing 

and route of migration of African ungulate species could critically affect the predators 

which rely on their passing (Fischlin et al. 2007).     
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Individuals can adapt to rapid environmental change by adjusting their rate of 

development, either by acceleration or deceleration (Yang and Rudolf 2010).  For 

instance most insects are able to grow quicker and mediate shorter generation times 

under higher environmental temperatures (Berg et al. 2010).  There is however an 

optimal increase in temperature, beyond which the effect of increased temperature 

becomes deleterious (Thomas et al. 2004).   

 

Changes in phenological timings can be attributed to changes in a number of different 

environmental factors; many life-history events are triggered by temperature-related 

cues, such as seasonal temperatures, Walther et al. (2002) reported that spring timings 

of activities have been getting progressively earlier since the 1960s, due to warmer 

spring temperatures being the equivalent of suitable conditions that previously 

occurred later in the season.   However, others rely on day-length or food availability at 

stop-over points, and some rely on a combination of environmental cues (Parmesan 

2006; Primack et al. 2009).  For example, changing snow patterns in Colorado, USA, 

have been observed disrupting animal movements, and resulting in increased 

mortalities (Fischlin et al. 2007).  Regional differences in warming can explain the 

variance in advancement of vernal activities found across different locations, for 

example where differences are observed for Northern and Southern hemisphere species 

(Angilletta 2009).  However, there is also evidence of more localised phenomena in 

shifting timings that between urban environments compared to rural ones.  This is 

caused by the urban heat island effect which has an additive effect on temperature and 

is a key cause of greater advancements in phenology in cities (Angilletta 2009).   Those 

species which are unable to respond to climate change by shifting their phenologies 

may be disproportionately negatively impacted, particularly those residing in highly 

seasonal environments (Both et al. 2010).  

 

Where climate change is considered the driving force in altering Species phenologies, 

different species are likely to react to different parameters of climate change (Walther 

2010).  When species that closely interact or compete display divergent responses or 

vulnerabilities to environmental change, the outcome of their interactions is likely to be 

altered (Walther et al. 2002), mediating not only community structural changes, but 

also species interactions such as competition, predator–prey relationships, parasitic 
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infections and the decoupling of mutualisms (Williams et al. 2008).  Both et al. (2009) 

describe the impact of phenological changes in a simplified food chain across four 

trophic levels in a northwest European deciduous forest.  They found that across the 

four species (representing the trophic levels) studied each shifted their phenologies to 

different magnitudes exposing asynchronies across the ecological network.    

As shifts in range and phenology continue to be played out in this period of climate 

change some ecological interactions have become uncoupled, as some species move 

faster or directionally opposite to the species with which they share an interspecific 

relationship (Angilletta 2009).  Ecosystem communities display ‘rivet-like’ thresholds 

(Ehrlich and Ehrlich 1981) beyond which they display acute sensitivity to elimination of 

highly connected species (Dunne et al. 2002).  The ‘rivet’ model likens the loss of species 

to that of the loss of rivets on a plane wing. The loss of one ‘rivet’ will not cause the wing 

to break, with relation to species because several roles overlap across species 

ecosystem processes will be maintained with the loss of a single species.  However, 

there is a threshold beyond which the loss of further ‘rivets’ will result in the 

breakdown of the system (Ehrlich and Ehrlich 1981).  This alteration in interactions 

between species has the potential to have as great, if not greater, impact on ecosystems 

as the impacts of direct abiotic climate change (Yang and Rudolf 2010).  

 

2.2.2 Changes in species range, abundance and extinction 

 

Range Shifts: Observed species range shifts  

Evidence that species and ecosystems are sensitive to small perturbations in global 

mean temperature increases are widespread (Leemans and Eickhout 2004).  There is 

general agreement that climatic regimes influence species’ distributions (Walther et al. 

2002).  Parmesan & Yohe (2003) reported that of 80% of species (n=434) undergoing 

shifts over the past 17-1000 years did so.  The paleoecological record reveals that past 

millennia distributions have fluctuated between range expansion and contraction as 

species experienced glacial cycling (Walther et al. 2002).  Past fluctuations in 

temperature and precipitation have influenced the shape of current distributions by 

altering habitat suitability across the landscape in which the species reside (Walther et 
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al. 2002).  A species’ ability to disperse across the landscape is also constrained by 

species- specific physiological thresholds (Walther et al. 2002).   

Over the past decades terrestrial species distributions have been largely observed to 

shift poleward, and upward in elevation, in correlation with the direction of warming 

(Parmesan 2006).  However, a species ability to shift its range in response to climate 

warming is constrained by associated changes in climatic factors such as precipitation, 

non-climatic factors such as land-use and multi-species interactions (Chen et al. 2011).   

Thus, species have also been observed moving away from the poles and downhill due to 

the interactive features of climate with these factors (Sunday et al. 2012).    

Parmesan & Yohe (2003) performed a meta-analysis across observed species shifts and 

reported range shifts averaging 6.1km per decade, a rate much faster than one would 

expect in terrestrial ecosystems (van Vliet  and Leemans, et al 2006).  The maximum 

range shifts, found for the most vagile species, vary from 200km per decade, for 

butterflies, to a 1000km per decade for marine copepods (Parmesan and Yohe 2003).  

Sedentary species such as tree species are shifting at a much slower rate as populations 

undergo extinction and colonisation events (Walther et al. 2002).  For instance, trees in 

Sweden exhibited a 30 year lag-time between climate shifts and dispersal of seedlings 

beyond the current tree line (Parmesan 2006).  Large variation has been observed in 

dispersal capacity across and within taxa, this fact is thus reflected in the large variation 

in their ability to track climate change through range shifts (Chen et al. 2011).  The rate 

and range of dispersal has shown itself to be very idiosyncratic with broad differences 

both within and among taxonomic groups (Parmesan 2006).  Dispersal capacity is also 

likely to be determined by whether a species is generalist or specialist (Berg et al. 

2010).  Generalist dispersal is less likely to become resource-restricted whereas 

specialists are reliant on interactions with prey or host species so their dispersal is 

likely to constrained by the dispersal of the species upon which they are reliant (Berg et 

al. 2010). 

Recent observations have shown that species’ responses to climate change are most 

pronounced at the species range ecotone, the edge of the species’ range (Parmesan 

2005).  Climate-induced changes have also been observed to be more marked at the 

‘leading edge’ than the ‘trailing edge’ with observed colonization rates at the ‘leading 

edge’ perceived to be higher than associated local extinctions at the ‘trailing edge’ (Chen 
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et al. 2011; Sunday et al. 2012).  Range shifts also have tended to be episodic, rather 

than monotonic or gradual, occurring in stages as regions become climatically viable for 

dispersal (Walther et al. 2002).  

Regional, highly spatially heterogeneous, temperature changes are more salient for 

populations, assemblages, and ecosystems (Walther et al. 2005).  A meta-analysis of 

recent species ranges shifts found that species moved at rates more attuned with 

localised temperature changes, than global rates of warming (Chen et al. 2011).  The 

finding that shifts in precipitation have often diverged from those observed for 

temperature, occurring in different geographical directions (Dobrowski et al. 2013), 

brings added complexity to the picture.  This climate complexity complicates the 

identification of an overriding pattern and direction of change in species’ range shifts.   

 

Future projected range shifts 

Range shifts are likely to be the primary response of most species to climate change 

(Parmesan 2006), with more species likely to shift to new different patches than remain 

and adapt in their own patch (de Mazancourt et al. 2008).  Species’ distributions are 

likely to exhibit one of two trends, i) range expansion because previously uninhabitable 

regions open up to colonisations and, ii) changing climates will force contraction in 

range size, as species can no longer operate within that climate zone.  This will largely 

depend on species’ adaptations and their specific environmental tolerances (Stewart et 

al. 2010).  Species are unlikely to shift synchronously resulting in fluctuating 

dominances  of species within communities (Walther 2010).  

Projections of future species’ ranges are often generated using  one of two modelling 

methods, i) the correlative ecological niche models, which estimate future ranges based 

on a species current distribution and climate, and ii) mechanistic process-based models 

which use species’ life history processes and dynamics to predict future ranges (Guisan 

and Zimmermann 2000).   

In estimating a species’ ability to track climate change by dispersal it is important to 

quantify the likely velocity of future climate change and the probable dispersal capacity 

rates achievable across landscapes.  Several studies have estimated the velocity of 

climate change expected to occur into the next century, and have included projections 
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for various aspects of climatic change including temperature and precipitation velocity 

(Loarie et al. 2009; Sandel et al. 2011; Dobrowski et al. 2013).  These studies measure 

the rate of climate displacement across the landscape, based on estimates of past 

velocity and projections of future climate velocity, giving a valuable indication of the 

rate of dispersal a species would need to achieve to keep pace with climate change.  

Species are known to have experienced climatic changes throughout their evolutionary 

history, however, in past millennia the rate of change was at a slower pace (Root et al. 

2003).  Where species’ dispersal capacity exceeds predicted rates of climate velocity, 

species are projected to be able to track climate changes (Sandel et al. 2011). 

Under the IPCC SRES A1B scenario, which represents intermediate climate warming, 

Loarie et al (2009) predicted a geometric mean velocity of 0.42km/yr change in 

temperature with an associated range of 0.11-1.46km/yr for the period 2000AD to 

2100AD.   The projected rate is dependent on the emission scenario used and the period 

of time over which it is calculated.  However, Loarie et al (2009) reported that patterns 

of global velocity change appeared in parallel across the scenarios tested, with the 

highest climate change velocities occurring in flat landscapes at higher latitudes.   

Temperature gradients differ across the globe, thus the actual climate change velocities 

experienced by individual species are subject to high variation in part due to differences 

in regional rates of climate change, but also the degree of altitudinal relief (Loarie et al. 

2009). Therefore patterns of expected range shifts for species will differ across the 

globe in keeping with different regional levels of warming (Chen et al. 2011).  For 

example, species in mountainous biomes will require the slowest dispersal rates to keep 

pace with climate change, whereas those species in flatter biomes, such as desert, 

mangroves and flooded grasslands are projected to require much higher dispersal 

velocities (Loarie et al. 2009). 

At a local spatial and temporal scale climate is less dominant in defining species 

distributions than differences in topology and geography such as terrain, soil type and 

hydrology (Leemans and Eickhout 2004).  Thus, predicted climate space may be 

uninhabitable because the underlying geology and flora is incompatible for the species 

(Lanchbery et al 2006).  For example a shift from non-forest to forest can negatively 

affect those species which are adapted to treeless conditions. (Scholze et al. 2006).   
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The degree to which a population is isolated will also influence the degree to which 

species are able to persist within the landscape, for example terrestrial species may be 

dispersal limited because they inhabit islands or mountain ranges (Lanchbery et al. 

2006).  Any increase in the mean distance between natural habitats further 

compromises the ability of species to successfully disperse between populations and 

habitat patches (Parmesan et al. 2000).   Natural physical barriers such as mountain 

ranges, water expanses i.e. ocean and rivers and barren landscapes, will also limit 

species’ abilities to disperse to future climatically suitable regions (Lanchbery et al. 

2006).    

There is high variation across taxa in their ability to disperse (Guisan et al. 2006; 

Midgley et al. 2006).  Rapid changes in climate zones are likely to further enhance the 

risk of extinction for those species with a low capacity for dispersal and subsequent 

colonization (Williams, Jackson and Kutzbacht 2007).  Temperature change is likely to 

be a major factor in determining geographical range, however some tree species may 

not be able to disperse and keep pace with changing temperature zones (Fischlin et al. 

2007).  The maximum dispersal rate of common tree species is estimated at less than 

100km per century (Leemans and Eickhout 2004) too slow to keep pace with the 

current rate of change.   

The modern landscape holds little inherent capacity for ecosystems to adapt under 

rapid environmental changes (Walther et al. 2005).  Human-mediated stressors such as 

habitat fragmentation and land use changes are likely to reduce many species’ ability to 

disperse through the landscape(Thomas et al. 2004; Lanchbery et al. 2006; Wiens et al. 

2009).  Climatically suitable locations may be remote from species current distributions 

and occurring beyond species’ dispersal capacities which are significantly reduced by 

habitat loss and fragmentation (Walther et al. 2005; Williams, Jackson and Kutzbacht 

2007).  Species movement is also likely to be moderated by processes such as 

competition, herbivory and soil formation (Fischlin et al. 2007) .  Humans can also 

enhance the ability of species to track climate change, purposefully or unintentionally.  

Translocation (the movement of species within their historic range) and assisted 

migration (relocating the species beyond its historic range), are two processes intended 

to aid species dispersal.  
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These species are likely to experience large range contractions as suitable climate space 

shifts beyond their dispersal capacity (Ashcroft 2010).   Shrinking habitat availability is 

predicted to cause a number of species to retreat into refugia, areas of habitat in which 

species can persist during unfavourable climate regimes (Ashcroft 2010).  Those species 

which preferentially inhabit cooler conditions currently are most at risk of  large range 

contractions, as their current distribution may already be restricted to interglacial 

refugia, and any further rise in temperature will compromise their ability to survive 

further (Ashcroft 2010).  Warm-adapted species which have undergone range 

expansion during the current interglacial may, in time, also suffer range contractions, as 

warming surpasses their upper tolerance limits (Ashcroft 2010).   

Mountains are becoming increasingly important as refuges for species, particularly 

endemics (Fischlin et al. 2007).  However, montane species occurring on mountain tops 

are disproportionately sensitive to climate change because they cannot move further 

upwards as warmer thermoclines transition to higher elevations (Parmesan 2005; 

Thuiller et al. 2006).  As natural ecosystems become smaller and further isolated and 

populations go into decline they are less able to adapt particularly when faced with the 

increased  occurrences  of disturbance events (Parmesan et al. 2000).  Species 

responses to the disappearance of their climate niche and the appearance of novel 

climates in their sted are difficult to predict (Williams and Jackson 2007).  Thus, 

forecasting the effect of unfavourable climates on biodiversity and ecosystem services is 

highly complex because it requires us to extrapolate beyond what is known  (Williams 

and Jackson 2007). 

 

Abundance 

Changes in abundance are implicated in observations of range shifts, where recent 

climate change has either enhanced or reduced the amount of available climate space 

for species and resulted in colonisation opportunities or localised extinctions (Chen et 

al. 2011).  Abundance changes are measured by changes in population size for 

individual species, or shifts in community structure and have been associated with 1) 

individual species physiological tolerance limits (Parmesan et al. 2000) and, 2) changes 

in community composition which have created multiple disconnects in species 
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interactions (Cahill et al. 2013).  Identifying concrete examples of species abundance 

changes caused by climate change is complicated by the interaction of confounding 

factors such as land-use changes, competition from invasive species and disease (Cahill 

et al. 2013). 

Examples of abundance changes related to physiological tolerance limits directly are 

rare for terrestrial animals (Cahill, 2013).  However, warming, at least in a regional 

context, has been cited as the causative factor in several catastrophic population die-offs 

(Portner and Knust 2007; Welbergen et al. 2008; McKechnie and Wolf 2010).  For 

example, recent increases in severe heat waves in hot desert regions have led to mass 

avian mortalities, in 2009 Western Australia experienced a heat wave which caused the 

death of thousands of birds unable to successfully thermoregulate.  These die-offs will 

periodically reduce populations increasing their vulnerability to further extreme events 

(McKechnie and Wolf 2010).  Ziegeweid et al. (2008) found that shortnose Sturgeon 

(Acipenser brevirostrum) populations are in decline, because increased summer water 

temperatures are lethal to their young, leading to a decline in juvenile recruitment.  In 

Polar Regions, where temperatures are increasing at the greatest rate, polar species’ 

populations tend to be marginally stable or in decline, as their climatically suitable 

habitat shrinks, whereas temperate species at the same site are increasing in abundance 

(Parmesan and Yohe 2003).  For some species an increase in average global 

temperatures may boost their reproductive success by creating suitable conditions for 

unusually high reproduction with the result of increased abundance (Zimmermann et al. 

2009).   

There are some species, mainly reptiles, for which temperature plays a role in 

determining the gender balance of their constituent populations, known as 

environmental sex determination (Freedberg, Ewert & Nelson., 2001).  There is 

evidence that climate change has already impacted sex ratios by way of increases in 

average temperatures and the frequency of extreme temperature events, with the 

potential to impact on their abundance as a result of highly skewed population sex 

ratios (Parmesan et al. 2000).   

When species that closely interact or compete display divergent responses or 

vulnerabilities to environmental change, the outcome of their interactions is likely to be 

altered (Walther et al. 2002).  Declines in abundance and local extinctions due to 
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disconnects in species interactions are equally difficult to identify, however, Cahill et al 

(2013) give several examples of this phenomena.  These include the local extinction of 

desert bighorn sheep (Ovis canadensis) in California caused by a reduction in food 

availability, as lowered rainfall in the region altered the plant community on which it 

relied (Cahill et al, 2013).  

One observed indirect impact of recent climate change, the measureable rise in 

incidence and spread of wildlife diseases, parasites and zoonoses is likely to further 

compromise already vulnerable species (Fischlin et al., 2007).  The impact of this 

measured rise in pathogens has already been implicated in the widespread extinction of 

amphibians (Pounds et al. 2006).    

Reductions in abundance are likely to severely impact genetic diversity, causing 

evolutionary shifts as the gene pool shrinks (Williams et al, 2008).  The degree to which 

genetic diversity is lost will be dependent on the ability of a species to migrate and the 

amount of range contraction (Williams et al, 2008).     

 

Extinction 

Observed global extinctions 

There is relatively little evidence of extinctions caused by recent climate change  but 

studies suggest that rates of future extinction due to climate change could surpass those 

caused by habitat destruction in the next decades (Bellard et al. 2012).   The fossil 

record shows that extinctions have accompanied periods of past global climate change 

(Fischlin et al. 2007).  Thus, the likelihood of extinctions occurring with future climate 

change is high, particularly considering that the climate is likely to be warmer than 

during any point in the last 1-40myr (Thomas et al. 2004).  A predicted rise of 2°C rise 

in temperatures from pre-industrial levels will significantly compromise many species, 

particularly endemics, putting them at a far greater risk of extinction (Fischlin et al. 

2007).   

The IUCN has attributed climate change as a significant factor in the extinction or 

extinction in the wild of 20 species out of 864 recent extinctions, representing seven 

amphibians, six birds, four molluscs, two fish and one mammal (Cahill et al. 2013).  

However, the links with climate change are tenuous, as each of the specie’s populations 
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was already compromised by non-climate factors (Cahill et al. 2013).  Although global 

extinctions are difficult to attribute to climate change, there is clear evidence that 

localised extinctions are occurring and are especially prevalent at the warm edge of 

species’ ranges (Cahill et al. 2013). 

In a recent review on localised extinctions encompassing 136 studies, Cahill et al 

(2013), discovered that very few were found to be the result of changing temperatures 

directly, and attributed causes also included the disruption of species interactions, 

precipitation changes and an increase in disease incidence.  For example, recent 

amphibian extinctions have been attributed to warming which indirectly created 

optimum conditions for the spread of the fatal Batrachochytrium fungus (Fischlin et al. 

2007).       

 

Future projected species extinctions 

Species extinctions have been forecast across the world’s ecosystems as a result of 

climate change.  Model predictions of species’ responses to climate change, in particular 

changes to their natural ranges, predict that with a small degree of further warming, 

species extinctions are likely (Lanchbery et al 2006).  Projections of future global 

extinctions estimate that 20-30% of species experiencing 2-3°C warming above pre-

industrial levels; will be increasingly at risk of extinction (Fischlin et al. 2007).  Large 

variation among regional biota means that this extinction figure may be as low as 1% 

and as high as 80% (Fischlin et al. 2007).   

Extinctions and local extinctions or extirpations are predicted to especially prevalent 

among range-restricted or isolated species and populations (Fischlin et al. 2007).  As 

such, climate change is predicted to disproportionately affect endemic species; Thomas 

et al (2004) predicted that by 2050 between 15-37% of endemics will be committed to 

extinction.  Thomas et al’s interpretation of what constitutes an endemic is broad and 

defines endemic species as those confined to one region i.e. the whole of Europe.   

Isolated islands with high numbers of endemic species, such as the Galapagos Islands 

and Madagascar, are predisposed to experience high extinction rates (Vamosi and 

Vamosi 2008).  The same is true for biodiversity hotspots, which are predicted to 

experience high rates of extinction simply due to the number of species they harbour 

(Pimm and Raven 2000).  In the South African Succulent Karoo biome, 2,800 plant 
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species face potential extinction as bioclimatically suitable habitat is reduced by 80% 

with a global warming of 1.5-2.7°C (Fischlin et al. 2007).   

Species expected be most at risk of extinction are those inhabiting mountain 

ecosystems, particularly montane tropical forests (Fischlin et al. 2007), and species 

which have already been exposed to other stressors, such as habitat loss (Williams and 

Jackson 2007; Williams, Jackson and Kutzbacht 2007).  Climate change is predicted to 

supersede land-use change as the dominant driver of biodiversity loss beyond 2050 

(Fischlin et al. 2007). 

The response of individual species to altered conditions will instigate a cascade of 

effects throughout the ecological network (Walther 2010).  If key species, (i.e. those 

species with many connections within the food web structure), move out of the system 

or go extinct, there is a high likelihood that a wave of secondary extinctions will follow 

(Dunne et al. 2002).  The loss of basal species, such as primary producers, which form 

the foundation of food webs,  or the loss of key prey for a specialized predator that itself 

is predated, are both triggers for extinction cascades (Dunne et al. 2002).  The more 

highly diverse communities, with high numbers of endemic species (i.e. tropical 

communities), are more vulnerable to change as they are dependent on complex sets of 

interspecific interactions (Vamosi and Vamosi 2008).   

Over the next 100 years the major proximate factors attributed to extinctions are likely 

to vary in response to further climate change, with the likelihood that species 

extinctions caused by physiological limitations will increase as warming continues 

(Cahill et al. 2013).  At the current time there is little information available on time lags 

between the occurrence of a climatic signal and subsequent species extinctions, and it 

could be many decades before the full impact of environmental disturbance is 

manifested as extinctions (Thomas et al. 2004).    

 

Climate change will further aggravate the stress which many species are already 

experiencing due to a multitude of stressors, such as habitat loss and fragmentation 

caused by land-use change (Fischlin et al. 2007).  Approximately 60% of all world 

ecosystems evaluated are unsustainably exploited and as a result they are increasingly 

being degraded (Fischlin et al. 2007).  Around  20% of all mammal species,  30% of 

amphibians, 21% of reptiles and 13% of bird species are currently recognised as 
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threated (critically endangered to vulnerable) in the IUCN red list (IUCN 2013).  The 

additive impact of climate change has the potential to consign these already threatened 

species to extinction by further compromising their ability to survive (Fischlin et al. 

2007). 

 

The complexity associated with modelling climate change associated extinctions, lies 

not only the additive effects of other detrimental drivers (Leuzinger et al. 2011) but also 

with the coarse spatial scale over which these predictions are made (Willis and Bhagwat 

2009).  This large spatial scale fails to account for ‘microclimatic buffering”, misses 

potentially important topographical features, and doesn’t account for individual species 

ability to acclimate to changing climates(Willis and Bhagwat 2009).  However, 

bioclimatic envelope models are the best tool available for making widespread 

predictions of extinction risk, particularly for species for which we have little 

information. 

 

2.3 Adaptation and its limits 

 

The physical impact of climate change on species will depend on the ability of species to 

utilise those innate adaptive responses such as acclimation, adaptation, dispersal and 

behavioural changes (Bellard et al. 2012).  This innate adaptive capacity, termed 

autonomous adaptation, consists of a suite of adaptation options which can be 

separated into three main categories; Ecological, Phenotypic and Genetic adaptations 

(Williams et al. 2008).  These function at different temporal and spatial scales and 

operate from the level of the individual, to population and system wide (Smit and 

Wandel 2006).  For adaptive responses to be successful in responding to rapid climatic 

change three criteria need to be fulfilled; 1) that the quality of habitat connectivity in 

the landscape is good, 2) that the species and systems adaptive mechanism are able to 

keep pace with the velocity of climate change, and 3) that there is sufficient genetic 

variability within populations and systems (Williams et al. 2009).  Species biological 

limits will limit the degree to which species can adapt to climate change (Williams et al. 

2008).  For example, ectotherms body temperatures are determined by external heat 

sources (Cossins and Bowler 1987), temperatures beyond their thermal tolerances will 
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compromise these species ability to adapt (Deutsch et al. 2008).  Those species which 

have low adaptive capacity and/ or dispersal ability are likely to be caught in a 

dichotomy, as climate-forced range changes impact and they struggle to disperse to 

suitable climates, ultimately making them more vulnerable to extinction (Walther et al. 

2002).  Therefore species have two paths, either ‘survive in situ in small refugia or be 

sufficiently generalist to utilize a broad habitat mosaic containing a matrix of 

suboptimal habitat types’ (Williams et al. 2009).  Those species with limited 

autonomous adaptive capacity are likely to require human-intervention to survive.  

 

2.3.1  Species and Ecosystems Adaptation Pathways  

 

The degree to which species will survive or an ecosystem will persist under climate 

change will depend on each one’s capacity to adapt as well as their respective innate 

resilience (Williams et al. 2008).  Resilience refers to the amount of disturbance a 

system or species can tolerate and recover from (Gunderson 2000; Williams et al. 

2008).  The fact that ecosystems are dynamic entities, able to exist in alternative stable 

states, points to their innate capacity for autonomous adaptation, at least within the 

bounds of previously experienced variability (Gunderson 2000).  There is also a wealth 

of evidence to suggest that species have also undergone adaptation during past climate 

cycles (Parmesan 2006).  However, this evidence of past adaptation does not 

necessarily indicate that ecosystems and species will be able to adapt to novel 

conditions (Willis et al. 2009).    

There is evidence that species have already used pre-existing flexibilities in responding 

to climate change, such as contraction to refugia, shifts in distribution, and shifts in 

habitat and microhabitat, shifts in seasonal and daily activities, acclimation, and changes 

in biotic interactions (Williams et al. 2008; Wiens et al. 2009).  These responses indicate 

that species are able to act within a generation, as opposed to evolutionary genetic 

changes which will only take affect after multiple generations (Williams et al. 2008).  

These adaptive responses may occur on relatively short time scales due to the pressure 

exerted by rapid climate change on traits important for persistence (Gienapp et al. 

2008). 
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Ecological adaptations include changes in species distributions and phenological 

adjustments but also individual-based modifications of behaviour, physiology and 

morphology (Chevin et al. 2010).   Adaptations can occur both over the short term, from 

days to weeks,  as in the instance of behavioural changes, and the long term in the case 

of genetic adaptations, and can be  reversible, semi-permanent and permanent 

(Helmuth et al. 2005).  As climate change intensifies it is likely to impose strong 

selection on species’ traits which are important for fitness, eliciting phenotypic 

responses (Gienapp et al. 2008).  Most observable ecological adaptations are governed 

by phenotypic plasticity, changes in abundance and distributions being the notable 

exceptions  (Helmuth et al. 2005). 

 

A species’ or individual’s sensitivity to environmental change is governed by intrinsic 

factors which include their physiological tolerance limits, their ecological traits such as 

behaviour, and their inherent genetic diversity (Williams et al. 2008).  Species that are 

especially vulnerable to rapid environmental change are those that are genetically-

poorly adapted to their environments, reproduce slowly, cannot disperse effectively, 

and are highly specialised or isolated, because they are highly sensitive to 

environmental change (Fischlin et al. 2007).  The extent to which a species is able to 

adapt is often constrained by its evolutionary history; this is particularly salient in the 

case of generalist versus specialist.  Generalists will more readily adapt to changes in 

climate, whereas the nature of specialization means that specialist’s adaptive capacity is 

restricted.  However, specialist species may inherently be more resilient to localised 

change due to the demographic advantage of high and uniform local abundance, 

localised adaptations and a higher capacity to disperse across their suitable habitat due 

to local adaptations (Williams et al. 2008; VanDerWal, Shoo, Johnson, et al. 2009).   A 

species’ sensitivity and thus its vulnerability are dependent on the level of exposure to 

climate change but determined by the species resilience and adaptive capacity 

(Williams et al. 2008).   

It is argued that environmental change is inclined towards selecting changes in species 

abundances and distributions as opposed to phenotypic adaptations (de Mazancourt et 

al. 2008).  With increasing rates of change a species ability to adapt declines rapidly  

(Leemans and Eickhout 2004).  Leemans & Eickhout (2004) predict that with between 1 

and 2°C warming most species, ecosystems and landscapes will have experienced a 
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degree of climate change which will severely limit their adaptive capacity, manifesting 

in observable biodiversity declines.  There is a general lack of information regarding 

most organisms physiological tolerances and intrinsic genetic diversity (Hoegh-

Guldberg et al. 2008).  However, tolerance limits are thought to be phylogenetically 

constrained meaning that a representative species may be appropriate to describe the 

taxa (Hoegh-Guldberg et al. 2008)    

 

Phenological and Physiological  

Species adaptations in phenological and physiological characteristics are controlled by 

phenotypic and genetic variation within populations.  Phenotypic variation describes 

the range of observable characteristics or traits which a species can employ in adapting 

to environmental change.  These traits include morphological, developmental, 

phenological and behavioural traits.  The inherent phenotypic variation which currently 

exists among individuals across populations has been produced across countless 

generations in response to previous climatic fluctuations (Angilletta 2009).  Often there 

are multiple phenotypes present within a population (Helmuth et al. 2005).  Variation in 

the rates and degrees of expression of each variation during past periods of 

environmental change will determine how prevalent each phenotype is among the 

population (Helmuth et al. 2005).  Phenotypic plasticity can operate in the short-term 

and does not require multiple generations to elapse before being expressed, as in 

genetic adaptation (Williams et al. 2008) 

Phenotypic plasticity is itself dependent on the level of intrinsic genetic variation of the 

species in question (Williams et al. 2008).  However, the phenotypes of organisms can 

adjust in direct response, to environmental change without the need for genetic 

adaptions (Thomas 2005).  Certain life history traits are thought to support resilience 

these include a short life span, high reproductive capacity and fast life history (Williams 

et al. 2008).  The most vulnerable species include those that are genetically poorly 

adapted to rapid change, disperse poorly, reproduce slowly, are isolated or highly 

specialised (Fischlin et al. 2007).  However, some of the most profound effects of climate 

change species are expected to encounter are likely to be related to the decoupling of 

biotic interactions among species (Parmesan 2006; Yang and Rudolf 2010).   
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There is not infinite variation in phenotypic plastic responses, they are physiologically 

limited and likely to ‘saturate’ under extreme environments (Chevin et al. 2010). For 

example, metabolic rates cannot increase or decrease ad infinitum under persistent 

environmental change (Chevin et al. 2010).  A sustained rise in experienced mean 

temperature, as is predicted with climate change will test species ability to function, by 

pushing species closer to, or beyond their critical thermal limits beyond which  species 

life processes are unable to function (Angilletta 2009).  The thermal sensitivity of these 

processes places strict limits on life (Portner and Farrell 2008; Angilletta 2009).   

Species exploitation of their inherent phenotypic plasticity may imply involve fitness 

costs to the individuals, associated with the expressed phenotype or otherwise (Chevin 

et al. 2010).  Large phenotypic plasticity does not, however, foretell a high degree of 

genetic variation (Thomas 2005).  

It is important to consider the full breadth of phenological and physiological 

adaptations to climate change in particular, increases in temperature, if we want to 

predict species responses to climate change (Franklin and Seebacher 2009). 

 

Phenological 

There is inherent flexibility in many species phenological activities, this flexibility 

means that these species are able to modify the onset and cessation of specific annual 

activities to adapt with climate change  (Kearney and Porter 2009).  This phenotypic 

plasticity means that these species can remain in synchrony with changing seasonal 

conditions without having to evolve genetic solutions (Kearney and Porter 2009).  

However, predicting the adaptation of species phenologies to climate change is 

complicated by the complex nature and multi-layered character of environmental cues 

on which species rely to prompt the onset of phenological activities (Walther et al. 

2002; Parmesan 2006; Primack et al. 2009).  There is inherent risk associated with 

changing strategy, in terms of mismatches between predator arrival and prey 

availability, or breeding during a short-term warm period which then reverts back to a 

cold period resulting in mortality of vulnerable juveniles unable to withstand cool 

temperatures (Primack et al. 2009).  The asynchronous timing of phenological events 

among community members has the potential to negatively disrupt ecosystem 



46 
 

functioning, making the community more vulnerable to climate change (Primack et al. 

2009).  The evidence for, and predicted effect of climate change on phenologies is 

reviewed in section 2.2.1.  

Physiological 

Physiological adaptations occur at the individual mechanistic level exploiting intrinsic 

phenotypic plasticity, or genetic variability. Phenotypic plasticity can be employed 

rapidly but has limited scope, whereas genetically- based adaptations act over a longer 

timescale but are less constrained  (Williams et al. 2008).   

A physiologically-based example of phenotypic adaptation is acclimatisation.  This is the 

process by which endotherms are able to make seasonal phenotypic adaptations to 

their insulative properties and metabolic processes (Angilletta 2009).  This process 

allows organisms to respond rapidly to warming (Angilletta 2009), it is a short-term 

phenotypic adaptation (Deutsch et al. 2008) to temporary environmental change and 

involves the compensatory adjustment of physiological function to increase the 

individual’s resilience (Helmuth 2005).  Acclimatory responses are induced by 

environmental stimuli, and are reversible over the species’ lifetime; as such these 

adaptations are not passed onto the next generation (Cossins 1987).  Acclimatisation, 

although a phenotypic adaptation, is limited by the individual’s genotypic variation 

(Cossins 1987).  The ability for a species to acclimatize is dependent on their intrinsic 

thermal tolerances which are proportional to the temperature variation they have 

experienced over their lifetime, although this variability is also constrained by the 

latitude of their location (Deutsch 2008).  As such, individuals with a greater resistance 

to thermal stress are conferred a selective advantage in evolutionary terms (Cossins 

and Bowler 1987).  However, species with high tolerances to extreme temperatures 

may be at a disadvantage under non-stressful thermal environmental conditions 

because of the large cost associated with immediate plastic responses (Williams et al. 

2008). 

It is likely that some species will adapt their morphology (Root et al. 2003) in response 

to changes in energetic constraints placed on them by climatic change.  Energetic 

constraints are known to influence size and shape but also the colour of individuals 

(Parmesan et al. 2000).  As such outward morphological adaptations are mainly an 

indirect result of adaptations required to better align a species individuals energy 
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budget to a new set of environmental conditions.  For example the Scops owls (Otus 

scops) of Italy have adapted to recent warming and increased precipitation by adopting 

a measurably darker plumage (Galeotti et al. 2009). 

Behavioural adaptations 

Species have the ability to modulate their behaviour in response to climate change, 

changing patterns in their behaviour rapidly (Kearney et al. 2009).  Behavioural 

changes are likely to be the first strategy utilised by species, particularly ectotherms 

that behaviourally thermoregulate.  Moderate warming at a global scale is likely to 

instigate species to undergo complex behavioural changes at the local scale (Angilletta 

2009).  Such changes can be a  reaction to one extreme weather event or to prolonged 

climate shifts, and as such, in the short term at least, are reversible (Angilletta 2009).   

In fact there is mounting evidence that there is a very strong correlation between 

changes in climate and adaptations in species’ behaviour (Lanchbery et al 2006).    

Species living at high latitudes and altitudes are expected to adapt their behaviours 

most markedly because these are the regions where the greatest temperature changes 

will occur (Root et al. 2003).  

 

Evolutionary and Genetic 

A species’ ability to adapt under climate change will depend on a balance between three 

factors (Williams et al. 2008).  Firstly, that there is sufficient heritable variation, second, 

the size of the adapting population (which has indirect effects on evolution) and third, 

the rate at which climate change is occurring (Williams et al. 2008).  

Rapid genetic adaptation to new environments has been observed (Dormann et al. 

2010).  This has been especially prevalent among species with short generation times 

which seem capable of swift evolutionary change (Wiens et al. 2009). Conversely, 

maladaptation to changing climates has been predicted among species with low 

dispersal capacity and long generation times with the consequence of decreased 

species’ persistence   (Bradley St Clair and Howe 2007; Cobben et al. 2012). For 

example, it is predicted that the longevity of the Douglas-fir (Pseudotsuga menziesii) will 

significantly limit its adaptation capacity, as multiple generations over many centuries 

will be required to adapt to new climate optima (Bradley St Clair and Howe 2007).  The 
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risk of maladaptation to climate change was simulated across the range of the middle 

spotted woodpecker (Dendrocopos medius) giving insight into the effect of founder 

events on species adaptation capacity  (Cobben et al. 2012). Under increasing 

temperatures locally-adapted ‘specialised’ individuals were increasingly marginalised 

as generalist individuals, better able to adapt to changing temperatures, dominated the 

expanding range edge  (Cobben et al. 2012).  The loss of specialised individuals had the 

effect of reducing the gene pool and thus the ability of the species to adapt to further 

change, causing a reduction in the metapopulation size (Cobben et al. 2012).             

Species’ ability to mobilise genotypic adaptations developed in response to past 

Pleistocene interglacials and in response to current change has not been determined 

(Colwell and Rangel 2009). Those species which are dispersal limited and have long 

generation times, such as forest trees, have the highest probability of undergoing  

genetic adaptation to local changes in conditions (Bradley St Clair and Howe 2007; 

Fischlin et al. 2007; Chevin et al. 2010).   

 The degree to which species retain genotypic variation which radiated during periods 

of past climate conditions is unknown (Colwell and Rangel 2009).  During the last glacial 

period, most temperate species occurred at lower latitudes, extending their ranges to 

higher latitudes as the glacial ice retreated. Thus, most of these species have lower 

genetic diversity at their northern range boundaries as colonization northward involved 

few pioneering individuals resulting in new populations containing reduced levels of 

genetic variation (Thomas 2005).  In the Northern hemisphere climate change is 

disproportionately causing range contractions at the parts of species distributions 

which hold the greatest genetic diversity (Thomas 2005).  The greatest genetic diversity 

for temperate species is found at the southern most parts of their range.  Loss of 

genetically diverse southern populations and the replacement of populations and 

colonization of new areas by founder events involving genetically-depauperate 

northern individuals are reducing the gene pool (Thomas 2005).  The bog fritillary, 

Proclossiana eunomia, is one such species threatened by a reduction of genetic diversity.  

Highly localized remnant populations of the bog fritillary found in the Pyrenees and 

Cantabrian Mountains of southwest Europe were found to possess four unique alleles 

(at 10 loci examined) which occur only within these populations (Thomas 2005).  The 
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loss of these populations by range contractions will compromise the species ability to 

adapt to future challenges (Thomas 2005). 

Heritability is the proportion of phenotypic variation within populations which can be 

attributed to genetic variation; most traits exhibited by wild species are heritable, and 

as such respond to natural selection (Merilä 2012).  As a heritable adaptation it 

represents a permanent shift within the population (Helmuth et al. 2005).  Genetic 

responses to environmental change occur when natural selection pressures act on the 

genetic variability of a population (Frankham et al. 2002).  Natural selection acts on 

quantitative traits in a population, selecting for those alleles which confer an advantage 

in terms of species persistence (Root et al. 2003).  In this way the population undergoes 

evolutionary adaptation to align with changing circumstances by selecting for 

advantageous characteristics over time (Frankham et al. 2002).  Genetic change can lead 

to visible change or simply adjustment in physiological activity (Frankham et al. 2002).  

Evolution is most likely to occur when environmental change generates new conditions 

entirely outside of the range of initial optimal trait values (de Mazancourt et al. 2008).   

Low levels of heritable variation in traits, specifically tolerance traits, can severely limit 

a species ability to adapt to climate change (Merilä 2012).  It is thought that species 

distributions may be limited by such genetic variability (Merilä 2012).  However, it is 

important at this stage to consider whether a species current distribution reflects the 

full ecological potential of the current gene pool or that in fact its current range is 

constrained by dispersal limitations (Colwell and Rangel 2009).          

Evolutionary processes are irreversible within a generation but are reversible if 

sufficient genetic variation remains dormant within the species gene pool (Frankham et 

al. 2002).  Those individual organisms which possess favourable characteristics well-

adapted to a particular environment are likely to survive and reproduce better than 

those less-fit individuals within the population (Cossins and Bowler 1987).  Therefore if 

such favourable characteristics have a genetic basis these beneficial alleles will be 

driven towards fixation by natural selection (Frankham 2010) over a large number of 

generations (Cossins and Bowler 1987).  As such genetic frequencies in species, at the 

population level and above are likely to shift in response to climate change (Root et al. 

2003). 
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Evolutionary shifts are increasingly probable after population size reductions (Williams 

et al. 2008).  Small or reduced population sizes often result in a diminished capacity for 

local adaptation due to limited genetic variation (Parmesan et al. 2000).  Across the 

globe there are untold numbers of recently fragmented populations undergoing genetic 

erosion, in terms of inbreeding and a loss in genetic diversity, consequently these 

populations are more vulnerable to environmental change and extinction (Frankham 

2010).   Such genetic erosion significantly compromises the ability of wild populations 

to survive (Frankham 2010).  Even those species with sufficient genetic variation to 

adapt to changing climate niches are unlikely to survive unscathed in situ because of the 

rate of evolution required to keep pace with current climate change (Dormann et al. 

2010).  In a study of European mammals, Dormann et al (2010) concluded that the 

studied species would be unable to evolve quick enough to avoid the harmful impacts of 

climate change. 

Genetic factors contribute to a species’ overall extinction risk through inbreeding 

depression, loss of genetic diversity and loss of evolutionary potential (Edmands 2007; 

Frankham 2010). Predicted species declines are likely to affect the gene pool. As 

individuals survival ability is compromised a selection-bias toward individuals which 

can survive perturbations will be incurred, with the potential to result in a genetic 

bottleneck (Edmands 2007).  Loss of genetic variability can lead to an inbreeding 

depression, the reduction in fitness of a population caused by the mating of close 

relatives (Edmands 2007).  Inbreeding leads to a redistribution of genotype frequencies, 

reducing heterozygosity, an important factor in maintaining genetic flexibility 

(Edmands 2007).  Populations experiencing stress, such as that imparted by climate 

change, are approximately 69% more likely to experience an inbreeding depression 

than under benign environmental conditions (Edmands 2007).   

Genetic adaptation is typically a slow process requiring multiple generations to elapse 

before taking effect; as such it is an on-going dynamical process (Helmuth et al. 2005).  

When the speed of change is rapid in evolutionary terms then species will become 

maladapted, because genetic adaptation occurs over generations and not within an 

individual’s life time (Donnelly et al. 2012).  In this way adaptation is a genetic tracking 

process, which is especially relevant to range-restricted species (Donnelly et al. 2012).  

Thus, it is generally thought that the rapid rate of climate change is too fast for species 
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to adjust evolutionarily, although there is some evidence that changes in genotype are 

occurring (Wiens et al. 2009).   

 

2.3.2 Human-assisted Adaptation 

 

Conservation biologist’s fundamental tenet is to protect and conserve the earth’s 

biological diversity (Hagerman et al. 2010). Global climate change is already 

significantly impacting biodiversity (Fischlin et al. 2007).  Therefore, conservationists 

must aim to maximise the resilience of natural systems to climate change impacts 

(Mawdsley et al. 2009).  The major uncertainties associated with climate change, and 

how to implement novel adaptive management strategies are key challenges (Jackson 

and Sax 2009; Hagerman et al. 2010).  Adapting conservation policy to meet these new 

challenges requires a major paradigm shift and remains a largely unresolved challenge 

(Araujo et al. 2004; Hagerman et al. 2010). 

Threats to biodiversity fall in to two categories ultimate or proximate (Pressey et al. 

2007).  Ultimate threats operate at a broad scale with political, social or economic roots, 

for example human population increase and expansion and growth of global markets, as 

such they are mainly beyond the scope of conservation efforts.  Proximate threats 

directly impact biodiversity and are the expression of ultimate threats at a local scale, 

for example degradation of an ecosystem by overexploitation of resources. 

In a changing world, the object of conservation is to preserve and maintain what are 

highly complex biological systems for perpetuity (Pressey et al. 2007).  Within these 

systems, conservationists seek to retain the ecological, genetic, behavioural, 

evolutionary and physical processes which are the elements of healthy ecosystem 

functioning (Bottrill et al. 2008).  The dilemma now faced by conservationists is 

whether, with climate change, we should seek to preserve existing assemblages rigidly 

or whether to allow greater assemblage flexibility and to conserve processes.  Dynamic 

conservation planning will be required to integrate all levels of vulnerability, rates of 

change and expected changes in biodiversity pattern (Williams et al. 2008).  To fulfil this 

need requires identification of those species, habitats and ecosystems most vulnerable, 

and which aspects of their biology, ecology and evolution make them vulnerable  

(Williams et al. 2008).  However, there are still gaps in our knowledge of the 
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relationship between animal diversity, biotic interactions and ecosystem functioning 

(Chown et al. 2004; Hagerman et al. 2010).  Several strategies have been tabled 

including; 1) the control of current human stressors and restoration of degraded 

ecosystems (Williams et al. 2008); 2) dynamic management of protected areas  

(Williams et al. 2008), 3) land and watershed management (Pressey et al. 2007) and, 4) 

direct species management i.e. assisted migration and ex-situ conservation (Pressey et 

al. 2007). 

Conservation practice focuses on value judgements associated with biodiversity, such as 

ecological, evolutionary, cultural, social and economic qualities (Bottrill et al. 2008). 

Often the focus is on  charismatic species or places, or those species or places perceived 

to support ecosystems or people (Bottrill et al. 2008).  A paradigm shift in conservation 

practice is required to adapt to climate change, conservationists have responded with a 

series of adaptive conservation strategies and techniques (Hagerman et al. 2010).   

These include, controlling current human stressors and restoration of habitats by 

reducing land-use change and improving corridors between patches of habitat 

(Williams et al 2008), implementing process-based conservation (Pressey et al. 2007) a 

form of land and watershed management, the dynamic management of biodiversity 

hotspots (Brooks et al. 2002), and direct species management such as focusing on 

endangered species (Mawdsley et al. 2009), conservation triage (Bottrill et al. 2008; 

Hagerman et al. 2010) and taxa-based conservation (Hadly et al. 2009).   

 

Restoration of Degraded Ecosystems and Reduction in Non -climatic Stressors 

The threats to biodiversity brought by climate change are not acting in isolation, they 

are occurring in concert with habitat loss, pollution, overexploitation, introduction of 

invasive species and human expansion (Fischlin et al. 2007).  The challenge for 

conservation is to identify how, and to some respect when, climate change will interact 

with these other stressors (Hagerman et al. 2010).  A primary strategy behind 

conservation planning for climate change is to reduce stressors which currently 

undermine ecosystem resilience (Fischlin et al. 2007).  By controlling and reducing non-

climatic stressors, then species and ecosystems will be better placed to react to climate 

change (Mawdsley et al. 2009).  
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Protected Areas 

A key focus of conservation strategy over the past 3-4 decades has been the protection 

of ecosystems from proximate threats by the establishment of protected areas 

(Hagerman et al. 2010).  Significant and rapid range shifts predicted to occur under 

climate change (Mawdsley et al. 2009) mean that current reserve boundaries are likely 

to be compromised as the protected habitats become unsuitable for those species they 

sought to protect making previously robust systems sensitive (Araujo et al. 2004). 

Leemans & Eickhout (2004) predict that half of all nature reserves will not be able to 

meet their original conservation aim, especially as most of them lie in sensitive and 

exposed biomes.  Thus, climate change will create a new class of sensitive areas.  

Protected area networks are an obvious target for integrating climate adaption policies 

with strategies designed to combat non-climate stressors.   

 The current protected area model is inherently spatial (Pressey et al. 2007; Hagerman 

et al. 2010), its aim is to achieve ecosystem representation (i.e. a comprehensive 

collection of all ecosystem types within and across countries) or ecosystem replication, 

which seeks to conserve several examples of each ecosystem type (Mawdsley et al. 

2009).  Reserves seek to conserve natural features whether they be species, plant 

communities or landscape types (Cabeza and Moilanen 2001).  Fundamental ecological 

tenets are used to inform protected area location and size.  Firstly, based upon the 

assumption that there is a relationship between species and their location, species are 

more likely to survive in suitable as opposed to unsuitable habitats (Araujo et al. 2004).  

Secondly, in terms of reserve size and connectivity- large, compact and well-connected 

reserves are superior to small and isolated reserves, in acknowledgement of the impact 

of the edge effect and isolation on species persistence (Araujo et al. 2004).  These rules 

rely on those characteristics of biodiversity that can be mapped remaining static, and 

mainly disregards processes that maintain biodiversity (Pressey et al. 2007).  This 

practice of ecosystem representation is likely to become obsolete as the distributions 

and phenologies of individual elements within ecosystems are likely to shift 

asynchronously resulting in novel assemblages and new ecosystem types (Mawdsley et 

al. 2009).  

Under climate change it is possible that a species’ entire protected range may disappear; 

as such one solution could be the expansion or commissioning of new protected areas to 
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represent future habitat structure in the landscape (Pressey et al. 2007).  Reserve 

systems need to be designed with long-term shifts in flora and fauna distributions, 

alterations in natural disturbance regimes and the overall integrity of those protected 

ecosystems and species, in mind (Fischlin et al. 2007).  The current time scale over 

which protected area management is planned is between three and ten years, with 

reference to planning for climate change, a more appropriate time span would be 

between 30 and 100 years (Hannah et al. 2002).  Observed species distributional shifts 

and phenological asynchronies between species coupled with evidence of ecosystem 

service disruptions can assist conservationists.  For example, creating protected areas 

which complement observed shifts in species distributions, i.e. along elevational 

gradients could give these species greater flexibility to shift with climatic change  

(Hannah et al. 2002).  Modelling future impacts of climate change on species and 

ecosystems is one way of informing the planning of future-proof reserves.  For example, 

Araujo et al (2004), created a computer model to simulate climate-change induced 

species extinctions and explored their spatial pattern to inform reserve selection.  If 

extinctions are randomly spaced then spatially dispersed reserves are most likely to 

protect species, if extinctions are clustered, reserves focused on that region are 

advisable (Araujo et al. 2004).  Although current established protected areas may cease 

to be sustainable in the future they remain to have short term benefits as temporary 

havens to sensitive species whilst new longer-term refuges are found (Araujo et al. 

2004; Mawdsley et al. 2009).  Therefore coordination between established and newly-

created protected areas and the wider landscape is crucial to maintain species 

representation as well as ecosystem processes  (Hannah et al. 2002).  

 

Landscape Management 

For truly dynamic conservation planning conservation practices must move beyond the 

boundaries of protected areas and become inclusive of the surrounding landscape  

(Hannah et al. 2002).  Termed as landscape permeability this technique focuses on 

enhancing whole landscape connectivity (Mawdsley et al. 2009).  Maintaining and 

establishing connectivity between habitat types in the landscape is important in 

facilitating dispersal and genetic transfer (Williams and Jackson 2007).  By encouraging 

biodiversity friendly land uses, such as agro-forestry, beyond reserve boundaries 
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landscape management seeks to maintain biodiversity in transition (Hannah et al. 

2002).  The need for such measures reflects on the degree to which humans have 

altered landscapes detrimentally affecting species’ ability to migrate in response to 

climate change (Felton et al. 2009).  In restoring the surrounding landscape resource 

managers are able to prepare the terrain if and when species shift (Hannah et al. 2002).   

Landscape management may need to encompass the controlling of disturbance regimes 

(such as fire frequency) which are likely to be altered by climate change (Hagerman et 

al. 2010).  However using disturbance regimes to maintain species beyond their climatic 

optimum, and suppressing new species colonization as the climate becomes suitable, 

could be detrimental to ecosystem functioning and biodiversity  (Hannah et al. 2002).  

Taking the focus away from individual species management to landscape-wide may 

negatively impact those species which are rare and have narrow habitat requirement 

which require a more directed management style (Mawdsley et al. 2009). 

 

Assisted migration 

Translocation and assisted migration both involve human-assisted movement of species 

(Mawdsley et al. 2009).  Translocation involves movement of a species inside its historic 

range, whereas assisted migration involves relocating the species beyond its historic 

range.  Both techniques seek to relocate species from areas where the habitat is 

increasingly unsuitable due to climate change to habitats favourable i.e. those within the 

same broad biogeographic regions, to support their continued existence (Hoegh-

Guldberg et al. 2008; Mawdsley et al. 2009). 

Fragmentation of habitats mediated by humans has detrimentally impacted species’ 

potential to disperse across the landscape, this coupled with the expected rate of 

climate change means there is a distinct possibility that some species will not be able to 

keep pace climate change (Hoegh-Guldberg et al. 2008).  Assisted migration could 

support species with highly fragmented habitats, where connectivity between habitat 

blocks is disrupted (Hoegh-Guldberg et al. 2008).  It is also suggested as an option for 

widespread species that consist of distinct population ecotypes, as the translocation of 

‘warm-adapted’ ecotypes to previously colder parts of the distribution could assist 

adaptation to climate change (Hoegh-Guldberg et al. 2008). 



56 
 

Assisted migration presents many associated difficulties due to the complexity of 

natural systems and the risk to biodiversity it poses as such its viability as a 

management option has often been questioned (Hoegh-Guldberg et al. 2008; Hagerman 

et al. 2010; Chauvenet et al. 2013).  Introducing species into novel ecosystems has the 

potential to create new pest problems through aggressive species colonisations 

impacting naturalised population genetic structure and breeding systems, but also 

through the introduction of novel diseases and parasites (Hoegh-Guldberg et al. 2008).  

These risks are thought to be escalated in cases where species are moved across 

biogeographic boundaries (Hoegh-Guldberg et al. 2008).  The careful selection of 

species to undergo assisted migrations may assuage some of these inherent risks 

(Chauvenet et al. 2013), with many conservationists now recommending this expensive 

and risky option (Fischlin et al. 2007; Felton et al. 2009).   

 

Ex-situ Conservation 

The viability of some wild populations is threatened to the degree that captive 

populations are established as a form of ‘insurance’ to prevent species becoming extinct, 

with the additional impact of climate change conservationists are increasingly likely to 

consider this option (Mawdsley et al. 2009).  Example sites of ex-situ conservation 

include botanic gardens, zoos, seed and gene-banks.  One risk of relying on ex-situ 

conservation to preserve species is that species which no longer have a natural habitat 

to return to (Mawdsley et al. 2009). 

 

Computer Models and Conservation Planning  

Advances in the predictive power of computer modelling techniques in exploring the 

impacts of climate change on ecosystems and species have added another tool to the 

conservationist’s arsenal.  Jackson et al (2009) state that for conservation measures to 

succeed our predictive capacity to forecast the course of, and ecological and biological 

response to, climate change is imperative.  Models that make spatially and temporally 

explicit projections have the potential to be harnessed in the establishment of 

monitoring programmes, design of future reserve networks and to give information of 

the expected rate and trajectory of climate change (Midgley et al. 2002).  These 
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projections need to be based upon our understanding of likely regional climatic and 

ecological changes if they are to be accurate; therefore monitoring of environmental 

change and the associated ecosystem responses is tantamount (Fischlin et al. 2007). 

Badly timed interventions, for instance at vulnerable life history stages could make 

species even more sensitive to climatic change (Jackson et al. 2009).  There are several 

types of model available for carrying out such analysis these include global climate 

models, regional climate models, dynamic and equilibrium vegetation models, species 

bioclimatic envelope models and site-specific sensitivity analysis models  (Hannah et al. 

2002).  These models are often used in synchrony, as ensembles, to determine, for 

example, the effect of climate change on species distributions, which requires linking 

global or regional climate models with bioclimatic envelope models (Wiens et al. 2009; 

Jaeschke et al. 2012).   
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3 Calculating Species Sensitivity  

3.1 Introducing Vulnerability and Life History Theory  

 

Climate change is predicted to become a major driver of biodiversity loss over the 

coming century (Thomas et al. 2004; Fischlin et al. 2007).  Four major trends have been 

observed in terrestrial ecosystems as a result of recent climate change, these are 1) 

shifts in species’ phenology  (Walther et al. 2002; Parmesan and Yohe 2003), 2) shifts in 

species’ ranges and associated changes in abundance and extinction risk (Walther et al. 

2002; Root et al. 2003), 3) disruption of ecological interactions (Tylianakis et al. 2008), 

and 4) changes in primary productivity.  For future conservation the development of 

measures which improve our predictive capacity to forecast the course of, and 

ecological and biological response to, climate change is of paramount importance 

(Chown 2004).  Thus, to succeed in predicting future risk will require a combination of 

knowledge on the degree of threat and of traits which increase species’ susceptibility to 

threat (Fritz et al. 2009).  

 

3.1.1 Vulnerability Theory  

 

In striving to aid and improve the assessment of species’ vulnerability to future climate 

change this study employs ‘Vulnerability theory’ which seeks to account for the many 

processes and perturbations which influence species’ persistence in the environment.  

Vulnerability is defined by the IPCC in relation to climate change as ‘the degree, to 

which a system is susceptible to, or unable to cope with, adverse effects of climate 

change, including climate variability and extremes.  ‘Vulnerability’ is a function of three 

factors, exposure (the character, magnitude, and rate of climate variation to which a 

system is exposed), sensitivity and adaptive capacity (Adger 2006; Williams et al. 2008; 

Dawson et al. 2011).  It describes the ‘state of susceptibility [of a system or individual] 

to harm from exposure to stresses associated with environmental [change…]’ (Adger 

2006; Gallopin 2006).  In relation to a species, the term vulnerability refers to the extent 

to which climate change will introduce a species survival, in terms of declines in 

abundance, fitness and genetic variation. (Dawson et al. 2011).  These interactions are 
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explored graphically in the below Venn diagram adapted from Smit and Wandel 

(2006)(Figure 3.1). 

 

 

Figure 3.1 Schematic Diagram of Vulnerability Theory (after Smit & Wandel 2006) 

The broad scale external dynamics (in purple) determine sensitivity and exposure and 

inform adaptive capacity at the local or community scale (in blue).  These broad scale 

forces are interactive in determining localised vulnerability, which is itself tempered by 

intrinsic adaptive capacity (Smit and Wandel 2006).  Systems are most vulnerable 

where they are highly exposed and highly sensitive.    

   

There are several versions of the Vulnerability framework, those which preserve a 

distinction between Adaptive Capacity and Sensitivity (Chin et al. 2010; Summers et al. 

2012; Berry et al. 2013) and those which combine both factors (Williams et al. 2008; 

Foden et al. 2013).  Those frameworks which preserve the distinction between 

Sensitivity and Adaptive capacity consider that each encompasses very different 

attributes, defining ‘sensitivity’ as the degree to which a species is affected by climate 

change and ‘adaptive capacity’ the potential for of a species to adjust to climate change 

(Berry et al. 2013).  Williams et al (2008) consider adaptive capacity as a constituent 

feature of a species overall sensitivity, thus sensitivity is determined by adaptive 
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capacity and species resilience.  In this case the theory of vulnerability realised as an 

equation is: 

                                        

 

Where exposure is the degree to which a species is exposed to future climate change 

and where Sensitivity is described as the sensitivity of that species to stress.  A species’ 

sensitivity is governed by intrinsic traits, and exposure by external factors such as 

climate change and localised habitat effects (Williams et al. 2008).  In combining both 

attributes of ‘resilience’ and ‘adaptive capacity’ under the umbrella term ‘sensitivity’ 

Williams et al (2008) put forward the concept that each component is not mutually 

exclusive but operate in synchrony to determine a species’ response to climate change. 

 

Vulnerability analysis can be viewed as an important framework for the assessment of 

species’ ability to persist under climate change, applicable to both taxonomic and 

regional species sets (Dawson et al. 2011), across timescales (instantaneous to 

centuries) and mitigation scenarios (Smit and Wandel 2006).  Such analysis across 

species can be used as an indicator to rank species vulnerabilities through the creation 

of a proxy measure indicating overall Vulnerability through the aggregation of Exposure 

and Sensitivity scores (Adger 2006; Smit and Wandel 2006).  The results of such 

analysis can be used to inform policy and decision-making in the targeting of resources 

by identifying in this case taxa or regions are most vulnerable (Smit and Wandel 2006).  

The influence of climate change on biodiversity has multiple aspects which need to be 

accounted for if we are to predict the extent of its influence (Dawson et al. 2011).  

Climate change can be seen as umbrella change representative of many stressors 

interacting across a range of spatial and temporal scales (Adger 2006).  Much research 

has been focused on the likely impacts of future climate change on species survival. 

Species distribution models, are one such method which has proliferated, they capitalise 

on scientific knowledge of biophysical and ecophysiological processes and their 

regulation of species relationships with their environment (Guisan and Zimmermann  

2000; Austin 2007).   

 

These modelled outputs of species range dynamics are best suited to represent 

exposure, one component of the Vulnerability equation (Dawson et al. 2011).  To 
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account for the second component of Vulnerability, sensitivity, will require the 

development of methods complementary to the measure of exposure (Dawson et al. 

2011).   

3.1.2 Aims of the Chapter 

 

This chapter seeks to create a robust measure of sensitivity and in doing so allow the 

examination of species and their constituent taxa’s vulnerability to climate change.  The 
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Figure 3.2 The Vulnerability Framework (After Williams et al 2008) 
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measure of Sensitivity will be determined by the species life history and ecological 

traits.  It will then be tested against the species past exposure to climate change for 

robustness.  It is theorised that past exposure to climate change has left a discernible 

fingerprint in determining species sensitivity (Turvey and Fritz 2011).  

This study takes the approach outlined in the Vulnerability equation (eq.1), where 

vulnerability is a function of exposure and sensitivity.  Exposure, in this case, is 

determined using Maxent (Phillips and Dudik 2008), a correlative modelling technique 

which assesses the extent to which climate change will alter the species distribution.  

This chapter examines the impact of past exposure in defining species overall 

vulnerabilities and giving insight into species innate sensitivities. The definition of 

sensitivity in this study is closely modelled on Williams et al's (2008) definition of 

Resilience accounting for species dispersal capacity and their life history traits for 

which there is comprehensive data.  This data is used to create a single metric which 

describes species’ individual sensitivities In an adaptation of Williams et al’s (2008) 

Vulnerability framework, (Figure 3.2), highlighted in white are the processes taken into 

account within this Sensitivity study.  

 

This study concentrates on terrestrial Mammals for which there is a vast amount of data 

both describing a range of life history strategies and their accompanying distributions. 

Such large scale macrophysiological projects have been advocated for the assessment of 

traits across taxa (Chown and Gaston 2008).   

 

3.1.3 What characterises Sensitivity? 

 

Sensitivity describes the degree to which a species or individual is susceptible to 

stresses, for instance, more sensitive species are likely to display greater declines in 

fecundity or survival with small perturbations in climate (Dawson et al. 2011).   The two 

factors, identified in Williams et al (2008) as constituents of sensitivity, namely 

resilience and adaptive capacity, encompass several aspects.  Resilience is  defined as 

the ‘ability of species to survive and recover from a perturbation’ (Williams et al. 2008).  

Adaptive capacity can be seen as the ability of a species to adapt and evolve in response 
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to environmental challenges (Adger 2006).  Resilience encompasses life history traits, 

dispersal and colonisation potential, population dynamics, minimum viable population 

and inbreeding susceptibility.  Adaptive Capacity includes, genetic and phylogeographic 

diversity and plasticity in genetic, ecological and phenotypic characteristics (Figure 3.2).   

The degree to which a species is sensitive can be evaluated through observations and 

modelling analyses (Dawson et al. 2011).   

A suitably robust measure of Sensitivity requires the examination of aspects of life 

history theory and a review of current knowledge of the basis of species sensitivities 

rooted in their past experiences of climate change.        

 

Life history theory 

Life history theories seek to expound upon the evolution of species traits as an adaptive 

response to environmental variation, they examine the interconnectedness of traits and 

the degree to which they are constrained by abiotic and biotic factors (Winemiller 

2005).  In brief, these theoretical frameworks attempt to describe the components 

which determine a species fitness (Nylin and Gotthard 1998).  The capacity for 

determining species’ fitness from life histories makes them invaluable for the prediction 

of demographic responses to perturbations in environmental conditions, such a climate 

change (Winemiller 2005).        

 

The r-K selection theory: Fast versus slow life history strategies  

The r-K selection theory, otherwise known as the fast-slow continuum concept, seeks to 

describe the relative trade-off between two life history strategies,’ fast’ or ‘slow’ 

(MacArthur and Wilson 1967).   

 

Essential to the understanding of the r-K selection theory, and further visualising a 

species position along it, is knowledge of basic concepts of population biology, at the 

heart of which is the below logistic equation,  
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Where N is the number of individuals in the population, rmax describes the intrinsic rate 

of population increase and K is the carrying capacity.  

 At one end of the continuum is the r-selection or opportunist’s strategy, describing 

rapid population growth approaching rates of maximum r (the intrinsic growth rate), a 

strategy prevalent in variable and unsaturated environments, with no density or 

competition constraints (Calder 1984).  The optimal strategy under these conditions is 

to maximise reproduction, putting the least required resources into each offspring and 

producing the largest number possible (Pianka 1970).  Thus, r-selection is characterised 

by high productivity (Pianka 1970). 

The K-selection strategy seeks to maintain the population in equilibrium, at carrying 

capacity K, it occurs under stable and thus saturated environmental conditions where 

density effects are at their maximum and competitive ability is necessary to persist 

(Calder 1984).  To maintain a population within these conditions, replacement is the 

key, thus, the optimal strategy requires the maximum energy to go into the production 

of few, extremely fit progeny (Pianka 1970).  Efficient use of environmental resources 

and high competitive ability characterises the K-strategy (Pianka 1970).    

The fact that many life history traits co-vary led to the development of these alternative 

dominant pathways (Bielby et al. 2007), with several traits associated with each 

strategy.  The r-selected species embody ‘fast’ characteristics including fast growth, 

reaching sexual maturity early and having large litters more than once a year with short 

gestation periods (Purvis et al 2000). K-selected species are characterised by ‘slow’ 

traits, reaching sexual maturity late, having slow growth rates, long gestation periods, 

small litters and long interbirth intervals (Purvis et al. 2000).  However, no species is 

positioned at the extremes of r or K selection, but along the continuum between fast and 

slow life histories (Pianka 1970).  The r-K selection theory has been utilised in many 

studies seeking to improve predictions of species sensitivity to environmental change 

(Bielby et al. 2007; Fritz et al. 2009; Isaac et al. 2009). 

 

Sensitivity Traits 

There is an accumulation of evidence which points to several traits that promote 

resilience (Isaac, 2009), and conversely traits which inflate a species extinction risk 

(McKinney 1997).  Those predicted to bolster resilience include high reproductive rates, 
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a fast life history and short life span, species with large geographic range sizes are also 

thought to be more resistant to extinction, although this rule may not apply under 

climate change where large spatial requirements may be disadvantageous (Williams et 

al. 2008).  Species requiring large ranges to maintain a viable population will be less 

able to exploit small refugia (Williams et al. 2008).   

Species ability to track their optimal climate space by dispersal and to recover quickly 

after a perturbation by rapid reproduction will also promote resilience (Williams et al. 

2008).  Dispersal ability will not only influence migration but also the degree to which 

species will employ mechanisms related to local adaptation and evolution (Lavergne et 

al. 2010).  It is likely that dispersal will play different roles at the leading and trailing 

edges of shifting ranges in relation to persistence and adaptation (Lavergne et al. 2010). 

Key to determining the capacity of species to recover under climate change is their 

ability to colonize habitats which have climatic conditions outside that of their current 

range, such novel climate conditions will require species to possess the ability to 

reproduce rapidly enough to maintain a viable population (Isaac et al. 2009).  Thus, the 

degree of habitat stability selects for r or K strategists, high instability obligates that 

species have high reproductive capacities with fast generational turnover (r-selected) 

and high stability selects for highly competitive species with slow generational turnover 

(Jones 1976).  Species with slow life histories, do not cope well under high mortality 

scenarios because they cannot compensate by increased fecundity, making them 

vulnerable to population extinction (Purvis et al. 2000).  Thus, in situations where the 

population growth is slow, through low reproduction and immigration rates, recovery 

to equilibrium is slow (Jones 1976).   

 

Species that have fast growth and mature rapidly are not impacted by disturbances as 

strongly as those long-lived, slow growing species; this is due to the unpredictability of 

disturbances under which the best strategy is always to maintain rapid growth (Lytle 

2001).  The dominant drivers of current extinction risk have been identified as habitat 

loss and climate change, thus it is expected that species with broad environmental 

niches are likely to be more resilient because they are better adapted to respond to 

changes in environmental conditions (Isaac et al. 2009).  Isaac et al (2009) observed 

that many birds had a high capacity to recover due to their wide climatic niches, high 



66 
 

dispersal potential and reproductive output.  In mammals, Isaac et al (2009) found that 

those species which displayed low resilience were also ill equipped to recover having 

low fecundity, low dispersal capacity and narrow climatic niche requirements.  Species 

belonging to higher trophic levels seem to be more vulnerable as they are reliant on  

those species below them in the food chain (Purvis et al. 2000).  This combination of 

traits, often apparent in cases of over-exploitation, effectively reduces the capacity for 

populations to counteract the impact of increased mortality (Fritz et al. 2009).  There is 

also evidence that small-bodied species are better able to recover from disturbances, 

although this is likely to be associated with the strong correlation between small body 

size and faster life histories (Cardillo 2003). 

 

The risk of extinction is also intrinsically linked with population size, where fewer 

individuals in a population are clearly more at risk than large populations; populations 

which are subject to large variations in density over time are also more at risk than 

those which experience low temporal variability (Pimm et al. 1988).  These population-

based factors serve to accentuate the importance of maintaining viable populations, in 

terms of range size and abundance, in order to better able to sufficiently recover from 

disturbances (Purvis et al. 2000).   

Geographical range has been linked to extinction risk and population persistence 

(Purvis et al. 2000).  Large distributions may reflect large population sizes, with the 

effect of acting as a buffer against habit fragmentation and loss (Purvis et al. 2000).  

However, species where individuals require large discrete home ranges are more 

vulnerable to habitat loss and edge effects (Woodroffe and Ginsberg 1998).  Large 

ranges may further protect against extinction by conserving high genetic variability 

across the population and guard against individual patches of habitat becoming 

climatically incompatible (Dawson et al. 2011).  Although evidence from the 

paleoecological record points to the breakdown of such large blocks of suitable habitat 

under rapid climate change (Dawson et al. 2011).  

In an assessment of extinction-promoting traits McKinney (1997) found that many were 

associated with specialisation, observing that species broadly adapted in one trait, such 

as diet, were often broadly adapted in others such as temperature tolerance.  The 
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degree of specialisation has also been related to local abundance and geographic range, 

where specialised species have low abundances and small ranges (McKinney 1997).     

 

Phylogenetic relatedness 

An accumulation of evidence suggests that phylogenetically-related species share sets of 

ecological traits, at least to some degree, due to their common evolutionary history (Hof 

et al. 2010).  McKinney (1997)observed nesting of extinction-biasing traits in an 

examination of evolutionary trees constructed across different taxonomic scales, for 

instance they found that recent mammal and bird extinctions were clustered in 

particular genera and families.  Research into the degree to which a phylogenetic signal 

is apparent among related species’ ecological niches and characteristics could aid 

estimation of extinction-risk under future climate change (Hof et al. 2010).  Hof et al 

(2010), in an analysis of amphibians, observed evidence of a phylogenetic signal 

between phylogenetically related species and their realised climatic niches.    

Understanding the extent to which phylogenetic-relatedness influences species niche 

and trait characteristics will help identification of vulnerable species for which we have 

little current information.   

Further, strong phylogenetic signals have been successfully demonstrated across 

physiological tolerance traits in several groups indicating that environmental 

sensitivities may be conserved across species’ taxonomic groups (Chown and Gaston 

2008).   

 

Plasticity of Traits 

The extent to which climate change will impact species is dependent, to a degree, on the 

breadth of phenotypic plasticity exploitable in the face of environmental perturbations 

(Chown and Gaston 2008).  There is little known about the types of plastic responses 

species can utilise in environmental situations outside those commonly encountered, 

extreme conditions can potentially disrupt phenotypic responses (Chevin et al. 2010).  

Phenotypic responses are expected to be physiologically–limited, particularly in the 

instance of body size and metabolic rate shifts (Chevin et al. 2010).  The degree to which 

life history traits are plastic will depend on the fitness cost that shifting strategies will 
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incur (Chevin et al. 2010).  This fitness cost associated with plasticity will potentially 

limit a population’s ability to persist in changing environments (Chevin et al. 2010). 

Research into the plasticity of traits and associated fitness costs is particularly needed 

among species with long generation times, such as mammals, and those with lifecycles 

which are dependent on seasonal timing (Chevin et al. 2010).  

 

3.1.4 Why Calculate Past Exposure? 

 

Past as the Key to the Future  

The anticipated wave of extinctions is unprecedented, with predictions that rates of 

species losses will exceed the background rate by between two and three orders of 

magnitude over the next century (Balmford 1996).  Multiple lines of evidence from the 

paleoecological record identify climate change as playing a role in species distributions, 

delving further into these past episodes of climate change will aide our understanding 

of likely future impacts (MacDonald et al. 2008).  The clearest evidence for the influence 

of climate in determining biogeographic patterns exists in records of the palaeoclimatic, 

ecological and biogeographical history of the last 25,000 years (MacDonald et al. 2008; 

Dawson et al. 2011).  There is little doubt that climate change during the Quaternary 

period greatly influenced distribution patterns of modern biota as well as their 

phenological and genetic evolution and giving rise to extinctions (MacDonald et al. 

2008).  Evidence for the relative Vulnerability, or extinction selectivity, of species to 

future climate change is thus sought in the paleoecological record (McKinney 1997).     

There are few datasets of species responses to current climate change spanning a time 

and magnitude appropriate for assessing the likely vulnerability of species to future 

climate change (Willis and MacDonald 2011).  Through the incorporation of an 

historical angle with contemporary studies of modern populations there is potential to 

better further understand the causal mechanisms of climate change (MacDonald 2008). 

Thus, exploring the impact of past exposure, the degree to which species were exposed 

to periods of past climatic upheaval (Williams et al. 2008), will help to reveal the 

potential impact of future climate change.  Although, non-analog climates in the past will 

differ from those predicted into the future, they are a useful tool by which we can test 

the robustness of our ecological predictions (Williams and Jackson 2007).  By 
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employing a proxy of past exposure to verify our measure of species sensitivity to 

climate change, we can assess how robust the measure is before applying it to future 

scenarios.  The recognition that in the past species responses to climate have been 

individualistic further supports the creation of Vulnerability measures based on single 

species (Hof et al. 2011). 

 

Past Climate Change and Biodiversity Pattern s 

Present-day species and species groups have persisted through the transitional period 

20,000 to 12,000 years ago, an era marked by high velocity climate changes, as the 

climate moved from glacial-interglacial phases (Dawson et al. 2011).  However, the 

average velocity of warming calculated for the entire period since the Last Glacial 

Maximum (21,000 BP) is equivalent to 10 times slower than the rate of warming 

recorded in the 20th century (IPCC, 2007 p435).  Table 3.1 illustrates the Quaternary 

period and the epochs within it to contextualize the geographic period on which this 

discussion focuses.  Extant ecosystems are often the starting point for both predictions 

of past and future impacts of climate change, a principle known by palaeoecologists as 

‘uniformitarianism’ which states that ‘the present is the key to the past” (Williams and 

Jackson 2007).  The episodes of climatic change which characterise the Quaternary are 

viewed as the closest analogues for understanding the impact of future climate change, 

(MacDonald et al. 2008).  Over the past 2 million years there have been at least 20 such 

glacial-interglacial cycles, for which the best documentation of ecological and 

biogeographical responses are for the past 10,000-20,000 years (Dawson et al. 2011).  

The community composition of late-glacial ecosystems may appear unrecognisable, due 

to the individualistic nature of species’ responses, however, many extant species are 

represented within them (Williams and Jackson 2007).   It has been demonstrated from 

the fossil record that many taxa have survived several periods of climatic instability in 

the past; however, the rate of climate change was in general much slower paced giving 

species the opportunity to adapt whilst persisting in refugia or by shifting their 

distribution (Hof et al. 2011).  Despite this predicted divergence in rates of change, and 

the different base mechanism, past climate change being a natural phenomenon, the 

paleoecological record remains highly relevant, providing evidence for the way in which 

species responded to differing degrees and rates of change (Willis and MacDonald 

2011).     
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Era Period Epoch Age Ma 
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Holocene 0.012 

Pleistocene 

Late ‘Tarantian’ 0.126 

Medium ‘Ionian’ 0.781 

Early 
‘Calabrian’ 1.806 

‘Gelasian 2.588 

Table 3.1 Geological Timeline of the Quaternary Period (Ma indicates million years ago) 

Episodes of rapid climate change in the last glacial period (100±10 kyr ago) are evident 

in ice cores originating from Greenland (Ganopolski and Rahmstorf 2001) as well as in 

Mediterranean sediment cores collected in Italy (Allen et al. 1999).  These periods of 

rapid change are known as Dansgaard-Oescheger (D/O) and Heinrich events.  D/O 

climate events were centred around the Northern Atlantic and are characterised by 

abrupt warming of 5-10°C over a few decades or less, followed by very gradual cooling 

occurring over several hundred or even thousand years and a return to cold conditions 

(Ganopolski and Rahmstorf 2001).  The timing between D/O events ranges from every 

1,500 years to 4,500 years (Ganopolski and Rahmstorf 2001).  Heinrich events are 

related to the Laurentide Ice Sheet, which covered northern America, causing surges in 

its extent, they occurred during the cold phases of the D/O events and effected the 

formation of North Atlantic Deep water (Ganopolski and Rahmstorf 2001).  The 

Mediterranean sediment cores reveal a number of transformative fluctuations in 

climate occurring at more regular intervals (c. 200 years) and the changing composition 

of the terrestrial biosphere in response to these fluctuations (Allen et al. 1999).    

 

Studies of past episodes of climate change have revealed a diverse range of responses 

across taxa and life history types which are likely to be repeated under current and 

future change (Dawson et al. 2011).  These episodes of past climate change have been 

shown to have influenced aspects of genetic and morphological structure among 

individuals, population abundance and distributions, community composition to over-

arching gradients of biodiversity (MacDonald et al. 2008).  This response capacity is 

evidenced in the persistence of small populations in refugia, as well as long-distance 

dispersal and migration, shifts along habitat gradients, and the rapid expansion of 

species experiencing favourable climate conditions(Dawson et al. 2011).  This ability to 
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persist during challenging climatic conditions indicates that some species have natural 

resilience and inherent scope for adaptation(Dawson et al. 2011).  Nonetheless, 

adaptive responses to past climate change remain little understood (Williams and 

Jackson 2007).    

 

In looking at the effect of past cycles of climate on biodiversity, with respect to losses in 

genetic and species diversity across scales and by determining the situations in which 

species persisted against extinction, we can gain insight into species adaptive capacity 

and vulnerability (Dawson et al. 2011).  Notably, there is little documented evidence 

from the fossil record that mass global extinctions occurred as a direct result of 

warming during the Quaternary (1.64Ma to present) (Willis and MacDonald 2011).  

However, several taxa were disproportionately affected, experiencing high levels of 

extinction, including large mammals (Koch and Barnosky 2006) and European tree 

species (Hof et al. 2011).  Localised extinctions also occurred (Willis and MacDonald 

2011), particularly among species with small range sizes (Davies and Buckley 2011).  

 

Evidence for adaptive responses to past climate change are dominated by examples of 

persistence and range shifts, even during periods of rapid climate change (Willis and 

MacDonald 2011).  The lack of documented extinctions during the period after the Last 

Glacial Maximum points to the fact that extant species were able to adapt by 

mechanisms other than range shifting and genetic evolution, for example by exploiting 

pre-existing phenotypic variation or retreating to stable refugia (Hof et al. 2011).  

Enquiring into the paleoecological records has more recently provided insight into the 

evolutionary capability of species to respond to climate change.  Further, parallels with 

the predicted rapid rate of future climate change have been drawn with the Late 

Pleistocene (0.126Ma-0.012Ma) during which there is little documentation for 

continent-wide extinctions (Hof et al. 2011).  Although, mechanisms responsible for 

past extinctions may no longer be accountable in present day species loss (Turvey and 

Fritz 2011).  There is evidence for the extinction of several large mammals during the 

last deglaciation although climate change is not thought to be the driving factor (Willis 

and MacDonald 2011).  Modern landscapes are however likely to curtail the degree to 

which species can adapt because of the degree to which they have been modified by 

humans (Hof et al. 2011).    
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 Species adaptations are likely to be individualistic in form with non-analogue 

communities being the norm, as evidenced by past examples of novel ecosystems 

(Stewart et al. 2010; Willis and MacDonald 2011).  During the last deglaciation species 

abundances and ranges shifted significantly, however, communities did not migrate en 

masse, with individual species responses varying in timing, direction and magnitude 

(Williams and Jackson 2007).  These individualist patterns of adaptation are the result 

of deviations in species tolerance limits to the fluctuations of climatic variables during 

past periods of climate change (Davis and Shaw 2001).  Similar patterns of response 

have been recorded for periods of earlier climate change, and there is evidence for such 

individualist behaviour in response to current climate change (Williams and Jackson 

2007).   

 

The Quaternary glacial-interglacial cycles exhibit a strong latitudinal gradient being of 

greater intensity away from the tropics (Davies and Buckley 2011).  Rapport’s Rule 

describes the phenomenon whereby species with the smallest range sizes are in the 

main restricted to the tropics, with the largest ranges described in high northern 

latitudes (Davies and Buckley 2011).  As such the expectation is that tropical 

communities exhibit higher species richness and hold a greater number of narrow-

ranged habitat specialists in comparison with higher latitude communities (Davies and 

Buckley 2011).  This was previously thought to reflect the adaptation of species to the 

greater seasonal variability occurring at higher latitudes; however, it is now thought 

that species richness is negatively correlated with long-term glacial-interglacial cycles 

(Davies and Buckley 2011).  Species occurring beyond the extent of the glaciated 

regions continued to thrive during the last ice age (Davis and Shaw 2001).  Although in 

the Southern Hemisphere temperatures were less variable during the Quaternary, 

adaption was necessitated by large changes in precipitation due to changes in 

atmospheric conditions and ocean currents (Davies and Buckley 2011).  During periods 

of interglacial warming species in the Southern Hemisphere and to an extent in the 

Northern Hemisphere expanded their ranges moving out of multiple refuges and 

shifting their elevations (Davis and Shaw 2001).      

 

There are examples of extant populations which successfully persisted in situ during 

Quaternary climate change, for instance, in the Northern Hemisphere populations 
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responded to the glacial retreat by expanding their range outside their full-glacial 

refugia northward (Davis and Shaw 2001).   

 

Ghost of Species Past theory: Past exposure as  an extinction filter 

The concept that past climatic, ecological and anthropogenic perturbations have to 

some extent filtered out species vulnerable to future climate change, by acting as an 

extinction filter, is of great interest to conservationists (Balmford 1996).  The central 

tenet of the extinction filter hypothesis is that those regions within which biotas have 

experienced perturbations leading to extinctions of susceptible species during past 

warming (transition from glacial to inter-glacial since the last glacial maximum) now 

appear less vulnerable to future similar perturbations (Turvey and Fritz 2011).  There is 

evidence that indicates that those species which have undergone perturbations in their 

past appear more resilient, suggesting that they are pre-adapted to such threats as a 

result of their past (Balmford 1996).  Thus, extinct species are those which failed to 

keep pace with the first wave of climatic change, those able to adapt and survive are 

consequently better adapted to persist during future perturbations (Balmford 1996).   

Turvey and Fritz (2011) examined the fossil record for patterns in spatial, taxonomic 

and phylogenetic characteristics among the group of mammals consigned to extinction 

during the Holocene (past 11,500yrs); they observed that these extinctions were 

clustered spatially in specific taxa and geographic regions.  Importantly, they further 

observed that these patterns showed little relation to those species at current risk 

(Turvey and Fritz 2011).  This lack of a spatial connection between past extinctions and 

current extinction risk within countries lends further credence to the hypothesis, 

indicating that faunas in which those most susceptible species succumbed to extinction 

in the past now appear more resilient to future climate change (Turvey and Fritz 2011) 

(Figure 3.3).  This phenomenon is also reflected in the fact that taxa which have 

experienced high proportions of extinctions in the past, such as, Xenarthans, bandicoots 

and bilbies, appear less vulnerable to extinction into the future (Turvey and Fritz 2011). 

There is evidence that certain taxa exhibit biological traits which confer greater 

susceptibility to extinction (Turvey and Fritz 2011).  For instance, species with low 

reproductive rates were most vulnerable to extinction during the Pleistocene (Koch and 
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Barnosky 2006). Large-bodied animals appeared to have been disproportionately 

vulnerable to Late Quaternary Extinction (Koch and Barnosky 2006; Turvey and Fritz 

2011).  In fact, Turvey and Fritz (2011), found evidence during the late Quaternary 

period for the successive removal of large-bodied species in extinction-prone areas, 

which they identified as signalling the existence of an extinction filter.  The relationship 

between vulnerability and traits is further discussed in the section concerning the 

calculation of the Sensitivity measure.    

 

Figure 3.3 Ghost of Species Past: The Extinction Filter 

The potential impact of climate change on species biodiversity is likely to operate as a 

function of climate change velocity (i.e. the rate of climate displacement) and its’ 

ensuing influence on species dispersal capacity (Sandel et al. 2011).  Investigating the 

impact of past climate change velocity on biodiversity can be used as an indication of 

the potential impact of future change (Sandel et al. 2011).  The predicted velocity of 

future climate change was, until recently, believed to be unprecedented; however, 

recent research has shown that at the end of the last glacial period (21,000 BP) 

velocities approaching 4°C yr-1 were attained (Hof et al. 2011).  However, the average 

velocity of warming calculated for the entire period since the Last Glacial Maximum 

(21,000 BP) is equivalent to 10 times slower than the rate of warming recorded in the 

20th century (IPCC, 2007 p435).  Projected velocities of future climate change suggest  
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that species would be required to shift 300-500km per century to track their current 

climate niche, during past migrations species achieved on average 20-40km per century,  

although some species were recorded shifting 100-150km per century, these rates are 

far short of future velocities (Davis and Shaw 2001).  Sandel et al (2011) in their study 

looking at the impact of climate change velocity on biodiversity since the LGM remarked 

that high velocities were associated with regions bereft of small-ranged amphibians, 

mammals and birds, and low endemism.  Thus, regions experiencing a low-velocity of 

climate change acted as refugia for those small-ranged species unable to disperse 

effectively under high-velocity climate displacement (Sandel et al. 2011).  This finding 

supports the hypothesis that modern-day susceptible species are likely to be clustered 

in regions where the velocity of past climatic change was marginal (i.e. where the 

extinction filter failed to act).  Species extant in regions which have previously 

experienced the brunt of past cycles of climate change, particularly those in North 

America and Europe which were exposed to the LGM, and persisted under past abrupt 

climate change are predicted to be better positioned to persist under future rapid 

change (Hof et al. 2011).  

 

Using the LGM as a proxy for past exposure  

There are several advantages with regard to looking at the most recent glacial-

interglacial, the Last Glacial Maximum (Willis and MacDonald 2011).  The Last Glacial 

Maximum (LGM) marks the period ~30,000 years ago at the end of the Pleistocene 

when ice sheets where at their maximum extent covering much of Northern America, 

Europe and Asia (Clark et al. 2009).  The transition from glacial to inter-glacial dating to 

~20,000 years ago was triggered by a period of increased summer insolation in the 

Northern Hemisphere (Willis and MacDonald 2011).  Amongst the fossil record there is 

evidence for species and populations which have remained in situ, adapting to the 

climatic shifts of the Quaternary, in the Northern Hemisphere for many taxa southern 

populations were stable, whereas northern populations expanded as conditions became 

suitable (Davis and Shaw 2001).  For example, both North American and European 

beech trees still populate the regions of their full-glacial refuges (Davis and Shaw 2001).  

One advantage of studying species exposure to the climate change which characterised 

the Late Quaternary is that currently extant species were present during this period 

(MacDonald et al. 2008).  Willis and MacDonald (2011) list five factors which add 
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support to the relevance of analysing the glacial-interglacial transition and early to mid- 

Holocene in relation to future climate change impacts. These are: 

 

1. The similar breadth of impact to current warming; the glacial-interglacial transition 

impacted tropical and high latitude biodiversity. 

2. The period post the LGM into the early Holocene was one of significant warming for 

which there was no analog. 

3. The degree of warming closely mirrors that expected into the 21st century, with a 

rise in global average temperature of 3.5 to 5.2°C, over the glacial-interglacial 

transition. 

 

It may be reasoned that that extant species which have survived abrupt past climate 

change, have an innate ability to survive further such change  due to their phenotypic 

variability or their ability to seek refuge in microclimatic pockets in the landscape (Hof 

et al. 2011).  However, the context in which future climate change will take place is 

unlike that which species responded to under past climate change (Balmford 1996). 

Destruction and fragmentation in the landscape, absent in the Quaternary, will impede 

the ability of species to shift their ranges, seriously eroding species resilience (Hof et al. 

2011).  Fragmentation will not only obstruct species ability to track climate change, but 

also reduces the likelihood that individuals will move among populations, thus, 

diminishing gene flow and genetic and phenotypic variability (Davis and Shaw 2001). 

 

3.1.5 Mammal Studies 

 

This study will concentrate on the analysis of mammal Vulnerability because of the 

wealth of knowledge and accompanying data.  The breadth of diversity in life history 

traits across mammal species means that they are particularly attractive to researchers 

interested in divining patterns and theories of life-history evolution (Bielby et al. 2007).  

Mammals are also the only species-rich taxon for which there is a species-level 

phylogeny, global maps of their distributions and in depth knowledge of biological traits 

(Fritz et al. 2009).  Moreover there is clear evidence of the impact of past exposure to 

climate change on Mammals (Hof et al. 2011; Turvey and Fritz 2011).  Further, the fact 



77 
 

that a fifth of all mammal’ species are currently threatened and that their populations 

are declining rapidly makes them a particularly appropriate group for study (Fritz et al. 

2009).    

Mammals have been recorded using a full suite of adaptation mechanisms in response 

to past climatic change, including shifting distributions and adaptive changes in genetic 

and phenotypic structure (Hof et al. 2011).  A mass extinction of mega-faunal mammals 

occurred across the Americas and Eurasia during the Pleistocene-Holocene climate 

transition, 30 genera of large mammals became extinct in North America, and North and 

South America lost all mega terrestrial mammal species (>1000kg) (Gill et al. 2009; 

Willis and MacDonald 2011).  During the Holocene this extinction filter purged many 

regions of their large species, including southern Europe, the Caribbean, Madagascar 

and Indonesia (Turvey and Fritz 2011).  Prior to this mass extinction event in the early 

Pleistocene extinctions averaged 1 per 40,000 years during the Pleistocene-Holocene 

transition this escalated to 1 per 30 years (Willis and MacDonald 2011).  Recent 

analysis has shown that humans may have influenced the vulnerability of large-bodied 

species to extinction, but that ultimately it was late Quaternary climate change which 

stimulated the timing, geographic area, and to some degree the magnitude of extinction 

(Koch and Barnosky 2006).     

The analysis of fluctuations in species distributions across the Quaternary period 

revealed that only small range shifts occurred,   with many mammal species tending to 

shift south or south-east during the Glacial-Holocene transition (Hof et al. 2011).  

Evidence from the period also points to the fact that some mammal species may have 

responded to earlier climate change in a similar way, although it is unclear whether this 

is a result of species possessing comparable environmental requirements or due to co-

evolved biotic interactions (Hof et al. 2011). 
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3.2 Methods 

 

The fundamental principle of this research, that a species’ Vulnerability can be assessed 

on the basis of its inherent Sensitivity to Climate Change and the degree of Exposure to 

Climate Change it is predicted to experience, as described in the equation; 

                                      

This section will describe the methods used in the construction and calculation of the 

Sensitivity measure.     

3.2.1 Calculating Sensitivity 

 

In calculating a measure of Sensitivity two well-established statistical techniques are 

used, principal components analysis (PCA) and simple linear regression models, 

justification of their use is included in the sections Principal components analysis and 

Regression Analysis.   

 

Life History Traits Data and Processing 

The Life-history traits (LHTd) database, from which the sensitivity measure for each 

species is calculated, was compiled using several sources of data.  Traits available from 

each data source are listed in Table 3.2.   

The taxonomy used is after Beck et al (2006) for the placental mammals, the Eutheria.  

However, because marine species were excluded from the analysis the Order 

Cetartiodactyla is again split into Cetacea (the Whales) and Artiodactyla (even-toed 

ungulates) to bring clarity to what is being modelled and investigated.  The taxonomy 

for the Marsupials (Infraclass Marsupalia) adopts the taxonomy developed by Wilson 

and Reeder  (2005).  The full taxonomy is presented in the supplementary material S2: 

Taxonomy.          

The LHTd is structured around the Mammal data available in the Wallace Initiative to 

ensure that current and future predictions of distribution are available for the Exposure 

calculations.  The Wallace Initiative holds predictions for 1161 Mammals of which, after 

cleaning 1090 are used in this analysis.  Cleaning involved removing records for marine 
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mammals and correcting for errors in the taxonomy.  The LHTd makes direct use of 

Wallace Initiative data, recording current area predictions and using the contribution of 

each variable to the final prediction calculated in Maxent to measure climate niche 

breadth.    

The database PanTHERIA  (Jones et al. 2009) contains  life history and ecological trait 

records for 5416 mammals, these vary in terms of completeness of data.  PanTHERIA 

holds data on 1025 of the 1143 species found in the Wallace Initiative, making it the 

largest contributor to the LHTd.  PanTHERIA has 25 life history and ecological traits, 

some of which were dropped from the LHTd as unrelated to the analysis; those included 

in the initial analysis of variables are listed below (Table 3.2).  The records were 

supplemented with those held in AnAge, the Animal Ageing and Longevity Database, 

which holds data on 1330 Mammal species (De Magalhães and Costa 2009), 

contributing additional records for several traits including longevity.  These data were 

merged with those in the LHTd with PanTHERIA records taking precedence.  This 

decision was made on the basis that PanTHERIA combines several records for each trait 

per species giving a more complete account of the species’ traits (Jones et al 2009).     

In addition to the life history and ecological traits, species ranked as evolutionarily 

distinct by the EDGE (Evolutionarily distinct and globally endangered) project (Isaac et 

al. 2007) were also flagged in the LHTd.  There are 502 EDGE mammal species, which 

account for ~9% of the total mammal species (Isaac et al. 2007).    
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Trait Records in LHTd Source 

Adult Mass (g) 1025 PanTHERIA; AnAge 

Adult Forearm length (mm) 274 PanTHERIA 

Adult Body length (mm) 553 PanTHERIA 

Max Longevity (months) 486 PanTHERIA; AnAge 

Basal Metabolic Rate 331 PanTHERIA 

Basal Metabolic Rate/ Mass 331 PanTHERIA 

Activity Cycle* 498 PanTHERIA 

Sexual Maturity (days) 463 PanTHERIA 

Female Sexual Maturity (days) 335 AnAge 

Male Sexual Maturity (days) 245 AnAge 

Gestation Length (days) 568 PanTHERIA; AnAge 

Interbirth Interval (days) 291 PanTHERIA; AnAge 

Age at first birth (days) 188 PanTHERIA 

Litter Size 912 PanTHERIA; AnAge 

Litters Per Year (n/yr) 540 PanTHERIA; AnAge 

Birth weight (g) 526 PanTHERIA 

Neonate Body length (mm) 16 PanTHERIA 

Age at eye opening (days) 274 PanTHERIA 

Weaning Age (days) 512 PanTHERIA; AnAge 

Weaning Body Mass (g) 294 PanTHERIA; AnAge 

Dispersal age (days) 66 PanTHERIA 

Distribution size (km2) 1090 Wallace Initiative 

Climate niche breadth* 1090 Wallace Initiative 

Habitat Breadth* 758 PanTHERIA 

Terrestriality* 755 PanTHERIA 

Diet Breadth* 707 PanTHERIA 

Trophic Level* 707 PanTHERIA 

Home Range (km2) 337 PanTHERIA 

Individual Home Range (km2) 331 PanTHERIA 

Endemic* 1090 Endemics Database 

Endemics Country of Origin 1090 Endemics Database 

Social Group Size 220 PanTHERIA 

Population Density (n/km2) 431 PanTHERIA 

Population Group Size 99 PanTHERIA 

Evolutionary Distinct Species 982 EDGE project 

Evolutionary Distinct Species Rank 982 EDGE project 

IUCN category* 1090 EDGE project 

Minimum Human Population Density (n.km2) 1007 PanTHERIA 

Mean Human Population Density (n.km2) 1007 PanTHERIA 

Table 3.2 Life History and Ecological Traits in the LHTd (*  variables are categorical otherwise continuous) 

Variable Calculations 

 

PanTHERIA 

In PanTHERIA the anthropogenic variables, minimum human population density and 

mean human population density (persons per km2), were calculated by Jones et al 2009  

using the Gridded Population of the World (GPW) for 1995 (CIESIN and CIAT, 2005) 

across the species geographic range.  
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Calculating Climate Niche Breadth 

Climate niche breadth was calculated using the Maxent output describing each 

environmental variable’s percentage contribution to the final niche model.  These 

percentage contributions were collated from each of the Wallace Initiative species 

models and subsequently transformed to describe the species’ niche breadth.  There are 

two environmental variables sets (Table 3.3) which the model selects from in order to 

make predictions; the set used is dependent on the number of species records.  The four 

variable set is employed for species with fewer than 40 records and the eight variable 

set for species with above 40 records.  More information on the Wallace Initiative model 

process is available in Appendix 2.  Climate niche breadth was determined by 

calculating the number of variables which ‘significantly’ contributed to the model (i.e. 

>12.5% for the 8 variable set, and >25% for the 4 variable set).  The number of variables 

contributing was then calculated as a proportion of the total number of variables 

available and weighted across the two groups of 4 and 8 variables.  The final niche 

breadth is given as a percentage, higher percentages indicate broader niches.   

 

Environmental Variables Code 8 Variables 4 Variables 

Annual Mean Temperature BIO1   

Temperature Seasonality BIO4   

Max Temperature of Warmest Month BIO5   

Min Temperature of Coldest Month BIO6   

Annual  Mean Precipitation BIO12   

Precipitation Seasonality BIO15   

Precipitation of Wettest Quarter BIO16   

Precipitation of Driest Quarter BIO17   

Table 3.3 Environmental variable sets available to the Maxent model 

 

Selecting Variables for Sensitivity Score  

It is widely recognised that life history variables are often correlated (Bielby et al. 

2007), thus, Pearson’s correlation coefficient (r) was used to reduce the number of 
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explanatory variables and remove variables exhibiting high collinearity.  Pearson’s 

correlation coefficient (r) measures the strength of the association between two 

variables (SPSS GUIDE).  Correlation coefficients range from -1 to +1, the absolute value 

shows the strength of the association, whilst the sign represents the form of correlation, 

negative or positive (SPSS GUIDE).  The two-tailed condition was used because there 

was no a priori hypothesis on the sign (positive or negative) of the correlations.    

The Pearson’s Correlation coefficient was calculated for 37 of the 42 numeric variables 

available in the LHTd (Table 3.2).  The five variables, including the Evolutionary 

Distinctiveness (ED) rank, and four variables associated with the calculation of the 

climate niche breadth were removed prior to the analysis as irrelevant to the analysis.  

Figure 3.3 is a visualisation of the correlation matrix showing correlated (i.e. those 

variables showing associations >0.7) and uncorrelated variables (i.e. those variables 

with no or little association with another <0.7).  The threshold value is set at 0.7> 

because variables which correlate to this degree are said to have a ‘strong’ correlation 

below this cut-off the correlation is assessed to be ‘weak’ to ‘moderate’ (Tabachnik and 

Fidell 2012).    

In preparation for running a PCA, those variables presenting correlations above 0.9 

were removed.  For pairwise correlations, variables were removed on the basis of the 

number of records available, the variable with the higher number remained.  For 

variables highly correlated with multiple others, variables were chosen on the basis of 

those representing the highest degree of correlation in concert with the largest number 

of records.    
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Transformation of Variables for Analysis 

Many statistical procedures, such as regression, operate with the assumption that the 

input variables are normally distributed and that the standard deviation of the error 

term of the variables remains constant across its observed range known as 

homoscedasticity (Osborne, 2010).  If either assumption is subject to significant 

violation the likelihood of Type I, false positive, and Type II, false negative, errors is 

increased.  Biological data, such as that contained within the LHTd, are often non-

normally distributed (McDonald, 2009), to counter this effect variables were 

transformed to represent normal distributions.   

The appropriate transformation of variables can improve the results of analyses even 

where the specific technique is deemed to be ‘robust’ to violations of either assumption 

(Zimmerman et al 2010).  This is particularly important in regression analysis, which is 

sensitive to non-normal distributions, where transformations improve the linearity 

between the independent and dependent variables.   

To assess for normality the continuous variables were subjected to the Kolmogorov-

Smirnov test which tests for normality, a significant test indicates that the distribution 

Figure 3.3 Schematic of the Trait Selection Process (blue outlined traits are included in the Sensitivity calculation, shaded blue are 
omitted due to multicollinearity, red removed due to low number of records. 
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is non-normal, and the variable requires transformation.  Lilliefors significance 

correction is implemented in this case (Table 3.4) where the mean and variance of the 

population were unknown.  SPSS also calculates the Shapiro-Wilk’s W test which 

operates on the same premise, where a p value of >0.5 indicates a normally distributed 

variable (Osborne 2010).  

 

Traits 
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig.(P) Statistic df Sig. (P) 

Sexual Maturity (Days) 0.209 221 .000 .792 221 .000 

Longevity (Months) 0.11 221 .000 .914 221 .000 

Gestation Length (Days) 0.217 221 .000 .810 221 .000 

Weaning Age (Days) 0.266 221 .000 .544 221 .000 

Litters per year 0.276 221 .000 .772 221 .000 

Litter Size 0.144 221 .000 .894 221 .000 

a. Lilliefors Significance Correction 

       Table 3.4 Testing for normality in the variables 

 

As indicated in Table 3.4 the LHTd variables required transformation since each 

displayed significance across both tests of non-normality.  Thus, the continuous 

variables were log transformed, the most commonly used transformation for 

continuous variables of this type (Purvis et al. 2000; Bielby et al. 2007).  

 

Data Availability and Missing Values Analysis 

Before running the PCA the remaining variables were examined using a missing values 

analysis (MVA) in SPSS.  This analysis revealed the number of records each variable and 

combinations of variables covered (Table 3.5 and Table 3.6).  This allowed the selection 

of a variable set which accounted for a range of variables whilst providing the 

appropriate number of records to qualify for PCA and the subsequent linear regression 

analysis.  The minimum requirement of records to maintain statistical stability for PCA 

is calculated by taking the proportion n: p=>3, where n is the number of records and p is 

the number of variables (Grossman et al., 1991).  For regression analysis the minimum 

number of required records is assessed using the rule of thumb N≥50+ 8m, where N is 

the number of records and m is the number of independent variables (Tabachnik and 
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Fidell 2012).  The MVA listed the traits in order of the number of available records Table 

3.5.  The MVA also executes a pattern analysis which seeks to maximise the number of 

records employable in the final statistical analyses Table 3.6 .  

  Records Missing No. of Extremesa 

Trait N Count Percent Low High 

Distribution Size  (km2) 1084 0 .0 39 1 

Endemic 1084 0 .0 * * 

Climate niche breadth 1084 0 .0 * * 

Adult Mass (g) 1020 64 5.9 0 50 

Mean Human Population Density 

(n.km2) 

1003 81 7.5 38 3 

Litter Size 907 177 16.3 0 0 

Habitat Breadth 753 331 30.5 * * 

Terrestriality 750 334 30.8 * * 

Diet Breadth 703 381 35.1 * * 

Trophic Level 703 381 35.1 * * 

Gestation Length (days) 565 519 47.9 0 0 

Litters Per Year (n/yr) 537 547 50.5 2 13 

Activity Cycle 512 572 52.8 * * 

Weaning Age (days) 510 574 53.0 1 16 

Max Longevity (months) 484 600 55.4 0 0 

Sexual Maturity (days) 461 623 57.5 0 0 

Population Density (n/km2) 431 653 60.2 0 51 

Home Range (km2) 337 747 68.9 0 62 

Basal Metabolic Rate 330 754 69.6 0 45 

Weaning Body Mass (g) 292 792 73.1 0 55 

Interbirth Interval (days) 290 794 73.2 0 19 

Age at eye opening (days) 272 812 74.9 0 6 

Social Group Size 219 865 79.8 0 43 

Dispersal Age (days) 65 1019 94 0 4 

a. Number of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR). 
Table 3.5 Missing Value Analysis of Life History Traits 

The Missing Values pattern analysis, reported in Table 3.6 iterates across the variables 

recording the number of records available for a series of iterative variable sets.  The 

final variable set of 14 traits and 213 records (highlighted in grey) was selected to 

maintain the widest degree of life history and ecological information whilst including 

the required number of records for analysis.  This surpasses the minimum requirement 

of records for the PCA (n: p=>3), with the ratio of records across the 14 traits is 15 

records to each trait.  It also satisfies the minimum requirement for the regression 

analysis of 162 records (N≥50+14*8) (Tabachnik and Fidell 2012).  These records 
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represent 58 families and 15 orders; the full data set is presented in the supplementary 

material.     

 

Trait 
 No. of Species Recorded for each Variable  Set 

22 213 221 270 291 365 550 643 963 1084 

Distribution Size  (km2)                     

Endemic                     

Climate niche breadth                     

Adult Mass (g)         X         x 

Mean Human Population Density (n.km2) x x       x x X x x 

Litter Size       x X       x x 

Habitat Breadth     x x X       x x 

Terrestriality     x x X       x x 

Diet Breadth     x x X     X x x 

Trophic Level     x x X     X x x 

Gestation Length (days)     x x X x x X x x 

Litters Per Year (n/yr)     x x X   x X x x 

Activity Cycle   x x x X x x X x x 

Weaning Age (days)     x x X x x X x x 

Max Longevity (months)     x x X x x X x x 

Sexual Maturity (days)     x x X x x X x x 

Population Density (n/km2)   x x x X x x X x x 

Home Range (km2)   x x x X x x X x x 

Basal Metabolic Rate   x x x X x x X x x 

Weaning Body Mass (g)   x x x X x x X x x 

Interbirth Interval (days)   x x x X x x X x x 

Age at eye opening (days)   x x x X x x X x x 

Social Group Size x x x x X x x X x x 

Dispersal Age (days)   x x x X x x X x x 

Table 3.6 Pattern Analysis of Database Records (‘x ‘ indicates that the variable is omitted) 

  

Principal Components Analysis  

PCA is employed to determine the components which best describe species life history 

strategies and ecologies and in combination their Sensitivity.     

PCA is a well-established multivariate analysis technique.  Owing to its highly versatile 

nature it has been used in many disciplines from engineering to psychology and in 

ecological problems (Torokhti and Friedland 2009).  PCA has four goals, i) to determine 

and extract the most relevant information from the data, ii) to compress the data by 

summarizing patterns within the data and preserving the most relevant information, iii) 
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to simplify  the description of the data, and, iv) to analyse the structure of the 

observations and variables (Abdi and Williams 2010).  This process provides us with an 

operational definition (a regression equation) of the underlying processes apparent in 

the observed variables.  A good PCA “makes sense” in its interpretation (Tabachnik and 

Fidell 2012).  The use of PCA is appropriate when you require a summary of the data. It 

provides a mathematically unique solution exactly reproducing the observed 

correlation matrix where all components are retained (Tabachnik and Fidell 2012).  

However, criticisms of PCA include the fact there is no mathematical external procedure 

by which the solution can be tested and that the rotation of the solution is left to expert 

opinion based on the interpretability of the extracted components (Tabachnik and 

Fidell 2012).        

 

 There are clear reasons for using PCA in the creation of a Sensitivity score.  Firstly, PCA 

identifies the underlying processes within the data and constructs components which 

describe the greatest degree of variance across the dataset, identifying the variables 

most salient for representing life history functional groups in our measure of sensitivity.  

Secondly, and perhaps most importantly, is the creation of factors scores by PCA, which 

represent estimates of the scores individual would have obtained for each factor that 

was measured directly, which can be used for estimating an appropriate Sensitivity 

score for each species.  Factor scores can also be used to predict a dependent variable 

using regression analysis, in this case to assess whether the factors are robust 

indicators of Sensitivity against a measure of Past Exposure.  In reducing a large number 

of traits to a smaller group of components we are able to discriminate the traits 

important in driving species sensitivity.  PCA was used to avoid falling into the 

preconceptions of what defines Sensitivity by determining those traits which covary 

statistically across the species; it identifies the major life history strategies apparent in 

the data.  Dimension reducing techniques such as PCA and Factor analysis are 

commonly used to infer patterns in life history data (Bielby et al. 2007; Dobson and Oli 

2008).  Basing the Sensitivity measure on a statistical process allows both theories to be 

used to validate the final measure. 

Prior to running the analysis the trait variables ‘adult forearm length’, ’adult body 

length’,  ‘current distribution’, ‘trophic level’ and ‘terrestriality’ were removed.  The trait 

Adult Forearm length (mm), was highly correlated (0.9>) with several variables, 
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including population density, adult length and adult mass, and was removed from the 

analysis.  This removal was due to the low number of records and perceivably the 

degree of variance it could account for within the PCA.  Further examination of the 

correlation matrix for the remaining variables showed strong correlation between adult 

body mass and adult body length, adult body length was removed as it had fewer 

records.  ‘Trophic level’ and ‘Terrestriality’ were removed as the attributes which both 

described are identified as having no bearing on species sensitivity within the literature. 

Trophic level describes whether a species is herbivore, carnivore or omnivore.  

Terrestriality describes whether a species is fossorial and or ground-dwelling or 

arboreal.   

 

Running the Analysis 

PCA with varimax rotation was performed using SPSS on 12 traits included in the LHTd 

for a sample representing 213 species across 58 mammal families.   

The components represent linear combinations of the observed variables and are 

empirical constructs driven by the variables themselves (Tabachnick and Fidell 2012)().  

As a rule component loadings below 0.32 are suppressed because scores below this cut-

off represent less than 10% of the overlapping variance and are therefore not robust 

indicators of associations across the component (Tabachnick and Fidell 2012) .     

The matrix created by the PCA which shows the variables’ loadings across the 

components can be rotated across multi-dimensional space in order to bring clarity to 

the PCA output components (Bielby et al. 2007).  Varimax rotation was employed as it is 

the most commonly used and is particularly relevant when the factor scores are to be 

used in further analysis as independent or dependent variables (Tabachnick and Fidell 

2012), as is the case here.  Varimax is an orthogonal rotation which ‘minimizes the 

complexity of the factors by maximising the variance of loadings on each factor’ 

(Tabachnick and Fidell 2012).  The rotated matrix explains the same degree of variance 

as the un-rotated matrix, although the variance is shared more equally across the 

factors in the rotated matrix (Bielby et al. 2007) .   

There are several techniques to determine the correct number of components for 

further analysis.  This reduction in components is necessitated by the fact that the 
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inclusion of too many factors may incur the addition of noise caused by sampling 

fluctuations, too few and we risk masking relevant information rendering the analysis 

incomplete (Tabachnick and Fidell 2012).  Two techniques where employed in this 

analysis, 1) assessment of the scree plot, and 2) The Karlis-Saporta-Spinaki Rule 

(Saporta 2006).  The visualisation of the components in a scree plot and identification of 

the elbow (i.e. the ‘kink’ in the line) gives a good first indication of the number of 

components for inclusion.  

 

 The Karlis-Saporta-Spinaki rule considers the ratio of records to the number of 

included traits: 

      
   

   
 

Where   is the number of variables and   denotes the number of records. 

The traits represented in the components explaining the highest degree of variance 

whilst adhering to the rule are subsequently re-run with the analysis restricted to the 

number of salient components to maximise the variance explained across the 

components.      

 

3.2.2 Testing the Validity of the Sensitivity Components 

 

Regression Analysis 

The regression analysis seeks to assess the robustness of the Sensitivity measure by 

assessing the degree to which the combined factor scores are able to predict the 

dependent variable, Past Exposure.  The Past Exposure variable describes the velocity of 

climate change species have experienced in the past.   

Regression analyses are a set of statistical techniques that allow one to assess the 

relationship between one dependent variable and several independent variables (IVs). 

In order to validate the principal components’ ability to predict a species’ vulnerability 

to future climate change, as the constituent parts of the Sensitivity measure, a 

regression analysis was performed with past exposure as the dependent variable.  This 
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is in line with the theory that past exposure has left a spatial imprint on modern-day 

species compositions by acting as extinction filter.  Thus, preparation for the regression 

analysis entailed the creation of the dependent variable, past exposure, which is 

representative of past climate change.    

 

Multiple Regression 

Multiple regression is a form of regression analysis into which several independent 

variables are input to predict a value on a dependent variable for each entry.  The form 

that the regression equation takes is shown in equation 1. 

                     

Where Y’ is the predicted value on the dependent variable, A is the Y intercept (the 

value of Y when all the X values are zero), the Xs represent the independent variables 

(of which there are K), and the Bs are the coefficients designated to each of the 

independent variables during regression.  The intercept and coefficient remain constant 

for the prediction of the individual’s values on the dependent variable, a different Y 

value is predicted for each entry through inserting the individual’s specific X values 

(Tabachnick and Fidell 2012) .     

Regression analysis was selected to investigate the relationship between the dependent 

variable, ‘Past Exposure’ and the independent variables which constitute the 

‘Sensitivity’ measure.  Although Regression analysis cannot imply causality of the 

independent variables it can infer a relationship (Tabachnick and Fidell 2012).  

Regression analysis is best used with a limited number of independent variables which 

represent the smallest, uncorrelated set of potentially explanatory variables 

(Tabachnick and Fidell 2012).  This principle is reflected in the ten variables previously 

selected out by the PCA as explaining the greatest degree of variance within the LHTd.  

GLMs and GAMs were discounted because the variables had previously undergone 

normalization and these techniques specialise in regression with non-normal 

dependent variables (Tabachnick and Fidell 2012).  

Efforts were made to improve the normality, linearity, and homoscedasticity of the 

residuals in the data through the removal of outliers and the transformation of 

variables. 
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Outliers are identified as those which score above the critical X2 for α=0.05 based on the 

degrees of freedom which is equal to the number of independent variables.  Regression 

analysis is sensitive to outliers that can disrupt the techniques ability to provide an 

accurate assessment of the relationship between independent variables and dependent 

variable (Tabachnick and Fidell 2012).  Significant outliers were tested for by 

computing the Mahalanobis distance, which measures the individual records’ distance 

(residual) from a common point.  Several outliers were identified and removed form 

future analysis.   

Regression is also sensitive to the number of input records.  To calculate the lower 

acceptable number Tabachnik and Fidell (2012) recommend the rule of thumb, 

N(number of species records)≥50 + 8m, where m is the number of independent or 

predictor variables, for testing the multiple correlations.  The number of full records 

available for input into the regression is 213 which satisfy this test.  

The use of heteroscedastic data in ordinary least squares regression analysis does not 

significantly bias the estimate for the relationship between dependent and independent 

variables and the associated significance tests (Tabachnick and Fidell 2012), thus, 

invalidating the need for homoscedasticity testing across the LHTd variables.   

The observations are also required to be independent i.e. not exhibit autocorrelation 

(Tabachnick and Fidell 2012).  The Durbin-Watson statistic tests for autocorrelation, it 

reports values between 0-4 with scores indicating no significant positive or negative 

autocorrelation falling between 1 and 2.  In this case the Durbin-Watson score is 1.76 

indicating that autocorrelation is not inherent within the observations.   In a further test 

for multicollinearity examining the tolerance statistics across the entered variables 

indicates its absence with scores above 0.20 and presence below this point.  In this 

analysis multicollinearity was not apparent with none of the variables having scores 

below 0.20, and with all of the variables with scores exceeding 0.8.  

 

Running the Multiple Regression 

Sequential regression runs regression models across the independent variables sets, 

adding the sets sequentially (Tabachnick and Fidell 2012).  The advantage in this case is 
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that each components contribution in the prediction of the dependent variable can be 

analysed. Analysis was undertaken using the regression package in SPSS. 

 

Past Exposure Data 

Past exposure data, i.e. that which summarises the conditions experienced by species in 

the past is presented in terms of past velocity of climate change since the Last Glacial 

Maximum (LGM) (21,000 years ago).  The velocity of climate change is a measurement 

of the local rate of change in climatic conditions across the Earth's surface (Loarie et al. 

2009; Sandel et al. 2011).  To calculate a localised instantaneous measure of velocity 

requires the division of the rate of climate change through time by the local rate of 

climate change across space (Loarie et al. 2009; Sandel et al. 2011).  

 Velocity data was kindly provided by Dr R. Davies and its calculation is analogous to 

that used in the paper by  Sandel et al (2011), in which he was an author.  The raw 

velocity data consist of estimates of temperature and precipitation climate change 

velocity at a 1.0° resolution gridded using Berhmann’s equal area projection.  The 

Behrmann equal area grid is a cylindrical map projection in which the secant cuts at 30° 

parallels with slight distortion in cell size towards the poles (Kennedy and Kopp 2000).     

 

Climate Change Velocity Calculation  

Climate change velocity is expressed in terms of units of distance per time, and is equal 

to the temporal gradient divided by the spatial gradient.  Climate-change velocity holds 

biological relevance in that it neatly describes the local rate at which species must 

disperse if they are to track changing climate, whilst integrating both macroclimatic 

shifts with local spatial topoclimatic gradients (Sandel et al. 2011).          

The data representing estimates of past climate used in Sandel et al’s study was 

acquired from the Paleoclimate Modeling Intercomparison Project Phase II (PMIP2) for 

the two coupled ocean-atmosphere simulation models, CCSM3 and MIROC3.2  

(Braconnot et al. 2007).  These models were selected for their ability to provide a back 

cast of mean annual temperature estimates at the LGM at a resolution of 2.5’ (Sandel et 

al. 2011).  Sandel et al (2011) found that the models’ estimates for mean annual 

temperature were highly correlated across the globe (r=0.963), thus the cell-wise mean 
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prediction of both was used to represent LGM mean annual temperature in their 

estimate.  Estimates of current mean annual temperature and mean annual 

precipitation consisted of 0.25° resolution aggregated data based on the 2.5’ arc-minute 

WorldClim climate data (Hijmans et al. 2005).  To calculate the temporal gradient the 

difference between the current mean annual temperature and the LGM mean annual 

temperature was computed for each 2.5’ arc-minute (5km2) cell assuming a linear 

range.  The result of each cell was subsequently aggregated to a resolution of 0.25° by 

taking the mean velocity value of the aggregated cells.    

The measurement of climate-change velocity is fundamentally scale-dependent and 

estimates change with spatial resolution, however, Sandel et al (2011) found that both 

the 2.5’ and 0.25° were relatively well correlated, thus largely diminishing the impact of 

scale on their results.  To match the resolution of past climate velocity surface with the 

current species distribution data calculated by the Wallace Initiative the resolution was 

aggregated to 1.0°.  The finding that scale little impacted  Sandel et al’s (2011) velocity 

measurement leads me to make the assumption that scaling to 1.0° will not affect the 

velocity calculation and  the correlation between 2.5’ and 1.0°  will remain constant. 

Thus, the estimated mean velocity of climate-change for the period LGM-present is 

5.94m/yr (Sandel et al. 2011).  This figure represents the geometric mean over the 

entire 21,000yr period, thus smoothing out any abrupt or short-term fluctuations in 

velocity during the period which may have exceeded the baseline.   

Uncertainty in the paleoclimatic predictions for precipitation between the two ocean-

atmosphere models at fine-scale resolution mean that Sandel et al (2011) chose to 

concentrate on temperature velocity since the LGM.  Due to this inherent uncertainty in 

the precipitation data this study also focuses on temperature velocity only. 

 

Formatting the Velocity Data 

The velocity data required re-formatting to make it compatible with the Wallace 

Initiative data projections.  The velocity data uses the Berhmann equal area projection 

whereas the Wallace Initiative uses the geographic co-ordinate system WGS84 

consistent with that used for the BioClim (Hijmans et al., 2005) and Global Biodiversity 

Information Facility datasets (GBIF 2013).  This was achieved using ArcGIS Desktop 

10.1. (ESRI 2012) and R language packages, SDMTools (VanDerWal et al. 2012) and 
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raster (Hijmans 2012).  Figure 3.4 is a map of the globe showing the past climate 

velocities since the LGM, with red indicating high velocities scaling to dark blue for low 

velocities.  The mapped scale is logarithmic representing a range between 0 and 

168m/yr-1.  

 

  

Figure 3.4 Mapped Past Velocity of ClimateChange since the Last Glacial Maximum (after Sandel et al 2011) 

 

Calculating Species Average Past Exposure 

Estimating a single Past Exposure value for each species required calculating the mean 

of the velocities experienced across the species distribution.  To extract this information 

entailed the overlaying of the current predicted distribution from Maxent over the 

gridded velocity surface.  The range and mean of the velocities was then calculated.  

This process was accomplished using SDMTools (VanDerWal et al. 2012) and raster 

(Hijmans 2012) packages in R.  These mean velocity values were recorded for each of 

the species occurring in the LHTd and represent the operator Past Exposure in the 

Vulnerability equation.  

In light of the fact that most species’ past distributions are unknown the unclipped 

distributions (i.e. unrestricted) created in the Wallace Initiative were used to represent 

most fully the species fundamental niche.  These projections represent the largest range 

of environmental combinations in which the species might previously have occurred.  

These projections are better able to capture the species past distribution and so 

exposure to past climate change because they encompass a wider range of possible 

outcomes. 
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Calculating the mean value using all recorded velocities experienced by an individual 

species would mean the measure of velocity was vulnerable to bias by the inclusion of 

extreme values which were not representative of the velocities experienced over the 

main part of the species distribution.  Therefore to reduce the impact of such extremes 

the Outlier labelling rule (Tukey 1977; Hoaglin, Iglewicz and Tukey, 1986) was 

employed to remove values occurring outside the normal distribution.  The rule is based 

on a constant ‘G’ by which one calculates the upper and lower bound for record 

inclusion based on the upper and lower quartiles of the data.  First, one calculates the 

difference between the upper and lower quartiles; this is then multiplied by the 

constant ‘G’ which is 2.2, this number is then added to the upper quartile and subtracted 

from the lower quartile to give the upper and lower bounds for inclusion.  The mean 

velocity value is then calculated across the remaining values.     

The mean velocity of climate change experienced by LHTd species since the LGM was 

calculated as 4.71m/yr, this figure is slightly lower than the estimated global mean 

velocity of 5.94m/yr (Sandel et al. 2011).  This difference may be related to the fact that 

velocity calculated by Sandel et al (2011) is not linked to specific species but calculated 

across the terrestrial land surface.  The maximum averaged velocity of climate change 

experienced by any species in the period since the LGM is calculated as 128m/yr.  This 

high past velocity was calculated for the Franklin’s ground squirrel (Spermophilus 

franklinii) which occurs in the central US and into Southern Canada, the area shown 

Figure 3.4 to have experienced the highest velocities of past climate change. 

 

3.2.3 Transforming Factor Scores into a Single Measure 

 

The use of factor scores means that the measure accounts for the contribution of each of 

the raw variables in describing the variance among the species.  The Sensitivity measure 

is a composite score created using the factor scores calculated by the PCAf (PCA final) 

across the three components.  The creation of factor scores is discussed in more detail 

below.  Thus, the equation for the calculation of Sensitivity is: 
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Where b1,b2,b3 are regression coefficients of the components denoted by Cx.  In 

transforming the Sensitivity measure to remove negative values the scores were 

rescaled by adding 10 and dividing by 10, giving the final scores as: 

            
                   

  
 

The creation of composite scores using PCA is common particularly in the medical 

sciences for diagnosis etc. and there are several methods for creating the final scores  

(Anglim 2009).  In this case the regression factor scores, saved during the PCAf are 

summed together to create the final Sensitivity scores for each species.   

 

Factors Scores 

Factor scores for each component are recorded for individual species in the form of 

regression scores; these are useful in further analysis because they are virtually 

uncorrelated where the components are orthogonal (Tabachnik and Fidell 2012).  

Where these components are few in number, stable and easily interpretable the use of 

factor scores is thought to enhance further analyses (Tabachnik and Fidell 2012).   

The factors scores are created by the weighting of the scores on each of the observed 

variables attributed to a particular factor and summing the combination of individual 

scores.  This supposes that each individual has the same underlying component 

structure but different scores on the components themselves (Tabachnik and Fidell 

2012).  The resultant scores are linear combinations of the observed variables and take 

in to consideration the shared variance (i.e. what is shared between the item and the 

factor) and the uniqueness or error term variance (i.e. what is not 

measured)(Tabachnik and Fidell 2012).  These scores can be regarded as a form of 

composite score. 

Determining factor scores by regression  provides estimates that are standardized , and 

is thus more robust than using a less complex form of computation, such as summing 

the scores (DiStefano 2009).  The process aims to maximize the validity producing 

scores that are highly correlated with the factor(s) giving an unbiased estimate of the 

true factor scores (Distefano 2009).   
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3.2.4 Cluster Analysis of Traits 

 

To determine whether the species traits identified as contributing to species Sensitivity 

clustered along taxonomic lines a cluster analysis was implemented.  A hierarchical 

cluster analysis was performed in SPSS using the Ward’s minimum variance method.  

The Ward’s minimum variance criterion seeks to statistically minimise the total within-

cluster variance (PSU 2013).  Thus, during each step the analysis looks for the pairing 

which introduces the least additional variance to the total within-cluster variance after 

merging (PSU 2013).  Each cluster begins the analysis with one point, further clusters 

are then determined on the basis of the weighted squared Euclidean distance between 

cluster centres (PSU 2013).  This method was used because of the iterative way in 

which it proceeds using a bottom-up approach it starts at the leaves and ends at the 

trunk (PSU 2013).  The algorithm moves up the hierarchy and stops when one over-

arching cluster is achieved.  It is also an approach which is appropriate for the 

quantitative variables represented in the Sensitivity measure (PSU 2013).   

 

3.3 Results 

3.3.1 Principal Components Analysis Results 

 

The results of the initial principal components analysis created to determine traits 

defining Sensitivity using species life history and ecological traits are presented in Table 

3.7and Table 3.8. These tables show the total variance explained and the rotated 

component matrix.  This initial PCA, hereafter referred to as PCAi used the full suite of 

twelve variables.  The PCAi extracted three factors, which exceed the required 

Eigenvalues >1, explaining 61.56% of the variance.  
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Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 

Cumulative 

% 
Total 

% of 

Variance 

Cumulative 

% 
Total 

% of 

Variance 

Cumulative 

% 

1 4.732 39.432 39.432 4.732 39.432 39.432 4.570 38.083 38.083 

2 1.451 12.095 51.527 1.451 12.095 51.527 1.584 13.202 51.285 

3 1.204 10.033 61.560 1.204 10.033 61.560 1.233 10.275 61.560 

4 .957 7.976 69.536             

5 .821 6.845 76.381             

6 .776 6.466 82.847             

7 .652 5.434 88.281             

8 .550 4.582 92.864             

9 .303 2.523 95.386             

10 .241 2.005 97.391             

11 .193 1.608 98.999             

12 .120 1.001 100.000             

Table 3.7 PCAi Components and Total Variance 

The table of communalities Table 3.8 illustrates the degree of variance accounted for 

across the components for each variable included in the LHTd).  This assessment is 

important for evaluating the strength of the PCA in describing the individual 

components and in verifying that an appropriate number of records have been entered 

in to the analysis.  Where variable communalities are around 0.5 or above for most of 

the descriptor variables the analysis is considered robust where the components are 

well-defined and interpretable.    
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 Communalities 

Traits Initial Extraction 

Longevity (Months) 1 0.797 

Sexual Maturity (days) 1 0.77 

Gestation Length (days) 1 0.746 

Weaning Age (days) 1 0.718 

Litter  Size 1 0.651 

Mass (g) 1 0.645 

Climate Niche Breadth 1 0.636 

Litter per year  (n/yr) 1 0.572 

Habitat Breadth 1 0.563 

Mean Human Population Density 

(n.km2) 
1 0.518 

Endemic 1 0.395 

Diet Breadth 1 0.377 

Table 3.8 PCAi Communalities across variables 

The rotated component matrix Table 3.9 displays the loadings of each trait across the 

factors identified in PCAi.  In order to achieve the model which is most parsimonious the 

factors were further assessed using the Karlis-Saporta-Spinaki rule which required 

components to achieve a minimum eigenvalue of λ=1.446 for inclusion in the final 

model.   In this case the number of components to retain is three Table 3.7.  The three 

components account for 61.56% of the total variance found within the data.   

Rotated Component Matrixa 

 Trait 
Component 

1 2 3 

Sexual Maturity (Days) 0.877     

Longevity (Months) 0.858     

Weaning Age (Days) 0.845     

Gestation (Days) 0.803     

Mass (g) 0.796     

Litters Per Yr  -0.756     

Litter Size -0.55 0.534   

Habitat Breadth   0.704   

Human Mean Density   -0.596   

Diet Breadth   0.538   

Niche Breadth   0.538 0.79 

Endemic     -0.607 

Table 3.9 PCAi Rotated Component Matrix  

 a. Rotation converged in 7 iterations 
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 Having identified the three components, the PCA was re-run and the number of 

components limited to three to maximise the variance of the variables associated with 

each component (PCAf).  There are 213 records for 15 orders and 58 families which 

satisfied the full suite of traits utilised in the PCAf.  Two traits, mass and mean human 

density were removed from the final analysis although they strongly loaded on 

component one (mass(g)=0.796)  and component two (human mean density (n.km2)=-

0.596) respectively.  Adult body mass was removed from further analysis as it known to 

obscure the underlying size-independent variation which in turn complicates 

identifying the life history traits determining species variation (Bielby 2007).  Human 

mean density was removed because of its inherently transient nature and also because 

its influence would particularly distort the regressions ability to determine a correlation 

with past climate change exposure.              

Rotated Component Matrixa 

Traits 
Component 

1 2 3 

Sexual Maturity (Days) 0.901     

Longevity (Months) 0.856     

Weaning Age (Days) 0.851     

Gestation (Days) 0.834     

Litters per year -0.793     

Litter Size -0.643 0.415   

Diet Breadth   0.783   

Habitat Breadth   0.723   

Endemic     -0.735 

Climate niche Breadth     0.733 

a. Rotation converged in 4 iterations 

Table 3.10 PCAf Rotated Component Matrix 

In PCAf the three components accounted for 66.8% of the rotated sum of squares total 

variance.  The components describe 42.89%, 12.84% and 11.07% of the total variance 

respectively.  The variable loadings on the three components are shown in Table 3.7. 

There is one complex factor, Litter size, which loads on both component 1 and 2.  

Explanatory descriptions for the three components are characterised as follows, 1) 

Reproduction and survival (Sexual maturity, Longevity, Weaning age days, Litters per 

year, Litter Size, Gestation Length), 2) Specialist –Generalist Continuum (Diet breadth, 
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Habitat breadth, Litter size) and, 3) Ecology (Endemicity and Climate niche Breadth).  

Component 1 can be viewed as generally describing the frequency of reproductive 

events and the trade-off between number and quality of offspring.  It describes at one 

end of the continuum a species which reaches sexual maturity at a young age, has a 

short gestation period, gives birth frequently, has large litters and weans offspring 

early, species at the other end, represent the opposite suite of traits.  The second 

component is here termed the Specialist-Generalist Continuum.  Where, the generalist 

has a wide ranging diet and can utilise a broad range of habitats.  However, it is unlikely 

that there is a species which exemplifies this suite of traits completely, and species are 

likely to demonstrate a mix of these traits.  Component 3, the ecology component, is 

indicative of the relationship between climate niche breadth and endemicity.  Thus, a 

species which is endemic is likely to exhibit a narrower climatic tolerance.   

         

3.3.2 Regression Analysis Results 

 

Sequential regression was performed to determine the additive nature of each 

component in turn in explaining the global pattern of past exposure to climate change.   

The final data set contained 213 records which have entries for each of the ten traits 

determined by the PCAf.  Past exposure is a measure of the average velocity (m/yr-1) of 

climate change experienced across each species distribution between the Last Glacial 

Maximum to the current.  The regression employed the logged trait variables to 

demonstrate each variables’ contribution in the regression.  Table 3.11shows the R, R2, 

and adjusted R2 across the three models, R was statistically significant from zero at the 

end of each step.  Model 3, which has all independent variables in the regression 

equation, has a R2=0.155 with 95% confidence limits from 3.897 to 5.751, 

F(10,213)=3.696  p=<0.01.  The adjusted R2 value of 0.113 indicates that past climate 

change has left a weak statistically-significant fingerprint on species assemblages, 

influencing the species composition by the degree of exposure to past climate change.   

Thus, indicating that species sensitivity to climate change can be predicted by the trait 

variables selected in the PCA across the three components.     
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  Model Summaryd 

Mode

l 

N 

R R Square Adjusted R Square 

Standard Error of the 

Estimate 

1 213 0.365a 0.133 0.108 0.46361 

2 213 0.368b 0.135 0.101 0.46534 

3 213 0.393c 0.155 0.113** 0.46239 

 a. Predictors: (Constant), Weaning Age, Litter Size, Litter per year, Longevity, Gestation, Sexual Maturity 

 b Predictors :(Constant), Weaning Age, Litter Size, Litter per year, Longevity, Gestation, Sexual Maturity, Diet Breadth, 

Habitat Breadth 

 c Predictors:(Constant), Weaning Age, Litter Size, Litter per year, Longevity, Gestation, Sexual Maturity, Diet Breadth, 

Habitat Breadth, Endemic, Climate Niche Breadth 

 d Dependent Variable: Past Exposure 

 **P=<0.01 

Table 3.11 Regression Model Summary 

The sequential regression indicates that the addition of habitat and diet breadth adds no 

further power to the prediction of past exposure as they did not significantly improve 

R2.  Whereas, the addition of the third component variables were found to significantly 

add to R2. In an examination of the standardized coefficients in Table 3.12there are five 

variables which are statistically significant in the prediction of past exposure; these are 

litter size, longevity, sexual maturity, litters per year and endemicity.  However, in 

creating the final Sensitivity measure all 10 variables were included to maximise the 

degree of variance described across the full set of variables in the PCAf, and therefore 

make the Sensitivity as representative of the spectrum of mammal trait sets as possible.  
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Coefficientsa 

 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

Variables B Std. Error Beta 

Litter Size 0.217 0.08 0.295** 

Gestation 0.005 0.073 0.01 

Longevity 0.133 0.069 0.226* 

Sexual Maturity -0.192 0.066 -0.378** 

Litters per year -0.209 0.091 -0.244** 

Weaning Age 0.035 0.061 0.059 

Diet Breadth -0.009 0.017 -0.035 

Habitat Breadth 0.037 0.059 0.044 

Climate Niche Breadth 0.003 0.003 0.064 

Endemic -0.277 0.149 -0.125* 

Constant 4.824 0.47 

 a. Dependent Variable: Past Exposure 

*P=0.10   **P=0.05 

Table 3.12 Regression Analysis Coefficients 
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3.3.3 Exploring Sensitivity  

 

Figure 3.5 Boxplot of Sensitivity across the Orders 

 

Sensitivity scores (S) range between S=4.15 and S=14.80 across the 213 species for 

which there is sufficient data for factor scores to be created (Figure 3.5).  In a closer 

examination of the descriptive statistics by Order, Primates have the highest mean 

Sensitivity at S= 11.55.  The Carnivora holds the most sensitive species scoring S=14.80 

(The Walrus, Odobenus rosmarus), there is also a Primate species which scores very 

highly  S=14.11 (The Black-capped capuchin, Cebus apella).  Excluding those Orders for 

which there is less than two representative species, the Lagomorpha have the lowest 

mean Sensitivity at S=8.05 and lowest maximum score at S=8.46.  The Rodentia have the 

lowest minimum Sensitivity value across the Orders (S=4.15) but also the largest range 

of Sensitivity values (S-range=9.03).        

There are six outliers, species which have traits outside the characteristic range of the 

Order to which they belong (Figure 3.5).  This range is determined by the Sensitivity 
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values represented in the LHTd for each Order with an upper and lower bound (or 

quartile) being estimated to facilitate the creation of the boxplot (Figure 3.5).  Three of 

these species belong to the same family Pteropodidae in the order Chiroptera, the 

Fishcheri’s pygmy fruit bat (Haplonycteris fischeri, S=4.78), the Moluccan fruit bat 

(Dobsonia moluccensis, S=6.04) and the Greater musky fruit bat (Ptenochirus jagori, 

S=5.94).  These bat species are found to be less Sensitive than the average bat species (S-

mean=8.38). The final species in this group of least Sensitive is the Cotton mouse 

(Peromyscus gossypinus S=4.15), belonging to the Rodentia.  Two species, one 

Artiodactyla (Red Deer Cervus elaphus, S=12.96) and one Carnivora species (Walrus, 

Odobenus rosmarus, S=14.80) are both more Sensitive than the average Artiodactyla (S-

mean=10.38) or Carnivora (S-mean=10.47), respectively.  

    Sensitivity Descriptive Statistics 

 Sensitivity Measure 

Order N Minimum Maximum Mean 

Std. 

Deviation 

Artiodactyla 22 9.26 12.96 10.38 0.93 

Carnivora 59 8.12 14.80 10.47 1.46 

Chiroptera 24 4.78 10.34 8.38 1.31 

Cingulata 1 12.18 12.18 12.18 . 

Didelphimorphia 5 9.32 11.23 10.43 0.85 

Diprotodontia 1 5.47 5.47 5.47 . 

Eulipotyphla 14 7.26 12.62 10.00 1.38 

Hyracoidea 1 12.42 12.42 12.42 . 

Lagomorpha 5 7.56 8.46 8.05 0.44 

Macroscelidea 2 7.42 7.42 7.42 0.00 

Perissodactyla 3 10.47 12.56 11.35 1.08 

Pilosa 3 10.48 11.34 10.99 0.45 

Primates 11 7.46 14.11 11.55 2.04 

Rodentia 61 4.15 13.18 9.87 1.83 

Scandentia 1 9.06 9.06 9.06 . 

Table 3.13 Descriptive Statistics of Sensitivity across the LHTd213 

There was a statistically significant difference between Sensitivity scores across Orders 

as determined by univariate GLM (F(1,14)=5.542, p=.000, ƞ2=0.28).  The Order to which 

a species belonged accounted for 28% (ƞ2=0.28) of the variance across the Sensitivity 

scores indicating the order to which a species belongs has a moderate impact on  

individual Sensitivity score. Several orders had fewer than(N<5) records to test for 
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significance between family differences in Sensitivity these were, Cingulata, 

Diprodontia, Hyracoidea, Macroscelidea, Perissodactyla, Pilosa and Scandentia.   

 

Sensitivity across families  

To further understand the range of Sensitivity values across Orders required looking at 

each Family within the set to judge whether particular families are more or less 

sensitive Figure 3.5.  By running a GLM across all records the analysis revealed that the 

family to which the species belonged was statistically significant in determining the 

individual Sensitivity, accounting for 63% of the variance (F (1,208)=3.948, p=.000, 

ƞ2=0.63). 

Order Source Degrees of Freedom F Significance  (P) Eta Squared (Ƞ2) 

Artiodactyla 
Family 5 2.362 .090 .441 

Error 15    

Carnivora 
Family 11 5.053 .000 .547 

Error 46    

Chiroptera 
Family 4 3.093 .040 .394 

Error 19    

Eulipotyphla 
Family  2 4.323 .041 .440 

Error 11    

Lagomorpha 
Family 1 .626 .487 .173 

Error 3    

Primates 
Family 3 3.623 .073 .608 

Error 7    

Rodentia 
Family 17 1.593 .111 .398 

Error 41    
Table 3.14 Results of GLM assessing variation in Sensitivity scores by Order 

 

There was a statistically significant difference between Sensitivity scores across 

Families for the Orders, Carnivora, Chiroptera and Eulipotyphla (p=0.05), as determined 

by univariate GLM (3.12).  Two Orders ‘sensitivity scores, Carnivora and Primates were 

strongly influenced by their constituent families (Ƞ2=0.547 and Ƞ2 =0.608 respectively).  

The remaining Orders, with the exception of the Lagomorpha, had a moderate degree of 

variance across the Sensitivity scores described by the families within the group Table 

3.14.   

The Orders including the five most sensitive families, based on the mean (n>2) are the 

Carnivora which contains three families, the Otariidae (n=2,Smean= 13.25), Ursidae 

(n=2,Smean= 12.93) and Procyonidae (n=3,Smean= 12.05)  and the Primates which include 
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two families, the Atelidae (n=3,Smean= 12.9) and the Cebiidae (n=6,Smean= 11.82).  The 

Orders containing the five least Sensitive families are the Chiroptera, which contains 

two families, the Pteropodidae (n=7,Smean= 7.3) and the Vespertilionidae (n=13,Smean= 

8.73), the Lagomorpha, containing the Leporidae (n=4,Smean= 7.97), the Macroscelididea, 

Macroscelididae (n=2,Smean= 7.42) and the Rodentia with the Hetromyidae (n=4,Smean= 

8.56).  The Rodentia encompass the largest range between minimum and maximum 

Sensitivity values (S range=9.03).  The smallest range between minimum and maximum 

sensitivity (S range= 3.7) is found in the Artiodactyla, for which there are six families 

represented (n=21). 

a) c) 

c) d) 
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e) f) 

g) 

`  

Figure 3.7 (a-g) Boxplots illustrating between family variation in Sensitivity scores across the major Orders. 
Outlier species are indicated by their record number. 

The Artiodactyla are represented by 21 records accounting for 6 families with the 

largest number of records present in the Bovidae (n=12) and the Cervidae (n=5).  The 

Bovidae have the lowest mean Sensitivity among the Artiodactyla (Smean=   10.03, n=12). 

The Cervidae family contains the species with the largest Sensitivity score across the 

Artiodactyla (Red Deer Cervus elaphus, S= 12.96).   

The Carnivora are represented by 58 records in the LHTd inclusive of 12 families.  The 

Herpestidae family, the Mongooses, have the lowest mean Sensitivity (Smean= 9.63,n=6) 

among the Carnivora.  The most Sensitive Carnivora species is a member of the Ursidae, 

the Bear family (Brown Bear, Ursus arctos, Smax= 13.71).  The least sensitive member of 

the Carnivora is a member of the Canidae family, the Bat-eared fox (Otocyon megalotis, 

Smin= 8.12).   

The Eulipotyphla are represented in the LHTd by 14 individuals across 3 families.  The 

Soricidae have the lowest mean Sensitivity score (S mean=9.25, n=7) and also holds the 
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individual with the lowest score among the Eulipotyphla (S= 7.26).  The Erinaceidae are 

the most Sensitive family (S mean=11.52, n=3) and hold the most sensitive species, the 

European Hedgehog, (Erinaceus europaeus Smax=12.62, n=7).    

There are 11 recorded Primate species in the LHTd.  The Atelidae family, which includes 

Spider monkeys, Woolly monkeys and Howler monkeys, are the most Sensitive among 

the four Primate families represented in the LHTd (Smean=12.9, n=3).   

There are 18 Rodentia families (n=59) represented in the LHTd.  The Sciuridae family, 

the Squirrels, are the most sensitive (Seann=11.10, n=17), also containing the most 

Sensitive species of Rodentia with a maximum score of S=13.18.  The Cricetidae holds 

the Rodentia species with the lowest Sensitivity score (Smin=4.15, n=13).   

 

Temperate and Tropical zones  

To assess whether Sensitivity scores vary significantly across major ecological regions 

the LHTd data was split in to Tropical and Temperate species (Figure 3.6).  If a species 

current distribution is predominantly in the tropical realm they were noted as being 

tropical and vice versa.  This assessment was made visually using the current 

distribution maps available for each species on the Wallace Initiative website (Wallace 

Initiative 2013).  Using a univariate GLM controlling for Order, Sensitivity scores were 

found to be not significantly different across the Tropical and Temperate zones (F 

(1,208)=2.717, p=.101, ƞ2=0.014), accounting for less than 1% of the overall variance.       

  

Figure 3.6 Variation in Sensitivity scores across the Biogeographic realms by Order 
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Sensitivity and Endemics 

There are 11 Endemic species represented in the LHTd213, five rodents, four bats, a 

single carnivore, a primate and a possum, none of which occur in the top 10% of 

Sensitive species.  In fact, four of these endemic species have Sensitivity values outside 

the range of values characteristic of their orders, being less Sensitive, these are the 

three Chiroptera (Haplonycteris fischeri, Dobsonia moluccensis, Ptenochirus jagori) 

species and one Rodentia species (Peromyscus gossypinus).  A significant difference was 

found between Sensitivity values for Endemic and Non-Endemic species, when 

accounting for Order (ANCOVA, F(1,204)=65.08, p=0.00, ƞ2=0.24).  Each of the endemic 

species has a Sensitivity value below the lower quartile for the Order to which they 

belong with the Cotton mouse (Peromyscus gossypinus, Sensitivity=4.15), Red-bellied titi 

(Callicebus moloch Sensitivity= 7.46), and Greater musky fruitbat (Ptenochirus jagori, 

Sensitivity=4.78) representing the lowest scores for their orders.  The remaining 

species are the Cape Genet (Genetta tigrina), Common brushtail possum (Trichosurus 

vulpecula), Woodland vole (Microtus pinetorum), Heerman’s kangaroo rat (Dipodomys 

heermanni), San Joaquin Antelope squirrel (Ammospermophilus nelson) and Uinta 

ground squirrel (Spermophilus armatus)  

 

Cluster analysis of traits  

A cluster analysis of the 213 species based on the traits identified in the PCAf, excluding 

endemicity, determined how the individual species group across the traits.  Two 

dominant branches were identified and eight clusters, as indicated in Figure 3.9 (Branch 

One and Branch Two, clusters a-g). A full scale cladogram is available in the 

supplementary materials.         

Table 3.15 illustrates the number of species represented in each of the two branches by 

Order.  Clusters in Branch One are characterized by species with K-attributes, being long 

–lived, becoming sexually mature later, having few small litters with long gestation 

periods in comparison with those on Branch Two.  It encompasses the full set of 

Chiroptera and Perissodactyla and the majority share of the Carnivora, Artiodactyla and 

Primates.  The Pilosa, Hyracoidea, Diprotodontia and Cingulata are also fully 

represented.  Clusters on Branch Two are characterised by r-selected traits with 
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multiple litters of multiple offspring per year, reaching sexual maturity young and 

having short life spans.  Branch Two represents all the Eulipotyphla, Scandentia, 

Macroscelidea and Didelmorphia and the majority of the Rodentia and Lagomorpha.  It 

also includes 21 of the 58 Carnivora species comprising of small bodied carnivores such 

as weasels and ferrets, mongooses, genets and raccoons.  
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 Figure 3.9  Cladogram determined by Sensitivity Traits  
(excluding Endemicity) 
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Interestingly, although in the main the major orders cluster on the branch expected, i.e. 

dominant K or r-selected, with the exception of the Carnivora which is split across the 

two branches, species do not necessarily group together by cluster below this level of 

organisation at the level of family or genus (Table 3.15).     

Family Branch One 

(n) 

Branch Two 

(n) 

Cluster(s)* 

Artiodactyla 20 1 B,C,D (E) 

Carnivora 37 21 A,(B),C,D,E,F,(G) 

Chiroptera 24 0 A,B,C 

Cingulata 1 0 D 

Didelmorphia 0 5 H 

Diprotodontia 1 0 B 

Eulipotyphla 0 14 E,F,G,H 

Hyracoidae 1 0 D 

Lagomorpha 1 4 (A)F 

Macroscelidea 0 2 E,F 

Perissodactyla 3 0 D 

Pilosa 3 0 D 

Primates 10 1 B,D, (E) 

Rodentia 7 59 (A), (B),(D), (E),F,G,H 

Scandentia 0 1 H 

* Dominant clusters in bold, bracketed for outliers 

Table 3.15 Clusters defined by number of species from each Order 

In a closer look at within-cluster variation in traits it is clearer how the traits interact 

with one another (Figure 3.10).  The clusters confirm the theory expounded by Bielby et 

al (2011), that species are neither wholly K-selected nor wholly r-selected but appear 

along a continuum.  Cluster D (Branch One), which includes all the Perissodactyla (n=3) 

and Pilosa (n=3), the majority of the Primates (n=6) and 11 Carnivora, has the greatest 

affinity to the archetypal K-selected species.  Cluster A (Branch One) in which the 

Chiroptera are the dominant order is characterised by species reaching sexual maturity 

early relative to the other clusters in Branch One, with short gestation periods and 

multiple offspring in a litter with a short duration to weaning but also narrow diet 

preferences and maximum longevity exceeding those of branch two.  As such these 
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species are atypical K-strategists in that they possess multiple attributes, by which they 

could be classified as r-selected, but their relative longevity, narrow diet and number of 

litters per year places them on Branch One.  The traits most associated with r-selected 

species, such as short lifespan, early sexual maturity, short gestation length with 

multiple offspring and several litters a year, and wide diet are embodied by cluster H 

(Branch Two) which is dominated by Rodentia families (n=28 of 38 species).  Cluster F, 

also on Branch Two, and which encompasses the four Leporidae species (rabbits and 

hares), two Eulipotyphla families and the Macroscelidea (Elephant shrews) amongst 

others, are another interesting group in that they conform to the majority of r-selected 

traits, being the grouping with the most litters per year (up to 7 with a mean of 3.8), but 

having a much narrower diet than the other clusters on Branch Two.   

a) Maximum Longevity (Months) b) Age at Sexual Maturity (Days) 

c) Gestation Length (Days) d) Litter Size (N) 
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e) Litters per year f) Weaning Age (Days) 

g) Diet Breadth 
 

h) Climate niche breadth 
Figure 3.10(a-h)  Boxplots showing the variation in traits across the clusters  

In a cluster analysis of Sensitivity, five major clusters were created which describe the 

groupings across the Sensitivity scores.  However, Sensitivity scores do not cluster along 

the lines of the r-K continuum in a similar pattern to the traits because moving away 

from the raw data to a composite score removes the nuances in the individual species 

traits structures (Figure 3.11).  Thus, species may score the same overall Sensitivity but 

be sensitive on different traits.      
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Figure 3.11 Range of Sensitivity Scores across Clusters 

 

3.4 Discussion 

 

This research sought to identify those species most Sensitive to climate change, but 

more importantly the Orders and their composite traits associated with Sensitivity. It 

explores the degree to which species life history and ecological characteristics can be 

used to determine an individual species’ Sensitivity to disturbances in the landscape, in 

this instance to climate change.    

 

3.4.1 What are the specific life history and ecological traits which in combination 

determine a species Sensitivity?  

 

The result of the PCAf, created to elucidate patterns in traits across the species in the 

LHTd, determined three components, 1) Reproduction and survival (Sexual maturity, 



117 
 

Longevity, Weaning age days, Litters per year, Litter Size, Gestation Length), 2) 

Specialist –Generalist Continuum (Diet breadth, Habitat breadth, Litter size) and, 3) 

Ecology (Endemicity and Climate niche Breadth).   

The variables contributing to component 1 ‘Reproduction and survival’ are judged to 

correlate with the expectations of the r-K selection theory (Pianka 1970), describing 

through the correlations across the component, the frequency of reproductive events 

and the trade-off between number and quality of offspring.  The nature in which the 

variables correlate describes the fast life history and short life span viewed as 

prerequisite to high species resilience.  This finding confirms that of Dobson and Oli 

(2007) who used PCA to determine whether Mammal life history traits lined up along 

the fast-slow continuum, their first component showed co-variation of survival and 

longevity traits said to reflect the expected trade-off of reproduction and survival.  

The second component the ‘Specialist-Generalist Continuum’ describes environmental 

resource use correlated with reproductive capacity.  It thus also corresponds with the 

expectation in r-K theory that competition for resources is connected with fewer fitter 

offspring (Pianka 1970).  Further, it concurs with resilience theory, in which broad diet 

and habitat specialisation enhances species resilience (Issac et al 2009). The third 

component, which describes the species ‘Ecology’, is outside the framework of r-K 

theory; however, it does fall within the principles of resilience theory.  The negative 

correlation described in the Ecology component between endemicity and climate niche 

breadth is allied with the principle that a large geographic range and broad 

environmental tolerance promotes resilience.   

 

3.4.2 How does this combination of life history and ecological traits determine 

the level to which Orders are Sensitive? 

 

The Sensitivity measure needed to reflect the constituent components identified in the 

PCA.  It also needed to be directly relatable to the degree to which a species is defined as 

being tolerant to environmental disturbances, including climate change, in the 

literature.   
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Which traits confer Sensitivity to Climate Change?  

A key factor in determining the capacity of species to recover under climate change is 

their ability to colonize habitats which represent changed climatic conditions, such 

circumstances will require species to possess the ability to reproduce rapidly enough to 

maintain a viable population (Isaac et al. 2009).  This factor along with dispersal and 

adaptive capacity will play a vital role in determining species survival.   

Thus, the degree of habitat stability selects for r or K strategists, high instability 

obligates that species have high reproductive capacities with fast generational turnover 

(r-selected) (Jones 1976), putting the least required resources into each offspring and 

producing the largest number possible (Pianka 1970).  High stability selects for highly 

competitive species with slow generational turnover (K-selected) (Jones 1976).  To 

maintain a population within these conditions, replacement is the key, thus, the optimal 

strategy requires the maximum energy to go into the productions of few, extremely fit 

progeny (Pianka 1970).    

Species that have fast growth and mature rapidly, are generalists and have broad 

environmental niches and high dispersal capacity are not impacted by disturbances as 

strongly as those long-lived, slow growing species (Williams 2008).  This is due to the 

unpredictability of disturbances under which the best strategy is always to maintain 

rapid growth (Lytle 2001).  Species with slow life histories, or which are isolated, do not 

cope well under high mortality scenarios because they cannot compensate by increased 

fecundity, making them vulnerable to population extinction (Purvis et al. 2000).  Species 

which have a narrow diet breadth are also thought to be more sensitive than omnivores 

because they are unable to exploit a wide range of different food types (McKinney 

1997). 

 

The Sensitivity measure needed to effectively describe the relationships between life 

history and ecological traits described in the PCAf with those described in the literature 

as conferring resilience or inducing susceptibility.  Thus, traits which are recognised by 

theory as bolstering a species’ tolerance to disturbances are represented as a low 

Sensitivity score and vice versa.   
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In regards to abundance data being absent in the Sensitivity measure, large 

distributions are theorized to reflect large population sizes (Purvis et al. 2000), thus the 

measure of distribution size can be said to serve as a proxy when utilized in the future 

calculation of Vulnerability.  It is noted however, that this relationship is flawed for 

those species requiring large discrete home ranges (Woodroffe and Ginsberg 1998), and 

so conclusions on the effect of abundance on determining Sensitivity are not included 

here. 

 

Do the basic relationships across the Orders relate to the theory surrounding 

Sensitivity? 

This section examines whether the Sensitivity measure successfully reflects the 

relationship between r-K and resilience theory in determining which species are most 

and least Sensitive to climate change.  To determine whether the measure of Sensitivity 

reflects directly the traits identified as conferring sensitivity a comparison between the 

Orders across the constituent traits is shown in Figure 3.12.  The mean values of each 

trait represented in the PCAf components were calculated for each of the major Orders 

(those with more than 5 species represented in the LHTd213).  These values are then 

placed according to the principles of the r-K continuum, for instance an Order with a 

short gestation period would be placed towards the r-selected extreme and vice-versa. 

There is no Order placed at the extremes of the continuous variables because the upper 

and lower extents of each are unknown since not all Mammal Orders are represented in 

this analysis of Sensitivity. However, for three categorical traits Orders are positioned 

according to the known extents of the PanTHERIA database (Diet (1-8) and Habitat 

breadth (1-4)) and climate niche is represented as a percentage.       
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Figure 3.12 Order mean values by trait positioned according to the principles of the r-K continuum 

There is no one Order which exemplifies the extremes of r-selected or K-selected traits, 

having traits which each occur within the upper (UQ) or lower (LQ) quartiles of values. 

As previously discussed, species rarely display entirely r-selected or entirely K-selected 

traits being positioned at a point between both extremes (Pianka 1970).  The K-selected 

Orders, those for which the bulk of traits fall within the K-selected region of Figure 3.12, 

are Artiodactyla, Carnivora, Chiroptera and the Primates.  The r-selected Orders include 

the Lagomorpha, Eulipotyphla and Rodentia.  The Didelmorphia are positioned mid-way 

between the two extremes, with five traits located in the r-region, one trait firmly in the 

K-region and two at the mid-way point.  

 

Within the major Orders (those with 5 species records and above), the Primates are 

identified as on average the most Sensitive (Sensitivity=11.55) and the Lagomorpha the 

least Sensitive (Sensitivity=8.05).  The Primates mean values for eight of the nine PCAf 
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traits are located toward the K-selected extreme, with seven occurring in the upper 

quartile of values.  This prominence of K-selected traits would validate their position as 

most Sensitive amongst the Mammal Orders represented in the LHTd.  The trait which is 

placed towards the r-selected extreme is diet breadth, primates are omnivorous 

exploiting many different food types within their diet, and this capacity may serve to 

reduce their overall Sensitivity.  The Lagomorpha, are placed at the opposite end of the 

Sensitivity scale, with six of the nine traits being placed towards the r-selected extreme.  

Four of these traits fall within the upper quartile of values, indicating a short period to 

sexual maturity, large litter sizes, multiple litters a year and a short period to weaning 

age.  Each of these characteristics place the Lagomorpha firmly within the r-selected, 

‘fast’, end of the continuum which justifies the Order’s low Sensitivity value.  The three 

traits which occur toward the K-selected extreme are diet breadth, habitat breadth and 

climate niche.  The lagomorphs are obligate herbivores, ground-dwelling species 

predominantly associated with grassland, shrubland and forest (IUCN Red List 2013) 

which might explain why as a group they score towards the K-selected end of the 

spectrum.     

 

Do the Orders cluster along the r-K continuum? 

In comparing Sensitivity scores with the pattern of mean values illustrated across the 

trait variables each of the Orders positions along the continuum can be viewed as 

aligning with the final Sensitivity score, apart from the Chiroptera.  As hypothesized 

those Orders which display predominantly r-selected traits have low Sensitivity scores 

and vice-versa.  It would appear that the Chiroptera should be additionally Sensitive, 

however, although 8 of the nine traits are placed in the K-region the Sensitivity=8.38, 

placing the Order just above the Lagomorpha.  A limitation associated with the Figure 

3.12 is that the values represented are mean scores and do not show the range of the 

data within the individual Orders.  This explains why the Chiroptera appear to have K-

selected traits but score a low mean Sensitivity=8.38.  Within the Chiroptera are two of 

the five least Sensitive families represented in the LHT213, the Pteropodidae 

(Sensitivity=7.3) and Vespertilionidae (Sensitivity=8.73) however, the Order also holds 

a number of species among the Most Sensitive (n=8).   
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It is important to recognise that in the definition of the Sensitivity measure each trait is 

weighted by the degree to which it describes variance across the LHTd, creating a 

unique score for each species, the regression factor.  These regression factors are 

subsequently summed to create the Sensitivity score. Thus, it is unlikely that the 

individual trait scores will align perfectly with the Sensitivity scores as an effect of the 

variables weighting.  

 

Do the Orders cluster by traits?  

Tolerance limits are thought to be phylogenetically constrained meaning that a 

representative species may be appropriate to describe the taxa (Hoegh-Guldberg et al. 

2008).  To investigate whether this hypothesis can be verified in relation to the 

Mammals and their Sensitivity a cluster analysis using the traits contributing to the 

Sensitivity measure was performed.  This identified two major branches along one sit 

the major part of the Artiodactyla, Chiroptera and Primates species (primarily K-

selected Orders) and along the other sit the Didelmorphia, Eulipotyphla, Lagomorpha 

and Rodentia (primarily r-selected Orders).  Thus, the Orders can be said to group by 

the major features of the r-K continuum at this initial juncture.  The only Order to break 

this rule is the Carnivora.  The Carnivora are split across the two branches, with 63% of 

species on the K-selected branch and 37% of species on the r-selected branch.  The 

Carnivora family groups are not consistently clustered across the two branches, with 

the Felidae (cats) being the only family to cluster entirely on the K-branch.  

For the majority of Orders represented in the LHTd213 it is possible to determine the 

extent to which a species may be r-K selected based on the position along the continuum 

the Order to which they belong is located (GLM, F=(14,207)=5.58, p=0.00, ƞ2=0.28).   

This is in broad agreement with Dobson and Madan (2007) who in a study of life history 

traits found that the historical pattern of ancestry at the Order and Family level strongly 

influenced individual species life history traits with phylogeny explaining 66-85% of the 

variation in life history traits.  Species cluster by family within one of the two branches 

in most cases, although this clustering is not maintained at the node level (A-G) for 

many families.  This complicates the degree to which one can infer the species 

subsequent Sensitivity based on the family to which it belongs.  Therefore, although one 

is able to infer with some accuracy whether a species is r-K selected and likely to be 
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resilient based on other species in their family, it is less straightforward to say by how 

much they are Sensitive based on species within the same family.  

 

3.4.3 Did past exposure to climate change play a role in determining patterns of 

species Sensitivity in the landscape?  

 

What relevance does past exposure have to predicting Sensitivity?  

Present-day species and species groups have persisted through the transitional period 

20,000 to 12,000 years ago, an era marked by high velocity climate changes, as the 

climate moved from glacial-interglacial (Dawson et al. 2011).  Studies of past episodes 

of climate change have revealed a diverse range of responses across taxa and life history 

types which are likely to be repeated under current and future change (Dawson et al. 

2011).  This response capacity is evidenced in the persistence of small populations in 

refugia, as well as long-distance dispersal and migration, shifts along habitat gradients, 

and the rapid expansion of species experiencing favourable climate conditions (Dawson 

et al. 2011).  Investigating the impact of past climate change velocity on biodiversity can 

be used as an indication of the potential impact of future change (Sandel et al. 2011) and 

can provide insight into species adaptive capacity and vulnerability (Dawson et al 

2011).   

To examine whether the species Sensitivity measure is robust, a regression analysis was 

performed using a measure of exposure to past climate as the dependent variables and 

the Sensitivity component traits as the independent variables.  The theoretical basis for 

this calculation lies in the theory known as the ‘Ghost of species past’ or the extinction 

filter hypothesis.  This is the concept that past climatic, ecological and anthropogenic 

perturbations have to some extent filtered out species vulnerable to future climate 

change,  by acting as an extinction filter (Balmford 1996).  The central tenet of the 

extinction filter hypothesis is that those regions which biotas have experienced 

perturbations leading to extinctions of sensitive species during past warming 

(transition from glacial to inter-glacial since the last glacial maximum) now appear less 

vulnerable to future similar perturbations (Turvey and Fritz 2011).   
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Sensitivity and Past Exposure 

The component traits of Sensitivity were found to weakly correlate with species’ past 

exposure (r2=0.155, adjusted r2 =0.113, p=0.00), indicating that past climate change as 

characterised here has left a weak statistically-significant fingerprint on species 

assemblages, influencing the species composition by the degree of exposure to past 

climate change.  To put the past exposure- sensitivity regression r2 value in context, in a 

meta-analysis of regression-based literature Moller & Jennions (2002) found that the 

average reported r2 value for ecological studies is 5.42% with 80% (n=43) of studies 

reviewed reporting r2 values below r2=0.10.  Thus, the past exposure –sensitivity 

regression value of r2=0.15 is within the bounds of expected values determined across a 

range of ecological regression analyses.         

Although, theoretically it should be possible to explain 100% of the variance in data, the 

randomness and noise associated with the complexity of ecological systems and related 

ecological data considerably reduces this likelihood (Moller & Jennions 2002).  This 

complexity is rooted in the ecological reality that 1) adaptation is not perfect or 

consistent and is dependent on selection pressures; 2) the “random” aspect introduced 

by unpredictable physical properties of the environment; 3) species responses to 

change are individualistic balanced across many different factors (e.g. size, age, 

predation risk); 4) accurate measurement is complicated due to geographical and 

temporal variation; and, 5) an organisms evolutionary past affects its ability to adapt 

(Maynard Smith 1978 optimization theory).     

 

What evidence is there for the ‘Ghost of species past ’ theory?   

A central principal relating to the extinction filter hypothesis is that regions where 

biotas have experienced perturbations leading to extinctions of sensitive species during 

past warming should appear less Sensitive than other biotas (Turvey and Fritz 2011).  

However, species occurring beyond the extent of the glaciated regions continued to 

thrive during the last ice age, and therefore Sensitive species remain in the biota (Davis 

and Shaw 2001).   

There is a strong latitudinal gradient in velocity of past climate change being of greater 

intensity away from the tropics (Davies and Buckley 2011).  This is apparent in the 
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LHTd213 where there is a significant difference between past exposure for temperate 

compared to tropical regions (ANOVA F(1,212)=5.117, p=0.02).  Thus, temperate biotas, 

particularly those from glaciated regions, should appear less Sensitive than their 

tropical counterparts.  In comparing the impact of past exposure in determining 

individual species Sensitivities across the realms, accounting for Order, past exposure 

was found to be significant in describing the degree to which species are Sensitive in the 

temperate realm (ANCOVA, F=1,125)=4.41, p=0.03) but not the tropical realm 

(ANCOVA, F(1,86)=2.924, p=0.74).  It is possible that significance is only found between 

past exposure and sensitivity for the temperate zone due to the better representation of 

species in the region.       

 

3.4.4 Which Mammal species are identified as being sensitive?  

 

This research sought to identify those species most Sensitive to climate change, but 

more importantly the Orders and their composite traits associated with Sensitivity.  As 

discussed previously, several attributes have been associated with species sensitivity 

and resilience within the literature (Williams et al. 2008; Isaac et al. 2009; Dawson et al. 

2011).  This section attends more closely to those species which are most Sensitive, and 

whether the hypothesised trends relating to Sensitivity and, the r-K continuum, body 

size (Koch and Barnosky 2006) and range-size (Davies and Buckley 2011) are upheld in 

the LHTd.      

 

Which Species are most sensitive? 

This section examines the top 10% most Sensitive species to elucidate upon whether 

the Orders and traits identified as conferring Sensitivity are robust to closer scrutiny.   

With regards to the principles of r-K theory and resilience theory the species amongst 

the top 10% (n=21) most Sensitive species in the LHTd would be expected to be 

dominated by the K-selected Orders identified previously, the Artiodactyla, the 

Cingulata, the Hyracoidea, the Perissodactyla, Primates, and those species of the 

Carnivora demonstrating k-traits.  As hypothesised there are 15 representatives of K-

selected Orders in the top 10% most Sensitive species.  These include two Artiodactyla, 
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five Primates and 5 Carnivora and a single member of each of the remaining K-selected 

Orders.  However, the final six species which make up the 10% most Sensitive species 

are from the r-selected Order Rodentia, and include 4 species of squirrel, the Coypu 

(Myocastor coypu) and the Capybara (Hydrochoerus hyrochaeris). 

The Tufted Capuchin (Cebus apella) is the most Sensitive species (Sensitivity=14.01), 

overall, with four of the five primates (Alouatta seniculus, Ateles paniscus, Cebus 

olivaceus), appearing in the top 10 most Sensitive species.  The final six include the 

brown bear (Ursus arctos), red deer (Cervus elaphus), Raccoon (Procyon lotor), Gray fox 

(Urocyon cinereoargenteus) and the grey squirrel (Sciurus carolinensis) and Copyu 

(Myocastor coypu).  As expected the Sensitive species belonging to the K- selected Orders 

are characterized by ‘slow’ traits, with individual values predominantly in the upper 

quartile, particularly with regards to the reproductive traits.  Sensitivity across the 

Rodentia species and Eulipotyphla (European Hedgehog Erinaceus europea) is less easy 

to characterize.  Across the six species of Rodentia, Sensitivity is relatable to above 

median scores across the reproductive traits, with the exception of litter size.  There is 

little consistency with most species having above median scores for combinations of 2-3 

of these traits.  The Hedgehogs combination of a long life span and restricted habitat 

breadth may explain its high Sensitivity value (Sensitivity=12.61).  Thus, Sensitivity can 

be said to be most strongly related to the reproductive components identified in the 

PCAf.     

 

Does Body size play a role in determining sensitivity? 

Large mammals are hypothesized to be more Sensitive to future climate change (Davies 

et al. 2009).  In past episodes of climate warming large-bodied Mammals were 

disproportionately affected, experiencing high levels of extinction (Koch and Barnosky 

2006).  In fact, Turvey and Fritz (2011), found evidence during the late Quaternary 

period for the successive removal of large-bodied species in extinction-prone areas, 

which they identified as signalling the existence of an extinction filter.  Those large-

bodied Mammals which survived are therefore hypothesised to be more sensitive to 

future climate change than their smaller compatriots.  Large Mammals (3kg and 

above,(Cardillo et al. 2008) account for 79 of the total species represented in the LHTd.   
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Species with a larger body mass are significantly more Sensitive than those below 3kg 

(F(204,2)=35.381,p=0.00, ƞ2=0.148, (GLM accounting for Order)).  

 

 

To explore whether a correlation exists between body mass (log grams) and Sensitivity 

in the LHTd213 a biplot with regression line was plotted (Figure 3.13).  There is a 

moderate correlation between body size and Sensitivity (r2 =0.20).    

  

Are Range-restricted Species more sensitive? 

Range-restricted species are thought to be more at risk from extinction(Cardillo et al. 

2008; Fritz et al. 2009).  An ANOVA of range-restricted species (<250,000km 2 (Caballos 

2006), n=8) Sensitivity against wide ranging species found that the relationship was 

non-significant (F=(1,204)=0.859, p=0.355).  Distribution size is not included in the 

Sensitivity measure to avoid double-counting in future chapters in the assessment of 

Vulnerability, which may account for the lack of a relationship between Sensitivity and 

range size.  However, this may also be explained by the lack of a suitable number of 

records for comparison.     

 

Endemicity and Sensitivity  

In the Sensitivity components endemicity negatively correlates with species climate 

niche, suggesting that endemic species have specialist habitat requirements.  This would 

Figure 3.13.7 Biplot Sensitivity versus Body Mass (log.g) 
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lead to the assumption that endemic species are likely to be more Sensitive, a 

hypothesis supported in the literature with regards to extinction risk (Purvis et al. 

2000; Thomas et al. 2004).     

There are 11 Endemic species represented in the LHTd213, five rodents, four bats, a 

single carnivore, a primate and a possum, none of which occur in the top 10% of 

Sensitive species.  A significant difference was found between Sensitivity values for 

Endemic and Non-Endemic species, when accounting for Order (ANCOVA, 

F(1,204)=65.08, p=0.00, ƞ2=0.24).  The relationship described, however, goes against 

what is expected with each of the endemic species Sensitivity being within the lower 

quartile of values for their specific Orders.  This might be explained by the fact that 

these endemic species are all r-selected and thus conferred greater resilience to 

disturbances.  Also, none of these species are range-restricted, which is largely the case 

when dealing with endemics (Purvis et al. 2000).  Thus, because of the limited number 

of species listed as endemics in this database it is better not to place too much emphasis 

on this result.    

 

3.4.5 Justification of Methods and Caveats 

 

As discussed the measure of Sensitivity represented in this chapter successfully 

represents those trends identified in the literature as determining species sensitivity 

(Bielby et al. 2007; Williams et al. 2008; Isaac et al. 2009; Foden et al. 2013).  However, 

it is important to recognise the Sensitivity measures’ limitations.   

 

Justifying Selection of the Vulnerability Framework  

There are several Vulnerability Frameworks in the literature each of which could have 

formed the basis of this research (Williams et al. 2008; Chin et al. 2010; Summers et al. 

2012; Berry et al. 2013; Foden et al. 2013).  The Williams et al (2008) framework was 

chosen on the basis of discussions with members of the wider team responsible for the 

framework’s design and Wallace Initiative members at the Centre for Tropical 

Biodiversity and Climate Change, James Cook University (van der Wal  and Welbergen 

pers.comm.).  These discussions revealed the utility of using the William’s et al (2008) 
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Vulnerability framework to determine the impact of climate change on species 

distributions using the Wallace Initiative exposure data and through the development of 

a Sensitivity component.  At this juncture in early 2010 previous species climate risk 

assessments (Fussel and Klein 2006; Harley et al. 2006) had focused on spatial and 

temporal risk to specific species and their applicability to other species groups was low 

(Chin et al. 2010).  

         

Caveats associated with Global Biodiversity Analyses  

This study recognises the common caveats associated with any global study 

investigating biodiversity patterns, including i) the misidentification of specimens; ii) 

outdated taxonomy and faulty geo-referencing (Soberón and Peterson 2004), and steps 

were undertaken to reduce uncertainty associated with these caveats.  The 

misidentification of specimens is ruled out of the species life history traits data in the 

creation of PanTHERIA by the calculation of mean values over multiple records for each 

species and by comparison with expert knowledge (Jones et al. 2009).  With regards to 

the taxonomy issue in the preparation of the LHTd database, species records were 

updated to represent the most recent taxonomy available for mammals (Wilson and 

Reeder 2005).  ‘Climate niche breadth’ is the sole LHTd variable for which geo-

referencing has an important role in its definition because its calculation requires the 

use of species occurrence data.  To reduce the issue of faulty geo-referencing the 

occurrence data used in this study underwent a rigorous cleaning procedure which 

removed records which were not geo-referenced and, further, those outside the 

recognised extent of the species distribution (more details on this cleaning process are 

available in the Appendix concerning the Wallace Initiative Model).      

 

Caveats associated the Sensitivity measure  

Uncertainty connected to the measures’ representation of Sensitive traits 

There are several factors outlined as contributing to a species’ Sensitivity in Williams et 

al's (2008) framework of Vulnerability.  As discussed, the Sensitivity measure 

successfully accounts for the life history traits and climatic tolerances recognised as 

determining a species Sensitivity.  It also explores the influence of phylogeographic 
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diversity in determining Sensitivity examining variation in Sensitivity within Orders and 

major realms.  

However, within the calculation of the Sensitivity measure several factors remain 

absent.  These include genetic diversity, plasticity, population dynamics and minimum 

viable population, dispersal potential.  With regards to the absence of genetic diversity 

and plasticity data in the Sensitivity measure, there is scant information available 

because both are exceptionally difficult to quantify, with few species having had their 

genetic diversity characterized or plastic responses observed (Williams et al  

2008).  Williams et al (2008) recommend using a proxy to make informed estimates of 

the contribution of genetic diversity to Sensitivity, by using knowledge on species range 

and population size because restricted range species with small populations are 

predicted to have a low capacity for adaptation to environmental change – although this 

method comes with its own associate caveats.  Although, dispersal potential is 

recognised as a determinant of Sensitivity is was omitted from the creation of the 

Sensitivity measure to avoid double-counting in the final measure of Vulnerability, as it 

is a composite factor in the creation of the Exposure measure.  Population dynamics and 

minimum viable population data were not characterized in this analysis because data 

was unavailable for a sufficient number of species within the databases complicating the 

calculation of the Sensitivity measure.        

 

Uncertainty associated with the measures calculation 

The calculation of the Sensitivity measure is carried out using PCA, PCA is often used 

and considered to be ‘elementary,’ although there a several potential caveats associated 

with its use (Budaev 2010).  One potential caveat is that PCA is able to produce 

‘meaningful’ results from deficient data, thus, the input variables need to be initially 

assessed as to relevance to the biological pattern you are seeking before the PCA is run 

(Budaev 2010).  To avoid this major flaw before the LHTd variables were input into the 

PCA each was assessed as to its relevancy in determining species’ Sensitivity using the 

literature.  Further, the output from the PCAf was compared with accepted ecological 

principles to check the degree to which it is robust.  Selection of the appropriate 

rotation, the determination of which loadings should be considered in the interpretation 

of the components, and the appropriate minimum sample size can all introduce 
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uncertainty in the analysis when using the default PCA model (Budaev 2010).  To make 

sure the Sensitivity components identified were robust each of these stages was 

carefully considered and the most appropriate methods chosen as recommended in the 

literature (Smith 2002; Anglim 2009; Tabachnick and Fidell 2012). 

The caveats recognised in this section need to be acknowledged when applying 

knowledge gained through the creation of the Sensitivity values, particularly with 

relevance to the calculation of species overall Vulnerability in future chapters.    

 

3.4.6 Conclusions 

The analysis above reveals which life history and ecological traits are important in 

shaping species Sensitivity to future climate change.  In doing so it has identified those 

species predestined to be sensitive to future climate change by their innate life history 

and ecological traits.   

The results relating to life history characteristics and Order presented here closely 

identify with those found by Dobson and Madan (2007) in their paper considering Fast 

and Slow life histories of Mammals.  They investigated where Orders lined up along the 

fast-slow continuum with regards to reproduction and survival traits using PCA.  They 

positioned each Order along the continuum according to their average rank across the 

traits.  The Artiodactyla had the slowest life histories followed by the Carnivora, 

Rodents, Primates and finally the Lagomorpha with the fastest life histories.  In this 

study the Most Sensitive Order are the Primates followed by the Carnivora, Artiodactyla 

and Rodentia with the Least Sensitive identified as the Lagomorpha.  The Sensitivity 

measure evidently takes into account a wider diversity of traits and as such is more 

complex than the ranking of survival and reproduction traits which explain to some 

extent these differences. Accounting solely for reproduction-survival traits the 

Artiodactyla switch position with the Carnivora but the position of the Primates 

remains at odds with Primate in this analysis consistently exhibiting ‘slow’ life history 

traits.  However, in a later study looking in more detail at mammal life histories Dobson 

and Madan (2008) did find that Primates exhibited low fertility, long gestation periods 

and long time to age at maturity, acknowledged ‘slow traits’ and in agreement with the 
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trends identified in this study.  This level of agreement in the literature indicates that 

the Sensitivity measure is successfully defining those characteristics believed to 

predetermine the level of innate sensitivity individual species encompass. 

The cluster analysis shows that mammal species individual Sensitivities do not cluster 

rigidly by Order, this conclusion finds agreement in the literature (Bielby et al. 2007; 

Dobson and Oli 2007, 2008; Lyons et al. 2010).  Lyons et al. (2010) suggest although 

similarities exist between Orders of mammals and their species individual trait sets 

strict sets of traits do not exist.  Dobson and Madan (2007) found wide variation in life 

history characteristics across Orders, particularly across the Rodentia.  They observed 

that although the Lagomorpha were as the Order containing the species with the fastest 

life histories, there was wide variation across the Lagomorphs with the European Hare 

(Lepus europaeus) having life history characteristics more akin to those identified as 

‘slow’.  This finding is reflected in the analysis of trait variation across clusters where 

the cluster containing the Lagomorpha shows very wide variation across the 

reproductive traits particularly litter size.  This variation complicates assigning a 

Sensitivity classification to species for which we have limited information.  Therefore, to 

further the utility of the Sensitivity measure a concerted effort to collect missing trait 

data is required.  It is recognised that the factors limiting a species’ range shifts are both 

complex and multifaceted (Parmesan 2005; Lyons et al. 2010) consequently it is not 

surprising that this study observed only a weak correlation between sensitivity and the 

past velocity of climate change.  In a similar test Lyons et al (2010) investigated the 

impact of phylogeny, life-history traits, body size and topographic heterogeneity on 

species range shifts during the last megafaunal extinction.  As in this study they also 

found limited predictive ability when assessing the relationship between ecological and 

life history traits and change in species range size.  However, Lyons et al (2010) 

observed that of the life history traits they explored the majority had a significant but 

weakly positive correlation with the distance species shifted in the past.  Their results 

are in agreement with those presented in this research that life-history traits played a 

role in determining past change in species distributions.  

 
There are no previous studies which have sought to predict mammal sensitivity to 

climate change for comparison, however, the studies discussed here have examined 

traits identified in the literature as relevant to sensitivity (Williams et al. 2008; Isaac et 
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al. 2009; Dawson et al. 2011) and touched on factors identified as relevant to the 

‘Ghosts of species past’ theory central to the validation of the Sensitivity measure 

(Lütolf et al. 2006; Turvey and Fritz 2011).  Comparison with the literature and the 

agreement found provides a strengthened argument for the use of the Sensitivity 

measurement developed.  The novel measure described here provides a firm foundation 

stone upon which to base investigations of species vulnerability to future climate 

change. 
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4 Calculating Species Future Vulnerability to Climate Change 

4.1 Research Context 

 

The IUCN Red list currently lists 21% of mammals as threatened by extinction (IUCN 

2013).   In order to avoid mass numbers of extinctions better understanding is needed 

into the threats which species are exposed to, and species unique susceptibility to 

individual threats (Fritz et al. 2009).   

It is broadly agreed that whilst some species will be disproportionately affected by 

climate change others have the potential to thrive (Parmesan and Yohe 2003; Thomas et 

al. 2004).  This study seeks to assess the impact of climate change on species through 

the estimation of each species Vulnerability to future climate change.   

This study will concentrate on the analysis of mammal Vulnerability because of the 

wealth of knowledge and accompanying data, Mammals are the only species-rich taxon 

for which there is a species-level phylogeny, global maps of their distributions and in 

depth knowledge of biological traits (Fritz et al. 2009).     

 

4.1.1 The Impact of Past Climate Change on Mammal Diversity 

 

Past climatic change shaped current mammal communities (Blois et al. 2010).  The 

current mammalian biota of the Northern biomes was strongly shaped during the 

climatic changes of the Quaternary which influenced individual species adaptations and 

distributions, as well as determining areas of endemicity (Lister 2004).  It is unknown 

whether these fluctuations influenced mammal communities in other regions of the 

world, although there is evidence that at the beginning of the Quaternary the diversity 

of African mammals increased considerably indicating that disturbances occurring 

during this period may have kick-started diversification (Lister 2004).    

At the close of the Late Quaternary, around 50,000 years ago, the mammalian 

megafauna (large-bodied mammals) of North America and Eurasia experienced a 

reduction in diversity of approximately 72% and 36% respectively (Lorenzen et al. 

2011).  These extinctions coincided with the most dramatic climatic changes of the 
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Quaternary suggesting that climate change was a major driving force, along with, to a 

lesser extent, anthropogenic stressors, in bringing about these large-scale losses (Blois 

et al. 2010; Lorenzen et al. 2011).   

The small mammal community was not immune to the effects of past climatic change 

(Blois et al. 2010).  Blois et al (2010) investigated the impact of climate change on small 

mammal populations in northern California at the end of the Pleistocene epoch (11,700 

ya).  They found that although no small mammal species went extinct, extant 

communities experienced declines in overall evenness and richness.  These changes are 

reflected in modern North American mammalian communities being both depauperate 

in megafauna and small mammals  (Blois et al. 2010).    

 

4.1.2 Mammals and Current and Future Climate Change 

 

In a reconstruction of temperatures over the past 1000 years warming in to 20th 

century far exceeds that expected with natural variability (van Vliet and Leemans, et al 

2006).  Under the SRES A1B scenario, commonly referred to as ‘the business and usual’ 

storyline (Pachauri and Reisinger 2007), future warming is projected to achieve rates of 

increase of 0.03°C/ yr (0.02-0.04) from 2000-2100 (Loarie et al. 2009).  This rate of 

3°C/ century is an order of magnitude faster than any rate found over the past millennia 

(0. 2°C /century).  In a comparison of climate change in the 20th century with the most 

recent millennia of the late Holocene, the most relevant for exploring the likely 

uniqueness of future climate change, Jones and Mann (2004) found that 20th century 

climate change was the largest within any century of the past two millennia (0.6-0.9°C), 

this is compared with less than ±0.2°C for any other century during the period.   

 

The degree to which species will survive or an ecosystem will persist under climate 

change will depend on each species’ capacity to adapt as well as their respective innate 

resilience (Williams et al. 2008).  A species’ or individual’s sensitivity to environmental 

change is governed by intrinsic factors which include their physiological tolerance 

limits, their ecological traits such as behaviour, and their inherent genetic diversity 

(Williams et al. 2008).   
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There is evidence that species have already used pre-existing flexibilities in responding 

to climate change, such as contraction to refugia, shifts in distribution, and shifts in 

habitat and microhabitat, shifts in seasonal and daily activities, acclimation, and changes 

in biotic interactions (Williams et al. 2008; Wiens et al. 2009).  In a longitudinal study of 

small-mammal responses to global warming conducted in Yosemite National Park, 

California scientists found that half of the 28 species monitored exhibited upward 

changes in elevational limits (500m average) in response to an observed ~3°C increase 

in minimum temperatures  (Moritz et al. 2008).  Species with ranges at low elevations 

previously were found to have expanded their ranges upwards whereas high-elevation 

species ranges contracted with the effect of changing the community composition at 

mid- and high elevations (Moritz et al. 2008). 

 

Leemans & Eickhout (2004) predict that with between 1 and 2°C warming most species, 

ecosystems and landscapes will have experienced a degree of climate change which will 

severely limit their adaptive capacity, manifesting in observable biodiversity declines. 

The likelihood that mammal species will shift and potentially expand their ranges to 

encompass novel climatically suitable areas will be constrained by a number of factors, 

such as dispersal capability, biotic interactions, behavioural patterns, natural barriers 

and habitat fragmentation(Maiorano et al. 2011).      

 

Dispersal capability 

Dispersal capacity is likely to be a considerable barrier to mammal species’ ability to 

track projected changes in suitable climates (Schloss et al. 2012).  Dispersal capacity is 

identified as a key factor in determining species survival capacity (Guisan and Thuiller 

2005; Walters et al. 2006; Lester et al. 2007; Williams et al. 2008).  The importance of 

dispersal as an adaptation mechanism is evidenced by past climatic change when 

oscillations in glacial maxima and minima in the high latitudes and accompanying 

fluctuations in temperature during the Quaternary favoured recolonisation by good 

dispersers able to exploit competition-free space during glacial minima (Davies et al. 

2009).  These mammal species tended to have wide habitat breadths and be pre-

disposed to occupying large geographic ranges (Davies et al. 2009). 
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 Schloss et al (2011) examined the capacity of Western hemisphere mammal species to 

disperse and compared this with the projected velocities of future climate change 

finding that on average 9.2% of species at a given location may be unable to track 

suitable climates, rising to 39% in some locations.  Schloss et al (2011) found that 87% 

of mammals species will experience some reduction in range size, 20% of these 

reductions were due to their inability to keep pace by dispersal not reduction in suitable 

climate space.  The average reduction in range was 37%, although the primates were 

predicted to experience more severe range reductions of around 75% (Schloss et al. 

2012).  Many Artiodactyla and Carnivora species, conversely, were predicted to expand 

their current ranges (Schloss et al. 2012).  The species of the tropical and subtropical 

forest of the western Amazon were found to be least likely to keep pace with 14.5% of 

species unable to track suitable climates (Schloss et al. 2012).  Climate change is likely 

to outpace mammal species capacity to respond leaving many more species vulnerable 

to climate change than previously estimated (Schloss et al. 2012). 

 

Biotic interactions 

Biotic interactions are likely to be impacted as community structures are modified by 

climate change (Wiens and Graham 2005).  Rapid climate change will initiate structural 

changes in the composition of small mammal communities and impact the overall 

functioning of the ecosystem of which these communities form a part (Blois et al. 2010).  

Based on their findings regarding the effect of past climatic change on small mammal 

communities Blois et al (2009) predict a further decrease in species richness 

accompanied by escalating species turnover and the localised growth of generalist 

species abundances to the detriment of specialists in communities with heightened 

susceptibility to disturbances.   

 
Behavioural patterns 

There are few observations of the impact of climate change on mammal phenology with 

the main body of evidence documenting changes in vertebrate phenology focusing on 

long-term studies of birds (Moyes et al. 2011).  One such observation is detailed by 

Moyes et al (2011) who provide evidence for changes in several attributes of Red Deer 

phenology observed as part of a long-term study on the Isle of Rum, Scotland.  They 
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found that oestrus date and parturition date in females and antler cast and antler clean 

and rut start and end dates in males advanced by between 5 and 12 days across a 28 

year period.  These changes in phenology were linked to changes in climate warming 

which impacted the deer’s directly by effecting their ability to thermoregulate and 

indirectly through increasing plant growth and food availability earlier in the season 

(Moyes et al. 2011).  There are Mammals at all latitudes, even within the deep Tropics, 

which reproduce seasonally cued by foraging conditions, photoperiod or ambient 

temperature (Bronson 2009).  Long-lived mammals’ reproduction, from the highest 

latitudes to the mid-tropics, is commonly triggered by photoperiod the trigger for short-

lived mammals is less clear but some desert and dry grassland species have been 

observed reproducing after seasonal rains (Bronson 2009).  This reliance on 

environmental factors suggests that changes in climate will have a bearing on mammal 

reproduction particularly with long-lived species which are less able to adapt than 

smaller more fecund mammals such as rodents because of their dependence on 

photoperiod and slower adaptation potential (Bronson 2009).    

 

Mammals are observed as being highly sensitive to temperature, despite being 

endothermic, suffering heat stress when temperatures reach extremes (Morueta-Holme 

et al. 2010).  There are observations of mass mortality events following periods of 

extreme high temperatures, for example the mass mortality of Australian flying foxes 

caused by a prolonged period of hot extremes (Welbergen et al. 2008).  Evidence from 

the past, in the form of the decline in range of the musk ox by 60% after the LGM, 

further illustrates the sensitivity of mammals to temperature (Lorenzen et al. 2011).  

Musk Ox are unable to endure high summer temperatures supported by the fact that the 

southern limit of their present range is determined by the 10°C summer isotherm 

(Lorenzen et al. 2011) .           

 

Natural barriers and habitat fragmentation 

Natural barriers and habitat fragmentation will limit the capacity for species to disperse 

through the landscape.  Mairano et al (2011) identified mammal species of the 

Mediterranean peninsulas as being at particular risk from climate change due to the 

envisaged difficulty involved in species moving northwards due to east-west orientated 
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mountains ranges such as the Alps and Pyrenees, the same is true of island species, 

many of which are endemic.  Endemic mammal species are highly at risk because of 

their limited ability to disperse and track rapidly shifting suitable climate space 

(Morueta-Holme et al. 2010).  An in-depth study of the impact of climate change on the 

Pyrenean desman’s (Galemys pyrenaicus) sought first to identify the factors which 

determine its current distribution identifying dispersal ability in combination with 

water balance and mean summer temperature as the main factors (Morueta-Holme et al. 

2010).  This restricted mountain endemic is therefore likely to be highly sensitive to 

future shifts in suitable climate with future suitable space lying far beyond the species 

current distribution (Morueta-Holme et al. 2010).    

 

There is inherent variability in the degree to which different sites and regions have and 

are predicted to experience exposure to climate change, in the magnitude, duration and 

the frequency of periods of favourable and unfavourable climates (Jackson et al. 2009).  

Thus, there is projected to be regional variation in the impacts of climate change.  

Warming is projected to be greatest on land with high northern latitudes experiencing 

the highest degree of warming (Solomon et al. 2007).  Patterns of precipitation are also 

predicted to shift with high latitudes likely to experience and increase in precipitation, 

whilst subtropical land regions are likely to experience a decrease (IPCC 2007).  

 

The likelihood that future climates, unprecedented within the range of current climates, 

will occur, so called non-analogue climates, is high (Williams and Jackson 2007).  These 

novel climates are particularly prevalent at a regional scale, with scenarios exhibiting 

within region-variation outside the natural range of climates present or past 

encountered across the specific region (Williams, Jackson and Kutzbacht 2007).  These 

future novel climates are reported to be warmer than any present climates, and 

accompanied by shifts in precipitation patterns (Williams and Jackson 2007).  Regions 

likely to experience the majority of climate mismatches by 2100AD are identified as 

South America, Africa, India and the Indo-Pacific (Williams and Jackson 2007).  

Evidence from past climate change episodes suggest that these future novel climates are 

likely to promote  novel communities (Williams and Jackson 2007).   
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Maiorano et al (2012) investigated the impact of future climate change on hotspots of 

mammal biodiversity across Europe finding that the species they host are likely to 

experience significant exposure to climate change alongside the appearance of novel 

climates.  The hotspots predicted at risk of high exposure to extreme climates are 

concentrated in two sectors, southern and north-eastern Europe.  These regions 

encapsulate in Southern Europe the highly biodiverse Mediterranean basin and 

surrounding mountain chains an important refuge for endemics and threatened species, 

and in north-east Europe the Boreal and Arctic bioregions and the Urals (Maiorano et al. 

2012).  High latitude mammal species in the Artic and subarctic have been predicted to 

be particularly at risk from future climate change, with temperate climates expanding 

northwards and tundra habitat contracting, however, Hof et al 2012 predict that climate 

change to 2080 will favour most European subarctic mammals, assuming full dispersal  

(Hof et al. 2012).  Those species remaining at risk are cold-specialists and those unable 

to track shifting climate space due to limited or constrained dispersal ability (Hof et al. 

2012).  One potential reason for this comparative stability in mammal occurrences is 

the legacy of previous large climatic shifts in filtering out sensitive and range-restricted 

species and shaping the current mammal biota (Hof et al. 2012).             

 

4.1.3 Projecting Impacts of Future Climate Change upon Species 

 

Niche models, such as that used in the Wallace Initiative, provide a way of analysing the 

exposure of species distributions to the magnitude and rate of climate change projected 

under alternative emission scenarios.  Climate change is a global phenomenon and as 

such its impacts are to be experienced by all species, although the degree to which 

individual species will be affected will vary greatly (Dawson et al. 2011).  Quantifying 

this variation in exposure across regions requires the projection of future climates using 

climate models, known as General circulation models (GCMs).  GCMs predict future 

climates using a series of algorithms representing different facets of the global climate.  

Thus, the projections of future species distributions (future suitable climate space) are 

dependent on the climate model and the scenario chosen to represent future climate 

change (Beaumont et al. 2008).   
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In creating projections of future climate change it is important to recognise that the 

further from the current climate projections move the less robust they become, this is 

because future climates may diverge profoundly from the present (Williams and 

Jackson 2007).  This means that models seeking to predict changes in ecological 

phenomena, such as species distributions, accuracy will be undermined if projected 

onto future climates significantly different to the current (Williams and Jackson 2007). 

 

4.1.4  Objectives 

 

This chapter seeks to develop a measure of species Vulnerability to climate change by 

incorporating both a measure of species’ innate Sensitivity and projected Exposure to 

climate change.  This chapter employs the Sensitivity measure determined by life 

history and ecological traits developed in Chapter Three.  Building on the work in 

Chapter Three it explores the potential impact of unmitigated climate change under the 

business-as-usual SRES A1B scenario of future climate change to determine the level of 

exposure that individual species are predicted to experience.  Finally, this chapter 

combines both Sensitivity and Exposure measures into a Vulnerability score.  This 

measure of Vulnerability is then explored across Orders and within Biogeographic 

realms and zones.  These further analyses are undertaken to determine whether species 

belonging to a particular Order or biogeographic zone are more at risk from climate 

change.  The result of these analyses will help to inform conservation planning in the 

light of future climate change. 

This chapter will address the following specific research questions: 

 To what degree will individual species be exposed to future climate change? 

 How does the level of Exposure differ across taxonomic orders, species and 

biogeographic zones? 

 What is the effect of combining knowledge on sensitivity and exposure into a 

single measure of Vulnerability in determining which species will be most at 

risk from future climate change? 

 Are there Orders which are predicted to be more Vulnerable than others 

under future Climate change?  



142 
 

 Are there Biogeographic zones which possess more Vulnerable species than 

others under future climate change?   

4.2 Methods 

4.2.1 Mammal Sensitivity Data 

 

Mammal Sensitivity scores were created for 213 species (Chapter Three), which 

represent those which had complete records for the full suite of 10 life history and 

ecological traits identified in the final Principal Components Analysis PCAf conducted in 

Chapter Three.  These records represent 15 orders and 58 families. These data are 

extracted from the Life History Traits database LHTd created in the Chapter Three. 

 

Sensitivity is scored by summing the factor scores created across the three components 

generated in using the Principal components analysis described in Chapter Three, the 

representative traits are listed in Table 3.8 with their individual loadings across the 

components. 

 

4.2.2 Future Exposure Data 

 

The term ‘Future exposure’ describes the predicted effect of climate change on a 

species’ future distribution. It is represented by the proportional change in a species 

distribution predicted to occur between the current predicted area and that predicted 

for 2080 and is termed ExposureR, where the R indicates that it refers to the proportion 

of range remaining.  Current and future distribution projections are output supplied by 

the Wallace Initiative.  Future projections of species distribution were made using the 

global warming scenario ‘SRES A1B’ as defined in the IPCC AR4 report (Solomon et al. 

2007). 

The ‘SRES A1B’ (Pachauri and Reisinger 2007) storyline describes a world of rapid 

economic growth, where the global population peaks mid-century and there is rapid 

introduction of more efficient technologies.  Global energy consumption is described as 

balanced between fossil-intensive and non-fossil energy sources (Pachauri and 

http://onlinelibrary.wiley.com/doi/10.1111/j.1472-4642.2010.00642.x/full#leftBorder
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Reisinger 2007).  This scenario represents a temperature increase of 2.3°C (1.4°C-3.5°C) 

by 2080 relative to the temperature at 1990-1999 (Pachauri and Reisinger 2007).   

            

Future Exposure: Projecting the Impact of Future Climate Change on Species  

There are many stages in order for unique ExposureR values to be calculated for each 

species.  The process by which projections of species distributions were calculated 

under future climate change is addressed below and in further detail in Appendix 2: The 

Wallace Initiative and Species Distribution Modelling.     

 

Input Data Preparation 

Species distribution models require two inputs to run, the observed species distribution 

data and the explanatory environmental variables.  In the case of the Wallace Initiative 

primary biodiversity data was sourced from the Global Biodiversity Information Facility 

(GBIF, (GBIF 2013)) and environmental variables were projections from projected a 

suite of general circulation models (GCMs) (Warren et al. 2013).   

Before the data’s use in the Wallace Initiative it underwent computerised cleaning 

process consisting of three levels; 1) removal of records with no location data or which 

did not fall on a land area; 2) removal of occurrences which did not match the reported 

country of origin; 3) removal of points considered as outliers based on the species niche 

requirements (Warren et al. 2013) . 

A suite of eight environmental variables was used in the Wallace Initiative from 

downscaled climate projections created using an ensemble of seven general circulation 

models representing six alternative greenhouse gas emission scenarios, and at 0.5°x 

0.5° resolution (Warren et al. 2013).  The environmental variables include: annual mean 

temperature, temperature seasonality, maximum temperature of warmest month, 

minimum temperature of coldest month, annual mean rainfall, rainfall seasonality, 

rainfall of the wettest quarter and rainfall of the driest quarter.  These environmental 

variables were selected as they are recognised as capturing the widest range of variance 

across a range of species climatic niches (Warren et al 2013).   

The model used to predict current and future species distributions is the presence-only 

method Maxent (Warren et al. 2013).  The principle of maximum entropy is that it 
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'agrees with everything that is known [i.e. that inferred from the environmental 

conditions at the occurrence localities], but carefully avoiding anything that is not 

known,' (Jaynes 1991; Phillips et al. 2006).  The model Maxent seeks to maximise its 

predictive capacity of species distributions by reducing uncertainty associated with the 

environmental variables.  Thus, in Maxent’s case, entropy is defined as a measure of the 

uncertainty connected with a random variable (Phillips et al. 2006).  The maximum 

entropy probability distribution describes the modelled species distribution which 

exhibits the lowest entropy in synchrony with the maximised distribution (Phillips et al. 

2006).  The Maxent default settings were unaltered because they have already 

undergone optimization routines for a broad range of species, globally (Phillips et al. 

2006; Phillips and Dudik 2008).  The impact of altering settings within the Maxent 

model is further discussed in a case study included as part of Appendix Two:  The 

Wallace Initiative and Species Distribution Modelling Techniques.   

 

Maxent is considered to be one of the most robust forms of presence-only species 

distribution models currently available (Elith et al. 2011).  Maxent has been shown to 

combine excellent predictive ability and moderate sample sensitivity (Wisz et al. 2008).   

Maxent's consistent performance across a range of sample sizes was highlighted by 

Wisz et al (2008), who found that it outperformed a number of other models at low 

sample sizes (10 unique points) and was bested by only one other model at high (100 

points) and intermediate (30 points) sample sizes.  Maxent has also been assessed as 

robust to a moderate degree of error implicit in the locational data,  able to produce 

meaningful projections of the species distribution (Graham et al. 2008).  Maxent’s good 

performance may be a function of the generative rather than discriminative approach it 

uses, modelling the species distributions directly.  This generative approach may go 

some way to explaining its success with small amounts of training data, as generative 

methods have been found to outperform discriminative (regression) models at small 

sample sizes (Phillips and Dudik 2008).  Phillips and Dudik (2008), state that Maxent 

may outperform regression methods such as GAMs and GLMs when using presence-only 

data because regression-based methods use background data taken from across the 

model space to use as absence data when it may be contaminated with presences, 

contaminating the control.   
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Ensemble modelling, where a number of species distribution models are run 

simultaneously and the output assembled, has been recommended by the literature to 

reduce biological uncertainty (Araujo and New 2007; Jones et al. 2013).  This is because 

bringing together several model outputs helps quantify variability in projections 

capturing consistency as well as structural uncertainty in projections (Jones et al. 2013).  

In a test of uncertainty in ensemble models biological uncertainty was found to 

contribute the largest degree of variability across models, with one third to a half of all 

uncertainty relatable to statistical method used (Buisson et al. 2010).  The major parts 

of remaining uncertainty related to the GCM and Emission scenario used.  In this case 

running an ensemble was outside the scope of the analysis and the single model Maxent 

was selected due to its reputation as one of the best performing simulators of species 

distributions (Elith et al. 2011).   

 

 Prediction of species current distribution 

The model is used initially to predict the species current distributions using presence 

data.  The first procedure implemented trains the model; this stage estimates a 

probabilistic distribution of the species current geographic distribution using observed 

data points from GBIF (Warren et al. 2013).  This process derives the relationship 

between the species’ presences and the environmental variables.  The higher spatial 

resolution 10 arc-minutes Worldclim environmental indices (Hijmans et al. 2005)  were 

employed in this initial stage so as not to lose information about species environmental 

requirements (Warren et al. 2013).  This is particularly relevant when modelling 

species with small distributions, for instance an endemic species occurrence points may 

be clustered with a 0.5°X0.5° cell, but represent a series of differing environmental 

conditions (van der Wal, pers. comm.).  The variable sets are illustrated in Table 4.1 

Environmental Variable Sets 

.    Only taxa with at least 10 geographically unique observation points were modelled, 

all eight environmental variables were utilised as driving variables for species with over 

40 unique points (Warren et al. 2013).  A subset of four (including Annual mean 

temperature, Temperature seasonality, Total annual rainfall and rainfall seasonality) 

were used for species with 10-39 observations (Warren et al. 2013).  The four variable 
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set is used in instances when fewer than 40 occurrence points are available to avoid 

overfitting the model resulting in an overly constrained prediction of the species 

suitable climate space.  These variable sets were selected because they are thought to 

best represent the variables which drive species distributions across a broad range of 

taxa (van der Wal, pers. comm.).  The effect of varying both the environmental variables 

selected and the number of environmental variables included in the model in 

determining a species environmental niche is further investigated in the Appendix Two:  

The Wallace Initiative and Species Distribution Modelling Techniques. 

 

Environmental Variables Code 8 Variables 4 Variables 

Annual Mean Temperature BIO1   

Temperature Seasonality BIO4   

Max Temperature of Warmest Month BIO5   

Min Temperature of Coldest Month BIO6   

Annual  Mean Precipitation BIO12   

Precipitation Seasonality BIO15   

Precipitation of Wettest Quarter BIO16   

Precipitation of Driest Quarter BIO17   

 

The second procedure calculates the species actual distribution for all global land areas 

using the derived species-environment relationship (Warren et al. 2013).  These 

predicted 'current' distributions are constrained by two factors; “a 2000km buffer 

around the occurrence records including any oceanic islands within it, and the limits of 

the specie's biogeographic region” as defined by Olson et al (2001) (Warren et al. 2013).   

The sizeable 2000km buffer is used to allow for the likely paucity of the GBIF data 

(Warren et al. 2013).  It is acknowledged that the application of such a large 2000km 

buffer could result in overestimation of species’ current distributions, particularly in the 

case of more localised species, however,  when projecting in to the future it prevents the 

Table 4.1 Environmental Variable Sets 
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model predicting dispersal into areas already occupied by the species current 

distribution (Warren et al. 2013).  The biogeographic zones are listed as Palearctic, 

Nearctic, Afrotropical, Neotropical, Australasia, Indo-Malaya, Oceania and Antarctic 

(Olson et al. 2001).  Implementation of the zonal buffer, for example, prevented 

European species being predicted in North America which is likely due to the similarity 

in climatic conditions (Warren et al. 2013).  The predicted distribution is thus 

constrained to climatically suitable habitats within the buffered region (Warren et al. 

2013).  

 

Projection of species future distribution 

During the modelling process to predict the species current distribution the 

environmental characteristics of the species niche are determined.  This unique 

combination of environmental features is inputted as the basis for projecting the species 

future distribution under the SRES A1B scenario.  The Maxent model then searches 

across the projected climate landscape to find conditions which closely match those 

determined by the species current location in the climatescape (Phillips and Dudik 

2008).  In the creation of the projections each model was run for ten cross-validated 

runs to reduce uncertainty in Maxent’s prediction accuracy (Warren et al. 2013).        

To determine a species potential climate space Maxent uses the environmental and 

location information provided to estimate a probability distribution across the study 

area which satisfies a set of constraints determined by the occurrence data (Phillips et 

al. 2006).  These constraints are imposed across the environmental predictor variables 

and represent the mean value and associated confidence interval as determined by the 

mean over the presences (Guisan et al. 2007).  The model by probabilistic reasoning 

then chooses from the manifold probability distributions satisfying the set of 

constraints, which maximises entropy (i.e. that which is closest to uniform) (Phillips et 

al. 2006).  By choosing the distribution which displays maximum entropy the model 

avoids placing any unfounded constraints on the final predicted distribution  (Pearson 

2007a).   

Maxent is similar to logistic regression in that it weights each input variable 

(environmental variable) by a constant (Hernandez et al. 2006), creating Features.  The 
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model undergoes an iterative process, starting with a uniform probability distribution; 

it systematically alters the weighted variables until the likelihood of the occurrence in 

the dataset is maximised (Hernandez et al. 2006).  That probability distribution (the 

modelled potential species distribution) which best satisfies the environmental 

constraints initially imposed by the occurrence data of the species, whilst representing 

the greatest distribution range (Phillips et al. 2006).  The output is deterministic 

because the Maxent algorithm does not use randomness meaning that the resulting 

output  will always be the same given the same starting conditions  (Hernandez et al. 

2006).   

The future scenarios of climate change were created for use in the Wallace Initiative 

projections using CIAS (Community Integrated Assessment System, Warren et al 2008) 

which brings together projections from several Global Circulation Models (GCMs) 

climate projections.  The GCMs include the UKMOHadCM3, CCCMA-CGCM3.1, IPSL-CM4, 

MPI-ECHAM5, UKMO-HadGEM1, CSIROMk3.0, and NCAR-CCSM3.0.  Individual 

predictions of future distributions are created under each of these GCMs.  The use of a 

suite of GCMs allows the exploration of uncertainty associated with the projection of 

future climate change (Beaumont et al. 2008).  The Appendix Visualising Climate change 

makes a detailed comparison of projections of future annual mean temperature and 

annual mean precipitation for the SRES scenarios under each of the seven GCMs.   

These projections of future species distributions are constrained by the species’ realistic 

dispersal capacity.  In the case of mammals the rate of dispersal is set at 1.5km/yr 

equivalent to 150km in 100 years and 120km over the period 2000-2080 for which the 

models are run (Warren et al 2013).  This is an average rate of dispersal and across the 

taxa it is likely that some species will surpass this rate and others fall below it.  

Dispersal in this case is defined as the ‘average long-term shift of an entire species’ 

range taking into account potential repeated colonization and extinction events until a 

species’ entire range catches up with the new ‘environmental space’’ (Warren et al. 

2013).  This measure of average yearly dispersal distance was arrived at by consultation 

with the existing literature on mammal dispersal capacities (Warren et al 2013).  The 

dispersal scenario was applied in the form of a buffer around the current distribution 

with dispersal only able to occur over contiguous land areas within the same 

biogeographic zone.  The period over which model simulations are created is restricted 
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to 2080, although projections were available to 2100, because the further from the 

current climate projections move the less robust they become (Williams and Jackson 

2007).  This is because there is a likelihood that  future climates will diverge profoundly 

from the present  (Williams and Jackson 2007).   

 

Although in using a suite of GCMs to project future climate reduces uncertainty 

surrounding future climates and climate change biological uncertainty remains 

uncharacterised.  As elaborated upon previously in this section biological uncertainty 

has been found to contribute a third to a half of all prediction uncertainty (Buisson et al. 

2010).  It is important therefore to view results of this analysis with this source of 

uncertainty in mind.  

 

The method by which these projections are created is further detailed in Appendix 2: 

The Wallace Initiative and Species Distribution Modelling Techniques.   

 

Calculation of Mean Distribution Across GCMs 

The output provided includes maps of future distributions averaged across the seven 

GCMs.  However, this chapter uses the estimations of a species’ current and future 

distribution area for the full suite of GCMs measured in km2.  This allows the 

investigation of uncertainty across the GCMs as discussed in the Appendix: Visualising 

Climate Change.    

To facilitate the calculation of ExposureR for each species the mean prediction of future 

distribution area was calculated across the GCMs.  The mean was calculated because it 

gives equal weight to each of the GCMs, calculating the mean is an accepted method for 

calculating the central tendency of the predictions when using an ensemble of 

projections (Thuiller et al. 2004; Araujo and New 2007; Pearson 2007b).  To minimize 

the effect of outlying GCMs in skewing the mean the top and bottom projections were 

disregarded, and the mean was calculated across the 5 remaining GCMs.  As Current 

distribution is estimated based on observed climate a single prediction of area is 

available and no further manipulation of the data was required.   
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Calculating the Future Exposure Value 

To calculate this value for each of the species the following equation is employed; where 

x represents the proportion of the distribution remaining at 2080.  The initial 

distributions are measured in km2 where the Current distribution in km2 equates to 1. 

           
                         

                          
 

 

 
 

These proportions represent the proportion of current distributional extent remaining 

at 2080; a value of 1 indicates that the extent of the distribution remains stable at 2080. 

A value of over 1 indicates range expansion and below 1 range contraction.  Therefore a 

proportion of 0.75 would indicate 75% of the species distribution size is stable.  

However, this is a measure of absolute distribution extent and is not geographically-

founded.  Despite this the distribution predicted at 2080 is constrained to be within the 

dispersal capacity of the species ruling out the inclusion of suitable habitat outside the 

species natural capacity to reach.  The degree to which a species can expand its range is 

also constrained by the species’ realistic dispersal capacity.  This value of Exposure 

(ExposureR) is used for ease of understanding in the figures in the Exploring Future 

Exposure section only (Section 4.3). 

 

4.2.3 Creating a Composite score of Vulnerability 

 

The further assessment of species vulnerability required the creation of a composite 

score to represent Vulnerability.  Composite scoring is frequently used in Psychology 

experiments, and is a method by which multiple variables are combined to create a 

single score (Anglim 2009).  In this instance the two variables for combination are 

Sensitivity and Exposure (Equation 1). 

                                      

In order that the variables contributed equally to the final Vulnerability score the 

Sensitivity was normalized, scaling between 0 and 1, where 0 is least Sensitive and 1 is 

most Sensitive.  This means that the highest Sensitivity score (S=14.70) when 

normalised is equal to 1.  The normalization of the Sensitivity scores rescales the 

measure to be in the same order of magnitude as the Exposure measure.  This process 
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removes the influence of large standard deviations so that each is weighted equally 

(Anglim 2009).   

The ExposureR measure was re-calculated to describe proportion loss as opposed to 

proportion range remaining at 2080 for the calculation of the final Vulnerability score.  

The inverse of the score is used so that the Sensitivity and Exposure scores correlate 

positively, i.e. high Sensitivity is indicated by a high score and High Exposure likewise.  

This inversion of ExposureR also means that species which are predicted to expand their 

distributions under climate change are indicated by a negative score.  This value is 

known as ExposureL, where the L stands for proportion loss.  This is an important 

adjustment for the calculation of the Vulnerability score so that by the addition of the 

two measures high scores indicate High Vulnerability and low scores Low Vulnerability.  

Therefore the final Vulnerability equation is: 

                                                         

 Where the   indicates that the variable has been normalized.  The resulting 

Vulnerability scores range from least Vulnerable (-0.385) to most Vulnerable (1.585).  

The highest possible Vulnerability score is Vulnerability=2, a combination Exposure 

loss=1 (indicating 100% loss of current distribution by 2080) and Sensitivity normalized=1 

(equivalent to Sensitivity=14.95).  The ExposureL value is used in all calculations 

considering Future Vulnerability.     

 

4.2.4 Assessing Vulnerability 

 

Vulnerability was assessed by plotting each species individual Sensitivity against the 

predicted level of ExposureL they are projected to encounter under future climate 

change using scatterplots.  ExposureL represents range loss and is proportion of a 

species current climate space which is lost under Future climate change.  This value is 

between -1 to 1, where 0 describes stable extent, 1 is 100% loss in suitable climate 

space and -1 is 100% gain.  Where Exposure is mentioned in relation to Vulnerability it 

will always refer to ExposureL.  Sensitivity values are plotted on the y-axis and 

ExposureL (proportion loss) at 2080 on the x-axis.  These scatterplots are split into four 

quadrants, i) High Exposure, High Sensitivity, ii) High Exposure, Low Sensitivity, iii) Low 
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Exposure, High Sensitivity and iv) Low Exposure, Low Sensitivity.  The quadrants are 

determined by quartiles calculated for the Sensitivity data and Exposure data.  The 

threshold is determined using the lower quartile Sensitivity value (L.Q Sensitivity=9.01) 

above which species are classified as having High Sensitivity.  As a novel measure of 

Sensitivity there is no empirical basis on which to select where the threshold should be 

set.  Therefore the results should be considered as identifying relative rather than 

absolute Sensitivity indicating which species are at greatest risk due to their Sensitivity 

among those analysed only.  A similar approach was used by Foden et al (2013) when in 

the absence of empirical evidence or expert-opinion the threshold determining the most 

vulnerable species under a specific trait is set to encompass the top 25% of values.  The 

Exposure bound is set at the mean value of ExposureL across the dataset.  The ecological 

reasoning for this is that species projected to lose a significant part of their current 

distribution by 2080 are increasingly susceptible to future stochasticity in climate, such 

as extreme events, they are also more Vulnerable to changes in land-use and associated 

fragmentation of habitat (Warren et al. 2013).    

Species falling within the highly sensitive and highly exposed quadrant are the most at 

risk and are thus labelled ‘Highly Vulnerable’.  Within the ‘Highly Vulnerable’ 

categorisation there are species labelled as ‘Extremely Vulnerable’ determined by the 

upper quartile values of Sensitivity and ExposureL in the data.  Species in the Low 

Exposure, Highly Sensitive quadrant are at high latent risk, so are termed ‘Moderately 

Vulnerable’.  Those species in the High Exposure, Low Sensitivity quadrant are likely to 

persist under climate change and are labelled ‘Lowly Vulnerable’, because they are of 

least concern although they need to be monitored.  Species in the low Exposure and low 

Sensitivity risk are labelled as ‘Least Concern’.  

 

4.2.5 Vulnerability across Orders 

 

Exploration of Vulnerability within the Orders was undertaken to determine whether 

particular Orders are more vulnerable than their constituent species within the 

Mammalia.  The taxonomy used is after Beck et al (2006) for the placental mammals, the 

Eutheria.  However, because fully marine species were excluded from the analysis the 

Order Cetartiodactyla is again split into Cetacea (the Whales) and Artiodactyla (even-
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toed ungulates) to bring clarity to what is being modelled and investigated.  Marine 

species the Walrus (Odobenus rosmarus), two species of seal and two species of sea lion 

remain in the LHTd because they colonise terrestrial habitats for at least part of their 

lifecycles.  The taxonomy for the Marsupials (Infraclass Marsupalia) adopts the 

taxonomy developed by Wilson and Reeder (2005).  The full taxonomy is presented in 

the supplementary material under Taxonomy.          

Vulnerability is explored at the taxonomic level of Order to highlight the degree of 

variation in Vulnerability across the Mammalia.  Life history traits, particularly 

reproductive traits, which contribute significantly to the Sensitivity measure, are 

theorized to be conserved above the family level (Bielby et al. 2007).  In concert with 

this reasoning because of the limited number of records within the LHTd213 family 

level analysis is not meaningful for Orders with families represented by single species.   

         

4.2.6 Vulnerability by Biogeographic Realms and Zones 

 

To observe the impact of future climate change on species originating in differing 

climatic zones the species data were split along the lines of biogeographic realms, 

tropical or temperate and biogeographic zones.  Species were extracted from the 

LHTd213 dependent on biogeographic realms and subsequently plotted as scatterplots 

with ExposureL on the x-axis and Sensitivity on the y-axis. 

Biogeographic zones were first envisioned by Wallace in 1876 (Wallace 1876). 

Biogeographic zones are divided along evolutionary history lines and thus take account 

of the common ancestry of the species assemblages contained within (Holt et al. 2013).  

There are several schemes of biogeographic or zoogeographic zones proposed (Wallace 

1876; Olson et al. 2001; Holt et al. 2013).   

Olson et al (2001) propose eight overarching biogeographic zones, an aggregation of 

those previously defined in the literature by Pielou (1979) and Udvardy (1975) (Figure 

4.1).  Udvardy (1975) delineated biogeographic realms on the basis of unifying features 

of geography and biodiversity.            
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Figure 4.1 Biogeographic Zones as determined by (Olson et al. 2001). Antarctica is not shown. 

Holt et al,(2013) proposed an updated version of Wallace’s biogeographic regions in 

which they used phylogenetic data to describe species evolutionary relationships 

resulting in the definition of 11 zones (Figure 4.2).  Antarctica was not included in Holt 

et al's(2013) analyses but is labelled in Figure 4.2, in reference to the zones described in 

the zonal statistic (SDMTools, VanDerWal, Falconi, Januchowski, Shoo, & Storlie, 2012) 

run subsequently.   

 

Figure 4.2  The 11 Biogeographic Zones as defined by Holt et al, (2013) with each zones associated number in 

LHTd. (Antarctic is not shown) 

Due to the restricted number of mammal records in the LHTd213 the number of 

biogeographic zones investigated falls from 11 (excluding Antarctica) to seven, the 

Neotropical, the Nearctic, the Palearctic, Saharo-Arabian, the Oriental, the Afrotropical 

and the Australian zone.  To avoid double-counting species which appeared in more 
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than one zone within categorized in the zone in which their distribution is most 

dominant.  There were no records for species unique to the Panamanian, Sino-Japanese, 

Oceania or Madagascan zone and therefore they were dropped from the analysis.    

 

4.3 Results 

4.3.1 Exploring Future Exposure across the Full Dataset 

 

This section explores the degree to which Mammal species, represented in both the 

LHTd and the LHTd213, are projected to be exposed to future climate change.  It 

examines differences in ExposureR among the Orders, between the Tropical and 

Temperate Realms and the Biogeographic zones.  Within this section on Exposure, the 

Exposure value referred to is always ExposureR, proportion range remaining.  This 

value is used because its scale is more intuitive than ExposureL.  ExposureR‘s scale run 

2-0, where 0 indicates complete range loss, 1, range stability and 1>2 range expansion. 

To explore the impact of future exposure under the SRES A1B scenario, and any 

variation that might be apparent between Orders and realms the entire LHTd (n=1084) 

dataset was utilised. Table 4.2 illustrates the division of species between the Orders 

represented in the LHTd. 

Order 
Records 
(N) Order 

Records 
(N) 

Artiodactyla 38 Macroscelidea 9 
Carnivora 82 Microbiotheria 1 
Chiroptera 294 Peramelemorphia 1 
Cingulata 
Dasyuromorphia 

3 Perissodactyla 5 
1 Pholidota 1 

Dermoptera 1 Pilosa   7 

Didelphidae 24 Primates 26 
Diprotodontia 5 Rodentia 499 
Eulipotyphla 65 Scandentia 2 
Hyracoidea 1 Sirenia  1 
Lagomorpha 18 

   

Table 4.2 Number of Species represented in each Orders across the LHTd. 

Future exposure values range between total loss, where the percentage current 

distribution remaining at 2080 is predicted to be zero, to a species which is predicted to 

undergo an extreme expansion in distribution, expanding by 475% the area over which 
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it currently resides (Figure 4.3).  The mean value of Future ExposureR is 80% of current 

at 2080, meaning that on average species are predicted to lose around 20% of their 

current distribution by 2080.  There are two species which are predicted to lose their 

entire range under future exposure; two Rodentia, the Desert pygmy mouse (Mus 

indutus) and the Pale Gerbil (Gerbillus perpadillus) which is endemic to Egypt.  There is 

one species for which expansion is classified as extreme in SPSS, this is statistically 

determined as values 3 times above the interquartile range of the data.  The species is 

the Smoke-bellied rat (Niviventer eha), a member of the order Rodentia found in East 

and Southern Asia, predicted to expand its current distribution by 4.75 times.  Figure 

4.3, a boxplot shows the range of ExposureR. each Order is predicted to experience and 

explores in more detail the impact of Future Exposure across the Orders in the LHTd.  

Using GLM to analyse the influence of Order on ExposureR the Order to which a species 

belonged was found to have virtually no influence in determining ExposureR (F 

(20,1063)=1.904, p=.01, ƞ2=0.035).  There are 8 species classed as outliers by SPSS, 

these are values identified as 1.5 times outside the data’s interquartile range.  These 

include 2 Chiroptera (Greater sack-winged bat (Saccopteryx bilineata) and Miller’s long-

tongued bat (Glossophaga longirostris)), 3 Eulipotyphla (African pygmy hedgehog 

(Atelerix albiventris), Fraser’s musk shrew (Crocidura poenis) and Large-eared grey 

shrew (Notiosorex evotis)) and 4 Rodentia (Sonoran woodrat (Neotoma phenax), Florida 

mouse (Podomys floridanus) and the Sinaloan pocket mouse (Chaetodipus permix)).  

These species experience growth in distribution expanding between 85% (Atelerix 

albiventris) and 140% (Chaetodipus premix) on top of their current range size by 2080 

under the SRES A1B scenario. 
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Figure 4.3  Boxplots of Future Exposure by Order (Percentage Current Distribution at 2080) The line at 100% 

indicates that the distribution size remains stable, below which distribution constricts and above which expansion is 

predicted to occur.  Outliers are indicated by species ID number 

The majority of Orders are expected to experience contraction in current distribution by 

2080, with the exception of the Pholidota (Pangolin and Scaly Anteaters) with a mean 

expansion of 75.6% above current distribution (n=1, mean ExposureR =175.6%)(Table 

4.3  Descriptive statistics: Exposure by Order (Minimum Exposure refers to greatest 

contraction and Maximum to smallest contraction in current distribution size to 2080). 

Species with fewer than five records (highlighted in grey) are omitted from further 

analysis.Table 4.3).  When discounting Orders for which there are fewer than 5 species, 

the average species ExposureR (percent range remaining at 2080) across the Orders is 

between 88.3% (Chiroptera, n=294) and 42.8% (Macroscelididae, n=9).  The only other 

Order to have a mean ExposureR value within the quartile of representing the most 

Exposed (Mean ExposureR <71.5%) are the Artiodactyla (n=38, Mean ExposureR 

=58.2%).  The Orders within the quartile representing least Exposed (Mean ExposureR 

=>79.8%) the Chiroptera (n=294, Mean ExposureR =88.3%), the Primates (n=26, Mean 

ExposureR=86.3%) and the Lagomorpha (n=18, Mean ExposureR =80.1). 
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Descriptive Statistics 

  ExposureR  (% range remaining at 2080) 

Order 
Species 

(N) 
Maximum Minimum Mean 

Standard  

Deviation 

Artiodactyla 38 110 0 58.2 29.0 

Carnivora 82 186 11 76.6 39.4 

Chiroptera 294 234 10 88.3 44.3 

Cingulata 3 155 66 105.3 45.4 

Dasyuromorphia 1 12 12 12.2   

Dermoptera 1 54 54 53.6   

Didelphimorphia 24 139 10 71.5 40.3 

Diprotodontia 5 108 24 51.8 40.7 

Eulipotyphla 65 192 5 78.0 42.7 

Hyracoidea 1 43 43 43.1   

Lagomorpha 18 180 27 80.1 41.8 

Macroscelidea 9 70 4 42.9 23.7 

Microbiotheria 1 88 88 88.0   

Peramelemorphia 1 28 28 27.5   

Perissodactyla 5 107 58 81.2 23.5 

Pholidota 1 176 176 175.6   

Pilosa 7 155 15 66.0 61.8 

Primates 26 181 5 86.3 50.9 

Rodentia 499 575 0 78.9 50.2 

Scandentia 2 106 21 63.3 60.0 

Sirenia 1 86 86 86.0   

 

Table 4.3  Descriptive statistics: Exposure by Order (Minimum Exposure refers to greatest contraction and 

Maximum to smallest contraction in current distribution size to 2080). Species with fewer than five records 

(highlighted in grey) are omitted from further analysis. 

The family expected to experience the most Exposure to climate change, excluding those 

families with fewer than 5 records, is the Macroscelidea (Elephant Shrews) family 

Macroscelididae (n=9, ExposureR =42.88%) with an average loss of 57.12% of their 

current distribution size by 2080.  The family predicted to be least impacted are the 
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Nycteridae (n=6, ExposureR =141.25%), members of the Chiroptera, with an average 

expansion of 41.25%.      

 

Future Exposure of Tropical versus Temperate Species  

To investigate whether there is variation in Exposure due to biogeographic realm, a 

boxplot of exposure by biogeographic realm was created (Figure 4.4). 

 

Figure 4.4 Future ExposureR by Biogeographic Realm (% 

range remaining at 2080) 

 

There is little visible variation in ExposureR values across the biogeographic realms, 

although the range of ExposureR in the tropical zone appears wider than that of the 

Temperate zone.  Thus, to discover whether there is any significant differentiation in 

Future ExposureR between tropical and temperate species a univariate GLM was run 

across the entire LHTd (n=1084).  There are 434 Temperate species and 645 Tropical 

species represented in the full LHTd.  Variation in Future ExposureR values could not be 

attributed to whether the species is tropical or temperate (F (1,1077)=1.689, p=0.194, 

ƞ2=0.002).   

Nine of the Twenty-one Orders represented in the full LHTd have species represented in 

both Tropical and Temperate realms.  In running a GLM across the realms by Order 

there was only one Order which showed a significant difference in Future ExposureR 

determined by realm, the Rodentia (F(1,495)=4.99, p=0.02)(Table 4.4).  The 
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Macroscelidea are the only Order for which the realm to which a species belonged had 

any influence on the likely ExposureR (F (1,7)=1.65, p=0.24, ƞ2=0.19), however, the test 

is non-significant meaning that this conclusion is unlikely to be robust.   

 

Order Source 

Degrees 

of 

Freedom 

F 
Significance  

(P) 

Eta 

Squared 

(Ƞ2) 

Artiodactyla 
Realm 1 0.19 0.66 0.006 

Error 34       

Carnivora 
Realm 1 0.04 0.84 0.001 

Error 79       

Chiroptera 
Realm 1 0.01     

Error 292   0.89 0 

Didelmorphia 
Realm 1 2.22 0.15 0.092 

Error 22       

Eulipotyphla 
Realm 1 0.90 0.76 0.001 

Error 63       

Lagomorpha 
Realm 1 1.58 0.22 0.09 

Error 16       

Macroscelidea 

  

Realm 1 1.65 0.24 0.191 

Error 7       

Rodentia 
Realm 1 4.99 0.02 0.01 

Error 495       

 Table 4.4 Results of a GLM describing the Influence of Biogeographic realm on Species ExposureR by Order 

 

Variation in Exposure across Biogeographic Zones 

To investigate whether the degree to which future exposure is likely to impact species 

differently across the major biogeographic zones a series of further tests were 

undertaken with the LHTd split by biogeographic zones.  The Nearctic zone has the 

lowest average loss of distribution at 9.7% (Mean ExposureR =90.3%) and the Palearctic 

zone the greatest mean loss at 36.1% (Mean ExposureR =63.9%)(Table 4.5).  The 
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Palearctic zone (species n=108) also has the narrowest range of ExposureR values 

around the mean. 

Biogeographic 

Zone 

Species 

(N) 

Maximum 

ExposureR 

(Percent range 

remaining at 

2080) 

Minimum 

ExposureR 

(Percent range 

remaining at 

2080) 

Mean 

ExposureR 

(Percent range 

remaining at 

2080) 

Standard 

Deviation 

Neotropical 321 5 246 78.5 44.9 

Australia 27 11 147 81.5 39.7 

Afrotropical 247 0 192 77.0 52.5 

Oriental 50 4 575 80.9 80.9 

Saharo-Arabian 33 0 139 71.8 30.4 

Nearctic 293 4 240 90.3 42 

Palearctic 108 0 151 63.9 24.3 

Total 1084  0  575  80.0 47.7  

 Table 4.5 Descriptive Statistics of the LHTd split by biogeographic zone: where maximum exposure describes 

the greatest percentage contraction of distribution and minimum the smallest percentage contraction. 

The distribution of Future ExposureR values across biogeographic zones is not the same 

across all zones (Independent Kruskal-Wallis test p=0.00). The performance of a 

ANCOVA to investigate whether Future ExposureR is linked to biogeographic zone, 

whilst controlling for Order, determined that the biogeographic zone to which a species 

belongs is significant in determining future exposure (F (7,1071)=5.073, p=0.00, 

ƞ2=0.02).  However, the effect size of biogeographic zones in determining exposure is 

weak (ƞ2=0.02).  Figure 4.5, comprises a boxplot of ExposureR by Biogeographic zone, 

illustrates variation in ExposureR.   
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Figure 4.5  Boxplots of Exposure across Biogeographic Zones (% current distribution at 2080) The line at 100% 

indicates that the distribution size remains stable, below which distribution constricts and above which expansion is 

predicted to occur.  Outliers are indicated by species ID number 

The Afrotropical zone has the greatest percentage of species classified as being Most 

Exposed, with less than 45% of their current range remaining by 2080 (n=128(247), 

39.9%).  The next ‘most exposed’ region is the Neotropical zone (n=86(321), 26.8%), 

followed by the Oriental zone (n=13(43), 26%).   

In an investigation of the impact of ExposureR across zones upon individual orders 

using GLM (Table 4.6), the Artiodactyla were the only Order in which biogeographic 

zone significantly explained variation in exposure, with a moderate effect (F 

(3,32)=5.85, p=0.00, ƞ2=0.35).  Biogeographic zone was also found to modestly influence 

future ExposureR for the Macroscelidea (Elephant Shrews), although this result was 

non- significant (F (3, 14) =1.65, p=0.24, ƞ2=0.19).  Significant results were also found 

for the Rodentia (p=0.00, ƞ2=0.03) and the Chiroptera (p=0.01, ƞ2=0.05), although the 

degree to which biogeographic zones influence variation in ExposureR values was 

negligible.  
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Order Source 

Degrees 

of 

Freedom 

F 
Significance  

(P) 

Eta 

Squared 

(Ƞ2) 

Artiodactyla 
Zone 3 5.85 0.00 0.35 

Error 32       

Carnivora 
Zone 5   0.51 0.05 

Error 75 0.86     

Chiroptera 
Zone 6 2.58 0.01 0.05 

Error 294     

Didelmorphia 
Zone 1 2.22 0.15 0.09 

Error 22       

Eulipotyphla 
Zone 4 0.723 0.57 0.04 

Error 60       

Lagomorpha 
Zone 3 1.99 0.16 0.3 

Error 14       

Macroscelidea 
Zone 1 1.65 0.24 0.19 

Error 7       

Primates Zone 2 0.132 0.87 0.01 

 
Error 23       

Rodentia 
Zone 6 3.23 0.00 0.03 

Error 490       

 Table 4.6 Results of GLMs testing ExposureR across Biogeographic Zones by Major Orders 

 

4.3.2 Future Exposure within the LHTd 213 

 

Across the set of 213 LHTd records future ExposureR values ranged between 5% 

(ExposureR =0.05) of suitable habitat remaining at 2080 to an almost doubling of a 

species range to 190% (ExposureR =1.90), with an average loss of 19% of the species 

current distribution (ExposureR =0.81).  The Order to which a species belongs has a 

significant weak association (F (14,194) =1.686, p=0.06, ƞ2=0.10) with to the degree of 

ExposureR the species is predicted to experience.  Figure 4.6explores the differences 

across the Orders in terms of future ExposureR.   
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Figure 4.6 Boxplots of Future ExposureR by Order for the LHTd213 (Percent current distribution at 2080).  

The line at 100% indicates that the distribution size remains stable, below which distribution constricts and above 

which expansion is predicted to occur. Outliers are indicated by species ID number. 

The Order with the greatest average Exposure is the Artiodactyla with an average 

percent reduction in range to 62.56% of current distribution across the 21 species 

represented.  The Didelmorphia, the Opossums, are the group which experience the 

least Exposure to climate change with their distributions staying fairly stable with an 

average predicted expansion of 10% above current range (Mean ExposureR =1.10).   

The Dusky titi (Callicebus moloch), a species of monkey endemic to Brazil, is most at 

risk, losing 95% of its current distribution extent by 2080 (ExposureR =0.05).  The 

species with the largest predicted future expansion is the Red-tailed ground squirrel 

(Spermophilus tertricaudus) a species of the family Sciuridae (Squirrels), it is predicted 

to almost double its current range (ExposureR =1.90).  The two outlying records 

represent the Carnivora species, the Common kusimanse (Crossarchus obscurus, 

ExposureR =1.86) a species of dwarf mongoose and the Eulipotyphla species, the African 
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pygmy hedgehog (Atelerix albiventris, ExposureR =1.85).  The Muridae (the mice) family 

of the Rodentia have the smallest degree of standard deviation around the mean at SD 

=15.4%, whilst the Carnivora family the Herpestidae (the Mongooses) have the largest 

at SD=63.7%    

There are 67 species predicted to expand their range by 2080 under the business-as-

usual scenario 32% of the total species; of these 9 are predicted to expand their ranges 

by upwards of 50% above their current range.  There are 16 species predicted to 

expand their ranges by up to 10%, 42 species are predicted to expand by between 

10>50 %.          

 

Future Exposure of Tropical versus Temperate Species  

 

  

Figure 4.7 Future ExposureR by Biogeographic Realm for the LHTd213 (Percent current distribution at 2080). 

The line at 100% indicates that the distribution size remains stable, below which distribution constricts and above 

which expansion is predicted to occur. Outliers are indicated by species ID number. 

Figure 4.7, compares Exposure across the two biogeographic realms, this figure is 

directly comparable with Figure 4.5 featured in section 4.3.1.  The boxplots in Figure 4.8 

represent the range of Future ExposureR value across the individual Orders within the 

realms.  Seven of the Fifteen Orders represented in the LHTd213 have species 

represented in both Tropical and Temperate realms.  In running a GLM across the 

realms by Order there are two Order which reported a significant difference around the 
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mean between Future ExposureR determined by realm.  The two orders were the 

Eulipotyphla (F (1, 12) =16.99, p=0.01, ƞ2=0.58) and Chiroptera (F (1, 22) =0.125, 

p=0.00, ƞ2=0.06).  The Eulipotyphla and the Didelphidae are the two Orders for which 

the realm to which a species belonged had any influence on the likely Exposure.  The 

strongest impact of realm was found for the Eulipotyphla (Hedgehogs, Shrews and True 

Moles) where it had a strong effect (F (1, 12) =16.99, p=0.00, ƞ2=0.58).  A weak effect is 

recorded for the Didelmorphia (American Possums) (F (1, 3) =0.333, p=0.604, ƞ2=0.10), 

although the result is non-significant. 

  

a) b) 

Figure 4.8  Major Orders split by Biogeographic realm, a) Temperate b) Tropical (The line at 100% indicates 

that the distribution size remains stable, below which distribution constricts and above which expansion is predicted 

to occur.  Outliers are indicated by species ID number. 

 

Future Exposure by Biogeographic Zone  

To investigate whether the degree to which Future exposure is likely to impact species 

differently across the major biogeographic zones a series of further tests were 

undertaken with the LHTd213 split by biogeographic zones.  The Nearctic zone has the 

lowest Mean ExposureR at 98.5% of current distribution at 2080 (n=76) (n=2).  The 

Palearctic zone is the zone in which the greatest mean loss occurs, with an average loss 

of 42.2% (n=43, Mean ExposureR =57.8%) (Table 4.7).  These results are similar to 

those determined using the full data set (Section 4.3.1) with variation in mean 

ExposureR  between the two sets of 8.2% for the Nearctic zone and 6.1% in the 

Palearctic zone.    



167 
 

Biogeographic 

Zone 

Species 

(N) 

Maximum 

ExposureR 

 (% current 

distribution at 

2080) 

Minimum 

Exposure R 

(% current 

distribution at 

2080) 

Mean 

ExposureR       

(% current 

distribution at 

2080) 

Standard 

Deviation (SD % ) 

Neotropical 34 5 182 91.8 46.4 

Australia 2 80 94 86.9 10.2 

Afrotropical 37 14 186 67.9 47.5 

Oriental 11 22 144 79.9 38 

Saharo-

Arabian 
6 28 104 65.6 25.7 

Nearctic 76 32 190 98.5 31.1 

Palearctic 43 9 97 57.8 16.6 

Total 209 5  190  81.6 38.8  

 Table 4.7 Descriptive statistics of ExposureR values across the Biogeographic zones for the LHTd213 

The distribution of Future ExposureR values across biogeographic zones is not the same 

across all zones (Independent Kruskal-Wallis test p=0.00).  The performance of an 

ANCOVA to investigate whether Future ExposureR was linked to biogeographic zone, 

whilst controlling for Order, suggests that biogeographic zone did have a significant 

modest influence over future ExposureR (F (6,202)=7.7, p=0.00, ƞ2=0.19).  

 

 

Figure 4.9 Future ExposureR by Biogeographic Zone Boxplot for the LHTd213 (The line at 100% indicates that 

the distribution size remains stable, below which distribution constricts and above which expansion is predicted to 

occur.  Outliers are indicated by species ID number.) 
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Figure 4.9 illustrates the variation in ExposureR across the biogeographic zones.  The 

suite of species occurring within the Palearctic (n=43) and Australian (n=2) zones 

experience a degree of contraction in distribution from current to 2080.  Species 

represented in the Afrotropical (n=37) and Saharo-Arabian (n=6) are also 

predominantly expected to experience contraction.     

 

A GLM was undertaken to investigate whether ExposureR impacted individual orders 

differently dependent on zones(Table 4.8).  Only those Orders spanning more than a 

single zone were included in the test.  Variation in ExposureR across the biogeographic 

zones was significant for the orders Eulipotyphla and Rodentia.  Biogeographic zone 

was found to strongly influence the degree to which individual species of the 

Eulipotyphla were predicted to be exposed in the future (F (3, 14) =26.4, p=0.00, 

ƞ2=0.88), and modestly influence the Rodentia (F (5, 53) =3.15, p=0.01, ƞ2=0.22).  

Biogeographic zone moderately influenced ExposureR for both the Chiroptera (F (5, 18) 

=2.46, p=0.07, ƞ2=0.40) and Artiodactyla (F (3, 17) =2.68, p=0.08, ƞ2=0.32) although the 

results were non-significant.   

 

Order Source 
Degrees of 

Freedom 
F 

Significance  

(P) 

Eta Squared 

(Ƞ2) 

Artiodactyla 
Zone 3 2.68 0.08 0.32 

Error 17 
   

Carnivora 
Zone 5 1.88 0.14 0.15 

Error 52 
   

Chiroptera 
Zone 5 2.46 0.07 0.40 

Error 18 
   

Eulipotyphla 
Zone 3 26.4 0.00 0.88 

Error 14 
   

Rodentia 
Zone 5 3.15 0.01 0.22 

Error 53 
   

Table 4.8  Results of a GLM across biogeographic zones by Order 
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4.3.3 Sensitivity by biogeographic zone 

 

An analysis of the distribution of Sensitivity across biogeographic zones, not considered 

in Chapter Three, using the GLM revealed that Sensitivity varied significantly across the 

biogeographic zones (F(6,202)=4.11, p=0.00, ƞ2=0.11) exerting a modest influence on 

sensitivity score.  The Neotropical zone had the largest mean Sensitivity (n=34, 

S=10.74) and the Oriental zone the smallest mean Sensitivity (n=11, S=8.24), where the 

Australian zone is excluded due to lack of records (n=2).  

Differences amongst Sensitivity values were assessed using ANOVA to compare 

between groups’ variation in ExposureR across the zones.  Difference across the 

temperate zones Palearctic, Nearctic, and Saharo-Arabian were non-significant 

(Palearctic vs. Nearctic, n=119, p=0.83, Palearctic vs. Saharo-Arabian, n=39, p=0.76 and 

Nearctic vs. Saharo-Arabian, n=82 p=0.98).   

Comparisons between tropical zones, using ANOVA showed non-significant variation 

between Australia and the Oriental and Afrotropical zones (Australia vs. Oriental, n=13, 

p=0.430, Australia vs. Afrotropical, n=39, p=0.065).  Significant variation across 

sensitivity between tropical zones were recorded for all combinations involving the 

Neotropical zone (Neotropical vs. Australia, n=36, p=0.038, ƞ=0.12, vs. Afrotropical, 

n=71, p=0.02, ƞ=0.07, vs. Oriental, n=45, p=0.01, ƞ=0.22).  There was also a significant 

difference recorded between the Afrotropical and Oriental zone (n=48, p=0.01, ƞ=0.11).  

GLM was used to investigate whether there were significant differences in Sensitivity 

across biogeographic zones by Order.  There are five orders for which there is data 

available across more than 2 zones, the Artiodactyla, Carnivora, Chiroptera, 

Eulipotyphla and Rodentia (Table 4.9).     
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Order Source 

Degrees 

of 

Freedom 

F 
Significance  

(P) 

Eta 

Squared 

(Ƞ2) 

Artiodactyla Zone 3 1.076 0.38 0.16 

Error 21       

Carnivora Zone 5 1.309 0.27 0.11 

Error 52       

Chiroptera Zone 5 2.49 0.06 0.41 

Error 18       

Eulipotyphla Zone 2 0.568 0.64 0.14 

Error 10       

Rodentia Zone 5 0.34 0.88 0.03 

Error 53       

Table 4.9 GLM results comparing Sensitivity scores acorss zones by Order 

There were no Orders for which there was a significant difference in Sensitivity across 

the zones.  However, for the Orders Chiroptera, Artiodactyla, Eulipotyphla and Rodentia 

the zones did contribute to variation in Sensitivity although all were non-significant 

(Chiroptera (F(5,18)=2.49, p=0.06 Ƞ=0.41, moderate), Artiodactyla 

(F(3,21)=1.07,p=0.38 Ƞ=0.16, modest), Eulipotyphla (F(2,10)=0.56, p=0.64 Ƞ=0.14, 

modest), Carnivora,(F(5,52)=1.30, p=0.27 Ƞ=0.11, modest)).  

 

4.3.4 Future Vulnerability 

 

To explore the predicted impact of future Climate change Exposure on species, and the 

Orders to which they belong, a scatterplot was created using Sensitivity values on the 

y-axis and ExposureL (proportion distribution loss on the x-axis).  ExposureL is the 

value used to calculate Vulnerability and as such is always used when discussing 

Vulnerability.   
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Figure 4.10 Future Vulnerability by Order Scatterplot a) All species b) Species experiencing range 

contraction  
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In order to illustrate fully the variation in Future exposure across the species set 

Figure 4.10(a & b), shows the data with shifted axis.  Figure 4.10 shows all species 

taking into account those species with expanding distributions i.e. exposure above 0 to 

-1.  Figure 4.10b shows the species experiencing contraction in their current 

distribution, where zero represents a stable distribution and 1 equals total loss  

 

There are 78 species, 37% of the total species, which fall within the Highly Vulnerable 

classification.  A Pearson’s product moment correlation coefficient was computed to 

assess the relationship between Sensitivity and Future ExposureL.  There is a modest, 

significant correlation between Sensitivity and Future ExposureL (r=0.164, n=209, 

p=0.01), hence there is also a small relationship between a species sensitivity and 

predicted change in its distribution due to climate change.  To test whether there is an 

association between Sensitivity and Future ExposureL scores and the Order to which a 

species belong a univariate GLM was carried out.  Variation within Sensitivity values 

was modestly linked with the Order to which the species belongs, explaining 29% of 

the between-subjects variation (F (1, 14) =5.542, p=.000, ƞ2=0.29).  However, variation 

in the degree to which a species is predicted to be exposed to future climate change 

appears more complex, and is only weakly correlated with the Order to which it 

belongs (F (1, 14) =1.68, p=0.06, ƞ2= 0.10).  The Orders to which a species belongs is a 

significant factor in explaining individual species Vulnerability explaining 16% of the 

variation, considered to be a modest effect (F (1, 14) =2.55, p= 0.02, ƞ2= 0.16). 

 

The composite Vulnerability score ranges between -0.39 for the least Vulnerable 

species, the Cotton Mouse (Peromyscus gossypinus), and 1.58 for the most Vulnerable 

species, the Brown-mantled tamarind (Saguinus fuscicollis).  The mean species 

Vulnerability score is 0.76 with a range between the scores for Extremely Vulnerable to 

Least Vulnerable of 1.96.  The degree to which a species is described as Vulnerable is 

assessed on the basis of the range of the Vulnerability within the data.  As previously 

described those species within the upper quartile (U.Q. =0.89) are most Vulnerable, and 

those below the lower quartile (L.Q. =0.40) are least Vulnerable.  There are 78 species in 

the Most Vulnerable and 39 species in the Least Vulnerable classifications as 

determined by the quartiles in the data.  The top 10% of Most Vulnerable species (n=12) 

include, four Rodentia, three Carnivora, 2 Primates, 1 Artiodactyla, 1 Pilosa and the 
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Hyrax.  Within this top 10% there are eight species classified as Extremely Vulnerable, 

with Vulnerability scores above 1.4.   

 

Future Vulnerability Within Orders 

 

 

 

Figure 4.11  Boxplot representing Vulnerability Score by Order 

In examining Vulnerability scores across Orders (Figure 4.11, Table 4.10), the 

Artiodactyla (Even-toed ungulates) have the highest mean Vulnerability (n=21, 

Vu=1.00), when removing those Orders with fewer than 5 records.  The Order with the 

lowest mean Vulnerability is the Lagomorpha (n=5, Vu=-0.35).  The Rodentia have the 

largest range of Vulnerability values, ranging between –0.385 to 1.43 (n=59, 

Vulnerability range=1.82).  The two outliers with extreme negative Vulnerability values 

are the Carnivora, the Common kusimanse (Crossarchus obscurus, Vulnerability=-0.321), 

Eulipotyphla, the African pygmy hedgehog (Atelerix albiventris, Vulnerability=-0.186).  

The single outlier with an extreme positive Vulnerability score is the Lagomorpha, the 

Pika (Ochtona princeps, Vulnerability=1.012).  
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Vulnerability Descriptive Statistics 

Order N Range Minimum Maximum Mean 
Std. 

Deviation 

Artiodactyla 21 1.04 0.523 1.564 1.004 0.286 

Carnivora 57 1.73 -0.321 1.418 0.860 0.349 

Chiroptera 24 1.11 0.022 1.134 0.629 0.308 

Cingulata 1   0.256 0.256 0.256   

Didelphimorphia 5 0.88 0.178 1.067 0.524 0.382 

Diprotodontia 1   0.336 0.336 0.336   

Eulipotyphla 14 1.48 -0.186 1.3 0.732 0.352 

Hyracoidea 1   1.399 1.399 1.399   

Lagomorpha 5 0.99 0.018 1.012 0.351 0.399 

Macroscelidea 2 0.52 0.647 1.165 0.905 0.366 

Perissodactyla 3 0.24 0.62 0.869 0.764 0.129 

Pilosa 3 1.34 0.205 1.552 1.029 0.723 

Primates 11 1.31 0.271 1.585 0.852 0.421 

Rodentia 59 1.82 -0.385 1.43 0.676 0.431 

Scandentia 1   0.435 0.435 0.435   

Table 4.10 Descriptive Statistics for Vulnerability across the Orders 

To assess the degree to which the different Orders are Vulnerable the species of the 

major Orders were classified as Most Vulnerable to Least Vulnerable using the upper 

and lower quartile values respectively (Table 4.11). 

 
Most Vulnerable Moderately Vulnerable Least Vulnerable 

Order 
Frequency 

(n) 

Percentage 

(%) 

Frequency 

(n) 

Percentage 

(%) 

Frequency 

(n) 

Percentage 

(%) 

Artiodactyla 13 61.9 8 38.1 0 0 

Carnivora 27 48.2 24 42.9 5 8.9 

Chiroptera 4 16.7 14 58.3 6 25 

Didelmorphia 1 20 2 40 2 40 

Eulipotyphla 5 35.7 7 50 2 14.3 

Lagomorpha 1 20 1 20 3 60 

Primates 4 36.4 6 54.5 1 9.1 

Rodentia 19 32.2 23 39 17 28.8 

Total 74 37.9 85 43.6 36 18.5 

Table 4.11 Vulnerability Classifications 

The Order with the largest number of species classified as among the Most Vulnerable 

are the Artiodactyla (61.9%, n=13).  The Carnivora are also have a large number of 
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species classified as Most Vulnerable (n=27, 48.2%).  The Chiroptera have the fewest 

species classified as among the Most Vulnerable (16.7%, n=4).  The Lagomorpha have 

the largest percentage of species classified as among the Least Vulnerable (60%, n=3).    

The Artiodactyla are the sole Order in which no species is classified as being among the 

Least Vulnerable. 

To tease out variation in the contributing factors of Vulnerability within each Order and 

to explore the combination of both sensitivity and future exposure values in conferring 

Vulnerability across the Orders scatterplots were created for each of the major orders 

(i.e. those with 5 or more records).    

 

Artiodactyla 

  

a) b) 

Figure 4.12 Scatterplots of Future Vulnerability across the Artiodactyla Families, a) Species losing range b) 

All species 

The Artiodactyla have 21 members represented in the LHTd213, 14 are Highly 

Vulnerable, one of which is classified as Extremely Vulnerable (Figure 4.13a).  Each of 

these Highly Vulnerable species are predicted to lose over 25% of their current range, 

and are not likely to be able to rapidly adapt to future conditions, indicated by their high 

Sensitivity scores (above 9.91).  The European Bison (Bison bonasus) is the most 

vulnerable Artiodactyla, with a Sensitivity score of 10.66 and predicted to lose 91% of 

its current distribution by 2080 it has a combined Vulnerability score of 1.56.  There are 
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four species projected to expand their ranges although none are expected to expand by 

above 10% of their current distribution, expansion below which value is considered to 

be within the natural variation of a species range (Figure 4.13b).   

 

Carnivora 

  

a) b) 

Figure 4.13 Scatterplot of Future Vulnerability scores by Family for the Carnivora a) Species losing range b) 

All species 

There are 25 of the 56 Carnivora species which are classified as Highly Vulnerable 

(Figure 4.14a).  This is the category which encompasses the largest number of 

Carnivora species.  The single Carnivora species classified as Extremely Vulnerable is 

the Brown bear (Ursus arctos, Vulnerability=1.41).  Seven of the eleven Felidae (Cats) 

represented in the LHTd are classified as Highly Vulnerable including the Lion 

(Panthera leo, Vulnerability=1.28), Jaguar (Panthera onca, Vulnerability=1.23), 

European Lynx (Lynx lynx, Vulnerability=1.23), the Ocelot (Leopardus pardalis, 

Vulnerability=1.21), Leopard (Panthera pardus, Vulnerability=1.20), Cheetah (Acionyx 

jubatus, Vulnerability=1.10) and Canada Lynx (Lynx Canadensis, Vulnerability=1.00).  

Five of the Highly Vulnerable Felidae are native to the tropics, with the exception of the 

two Lynx species.  The Sea Otter and Walrus were removed from further analysis due to 

their dependency on the sea as part of their habitat, which is not modelled here.  There 

are 14 species which are predicted to expand their ranges under the business-as-usual 



177 
 

scenario of climate change, with 11 species expanding beyond 10% of their current 

range by 2080 (Figure 4.14b).  However, none of these species fall into the category of 

Moderate Vulnerability, and therefore are unlikely to fulfil this degree of expansion due 

to their Sensitivity traits.  

 

Chiroptera 

  

a) b) 

 

Figure 4.14 Scatterplot of Future Vulnerability of Chiroptera species by Family, a) Species losing range b) All 

species 

There are 24 Chiroptera species in the LHTd none of which are classified as Extremely 

Vulnerable (Figure 4.15a). There are three species classified as being Highly Vulnerable, 

these are temperate species the Common bent-wing bat (Miniopterus schreibersii, 

Vulnerability=1.134), the Greater Horseshoe bat (Rhinolophus ferrumequinum, 

Vulnerability=0.97) and the Common Noctule (Nyctalus noctule, Vulnerability=0.94) 

(Figure 1a).  The largest group of Chiroptera (n=9) are classified as lowly Vulnerable, 

being both lowly sensitive and highly Exposed.  These species categorised in the Lowly 

Vulnerable classification are well placed to adapt to future climate change due to their 

low Sensitivity scores.     

 



178 
 

Didelphimorphia 

  

a) b) 

Figure 4.15 Future Vulnerability Scatterplot for the Didelmorphia families a) Species losing range b) All species 

There are no Didelphimorphia, the Opossums, classified as Extremely Vulnerable by 

2080 (Figure 4.16a).  The mean Vulnerability score across the Didelphimorphia is 0.52, 

with a minimum of 0.15 and maximum of 1.06. There is a single species in the Highly 

Vulnerable category the White-eared opossum (Didelphis albiventris, 

Vulnerability=1.06).  The remaining species are classified as Moderately Vulnerable and 

are at latent risk from climate change, due to their innate Sensitivity.  Three of the five 

species are predicted to expand their ranges (Figure 4.16b), with all three expanding by 

beyond 10% of their current distribution (Common opossum (Didelphis marsupalis, 

ExposureL =-0.39), Virginia Opossum (Didelphis virgianus, ExposureL =-0.29) and 

Robinson’s mouse opossum (Marmosa robinsoni, ExposureL =-0.32).  Thus, although 

these species are classified as moderately Vulnerable, due to their Sensitivity these 

expanding species have low overall Vulnerability scores ranging from 0.17 (Didelphis 

marsupalis) to 0.41 (Didelphis virgianus).          
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Eulipotyphla 

  

a) b) 

Figure 4.16 Future Vulnerability by Family Scatterplot for the Eulipotyphla a) Species losing range b) All 

species 

The Eulipotyphla (n=14), which include the hedgehogs, shrews and moles, have five 

species categorised as Highly Vulnerable, three Shrews (Soricidae), a Mole (Talpidae) 

and Hedgehog (Erinaceidae).  All of the species fall outside of the 'Extremely exposed' 

categories with no species projected to lose above 50% of their current range by 2080 

(Figure4.16a).  The largest group of Eulipotyphla (n=6) are found in the Moderately 

Vulnerable category on account of their individual Sensitivity scores.  However, four of 

these species are projected to expand their ranges to 2080 lowering their overall 

Vulnerability. Only two, the African pygmy hedgehog (ExposureL =-0.85) and the 

Eastern mole (ExposureL =-0.34) are predicted to expand their ranges by over 10% 

(Figure 4.16b).         
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Lagomorpha 

  

a) b) 

 

Figure 4.17 Future Vulnerability Scatterplot by family for the Lagomorpha a) Species losing range b) All 

species 

There are five species of Lagomorpha represented in the LHTd213 none of which is 

classified 'Extremely' or 'Highly vulnerable', this is due to the low Sensitivity scores 

across the species (Figure 4.17a).  The four Leporidae (Rabbits) are classified in the 

Least Concern category, with three of the four species projected to expand their ranges 

under climate change (Figure 4.17b).  The American Pika (Ochotona princeps), the sole 

Pika represented in the LHTd213, is categorised as Lowly Vulnerable, being of least 

concern, although requiring monitoring.       
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Primates 

  

a) b) 

Figure 4.18 Future Vulnerability by Family Scatterplot for the Primates a) Species losing range b) All species 

There are no Primates categorised as Extremely Vulnerable, however three are 

classified as 'Highly vulnerable' (Figure 4.18a).  Five of the eleven primates represented 

in the LHTd are predicted to lose part of their distribution, ranging between a 

contraction of 5% (Geoffroy’s spider monkey, Ateles geoffroyi) to 95% (Red-bellied titi, 

Callicebus moloch) (Figure 1.18a).  The most Vulnerable species is the Brown-mantled 

tamarind (Saguinus fuscicollis, Vulnerability=1.57).  The Black-capped capuchin (Cebus 

apella) is the most Sensitive of the Primate species represented (S=14.11) although 

climate change is not predicted to threaten its range (ExposureL =-0.55).  Six species are 

predicted to expand their distributions, with three predicted to expand their ranges 

above 10% of their current range (Figure 4.18b).  However, because each of these has 

Sensitivity score above 9.5 it is unlikely that these species will realize this expansion 

into the future.    
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Rodentia 

  

a) b) 

Figure 4.19 Future Vulnerability by Family Scatterplot for the Rodentia, a) Species losing range b) All species  

There are 59 species of Rodentia represented in the LHTd213 of which four, all 

members of the Sciuridae (squirrels) are classified as Extremely Vulnerable (Figure 

4.20a).  These include the Grey Squirrel (Sciurus carolinensis, Vulnerability=1.40), the 

Red squirrel (Sciurus vulgaris, Vulnerability=1.30), the Least Chipmunk (Tamias 

minimus Vulnerability=1.41) and the Cape ground squirrel (Xerus incuris, 

Vulnerability=1.43).  Sixteen of the 59, equivalent to 27% of species are classified as 

Highly Vulnerable with individuals from seven separate families.  The largest number of 

species (n=25) group into the Moderately Vulnerable category, with a further 5 species 

falling into the lowly Vulnerable category.  The 12 species in the Least Concern 

classification are mainly Cricetidae (n=8), which includes New World rats and mice, true 

hamsters, voles and lemmings.  There are 25 species projected to expand their 

distributions under future climate change, with 16 of these projected to expand their 

ranges above 10% (Figure 4.19b).         
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Future Vulnerability by Biogeographic Realm and across the Zones 

 

 
Figure 4.20 Species Vulnerability split by Biogeographic Realm 

There are 126 Temperate species and 83 Tropical species represented in LHTd213.  

Four species were removed from this part of the analysis as their distributions spanned 

both realms. In the LHTd213  17.4% of Temperate species (n=22) and 27.7% of Tropical 

species (n=23) are identified as Highly Vulnerable falling into the classification High 

ExposureL, High Sensitivity (Figure 4.21).  The realm to which a species exists, 

temperate or tropical, has influence on the species Vulnerability score (GLM, F (2,204) 

=1.66, p=0.27, ƞ2= 0.00).   

The biogeographic zone to which a species belongs has a modest influence on its 

Vulnerability (ANCOVA, F (7,199) =6.181, p= 0.00, ƞ2=0.17 (Covariate=Order)).   
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Most Vulnerable Moderately Vulnerable Least Vulnerable 

Zone Frequency Percentage Frequency Percentage Frequency Percentage 

Afrotropical 20 54.1 11 29.7 6 16.2 

Australian 0 0 1 50 1 50 

Nearctic 18 23.7 36 47.4 22 28.9 

Neotropical 10 29.4 17 50 7 20.6 

Oriental 3 27.3 5 45.4 3 27.3 

Palearctic 25 61 16 39 0 0 

Saharo-arabian 2 33.3 4 66.7 0 0 

Total 78 37.7 90 43.5 39 18.8 
Table 4.12 Vulnerability Classifications by Biogeographic zones 

To explore how Vulnerability varies across the zones Vulnerability scores were 

classified Most to Least Vulnerable  using the upper and lower quartiles as previously 

and the species split along the biogeographic zones (Table 4.12).  The Palearctic zone 

holds the greatest percentage of species classified as Most Vulnerable (n=25, 61%).  The 

Afrotropical zone also has over 50% of species represented classified as Vulnerable 

(n=20, 54.1%).  The Nearctic zone has the largest number of species accounted for in 

the Least Vulnerable classification and the largest percentage (n=22, 28.9%), when 

discounting the Australian zone due to its few species.  The majority of species for the 

Nearctic (n=36, 47.4%), Oriental (n=5, 45.4%) and Saharo-Arabian (n=4, 66.7%) zones 

are classified as moderately Vulnerable.         

 

4.3.5 Testing the Vulnerability Measure 

 

To test whether the calculation of the final Vulnerability score remains relatable to its 

constituent variables in Sensitivity and ExposureL a Pearson’s correlation test was 

completed, using r as the validation coefficient  (Stahl 2013) (Table 4.13).  The closer r 

is to 1 the better the validity.  This check was carried out to ensure no mistakes had 

been made in the calculation of the Sensitivity measure. 

In combination the ExposureL and Sensitivity measure were found to perfectly predict 

the Vulnerability measure (r=1.0, p=0.00), indicating that the Vulnerability measure 

loses no explanatory power in its creation.  Sensitivity is significantly positively 

correlated with the prediction of Vulnerability, (r=0.275, n=209, p=0.000), showing a 
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moderate relationship to Vulnerability.  This shows that the Vulnerability calculation 

remains true to the earlier finding that Vulnerability increases where species are more 

sensitive.  ExposureL is shown to strongly correlate with Vulnerability, (r=0.903, n=207, 

p=0.000).  In agreement with the conclusion that as a species is more Exposed to climate 

change the species becomes more Vulnerable.     

 These correlations were further analysed in a comparison with the component 

variables making up the PCAf, and which determine the Sensitivity measure.  The 

Vulnerability measure maintains the relationships between the Sensitivity variables 

identified in Chapter Three.  For example, both gestation length and time to sexual 

maturity are related to species sensitivity, increases in both are reflected in increased 

Sensitivity.  This relationship remains apparent when testing the correlation between 

the composite Vulnerability measure and gestation length and sexual maturity, an 

increase in either is relatable to increased Vulnerability with both modestly influencing 

the final Vulnerability measure (Gestation r=0.268, p=0.00; Sexual Maturity r=0.350, 

p=0.00). 

Body mass is known to strongly correlate with several life history traits and has been 

shown to influence where a species lies on the r-K continuum although is not sufficient 

as the sole determinant (Purvis et al. 2000; Bielby et al. 2007).  Thus, body mass was 

included in the analysis to examine the strength of correlation with Vulnerability.  Body 

mass was observed to moderately correlate with Vulnerability (r=-0.263, n=209, 

p=0.00).    
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Vulnerability 

Traits 

Pearson 

Correlat

ion 

Sig. (1- 

tailed) 
N 

  Mass (log.g) 0.263 0.00 207 

ExposureL ExposureL (Proportion Loss) 0.903 0.00 207 

Sensitivity Sensitivity 0.275 0.00 207 

S
e

n
si

ti
v

it
y

 V
a

ri
a

b
le

s 

Weaning Age (log. Days) 0.236 0.00 207 

Litters per Year (log.N) -0.262 0.00 207 

Sexual Maturity log.(Days) 0.350 0.00 207 

Longevity (log. Months) 0.305 0.00 207 

Gestation (log. Days) 0.268 0.00 207 

Litter Size (N) -0.162 0.02 207 

Endemic -0.091 0.193 207 

Climate Niche Breadth 0.05 0.472 207 

Habitat Breadth  -0.082 0.241 207 

Diet Breadth  0.06 0.394 207 

Table 4.13 Pearson’s correlation coefficient tests between Vulnerability with its constituent variables and 

body mass 

The maintenance of correlations between Vulnerability and the raw variables of 

Sensitivity and ExposureL, and also with body mass, indicate that through the method of 

calculation used to construct the Vulnerability measure has ensured that Vulnerability 

remains relatable to its constituent parts (Table 4.13).     

 

4.4 Discussion 

 

This chapter has developed a method of predicting species future Vulnerability to 

climate change and using this method it has explored future Vulnerability across 

Mammal Orders.  It has also sought to identify those environmental and life history 

characteristics which predispose species to be Vulnerable, and those species, Orders 

and biogeographic zones biotas which possess these characteristics.  The assessment of 

species future Vulnerability to climate change has been forwarded as a method which 

could aid the prioritisation of species found to be most at risk for conservation effort 

(Dawson et al. 2011).  The forecasting of future risk to climate change requires 
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knowledge not only of the degree to which a species is likely to be exposed to climate 

change but also the identification of traits which predispose the species to being 

susceptible to climate change (Fritz et al. 2009).  

 

4.4.1 Investigating Trends in Future Exposure to Climate Change 

 

Which species are most exposed under future climate change?  

In this analysis 69% of species are predicted to experience range contractions this is 

less than the percentage predicted by Schloss et al. (2012) who predicted 87% of 

mammal species to lose range.  However, Schloss et al only considered Western 

Hemisphere mammals, specifically those in North and South America, whereas this is a 

global analysis.  There is large variation among regional biota and an individual taxon’s   

susceptibility to climate change meaning that extinctions may be as low as 1% and as 

high as 80%. (Fischlin et al. 2007).  This regional variation partially explains why the 

predicted figures for range contractions are not more closely matched.  Projections of 

future global extinctions estimate that 20-30% of species experiencing 2-3°C warming 

above pre-industrial levels; will be increasingly at risk of extinction (Fischlin et al. 

2007).  Across the Mammals represented in the LHTd1084, 28% are predicted to lose 

over 50% of their current distribution by 2080 under a projected warming of circa. 

2.4°C, tying in with IPCC projections.   

There are 108 species predicted to lose above 80% of their current range by 2080 in the 

LHTd1084 of these only eight are represented in the LHTd213 and have associated 

Sensitivity data.  There are 12 of the 108 species whose suitable climate space is 

predicted to shrink to below 10% of their current ranges, and which are considered 

extremely exposed.  There are two species predicted to lose their entire range, the 

Desert pygmy mouse (Mus indutus) and the Pale Gerbil (Gerbillus perpallidus).  The 

LHTd213 represents only two of the 'Extremely exposed' species (<10%), the red 

bellied titi (Callicebus moloch, ExposureR=0.95) and the European bison (Bison bonasus, 

ExposureR =0.08).  The final 8 species completing this list include, in the 

Didelphimorphia, the Brown four-eyed opossum (Metachirus nudicaudatus, ExposureR 

=0.91), in the Eulipotyphla, the Prebel’s shrew (Sorex preblei, ExposureR =0.04), the 

Macroscelidea, the Bushveld elephant shrew (Elephantulus intufi, ExposureR =0.03) and 
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five Rodentia species.  These Rodentia are the Mexican volcano mouse (Neotomodon 

alstoni, ExposureR =0.97), the Brown deer mouse (Peromyscus megalops, ExposureR 

=0.93), the Philippine forest rat (Rattus everetti, ExposureR =0.09), the Philippine pygmy 

squirrel (Exilisciurus concinnus) and the Belding’s ground squirrel (Spermophiulus 

beldingi, ExposureR =0.97).  This analysis will refer back to these species at the close of 

this section to elucidate on the possible reasons for these species exhibiting heightened 

exposure. 

 

Order 

The Order to which a species belongs is shown to significantly relate to the degree to 

which it is likely to be exposed in the future, although the effect size is weak (ANOVA, 

ExposureR, F (20, 1062) =1.837, p=0.01, ƞ2=0.03).  This significant relationship is also 

evident in the LHTd213 (F (14,194) =1.686, p=0.06, ƞ2=0.10).  It is possible that this 

relationship is a relic of past exposure.  In Chapter Three Sensitivity was found to 

inversely correlate with past exposure with species having experienced a high velocity 

of climate change in the past being less Sensitive.  Further, this theory predicts that a 

fingerprint of this past exposure will influence Sensitivity and be apparent in the degree 

to which species will be impacted by future climate change (Fritz et al. 2009).  The 

Order to which a species belongs is significant in explaining between species variation 

across Sensitivity, thus, the relationship between Order and the degree of future 

exposure may be relatable to the fingerprint of past exposure on Sensitivity.  A 

Pearson’s product moment correlation coefficient was computed to assess the 

relationship between Sensitivity and Future ExposureR.  There is a modest, significant 

correlation between Sensitivity and Future ExposureR (r=0.164, n=209, p=0.01).  This 

would indicate that, as theorised, past climate change has left an imprint on current 

regional Sensitivity and this fingerprint will affect the degree to which species are 

exposed under future climate change.   

 

Biogeographic realms and zonal exposure  

Climate change is predicted to disproportionately negatively impact species within 

tropical zones (Beaumont et al. 2009).  There is  no suggestion that absolute 
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temperatures (Δ°C) will rise more in the tropics than in the temperate realm, however, it 

is hypothesized that future warming relative to past climate variability will be larger in 

the tropics (Beaumont et al. 2009).  Thus, a small rise in temperature in the tropics is 

predicted to have a greater impact on tropical biota compared to the same rise on 

temperate species (Beaumont et al. 2009).  Terrestrial species at higher latitudes, 

specifically in the circumpolar latitudes, are also thought to be  disproportionately at 

risk in parallel with the rate of warming at these latitudes (Deutsch et al. 2008). 

ExposureR values were not found to be significantly related to the realm, tropical or 

temperate, in which species occurred in both the LHTd1084 (ANOVA (F (1, 1077) 

=1.865, p=0.18) and within the LHTd213 (ANOVA, (F (1,207) =0.614, p=0.43).  A 

possible explanation for this result lies in the fact that both tropical and temperate 

(circumpolar latitudes) are predicted to be at high risk under future climate change, 

although for different reasons as explained above.  Therefore, at the geographic scale of 

realm ANOVA is unable to distinguish between the more subtle variations in exposure 

recognised at the scale of biogeographic zones.  This variation can be observed in the 

exploration of exposure across biogeographic zones using ANOVA, ExposureR was 

significantly related to zone in the LHTd1084 (F (6, 1070), p=0.00), a relationship which 

is preserved in the LHTd213 (F (6,202) =7.7, p=0.00).  Results from zonal comparisons 

reflect the patterns of exposure predicted in the literature due to increased climate 

variability and to disappearing climate space and climate mismatches by identifying the 

Afrotropical, Neotropical and Oriental zones as harbouring the greatest percentages of 

species predicted to be most exposed to future climate change (Williams and Jackson 

2007; Beaumont et al. 2009).   

 

Ecological Factors linked to Exposure  

Are there ecological factors which predetermine individual susceptibility to future climate 

change? 

Disappearing climates are predicted to leave some species without suitable habitats 

with the probable result being their extinction (Williams, Jackson and Kutzbacht 2007).   

Thus, species extinctions are a likely consequence of climate change (Memmott et al. 

2007).  Several environmental factors are commonly identified as conferring high risk 

to future climate change, predicted to be manifested in future exposure values include 
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range-restriction, narrow climatic tolerances and dispersal capacity  (Beaumont et al. 

2009).  Species expected to be most at risk of extinction are those inhabiting mountain 

ecosystems, including montane tropical forests (Fischlin et al. 2007), and species which 

have already been exposed to other stressors, such as habitat loss (Williams and 

Jackson 2007; Williams, Jackson and Kutzbacht 2007).  The fact that many populations 

are already threatened, means that any further loss of habitat associated with climate 

change will likely push these species to extinction (Fischlin et al. 2007).    

 

Are climate specialists more at risk? 

Functional limitations, related to a species environmental climate niche, are recognised 

as restricting the capacity to which species are able to adapt to novel climate conditions 

within their current range (Cahill et al. 2013).  Thus, Climate specialists, species with 

narrow environmental climate niches are predicted to be at higher risk than species 

with more generalist requirements because they are restricted to inhabiting a limited 

range of possible climates by their tolerances (Kearney and Porter 2004; Dawson et al. 

2011; Cahill et al. 2013).  In the LHTd1084 219 species are defined as being climate 

specialists (Niche breadth<12.5%).  Climate niche breadth has been observed to be 

preserved above the species level (Hadly et al. 2009), thus one might expect a 

relationship between Order and climate specialism.  However, there is no relationship 

apparent between the Order to which a species belongs and the number of climate 

specialists species (ANOVA, F (20, 1083) =1.195, p=0.25).   

In a comparison of climate niche and ExposureR values across the LHTd1084, climate 

niche was found to be non-significant in determining future exposure (ANOVA, F (1, 

1081) =0.017, p=0.897).  Due to predicted regional climate variability this relationship 

was again tested across the biogeographic zones.  The Afrotropical and Neotropical 

zones are the only zones with sufficient recorded climate specialists to test for whether 

climate specialism has an impact on future exposure.  Between these zones neither was 

found to demonstrate a significant relationship between future exposure and climate 

specialism.         
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Are range-restricted species more at risk? 

Extinctions and local extinctions are predicted to be especially prevalent among range-

restricted species (Fischlin et al. 2007).  There are 39 species classified as having 

restricted ranges (<250,000km2,Ceballos and Ehrlich 2006) within the LHTd1084, 

equivalent to only 3% of the data.  Within the data there is a significant relationship 

between Order and range-restriction (ANOVA, F (20, 1083) =6.045, p=0.00).  This 

relationship has the potential to be used as an indicator of the impact of future climate 

change if range-restriction is valuable in predicting future exposure.  

An ANOVA was run to test whether there is an association between range-restriction 

and future ExposureR, the result was non-significant (F (1, 1081) =0.793, p=0.373) 

indicating that non-range-restricted species are equally susceptible to future exposure.  

However, range restriction was identified as significant in predicting future exposure 

when comparing within-zone variation using ANOVA.  The Nearctic zone is the only 

zone which has sufficient records (n=22) to test whether exposure is predicted to be 

more severe amongst range-restricted species by region.  A significant relationship was 

apparent between ExposureR and range-restricted species (ANOVA F (1,291) =5.987, 

p=0.01), with range-restricted species correlating significantly with increased exposure 

(Pearson’s one-tailed correlation, r=-0.194, p=0.00).  This trend may not be apparent 

across the whole dataset because of the limited number of restricted-range species 

represented, an issue previously recognised by Warren et al (2013).    

Are species which are range restricted and climate specialists more at risk? 

Range restriction in combination with climate specialism has been identified as 

conferring heightened future risk to climate change (Thomas 2010).  A significant 

relationship was identified between species which are both range-restricted and are 

climate specialists and future exposure (GLM, ExposureR vs. (range-

restricted*specialist), F (1, 1079) =9.53, p=0.00).  Therefore, confirming the hypothesis 

that range-restriction and climate specialism in combination predisposes species to 

increased risk under future climate change.   

Are endemic species more at risk? 

Endemics may be disproportionately at risk from future climate exposure as many are 

range-restricted and have specialised climate requirements (Thomas 2010). There are 
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nineteen endemic species predicted to lose above 80% of their current range by 2080 

(ExposureR=0.20), equivalent to 14% of the total endemics and 17% of the most 

exposed species.  The Endemic species in the LHTd (n=131) are characterised as being 

more likely to exhibit narrow climate tolerance (ANOVA, F (1, 1081) =9.611, p=0.00) or 

to be range-restricted (ANOVA, F (1, 1081) =73.57, p=0.00), confirming the above 

statement.  However, no link was found in the data to suggest that they were 

significantly more likely to exhibit both characteristics (GLM, Endemic vs. (range-

restriction* climate specialist) F (1, 1079) =2.21, p=0.13), a prerequisite for explaining 

why endemics are predicted to be more at risk than other species to future climate 

change.  Thus, it is of no surprise that there was not a significant relationship between 

whether a species is endemic and the degree to which it is predicted to be exposed 

(F(1,1081)=0.04, p=0.947).  Despite the fact that restricted range and climate specialism 

were both found to explain within group variation between endemics and non-

endemics, few endemic species display both of these characteristics, and in isolation 

neither were found to adequately account for greater risk to future climate change 

among the species represented in the LHTd1084.             

Across the group of twelve species categorised as ‘Extremely Exposed’ six species occur 

within regions demonstrating the largest degree of climate change.  These regions, the 

Neotropical, Afrotropical and Oriental each hold two of the six species.  As previously 

discussed, species occurring in regions predicted to experience high climate change are 

more at risk because they are unable to keep pace with such rapidly changing and novel 

climate space.  Four of the Nearctic species and the single Saharo-Arabian species, the 

Mexican volcano mouse (Neotomodon alstoni), the Brown deer mouse (Peromyscus 

megalops, ExposureR=0.03), and the Belding’s ground squirrel (Spermophiulus beldingi), 

and the Saharo-Arabian pale gerbil (Gerbillus perpallidus) are species which are both 

range-restricted and climate specialists.  These factors have been identified in the 

literature as pre-dis posing species to large contractions in future climate space 

(Kearney and Porter 2004; Dawson et al. 2011; Cahill et al. 2013).  The species 

unaccounted for by any environmental factor explaining their heightened risk to future 

climate change include the Palearctic European bison (Bison bonasus) and the Nearctic 

Prebel’s shrew (Sorex preblei).  Both the Prebel’s shrew and the pale gerbil are 

identified as climate specialists, however this factor was not found to conclusively 

explain exposure risk.  In the IUCN red list it is noted that the apparent rarity of the 
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Prebel’s shrew may be an artefact of low sampling effort (IUCN) which could explain 

why it is determined as being extremely exposed.  The European bison was re-

introduced to some countries in Europe having been brought to the brink of extinction 

by hunting pressure it is now classified as Vulnerable by the IUCN (IUCN 2012) having 

low abundance which is reflected in its classification as having restricted range.  This 

may explain the European bison’s appearance amongst the 'Extremely Exposed'.   

What characterize species which are predicted to thrive under future climate change?  

It is theorized in the literature that some species will potentially expand their ranges 

into the future by colonizing geographical locations that duly fulfil their niche 

requirements (Colwell and Rangel 2009).  There are 336 species, equivalent to 30% of 

the total species in the LHTd1084, predicted to maintain stable ranges or for which 

suitable climate space expands in the future under climate change (ExposureR>1).  

Within the 336 species there are 270 species which are projected to expand their 

potential distribution above 10% and 76 of these above 50%.    

One ecological-based argument for explaining these projected species expansions are 

related to the observations of the effect of recent climate change.  Namely, that species 

are colonizing previously ‘cool’ regions, as environmental conditions begin to fall within 

their environmental niche requirements; a phenomenon already observed in the arctic, 

where arctic specialists ranges are contracting and temperate species expanding 

(Parmesan and Yohe 2003).  Large-range size and broad environmental climate 

tolerances have been cited as being a factor supporting resilience to climate change 

(Williams 2008).  Thus, the following his section examines whether either factor can be 

identified as playing a role in facilitating species range expansion under future climate 

change. 

Are large range species more resilient? 

There are 290 species which ranges larger than 4000000km2 (representing the upper 

quartile of the distributions in the LHTd1084).  There are 75 species classified as 

predicted to expand their ranges above 10% of their current range which also have 

ranges categorized as large, 27% of the total number of expanding species, which is a 

small proportion of all those species projected to expand.  Large range was found not 

have a significant relation to future exposure values (ANOVA, (F (1, 1084) =2.453, 

p=0.118)), and no correlation was found between future ExposureR and large range size 
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(one-tailed, r=-0.48, p=0.18).  Significant relationships were reported between large-

ranged species and ExposureR values for the Afrotropical (ANOVA, F (1,245) =4.281, 

p=0.04) and Palearctic zones (F (1,105) =4.411, p=0.03) the two zones with sufficient 

records (>30 samples per group, (Cohen 1988)), with range sizes negatively correlating 

with loss of future suitable climate space ((Afrotropical, r=-0.13, p=0.04), (Palearctic r=-

0.132, p=0.03)).  These results could indicate that large range species are better able to 

cope with disturbances in regions where the degree of warming is large or climate 

variability is widespread.  The climate in the Afrotropical zone is projected to change a 

great deal with large parts of the region predicted to experience changing and novel 

climates (Williams, Jackson and Kutzbach 2007).  The Palearctic zone is predicted to 

experience the largest degree of absolute warming (Deutsch et al. 2008).  However, 

without being able to test for this relationship across the remaining zones it is difficult 

to say whether this finding is robust. 

Are climate generalists more resilient?  

Species which can exploit an extensive range of climates due to a wide niche breadth, 

climate generalists, are predicted to be better able to adapt to future climate change 

because they are able to exploit a wider range of climate space (Williams et al. 2008).  

Species determined as climate generalists (Niche breadth=>0.5, n=86) were found not 

be significantly less exposed than other species (ANOVA, (F (1, 1081) =1.913, p=0.167).  

This analysis could not be assessed at the level of biogeographic zone as no region has 

sufficient records.    

There was no link found between future exposure and climate generalism and large-

range in combination (GLM, ExposureR vs. (climate generalist* large-range) F (1, 1080) 

=2.381, p=0.12) suggesting that these traits do not confer resilience to future exposure 

or increase the likelihood that a species will expand its current range.  

To conclude this section although no role was found for climate niche specialism or, 

range-restriction in isolation in explaining variation in future levels of exposure across 

species, in combination species which are both range-restricted and have narrow 

climate tolerances were found to be more at risk than those exhibiting one or neither 

characteristic.  This conclusion ties in with trends evidenced in the literature (Thomas 

2010).  Endemic species represented in the dataset were not found to be more at risk 

from future climate change, although this is likely to be related to the fact that not all 
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species termed endemic are range-restricted and climate specialists, factors cited as 

conferring endemic species particular susceptibility (Thomas 2010).   

 

4.4.2 Is there a signal of regional past exposure apparent in the Sensitivity 

measure? 

 

If the ‘Ghosts of Species Past’ theory (Fritz et al 2009) is correct then one would expect 

species Sensitivity to vary across zones in relation to variation in past exposure (see 

Chapter Three Section 3.4.3).  Differences in Sensitivity across biogeographic zones 

were not tested for in the previous chapter.  In agreement with the theory a significant 

difference in the distribution of Sensitivity is apparent when tested against 

biogeographic zones in the LHTd213 (ANOVA, F (6,202) =4.11, p=0.00).  During the 

most recent episode of past climate change the temperate regions, particularly the 

Nearctic and Palearctic zones into which glaciers extended during the LGM, experienced 

the greatest velocities of past warming (Fritz et al. 2009; Sandel et al. 2011; Turvey and 

Fritz 2011).  This hypothesis is confirmed within the data where the Neotropical and 

the Afrotropical zone have the largest percentages of most Sensitive species 

(Sensitivity=10>) within the zones species pool (Neotropical zone= 82% and 

Afrotropical zone=70%).  The Nearctic and Palearctic zones have the least percentage of 

most Sensitive species, 63% and 53%, of each zones species pool, respectively.          

  

4.4.3 Investigating patterns of Species Vulnerability to Future Climate Change 

 

Which species are identified as being highly Vulnerable?  

The species determined as being the most Vulnerable species is the Brown-mantled 

tamarind (Saguinus fuscicollis, Vulnerability=1.58) and the least Vulnerable the Cotton 

Mouse (Peromyscus gossypinus, Vulnerability=-0.39).  Across the top 10% of Most 

Vulnerable species there are six common to either the top Most Sensitive or top Most 

Exposed species.  Those included from the top 10% most Sensitive include the Tufted 

capuchin (Cebus paella) and the Brown bear (Ursus arctos).  The remaining four 

belonging to the 10% Most Exposed, include the European bison (Bison bonasus), the 
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Brown- mantled tamarin (Sanguinus fusicollis), the Common mole rat (Crymptomys 

hottentotus ) and the Giant Anteater (Myrmecophaga tridactyla).  Those species in the 

top 10% which don’t appear in the top 10% of most Sensitive or most Exposed include 

the Fennec fox (Vulpes zerda), the Striped polecat (Ictonyx striatus), the Grey Squirrel 

(Sciurus carolinensis), the Rock Hyrax (Procavia capensis), the Least Chipmunk (Tamias 

minimus) and the Cape ground squirrel (Xerus inauris).  Therefore, it can be concluded 

that these remaining species appear among the top 10% most Vulnerable due to a 

combination of High Sensitivity scores and High future Exposure. 

 

What determines future Vulnerability to Climate Change? 

Disturbance, Resilience and the r-K Continuum 

In the previous chapter Sensitivity was found to robustly relate to the characteristics 

theorised to support resilience, with species having a short life span, high reproductive 

capacity and fast life history (Williams et al. 2008), having low Sensitivity.  In contrast 

those species identified as 'Highly sensitive' are characterized by ‘slow’ or k-selected 

traits, such as low reproductive capacity, having narrow diet and habitat requirements.     

Importantly the Order to which a species belongs is significant in explaining variation 

within the Vulnerability measure (ANOVA (F (14,192) =2.554, p=0.00).  The most 

vulnerable Orders, those with largest percentage of their total species richness 

occurring within the upper quartile of Vulnerability scores, include the Artiodactyla 

(Total richness= 21, Most Vulnerable=52.4%), the Carnivora (Total richness=56, Most 

Vulnerable=32.1%) and the Primates (Total richness=11, Most Vulnerable=27.7%).  The 

least vulnerable Orders, those which have the large percentage of their total species in 

the lower quartile of Vulnerability scores, include the Lagomorpha (total richness=5, 

Least Vulnerable=80%) Didelmorphia (total richness=5, Least Vulnerable=60%), 

Chiroptera (n=24, Least Vulnerable=37.5%), and the Rodentia (total richness=59, Least 

Vulnerable=33%).  These patterns of most and least Vulnerable Orders reflect the 

pattern within the Sensitivity measure.   
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  Is climate niche significant for determining vulnerability? 

As previously highlighted, Climate specialists, species with narrow environmental 

climate niches are predicted to be more vulnerable to future climate change because 

they are less able to adapt to climate variability, restricted to inhabiting a limited range 

of possible climates by their tolerances (Williams et al 2008). Generalist species 

(Climate niche breadth=50%>), however, were not found to be less Vulnerable than the 

average species (ANOVA (F (1,205) =0.131, p=0.718).  Thus, climate niche breadth is a 

poor indicator of species future vulnerability.      

   

Is restricted range relatable to vulnerability? 

As previously discussed, climate change is also predicted to disproportionately affect 

range-restricted species (Thomas et al 2004).  Unfortunately, there are no range-

restricted species (<250,000km2) represented in the LHTd213 to test whether this 

relationship is apparent across future Vulnerability scores.  So, this analysis is unable to 

confirm whether range-restricted species are disproportionately at risk from future 

climate change. 

 

Is Endemism relatable to Vulnerability? 

Endemism has been linked to increase Vulnerability, particularly with regards to 

species’ future exposure.  However, within both the LHTd1084 and LHTd213 

endemicity was not found to significantly contribute to explaining future ExposureL.  

Further, within the LHTd213 endemism was not found to significantly explain variation 

in future Vulnerability (ANOVA, F (1,206) =1.70, p=0.19).  However, within the 

LHTd213 there are few endemic species represented (n=11), and these are species 

which are not range-restricted or isolated on islands, traits determined as conferring 

endemics with their high vulnerability (Thomas 2010).  Thus, this analysis is unable to 

measure robustly whether endemism confers heightened Vulnerability.  

Does Vulnerability to future climate change vary spatially?  

There is predicted to be regional variability in the degree to which species are 

Vulnerable to future climate change on account of both past sensitivity filtering and 

future predicted exposure (Beaumont et al 2010).  To aid interpretation of global 
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patterns of variation in future vulnerability and variability in the constituent ExposureL 

and Sensitivity measures a series of maps (Figure 4.22) were created illustrating a) 

Future Vulnerability (most vulnerable as a percentage of total mammal species richness, 

b) Exposure (most exposed as a percentage of total species richness) and c) Sensitivity 

(most sensitive as a percentage of total species richness).  Figure 4.22(d) illustrates 

total species richness across the LHTd213.  Total species richness in this case refers to 

the number of species analysed in this research (Total species richness=213) 

 

 

a) 

 b) c) 

d) 

Figure 4.21 a) Vulnerability map (% most Vulnerable b) Exposure map (% most exposed), c) Sensitivity map (% most 
Sensitive), d) Species Richness map 
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Vulnerability was found to be significantly attributable to biogeographic zone when 

accounting for within Order variation (ANCOVA, F (7,199) =2.55, p=0.00).  The 

Afrotropical zone has greatest percentage of species classified in the most Vulnerable 

category (Vulnerability=U.Q>) with 54.1% of the total species pool falling into this 

classification (Table 4.13).  This pattern is reflected in the Vulnerability map (Figure 

4.22a) which shows that between 50-75% of species represented in this region are 

classified among the most Vulnerable.  The Palearctic zone has the next largest 

percentage, 36%, followed by the Neotropical zone with 26.5% of the species pool 

within the Most Vulnerable category.  The Nearctic zone has the lowest percentage of 

species categorized as most Vulnerable at 9%, and this detail is apparent in the 

Vulnerability map (Figure 4.22a), where the major part of the region is shaded grey 

which represents no vulnerable species present.  These results tie in with the results of 

Foden et al (2013) who found that birds of the Amazon basin and eastern South 

America, Europe, the Congo basin and parts of North America were particularly 

Vulnerable under future climate change.  Amphibians were also found to be Vulnerable 

to climate change in Eurasia, southern North America to Mesoamerica and Madagascar 

(Foden et al. 2013) . 

 

 ‘Colonist’ Species and Climate Change  

There are several recognised traits that are common among ‘colonist’ species, for 

example they are mainly generalists; having broad dietary and habitat niches (Rödder 

and Weinsheimer 2009), and they often have a high reproductive rate, are fast growing 

and are successful dispersers (Vitousek et al. 1996).  Whether a species is a climate 

generalist or not was found not to significantly explain variation across Vulnerability 

scores (F (1,205) =0.13, p=0.71), with 8 of the 25 climate generalists in the dataset 

(32%) being amongst the top most Vulnerable species.   

In the previous section on the resilience of large-ranged species to Exposure, large 

range size was found to significantly relate significantly to the species   potential for 

range expansion.  There are 74 species classified as having large ranges (4000000km2>) 

within the LHTd213, of these 21 are projected to expand their ranges by above 10% 

under future ExposureL.  However, large range was not found to be significant in 

explaining variation in future Vulnerability (ANOVA, F (1,205) =0.451, p=0.51).  In fact 
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of 66% (n=14) of the species classified as having the largest ranges are amongst the 

most Vulnerable.   

 Thus, species with large ranges currently or generalist tendencies are no more or less 

vulnerable to future climate change than species with smaller ranges and more 

specialist tendencies.      

 

Predicting Vulnerability for an Iconic Species 

Climate change has been attributed as a direct factor in increased endangerment for 

relatively few species,(IUCN 2009).  One of the species represented in the LHTd213 is 

the Arctic fox (Vulpes lagopus).  The Arctic fox is considered to be a good indicator of the 

overall health of the tundra ecosystem as one of the top land-dwelling predators (IUCN 

2009).  Thus, projecting the impact of future climate change on the fox is of special 

interest.  Warming is predicted to affect the fox in three ways, i) range reduction, ii) 

increased competition with the red fox (Vulpes vulpes), and iii) fluctuations in prey 

availability (IUCN 2009). 

    

Range reduction is predicted because the high latitudes, in which the Artic fox is found, 

are predicted to experience the greatest degree of absolute warming (Fischlin et al. 

2007).  The Artic fox is projected to lose 41% of current suitable habitat by 2080 

(ExposureL=0.41), reflecting the trend northward already observed in response to 

recent climate change (IUCN 2009).  The Artic fox is an obligate carnivore with a 

comparatively long life span (mean longevity=15 years), a short gestation period (53 

days) and a single large litter each year (mean litter size=7), being neither strongly r- or 

K- selected and this is reflected in its Sensitivity score (Sensitivity=9.90), which is close 

to the mean Sensitivity value across the LHTd213.  The average Vulnerability score is 

0.78, the Artic fox, as a result of the degree to which it is predicted to lose suitable 

climate space has a Vulnerability score of 0.98, although it is not among the most 

Vulnerable (Vulnerability=1.05>) due to its Sensitivity traits it is more vulnerable than 

its nearest relative the red fox (Vulpes vulpes, Vulnerability=0.81).  Interestingly, the 

Artic fox’s nearest competitor, the red fox, is projected to increases its range northward, 

to partially overlap the future range of the Arctic fox by 2080 under the SRES A1B 

scenario (Wallace Initiative 2013).  This would have the effect of increasing the Arctic 
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fox overall vulnerability due to competition.   The Vulnerability measure does reflect the 

broad trends predicted by the IUCN in terms of future exposure and adaptive capacity 

but cannot capture additional more localised interactions.         

 

4.4.4 Justification of methods and caveats 

 

Which additional factors are theorized to predict Vulnerability? 

There are several additional factors considered to be important in the prediction of 

vulnerability unaccounted for by the Vulnerability measure.  The full set of factors 

judged to be important in determination of future vulnerability are described in the 

Vulnerability framework (Williams et al. 2008), a summarized version of which is 

illustrated in Figure 4.23.      

Factors assessed as being important in the measurement of Sensitivity, which are 

omitted in this analysis include: i) genetic diversity and inbreeding susceptibility, ii) 

population dynamics and minimum viable population size, and, iii) genetic, ecological 

and phenotypic plasticity.  Each of these factors and reasoning behind their omission 

are discussed in further detail in Chapter Three. 
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Figure 4.22 Summarized Vulnerability Framework (after Williams et al 2008) white text signifies factors accounted for in 
the Vulnerability measure.* Only partial representation as concerned with climate variation only 

There are also factors relating to the measure of future Exposure which are not 

accounted for in this analysis of Vulnerability.  These factors include i) Ecological factors 

such as, habitat use, biotic and abiotic interactions, and, iii) micro-habitat and 

topographic buffering.  However, micro-habitat and topographic buffering and biotic 

interactions are not hypothesized to affect the distributions of species at the global scale 

(Pearson and Dawson 2003).  Topographic elements are theorized to take effect at the 

regional to local scale and biotic interactions at the local to micro scale (Pearson and 

Dawson 2003, see Appendix One: Model Appraisal Appendix).  Abiotic factors such as 

soil type are also theorized to play a role in determining species distribution but at the 

local and site level (Pearson and Dawson 2003).  Thus, in an analysis of Vulnerability 

looking for patterns at the global scale, importance is negligible.  It important to 

recognise that these factors will however influence the application of vulnerability 

analysis to species assessment below the global scale and need to be considered when 

seeking to apply knowledge gathered in this analysis to in real world situations. 

Vulnerability 

Ecology 
- Habitat use 

- Biotic interactions 

- Abiotic interaction 

Habitat Changes* 
-Mis-match between habitat 
and species (space and time) 
- Changes in habitat suitability 
 

Physiology 
-Climatic preferences/ 

tolerances 
- Metabolism 

 

 

Adaptive 
Capacity 

- Genetic diversity 
- Phylogeographic 
diversity 
- Plasticity (genetic/ 
ecological/ phenotypic) 

Genetic 

Diversity 

Resilience 
-Life history traits 
- Dispersal/ colonisation 
potential 
- Population Dynamics 
- Inbreeding susceptibility 
- Minimum viable 
population 

Microhabitat/ 
Topographic 

Buffering 

Regional 

Climatic 

Change 

Species 

Sensitivity 
Exposure 



203 
 

Caveats associated with the calculation of Vulnerability 

There are several widely acknowledged caveats associated with species distribution 

modelling, which are broadly related to, i) uncertainties in the model process and the 

requisite data, ii) incomplete representation of biotic and abiotic factors, and iii) 

extrapolation of current conditions to the future.  These are further discussed in 

Appendix One the Model Appraisal Appendix. 

With regards to this particular analysis uncertainty in projections is introduced in, i) the 

creation of the initial climate representation, ii) in the projections of future distributions 

and the associated dispersal mechanism, iii) incomplete representation of global 

mammal species richness.   

First, with regards to the creation of the initial climate representation created to 

describe the species climate niche using Maxent.  As discussed in the Maxent case study 

(Appendix Two: The Wallace Initiative Model and Species Distribution Modelling 

Techniques) selecting the most appropriate set of environmental variables is key to the 

prediction of the species niche (Phillips and Dudik 2008).  The modelling process 

needed to be automated in order to facilitate the creation of thousands of individual 

species distribution predictions in the Wallace Initiative (Warren et al. 2013).  There is 

no mechanism in the Maxent model to automate the selection of the most appropriate 

variables when iterating through species.  This necessitated the selection of a set of 

climate variables which are widely accepted as being important in the definition of a 

large number of specie’s distributions (Warren et al. 2013).  Therefore, the 

environmental variables in the fixed set may not characterise the species climate niche 

as accurately as those selected by Maxent filtering into uncertainty around the 

predicted distribution.  In the Maxent case study (illustrated in Appendix Two) the 

contribution of individual variables in describing the climate niche of the Common Frog 

was investigated.  This analysis showed that during the process of variable selection 

only four of the pre-determined eight variable set defined by the Wallace Initiative 

appeared in the top eight most descriptive variables.  Four environmental variables 

were better suited to describing the species niche.  There is no measure of the degree to 

which having a proxy-variable set compared to the Maxent selected set affected the final 

distribution.  However, it is likely that using a more simplified set of variables results in 

a less nuanced prediction leading to under or over-estimation of the final distribution.  
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This uncertainty could be narrowed by running Maxent for a representative set of 

individual species from each taxonomic group allowing the model to select the most 

salient variables.  Then on the basis of these to create a bespoke set of variables for each 

taxonomic grouping.                 

Further relating to the representation of climate is the uncertainty rooted in the initial 

representation of the climate system by the GCM.  Inconsistency in the GCM outputs 

stems from the mechanisms used to represent climate and future climate (Beaumont et 

al 2008).  The degree to which alternative GCMs projections agree is both spatially 

sensitive, with some regions showing higher agreement than others, and temporally 

explicit, uncertainty widens the further from current conditions projections strayed 

(Wiens et al. 2009).  The impact of this inconsistency in model projections filters into 

the projections of species distributions particularly future distributions.  Regional 

uncertainty is particularly apparent in the Neotropical region due to the ability of 

individual GCMs to accurately represent the el Niño and la Niña weather systems 

leading to disagreement in the degree of future warming and changes in precipitation.  

In the case of the Wallace Initiative climatic uncertainty is narrowed by the use of an 

ensemble of seven GCMs, each of which is utilised to drive a projection of the individual 

species future distribution (Warren et al 2013).  The mean of this ensemble of 

projections is then taken to represent the species distribution.  Uncertainty in GCMs is 

further discussed in Appendix 3: Visualising Climate Change. 

One particular caveat in the model is the nature in which the dispersal mechanism is 

represented.  In the projection of suitable future climate space for mammals dispersal is 

set at 1.5km/yr for all species.  It is unlikely that all mammals will disperse at this rate.  

For instance, it is considered likely that many small-bodied mammals dispersal capacity 

will fall below this rate because of their tendency to follow more winding less direct 

dispersal pathways (Schloss et al. 2012) meaning the model will overestimate their 

potential to track suitable climate space.  Whereas, the estimated dispersal capacity of a 

small deer was measured at c.2km/yr (Francl et al. 2010), equivalent to an 

underestimation of dispersal range of 40km over the 80 year period (2000-2080) 

meaning the prediction of future distribution is unduly restricted.  However, data for 

individual species dispersal capacity is rare  (Williams et al. 2008; Warren et al. 2013) 

and not accounting for dispersal in any form is a serious weakness (Heikkinen et al. 
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2006; Wiens et al. 2009).  This under- or overestimation of dispersal capacity will affect 

the results by inflating or under calculating the percentage of species predicted to be at 

risk under future climate change.  One way of reducing this uncertainty is to further 

research dispersal capacity across the taxonomic groups or more simplistically as a 

function of body size.      

One further concern relates to the creation of the composite score.  The arbitrary 

measures ‘Sensitivity’ and ‘Exposure’ are weighted equally as at present there is no a 

priori weighting scheme by which to judge the strength of influence of either component 

on the overall Vulnerability.  Therefore Climate change Vulnerability scores should be 

viewed as relative measures meaning that comparison between this analysis and 

further studies using the method developed here would not be meaningful.  Until 

further research can shed light on the relative contribution of Sensitivity or Exposure 

factors in determining Vulnerability equal weighting of both components will remain.   

The representation of mammal species within the database presents a further caveat, 

species representation in the LHTd1084 and particularly within the LHTd213 is biased 

with species from the Northern hemisphere being far better represented than those in 

the Southern Hemisphere, with Australia and Madagascar being particularly 

depauperate.  This lack of species representation is recognised as a consequence of 

disproportionate representation of Northern hemisphere species in both the GBIF 

database (GBIF 2013) from which occurrence data is collated and also within the life 

history dataset.  This analysis has identified the Neotropical and Afrotropical zones as 

each harbouring a large percentage of the species identified as most Vulnerable.  

Therefore, the bias of records within the Northern Hemisphere is likely to lead to an 

underestimate in the percentage of species globally likely to be classified highly 

vulnerable.  The only method by which this source of uncertainty can be narrowed is by 

the collection of further locational and life history data concentrating on those gaps in 

species representation.        

These caveats each require careful consideration when interpreting the findings of this 

research with no one caveat more important than the other.  Issues relating to the 

difficulties surrounding the prediction of future climate change on species distributions 

are widely documented and discussed in further detail in the Appendices which cover 

caveats concerning species distributions modelling (Appendix One), the Maxent Model 
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and the Wallace Initiative (Appendix Two) and predicting climate change (Appendix 

Three).  These caveats being commonly recognised leaves the questions surrounding 

data paucity and the creation of the composite score.  When making conclusions based 

on the results of this analysis one should be fully aware of the regions for which data 

availability may serve to limit our understanding of the degree to which species are 

vulnerable to future climate change.  As an novel measure of future Vulnerability an 

effective form of statistical validity testing is currently unavailable meaning that 

comparison with the literature is the only way by which these predictions can be 

corroborated.  No model is perfect (Pearson 2007) but without these analyses we are 

even less prepared for the possible impacts of climate change on biodiversity.        

 

4.4.5 Conclusions 

 

This chapter has explored the impact of incorporating Sensitivity and Exposure 

measurements into a single robust Vulnerability measure in order to assess the impact 

of future climate change on species.  As identified in the introduction there is a lack of 

evidence to support the theory of Vulnerability, and further, that looks to identify which 

species are vulnerable to future climate change.  Previous research on species 

vulnerability has been mainly hypothetical (Williams et al. 2008; Dawson et al. 2011), 

there is a single study (Foden et al. 2013) in the literature which has examined 

vulnerability in relation to climate change.  

 A criticism of previous analyses of global risk from climate change is that they fail to 

account for species’ individual susceptibility to climate change (Thuiller et al. 2004; 

Kearney 2006).  This analysis addresses this criticism by the inclusion of a measure of 

Sensitivity that weights the calculations, so that species with high exposure but low 

sensitivity are classified as less Vulnerable than those with high sensitivity and high 

exposure.   

This study took a fundamentally different approach to determining vulnerability to that 

of Foden et al. (2013) specifically relating to the method by which species sensitivity 

was determined.  The method by which Foden et al. (2013) determine Exposure is more 

similar basing their measure on predicted changes in future temperature and 
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precipitation changes and their impact on habitat suitability.  Foden et al. (2013) sought 

expert opinion on a wide variety of variables which they identified as contributing to 

species sensitivity (in the paper referred to sensitivity and adaptive capacity) these 

included ‘rarity’, ‘habitat specialization’, ‘interspecific interactions’, ‘environmental 

tolerances’ and ‘dispersal ability’.  They then assessed each species traits against 

thresholds determined in the literature to indicate high or low vulnerability and where 

these were not available thresholds were determined based on the range of values for 

each trait among the species analysed.  In the absence of the resources required to 

gather experts together to collect information on perceived sensitivity and adaptive 

capacity traits this study enlisted statistical techniques PCA and regression analysis (see 

Chapter Three).  Foden et al. (2013) categorised 24-50% of birds and 22-44% of 

amphibians included in their analysis as most vulnerable, that is highly exposed and 

highly sensitive with low adaptive capacity and assuming optimistic or pessimistic 

extreme values for missing data respectively.  Despite the differences in method these 

results as percentage of species analysed are comparable to that determined for the 

mammals, 37% of which were labelled most vulnerable.  This similarity provides 

further confidence in the method used in this study to determine Vulnerability.  The 

approach presented here, compared to that of Foden et al. (2013) would be 

comparatively simple to undertake for other taxon where life history data is available 

because it does not rely on expert opinion to inform the development of the Sensitivity 

component instead being built on statistically robust techniques.    

This chapter also determined the biogeographic regions projected to experience high 

future climate variability, these include the Afrotropical and Neotropical zones and to a 

lesser extent the Palearctic and Oriental zone which harbour high percentages of 

sensitive species.  This combination of factors indicates that species in these regions are 

particularly vulnerable to future climate change.  Foden et al. (2013) examined spatial 

vulnerability of amphibians and birds identifying the Neotropical zone, specifically the 

Amazon, as a region of high climate change vulnerability due to the high proportion of 

vulnerable species occurring there.  They also identified the Congo basin and northern 

Africa, the Himalayas and Sundaland (Indonesia, Malaysia and the southern tip of 

Thailand) and the north-eastern portion of North America as harbouring a large 

proportion of highly vulnerable bird species.  For amphibians, additional regions of high 

vulnerability were identified as Mesoamerica, North Africa and the Himalayas.  The 
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regions identified by Foden et al. (2013) are largely in agreement with those identified 

in this study for mammals, where differences exist they are largely relatable to the 

paucity of data for those regions in this analysis.  Few mammal species are represented 

in the Sundaland and North African regions and so forming conclusions for these 

regions in this analysis would be disingenuous.  Widespread agreement between these 

two analyses relating to regional vulnerability further validates the approach used in 

this study to describe vulnerability.  It also bolsters the recommendation that the 

Neoptropical and Afrotropical regions be the focus of future conservation policy.        
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5 The Impact of Mitigation on Species Vulnerability to Future 

Climate Change 
 

5.1 Research Context 

 

5.1.1 Climate Change and Climate Change Scenarios 

 

21st Century Global Warming 

During the period 1990 to 2005 global temperature was observed to rise at  a rate of 

about 0.2°C per decade (IPCC 2007).  Over the following two decades warming of 

around 0.1-0.2°C per decade is projected independent of the emission scenario.  This is 

unavoidable or locked-in warming  as a result of past emissions and is known as the 

emissions floor (IPCC 2007).  Beyond this date the degree of warming is more specific to 

the particular emission scenario being projected.     

There are around 20 classified greenhouse gases of which the major contributors to 

climate change are listed in Table 5.1. 

 Mol fractions and their changes Radiative Forcing (Wm-2) 

Gas Formula 2005 Change since 1998 (Wm-2) 1998 (%) 

Carbon Dioxide CO2 379±0.6513µmol/mol ƚ +13µmol/mol 1.66 +13 

Methane CH4 1744±1.8.nmol/mol +11nmol/mol 0.48 - 

Nitrous Oxide N2O 319±0.12nmol/mol +5nmol/mol 0.16 +11 

Chlorofluorocarbon* CFCs 79>538pmol/mol -13>+4 pmol/mol 0.002-0.17 -5 > +22 

Hydrochloroflurocarbons* HCFCs 3.9> 169pmol/mol +2.4>+38 pmol/mol 0.001-0.002 +29- >+ 349 

 

Table 5.1 Greenhouse Gases contributing to past to Climate Change (as listed in the IPCC AR4 (IPCC 2007)) 

*grouped ranges   
Ƚ μmol/mol = ppm = parts per million (106); nmol/mol = ppb = parts per billion (109); pmol/mol = ppt = parts per trillion (1012) 
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Climate Change Mitigation  

On the basis of observations into the response of ecosystems and their constituent 

species to recent warming van Vliet et al ( 2006) recommended that attempts be made 

to constrain future climate change to 1.5°C above pre-industrial levels, limited to less 

than an increase of 0.5°C per century.  To this end it is important to investigate the 

impacts of different levels of mitigation upon species distributions and vulnerability 

upon which this chapter is concerned.     

   

The process of mitigation describes reductions in resource use and emissions through 

technological change; it encompasses the implementation of policies which reduce 

greenhouse gas emissions and enhance sinks (IPCC 2007).  The capacity for mitigation 

is determined by the degree to which anthropogenic emissions can be curtailed  and 

natural sinks can be enhanced and is dependent on information, wealth, infrastructure 

and technology (IPCC 2007).  Thus, the mitigation potential is the amount of mitigation 

that could be achieved over time determined by economic, technical and market 

potential.   

The use of idealized scenarios encompassing mitigation, facilitates the investigation of 

the impact of different levels of climate change on species’ vulnerability helping to 

identify possible thresholds above which species are lost (Beaumont et al. 2008). 

 

5.1.2 Climate models and Emission Scenarios  

 

Climate models seek to represent the development of the climate system over time; as 

such their basis is rooted in the physical laws and recent observations of climate 

(Beaumont et al. 2008).  A major part of this process is named the ‘spin-up’ period in 

which the model seeks to simulate the recent and current climate and to achieve 

equilibrium across the input components (Beaumont et al. 2008).  At this point 

simulations of the future can be undertaken through the introduction of changes, for 

instance in greenhouse gas emissions.  A key test of a model’s ability to represent 

climate is whether it can simulate characteristics of the current climate as well as 

successfully replicate elements of the past and recent climate change (Beaumont et al. 

2008). 
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In choosing the climate model and emissions scenarios appropriate for modelling future 

projections of species distributions one wishes to characterise the climate-related 

uncertainty associated with the output (Beaumont et al. 2008).  There is not one single 

‘best’ climate model; each will predict the climate slightly differently depending on the 

inputs (Beaumont et al. 2008).  Variability between GCMs is introduced by the 

mechanisms employed to represent Earth system processes (i.e. hydrological cycle), the 

spatial and vertical resolution of climate processes and the number of climate feedback 

mechanisms involved (Meehl et al. 2007; Beaumont et al. 2008; Buisson et al. 2010).    

As such employing a suite of climate models (GCMs), as the Wallace Initiative does, not 

only reveals where uncertainty in climate projections lies but also helps to smooth this 

form of uncertainty (Beaumont et al. 2008).  This form of uncertainty would have 

ramifications at the species level because under each GCM the extent of available 

suitable climate space and its geographic position shifts dependent on the GCM enlisted 

(Buisson et al. 2010).  Buisson et al (2010) investigated the degree to which the GCM 

used increased variability in the projection of future species distributions.  They found 

that GCM choice accounted for around 20% of total variability of species range change 

projections in 2080 equivalent to that introduced by the SDM for the same time period.  

As discussed in Chapter Four this method does reduce uncertainty across climate 

projections but not biological uncertainty which can only be reduced using ensemble 

modelling.   

 

Emission Scenarios 

Emission scenarios seek to define plausible storylines of future development in 

emissions such as greenhouse gases and aerosols.  These are determined under 

alternative descriptions of the driving forces which contribute to emissions release such 

as technological advances, demographic and socio-economic development (IPCC 2007). 

These scenarios’ trajectories are then input into models which project drivers of 

ecosystem change, the environmental variables, for use in biodiversity models (Pereira 

et al. 2010).  In selecting a set of emissions scenarios it is important to represent the 

widest range of plausible climate change outcomes, from conservative to extreme 

(Beaumont et al. 2008).  In the Wallace Initiative simulations of 6 alternative scenarios 

are examined representing at one end a business-as-usual (SRES A1B) strategy and at 
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the other strict mitigation (A16r5l, (Gohar and Lowe 2009)).  In order to allow easy 

comparison of the six scenarios the origins of these scenarios are outlined in further 

detail below.        

 

IPCC SRES Scenarios 

The SRES A1B scenario is one of a family of scenarios created for the IPCC 

encompassing alternative modes of development and the resulting greenhouse gas 

emissions.  These scenarios project an increase in baseline greenhouse gas emissions of 

between 9.7 and 36.7 GtCO2-eq this is equivalent to a 25-90% increase, between 2000 

and 2030 (Pachauri and Reisinger 2007).  Under all of the SRES scenarios the use of 

fossil fuels is predicted to remain dominant.              

There are four major SRES scenario families, A1, A2, B1 and B2. The A1 storyline 

encompasses very rapid economic growth; the development of new and efficient 

technologies and a peak in world population mid-century, there are three sub-groups 

which describe alternative routes of technological development (Pachauri and Reisinger 

2007).  These subgroups are A1F1, A1T and A1B. A1F1 describes fossil fuel intensive 

technological change, A1T technological advancement using non-fossil energy resources 

and A1B which describes mixed usage of both fuel types.  The B1 scenario describes a 

convergent world with the same global population but with more rapid changes in 

economic structure towards a service and information economy.  The A2 scenario 

describes a storyline with high population growth, slow economic and technological 

change, whereas the B2 scenario describes a world with intermediate economic and 

population growth predicting more localised solutions to social and economic 

sustainability (Pachauri and Reisinger 2007).  There is no one scenario described as 

being more likely than the others (Pachauri and Reisinger 2007). 

 

AVOID scenarios 

The AVOID scenarios are a series of mitigation storylines created through a 

collaboration headed up by the UK Met Office, which use the IPCC SRES scenarios as 

their basis (Gohar and Lowe 2009).  There are three sets of scenarios which use the 

SRES A1B scenario as a baseline but which use different growth rates of emissions, 
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timings of peak emissions and degrees to which emissions are reduced post-peak 

(Gohar and Lowe 2009).  In this chapter a set of five AVOID emissions scenarios is used, 

with three representing peak emissions at 2016, embodying annual reductions in 

emissions thereafter of 2%, 4% or 5%, and two representing peak emissions at 2030, 

with annual reduction in emissions of 2% and 5%. 

 

The Impact of Mitigation over time 

Several studies have investigated the impact of different mitigation scenarios over time 

(Wigley et al. 1996; Yohe and Strzepek 2007).  However, few studies have sought 

directly to compare the impacts of different mitigation scenarios on risk or vulnerability 

under future climate change (Foden et al. 2013; Warren et al. 2013).  

This study will investigate the impact of different degrees of mitigation on species 

exposure over time, making comparisons within the literature, but also more 

distinctively it will look at the impact of mitigation on perceived species’ Vulnerability 

over time.           

 

5.1.3 Objectives 

 

This chapter seeks to make comparisons across both the business-as-usual (SRES A1B 

scenario) and mitigation scenarios (AVOID) investigating the impact of mitigation by 

potentially delaying the negative impacts of climate change.  In doing so we are better 

able to pinpoint the time period in which mammal species could be most vulnerable, 

and whether this varies across Orders and within biogeographic regions.    

This chapter will address the following specific research questions:            

 

 What effect does mitigation have on species overall Exposure levels? 

 How does the level to which mitigation is implemented impact the future 

Vulnerability of species? 

 Are there species for which mitigation has no impact on the degree to which they 

are Vulnerable?  
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5.2 Methods 

This chapter seeks to investigate the impact that mitigation might have on species 

Vulnerability to future impacts of climate change as outlined in detail in this thesis.   

 

5.2.1 Mammal Vulnerability and Data 

 

Mammal Vulnerability scores are created by combining species’ individual Exposure 

and Sensitivity scores to generate a composite score.  Species’ vulnerability is classified 

into five categories Extremely Vulnerable, Highly Vulnerable, Moderately Vulnerable, 

Lowly Vulnerable and Least Concern, see Chapter Four.  The Creation of the Sensitivity 

Measure  

This section is a brief outline of the calculation of the Sensitivity Measure which was 

calculated in the Chapter Three.  Sensitivity is a composite score which represents a 

combination of 10 life history traits and ecological variables which explain variation 

across species and whose inclusion was determined by PCA.  The ten life history and 

ecological variables are listed in the Table 5.2. 

Life History and Ecological Traits 

Sexual Maturity (Days) Litter Size 

Longevity (Months) Diet Breadth 

Weaning Age (Days) Habitat Breadth 

Gestation (Days) Endemic 

Litters per year Climate niche Breadth 

Table 5.2 Sensitivity Measure Composite Life History and Ecological Traits 

There are 213 species for which Sensitivity scores were created, representing 15 Orders 

and 58 families.  The data for these species were extracted from the LHTd which was 

created using databases covering life history traits and ecological variables (Further 

details and references for which are in Chapter Three: Calculating Species Sensitivity).  

The scores range between least sensitive at 4.15 to most sensitive at 14.79.        
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5.2.2 Calculating Future Exposure by Emission scenarios 

 

To measure the impact of alternative emissions scenarios on mammal species 

Vulnerability requires the calculation of ExposureR under each scenario.  Data for 

current and future projections of species distributions are created in the Wallace 

Initiative using the species niche model, Maxent  (Phillips and Dudik 2008).  These 

projections are based on species current distribution occurrence data (GBIF 2013) and 

a suite of 4 or 8 bioclimatic variables (Hijmans et al. 2005)  dependent on the number of 

occurrence records.  These predictions of current distributions are then projected 

under scenarios of future climate change created using CIAS (Community Integrated 

Assessment System (Warren et al. 2008)).  CIAS brings together several Global 

Circulation Models (GCMs) projections of future climates.  The method by which these 

projections are created is further detailed in Appendix Two: The Wallace Initiative and 

Species Distribution Modelling Techniques.   

 

The Emission Scenarios  

Table 5.3 illustrates numerically the differences across the emission scenarios in terms 

of Global mean temperature at 2100, the emissions decrease post peak, the emissions 

floors and also the probability of constraining any temperature rise to below 2°C.   

 

Emission Scenario 

Global Mean 

Temperature by 

2100 (°C) 

Post peak 

emissions CO2
 

emission 

decrease 

Emissions 

Floor 

(GtCO2/yr.) 

Probability of 

constraining the 

temperature rise 

to below 2°C above 

pre-industrial 

levels 

Baseline SRES A1B 4.0 - - <1% 

Mitigation 2030-2-h 2.8 2% 16 7% 

Mitigation 2030-5-l 2.5 5% 6 17% 

Mitigation 2016-2-h 2.2 2% 16 30% 

Mitigation 2016-4-l 2.0 4% 6 44% 

Mitigation 2016-5-l 2.0 5% 6 45% 

Table 5.3 Global Mean Temperature by 2100 (°C) adapted from Warren et al 2013 & AVOID (Gohar and Lowe 2009) 
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Calculating Exposure over time 

In the previous chapter the impact of climate change under the SRES A1B scenario was 

investigated at a static point in time, 2080.  Climate impacts on species are only 

investigated this far into the future because of the increasing uncertainty associated 

with the climate models beyond this point  (Warren et al. 2013).   

To calculate the degree to which species are exposed over time to climate change, 

ExposureR was calculated for time slices across the period Current to 2080.  The time 

slots for which ExposureR values were characterised are 2020, 2050 and 2080.  These 

ExposureR values are created under each of the Emission scenarios for comparison.  The 

data for the impact of the alternative emissions scenarios on each species distribution 

over the time slices were provided by the Wallace Initiative (Wallace Initiative 2013).  

These data are in the form of current and future distribution area (km2) for each time 

period by each emission scenario by each GCM.  There are thus 42 projections created 

for each time slices (six emissions scenarios x seven GCMs) apart from the current for 

which there is only one prediction created as it is based on observations.  There are 

seven projected distributions for each species for each future time slice one for each 

GCM.  It was necessary to run the GCMs in the Wallace Initiative as they had not been 

run for the AVOID emission scenarios previously (Warren et al 2013).  To create a single 

projection of absolute climate change the median of the GCMs is calculated and used to 

drive the pattern-scaling module ClimGEN, part of CIAS (Warren et al 2006).  This 

model combines the scaled climate change patterns determined by the GCMs and then 

combines the projection with baseline climate (1961-1990) to create the environmental 

variables (Warren et al. 2013).  There are several methods for combining ensemble 

outputs such as taking the mean, median, accounting for the range (Jones et al. 2013), or 

weighting each GCM contribution to the final combined projection by how well it 

reproduces the observed climate (Sansom et al. 2013).  Jones et al (2013) advised 

considering both the mean and the range of the projections, in this case for potential 

future species distributions, in order to understand uncertainty surrounding the ‘best’ 

and ‘worst’ case scenarios.  In this analysis into the potential range of future climates 

predicted by the GCMs is undertaken in Chapter 5 Section 3.3. and Appendix Three.  

With regards to the pattern-scaled climate change projections used here there is no 

method by which the relative merits of each GCM to predict future climate change can 
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be expounded so weighting is not an option (Warren pers.comm).  For an examination 

of the uncertainty across the GCMs see Appendix Three: Visualising climate change.       

Figures of changing ExposureR over time are then created across the full set of Mammal 

scores and subsequently for each of the Orders.  These figures are created by calculating 

the mean ExposureR score across the full set of species under each emissions scenario 

for each time slice.  The minimum and maximum value of ExposureR for each time slice 

and emission scenario is also recorded.  The mean values of ExposureR are then plotted 

for each emission scenario over time with the minimum and maximum values around 

the mean represented using shaded polygons.   

 

5.2.3 Calculating Vulnerability by Emission Scenario 

 

The further assessment of species’ Vulnerability required the creation of a composite 

score to represent Vulnerability for each Emission scenario.  The Exposure measure 

relevant to these calculations is ExposureL.  The Sensitivity score is held constant whilst 

the ExposureL score calculated for each emission scenario is substituted into the 

equation by turn.          

Therefore the final Vulnerability equation is: 

                                                                             

 Where the   indicates that the variable has been normalized.  The resulting 

Vulnerability scores range from least Vulnerable (-0.385) to most Vulnerable (1.585).  

The highest possible Vulnerability score is Vulnerability=2, a combination of high 

ExposureL (100% loss of current distribution by 2080) and high Sensitivity 

(Sensitivity=14.79, normalized to 1).  This assumes that equal weight is given to both 

Sensitivity and Exposure in the definition of Vulnerability.      
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5.3 Results 

5.3.1 Exposure by Emission Scenarios  

 

 

Figure 5.1  Boxplots of Future Exposure
R
 by Emission Scenario (Proportion Range Remaining at 2080) The 

line at 1.00 indicates that the distribution size remains stable, below which distribution contracts and above 
which expansion is predicted to occur.  Outliers are indicated by species ID number. 

 

Error! Reference source not found. is a boxplot of Future ExposureR in 2080 by 

Emission Scenario and allows the exploration of ExposureR values across the different 

scenarios.  Under the no mitigation (business-as-usual) scenario, SRES A1B, species are 

predicted to experience an average reduction in distribution of 18% by 2080 (mean 

ExposureR=0.82), by implementing the most stringent mitigation scenario (A16r5l) this 

is reduced to an average 7% loss (mean ExposureR=0.93), protecting a further 12% of 

the specie’s distribution into the future.    

The greatest number of positive outliers, those which are predicted to be least exposed 

to future climate change, occur under the A16r4l and A16r5l, they include two Rodentia, 
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and one of each of the following, a Eulipotyphla, Primate, Carnivora and Didelmorphia.  

Under the A16 scenarios there are two negative outliers, those which despite mitigation 

remain highly exposed to climate change.  These species, both primates, are the endemic 

red-bellied titi (Callicebus moloch) and Brown-mantled Tamarin (Saguinus fusicollis). 

The no mitigation (SRES A1B) scenario holds the largest percentage of species classified 

as Moderately to Extremely Exposed at 20% this drops to 4% under the most stringent 

mitigation scenario (A16r5l), a reduction of 16% (Figure 5.2).  Under the two scenarios 

representing a peak in C02 emissions at 2030 only one species is predicted to be 

Extremely Exposed by 2080, the Red-bellied titi (Callicebus  moloch), which is a monkey 

endemic to Brazil.  The A16 scenarios (strict mitigation) have no species predicted to 

lose over 90% of their suitable distribution under future ExposureR. Further the margin 

between species classified as 'Moderately to Extremely Exposed' across the three 

scenarios is small with between 3-5% of species in these categories from A16r2h to 

A16r5l.   

The scenarios representing peak C02 at 2030 (moderate mitigation) predict that 

between 12% (A30r2h) and 10% (A30r5l) of species to be classified 'Moderately' to 

'Extremely Exposed' by 2080, a reduction of between 8-10% of species in comparison 

  

 

Figure 5.2 Classification of Exposure Across the Emission Scenarios (Percentage species by classification, Percentage loss 
classification; Extremely Exposed ≥90%, Highly Exposed 70%>90%, Moderately Exposed 50%>70%, Lowly Exposed 0%>50%, 
Least Concern indicates expansion)  
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with no mitigation (SRES A1B).  Where peak CO2 is achieved at 2016 (strict mitigation) 

the percentage of species classified as 'Moderately' to 'Extremely Exposed' is 4-5% 

(A16r5l and A16r2h).  Thus, mitigation offers a 5-8% decrease in the number of species 

predicted to be Moderately to Extremely Exposed by 2080.    

 

Exploring changing Exposure through Time.  

To assess the impact of each emission scenario across all mammal species included in 

the LHTd213 the mean ExposureR was calculated for each scenario over time (Figure 

5.3).  Minimum and maximum ExposureR values were also calculated to illustrate the 

deviation in ExposureR across the species.    

 

Figure 5.3 Exposure
R
 Over Time All Mammals (Proportion of current range 

remaining  over time, coloured lines indicate the mean of each emissions 
scenario and corresponding coloured polygons the degree of variation in 
species distribution change under the relevant scenario.) 

 

The Emission scenario indicating the highest loss in distribution to 2080 is that of No 

mitigation (SRES A1B) with an average range reduction of 18% by 2080, under this 

scenario the greatest loss in distribution is also predicted (95% loss) (Table 5.4).  

However, it is also the scenario under which the largest expansion in distribution is 
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predicted with a 90% increase in suitable climate space.  Further, the largest divergence 

in predicted range changes is also observed under the no mitigation scenario.  The 

narrowest degree of variation between minimum and maximum ExposureR is recorded 

for the Moderate mitigation scenario (A30r5l).  

The smallest standard deviations in ExposureR values are recorded for all emission 

scenarios at 2020 with the largest standard deviations for all scenarios at 2080.  Levels 

of standard deviation at 2080 are equivalent to a 27% (Strict mitigation) and 39% (No 

mitigation) variation in distribution changes (Table 5.4).  That predictions over this 

period harbour most uncertainty is unsurprising as the further projections move away 

from current conditions the less stable predictions become (Williams and Jackson 

2007).      

  
Exposure (Proportion Range remaining) 

Emission Scenario Time Period Mean Maximum Minimum S.D 

Strict 

2020 0.93 0.31 1.30 0.14 

2050 0.92 0.18 1.56 0.23 

2080 0.92 0.15 1.73 0.27 

Moderate 

2020 0.93 0.33 1.30 0.14 

2050 0.91 0.14 1.58 0.26 

2080 0.91 0.11 1.79 0.31 

None 

2020 0.93 0.32 1.29 0.14 

2050 0.87 0.10 1.65 0.29 

2080 0.82 0.05 1.90 0.39 

Table 5.4 Exposure over time by Emission Scenario 

Over the time period 1990 to 2020 species are predicted to lose on average 9% of their 

range across all scenarios.  During the period 2020 to 2050 further range loss is 

predicted under the no mitigation scenario with species predicted to lose an average 

4% of their total range.  Under moderate mitigation this further loss is narrowed to 2% 

and under strict mitigation a very narrow (1%) recovery is predicted.  Exposure 

stabilises for both the Strict and Moderate mitigation scenarios in the period 2050 to 

2080.  Whereas, under the no mitigation scenario species are predicted to lose on 

average a further 5% of their total range.           
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Exposure by Order over time 

   

a) Artiodactyla b) Carnivora c) Chiroptera 

   

d) Didelmorphia e) Eulipotyphla f) Lagomorpha 

  

 

g) Primates  h)  Rodentia 

Figure 5.4 Exposure
R
 over the period 1990-2080 by Order (a-h). Illustrating the changing levels of Exposure

R
 between the 

period 1990 to 2080 by Order under the suite of Emission Scenarios.  

Further plots of ExposureR were created to investigate the impact of the alternative 

emission scenarios across the Orders (Figure 5.4).  The Order experiencing the greatest 

degree of mean ExposureR across the whole suite of scenarios is the Artiodactyla 
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(Figure 5.4a), predicted to lose between 20% under the most stringent mitigation 

(A16r5l) to 38% under the no mitigation scenario (SRES A1B) by 2080.  The 

Didelmorphia (Figure 5.4d) are the Order predicted to be least impacted by climate 

change, with a mean ExposureR value of between 1.10(SRES A1B) to 1.21 (A16r5l) at 

2080, an average increase in the range of 10-21%.  The Primates (Figure 5.4g) include 

the species most adversely affected by climate change, predicted to lose between 95% 

(SRES A1B, ExposureR =0.95) to 85% (A16r5l, ExposureR =0.85) of its current range by 

2080.  The Order Carnivora (Figure 5.4b)contains the species predicted to be least 

impacted by future climate change across the full suite emission scenarios predicted to 

expand its range by between 85% (SRES A1B) and 73% (A16r5l) by 2080.  The 

Rodentia (Figure 5.4h) hold the species predicted to expand its range the most under 

the SRES A1B scenario, the Round-tailed ground squirrel (Spermophilus tertricaudus) 

with a predicted expansion of 90% by 2080.              

Under the A16r5l scenario the Orders Didelmorphia, Eulipotyphla, Lagomorpha, 

Primate and Rodentia were predicted to begin to recover or continue to expand their 

ranges during the period 2050-2080 by on average 1% (Eulipotyphla and Rodentia) to 

7% (Didelmorphia).  The Carnivora and Chiroptera’ distribution extents are predicted 

to stabilise.  The Artiodactyla are the only Order predicted to continue experiencing an 

average contraction in distribution size with a predicted average loss of a further 1%.   

The Primates are predicted to lose an average of 12% of their range by 2020 under the 

scenarios.  This trend reverses during the period 2020-2080 under the A30 and A16 

scenarios with range expansions predicted of between 10% (A30r2h) and 13% 

(A16r5l).  The picture under the SRES A1B scenario is less easily described with 

Primates predicted to expand their ranges between 2020-2050 by an average of 5% but 

to experience a complete reversal of the previous decade’s expansion between 2050-

2080, when they are predicted to lose and average of 5%.  A similar pattern is evident 

for the Didelmorphia (Figure 5.4d).  Although this does not entirely reverse the 

perceived expansion of 2020-2050, it does indicate a stabilising of distribution.  

Under the full suite of emission scenarios distributions the Lagomorpha seem relatively 

stable across the entire period with very a slight increase in range projected of between 

4% (SRES A1B) and 7% (A30s).  This indicates that under even a moderate degree of 
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warming the Lagomorpha are projected, on average, to expand their ranges resulting in 

a low overall Vulnerability. 

5.3.2 Vulnerability by Emission Scenarios 

 

The following section investigates the impact of mitigation upon species Vulnerability 

and looks across the six mitigation scenarios from business-as-usual (SRES A1B) to 

strict mitigation (A16r5l).  In a GLM looking at the impact of emission scenarios on 

Vulnerability the relationship was found to be significant (F=5, 1236, p=0.00).   

Figure 5.5 plots Vulnerability across the six emission scenarios.  Vulnerability scores 

range between the most vulnerable at 1.58 and least vulnerable at -0.39 (Figure 1.5).  

The largest mean Vulnerability score is forecast for the SRES A1B scenario at an average 

of 0.76, falling to 0.67 under the A30r5l scenario and to 0.64 under the most stringent 

A16r5l scenario.  The maximum Vulnerability score is predicted under the SRES A1B 

scenario at 1.58, under the A16r5l scenario this is reduced to 1.40.  The lowest 

Vulnerability score is also predicted under the SRES A1B scenario at -0.39 rising to -

0.19 under the A16r5l scenario.   

The single species labelled as a positive outlier, Extremely Vulnerable to future climate 

change, under the A16r4l and A16r5l is the endemic Red-bellied titi (Vulnerability= 

1.41-1.40).  The species labelled as negative outliers, those predicted to be of Least 

Concern, across all scenarios are the North American species the Cotton mouse 

(Peromyscus gossypinus) and the Common kusimanse (Crossarchus osbscurus) native to 

West Africa.  The Rodentia species the Round-tailed ground squirrel (Spermophilus 

tertricaudus) native to North America and northern Mexico is also classified as an 

outlier under the SRES A1B scenario.  Under the A16r4l and A16r5l the Robinson’s 

mouse opossum (Marmosa robinsoni) is also classified as an outlier and so of least 

concern.   
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Figure 5.5 Vulnerability by Emissions Scenario (Scaling Least Concern (-0.39) to Extremely Vulnerable 
(1.58 )) 

 

To visually explore the impact of the different emission scenarios on the overall 

Vulnerability of a species, plots were created for each of the scenarios (Figure 5.6 a-f).   

These figures and the remainder of this section on Vulnerability used the ExposureL. 

The plots indicate the number of species occurring within each of the major 

classifications of Vulnerability i) Extremely Vulnerable (High Sensitivity, High 

Exposure), ii) Highly Vulnerable (High Sensitivity, Low Exposure), iii) Moderately 

Vulnerable (Low Sensitivity, High Exposure) and iv) Lowly Vulnerable (Low Sensitivity, 

Low Exposure).  The fifth classification, Least Concern, those species expected to expand 

their ranges under climate change are not shown as they are of less interest to 

conservationists.  The quadrant thresholds are determined by the Sensitivity data and 

Exposure based on the thresholds set out in the Wallace Initiative and in Chapter Four 

of this thesis.   
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a ) SRES A1B   b) A30r2h  

  

c)A30r5l   d) A16r2h 
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The scatterplots of future Vulnerability indicate the degree to which Vulnerability varies 

under each of the emission scenarios (Figure 5.6 a-f).   

To visualise changing levels of Vulnerability across the Emission scenarios Figure 5.8 in 

concert with Table 5.5 examine changes in Vulnerability classifications across the 

species dependent on Emission scenario.  Species are classified as Extremely Vulnerable 

if their Vulnerability score is above 1.4, representing the top 10% of scores.  Species are 

classified as Highly Vulnerable if their Vulnerability score is between 0.9 and 1.4. 

Moderately Vulnerable are those species having Vulnerability scores between 0.7 and 

0.9.  Species with Vulnerability scores between 0.4 and 0.7 are classified as Lowly 

Vulnerable and those recorded to have scores below 0.4 are Least Concern.    

  

e)A16r4l   f) A16r5l  
Figure 5.6 Scatterplots of Vulnerability across the Emissions Scenarios (Sensitivity vs. Exposure

L
) 

Figure 5.7  Vulnerability by Emissions Scenario (calculated for 2080)  
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Figure 5.8 V ulnerability Classifications (Percentage species by classification in 2080) 

Under the business-as-usual scenario, SRES A1B, 58.5% of the total species fall into the 

categories Moderately to Extremely Vulnerable, with the Highly Vulnerable category 

contributing the largest proportion (33.3%,Table 5.5).  Comparably, under the most 

strict mitigation scenario, A16r5l, 40.6% of species are predicted to be Vulnerable with 

1 species classified as extremely vulnerable.  Early and strict mitigation prevents a 

further 17.9% of the total species from becoming Extremely Vulnerable which would 

otherwise have been classified as such under the business-as-usual, SRES A1B scenario.  

For all scenarios, except the SRES A1B, the majority of species are predicted to fall into 

the Lowly and Least Vulnerable categories, with 54.6% (A30r2h) to 59.4% (A16r5l) in 

this classification.  

Mitigation Scenario Vulnerability Classification at 2080(% Total Species) 

Level ES 
Extremely 
Vulnerable 

Highly 
Vulnerable 

Moderately 
Vulnerable 

Lowly 
Vulnerable 

Least 
Concern 

N
o

n
e 

SRES A1B 3.9 33.3 21.3 22.7 18.8 

M
o

d
er

at
e A30r2h 1.9 24.2 19.3 33.8 20.8 

A30r5l 1.4 23.2 18.4 35.7 21.3 

St
ri

ct
 

A16r2h 0.5 20.3 19.8 38.2 20.8 

A16r4l 0.5 17.4 22.7 39.6 19.8 

A16r5l 0.5 16.4 23.7 39.6 19.8 

Table 5.5 Vulnerability Classification by Mitigation Scenario 
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Exploring Changing Vulnerability through time  

Plots of Vulnerability were created to examine trends in Vulnerability over the period 

1990 to 2080(Figure 5.9a,b).   

  

a) Average Vulnerability over time (zoomed) b) Average Vulnerability over time showing full variation around 

the mean 

 

Figure 5.9 Average Vulnerability of species over time by Emission Scenario (1990-2080) 

The degree to which species vary in Vulnerability across the emission scenarios is 

illustrated by the shaded polygons which detail minimum and maximum scores of 

Vulnerability across the time periods. Figure 5.9a provides a close up Average 

Vulnerability across the emission scenarios whereas Figure 5.9b illustrates the full 

degree of variance in Vulnerability scores across the period 1990-2080.  The largest 

Vulnerability scores are attributed to the SRES A1B scenario ranging from 1.26 at 2020 

and increasing linearly to 1.58 at 2080.  The lowest values of Vulnerability at 2050 and 

2080 are also realised under the SRES A1B scenario, at -0.22 down to -0.38, 

respectively.   

In order to bringer greater clarity to this analysis of trends in changing Vulnerability 

over time and to compare the impact of implementing mitigation with no mitigation 

average values of Vulnerability under each mitigation scenario for each time period are 

shown in Table 5.6. 

 



230 
 

 
Average Vulnerability Score by Time Period  

 

 

Level of Mitigation 2020 2050 2080 

Strict 0.65 0.65 0.65 

Moderate 0.65 0.67 0,67 

None 0.65 0.70 0.76 

Table 5.6 Average Vulnerability over Time by Mitigation Level 

The period 1990-2020 is that of greatest change in Vulnerability with an increase of 

0.06 across the full suite of emission scenarios.  This period of increasing Vulnerability 

reflects the locked-in warming predicted to occur in the early part of the 21st century 

due to past emissions (Fischlin et al. 2007).        

During the period 2020-2050 the impact of mitigation policy is beginning to become 

apparent with a 2 point variation in Vulnerability between the A16 and A30 scenarios 

and a 5 point variation between the A16 and SRES A1B scenarios.  In 2080 the variation 

across the mitigation scenarios is more pronounced represent an 11 point decrease in 

Vulnerability where strict mitigation is implemented during the period 2050-2080.    

Beyond 2020 vulnerability changes very little across the A16 scenarios, with on average 

±1 point difference between 2020 and 2080.  The A30 scenario’ predictions diverge at 

2050 with a 2 point difference in Vulnerability at 2080 (A30r5l Vulnerability=0.66, 

A30r2h Vulnerability=0.68).    
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Vulnerability by Order over time 

 

Figure 5.10 Vulnerability 1990-2080 illustrating the changing levels of Vulnerability between the period 1990 to 2080 by 
Order under the suite of emission scenarios 

The four Orders with the lowest mean Vulnerability (Figure 5.10) at 1990 are the 

Lagomorpha (Vulnerability=0.39), the Chiroptera (Vulnerability=0.42), the Rodentia 

   

a) Artiodactyla b) Carnivora c) Chiroptera 

   

d) Didelmorphia e) Eulipotyphla f) Lagomorpha 

  

 

g) Primates h) Rodentia  
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(Vulnerability=0.57) and the Eulipotyphla (Vulnerability=0.58).  The Primates are the 

Order with the highest mean Vulnerability scored at 0.744 in 1990.   

 

 Time Period (% change in Vulnerability) 
Total Percentage 

change (+/-) 

Order Emission Scenario 1990-2020 2020-2050 2050-2080 1990-2080 

Artiodactyla 

Strict +11.0 +6.9 +1.6 +19.5 

Moderate +11.0 +11.0 +3.5 +25.5 

None +11.5 +15.7 +11.3 +38.5 

Carnivora 

Strict +9.0 +2.0 0.0 +11.0 

Moderate +8.8 +5.1 +2.3 +16.2 

None +9.0 +8.3 +6.2 +23.5 

Chiroptera 

Strict +6.3 0.0 0.0 +6.3 

Moderate +6.2 +2.5 0.0 +8.7 

None +6.3 +5.6 +8.4 +17.2 

Didelmorphia 

Strict -3.9 -10.7 -6.7 -20.4 

Moderate -3.8 -11.3 -5.5 -20.6 

None -3.0 -9.6 +3.0 -9.6 

Eulipotyphla 

Strict +2.7 0.0 -1.0 +1.7 

Moderate +2.6 +1.0 0.0 +3.6 

None +2.9 +7.6 +11.8 +22.3 

Lagomorpha 

Strict 0.0 -4.2 -2.6 -6.8 

Moderate 0.0 -4.1 -3.0 -7.1 

None 0.0 -3.4 -4.0 -7.4 

Primates 

Strict +11.3 -7.0 -5.4 -1.1 

Moderate +11.2 -6.8 -4.7 -0.3 

None +11.2 -5.5 +5.1 +10.8 

Rodentia 

Strict +3.3 -3.5 -1.5 -1.7 

Moderate +3.2 +1.0 0.0 +4.2 

None +3.2 +3.2 +3.7 +10.1 

Table 5.7 Trends in average Vulnerability over time by Order (Per cent changes, increased Vulnerability indicated by ‘+’ 
and decreasing Vulnerability by '-‘) 

The maximum Vulnerability score is attained under the SRES A1B scenario by a species 

of Primate with a maximum value of 1.58 at 2080.  The Primates consistently contain 

the species with the greatest Vulnerability under all emission scenarios during all 
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periods (Vulnerability =1.0 (1990) to 1.58 (SRES A1B 2080)).  The Order which 

consistently holds the species with the lowest Vulnerability score is the Rodentia, 

ranging between -0.033 at 2020 under the full suite of scenarios to -0.380 under the 

SRES A1B scenario at 2080.   

 

During the 2020s Vulnerability scores are fairly consistent across the emissions 

scenarios, with no significant difference being discerned when accounting for the 

differences across Orders (One-way ANOVA F (5, 1236) =0.006, p=1.0)(Table 5.7). 

Similarly, an ANOVA performed across the emission scenarios at 2050 also reported 

non-significance ((F=5, 1236) =1.786, p=0.113).  However, by 2080 the variation across 

the Emission scenarios is more marked between the Orders with an ANOVA returning a 

result indicating a significant difference in Vulnerability across the emission scenarios 

(F=5, 1236) =11.40, p=0.000).   

 

The instigation of strict mitigation causes Vulnerability to reduce or stabilise between 

2050 and 2080 from its peak at 2020 for all Orders the only exception being the 

Artiodactyla for which Vulnerability continues to rise (Table 5.7).  Strict mitigation has 

the effect of halving, or more, the predicted increase in Vulnerability projected under 

the business-as-usual no mitigation scenario by 2080.  This effect is particularly 

apparent for the Eulipotyphla where the increase in Vulnerability falls from 22.3% to 

1.7%.  Under strict mitigation the increased Vulnerability predicted between 1990-2020 

is all but reversed by 2080 for both the Primates and the Rodentia resulting in a slight 

decrease in overall Vulnerability across the two Orders compared to 1990.  Moderate 

mitigation is observed reducing or stabilising Vulnerability levels at 2080 for all Orders 

but the Carnivora and the Artiodactyla.  Moderate mitigation serves to reduce overall 

Vulnerability across the Orders by at least a third (Artiodactyla and Carnivora) over no 

mitigation.  Two Orders the Didelmorphia and the Lagomorpha are predicted to 

experience a decrease in Vulnerability over the period under all three levels of 

mitigation.  It is important to remember that these are average trends and there is 

wider variation around the mean values for all Orders (Figure 5.9a-h). 
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5.3.3 The Impact of Mitigation on Spatial Patterns of Vulnerability 

 

As discussed in Chapter Four there is inherent variability in the degree to which 

different sites and regions have and are predicted to experience exposure to climate 

change, in the magnitude, duration and the frequency of periods of favourable and 

unfavourable climates (Jackson et al. 2009).   

Figure 5.11 Species Richness Map (LHTd213) 

In the previous chapter it was recognised that impacts of future climate change are not 

geographically uniform.  Under the SRES A1B scenario the regions in which species are 

found to be most Vulnerable are the Neotropical, Afrotropical, Palearctic and northern 

latitudes of the Nearctic zone. In order to examine whether this same spatial pattern 

would exist under mitigation scenarios a series of maps were created (Figure 5.12) 

illustrating Vulnerability (% most vulnerable) globally. To calculate percent Most 

Vulnerable, the number of species in each grid cell was summed.  A map of species 

richness (Figure 5.11) is included so that comparison can be made between 

Vulnerability and species richness in the database within the particular zone. 
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a) 

b) 

c) 

Figure 5.12 Vulnerability Maps a) SRES A1B, b) A16r5l, c) A30r5l (Percentage Most Exposed %) 

The stringent mitigation scenario (A16r5l) significantly reduces the level to which the 

Afrotropical zone, the Palearctic and the northern latitudes of the Nearctic zone are 

impacted, both in terms of the extent of the region affected and also with regard to the 

percentage of species remaining among the most Vulnerable.  Across the Palearctic zone 

the percentage of Most Vulnerable species reduces from 25% to 10% with the area over 

which species are Vulnerable greatly reduced.  The impact of mitigation in the northern 

latitudes of the Nearctic is to virtually eliminate risk to species in this region with a very 

much reduced area in which vulnerable species are predicted to occur. In addition to 

this the number of ‘at risk’ species falls to below 10% from 25-50% under the business-

as-usual scenario. In the Afrotropical zone a similar trend is observed with the  

highlighted ‘hotspot’ in which the most vulnerable species occur being much reduced, 
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from extending across the major part of sub-Saharan Africa to being restricted to the 

Southern states only. Within this Southern region the percentage of species classified as 

most Vulnerable reduces from between 50-75% (reaching 90-100% in some parts) to 

below 25%.  However, benefits of mitigation in the Neotropical zone are not so strong 

with very little observable difference between vulnerability under the business-as-usual 

and stringent mitigation scenarios.   

Under the less stringent mitigation scenario (A30r5l) the benefits of mitigation are 

smaller, but still visible.  Reduction of Vulnerability in the Palearctic and Nearctic zones 

remains particularly strong displaying a similar pattern to that projected under the 

most stringent A16r5l scenario.  However, across the Afrotropical zone the reduction of 

Vulnerability is lessened with a larger area over which species are still classified Most 

Vulnerable.   

Species are not well-represented for the Oriental, Saharo-Arabian and Australian zones 

in this analysis of Vulnerability making the drawing of any conclusions about the impact 

of mitigation on these regions ill-conceived.  However, when accounting solely for the 

impact of exposure across the 5351 species of the Wallace Initiative, Warren et al 

(2013) found that benefits from mitigation were particularly strong for both, Australia 

and Central Asia.  Due to the lack of species represented in these regions the degree to 

which they harbour sensitive species cannot be determined from this analysis.  If 

Exposure is discovered to be the main determinant of mammal Vulnerability in these 

regions then it is likely that mitigation will strongly reduce overall Vulnerability.  If, 

however, Sensitivity is the major determinant of Vulnerability then mitigation will play 

a lesser role in reducing Vulnerability. 

 
Warren et al (2013) found that mitigation played a major role in reducing the impacts of 

exposure in the Neotropical zone, in particular within the Amazonas region.  However, 

in the visualisation of Vulnerability, accounting for both Exposure and Sensitivity, the 

percentage of Most Vulnerable species is observed to remain high in the Neotropical 

zone even under stringent mitigation.  Under the business-as-usual scenario 44% of 

Species are classified as Vulnerable, with 26.4% classified as Most Vulnerable.  Under 

stringent mitigation the percentage of species classified as Vulnerable is 38.2% and 

Most Vulnerable remains at 26.4%.  This difference in results lies in the fact that Warren 



237 
 

et al (2013) concentrated solely on climate change exposure and did not account for the 

degree to which species are sensitive.  This result implies that high Vulnerability, in this 

case, must be driven by Sensitivity and not by Exposure. This is confirmed by results in 

Chapter Three where the Neotropical zone was identified as harbouring a large 

proportion of Most Sensitive species, 70% of species are identified as Most Sensitive, 

with 54% of these being classified within the Extremely Sensitive classification.  This 

explains why under stringent mitigation Vulnerability remains high because 

Vulnerability in this region is driven by Sensitivity and therefore even a small amount of 

climate warming is detrimental to these Most Sensitive species.   

 

5.3.4 Exploring GCM Uncertainty  

 

The Impact of Uncertainty in GCMs on projections of Exposure and 

Vulnerability 

To illustrate the potential effect of GCM uncertainty on the Exposure and subsequently 

the Vulnerability measure Figure 5.13 and Figure 5.14were created for the Primates to 

draw attention to the similarities and differences in ExposureR and Vulnerability 

predictions over time under each of the GCMs.  The Primates were chosen to illustrate 

uncertainty because they all occur within the Neotropical zone, a region which is 

associated with large GCM uncertainty (Appendix Three: Visualising Climate Change.)  

The mean projection under each GCM is shown with variation across the species 

predictions shown by the shaded polygons. The seven GCMs are the UKMO-HadCM3 

(UKMO3), CCCMA-CGCM3.1, (CCMA) IPSL-CM4 (IPSL), MPI-ECHAM5 (MPI), UKMO-

HadGEM1 (UKMO1), CSIRO-Mk3.0 (CSIRO), and NCAR-CCSM3.0 (NCAR).  The clipped 

mean of the five GCMs in greatest agreement is also shown as a purple line.  A wider 

discussion of uncertainty associated with GCMs is included in Appendix Three: 

Visualising Climate Change.  As discussed in further detail in Chapter Four uncertainty 

between GCMs relates to the method and mechanisms by which different aspects of the 

Earth system is represented within the model (Buisson et al. 2010).   
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Figure 5.13Impact of GCM Uncertainty on Projections of Future Exposure
R
 (Primates) a) SRES A1B, b) A16r5l 

Uncertainty under the SRES scenario is broad with the two outlying simulations in the 

SRES A1B ensemble being the UKMO3 and the IPSL. The differences in projections are 

equivalent to a 25% reduction under the UKM03 at 2080 compared to stabilisation 

under the IPSL.  GCM uncertainty within the A16r5l is very narrow with no outliers, 

thus, one can have more confidence in the prediction of future distributions formed by 

taking the mean.  These differences in uncertainty across the two emissions scenarios 

may be rooted in the interpretation of the emission scenario by the GCM.  Emissions 

outcomes for any one storyline can vary markedly due to the interpretation of the 

storyline relating to differences between the GCMs in the way that they quantify socio-

economic assumptions (New and Hulme 2000).  Individual modellers will have been 

obliged to make subjective judgements in defining the storylines regarding the 

structure of their model and the parameter values input into the model (New and 

Hulme 2000).   Climate projections for the SRES scenario were already available from 

CIAS from each of the GCMs (Warren et al 2013).  Whereas, the GCMs had not been run 

previously for the AVOID scenarios (Warren et al 2013) therefore one would assume 

that when the Wallace Initiative undertook to run the scenarios the initial conditions 

entered would have been the same across the GCMs.  This explains why uncertainty 

surrounding the mean SRES projections is appreciably broader than the very limited 

degree surrounding the A16r5l projections.       

a) b) 
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Across the Primates, their environmental niche requirements are heavily driven by 

temperature variables (unpublished data, Warren et al 2013).  In Appendix Three: 

Visualising Climate Change, the UKMO3 was identified as being particularly ‘hot’, thus 

driving contraction in species climate space.  Whereas, the IPSL was identified as 

representing a ‘cool’ simulation, explaining why suitable climate space appears to 

stabilise under this GCM.  The mean calculation of future ExposureR, equates to a 10% 

reduction in future suitable climate space, edging slightly towards the cooler simulation 

of future climate change.         

 

Impact of GCM Uncertainty on Vulnerability  

 

Figure 5.14 Uncertainty in Vulnerability Projections aross the GCMs 
(Primates) 

 

Uncertainty across the Vulnerability projections is understandably directly relatable to 

uncertainty associated with the exposure calculation with the seven GCMs lining up in 

the same pattern as under the ExposureR calculation (Figure 5.17).  Vulnerability is 

greater under the UKMO3 and least under the IPSL as would be expected.     

The creation of ensemble projections is widely recommended as a tool to reduce 

uncertainty whilst also aiding a better understanding of the breadth of uncertainty 

across the climate projections (Beaumont et al. 2008; Buisson et al. 2010; Jones et al. 

2013).  This process of running an ensemble model allows us to account for a range of 
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potential climate futures and by the combination of the GCM projections provides a 

single climate future with the greatest likelihood (Buisson et al. 2010).  As discussed in 

Chapter Four the Wallace Initiative takes an ensemble approach combining the 

projections of the individual GCMs into a single prediction of the species distribution.    

      

5.3.5 Impact of Dispersal on Exposure Projections 

 

The Wallace Initiative projections, and consequently the projections used in this 

analysis have an included dispersal mechanism- this represents an annual dispersal 

capacity of 1.5km/yr for the Mammals (Warren et al. 2013).  Dispersal mechanisms are 

rarely included in the projection of future species’ suitable climate space and its 

inclusion across such a large number of species, as in the Wallace Initiative, had not 

previously been achieved.  The capacity of species to disperse to new suitable climate 

space is theorized to be very important in ensuring species are able to track suitable 

climate space (Zurell et al. 2009).  This section investigates the extent to which 

manipulation of dispersal rate influences projections of future impacts of climate 

change.  The Primates are used as an example Figure because a degree of recovery is 

indicated in the projections which required further investigation as to whether it is a 

consequence of the dispersal mechanism.  Thus, projections under a realistic dispersal 

scenario, based on the literature concerning mammal dispersal capacity as detailed by 

Warren et al. (2013), and under a scenario representing no dispersal are compared.   
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Figure 5.15 Projections of the impact of future climate change on Primates under the Emissions Scenarios to 2080 a) Real 
dispersal (5km/yr) b) No dispersal 

Under the scenario in which dispersal is included (Figure 5.15a), the Primates are 

projected to experience a mean loss in suitable climate space of 10% at 2080 under the 

SRES A1B scenario.  The equivalent scenario under a no dispersal scenario suggests that 

Primates will experience an average loss of 43% by2080 under the SRES A1B scenario. 

Without the capacity to disperse Primates are predicted to experience an average 

contraction of 33% above that of the dispersal scenario indicating that the capacity for 

dispersal strongly influences species ability to track suitable climate space.   

Further of interest is whether the recovery predicted between the years 2050 to 2080 is 

related to dispersal capacity or whether it is apparent under the no dispersal as well.  

Under the no dispersal scenario after an initial decline to 2020, post-2020 the 

mitigation scenarios suggest that recovery to former parts of the distributions is not 

expected. This indicates that dispersal is playing a key role maintaining the species 

range extent by tracking suitable climate space.  

It is important to recognise that this mechanism of dispersal cannot take into account 

habitat connectivity which is identified as important in facilitating or hampering 

species’ ability to track future climate space (Graham et al. 2010; Jaeschke et al. 2012).   
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5.4 Discussion  

 

This chapter has analysed projected climate change under a suite of emissions scenarios 

and how variation in each affects species Exposure and subsequently Vulnerability.  It 

has sought to allow conclusions to be drawn upon the impact of mitigation in avoiding 

the worse predicted impacts of climate change upon biodiversity.  The production of 

projected Exposure and Vulnerability over time means we are better able to pinpoint 

the time period in which mammal species are most vulnerable.  

 

5.4.1 What effect does mitigation have on overall species Vulnerability? 
 

Mitigation scenarios are recommended for the investigation of different policy 

approaches on species distributions with comparisons between different emissions 

scenarios commonly addressed (Thuiller 2004; Barbet-Massin et al. 2009; Lawler 

2009).  However, examples of this approach to assess taxonomic trends are rare ( Foden 

et al. 2013; Warren et al. 2013).  This makes drawing comparisons between this 

analysis and other approaches difficult. 

 

The Impact of Mitigation on levels of Overall Vulnerability  

Mitigation serves to reduce the percentage of species classified as Moderately 

Vulnerable or higher from 58% to 40.6% under strict mitigation, a factor of 1.44.  This 

reduction in overall Vulnerability is clearly linked to changing Exposure because the 

Sensitivity component of Vulnerability is fixed.  Foden et al (2013), in an assessment of 

climate Vulnerability for the birds and amphibians investigated three SRES emissions 

scenarios for two time slots 2050 and 2090, these scenarios are ‘B1’ representing low 

range climate change, ‘A1B’ moderate range change and ‘A2’ high range climate change.  

They predicted that under the low range scenario overall vulnerability would fall by a 

factor of 1.25 for amphibians and 1.42 for birds compared to under moderate warming 

at 2090, the no mitigation scenario in this analysis.  Mitigation serves to reduce overall 

Vulnerability for all Orders examined, and in some the case of the Primates serves to 
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entirely reverse the impact of locked-in warming predicted to impact in the early part of 

the 21st century.   

  
How does Mitigation affect Vulnerability over Time? 

In the previous section the potential benefits of mitigation were found to relate to the 

timing of its implementation, with early mitigation (strict mitigation ‘A16r5l’) reducing 

future exposure to a larger extent than delayed mitigation (moderate mitigation 

‘A30r5l’).  To see whether this is the case in terms of reducing overall Vulnerability the 

mitigation scenarios are compared with relation to time.  Several studies have 

investigated the impact of different mitigation scenarios over time (Wigley et al. 1996; 

Yohe and Strzepek 2007).  However, few studies have sought directly to compare the 

impacts of different scenarios of mitigation on species survivorship (Foden et al. 2013; 

Warren et al. 2013).  

Due to the effect of locked in warming predicted to occur over the decades to 2020  

(IPCC 2007) Vulnerability is observed to  remain fairly constant across the emission 

scenarios.  This effect of locked-in warming was also observed by Buisson et al (2010) 

who found that the emissions scenario employed counted for very little variation 

between projections of future climate change during this period, however, they did find 

that variation between different scenarios increased as the time horizon increased.  A 

finding further evidenced in this study as beyond 2020 the benefits of individual 

mitigation scenarios begin to accumulate.  At 2050 the strict mitigation scenarios 

reduce average Vulnerability from 0.70 under the business-as-usual scenario to 0.65, a 

reduction in potential Vulnerability of 8%.   Under the moderate mitigation scenarios, 

this reduction in Vulnerability is narrowed to 5%.  The potential reduction in impacts 

gained by mitigating early is thus a further 3% above that achieved by implementing 

mitigation later.     

At 2080, the potential avoided impacts by mitigating early are further apparent, at 2080 

the strict emissions scenarios reduce average Vulnerability from 0.76 under the 

business-as-usual scenario by  0.64, equivalent to an average reduction of 15% of an 

individual’s Vulnerability.  Under the moderate scenarios, this is narrowed to an 

average 12% decrease in individual species Vulnerability.  The potential reduction in 
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impacts gained by mitigating early is narrowed slightly, equivalent to 4% above that 

achieved by implementing mitigation later.   

Foden et al (2013) found that the percentage of species assessed as having high climate 

change vulnerability remained fairly similar to 2050 across the high, moderate and low 

scenarios they analysed.  This is at odds with the results of this analysis which suggest 

that with early mitigation Vulnerability is lower than that of no mitigation (equivalent 

to the moderate scenario of Foden et al (2013).  This deviation relates to the difference 

in scenarios used to analyse future levels of climate change, the B1 scenario Foden et al. 

(2013) employ to represent ‘low range climate change’ represents a less aggressive 

mitigation pathway to that represented in the strict mitigation (A16) used here lying 

between this analyses strict and moderate mitigation scenarios (Arnell and Lloyd-

Hughes 2013).  However, they found that estimates of Vulnerability began to diverge 

across the three scenarios to 2090 by a factor of 1.42 for birds and 1.25 for the 

amphibians.  As discussed earlier in this discussion this trend mirrors that found in this 

analysis with the impact of early strict mitigation become increasingly apparent to 

2080.  This highlights even more clearly the potential benefit of mitigation for a broad 

swathe of taxa, particularly the further benefit of early mitigation in avoiding the worse 

potential impacts of climate change. 

 

The Impact of Mitigation on Spatial Patterns of Vulnerability  

The implementation of strict Mitigation was found to reduce overall Vulnerability, 

significantly reducing vulnerability in the Afrotropical, Palearctic and Nearctic zones.  

Vulnerability remained high in the Neotropical zone with strict mitigation providing 

little benefit.  Foden et al (2013) also examined patterns of changing Vulnerability 

across the three scenarios they investigated; the most salient for comparison here are 

the low and moderate climate scenarios.  Foden et al (2013) report a reduction in 

overall vulnerability for the Afrotropical zone, specifically the Congo basin, for the Birds 

and the Neotropical zone, around the Amazonas, for Birds and Amphibians.  

Vulnerability remains fairly constant across the remaining zones with low levels of 

Vulnerability across both scenarios.  The most striking difference between these two 

assessments of spatial vulnerability is centred on the Neotropical zone, with Foden et al 

predicting total number of vulnerable species to fall from between 326-390 to between 
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1-65 for birds and from 28-40 to 0 for Amphibians under the low mitigation scenario.  

There are several possible explanations for this difference, the most likely source being, 

i) the difference between Foden et al’s (2013) low mitigation scenario and the strict 

mitigation scenario used here, and ii) taxon-specific levels of sensitivity, iii) 

Vulnerability classification thresholds.  High sensitivity in the Neotropical region across 

the mammals examined in this study (Chapter Four) is likely to be linked to 

Vulnerability remaining high even under the strict mitigation scenario.   

 

5.4.2 The limits of Mitigation: Are there species for which Mitigation has no 

impact on the degree to which they are Vulnerable? 

 

There is a single species for which mitigation has no impact on its Vulnerability, and 

which remains classified as Extremely Vulnerable under the strictest mitigation, this is 

the Brown-mantled tamarin (Saguinus fuscicollis).  Although mitigation does serve to 

lessen the degree to which it is predicted to be Vulnerable by up to 12% under the strict 

mitigation scenario.  The fact that the Brown-mantled tamarin remains Vulnerable 

under mitigation is related to its high Sensitivity score which puts it in the upper 

quartile of scores (Sensitivity=11.08). This in combination with the projected loss of 

71% of its current climate space under even the most stringent mitigation scenario 

places it beyond mitigation help.  Foden et al (2013) provide no evidence relating to 

individual species remaining highly vulnerable under their low climate scenario (SRES 

B1).   

 

5.4.3 Justification of methods and Caveats 

 

Mitigation Scenarios and Model Uncertainty  

Beaumont et al (2008) state that in order for policymakers and environmental 

managers to make decisions about mitigation or conservation strategies on the basis of 

model-based assessment of the impacts of future climate change on species information 

they must be provided with information regarding the potential uncertainties inherent 

in the analysis.  This includes providing information on a) the climate models used, b) 

the emission scenarios used and reasons for their selection, c) features of the climate 
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model realisation, and d) downscaling techniques.  In this chapter the criteria 

concerning choice of emissions scenarios and reasons for selection is the most relevant, 

a synopsis of the other criteria is available in Chapter Four but see Warren et al 2013 for 

in depth information.   

 

Selecting the Emission Scenarios 

The uncertainty relating to spatial and temporal uncertainty surrounding the degree of 

climate change impacts poses a substantial challenge for policy makers and 

environmental managers alike.  Identifying the uncertainties relating to these 

projections therefore is important. By testing a range of different mitigation scenarios, 

as in this study, we are better able to assess the types of species responses possible 

under different policy decisions aimed at reducing emissions (Beaumont et al 2008, 

Buisson et al 2010; Warren et al 2013).  Selecting a range of mitigation scenarios which 

encompass conservative, moderate and optimistic levels of emissions reductions allows 

impacts modellers to explore the breadth of possible influence of different policy 

strategies in shaping the level of climate change projected to occur (Beaumont et al 

2008).  This analysis takes into account six emissions scenarios, one business-as-usual 

scenario, two moderate scenarios, described as such because emissions peak is set at 

2030, and three optimistic scenarios, with emissions peaking in 2016.   

One component of uncertainty in species distribution models is that introduced by 

future climate scenarios (Beaumont et al 2008; Buisson et al 2010, Dormann 2008).  

Climate scenarios are constructed to represent alternative plausible future climates. 

There are two forms; idealized scenarios which determine a priori change in climatic 

variables, and those scenarios derived from integrating climate models with projections 

of greenhouse gases (Beaumont et al 2008).  Idealized scenarios imply a homogenous 

change in the climate variables across the study region and do not allow the species 

response to temporal change to be estimated.  The Wallace Initiative avoids introducing 

undue restrictions and therefore inflated uncertainty in this way by using the infinitely 

more robust method and employing projections from a climate model (Warren et al 

2013). 
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Reducing internal sources of Uncertainty to reveal impact of Mitigation 

In their paper aimed at quantifying the uncertainty contribution of individual 

components of species distribution models Dormann et al (2008) found that model type 

and data quality were the major contributors with variation in scenarios accounting for 

very little.  However, this result is caveated by the fact the study region was narrow and 

accounted for a relatively small range of climatic conditions.  Buisson et al. 2010 further 

scrutinized sources of uncertainty in species distribution models examining the impact 

of emissions scenarios alongside that of GCMs, initial data and model choice.  Buisson et 

al (2010) chose to compare four alternative SRES scenarios A1F1 (most pessimistic), A2, 

B2 (intermediate), B1 (most moderate) chosen to encompass a range of greenhouse gas 

emissions projected for the 21st century.  They found that SDM choice was the major 

contributor followed by GCM, whose contribution increased over time to a point where 

the proportion of variance GCM explained almost equalled that of SDM.  Comparatively 

initial data and emissions scenario contributed little to explain the overall variance, 

explaining around 10% of overall variance.  However, over time the degree of variance 

accountable to the emissions scenarios increased as the storylines diverged towards the 

end of the 21st century.  This variation among scenarios is clearly understandable and 

divergence to be expected because the raison d’être for running alternative emission 

scenarios in long-term projections is to account for a sufficient sample of uncertainty in 

future conditions (Beaumont et al 2008; Meehl et al. 2007).  As previously described in 

Chapter Four, the model used in this study seeks to reduce GCM uncertainty by running 

an ensemble model combining seven GCMS.  This reduces this source of uncertainty and 

serves to increase the likelihood of variation observed in Exposure and Vulnerability 

calculations is related to the individual mitigation implemented.       

 

5.4.4 Conclusions 

 

This analysis illustrates the benefit of stringent early mitigation in avoiding the 

potential impacts of climate change on species’ Vulnerability, buying time not only for 

species to respond to a changing climate but also for the implementation of 

conservation policy to aid this.  It has also provided evidence as to the species and 

regions which remain most vulnerable even under the most stringent mitigation.  This 
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evidence is useful to the shaping of future conservation policy by identifying those most 

vulnerable for prioritisation.  These results suggest that implementing global policies of 

mitigation will substantially reduce climate change vulnerability.   
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6 Conclusions  

6.1 A Review of the Hypotheses 
 

In order to assess the success of this research in answering those questions it sought to 

investigate means a return to those set out in Chapter Two.  With regards to whether 

levels of individual species’ sensitivity can be described by life history and ecological 

traits this study has shown that trait data can be used to infer sensitivity, and that in 

combination these traits can be used to describe whether species are highly or lowly 

sensitive to climate change.  Past Exposure was shown to have a weak influence in 

determining patterns of sensitivity in the landscape this information therefore can be 

used to validate the measure of sensitivity based on traits.  However, it also served to 

reveal the influence of other factors, biotic and abiotic, in determining current species 

distributions.  Patterns in life history and ecological trait combinations among species 

can be loosely associated with the Order to which they belong.  However, the strength of 

this association is low and wide variation across these traits among species within a 

single Order means that the assessment of individual species’ sensitivity cannot be 

based solely on the Order to which it belongs.  It was hypothesised that globally 

sensitivity levels would fluctuate as a function of past exposure filtering sensitive 

species and therefore regional biotas experiencing high velocities of past climate change 

would be less sensitive.  Although no difference was determined between sensitivity 

levels across the Tropical and Temperate regions at the scale of biogeographic zone 

patterns of sensitivity were observed within zones although not entirely relatable to 

past climate change.  This analysis was unable to robustly test the association between 

restricted species and sensitivity as too few records were available.  

 With regards to the hypotheses investigated around the measurement of vulnerability 

this analysis investigated both the impact of exposure alone and in combination with 

sensitivity through the development of a unique measure of Vulnerability.  It 

determined the percentage of species determined as at risk under exposure only and 

compared this with percentage vulnerable to future climate change, finding that the 

number of species classified as at risk increased with the addition of information on 

sensitivity.  This study found that species and regions identified as highly exposed 

under future climate change did not necessarily translate into being highly vulnerable 



250 
 

as factor of their sensitivity and vice versa.  There are Orders identified in this analysis 

as being more vulnerable to future climate change than others having being both highly 

sensitive and predicted to experience high future exposure.  There are also Orders 

predicted to be highly exposed but have low Vulnerability overall as a function of their 

low sensitivity.  This analysis also identified patterns in spatial Vulnerability with some 

regions harbouring high proportions of vulnerable species.                            

Mitigation was found to reduce overall exposure levels by effectively reducing the 

degree of warming predicted to occur.  Mitigation was observed to reduce species 

vulnerability; however, there are some species for which mitigation has very limited 

impact on the degree to which they are predicted to be vulnerable.  This is a result of 

these species’ high sensitivity to even the smallest degree of warming.    

 

The Utility of assessing Sensitivity on the basis of traits  

The loose association found between individual species’ sensitivities and the Order to 

which they belong puts into doubt the utility of using average Order Sensitivity to 

determine that of  individual species for which we have little information.  This study 

has identified traits which inflate species sensitivity and, therefore, species can be 

assessed against this sensitivity trait set using this information.  However, because the 

Sensitivity measure developed here is relative comparison between species Sensitivity 

scores assessed within this analysis and in future assessments is ill-advised.                   

 

6.2 How can this Assessment support Conservation management 

decisions? 
 

In order to draw conclusions as to the utility of this assessment in aiding conservation 

management it is first important to set the context in which conservation managers 

must make their decisions.  

Climate change is likely to challenge the dominance of the current driving principal of 

conservation action, ‘management for resilience’ and to force conservationists to adopt 

management practices which allow ‘management for change’ (West et al. 2009), 
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adaptive management.  Understanding likely current and future climate change is 

prerequisite to undertaking any review of management adaptation strategies (West et 

al. 2009).  There is broad understanding of the physical and biological principles behind 

climate change and the potential large scale ecological impacts on biodiversity 

associated with change, however, likely responses of individual species are less well 

understood (Conroy et al. 2011).   

In order to identify climate-change induced stresses Geyer et al. (2011) examined 20 

conservation sites in 7 countries structuring those stresses identified into three levels of 

biological diversity, i) stresses affecting individuals and populations, ii) stresses 

affecting biological communities and iii) stresses affecting ecosystem structure and 

function.  This analysis examines the impact of changes in climate, specifically 

temperature and precipitation (average, variability and seasonality) over the long-term 

in order to assess the degree to which these stressors (identified by Geyer et al. 2011) 

will impact climatically suitable space at the species level.    

Conservation organizations and natural resource management groups require guidance 

on which to base their response to future climate change, understanding the potential 

broad impacts of future climate change is paramount in determining the course to 

follow from the myriad potential actions and strategies available (Conroy et al. 2011).        

Conservation managers are guided by a series of adaptation principles which encourage 

landscape-scale actions taking into account climatic impacts, the composition of the 

landscape and species’ attributes (Oliver et al. 2012).  However, there is evidence that a 

lack of understanding relating to how to prioritise, target, and implement conservation 

practice may serve to inhibit turning these principles into action (Oliver et al. 2012).  

This has led to the development of several frameworks aimed at translating these 

principles to guide conservation managers on the ground (West et al. 2009; Conroy et 

al. 2011; Cross et al. 2012; Oliver et al. 2012).  These frameworks illustrate the process 

managers should undertake when assessing and prioritising species and ecosystems for 

management (Figure 6.1) 
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Figure 6.1 Basis Framework of Conservation Management  (after Cross et al 2012) 

The idea behind these frameworks is to target populations of individual species most 

threatened by climate change.  However, the authors readily acknowledge that there is 

limited empirical data available on how species interact within the landscape (Oliver et 

al. 2012).  Therefore, these frameworks each identify the use of modelling approaches 

as key to understanding the range of exposure but also identify a need for these 

analyses to account for sensitivity which goes beyond identifying tolerances to climatic 

variables.       

As illustrated in Figure 6.1 understanding the potential effects of future climate change 

is an integral part of the process by which conservation managers prioritize 

management actions.  Climate suitability or species distribution models form the 

foundation of climate change integrated conservation management (Gillson et al. 2013).  

Using information provided by distribution models, such as that developed upon in this 

research, aids conservation practitioners to prioritize and geographically target 

different actions (Oliver et al. 2012).  Embedding plausible physical, biological and 

ecological responses into these models can help further direct the conservation reaction 

(Cross et al. 2012).   

Past assessments of the impact of future climate change have focused on changes in 

spatial distribution or changing abundances, Hulme  (2005) advocated the integration 

of aspects of species’ life history and ecological preferences to better characterise the 

impacts of climate change to guide conservation action.  Oliver et al. (2012) discuss the 

utility of using Vulnerability analysis to determine the impact of future climate change 

but concede that often evidence on individual sensitivities is unknown.  Information on 

the sensitivity of individual species is key to understanding of Climate change impacts 

Monitor action towards goal and revise as necessary 

Implement priority actions 

Prioritize management actions 

Assess the potential affects of climate change 

Identify the target for conservation and specify a management goal 
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on specific conservation targets (West et al. 2009).  These sensitivities range from 

aspects of individual species biology to ecological functioning of a system and along 

with climate change scenarios form the basis for planning under multiple possible 

futures (West et al. 2009).   

This analysis has strengthened the depth of knowledge surrounding impacts of climate 

change on biodiversity.  In brief this analysis has identified those Mammals species most 

vulnerable under future climate change.  It has also identified the regions in which the 

most vulnerable species are likely to occur, specifically identifying the Neotropical, 

Afrotropical and Palearctic zone as harbouring high percentages of vulnerable species.   

This knowledge can be incorporated into future conservation policy, in several aspects 

by, 1) helping to prioritise the most vulnerable Mammal species for conservation action, 

2) highlighting the regions in which the most vulnerable species occur to focus 

conservation action, and 3) identifying the factors which confer vulnerability allowing 

other species (particularly Mammals) not included in this analysis to be assessed under 

the Vulnerability framework for prioritisation. 

Conroy et al. (2011) write that despite uncertainty in species and ecosystems responses 

conservation must proceed as it cannot wait for the untangling of these uncertainties. 

Therefore, management actions should be guided by multiple, plausible hypotheses 

which undertake to describe a wide range of alternative scenarios of climate change and 

the subsequent impacts.  Exploring the impact of different climate scenarios allows one 

to examine the potential range of responses species and ecosystems may undertake 

(Cross et al. 2012).  Through the assessment of species vulnerability under a broad 

range of climate futures this analysis provides an indication of the degree to which 

different species will be impacted allowing for conservation managers to prioritise for 

conservation action those most at risk even under low climate warming.  The 

investigation of changing Vulnerability over time provides conservation managers with 

a timescale over which to implement conservation actions in order to elude the worse 

impacts of future climate change.    

Identification of the level to which different species are likely to be vulnerable to future 

climate change will support conservation managers by narrowing the number of 

potentially appropriate adaptive management options to select from.  There are several 
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forms of climate change adaptation actions suggested including creating a i) buffer zone 

around existing habitat patches to reduce edge impacts, ii) in-situ management 

improving habitat quality and to remove non-climate related threats, iii) restoring local 

habitat surrounding existing vulnerable sites, iv) translocation of species, and v) ex-situ 

management (Oliver et al. 2012).  For Species identified as having limited dispersal 

ability, high sensitivity and at risk of losing large proportions of their current 

distribution translocation may prove the better management strategy over improving 

habitat connectivity (Hulme et al. 2005).  The identification of highly vulnerable species 

guides the prioritization of these species for potential translocation and ex-situ 

conservation (Gillson et al. 2013).  However, in order take these conservation decisions 

conservation managers require information on the impact of future climate change on 

species due to their individual sensitivities (Gillson et al. 2013).  This analysis provides 

this information.    

Barriers in the Landscape and Shifting Distributions  

It is known that distribution patterns are governed by many factors, not solely climate, 

and that these influence patterns of distribution but also the rate at which distribution 

shifts occur (Heikkinen et al. 2006).  These factors include, but are not limited to,  

habitat fragmentation, topography, and fire frequency (Brotons et al. 2004; Heikkinen et 

al. 2006).  The influences of these external factors on the results of this analysis are 

complex.  For example, for adaptive responses to be successful in responding to rapid 

climatic change the quality of habitat connectivity in the landscape must be good and 

the species must be able to keep pace with the velocity of climate change through 

dispersal or local adaptation (Graham et al. 2010; Jaeschke et al. 2012).  Habitat 

fragmentation and natural barriers may thus restrict species dispersal (Wiens et al. 

2009).  These barriers are important in determining species ability to track climate 

change because any increase in the mean distance between natural habitats further 

compromises the ability of species to successfully disperse between populations and 

habitat patches (Parmesan et al. 2000).  Habitat connectivity is not represented in 

consequence the model assumes that species can disperse effectively through the 

landscape.  This is obviously unlikely to be the case because of the competing factors 

identified here.  Therefore the model is likely to overstate the capacity for individual 

species to shift their distributions (see Chapter Four, Section 4.4.4).  The addition of a 
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topographical layer (describing elevation range and altitude above sea level) has been 

found to improve overall model predictions (Virkkalaa et al. 2010).  However, 

representing these large-scale landscape features in species distribution models to 

prevent species being predicted to cross mountain ranges has not been attempted.    

Crooks et al. (2011) examined the effect of fragmentation and habitat connectivity on 

mammalian carnivore distributions finding that these factors strongly influenced 

extinction risk.  Howard and Schlesinger (2013) integrated a measure of habitat 

connectivity into their model of 26 rare species distributions under climate change.  The 

complexity of integrating connectivity data for a region the size of New York’s Hudson 

Valley, as in their paper, illustrates the enormity of the challenge associated with 

achieving this on a global scale.   

         

6.3 What evidence does this Assessment provide to support mitigation 

policy? 
 

Examining the effectiveness of different policy actions in ameliorating the effects of 

climate change can inform conservation strategies (Gillson et al. 2013).  This thesis 

demonstrates the benefit of early mitigation in reducing future vulnerability.  The 

analysis also reveals the extent to which species remain vulnerable even under the most 

stringent mitigation.   

 

With regards to mitigation policy, this analysis has added further weight to the 

argument that mitigation of climate change has the potential to protect biodiversity, and 

that without mitigation a large proportion of biodiversity will be at risk (Yohe and 

Strzepek 2007; Foden et al. 2013; Warren et al. 2013).  It also advocates the earliest 

possible date for cutting emissions, and the implementation of mitigation policy to 

achieve this.  This is in agreement with the findings of Warren et al (2013) in terms of 

reducing exposure and Foden et al (2013) with regards to reducing future vulnerability 

of species.   

On the basis of observations into the response of ecosystems and their constituent 

species to recent warming van Vliet et al (2006) recommended that attempts be made 

to constrain future climate change to 1.5°C above pre-industrial levels, limited to less 
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than an increase of 0.5°C per century.  However, this analysis has shown that despite 

warming of above this threshold, ranging from between 2°C under strict mitigation to 

4°C under with no mitigation, the percentage of mammals classified as extremely 

vulnerable is 0.5% rising to 3.9% respectively.  Correspondingly, 16.4% are classified as 

highly vulnerable rising to 33.3% with no mitigation.  This result suggests that many 

species are placed at high risk being highly or extremely Vulnerable under 4°C with 

significantly fewer under 2°C.  Further, it is important to qualify that under strict 

migration 40.6% of the species analysed are classified as Moderately Vulnerable or 

higher and as a consequence are likely to require conservation action.         

 

Barriers in the Decision-Making Process 

Despite multiple lines of evidence as to the efficacy of mitigation in averting the worst 

predicted impacts of climate change, to which this analysis adds further weight, 

reaching consensus across nations to undertake mitigation action continues to prove 

difficult (Council on Foreign Relations 2013).   The likelihood that peak emissions will 

be reached at 2016 is negligible, however by accounting for this scenario this research 

provides a benchmark for what could have been achieved if agreement had been 

reached.  It therefore provides policymakers with an impetus to agree targets which 

provide steps to ensure peak emissions are reached and subsequently reduced before 

further damage to biodiversity occurs.  

 

6.4 The Implications of these findings for established Conservation 

Prioritization Strategies 
 

There are several global schemes designed to identify conservation priorities such as 

the IUCN Red list (IUCN 2012).  These schemes inform policy on the protection of 

individual species, such as the CITEs on trade in endangered species, and also influence 

global investment strategies (Iwamura et al. 2013).  It is important that these 

prioritisation schemes are assessed in their effectiveness with regards to future climate 

change  (Iwamura et al. 2013).   
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This analysis advocates the inclusion of climate change vulnerability into assessments 

of individual species risk.  If climate change vulnerability remains unassessed in these 

risk assessments, which are subsequently used to prioritize conservation actions, 

species that become increasingly vulnerable into the future under climate change may 

be overlooked.  This includes species which are not currently assessed as at risk but are 

predicted to become increasingly vulnerable under future climate change.  The IUCN 

has looked at incorporating climate change factors into their assessments (IUCN 2009) 

but these recommendations have not been adopted as yet.   

It is important that the limited resources and funds available to for conservation 

managers are directed prudently.  Currently, US$ 750 million are disbursed annually in 

supporting local conservation projects globally on the basis of the Biodiversity Hotspots 

analysis developed by Myer et  al  (2000) but this theory’s applicability under climate 

change is untested and may ultimately prove to be ill-judged  (Iwamura et al. 2013).   

 

6.5 Implications of this Research regarding Representation of Mammal 

groups and Regions  
 

6.5.1 Mammal Representation 

 

Due to constraints within the data some mammal groups are either poorly 

characterised with few representatives or missing completely.  This includes the 

emblematic ‘poster child’ of climate change the Polar bear (Ursus maritimus).  Missing 

species also include the Marsupials which are significantly underrepresented due to 

lack of occurrence data for these species in GBIF (GBIF 2013) at the time of the analysis.  

Assessing the Vulnerability of the Polar bear  

Based on the components identified as increasing Vulnerability in this study one might 

conclude that the Polar bear is pre-destined to be highly if not extremely vulnerable to 

future climate change.  Information is available on the Polar bear’s life history traits in 

PanTHERIA (Jones et al. 2009) but missing from the Wallace Initiative due to its 

occurrence in the high latitudes of the Arctic (Warren et al. 2013).  Like its close relative 

the Brown bear (Ursus arctos), which appears among the 10% Most Sensitive species 
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identified in this analysis, the Polar bear’s life history is characterised by traits 

identified here as increasing sensitivity.  Sexual maturity is only reached at an age of 

5yrs,  Polar bears have small litters (2 cubs per mating) and only mate once every 2-3 

years (Jones et al. 2009).  Gestation period is short but the cubs will remain with the 

mother for at least 2 years.  In combination these traits would suggest that the Polar 

bear is highly sensitive to disturbances.  With regards to exposure under a scenario of 

no mitigation temperatures are predicted to increase by of 2-3°C by 2080 (Appendix 3), 

this warming in the Arctic Circle will increase the rate of ice melt causing the ice sheet 

to shrink (IPCC 2013) negatively impacting species such as the Polar bear which rely on 

the ice sheet for their survival, (IUCN 2009).  Together, these characteristics of 

Sensitivity and Exposure suggest that the Polar bear will be, as hypothesised, highly 

vulnerable to climate change.                                                   

6.5.2 Regions 

 

There are several regions identified in this analysis for which there are large gaps in 

available occurrence data, preventing the assessment of exposure, and also gaps in the 

factors corresponding to sensitivity.  These regions include Australia, Madagascar, 

Indonesia, Russia and China.  Madagascar, Indonesia and Australia are regions of high 

global endemism (Ceballos and Ehrlich 2006).  Endemic species are identified as 

particularly vulnerable to future climate change (Thomas 2010).  Although data is 

unavailable for these areas of endemism one would hypothesise that inclusion of these 

species would inflate the overall percentage of species identified as Moderately 

Vulnerable or higher.      

 

6.6 Improving the Vulnerability Measure 
 

 To assess which factors of Vulnerability are absent from this analysis requires 

returning to the Vulnerability framework as described by Williams et al. (2008).  In 

terms of defining Sensitivity this analysis accounts for ‘resilience’ factors including 

those determined by life history and dispersal capacity, but, information on population 

dynamics is absent.  The other component of Sensitivity, ‘adaptive capacity,’ 

encompassing genetic diversity and phenotypic plasticity, is entirely unrepresented in 
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the measure developed here.  The Exposure component is determined using species’ 

climatic preferences and tolerances to explore the degree to changing climate will 

impact species distributions in space and time.   This analysis excludes abiotic and biotic 

interactions and micro-habit and topographic buffering.  This analysis also accounts for 

the impact of mitigation another factor identified as important in determining the future 

vulnerability of species.  There are clear reasons for this analysis not incorporating 

several of the identified ‘missing’ factors.  In relation to micro-habitat and topographic 

buffering, and biotic interactions these are not thought to be relevant to determining 

climate change impacts in global scale analysis such as this (Peterson and Dawson 

2003).  There is insufficient data relating to genetic and phenotypic diversity because 

they are exceptionally difficult to quantify (Williams et al. 2008) so at present 

incorporation of these factors at a global scale is all but impossible.  One factor missing 

from this analysis’ measure of sensitivity and which could be incorporated are aspects 

of population dynamics.  Information on population trends, if not population sizes, are 

available from the IUCN Red list (IUCN 2012) and could potentially be incorporated by 

adopting the population-based criteria used to judge level of endangerment (IUCN  

2001).         

 

6.7 Modifying this Method to examine novel Taxa 
 

The utility of the method developed here is that it could easily be duplicated for other 

taxonomic groups for which data on life history and ecological traits and future 

exposure to climate change is available.  The Wallace Initiative (Warren et al. 2013) 

already provides exposure data for Amphibians, Reptiles and Birds.  Assimilating life 

history data though is far from straightforward for these groups due to access and 

sharing of data which is often closely guarded by the individuals and institutions which 

have collected them.  The calculation of the Exposure would remain the same as the set 

out in this research.  However, it is likely that different components of life history and 

ecology are important in the determination of Sensitivity.  For example, in amphibians 

variation in gestation length is unlikely to be relevant, due to the fact that they are egg-

bearing, but the level of parental care could prove to be important.  There are species, 
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such as the Surinam toad (Pipa pipa) and the Darwin frog (Rhinoderma darwinii) that 

nurture their young for extended periods (AmphibiaWeb 2014).     

 

6.8 Concluding Remarks 
 

The assessment of the impact of future climate change on biodiversity has often 

concentrated on describing the impact of exposure on species future distributions.  It 

has not addressed the influence of species’ individual sensitivities in moderating these 

predicted impacts.  This thesis provides robust evidence for what has been theorised in 

the literature with regards to assessing species’ future vulnerability under climate 

change.  This investigation has indicated the factors which confer species sensitivity or 

resilience to future climate change.  The creation of a Sensitivity score has 

demonstrated that including these factors in the assessment of species’ risk to climate 

change is highly useful.  The analysis of the effect of different scenarios of mitigation on 

avoiding the full impacts of future climate change predicted under a business-as-usual 

path has provided evidence on the benefit of mitigation on reducing species’ 

vulnerability.             

The evidence presented in this thesis demonstrates that species’ sensitivity will shape 

species’ vulnerability to future climate change.  Further, it has identified the factors 

which best characterise mammal sensitivity using a statistical method which can be 

easily replicated for other taxa.  It has also identified the regions in which species are 

predicted to be most vulnerable to future climate change.  
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Appendix 1: A Review of Species Distribution Modelling 

Species Modelling  

 

Ecologists and biologists have strived to understand the distribution of species and the 

underlying features which determine them for many decades. The field of theoretical 

ecology to which species distribution modelling belongs has its roots in theories such as 

the Niche Concept (Hutchinson 1957) and the Theory of Island Biogeography 

(MacArthur and Wilson 1967). 

Species distributional limits are determined by physiological and environmental 

constraints, i.e. too or not too cold (Guisan and Zimmermann 2000).  Thus, climate plays 

a considerable role in defining species distributions and in controlling ecosystem 

processes (Pearson and Dawson 2003; Root et al. 2003).  Observations that changing 

climates have influenced species distributions are apparent in the fossil record, and in 

current trends of range expansion and contraction (Pearson and Dawson 2003).  This 

hypothesised relationship between species distributions and the environment forms the 

basis for predictive ecological models seeking to explore climates effect on species and 

communities (Guisan and Zimmermann 2000).  Patterns of past climate-induced 

changes in species distributions  can aid our understanding of current distributions of 

species and the genetic variation therein (Hijmans and Graham 2006).  As reflected in 

the past, there are some species which appear particularly vulnerable to losing parts of 

their range in response to climate change such as mountain-top endemics (Hijmans and 

Graham 2006).  Species distribution models capitalise on scientific knowledge of 

biophysical and ecophysiological processes and their regulation of species relationships 

with their environment (Guisan and Zimmermann 2000; Austin 2007).  Modelling 

species, as opposed to communities, is believed to be more realistic because of the short 

history of modern species communities and the likelihood that communities will not 

shift as an entire entity (Guisan and Zimmermann 2000).  This appendix reviews 

species distribution modelling techniques and their associated uncertainty 

Species distribution models take two main forms, that of correlative or statistical 

modelling, and that of mechanistic modelling, each form seeks to describe how species 

distributions are realised.  Their power lies in their ability to provide testable 
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hypotheses of species distributions (Guisan and Zimmermann 2000), particularly 

relevant in the face of global change, climate change (Thomas et al. 2004) or otherwise 

(i.e. land-use change (Sala et al. 2000), invasion biology (Vaclavik and Meentemeyer 

2009)), and also the accurate prediction of biological patterns (Guisan and 

Zimmermann 2000). 

Ecological knowledge forms the basis of correlative and mechanistic models; it guides 

the selection of appropriate indicators, whether related to environmental variables or 

fitness measures (Austin 2002; Guisan and Thuiller 2005).  Each of the model types, 

thus, assumes that it captures the appropriate mechanisms driving a species 

distribution (Dormann et al. 2012).  How these indicators are incorporated is what 

defines both. Correlative models derive functional relationships by fitting species 

occurrences to environmental data, whereas mechanistic models use knowledge on 

processes such as reproduction or growth (Dormann et al. 2012) 

Correlative models use statistics to infer a species’ environmental niche requirement 

from information on their current distribution, and then look for environments 

analogous to these pre-determined requirements  (Pearson and Dawson 2003).  They 

use suites of environmental variables  to describe the sites in which the species occur 

(Wiens et al. 2009). As such they are often used to project future occurrences of species 

based on the presence of the correlated environmental features under future landscape 

scenarios  (Wiens et al. 2009).      

 

Process-based mechanistic models build a prediction of a species distribution based on 

functional traits and physiological traits (Kearney and Porter 2009), such as their life 

history, physiology, behavioural and genetic plasticity (Wiens et al. 2009).  These 

properties govern the species’ sensitivity to physical characteristics in their 

environment (Wiens et al. 2009).  As such, these models map the species distribution 

based on locations which are within the species natural tolerance limits (Wiens et al. 

2009). These models are often used to simulate dynamic features of species 

distributions, such as the influences of disturbance, land-use change and management 

on species occurrences (Dormann et al. 2012)  
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Niche Theory  
 

Niche theory forms the conceptual basis in which species distributions models are 

rooted.  Hutchinson described a species ecological niche as a multidimensional space  

(for which he coined the term ‘n-dimensional hyper-volume’, (Hutchinson 1957))  in 

which the axes describe the species environmental and resource requirements needed 

to survive and reproduce (Colwell and Rangel 2009).  Within niche theory, Hutchinson 

defined two niche forms, the fundamental niche and the realized niche (Hutchinson 1957; 

Wiens et al. 2009).   The fundamental niche describes the full range of conditions and 

resources in which a species could survive and reproduce without interference from 

other species (Hutchinson 1957).  The realized niche represents a subset of the 

fundamental niche to which the species is constrained by inter-specific competition and 

abiotic barriers (Wiens et al. 2009).  Mechanistic and correlative modelled predictions 

correspond to different parts of the species niche, where mechanistic models take the 

fundamental niche as their frame of reference, and correlative models, the realized 

niche (Wiens et al. 2009).  

 

It is widely acknowledged, that although models can never be tested as true or false 

(Guisan and Zimmermann 2000), because the complexity of the natural world is 

impossible to capture entirely, they provide a powerful tool for the indication of how 

species may cope and adapt to future climate change (Pearson and Dawson 2003).   

  

Correlative Models 

 

Ecological niche models, also known bioclimatic or niche envelope models are 

correlative models which simulate species’ spatial distributions using environmental 

predictors (Sillero 2011) . Their primary purpose is to describe a species ecological 

niche rather than to realistically describe ‘cause and effect’ of individual variables 

(Guisan and Zimmermann 2000), although it is possible to explore general trends in 

driving factors.  These models adopt the general thesis that a species’ current 

distribution is the best indicator of its climatic requirements and so combine climatic 

variables with observed distributions in making predictions (Pearson and Dawson 

2003; Austin 2007). As such they provide a powerful tool for approximating the impacts 
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of processes such as climate change, as well as evolutionary processes and the impact of 

alternating conservation strategies  (Zimmermann et al. 2010). 

The theory that climate dictates species distributions at broad geographical scales is 

widely supported  (Pearson and Dawson 2003; Heikkinen et al. 2006).  This idea stems 

from that presented by Whittaker (1975), who showed that the distribution of the main 

biomes of the world can be predicted by the distribution of mean temperature and 

mean precipitation values.  More recent support for the separation out of climate 

variables for sole use in regional scale distribution models is provided by Thuiller et al 

(2004) who found that models including climate variables held greater explanatory and 

predictive power than land-cover variables at continental and regional scales.   

Although a species’ niche space is defined by both scenopoetic and binomic factors, 

climate processes are recognised as largely controlling a species distribution, shape and 

its biological properties (Pearson and Dawson 2003).  The components that comprise a 

species’ climatic requirements are described as a ‘climate envelope’, which scientists 

determine by a species current distribution correlated with its climate variables and the 

species known physiological responses to climatic changes (Pearson and Dawson 2003). 

Dormann et al. (2010) found that climatic variables explained 56% of the variation in 

species occurrences.  Climate zones are characterized by their typical ecosystems 

(Leemans and Eickhout 2004) which in turn are characterized by the species which 

reside within them.   

Ecological niche models thus require information on the species’ current distribution 

and environmental spatial data layers (Elith et al. 2006; Graham et al. 2008).  The 

known distribution of the species may be inferred from species surveys and museum 

records (Elith et al. 2006).  The selection of the predictor variables is based on 

experience that they show correlations with species distributions, as well as their 

availability.  Predictor variables may not directly influence a species distribution but 

may act as a surrogate for more nuanced proximal variables (Austin 2007).  By 

combining these data we create a predictive model which statistically associates the 

distribution data with the spatial habitat data to assess the suitability of any site, 

globally, by region, or locally, for the species (Graham et al. 2008).  The resultant climate 

suitability map represents the probability of occurrence of, or, suitability for occupation 

for, a species across a pre-determined landscape (Sillero 2011).  The species’ 
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environmental niche determined by the model can be extrapolated to future 

climatescapes to determine locations where the species niche requirements are 

satisfied into the future (Wiens et al. 2009).  These future climatescapes are derived 

from climate-change models. 

 

It has been forwarded that correlative models best represent the realized niche because 

they use the species current distribution locations as a representative proxy of the 

species niche, and this distribution has already been subjected to historical biotic and 

abiotic interactions (Kearney and Porter 2004; Kearney 2006; Lobo et al. 2010). 

However, it has also been argued that  the inclusion of solely environmental variables 

prevents species distribution models from accurately predicting a species realized niche 

(Fielding and Bell 1997), as such the output distribution is more akin to the species 

fundamental niche. This is because additional factors such as, biotic interactions, 

geographic barriers and geographic and biotic history, are often not accounted for in 

species distribution models and because species do not necessarily occupy all 

environmentally-suitable areas (Phillips et al. 2006; Pearson 2007a).   As a result these 

predictions are typically larger than the observed realized distribution (Phillips et al. 

2006).  In addition distributions are assumed to represent the species in equilibrium, 

(i.e. that they occur in all parts of their suitable environmental space) (Dormann et al. 

2012), when species are rarely in equilibrium with their environment due to dispersal 

limitations or historical occurrences, is thought to be further evidence that correlative 

models describe the realized rather than fundamental niche (Lobo et al. 2010).  As such 

these models are better thought of as sitting along a gradient between the realized and 

fundamental niches (Jimenez-Valverde et al. 2008), however pinpointing the departure 

between both the theoretical fundamental niche and realized niche remains impossible 

and a largely conceptual exercise  (Phillips et al. 2006). 

Correlative models have been used in a variety of applications, such a modelling past, 

current and future distributions based on the species environmental characterisation 

gleaned from their current localities (Hijmans and Graham 2006) and representations 

of past, current and future climates (Pearson and Dawson 2003).  Thus, we can estimate 

changes in the species distributions spatially over time, giving insight into past and 

future changes under climate change (Pearson and Dawson 2003) . They have been 

employed to simulate distributions of terrestrial and aquatic plants and animals, 
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vegetation types, biomes and plant or animal biodiversity (Guisan and Zimmermann 

2000) 

There is a wide variety of correlative model techniques currently in use which vary in 

statistical mechanism and their potential uses (Guisan and Zimmermann 2000).    For 

instance the model Maxent (Phillips et al. 2006), which uses maximum entropy theory, 

BIOCLIM an envelope model which only uses presence data, LIVES which calculates the 

species distribution based on distance analysis and the regression-based models GAM 

(Generalised additive model), MARS-COMM, a regression model based on community 

data and BRT (boosted-regression tree).      

Elith et al (2006) conducted a detailed comparison between each of the model 

algorithms listed on the basis of their ability to predict a range of different individual 

species distributions. Each model was ranked with regards to its individual 

performance. The model algorithms performing best across all species were BRT, 

MARS-COMM and Maxent those with the lowest predictive capacity were BIOCLIM, and 

LIVES.    The worst performing models BIOCLIM and LIVES are both presence only 

models which do not account for the environmental conditions in which the species 

occur meaning they are unable to project species occurrences outside the range of the 

data points.  The top performing models are more capable of fitting complex data on the 

basis of occurrences and environmental data because they employ more advanced 

algorithm sets to derive the species climatic requirements (Elith et al 2006).                   

 

Mechanistic 

 

Physiologically-determined mechanistic models present a conceptually alternative way 

of describing species distributions to ecological niche models (Pearson and Dawson 

2003).  Mechanistic models find their basis in the processes by which species survive 

and reproduce; they seek to describe a species distribution on the basis of mechanistic 

links between the organism’s fitness and its environment (Kearney 2006).  Ecological 

knowledge of processes and experimental or observations of processes are used to 

inform the creation and calibration of processes within the model (Dormann et al. 

2012).  Thus, one begins with the organism in opposition to its distribution and 
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consequently the distribution is mapped based on the fitness consequences of these 

processes, and their tolerance limits (Kearney 2006).  Mechanistic models are thought 

to model the fundamental niche, by definition this fundamental niche is not an accurate 

description of the species current distribution, also by describing all individuals as the 

same they fail to account for individualistic species tolerances and adaptations (Pearson 

and Dawson 2003).  There are two types of mechanistic model- i) ‘forward’ process-

based models, where no parameters are fitted to the object data and ii) fitted process-

based models, which involve the calibration of a parameters to a subset of the data 

(Dormann et al. 2012).  Mechanistic models are implicitly data hungry incorporating a 

large number of adjustable parameters, some derived from laboratory experiments, 

which require validation and calibration against observations (Dormann et al. 2012).         

Model Comparison 

 

There are positive and negative aspects to both correlative and mechanistic models.  

One thing which is clear, is that when using either scientists need to consider the 

resultant model as providing a hypothesis, however informed  (Dormann et al. 2012).  

This is because both assume that they correctly capture the significant mechanisms 

which influence species distributions, but testing these assumptions is  beyond the 

scope of most (Dormann et al. 2012). 

Each model type can be adjusted to express a greater or lesser degree of generality 

depending on their ultimate purpose (Guisan and Zimmermann 2000).  Guisan and 

Zimmermann (2000) observe that generality need not be at the expense of reality or 

precision.  When modelling distributions under future climate scenarios a degree of 

generality is required to allow the model space to extrapolate (Hijmans and Graham 

2006). As such, Dormann et al (2012) have speculated that correlative models have a 

greater capacity, in an explorative sense, than mechanistic models, to discover new 

processes and process interactions, because these are not defined a priori.     

Data availability often limits the applicability of mechanistic models because they 

require detailed physiological data and for very few species’ dynamic responses to 

environmental change have been studied, thus, making correlative models the preferred 

choice where data is scarce (Guisan and Zimmermann 2000).   The processing time 

taken to run each of the model needs also to be considered, mechanistic models 
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commonly take much longer to develop, they also have many more parameters 

requiring calibration than correlative models which can be quickly employed once 

environmental and occurrence data is available (Dormann et al. 2012).  Thus, 

correlative models can be easily applied to a large number of species quickly, and 

enable us to draw conclusions about the impacts of environmental change on a suite of 

species, rather than on an individual species basis (Pearson and Dawson 2003).      

Mechanistic and correlative models capture large scale processes to different degrees of 

precision, depending on focus, however, they both lack the ability to represent subscale 

heterogeneity accurately (Dormann et al. 2012).  Thus, they can identify the broad 

distributional trends, but lack detail, particularly for species whose distributions are 

fragmented in the landscape (Pearson and Dawson 2003).    

Both modelling approaches assume that species are in equilibrium with their 

environment and as such lack the capability to infer  individualistic behaviours such as 

dispersal ability and adaptive capacity (Guisan and Zimmermann 2000).  At the macro-

scale, however,  evidence for correctly simulated distributions at the continent scale 

suggests that species are equilibrium with the current climate at this scale (Pearson and 

Dawson 2003).      

  

Model Selection 

 

Correlative and mechanistic models are thought to sit along a continuum delineated by 

the degree to which processes are represented in the model  (Dormann et al. 2012) .  

Pearson and Dawson (2003) suggested a hierarchical framework describing the 

environmental-biota relationship based on the variable of interest and geographic scale.  

Thus, theoretically the analyses should be focused at the scale at which the particular 

phenomena is dominant (Pearson and Dawson 2003). For example, at the global scale 

we can consider Climate as the dominant factor in defining a species distribution, as 

such correlative models are the appropriate choice, having the statistical power to 

produce predictive precision at this scale (Guisan and Zimmermann 2000). Using the 

hierarchy we can infer the relevant application of the two model types under different 

scenarios (Table S 1).  Selecting the correct model type for the scale of analysis is thus 
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fundamentally important to the success of the model in capturing aspects of the species 

distribution (Pearson and Dawson 2003).  The selection of appropriate subscale 

processes in large scale analysis, and their subsequent inclusion represents a future 

challenge for both model types (Dormann et al. 2012). 

 

 
Global 

>10,000km 

Continental 

2000-10,000km 

Regional 

200-2000km 

Landscape 

10-200km 

Local 

1-10km 

Site 

10-1000m 

Micro 

<10m 

Climate      Mechanistic  Models 

Topography        

Land-use Correlative Models      

Soil type        

Biotic interactions        

Table S 1 Modelling Hierarchy after Pearson & Dawson, 2003 (Arrows indicate scale of relevance) 

 

Model Selection and Evaluation 
 

Selecting a Correlative Model  

The Wallace Initiative in seeking to project a large number of species distributions 

globally for extrapolation under future scenarios of climate change opted to use a 

correlative niche modelling approach.  Correlative models can be divided into a further 

three types determined by the type of occurrence data available and ultimate use, these 

are i) presence- absence, ii) presence-only and iii) presence-‘pseudo-absence’ (Hirzel et 

al. 2006).  In this section each is discussed in relation to their applicability.  

Presence-absence data models require occurrence data, where the species has been 

observed, and absence data which describe locations where the species was observed 

not to occur (Gormley et al. 2011). The preparation of this data requires systematic 

monitoring of the species to accurately ascertain the species presence or absence within 

the region of interest (Hirzel et al. 2006; Gormley et al. 2011).    The inclusion of absence 

data in the model process was observed to add predictive power to the model, because 

knowing the conditions in which a species is not present is equally relevant to defining 
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the species niche (Wiens et al. 2009).  However, the observation of ‘true’ absences is 

complicated, and a species may be recorded absent where it is actually present, known 

as a ‘false’ absence  (Wiens et al. 2009).  Absence data is not commonly available, 

particularly where species are isolated or have small populations (Graham et al. 2008).  

Presence-only data models are based solely on occurrence data, as such biotic and 

historical processes are intrinsic within it, leading to the conclusion that presence-only 

data predictions most accurately describe the realised niche (Sillero 2011). The ability 

to discriminate between occupied and unoccupied habitats is unavailable to these 

models due to the lack of absence data (Sillero 2011).  Thus, these models cannot 

contrast their habitat suitability predictions against patterns of known absences (Hirzel 

et al. 2006).  Dependent on the size of the study area and quality and scale of the 

environmental data presence-only models can predict distributions more or less 

analogous to the fundamental niche (Sillero 2011).  Model accuracy is strongly linked to 

the number of occurrences and the degree of spatial bias within the data (Elith et al. 

2006; Graham et al. 2008).  To circumvent the problem of a lack of absence data, two 

methods have been suggested, i) the inclusion of generated pseudo-absence data for 

evaluation, and ii) assessing the models ability to discriminate species suitable climate 

space  (Hirzel et al. 2006). 

The third type of model uses occurrences and pseudo-absences.  Pseudo-absence data is 

generated to represent absences across the modelled extent of the species distribution 

model where presence data only is available (Chefaoui and Lobo 2008; VanDerWal, 

Shoo, Graham, et al. 2009).  The selection of pseudo-absence data has the power to 

highly influence the modelled prediction, impacting where the model sits between the 

realized and potential niche (Chefaoui and Lobo 2008). The technique in which pseudo 

–absences are selected from the background may affect the model parameterization 

subsequently impacting the prediction accuracy of the model particularly when 

projecting in time and space (VanDerWal, Shoo, Graham, et al. 2009).  Their selection 

can affect the degree of variability explained, constrain the modelled distribution and 

inflate the model accuracy (Chefaoui and Lobo 2008).  The extent from which pseudo-

absences are selected strongly manipulates the model predictions, for instance selecting 

absences from environmental regions distant from those of the species optimum 

inflates the model  accuracy score and discrimination ability and increases over-
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prediction  (Chefaoui and Lobo 2008).  Where absences are selected from an overly 

broad or restricted region model performance is lower than those selected from an 

intermediate area around the species presences  (VanDerWal, Shoo, Graham, et al. 

2009).  Thus, there is an optimal distance from the species environmental niche 

requirements  which one should stray in the selection of pseudo-absences (VanDerWal, 

Shoo, Graham, et al. 2009).  

Presence-absence model techniques were observed to be better able to discriminate 

species distributions than those which use presence-only data (Chefaoui and Lobo 

2008).  Where prevalence is low (<50 presences), presence-absence models perform 

better than presence-only models due to the additional niche information provided by 

the observed absence data (Hirzel et al. 2006).    However, absence data should only be 

employed when the user is certain that absence data has been collected systematically 

for the area of interest and so is an accurate indication of the unsuitable habitat areas 

(Chefaoui and Lobo 2008).    

 

Understanding Model Uncertainty 

 

It is important to acknowledge the limitations and uncertainties of species distribution 

models from the outset if we are to divine meaningful information by their use (Pearson 

and Dawson 2003; Thuiller et al. 2004).  There are two broad forms of prediction error, 

‘algorithmic’ error, due to limitations in data-collection and the classification algorithm 

(i.e. the model equation), and ‘biotic’ error, which arises from incomplete knowledge 

and representation of ecologically-relevant processes(Fielding and Bell 1997; Austin 

2007).  In recognition of such  limitations, output of models must be interpreted with 

care (Pearson 2007a).   It is, therefore, important when choosing and developing a 

model to understand these uncertainties and the various methodologies employed in 

understanding and reducing uncertainty.  Such methodologies include, model validation, 

analyses of collinearity, autocorrelation, the biased sampling of explanatory variables, 

scaling and the impacts of non-climatic factors (Heikkinen et al. 2006).  Since their 

introduction the focus in correlative modelling has been on the incorporation of 

alternative drivers of environmental change and biotic processes which interact with 

climate change, and their effect on species future range shifts (Pearson and Dawson 
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2003).  These alternative drivers and processes involve the inclusion of land cover data, 

demography, dispersal capacity, and biotic interactions (Heikkinen et al. 2006; Wiens et 

al. 2009).  Up until recently the incorporation of such drivers was theoretical now 

models have been adapted to include information on dispersal and demography 

(Anderson 2013) and how these are shaped by biotic interactions (Araujo and Peterson 

2012).     These hybrid-models try to incorporate mechanistic properties into normally 

static correlative models to add further realism to these predictions, and to reduce 

uncertainty (Heikkinen et al. 2006). One example of this is the Dynamic Bioclimate 

Envelope Model (DBEM) developed by Cheung et al (2008) which combines an 

ecophysiology model, predicting changes in fish growth, with a species distribution 

model, predicting the future distribution of the fish. Models provide relevant 

hypotheses when examining the complexities of biological patterns (Guisan and 

Zimmermann 2000), conferring valuable insight into how to approach future 

conservation challenges under climate change (Wiens et al. 2009).   

 

Biotic Uncertainties 

 

Model performance is heavily influenced by the quality of the model inputs. The 

primary purpose of species distribution models is to define a species’ distribution by 

defining its niche.  Understanding the complexity of species’ distributions is notoriously 

difficult, and the causal drivers which underpin a species distribution are rarely easily 

quantifiable (Fielding and Bell 1997; Dormann 2007).  Thus, models are sensitive to the 

representation of species’ ecological characteristics (i.e. ecological specialisation and 

range size), within the model process  (Brotons et al. 2004; McPherson et al. 2004; 

Segurado and Araújo 2004; Elith et al. 2006; Hernandez et al. 2006).  There are several 

biotic errors common to all species distribution models. Here they are split into those 

general issues affecting the model process, and, issues which arise due to temporal and 

spatial extrapolation.    

Commonly, environmental variables alone are used to describe a species niche. These 

variables can include, climatic variables such as annual precipitation and seasonal 

temperature change, and, categorical variables, for example describing vegetation cover 

(Hijmans and Graham 2006).  Environmental variables, particularly climatic variables, 
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are favoured because they are available at a global resolution and species-specifics are 

readily defined using species point location data  (Hijmans and Graham 2006). 

When exclusively using environmental variables to represent climate it is important 

that they are appropriately scaled because environmental drivers 'differ with their 

variability and relevance with scale,'(Dormann 2007).  It is known that distribution 

patterns are governed by many factors, not solely climate, and that these influence 

patterns of distribution but also the rate at which distribution shifts occur (Heikkinen et 

al. 2006).  These factors include, but are not limited to, soil type, habitat fragmentation, 

fire frequency, genetic variation among populations, species dispersal limitations and 

the impact of climate change (Brotons et al. 2004; Heikkinen et al. 2006).   It is thought 

that these biotic interactions play only a minor role in governing species distributions at 

the continental and global scale i.e. >200km but that they  are likely to play a more 

dominant role in defining a species distribution at the local scale, <1km (Pearson and 

Dawson 2003; Araújo and Luoto 2007). 

Species and Non-equilibrium Distributions 

A central assumption of correlative distribution modelling is that specie’s distributions 

are in equilibrium with their current climate (Heikkinen et al. 2006), i.e. that where 

suitable climatic conditions exist for the species they will be present (Guisan and 

Zimmermann 2000). This assumption has brought a large degree of criticism, because 

in reality species distributions are unlikely to possess this characteristic (Pearson and 

Dawson 2003). For instance, a species may not be in equilibrium with its environment 

due to past events from which the population has not recovered for example periodic 

destruction of habitat by fire or a parasite outbreak,  because of its limited dispersal 

ability (Dormann 2007), biotic interactions and human management (Pearson and 

Dawson 2003).  Conversely, some species’ current distributions may represent regions 

for which the current environmental conditions are no longer viable, a phenomenon 

termed the “legacy effect” this is commonly associated with species longevity, 

philopatric behaviours or a species inability to disperse (Wiens et al. 2009). This may 

manifest itself in the absence of individuals in optimal habitats or the species presence 

in low quality areas (Fielding and Bell 1997; Brotons et al. 2004).       

 As such species’ geographic records, and subsequently the associated climate data used 

for modelling, are unlikely to represent the true extent of a species’ niche as a 
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consequence species’ future distributions may represent very different realised niches 

(Pearson and Dawson 2003).    Thus, this assumption leaves species-climate model 

projections vulnerable to bias because the model fails to capture the species’ 

distribution appropriately (Heikkinen et al. 2006; Dormann 2007).  As such caution 

should be applied when modelling species where non-equilibrium habitat association is 

suspected(Brotons et al. 2004), because it leaves predictions open to omission and 

commission errors (Wiens et al. 2009).  A commission error is where a species is 

predicted as present where it is absent and an omission error is where a species is 

present but predicted as absent (Guisan and Zimmermann 2000).    

 

However, to create models which take non-equilibrium situations into account would 

require dynamic and stochastic functions to be implemented, thus assuming  species are 

in equilibrium is a necessary supposition  in the creation of static correlative models 

(Guisan and Zimmermann 2000). There is evidence that in the creation of large-scale 

distribution models most species, particularly those from vagile groups, such as birds, 

are likely to be close to equilibrium as a consequence of their individual habitat 

selection processes and population dynamics (Brotons et al. 2004). Thus, it is suggested 

that assumption that species distributions are in equilibrium with the current climate at 

the macro-scale is appropriate (Pearson and Dawson 2003).     

 

Inclusion of Biotic interactions  

Most correlative models  are calibrated under the assumption that biotic interaction, 

such as interspecific competition or predation, do not influence species range patterns; 

or that  biotic interactions are only relevant at small scales (Zimmermann et al. 2010).    

There is , however, some evidence that interactions within and between species can 

impact global model accuracy, for example competition from intraspecifics has been 

shown to result in species absences from  seemingly suitable habitat (Fielding and Bell 

1997).  The inherent stochasticity of spatial and temporal dynamic processes and on 

individual’s habitat-scale interactions,  however, make them exceedingly difficult to 

quantify for inclusion in species distribution models (Dormann 2007).  Although.  

Araújo and Luoto (2007) found that for their example biotic interactions did influence 

macro-ecological scale distributions they readily acknowledged that attempting to 
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parameterize and incorporate biotic interactions into macro-scale species distribution 

models would be an enormous task.   Thus, biotic interactions are largely left out of 

these models because such highly detailed information is rarely available for species 

(Guisan et al. 2006).   

 

Local Adaptations 

Species which are widespread are likely to exhibit local or regional specialisation in 

ecological characteristics as adaptations to subtle differences in their occupied 

habitat(Brotons et al. 2004; Dormann 2007).  The modelling of these sub-population 

nuances in environmental space is likely to result in an inflated projected distribution as 

a wider range of environmental features and limits are inherited by the model 

increasing uncertainty (Brotons et al. 2004).   Hernandez et al (2006)found that as 

tolerance (breadth of environmental space used) broadened, so model predictive 

accuracy decreased. Conversely, the issue of introducing climatic bias in the prediction 

created by incomplete sampling of the species environmental space must also be 

considered  (Kadmon et al. 2003; Heikkinen et al. 2006).  Thuiller (2004), showed that 

the incomplete sampling of the climatic range can strongly influence the estimation of 

response curves, especially towards upper and lower ends of environmental ranges.  To 

avoid incomplete representation of a species-environmental relationship requires the 

conscious sampling of the  entire gradient of environmental space the species occupies, 

with particular attention paid to the inclusion of sites at the edge of the species 

distribution (Heikkinen et al. 2006).  Accounting accurately for both issues may be 

overly complex.   

 

Species Dispersal 

Understanding and incorporating dispersal into projections of future range shifts will 

give insight into the ability of individual species to track climate change  (Pearson and 

Dawson 2003).  Species which have a large capacity to disperse may be expected to 

track changing climates and disperse to new areas of suitable habitat within their 

domain, whereas sedentary species and poor dispersers are likely to be restricted to 

areas of their current range which remain stable (Pearson and Dawson 2003).  

However, the ability of species to disperse to their full capacity is dependent on the 
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landscape structure through which they must disperse; habitat fragmentation and 

natural barriers may thus restrict species dispersal (Wiens et al. 2009).    

Correlative models inherently suppose that dispersal is not a limiting factor in assuming 

that the modelled species is in equilibrium within the environment (Vaclavik and 

Meentemeyer 2009). However, dispersal limitations are known to play a major role in 

the capacity of species to shift within the environment (Vaclavik and Meentemeyer 

2009). Where dispersal mechanisms are represented in model predictions, no dispersal 

or unrestricted dispersal are the commonly adopted forms, thus they ignore species-

specific dispersal abilities (Jaeschke et al. 2012).  Models incorporating these simplified 

modes of dispersal have the power to identify future suitable habitats. The assumption 

of ‘full dispersal’ or ‘no dispersal’ in predictions of future ranges provides upper and 

lower bounds on their potential size, however, both tend to over or under predict 

species abilities to disperse within the landscape (Jaeschke et al. 2012).   The inclusion 

of realistic dispersal could further our understanding of expected future shifts (Jaeschke 

et al. 2012).  However, for many species this data is unknown, as such measures of 

average observed dispersal rates are suggested as a proxy measure of dispersal ability 

(Lester et al. 2007).   

 

Phenotypic and Genetic Adaptation  

Correlative models fail to account for the potential for phenotypic and genetic 

adaptation by species within zone in response to climate change.  Correlative models 

make the assumption that species niches exhibit conservation, i.e. that the species niche 

is unchanging over time and space (Wiens et al. 2009).  There is evidence that 

populations are undergoing phenotypic shifts, where individuals with low dispersal 

capacity or which are poorly adapted to local climatic conditions are selected against 

(Pearson and Dawson 2003).  Also, although long-lived species with low dispersal 

capacity are unlikely to display genetic adaptations rapid evolution change in response 

to environmental change has been observed in species with short-generation times  

(Wiens et al. 2009).   Under past climatic change species have been observed to adapt, 

albeit that adaptation did not occur for all species (Pearson and Dawson 2003).   The 

use of correlative modelling techniques therefore is more appropriate for species with 

long generation times or poor dispersers which are not expected to undergo rapid 
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adaptive changes (Pearson and Dawson 2003).  This is because the mechanism of 

selection, either between generations or at the expanding range margins, needs to occur 

for evolutionary processes to happen (Pearson and Dawson 2003).      

Recent attempts have been made to represent these ecological interactions in the model 

process to better represent the mechanisms which serve to underpin species responses 

to environmental  change, and to thus to enhance these models biological authenticity 

(Wiens et al. 2009). The inclusion of biotic variables, their measurement and whether 

they should be included as predictors in models are challenging topics (Austin 2007).   

 

Model Process Uncertainties 

 

Model predictions are wholly reliant on the conditions under which they are run, the 

extent of the resolution, the number and scope of the predictors used, and the number 

and quality of the points making up the dependent variable i.e. the species presences 

data (Hernandez et al. 2006).  As such they are inherently uncertain, in part due to the 

uncertainties associated with the approaches and tools employed (Wiens et al. 2009).  

There has been much research into improving the statistical basis of correlative models 

to minimise reducible uncertainty, including that inherent in 1) input data, 2) 

parameter inputs, and 3) model misspecification (Dormann et al. 2012).  It is, therefore, 

important when choosing and developing such a model to understand the 

methodologies employed in assessing model saliency.  These include, model validation, 

collinearity, autocorrelation, the biased sampling of explanatory variables, scaling and 

the impacts of non-climatic factors (Heikkinen et al. 2006).  Statistical uncertainty 

involving, spatial autocorrelation, sampling design, and sampling size and prevalence, 

have been widely explored (Zimmermann et al. 2010).     

 

Environmental Variable creation, selection and collinearity  

In selecting variables to represent a species habitat requirements one can draw on the 

extensive knowledge of ecophysiological and biophysical processes which control 

species-environment relationships, and which define their distribution (Guisan and 

Zimmermann 2000; Austin 2007). The effect of variables in influencing a species 
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distribution is dependent on their type, whether direct or indirect, abiotic or biotic, and 

proximal or distal (Austin 2007).   Direct variables include temperature, rainfall and pH, 

indirect variables for instance altitude and latitude are intrinsically linked with the 

direct variables, and as such only have an effect in relation to the conditions described 

by the direct variables (Austin 2007). As such indirect variables are normally used as a 

simplified proxy of different resource and direct variables (Guisan and Zimmermann 

2000). Direct variables and resource gradients are the best choice for modelling at a 

large scale (Guisan and Zimmermann 2000).  Indirect variables cease to have predictive 

power at these scales because combinations of direct and resource variables will differ 

at the same topographic position across different regions (Guisan and Zimmermann 

2000).   

Climate variables for current conditions are constructed using data from weather-

stations positioned across the Earth’s surface, which are then interpolated taking into 

account regional topography and local climate anomalies.  The creation of climate layers 

under future scenarios is intrinsically uncertain because of the inscrutable nature of the 

future (Wiens et al. 2009).  General circulation models (GCMs) operate under differing 

parameters and integrate process dynamics such as atmospheric circulation and 

feedback mechanisms between the land surface and atmosphere using different 

functions, resulting in divergent hypotheses of future climates (Wiens et al. 2009).  In 

using climate variables produced across a suite of GCMs, in what is termed an ensemble 

model, and taking the average of the projections we can reduce the associated 

uncertainty (Wiens et al. 2009).   

 

It does not necessarily follow that observed correlations between variables and species 

distributions are the causal factors of the species occurrence, for instance although a 

species occurrence appears related to mean annual temperature it may not be the direct 

limiting factor (Dormann et al. 2012). Variables more ecologically salient to the species 

distribution may be overshadowed where other variables better explain variation in the 

response variable statistically (Heikkinen et al. 2006).  Multicollinearity, the term used 

to describe this form of correlation between variables, is therefore one such obstacle to 

model accuracy.  In the case of species distribution modelling, correlations between 

environmental variables and may obscure the value of individual drivers within the 

final prediction (Heikkinen et al. 2006).  Biological knowledge and statistical analysis of 
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the correlation between variables prior to their use will aid the exclusion of highly-

correlated variables from the model may reduce this issue (Heikkinen et al. 2006; 

Dormann 2007). 

 

Environmental drivers are usually represented as linear predictors, although it is 

expected that species responses to actual changes in climate (in terms of abundance or 

performance) will be non-linear (Austin 2002; Dormann 2007).  As such these models 

fail to account for the complexity of the system and the range of alternatives which 

small changes in the environmental variables might affect (Austin 2002).   

Further selecting the appropriate number of variables is essential to best enhance the 

predictive power of the model whilst maintaining accuracy (Guisan and Zimmermann 

2000). There is inherent risk of overfitting associated with selection of too many 

variables (Wiens et al. 2009).  Thus, the selection of the correct explanatory variables, 

or combination of variables, is one of the most difficult processes in building correlative 

models  (Guisan and Zimmermann 2000). During model building it important to identify 

the optimal trade-off between creating an underfitted or an overfitted model and to 

understand what leads to either occurring (Heikkinen et al. 2006). Overfitting occurs 

when there are too many degrees of freedom leaving the model open to the following 

risks; fitting to irrelevant or inconsistent noise integral in the records, the obscuring of 

significant behaviour by the spurious variation created by over-parameterisation, and 

diminished predictive power (Jakeman et al. 2006).  In the case of species distribution 

models it is easy to over-parameterize your model by the inclusion of too many 

explanatory variables upping the models complexity and making it vulnerable to 

overfitting (Heikkinen et al. 2006).    More complex models may be perceived to give a 

better fit statistically, however the predictions they produce may be inferior (Heikkinen 

et al. 2006). In selecting the model which fits the species current distribution most 

closely there is a risk that it will lose generality to such a degree that it will be less 

suitable for predicting future distributions under climate change (Hijmans and Graham 

2006).   Underfitting is the converse problem, where too few explanatory variables are 

employed and so the model is unable to accurately distinguish the range of conditions 

within the species niche resulting in lowered predictive ability (Jakeman et al. 2006).  
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There are species distribution models, such as Maxent (Phillips et al. 2006), which 

employ statistical mechanisms to avoid overfitting.        

Occurrence Data 

Sample size & the importance of sampling design 

The quality of the model inputs, i.e. the species occurrence data is paramount to the 

predictive accuracy of the model, as they are sensitive to the input data’s quality and 

quantity (Wiens, 2009).  There is a wealth of occurrence data available from surveys, 

museums and herbaria, among others, errors are often implicit within these data 

(Grahams, 2008).  Thus, it must be recognised that as available observation data is likely 

to be a conglomeration of several datasets; data is likely to have been collected for 

different purposes, at different resolutions, during different time intervals and perhaps 

under different taxonomic schemes (Dormann 2007).  Such differences introduce errors 

and will have an impact on the models predictive capacity because they introduce 

misleading information making it difficult for the model to distinguish the species 

environmental niche accurately (Phillips et al. 2006).  In a comparison of model 

projections created using high- and low-quality data, Graham et al (2008), found that 

models may be robust to minor locational errors within the data.   Cleaning of the data 

of highly uncertain locations is thus advised, unless by its removal the reduced sample 

size will negatively impact the models predictive capacity (Graham et al. 2008). 

Sample size can impact a models ability to discriminate accurately suitable 

environmental space for a species in several ways (Heikkinen et al. 2006). It is 

recognised that as sample size increases the level of uncertainty associated with 

parameter estimates decreases eventually reaching an asymptote referred to as the 

models maximum accuracy potential (Hernandez et al. 2006; Wisz et al. 2008).   The 

sample size at which the asymptote is reached and at which the maximum accuracy 

potential is achieved will depend on the species, the study area, the spatial resolution of 

the environmental variables, the quality of the observation data and the model method 

itself (Hernandez et al. 2006).  Those species with narrow tolerances niches may be 

described with few observations, however,  for species with broader tolerances few 

samples are unlikely to describe accurately the  range of conditions over which the 

species might occur accurately  (Kadmon et al. 2003; Wisz et al. 2008).  Small sample 

sizes where the species niche is not fully described can reduce the predictive capacity of 
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the model (Hernandez et al. 2006; Phillips et al. 2006).  This type of data paucity arises 

not because the species is rare but perhaps because it is difficult to sample (Wisz et al. 

2008) .  It is important to note, however, that not all species with narrow tolerances and 

few observations will be accurately modelled. Species occupying a micro-habitat or 

restricted to a geological formation are often inaccurately modelled because their niche 

requirements are unlikely to be distinguished by climatic information (Hernandez et al. 

2006).  With small sample sizes the influence of outliers also increases because they 

carry more statistical weight, skewing the statistical analysis, however, where more 

data is available this effect is buffered (Wisz et al. 2008).  Paradoxically, large sample 

sizes can also be a hindrance to model accuracy.  Overly large sample sizes, where little 

is contributed to the definition of the species niche with the additional information also 

can compromise the models predictive ability (Heikkinen et al. 2006).  When data 

consists of thousands of data points it is easy to obtain statistical significance even 

though the predictors account for only a minor part of the variation in the species 

distribution data (Heikkinen et al. 2006).  Thus, when dealing with large data sets 

caution needs to be applied in order to avoid over-parameterization in including 

environmental variables which contribute little of ecological relevance (Heikkinen et al. 

2006).    

Contiguity and Marginality 

Species tolerance or marginality is known to influence model accuracy (Brotons et al. 

2004; Elith et al. 2006; Heikkinen et al. 2006).   Studies have shown that species niche 

breadth is negatively correlated with model accuracy;  species with the combined 

distributional attributes of high prevalence and a limited range of climatic conditions 

are more precisely modelled than those rare species inhabiting a broad range of 

environments (Kadmon et al. 2003; Brotons et al. 2004; Heikkinen et al. 2006).  

Furthermore, species with distributions that are highly spatially contiguous are better 

modelled than those exhibiting low contiguity (Heikkinen et al. 2006).  However, when 

defining  the model, the use of an inappropriate spatial extent of analysis can 

unintentionally inflate model accuracy  (Elith et al. 2006).  Elith et al (2006)explained 

that where the spatial extent is fixed, for example by region, and the species evaluation 

data is highly contiguous over a subset of space, then the evaluation dataset will have 

many zero records across the region. Thus, any model able to accurately restrict its non-

zero predictions to the zone the species occupies will produce a good AUC score due to 
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the comparison with the numerous absence sites (Elith et al. 2006).  Broton's et al 

(2004), established that models for highly tolerant and wide-ranging species were more 

statistically-sensitive to absence data. As such they suggest that employing 

presence/absence models to model these species may be more suitable than presence 

only.  Importantly, model accuracy is not only a function of the number of presence 

records available, but greatly more complex (Elith et al. 2006). 

Spatial Autocorrelation  

Spatial autocorrelation which is the 'tendency of neighbouring sample units to possess 

similar characteristics' causes the assumption of independence between samples to be 

violated (Guisan and Zimmermann 2000). Spatial autocorrelation can arise because the 

variables used by the model do not fully reflect the 'choices' available to the animal, in 

this case it is the residuals from the fitted model which exhibit spatial autocorrelation 

(Fielding and Bell 1997).  This form is problematic when applying test statistics, and is 

classified as an algorithmic error because inappropriate variables were selected 

(Fielding and Bell 1997).   

Spatial autocorrelation will also be apparent when species observations are clustered  

in space (Pearson and Dawson 2003).  This clustering is often an artefact of the 

observers sampling scheme, for instance observations may be clustered around field 

camps or settlements (Pearson and Dawson 2003; Phillips et al. 2006). Clustered data 

points are usually more similar to one another than those more distant points, biasing 

the sample (Dormann 2007). Test statistics are thus vulnerable to inflation because 

species points are not spatially independent (Pearson and Dawson 2003). 

Validation 

Validation is the process by which we test the accuracy of model prediction using 

testing data.  Testing data is a portion of the original occurrence data which is set aside, 

and, not used for model building or calibration during the initial training run, for the 

purpose of validation (Guisan and Zimmermann 2000). This form of validation is often 

referred to as cross-validation.  Further validation methods include assessing the 

specificity and sensitivity (Dormann et al. 2012).  Sensitivity is a measure of the 

proportion of the actual positives, i.e. the presence of the species, which the model 

correctly identifies.  Specificity measures the proportion of actual negatives i.e. the true 

negative rate, which is the proportion of negatives or species absences which are 
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correctly identified as such by the model.  Thus, a model which made a perfect 

prediction would be 100% specific and 100% sensitive, correctly predicting all actual 

presences and all actual absences (Dormann et al. 2012).   

 

Extrapolation Issues 
There are several important caveats to recognise when wishing to extrapolate beyond 

the species current distribution in space and in time.   Specifically of interest is how 

environmental changes will impact species distributions.  

The unavoidable spatial uncertainty of environmental change scenarios naturally 

complicates the prediction of future species distributions.  In projecting species 

distributions in to the future it is likely that species will be confronted with a set of 

environmental conditions never before encountered (Thuiller 2004).   Where climate 

surfaces present sets of environmental conditions for which there is no modern 

analogue then modelling results are incomplete because the model cannot predict how 

a species  will 'cope' under novel  climate conditions (Heikkinen et al. 2006).    Even 

with the inclusion of environmental and biotic traits trends, data may no longer be valid 

when applied beyond the range of the data (Dormann 2007).  For example biotic 

interactions recorded at T1 may no longer be valid at T2 under climate change (Araújo 

and Luoto 2007). Also, a species may be adapted to conditions outside of the range in 

which it is currently found, but not exist in the region where this combination is found, 

thus, a correlative model may classify these regions are unsuitable (Hijmans and 

Graham 2006).  These models also assume that variables and processes will interact in 

the future as they do currently (Dormann et al. 2012). Individual species inherent 

flexibility to adapt to environmental change is as yet unclear, a species intrinsic 

phenotypic plasticity, or ability to evolve and adapt may mean it is able to maintain a 

viable population under such change (Dormann 2007).   When extrapolating into the 

future, statistical testing on independent training and testing data can no longer be 

performed as there is no observed data unlike models for current observations adding 

to further uncertainty in the projections (Hijmans and Graham 2006).  
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Verification and Statistical Testing  

 

The procedure of verification is carried out to test that the model has been implemented 

technically correctly; this term is somewhat erroneous as the nature of models as 

hypotheses means they cannot be verified as correct (Dormann et al. 2012).  However, 

insofar as a model can be verified the verification process seeks to ensure that pre-

processing, settings and assumptions have been accurately specified within the model 

(Dormann et al. 2012). 

It is difficult to evaluate models based on presence-only data because there is no 

absence data on which one can evaluate the rate of commission errors (false positive 

predictions) (Hernandez et al, 2006).  However, there are several statistical techniques 

that have been employed  (Fielding and Bell 1997; Heikkinen et al. 2006). The inclusion 

of pseudo-absence or background data, as in Maxent, simplifies statistical model testing 

to some degree (Phillips et al. 2009).  Commonly, one of two statistical measures is 

used, the Kappa statistic, a threshold dependent measure, or the area under the curve 

(AUC) of a receiver operating statistic (ROC) plot, a threshold independent measure 

(Heikkinen et al. 2006).   

Threshold Dependent Measures: Kappa Statistic 

Kappa is a threshold-dependent measure determined using a Confusion Matrix (Fielding 

and Bell 1997).    The Kappa coefficient measures the proportion of specific agreement, 

i.e. the proportion of correctly classified presences and absences once the likelihood of 

chance agreement has been excluded (Heikkinen et al. 2006).   The degree of 

concordance based on Kappa can be measured as, poor K <0.4; good 0.4<K<0.75 and 

excellent K 0.75> (Fielding and Bell 1997).  Kappa is dependent on a single model-

generated threshold criterion to distinguish between predicted presence and predicted 

absence (Heikkinen et al. 2006).    In the case of presence- only models this continuous 

variable is the likelihood of a species presence which falls between 0-1, the threshold 

defines at what value above which the model classifies a presence and vice versa for an 

absence (Heikkinen et al. 2006).   The model may automatically generate a threshold at 

which it classifies a species to be present or absent or one may be set, such a process is 
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felt to be largely subjective (Lobo et al. 2010).   The availability of the raw scores 

generated by the model allows closer examination of the data to which the threshold 

will be applied (Fielding and Bell 1997).  Larger thresholds tend to decrease 

commission errors but increase omission errors (Hernandez et al. 2006).  

 There are several reasons why examination of the threshold value is important, for 

instance, unequal group sizes (prevalence) could influence the scores generated by 

some classifiers (Fielding and Bell 1997).  The robustness of Kappa has been questioned 

on the basis that it requires a threshold to be defined in order to be calculated, and the 

methods under which the threshold is calculated will influence Kappa (Heikkinen et al. 

2006).  Although dichotomous presence- absence classifications are attractive to 

decision makers they can introduce distortions such as bias (Fielding and Bell 1997).  

However, there have been  advances in the process through which thresholds are 

selected in converting continuous data into presence-absence scores (Lobo et al. 2010).  

For instance, Lobo et al (2010) recommended allowing Kappa to define the threshold, 

known as the Kappa-maximised threshold, thus, circumventing the question of whether 

or not the threshold set is appropriate.  Liu et al (2013) investigated mathematically 

and empirically the suitability of different threshold selection methods. They found that 

Max SSS (based on maximising the sum of both sensitivity and specificity) had the best 

performance scoring higher sensitivity than the other methods in most cases and giving 

higher kappa than the other methods. 

An alternative solution to threshold adjustments is to make use of all the information 

contained within the original continuous variable and calculated threshold independent 

measures (Fielding and Bell 1997).   

Threshold Independent Measures: AUC 

Threshold-independent evaluation statistics do not require a threshold to be set to be 

calculated.  The most commonly used of these is the Area under the Curve (AUC) of the 

Receiver Operating Curve (ROC) (Lobo et al. 2010).   The ROC plot is created by plotting 

all correctly classified cells (the true positive proportion) against the equivalent 

incorrectly classified cells (false positive proportion)  on the y-axis,  across a range of 

threshold levels  on the x-axis (Fielding and Bell 1997; Heikkinen et al. 2006).  As such 

the ROC takes into account both commission (false positive prediction errors) as well as 

omission errors (false negative prediction errors) (Hernandez et al. 2006). The AUC is 
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an important statistic as it provides a single measure of the overall model accuracy but 

is not dependent on a single threshold value avoiding the subjectivity of threshold 

selection (Fielding and Bell 1997; Lobo et al. 2010).      

AUC values typically fall between 0.5 and 1.0, if the score is 0.5 this indicates that the 

model tends to predict presences which are in fact absences (Heikkinen et al. 2006).  

Below 0.5 then the models prediction is no better than random.  A value of 1.0 indicates 

that the model is distinguishing perfectly between presences and absences; typically 

AUC values do not reach this level (Fielding and Bell 1997).   By way of an example, an 

AUC value of 0.8 is interpreted as meaning that 80% of the time ' a random selection 

from the positive group will have a score greater than a random selection from the 

negative class' (Fielding and Bell 1997).   

Lobo et al  (2010) questioned the validity of using AUC to measure model accuracy on 

the basis that; 1) it doesn't account for the predicted probability values or model 

goodness of fit; 2) omission and commission errors are weighted equally; 3)  the test 

performance is summarized over rarely used regions of the ROC space ; 4)  information 

about the spatial distribution of model errors is obscured; and, most significantly 5) the 

spatial extent over which models are run  impacts the rate of well-predicted absences 

influencing the AUC score.   

The calculation of AUC, because it is a discrimination index, ignores the raw probability 

scores of the model (Lobo et al. 2010).  It assumes that presences will have higher 

predicted values than absences regardless of how well the model has fit the data which 

can result in poor-fitted models displaying good discrimination power (Lobo et al. 

2010).    

AUC weights omission and commission errors equally, when depending on the model 

application, they may not be of equal importance (Lobo et al. 2010).   For instance, when 

searching for a new species or populations low omission errors are desirable, whereas 

when designing a reserve misclassification of commission errors are a more serious 

weakness (Lobo et al. 2010).  This can be rectified by the implementing of a threshold at 

the point where the desired balance between commission and omission errors is 

achieved for the model purpose (Lobo et al. 2010).   
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Thirdly, ROC plots summarize test performance over the whole range of available ROC 

space because it accounts for all the information within the predictive model (Lobo et al. 

2010).  Researchers typically are interested in one or few points over this space, for 

instance the extreme left and right sides of the plot- representing high false-negative 

and high false-positive rates respectively, are generally useless (Lobo et al. 2010).   Lobo 

et al (2007) argue that apparent absences may be an artefact due simply to the low 

detectability of a species or may correspond to non-sampled areas, meaning false-

absences are more likely to occur than false-presences as such commission errors 

should not weigh as much as omission errors. 

ROC does not reveal information about the distribution of spatial errors within the 

model, a common error among all single-number calculations of accuracy (Lobo et al. 

2010).  As such it impossible to know whether errors are spread homogenously across 

the modelled territory, or if the fall in model accuracy is due to its inability to predict 

correctly a specific region (Fielding and Bell 1997; Lobo et al. 2010). 

Finally, and most significant, models that over-predict presences will display a low 

commission error if the prevalence of absences is much higher than that of presences 

which is a consequence of the spatial extent selected.  This scenario may artificially 

inflate the AUC score if the spatial extent is inappropriately large for the scale of the 

distribution (Lobo et al. 2006).    This is particularly apparent where a constant extent, 

for instance a region, is used when modelling a specialist species which by its nature 

only exists in a subset of the region (Elith et al. 2006). Hernandez et al (2006) found that 

marginality was indeed positively correlated with AUC scores.  Models which can 

restrict non-zero predictions to the species zone will thus have a good AUC score 

because of the many absence sites within the evaluation data (Elith et al. 2006).  Thus, 

using a constant extent for a variety of species’ may not always be appropriate, and 

consideration must be given to the end use of the model predictions (Elith et al. 2006).   

Despite these recognised problems AUC remains one of the most prevalent measures 

used by species distribution modellers, as one of the few model accuracy measures 

available. Further model evaluation techniques, such as bootstrapping and jackknifing, 

which are related resampling methods, can complement the use of independent 

measures such as AUC (Guisan and Zimmermann 2000).     
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Conclusion 

Despite the inherent uncertainty implicit in species distribution models, particularly 

when extrapolating into the future, their outputs provide us with valuable insights into 

the future impacts of climate change on species.  Thus, these models are extremely 

useful as long as one is aware of the caveats associated with these models taking steps 

to minimise their influence.  The insight these models provide will assist 

conservationists and policy-makers in planning future conservation methods which are 

appropriate.   
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Appendix 2: The Wallace Initiative and Species Distribution Modelling 

Techniques 

Maxent: Species Distribution Modelling 
 

The species distribution model, Maxent (Phillips et al. 2006) was chosen for use in the 

Wallace Initiative because it has been repeatedly cited as having a strong performance 

when tested against other presence-only distribution models (Elith et al. 2006; 

Hernandez et al. 2006; Pearson 2007a; Wisz et al. 2008).  Maxent is a presence-only 

species distribution model which works on the statistical principle of maximum entropy 

to make predictions from presence-only data (Phillips et al. 2006). 

 The principle of maximum entropy is that it 'agrees with everything that is known [i.e. 

that inferred from the environmental conditions at the occurrence localities], but 

carefully avoiding anything that is not known,' (Jaynes 1991; Phillips et al. 2006). By 

way of illustrating the concept of entropy, Professor Brian Cox uses the analogy of a 

sand pile versus a sandcastle (Cox 2011).  The sandcastle exhibits low entropy, because 

there are few ways of organically re-arranging the sand grains within its structure to 

recreate the identical sandcastle.  The sand pile, however displays high entropy because 

there are many ways of re-arranging the constituent grains within its structure to 

recreate it.  The model Maxent seeks to maximise its predictive capacity of species 

distributions by reducing uncertainty associated with the environmental variables.  

Thus, in Maxent’s case, entropy is defined as a measure of the uncertainty connected 

with a random variable (Phillips et al. 2006). The maximum entropy probability 

distribution describes the modelled species distribution  which exhibits the lowest 

entropy in synchrony with the maximised distribution (Phillips et al. 2006). The process 

by which Maxent creates its predictions is described in more detail below. 

 

 Maxent uses the environmental and location information provided to estimate a 

probability distribution across the study area which satisfies a set of constraints 

determined by the occurrence data (Phillips et al. 2006).  These constraints are imposed 

across the environmental predictor variables and represent the mean value and 

associated confidence interval as determined by the mean over the presences (Guisan et 

al. 2007).  The model by probabilistic reasoning then chooses  from the manifold 
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probability distributions satisfying the set of constraints, which maximises entropy (i.e. 

that which is closest to uniform) (Phillips et al. 2006).  By choosing the distribution 

which displays maximum entropy the model avoids placing any unfounded constraints 

on the final predicted distribution  (Pearson 2007a).  The complexity of the Maxent 

model can be modified to suit the species data by the choice of fitted functions, known 

in Maxent as feature types  (Elith et al. 2006), these are further discussed below.  

Maxent is similar to logistic regression in that it weights each input variable 

(environmental variable) by a constant (Hernandez et al. 2006), creating Features.    It 

then estimates an exponential probability distribution to the sum of the Features, this 

value is subsequently divided by a scaling constant so values fall in the range 0-1 and 

sum to 1 (Hernandez et al. 2006).  These values indicate the likelihood of species 

occurrence.  The model undergoes an iterative process, starting with a uniform 

probability distribution; it systematically alters the weighted variables until the 

likelihood of the occurrence in the dataset is maximised (Hernandez et al. 2006). That 

probability distribution( the modelled potential species distribution) which best 

satisfies the environmental constraints initially imposed by the occurrence data of the 

species, whilst representing the greatest distribution range (Phillips et al. 2006). The 

output is deterministic because the Maxent algorithm does not use randomness 

meaning that the resulting output  will always be the same given the same starting 

conditions  (Hernandez et al. 2006).   

Maxent has been shown to combine excellent predictive ability and moderate sample 

sensitivity (Wisz et al. 2008).   Elith et al (2006) proposed that the ideal model 

algorithm would output predictions with high accuracy (i.e. as validated by high AUC 

values) and demonstrate low variability across species.   Maxent was described by 

(Hernandez et al. 2006), as performing well, remaining fairly stable in its predictive 

accuracy and the total area predicted when tested against a range of sample sizes.  

Maxent's consistent performance across a range of sample sizes was again highlighted 

by Wisz et al (2008), who found that it outperformed a number of other models at low 

sample sizes (10 unique points) and was bested by only one other model at high (100 

points) and intermediate (30 points) sample sizes.  Maxent has also been assessed as 

robust to a moderate degree of error implicit in the locational data,  able to produce 

meaningful projections of the species distribution (Graham et al. 2008).   This ability of 
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Maxent to perform well at low sample sizes has been put down to its regularization 

procedure which counteracts the tendency to overfit models at low sample sizes 

(Hernandez et al. 2006).  The use of linear regularization in Maxent avoids overfitting 

but encourages parsimony because it tends to produce models with few non-zero 

coefficients (Phillips and Dudik 2008).   Maxent’s good performance may be a function 

of the generative rather than discriminative approach it uses, modelling the species 

distributions directly.  This generative approach may go some way to explaining its 

success with small amounts of training data, as generative methods have been found to 

outperform discriminative (regression) models at small sample sizes (Phillips and 

Dudik 2008).  Phillips and Dudik (2008), state that Maxent may outperform regression 

methods such as GAMs and GLMs when using presence-only data because regression-

based methods use background data taken from across the model space to use as 

absence data when it may be contaminated with presences, contaminating the control. 

This appendix seeks to illustrate the model process by which predicted species 

distributions were created in the Wallace Initiative.  It gives an explanation of the inputs 

required, the basis for decisions taken and likely outputs created within the modelling 

exercise.     

 

The Wallace Initiative  
 

The Wallace Initiative's raison d’être is to provide detailed analysis of species 

distributional changes under climate change.  It provides a comprehensive examination 

of 48786 species of animals and plants globally, and uses a consistent set of global 

climate scenarios for all the projections (Warren et al. 2013).  Salient to this 

investigation are the 5351 animal species projections, representing 1161 mammals, 

3042 birds, 487 amphibians and 661 reptiles (Warren et al. 2013).    

Species distribution models require two inputs to run, the species distribution data and 

the explanatory environmental variables.  In the case of the Wallace initiative primary 

biodiversity data was sourced from the Global Biodiversity Information Facility 

GBIF,(GBIF 2013) and environmental variables were projected using a form of 

probabilistic modelling.   
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Occurrence Data: The GBIF database  

Species observations data are sourced from the Global Biodiversity Information facility 

GBIF (GBIF 2013) database which holds a huge amount of species occurrence data (c. 

417,863,900 occurrence records of 1,426,888 species) from across the globe, from 

many international collaborators (GBIF 2013).   Inaccuracies in such a large database 

are inevitable, particularly in relation to the location referencing which may be 

unavailable, wrong, or present inaccurate coordinates (Warren et al. 2013).   As such 

before the data’s use in the Wallace Initiative model it undergoes a computerised 

cleaning process consisting of three levels; 1) removal of records with no location data 

or which did not fall on a land area; 2) removal of occurrences which did not match the 

reported country of origin ; 3) removal of points considered as outliers based on the  

species niche requirements (Warren et al. 2013) .  It is also important to note the lack of 

species coverage in GBIF, particularly in China and Russia when engaging in a global 

analysis of species trends (GBIF 2013).  Another issue arises in the taxonomic 

identification of species records, inaccuracies in species identification could introduce a 

bias into the results, however, it is thought that this is unlikely due to the random 

spread of such errors (Warren et al. 2013) .  

The Environmental Variables  

In the Wallace Initiative selection of the appropriate variable set is decided based on the 

number of unique occurrence points; for species with fewer than 40 points 4 variables 

are used, for those above 40 points 8 variables are used(Warren et al 2013).  The 

Wallace Initiative variable sets were selected as they are most likely to impact species 

distributions across a broad range of taxa; they are also commonly used in publications 

(van der Wal, pers.comm).  The eight environmental variables are created from 

downscaled climate projections using an ensemble of seven general circulation models 

representing six alternative greenhouse gas emission scenarios, and at 0.5°x 0.5° scale 

(Warren et al. 2013).  These variables are then post-processed to provide the 

bioclimatic indices required and include: annual mean temperature, temperature 

seasonality, maximum temperature of warmest month, minimum temperature of 

coldest month, total annual rainfall, rainfall seasonality, maximum temperature of the 

hottest month, minimum temperature of the coldest month, rainfall of the wettest 

quarter and rainfall of the driest quarter.   
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The Wallace Initiative Modelling Process  

The model used to predict current and future species distributions is the presence-only 

method Maxent (Warren et al. 2013).  As earlier highlighted, Maxent is considered to be 

one of the most robust forms of presence-only species distribution models currently 

available (Elith et al. 2011). 

The model is used initially to predict the species current distributions using presence 

data.  The first procedure implemented trains the model; this stage estimates a 

probabilistic distribution of the species’ current geographic distribution using observed 

data points from GBIF.  This process derives the relationship between the species 

presences and the environmental variables.  The higher spatial resolution 10 arc-

minutes Worldclim environmental indices (Hijmans et al. 2005) were employed in this 

initial stage so as not to lose information about species environmental requirements 

(Warren et al. 2013).  This is particularly relevant when modelling species with small 

distributions, for instance an endemic species occurrence points may be clustered with 

a 0.5°X0.5° cell, but represent a series of differing environmental conditions (van der 

Wal, pers. comm.).   Only taxa with at least 10 unique geographically unique observation 

points were modelled, all eight environmental variables were utilised as driving 

variables for species with over 40 unique points.  A subset of four (including Annual 

mean temperature, Temperature seasonality, Total annual rainfall and rainfall 

seasonality) were used for species with 10-39 observations (Warren et al. 2013).  These 

variable sets were selected because they are thought to best represent the variables 

which drive species distributions across a broad range of taxa (van der Wal, pers. 

comm.). 

The second procedure calculates the species actual distribution for all global land areas 

using the derived species-environment relationship.  These predicted 'current' 

distributions are constrained by two factors; a 2000km buffer around the occurrence 

records including any oceanic islands within it, and the limits of the specie's 

biogeographic region (as defined by Olson et al 2001).   The sizeable 2000km buffer was 

set to avoid omission errors owing to  the likely paucity of the GBIF data whilst 

simultaneously minimizing commission errors by preventing species being predicted as 

present in widely separated regions with similar climates (Warren et al. 2013).  

Applying such a large 2000km buffer could result in overestimation of species current 
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distributions, especially for more localised species, however,  when projecting in to the 

future its avoids the model predicting dispersal into areas already occupied by the 

species current distribution (Warren et al. 2013).  The biogeographic zones are listed as 

Palearctic, Nearctic, Afrotropic, Neotropic, Australasia, Indo-Malaya, Oceania and 

Antarctic (Olson et al. 2001).  Implementation of the zonal buffer, for example, 

prevented European species being predicted in North America which is likely due to the 

similarity in climatic conditions (Warren et al. 2013). The predicted distribution is thus 

constrained to climatically suitable habitats within the buffered region.  

Ten cross-validated runs were performed for each species as a way of reducing 

uncertainties and assessing Maxent's prediction accuracy (Warren et al. 2013).  The 

Maxent default settings were unaltered because they have already undergone 

optimization routines for a broad range of species, globally (Phillips et al. 2006; Phillips 

and Dudik 2008). Finally the trained model was re-projected onto the set of 42 climate 

scenarios at the time points 2020, 2050 and 2080 (Warren et al. 2013).  This part of the 

process estimates the species geographical position following a change in climate, by 

essentially finding the future position of the species climate envelope.   

The Wallace Initiative projects the species under three different dispersal scenarios, 

null dispersal, realistic dispersal and optimistic dispersal (Table S 2).  The ‘Realistic’ and 

‘Optimistic’ dispersal scenarios were determined from the available literature on 

dispersal for the taxon and represent, for the ‘realistic dispersal’ the ‘average’ reported 

dispersal value and  the highest value reported as the ‘optimistic’ rate (Warren et al. 

2013). The Wallace Initiative did not create projections using a full dispersal scenario 

because it is considered to be unrealistic (Warren et al. 2013).    
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 Dispersal Mechanism (km/yr) 

 Null Dispersal Realistic Dispersal Optimistic Dispersal 

Taxa km/yr km/100yr km/yr km/100yr km/yr km/100yr 

Amphibians - - 0.1 10 0.5 5 

Birds - - 1.5 150 3 300 

Mammals - - 1.5 150 3 300 

Reptile - - 0.1 10 0.5 5 

Plants - - 0.1 10 0.5 5 

Table S 2 Dispersal rates by Dispersal Mechanism (defined in the Wallace Initiative (Warren et al 2013)) 

The Realistic dispersal rate represents the ‘most likely’ scenario, and comprises of 

estimated rates of yearly dispersal for each of the taxon modelled, multiplied by the 

number of years into the future being projected (Table S 2).  Data on individual species’ 

dispersal capacities is sparse therefore averages are taken across the available 

information on dispersal capacity by taxon to estimate a representative rate (Warren et 

al. 2013).  Warren et al accept that dispersal rates may vary significantly within taxa. 

These dispersal scenarios were applied in the form of a buffer around the current 

distribution with dispersal only able to occur over contiguous land areas within the 

same biogeographic zone.   

Performance Indicators 

The Wallace Initiative uses AUC (Fielding and Bell 1997) to test the model performance 

for each species before projection across the climate scenarios.  A cross-validated 

performance of  AUC>0.7  is considered to indicate a good performance, as such species-

specific models attaining this level  underwent the full projection process as described 

above (Warren et al. 2013). 

An Illustrative Case Study in using Maxent 
 

The Maxent Model 

 

As part of this model analysis I have undertaken to create a case study in order that I 

can draw my own conclusions on the most appropriate method to run Maxent to 
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produce the best estimates of future climate space for a large number of species.  I 

carried out this study to gain further insight into the mechanisms available for use in 

Maxent in the production of predictions of future suitable climate space for species.    As 

in the Wallace Initiative, this example uses the presence-only species distribution model 

Maxent.  The model runs employ the Maxent default settings, with the exception of the 

case in which I explore the regularisation setting, a form of statistical relaxation which 

controls the flexibility inherent in the model prediction (see detail on the Maxent Model 

above).  The Maxent model is run in R using the R package Dismo (Hijmans et al. 2013), 

rather than directly through the Maxent Interface to allow for further processing. 

Model Inputs and their Preparation 

Occurrence Data 

 

The quality of the model inputs is paramount to the predictive accuracy of the model 

which is sensitive to the input data’s quality and quantity (Wiens, 2009).  Occurrence 

data used in this illustration were sourced from the GBIF, (GBIF 2013) database, and 

consist of 51080 geographically-referenced occurrence points from the distribution of 

the European Common Frog (Rana temporaria Linnaeus, 1758).  The Common Frog’s 

actual distribution and GBIF occurrence points are shown in Figure S 1.  The data 

underwent initial cleaning to remove non-geographically referenced records and to 

introduce uniformity into the taxonomic information.  Further cleaning of the data was 

undertaken so it consists of geographically-unique occurrence points only; this 

additional step reduces the number of data points to 24067.        

  

a) Current Distribution of the Common Frog 

(Rana temporaria) (Kuzmin et al. 2012) 

b ) Occurrence data for the Common Frog (GBIF, 2013)  

Figure S 1  Common Frog (Rana temporaria) a) Distribution and b)  Occurrence records in the GBIF database 
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Environmental Variables   

 

The selection of an appropriate set of environmental variables which are relevant to the 

species distribution is critical (Phillips et al. 2006).  Maxent is able to utilise continuous 

data, arbitrary real values corresponding to measured values such as maximum 

temperature and precipitation, and categorical data representing a limited number of 

discrete values such as vegetation type ,  for the creation of features (Phillips 2008).  

Features form the constraints within which the model must perform, and are simple 

fractions of the environmental variables (Phillips and Dudik 2008).  Each of the 

environmental variables must have the same spatial extent and resolution (Phillips 

2008) 

The environmental climate grids used in this analysis are the Bioclim grids hosted by 

WorldClim (Hijmans et al. 2005). The grids are created using interpolated data collected 

from weather stations across the globe, including 47,554 stations recording 

precipitation data, 24,542 recording mean temperature, and 14,835 recording 

minimum and maximum temperature (Hijmans et al. 2005).   Current projections are 

derived from monthly data over the period 1950 to 2000. Future projections are 

created using bioclimatic variables created using climate surfaces created by the 

Wallace Initiative using Met Office HadCM3 (Met Office 2006) climate projections under 

the SRES A1B scenario.   

The three bioclimatic variables sets used in this study  Table S 3 reflect the two subsets 

used in the Wallace Initiative of 4 and 8 variables, with the addition of analysis with the 

full set of 19 variables to explore how the number of variables impacts the predicted 

distribution Table S 3.  The degree to which the number of variables included will affect 

the final result is dependent on how correlated the included variables are (Hijmans and 

Graham 2006).  Maxent has the ability to select appropriate variables or weight them 

meaning that the model is less prone to overfitting the occurrence data  (Hijmans and 

Graham 2006).  Although Maxent will identify the most salient variables for use for 

individual species distributions it is unclear how to automate this for a large number of 

species as required for the Wallace Initiative calculations (van der Wal, pers. comm.).  

This case study explores the crossover of ranked variables in the 8 variable set with 

those Maxent ranks as most influencing the Common Frog’s distribution.   
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Environmental Variables Code 19 Variables 8 Variables 4 Variables 

Annual Mean Temperature BIO1    

Mean Diurnal Temperature Range* BIO2    

Isothermality BIO3    

Temperature Seasonality BIO4    

Max Temperature of Warmest Month BIO5    

Min Temperature of Coldest Month BIO6    

Temperature Annual Range BIO7    

Mean Temperature of Wettest Quarter BIO8    

Mean Temperature of Driest Quarter BIO9    

Mean Temperature of Warmest Quarter BIO10    

Mean Temperature of Coldest Quarter BIO11    

Annual  Mean Precipitation BIO12    

Precipitation of Wettest Month BIO13    

Precipitation of Driest Month BIO14    

Precipitation Seasonality BIO15    

Precipitation of Wettest Quarter BIO16    

Precipitation of Driest Quarter BIO17    

Precipitation of Warmest Quarter BIO18    

Precipitation of Coldest Quarter BIO19    

Table S 3 Environmental variable sets 

* (mean of monthly (max temperature – min temperature) 
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Model Output 

 

This section describes the Maxent model outputs both in terms of the predictions of 

current distribution in the form of maps and also the statistical validation process. It 

also examines the impact of using different combinations of input variables in 

determining the current distribution and future suitable climate space.  It is illustrated 

using the results created in this study of the Common Frog.    

 

Maxent Log, Cumulative and Raw Outputs and associated maps  

Maxent can produce three differing output formats from the model values; these are 

raw, cumulative and logistic. The three are monotonically related, they thus result in an 

identical performance when measured with rank-based statistics, such as AUC, because 

site areas ranked in the same order across the outputs (Phillips and Dudik 2008). The 

differences lies in the scale applied to the model values; as such each has a different 

interpretation (Phillips and Dudik 2008).  However, this is not true for measures of 

predictive performance which depend directly on the actual output values, such as 

Pearson's correlation, will report varying levels of predictive performance (Phillips and 

Dudik 2008).  

The raw output is the values from Maxent exponential model itself; as such they are not 

intuitive to work with (Phillips and Dudik 2008).   The cumulative output rescales the 

raw values by applying a percentage to each cell based on the maximum value achieved 

across the distribution.   Thus, the cell with a value of 100 is most suitable and those 

nearer 0 are least suitable within the study area (Hernandez et al. 2006; Phillips et al. 

2006).  The cumulative output does not necessarily represent the probability of 

presence. For instance a generalist species whose range is represented across the entire 

study area will have similar probability values across the whole region, slight variations 

in values will result in big variations in percentages, even though there is little variation 

in suitability, as a result of their rank from 0 to 100 (Phillips et al. 2006).  The third 

output, and the Maxent default, is logistic, it gives a presence probability estimate 

between 0 and 1, conditioned on the environmental variables (Phillips and Dudik 2008).  

Low logistic values represent marginal suitability or unsuitable habitat for the species, 

values near or equal to 1 are highly suitable sites (Phillips and Dudik 2008). 
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The predicted probability that conditions are suitable are indicated by a colour gradient 

in the mapped species distribution, where green indicates conditions which have a high 

affinity with the species requirements, grading to red where there is a low likelihood 

that the species is present.   The output is continuous, as opposed to categorical, so that 

one can discriminate minor differences in habitat suitability across the region of 

interest (Phillips et al. 2006).  

 To illustrate the variation across the map output types the Maxent model was run for 

the Common Frog using the set of eight environmental variables outlined in the Model 

inputs section (Figure 2 b-d).  The distribution of the European Common Frog as 

predicted by Maxent is shown alongside that of the IUCN recognised current 

distribution (Kuzmin et al. 2012), for comparison. These predictions were created using 

the set of eight environmental variables, which use is appropriate as there are above 40 

unique data points. The distribution predictions are provided in Maxent produced raw 

format and logistic format, the Maxent default, to illustrate the utility of each.   Also 

included is a map created using a presence-absence threshold, based on the logistic 

scores; suitable habitat is defined as those grid locations in which a habitat suitability 

score of 0.5 and above occurs.        

 

a) Current Distribution 
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b)  Presence-absence map 

 

c) Raw Map 
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d) Logistic Map 

Figure S 2  An illustration of the alternative Maxent Map Outputs using Rana temporaria data,  a) Current Distribution 
(Kuzmin et al 2012), b) Projected distribution with threshold applied, c) raw output, d)logistic output 

The Maxent prediction, represented in the logistic format, captures the major part of the 

current range of the European Common Frog Figure S 2d.  The model distinguishes the 

southern barrier of the Pyrenees and the eastern extent of the frog’s range in Europe.  It 

also recognises that the area comprising parts of Hungary and Slovakia constitute less 

suitable habitat.  However, it over-predicts the species European range, including areas 

of southern Italy, and through into northern Turkey beyond which the species actual 

distribution extends.  More crucially, the model is predicting suitable habitat in areas of 

North and South America and Southern Australia and New Zealand.  This is not to say 

that suitable habitat does not exist in these regions, but that these regions are beyond 

the natural dispersal range of these frogs.   

The presence-absence map (Figure S 2b) is created using a predetermined threshold, 

where regions of habitat are determined as suitable in grid squares scoring above 0.5 or 

50% probability of suitability, thus the threshold defines at what value above which the 

model classifies a presence and vice versa for an absence (Heikkinen et al. 2006).    As 

such regions of suitable habitat appear in green and region outside this suitability 

threshold in grey. In scaling this predetermined threshold up or down one can alter the 

extent to which ‘suitable’ habitat is captured in the model output depending on the use 

of the final map.  For instance, larger thresholds tend to decrease commission errors but 
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increase omission errors (Hernandez et al. 2006).  Although dichotomous presence- 

absence classifications are attractive to decision makers they can introduce distortions 

such as bias (Fielding and Bell 1997), which raises further uncertainty in the final 

prediction.  

In comparing the raw model output (Figure S 2c) and the logistic, the logistic scaling (0 

indicates unsuitable habitat and 1 highly suitable) is decidedly clearer, and more easily 

interpretable.  The logistic map makes identifying the core suitable habitat for the 

species straightforward as highly suitable habitat is clearly indicated in green. The raw 

output values are fairly meaningless because it represents the initial result of the 

exponential model and is unstandardized.  Although the presence-absence map clearly 

defines the suitable habitat, this output overshadows the nuances in degree of habitat 

suitability implicit in the projected distribution.    

Statistical analysis 

Model Performance 

Maxent has several performance measures available to the user, with AUC as the 

recommended measure (Phillips 2008).  For an in depth discussion on performance 

measures, in particular how AUC is calculated see section ‘Threshold Independent 

Measure: AUC’ in Appendix One.    

 

Figure S 3 The Receiver Operating Characteristic Curve created in Maxent using Rana Temporaria 
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The ROC and AUC corresponding to the prediction for the European Common Frog 

using eight variables is shown in Figure S 3, and indicates the statistical power of the 

model in predicting the specie’s range. The red line indicates the ‘fit’ of the model to the 

data, and reveals the models predictive power, the black line demonstrates that 

expected if the model was no better than a random model (Phiilis and Dudik 2008). The 

graphical representation of the model in Figure Three shows that the model is closely 

mirroring the species requirements defined by the environmental variables, as the 

curve is above the random model line and is correctly identifying a high proportion of 

true presences.   This indicates that the model’s prediction of the habitat suitability 

niche identifies closely with that defined at the known species presence sites. The AUC 

score of 0.993 further indicates that the model is accurately predicting suitable habitat 

for the European Common Frog.   This score is potentially inflated  in the European 

Common Frog model  because the background data is selected across the entire globe, 

to further investigate this issue the use of buffers is explored in the section ‘the impact 

of implementing buffers on model accuracy’.  

Analysis of the Environmental Variables 

To investigate the effect of, i) varying the number of environmental variables and their 

geographic  resolution, and ii) the suitability of the environmental variables selected in 

predicting the species of interests climate niche the Common Frog model was run under 

various different combinations of input variables.  

Effect of Varying the Number of Variables 

Maxent was run for the Common Frog for each of the three variable sets to examine how 

the prediction of current distribution and future climate space is affected by varying the 

number of input variables.     
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a) 4 Environmental Variables 

 

b) 8 Environmental Variables 
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c) 19 Environmental Variables 

Figure S 4 Presence-absence maps of predictions of Common Frog Distribution under each variable set 

Figure S 4 (a-c) shows a comparison of the extent of change in climate space predicted 

by Maxent for the Common Frog (Rana temporaria) using variable sets containing 4, 8 

and 19 environmental variables. The resolution is 0.5 degree, equivalent to 50km at the 

equator.  The presence-absence threshold is artificially set at 0.5 for comparison 

purposes.  This comparison illustrates the impact which variable selection may have on 

output distributions.  Visually it is difficult to determine the differences across the three 

maps, however estimates of current distribution range from 1500km2 under the 19 

variable set to 2100km2 under the set of four variables, the eight variable set prediction 

falls between the two predicting a distribution of 1800km2.   Thus, there is a wide 

disparity between predicted distributions representing the ‘current’ distribution across 

the variables sets.  The use of fewer variables has been demonstrated to result in larger 

distributions as the ‘representative’ environmental niche is less constrained than by the 

use of 19 variables (Hijmans and Graham 2006).  There is inherent risk of overfitting 

associated with selection of too many variables (Wiens et al. 2009).  Thus, the use of 19 

variables leaves the model prone to over-fitting.  These assertions are mirrored in the 

predictions of the Common Frog for the current distribution in Figure S 4 in which both 

the four (a) and eight variable (b) set predict a larger distribution extent than the 19 

variable set.  Under the Wallace Initiative protocol 8 environmental variables would be 

passed to Maxent for the Common Frog due to the large number of data points.              
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Exploring Variable suitability 

There are several ways to explore which variables most influence a species’ distribution 

in Maxent.  During the creation of the projection Maxent tracks the contribution of each 

variable in fitting the model, and calculates this as a percentage contribution (Phillips 

2008). These percentage contributions are subject to the particular algorithm used to 

create the optimal model, it is possible therefore that different patterns of contribution 

would produce the same result (Phillips 2008).  Maxent also calculates the permutation 

importance (%) for each variable, which indicates the importance of the variable, 

modelled in isolation, in predicting presence and background (Phillips 2008 Table S4). 

Correlation between variables impacts the final values and so caution should be applied 

when interpreting these data.  The contribution of each of the environmental variables 

in the prediction of the current distribution of the Common Frog under the 8 and 19 

variable sets is explored in Table S4  a and b. It is important to note that each variable 

sets’ contributions must sum to 100; therefore these tables cannot be interpreted as a 

direct comparison of variable contributions. It is therefore only relevant in examining 

the relative importance of each variable in determining the final species distribution 

under those particular model conditions. The percent contribution is dependent on the 

route that the model took in calculating the prediction, thus it is the permutation 

importance which is of more interest. Permutation importance describes the 

importance of each variable in the final model and is calculated by randomly permuting 

the values of that variable across the training points and the model is re-evaluated on 

the permuted data.  It then measures the resultant decrease in training AUC; variables 

for which a large decrease is indicated are those upon which the model most depends.  

To aid interpretation these values are then converted to a percentage with high 

percentages indicating high importance.  
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Variables Code 
Percent 

contribution 
(%) 

Permutation 
importance 

(%) 

Precipitation of Driest Month bio14 10.8 42.8 

Annual Mean Precipitation bio12 15.9 10.3 

Precipitation of Wettest Month bio13 5.8 8.5 

Mean Diurnal Temperature Range bio2 12.4 7.8 

Annual Temperature Range bio7 11.4 7.7 

Precipitation of Warmest Quarter bio18 9.5 7.7 

Mean Temperature of Wettest Quarter bio8 0.5 3.6 

Mean Temperature of Coldest Quarter bio11 0.1 2.2 

Annual Mean Temperature bio1 1.4 1.9 

Precipitation Seasonality bio15 3.0 1.5 

Mean Temperature Driest Quarter bio9 0.0 1.5 

Mean Temperature of Warmest Quarter bio10 0.3 1.4 

Precipitation of Coldest Quarter bio19 0.1 1.2 

Min Temperature of Coldest month bio6 18.3 0.6 

Max Temperature of Warmest Month bio5 0.1 0.6 

Precipitation of Driest Quarter bio17 6.0 0.2 

Precipitation of Wettest Quarter bio16 0.3 0.2 

Isothermality bio3 5.1 0.1 

Temperature Seasonality bio4 0.0 0.0 

b) Variable contributions under the 19 variable set 
Table S 4 Contribution of each variable to the prediction of the Common Frog’s current distribution Purple shading 
illustrates variables included in the four and eight variable to aid comparison.. 

 

Bio1 to Bio11 represent different measures of temperature and Bio12 to Bio19 

represent precipitation measures. The 8 variable subset variables are balanced 

representing 4 temperature-based (bio1, bio5, bio6, bio4) and 4 precipitation-based 

(bio12, bio15, bio16, bio17) measures.   

The top 3 ranked variables within the set of 19 are all variables representing 

precipitation measures.  As the species in question, Rana temporaria is a frog species 

associated with aquatic habits, relying on water bodies to breed (Kuzmin et al. 2012), 

this result would be expected.  The top two ranked variables in the subset of 8 are also 

Variables Code 
Percent 

contribution 
(%) 

Permutation 
importance 

(%) 

Precipitation Seasonality bio15 16.6 32.3 

Precipitation of Wettest Quarter bio16 23.4 22.7 

Max Temperature of Warmest Month bio5 18.2 14.5 

Annual Mean Temperature  bio1 10.2 9.9 

Min Temperature of Coldest Month bio6 1.6 8.7 

Precipitation of Driest Month bio17 9.0 7.9 

Annual Mean Precipitation bio12 21.0 3.5 

Temperature Seasonality bio4 0.1 0.5 

a) Variable contributions under the eight variable set 
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precipitation measures.  Only one of the 8 variable subset variables appear in the top 

ranked eight variables in the full suite of 19 variables, annual precipitation (bio12).  In 

essence the model with 19 variables ranked seven variables above those selected within 

the 8 variable subset.  However, this calculation does not take into account correlation 

between the variables; multicollinearity doesn’t impact model accuracy but can 

influence calculations regarding individual predictors.  In both cases there are two 

variables which explain over 50% of the niche space.  For the 8 variable subset these 

variables (bio15 precipitation seasonality and bio16, precipitation driest quarter) 

explain 55% of the variation and in the suite of all 19 the two variables (bio14 

precipitation driest month and bio12, annual mean precipitation) explain 53.1%.  

Although these most influential variables do not match across the variable sets there are 

similarities between them, insofar as they are all precipitation-based and include 

measures over dry periods.    In this case the Wallace Initiative 8 variable set does not 

contain all those variables best suited in calculating the Common Frog’s climate niches 

however, one needs to bear in mind the 8 variables selected by the Wallace Initiative 

were selected on the basis that they can be extrapolated across a broad range of species, 

including mammals, birds and reptiles.  

The Impact of Environmental Variable Resolution on Predictions 

 

 

Figure S 5 Demonstrating how the resolution of environmental variables impacts Maxent’s ability to determine a species 
environmental requirement.  Left: High resolution (10 arc-minutes), Right: Low Resolution (0.5°x0.5°). 

To investigate the impact of resolution on predictions of climate niche the Common 

Frog’s climate niche was recalculated for two different resolutions using Maxent 
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((Figure S 5).   These maps illustrate how the resolution of the environmental variables 

impacts the models ability to infer the species niche envelope.  The high resolution data 

is a 10 arc-minute projection equivalent to 18.6km2 area at the equator; the low 

resolution data is 0.5°x0.5° grid cells or 50km2 at the equator.   The prediction created 

using high resolution data predicts a wider distribution.  The likely reason for this 

difference is that the model picked up nuances in the environmental data represented 

by the occurrence points that have been masked by the coarser scale of the low 

resolution grid (Elith et al. 2011) 

The Impact of Implementing a Buffer on Model Predictions 

  

a)  b) 

Figure S 6 Demonstration of the application of the buffer in constraining the projection a) non-buffered, b) 2000km 
buffer 

To examine the impact of implementing a buffer the eight variable model for the 

Common Frog was re-run with an additional file in which the buffer is described (Figure 

S 6).  The application of a buffer bounds the species projected distribution by the 

restriction of the model prediction to only subset of the entire region.  The buffer used 

in this case reflects that used in the Wallace Initiative at a 2000km distance around the 

occurrence points (Figure S 6b).  The light grey shading demarcates the area over which 

the model is projected.  The buffer goes someway to preventing species projections 

‘colonizing’ areas which represent similar environmental characteristics but are outside 

the reach of the species current distribution Figure S 6a.  The Common Frog’s 



311 
 

distribution in reality lies squarely in the European Palaearctic; however, without the 

buffer it is erroneously predicted to reside in North Americas.    

Creating Future Projections of Species Distributions 

The projection of species distributions into the future requires two sets of 

environmental data, representing, i) the current conditions, onto which the modelled 

distribution is trained, and, ii) future predicted conditions under climate change, onto 

which the climate niche requirements are projected to create a map of future climate 

suitability.  These variable sets must be of the same extent and resolution for the model 

to run.  Projections of the Common Frog’s future climate space were created to 

investigate the impact of future climate change on the species distribution and the effect 

of altering the number of input variables on future projections. 

Future projections of species distribution are made using the global warming scenario 

‘SRES A1B’ as defined in the IPCC AR4 report (Solomon et al. 2007).  The ‘SRES A1B’ 

(Pachauri and Reisinger 2007) storyline describes a world of rapid economic growth, 

where the global population peaks mid-century and there is rapid introduction of more 

efficient technologies.  This scenario represents a temperature increase of 2.8°C (1.7°C-

4.4°C) by 2090-2099 relative to the temperature at 1990-1999 (Pachauri and Reisinger 

2007).    

The projected changing climate suitability for the Common Frog under climate change is 

illustrated across the period 2020-2080 in Figure S 7a-d.  These mapped projections were 

created using the eight variable set.  In these projections the Common Frog’s distribution 

appears fairly stable over the period in a comparison with the current predicted range, 

with only small changes in the extent and degree of suitability observable.  For instance, 

in the projection for 2080, although the extent of the distribution shows little change from 

2050, climate suitability increases slightly in the eastern region of the distribution.   This 

observation is further reflected in the increase in distribution in 2080 apparent in Figure 

S 7d, which represents total land area in which climate suitability exceeds the 0.5 

suitability threshold.    

 

Figure S 7e is a comparison of the climate niche extents predicted by each of the variable 

sets from current to 2080. There is wide variation across the three sets of variables 

across the period.  The four variable suite projects the greatest extent of climate space 



312 
 

for the Common Frog under current conditions, with the suite of 19 projecting the least 

extent.  However, beyond 2020 and to 2080, it is the eight variable suite which projects 

the largest extent of climate space.  The four variable suite projects a sharp decline in 

suitable climate space whereas the nineteen variable suite predicts the suitable climate 

space to remain relatively stable at 2020.  Beyond this point both variable sets predict a 

slight rise in suitable climate space to 2050 and then a decline to 2080.  The sharp 

decrease in the extent of suitable climate space projected by the four variable set to 

2020 is likely to be related to the fact that they are no longer able to accurately predict 

the species niche under future conditions because the model fails to take into account 

the nuances in the species climate niche.     Therefore, we can discount the four variable 

set for the projection of the Common Frog’s future suitable climate niche. 

   

  

a) Current distribution b) 2020 
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c) 2050 d) 2080 

 
 

e) Distribution Change by Variable Set f) Variable contribution under the eight 
variable set 

Figure S 7 Future Projections created under the SRES A1B scenario for the eight variable set a) current, b) 2020, c) 2050, 
d) 2080, and e) Comparison of projected extent of suitable climate under 4, 8 and 19 variable set, f) Variable 
contributions under the 8 variables  

In a comparison across the variable contributions created under the current conditions 

and future scenarios (Figure S 7e), those variables which most contributed to the final 

predictions change over time. For instance, the projection created under current 

conditions is driven by mean precipitation in the wettest quarter (bio16), annual mean 

precipitation (bio12) and maximum temperature of the warmest month (bio5).  Under 

the scenario of future climate change, annual mean temperature (bio1) and precipitation 



314 
 

(bio12) and precipitation seasonality (bio15) are the major drivers.  The increasing 

influence of mean annual temperature in describing the habitat conditions suitable for 

the Common Frog into the future may indicate that increasing temperature becomes a 

limiting factor into the future.   

 

Investigating Model Settings 

Feature types & their associated response curves 

 

There are six feature types which support the Maxent algorithm in its calculation of 

species distributions, these are the: linear feature; hinge feature; quadratic feature; 

product feature; threshold feature and category indicator feature (Phillips and Dudik 

2008).  The ‘feature types’ control the way in which the Features (input variables) are 

weighted.  Five of the six feature types are derived from continuous variables, the 

exception being the category indicator feature which is derived from categorical 

variables (Phillips and Dudik 2008). To illustrate the effect of varying the features used 

when implementing the model response curves were created for comparison, these 

were generated using the Common Frog data and the eight variable set.  Maxent 

automatically selects the features which are most appropriate for the data (Phillips and 

Dudik 2008).  The linear feature is always used, the quadratic feature only in 

circumstances when there are 10 records and above, the hinge feature requires 15 

records to run and the threshold feature at least 80 records (Elith et al. 2011). This is 

because the fewer records available the greater the difficulty in determining a 

relationship between species occurrences and environment so the model is required to 

be less statistically complex (Pearson 2007a; Elith et al. 2011).   The linear, quadratic 

and product features constrain means, variances and covariance of the continuous 

variables, respectively, when matching their empirical values (Phillips and Dudik 2008). 

The ‘threshold’ feature is a binary function which sets a threshold value, v, assigning the 

value 1 where the environmental variable has a value exceeding the threshold and 0 if 

the value is below the threshold (Phillips 2008).    The threshold feature has the effect of 

making the ‘total probability of grid cells with a value greater than the threshold equal 

to the fraction of sample locations with the value above the threshold’ (Phillips 2008) .  

The hinge feature is similar to a linear function, derived from continuous environmental 
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variables, it is constant below the threshold, v (Phillips 2008).  Selecting the ‘Threshold’ 

feature type result in step-like response curves because they are a form of step-function 

(Phillips 2008).  The Maxent output is created by summing the features, thus,  summing 

the threshold features will always result in a step function, hinge-only features result in 

a piece-wise linear exponent , which is visualised graphically as a series of straight-line 

sections (Phillips 2008) .   

   

a)Threshold b) Hinge c) Quadratic 

Figure S 8 Illustrating the effect of feature types on model response curves 

As can be seen in Figure S 8, which illustrates the response curves for the Common Frog, 

using the threshold feature creates a stepped response curve, whereas using the hinge 

and quadratic features the curve is smoothed.  In their 2011 paper Elith et al found that 

running subsets of feature types has the effect of simplifying the model.  Running the 

model with the hinge feature but not the threshold function leads to a less complex 

smoothed model (Elith et al. 2011).  Excluding the product feature the model becomes 

easier to interpret although less able to model complexities in the relationship between 

species occurrences and environmental variables (Elith et al. 2011).  Phillips & Dudik 

(2008) recommend using Maxent's default settings because tuning the parameters of 

the model to each species is time-consuming, justification of the defaults use can be 

validated by their repeated use over a wide range of species, environmental variables, 

sample size, and different degrees of sample selection bias. 

The Regularization setting 

 

Use of maximum entropy has been found prone to overfitting (Phillips and Dudik 2008).  

Thus, in Maxent the developers employ regularization, a form of relaxation which forces 

the model to account for values close to the average value of a predictor rather than 

equal to it when estimating the distribution (Phillips et al. 2006).  The degree of 

regularisation varies flexibly to account for sample size to ensure a consistent 
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performance (Phillips et al. 2006); a larger regularization multiplier will result in a less-

localised, more spread out prediction (Phillips et al. 2006).  The type of regularization 

employed also tends to reduce the number of variables in the model by omitting 

irrelevant variables, reducing the variance but potentially upping the bias (Wisz et al. 

2008).  Balancing these two factors correctly will result in model that is most 

parsimonious and that is best able to predict unseen observations (Wisz et al. 2008). 

 

   

a) Regularization=0.01  

AUC= 0.989 

b) Regularization=1  

AUC=0.991 

c) Regularization=5  
 

AUC=0.922 

Figure S 9 Demonstration of the effect of altering the Regularization multiplier on the model projection 

To illustrate the effect of implementing the regularization multiplier the Common Frog 

model was re-run using different levels of regularization under the eight variable set. 

Figure S 9a) represents a regularization value of 0.01, the resulting distribution is 

extremely localised to the occurrence points. This has the effect of restricting the 

models ability to generalize well to independent testing data, the data is thus overfit.   

Figure S 9b) represents the Maxent default model where the multiplier equals 1 for 

comparison.   The distribution created using a regularization multiplier of 5 (Figure S 

9c) is more diffuse than those in S 9a) and S 9b) in a less localised prediction.  However, 

too large a multiplier impacts the model’s parsimony and may lead to underfitting, 

where the model is unable to determine well suitable habitats using testing data as the 

species niche is too loosely-bounded.   
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Conclusion 

The exploration into the alternative ways of running of Maxent in this case-study of the 

Common Frog has helped to elucidate upon the most appropriate way of running 

Maxent to create current and future projections of species distributions.  It has also 

served to explore some of the reasoning behind the methods used in creating the 

projections created in the Wallace Initiative upon which the wider study is based.     

In regards to the most appropriate way of running Maxent for a single species, this 

study would recommend the following approach: 

 Prepare the input occurrence data to remove wrongly geographically referenced 

and duplicate occurrences.  

 Run the Maxent default model as Maxent automatically selects the most suitable 

feature types for the data. 

 Where there are 40+ occurrence points initially run the model with the full suites 

of environmental variables to determine the species environmental niche using 

bootstrapping and the permutation tables. Then re-run with the top most 

influential variables identified by bootstrapping to avoid overfitting. 

 Use high resolution environmental data in the creation of current predictions to 

identify the largest range of variation within the species environmental niche. 

 Create upwards of 10 replicates to reduce uncertainty within the predictions. 

 Limit the region within which the model searches for appropriate climate space 

using a buffer so that predictions are constrained within the likely extent of the 

species. Restricting the spatial extent over which the model can predict the 

species current distribution reduces the risk of overfitting, whilst also stopping 

the species being predicted outside the species historical extent (Anderson and 

Raza 2010).  A too restrictive buffer will prevent the model from identifying 

climatically suitable regions which are not represented by the species 

occurrence data causing a deflation in the prediction of current extent.  

Therefore, it has been suggested that the buffer be determined based on the 

recent historical extent of the species (Hortal et al. 2012).   

 Use the log format mapped predictions rather than presence-absence maps to 

avoid masking potential suitable climate space. 
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When running an automated model with a broadly ranging suite of species, the case 

in the Wallace Initiative (Warren et al. 2013) the mechanism by which Maxent 

determines the most appropriate environmental variables cannot be automated.  

Therefore a set of environmental variables judged to be salient in determining a 

wide-range of different species climatic requirements must be defined a priori based 

on the literature.  This is also the case when determining a suitable buffer in the 

Wallace Initiative analysis (Warren et al. 2013) the buffer restricts species 

distribution shifts to within a 2000km radius and to remain within the continent in 

which they currently occur.  The Maxent model is extremely useful in creating 

predictions of current and future projections under climate change for conservation 

studies.  However, care must be taken to select the most appropriate inputs to 

maximise the usefulness of the outputs. One should also be aware of the caveats 

associated with environmental niche models in general and acknowledge these 

when presenting results (See Appendix on Model Appraisal for further details).    
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Appendix 3: Visualising Climate Change: Examining Uncertainty in 

GGM projections of future climate change 

 

Maxent requires the input of projected future climate in the shape of environmental 

variables. These environmental variables are created using climate patterns projected 

by a General circulation model (GCM). The employment of GCMs in providing these 

projections requires understanding of the uncertainties, strengths and weaknesses 

associated with GCMs.  This appendix seeks to explore the uncertainty associated with 

GCMs, and how each corresponds or differs in their individual projections of future 

climate change. Further, it seeks to explore the impact of this uncertainty on the 

prediction of species’ future climate space.    

 Introduction  

 

Confidence in the ability of climate models to project future climate change is 

considerable particularly at the continental scale and above (IPCC 2007).  This 

confidence is rooted in the underpinning of the models in well understood physical 

principles and their ability to replicate patterns of past and current climate changes 

(IPCC 2007).  These mathematically- represented physical laws include the 

conservation of mass, energy and momentum and are supported by a vast number of 

observations (IPCC 2007).       

However, in predicting climate into the future there is recognised uncertainty 

associated with the GCMs used to model the projections (Beaumont et al. 2008).  There 

is no one ‘best’ model (Beaumont et al. 2008).   Variation in predictions of future climate 

are associated with the method in which climate is represented statistically in the 

model (Beaumont et al. 2008). For instance, the accurate representation and 

parameterization of some physical processes, such as soil moisture, is especially 

difficult (Beaumont et al. 2008). Imperfect understanding relating to climate sensitivity 

to changes in greenhouse gas concentrations also introduces considerable uncertainty 

(Beaumont et al. 2008).  Uncertainty is also associated with the models ability to project 

small-scale climate process such as tropical precipitation, the El Niño-Southern 

Oscillation and the Madden-Julian Oscillation (a short-lived (30-90 days) variation in 

tropical rainfall and winds) (IPCC 2007).  This uncertainty is both related to scientific 
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understanding of these smaller scale climate mechanisms but also computing power 

(IPCC 2007).  Mountainous areas and areas of coastline particularly also complicate the 

prediction of future climate as they have significant impacts on localised micro-climatic 

patterns (Rajib and Rahman 2012).  The impact of this related uncertainty is dependent 

on the application of the model, however all climate models project global-scale 

warming as a result of increased greenhouse gases (Meehl et al. 2007).   

The use of a single climate realisation in projecting future species distributions has the 

potential to misrepresent future species exposure to climate change (Beaumont et al. 

2008).  This is because by projecting a species future niche onto a single climate 

projection one is sampling an unknown fraction of possible future conditions 

(Beaumont et al. 2008).  In using an ensemble of climate models in the projection of 

future species distributions, as shown in this appendix, one can minimise this source of 

uncertainty.   

 

To reduce the uncertainty associated with species distribution model outputs the 

selection of appropriate GCMs and understanding their attendant uncertainties is an 

important step (Beaumont et al. 2008).   The climate patterns of seven GCMs are utilised 

in the creation of projections of species future suitable climate spaces in this study.  The 

seven GCMs are the UKMO-HadCM3, CCCMA-CGCM3.1, IPSL-CM4, MPI-ECHAM5, UKMO-

HadGEM1, CSIRO-Mk3.0, and NCAR-CCSM3.0 and were created using CLIMGEN a model 

for generating pattern-scaled climate data (Warren et al. 2013). This appendix 

specifically examines patterns of mean annual temperature and mean annual 

precipitation at 2080.  The climate data visualised in this appendix were extracted from 

the Wallace Initiative website  (Wallace Initiative 2013).   

 

Current Climate  

 

To provide a basis from which to compare future projections of climate the current 

observed mean annual temperature and mean annual precipitation are also included.   

Current climate maps are derived from observations of annual mean temperature and 
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annual mean precipitation between the period 1961-1990, data available on the 

Wallace Initiative website (Wallace Initiative 2013).  

Mean Temperature 

 

Figure S 10 Global Annual Mean Temperature (1961-1990, °C) 

 

The observed global annual mean temperature range is -27.8°C to 30.4°C (Figure S 10).  

Mean Precipitation 

 

Figure S 11 Current Annual Mean Precipitation (1961-1990 (m/yr)) 

 

Observed mean annual precipitation across the period 1961-1990 ranged between 0-

7.6 m/yr (Figure S 11), (Wallace Initiative 2013).  The driest areas are indicated in 

brown moving through to dark blue for the wettest areas.  The wettest areas are 

observed in the Southern Hemisphere in the Amazon basin and across Indonesia and 

the Philippines.  The driest areas are in Northern Africa and the Middle East, central 

Australia and across the Himalayas and the Arctic Circle.   
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Exploring Future Mean Annual Temperature and Precipitation Projections 

The GCMs used in this Study 

The following projections of annual mean temperature and annual mean precipitation 

were created for each of the seven GCMs under the SRES A1B scenario to 2080 (Table S 

5).     

 Mean Annual Temperature 

(°C) 

Mean Annual Precipitation (m) 

GCM Minimum Maximum Minimum Maximum 

Observed climate -27.8 30.4 0 7.6 

cccma_cgcm31 -23.3 35.6 0 8.5 

csiro_mk30 -23.2 35.1 0 9.8 

ipsl_cm4 -22.9 34.7 0 10.0 

mpi_echam5 -22.9 35.1 0 8.6 

ncar_ccsm30 -22.9 34.3 0 10.2 

ukmo_hadcm3 -22.8 35.1 0 11.5 

ukmo_hadgem1 -22.6 34.0 0 9.9 

Mean  -22.9 34.9 0 9.7 

Table S 5 Comparison of annual mean temperature and precipitation by GCM at 2080 with observed climate. 

The GCM ukmo_hadgem1 predicts the lowest global minimum temperature and 

maximum temperature at 2080.  The GCM which predicts the highest minimum and 

maximum temperature at 2080 is ccma_cgcm31 at -23.3°C and 35.6°C, respectively. 

Thus, between the two GCMs there is predicted a  0.7°C difference in minimum mean 

annual temperature and  a 1.6°C difference in maximum annual temperature by 2080.  

To minimise uncertainty the Wallace Initiative calculates the mean value of annual 

mean temperature by removing the minimum and maximum extreme values and takes 

the average over the remaining five GCMs  (Warren et al. 2013).  Using this method the 

mean of the GCMs for minimum mean annual temperature is -22.9°C and the maximum 

is 34.9°C.   When comparing future predicted mean annual temperature to the observed 

temperature there is an average  4.9°C (4.6°C- 5.2°C) predicted rise above the minimum 

mean annual temperature from current to 2080.  There is predicted an average rise of 
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4.5°C (3.6°C-5.2°C) between the observed maximum mean annual temperature and that 

projected at 2080.          

Minimum annual mean precipitation is 0m across the full set of GCMs and current 

observed precipitation values.  The GCM cccma_cgcm31 predicts the lowest maximum 

value for mean annual precipitation at 2080 at 8.5m; the highest is predicted by the 

GCM   ukmo_hadcm3 at 11.5m by 2080.  The average value of maximum annual mean 

precipitation across the GCMs is 9.7m; this represents a rise of 2.1m (0.9m - 3.9m) 

above the current observed value at 7.6m by 2080.         

Future Temperature by GCM 

 

This section analyses the variations across GCMs in their projections of Annual Mean 

Temperature under the SRES A1B scenario.  Due to understanding of the physical 

methods by which temperature changes are determined and subsequently statistically 

represented in climate models variation in temperature across the GCMs is narrower 

than that for precipitation (IPCC 2007).  

Across the GCMs the  Sahara region of North Africa is predicted to experience the 

hottest mean annual temperatures by 2080 with projected temperatures of between 

32-35°C this is consistent with the fact that under current climate this area is the hottest 

with a mean annual temperature of between 28-32°C  (Figure S 12).  The lowest 

temperatures are observable in central Greenland across both the current climate and 

the multiple GCM projections ranging between -27°C to -23°C under current conditions 

and -23°C and -19°C under future conditions.     

Figure S 12 includes a series of Absolute change in temperature maps which illustrate 

the change in mean annual temperature in degrees Celsius (°C) projected by each GCM 

from current observed mean annual temperature (1961-1990).  The range of projected 

temperature change is between a 0°C and 17°C increase in temperatures at 2080 from 

current.  Across the GCMs there are no regions where mean annual temperature is 

projected to remain stable to 2080 with the majority of regions experiencing a rise in 

temperature of between 3 -6°C above current temperatures.   

The region in which the largest temperature increases are projected, with GCMs 

projecting between a 5°C and 12°C increase in mean annual temperature are within the 
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North Hemisphere across the Arctic Circle.  The regions predicted to experience the 

smallest degree of absolute warming in mean annual temperature, between 1°C and up 

to 3°C is less clear cut with a greater degree of variation across the GCMs.   However, the 

GCMs show agreement that absolute temperature increase in the United Kingdom and 

the Southern tip of South America are likely to be constrained within an increase of 1-

3°C.                      
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Figure S 12 Maps of the Annual Mean Temperature and Absolute Change in Temperature under the SRESA1B scenario by 
GCM (2080 AD) 

 

The regions in which the greatest variation is apparent across the GCMs are the tropical 

regions of equatorial Africa and the Amazon basin in South America.  A closer 

investigation of the equatorial African region shows model projections predicting a rise 

of absolute temperature to 2080 of between 1-5°C.   The smallest degree of absolute 

increase in temperature is predicted by the GCM ukmo_hadgem1 with a 1-3°C increase 

across the region.  Whereas, the ukmo_hadcm3 GCM predicts an absolute rise in 

temperature of between 3-5°C.  The majority of the remaining models predictions are 

more closely identifiable with the ukmo_hadcm3 predictions apart from the 

ncar_ccsm30 which projects a 2-3°C increase.  A similar pattern is observable across the 

Amazon basin, although the hot and cool GCMs, those which predict the largest and 

m
p

i_
ec

h
am

5
 

  

n
ca

r_
cc

sm
3

0
 

  

u
k

m
o

_h
ad

cm
3

 

  

u
k

m
o

_h
ad

ge
m

1
 

  

 



326 
 

smallest annual mean temperature increase from current to 2080 are not consistent 

with those for the Equatorial African tropics.  Projections of absolute temperature 

change in the Amazon basin vary considerably across the GCMs and ranges between an 

increases of 2°C up to 8°C.   The hottest model is again the ukmo_hadcm3 which projects 

that a large expanse of the Amazon basin will experience an absolute increase in 

temperature of between 6-8°C.    The ncar_ccsm30 is the GCM with the coolest 

projection predicting absolute rise in temperature of between 3-4°C across the majority 

of the Amazon basin.  The remaining GCM projections for the Amazon basin predict an 

average increase of between 4-5°C. 

Future Precipitation by GCM 

 

There is greater uncertainty associated with the projection of precipitation than 

temperature changes due to gaps in scientific knowledge of the driving processes, 

particularly smaller scale climate mechanisms such as those associated with tropical 

precipitation (IPCC 2007). This section compares the seven GCMs projections of future 

change in precipitation comparing both Annual Mean Precipitation and absolute change 

in Annual Mean Precipitation.  

Figure S 13 illustrates maps for both Annual Mean Precipitation (m/yr) and Absolute 

change in Precipitation (m/yr) to 2080 under the SRES scenario for the full suite of 

GCMs.  The GCMs are consistent in projecting the driest regions of the Earth surface at 

2080.  The lowest rates of annual mean precipitation, 0-0.25m/yr, are projected at 2080 

for large areas of the globe particularly within the Saharo-Arabian region and the 

western coast of southern Africa, the Northern-most reaches of North America, the 

Central desert of Australia and across the Andes mountains in South American.   The 

GCMs reliably project that the wettest regions will remain the Amazon basin, the 

Indonesian islands and the Philippines with annual mean precipitation of between 3-

8m/yr by the 2080s.  
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Figure S 13includes a series of Absolute change in precipitation maps which illustrate 

the change in annual mean precipitation in metres (m) projected by each GCM based on 

current observed annual mean precipitation (1961-1990).  The range of projected 

precipitation change is between a reduction in precipitation of up to 3m/yr and an 

increase in precipitation of up to 4m/yr, although the dry extreme is rare within the 

projections and it more akin to -1.5 to -2m/yr by 2080.   

Across the GCMs there are several regions where mean annual precipitation is projected 

to remain stable to 2080.  These areas are indicated in the legend by a buff colour and 

encompass changes in precipitation of between -0.02m/yr and 0.02m/yr from current 

to 2080. The region which is determined to remain stable across the full of suite of 

GCMs is the region encompassing the Sahara desert in North Africa.  Areas of central 

Asia are also determined by several models to retain relatively stable precipitation 

levels across the period to 2080. However, both regions have already been identified as 

being within the band of least precipitation with between 0-0.25m/yr.   

The regions in which the largest degree of drying are projected are in Central and South 

America, specifically several GCMs predict drying along the length of Panama and the 

North-Eastern coast of Brazil of between 1.5-2m/yr less rainfall by 2080.  The region 

predicted to experience the largest degree of additional precipitation are the Indonesian 

Islands and the Philippines although there is uncertainty across the GCMs as to how 

much precipitation levels will rise, with predictions encompassing a degree of drying to 

up to 0.4m/yr to an increase of precipitation up to 2m/yr. 

The regions in which the greatest variation is apparent across the GCMs are the tropical 

region of Equatorial Africa, the Amazon basin in South America and across South-East 

Asia.  A closer investigation of the Equatorial African region shows model projections 

predicting changes in precipitation from a reduction in annual mean precipitation of up 
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Figure S 13 Annual Mean Precipitation and Absolute Change in Precipitation Maps under the SRESA1B scenario by GCM 
to 2080 
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to 0.4cm to an increase in precipitation of up to 1m to 2080.  The greatest reduction in 

precipitation is predicted by the GCM csiro_mk30 with the major part of the region 

projected to experience a decrease of between 0.05-0.4m.   Whereas, the ccma_cgcm31 

GCM predicts an absolute rise in precipitation of between 0.2m/yr to 1m/yr by 2080 

with the majority of the region projected to experience a rise of 0.2m/yr-0.4m/yr.  The 

remaining models most closely identify with the pattern of precipitation projected by 

the wettest model ccma_cgcm31.  A similar pattern is observable across the Amazon 

basin, although the wet and dry GCMs, those which predict the largest increase and 

decreases of annual mean precipitation from current to 2080 are not consistent with 

those for the Equatorial African tropics.  Projections of absolute precipitation change in 

the Amazon basin vary considerably across the GCMs and range between a decrease of 

up to -1m/yr to an increase in precipitation up to 2m/yr.   The driest model is the 

ukmo_hadgem1 which projects that a large expanse of the Amazon basin will experience 

an absolute decrease in precipitation of between  -0.4m/yr to -1m/yr.    The ipsl_cm4 is 

the GCM with the wettest projection predicting absolute rise in precipitation 0.2m/yr to 

2m/yr across the Amazon basin.  There is also a degree of variation in model 

projections for South-East Asia.  The model ccma_cgcm31 projects large swathes of 

South-East Asia to experience an increase in annual mean precipitation of between 

0.2m/yr-0.4m/yr, whereas, the ipsml_cm4  predicts a drying of between -0.05m/yr and 

0.4m/yr for the major part of the region rising to drying of between -0.4m/yr to -

1.0m/yr in areas of Northern India.   
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Variation in GCM Projections across Biogeographic Zones 

Zone 

Temperature 
Change 

(Δ °C) Hot Model Cool Model 

Precipitation 
Change 

(m/yr) Dry Model Wet Model 

Palearctic 5-12 ncar_ccsm30 ccma_cgm31 0.05-0.20   

Nearctic 3-8 ukmo_hadgem1 ccma_cgm31 -0.05 – 0.4 ipsl_cm4 ncar_ccsm30 

Saharo-
Arabian 

3-5 ccma_cgm31 ukmo_hadgem1 -0.40 - 0.05   

Afrotropical 1-6 mpi_echam5 ukmo_hadgem1 -0.40 – 0.40  ncar_ccsm30 

Neotropical    -0.40 - 0.20 ipsl_cm4  

Oriental 2-5 mpi_echam5  -0.40 – 2.00 csiro_mk30 ipsl_cm4 

Australian 2-5 mpi_echam5 ukmo_hadgem1 -0.40 – 0.20 ukmo_hadgem1 ccma_cgcm31 

Table S 6 Variation in predictions of temperature and precipitation change across the GCMs (grey highlighting shows 
consensus across the model set) 

 

To investigate more fully variations in GCM patterns of future temperature and 

precipitation change each biogeographic region is examined in Table. Table S 6 shows 

the range of values predicted under the GCMs with regards to changes in temperature 

and precipitation for each zone and also highlights the hot/ cool and wet/dry models 

corresponding to each zone.  

 

Examining the impact of climate change on species distributions by GCM 

 

To examine how the variance in projections of climate change under the GCMs impact 

predictions of species future distributions under climate change time series plots were 

created.  These plots illustrate the proportion of current distribution size projected 

under each of the GCMs over time. These predictions of future suitable climate space 

were created using a set of eight environmental variables including Annual Mean 

Temperature and Precipitation, Temperature and Precipitation Seasonality, Maximum 

Temperature of the Warmest month, Minimum Temperature of the Coldest month, 

Precipitation in the Wettest and Driest Quarters.  These environmental variables are 

created using climate patterns from each of the GCMs.  The species selected for closer 

inspection include two species whose climate niche is determined predominantly by 
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temperature variables and two whose climate niches are driven by precipitation 

variables.    

These figures also show the mean of the projections used to describe Exposure in 

Chapter Two: Calculating Future Vulnerability to Climate Change of this thesis.  To 

minimize the effect of outlying GCMs in skewing the mean the top and bottom 

predictions were disregarded, and the mean was calculated across the 5 remaining 

GCMs.  This process reduces the degree of uncertainty associated with the predictions 

by removing the outliers.           

Temperature-driven Niche 

 

The Common Brush-tailed Possum (Trichosaurus vulpeca) and the Colombian Red 

Howler Monkey(Alouatta seniculus) were selected as the environmental climate niches 

of both, as determined using Maxent, are dominated by temperature variables.  Thus, 

variations within the GCMs projection of change within these environmental variations 

will directly impact on the prediction of suitable climate space.  The Colombian Red 

Howler Monkey (Alouatta seniculus) was also chosen because its distribution falls 

within the Amazon basin, a region for which there is a wide range of uncertainty in 

mean annual temperature projections across the GCMs for 2080.  The Common Brush-

tailed Possum was chosen for closer analysis as a native to Australia across which the 

GCMs are fairly consistent in projecting mean annual temperature.       
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a) Exposure (Proportion of current distribution extent 

remaining over time) under the seven GCMs to 2080 

b) Current Distribution Map (Wallace Initiative) 

Figure S 14 The Colombian Red Howler Monkey (Alouatta seniculus):  Projections of Future Exposure (Proportion Current 
by time period) under the Seven GCMs and Current and Future Distribution Maps 

The Colombian Red Howler Monkey, is a forest dweller native to the Amazon basin 

region in the North of South America (Boubli,  et al 2008) .  As has previously been 

discussed there is wide uncertainty between projections of mean annual temperature in 

the region across the GCMs.  The climate niche of this monkey is predominantly 

determined by temperature variables (81% Temperature-driven).  Patterns of 

precipitation as projected across the GCMs for the monkey’s distribution have a 

standard deviation in Exposure predictions of 0.33 across the seven GCMs at 2080.  

Uncertainty in Exposure across the GCMs is particularly visible during the period from 

2050 to 2080 (Figure S 14).  Before this time period, between 2020 and 2050, each of 

the seven GCMs projects growth in the monkey’s suitable climate space of between 11% 

for the most conservative estimates to 24% for the least conservative, representing a 

13% range in estimates.  Beyond 2050 three of the GCMs (ipsl_cm4, ncar_ccsm30 and 

ccma_cgcm31) continue to project growth in distribution (10% growth ipsl_cm4) and 

the remaining four predict a reduction in suitable climate space (66% reduction 

ukmo_hadcm3). Thus, at 2080 under the ipsl_cm4 GCM suitable climate space is 

projected to have expanded by 45%, (Exposure=1.45) whereas ukmo_hadcm3 projects 

a loss of 30% by 2080 (Exposure=0.70).  



333 
 

 The uncertainty in the projections of suitable climate space between 2050-2080 stems 

from the underlying broad uncertainty in the GCM mean annual temperature 

projections which predict between a 2°C-4°C (ncar_ccsm30) up to 6°C -8°C 

(ukmo_hadcm3) rise in mean annual temperature to 2080.  The three models which 

project expansion to continue 2050-2080 are those which predict the smallest degree of 

warming of between 2°C- 4°C.  Conversely, it is the ukmo_hadcm3 model which projects 

the greatest degree of warming at 6°C -8°C over a large swathe of the Amazon basin.  

Where the top and bottom projections are clipped the mean Exposure value at 2080 is 

1.24, thus predicting an increase of 24% (s.d. =0.27) in suitable climate space for the 

species.  The projected warming in the region is reflected in the change in predicted 

climate space of the Howler Monkey at 2080.  The monkey’s distribution is predicted to 

expand further into the Amazon basin region as mean annual temperature rises 3-4°C, 

however those models projecting a greater increase in mean annual temperature 6-8°C 

ukmo_hadcm3) predict a reversal of the expansion seen at 2050.  This might indicate 

that a comparatively small rise in temperature across the region suites the monkey’s 

environmental niche beyond which it has a negative effect.                         

 

 

Exposure (Proportion of current by time period) under the seven 

GCMs to 2080 

Current Distribution Map (Wallace Initiative) 

 

Figure S 15 The Common Brush Tailed Possum (Trichosaurus vulpeca): Projections of Future Exposure (Proportion 
Current by time period) under the Seven GCMs and Current and Future Distribution Maps 
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The Common Brush-tailed Possum’s climate niche, as identified in Maxent, is driven by 

the temperature variables, mean annual temperature and temperature seasonality, a 

combination of the two determining 81% of the modelled climate niche.  Patterns of 

precipitation as projected across the GCMs for the Possum’s distribution have a 

standard deviation in Exposure predictions of 0.13 across the seven GCMs at 2080 

(Figure S 15).  At 2080 mean annual temperature is projected to increase by between 

3°C - 4°C across Australia under all seven GCMs.    At 2020 the projections of future 

exposure are fairly consistent across the GCMs with a variation of 10% in potential 

distribution between the most (ipsl_cm4, Exposure=0.91) and least conservative 

(ncar_ccsm30, Exposure=1.01) estimates. These models are consistently the most and 

least conservative across the rest of the time period to 2080, however the variation in 

both broadens across the period.  At 2080, this gap in estimates is equivalent to 40% of 

the species overall suitable climate range (ipsl_csm4, Exposure=0.67, ncar_ccsm30, 

Exposure=1.08). The ncar_ccsm30 is the only GCM which projects the Possum’s climate 

space to increase by up to 8% over the period to 2080.   The removal of these top and 

bottom estimates of suitable climate space reduces the uncertainty between the 

remaining GCMs to with a standard deviation of s.d. =0.07 at 2080, with a mean 

Exposure value of 0.79.  The Possum’s distribution is predicted to lose currently suitable 

climate space around the central Southern coast of Australia.  The projected warming in 

Annual Mean Temperature in the region is not reflected in the change in predicted 

climate space of the Possum at 2080.  In fact this change in distribution is relatable to 

changes in temperature seasonality within the region the magnitude of which is 

heightened around the region where the Possum is no longer predicted to occur at 2080 

(Wallace Initiative 2013).      

Precipitation- driven Niche 

The Jungle Cat, also known as the Reed cat (Felis chaus) and the Eurasian Water Shrew 

(Neomys fodiens) were selected as the environmental climate niches of both species, as 

determined using Maxent, are both dominated by precipitation variables.  The Jungle 

Cat was chosen because its distribution falls within the Oriental zone in a region for 

which high uncertainty in changes in mean annual precipitation was demonstrated 

across the GCMs.  The Eurasian Water Shrew was selected for closer analysis as a native 
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to the Palearctic zone across which the GCMs are fairly consistent in projecting mean 

annual precipitation.   

 

 

Exposure (Proportion of current by time period) and 

projected under the seven GCMs 

Current Distribution Map (Wallace Initiative) 

Figure S 16 The Jungle Cat (Felis chaus): Projections of Future Exposure (Proportion Current by time period) under the 
Seven GCMs and Current and Future Distribution Maps 

The Jungle Cat is associated with wetlands habitat such a marsh and reed swamps and is 

predominantly found in India and Bangladesh although its distribution also stretches to 

the banks of the Nile (Duckworth et al. 2008).  The Jungle Cat’s climate niche is driven 

by the precipitation variables, mean annual precipitation and precipitation seasonality, 

a combination of the two determining 86% of the modelled climate niche.   As 

previously alluded to there is a large degree of uncertainty across the GCMs in future 

mean annual precipitation across South-East Asia in which the Jungle Cat resides.  The 

GCMs predict between an increase of 0.2m/yr-0.4m/yr (ccma_cgcm31) to a reduction of 

-0.05m/yr to -0.4m/yr up to -1.0m/yr in areas of Northern India (ipsl_cm4) (Figure S 

16).  This uncertainty in predictions of precipitation is evident in the variation across 

the predictions of future suitable climate space.  Patterns of precipitation as projected 

across the GCMs for the Jungle Cat’s distribution have a standard deviation in Exposure 

predictions of 0.17 across the seven GCMs at 2080.     The models projecting the 

extremes of climate space at 2020 and again at 2050 are the mpi_echam 5, projecting 

the greatest reduction in suitable climate space with a 41% loss at 2050, and the 
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ipsl_cm4 projecting the smallest loss of 7% at 2050.   The mean value of loss in 

distribution at 2050 across the remaining five models is 24% s.d. =10%.  At 2080 the 

mpi_echam model projects a further loss of distribution from 2050 of 25% 

(Exposure=0.33). Whereas, the ipsl_cm4 is succeeded by ukmo_hadgem1 in predicting 

the smallest loss at 15% by 2080 compared to 25% under the ipsl_cm4.   These models 

both project drying within the region (-0.05m/yr to 0.40m/yr) in which the Jungle Cat is 

found, whilst the mpi_echam and ccma_cgcm31, the models predicting the greatest 

reduction in overall climate space project an increase in precipitation over the period 

(0.0m/yr -0.20m/yr).  This would indicate that although the Jungle Cat is reliant on 

wetland habitats further increases in annual mean precipitation are outside of its 

environmental niche space, whilst it may be better able to cope with a reduction in 

precipitation.  The majority of the models, five of the seven, project an increase in mean 

annual precipitation, by clipping the top and bottom predictions before calculating the 

mean the extreme dry and extreme wet models are removed. By removing these 

extremes in uncertainty the mean value is brought in line with majority of the 

projections resulting in a clipped mean value of Exposure=0.54 s.d.=0.17, indicating a 

reduction in niche space of 46%.    

         

 

Exposure (Proportion of current by time period) 

under the seven GCMs 

Current Distribution Map (Wallace Initiative) 

Figure S 17 The Eurasian Water Shrew (Neomys fodiens): Projections of Future Exposure (Proportion Current by time 
period) under the Seven GCMs and Current and Future Distribution Maps 
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The Eurasian Water Shrew is a semi-aquatic species living in wetland habitat across 

Europe  (Hutterer et al. 2008).  The Water Shrew’s climate niche is driven by the 

precipitation variables, mean annual precipitation, precipitation seasonality and 

precipitation in the driest quarter, a combination of the three determining 72.9% of the 

modelled climate niche.  The patterns of precipitation projected across the GCMs for the 

Water Shrew’s distribution are similar with a standard deviation in Exposure 

predictions of 0.13 across the seven GCMs at 2080 (Figure S 17).   Across the period 

2020 to 2080 it is the ukmo_hadcm3 which projects the shrew’s climate niche to reduce 

to the largest degree to Exposure=0.44, equivalent to a loss of 66%.  The model 

projecting the lowest degree of loss alternates between ccma_cgcm31 at 2020 and 2080 

and csiro_mk31 at 2050, with an overall loss of 5-17% from 2020 to 2080.  Drying of 

between -0.05m/yr and -0.40m/yr is projected across the Mediterranean and into 

Northern Europe by six of the seven GCMs. The ccma_cgcm31 is the only model to 

predict an increase in mean annual precipitation, restricted to parts of Northern 

Europe, of between 0.05m/yr -0.20m/yr by 2080.  The mean loss in climate space is 

32% (Exposure=0.68 s.d. =0.12).  The projected drying in the region is reflected in the 

change in predicted climate space of the Water Shrew at 2080.  The Shrew’s distribution 

is predicted to shrink towards the Northern extent of its current range where patterns 

of precipitation are predicted to be more stable.                

 

Discussion 

This study sought to examine the extent to which GCMs both correspond and differ in 

their projections of future climate change and the impact of this related uncertainty on 

the prediction of future suitable climate space for species when using these projections.  

It also explores regional difference in the climate across the biogeographic zones 

identifying patterns in uncertainty.     

Uncertainty associated with GCM Projections of Future Climate Change 

Global Climate Patterns  

In this comparison of GCM projections of both annual mean temperature and annual 

mean precipitation patterns regional differences in future climate change become 
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evident. For instance differences in the degree of warming and precipitation changes 

become apparent between the Northern and Southern Hemisphere.     

The GCM projections show that Northern latitudes and particularly the polar zone 

demonstrate future warming beyond that projected to be experienced in the Southern 

Hemisphere.  A 5-12°C increase is projected across the Arctic Circle and into the tundra 

and this is the region for which the greatest increase in mean annual temperature is 

projected.  This is in line with observations of land temperature since the 1980s which 

show that warming in the Arctic and Northern Hemisphere has been considerably faster 

than in the Southern Hemisphere (Armstrong 2013).  The basis of this pattern of 

warming is relatable to inter-hemispheric differences in the impact of greenhouse gases 

on climate (Armstrong 2013).  Warming in the Arctic Circle will increase the rate of ice 

melt causing the ice sheet to shrink (IPCC 2013) and negatively impacting the species 

which rely on the ice sheet for their survival, such as the Arctic fox (Vulpes lagopus) 

(IUCN 2009).           

Assessing the GCMs with relevance to precipitation trends it is the tropical latitudes 

which are projected to experience the largest variation in precipitation over the coming 

century.  The tropical zone is the region which experiences the greatest amount of 

annual precipitation. This is because across the tropics there is a naturally occurring 

belt of precipitation which moves between the Tropic of Cancer to the Tropic of 

Capricorn which is modulated by the Intertropical Convergence Zone (Ritter 2006).  

Also naturally contributing to the increased level of current precipitation across the 

tropics are several localised precipitation patterns which are the result of climate 

phenomena such as the monsoons of South Asia and Africa (IPCC 2013).  It is these 

localised weather patterns which complicate the projection of future precipitation in the 

region (IPCC 2013).  Precipitation decreases towards the poles due to cooler air 

temperatures and the associated low saturation point (Ritter 2006), resulting in less 

variation in annual precipitation patterns simplifying the projection of future climate 

change (IPCC 2013).  However, this described pattern of precipitation is much 

simplified omitting the effect of the orientation of winds. Mountain systems and air 

mass dominance in influencing precipitation and which result in localised climate 

patterns (Ritter 2006).  

Model Consistency  
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Exploring the projections of mean annual temperature and precipitation has allowed 

the identification of the GCMs which consistently project the extremes of hot or cool, dry 

or wet future conditions to 2080.  However, agreement across the models as to which 

project these ‘extremes’ is anything but consistent and variation is evidently dependent 

on biogeographic region.  Although the UKMO_HADGEM1 projects both the lowest 

global minimum and maximum mean annual temperatures and the CCMA_CGCM31 the 

highest mean annual temperatures these models are not consistently the coolest and 

warmest across the biogeographic regions.  The same is true across the mean annual 

precipitation patterns, where MPI_ECHAM5 is the driest model projecting the smallest 

increases in absolute precipitation and UKMO_HADCM3 the wet model. Yet, neither of 

these models projects the extreme future annual precipitation values for any of the 

seven biogeographic zones.  Uncertainty across the GCMs filters into the projections of 

species future distributions; this added uncertainty increases the further from current 

conditions projections move (Buisson et al. 2010).  This inconsistency between GCMs, 

measured as contributing to up to 20% of the overall uncertainty, will determine the 

distribution extent predicted as pockets of suitable climate space projected under one 

GCM may not be projected under another  (Buisson et al. 2010).                        

Projections and Regional Uncertainty  

Importantly, this study identifies the regions in which the greatest uncertainty across 

the GCMs is apparent, but also those regions in which the GCMs projections correspond.     

The greatest uncertainties in model projections of future mean annual temperature are 

concentrated in Equatorial Africa and the Amazon basin.  Equatorial Africa and the 

Amazon basin are also identified as having the largest uncertainty in mean annual 

precipitation where they are joined by South-East Asia. These regions of high 

uncertainty all fall within the tropics and as such are naturally subject to greater climate 

variability than temperate regions (IPCC 2013; JAMSTEC 2013).  This is because the 

climate across the tropics is governed by several smaller regional-scale climate 

phenomena, such as the El Niño-Southern Oscillation (ENSO), monsoons, the Indian 

Ocean dipole mode phenomenon and the Madden-Julian Oscillation (MJO) (JAMSTEC 

2013).  It is recognised that GCMs are limited in their ability to project these smaller 

scale climate mechanisms due to a combination of a lack of scientific understanding and 

computer power (IPCC 2013).   
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The Amazon region is affected by the El Nino-Southern Oscillation (ENSO) a weather 

system which develops off the western coast of South America and brings warm and 

very wet weather across Ecuador and Peru and drier and hotter weather to the Amazon 

basin.  ENSO develops every 3-7 years.  ENSO is projected to remain the dominant 

driver of interannual variability in the tropical Pacific into the 21st century (IPCC 2013). 

During this period ENSO-related precipitation is projected to increase due to increased 

moisture availability in to the coming century.  However, confidence in the GCMs ability 

to capture the ENSO and related regional phenomena remains low, (IPCC 2013). This 

likely explains the uncertainty across the GCMs presented in this appendix, where some 

project increased warming and drying whilst others project moderate warming and 

increased precipitation.                

The African Monsoon may be at the root of uncertainty in projections of mean annual 

precipitation in the rainforest region of Equatorial Africa. The African Monsoon is 

caused by seasonally reversing winds resulting from seasonal shifts of the Inter-tropical 

Convergence zone (ITCZ) and is accompanied by changes in precipitation.   Uncertainty 

in precipitation patterns across South-East Asia is also likely to be related to the 

difficulty caused for GCMs associated with projecting regional climates impacted by 

monsoon conditions. The South Asian monsoon crosses the Indian sub-continent 

bringing with it 75% of the total yearly precipitation over the period June to September 

(Jagnnathan and Bhalme 1973). In addition to the complexities of projecting 

precipitation patterns driven by monsoon conditions, both the South Asian and African 

Monsoons are directly affected by the MJO.  The MJO modulates the timing of 

active/break cycles which are a defining characteristic of monsoon (Matthews 2013).  

Monsoonal circulations are one phenomena of the climate system which have the 

potential to exhibit sudden or nonlinear changes due to climate change (IPCC 2007), 

which further complicates the projection of future climate patterns.   

Across the GCMs there are two biogeographic regions in which projections of future 

Mean Annual Precipitation and Mean Annual Temperature are fairly consistent with no 

one model predicting extremes in drying or wetting, hot or cool.    These regions include 

the temperate Palearctic and Saharo-Arabian zones. The climate in these zones is 

directly impacted by localised climate phenomena including the Northern Atlantic 

Oscillation (NAO), extra-tropical cyclones and blocking (IPCC 2007).  Climate models 
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are known to be well capable of simulating the NAO effects on both seasonal 

temperatures and precipitation (IPCC 2007).  The phenomena of extra-tropical cyclones 

and blocking are short-lived phenomena (IPCC 2007) and therefore are likely to have 

less influence on trends of mean annual precipitation and temperature. This explains 

why there is less apparent uncertainty in projections of future mean annual 

temperature and precipitation in these regions than others.  

Narrowing GCM uncertainty 

This study employs several techniques in order to narrow the uncertainty in projections 

of future climate change and subsequently the impact of future climate change on 

species distributions under the business-as-usual scenario, which characterises only 

one of a multitude of potential future climatescapes.  

There is no one best model of future climates (Beaumont et al. 2008).  In an effort to 

narrow uncertainty associated with the GCM projections of future climate change an 

ensemble of GCMs, seven in all, are used to project future climate and from there future 

species distributions.  In taking the average of these seven projections of future climate 

uncertainty associated with each is filtered out to a degree (Beaumont et al. 2008).  

However, averaging over the ensemble may introduce bias in the averaged climate 

projection caused by a poor model or lead to a model average representing a system 

unlikely to occur in nature (Beaumont et al. 2008). Thus, in order to avoid these pitfalls 

in this study the extreme model at either the end of the spectrum is removed and the 

average is calculated over the remaining five models.  

Where uncertainty associated with GCMs can be no further  reduced communication of 

this residual uncertainty provides awareness of the caveats associated with using GCMs 

to model future climate change (Beaumont et al. 2008).  This is particularly relevant 

when using projections to model species future distributions. 

 

Projections of Future Species Distributions 

GCM Uncertainty and Species Projections  

Uncertainty associated with the GCMs is recognised to feed into the projections of future 

species suitable climate space (Beaumont et al. 2008).  The extent to which GCMs play a 
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role in widening uncertainty in these future projections relates back to the degree of 

uncertainty that is inherent in their predictions of future climate for the region in which 

the species is located. This is evident in the trends of future suitable climate space 

predicted across the four species investigated in this appendix.  This phenomenon is 

particularly apparent in the projections of the Colombian Red Howler Monkey (Alouatta 

seniculus) under each of the GCMs.  The monkey is a resident of the Amazon basin 

region of South America. Uncertainty in this region has already been identified as broad 

ranging.  Similarly, projections of future climate space for the Jungle Cat (Felis chaus) are 

equally divergent across the GCMs.  Projections of Mean Annual Precipitation in this 

region are divergent across the GCMs with some models projecting an increase in 

precipitation whilst others predict drying in the region.  This uncertainty can also be 

related to localised climate phenomena such as the South East Asian monsoon and the 

MJO.   

 

The effect of averaging across the GCMs is evident in the projections for each of the four 

species examined, indicated by the red line in the diagrams of future distributions (e.g. 

Figure S 14).  Taking the average of the projections in this way serves to smooth the 

uncertainty surrounding the species projections, removing a degree of the bias 

introduced by uncertainty in the GCM climate projections.  Evidently this process is 

more suitable in situations where trends in projections across the GCMs are less 

divergent i.e. for the Possum and the Water Shrew.        

 

Conclusion 
  

This analysis reinforces the need for modellers of species distributions to recognise the 

uncertainties associated with climate projections, as advocated by (Beaumont et al. 

2008), particularly where future distributions are used to assess the risk of future 

climate change.   As discussed uncertainties in the GCM projections are apparent in 

several areas both spatial and temporal.  This uncertainty relates to the way by which 

the Earth system is represented within the individual climate models (Buisson et al 

2012).  These underlying uncertainties are known to permeate into the projections of 

future species distributions, influencing the projections of future suitable climate space 
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(Buisson et al 2012).  This is particularly relevant for those species resident in regions 

identified here as exhibiting the largest degree of uncertainty such as the Amazon. 

At the individual species level these uncertainties will influence the degree to which 

they appear resilient to future exposure.  The extent of the species’ future distribution is 

dependent on the spatial distribution of climate space and the velocity of climate change 

as projected by the GCM, as well as the species dispersal capacity.  This explains why 

distribution expansion under climate change may be projected under one GCM but 

contraction under another.  By creating an ensemble of distributions projected under a 

suite of seven GCMs and taking a consensus approach as in this thesis the degree of 

uncertainty is lessened although not removed.   
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List of Acronyms 

ANOVA Analysis of Variance 

ANCOVA Analysis of Covariance 

AR4  IPCC Fourth Assessment Report 

AR5  IPCC Fifth Assessment Report 

Bioclim  Bioclimatic variables (Hijmans et al. 2005) 

BP  Before present 

CO2  Carbon Dioxide  

CO2e  Carbon Dioxide Equivalent 

GCM  Global circulation model 

GHG   Greenhouse Gas 

GLM  General linear model 

Gtc/yr  Gigaton carbon per year 

GtCo2  Gigaton carbon dioxide 

GBIF  Global Biodiversity Information Facility 

GLM  General Linear Model 

IPCC   Intergovernmental Panel on Climate Change 

km2  Kilometres squared 

km/yr  Velocity (Kilometres/ year) 

LHTd1084 Life History Traits Database 1084 species 

LHTd213 Life History Traits Database 213 species 

m  Metre 

m/yr  Metres per year 

Ma  Mega-annum (Million years ago) 

PCAi  Initial Principal Components Analysis 

PCAf  Final Principal Components Analysis 

S.D.  Standard Deviation 

SRES A1B IPCC Emissions scenario A1B 
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Supplementary Material S1: Traits Cluster Diagram 
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Figure 1: A Cladogram created 

using the traits identified as 

determining Sensitivity 

(Excluding Endemicity).  

Two dominant branches were 

identified and eight clusters 

(branches 1-2, clusters a-g).  
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Supplementary Material S2: Taxonomy 

The taxonomy used for the placental mammals, the Eutheria, is adapted from Beck et al 

(2006). However, because marine species were excluded from the analysis the Order 

Cetartiodactyla is again split into Cetacea (the Whales) and Artiodactyla (even-toed 

ungulates) to bring clarity to what is being modelled and investigated.  The taxonomy 

for the Marsupials (Infraclass Marsupalia) adopts the taxonomy developed by Wilson 

and Reeder (2005).   

Infraclass Superorders Orders Order Common Names 

Included 
in 
LHTd213 
Analysis 

Eutheria Afrotheria Hyracoidea Hyraxes Yes 
  Proboscidea Elephant No 
  Sirenia Seacows No 

  Afrosoricida 
African ‘insectivores’ 
(tenrecs and golden 
moles) 

No 

  Macroscelidea Elephant shrews Yes 
  Tubilidentata Aardvark No 
 Xenartha Cingulata Armadillos Yes 
  Pilosa Anteaters and sloths Yes 
 Euarchontongliries Lagomorpha Lagomorphs Yes 
  Rodentia Rodents Yes 
  Dermoptera Flying Lemurs No 
  Primates Primates Yes 
  Scandentia Tree shrews Yes 

 Laurasiatheria Eulipotyphla 
True ‘insectivores’ 
(hedgehogs, shrews, true 
moles and Solenodon) 

Yes 

  Carnivora Carnivorans Yes 
  Artiodactyla* Even-toed ungulates Yes 
  Perrisodactyla Odd-toed ‘ungulates’ Yes 
  Pholidota Pangolins No 
  Cetacea* Whales No 
  Chiroptera Bats Yes 

Marsupalia Australidelphia Diprotodontia 
Australian marsupials 
(kangaroos, wallabies 
etc.) 

No 

  Peramelemorphia Bandicoots and bilbies No 
  Microbiotheria Monito del monte Yes 
  Noctorycetemorphia Marsupial moles No 
  Dasyuromorphia Marsupial carnivores No 
 Ameridelphia Paucituberculata Shrew opossums No 
  Didelmorphia American opossums Yes 
Prototheria  Montremata Echidna and Platypus  No 
 
Table 1 Taxonomy follows that outlined for the placental mammals in Beck et al (2006) *except 
Cetartiodactyla is split into Cetacea and Artiodactyla because marine species are excluded from this analysis. 



371 
  

 

 

 
 

  

  

  

  

  

  

  

  

  

  

  

  

Montremata 

Tublidentata 

Afrosorcida 

Macroscelidea  

Proboscoidea 

Hyracoidea  

Sirenia 

Cingulata  

Pilosa  

Dermoptera  

Scandentia  

Primates  

Lagomorpha  

Rodentia 

Eulipotyphla 

Carnivora 

Pholidota  

Perissodactyla 

Cetartiodactyla* 

Chiroptera  

 

  

  

  

THERIA 

PROTHERIA 

METATHERIA 

EUTHERIA 

Xenartha 

Afrotheria 

Euarchontoglires 

Laurasiatheria 

  

  

Didelmorphia 

Paucituberculata 

Peramelemorphia 

Notroryctemorphia 

Microbiotheria 

Dasyuromorphia 

Diprodontia 

 

  

  Marsupalia 

  

Figure  S2:1 Mammal Taxonomy (altered from 
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