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Abstract!

This thesis describes work undertaken by the author between 1996 and 2014. Genomics is the 

study of the genome, although it is also often used as a catchall phrase and applied to the 

transcriptome (study of RNAs) and methylome (study of DNA methylation). As cancer is a 

disease of the genome the rapid advances in genomic technology, specifically microarrays 

and next generation sequencing, are creating a wave of change in our understanding of its 

molecular pathology. Molecular pathology and personalised medicine are being driven by 

discoveries in genomics, and genomics is being driven by the development of faster, better 

and cheaper genome sequencing. The next decade is likely to see significant changes in the 

way cancer is managed for individual cancer patients as next generation sequencing enters the 

clinic. 

In chapter 3 I discuss how ERBB2 amplification testing for breast cancer is currently 

dominated by immunohistochemistry (a single-gene test); and present the development, by 

the author, of a semi-quantitative PCR test for ERBB2 amplification. I also show that 

estimating ERBB2 amplification from microarray copy-number analysis of the genome is 

possible. In chapter 4 I present a review of microarray comparison studies, and outline the 

case for careful and considered comparison of technologies when selecting a platform for use 

in a research study. Similar, indeed more stringent, care needs to be applied when selecting a 

platform for use in a clinical test. In chapter 5 I present co-authored work on the development 

of amplicon and exome methods for the detection and quantitation of somatic mutations in 

circulating tumour DNA, and demonstrate the impact this can have in understanding tumour 

heterogeneity and evolution during treatment. I also demonstrate how next-generation 

sequencing technologies may allow multiple genetic abnormalities to be analysed in a single 

test, and in low cellularity tumours and/or heterogenous cancers. 

Keywords: Genome, exome, transcriptome, amplicon, next-generation sequencing, 

differential gene expression, RNA-seq, ChIP-seq, microarray, ERBB2, companion diagnostic. 
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Genomics!technology!

The completion of the Human Genome Project (HGP, discussed in more detail below) 

provided the tools and knowledge to apply genome sciences to human disease. The completed 

sequence underpinned rapid developments in high-throughput analysis technologies such as 

microarrays (discussed in chapter 2), however sequencing, specifically next-generation 

sequencing, is the dominant tool in biological research today. 

DNA-sequencing-

Sequencing as a technology was first applied to proteins when Fred Sanger described a new 

method for the identification and estimation of the free amino groups of proteins and 

peptides13. At about the same time Pehr Edman published the label-cleavage method for 

protein sequencing later termed “Edman” degradation14. The complete sequence of the Insulin 

B chain was published in two papers by Sanger and Tuppy in 1951 in the Biochemical 

Journal15,16, for which Sanger received the 1958 Nobel prize for Chemistry. In 1968 Sanger 

published a method for RNA sequencing that used two dimensional fractionation of degraded 

RNA molecules on paper17. Large RNA molecules were enzymatically degraded, the 

degradation products were separated by chromatography and their sequences determined, the 

original RNA sequence was assembled from the multiple shorter sequences; in effect this was 

the first demonstration of shotgun sequencing. In 1975 Sanger and Coulson published the 

“plus and minus” method18 of DNA sequencing, which also used electrophoretic separation, 

and was a significant improvement on previous techniques. Sequencing was limited to 80bp 

making sequencing anything much larger laborious. However this was the method used to 

determine the first complete genome: that of bacteriophage PhiX19. In 1977 Sanger, Nicklen 

and Coulson published the “dideoxy” or “Sanger” method for sequencing that is still in use 

today, and for which Sanger received the 1980 Nobel prize for Chemistry20. Sanger 

sequencing is an in vitro method that uses a DNA polymerase to copy a DNA template in the 

presence of chain-terminating dideoxynucleotide triphosphates (ddNTP) that are incorporated 

randomly into the growing DNA strand. These ddNTPs lack the 3’-hydroxyl group and 

cannot be extended by addition of another base, producing a final reaction containing 

molecules that differ in length by a single nucleotide, and that can be separated by gel-

electrophoresis allowing the original DNA sequence to be read from the order of fragments in 

the gel. The original method required four reactions to be performed using a single 

radiolabelled dideoxynucleotide in each, the four reactions were run in four separate lanes on 

an acrylamide gel allowing DNA sequences of a few hundred bases to be read. Companies 

like Applied BioSystems significantly improved Sanger sequencing during their commercial 

development. Fluorescently labeled four-colour systems allowed reactions to be run in 
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parallel; dye-primer sequencing21 attached the fluorescent molecule to the sequencing primer 

and produced very even peak heights, but required four reactions to be performed 

independently and was limited to specific priming of reactions, dye-terminator sequencing22 

attached the fluorescent molecule to the ddNTPs allowing a single sequencing reaction. The 

first DNA sequencers automated slab-gel electrophoresis, but a series of technical 

improvements led to the capillary electrophoresis sequencing instruments like the ABI 

37030XL23,24, the workhorse of DNA sequencing providers today. 

Next6generation-sequencing-

The term next-generation sequencing (NGS) applies collectively to methods developed to 

replace Sanger sequencing. A 2004 review by Shendure et al stated the main reasons why 

more sequencing was required after completion of the HGP, and described the methods being 

developed25. In 2005 Jonathan Rothberg and colleagues published the 454 system, 

demonstrating how in a single run they could sequence the genome of Mycoplasma 

genitalium26; and in 2008 they published the 7-fold coverage genome of James Watson27, 

which took just two months to complete at a cost of around $100,000, discovering 3.3 million 

SNPs, 40,000 InDels and copy number variations. Due to the recent demise of Roche 45426 

(Roche, USA) there are just two main systems in use today Ion Torrent28 (Life Technologies, 

USA) and Illumina29 (Illumina Inc., USA); who have the lions share of users. 

NGS methods fundamentally change the three major components of a sequencing experiment: 

library construction, template preparation and sequencing. Library construction uses an “in 

vitro cloning” workflow to replace plasmid cloning library preparation. Template preparation 

relies on emulsion PCR (Roche 454, Ion Torrent) or solid phase PCR (Illumina) to amplify 

single-molecules from the sequencing library, and replaces Big-Dye PCR24. Sequencing of 

millions or billions of reads uses various methods: emulsion PCR and pyrosequencing26 

(Roche 454), emulsion PCR and semi-conductor sequencing28 (Ion Torrent), or bridge-

amplification and sequencing-by-synthesis29 (Illumina, and described in more detail in 

chapter 2). Their development has been rapid, and the impact on biology has been dramatic 

with over 11,000 NGS publications since 2005 (PubMed: “next generation sequencing”). 

Many methods have been developed, some from earlier technologies, others that are unique to 

NGS and over 50 distinct methods have been reported30. 

 

NGS methods fall broadly into two types; those that rely on counting the number of reads that 

map to a specific genomic locus (e.g. methods to determine gene or exon expression levels, or 

DNA copy-number), and those that rely on determination of contiguous sequence (e.g. 



19 

 

methods to discover mRNA isoforms from full length assembled cDNA, or DNA structural 

variations such as translocations). Three NGS methods used in the publications submitted as 

part of this thesis are briefly described in chapter 2. The pace of development has not slowed, 

new methods continue to be published, some platforms are now obsolete (Helicos31 (Helicos, 

USA), SOLiD32 (Life Technologies, USA), and Roche 45426 (Roche, USA)), and new 

platforms are being released Pacific Biosciences33 (Pacific Biosciences, USA), Complete 

Genomics34 (Complete Genomics, USA) and Oxford Nanopore (Oxford Nanopore 

Technologies, UK). There is also choice in how much and how fast, sequence data can be 

produced. The Illumina MiSeq, NextSeq, HiSeq and X-Ten (Illumina Inc., USA) systems all 

use the same library preparation and sequencing by synthesis, with slight variations in 

chemistry. They deliver very different amounts of sequence, gigabases to terabases, in 

different timescales, hours to days, and have very different operating costs. All of this allows 

users to select a platform that best fits their laboratory. 

The!Genome!

A genome is the genetic material of an organism and is unique to that individual organism. In 

Humans the haploid genome is 3.2 Gbp (3.2 billion base pairs) in size. Proteins, primarily 

histones, which together with DNA are termed chromatin, organize the packaging of the 

genome into 22 autosomes and 2 sex chromosomes. The nucleosome, 140-150bp of DNA 

wound around a complex of eight histones, is the basic building block of chromatin. 

Chromatin also allows control of gene expression by allowing the “opening” and “closing” of 

DNA to make it accessible, or not, to polymerases and other proteins. Nucleosomes can be 

spread out like beads-on-a-string in “open” euchromatin containing actively transcribed 

genes; or further packaged into tightly-wound 30nm fibres as “closed” heterochromatin 

containing inactive and non-transcribed genes. The histones in chromatin can also be 

modified epigenetically to control gene expression, activating or repressing transcription. 

Trimethylation of histone 3 at lysine number 4 (H3K4Me3) is broadly correlated with high 

levels of transcription35, whilst trimethylation of histone 3 at lysine number 27 (H3K27Me3) 

is a marker of gene repression36. 

Analysis-of-the-human-genome-allows-estimation-of-the-number-of-genes,-many-of-which-

do-not-make-proteins-

The human genome was completed in 2003 to an accuracy of 99.99% or one error in 10,000 

basepairs37. Only 50Mb (1.5%) is sequence that codes for proteins, 100Mb or more is 

regulatory, 50% is repetitive DNA, the term junk DNA has been largely eradicated. There are 

currently 19,942 protein coding genes38,39, however large numbers of non-coding genes that 
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act directly through their transcribed RNAs, and psuedogenes increase the gene count to 

58,688. The central dogma of molecular biology states that "DNA makes RNA and RNA 

makes protein” but this linear flow of information has proven to be over-simplified, and the 

relationships are not one-to-one but also one-to-many. As such the transcript count is 

currently 194,334 with 79,460 of those being protein-coding. All human cells share the same 

genome, however the genome is organized and regulated in such a way that allows it to create 

the distinct phenotypes we recognize as 1000 cell types. Up to 80% of human DNA is 

functional, i.e. has some form of biochemical role, from protein coding to simply 

transcribed40. The genome is complex and there may be very little redundant DNA. 

Genes-are-comprised-of-exons,-introns-and-regulatory-sequences-

The 20,000 protein coding genes in the Human genome contain introns, exons and associated 

regulatory elements. Exons are on average 170bp in the Human genome41,42. Each gene 

contains an average of just over 8 exons, however there is a wide variation in exon numbers: 

the largest Human gene TTN has 313 exons. The regulatory regions consist of DNA modifiers 

(including chromatin modification and DNA methylation), transcription modulators 

(including transcription factors, enhancers, activators, repressors and silencers) and 

translation modulators (including splicing and mRNA degradation). Differential splicing of 

genes, where exons are skipped resulting in variants of the protein, has been reported in up to 

95% of multi-exon genes43. Transcription is also complicated by the fact that it can occur in 

both sense (from the DNA strand the gene is annotated as occupying) and anti-sense (the 

opposite DNA strand), and that this happens across much of the non-coding genome44,45. 

The-Human-Genome-Project-

The sequencing of the complete human genome: the Human Genome Project (HGP), was first 

proposed in 1984 not quite ten years after the publication of Sanger sequencing20. The 

publicly funded Human Genome Project formally began in 1990, a commercial project began 

in 1998 when Craig Venter started Celera’s shotgun sequencing of the Human genome. The 

draft genome was completed in 2001 with joint publications in Nature46 and Science47, the 

completed genome (98% of the genome, at 99.9% accuracy) following in 2003. The 

formation of Celera Genomics in 1988 was seen as a challenge to the academic HGP, 

ultimately both were published at the same time, however the Celera genome47 made 

significant use of the publicly available genome sequence data48.  

 

The HGP team had primarily used bacterial artificial chromosome genomic DNA libraries as 

the basis of sequencing. Clones were first physically mapped to the genome, allowing a 
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“tiling path” of clones to be selected for actual sequencing. Those selected were subcloned to 

produce smaller DNA fragments that could be sequenced. The shotgun method developed by 

Celera removed the physical mapping process making sequencing more efficient, but 

requiring more computational resources. The shotgun method has become the preferred 

method for sequencing genomes. 

During the ten year project sequencing cost per base dropped over 100 fold. This was due to a 

large investment in technology development by the funders, sequencing teams and equipment 

providers. The Sanger sequencing method itself was significantly improved; as were cloning 

methods, sample preparation, electrophoresis, instrumentation and software, all of which 

contributed to the dominant method today: Applied Bioystems BigDye chemistry and 

3730XL sequencer (Applied Biosystems, USA)23. Ultimately this investment in technology 

would lead to the next-generation of DNA sequencing methods. 

Cancer!

Cancer is a disease of the genome and its underlying cause is germline or somatic mutation. 

DNA damage occurs at a rate of many thousands of single- and double-strand breaks per 

day49. Most damage is fixed by the cells DNA repair processes but a small number of 

mutations are maintained, and these may confer a survival advantage on the mutated cell, 

driving a Darwinian evolutionary process that underlies the development of many cancers50. 

This development may take many years. Bert Vogelstein first proposed that tumourigenesis 

occurs by the sequential mutations of oncogenes and tumour suppressor genes in 199051–53 

(Fig 1.1). Mutations required for tumourigenesis are termed “driver mutations”, cancer cannot 

develop without them, but uncontrolled cell division allows other mutations to accumulate 

that are by-products of tumourigenesis, these are termed “passenger mutations”. Eventually a 

critical mass of mutational load causes a tumour to develop50. Several key biological 

pathways are commonly perturbed during tumourigenesis; these have collectively been 

termed “Hallmarks of Cancer”54, and provide a conceptual framework for understanding the 

complexity of cancer biology (Fig 1.2). They highlight the fact that many targeted therapies 

ultimately fail due to biological redundancy in the hallmark pathways. A molecularly targeted 

therapy may not completely inhibit all tumour cells, allowing a few cells to adapt to the 

selective pressure imposed by treatment. 

Cancer-is-a-heterogeneous-set-of-diseases-

There are around 60 types of cancer, each with different causes, symptoms and treatments. 

Cancers can have distinct sub-types, which may have specific treatments and prognosis.  
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Ultimately cancer is a disease of an individual’s genome and requires personalised treatment. 

There are around 300,000 cancer diagnoses in the UK each year, and around 1 in 3 people 

will develop cancer during their lifetime, but over one third of these will be in people over the 

age of 75, and only 2% of cancers will occur in people under the age of 24. Around half of 

new cancers occur in the breast, lung, prostate or bowel. Around 50% of cancer patients will 

live over ten years after diagnosis, and cancer survival rates have doubled in the last 40 years; 

but cancer still accounts for 1 in 4 deaths in the UK with 20% of those deaths being due to 

lung cancer. Lifestyle choices such as smoking, alcohol, diet and obesity are linked to 40% of 

an individuals lifetime cancer risk55. 

Breast-cancer-is-the-second-most-common-cause-of-cancer-mortality-in-women-

Breast cancer is second only to lung cancer in female cancer mortality, accounting for over 

11,000 deaths per year (15%). However our understanding of the causes of breast cancer is 

still developing. The heterogeneity of disease, with four main sub-types: Luminal A, Luminal 

B, HER2+ and triple-negative, makes finding the driver genes for breast cancer a challenging 

task. Additionally intra-tumour heterogeneity has been revealed as important in determining 

outcome, and the molecular stratification of breast cancer patients is likely to lead to better 

patient outcomes and improved biological analyses. Although there are several germline 

genetic risk factors for breast cancer, the majority of lifetime risk is due to somatic mutation. 

The two major susceptibility genes, BRCA1 and BRCA2 increase risk by up to 80% but are 

rare in the general population. The outcome for breast cancer patients is dependent on the 

several factors: type, stage, grade. 

The!cancer!Genome!

The relatively recent publication of the first cancer genomes56,57, and the early results from the 

International Cancer Genome Project58–62 (ICGC) demonstrate how much can be learned from 

sequencing cancer genomes. The ICGC aims to generate a comprehensive catalogue of 

somatic mutations in 50 cancers and in 500 cases from each, generating 25,000 cancer 

genomes. In the UK data from 200 esophageal cancers has recently been published63; and 500 

ER+, ERBB2 amplified breast cancers are being analysed for all classes of mutations, 

genome-wide DNA methylation, and RNA expression. The UK is also delivering the bone, 

chronic myeloid disorders and prostate cancer ICGC projects. The ICGC brings together the 

Wellcome Trust Sanger Institute’s: Cancer Genome Project, and the USA National Institute 

of Health’s: The Cancer Genome Atlas projects. The merger of two large projects aims to 

maximise the dissemination of data and reduce duplication of efforts. 
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 The cells in most solid tumours are not an isogenic population; in most cases there are 

multiple sub-clonal populations64. These evolve from the very first tumourigenic cell(s) and 

share some of the early driver and passenger mutations, but they may also be quite distinct 

having many other private mutations60. This intra-tumour heterogeneity was first studied 

using whole exome next-generation sequencing of primary renal cancers and their associated 

metastatses64, demonstrating that over 30% of mutations were not shared across all samples 

from an individual. This work also revealed a convergent evolution by distinct mutation of 

multiple tumour suppressor genes in separate samples from an individual. Data emerging 

from the ICGC is revealing how common some gene mutations are, not just in a specific 

cancer, but across multiple cancers. 

Different(mutational(mechanisms(underlie(the(causes(of(cancer(

Tumorigenesis and tumour progression are driven by mutation of the normal genome. Most of 

the early driving events, as proposed in the Vogelstein model, are mutations in oncogenes 

(genes where mutation leads to gain of function) or tumour suppressor genes (genes where 

mutation leads to loss of function). A landmark publication by Sjöblom et al65, analysed over 

3 million PCR reactions across 13,023 consensus coding sequences to show that individual 

tumors accumulate an average of 90 mutant genes, that a small subset contribute to 

tumorigenesis and that 189 genes were mutated at high frequency across cancers. Mutation 

occurs in many forms and cancer can be driven by one or another, or a mix, these include: 

single nucleotide substitutions; single-base to large insertions or deletions (InDels); genomic 

rearrangements (translocations), copy number aberrations (amplification and deletion); and 

loss-of-heterozygosity. The type of mutational process and the order that mutations are gained 

in a tumour give rise to a mutational signature unique to each tumour clone66. 

Tumour(suppressor(genes(and(oncogenes(drive(cancer(

Tumour suppressor genes are those where mutation leads to loss of function. Most tumour 

suppressors have roles repressing the cell cycle, in protecting cells against tumourigenesis, 

e.g. DNA repair, or in promoting apoptosis. Many familial risk factors occur in tumour 

suppressor genes including the BRCA1 and BRCA2 genes involved in DNA repair. Both 

alleles need to be lost to be tumorigenic and this generally occurs through deletion, loss-of-

heterozygosity and de novo mutation of the second allele. This requirement for two hits in a 

tumour suppressor gene was first proposed in retinoblastoma67. Other important tumour 

suppressors include TP53 and PTEN, which both play roles in regulating the cell cycle. 

Oncogenes are those where mutation leads to gain of function. Mutations can lead to 

oncogene activation through many mechanisms; e.g. increasing gene copy number or 
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transcriptional activity. The major oncogenes in breast cancer are ERBB2, EGFR, and 

CCND1. Oncogenes have been successfully used as targets for drug development, resulting in 

trastuzumab (ERBB2), imatinib (BCR-ABL) and erlotinib (EGFR), amongst others. 

Summary'

The accumulation of data about the cancer genome using next generation sequencing 

technologies in projects such as the International Cancer Genome Consortium (ICGC) is 

radically changing our understanding of cancer. It is already beginning providing evidence 

that demonstrates how treatments for one cancer can be beneficial for small numbers of 

patients with very different diseases, e.g. Herceptin treatment of ERBB2 amplified pancreatic 

cancer62. It took 30 years to develop the Sanger sequencing method published in 1977 from 

the earlier protein and RNA methods. The next 30 years saw the completion of the Human 

Genome Project and the introduction of next-generation sequencing technologies. What the 

next 30 years will hold is not certain but, with the ability to sequence whole cancer genomes 

we are very likely at the start of a revolution in medicine driven by the genome.
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Introduction'

The papers submitted as part of this PhD by Publication thesis describe the use of several 

genomic technologies. This chapter provides a brief introduction and historical overview of 

the methods cited. The detailed description of the methods used can be found in the presented 

publications, attached as appendix 1. 

Experimental design is a critical step before starting laboratory experiments, and quality 

control is recommended for many steps during the collection of experimental samples and 

data, including the statistical analysis. The principles of experimental design were established 

in the 1930s by R. A. Fisher68, and although they were not developed for high-throughput 

genomics experiments they are eminently applicable.  Almost every lab-scientist has at some 

point been confronted with Fisher’s “post-mortem” quote by a statistician, probably for good 

reason. 

R.A.Fisher (1938) “To consult the statistician after an experiment is finished 

is often merely to ask him to conduct a post mortem examination. He can 

perhaps say what the experiment died of.” 

Quality control (QC) is a fundamental step that can be applied at almost any point in an 

experiment. In genomic experiments it is often vital that QC be carried out before biological 

analysis and interpretation. In this chapter I will focus on the experimental design of 

microarray experiments and the QC of next-generation sequencing experiments. 

Methods'Presented'

Immunohistochemistry'

Immunohistochemistry (IHC) is a method for detecting proteins in tissue sections, typically 

used in a pathology laboratory for clinical diagnostics, e.g. ERBB2 via the HercepTest69 (Fig 

2.1). Tissue sections are incubated with antibodies directed against the protein of interest 

allowing the tissue and intra-cellular distribution and localisation of specific cellular 

components to be determined. IHC can be interpreted qualitatively but can also be 

quantitative or semi-quantitative. 

Two limitations of IHC are considered within this thesis: first, the interpretation of results, 

which can be subjective affecting the validity and reliability of clinical tests70; and second, 

formalin fixation, which can damage nucleic acids71. Samples for IHC are usually formalin-
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fixed and paraffin embedded (FFPE) to stabilise tissue architecture. FFPE causes at least four 

different DNA modifcations72 and two of these affect the nucleic acid analysis techniques 

described in this thesis: strand breaks and depurination caused by formaldehyde hydrolysis. 

The latter can be “rescued” to some extent and the use of uracil-DNA-glycosylase to reduce 

C>T transitions by hydrolysis of the uracil generated from cytosine deamination has been 

show to have good effect71. Even so, the fixation process and the time since fixation have a 

dramatic effect on the usability of FFPE DNA in genomic analyses. Whilst many clinical 

studies do collect fresh frozen samples, the majority of clinical samples are processed by 

pathology laboratories and are formalin fixed. 

Real?time'quantitative'PCR'

Quantitative real-time PCR (qPCR) was developed in the early 1990’s by teams at Roche, 

Genentech and Applied Biosystems73–75. An adaption of standard PCR76, qPCR allows 

simultaneous amplification and detection of specific DNA sequences.!PCR consists of three 

phases: exponential, linear and plateau. During the initial PCR cycles, the signal generated by 

a fluorescent reporter cannot be distinguished from the background. However the signal 

begins to increase exponentially and then linearly before entering the plateau phase of PCR, 

where it stabilizes. The fluorescence data are plotted to generate an amplification curve, 

which is used to determine quantitative information. The point on the curve used to determine 

quantity values is referred to as the quantification cycle (Cq)77 (Fig 2.2A). Its placement is 

somewhat arbitrary but should be consistent across an experiment. Gene expression or copy-

number are determined by comparing the differences in the number of cycles where Cq is 

reached for test and control assays (ΔCq) between test and control samples (ΔΔCq) (Fig 

2.2B), or by comparison to a standard curve using a reference standard (Fig 2.2C). Assays 

must have similar PCR efficiencies to generate robust qPCR data78.  

Methods(to(detect(amplicons(generated(by(qPCR(

Two methods are commonly used to detect PCR amplicons: non-specific intercalating 

fluorescent dyes e.g. SYBR® Green, or the use of fluorescently labeled oligonucleotides e.g. 

TaqMan probes (Fig 2.3). SYBR® Green (Molecular Probes, USA) intercalates with double-

stranded DNA in a non-sequence specific manner and shows greatly enhanced fluorescence 

upon intercalation79,80. SYBR® Green fluorescence is directly proportional to the amount of 

double-stranded DNA in the reaction. 
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TaqMan hydrolysis probes81,82 bind to specific DNA sequences and contain fluorescent 

reporter and  quencher molecules in close physical proximity, inhibiting reporter 

fluorescence. During PCR extension, the 5' exonuclease activity of Taq polymerase cleaves 

the probe removing proximity inhibition. The fluorescence from the reporter is directly 

proportional to the number of PCR products amplified and probe molecules cleaved. Both 

methods work well for relative quantification of gene copy-number or mRNA gene 

expression. SYBR® Green is an easy, cost-effective and sensitive method to implement. It 

can also be used for qualitative, and mutation detection analysis using a “melt-curve”. 

However, SYBR® Green detects all double-stranded DNA in a PCR and can be affected by 

“primer-dimer” and other PCR artefacts, and SYBR® Green assays cannot be multiplexed. 

TaqMan assays consist of three oligonucleotides, a pair of standard PCR primers and a 

fluorescently labeled TaqMan probe, as such TaqMan assays are significantly more expensive 

than SYBR® Green. The addition of a sequence specific probe can significantly increase 

specificity and detection of non-specific amplicons is less problematic. TaqMan probes can 

also be multiplexed. 

Standardising(qPCR(experiments((((((((((((((((((((((((((((((((((((((((((((((((

The success of real-time PCR has led to thousands of publications, however many of these do 

not report detailed methods and a few use methods that are sub-optimal. To address this the 

Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) 

guidelines were published77. These aim to encourage users of qPCR to include detailed 

information about sample collection and extraction, RNA quality, reverse-transcription 

methodology, PCR efficiencies, and analysis parameters. 

qPCR(as(a(diagnostic(tool(

One of the earliest qPCR papers to report the use of TaqMan probes, used ERBB2 gene 

amplification as an example of quantitative gene analysis83. The first commercial qPCR-based 

ERBB2 test was released in 2001 by Roche84, which improved on previous methods by 

multiplexing ERBB2 qPCR with a reference gene co-localized on chromosome 17 to take into 

account possible Chr17 polysomy. The test has not been reported in peer-reviewed literature. 

Other ERBB2 tests have been published85, and one comparison of qPCR to IHC demonstrated 

high correlations86. qPCR plays an increasingly important role in diagnostic testing because it 

is sensitive and objective as well as rapid and cost-effective. Its use in diagnostics was 

reviewed for ERBB2 and TOP2A amplification analysis, and Epstein–Barr and human 

papilloma virus involvement, in cancer diagnostics87. 
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Microarray'

The analysis of DNA, and later RNA and Protein using Southern88, Northern89 and Western90 

blotting respectively allowed only single-target analysis. These approaches were based on 

hybridising radioactively labeled oligonucleotide probes to a membrane bound sample, or 

arrays of samples. Schena et al described the adaptation of this approach achieved by simply 

reversing the system and hybridising fluorescently labeled samples to cDNA probes 

immobilized on glass microarrays91 (Fig 2.4). At the same time several other methods were 

introduced: Affymetrix used photolithographic in-situ synthesis of oligonucleotides in place 

of PCR-amplified cDNA clones92,93, Agilent used ink-jet deposition for in situ oligonucleotide 

synthesis94, and Illumina attached oligonucleotides to microscopic beads deposited onto 

silicon slides to create randomly ordered microarrays95,96. These approaches are now used for 

whole-genome analysis of copy-number variation (CNV) and loss-of-heterozygosity (LOH) 

or whole-transcriptome analysis of differential gene expression (DGE). 

There are three major issues related to the use of microarrays. First, the use of probes restricts 

analysis to regions of the genome of known or inferred sequence; second, cross-hybridisation 

between homologous sequences confounds data analysis; third, design of probes can be 

complicated by both of these factors. However the quality of microarray data today is 

exceptional, the data analysis tools are mature and easy to use and many researchers still 

benefit from using microarray over maturing next-generation sequencing technologies. 

Microarray(analysis(of(RNA:(differential(gene(expression((DGE)(and(microFRNA(

DGE analysis of mRNAs generally involves oligo-dT enrichment of mRNAs, which are 

converted to cDNA, or secondarily converted to cRNA whilst incorporating fluorescent- or 

biotin-labeled nucleotides. Labeled samples are then applied to whole-genome microarrays as 

single- or dual-colour hybridisations and processed for laser scanning. Finally, signal 

intensities are converted to absolute and/or differential gene expression measurements (Fig 

2.5). 

MicroRNAs (miRNAs) are 20-23 base pair long non-coding RNA molecules. They regulate 

gene expression by binding to target mRNAs and repressing protein translation or directing 

mRNAs for degradation. miRNAs are generated by cleavage of longer transcripts: primary-

miRNA to precursor-miRNA to miRNA. The miRNA database miRbase97 contains over 

24,000 miRNAs, including 2000 annotated with high-confidence98. Micro-RNA analysis by 

microarray is similar to mRNA analysis but complicated by their very short length, high 
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homology, sequence specific biases in RNA ligases, and the need to discriminate pri-, pre-, 

and mature-miRNAs. Designing hybridisation probes to accurately discriminate miRNAs is a 

difficult task particularly due to the variable Tm of such short molecules (reviewed in6,99). 

Microarray(analysis(of(copyFnumber(variation((CNV)(

Microarray CNV analysis is achieved by labeling and hybridising genomic DNA to 

microarrays. It was developed from comparative genomic hybridization (CGH) techniques100 

and originally called array-CGH (aCGH). In a typical CNV experiment, tumour and normal 

samples will be directly compared. An important advance in CNV, and vital for LOH analysis 

was the development of SNP genotyping arrays from Affymetrix and Illumina. Copy number 

on these platforms is inferred from probe signal intensities, similar to more conventional 

aCGH and as such is referred to as snpCGH. The use of SNPs allows genotype calls to be 

made and as such allows LOH to be analysed by identifying regions of the genome where 

only one parental copy is present101–103. As cancer can be driven by LOH as well as CNV, 

deciphering both has significant advantages as demonstrated by Curtis et al 20127 and 

discussed in chapter 5. The methods for analysis of DNA are more complex and varied than 

those for RNA analysis and can include degenerate PCR or whole-genome amplification 

reactions that incorporate fluorescent- or biotin-labeled nucleotides, or single-primer 

extension from millions of oligonucleotide probes. Microarrays are processed for laser-

scanning and signal intensities are converted to absolute and differential CNV measurements 

(Fig 2.6). 

Microarray(as(a(diagnostic(tool(

A landmark paper by Golub et al in 1999 described the classification of acute myeloid and 

lymphoblastic leukaemias based on gene-expression signatures104, demonstrating the utility of 

microarrays in cancer diagnostics by automatically determining the class of new leukaemia 

cases. Many other molecular classifiers have been published but few have been implemented 

in the clinic. Of those that have the PAM50 molecular classification of breast cancer initially 

reported by Perou et al105; the Oncotype DX test, a 21 gene molecular classifier for quatifying 

the risk of disease recurrence; and the MammaPrint test, a diagnostic test to assess the risk 

that a breast tumor will metastasize to other parts of the body approved by the FDA in 

2007106,107; are the most commonly reported. All aim to stratify patients into sub-groups for 

prediction or prognosis. The current status of the clinical applications of aCGH & NGS was 

reviewed by the author in Idris et al 2013 and submitted as part of this PhD by Publication10. 
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Next?generation'sequencing'' '

The work presented in this thesis has made extensive us of the Illumina sequencing 

technology, the success of which has been primarily down to the quality and quantity of 

sequence data, and the ease of use of the library preparation technology. This can also be seen 

in the large number of NGS publications (PubMed: “next generation sequencing” returns over 

11,000 publications), as well as specific methods publications, e.g. RNA sequencing (over 

3,000 PubMed articles), since the widespread adoption of NGS in 2010. And the potential for 

impact in the clinic is apparent by the rapid take-up of exome sequencing (over 3,000 

PubMed articles), with 90% of papers published since 2012. Other NGS technologies and 

methods are not described here, but have been extensively reviewed eslewhere25,108,109. 

Illumina(sequencing(by(synthesis(

The Illumina sequencing-by-synthesis technology29 is the most widely adopted NGS system 

(http://www.omicsmaps.com lists nearly 70% of NGS systems as from Illumina). Whole 

genome library construction uses fragmented DNA, to which Y-shaped adapter molecules are 

ligated, resulting in DNA strands with different adapters at each end. DNA libraries are 

denatured and hybridised to “flowcells” - glass slides coated with oligonucleotides 

complementary to the sequencing library adapters. Library molecules are amplified in a solid-

phase PCR termed bridge-amplification, to form clusters of around 1000 molecules. Each 

cluster will generate a sequence read. Sequencing-by-synthesis uses reversibly-terminated 

fluorescently-labeled nucleotides. Each sequencing cycle consists of 3 steps: incorporation, 

imaging & cleavage. First, nucleotides are incorporated into the growing DNA strand, then 

each cluster is imaged to determine which base has been incorporated before the fluorescent 

label and blocking groups are chemically cleaved leaving the nucleotide ready for the next 

sequencing cycle (Fig 2.7). The current v4 SBS chemistry on HiSeq 2500 produces around 4 

billion sequences of 125bp from each end of the DNA molecule. 

RNAFsequencing((RNAFseq)(

RNA-seq110 can be used to detect and measure coding and non-coding RNAs, differential 

gene expression, allele specific expression, splicing analysis and RNA editing studies. RNA-

seq methods are varied and have been extensively reviewed and compared111,112. There are 

two main methods: cDNA adapter ligation (the predominant method for mRNA analysis) or, 

direct RNA-ligation of adapters (used primarily for non-coding studies). The predominant 

method involves mRNA enrichment with oligo-dT, mRNA fragmentation, random-primed 

cDNA synthesis incorporating dUTP into the second-strand, adapter ligation, dUTP 
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degradation and PCR. This results in strand-specific mRNA-seq libraries that can be used for 

differential gene expression. Sequencing of 10-20 million single-end 50bp reads is sufficient 

to generate data of the same quality as a microarray113. Sequencing reads are aligned and 

counted to determine differential gene expression. RNA sequencing is rapidly replacing gene 

expression microarray as the standard method for RNA analysis for several reasons: (i) RNA-

seq provides a digital read-out of counts of RNA molecules; (ii) Read-depth can be adjusted 

to give the dynamic range required; and (iii) there is no need to limit analysis to pre-designed 

probes, and there are no cross-hybridisation artifacts to consider. 

Chromatin(Immunoprecipitation(sequencing((ChIPFseq)(

ChIP-seq114,115 is used to used to detect and measure DNA:Protein interactions. ChIP-seq 

methods have remained relatively unchanged since the first application of ChIP to 

microarrays116. DNA is cross-linked with its bound proteins by formaldehyde treatment, cells 

are homogenized, and chromatin is sheared before immunoprecipitation with an antibody to 

the protein of interest. This ChIP DNA is used to produce an NGS library for sequencing. 

Short reads are aligned to the genome to determine where the protein was bound. This method 

produces the characteristic peaks of ChIP-seq. 

ExomeFsequencing((ExomeFseq)(

The exome is the coding portion of the genome and has become a powerful tool for clinical 

research and now treatment117, as it requires comparatively little sequencing to a whole 

genome, at about 10%-30% of the cost. Whole genome libraries are prepared as described 

above then used in an capture hybridisation with single-stranded biotinylated oligonucleotide 

probes, designed to recognise each exon. These probes pull-out the exonic fragments only 

from the whole genome library and are then ready for exome sequencing. 

Experimental'design'

The main issues affecting the design of genomics experiments are replication and 

randomisation. Designing an experiment can be as simple as deciding on replication levels 

and discussing the merits of different methods that might be used where several are available 

(discussed in more detail in Chapter 4). More complex designs can introduce randomisation 

and blocking into an experiment to help control for confounding factors or batch effects. 

Blocking is the arranging of samples into groups that can be analysed together and is often 

used to control for dye-labelling in microarrays and sequencing lane within an NGS run. 

Randomisation involves the allocation of samples (patient in the context of clinical trials) 
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across treatment groups. However, introduction of randomisation into a ChIP-seq or RNA-seq 

experiment is less clear, but the technological complexity of the experiments makes 

randomisation something that should be carefully considered during sample collection, 

extraction and processing. 

The'impact'of'replication'on'experimental'design'

Replication is the repetition of an experimental condition so that its variability can be 

estimated; it is a key component of a well-designed experiment. However, one of the first 

questions asked by researchers in experimental design sessions is “how many replicates do I 

need.” Biologists generally discriminate between biological (good) and technical (not-so-

good) replication. Biological replicates for breast cancer would be samples from different 

individuals. However some studies may consider a secondary tumour from the same 

individual, or even a separate biopsy from the same tumour, as biological replication. A 

technical replicate in this instance would be the primary sample run twice. For tissue culture 

the issue is slightly easier as it is impossible to have true biological replicates (the cell line 

was derived once only) and replications of the experiment (different passage, different day, 

etc) are considered biological. Technical replicates are not a substitute for biological 

replicates and should only be used if biological replication is not possible118. The only 

exception to this rule is when performing technology comparison studies, as the aim of the 

experiment is to understand technical bias or comparability. As such the use of technical 

replicates gives the most power to these studies. In a micro RNA4 comparison study 

(discussed in chapter 4) we only used technical replication and four replicates for each 

technology platform. In a copy-number comparison study3 (also discussed in chapter 4) we 

used technical and biological replication and two to three replicates for each technology 

platform. 

One of the first groups to address the impact of replication on microarray studies119 made 

sample size calculations and estimated power using published datasets. They clearly 

demonstrated that experimental sample size depends on variance of gene expression within 

the samples being studied; the desired detectable fold change between sample groups; the 

power to detect this change (probability of not committing a Type II error); and a chosen false 

positive (Type I error) rate. Users are often unable to specify any of these without a priori 

knowledge and the most useful method to generate this is a pilot experiment (examples of 

which are described in more detail in Chapter 43,4). 
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Experimental'factors'affecting'replication'and'experimental'design'

The number of replicates required is a function of the samples available. High-quality and 

high-input nucleic acids result in a better signal to noise ratio than low-quality and low-input 

samples. We investigated the impact of reducing RNA input into differential gene expression 

studies using microarrays5. In this study we were able to demonstrate that reducing RNA 

input from 250ng to 100ng required a sample size increase of 1.2 fold, and dropping to 10ng 

of input RNA required an increase of 2-3.5 fold. However, we were also able to demonstrate 

that the reduction in RNA input reduced sensitivity, i.e. we detected the expression of fewer 

genes, but without a significant impact on specificity, i.e. the genes we detected as 

differentially expressed were truly so (Fig 2.8). 

Quality'control'

Performing rigorous quality control (QC) of experimental data during, and after, data 

collection and before starting biological analysis or interpretation can save time and effort in 

validation studies. The use of formal platform-specific QC steps has been a part of genomic 

and transcriptomic work since the technologies appeared, partly driven by their high cost. 

Sample QC allows researchers to verify that the samples are likely to generate “good” 

biological data. Methodological QC steps allow performance verification of key steps in the 

experimental process. Also, primary data QC steps allow only high-quality data to be 

processed for biological insight. 

Quality(control(of(nucleic(acids(

DNA and RNA samples used in sequencing experiments should be quality controlled before 

use against pre-defined experimental parameters. These may be ignored where samples of 

lower quality or quantity are all that is available for study. However, down-stream QC metrics 

may not be the same as those generated from high quality samples, and increased numbers of 

replicates may be required to compensate for the reduced quality or quantity5. 

DNA is quality controlled by spectrophotometric, fluorimetric and gel electrophoretic 

methods. RNA QC may be more rigorous due to the high cost of microarray and RNA-seq 

methods relative to DNA PCR. Most RNA studies use the Agilent Bioanalyser (Agilent 

Technologies, USA) to generate an RNA Integrity Number (RIN), which provides a robust 

and non-subjective method for RNA QC. This has been shown to correlate highly with other 

methods120, but allows a non-subjective selection of experimental samples. A RIN number of 
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>7 is generally used for microarray and RNA-seq experiments121. 

Quality(control(in(nextFgeneration(sequencing(

The high cost of NGS makes QC an important part of the experimental process. There are 

three main areas where QC can be applied during NGS: after library preparation, during 

sequencing, and before primary biological analysis. We demonstrated two of these QC steps 

in a ChIP-seq methods publication2, providing guidance for assessing ChIP-seq library quality 

and visual QC of aligned ChIP-seq data (Fig 2.9). 

Two NGS QC packages can be applied before primary biological analysis. FASTQC122 

reports multiple QC metrics, including per base sequence quality score and GC content, 

duplication rate, etc. Multi-Genome Alignment12 (MGA) presents NGS run data in visual and 

tabular formats to simplify QC assessment of run yield and quality. Both methods provide QC 

metrics that can be used to quickly identify common problems with NGS data and QC 

individual runs before primary biological analysis. However, results from these packages are 

context dependant; QC metrics for whole genome sequencing are different from those used 

for RNA-seq. 

When designing the MGA tool we considered the metrics that users of NGS data might use to 

determine the quality of an experiment. NGS experiments are run in single or multiple 

sequencing lanes and most issues are contained within a lane. Many QC metrics are provided 

by Illumina, and by packages like FASTQC. We focused on those that were of high value and 

which were easily communicated visually, and designed the report to be used in the context of 

a very preliminary QC rather than an exhaustive analysis of run or sample quality. Therefore 

we present data for two primary metrics; sequencing yield and data quality in a lane-specific 

context and visualised as an Illumina flowcell is laid out. 
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Chapter'3:'The'development'of'companion'diagnostics'
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Introduction'

A single mutational event can drive cancer, and act as a target for therapy, the canonical 

example being the Philadelphia chromosome and its targeted therapeutic - Imatinib123,124. 

Over 95% of chronic myeloid leukemia (CML) patients have similar BCR–ABL fusions. The 

detection of the Philadelphia chromosome by qPCR125 is used to monitor response to Imatinib 

therapy by detecting minimal residual disease. The development of Imatinib created the 

paradigm of targeted therapy where mainly cancer cells are killed.  Because 95% of CML 

cases have the BCR-ABL mutation there is little need for stratification of patients. Other 

cancer driver mutations require a different paradigm, one where patients are selected for 

treatment with a specific targeted therapy based on their mutational status. 

ERBB2 (synonyms include: c-erbB 2, HER2, neu) is the canonical driver gene in HER2+ 

breast cancer and is discussed in this chapter as a target for molecular tests that allow 

treatment with anti-ERBB2 therapies. ERBB2 is a powerful biomarker and is easily assayable 

at the DNA level, and for which several PCR based assays have been developed, including 

Jennings et al: A differential PCR assay for the detection of c-erbB 2 amplification used 

in a prospective study of breast cancer1, one of the papers being submitted as part of this 

PhD by Publication. However after two-decades of research the preferred test is still 

immunohistochemistry (IHC).  

In this chapter I will give an overview of the importance of ERBB2, its treatment with 

Trastuzumab and introduce the concept behind the paradigm of personalised-medicine with 

the use of molecular tests to select ERBB2 amplified patients for treatment. 

ERBB2:' '

The DNA copy number of ERBB2 is amplified in 10-25% of breast cancers, this results in 

over-expression of the mRNA and functional HER2 protein increasing receptor mediated 

intracellular signaling, which drives aberrant cell proliferation and tumour growth. ERBB2 is 

located on chromosome 17 (17q11.2-q12) and encodes the human epidermal growth factor 

receptor-2 (HER2) protein. This is a 185kDa transmembrane type 1 receptor tyrosine 

kinase126, it is a member of the epidermal growth factor receptor family. Patients with 

detectable ERBB2 amplification and overexpression have a significantly poorer prognosis 

than patients with normal ERBB2 copy number; and increased likelihood of disease 

recurrence and reduced survival127–129. ERBB2 has become an important therapeutic target in 
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breast cancer, and the monoclonal antibody Trastuzumab130 (Genentech, USA) was approved 

for treatment of ERBB2 amplified breast cancer in 1998. Recent data suggest it will also be 

an important target in other cancers; patients with advanced gastric cancer showed 

significantly improved overall survival when treated with trastuzumab in-addition to 

chemotherapy131, and the UK’s National Institute for Health and Clinical Excellence (NICE) 

recommends trastuzumab as a possible treatment for ERBB2 amplified metastatic gastric 

adenocarcinoma. Data from the International Cancer Genome Consortium (ICGC) pancreatic 

cancer sequencing project reported ERBB2 amplification in 2% of cases leading to a clinical 

trial to assess treatment with trastuzumab62 (Fig 3.1). 

Trastuzumab binds with ERBB2 blocking its dimerization and activation of the RAS/MAPK 

and PI3K/AKT pathways. Patients treated with trastuzumab achieve significantly increased 

progression-free survival, but only if they are ERBB2 positive. Patients without ERBB2 

amplification receive no benefit from trastuzumab treatment, meaning patient selection by 

measuring ERBB2 amplification status is key to successful treatment. As such ERBB2 is a 

predictive biomarker for trastuzumab therapy, making ERBB2 status both prognostic and 

predictive. 

The reliability, sensitivity and specificity of ERBB2 amplification testing are paramount 

because of the prognostic and predictive implications. A false-positive result could mean 

treatment with an expensive drug (currently $40-100,000 per patient per year) giving no 

clinical benefit as well as possible side effects including flu-like symptoms, nausea, diarrhoea, 

and in rare cases cardiac dysfunction, whilst a false-negative result could prevent a patient 

from receiving a beneficial treatment. There are multiple methods to detect and measure 

ERBB2 amplification status, including the trastuzumab/Herceptin companion diagnostic 

Hercep-Test (Dako, USA). 

Measuring'ERBB2:' '

ERBB2 amplification status can be determined from DNA, RNA or protein levels. A 2011 

review of technologies for testing ERBB2 amplification status in Breast Cancer132 concluded 

that although the previous decade had resulted in significant technical progress there was no 

consensus on a “best” test. It reported good overall correlation between different techniques, 

but did not evaluate sensitivity and specificity of the different ERBB2 tests reviewed. A large 

multi-center study using a series of control cell lines with known ERBB2 expression levels 

reported assay sensitivity for use in clinical trials133. A more recent study used Tissue 
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Microarrays (TMA) to test ERBB2 with six different assays across 1210 breast cancers from 

six hospitals134, and found ERBB2 test sensitivity was 98% (94-100%) and specificity was 

99% (97.9-100%). However laboratories continue to pick tests based on local knowledge and 

preference and the two main assays used for testing ERBB2 amplification status in hospital 

laboratories today are immunohistochemistry (IHC) and fluorescence in situ hybridization 

(FISH). Several PCR methods have been demonstrated but not widely adopted. The recent 

application of next-generation sequencing is making ERBB2 copy-number analysis possible 

as part of a multi-target, and even multi-disease, assay; this final point will be discussed in 

chapter 6. 

Measuring'ERBB2'with'IHC:'

Immunohistochemistry (IHC) semi-quantitatively measures ERBB2 protein levels and is the 

simplest technique for most laboratories to implement to assess ERBB2 amplification. It is 

fast, cheap and with proper controls can be very sensitive. Tumour sections are incubated 

with an antibody to the ERBB2 protein on the cell surface and then visualised. Two FDA-

approved kits for IHC testing of ERBB2 amplification are available: the Dako Hercep-Test 

(Dako, USA) and the Ventana Pathway ERBB2/neu test (Ventana, USA). Both 

quantitatively stratify ERBB2 expression levels using the scores 0, 1, 2+, and 3+. 

Trastuzumab treatment would be prescribed based on a 3+ result (Fig 2.1). 

The major limitation of IHC is the interpretation of results, which can be subjective. ERBB2 

staining can be affected by technical issues including tissue sectioning, fixation and 

processing, so quality control (QC) procedures, testing regimes and other quality assurance 

(QA) processes are commonly employed to improve results and may be mandatory in some 

settings. Results in the 0, 1 and +3 staining patients are generally considered unequivocal, 

however the +2 group would usually be referred for secondary- or reflex-testing using FISH. 

Measuring'ERBB2'with'FISH:'

The developers of Herceptin (Genentech, USA) stated that that FISH was their preferred 

method when selecting patients for trastuzumab therapy135. They measured ERBB2 

amplification status by FISH in three separate clinical trials and discussed comparison to the 

“gold-standards” of solid matrix blotting, qPCR, or FISH, but not IHC. FISH was their 

preferred method as it had the highest precision. The FDA-approved ERBB2 FISH assay is a 

multi-colour FISH assay with probes that bind to ERBB2 and chromosome 17 (which carries 

ERBB2). The number of copies of the ERBB2 gene can then be estimated by using the ratio of 

ERBB2 to Chr17 fluorescence, samples with a ERBB2 gene copy number ratio ≥2.2 are 
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considered as ERBB2 amplified. 

Measuring'ERBB2'with'microarrays:'

Although microarrays can be used to molecularly classify breast cancer using the 

Mammaprint assay (Mammaprint®, Agendia, Irvine, CA, USA), they have had very limited 

clinical impact. We showed that it is possible to determine ERBB2 amplification status using 

snpCGH and gene-expression arrays in a study of over 2000 breast cancers (Curtis et al 

2012)7. In this we reported that 40% of breast cancers assessed by IHC had been recorded as 

ERBB2 amplified (+1, +2 or +3, although only 7% were +2 or higher), that 22% were 

amplified as assessed by CNV microarray, and 12% by gene expression. The 22% amplified 

as assessed by CNA arrays compares well to figures of patients given Trastuzumab. 

Correlation to IHC was high with 92% of IHC ERBB2 +3 scored samples recorded as 

amplified by CNA arrays; 56% of IHC ERBB2 +2 scored samples were recorded as amplified 

by CNA arrays reaffirming that the decision to treat with Trastuzumab at this level requires 

careful consideration to avoid under- or over-treatment. We did not determine sensitivity or 

specificity for CNA, however given the subjectivity of IHC it may not be considered a gold-

standard. The data from Curtis et al 20127 was also used in a crowd-sourced bioinformatics 

competition designed to find the best model to predict survival136,137. The winning algorithm 

used a “hallmarks of cancer” approach that used signatures of co-expressed genes 

corresponding to prognostic molecular events. It was consistent across random sub-sampling 

of experimental data and outperformed previous methods. Other microarray based prognostic 

tests are described in chapter 2. 

Measuring'ERBB2'with'end?point'PCR:'

Development(of(a(differentialFPCR(method(for(ERBB2(amplification(status(

In Jennings et al we demonstrated an end-point differential-PCR (d-PCR) based assay for 

ERBB2 amplification status1. d-PCR is a semi-quantitative method that co-amplifies a target 

gene with a reference control of known copy-number138. Copy-number of the target gene is 

estimated from the ratio of intensities of the two separate PCR products when resolved as 

bands on a gel and analysed using automated gel-processing software. 

Optimisation(of(the(ERBB2(differentialFPCR(

This method required careful optimization. Samples were selected to have high-tumour 

content (>70%), something that has become a more obvious issue for genome-wide assays 

such as whole-genome sequencing (WGS), exomes or RNA-seq, and which will be discussed 

in later chapters. Normal DNA was extracted from blood for ten patients and 28 healthy 
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controls. Additionally two control cell lines were used; MCF7 – hemizygous for ERBB2 and 

SKBR3 with 8 fold138 over-expression of ERBB2, we also mixed SKBR3 and normal DNA to 

achieve a dilution series of ERBB2 copy-number. All test samples were quality assessed using 

spectrophotometry and DNA concentration was normalized. Although d-PCR is relatively 

unaffected by starting DNA levels the final gel-based analysis can be affected by saturation of 

signal, consequently the d-PCR assay is more robust when DNA concentration is pre-defined 

as the range of PCR cycles where the reaction is still in the exponential phase. PCR primers 

were designed for ERBB2 and HBB (beta-globin) to have non-complementary 3’ ends and 

similar GC content and to amplify similar but easily resolvable fragment lengths of 91 and 

110bp respectively. PCR was stopped after 35 cycles whilst still in the exponential phase of 

the reaction, as shown by empirical testing of cycle number with control samples. These tests 

showed that the sensitivity limit for detection was 25 cycles and the plateau phase was entered 

at 40 cycles, 35 cycles were chosen to maximize signal and assay sensitivity (Fig 3.2). All 

reactions and analyses were duplicated, alongside no-template-controls (NTCs). Products 

were resolved on Metaphor agarose (Cambrex Corporation, USA), a high-resolution agarose 

gel, stained with SYBR® Green (Molecular Probes Inc., USA) DNA stain and visualised 

using a CCD camera and Gelworks image processing software (Ultra Violet Products, USA). 

Amplification levels for the SKBR3:normal DNA dilution series gave linear results 

corresponding to the expected ERBB2 copy number. 11 of 42 (26%) of samples showed 

ERBB2 amplification, similar to other studies. The use of a carefully controlled PCR assay 

and an automated image analysis system meant that we achieved a robust and sensitive test. 

However the adoption of this test by other laboratories would have been complex, as it 

required both specialised staff and equipment. 

Other(PCRFbased(methods(and(citation(of(our(differentialFPCR(test(

Hubbard et al139 completed a conceptually similar study to ours and obtained similar results. 

However they used an extremely complex radio-labelled d-PCR assay requiring a correction 

factor for the different numbers of [P32]dCTP bases in each amplicon. An et al140 developed 

fluorescent differential-PCR (fd-PCR), analysing products on an automated DNA sequencer. 

They characterised almost 200 FFPE samples and found ERBB2 amplification in 26% cases. 

Their fd-PCR was an obvious improvement to the gel-staining methods, and the use of an 

automated sequencer reduced technical artefacts. 

Johnson et al141 compared measurement of ERBB2 DNA copy-number and protein expression 

levels using d-PCR and IHC using a dilution series control similar to ours, by mixing DNA 

from normal breast tissue and breast cancer cell lines to generate known levels of amplified 
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ERBB2. They showed saturation of d-PCR at 20 copies, and partial saturation of their 

immunohistochemical assay at a similar level. A 2003 review of ERBB2 testing methods142 

discussed the use of PCR-based methods, citing our paper, in the context of most laboratories 

using IHC and FISH. They concluded that at the time of their review PCR methods were still 

being evaluated and that, although they showed promise, the reality of pathology laboratories 

is the need to work with formalin-fixed paraffin-embedded (FFPE) samples and that the need 

to micro dissect to obtain high-quality results from PCR assays may limit their utility, 

although the more recent data suggest PCR assays are less affected by this than previously 

thought132. 

The(impact(of(Jennings(et(al(on((

The study was a well-designed test of the suitability of the d-PCR method for ERBB2 

amplification-status testing. It used a reproducible and objective method generating a 

numerical result for ERBB2 amplification, and presented strategies for the design and use of 

controls to allow robust implementation of the test in other laboratories. We were able to 

draw conclusions about tumour biology in our patient series: the marker was associated with 

poor prognosis in our series of patients. We found that the mutation occurred before, and was 

maintained in, lymph node metastases. The work has been little cited primarily being due to 

several similar papers being published earlier, and also the development of real-time PCR 

making d-PCR obsolete as a quantification tool. IHC has also remained the dominant method 

for ERBB2 testing due to its ease of use in clinical pathology laboratories as discussed earlier. 

The Jennings et al study was cited in the Johnson et al141 review discussed above. It has also 

been cited by Tsongalis and Reid143 as a PCR example in their review of the value of ERBB2 

testing and the methods available. And by Naidu et al as a primary d-PCR reference in a 

paper examining FGF3 amplification in 440 breast cancers144, and in their comparisons of 

IHC and d-PCR for c-MYC145 and Cyclin D1146 amplification and over-expression. 

All the PCR studies discussed, including our own, were end-point assays. At the same time as 

we were completing our experiments a technique was being published that would make d-

PCR quickly obsolete, real-time quantitative PCR73 (qPCR). Commercial kits for the 

detection of ERBB2 by qPCR were available as early as 200184, although IHC and FISH 

remain the standard methods. The success of phase III trastuzumab clinical trials was made 
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possible by the use of an IHC test to identify ERBB2 amplified breast cancers130. Recent 

research seems to point to next-generation sequencing based assays becoming the de facto 

standard for molecular-testing in personalised medicine8,9,147–150. 

Companion'diagnostics'

A companion !diagnostic is a test, developed for use by any laboratory, that provides 

information !that is essential for the safe and effective !use of its corresponding therapeutic151, 

e.g. trastuzumab therapy is stratified by using a companion diagnostic to measure ERBB2 

amplification status. In September 2014 the FDA listed 19 approved companion diagnostic 

tests (Fig 3.3); 53% are for ERBB2, 16% EGFR, 11% BRAF, and just three other genes (KIT, 

KRAS and ALK) make up the other 20%151. 37%, 32% and 26% of tests use FISH/CISH, IHC 

or qPCR respectively, none currently use direct sequencing assays. In 2014 the FDA issued 

guidance on the identification and co-development of drugs and their companion diagnostic 

tests, aiming to improve the time taken to develop such tests. A laboratory developed test 

(LDT), by contrast to a companion diagnostic, is an in vitro diagnostic test developed for use 

in a single laboratory, but one which is not regulated in the same way as a companion 

diagnostic test. Many laboratories are developing NGS panels for use as LDTs and these are 

being developed to be used outside what might be considered the geographical area of the 

laboratory in which the test was developed147. The FDA is currently developing regulation for 

LDTs. This is likely to have significant impact on the quality of tests, as well as the time 

taken to develop them. 

In colorectal cancer the epidermal growth factor receptor (EGFR) is a therapeutic target with 

several anti-EGFR drugs available for prescription, however only a subset of patients respond 

to treatment. In 2009 the US Food and Drug Administration (FDA) updated advice on the use 

of these drugs requiring testing for activating KRAS mutations. In 2012 NICE approved 

Cetuximab (an anti-EGFR drug) in combination with chemotherapy as the recommended 

first-line treatment of metastatic colorectal cancer152, but in 2013 NICE suspended 

development of guidance on the clinical and cost effectiveness of using the different 

technologies and methods for KRAS mutation testing153. KRAS mutations are found in just 

under half of patients and result in constitutive activation of the RAS signaling pathway. 

Mutations in KRAS are usually in exon 2, specifically codons 12 and 13. Furthermore 

mutations in APC, MLH1, TP53, SMAD4, KRAS and BRAF can be found in 10-100% of 

colorectal cancer patients154 making screening for all 6 genes potentially useful, especially if 

this can be done at the same time as a KRAS test for deciding whether or not to proceed with 

anti-EGFR therapy155. 
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In melanoma a specific mutation of BRAF (V600E valine-to-glutamic acid) is a target for 

treatment with Vemurafenib. The V600E mutation constitutively activates BRAF driving cell 

proliferation. This mutation occurs in half of melanoma patients and 5-10% of solid tumours, 

making screening for BRAF mutations in all cancer patients more likely as larger panel-based 

tests develop. BRAF mutational status is assed using a Vemurafenib companion diagnostic 

qPCR test approved by the FDA in 2013. NICE approved Vemurafenib for treating 

BRAF V600E mutation-positive unresectable or metastatic melanoma in 2012156. 

The need to match treatments to patients was apparent in 1997 when Jennings et al was 

published, however the idea that treatment would need to be personalised to such an extent as 

seems obvious today was almost unthinkable at the time. It was also not clear that a test 

would become so closely linked to a treatment to be considered a companion-diagnostic. 

Companion diagnostics are still not the norm, but are likely to become so as testing takes 

advantage of the variety of methods offered, a recent report suggested annual health care 

savings of $604M if all colorectal cancer receive a genetic test for the KRAS mutation prior to 

treatment157. However the slow adoption of improved methods over IHC for ERBB2 

amplification testing demonstrate how new tests need to be proven against current methods. 

The ability of NGS to assay multiple genomic loci, the exome or the cancer genome means it 

is likely to become an important tool for companion diagnostics. In the next chapter I will 

discuss how comparison of different technologies needs to be carefully considered to 

maximize the impact of research studies, and in chapter six I will discuss the emerging 

paradigm of multi-gene, even whole-exome, sequencing as a primary diagnostic test in 

cancer, using next generation sequencing. 
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Introduction:'

It is important to develop research methods with high analytic validity; i.e. methods that are 

accurate in determining the presence or absence of single nucleotide variants (SNV) or 

mutations, copy-number variation (CNV) or differential gene expression (DGE). The 

sensitivity and specificity of tests is affected by the methods used at each stage: pre-analytical  

(e.g. sample collection), analytical (the test), and post analytical (data analysis and 

interpretation), all of which should be considered when choosing a method to use. 

A common problem for researchers is choosing which method to use where several are 

available to accomplish a task; the same is equally true for clinicians, although the impact is 

arguably more significant. The primary question can be phrased as: “do methods X and Y 

generate the same results when measuring the factor of interest?” A systematic comparison 

of the different methods is the only way to reveal how similar they are. However it is difficult 

to perform a fair comparison outside of an idealised situation without bias since there are 

many variables to consider. In the comparison papers I have co-authored we specifically 

aimed to compare technologies with as little obvious bias as possible, to avoid comparing 

metrics which are obviously unfair and to highlight areas of bias and/or prejudice3,4. In a 

review of micro-RNA technologies6 we discussed the imperfect nature of most comparison 

publications. We also drew attention to the fact that these publications are quickly out-dated. 

However none of these issues should deter researchers from undertaking comparison studies, 

especially as a pilot for a much larger piece of work7,158. A 2012 editorial in the journal 

Nature Methods addressed the issues behind comparison testing159. In this they highlight the 

choice a user faces: either expend resources on a formal comparison as a pilot to a larger 

experiment, or make a choice based on data already available that may not provide optimal 

results and hope this does not significantly affect the experiment. 

Assessing'the'quality'of'comparisons:'

Most users of comparison data do so as readers of comparison publications. They will be 

looking for data that support the use of one platform over another and must be critical in their 

evaluation of comparison publication. As such it is important for readers of comparison 

studies to be able to critically assess the results and conclusions presented yet only one paper 

has addressed this issue directly160. In the clinical setting of this paper the authors state that 

new methods cannot be introduced without comparison to a reference method if one exists. 

However even if a gold-standard does exist it is unlikely to error-free and may be influenced 

by factors which lead to bias in assessing sensitivity and specificity161. Development of 
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reference standards and methods is being standardised by consortia like the Joint Committee 

for Traceability in Laboratory Medicine162, which brings stakeholders together and provides a 

framework for cooperation between very diverse groups. Laboratories developing in-house 

tests are using this framework to produce tests that are traceable to internationally recognised 

reference materials and/or reference methods. The National Institute for Health and Care 

Excellence (NICE) use a defined multiple technology appraisal process to review and assess 

the clinical and economic evidence behind potential new tests163. A recent appraisal of testing 

options for epidermal growth factor receptor tyrosine kinase mutations in non-small-cell lung 

cancer reported that only 50% of tests were suitable for use in the NHS, and only when used 

in accredited laboratories that were also participating in an external quality assurance 

scheme164. The US Food & Drug Administration (FDA) assesses new in vitro diagnostic tests 

using previously cleared assays or reference methods165. Their primary recommendation is the 

use of the Type A Reference Method, which most comparison studies would refer to as a 

gold-standard i.e. one that has been thoroughly investigated and has been proven to be 

accurate and precise when used to analyse specific reference materials. If a Type A method is 

unavailable then a Type B Traceable Method can be used. This uses traceable and 

reproducible procedures and standards. The Type B study is a secondary recommendation 

because it requires initial agreement on, and development of, reference standards. In genome 

and transcriptome research several de facto standards are available: the Microarray Quality 

Control Consortium121 (MAQC) Brain and Universal Human reference RNA’s, the External 

RNA Controls Consortium166 RNA spike-in controls and the newly emerging NGS standards 

from the Genome in a Bottle consortium167. 

Bias'in'comparison'studies'

It is likely that a bias on the part of the researcher, experiment, or samples will mean one 

technology has an advantage where it might be disadvantaged in a different experimental 

situation. In the context of genomics research a particularly important issue to consider is that 

methods do not appear at the same time and that they, and their analysis methods, mature at 

different rates. This can make it impossible to determine if the one method is truly better than 

another or if it has just reached a particular point in its development cycle/lifetime that it 

performs best with the samples being tested. 

 

Comparison papers should aim to reveal shortcomings in any assumptions made about 

samples, platforms and analysis methods by openly discussing them. The choice of biological 

samples to use in a comparison study and the methods for extraction, quantification, and 
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quality control can all affect results. Consequently many RNA comparison studies, but not all, 

use commercially available reference RNAs, however these may be poor substitutes for the 

experimental samples typically seen in a laboratory or clinical setting. 

A' semi?systematic' review' of' mRNA' microarray' comparison'

studies'

A literature review of microarray comparison studies was carried out to identify the scale and 

scope of comparisons to date with respect to mRNA gene expression microarrays. The review 

aimed to identify best practice in the use of controls and replication. The first microarray 

paper was published in Science in 199591 at the time of writing there were over 61,000 

microarray papers listed in PubMed. A search of PubMed from 1995 to 2013 found 352 

papers using the search terms: (microarray[Title]) AND comparison[Title], 

((microarray[Title]) AND comparison[Title]) AND "gene expression", ((microarray[Title]) 

AND comparison[Title]) AND RNA[Title], (microarray[Title]) AND compare[Title], 

((microarray[Title]) AND compare[Title]) AND "gene expression", ((microarray[Title]) 

AND compare[Title]) AND RNA[Title], (microarray[Title]) AND comparing[Title], 

((microarray[Title]) AND comparing[Title]) AND "gene expression"[Title], 

((microarray[Title]) AND comparing[Title]) AND RNA[Title]. 97 duplicates were found and 

removed. 5 publications were not available as full text articles and were not included. 7 

additional publications, found during the full text review, were included. 

Inclusion'and'exclusion'criteria'

The titles and abstracts of 255 studies identified in the search were screened for those that 

compared multiple microarray platforms, or compared at least one microarray to an 

orthogonal technology. The screen was restricted to comparison studies directed at mRNA 

analysis. No other restrictions were placed on the type of microarray platforms used, the 

samples used or the study design. Most of the studies excluded were comparisons of sample 

groups, i.e. biological studies, rather than technologies (Fig 4.1). 

Data'extraction'

A full text review of 26 screened publications was completed that extracted key details about 

the studies including: the number and type of technologies compared, were microarray 

methods compared directly or to an orthogonal technology or both, whether any validation 

method was used and if so what kind, whether and how studies were replicated, and whether 
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correlations were reported within and/or between technologies. 

Results'

The 26 included studies121,168–193 have been summarised in Table 4.1. They compared 

between one and six microarray platforms, generally with a single validation technology. The 

earliest comparisons suggested that microarray data from different platforms could not be 

directly compared, but almost all later comparison studies found good or excellent intra-, and 

good inter-platform correlations for some technologies. Later comparisons benefitted 

significantly from improved microarray manufacturing and processing as well as maturation 

in analysis methods, including normalisation methods172. Microarray processing was 

generally replicated, with 3-5 technical or biological replicates, although this was hard to 

determine from many studies. The studies often demonstrated higher correlations for 

commercial platforms, with Affymetrix microarrays scoring consistently highly and being 

used in 21 of the 26 studies reviewed. Later studies investigated intra- as well as inter-

laboratory correlations in microarray results. One third of the comparison studies reviewed 

used commercially available reference materials. Two book chapters have also been 

published describing how to approach and interpret microarray comparison studies194,195. 

They present a practical guide to the issues, detail common pitfalls to avoid and describe a 

framework for systematic comparison of mRNA expression profiling platforms. 

The' Microarray' quality' control' (MAQC)' consortium' sets' the' standard' for,'

and'provides'reference'standards'to'use'in,'comparison'studies'

The publication of the MAQC papers was a landmark event for the field of 

transcriptomics121,186. It involved over 100 scientists at 51 academic institutions as well as 

microarray technology providers and other stakeholders. Eleven microarray platforms 

averaging ~60 hybridisations per platform using two control RNA samples as reference 

standards, and calibration of microarray-observed DGE with other technologies including q-

PCR showed that with careful experimental design different platforms can be highly 

comparable. The MAQC controls became the de facto standard for mRNA microarray 

studies. Ambion Brain RNA196 is an equimolar pool of RNAs extracted and quality controlled 

from 23 individuals (13 male, 10 female). Stratagene’s UHRR RNA197 is an equimolar pool 
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of RNAs extracted and quality controlled from 10 human cell lines including: melanoma, 

liposarcoma, lymphoma, lymphoblastic leukaemia, myeloma and tumours of the breast, liver, 

cervix, testis and brain (glioblastoma). The commercial preparation and availability made 

these an excellent choice for microarray studies of differential gene expression. However as 

admixtures of RNA’s this makes them very much less suitable for next-generation sequencing 

studies. The ideal control does not exist, as it will always need to have characteristics that 

match the context in which it is being used. 

The MAQC study provided the first truly comprehensive technology comparison; it is the 

benchmark by which other comparisons should be judged. 

Gold?standards'

In developing a new test or assay it is advisable to identify control samples that can be used to 

assess both the sensitivity and specificity for that test. Samples with known results are often 

used, but much of the work in this thesis has had to be completed with samples of low-quality 

and quantity, both of these can and do affect the reliability or robustness of, and the ultimate 

sensitivity and specificity of an assay or test. A test result should be unequivocal; generating 

either true positive or true negative results, and reference samples that generate false positives 

and/or false negatives are suggestive that the test may have limited analytical sensitivity or 

specificity (Fig 4.2). As such both tests and a reference samples can be considered gold-

standards. However accepted gold standards for one technology, e.g. qPCR for mRNA DGE, 

may not be applicable across the board. In the miRNA microarray comparison paper 

described below (Git et al4) we used a novel method to evaluate false-positive and false-

negative rates after demonstrating that qPCR was not acceptable as a gold-standard for micro-

RNA (miRNA) analysis. In developing the assays used in Murtaza et al9 and Forshew et al8, 

both discussed in the next chapter, we used samples with known mutations to specifically 

assess both sensitivity and specificity. 

Comparison'papers'published'by'the'author'

Curtis' et' al' 2009:' The' pitfalls' of' platform' comparison:' DNA' copy' number'

array'technologies'assessed.'

Considering(bias(in(the(design(of(Curtis(et(al(2009.(

The Curtis et al copy-number variation (CNV) microarray comparison study3 was a pilot 

project, designed to inform the choice of platform for the largest study of breast cancer 
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molecular classification to date - METABRIC7. We acknowledged that it would be almost 

impossible to compare different technology platforms fairly. Although the final biological 

read-out may be the same, platforms have different methodological and technological 

characteristics. In designing, executing and analysing the study we tried to be aware of 

potential bias, avoiding it where possible. We excluded analytical tools that cannot be fairly 

applied to all technologies, and highlighted biases in the final publication. We had to consider 

comparison of one- and two-colour microarrays with markedly different DNA labeling, 

microarray hybridization and preliminary analysis methods. Although the intention was to 

choose the best performing system for copy-number; it was clear that the additional loss-of-

heterozygosity (LOH) data provided by SNP microarrays (snpCGH) outweighed the higher 

per probe sensitivity of arrayCGH (aCGH) platforms and consequently we chose Affymetrix 

snpCGH over Agilent aCGH (the platform with the highest per-probe CNV sensitivity). We 

also discussed how cancer studies with only small amounts of and/or degraded nucleic acids 

can restrict researchers to a sub-optimal platform (as assessed by high-quality controls). 

Selecting(control(samples(for(Curtis(et(al(2009.(

During experimental design meetings preceding the study we discussed which controls to 

include allowing comparison of sensitivity and specificity between four different copy-

number platforms. There were two conflicting approaches. Firstly to use standard well 

characterized HapMap198 cell lines, with few copy-number aberrations. This approach makes 

it simple to determine sensitivity and specificity, but results may not be applicable to tumour 

samples. Secondly to use tumour samples and accept that determining sensitivity and 

specificity will be harder as there are likely to be many unknown mutations, and CNVs, of 

varying size. We chose to interrogate the issue with both types of control including the 

normal HapMap samples NA10851 (male) and a NA15510 (female), a series of tumour 

samples with and without matched normal DNA controls, and two cell-lines with known 

copy-number aberrations: MT3 and SUM159199. We ruled out use of a well-defined X-copy 

cell line series100,200 as a model system to test sensitivity and specificity due to costs. The 

selection of controls was a lengthy process and delayed the experimental work, however 

given the final use of the data in choosing a platform for analysis of 2000-3000 tumour 

samples it was critical. It is important to point out that total cost was a limiting factor in the 

design of the study. 

Results(from(Curtis(et(al(2009.(

We were able to use known chromosomal copy-number events to interrogate and compare 
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platforms. Deletions were most clearly detectable in the order of Agilent > Affymetrix > 

Illumina > Nimblegen.  All four platforms identified single-copy gains of chromosomes 7 and 

13, and single-copy loss of chromosome X in the MT3 cell-line. All four platforms identified 

the single-copy gains of the chromosome arm 5p in the SUM159 cell-line. Performance for 

high amplitude focal amplifications and sub chromosomal gains and losses was less clear. 

Three of the four platforms identified a complex 8q24 aberration in the SUM159 cell line (Fig 

4.3), but some struggled with a 55Mb deletion. Small regions of gain/loss were assessed by 

analysing 79 PCR validated CNVs in normal HapMap controls. All four platforms had probes 

missing at multiple CNV locations, however the concordance amongst CNVs detected by all 

four platforms was high.  

We assessed sensitivity and specificity of the four platforms using male and female samples 

and comparison of chromosomes X and Y to 13. This allowed us to test for copy-number 

changes 2:1 (Chr:X vs. 13) and 1:0 (Chr:13 vs. Y) at single-probe resolution (Fig 4.4). For 

copy-number 2:1 Agilent, Affymetrix and Illumina all showed similarly high sensitivity and 

specificity, whilst Nimblegen was poor. For copy-number 1:0 Agilent performed best, 

although Illumina outperformed it at very high specificity, Nimblegen demonstrated 

intermediate performance and Affymetrix was poor. Further investigation showed that this 

was due to a total lack of SNP probes on the Y chromosome for the Affymetrix array used in 

the study. Analysis of a public dataset for a newer Affymetrix microarray using a HapMap X 

chromosome titration data set201, showed that the performance was unchanged for copy-

number 2:1 analysis but dramatically improved for copy-number 1:0. These analyses 

demonstrate the challenge in comparing technologies that are rapidly improving, with the 

version of array having a dramatic affect on our results. The poor performance of the 

Affymetrix array could have resulted in its exclusion from our consideration of which 

platform to choose, but the availability of data from a newer version resulted in its being used 

in the METABRIC study. 

Git'et'al'2010:'Systematic'comparison'of'microarray'profiling,'real?time'PCR,'

and' next?generation' sequencing' technologies' for' measuring' differential'

microRNA'expression.'

Git(et(al(2010(required(a(larger(and(more(complex(experimental(design.(

The miRNA platform comparison study we published was a pilot project for the largest study 

of breast cancer miRNA biology to date158. The study design was larger in its scope than 

Curtis et al because the inherent biases of miRNA analysis make comparison of one or two 

platforms less justifiable. We compared nine miRNA differential expression platforms, 
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performing both intra- and inter-platform comparisons, making ours the largest miRNA 

comparison study currently published (Table 4.2). However it included only six of a possible 

nine platforms available at the time of publication. Previous miRNA comparison papers 

included fewer platforms and no current miRNA microarray platform has been included in all 

comparison studies as reviewed in Aldridge and Hadfield6. 

Controls(and(validation(used(in(Git(et(al(2010.(

Prior to the miRNA comparison we compared the effect of RNA extraction methods on 

miRNA yield and quality. Cell lines were processed in duplicate across two extraction 

platforms, miRvana (Ambion, USA) and miRNeasy (Qiagen, Germany). mRNA Microarray 

analysis showed no significant differences in gene expression in the total RNA preparations.  

We used quadruplicate technical replication of three control samples: a pool of three 

commercially available normal breast total RNAs (normal), and RNA from breast cancer cell-

lines PMC42 and MCF7202. These were processed across six miRNA microarray platforms, 

and one next-generation sequencing method203. We compared platform utility and sensitivity 

and specificity for detecting DGE in miRNAs. Correlation between all platforms was high for 

a subset of miRNAs detected across all microarrays, that also had no predicted cross-

hybridisation. NGS miRNA absolute read-counts were highly correlated to microarray 

hybridisation intensities. 

Validation of nearly 90 miRNAs was completed using two qPCR methods (TaqMan and 

SYBR® Green), which showed very high correlations. Incorporation of this data into our 

analysis as a comparative method rather than as a gold-standard, led to a higher sensitivity 

across all platforms. This suggested that qPCR cannot be considered a gold-standard 

reference method for miRNA analysis in the same way as it can for mRNA DGE. However 

this analysis required the development of a novel algorithm to evaluate false-positive and 

false-negative rates for all methods in the absence of a reference method. 

Conclusions'

The development of genomic and transcriptomic methods continues at an incredible pace, and 

is one that authors of comparison papers cannot match. Until there is dominance of one 

system or method it is up to the reader of comparison studies to assess the bias within them 

and make a decision on which platform to use. This will be affected by the bias of the 
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researcher and his or her experiment and the need to balance time, precision, accuracy, cost, 

and sample type. Here I propose some simple rules that authors of comparison studies can 

follow when designing such experiments, and that readers can consider when assessing the 

quality of the published comparison. 

1. Comparison study publications will ideally include some form of literature and/or 

technology review. It can be as important for readers to be aware of technologies 

excluded, as well as those included, when assessing bias in the study design. 

2. Comparisons should be made: 

i. to an accepted gold-standard reference method if one exists and/or 

ii. with accepted reference materials if such exist, e.g. MAQC RNAs121 

iii. or both of the above. 

3. Test materials will ideally contain known and relevant test results that allow 

assessment of sensitivity and specificity. 

4. Comparisons should include at least one comparative method and at least one 

reference method. 

5. Replication with at least three biological or technical replicates should be considered 

the minimum. 

6. Laboratory and analytical methods should be adequately described, such that any 

other laboratory could repeat them, and attention should be drawn to any known 

biases. 

7. Raw data should be made publicly available where appropriate and made compliant 

with the relevant repository standards, e.g. MIAME204, MIQE77 or MINSEQE205. 

The lessons learned from previous comparison studies can be used when designing studies 

that make novel use of new technologies, and this will be discussed further in the next 

chapter. 
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Chapter' 5:' Application' of' genomic' technologies' in'
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Introduction'

The'Impact'of'next?generation'sequencing'on'cancer'biology'

Next-generation sequencing (NGS) has had a significant impact on our understanding of the 

patterns of mutation present in cancers59,206,207. Cancer was originally thought to arise from a 

single clone with a critical mass of somatic mutations gained in a linear manner. Recent 

studies have shown us how complex cancer evolution can be, with different mutation rates 

and types: kategis59 (localized hyper mutation) and chromothripsis (massive genomic 

rearrangement)208; the different mutational processes that underlie types or sub-types of 

cancer59; and the impact of tumour evolution during cancer development and therapy9,61,64,209 

(Fig 5.1). These are giving us new insights into cancer biology that can be used in the clinic 

to improve patient outcomes, but there are multiple challenges in translating these data and 

findings. 

Analysis of cancer genomes using PCR-based and Sanger- sequencing methods initially used 

a candidate gene approach that is slow. In 2006 13,023 genes in breast and colorectal cancer 

were analysed using high-throughput Sanger sequencing of PCR amplicons65. This revealed 

an an average of 90 accumulated mutations in the cancers studied. A core set of 190 genes (11 

per cancer) was mutated at high frequency, and many of these were newly reported as having 

functional consequences in cancer. However this study required PCR of 135,483 amplicons 

and sequencing of 3 million Sanger reads. The first NGS cancer genome was published in 

2008210 and today the International Cancer Genome Consortium58 is sequencing the 50 most 

prevalent cancers in 500 individuals and recently started to release data211. This project is on a 

scale that would have required 3.4 billion Sanger sequencing reads just to interrogate the 

same regions as reported in 2006. The International Cancer Genome Consortium (ICGC) has 

presented a comprehensive picture of the spectrum of somatic mutations across, and within, 

different cancers (reviewed in Watson206). It has allowed a much clearer picture to emerge of 

which genes are the drivers of cancer progression, as well as revealing in much better detail 

the extent to which mutations are clustered in hot-spots within genes or spread randomly 

across them. It has also shown very clearly that cancer originating in the same tissue can have 

very different molecular pathologies, which are important in determining prognosis and 

treatment and may be diagnostic and/or prognostic. A common problem in the treatment of 

cancer is the heterogenous nature of many tumours64,212, which makes molecular 

characterization difficult. This is particularly true when current technologies have a detection 

limit of around 1-2% mutant allele frequency8,9 in a background of normal DNA.  
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NGS'cancer'studies'reveal'evolutionary'mechanisms'

The elucidation of tumour evolutionary mechanisms by NGS was first reported in acute 

myeloid leukaemia patients213. In each of 8 cases the tumour subpopulations detectable at 

relapse had a common origin from a founding clone. They also showed that while some sub-

clones detectable at presentation were eradicated by initial chemotherapy, that the same 

treatment might contribute to relapse by driving the accumulation of new mutations in other 

sub-clones allowing therapeutic escape. This raises the possibility that by using our increasing 

understanding of the genetics of cancer we can prioritise the development of targeted 

therapies and reduce the use of broad-spectrum cytotoxic therapies that produce large 

numbers of novel mutations. Ultimately understanding heterogeneity and tumour evolution 

will improve our knowledge of cancer and its treatment64, and will be vital in a personalised 

medicine context. 

Estimating(the(amount(of(sequencing(required:(

The Lander/Waterman equation214 is the most commonly used method for computing 

sequencing coverage and can be rearranged to compute the number of reads to sequence a 

genome, exome or amplicome (amplicon-panel) to a desired coverage. The general equation 

is:C = LN /G , which can be rewritten as N =CG / L  to determine the number of reads 

required (this is what is typically discussed when designing experiments). 

C = redundancy of coverage, G is the haploid genome size, L is the sequence read length, and 

N is the number of sequence reads. In the examples below paired-end reads of 125bp from 

each end of a fragment are used, but these are converted to single 250bp reads for simplicity. 

Human genome 30x coverage = (30fold) × (3×109 bp) / (250bpPE125) and requires 360M reads. 

Human exome 50x coverage = (50fold) × (1.5×108 bp) / (250bpPE125) and requires 30M reads. 

Human amplicome (30x 250bp amplicons) 1000x coverage = (1000fold) × (7.5×104 bp) / (250bpPE125) 
and requires 0.3M reads. 

Choosing'between'amplicons,'exomes'and'genomes''

In 2014 Illumina announced the availability of the $1000 genome, an astounding feat given 

that the first cancer genome cost around $500,000 just six years earlier210. The current gold 

standard is a PCR-free 30x-50x coverage Illumina sequenced Human genome. The ability to 

make next-generation sequencing libraries without PCR reduces the impact of GC bias in the 

sequencing process, and removes PCR duplicate reads. For most laboratories a genome is still 
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a significant undertaking as it requires high laboratory and bioinformatics resources. The first 

exome studies cost over $1000 per sample but exomes in 2014 are around $300-$500, making 

them seem expensive when compared to the whole genome. However their main advantage is 

the significantly lower amount of sequencing data required; around 85% less than a genome 

at the same coverage (see above). Consequently many cancer studies are now using exome 

sequencing at significantly higher depth to investigate intra- and inter-tumoural heterogeneity. 

Exome analysis has been rapidly adopted by the clinical community for analysis of Mendelian 

diseases, where it can identify the casual variant in 25-35% of cases215–220. By sequencing a 

trio of the proband and both parents, it is possible to identify causal de novo mutations (Fig 

5.2). Inherited variation can be filtered and remaining variants can be screened for the 1-3 de 

novo mutations per exome predicted to be pathogenic215,221. However the design of trio 

sequencing experiments needs to be carefully considered as sequencing artefacts can be 

impossible to distinguish from true de novo mutations. Results also need verification using an 

orthogonal method. The method is significantly faster than the “diagnostic odyssey” many 

patients go through with traditional single-gene testing. It also appears that the discovery of a 

casual variant, even if this has no treatment options, is a positive result for many patients and 

their families. A recently completed trio exome sequencing study of a patient with a life-

threatening immunodeficiency by the author, resulted in the discovery of a likely causal de 

novo mutation (unpublished). The patient had undergone routine diagnostic immunological 

laboratory assessment that was uninformative. Extended diagnostics demonstrated an 

abnormal response to interferon, with failure to produce any detectable IL-12 and TNF-alpha, 

and a de novo dominant mutation was considered likely. Exome sequencing identified a de 

novo mutation in NFKBIA (Chr14:35,873,757 T>C) that leads to a loss of the I-kappa-B-

alpha phosphorylation site abrogating NFkB signaling. The same mutation had been 

described earlier, and seven other NFKBIA mutations had been described in cases that 

phenocopied the patient. Sanger sequencing validated the mutation and a ‘single mismatch’ 

bone-marrow transplant appears to have been curative. Sequencing of amplicomes (NGS 

amplicon panels) requires even smaller amounts of data than genomes or exomes, making 

sequencing fast and very cost effective when run on a desktop sequencer like Illumina’s 

MiSeq (Illumina Inc., USA). Data can be generated and analysed in a diagnostically relevant 

turnaround time. A larger number of samples can bring statistical power to biological 

questions, however the depth of sequencing needs to fit the questions being asked, and an 

amplicome will miss variants found in an exome, which will miss variants found in a genome. 

Consideration of these factors during the experimental design is required. 
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Applying'NGS'technologies'to'circulating'tumour'DNA''

Cell'free'DNA'

Circulating cell free tumour DNA levels (ctDNA) were shown to be elevated in cancer 

patients and to drop following treatment almost forty years ago222. ctDNA was proposed as a 

noninvasive tool for cancer treatment in 2003223. Circulating cell free foetal DNA (cfDNA) is 

detectable in the plasma of pregnant mothers224 and was initially proposed as an alternative to 

circulating foetal cells for genetic screening225. It has subsequently been used to develop the 

revolutionary field of non-invasive pre-natal testing (NIPT): where cfDNA is sequenced to 

determine sex, aneuploidy, and sub-chromosomal abnormalities226–228. The origins of cell-free 

DNA are still not clear although there appear to be two distinct mechanisms: lysosomal 

break-down of DNA from necrotic cells by macrophages229, or apoptotic break-down of DNA 

from hypoxic tumour cells230. cfDNA is fragmented to 140 to 170 base pairs, is present as 

thousands of amplifiable copies per milliliter of blood, but only a fraction is diagnostically 

relevant. 

The concept of using ctDNA as a liquid biopsy in molecular pathology8,150,231–233 provides 

new opportunities to diagnose, prognose, monitor and manage cancer patients and their 

disease. The personalised genomics biomarkers used mean treatment can be tailored to the 

individual, and the method of sample collection will allow simple non-invasive longitudinal 

analysis. There is still much to be proven in how well ctDNA represents a patients whole 

tumour burden, but it almost certainly provides a better picture than single, and possibly 

multiple, biopsies. There are also standards that need to be developed for the protocols 

associated with collection and processing of blood for ctDNA analysis. 

Development'of'ctDNA'amplicon'sequencing'methods'

PCR amplicon sequencing is a useful tool in cancer research; for whole exomes65, or for 

single genes234, but in an era of whole genome sequencing the use of amplicons is in some 

danger of being over-looked as simply a validation tool to be combined with Sanger 

sequencing. However a relatively small number of amplicons can be highly informative: 

currently only nineteen companion diagnostic tests are FDA approved, and these cover just 

six genes: ALK, BRAF, EGFR, ERBB2, KIT and KRAS. NGS amplicon sequencing could 

target all of these in a single assay. Personalised medicine requires the development of tests 

that can predict the best treatment based on molecular evidence, and can be seen as an 
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extension of current tests like those developed for ERBB2 and Herceptin (see chapter 3). 

The development of ctDNA tagged-amplicon sequencing (TAm-seq) methods described in 

Forshew et al8, presented a sensitive and novel method to detect and quantify tumour specific 

point mutations non-invasively and with high-sensitivity in patients with advanced disease. 

The use of ctDNA was an important advance over single biopsy methods, as a larger 

proportion of the tumour load can be assayed. It is also more convenient for patients, 

requiring only a blood sample to be taken, and should be cost-effective for the NHS and other 

health-care providers. The method required PCR amplification of just 5995 bases from the 

coding regions of TP53 and PTEN, and selected genomics regions for EGFR, BRAF, KRAS, 

and PIK3CA with overlapping short amplicons, and covered 38% percent of point mutations 

in the COSMIC database8,235. TAm-Seq noninvasively identified TP53 mutations in 46 

ovarian cancer samples. TAm-Seq identified the origin of metastatic relapse in a patient that 

presented with synchronous primary tumors (bowel and ovarian) 5 years earlier (Fig 5.3). 

TAm-seq also identified an EGFR mutation in plasma that was not detected in the initial 

biopsies. Lastly we used TAm-seq to track tumour dynamics over time using 10 coincident 

mutations detected in whole genome sequencing of a metastatic breast cancer patient (Fig 

5.4). The 10 mutations followed the same pattern of initial decline in allele frequency, 

followed by an increase because of disease progression. 

We also used TAm-seq as validation for somatic mutations discovered by exome-sequencing 

of aldosterone-producing adenomas which are the cause of 5% of adrenal hypertension 

cases11.  Tam-seq of ATP1A1 and CACNA1D confirmed gain-of function mutations in these 

two genes important for the regulation of Na+ and Ca2+. The method was very efficient 

compared to Sanger sequencing validation. 

The'clinical'utility'of'ctDNA'and'TAm?seq'

Dawson et al150 demonstrated how ctDNA can be integrated into clinical management of 

cancer patients, and how it may be a better choice of assay than cancer antigen biomarkers 

(e.g. CA125 in ovarian cancer) or circulating tumour cells (CTC). By comparing the 

performance of ctDNA, CA15-3, or CTC in 30 advanced breast cancer patients they were 

able to show detectable ctDNA in 97% of samples and reported somatic mutations in TP53 

and PIK3CA, with higher sensitivity than CA15-3 or CTC. They also reported that the 

absolute level of ctDNA corresponded to treatment response and survival. 



112 

 

Other'methods'for'assaying'ctDNA'do'not'compare'well'to'TAm?seq'

Other methods have been developed to assay mutations in ctDNA but these have limitations 

that TAM-seq does not. BEAMING229,236, and digital PCR149 use emulsion PCR or 

microfluidics and locus-specific assays to very accurately detect and quantify specific 

mutations, but cannot easily be used for genes without mutational hotspots. Although these 

are the most sensitive methods available, the requirement for custom primers or probes to be 

synthesized for a specific known mutation in a single patient's tumor, makes it impractical to 

use these assays for cancer screening235. TAm-Seq is not allele-specific and allows robust and 

accurate measurement of tumour-specific DNA across sizable genomic regions in blood 

plasma in a high-throughout and cost-effective manner. Its development opened up 

possibilities for large-scale studies to investigate the clinical utility of ctDNA as a non-

invasive monitoring tool for cancer management. 

Development'of'ctDNA'exome'sequencing'methods'

The successes of TAm-seq and the use of ctDNA to detect and quantify circulating tumour 

mutations led to the development of the whole exome sequencing methods presented in 

Murtaza et al9. We aimed to develop a method that would be less affected by, indeed would 

allow analysis of, tumour evolution. TAm-seq can be affected by allele drop-out; where a 

mutation detected at presentation is no longer present at sufficient frequency to be detectable, 

or has been lost altogether. This can happen as tumours evolve under therapy, but the much 

larger number of mutations found using whole exome methods should be robust to this. The 

large number of potential variants assayed would also increase the possibility to monitor 

tumour evolution by detecting changes in allele frequencies due to tumor evolution. We 

reported the use of a modified exome capture protocol to allow the use of as little as 2.3ng of 

DNA (mean 13ng, min 2ng, max 40ng), equivalent to around 10% of ctDNA extracted from 

2.0-2.2ml of whole blood (Table 5.1). This ctDNA was used as the input for a non-standard 

Illumina library preparation using a proprietary technology called Thruplex (Rubicon 

Genomics, USA). The Thruplex kit uses a modified Illumina method, with hairpin rather than 

Y-shaped adapters, optimised chemistry and bead-based size-selection and cleanup rather 

than gel electrophoresis. Three to five barcoded sequencing libraries were prepared for each 

case before pre-capture pooling for exome library production. Only 4-20% of the DNA 

extracted from total blood plasma was used for library preparation, using more may allow for 

an increase in analytical sensitivity and should be a significant advantage in the clinic, 

especially when comparing repeat blood sampling to repeat biopsy. 



 113 



114 

 

 



115 

 

 



116 

 

 



117 

 

 



118 

 

 



119 

 

 
Exome sequencing allele frequencies correlated well with TAm-seq and digital PCR (r = 

0.71). 60% of mutations detected in either patients 1 or 4 were found in both plasma and 

metastatic biopsies and mutant allele frequency were high (r = 0.7) demonstrating high 

specificity. A panel of 364 non-synonymous mutations were detected with high confidence 

and included previously reported cancer genes and genes reported as being involved in 

treatment resistance or disease progression: 

• Case1 (breast cancer): following paclitaxel treatment an activating PIK3CA mutation 

was detected. Mutation of PIK3CA has been reported as linked to paclitaxel 

resistance in mammary epithelial cells237. 

• Case 4 (ovarian cancer): following treatment with cisplatin an increased abundance of 

a truncating mutation in, and LOH around, RB1 were detected. Loss of RB1 has been 

linked to chemotherapy response238. 

• Case 6 (lung cancer): following treatment with gefitinib an activating mutation in 

EGFR (T790M - substitution of methionine for threonine at position 790) was 

detected. The T790M mutation has been linked to acquired resistance to gefitinib 

therapy239 and the FDA approved afatinib for lung cancer in 2013240. 

• Case 2 (ER+ ERBB2+ breast cancer): was particularly interesting as it was possible 

to detect emergence of resistance in canonical resistance genes after two rounds of 

therapy with different therapeutic agents. Following treatment with tamoxifen and 

trastuzumab a nonsense mutation in MED1, was detected, which has been associated 

with tamoxifen resistance241. Following secondary treatment with lapatinib and 

capecitabine, a splicing mutation in GAS6 was detected, this has been linked to 

resistance to lapatinib in ER-positive, ERBB2-positive breast cancer cell lines242. 

Sensitivity'and'specificity'of'ctDNA'analysis:'

In TAm-seq the generation of around 18,000 single nucleotide variants introduces the 

potential to generate a high-level of false-positive results. We used several strategies to 

control for this. Sample preparation was performed in duplicate, and variants were only 

recorded if they appeared in both replicates. 38 of 40 variants of allele-frequency >2%, as 

assessed by digital PCR, were detected and quantified by TAm-seq giving an assay sensitivity 

of >95%. However although we reported detection of TP53 mutations in over 50% of high-

grade serous ovarian cancers, previous reports confirmed the almost universal mutation of 

TP53, suggesting sensitivity might not be as high as first thought. We did not formally assess 
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sensitivity or specificity in Murtaza et al as the number of subjects was small. However we 

tried to maximise analytical sensitivity and carried out analysis on patients and samples with 

time points selected for high mutant-allele fraction. 

The'clinical'utility'of'ctDNA'

Neither of the studies discussed above was able to answer the question as to what the utility of 

ctDNA would be across varying cancers. A landmark study by Bettegowda et al233 reported 

analysis of 18 cancers in 640 patients. ctDNA was detectable in >75% of patients with 

advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, 

hepatocellular, and head and neck cancers; but in less than 50% of primary brain, renal, 

prostate, or thyroid cancers. ctDNA was detectable in 50-73% of patients with localized 

tumors, suggesting it may not be restricted to patients with advanced or metastatic disease. 

ctDNA was often present in patients without detectable circulating tumor cells, suggesting 

that these two biomarkers are distinct entities. 

The study determined sensitivity and specificity of clinically relevant KRAS gene mutations 

as 87.2% and 99.2% respectively. False-negatives were generally associated with lower 

tumour burden and most likely lower ctDNA levels. ctDNA was also used to detect mutations 

key to EGFR therapy resistance, guiding treatment decisions in colorectal cancer. 

Current'status'of'clinical'testing'and'adoption'of'NGS'assays'

Today cancer is still largely diagnosed by histological analysis of tumour cells taken as 

biopsies and/or after surgical resection. Molecular tests are still limited to germline hereditary 

disease with gene-by-gene sequencing, e.g. BRCA1 and BRCA2. The impact that sequencing 

based assays can have in determining treatment, the discovery of tens or hundreds of 

mutations and the relative ease with which sequence data can be generated today are all 

leading to molecular tests, or molecular pathology, as being the likely future standard. Much 

of this is likely to be completed using next-generation sequencing of amplicons, exomes or 

genomes. 

NEQAS has external quality assurance schemes243 in place or in development for - lung 

cancer: ALK rearrangement, and KRAS, BRAF and PIK3CA mutation screening; Colorectal 

cancer: BRAF and PIK3CA mutation screening; Melanoma: NRAS and KIT mutation 

screening; and Gastro-intestinal stromal tumours: KIT and PDGFRA mutation screening. 
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NEQAS are also piloting external quality assurance schemes for next-generation sequencing, 

using a reference DNA sample244. The US-FDA has approved three drug treatments that 

require a sequence based companion diagnostic: vemurafenib and BRAF for melanoma, 

cetuximab and KRAS for colorectal cancer and crizotinib and EML-ALK, EGFR for lung 

cancer10. Many more are currently in the approvals pipeline, and many of these are NGS 

multi-gene panel tests. 

The dramatic impact that circulating cell free DNA is having in cancer, and NIPT, suggests 

that NGS-based molecular tests using ctDNA are likely to become a clinical standard.  
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Chapter'6:'Discussion'
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That cancer is a heterogenous disease is undisputed, but the level of heterogeneity and the 

evolution of cancer during treatment have only recently been measurable at the genome-wide 

level. Early studies are revolutionizing our understanding of cancer and highlighting 

therapeutic opportunities, particularly with targeted therapies; but only where a companion 

diagnostic exists that can be deployed in the novel patient population with sufficient 

specificity and sensitivity. There is a clear separation between the use of tests that detect the 

presence of a cancer driver mutation and those that quantitatively measure the changes in 

those same mutations. The ongoing International Cancer Genome Consortium (ICGC) 

projects will add significantly to our understanding of the key driver mutations for different 

cancers, and the prevalence of those mutations in the different diseases. Translating these 

technological developments and new biological insights such that they can be used in the 

clinic is challenging. The next decade is likely to see a revolution in the personalisation of 

both cancer, and non-cancer medicine. 

Oncogenes' and' tumour' suppressor' genes' can' be' analysed' to' determine'

therapy'

Oncogene mutations can be found at very high frequency in some disease populations. If 

there are targeted treatments for these high frequency oncogenes then pre-screening of 

patients is not necessary, e.g. in the case of BCR-ABL positive chronic myeloid leukaemia 

(CML) where the treatments of choice are imatinib (Gleevec, Novartis) and second generation 

tyrosine kinase inhibitors, for nearly all patients. However these cases are rare. Most targeted 

agents are available for oncogenes present at lower-frequency in a patient population, and are 

only likely to show clinical benefit in a minority of patients. These patients must be selected 

from the general population with some kind of clinical test, often an IHC, FISH or PCR, but 

more likely in the future a genome-sequence based test. The comparison of CML to ERBB2 

amplified breast cancer in chapter 3 introduced the concept of using mutational status to 

stratify patients for treatments with targeted therapies; e.g. trastuzumab in the case of ERBB2 

amplified breast cancer. Although the current test for ERBB2 amplification is IHC, other 

methods including differential-PCR1, qPCR and microarrays have all been investigated. We 

showed in the METABRIC study7 that microarray analysis of breast cancers improved the 

sub-classification of this disease (Fig 6.1). We also showed that the microarray data could be 

used to infer ERBB2 copy number status and that this correlated well with IHC data. In an 

analysis of ctDNA using Tam-Seq8, and later using ctDNA-exomes9 we showed that next-

generation sequencing was a sensitive tool to detect and quantitate mutant alleles in 
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heterogenous cancer. The ctDNA exome data also revealed the evolution of resistance 

mutations, some of which were present in the initial, presumably heterogeneous, tumor. 

Understanding the mutational status of heterogeneous tumours is likely to improve patient 

treatment. Although the tools for next-generation based companion diagnostics are still in 

development, the work presented in this thesis demonstrates how far we have come in the last 

fifteen years. At a technological perspective we now have sensitive and specific technologies 

and assays for detecting and quantitating mutations in cancer samples. The focus for the 

future will be on the translation of these from ‘research use only’ to the clinic thus enabling 

personalised medicine. 

Personalised'medicine'and'companion'diagnostics'are'still'in'their'infancy'

The revolution that is being termed personalised medicine began with trastuzumab245 as 

discussed in chapter 3. The FDA approved Trastuzumab in 1998 for the treatment of ERBB2-

amplified breast cancer, but this approval was conditional on the use of the companion 

diagnostic to determine ERBB2 amplification status to stratify patients for treatment. The US 

FDA has approved 13 companion diagnostics, nearly all of which are based on just six gene 

mutations important in the treatment of cancers (Fig 3.3)151. Currently over half of FDA 

approved companion diagnostics are for stratification of ERBB2 amplified breast or gastric 

cancer patients. Other tests include: testing for BRAF mutations identifies malignant 

melanoma patients that will respond to vemurafinib246, and testing for EML4:ALK fusions 

identifies non-small cell lung cancer patients that will respond to crizotinib247. These tests 

could be run as a combined NGS gene panel; but at the present time, and when compared to 

conventional tests, the perceived cost and complexity of these tests is considered too high. 

The cost of next-generation sequencing however, has dropped significantly; the HGP genome 

cost approximately $300 million to sequence248, the Watson genome around $1 million27, and 

the current cost is $1000 per genome. To put this in perspective the cost of health-care in the 

UK is around £2000 per person per year249. A $1000 genome (if an individual is sequenced 

once, and at birth) need only produce an £8 per year saving to be cost-effective: about the 

same as a single prescription. We estimated the costs of TAm-Seq analysis to be around £25-

50 per patient, for a seven-gene panel8. It should be cost-effective today to merge all six genes 

approved in FDA companion diagnostic tests, into a single NGS panel. 

Patient'response'to'therapy'is'heterogenous'

The treatment of cancer has changed remarkably, and survival rates have doubled, in the last 
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forty years mainly due to earlier detection and better treatments55. Patient stratification has 

allowed drugs like trastuzumab to become the backbone of therapy for their respective 

diseases when stratified by a molecular test. Many breast cancer patients may be effectively 

cured following initial surgical treatment, but it is difficult to predict how an individual 

patient will actually respond. Recent studies of mammographically screened breast cancers 

that were stratified into high-, low-, and ultra-low risk of recurrence reported that almost 70% 

of breast cancers are biologically low risk; and that 15% to 25% of patients may be over 

treated250,251.  It is clear that patients do not respond to treatment in the same way, and many 

do not benefit from the therapies they are given252 (Fig 6.2). Lazarou et al (1998) extrapolated 

from a meta-analysis of adverse drug reactions in prospective studies performed in the USA. 

In this they reported that over 2 million patients may have had adverse reactions to the drugs 

they were prescribed253, and over 100,000 patients may have died. They concluded that 

adverse drug reactions are the fourth leading cause of death in the US after heart disease, 

cancer and stroke. 

Personalised'medicine'offers'significant'opportunities'for'treating'cancer'

In chapter 3 I highlighted some of the recent findings from the ICGC pancreatic cancer 

sequencing project62. They reported finding ERBB2 amplification in 2% of cases and 

suggested that patients should be recruited to clinical trials for trastuzumab therapy in 

pancreatic cancer, based on initial screening with IHC as a cost-effective approach. The 

approach of using the molecular status of tumours to recruit patients with heterogeneous 

cancer diagnosis into clinical trials is being termed a “basket trial”, and this is likely to 

become a standard tool as molecular testing becomes more routine. 

It is very likely that other ICGC projects will find many cases with ERBB2 amplification that 

could potentially be treated with trastuzumab. Using data from the ICGC it is possible to 

estimate the prevalence of ERBB2 amplification, and BRAF V600E mutation, and EGFR 

mutation or amplification in the major cancers. Combining this information with annual 

incidence statistics on these same cancers from Cancer Research UK it is possible to estimate 

the number of patients that could be eligible for the matched targeted therapies. Around 6000 

breast cancer patients were eligible for trastuzumab treatment; over 3500 non-breast cancers 

might be treatable given the prevalence of ERBB2 amplifications and UK incidence statistics 

(Fig 6.3). Around 5000 melanoma patients were eligible for vemunaferib254 treatment, around 

5000 non-melanoma cancers might be treatable given prevalence and incidence statistics (Fig 

6.4). Around 5000 lung cancer patients were eligible for erlotinib treatment, over 9500 non-
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lung cancers might be treatable given prevalence and incidence statistics (Fig 6.5).  It is clear 

that many patients could be eligible for targeted therapies (subject to proven clinical utility). 

Improved'testing'is'part'of'the'answer'

Identifying the patients above for “off-label” use, e.g. non-breast cancer patients for 

trastuzumab therapy using the current standard of IHC, may be impracticable62. Multiple IHC, 

FISH, PCR or Sanger sequencing tests would need to be run to test all cancer patients for the 

major driver mutations: these tests could now be combined into a single NGS amplicon panel. 

Early comparison studies of KRAS testing demonstrated 96% concordance between standard 

methods and NGS in 486 patients. Additionally the NGS results reported mutations not 

currently tested for that may be clinically relevant255. The sensitivity and specificity of NGS 

panel testing has also been recently reported suggesting that NGS panel tests for ctDNA may 

be practicable256–258. Bettegowda et al (2013) analysed sensitivity and specificity of mutant 

KRAS detection in colorectal cancers and reported 87% and 99% respectively in ctDNA and 

reported high concordance between sequencing of tumour tissue and ctDNA256. 

There are currently 163 drugs with a gene target that indicates a specific sub-group will need 

to be identified: 80% are for oncology, psychiatry, infectious diseases, neurology, cardiology 

& endocrinology and 37% were for cancer treatment259. The list of cancer drivers is only 45 

genes long and just five of these account for 50% of the total drug indications. The three 

commonly prescribed cancer therapies discussed earlier; trastuzumab, vemurafenib and 

erlotinib, could be combined into a single testing regime of two IHC amplification tests and 

two mutation screening by sequencing tests, alternatively a single very small NGS amplicon 

panel test could give the same results, and be significantly faster and cheaper than the three 

combined tests. A ctDNA based NGS amplicon panel test should be easily deployable in 

health care systems. As it is minimally invasive tests could be performed on blood drawn in a 

general practice surgery, with results being ready for an oncologist shortly after. NGS-testing 

is already being deployed in clinical trials, with over 30 registered at www.clinicaltrials.gov.  

Limitations(in(the(molecular(analysis(of(cancer(samples:(nucleic(acid(quality(

The ideal material to work with for molecular studies is fresh-frozen (FFZN) tumour tissue, as 

nucleic acids are of high quality. However most cancer samples are preserved in formalin for 

pathological analysis and stored as formalin-fixed paraffin-embedded (FFPE) blocks, 

preserving tissue morphology but damaging nucleic acids. The most common artefacts are 

C>T base substitutions caused by deamination of cytosine bases converting them to uracil and 
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generating thymines during PCR amplification71, strand-breaks and fragmentation. These 

reduce the amount of correctly amplifiable template DNA in a sample and must be considered 

when designing NGS experiments. DNA damage can also occur during the fragmentation of 

DNA for next-generation sequencing library preparation260. Whilst this damage can be 

repaired261,262, the use of FFPE DNA in particular is still regarded as difficult. The 

fragmentation of DNA in FFPE tissue is similar to that seen in ctDNA. For both amplicon- 

and exome-sequencing this can be mitigated by designing PCR amplicons to be under 150-

200bp in length, or by accepting sub-optimal exome library quality control metrics. 

Limitations(in(the(molecular(analysis(of(cancer(samples:(tumour(heterogeneity(and(stromal(

contamination((

Tumour clonal heterogeneity is extensive64, and we have shown that tumour evolution during 

therapy can also be due to heterogeneity in the primary tumour, as revealed by changes in 

mutant allele frequency during treatment9. Microarrays have a limit of detection that will not 

allow minor clones to be analysed. NGS appears to be limited by the error rates of PCR and 

sequencing meaning that tumour heterogeneity can currently be assessed by analysis of 

mutant allele frequency, with a limit of detection of >2%8. Understanding the extent of 

heterogeneity and full tumour burden of a patient at diagnosis is likely to impact their 

treatment, as this will allow combination therapies directed to multiple molecular targets. 

Tumour samples are also often heterogeneous with respect to containing normal cells of 

various types. Since mutant allele frequency, copy-number and gene expression measures all 

count nucleic acids indiscriminately it is important to identify this and design experiments to 

be robust to it. Without this then detection sensitivity can be compromised. Samples with 

high-tumour content (>70%), were selected for inclusion in the METABRIC7 breast cancer 

study.  

Understanding'cancer'biology'is'vital'

The ICGC and other cancer projects using NGS have discovered new insights into cancer 

biology. However, careful evaluation of the results and clinical trials testing is required to 

elucidate the impact of these findings. At least one key targeted therapy has failed when 

applied to a different cancer setting. Vemurafenib increases overall survival rates for 80% of 

melanoma patients with the BRAF V600E mutation246, however many patients quickly 

become resistant. In colorectal cancers with the BRAF V600E mutation the response to 

Vemurafenib was only 5%, a functional analysis reported that this was due to activation of 

EGFR and recommended clinical trials of combined BRAF and EGFR inhibitors263. This
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example underlies the importance of understanding the biology of targeted therapeutics, and 

the likelihood that more complex combined therapies will be required to elicit a long-term 

response, particularly in heterogenous disease. 

The' future' for' NGS' in' cancer' genomics' and' companion'

diagnostics'

The development of multiplex-tests that assay hundreds of genes involved in cancer 

demonstrates the relative ease with which the technology can be applied147. However there 

remain significant challenges in deploying these tests in research laboratories. Translating 

them to general practice is likely to be significantly harder. But the potential for impacting 

cancer treatment, by identifying patients who could be prescribed treatments, may be so high 

that it seems likely for multiplex genetic testing by next-generation sequencing to become 

standard practice in the next decade. 

Whilst the advent of a $1000 genome makes WGS attractive, it is more likely that a tiered 

approach will be taken and that this might be different for different diseases. WGS is 

expensive and generates lots of data creating an analysis headache; exomes are cheaper and 

easier to analyse but may miss variants outside the captured regions; and amplicons are likely 

to be the fastest and cheapest method but only analyse a small portion of the genome264. It is 

also possible to sequence amplicons much deeper than exomes, and exomes more deeply than 

genomes impacting the analysis of mutant allele frequency and tumour heterogeneity. Studies 

are already being designed to look more carefully at the clinical impact of heterogenieity265. 

ctDNA analysis by amplicon-, exome- or whole genome sequencing may also have potential 

to be used for minimal residual disease (MRD) analysis of solid tumours. MRD is assessed by 

multiple methods in leukaeimia266,267, many of which are unlikely to be applicable to solid 

tumours, e.g. flow-cytometry. However the concept of using response assessment early in 

treatment to distinguish prognostic subgroups, by quantifying the change in mutant allele 

fraction of ctDNA, appears promising. Tumour evolution is also an issue in leukaemia, and 

this affects current methods based on single markers, the adoption of the amplicon- or exome- 

sequencing methods described in this thesis may improve the robustness of these MRD tests. 

The use of a ctDNA MRD test for solid tumours could become a routine tool for longitudinal 

follow up of patients; if performed with exome-sequencing then the data generated may also 

reveal new mechanisms of resistance to therapy. 
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Summary'

In this thesis I have described my work on the development of a PCR-based diagnostic test 

for ERBB2 amplification in breast cancer. This work preceded the development of 

trastuzumab therapy but it highlights some of the issues in developing tests that might be used 

as companion diagnostics. I have presented a review of methodological comparisons, and 

summarised our two major microarray comparisons. The review highlighted the need to use 

carefully designed technological comparisons to select platforms for genomic analysis, and 

the papers described some of the pitfalls of comparison studies. I have also described my 

contribution to highly cited work developing novel next-generation sequencing technologies 

for amplicon- and exome-sequencing from tumour and circulating tumour DNA, and 

described their use in disease monitoring as liquid biopsies. Whilst this work is exciting, the 

field of circulating tumour DNA analysis and its application to patient treatment and 

management is still in its infancy. In total this thesis covers almost twenty years of (very 

enjoyable) work by the author. 
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Definitions'

Abbreviations used commonly in the text are defined here alphabetically and are also given in 

full at the first instance followed by the abbreviation below in brackets. 

aCGH: Array comparative genomic hybridisation 

cfDNA: Cell-free DNA 

ChIP:  Chromatin Immuno-Precipitation 

ChIP-seq: Chromatin Immuno-Precipitation sequencing 

CML:  Chronic Myeloid Leukaemia  

CNV:  Copy-number variation 

CTC:  Circulating tumour cell 

ctDNA: Circulating-tumour DNA 

d-PCR: Differential polymerase chin reaction 

ddNTP: Dideoxy-nucleotide triphosphate 

DGE:  Differential gene expression 

Exome: The protein coding portion of the genome 

FDA:  United States Food and Drug Administration 

FFPE:  Formalin-Fixed Paraffin Embedded 

FFZN:  Fresh Frozen 

FISH:  Fluorescence in-situ hybridisation 

HGP:  Human Genome Project 

ICGC:  International Cancer Genome Consortium 

IHC:  Immuno-histochemistry 

InDel:  Insertion-Deletion 

LDT:  Laboratory developed test 

LOH:  Loss of heterozygosity 

MAQC: Microarray Quality Control Consortium 

MIAME: Minimum Information About a Microarray Experiment 



144 

 

MINSEQE: Minimum Information about a high- throughput Nucleotide SeQuencing 
Experiment 

MIQE:  Minimum Information for Publication of Quantitative Real-Time PCR 
Experiments 

miRNA: Micro RNA 

MRD:  Minimal Residual Disease 

NGS:  Next-generation sequencing 

NICE:  National Institute for Health and Clinical Excellence  

NIPT:  Non-invasive prenatal testing 

PCR:  Polymerase chain reaction 

QA:  Quality Assurance 

QC:  Quality Control 

qPCR:  Quantitative real-time polymerase chain reaction 

RNA-seq: RNA-sequencing 

SNP:  Single nucleotide polymorphism 

snpCGH: Single nucleotide polymorphism comparative genomic hybridisation 

SNV:  Single nucleotide variation 

TAm-seq: Tagged Amplicon deep sequencing 

TMA:  Tissue microarray 

WGS:  Whole genome sequencing 
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Glossary'

Terms used commonly in the text that require further explanation are defined here 

alphabetically any abbreviations are also defined in full at their first instance in the text 

followed by the abbreviation in brackets. 

Adenocarcinoma: A cancer that develops from glandular epithelium lining tubes, e.g. ductal 

carcinoma in situ is the most common form of breast cancer. 

Adjuvant treatment: A treatment that is given together with, or following, another 

treatment. Commonly refers to chemotherapy after surgery. 

Allele-specific PCR: A type of PCR where one primer is designed to a polymorphic region of 

the genome. Under stringent PCR conditions only the specific variant will amplify. 

Amplification (of gene): An increase in the number of copies per cell of a gene, usually due 

to whole chromosome aneuploidy, or amplification of a specific region, e.g. ERBB2. 

Aneuploidy: The state where chromosome count is not the expected number for a species, 

e.g. one (or more) extra or missing chromosomes. 

Array Comparative Genomic Hybridisation (aCGH): A microarray-based technique for 

copy-number analysis. Sample and control genomic DNAs are labeled with differently 

coloured dyes and co-hybridised to a microarray, the relative intensity of each microarray 

probe is used to infer copy number changes between the sample and the control. 

Basket trial: A clinical trial where patients are recruited based on molecular characteristics 

versus clinical ones, e.g. BRAF V600E status. 

Benign: A tumour that does not have the ability to invade or metastasise. 

Biomarker: A biological and quantifiable indicator of some biological state or condition that 

correlates with the presence of particular types and/or sub-types of cancer. 

Cancer: A group of diseases involving abnormal cell growth with the potential to invade or 

spread to other parts of the body. 

Cancer - grade: The description of a cancers appearance. 
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Cancer - stage: The description of a cancers size, its invasiveness and how far it has spread 

from where it originated. 

Cancer - type: The specific form of cancer a patient has. 

Cancer clone: A single molecularly identifiable cancer within a patient. Usually a population 

of cells derived from a single tumour cell, so that every cell is genetically identical. 

Cancer genomics: The study of cancer genomes. 

Cancer stem cell: A cell within a cancer which can both self-renew, and give rise to the other 

cells in the cancer. 

Carcinoma: A cancer that develops from epithelial cells. 

cDNA: Complementary DNA (cDNA) is DNA synthesized from a mRNA in a reverse 

transcription and polymerase reaction. 

ChIP-seq: Next-generation sequencing of chromatin immunoprecipitated DNA (ChIP): used 

to identify protein:DNA interactions 

Chromatin - Euchromatin: A lightly packed form of chromatin generally associated with 

active transcription 

Chromatin - Heterochromatin: A densely packed form of chromatin generally associated 

with inactive transcription 

Chromatin: A complex of DNA and associated proteins, that is used to package DNA inside 

the nucleus in chromosomes. 

Circulating tumour DNA: Tumour DNA found in blood plasma that is free from the 

nucleus. 

CNV: Copy-number variation (CNV) is a form of structural variation where the DNA is 

amplified or deleted compared to a reference. 

Companion diagnostic test: An in vitro diagnostic test, developed for use by any laboratory, 

that provides information that is essential for the safe and effective use of its corresponding 

therapeutic. 
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Confounding factor: An extraneous variable in a statistical model that correlates with the 

variable being interrogated, but that is not causal. 

Correlation: A statistical technique which tells us if two variables are related, e.g. a specific 

treatment and cancer growth. 

Differential Gene Expression (DGE): An analysis of the variation in quantitative mRNA 

transcription of two or more biological states reported. 

Differential-PCR: A semi-quantitative method to determine DNA amplification status that 

co-amplifies a target gene with a reference control of known copy-number. 

Epigenetics: The study of heritable changes that are not caused by variation in the DNA 

sequence; e.g. DNA methylation, chromatin modifications, etc. 

Exome sequencing: Next-generation sequencing of the exonic portion of the genome. Often 

performed by capturing exonic regions of a whole genome shotgun library for NGS by in-

solution hybridisation to biotinlyated "exon baits". 

Exome: The sum total of all the exons in the genome, often including regulatory sequences as 

well. 

Exon: A nucleotide sequence encoded by a gene that remains present within the final mature 

RNA product of that gene after introns have been removed by RNA splicing. The term exon 

refers to both the DNA sequence within a gene and to the corresponding sequence in RNA 

transcripts. Includes but is not limited to protein-coding regions. 

FFPE: Formalin fixed paraffin embedded: a tissue preservation technique commonly used in 

pathology laboratories that results in degradation of nucleic acids. 

FFZN: Fresh frozen: a tissue preservation technique which uses rapid freezing in liquid 

nitrogen to preserve nucleic acid integrity. 

FISH: Fluorescence in-situ hybridisation: a technique used to locate specific DNA (and 

RNA) sequences within a cell. 

Gene expression - absolute: The quantitative level at which the DNA from a gene is being 

transcribed into mRNA. 

Gene expression - differential (DGE): An analysis of the variation in quantitative mRNA 
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transcription of two or more biological states reported 

Gene expression signature: A defined set of genes and their expression levels that describes 

a particular biological state, or tumour sub-class. 

Gene: The molecular unit of heredity, usually used to describe a unit of DNA that codes for 

mRNA and a functional protein. 

Genome sequencing: DNA sequencing of the entire genome. 

Genome: The complete DNA complement of an individual. 

Genomics: The study of genomes. 

Gold standard: The test that is the best available under the conditions being considered. 

Human genome reference sequence: The genome sequence used as a reference point for 

genomic studies, currently the Genome Reference Consortium human genome (build 37) 

which is a haploid mosaic of DNA sequences from 37 donors. 

IHC: Immunohistochemistry: a laboratory technique used to detect the presence of specific 

protein or markers on cancer tumours. 

International Cancer Genome Consortium (ICGC): A collaboration of cancer researchers 

launched in 2008 to coordinate large-scale next-generation sequencing based cancer studies in 

tumours from 50 cancer types and/or subtypes that are of main importance across the globe. 

Laboratory developed test (LDT): An in vitro diagnostic test developed for use in a single 

laboratory, but one that is not regulated in the same way as a companion diagnostic test.  

Leukaemia: A cancer that develops from the blood. 

Loss of heterozygosity (LOH): A gross chromosomal event that results in loss of an entire 

gene or chromosomal region in one of the parental alleles, resulting in the presence of single 

alleles (AA or BB) rather than the usual two (AA, AB, BB across that region).  

Lymphoma: A cancer that develops from the lymph nodes, there are two main types: 

Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) 

Malignancy/metastasis: A state describing cancer which has the capability to spread, or has 
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actually spread from the primary site to secondary sites 

Melanoma: A cancer that develops from the pigment-containing cells in the skin 

(melanocytes). 

Methylome: The complement of all nucleic acid methylation modifications of the DNA in an 

organism's genome, generally in a specific sample or cell-type from an individual. 

Micro-RNA: A single-stranded, non-coding form of RNA, having only about 20-30 

nucleotides, that has a number of functions including the regulation of gene expression. 

Microarray: A method that allows thousands of DNA or RNA sequences to be assessed in a 

single experiment, e.g. DGE or CNV. 

Minimal residual disease: The term used to describe the small numbers of leukaemic cells 

that remain in the patient after treatment. 

Molecular pathology: The study and diagnosis of disease through the examination of nucleic 

acids within cells, tissues, organs or bodily fluids; often using molecular techniques such as 

PCR, NGS or microarrays. 

Mutant allele frequency: The proportion of a particular mutant allele (non-normal variant of 

a gene) in a tumour, or in a blood sample from a suspected cancer patient. 

Mutation: A change in the DNA sequence compared to a reference, usually associated with 

disease and distinct from normal variation (polymorphism). 

Mutation - driver: A mutation present in cancer that is responsible for tumorigenesis on its 

own, or in combination with a small number of other driver mutations. A mutation that 

confers a selective growth advantage on the cell and thus is required for cancer to develop. 

Mutation - germline: A mutation present in the gametes, or zygote a very early stage of 

development, and presumed to be present in every cell of an individual. 

Mutation - missense: A mutation that alters the amino acid sequence of the encoded protein, 

often rendering it non-functional. 

Mutation - non-synonymous: A mutation that alters the amino acid sequence of a protein. 

Mutation - nonsense: A mutation that causes a premature stop codon in a sequence resulting 
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in truncation of translation and non-functional protein. 

Mutation - passenger:  A mutation present in cancer that confers no selective growth 

advantage on the cell and thus does not contribute to cancer. Often present as a result of 

increased mutagenesis in cancer genomes. 

Mutation - somatic: A mutation present in a cancer that is not present in the normal cells of 

an individual; i.e. white blood cell DNA in non myeloid malignancies. 

Mutation hot-spot: A region of DNA where mutations accumulate more than would be 

expected by chance. 

Next-generation sequencing: DNA sequencing methods that can be used to sequence the 

whole genome, transcriptome or methylome of an individual, distinct from the Sanger 

sequencing used to complete the HGP. 

Oncogene: A gene that has the potential to cause cancer, e.g. KRAS. Mutation of oncogenes 

often leads to their activation promoting uncontrolled cell proliferation. 

Orthogonal method: An independent method used to validate findings from an experiment, 

e.g. qPCR for RNA-seq. 

Penetrance: The percentage of patients with a disease, e.g. cancer sub-type, that carry a 

specific variant of a gene. A mutation with 95% penetrance will cause 95% of individual with 

that mutation to develop the disease, whilst 5% will not. 

Personalised medicine: Treatment directed towards an individual patients requirements, 

often based on clinico-pathological or molecular phenotypes. Contrasts with stratified 

medicine, which directs treatment to groups of patients. 

Philadelphia chromosome : A specific chromosomal abnormality associated with chronic 

myelogenous leukemia (CML). It is the result of a reciprocal translocation between the BCR 

and ABL genes creating a constitutively activated tyrosine kinase. 

Polymerase Chain Reaction: A method used to amplify a single copy or a few copies of a 

DNA sequence (or RNA through reverse transcription). 

Polymerase Chain Reaction - qPCR: A method used to simultaneously amplify and 

quantify a DNA sequence (or RNA through reverse transcription) in a sample. 
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Primary cancer: The site where a cancer is suspected of originating. 

Prognostic/predictive factors: A prognostic factor is one that is objectively measurable and 

provides information on the likely outcome of disease in an individual, prognostic factors 

define the effects of patient or tumor characteristics on the patient outcome. A predictive 

factor is one that provides information on the likely benefit from treatment, predictive factors 

define the effect of treatment on the tumor. 

Proto-oncogene: The normal cellular version of a gene which, when mutated, can become an 

oncogene. 

Psuedogene: A copy of a gene that has been mutated into an inactive form through evolution, 

but that can confound DNA sequence based techniques in the laboratory, e.g. by affecting 

PCR, or in analysis, e.g. by affecting alignment to a reference genome. 

Randomisation: The random allocating of experimental samples across groups, e.g. 

treatment versus control. It is often used to reduce the impact of confounding factors in a 

formal experimental design. 

Reflex-testing: Follow-up testing automatically initiated when certain test results are 

observed in the laboratory; used to clarify or elaborate on primary test results 

Replicate: A single measurement from an experimental condition, replication allows the 

biological variability to be estimated 

Replication - biological: A replicate from an independent biological samples, i.e. different 

patients with the same disease. 

Replication - technical: A replicate from a non-independent biological sample, i.e. different 

blood-draws from the same patient. 

RNA-seq: Next-generation sequencing of RNA: used to identify DGE or alternative splicing 

of mRNA 

Sanger sequencing: The method of DNA sequencing invented by Frederick Sanger, used to 

complete the HGP. 

Sarcoma: A cancer that develops from the mesenchyme (cells of the connective tissue). 

Secondary cancer: A tumour that has spread from a primary site to a different site or organ, 
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but one that will still be referred to by its likely site of primary origin. 

Sensitivity & Specificity  - Sensitivity: The proportion of samples known to be positive for a 

test, which actually test positive. 

Sensitivity & Specificity  - Specificity: The proportion of samples known to be negative for 

a test, which actually test negative. 

Sequencing coverage/depth: The number of times a nucleotide is read during the sequencing 

process, often used interchangeably. 

Single nucleotide polymorphism/variant (SNP/SNV): A single base pair change in the 

DNA sequence detected from the reference genome. A variant may be benign (a 

polymorphism) or pathogenic (a mutation). 

SNP-CGH: A microarray based technique for copy-number analysis. Sample and control 

genomic DNAs are genotyped using microarrays, the relative intensities microarray probes is 

used to infer copy number changes between the sample and the control. The genotype calls 

can also be used to infer LOH making snpCGH a more powerful technique than aCGH. 

Stratified medicine: Treatment directed towards groups of patients, often based on clinico-

pathological or molecular phenotypes. Contrasts with personalised medicine, which directs 

treatment to individual patients. 

TAm-seq: A method for sequencing PCR amplicons using next-generation sequencing 

Targeted therapy: A drug or treatment that specifically targets cancer cells based on their 

molecular subtype, patients are usually selected by the use of a companion diagnostic test e.g. 

ERBB2 amplification status and Herceptin. 

The Cancer Genome Atlas: A project, launched by the NIH in 2005, to catalogue genetic 

mutations responsible for cancer (now part of the ICGC) 

Transcriptome: The complement of all RNA molecules, including mRNA, rRNA, tRNA, 

and other non-coding RNA of an individual, generally in a specific sample or cell-type from 

an individual. 

Trio analysis: A specialised genome analysis that compares results from both parent to an 

affected child with the aim of identifying the genetic features that may be causal of a disease; 
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often completed using exome sequencing. 

Tumour heterogeneity: The observation that different tumour cells can show distinct 

genotypic and phenotypic profiles. This can occur between tumours (inter-tumour 

heterogeneity) and within tumours (intra-tumour heterogeneity). 

Tumour suppressor gene: A gene that protects a cell from tumourigenesis, e.g. TP53. 

Mutation of tumour suppressors often leads to their inactivation allowing uncontrolled cell 

proliferation. 

Tumour/clonal evolution: The process of change in a tumour driven by the accumulation of 

mutations whereby certain clones can become dominant over others, this process can be 

driven by treatment and is one model for the development of cancer. 

Wild-type: The genotype of reference allele of a species, more often the most common 

genotype in the population. 
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A differential PCR assay for the detection of
c-erbB 2 amplification used in a prospective study
of breast cancer

B A Jennings, J E Hadfield, S D Worsley, A Girling, G Willis

Abstract
Aims-To establish a robust differential
polymerase chain reaction (PCR) assay
for the detection ofc-erbB 2 amplification
in breast cancer that can be used in a rou-
tine pathology laboratory. Once estab-
lished, the assay was used in a prospective
study of breast tumours to investigate the
relation between c-erbB 2 amplification
and both recognised prognostic features
and short term clinical outcome.
Methods-The differential PCR was used
for the co-amplification of c-erbB 2 and a
reference gene from 48 tumour DNA sam-
ples and control DNA samples. The ratio
of the two genes was determined by image
analysis of the PCR products electro-
phoresed on a highly resolving agarose gel.
Results-The differential PCR assay was
shown to be accurate and reproducible
using the conditions outlined. Twenty six
per cent ofthe breast cancer patients were
shown to have c-erbB 2 amplification in
their tumour biopsies. Twenty eight per
cent ofthe patients died oftheir disease or
had disease recurrence during the follow
up period and 73% of these patients had
amplification of c-erbB 2.
Conclusions-A significant association
was found between c-erbB 2 amplification
and early disease recurrence. This assay
could be used to provide a marker for poor
prognosis in breast cancer.
(C Clin Pathol: Mol Pathol 1997;50:254-256)

Keywords: differential PCR; c-erbB 2; breast cancer

two PCR product bands visualised on a gel.
Other studies have examined a variety of
differential PCR methods 7- for the detection
of c-erbB 2 amplification, which has been
shown to correlate with p185crbB2 immuno-
staining,89 but only a few studies have
examined the prognostic use of the assay with
clinical follow up."9

In this study, reliable measurement of c-erbB
2 amplification was achieved when the co-
amplification of the two gene sequences
(c-erbB 2 and P globin) was optimised. The
gene targets in this study are on different chro-
mosomes and so the results will reflect an
increase in the c-erbB 2 copy number irrespec-
tive of whether a small region of the chromo-
some or the whole of chromosome 17 is dupli-
cated. Chromosome aneuploidy, including loss
and gain of chromosome 17, is seen frequently
in breast cancer.
The two primer pairs were selected to be

non-complementary at their 3' termini and for
their similar GC content. In addition, the PCR
amplification was stopped before the end of the
exponential phase of the reaction (the plateau)
was reached.
We have analysed DNA extracted from 42

breast tumour samples, most of which have
been described previously.'2 13 Short term clini-
cal follow up of the breast cancer patients
revealed that c-erbB 2 amplification was
associated strongly with early relapse. These
data demonstrate that this assay identifies a
subset of breast cancer patients with poor short
term prognosis.
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The c-erbB 2 oncogene, also known as HER2
and neu, is located on chromosome 17
(q21-22) and encodes a 185 kDa transmem-
brane protein that is a member of the erbB
family of receptor tyrosine kinases.' 2 Fre-
quently, c-erbB 2 is amplified and overex-
pressed in breast cancer and both of these
abnormalities have been found to correlate
with both disease recurrence and reduced
overall survival.36

This paper describes a simple, robust, and
highly sensitive differential polymerase chain
reaction (PCR) method for detecting amplifi-
cation of c-erbB 2 in a routine pathology labo-
ratory. Differential PCR is a semiquantitative
assay for the co-amplification of a target gene
and a reference gene in the same reaction tube.7
The level of amplification of the target gene is
seen by the ratio between the intensity of the

Methods
Samples from 42 female patients treated for
primary breast cancer by the same surgical
team between 1993 and 1994 were included in
this study. The mean age of the patients was 63
years, ranging from 35 to 85 years. No woman
had received preoperative radiotherapy. Fresh
tumour samples were obtained from both mas-
tectomy and excision biopsy specimens and
DNA was extracted as described previously.'2
In addition to routine pathology examination,
samples used for DNA extraction were exam-
ined histologically and were shown to consist of
at least 70% tumour cells. The tumours ranged
in size from 0.7 cm to 10 cm (mean 3.23). The
selection criterion for inclusion in the study
was that an adequate amount of tumour was
available for the extraction of DNA.
DNA was also extracted from the peripheral

blood of 10 of the breast cancer patients and 28
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normal individuals. In addition, DNA was
extracted from two cell lines with known
alterations of c-erbB 2 copy numbers: MCF7
may be hemizygous for c-erbB2 and SKBR3
has up to eightfold c-erbB 2 amplification.7
These samples served as controls for the
optimisation of the assay.

All DNA was diluted to the same concentra-
tion (50 ng/4l). A dilution series of the SKBR3
DNA in normal DNA was prepared to test the
linearity of the measurement achieved by the
differential PCR.
The primers used were as follows. For

c-erbB 2: 5'-TCGGAACGTGCTGGTCA
AGA-3' (sense primer) and 5'-ATGGTACT
CTGTCTCGTCAA-3' (antisense primer);
these primers amplify a 91 base pair fragment
from exon 3.
For f globin: 5'-ACACAACTGTGTTCA

CTAGC-3' (sense primer) and 5'-CAACTT
CATCCACGTTCACC-3' (antisense primer);
these primers amplify a 1 10 base pair fragment
from exon 1.
DNA amplification was carried out in dupli-

cate for each sample using a Progene thermal
cycler (Techne, Cambridge, UK). Each 50 jl
reaction mixture contained 25 gl PCR master
mix (Boehringer Mannheim, Lewes, East
Sussex, UK), 5 g,l of each primer (50 pmol),
2 ,ul of DNA (100 ng), and 13 gl of sterile dis-
tilled water. Two controls that contained all the
reagents but no target DNA were included with
each batch. The reaction mixtures were
prepared and kept on ice until the heating
block of the thermal cycler reached the
denaturation temperature (94° C). Each reac-
tion mixture was placed at 94° C for five
minutes and then subjected to 35 amplification
cycles; each cycle was 30 seconds at 94° C, 30
seconds at 50° C, and 30 seconds at 72° C. This
was followed by a final extension at 72° C for
seven minutes. Initially, the optimum number
of PCR cycles was determined empirically by
analysing the amplification products after 20 to
50 cycles, at five cycle increments.

Amplification products were separated by
electrophoresis using a 3% metaphor agarose gel
(Flowgen, Lichfield, Staffordshire, UK), stained
with SYBR green DNA gel stain (Flowgen), and
visualised by ultraviolet illumination. The sizes
of the PCR products were compared with a
molecular weight marker, pUC 18 DNA di-
gested with HaeIII (Sigma, Poole, Dorset, UK).
The gel images were captured using a CCD
camera linked to an image processing system
(GDS 8000; UVP, Cambridge, UK). The inten-
sity of the c-erbB 2 band and the [ globin band
was determined for each specimen, by means of
Gelworks software (UVP). These results were
expressed as the ratio: intensity of the c-erbB 2
band/intensity of the [ globin band. The ratios
determined for the tumour samples were
converted into a measure of gene amplification
using the ratios determined for the normal con-
trols and cell line controls. The cut off point for
amplification was the mean of the normal range
plus two standard deviations (SD).

Univariate statistical analysis comparing
clinical and laboratory findings was carried out
using Fisher's exact test.

2 3 4 5 6 7 8 9 10

Figure 1 The amplification productsfrom the differential
PCR of.c-erbB 2 and the reference gene f, globin from three
normal DNA controls (lanes 1-3),from three breast
tumours with amplification of c-erbB 2 (lanes 4-6), and
from a dilution of SKBR3 DNA in normal DNA,
equivalent to eight copies (lane 7),five copies (lane 8), and
three copies (lane 9) of c-erbB 2. The 174, 102, and 80
base pair bandsfrom the molecular weight marker (pUC18
DNA digested with HaeIII) are seen in lane 10.

Results
The results relating to typical control DNA and
breast tumour DNA samples are shown in fig
1. The 91 and 110 base pair PCR products
were resolved clearly using 3% metaphor agar-
ose. For all normal DNA controls the intensity
of the higher molecular weight [ globin band
was greater than the intensity of the lower
molecular weight c-erbB 2 band.
The study of the optimum numbers of PCR

cycles showed that consistent differences in the
c-erbB 2 and [ globin PCR products could be
observed from 25 cycles (the sensitivity limit of
the assay) to 40 cycles (the PCR plateau).
A dilution series consisting of five twofold

dilutions of SKBR3 DNA into normal DNA
was used for differential PCR. The ratios of
c-erbB 2 to [ globin showed a linear relation
with the number of copies of c-erbB 2 present
(examples are shown in fig 1). This demon-
strated the quantitative accuracy of this differ-
ential PCR method. Each sample was analysed
at least twice and each replicate gave concord-
ant results.

Forty two DNA samples from primary
tumours and six DNA samples from nodal
metastases were analysed for c-erbB 2 amplifi-
cation. The distribution of c-erbB 2/[ globin
ratios was bimodal. The majority of samples
had ratios similar to the normal controls
(within the normal range of mean +2 SD) and
the remainder had from three to greater than
eightfold c-erbB 2 amplification. Eleven pri-
mary tumours and lymph node metastases
derived from two of these tumours had c-erbB
2 amplification. Thirty one primary tumours
and lymph node metastases derived from four
of these tumours had a normal c-erbB 2 copy
number. Therefore, 11 of 42 (26%) of these
breast cancer patients had c-erbB 2 amplifica-
tion in their tumours. These results are shown
in relation to the tumour types in table 1.

Clinical follow up information was available
for 41 of 42 patients. The median duration of
follow up was 28 months with a minimum of
six months for a patient who died and a maxi-
mum of 42 months. Seven patients died of
breast cancer and a further four had recurrent
disease. One patient died of other causes and so
was excluded from statistical analysis.
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Table 1 Summary of the tumours with c-erbB 2
amplification in relation to tumour type and grade

Total number Tumours with
Tumour type oftumours c-erbB 2 amplification

Ductal grade 1 6 1
Ductal grade 2 10 2
Ductal grade 3 19 6
Lobular 5 1
Special type 1 0
Other'3 1 1

Eleven of 40 (28%) patients died of their
disease or had disease recurrence and 8 of 11
(73%) ofthese patients had c-erbB 2 amplifica-
tion. The latter was associated strongly with
early disease recurrence (p = 0.0003).
Twenty three patients had histological evi-

dence of lymph node metastases at presenta-
tion and eight of these patients (35%) died of
their disease or had disease recurrence. Lymph
node metastasis had an association with early
disease recurrence but this did not reach statis-
tical significance (p = 0.1). Six of seven (86%)
patients with c-erbB 2 amplification and lymph
node metastases died of their disease or had
disease recurrence.

Discussion
We present a robust differential PCR assay for
the detection of c-erbB 2 amplification in
human DNA. Because a numerical result is
generated by an image analysis system, this
technique provides objective analysis of a
molecular marker, making it a good candidate
for development as a routine pathology test.
The PCR primers and cycle numbers have
been optimised to give reproducible results that
are not subject to primer dimer or plateau
effect artefacts. The sensitivity of this assay,
with the use of SYBR green DNA stain and the
small sizes of the PCR products generated by
the chosen primers make the protocol amena-
ble to the analysis of small amounts of highly
degraded DNA, as described by others.8 14
We found that the concentration of DNA

must be standardised for each batch of samples
analysed. This may be necessary to avoid
differential chelation of magnesium ions by
DNA and to ensure that all reactions remain
within the exponential phase of the reaction.
The importance of using a standard DNA
template concentration for accurate differential
PCR has also been shown in other studies.14

c-erbB 2 amplification was detected in 11 of
42 (26%) ofthe primary breast tumours, a simi-
lar finding to other studies.9 1" Eight sets of
primary breast carcinoma and their nodal
metastases were analysed for gene amplification.
There was no evidence for an alteration in gene
copy number between the primary and second-
ary tumour. This suggests that any alteration to
c-erbB 2 occurred before and was maintained
during metastasis. No significant correlation was
found between c-erbB 2 amplification and the
standard histopathological prognostic markers:
tumour size, type, grade, lymph node status, and
oestrogen receptor status.

After a short clinical follow up, this study
indicates that c-erbB 2 amplification is associ-
ated with more aggressive tumours because

gene amplification was associated significantly
with a poor prognosis, assessed by death and/or
disease recurrence (p = 0.0003). This finding
concurs with those of some,5 11 but not all,9
other studies that have used differential PCR
methods in retrospective analyses with longer
periods of clinical follow up than is presented
here. In this study, the DNA analysed was from
syptomatic patients, many of whom presented
with relatively large and intermediate or high
grade tumours. It would also be interesting to
investigate the prognostic use of this assay in
the often smaller and better differentiated
tumours detected in the national breast screen-
ing programme.

Breast cancer is a heterogeneous disease.
There may be many different mechanisms by
which tumours grow, metastasise, and evade
treatment response. Genetic markers that sub-
classify these tumours could help to identify
those patients who would benefit most from
adjuvant therapy.
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a b s t r a c t

Chromatin immunoprecipitation (ChIP) allows specific protein–DNA interactions to be isolated. Combin-
ing ChIP with high-throughput sequencing reveals the DNA sequence involved in these interactions. Here,
we describe how to perform ChIP-seq starting with whole tissues or cell lines, and ending with millions of
short sequencing tags that can be aligned to the reference genome of the species under investigation. We
also outline additional procedures to recover ChIP-chip libraries for ChIP-seq and discuss contemporary
issues in data analysis.

! 2009 Elsevier Inc. All rights reserved.

1. Introduction

Protein–DNA interactions play vital roles in the regulation of
gene expression, genome integrity and chromatin organization.
The in vivo mapping of transcription factor binding and modified
histones has greatly broadened our understanding of how the
genome can be deployed to achieve tissue and developmental
stage-specific gene regulation. Computational methods have pro-
vided substantial insight into our understanding of transcrip-
tional regulation [1], and yet recent experimental discoveries
have underscored the need for a simple and reproducible meth-
od for mapping protein–DNA interactions on a global basis.
These include recent discoveries that: (i) sequence-specific tran-
scription factors (TFs) do not occupy all positions in the genome
that would be predicted by their corresponding binding matrices
[2,3], (ii) sequence specific transcription factors often bind re-
gions that do not show similarity to their canonical binding
matrices [2–5] and (iii) the binding patterns of TFs between spe-
cies are poorly conserved [6–8].

Chromatin Immunoprecipitation (ChIP) [9,10] is a commonly
used technique to detect interactions between proteins and DNA,
which is based on the enrichment of DNA associated with a protein
of interest. The development of ChIP coupled with high-through-
put sequencing analysis (ChIP-seq) allows the unbiased identifica-
tion of binding sites of a given transcription factor and has

overcome several limitations inherent to microarray analysis of
ChIP (ChIP-chip) [11,12].

Due to their size and more repetitive nature, higher eukaryotic
genomes are a challenge for tiling microarray design. Most of the
repetitive sequence cannot be interrogated with high confidence,
whereas direct sequencing can reveal binding events located in
repetitive regions in the mammalian genome [13–15]. Every model
organism requires species-specific microarray designs before ChIP-
chip can be performed, while ChIP-seq can be done without prior
knowledge of the underlying sequence and relies only on the sub-
sequent DNA sequence alignment to the reference genome of inter-
est. Furthermore, the nature of the microarray hybridization signal
makes detection and rigorous quantification of low abundance sig-
nals problematic. Taken together, ChIP-seq can provide greater
resolution, sensitivity and specificity compared to ChIP-chip
[11,14,16].

A number of high-throughput sequencing technology platforms
have been developed that are suitable for ChIP-seq, including the
Genome Analyzer (Illumina, formerly Solexa), SOLiD (Applied Bio-
systems), 454-FLX (Roche) and HeliScope (Helicos) [17]. The Illu-
mina Genome Analyzer and the ABI SOLiD sequencers produce
shorter reads but give a higher number of sequencing reads per
run, whereas the 454-FLX sequencer gives longer yet fewer
sequencing reads per run [18]. Sequencing depth is a critical factor
in identifying weaker binding positions and it has been shown that
millions of mapped sequencing tags are needed to detect enrich-
ments significantly higher than twofold [19].

Here, we outline detailed methodologies for ChIP-seq using
the Illumina Genome Analyzer to produce tens of millions of
aligned sequencing tags. Our protocol adapts methods described
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previously [14,20] with additional modifications and technical
improvements to the chromatin immunoprecipitation (ChIP) and
library generation steps.

2. Description of method

2.1. Overview

A successful ChIP experiment begins with the crosslinking of
protein–DNA interactions using formaldehyde (Fig. 1). Histone
modifications can also be successfully identified using non-cross-
linked native chromatin in the ChIP protocol [21], but the ability
to capture weaker and transient protein–DNA interactions has
made formaldehyde fixation of starting materials a standard prac-
tice. After crosslinking, the tissue is homogenized, and the cells are
lysed. Subsequently, the chromatin is sheared using sonication and
incubated with magnetic beads coupled to an antibody specific for
the target protein. The success of the ChIP is dependent on the anti-
body being used; indeed, we have found that a large fraction of
highly specific, IP-proven antisera do not perform well against

crosslinked chromatin. We therefore strongly recommend the use
of a positive control antibody as described below when testing
new antibodies, testing collected tissues, or performing ChIP-seq
for the first time. In principle, the generation of a sequencing li-
brary from DNA is relatively straightforward. However, as opposed
to ChIP analyzed by real-time PCR, ChIP-seq requires a larger quan-
tity of precipitated DNA to minimize the generation of adapter di-
mer artefacts and to preserve the complexity of the DNA sample.
This protocol is routinely used in our laboratory and has been suc-
cessful with a variety of antibodies, tissues and cells from a wide
range of vertebrate species.

2.2. Step-by-step protocol

2.2.1. Crosslinking of cells or primary tissues
Covalent fixation of the protein–DNA complexes is achieved by

brief formaldehyde fixation. Ideally the starting material for one
ChIP uses 5 ! 107 cells from culture or the equivalent of one-quar-
ter of an adult mouse liver. While it is possible to start with limited
material [22,23], we have found that higher amounts of starting

Fig. 1. Outline of ChIP-seq procedure.
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material yield more consistent and reproducible protein–DNA
enrichments. To crosslink material for ChIP, follow steps 1–6 for
cultured cells and steps 7–17 for whole tissue.

2.2.1.1. Cells
1. Add 1/10 volume of fresh 11% formaldehyde solution (50 mM

Hepes–KOH, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 11%
formaldehyde) to plates or flasks. Alternatively, pour off cell
culture media and cover cells in a solution of 1% formaldehyde
(final concentration) in 50 mM Hepes–KOH, 100 mM NaCl,
1 mM EDTA, 0.5 mM EGTA.

2. Swirl briefly and let sit at room temperature for 10 min.
3. Add 1/20 volume of 2.5 M glycine to quench formaldehyde.
4. Rinse cells twice with ice cold PBS.
5. Transfer cells to 15 ml conical tubes and spin 4 min at

2000 ! rcf.
6. Proceed with cell lysis or freeze cells in liquid nitrogen and

store pellets at "80 !C. Continue with step 18.

2.2.1.2. Primary tissue
7. Whenever possible, perfuse tissue with PBS to remove blood.
8. On a kimwipe wetted with PBS, mince tissue quickly with a

razorblade into small pieces. The pieces should be not bigger
than 0.5 cm3.

9. Add tissue to at least five volumes of freshly prepared solu-
tion A (1% formaldehyde, 50 mM Hepes–KOH, 100 mM NaCl,
1 mM EDTA, 0.5 mM EGTA).

10. Mix and leave at room temperature for 20 min.
11. Add 1/20 volume of 2.5 M glycine to quench formaldehyde.
12. Rinse tissue with PBS and flash freeze or proceed directly to

step 13.
13. Dounce tissue in ice-cold PBS first with the loose and later

with the tight pestle (Dounce Tissue Grinder from Wheaton
Science, Catalog #357544). We do not add protease inhibi-
tors during this step.

14. The equivalent of one dounced mouse liver is filtered into a
50 ml conical tube through a 100 lm cell strainer to remove
connective tissue. Fill tube with ice-cold PBS to 40 ml and
centrifuge at 4 !C at 2500 ! rcf for 3 min.

15. Discard supernatant and repeat wash.
16. Resuspend pellet in 10 ml ice cold PBS and transfer to 15 ml

conical tube, centrifuge as above. Distribute into several
15 ml tubes if there would be more than 2 ml of tissue per tube.

17. Proceed with lysis, or freeze cells in liquid nitrogen and store
pellets at "80 !C.

2.2.2. Preblock and binding of antibody to magnetic beads
Like all immunoprecipitation experiments, successful ChIP re-

quires a suitable antibody. With ambitious antibody generation ef-
forts led by both academic and industrial labs, many candidate
antibodies corresponding to DNA binding proteins are available.
Numerous antibodies have been shown to work in ChIP; neverthe-
less, it is often the case that a series of antibodies must be tested
against a protein of interest. Often the creation of new antisera tar-
geted to different epitopes is required to create ChIP-grade anti-
bodies. When testing new antibodies or performing ChIP (and
especially ChIP-seq) for the first time we recommend using a posi-
tive control such as anti-H3K4me3 (ab8580, Abcam) which detects
the tri-methylated lysine 4 form of histone H3 in a wide range of
species, provides robust reliable enrichments, and highlights po-
tential transcription start sites in the genome.

Magnetic beads are less porous than traditional agarose beads
[22,21] and easier to handle, and hence highly recommended for
chromatin immunoprecipitation to reduce background precipita-

tion of nonspecific DNA. The exact type of magnetic beads depends
of the species and subclass of the antibody being used. Protein G
coated beads have high affinity to most rabbit and goat antibodies.
Antibodies are incubated with the magnetic beads prior to the
addition of the nuclear extracts, and excess, unbound antibodies
are then washed away. This ensures that unbound antibodies can-
not compete with the antibodies attached to the magnetic beads
for target epitopes during ChIP. All antibody incubations and
washes are performed at 4 !C.

18. Add 100 ll magnetic beads (Invitrogen, Dynabeads) to a
1.5 ml microfuge tube. Add 1 ml block solution (0.5% BSA
(w/v) in PBS). Set up 1 tube per IP.

19. Collect the beads using magnetic stand. Remove supernatant
by aspiration.

20. Wash beads in 1.0 ml block solution two more times.
21. Resuspend beads in block solution and add 2–15 lg of anti-

body in a final volume of 250 ll.
22. Incubate overnight or a minimum of 4 h on a rotating plat-

form at 4!C.
23. Wash magnetic beads as described above (3 times in 1 ml

block solution).
24. Resuspend in 100 ll block solution.

2.2.3. Cell lysis and sonication
The cells are lysed to remove the bulk of cytosolic proteins,

leaving only the contents of the nucleus for ChIP. This lysis step
can improve ChIP results in cases where the protein of interest is
not only bound to chromatin but also abundant in the cytosol.
The successful isolation of nuclei can be confirmed after step 2
using standard Trypan blue staining. All lysis buffers should be
supplemented with protease inhibitors (Complete, EDTA-free,
Roche, #11873580001). Settings for the sonication of chromatin
must be pre-determined based on equipment and material. The
equipment and settings described here work well with most cell
lines and primary tissues. After sonication, the opaque lysate
should become clear as a first indicator of a successful sonication.
If the lysate does not clear after additional cycles of sonication, the
material may be excessively crosslinked and the crosslinking time
in step 2 (for cells) or step 10 (for tissues) should be reduced. Ide-
ally, most chromatin fragments resulting from sonication occur be-
tween 200 and 400 bp. This size range can be confirmed by running
the whole-cell extract (WCE) on an agarose gel or an Agilent Bioan-
alyzer after reversing formaldehyde crosslinking and the DNA puri-
fication subsequent to step 54. (Fig. 2A).

25. Resuspend each pellet of crosslinked tissue in 10 ml of LB1
(50 mM Hepes–KOH, pH 7.5; 140 mM NaCl; 1 mM EDTA;
10% Glycerol; 0.5% NP-40 or Igepal CA-630; 0.25% Triton X-
100). Rock at 4 !C for 10 min. Spin at 2000 ! rcf for 4 min
at 4 !C in a tabletop centrifuge.

26. Resuspend each pellet in 10 ml of LB2 (10 mM Tris–HCL,
pH8.0; 200 mM NaCl; 1 mM EDTA; 0.5 mM EGTA). Rock
gently at 4 !C for 5 min. Pellet nuclei in tabletop centrifuge
by spinning at 2000 ! rcf for 5 min at 4 !C.

27. Resuspend each pellet in each tube in 3 ml LB3 (10 mM Tris–
HCl, pH 8; 100 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 0.1%
Na–Deoxycholate; 0.5% N-lauroylsarcosine).

28. Transfer cells to a homemade ‘‘sonication tube” (cut a polypro-
pylene, 15 ml conical tube into two pieces at the 7 ml mark).

29. Sonicate suspension with a microtip attached to a Misonix
Sonicator 3000 Homogenizer sonicator. Samples should be
kept in an ice-water bath during sonication. Sonicate 8–12
cycles of 30 s ON and 60 s OFF. Power-output should be
between 27 and 33 Watt.
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30. Add 300 ll of 10% Triton X-100 to sonicated lysate. Split into
2 ml centrifuge tubes. Spin at 20,000 ! rcf for 10 min at 4 !C
to pellet debris.

31. Combine supernatants from the 2 ml centrifuge tubes in a
new 15 ml conical tube. The amount of LB3 and Triton X-
100 is adjusted to the number of ChIPs to be performed.
For example to prepare 3 ChIPs from one 3 ml sonication
you would top up the centrifuged sonication to 9 ml with
LB3 and 600 ll of 10% Triton X-100 (1% final concentration).
Mix well and split into three 15 ml conical tubes, so that
each contains 3 ml of cell lysate with 300 ll Triton per ChIP.

32. Save 50 ll of cell lysate from each sonication as whole-cell
extract (WCE) DNA. Store at "20 !C.

2.2.4. Chromatin immunoprecipitation
33. Add 100 ll antibody/magnetic bead mix from step 24 to cell

lysates.
34. Gently mix overnight on rotator or rocker at 4 !C.

2.2.5. Wash, elution, and crosslink reversal
Steps 35 through 40 should be done in a 4 !C cold room.

35. Pre-chill one 1.5 ml microfuge tube for each IP.
36. Transfer half the volume of an IP to a pre-chilled tube.
37. Let tubes sit in magnetic stand to collect the beads. Remove

supernatant and add remaining IP. Let tubes sit again in
magnetic stand to collect the beads and remove supernatant.

38. Add 1 ml RIPA Buffer (50 mM Hepes–KOH, pH 7.5; 500 mM
LiCl; 1 mM EDTA; 1% NP-40 or Igepal CA-630; 0.7% Na–
Deoxycholate) to each tube. Remove tubes from magnetic
stand and shake or agitate tube gently to resuspend beads.
Replace tubes in magnetic stand to collect beads. Remove
supernatant. Repeat this wash 4–6 more times.

39. Wash once with 1 ml TBS (20 mM Tris–HCl, pH 7.6; 150 mM
NaCl).

40. Spin at 960 ! rcf for 3 min at 4 !C and remove any residual
TBS buffer using the magnetic stand.

41. Add 200 ll of elution buffer (50 mM Tris–HCl, pH 8; 10 mM
EDTA; 1% SDS).

42. Elute and perform reverse crosslinking at 65 !C for 6–18 h.
Resuspend beads in the first 15 min with brief vortexing
every 5 min.

43. Thaw 50 ll of the WCE from step 32, add 150 ll of elution
buffer and mix. Reverse the formaldehyde crosslinking as
in step 42 simultaneously with the ChIP samples.

2.2.6. Digestion of cellular protein and RNA
The proteins and RNA in the samples are enzymatically di-

gested and the DNA is further purified by phenol–chloroform
extraction and ethanol precipitation. GlycoBlue (Ambion,
AM9516) can be used instead of glycogen as carrier for the eth-
anol precipitation, which substantially improves visualization of
the DNA pellet.

44. Remove 200 ll of supernatant and transfer to new
tube.

45. Add 200 ll of TE to each tube of IP and WCE DNA to dilute
SDS in elution buffer.

46. Add 8 ll of 1 mg/ml RNaseA (Ambion Cat # 2271).
47. Mix and incubate at 37 !C for 30 min.
48. Add 4 ll of 20 mg/ml proteinase K (Invitrogen, 25530-049).
49. Mix and incubate at 55 !C for 1–2 h.
50. Add 400 ll phenol–chloroform–isoamyl alcohol (P:C:IA) and

separate phases with 2 ml Phase Lock Gel Light tubes
FPR5101 Flowgen Bioscience and follow the instructions
provided.

Fig. 2. (A) Example whole-cell extract (WCE) sonication result. (B) Agilent Bioanalyzer 2100 traces for two ChIP-seq libraries. The left panel shows a successful library
preparation. The right panel shows a library with significant amounts of adapter dimers. The quantification of the libraries is shown underneath each panel. (C) C/EBPa ChIP-
seq genome track (absolute fragment count) at the albumin locus in mouse hepatocytes showing several strong and weaker binding events.
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51. Transfer aqueous layer to new centrifuge tube containing
16 ll of 5 M NaCl (200 mM final concentration) and 1 ll of
20 lg/ll GlycoBlue (Ambion, AM9516).

52. Add 800 ll 100% EtOH. Incubate for 30 min at –80 !C.
53. Spin at 20,000 ! rcf for 10 min at 4 !C to pellet DNA. Wash

pellets with 500 ll of 80% EtOH and spin at 20,000 ! rcf
for 5 min.

54. Dry pellets 10–20 min in a speedvac at 45 !C and resuspend
each in 30 ll of 10 mM Tris–HCl, pH 8.0.

55. Measure DNA concentration of WCE with NanoDrop 1000
(Thermo Fisher Scientific). Note that ChIP samples are too
low in DNA concentration to give reliable results using a
NanoDrop.

2.2.7. Perform end-repair of the DNA
The final steps of this protocol convert the ChIP-enriched DNA

into a library suitable for high-throughput sequencing using an
Illumina Genome Analyzer. Historically, the Illumina Genomic
Sample Preparation Kit has been used for ChIP reactions, since no
dedicated ChIP-seq kit was available. Indeed, the recently released
ChIP-seq kit is very similar to the Genomic Sample Preparation Kit.
Here, we have replaced all the enzymes from the Illumina Genomic
Sample Prep Kit using standard, commercially available products.
Only the Adapter Oligonucleotide Mix and the PCR primers 1.1
and 2.1 should be directly ordered from Illumina, as they contain
proprietary modifications that, based on our experience, greatly
improve library synthesis.

Using commercial reagents as opposed to pre-assembled kits
greatly reduces the price per library generation, and allows the
preparation of a master mix for the following reactions. For new
users, or if only a small number of samples are to be processed
at a time, it may be simpler to use the Illumina Genomic Sample
Preparation Kit. ChIP-seq libraries can also be prepared using
paired-end adapters and PCR primers, as they are compatible with
both single- and paired-end flowcells. However, we have not opti-
mized the protocol for the paired-end adapters. Based on our prior
experiences, we predict that concentration of the paired-end adap-
ter in the ligation reaction will need to be optimized carefully.

56. Pipette the following mix into PCR tubes and keep on ice, or
make a master mix on ice containing water, buffer and
enzymes, and add to the samples. Incubate 30 min at 20 !C
in a thermal cycler.

ChIP sample, or 5–50 ng of WCE 30.0 ll
Water 45.0 ll
T4 DNA ligase buffer(NEB, B0202S) 10.0 ll
dNTP mix, each 10 mM (NEB, N0447L) 4.0 ll
T4 DNA polymerase (NEB, M0203L) 5.0 ll
Klenow DNA polymerase (NEB, M0210L) 1.0 ll
T4 PNK (NEB, M0201L) 5.0 ll

Total 100.0 ll

57. Clean-up samples using the DNA Clean&Concentrator-5 kit,
(Zymo Research, USA), following the manufacturer’s
protocol.

58. Elute with 33 ll EB preheated to 50 !C. Chill on ice.

2.2.8. Add ‘‘A” bases to the DNA
Pipette the following mix in 1.5 ml tubes and keep on ice, or

make a master mix on ice containing buffer and enzyme and add
to the samples.

DNA sample 32.0 ll
Klenow buffer (NEB, B7002S) 5.0 ll
dATP (1 mM) 10.0 ll
Klenow 30–50 exo minus (NEB, M0212L) 3.0 ll

Total 50.0 ll

59. Incubate 30 min at 37 !C in a water bath.
60. Clean-up samples using the DNA Clean&Concentrator-5 kit,

following the manufacturer’s protocol.
61. Elute with 9 ll EB preheated to 50 !C. Chill on ice.

2.2.9. Ligate sequencing adapters to DNA fragments
One of the most persistent problems we have observed is the

formation of adapter dimers generated during adapter-target DNA
ligations. Dimers form clusters on the flowcell of the Illumina
Genome Analyzer and thus compete with the desired sample
for sequencing. This can reduce the sequencing reads from the ac-
tual ChIP experiment. A number of steps can be taken to signifi-
cantly reduce adapter dimers: (i) the amount of Adapter
Oligonucleotide mix can be titrated by diluting the Adapter Oligo-
nucleotide mix 40-fold. This gives robust results with as little as
5 ng of DNA; (ii) pooling of multiple ChIPs can be used to increase
the relative amount of sample DNA versus Adapter Oligonucleo-
tides; (iii) ultrapure ligases can be used, such as those from Enzy-
matics [25]; (iiii) after PCR amplification the library can be
purified by solid-phase reversible immobilization technology as
described in [25]; and (iv) Illumina recommends a gel purification
step following the ligation reaction which will likely minimize
these adaptor dimers but may result in loss of sample complexity
in the case of ChIP-seq.

Pipette the following mix in 1.5 ml tubes on ice. Alternatively,
add a master mix containing buffer and Adapter Oligo to the sam-
ples followed by the ligase.

DNA sample 8.0 ll
Quick Ligation Reaction Buffer (NEB, M2200L) 12.5 ll
Fourtyfold diluted Genomic Adapter Oligo mix (Illumina) 2.0 ll
Quick T4 DNA Ligase (NEB, M2200L) 2.5 ll

Total 25.0 ll

62. Incubate 15 min at RT.
63. Clean-up samples using the DNA Clean&Concentrator-5 kit,

following the manufacturer’s protocol.
64. Elute with 24 ll EB preheated to 50 !C. Chill on ice.

2.2.10. Amplify adapter-modified DNA by PCR
ChIP-seq libraries at this stage have by nature only a small

mass. To reduce the risk of complexity loss, we perform the
PCR amplification before the size-selection step in agarose
gel.

The library is amplified using a DNA polymerase that: (i) high
fidelity and (ii) produces blunt ends. The recommended 2! mas-
ter mix (NEB, F-531L) containing Phusion DNA polymerase
should be distributed into convenient aliquots to avoid multiple
freeze-and-thaw cycles. Alternatively, PCR yield can also be im-
proved using Platinum Pfx polymerase (Invitrogen) see [25] for
details.

Pipette the following mix directly into PCR tubes and keep on
ice.
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DNA sample 23.0 ll
Phusion Master Mix with HF Buffer (NEB, F-531L) 25.0 ll
Genomic PCR primer 1.1 (Illumina) 1.0 ll
Genomic PCR primer 2.1 (Illumina) 1.0 ll

Total 50.0 ll

65. Run program:

Step 1: 98 !C 30 s
Step 2: 98 !C 10 s
Step 3: 65 !C 30 s
Step 4: 72 !C 30 s
Step 5 GOTO step 2 17 times
Step 6: 72 !C 5 min
Step 7: 4 !C HOLD

66. Purify with QIAquick and elute with 32 ll preheated EB. This
sample is called SolexaPreGel. If validation of ChIP-seq
library is desired, follow the optional protocol for reamplifi-
cation (steps 75–80). Alternatively purify using solid-phase
reversible immobilization technology as described in [25].

2.2.11. Gel purification of SolexaPreGel for ChIPseq
The amplified library is purified on an agarose gel to select a

specific size-range for cluster generation, as well as to remove po-
tential adapter dimers. One sample per gel can be used to avoid
crosscontamination of different libraries.

Using Xylene cyanol (Sigma, X4126) as loading dye has the
advantage that it runs above the actual library, and does not inter-
fere with the visualisation of the critical size range (150–700 bp)
on a transilluminator.

67. Cast the appropriate number of 50 ml 2% agarose (Bio-
Rad,161-3106) TAE gels with 5 ll SybrSafe (S33102).

68. Add 3 ll of loading buffer (50% glycerol supplemented with
0.25% Xylene cyanol) to 8 ll of DNA ladder (NEB, N3233L).

69. Add 10 ll of loading buffer to each sample.
70. Load the entire ladder into the first well of the gel, leave one

lane empty and load the sample into the next well. Load only
one sample per gel to eliminate any possibility of
crosscontamination.

71. Run gel at 120 V for 40 min.
72. Excise the 200–300 bp fragments on a Dark Reader (Claire

Chemical Research) and purify the DNA with a Qiagen MinE-
lute Gel Extraction Kit (Qiagen, 28606). When the DNA is
extracted it might be advantageous not to heat the gel slice
to 50 !C but to dissolve the gel slice at room temperature as
discussed in [25]. Elute with 15 ll EB preheated to 50 !C. You
can excise and store the larger fragments (300–800 bp) as a
backup.

73. Run the library on a Bioanalyzer DNA 1000 assay (Agilent) to
estimate the concentration and to check that no adapter
dimers are present (Fig. 2B). If there are adapter dimers vis-
ible, the library could be rescued by solid-phase reversible
immobilization technology as described in [25].

74. The sample is now ready for sequencing on an Illumina Gen-
ome Analyzer (Section 2.3).

2.2.12. Optional protocol for reamplification
We have described and validated an additional procedure that

begins by diluting 1 ll of the amplified ChIP-seq library (Solexa-
PreGel) in 9 ll of EB buffer for subsequent analysis using real-time

PCR or ChIP-chip [14]. This approach allows direct testing of li-
braries or to confirm sequencing results with readily available
technologies, such as DNA microarrays or real-time PCR. This por-
tion of material should be set aside routinely. For this method, it is
necessary to process a WCE sample at the same time as a reference
for real-time PCR and/or ChIP-chip.

75. Use 2 ll of the diluted SolexaPreGel sample (1 ll SolexaPre-
Gel in 9 ll EB) per PCR. One should also amplify the WCE
sample that will be used as an input control for subsequent
analyses.

76. Make PCR mix:

Stock 1! Mix

10! Thermopol buffer (NEB) 5.0 ll
dNTP mix (25 mM each) 0.5 ll
Primer 1.2 for reamp1 (10 lM) 2.5 ll
Primer 2.2 for reamp2(10 lM) 2.5 ll
AmpliTaq 1.0 ll
ddH2O 36.5 ll

Total 48.0 ll
1 Order the following primer: Primer 1.2 for reamplification: 5’AATGATACGGC

GACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT.
2 Order the following primer: Primer 2.2 for reamplification: 5’CAAGCAGAAGA

CGGCATACGAGCTCTTCCGATCT Oligonucleotide sequences reference: http://intro-
n.ccam.uchc.edu/groups/tgcore/wiki/013c0/Solexa_Library_Primer_Sequences.html.

77. Add 48 ll of PCR Mix to each sample and run program:

Step 1: 95 !C 2 min
Step 2: 95 !C 30 s
Step 3: 65 !C 30 s
Step 4: 72 !C 1 min
Step 5: GOTO step 2 24 times
Step 6: 72 !C 5 min
Step 7: 4 !C HOLD

77. After PCR is completed, clean-up samples with QIAquick
minelute PCR Purification Kit. Elute with 25 ll EB.

78. Measure DNA concentration of all samples with NanoDrop.
79. Samples are ready for further processing towards microarray

or real-time PCR.

2.2.13. Optional rescue of traditional ChIP-chip libraries for ChIP-seq
Ligation mediated PCR (LMPCR) [26] has been extensively used

to amplify ChIP enriched DNA fragments [3,5,7,27]. Like the proce-
dure presented here for building ChIP-seq libraries, LMPCR in-
volves ligating annealed linkers to the DNA of interest, followed
by a PCR amplification and (often) microarray analysis (ChIP-chip).
While it is generally preferable to repeat ChIP-seq with new exper-
iments, there are cases where the original material used for ChIP-
chip was valuable enough to warrant recovery of the library; for in-
stance, our laboratory uses primary human islets and hepatocytes
samples that are difficult to obtain. While the original ChIP-chip li-
braries could be processed into a ChIP-seq library by addition of
new linkers, the short nature of the reads currently obtained by
high-throughput sequencing technology necessitates the removal
of the original ChIP-chip linkers prior to library generation. Other-
wise, the first 25 bases would consist of the original ChIP-chip lin-
ker sequence. Here, we present an optional procedure to remove a
ChIP-chip linker from a previously made LMPCR library, so it can be
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re-ligated to Illumina linkers, and used for ChIP-seq. While it is
possible that additional amplifications during the Solexa library
preparation could introduce bias into the results, we have obtained
ChIP-seq results from ChIP-chip libraries that are fully consistent
with the original ChIP-chip experiment. In order to control for
any such bias, we recommend performing the same procedure on
the LMPCR amplified input material that was used in the original
ChIP-chip experiment.

81. Clean-up ChIP-chip library using the DNA Clean&Concentra-
tor-5 kit, following the manufacturer’s protocol. Elute in
42 ll EB preheated to 50 !C.

82. Add 5 ll of 10! PNK buffer (NEB, B0201S) to cleaned ChIP-
chip library and heat to 70 !C for 10 min and chill on ice
immediately (this may increase the efficiency of the subse-
quent phosphorylation step but can be omitted). Add 5 ll
(50 U) PNK (NEB, M0201S) and 5 ll 10 mM ATP and incubate
at 37 !C for 1–2 h.

83. Clean-up samples using the DNA Clean&Concentrator-5 kit,
following the manufacturer’s protocol. Elute in 9 ll pre-
warmed 50 !C EB.

84. Exonuclease digestion of linkers on phosphorylated LMPCR
library: Mix directly on ice in a PCR tube: 8.5 ll sample;
1 ll of 10! reaction buffer (NEB, B0262S) and 0.5 ll Lambda
exonuclease (NEB, M0262S). Digest for 10 min at 37 !C in a
PCR block. Heat inactivate for 10 min at 75 !C.

85. Clean-up samples using the DNA Clean&Concentrator-5 kit
and elute in 30 ll EB preheated to 50 !C.

86. Continue with ChIP-seq library generation (step 56–74).

2.3. Sequencing process

The Illumina Genome Analyser sequencing processes and bio-
chemistry have been well described [28]. The sequencing capacity
of next generation high-throughput sequencing machines is
increasing at an almost exponential rate; for instance, the Illumina
Genome Analyzer was able to produce 1 Gb of sequence per flow
cell in January 2008, yet by December 2009, predicted yields are
estimated to be 100 Gb. The amount of DNA sequence, the length
of DNA reads and quality of the data produced by the next-gener-
ation sequencing technologies are only likely to increase.

Many improvements to the standard Illumina protocol [25,29]
have been reported, most of which focus on the upfront sample
preparation rather than the particular sequencing biochemistry.
There are also ongoing developments in data analysis, primarily
in genome alignment tools and peak calling, but also in image pro-
cessing (see below). The most significant hurdle for efficient oper-
ation of the Genome Analysers involves quantification of the DNA
library before cluster generation. The original methodologies of
standard UV spectroscopy followed by titration of libraries to
achieve optimal cluster density often afforded variable densities,
and were laborious. The use of the Agilent Bioanalyser allows much
better quality control of libraries prior to sequencing. In our hands,
implementing the use of the Bioanalyser has increased the quality
of library submissions to our sequencing service and improved the
output of high quality sequencing data. The new high-sensitivity
DNA1000 kit from Agilent improves detection of samples 20-fold.
This allows quantification and QC of libraries from smaller
amounts of starting material or fewer cycles of PCR amplification,
both desirable to most users. The next generation technologies
all require generation of a ‘‘sample prep spike” where minute
quantities of DNA are prepared into libraries for sequencing, mas-
sively amplified for quantitation, and then massively diluted for
sequencing. It would be preferable to bypass this amplification en-
tirely and directly quantitate adapter ligated nucleic acid mole-

cules, opening the way to improved analysis of limited clinical or
biological resources.

Quantitative real-time PCR [25] allows very robust quantitation
and uniform cluster densities from Illumina ready libraries. The
protocols are slightly complicated by the need for multiple pri-
mer-probe combinations as the adapter molecules are different
for single end and paired end, or DNA and RNA libraries. This is
being addressed by Illumina and standard adapter sequences are
scheduled for release in 2009/10.

2.4. Quality control and data analysis

2.4.1. Basic data pipeline
The raw data format of the Illumina sequencer is images files.

After each completed sequencing run these images are computa-
tionally processed to obtain nucleotide-base calls. Besides the
standard analysis pipeline provided by Illumina, alternative
base-calling algorithms exist, including Alta-Cyclic [30] and Ro-
lexa [31], which are reported to reduce error rates and thus pro-
duce a higher number of alignable reads. Alternative programs
tend to be more CPU intensive than the standard Illumina pipe-
line, a cost that somewhat counterbalances the sequence gains.
However, improved base-calling will allow for longer and more
reliable sequence reads and should in principle help map reads
that cross into repetitive regions by anchoring them in the sur-
rounding non-repetitive sequence. This procedure could also im-
prove the reliability of the identification of single nucleotide
polymorphisms (SNPs), and thus allele-specific protein–DNA
contacts.

Subsequent to base-calling, the sequencing reads have to be
aligned to a reference genome. Several applications are available
to align the sequencing reads to a reference. Among many others
there are ELAND [32], MAQ (maq.sourceforge.net) and Bowtie
(bowtie-bio.sourceforge.net). The main differences among these
algorithms are the use of quality values and the treatment of reads
that map to multiple locations. MAQ uses the quality values pro-
vided by the base caller (which indicate the probability that the
base is called correctly) to resolve mismatches in alignments. With
MAQ, a mismatch at a low quality base is penalized less than a mis-
match at a high quality base, since it is more likely that the differ-
ence is a sequencing error in that case. Bowtie and ELAND do not
use quality values. If a read aligns to multiple positions in the ref-
erence genome equally well, MAQ and Bowtie choose one of those
positions uniformly at random. In this case ELAND assigns these
reads to an arbitrary, but not necessarily random, locations. Note
that since MAQ uses quality values in scoring alignments and Bow-
tie does not, it is more likely that Bowtie will assign the same score
to two alignments than will MAQ.

It should be noted that for the identification of binding events in
some repetitive areas of the genome, the precise treatment of
sequencing reads that map multiple times to the reference genome
can be critical. However, these cases seem to represent a minority
compared to the bulk of binding events.

2.4.2. Examination of aligned data as first quality control
In order to inspect if a ChIP-seq experiment was successful, it is

convenient to view the alignment results as continuous-valued
data in track formats, such as wiggle (WIG), GFF (General Feature
Format), or bedGraph using for example the UCSC or Ensembl gen-
ome browser. Fig. 2C shows a wiggle track for a ChIP-seq experi-
ment against the liver master regulator C/EBPa at the albumin
locus performed in primary mouse liver. The height of the track
represents the number of overlapping sequencing reads at bp res-
olution. This visualization allows a quick evaluation of the enrich-
ments present in the data.
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2.4.3. Automated identification of binding events
Following confirmation of successful genomic enrichment in a

ChIP experiment, the next task is to identify the regions across
the whole genome that are enriched in sequencing reads and thus
harbor the DNA–protein interaction in vivo. Several algorithms
have been developed to analyze ChIP-seq data and identify the
locations of transcription factor binding sites and histone marks
along the genome.

2.4.3.1. ChipSeq peak finder. ChipSeq Peak Finder [11] clusters the
reads and uses the ratio of the counts in the immunoprecipitated
and the control sample to call peaks. An updated version of the
method, eRange [33], also allows the use of reads which map to
multiple locations in the genome which results in a significant in-
crease in the amount of data utilized.

2.4.3.2. XSET. The extended set method XSET [16] uses the full esti-
mated length of the DNA fragments to call the regions with highest
numbers of overlapping fragments.

2.4.3.3. Mikkelsen methodology. The method in Mikkelsen et al. [34]
takes into account the ’mappability’ of the underlying sequence, a
measure of how many reads could be uniquely mapped at each
location, and computes p-values to find significant differences be-
tween the observed and expected number of fragments.

2.4.3.4. PeakSeq. PeakSeq [35] allows for this mappability effect,
which starts with a normalization step comparing the control with
the background component of the ChIP sample and then detects
significantly high concentrations of reads using the Binomial
distribution.

2.4.3.5. MACS. Model-based Analysis for ChIP-seq (MACS) [36]
shifts the tags on the forward and reverse strand together and uses
the Poisson distribution to detect enrichment. In addition, the
method ignores multiple identical reads to avoid biases during
amplification and sequencing library preparation.

2.4.3.6. QuEST. Quantitative enrichment of sequence tags (QuEST)
[37] shifts the peaks from opposite strands together and produces
a kernel density estimation-derived score to call the enriched
regions.

2.4.3.7. FindPeaks. FindPeaks [38] calls peaks according to some
minimum height criteria without including a control sample in
the analysis.

2.4.3.8. SISSR. Site Identification from Short Sequence Reads (SISSR)
[39] estimates high read counts using Poisson probabilities and
calls regions where the peaks shift from the forward to the reverse
strand.

2.4.3.9. Other methods. In Kharchenko et al. [19] three similar peak
calling methods are proposed, scoring read counts upstream and
downstream of the each region to match tag patterns in the for-
ward and reverse strands. In addition, Nix et al. [40] have simu-
lated spike-in data, combined them with input reads from real
experiments and used different metrics to score the peaks control-
ling for false discoveries. Another method that has been developed
is BayesPeak which uses hidden Markov models and Bayesian tech-
niques to identify the enriched regions based on posterior proba-
bilities [41].

As with any new technology, it will take some time until the
analysis of ChIP-seq experiments is a more standardized process.
The growing number of tailored web-based tools and the advances
made in sequencing throughput and quality will facilitate and im-

prove routine analysis in the future, and make this technology
available to a broader group of researchers.

3. Concluding remarks

Using ChIP-seq, it is possible to ask, at a genome wide level,
where and when proteins interact with DNA. As more high-
throughput sequencers become available, the amount of informa-
tion obtained through ChIP-seq is limited only by the available
antibodies, sufficient starting material, and an accurate reference
genome sequence on which to align results. The maps of tran-
scription factor binding and modified histones generated by
ChIP-seq are important resources for further functional investiga-
tion of the processes and mechanisms involved in gene
regulation.
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Abstract
Background: The accurate and high resolution mapping of DNA copy number aberrations has
become an important tool by which to gain insight into the mechanisms of tumourigenesis. There
are various commercially available platforms for such studies, but there remains no general
consensus as to the optimal platform. There have been several previous platform comparison
studies, but they have either described older technologies, used less-complex samples, or have
not addressed the issue of the inherent biases in such comparisons. Here we describe a
systematic comparison of data from four leading microarray technologies (the Affymetrix
Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina
HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide
array). We compare samples derived from primary breast tumours and their corresponding
matched normals, well-established cancer cell lines, and HapMap individuals. By careful
consideration and avoidance of potential sources of bias, we aim to provide a fair assessment
of platform performance.

Results: By performing a theoretical assessment of the reproducibility, noise, and sensitivity of
each platform, notable differences were revealed. Nimblegen exhibited between-replicate array
variances an order of magnitude greater than the other three platforms, with Agilent slightly
outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An
assessment of the single probe power revealed that Agilent exhibits the highest sensitivity.
Additionally, we performed an in-depth visual assessment of the ability of each platform to detect
aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a
robust manner. However, some focal amplifications and deletions were only detected in a subset of
the platforms.

Conclusion: Although there are substantial differences in the design, density, and number of
replicate probes, the comparison indicates a generally high level of concordance between
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platforms, despite differences in the reproducibility, noise, and sensitivity. In general, Agilent tended
to be the best aCGH platform and Affymetrix, the superior SNP-CGH platform, but for specific
decisions the results described herein provide a guide for platform selection and study design, and
the dataset a resource for more tailored comparisons.

Background
The accurate and high-resolution mapping of DNA copy
number aberrations (CNA) has become an important
tool for biological and medical research. From under-
standing the extent of natural genetic variation [1], to
associations with diseases such as HIV [2], to elucidating
the mechanisms of tumourigenesis [3], such research is
dependent on the quality of the data generated.

Numerous reports on the use and comparison of copy
number profiling platforms have appeared [4-10] and
more recently an approach to perform meta-analyses
across such platforms has been described [11]. Early
studies [12] suggested a high level of concordance
between BAC-based aCGH and SNP-based platforms
(Affymetrix 10 K array) in detecting CNA, but did not
formally compare them. Greshock et al. [5] performed
the first systematic comparison of multiple platforms on
melanoma cell lines and found that a high level of
sensitivity and specificity was observed for the Agilent
185 K arrays and that the increased probe density of
Affymetrix arrays (100 K and 500 K) results in increased
confidence in detection for these platforms. These results
were echoed by Gunnarsson et al. [8] who also examined
the performance of several older copy number profiling
platforms (a 32 K BAC array, the Affymetrix 250 K SNP
array, the Agilent 185 K oligonucleotide array, and the
Illumina 317 K SNP) array in 10 chronic lymphocyte
leukaemia (CLL) samples. They concluded that all
platforms performed reasonably well at detecting large
alterations, but that BAC probes were too large to detect
small alterations. While Agilent offered the highest
sensitivity, the increased density of SNP-CGH platforms
(Affymetrix and Illumina) compensated for their
increased technical variability, with Affymetrix detecting
a higher degree of CNA compared to Illumina. A further
aCGH study did not compare platforms, but did
investigate the influence of cellularity on copy number
detection [13] and concluded that modern high-resolu-
tion arrays could cope with high levels of contamination.

To attempt a fair and formal comparison of copy-number
profiling platforms in a general setting is an almost futile
exercise. Quantification of performance is difficult even
with idealized data, and while measurements have been
proposed such as the theoretical power to discover a single
copy loss or gain [7], or the ‘functional resolution’ of the
platform [6], these tend either to measure a very specific

aspect of the platform, or appear flawed under close
examination. Such idealized data are, in any case, difficult
to obtain, as one has to ask what is fair in terms of
numbers entering the experimental design. Should one
Illumina array be compared to one Nimblegen array or
should the two-channel Nimblegen array be compared to
two arrays from the single colour technology? Should the
two-colour platform be penalized by an inefficient design
to allow easier comparison, or the SNP-based platform
credited for the additional information that it brings? If, as
often is the case, the main experimental constraint is
financial, then comparing $1000 of one technology to
$1000 of another technology would seem sensible.
However, the relative costs of platforms will vary from
laboratory to laboratory and with time, and such an
approach would foist the authors’ view of microarray
economics on the reader.

Additionally, the results from such an exercise are only as
good as the analysis methods used and in that regard
one has two options, both flawed. Naturally, the
platforms will require different pre-processing strategies,
but if different methods of analysis are also used for
segmentation, then the performance of the technology
will be confounded with the adequacy of the algorithm.
This then punishes newer technologies for which
analytical methodologies are not yet mature. The
alternative, to use a common approach for the analysis
of all platforms, is undesirable firstly because that
approach is likely to have been developed for one of
the technologies and may thus introduce bias, and
secondly because the deliberate use of a sub-optimal
analysis does not provide useful information to inform
decisions in the real world. Nonetheless, informative
qualitative comparisons can be made without perform-
ing segmentation that illuminate the relative strengths
and weaknesses of each platform. We acknowledge that
some users will be primarily interested in a comparison
based on using existing analytical tools, rather than
concerning themselves with the potential of each plat-
form, but that is not the purpose of this study.

This study differs from previous comparative assess-
ments of copy number profiling platforms in that we
have attempted to characterize the strengths and weak-
nesses of various platforms in as unbiased a fashion as
possible by avoiding measures that cannot be fairly
computed, highlighting areas of potential bias, and
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emphasizing a graphical assessment of performance that
provides insight about the underlying technology as well
as the specific platform. Inevitably, despite considerable
effort, these comparisons will be shaped by our own
prejudices concerning copy number analysis, but we
have made the raw data available for others to draw their
own conclusions.

Due to the speed of platform development, it is typical for a
platform to be superseded by one with a greater number of
features before comparisons involving it are published. The
generation of platforms describedhere have not yet been the
subject of an in-depth comparison, but have indeed already
been superseded since this study was performed. None-
theless, the underlying technologies are similar and a
comparison is still informative. Implications for the new
generations are discussed in the New Platforms section.

Herein we describe a comparison based on the analysis
of two cell lines, six primary breast tumours, including
matched normal samples, and two HapMap individuals.
The SUM159 and MT3 cell lines and HapMap samples
were selected based on the presence of known chromo-
somal aberrations, while the tumours are highly hetero-
geneous and hence present additional complexity for
copy number analysis, not least with regard to their
varying degrees of cellularity.

Here we present an analysis of probe coverage on each of
the microarray platforms and a technical description of
their reproducibility, sensitivity, and noise. We also provide
an in-depth visual assessment of the ability of the different
platforms to identify a range of sizes of copy number
aberration. Lastly, we provide a publicly available dataset
resulting from the processing of a range of samples (chosen
to evaluate different abilities) on each platform. This
information will allow interested parties to make decisions
based on their own circumstances, preferences, and
constraints.

Results
Theoretical and technical performance
Probe coverage and resolution
We present a summary of probe numbers in Table 1.
Appreciation of the basic differences between the platforms
is crucial for understanding the differences in performance.
The Affymetrix platform has by far the most features, with
the Illumina and Nimblegen arrays having a little under
half of that number, and the Agilent array having markedly
fewer still. More detailed summaries, including range of
coverage and breakdown by chromosomal arm are
presented in Additional File 1.

We choose not to present the theoretical functional
resolution of these platforms as calculated by ResCalc [6]

for three reasons, each of which is, in itself, revealing
with regard to the inter-platform differences. Firstly, the
results presented in Coe et al. [6] obscure a large degree
of inter- and intra- chromosome variability. As a
proportion of their total, Illumina have more probes
on chromosome 6 than do the other platforms, with the
result that even though there are more probes in total on
the Nimblegen platform, for this particular chromosome
Illumina have 16% more probes than Nimblegen. On
chromosome 19, Affymetrix put a noticeably higher

Table 1: Basic summary of platform contents

Chromosome Affymetrix Agilent Illumina Nimblegen

1 64442 17259 27151 30220

2 69304 17382 28903 32900

3 58067 14802 24393 27255

4 55531 12863 22136 25940

5 52788 12486 22016 24223

6 51362 12438 26824 23138

7 43909 12201 20022 20549

8 45407 10309 20369 19870

9 34991 8461 17551 15160

10 42890 10297 18063 17820

11 41597 10114 16916 17901

12 40517 10169 16965 17991

13 30495 7375 13134 13541

14 25712 7512 11140 12130

15 23131 7314 10540 10735

16 22875 5610 10454 10206

17 19375 6220 9990 10025

18 24091 5586 11407 10682

19 12122 4081 7251 6828

20 19498 4715 8659 8403

21 11510 3077 5982 4733

22 10590 3181 6209 4442

X 27536 10179 12556 19151

Y 996 1191 1412 1963

Total 828736 214822 370043 385806

For the probes used in this study (i.e., only 60-mer Agilent probes, and
well-annotated Affymetrix probes), the number of features broken
down by chromosome.
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proportion of probes on the q arm than do Agilent, a
situation that is reversed on chromosome 7.

The second problem of comparing by ResCalc is that the
tool allows the platforms to define their own range of
coverage from telomere to centromere. This makes it
possible for a platform to improve its functional
resolution by removing probes (essentially by dropping
peripheral loosely spaced probes, while retaining the
central tightly spaced ones), which is undesirable. To
take an example, on arm 7p, in the core region covered
by all of the platforms, Affymetrix average a probe every
3 to 4 Kb. However on the telomeric side of that core
region, they have two probes covering 80 Kb. Undoubt-
edly the functional resolution as calculated by ResCalc
would improve if such probes were removed (indeed, in
this example, the removal of a single telomeric probe
improves the reported functional resolution by 140
bases). Taking a more extreme example, the p arm of
chromosome 9 has 13,643 probes on the Affymetrix
platform and has a reported single probe functional
resolution of 222,000 bases, but by removing 6 extreme
telomeric probes and 166 extreme centromeric probes
that are more sparsely positioned, we can improve the
reported resolution to 8,900 bases. In general, the SNP-
based platforms cover a wider region, with Nimblegen
coming third and Agilent, in effect, often defining the
core region of common coverage.

Finally, the hypothesis of uniform occurrence of CNA is
doubtful and some of the platforms have been designed to
provide non-uniform coverage by tiling more probes in
known regions of variation (see Methods section for further
details), or in areas where variation would be of particular
interest. For example, Nimblegen have chosen, for the
second generation of the product featured here, to switch
from a uniform spacing along the genome to a ‘designed’
layout. This move would appear detrimental using tools
such as ResCalc, but is clearly done for a purpose.

Reasons that one might adopt a non-uniform spacing
include the desire to incorporate prior knowledge of
genomic structure (e.g. to target CNVs, promoter regions,
genes etc. and avoid repetitive elements), empirical
evidence of probe performance from previous array
designs, and lastly to achieve uniformity of probe
performance. We show in the Methods section that there
are a number of probe properties (most notably GC
content) that affect the consistency of probe performance.
These trends were visible in our data for all four platforms.
There may, of course, be effects that are less visible, from
these data, such as saturation levels and dynamic ranges.
Naturally, increased probe coverage can address issues of
variation, but technical biases will not be salved by
increasing the number of probes.

Replicate probes
All of the platforms provide some replicate probes, bywhich
we mean probes carrying the same sequence. For the SNP-
CGH arrays, this is an integral aspect of the platforms and
nearly all of the observations are actually averaged from
replicate probes, 4 replicates for the Affymetrix SNP probes,
and an average of 16 replicates for Illumina probes
(although this ranges from 0 to over 40). With the Agilent
and Nimblegen arrays, such probes are a rarity, and the
majority of observations are based on only one probe. As
such, for these two platforms, it makes sense to use the few
probes with replicate information to characterize the
performance of all observations. We can do this most
informatively by calculating the variance of the replicate log-
ratios between two samples.

Agilent provide, in addition to control probes, 916 60-mer
probes for which there are three replicates. Nimblegen do
not nominally provide any replication, but the coverage of
the pseudoautosomal regions of the X and Y chromosomes
results in 314 probes that are apparently replicated.
However, we should note that these probes are treated as
lying on different chromosomes, and thus if any within-
chromosome normalization has taken place then their
apparent reproducibility will be adversely affected. Neither
Agilent nor Nimblegen show a strong association between
the magnitude of log-ratio and variance of replicate
observations (this is after all one of the reasons for
analysing the log-ratio). To enable between-array compar-
isons, when we have resisted performing between-array
normalizations, we summarize for the HapMap-HapMap
comparisons the variance of replicate probes scaled by the
mean difference in log-ratios observed in chromosomes X
and 13, a difference that should be 1 for this comparison.
Since this scaling does not share information between
arrays, it is not a between-array normalization method.

For Agilent, the median variance of replicate probes is
0.042, 0.048, and 0.058 on three different arrays with third
quartile values of 0.087, 0.111, and 0.120 respectively. In
contrast, for Nimblegen, the median variance of replicate
probes is 0.125, 0.142, and 0.144 with third quartile values
of 0.309, 0.429, and 0.504, respectively. Thus Nimblegen
exhibits 2-4 fold greater variability amongst replicate
probes than Agilent. However, we note that the interpreta-
tion of the third quartile, in particular, should be tempered
by our knowledge of the autocorrelation of probes along
the genome.

Note that while the SNP-CGH platforms enable the
quantification of allele-specific copy number [14-16],
similar results cannot be obtained for the aCGH platforms.
As such, we will focus strictly on the analysis of total copy
number values. To quantify DNA abundance (or raw total
copy number), the SNP-CGH platforms essentially sum the
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fluorescence intensities from the two alleles investigated for
a given SNP. This involves, for each allele, averaging over
the replicate probes and then summing.

Because of these replicate probes, for Affymetrix and
Illumina estimating the variance of individual probes is
of limited value, since the values of individual probes
will not be reported. Yet, for Illumina we cannot provide
a good estimate of the variance after averaging over the
replicate probes and then summing over alleles because
the covariance of the two channels is not estimable from
the data provided by BeadStudio [17], but can be
presumed not to be zero due to the array design.

Replicate arrays
After scaling within arrays to obtain a difference of 1 for
the chromosome X to chromosome 13 comparison, the
variances of three replicate HapMap-HapMap comparisons
were calculated. As can be seen in Table 2, Nimblegen
exhibits between replicate array variances an order of
magnitude greater than the rest.

Self-self comparisons
The ability of a copy number profiling platform to detect
aberrations is largely determined by the noise observed in
the measurements from that platform. This is a measure
not only of the variance of the noise (although this is
important), but also the kurtosis of the noise (i.e., if the

noise is relatively heavy tailed, then more false calls will be
made) and the independence of neighbouring probes. Not
only are there known autocorrelation effects along the
genome [18], possibly driven or exacerbated by autocorrela-
tion in the quality of probe design caused by regions of high
GC content or highly repetitive elements, but if probes are
too close then they may compete to register the same DNA
fragments. In such a case, the lack of independence of
measurements from the probes would detract from the
benefits of having improved probe density.

The ideal test for such a comparison would be a set of
log-ratios generated from two replicate normal samples,
as any departure from a log-ratio of 0 for these platforms
must be noise and can be easily quantified. Since for two
platforms, one of the pooled normal samples intended
for this task was of lower quality, instead we again use
chromosome 13 from a comparison of the two HapMap
samples. Not only does this have no known changes, but
adds the benefit that again we can scale our observations
so that the difference in log-ratios between chromo-
somes 13 and X is a standard 1.

We summarize the noise by four measures in Table 3: the
variance (after scaling as described), the autocorrelation
of measurements at lag 1 along the chromosome, the
percentage of observations beyond two standard devia-
tions, and the percentage of observations beyond three
standard deviations. The first measure will ideally be low
and gives an indication of the noise-to-signal ratio, the
second gives a measure of the independence of neighbour-
ing probes, while the third and fourth give an idea of the
false calling rates that might arise.

These results indicate that Nimbelgen is noisy, exhibiting
poor variance (2-4 fold greater than the other platforms).
Additionally, Illumina has relatively poor autocorrela-
tion for its probe density and has more outliers at a
standard deviation of 2. Further, both SNP-CGH plat-
forms have more outliers beyond a standard deviation of
3, which may be related to the autocorrelation. It is
worth noting that Agilent has relatively few probes on
chromosome 13 (see Table 1, Additional File 1), but

Table 2: Variance among three replicate HapMap-HapMap
comparisons

Platform 1st Quart Median Mean 3rd Quart

Affymetrix 0.067 0.173 0.356 0.391

Agilent 0.046 0.122 0.304 0.284

Illumina 0.058 0.151 0.372 0.352

Nimblegen 1.21 3.03 5.65 6.47

After calculating the variance of each feature from three suitable scaled
HapMap/HapMap comparisons, the mean, and quartile values of the
variances are presented.

Table 3: Characteristics of a surrogate self-self hybridization

Variance (scaled) Autocorrelation % z > 2 % z > 3

Affymetrix 0.33, 0.34, 0.29 0.040, 0.039, 0.036 4.5, 4.8, 4.7 1.3, 1.4, 1.3

Agilent 0.22, 0.24, 0.21 -0.001, 0.027, 0.019 4.4, 4.6, 4.9 0.5, 0.8, 0.7

Illumina 0.28, 0.36, 0.31 0.086, 0.066, 0.076 5.2, 5.3, 5.3 1.4, 1.4, 1.2

Nimblegen 0.81, 0.85, 0.60 0.009, 0.035, 0.026 4.3, 4.8, 4.5 0.5, 0.5, 0.5

For chromosome 13 of a HapMap/HapMap comparison (a surrogate self-self hybridization), presented are the variance, autocorrelation, and
percentage of observations beyond two or three standard deviations.
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based on other performance measures, this is unlikely to
influence significantly its superior performance.

Male-Female comparisons based on X and Y chromosomes
Since the two HapMap samples consist of a male
(NA10851) and a female (NA15510), but for the
autosomal chromosomes exhibit few copy number differ-
ences, we can use these samples to investigate the ability of
a single probe on these platforms to distinguish between
the diploid state and an altered copy number state due to
regions of physical loss. We compare the log-ratios arising
from chromosome 13 with those arising from chromo-
some X in order to test the ability to detect a 2:1 copy
number alteration, and also with those arising from
chromosome Y in order to test the ability to detect a 1:0
copy number alteration. The single-probe abilities of the
four platforms are depicted in Figure 1.

For distinguishing between sites where both samples have
two copies and sites where one sample has two copies
while the other has one (13 versus X), Affymetrix and
Agilent marginally outperform Illumina, while Nimblegen
performs noticeably worse. In contrast, when distinguish-
ing between sites where both samples have two copies and
sites where one sample has no copies while the other has
one (chromosome 13 versus Y), Agilent generally exhibits
the highest sensitivity, although Illumina outperforms
Agilent if very high specificity is sought. These are followed

in performance by Nimblegen, with Affymetrix performing
considerably worse.

Notably, the Affymetrix Human Mapping 100 K, 500 K,
and SNP5 platforms include chromosome X SNPs but no
chromosome Y or mitochondrial SNPs. With the SNP5
platform, copy number non-polymorphic (CN probes)
were introduced and for the Y chromosome there are 996
such probes with sufficient genomic information (1994
in total) all of which map outside the pseudoautosomal
region. As such, for the SNP5 platform, the Y chromo-
some is not representative of other chromosomes in that
it does not include any SNP probes and contains 0.1% of
all probes on the platform. The lack of SNP probes is one
possible explanation for the poor discrimination of a
single copy loss on the Y chromosome. As noted in the
Methods section, the CN probes are generally unrepli-
cated and while few in number, the actual number of
probes is on par with the other platforms.

Qualitative assessment of copy number aberration
detection
The platforms investigated in this study differ substan-
tially in their design, the number of probes, and their
experimental utility. To obtain an overview of platform
performance, the ability to detect several types of
common chromosomal changes was assessed. In parti-
cular, the following alterations were considered based on

Figure 1
For a comparison of the HapMap samples ROC curves are presented to assess the performance of a single
probe/probe-set for distinguishing the log-ratios associated with differing copy numbers from the log-ratios of
chromosome 13 where copy-numbers should agree. Note the contrast from the left-hand panel, where the
performances of Affymetrix and Agilent are indistinguishable, and the right hand panel, where the performance of Affymetrix
has substantially declined.
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raw copy number changes: whole chromosome gains or
losses, chromosome arm gains or losses, high amplitude
focal amplifications as well as subchromosomal gains
and losses, small regions of gain or loss as exemplified
by normal copy number variation.

i.) Whole chromosome gains or losses
This simple type of genomic aberration allows for
examination of consistency at the level of probe log-
ratioss (or potentially segmented means) along the
whole chromosome. Note that this is similar to the
comparison of the HapMap samples in the male-female
comparison. Here we use the MT3 cell-line, which is
known to have single-copy gains of chromosomes 7 and
13, and a single copy loss of chromosome X. As would
be expected, all four platforms can identify whole-
chromosome events (Figure 2), but there are differences
in the abilities to quantify the change and also in the
discrimination of different copy number states that will
be influential for the classification of smaller regions.
Agilent performs best on both of these measures.
Nimblegen includes probes targeting the pseudoautoso-
mal region, which explains the apparent departure from
zero for chromosome Y.

Also of note is the performance in terms of Y chromo-
some detection and the effect of normalization on the
Illumina array. The performance of Illumina in detecting
the absence of the Y chromosome in females is of
concern. It is not unreasonable that what would ideally
be an estimate of log2(0/0) should be unstable
(although due to non-specific binding the extremes of
this instability will not be observed). If the observed
values are indicative of any bias in the probe design, then
the apparently strong performance of Illumina in the
chromosome Y versus chromosome 13 comparison may
have been misleading.

ii.) Chromosome arm gains or losses
We illustrate the ability of the platforms to detect a gain on
a single arm of chromosome 5 in the SUM159 cell-line
where, in addition to other variations, the 5p arm has an
extra copy. Figure 3 illustrates the performance of the
platforms for this chromosome. All of the platforms are
able to detect the alteration, manifested as an upward
deflection, but the clarity of signal is greatest for Agilent,
followed by Affymetrix, Illumina and Nimblegen. This
region is depicted in greater detail in Additional File 2. Of
note is the duplication visible only in Illumina, at about 70
Mb into the chromosome. This is an area of known intra-
chromosomal segmental duplication [2] and the other
platforms place few probes in this region, as it is difficult to
tile in these regions.

iii.) High amplitude focal amplifications and subchromosomal gains
and losses
These smaller variants are relatively complex aberrations
and test the abilities of the platforms to determine break-
points accurately. These types of alterations would also
allow for the easiest assessment of segmentation algorithms,
if such a task were desired. Three examples occur on
chromosome5 of the SUM159 cell-line (Figure 3). Themost

Figure 2
Showing, for a comparison of the MT3 cell-line to a
pooled normal reference, a boxplot of the log-ratios
from each platform broken down by chromosome.
Also indicated are theoretical markers for a single copy gain
and a single copy loss. The three chromosomes with known
aberrant copy number are indicated.
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obvious alteration (a deletion at approximately 100 Mb) is
clearly observed in all four platforms, although again the
difference is less obvious for Nimblegen. The second
aberration, a complex change towards the telomere of arm
5p, is also seen by all four platforms, but the clarity of the
pattern is variable. Once again, Agilent is generally clearest,
but the two amplified regions are seen more clearly by
Nimblegen than by the two SNP arrays, although they
would still be detected by those platforms. The deletions

follow the usual order of being the most clear for Agilent >
Affymetrix > Illumina > Nimblegen. The thirdmuch smaller
change ismost obvious for Affymetrix at about 55Mb and is
just barely detectable with Illumina, being so narrow as to
fall between probes for Agilent and Nimblegen. A similar
pattern is seen for the change at approximately 130 Mb on
chromosome 8 for the SUM159 cell-line (Figure 4). Again,

Figure 3
Illustrating the ability of the platforms to detect the
duplication of a chromosomal arm. Depicted are the
log-ratios for a comparison of the SUM159 cell line to a
pooled normal reference for chromosome 5. In addition to a
number of smaller aberrations, there is a duplication of the p
arm of the chromosome for this sample.

Figure 4
Illustrating the ability of the platforms to detect high
amplitude focal amplifications and other
subchromosomal events. Depicted are the log-ratios for
a comparison of the SUM159 cell line to a pooled normal
reference for chromosome 8. A deletion, duplication,
deletion aberrations pattern is clearly visible for all four
platforms in the region of x = 130 Mb.
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Agilent and Affymetrix do generally best, but Nimblegen
does a much better job of identifying the amplifications
than it does for the neighbouring deletions.

iv.) Small regions of gain/loss as exemplified by copy number
variation between normal HapMap individuals
A total of 79 sites of copy number variation have been
identified between the two HapMap individuals assayed
in this study using an older technology, namely a custom
whole-genome tiling path array developed at the Well-
come Trust Sanger Institute [19]. These variants were
validated across multiple hybridizations and also via
PCR. For a full list of locations see Additional File 3.
Examination with these higher resolution technologies
suggests that some of the sites actually form one larger
variant, but we shall treat them as separate sites for this
analysis. Many of the sites showed no sign of variation
with any of the platforms, and concordance amongst
platforms was high. Due to the nature of these small
changes, it is not uncommon for a platform simply to
have no probes in the region of interest. This varies
between platforms, with probe density being influential,
but not the only factor.

The 79 sites were assessed by eye to see if they provided
evidence of variation (the plots of all these regions are
available in Additional File 4). Rating each CNV as clear,
tentative, absent, or not covered, we summarize the results
in Table 4. Naturally, there is an element of subjectivity in
this type of assessment, but the overall picture is clear.
Affymetrix and Agilent identify the greatest number of
variants, but Agilent fails to cover a fair number (18 out
of 79).

Notably, since some platforms (both Affymetrix and
Illumina) have been designed to cover known CNVs and
to target ‘unSNPable’ regions of the genome with copy-

number non-polymorphic probes, this rate will by
misleading if one is interested in identifying novel
CNVs. Nimblegen has more probes than Agilent, and a
similar number to Illumina, but does not attempt to
target known interesting regions with this version of the
array. Thus Nimblegen may well do relatively better with
novel sites. That said, the evidence here is that even if
novel sites have coverage, the platform may struggle to
identify them as CNVs. Illumina cover more of the
regions than do Affymetrix, but do not provide the
clarity of change over these small intervals.

Two CNV regions are shown in Figures 5 and 6. In Figure 5,
CNV #58 is depicted and one can see that all of the
platforms would identify it (with Affymetrix perhaps being
the least clear). The ‘typical’CNV #38 is depicted in Figure 6.
Here, three of the platforms greatly reduce their coverage in
the region of interest (Nimblegen being absent altogether),
while Illumina exhibits good coverage. Despite this, the
Affymetrix andAgilent probes that are in the region are quite
clear, whilst Illumina is only convincing through weight of
numbers.

Detection of characterized copy number aberrations
We address other measures of performance by making use
of aberrations that have previously been reported to occur
in the cell lines or have been broadly described to manifest
in breast cancer. An examination of the six tumour samples
(Table 5) reveals that there is little difference in the ability
of the platforms to spot the large aberrations associated
with cancer, with the exception that changes are harder to
spot in Nimblegen that with the other platforms. The
tumours themselves differ substantially, with T2704,
T2706 and T2707 exhibiting far fewer aberrations,
although we note that this may be a reflection of the
sample’s cellularity. Figures 7, 8, and 9 highlight some of
the aberrations observed in these tumours. For example,
Figure 7 depicts Chromosome 17 for Tumour 7214 on all
four platforms. Figure 8 reveals for Tumour 7207, the area
surrounding the ADAM3A gene and Figure 9 the ERBB2
gene is shown. While none of the tumours here exhibits
amplification of ERBB2, it is surprising to note how poorly
represented this frequently amplified cancer gene is on the
Illumina platform, although coverage is greater in the latest
generation of the array.

Cellularity
The data set we present allows for the realistic
comparison of platforms when considering copy-num-
ber changes in tumours. Tumour samples are often
affected by stromal contamination [13] and to represent
this, not only do we present 6 tumour samples of varying
degrees of cellularity (see Additional File 5 for cellularity
and clinical information for all samples), but a number

Table 4: CNVs observed between two HapMap samples

Platform Clear Tentative Not Covered

Affymetrix 20 14 10

Agilent 19 16 18

Illumina 8 21 5

Nimblegen 9 13 14

Detection of reported germline CNVs between two HapMap samples
across each platform, as adjudged from the plots in Additional File 4 by
three analysts. Differences in probe density prohibited the blinding of
analysts, but each platform was scored independent of the others.
Indicated are the number of CNVs that are clearly apparent, the number
for which there may be some evidence, which are labelled tentative,
and those which are not covered. Naturally, there is a fourth category
(not shown), which includes regions that are covered, but appear not to
be CNVs.
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of samples with simulated stromal contamination.
Essentially, two of the tumour samples were diluted
with their respective matched normal samples (7206:
30% tumour, 70% normal; 7207: 50% tumour, 50%
normal) and two cancer cell lines were similarly treated
(MT3 and SUM159: 30% tumour, 70% normal 7214).

We again consider the MT3 cell-line, this time in
dilution, to see whether the anticipated copy number
aberrations are visible (details of the expected copy

number alterations for the cell-lines are given in
Additional File 6). In Figure 10, equivalent to Figure 2
but for simulated 70% stromal contamination, the

Figure 5
For one of the HapMap - HapMap CNVs (CNV58
from Additional File 3), depicted are the
performances of all four platforms. The change is visible
in each case, but with differing degrees of clarity.

Figure 6
For one of the HapMap - HapMap CNVs (CNV38
from Additional File 3), depicted are the
performances of all four platforms. In this case the
variant is not obvious (or even apparent) in three of the
platforms due to poor coverage of the region. Nimblegen has
no coverage, and Agilent and Affymetrix have relatively low
coverage. However, these last two platforms do show the
copy number variation with what probes they have. Illumina
is less convincing on a probe-by-probe basis, but successfully
demonstrates the CNV through sheer number of probes in
the region.
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benefits of direct competitive hybridization are seen. The
two CGH platforms provide much clearer evidence of
copy number differences between the chromosomes (as
might be anticipated following previous studies [13]),
and of the two, Agilent outperforms Nimblegen. It is not
unreasonable that a direct comparison is better able to
detect small changes such as those anticipated here. Note
that as in Figure 2, no allowance has been made for
probes targeting pseudoautosomal regions, which may
explain the odd behaviour of the Y chromosome.

Figure 11 illustrates a zoomed-in region of chromosome
8q for a SUM159 dilution, similar to Figure 4 for the
undiluted samples. As expected, all of the platforms
exhibit some signal attenuation, but each is still able to
detect the amplification. Notably, Agilent is clearly the
least affected and in fact robustly detects the alteration at
nearly the same level as the undiluted case, attesting to
the sensitivity of this platform. In contrast, all of the
platforms struggled to detect a moderate loss in the same
sample.

Discussion
Discussion of results
The ability of a platform to detect a particular aberration
is a function of the distribution of probes in that region
and the reliability of those probes. Of the two SNP-based
platforms, there is little difference in terms of quality of
individual probes, but those on the Affymetrix arrays are
more numerous. That said, Illumina’s strategy for
locating probes means that there are locations where
this platform offers greater coverage (cf. the known CNVs
and the MHC-similar region 5q13, consistent with
Illumina’s stated design intent which also sees a greater

focus on SNPs near RefSeq genes than does Affymetrix)
but also some (such as the ERBB2 region) where they are
lacking. The coverage of smaller features such as CNVs
and genes is an important consideration in the choosing
of a copy-number platform, as broadly speaking all of
the platforms examined can identify large deletions and
duplications.

A curiosity is that Illumina fails to identify robustly the
chromosome 13 arm gain in the MT3 cell lines,
suggesting an issue with the normalization applied by
BeadStudio, but the main concern is the Nimblegen
platform, which fails to spot some large aberrations in
tumours T7195 and T7214. Of the two standard
arrayCGH platforms, Agilent’s performance is clearly
superior. Not only is the Agilent data of high-enough
quality to call aberrations from fewer probes than the
other platforms, but also the ability of the Agilent
platform to quantify aberrations appears to be superior.
All of the platforms suffer from variation induced by
probe design, related either to probe length, GC content
or other aspects. Additionally, the quality of SNP and
CGH probes on the Affymetrix and Illumina platforms
may not be equivalent. Thus when choosing a platform
one must consider not only the probe coverage in
regions of interest, but also the quality of those probes.

Explanation of cellularity findings
The comparison for the diluted tumours is more compli-
cated due to their pre-existing stromal contamination and
the fact that aberrations of these tumours have not
previously beenwell documented. Inspection of aberrations
in the dilution of Tumour 7207 revealed one curiosity.
Figure 12 depicts the area around the ADAM3A gene for

Table 5: Detection of anticipated aberrations across platforms for the 6 tumour samples

T1975 T2701 T2704 T2706 T2707 T2714

Gain 8p possibly 8q (all) also 8q (all) none none none none, but gain on 8q (all but Nimb)

Gain 1q all all all none all but Nimb

Loss 16q partial (all) and gain 16p (all) none and gain 16p (all) none none

Amp 8q24 all all none none none all but Nimb

Amp 11q13 none all none none none none

Amp 17q12 none none none none none all

Amp 20q13 all Affy and Agil none none none none

Del 13q14 all all none none none none

Del 9p21 all but Nimb all none none none none

Del 17p13 none all all none none all

The detection of anticipated aberrations in each of the 6 tumour samples is reported for each platform.
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each of the four platforms as in Figure 8, but here for a
dilution (50%). Surprisingly, we observe that all platforms
more robustly detect the loss in the dilution hybridization.
We note that this sample had the lowest cellularity (40%) of
all the tumours assayed and thatmany common aberrations
were not observed in this sample. This raises the possibility
that the normal sample might actually represent a preplasia
and brings into question the composition of the tumour.
Indeed, subsequent expert histopathological examination
of this sample revealed that the tumour section was likely
comprised of inflammatory infliltrate rather than invasive

tumour cells. Upon examination of the matched normal
sample for another tumour (7214) it was noted that the
tissue contains substantial ductal carcinoma in situ. Despite
the observation that this sample was used for dilution of the
SUM159 cell line, this should not affect the previous
discussion of the results since the 8q change was specific to
that cell line and not observed in tumour 7214. It is
noteworthy that examination of the array results prompted
these findings, as this highlights the utility of microarray-
based copy number assessment to detect subtleties in
sample composition.

Figure 7
Depicting Tumour 7214, Chromosome 17 for the
four platforms (genes not shown).

Figure 8
Depicting, for Tumour 7207, the area around the
ADAM3A gene for the four platforms.
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Chemistry
In comparing microarray technologies, it is also important
to keep in mind some of the more subtle differences
between them in terms of the protocols, chemistry, and
detection methods. For example, while both Affymetrix
and Illumina are SNP-based copy number profiling plat-
forms, there are important differences in their chemistries.
The Affymetrix GenomeWide SNP 5.0 whole genome
genotyping assay (as well as the newer SNP 6.0 array and
older generations of this platform, namely the 10 K - 500 K
arrays) all employ a complexity reduction procedure

similar to that first described for representational oligonu-
cleotide microarray analysis (ROMA) [20] in order to
increase the signal-to-noise ratio. Essentially, the DNA is
digested with the restriction enzymes NspI and StyI, ligated
to adaptors that recognize the cohesive four base-pair
overhangs, and amplified using a universal primer that

Figure 9
Depicting, for Tumour 7207, the area around the
ERBB2 gene for the four platforms. Note the poor
coverage of the Illumina platform.

Figure 10
For comparison with figure 2: Depicting, for a dilution of
the MT3 cell-line, compared to a pooled normal reference, a
boxplot of the log-ratios from each platform broken down
by chromosome. Also indicated are theoretical markers for a
single copy gain and a single copy loss at this dilution level.
The three chromosomes with known aberrant copy number
are indicated.
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recognizes the adaptor sequence. The amplified DNA is
subsequently fragmented, labelled, and hybridized to the
oligonucleotide array. While the amplification of only the
smaller restriction fragments improves the signal-to-noise
ratio, these values still remain below that observed for BAC
arrays, and the complexity reduction can potentially lead to
the differential representation of certain genome regions
and hence false positives. Also, since individuals vary in
their restriction digestion profiles, certain probe ratio
values may depend on differences in restriction fragment
size rather that actual copy number variation [21].

In contrast, the Illumina whole genome genotyping
protocol for the 370 HapMap Duo bead array (Infinium II
technology) involves an isothermal genome amplification
step (non-PCR based), fragmentation, hybridization to an
oligonucleotide bead array, SNP detection based on a
single-base extension reaction (SBE) on a single bead type
with differentially-labelled terminators, and signal amplifi-
cation. Thus the detection step, for the Illumina Infinium II
assay is based on an enzymatic discrimination step (SBE for
Infinium II, allele-specific extensions for Infinium I) rather
than by hybridization as for Affymetrix. Illumina claims that

Figure 11
Depicting, for a dilution of SUM159, the 8q region for
the four platforms.

Figure 12
Depicting, for a dilution of Tumour 7207, the area
around the ADAM3A gene for the four platforms.
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the isothermal amplification step does not result in the
preferential amplification of one allele [22].

New Platforms
All of the manufacturers now offer products with more
features than those compared in this report: the
Affymetrix GenomeWide SNP 6.0 array, the Illumina 1
M-Duo array, the Nimblegen Ultra-High Density CGH
array with 2.1 million features, and the Agilent Human
CGH 1 × 1 M array. All but the Affymetrix chip come
available with fewer features but multiple arrays on the
chip (the Illumina platform starting with 2 arrays on the
chip); the ability to run multiple samples in parallel is of
great potential value for sensitive experiments. Also
worthy of note is that the Nimblegen and Agilent
platforms offer full customization of content, while
Illumina offer limited customization.

As the coverage of platforms increases, many of the
subtleties that we have observed will have decreased
impact on the conclusions. The Illumina coverage of
ERBB2, for example, is satisfactory in the latest genera-
tion of chip. It remains to be seen whether the
manufacturers have been able to maintain probe quality
in the next generation of products. We have already
commented that the second generation of the Nimble-
gen platform featured here has seen a revision of probes
to improve performance.

The other disappointing performance we have witnessed
was that of the Affymetrix SNP5 platform for the Y
chromosome. The newer Affymetrix SNP6 platform
contains nearly 10 times as many Y chromosome probes,
including approximately 900 SNP probes (recall that
SNP5 contained only non-polymorphic probes for the Y
chromosome). Of the 997 SNP5 Y chromosome probes,
127 (12.74%) are retained on SNP6. Hence SNP5 probes
makeup only 1.34% of the total SNP6 Y chromosome
repertoire. Using a publicly available Affymetrix SNP6
HapMap X chromosome titration data set [23], we
compare the sensitivity and specificity of the SNP5 and
SNP6 platforms in Figure 13. The SNP6 platform
performs similarly to SNP5 in the detection of a 2:1
copy number alteration, whereas for a 1:0 alteration the
improvement is striking.

Alternative analysis methods
It should be noted that we have made use of
manufacturer-provided tools, where available, for pre-
processing this dataset. This was intentional, as the
choice of optimal tools is platform-specific, especially
since older platforms will likely benefit from more
mature analysis tools. For example, we employed the
BeadStudio software to summarize the Illumina data as
this is manufacturer-supplied. Likewise, Nimblegen
supplied NimbleScan pre-processed data. In contrast,
Affymetrix do not offer comprehensive support for copy

Figure 13
For comparison with Figure 3. Here a comparison of the Affymetrix SNP5 and SNP6 platforms are shown. ROC curves
are presented to assess the performance of a single probe/probe-set for distinguishing the log-ratios associated with differing
copy numbers from the log-ratios of chromosome 13 (where copy-numbers should agree) for the HapMap pair of samples.
For SNP6 five replicate HapMap/HapMap (NA15510 vs NA10851) comparisons are shown using raw data available from the
Affymetrix X chromosome titration study.
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number analysis of the GenomeWide SNP5.0 platform
so we employed the open source aroma.affymetrix [24]
software, one of the few tools for pre-processing this
relatively new SNP-CGH platform. Similarly, as Agilent
do not provide free software for pre-processing of their
aCGH data, standard open source methods were
employed for this well-established platform. Although
beyond the scope of this study, it is of interest to
compare alternate pre-processing (and segmentation)
methods for each of these platforms as this could
influence the results obtained. In particular, the con-
sideration of Illumina SNP data at the bead level could
yield considerable improvements since this would
enable calculation of the within-bead-type correlation
or covariance [17] as well as more detailed quality
assessment. For example, we were able to identify spatial
artefacts in the Illumina data in this study (Additional
File 7) that would benefit from the BASH tool [25]
implemented in beadarray [26] although this method has
not yet been fully implemented for Illumina genotyping
data. Additionally, there were some issues with small,
localized failures of image registration that could only be
addressed by bead-level pre-processing and that would
undoubtedly improve the quality of the Illumina results
if addressed successfully.

Conclusion
It is important to stress that there is no straightforward
way to compare fairly copy number profiling platforms
in a general manner. As such, the results presented here
describe the detection and qualitative comparison of raw
copy number alterations across four platforms in tumour
samples for which both matched and pooled normal
DNA were available and in two established cell-lines.
Copy number variation in normal HapMap individuals
was also compared using the same platforms. Whilst we
have sought to avoid analytical techniques that are
objective, but that we deem undesirable for the stated
reasons, we have focused on graphical comparisons that
are, of course, prone to subjectivity. In any case, the
competing platforms have different merits, and users
need to make subjective decisions based on their
individual requirements.

Although there are substantial differences in the design,
density, and replicate structure of the probes, the
comparison indicates a generally high level of concor-
dance between platforms. As expected, all platforms were
able to detect large aberrations in a robust manner.
However, some focal amplifications and deletions were
only detected on a subset of the platforms. In particular,
Nimblegen failed to detect numerous aberrations that
were clear in the other platforms even when probes were
tiled in the region of interest. This finding is perhaps not

surprising given that this platform exhibits 2-4 fold
greater variance amongst replicate probes and variances
an order of magnitude greater for replicate array
comparisons. In general, for the aCGH-based platform
Agilent was the best performer and for the SNP-CGH
platform, Affymetrix tended to outperform Illumina. An
added bonus is that both Affymetrix and Agilent require
only 0.5 μg DNA as starting material, thus removing this
consideration from the platform decision. Another
potential consideration is the quality or source of DNA
(e.g. the use of paraffin-embedded samples [13]), for
which some platforms may be more forgiving.

Our study differs from previously published ones in that
we employ primary breast tumour samples rather then
cell-lines. As noted previously, this introduces additional
complexity due to the possibility of stromal contamina-
tion [13]. Further to this, we have also made use of cell-
line dilutions and well-characterized HapMap samples
to evaluate copy number alterations across platforms.
That we also conclude that Agilent performs best on a
single-probe comparison is of interest because we are
comparing newer platforms, yet we must keep in mind
that the performance of platforms from generation to
generation cannot be assumed to be constant.

In the new generation of arrays, Agilent have addressed
their primary weakness by increasing probe coverage.
Similarly, Nimblegen have modified their probe design
in order to improve performance. Both Affymetrix and
Illumina have increased probe coverage with Affymetrix
introducing slight modifications to probe design. If
Agilent have maintained probe quality, it seems likely
they will remain the leader, but Nimblegen may close
the observed gap. For the SNP-CGH arrays, it seems
likely that Affymetrix will continue to perform well. The
availability of data from these new platforms will enable
comparisons with previous generations of arrays for the
purposes of meta-analyses and the like.

Obtaining reproducible, high-resolution copy number
data with high sensitivity and few false positives is the
gold-standard objective for any such study. However,
there are always tradeoffs and a critical assessment of the
goals of the project and underpinning biological ques-
tions can help select the most suitable platform. For
example, breakpoint precision, which is dependent on
the local resolution, is likely more critical for mapping
novel tumour suppressor genes and oncogenes, than for
a more general survey of aberrations where little follow-
up validation is planned. Additional considerations that
might influence the choice of platform include probe
coverage (whether gene-centric or uniformly spaced,
targeting non-coding elements) and the ability to assay
genotypic information, and hence allele-specific copy
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number and copy neutral loss of heterozygosity. If
matched normal samples are available, it might be
advantageous to exploit the direct comparison design
offered by dual-channel technologies. In large-scale
studies, it may also be useful to validate the higher-
density SNP-CGH findings using a subset of samples on
a lower-density, but more sensitive, platform. The results
described here provide a guide for platform selection and
study design, and the dataset a resource for more tailored
comparisons.

Methods
Study design
The state of the art in terms of commercially available
platforms for genome-wide CNA is constantly evolving.
Here, four leading platforms were compared: the
Affymetrix Genome-Wide Human SNP Array 5.0, the
Agilent High-Density CGH Human 244A array, the
Illumina HumanCNV370-Duo DNA Analysis BeadChip,
and the Nimblegen 385 K oligonucleotide array. Several
important differences exist between these platforms.
Beyond the fact that the Affymetrix and Illumina employ
a single-channel hybridization scheme, whereas Agilent
and Nimblegen use a dual-channel competitive hybridi-
zation protocol, the former are also SNP-CGH platforms,
while the latter are not. Other differences in the design of
these platforms include the probe-length and probe-
density. Whereas Nimblegen employs 45-mer to 85-mer
probes, Agilent 60-mer probes and Illumina 50-mer
probes, Affymetrix probes are considerably shorter at 25
nucleotides. In terms of probe-density, the Affymetrix
SNP 5.0 array contains 500,568 SNP probes and an
additional 420,000 non-polymorphic probes to facilitate
studies of germline copy number variation in association
studies. The Agilent 244A array contains computation-
ally pre-selected probes that have been experimentally
optimized for genomic hybridization with a bias towards
gene-rich regions. The Illumina CNV370 array includes
318,000 SNP markers plus 52,000 markers targeting
14,000 additional CNV regions. Lastly, the Nimblegen
385 K array contains 386,165 isothermal oligonucleotide
probes with relatively uniform genome coverage. Due to
resource availability, two of the platforms (Agilent and
Illumina) were processed in-house, whereas for the other
platforms the samples were hybridized at a commercial
vendor (Affymetrix and Nimblegen).

Sample Choice
Two representative cell lines (MT3 and SUM159) were
selected based on the presence of known chromosomal
aberrations so as to provide markers of a platform’s
performance. The MT3 colorectal cell line contains a
single copy gain of chromosome 7 and isochromosome
13 [27,28]. The SUM159 breast carcinoma cell line is

also reported to have several notable changes including a
loss on chromosome 5q and gain on chromosome 8q24
[27,28]. The ability of the various platforms to detect
known focal amplifications was assessed using a panel of
six tumour samples. To assess the effect of using a
matched normal as compared to a pooled normal as the
reference against tumour samples, a single replicate was
included for each matched normal sample. Additionally,
to ascertain the effect of cellular heterogeneity due to
stromal contamination in detecting CNA, several dilu-
tion experiments were included for the two cell lines and
two of the tumours such that a mixture of either 30% cell
line (tumour) with 70% normal or a 1:1 ratio was
hybridized to the arrays.

Two ‘normal’ samples (NA15510 and NA10851) from
the Human HapMap study [29] were also selected to
assess the detection of naturally occurring regions of
copy number variation, as they have been characterized
extensively [30-33] and are recommended for use as a
standard control in all studies [21]. Further, they provide
an example in which gross abnormalities are not
expected. Moreover, sample NA10851 is male, allowing
for a controlled assessment of the platforms perfor-
mances by examination of the sex chromosomes in the
HapMap comparisons.

Each sample was hybridized to the single-channel
platforms in triplicate, with the exception of the pooled
normal samples, which were performed in duplicate. For
the dual-channel platforms, tumours and cell-lines were
hybridized against pooled normal tissue in duplicate,
and the tumours were additionally hybridized against
matched normal tissue. The HapMap samples were
hybridized against each other in duplicate, as was a
pool vs. pool hybridization. Additionally dye-swap
hybridizations were performed for the HapMap samples
and the MT3 cell-line. In all platforms, save for
Nimblegen, some hybridizations were discarded under
quality control procedures. Nimblegen only returned
data for hybridizations that satisfied their quality control
criteria.

Patient material and cell lines
Samples were collected in the year 2000 at Adden-
brooke’s Hospital, Cambridge, UK from female patients
ranging from 41 to 83 years old. These samples
correspond to fresh frozen biopsies and surgical resec-
tion samples and the resultant fresh breast tissue was
stored in the Addenbrooke’s Hospital tumour bank.
Ethical consent was obtained for all patient samples. The
MT3 cell line (with a single X chromosome, suggesting
male origin) was obtained from its originators [34], and
has been shown to be identical to the colorectal cancer
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cell line LS174T based on SNP analysis [35]. This cell
line exhibits an almost normal karyotype, apart from
trisomy 7 and isochromosme 13. The SUM159 breast
carcinoma cell line was obtained from the originators
[27]. SUM159 is a hyperdiploid cell line with a modal
chromosome number of 47 and nine structural translo-
cations.

All human samples used for this analysis were obtained
with informed consent from patients and the study was
performed with appropriate REC and NHS R&D
approval.

DNA extraction and purification
Tumour DNA was extracted from 25 × 10 um sections
manually using the DNAeasy kit (Qiagen, Valencia, CA).
Matched normal DNA was obtained by homogenizing
tissue in 180 μl of ATL buffer with Precellys, followed by
extraction with the DNAeasy kit (Qiagen). For the cell lines,
DNA was extracted using the proteinase-SDS method [36].

Array hybridization and analysis
Affymetrix
Genotyping using Affymetrix Genome-Wide SNP 5.0
arrays was performed according to standard Affymetrix
protocol (at AROS, Denmark) using 0.5 μg DNA. Log2
signal intensities were measured from the raw data
derived from the scanned image. Signal intensities were
corrected for allelic crosstalk and offset for SNP probes
and for offset for copy number non-polymorphic probes
(CN probes), and probe signals were rescaled so that all
probes (excluding those on the X & Y chromosomes)
have the same average across arrays [24]. Probe-level
data were summarized, wherein probe signals for SNP
probes were averaged across replicates and summarized
between alleles; probe signals for CN probes were
unchanged since they are generally-unreplicated single-
probe units. Signal intensities were shifted by 300 units
to avoid negative signals that might result following
calibration for allelic crosstalk and due to random errors
around zero. Fragment-level normalization was then
performed to correct for systematic differences in the
amplification efficiency of PCR on fragments of varying
length and deviations from the 50/50 NspI/StyI mixture.
This procedure is a multi-chip method, which estimates
the baseline effects as effects observed in a robust average
across all arrays and hence should cause systematic
effects across arrays to cancel out. Raw total copy number
estimates (on the log2 scale) were obtained by compar-
ing the summarized and normalized intensity values for
a given cell line or tumour sample to the corresponding
intensities from the reference array. Although 920,928
SNP probes and non-polymorphic copy number probes
are present on the array, due to incomplete information

concerning a subset of the probes, 828,737 are analysed
in this study. As noted above, Affymetrix data were
corrected for fragment length effects as it has been noted
that fragment length influences probe intensity, as does
GC content [14]. Further, as for gene expression arrays,
the sequence effect is position-dependent for Affymetrix
SNP chips and importantly, fairly large differences in
intensities can be observed for the different alleles as a
result of sequence alone [37]. The effects of GC content
are illustrated in Figure 14. The Affymetrix dataset
consists of 50 arrays, as detailed in Additional File 8.

Agilent
The Agilent platform used is the Agilent Human Genome
CGH Microarray Kit 244A This platform uses just under
240,000 unique 60-mer oligonucleotide probes across the
genome, with tighter coverage in the region of RefSeq
genes, and claims to emphasize other interesting genomic
features (miRNAs, promoters, etc) also. Experiments were
performed in-house using 0.5 μg of DNA and either the
Agilent labelling kit or the Enzo labeling kit. After
hybridization and washing, the slides were scanned on
an Agilent Microarray Scanner and captured images were
analysed with Feature Extraction Software v 9.1.

Arrays were considered for analysis using a guideline
DLRS threshold of 0.3. This is higher than the threshold

Figure 14
For a pool-pool log-ratio comparison from the
Affymetrix platform, depicted are the effect and
distribution of probe GC content. Top: Showing the
effect of GC content on log-ratio. Bottom: Showing the
distribution of probe GC content.
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advised by Agilent, but that threshold does not allow for
the large aberrations associated with tumour samples
that will inevitably inflate this score. Where necessary (if
multiple repeat hybridizations for a sample failed to
bring the score down), hybridizations with a higher score
were used to fill in gaps in the experimental design if
they were judged to be acceptable. Similarly, some
samples were not used despite passing the threshold if
they were clearly problematic from a visual inspection.
This resulted in 40 arrays remaining in the study (see
Additional File 9). The Enzo protocol used for Agilent
saw generally lower scores for this quality control
measure, but saw an increase in the influence of probe
length on the results from the array.

Based on the annotation information included in the
Agilent output files, only 215,002 out of 238,162 (90%)
of Agilent probes appear to be targeting 60 mer
sequences (Figure 15), with the rest being shorter (as
short as 45 mers in some cases). There is a marked
relationship between observed intensities and target
sequence lengths for the platform, with the probes
targeting longer sequences generally generating lower
intensities. This feeds through to having greater variance
of log-ratio for the longer sequences. The effects are often
more marked than in the example shown, and as a result

the non-60 mer targets have been dropped from the
analysis. Intensities were background corrected via the
normexp function in the limma package [38,39] and loess
normalized to return log-ratios. No between-array
normalization was performed; where between-array
comparisons are made, we specify the steps taken to
scale the arrays in question.

Illumina
Genotyping using Illumina CNV370-duo arrays was
performed in-house according to the standard protocol
with 0.75 μg DNA. Log2 signal intensities were obtained
using Illumina’s BeadStudio software (ver.3). Following
averaging of the per-allele replicates (16 on average), the A
and B alleles are summarized, scaled and rotated to reduce
allelic crosstalk on a per-array basis. Within BeadStudio, a
paired analysis was performed for all contrasts of interest.
The resultant log2 ratios were then exported from the
BeadStudio software to facilitate comparisons between
platforms. Since the log-ratios were not centred around
zero for the tumour samples relative to a pooled normal
(while this was the case for the tumour samples relative to
the matched normals), both subsets of assays were
normalized under the assumption that median copy
number is 2 and the median log2 ratio is zero. The effects
of the GC proportion on log-ratios are shown in Figure 16.

Figure 15
For a pool-pool hybridization from the Agilent platform depicted are the distribution and effect of probe
target length. Top left: depicted are numbers of probes apparently targeting sequences of different lengths, with modes at 60
and 45. Bottom left: Shown are the proportions of probes, for each autosomal chromosome, that have target length 60; a
proportion that is lowest for chromosome 19. Note that the width of the bar is proportional to the total number of probes on
that array. Right: Two boxplots depict the associations between probe target length and intensity, and probe target length and
log-ratio. 60 mer target sequence lengths are associated with lower intensities and greater variance of log-ratio.
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The Illumina dataset consists of 48 arrays, as detailed in
Additional File 10.

Nimblegen
The Nimblegen platform used here is the HG18 CGH
385 K WG Tiling v1.0 array. This platform makes use of
385,000 oligonucleotide probes of length 50 mer to 75
mer. These probes are spaced along the genome with
reasonable uniformity, unlike for the v2.0 array that
followed, where probe locations were subject to more
involved design. The experiments were performed by
Nimblegen according to their standard protocol using
2.5 μg DNA, and were analysed using the processed and
normalized data files supplied by Nimblegen. Nimble-
gen also report the lengths of the individual probes and
the proportion of bases that are either G or C. The effects
of the GC proportion are shown in Figure 17; there is a
strong association between probe length and GC
content, but still some evidence that probe length is
influential even after GC content is considered (not
shown). The Nimblegen dataset consists of 44 arrays, the
details of which are in Additional File 11.

All analysis was performed in the R statistical program-
ming language [40]. The arrays described in this study
been deposited in the Gene Expression Omnibus [41]
with accession number GSE16400. Plots of each

chromosome for each sample and platform are available
in Additional File 12 and 13.

Plotting conventions
Where we have plotted relative copy number (log-ratio)
against genomic location, we have used the best quality
example for each platform. This may be the cause of a
slight bias, as different platforms may have different
numbers of replicates from which to choose, but since
we are looking to establish the potential of the platforms, it
is the appropriate approach. Replicates have not been
averaged, as between-array standardization has not been
performed, save for the case of CNV comparisons, where
three replicates of each platform are comparable without
standardization and the improved signal-to-noise allows
for acceptable clarity with so few probes. Genomic location
was taken from the supplied annotations for Agilent and
Nimblegen, and likewise for Affymetrix and Illumina. For
the different platforms the genomic location represents
different properties (probe start, SNP location etc).
However, on the scale on which we are plotting, this
does not affect interpretation.

Figure 16
For a pool-pool log-ratio comparison from the
Illumina platform, depicted are the effect and
distribution of probe GC content. Top: Showing the
effect of GC content on log-ratio. Bottom: Showing the
distribution of probe GC content.

Figure 17
For a pool-pool hybridization from the Nimblegen
platform depicted are the effect and distribution of
probe GC content. Top: Showing the effect of GC content
on log-ratio. Bottom: Showing the distribution of probe GC
content. The median GC content is 0.42 (IQR 0.38 to 0.44),
but is noticeably lower for chromosomes 4 and 13, and
noticeably higher for chromosomes 19 and 22. Naturally
there is a high spatial auotcorrelation of probe GC content
along the genome.
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The scale for the y-axis for the plots is linear from -2 to 2,
and linear also outside this region, but at a different rate.
Most values lie in the -2 to 2 range and this needs to be
our focus, but it is also important that we can depict
more extreme cases. The discontinuity in the first
derivative of the scale allows us to achieve this. As well
as the log-ratios for the four platforms, we depict genes
lying on the plus and minus strands, and a guide to the
section of chromosome being illustrated. The informa-
tion for these additional items was obtained from the
GenomeGraphs [42] package in Bioconductor.

Where CNV locations are plotted, the nominal location
lies within the middle two-fifths of the x-axis, allowing
for easy use of the provided axis coordinates to identify
that region. Throughout the paper, we adopt a conven-
tion of colour-coding for platforms: Affymetrix are
represented by magenta, Agilent by red, Illumina by
black, and Nimblegen by blue.
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Additional material

Additional file 1
Detailed description of platform features. An extension of Table 1. In
order the columns represent i) The numbers and percentages of features
by chromosome for each of the four technologies (cols B-I), ii) Within
chromosomes, the numbers and percentages of features within the p arm
(cols J-Q), iii) the core region in the p arm covered by all four platforms
(cols R, S), iv) for each technology, in that core region, the probe
density, the number of extra probes towards the telomere, the extra
distance covered towards the telomere, the probe density in the extra
region towards the telomere, the number of extra probes towards the
centromere, the extra distance covered towards the centromere, and the
probe density in the extra region towards the centromere (Affymetrix cols
T-Z, Agilent cols AA-AG, Illumina cols AH-AM, Nimblegen cols AN-
AU), v) as per ii) to iv), but for the q arm.
Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S1.CSV]

Additional file 2
Details of SUM159. Plots detailing the loss-gain-loss aberration on
chromosome 8 of SUM159.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S2.PDF]

Additional file 3
A list of validated CNV sites for the HapMap/HapMap comparison.
The full list of the 79 sites of copy number difference between HapMap
samples NA15510 and NA10851 [130].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S3.CSV]

Additional file 4
Plots of the 79 CNV sites. Plots of the 79 sites of copy number difference
between HapMap samples NA15510 and NA10851 (as listed in
Additional File 3).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S4.PDF]

Additional file 5
Pathological and clinical summaries for the 6 tumours. Details of the
sample identity and cellularity composition as well as the construction of
the pooled normal sample and the dilutions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S5.CSV]

Additional file 6
Anticipated aberrations and known copy number changes in various
samples. A list of known copy number changes for the cell-lines
(SUM159, MT3, NA15510 and NA10851) and anticipated copy
number changes for the tumours.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S6.PDF]

Additional file 7
Image plots of BASH processed Illumina data. False-colour image
representation of six different raw images from the Illumina dataset that
had significant spatial artefacts as identified using the BASH method
from the beadarray Bioconductor package. As BeadStudio does not take
spatial information into account during pre-processing, the resultant
summarized values may be compromised in the presence of such
artefacts.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S7.PNG]

Additional file 8
Experimental design for the Affymetrix platform. Targets file detailing
the sample hybridized to each Affymetrix array.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S8.XLS]
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Additional file 9
Experimental design for the Agilent platform. Targets file detailing the
samples hybridized to each Agilent array.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S9.XLS]

Additional file 10
Experimental design for the Illumina platform. Targets file detailing
the sample hybridized to each Illumina array.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S10.XLS]

Additional file 11
Experimental design for the Nimblegen platform. Targets file detailing
the samples hybridized to each Nimblegen array.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S11.XLS]

Additional file 12
All sample/chromosome plots for the tumours. Zip folder containing
PNGs of all whole-chromosome plots for the tumours.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S12.ZIP]

Additional file 13
All sample/chromosome plots for the cell-lines. Zip folder containing
PNGs of all whole-chromosome plots for the cell-lines.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-588-S13.ZIP]
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PCR, and next-generation sequencing technologies
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ABSTRACT

RNA abundance and DNA copy number are routinely measured in high-throughput using microarray and next-generation
sequencing (NGS) technologies, and the attributes of different platforms have been extensively analyzed. Recently, the
application of both microarrays and NGS has expanded to include microRNAs (miRNAs), but the relative performance of these
methods has not been rigorously characterized. We analyzed three biological samples across six miRNA microarray platforms
and compared their hybridization performance. We examined the utility of these platforms, as well as NGS, for the detection of
differentially expressed miRNAs. We then validated the results for 89 miRNAs by real-time RT-PCR and challenged the use of
this assay as a ‘‘gold standard.’’ Finally, we implemented a novel method to evaluate false-positive and false-negative rates for all
methods in the absence of a reference method.

Keywords: miRNA; microRNA; differential expression; microarray; real-time PCR; sequencing; pyrosequencing; miRNA-seq

INTRODUCTION

MicroRNAs (miRNAs) are regulatory noncoding RNA
molecules z20–23 nucleotides (nt) long, generated by two
cleavage events mainly from RNA Pol II primary transcripts
(pri-miRNAs) via a z70-nt imperfect stem–loop interme-
diate (pre-miRNA). Over 10,000 miRNAs from 115 species,
ranging from vertebrates (Lagos-Quintana et al. 2001) to
viruses (Pfeffer et al. 2004), are currently deposited in the
miRNA registry (miRBase version 14) (Griffiths-Jones et al.
2008). These include z700 (out of up to z3400 predicted)
(Sheng et al. 2007) human miRNAs.

miRNAs mediate the translational repression, and some-
times degradation, of target mRNAs mostly by directing an
RNA-induced silencing protein complex to imperfect com-
plementary sequences in their 39UTRs (van den Berg et al.
2008). Up to z60% of human genes are putative targets of

one or more miRNA (Friedman et al. 2009). miRNAs play
a role in all major biomolecular processes, including me-
tabolism (Krutzfeldt and Stoffel 2006), cell proliferation
(Bueno et al. 2008) and apoptosis (Jovanovic and Hengartner
2006), development and morphogenesis (Stefani and Slack
2008; He et al. 2009), stem cell maintenance, and tissue
differentiation (Shi et al. 2006). miRNAs are reported to be
involved in 94 human diseases (Jiang et al. 2009), ranging
from psychiatric disorders (Barbato et al. 2008) through
diabetes (Hennessy and O’Driscoll 2008) to cancer (Medina
and Slack 2008).

Three principal methods are used to measure the ex-
pression levels of miRNAs: real-time reverse transcription-
PCR (qPCR) (Chen et al. 2005; Shi and Chiang 2005),
microarray hybridization (Yin et al. 2008; Li and Ruan
2009), and massively parallel/next-generation sequencing
(NGS) (Hafner et al. 2008), all of which face unique chal-
lenges compared to their use in mRNA profiling. In terms
of microarray analysis, the short length of mature miRNA
sequences constrains probe design, such that often the
entire miRNA sequence must be used as a probe. Conse-
quently, the melting temperatures of miRNA probes may
vary by >20°C. qPCR assays, traditionally relying on the
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specificity provided by a number of contiguous probes,
compensate for the compromised sequence specificity by a
stringent spatial constraint (39 terminal or near-terminal
sequences). A similar constraint is also imposed by stem–
loop microarray probes (Agilent). NGS of miRNAs can be
influenced by sequencing errors and often requires search
and removal of adaptor sequences before the miRNA
sequence itself can be elucidated.

A second challenge in measuring miRNA levels arises
from the existence of miRNA families, the largest encom-
passing nine variants (hsa-let-7a–i), whose members differ
by as little as one nucleotide but nevertheless exhibit dif-
ferential expression patterns (Roush and Slack 2008). The
stringency required to differentiate between these closely
related miRNA species surpasses that of conventional mRNA
microarrays. This challenge is partly addressed by ensuring
that hybridization-based assays are performed at high enough
temperatures to reject cross-hybridizing transcripts. In addi-
tion, microarrays with probes containing locked nucleic acid
(LNA) bases (Exiqon) provide higher annealing affinities,
potentially allowing the assay to discern between individual
miRNA family members and somewhat equalizing the melt-
ing temperatures of probe sequences. Finally, advances in
sequencing technology have accelerated both the discovery
rate of new miRNAs and modifications to existing miRNA
entries, reflecting subtle variations in mature miRNA se-
quences (e.g., post-transcriptional editing or terminal residue
addition) (Landgraf et al. 2007). As a result, the continued
refinement of miRNA databases necessitates frequent changes
to miRNA array probe design and annotation.

The technical merits and drawbacks of qPCR, micro-
arrays, and sequencing of miRNAs are similar to their ap-
plication for RNA or genomic DNA quantitation. The clear
advantage of high-throughput sequencing is the ability to
identify novel miRNAs. This technology is not hindered by
variability in melting temperatures, coexpression of nearly
identical miRNA family members, or post-transcriptional
modifications. However, both the RNA ligation (Bissels
et al. 2009) and the PCR amplification (see below) steps
bear inherent biases, the method is laborious and costly,
and associated tools for computational analysis are in their
infancy. qPCR is often considered a ‘‘gold standard’’ in the
detection and quantitation of gene expression. However,
the rapid increase in number of miRNAs renders qPCR
inefficient on a genomic scale, and it is probably better used
as a validation rather than a discovery tool.

As with genomic DNA and RNA analysis, microarrays are
still the best choice for a standardized genome-wide assay
that is amenable to high-throughput applications. Over 400
existing publications have utilized commercial or in-house
printed miRNA microarrays. The differences between avail-
able platforms range from surface chemistry and printing
technology, through probe design and labeling techniques, to
cost. Unlike for mRNA gene expression (Shi et al. 2006),
comparative genomic hybridization (Baumbusch et al. 2008),

or chromatin immunoprecipitation (Johnson et al. 2008)
assays, few attempts have been made to establish rigorous
parameters for the evaluation of a miRNA microarray
platform, especially in light of the specific challenges miRNAs
present.

We have undertaken a systematic comparison of six
commercially available miRNA microarray platforms rep-
resenting single- and dual-channel fluorescence technolo-
gies, using three well-defined RNA samples (Git et al.
2008), and compared the results with NGS and qPCR. This
study represents, to the best of our knowledge, the most
comprehensive comparison of the performance of methods
to detect differentially expressed miRNAs to date.

RESULTS

Microarray comparison study design

As a preface to this study, we extensively evaluated RNA
extraction and quality control (QC) methods to ensure
a high standard of quality for the RNA samples used (data
not shown). The biological samples were representative of a
realistic application of miRNA microarrays in a cancer
research institute. Moreover, biological replicates of these
samples have been previously profiled by contact-printed
and bead-based microarrays (Git et al. 2008), providing
a comparative reference for QC during preliminary stages
as well as in final analyses (e.g., tumor suppressor [TS]
miRNAs) (see Fig. 3B, below).

Three samples were analyzed in this study: a pool of
commercial RNAs from normal breast tissue (N), the lu-
minal breast cancer cell line MCF7 (M), and a breast pro-
genitor cancer cell line PMC42 (P), which exhibits many
normal-like characteristics. All three samples, extracted in
bulk and quality assured, were labeled and hybridized in
quadruplicate to six commercially available microarray
platforms in strict accordance with the protocols recom-
mended by the manufacturers (see Materials and Methods).
The microarray platforms used in this study were the Agilent
Human miRNA Microarray 1.0; Exiqon miRCURY LNA
microRNA Array, v9.2; Illumina Sentrix Array Matrix 96-
well MicroRNA Expression Profiling Assay v1; Ambion
mirVana miRNA Bioarrays v2; Combimatrix microRNA
4X2K Microarrays; and Invitrogen NCode Multi-Species
miRNA Microarray v2. For simplicity, each platform is
referenced throughout after its manufacturer name.

Microarray hybridization performance

Figure 1 depicts the distributions of several measures of
hybridization quality and consistency, such as the signal-to-
noise ratio (SNR) (Fig. 1A), the coefficient of variation
(CV) between replicate spots and arrays (Fig. 1B,C), and
pairwise correlation between arrays (Fig. 1D). Overall, the
SNR generated by the Normal samples was the highest, and
MCF7 was the lowest for each platform evaluated. This
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FIGURE 1. Analysis of hybridization performance. (A) Signal-to-noise ratio for the raw 532 nm/Cy3 (green banner) and 635 nm/Cy5 (red banner)
intensities for all spots on the individual arrays was calculated using the SSDR method. For Illumina arrays, this calculation was impossible as only the
foreground intensities were available. Purple indicates arrays with M samples; red, N, and blue, P. For clarity of presentation, the y-axis was truncated
at 15, thereby excluding some extreme outliers. The distribution of the log2 standard deviation between pixels within each spot scaled to the median
spot intensity is shown on the right (gray banner). (B) Intra-array coefficients of variation across replicated spots on each array were calculated for the
unprocessed Cy3 and Cy5 intensities (bar and banner colors as above), and the log2 ratios (M-values, yellow banner; orange bars indicates M/P; yellow;
P/N, green, N/M). Arrays with a red asterisk were excluded from subsequent analysis. (C) Interarray coefficients of variation were calculated for arrays
hybridized with the same samples (bar and banner colors as above). (D) Pairwise correlations for arrays hybridized with the same samples were
calculated (15–18 correlations). Distribution of R2 values are shown in box plots (bottom row), with the highest (top row) and lowest (middle row)
correlations shown as examples. The axis for the bottom row was truncated at 0.55 for clarity, excluding some of the values for Invitrogen.
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agrees with the observation that overall miRNA content
is reduced in cell lines compared to tissue (Lee et al. 2008;
C Blenkiron and LD Goldstein, pers. comm.). PMC42,
a normal-like cell line, demonstrated intermediate levels of
overall miRNA expression. The difference was least pro-
nounced on platforms with a high within-spot pixel variabil-
ity (Combimatrix, Invitrogen) (Fig. 1A, right panel), since the
SNR not only depends on fluorescent signal intensities but is
inversely proportional to the standard deviation of both
foreground and background pixels, so that high spot unifor-
mity contributes to higher SNR. Some typical spot artifacts
leading to low uniformity were indeed observed during
feature extraction (‘‘doughnut-shaped’’ spots for Invitrogen
indicate high signal on the outside of spots, low on the inside,
and the opposite pattern for Combimatrix) (data not shown).

We then examined the variability between replicates spot-
ted on the same array (intra-array CV) (Fig. 1B). For dual-
channel arrays, the 532-nm (Cy3, green) and 635-nm (Cy5,
red) fluorescence intensities and their log2 ratios (M-values)
were treated separately, since localized signal variations
occurring in both channels may cancel each other out. We
observed no consistent differences between single- and dual-
color platforms, and although CV’s varied considerably
between some platforms, they tended to be consistent within
platforms, with the exception of two arrays subsequently
excluded from downstream analysis.

The interarray CV’s (Fig. 1C) were calculated for each
type of probe (several different probe types might target the
same miRNA) across all replicate spots on the four replicate
arrays. These typically include 12–24 values, although some
probes (e.g., controls or empty spots) were present in greater
numbers; for example, Agilent arrays contain more than 3000
empty spots. Single-channel hybridization was more consis-
tent across replicates, as evident from the overall lower CV
values, but these differences were ameliorated when the
M-values, rather than the individual Cy3 and Cy5 intensities,
were considered for the dual-color platforms. Reproducibility
between hybridizations was also assessed by pairwise com-
parison of replicate arrays. The distribution of the resulting
R2 values as well as the most and least consistent examples
from each platform, are illustrated in Figure 1D. Although all
platforms demonstrated at least one replicate pair with
greater than 0.9 (and usually >0.95) R2 correlation, their
distribution was much wider. Notably, unlike the interarray
CV values, the dual-channel replicates with low correlation
(below an R2 of 0.8) showed poorer agreement when treated
as M-values instead of Cy3 and Cy5 intensities. This may be
due to the inaccuracy of M-values for low-intensity spots. In
particular, negative control or empty replicate spots were
considered individually for the pairwise comparison, thus
strongly affecting the distribution of M-value correlations,
but were condensed into single values across all interarray
replicates for the interarray CVs (Fig. 1C).

We then proceeded to analyze the consistency of the
detected spots for each platform. First, the frequency of

‘‘present/marginally present’’ or ‘‘absent’’ calls was calculated
for each spot on the arrays based on the intensity of negative
controls and empty spots (see Materials and Methods) (Fig.
2A). The platforms varied significantly in the consistency of
associated present/absent calls, visually represented by the
thickness of the ‘‘belt’’ region separating the red (consistently
‘‘present’’) and blue (consistently ‘‘absent’’) zones of the
bars: whereas the ‘‘belt’’ values comprised fewer than 20% of
the probes in Agilent, they accounted for over half the
probes in Invitrogen arrays. This variation stems from
interarray variability and the availability of spots to evaluate
the background distribution. For example, despite the very
similar interarray CV of the M-values in Ambion and
Combimatrix assays (Fig. 1C), the consistency of calls on
the Ambion array platform was higher.

Microarray probe mapping and hybridization
specificity

Due to the inherent difficulties associated with miRNA probe
design outlined in the introduction, the complements of
miRNAs targeted by each platform are difficult to compare.
To allow an accurate comparison between the platforms, we
reannotated all the probes against miRBase version 12 using
uniform criteria (see Materials and Methods). Although the
total number of probes varied significantly across platforms,
the number of human miRNAs represented on the array
was fairly constant and depended mainly on the miRBase
version at the time of array design. The overall characteristics
of probes represented in each platform and the effect of re-
annotation are summarized in the ‘‘probe properties’’ section
of Table 1.

Reannotated probes were divided into categories based on
information from the manufacturers and our remapping of
probe sequences (see Materials and Methods). The categories
are listed and color coded in the legend to Figure 2, B and
C, according to our approximate expectation regarding
their intensity (high/red to low/blue). Of particular interest
were human miRNAs and potential cross-hybridizing probes
(mouse miRNAs and probes with mismatches to human
miRNAs; MM_human). We counted the number of probes
called as ‘‘present’’ in each category (Fig. 2B) and examined
the distribution of their normalized signal intensities (Fig.
2C). Platforms varied both in overall signal intensity and
number of probes called ‘‘present.’’ The former property is
affected by a combination of labeling chemistry, input RNA
concentration, and hybridization efficiency, with Combima-
trix arrays producing the brightest signal. However, the low
numbers of ‘‘present’’ calls (127, 85, 105) on this platform
are similar to those produced by the low-intensity Invitrogen
arrays (49, 103, 100), underscoring the importance of dis-
tinguishing between the two metrics.

Within most platforms the signal and ‘‘present’’ rate also
varied extensively depending on spot category. As expected,
positive controls were usually among the brightest spots, and
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probes targeting human miRNAs had the broadest range
representing varying levels of expression or tissue specificity
of miRNAs. Probes matching mouse miRNAs or MM_
human miRNAs were clearly ‘‘present’’ in some platforms
and not others, indicating a degree of cross-hybridization be-
tween similar probes. For example, the intensities of mouse
probes or mismatched probes in Agilent did not differ
greatly from the negative or empty probes, and indeed, less
than 10 probes were called ‘‘present’’ in each category. In
contrast, the spread of Exiqon intensities in the mouse and
human_MM categories was large, and in the Normal sample,
‘‘present’’ calls were made for 68 mismatched probes and 43
mouse probes, representing 28% and 36% of the total
number of probes in the respective category. We note that
most of the mismatched probes identified by our uniform
reannotation are classified by Exiqon as ‘‘obsolete’’ or
‘‘not_designed_for_hsa,’’ so they may not exhibit the same
LNA spiking pattern as their perfect-match counterparts.
The distribution of signals upon removal of these probes is

available in Supplemental file ‘‘Exiqon annotation.’’ Probe
specificity is evaluated by Exiqon using synthetic RNA spike-
ins in a relatively low complexity background (yeast tRNA).
The biological relevance of the two analyses (mismatched
probes versus spike-ins) remains to be elucidated.

Worthy of mention is the considerable number of
‘‘present’’ calls made by most platforms in other categories,
such as miscellaneous or obsolete, and in particular the novel
category in Ambion containing proprietary ‘‘Ambi-miRs.’’
These results emphasize the limited information offered by
overall signal intensities or total number of detected features,
often quoted as measures of hybridization performance and
platform sensitivity.

Correlation of microarray and NGS data

We proceeded to sequence the mature miRNAs from each
of the samples using a Genome Analyzer II platform
(Illumina; hereafter abbreviated as GAseq). On average,

FIGURE 2. Analysis of detected probes. (A) Consistency of present/absent calls among human miRNAs. (Top) For each human probe, the
percentage of replicates detected (called present) by the platform was calculated and summarized (bars). The numbers above the bars indicate
number of probe replicates. (Bottom) Intensity distribution of human miRNAs (black) and the empty and negative spots used to calculate the
nonspecific binding (red), with the number of probes of each type listed below the plot. Illumina array data are missing from panels A and B, as
information regarding negative or empty spots was not available. (B) Detected spot types. Probes have been categorized based on their target
miRNAs (see Materials and Methods). The number of unique spots from each category being detected as ‘‘present’’ in >90% of its replicates across
all arrays was calculated for each of the three samples types. For categories with 10 or more present probes, the count is shown next to the figure, with
the proportion of the ‘‘present’’ calls out of the total probes in that category (%). The radius of each chart is proportional to the total number of
present spots, indicated above. The legend is shared with panel C. PosControl and NegControl are positive and negative controls, respectively;
MM_human, mismatched human. (C) Intensity range of the different spot types. For each of the spot types of panel B, the distribution of intensities
of background-corrected and normalized green or red log2 values across all arrays was calculated.
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12 million reads were obtained in each sequencing run, and
after filtering, 32%, 35%, or 63% (M, P, and N, respec-
tively) could be mapped to known miRNAs. Overall, 733
miRNAs were detectable (501 in M, 588 in P, and 608 in
N), and 472 of those had at least 10 cumulative counts
across the three samples. The number of reads obtained for
each miRNA was well-correlated to the respective micro-
array hybridization intensity (Pearson correlation 0.66 6
0.12, ranging between 0.42 and 0.87; see Supplemental file
‘‘Intensity Correlations’’). The 45 miRNAs that were not

identified in the sequencing data set, but for which expres-
sion levels were in the detection range of at least one micro-
array platform, were typically called ‘‘marginally present’’
in the latter, suggesting low cross-hybridization of the cor-
responding array probes.

To allow a direct comparison of the platforms’ perfor-
mances, we focused on the intersection of miRNAs repre-
sented on all platforms (Fig. 3A). A total of 215 miRNA
probes were included on only one microarray platform
(most often Exiqon), while 148 miRNAs were represented

FIGURE 3. Analysis of differential expression. (A) miRNA targeting by platforms. The number of reannotated miRNAs targeted by varying
numbers of platforms was calculated. Solid colors indicate miRNAs found only on the indicated platform; striped colors, miRNAs found on all
platforms except the indicated platform. The total number of human miRNAs on each platform is indicated in parenthesis. Black bar indicates 319
miRNAs represented on all microarrays. (B) Clustering of the common probe M-values. M-values of 204 human probes common to all
microarray platforms with no predicted cross-hybridization and detectable by GAseq were subjected to unsupervised clustering using Pearson
correlation. Ticks indicate the position of potential tumor suppressor (TS) miRNAs (blue) and miRNAs arising from a single genomic location
contained in a putative polycistronic pri-miRNA (black). A list of polycistrons is provided in Supplemental file ‘‘Polycistrons.’’ (C) Consistency of
DE calls by all platforms. The number of platforms calling each miRNA as DE (up-regulated, top; down-regulated, bottom) in each of the three
biological comparisons was recorded. DE calls were derived (1) using a uniform threshold of log2 fold-change>1 or (2) using optimal thresholds
calculated for each platform by the iMLE algorithm. The overall number of relevant DE calls made by each platform is indicated in parenthesis.
(D) Overlap in DE calls of five platforms. The number of miRNAs called by five platforms as up-regulated in P versus N sample using iMLE-
optimized cutoffs was plotted inside a Venn diagram. Areas are shaded according to number of DE calls and their relative sizes bear no meaning.
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on five out of the six microarrays. This was predominantly
due to their absence from the Ambion arrays, which were
designed against an earlier version of miRBase. Three hun-
dred nineteen miRNAs were targeted by all six microarray
platforms; of these, 204 had no predicted cross-hybridization
and at least 10 GA sequencing reads mapped to mature
sequences.

For these 204 miRNAs, the log2 ratios were calculated for
the M/P, P/N, and N/M comparisons and clustered based on
Pearson correlation (Fig. 3B). Importantly, as this analysis is
limited to a subset of miRNAs, it should not be considered
as a complete comparison of the three biological samples. All
M-values clustered according to the biological comparison
rather than platform type. Data obtained from the two PCR-
based methods (GAseq sequencing and Illumina micro-
arrays) consistently clustered together, as did the data from
the three microarray platforms exhibiting greater reproduc-
ibility (Exiqon, Ambion, and Agilent). The clustering of In-
vitrogen and Combimatrix data was inconsistent.

Recent reports have demonstrated the effect of normali-
zation on the interpretation of miRNA expression data
(Hua et al. 2008; Pradervand et al. 2009), which is certainly
magnified by combining data from several platforms. We
therefore tested whether our clustered normalized data re-
flected the coregulation of biologically meaningful groups, in
particular potential TS miRNAs frequently lost in cancer (Git
et al. 2008, and references therein), and groups of miRNAs
residing in close genomic proximity and potentially cotran-
scribed as a polycistronic pri-miRNA. Figure 3B (right) in-
dicates the relative positions of these miRNAs in the overall
clustering, clearly demonstrating correlated levels of both
potential TS miRNAs and the miRNA products of many
putative polycistronic transcripts. Among the latter category,
those groups that do not demonstrate coregulation may not
in fact be polycistronic or may be individually regulated by
post-transcriptional mechanisms.

We identified the differentially expressed genes on each
platform using a uniform arbitrary fold-change threshold
of 2 and corrected P-values of <0.05 (Fig. 3C, bars coded
‘‘a’’) and examined the agreement between platforms.
Surprisingly, the actual overlap between the differentially
expressed (DE) calls of the platforms was very low. Con-
sistent with the low rate of ‘‘present’’ calls, Invitrogen and
Combimatrix results were most frequently in disaccord
with the other microarray platforms, while GAseq, Illu-
mina, and Exiqon assays produced the highest numbers of
unsupported DE calls.

To eliminate the possibility that the low degree of over-
lap between platforms resulted from applying an arbitrary
uniform cutoff, we developed a novel iterative maximal
likelihood estimate (iMLE) algorithm to establish the op-
timal cutoff for each platform in view of the combined data
of all platforms. The overlap of the resulting DE calls is
presented in bars ‘‘b’’ in Figure 3C. Although the optimized
cutoffs increased the number of the fully overlapping DE

calls in all six sample comparisons, the vast majority of the DE
calls were still not unanimous across platforms. Whether this
disagreement ensues from nonspecific contributions, varying
degrees of cross-hybridization of miRNA family members or
reduced discrimination between unprocessed and mature
forms of the miRNAs (only Agilent’s probes are mature-
specific) is at present unknown and will necessitate the use of
specific synthetic spike-in oligonucleotides.

The difference in DE calls for each comparison is the net
result of sensitivity and specificity characteristics inherent
to each platform, and those exhibiting the highest sensi-
tivity are expected to make some unsupported DE calls and
to generate increasingly large overlaps with platforms of
lower sensitivity, evident as DE calls made by two to four
platforms (Fig. 3C, gray bars). We therefore examined the
nature of the overlap in DE calls. Figure 3D shows an
example of the overlap between GAseq and four of the six
microarray platforms tested (Invitrogen and Combimatrix
were excluded for ease of plotting) in identifying miRNAs
up-regulated in the P/N comparison. Here, 53 miRNAs
were called up-regulated by all platforms, and both GAseq
and Exiqon yielded a large number of unique DE calls (13
and eight, respectively), suggesting that at least one of the
platforms exhibits high false-positive (FP) calls (i.e., re-
duced specificity). Similarly, 10 and six miRNAs were called
significantly up-regulated by all platforms except Ambion
and Agilent, respectively (false negatives [FNs]), indicative
of lower sensitivity. In more complex overlap patterns, the
same number (seven) of Exiqon and Illumina’s overlapping
DE calls was supported or rejected by GAseq. Since all
platforms were given equal status, such data could not
easily be translated into specificity (true negative [TN]) and
sensitivity (true positive [TP]) values.

Correlation with qPCR results

Microarray and NGS data are regularly validated by qPCR.
We analyzed the expression of 89 miRNAs from multiple
overlap categories using either TaqMan or SYBR Green
assays. The log2 ratios of this miRNA subset for all plat-
forms were sorted according to the corresponding qPCR
values (Fig. 4A). Although the trend of M-values follows
that of the qPCR data, the magnitude of the M-value is
clearly different between platforms (ratio compression).
Occasional spurious values in single platforms are notice-
able as red or blue ‘‘islands.’’

The ratio compression can also be visualized by the slope
of the concordance between each platform and qPCR data
for each of the three biological comparisons, exemplified
for GAseq data in Figure 4B (average slope z1; i.e., no com-
pression). The average slopes for the microarray platforms
are listed in Figure 4B and range between 0.24 (Invitrogen)
and 0.61 (Ambion). Also evident in this plot is the shift in
the y-axis intercept, representing a consistent drift in the
measured ratio, also evident in microarray/qPCR plots
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(data not shown). This shift arises from the inherently
different ratio of the overall miRNA population and ex-
ternal reference genes used in qPCR normalization (e.g., 5S
rRNA). It has been repeatedly observed by ourselves and
others (Lee et al. 2008; C Blenkiron and LD Goldstein, pers.
comm.) that cell lines have a lower miRNA content per
total RNA (>85% of which is rRNA species) than tissue
samples. This trend is supported by the fact that despite
similar quality and quantity of RNA input the overall
hybridization signal in MCF7 arrays is lower than
in normal breast tissue arrays (Fig. 1A) with the normal-
like cell line PMC42 showing intermediate values. NGS
and microarrays are for the most part blind to such fluc-
tuations as they employ normalization techniques within
the miRNA population. As a result, every miRNA appears

to be better-expressed in M samples when measured by
GAseq compared with equivalent qPCR measurements,
where its levels are normalized to high 5S content, thus
consistently shifting the GAseq N/M ratios down (intercept =
!3.1). Similarly, M/P and P/N correlations are shifted
by +0.92 and +1.9, respectively.

The concordance of each platform with qPCR data was
measured as either Pearson correlation of all array
M-values against the matching qPCR M-values (comparing
columns in a traditional table layout) (Fig. 4B, R^2 values)
or the distribution of correlations of the M-values of in-
dividual miRNAs in the three comparisons (comparing
rows in a traditional table layout) (Fig. 4C, box plots). The
two measures do not necessarily agree (e.g., Invitrogen’s
median correlation is 0.93, although the overall average

FIGURE 4. Validation by real-time RT-PCR. (A) M-values of miRNAs tested by qPCR. Eighty-nine miRNAs validated by qPCR (rows) are
sorted by their qPCR M-values. Platforms (columns) are clustered by Euclidean distance. (B) Overall correlation between GAseq and qPCR data.
For each biological comparison, the ratios of miRNA expression calculated from GAseq were plotted against those derived from qPCR. Best linear
regression fit (solid lines; R^2 values, intercept with y-axis and slope indicated in legend); Y = X (dotted line). Average correlations and slopes
across the three comparisons are listed for each platform compared to qPCR. (C) Correlation between microarray/NGS and qPCR data. Boxes
depict the distribution of correlation for the M-values generated by qPCR and indicated platforms for each miRNA in all three comparisons (MP,
PN, NM), and the median value (Cor.median) is indicated above. Examples of consistent outliers are circled; hsa-miR-484 (red), hsa-miR-15a
(green), and hsa-miR-215 (blue). (D) Effect of DE cutoff on the TP and FP rate of each platform. The number of TP and FP DE calls, compared
with qPCR calls at fold-change >2 was calculated across a range of thresholds (0–5 in 0.1 increments). Only miRNAs with P-value <0.05 were
included for each platform; hence, the ROC curves do not cover the entire range of TP and FP rates. (E) True and false call rates of each platform at
optimal cutoffs. The number of TP and FP and FN DE calls was calculated at the optimal log2 cutoffs calculated based on a qPCR reference or on the
iMLE algorithm with qPCR as an unknown platform. The number of DE (equivalent to TP) and non-DE (equivalent to TN) calls made by these
references is shown with a thick frame. A horizontal black thick line separates true calls (below) from false calls (above). Abbreviations as in panel C.
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correlation is only 0.68). Discrepancies could arise due to
a relatively small number of poorly correlating outliers
(counted once for box plots but strongly skewing an overall
linear fit) or as a result of differences in the correlation
slopes of individual probes (i.e., rows), which—while pos-
sibly scoring well in a box plot analysis—reduce the quality
of the overall (i.e., columns) linear fit.

We then extended our analysis from continuous
M-values to discrete DE calls. Using the calls generated by
qPCR as a standard reference (195 DE/positive and 72 non-
DE/negative calls across all three comparisons), we counted
the number of TN and TP calls made by each platform at
multiple threshold values. The resulting ROC curves (Fig.
4D; Supplemental file ‘‘4D-Detailed’’) exemplify the effect
of a chosen cutoff on the perceived sensitivity and speci-
ficity of each microarray platform. The threshold values
generating the highest overall number of TP calls for each
platform was determined to be optimal and is consistent
with the ratio compression of each platform such that the
platforms exhibiting greater compression (e.g., Combima-
trix) perform better at lower cutoffs than those with lower
compression (e.g., Ambion). The number of TP and FP DE
and non-DE calls made by each platform is presented in
Figure 4E (qPCR bars).

Unexpectedly, some outliers in Figure 4C are miRNAs
that correlate poorly with qPCR across all platforms (colored
circles), suggesting that the FPs were generated by qPCR
(similarly to a recent observation by Ach et al. 2008), rather
than consistent errors across platforms incorporating differ-
ent probe design, hybridization conditions, and labeling
chemistries. We therefore repeated the DE analysis with the
qPCR data incorporated into the iMLE algorithm. Figure 4E
contrasts the number of true and false calls made by each
platform at the optimal cutoffs calculated using qPCR either
as a reference or integrated into iMLE. Consistently across
all platforms, the number of true calls calculated under the
iMLE algorithm was greater than those calculated using
qPCR as a gold standard. The iMLE (TP/TN) rates are as
follows: Agilent, 0.90/0.86; Exiqon, 0.82/0.85; Illumina, 0.87/
0.71; Ambion, 0.91/0.91; Combimatrix, 0.59/0.95; Invitro-
gen, 0.61/0.67; qPCR, 0.83/0.71; and GAseq, 0.85/0.56.
Omission of ‘‘obsolete’’ or ‘‘not_designed_for_hsa’’ Exiqon
probes resulted in minimal changes to these numbers
(60.2 in optimal fold-change cutoff and 60.04 in TP/TN
rates; data not shown). The low sensitivity (TP) of GAseq
contradicts the commonly expressed expectation of digital
miRNA profiling and was also recently reported in a com-
parative study using a pool of synthetic RNAs (Willenbrock
et al. 2009).

DISCUSSION

We present a comparison of the suitability of six micro-
array platforms and one NGS technology to detect differ-
ential expression of miRNAs. In our hands, Ambion,

Agilent, and Exiqon microarrays ranked highest in the rate
of true DE calls. During the course of this study, several
changes occurred in the handling protocols and microarray
design, some of which are summarized by the manufac-
turers in the Supplemental file ‘‘Manufacturers Com-
ments.’’ Moreover, NGS and miRNA microarrays are
now available from several additional manufacturers (e.g.,
Affymetrix microarrays, whose performance in comparison
to Agilent and Exiqon is currently under evaluation by
ABRF) (Web-report 2009). We therefore delineate generic
key criteria for the evaluation of current miRNA platforms,
including common aspects of microarray technology, such
as reproducibility, and aspects particular to miRNAs, such
as probe annotation and the utility of qPCR for validation.

Several practical considerations are worthy of mention
in miRNA microarray platform selection (Table 1). The
choice of single- or dual-channel platform depends on
the nature of the biological question investigated, and
reliable data were generated by all three single channel
platforms and the Ambion dual-channel platform. We
found that despite the overall lower signal intensity of cell
lines, all platforms were equally applicable to cell line and
tissue samples (to be corroborated in additional tissues).
The platforms vary widely in their input sample require-
ment, ranging from 100 ng of total RNA (Agilent) to small
RNA-enriched fractions equivalent to z10 mg total RNA
(Ambion and Combimatrix). Thus, despite Ambion’s
excellent TP and TN rates, the platform is not suitable
for studies where input material is limited. Similarly,
Ambion’s performance in detection of DE may be second-
ary to ease of handling or slide layout in studies with large
numbers of samples, or in a high-throughput core facility,
for which the labeling and hybridization protocols of
Agilent and Combimatrix would be better suited. Platforms
also varied in the reproducibility of hybridization, enu-
merated as CV across replicates (Fig. 1B,C) and consistency
of present/absent calls (Fig. 2A). Lower reproducibility
might prescribe a larger number of replicate arrays,
affecting the experimental design, computational analysis
and costing. Cross-hybridization can be estimated by the
signal distribution and present calls from mouse and
mismatched human probes as a surrogate measure (Fig.
2B,C). Surprisingly, the LNA probes used by Exiqon were
among the poorest in discriminating the groups of probes
classified using our uniform reannotation, although the
contribution of suboptimal LNA spike patterns could not
be evaluated. Finally, unique features such as the ability to
customize the microarray probe sets for specific applica-
tions (Agilent and Combimatrix), or supported array
stripping and reuse procedures (Combimatrix), come into
play for particular experimental needs.

Periodic changes to miRBase necessitate a reannotation
of microarray and qPCR probes prior to analysis. For
example, 35 novel miRNAs of each Ambion and Exiqon
match recent additions to miRBase. Our arrays, although
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acquired within a few weeks of each other, were designed
and annotated against different versions of miRBase, re-
sulting in a low number of initially overlapping miRNA
identifiers. A substantial fraction of the discrepancies result-
ing from changes in miRNA nomenclature can be resolved
by consulting the tracking files available on miRBase without
further computational manipulation. However, changes to
the actual sequences of miRBase entries expose potential
cross-hybridization between previously unrelated probes and
therefore must be identified computationally. Unfortunately,
the sequence information provided by the manufacturers is
often partial (e.g., miRNA target rather than probe, or probe
without proprietary linker). At the two extremes, Combi-
matrix provides all probe sequences whereas Exiqon offers
only proprietary reannotation against miRBase updates,
reserving probe sequence information for users bound by
confidentiality agreements. This model restricts the inclusion
of sequence information in published research studies.
Laboratories with no access to fully exploratory methods
(such as deep sequencing) may benefit from microarray
platforms that include novel miRNAs (Ambion, Exiqon;
annotated by the manufacturers), provided that the un-
derlying probe sequences are disclosed.

High-throughput sequencing of miRNAs is coming into
wider use and is unmatched for the discovery and exper-
imental validation of novel or predicted miRNAs. However,
library preparation methods seem to have systematic
preferential representation of the miRNA complement,
resulting in different DE calls (Linsen et al. 2009) and the
approach awaits rigorous evaluation. We therefore focused
on the differential expression of 204 miRNAs represented
by all six microarray platforms as well as detected by
sequencing. We observed a low degree of overlap in the DE
miRNAs (consistent with Sato et al. 2009), not easily
attributable to the strength or weakness of singular plat-
forms. We implemented a novel algorithm (iMLE) in-
tegrating partial overlaps of DE calls in the calculation of
TP and TN rates. Furthermore, we show that qPCR is not
an infallible validation method of miRNA microarray data,
especially where the array technology itself incorporates
PCR-based amplification (e.g., Illumina). The question of
an ‘‘industry standard’’ in miRNA expression awaits further
advances in both technology (e.g., deep sequencing) and
computation (normalization and DE algorithms). iMLE-
based assignment of true values can also potentially help
amalgamate other binary datasets, such as peak-calling or
miRNA target predictions by different algorithms with no
need for a standard reference.

We illustrate the effect of using non-miRNA reference
genes for qPCR normalization on the perceived differential
expression of tested miRNAs. This effect is pronounced when
the overall abundance of miRNAs varies, e.g., in experiments
affecting the miRNA processing machinery, or in compari-
sons involving multiple tissues (such as demonstrated by Sato
et al. 2009) or combinations of tissues and cell lines. In such

cases, it is advisable to perform qPCR measurements of
numerous miRNAs, including those identified as stably
expressed, to obtain a measure of the linear correlation
intercept prior to assignment of validated DE values. Alter-
natively, microarrays and NGS can be used for mutual
validation, circumventing the need for external references.

To our knowledge this is the first systematic study
scrutinizing the relative performance of miRNA microarrays,
NGS, and qPCR across several well-studied biological sam-
ples. While our analysis is not intended to serve as a recom-
mendation for any particular platform, we present practical
criteria and metrics to evaluate the reproducibility, specificity,
and reliability of methods measuring miRNA expression.

MATERIALS AND METHODS

Preparation of total RNA and small-RNA
enriched samples

A pool of commercial normal breast tissue (hereafter termed
Normal) total RNAs was created from 78 mg comprising a five-
donor pool (BioChain Institute, lot no. A512460), 130 mg Hm
breast total RNA (Ambion AM6952, lot no. 02060262), and 75 mg
MVP human adult breast total RNA (Stratagene 540045-41, lot
no. 0870161). The breast cancer cell lines PMC42 (a gift from
Michael O’Hare, University College London) (Whitehead et al.
1983, 1984) and MCF7 (from ATCC) (Soule et al. 1973) were
cultured in RPMI or DMEM media (Invitrogen), respectively,
supplemented with 10% bovine calf serum (Invitrogen). RNA was
extracted from subconfluent cultures (estimated 85% density) that
were refed with fresh medium 24 h prior to harvesting. In brief,
cultures were washed once with cold phosphate-buffered saline
(PBS). Upon complete removal of the PBS, cells were lysed
directly in 8.4 mL of QIAzol (Qiagen), and total RNA was
extracted using 10 miRNeasy columns (Qiagen) according to
manufacturer’s recommendations.

Several 100 mg aliquots from each total RNA were further
separated into large- and small-RNA enriched fractions (cutoff
z200 nt) using the miRNeasy columns and reagents. The yield and
quality of the total RNA were monitored by spectrophotometry at
260, 280, and 230 nm, by Agarose gel electrophoresis, and on
a Bioanalyzer Eukaryote Total RNA Nano Series II chip (Agilent).
RNA integrity number (RIN) values were 9.4 (MCF7), 10.0
(PMC42), and 7.6 (Normal). The yield and quality of the small-
RNA enriched fraction (sRef) were monitored by spectrophotom-
etry (as above), urea/polyacrylamide gel electrophoresis (Git et al.
2008), and on a Bioanalyzer Small RNA Series II chip (Agilent).
sRef were extracted with a near 100% efficiency, contained pre-
dominantly tRNA and small rRNA, and comprised a different but
reproducible proportion of the total RNA in each sample: 14 6 1%
in MCF7, 12.5 6 0.5% in PMC42, and 6 6 0.2% in normal breast
tissue. The miRNA contained within these fractions was <0.5 ng per
10 mg total RNA (Git et al. 2008; data not shown).

Microarray study design

For single-channel platforms (Agilent, Illumina), each sample was
hybridized in quadruplicate (samples are termed M, MCF7; P,
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PMC42; and N, Normal throughout the text). For dual-channel
platforms, a balanced-dye design was employed in which quadru-
plicate hybridizations were set up in the following combinations:
Cy3-MCF7 with Cy5-PMC42 (sample MP), Cy3-PMC42 with
Cy5-Normal (sample PN), and Cy3-Normal with Cy5-MCF7
(sample NM).

The hybridizations for each quadruplicate were carried out on
two different days. Where possible replicates that were labeled side-
by-side were hybridized on different days, and those labeled on
different days were hybridized side by side. For microarray plat-
forms requiring near immediate application of the labeled samples
(Combimatrix, Exiqon), independent labeling reactions were car-
ried out on the day of the hybridization. For Ambion assays, two
independent sets of duplicate dried polyadenylation reactions were
frozen for <48 h, and labeling of individual replicates was com-
pleted immediately prior to hybridization.

RNA labeling and microarray hybridization

RNA input and labeling kits were chosen and used according to
the recommendations of each microarray manufacturer (Kreatech
labeling for Combimatrix arrays and the manufacturers’ labeling
kits for others). Arrays were hybridized for 16–20 h in an Agilent
G2545A hybridization oven and washed according to the manu-
facturer’s instructions. To minimize bias due to seasonal changes
in ultraviolet light and ambient ozone, we completed all in-house
experimental work at one location over a span of 6 wk.

Agilent

One hundred nanograms of total RNA samples was dephosphory-
lated, 39 end-labeled with Cy3-pCp, purified on Micro Bio-Spin
columns, dried, and hybridized using miRNA Microarray System
labeling kit and arrays (Agilent) (Wang et al. 2007).

Ambion

sRef samples equivalent to 10 mg total RNA were polyadenylated,
purified, dried to completion, coupled to Cy3 or Cy5 amine-
reactive dyes (GE Healthcare), purified, dried, and hybridized using
mirVana miRNA Labeling and Bioarrays Version 2 (Ambion)
(Shingara et al. 2005).

Combimatrix

sRef samples equivalent to 10 mg total RNA were coupled to Cy3-
or Cy5-ULS reagent using ULS Small RNA Labeling kit (Kreatech)
and hybridized to MicroRNA 4X2K Microarrays (Combimatrix).

Exiqon

One microgram total RNA samples was dephosphorylated, Hy3-
or Hy5- end-labeled, and hybridized using miRCURY LNA
microRNA Array Power Labeling kit and microarray kit (Exiqon).

Illumina

Two hundred nanograms of total RNA samples were processed by
Illumina using a Sentrix Array Matrix 96-well MicroRNA Expres-
sion Profiling Assay v1 (Chen et al. 2008). In brief, samples are
polyadenylated and reverse-transcribed, and the cDNA is hybrid-
ized to a specific primer pool and extended to incorporate address

tags and universal sequences. PCR-amplified samples are then
hybridized to address-coded beads on a solid support.

Invitrogen

One microgram of total RNA samples was polyadenylated, 39
splint-ligated to Cy3- or Cy5-labeled oligonucleotides, and hy-
bridized using NCode Rapid miRNA Labeling System and NCode
Multi-Species miRNA Microarray v2 (Invitrogen).

Microarray scanning and feature extraction

Illumina bead-based arrays were processed at the manufacturer’s
facility in San Diego, California. In brief, arrays were scanned on a
BeadScan instrument, and fluorescence intensities were extracted
and summarized using the BeadStudio software (Illumina), re-
sulting in a set of summarized fluorescence measurements (Sup-
plemental file ‘‘MPN_miRNA_Illumina’’). Agilent, Ambion, Exi-
qon, and Invitrogen arrays were scanned on a G2505B Microarray
Scanner (Agilent Technologies), and Combimatrix arrays were
scanned on the InnoScan700 (Innopsys). Feature recognition and
alignment of all in-house scanned images were carried out using
GenePix Pro 6.1 and, where necessary, adjusted manually by the
same operator. To minimize variation in alignment correction,
arrays from each platform were processed in a single session. Data
from Agilent, Ambion, Combimatrix, Exiqon, and Invitrogen
arrays have been deposited in ArrayExpress (http://www.ebi.ac.
uk/microarray-as/ae/; accession E-MTAB-96).

Microarray normalization and processing

Data analyses were carried out within the R statistical computing
framework version 2.8.0 (http://www.R-project.org) (R Develop-
ment Core Team 2008). Following quality control assessment, two
out of the 60 arrays hybridized in-house were excluded (see Fig. 1B)
due to either low intensity (Exiqon, sample M) or array-specific
artifacts (Combimatrix, sample PN). The overall Cy5 intensities in
Exiqon arrays were too low for reliable analysis, and the data from
the Cy3 channel was treated as a single-channel assay.

The limma package (Smyth 2005) was used for microarray
processing. Different methods for background correction were
tested for all platforms except Illumina (none, subtract, half,
minimum, movingmin, normexp) and normalization (none, vsn,
quantile), depending on whether the platforms were used for a
single- or dual-channel assay. Ultimately, normexp was chosen due
to its superior performance in correcting spatial artifacts, maxi-
mizing the uniformity of foreground and background signal, and
minimizing the variability within and between arrays. All plat-
forms were background-corrected using normexp, except for
Combimatrix, where minimum was used due to constraints
specific to the array layout. Dual-channel platforms (Ambion,
Combimatrix, Invitrogen) were normalized using loess spatial
correction within arrays, and single-channel platforms (Agilent,
Exiqon) were quantile normalized between arrays. Spike-in
controls were not used for normalization purposes as they were
only available for some of the platforms, and where present were
too few to be reliably utilized.

SNR was calculated using the SSDR method (He and Zhou
2008), mi/(siF + siB) (where m equals spot intensity; s, pixel
standard deviation; i, spot; F, foreground; and B, background).
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Microarray probe reannotation

All probe sequences were mapped to mature human and mouse
miRNA sequences from miRBase version 12 (Griffiths-Jones
et al. 2008) using WU-BLAST (Lopez et al. 2003). Ungapped
alignment was performed, using word length shorter than the
default when necessary. For ‘‘long probe’’ platforms (Ambion,
Invitrogen, Combimatrix, Illumina), all perfect match hits with
length greater than 15 were retained and filtered as described
below. For ‘‘short probe’’ platforms (Agilent, Exiqon), probes
with length greater than 15 were treated similar to the ‘‘long
probes’’ platforms, whereas for short probes only perfect match
hits with alignment length equal to probe length were considered.
Where alignments $20 bases were found, shorter alignments
were discarded. For alignments <20 bases, the longest was as-
signed to the given probe, or multiple miRNAs in the case of
matches of equal length. For alignments $20, there were occa-
sionally several possible miRNAs targets, and these were all
assigned to the probe to account for potential cross-hybridization.
A complete list of reannotated probes can be found in Supple-
mental file ‘‘Reannotation.’’

In cases where a probe sequence aligned to both a human
and mouse miRNA, targets were assigned to the probe under the
following priorities: human perfect match > human with one
mismatch > mouse miRNAs. Probes were finally grouped into the
following categories: PosControl, NegControl, and Novel: positive
or negative controls and putative novel miRNAs, respectively, as
defined by array manufacturer; Empty indicates spots with no
printed probes; Human and MM_human, probes targeting
human miRNAs with perfect complementarity or with a single
internal mismatch, respectively; Mouse, probes targeting mouse,
but not human, miRNAs; Obsolete, probes that were designed to
target miRNAs but do not map to targets in the current version of
miRBase; and Miscellaneous, probes outside the aforementioned
categories, such as probes targeting miRNAs from other species,
spike-in controls, and all unidentifiable probes.

We examined the signal intensities across probes of different
lengths and GC content. Some variation was observed (data not
shown), but since the binding kinetics for individual platforms are
affected by numerous factors, we did not attempt to correct for
these in the analysis.

Putative polycistronic miRNAs were defined as sets of miRNAs
sharing a genomic locus with no more than 500 bases between any
two adjacent miRNAs, and were obtained via the Clusters in-
terface of miRGen (Megraw et al. 2007).

Assignment of microarray present and absent spots

Spots were called as ‘‘absent,’’ ‘‘marginally present,’’ or ‘‘present’’
using a modified version of the R package ‘‘panp’’ (Warren et al.
2007). A probability distribution of signal intensities from empty
and negative control spots was calculated, and the cumulative
distribution function (CDF) generated. Each spot was called as
present or absent based on expression value cutoffs defined from
the survivor distribution (1-CDF) for each individual array, using
P-values of 0.05 (present) and 0.1 (marginally present). For dual-
channel arrays (Ambion, Combimatrix, and Invitrogen), each
channel was treated separately, and the percentage of present calls
for each miRNA was taken across both the Cy3- and Cy5-labeled
fluorescence data.

Identification of differentially expressed miRNAs

For single-channel platforms, M-values were calculated based on
the individual Cy3 data from each sample (hereafter also referred
to as M-values). Ratio compression was taken as the slope of the
linear least-squares regression of microarray versus qPCR across
all three biological comparisons. All M- and P-values are available
in Supplemental file ‘‘M_pValue_204probes.’’ The empirical Bayes
moderated f-statistics implemented in the R package limma was
used. Differentially expressed genes were identified using the
limma nestedF procedure, applying a significance threshold of
0.05 in combination with Benjamini–Hochberg false-discovery
rate control and unless otherwise specified, a minimal cutoff of 2.
Where multiple probes targeting the same miRNA did not agree,
one of two approaches was chosen for clarity of presentation: For
Figure 4D, we have assigned the corresponding miRNA with an
‘‘NA’’ value, while for Figure 4E, the miRNA was assigned with
the value of the probe that showed differential expression, as long
as the two calls were not contradictory (up- and down-regulated)
in which case the miRNA was assigned ‘‘NA.’’

Next-generation sequencing

sRef samples equivalent to 2 mg total RNA were ligated to a
preadenylylated 39 adapter v1.5 (59-rApp-[desoxy]ATCTCGTATG
CCGTCTTCTGCTTG-[didesoxy]ddC-39; Illumina or Dharmacon)
in 13 T4 RNL2 truncated reaction buffer (NEB), 10 mM MgCl2
(Ambion), 20 units of RNaseOUT (Invitrogen), and 300 units
truncated T4 RNA ligase 2 for 1 h at 22°C. The reactions were then
supplemented with 12.5 nmol 59 adapter (all RNA; GUUCA
GAGUUCUACAGUCCGACGAUC; Dharmacon), 1 mM ATP
(Ambion), and 20 units of T4 RNA ligase (NEB) and the second
ligation allowed to proceed for 6 h at 20°C. The double-ligation
products were reverse-transcribed by SuperScriptII reverse tran-
scriptase (Invitrogen) in the presence of primer GX1 (all desoxy;
CAAGCAGAAGACGGCATACGA; Sigma) following manufac-
turer’s instructions. The cDNA was PCR-amplified by Phusion
DNA Polymerase with Primers GX1 and GX2 (all DNA; AATG
ATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA;
Sigma) for 19 cycles of [10 sec at 98°C, 30 sec at 60°C, and 15 sec at
72°C]. The amplification products were separated on a Novex 6%
TBE gel (Invitrogen), and the 90–100 base-pair bands were excised,
eluted into 0.3 M NaCl, and ethanol precipitated. Following quality
control on a Bioanalyzer 1000 DNA chip (Agilent), the purified
DNA fragments were used directly for two independent repeats of
sequencing via 36 alternating cycles of enzymatic synthesis and
optical interrogation using the Illumina Cluster Station and GAII
Genome Analyzer following manufacturer’s protocols. Sequencing
reads were extracted from the image files generated by Genome
Analyzer II using the GAPipeline software, version 1.4 (Illumina).

NGS data analysis

39 adapters were trimmed from sequencing reads using an in-
house script (available upon request). Reads of length <15 nt after
adapter trimming and comprising more than 50% polyA stretches
were excluded from further analyses. The remaining reads were
mapped to known mature miRNAs (miRBases version 12) using
the ‘‘ssaha2’’ program (Ning et al. 2001), where 100% identity
between reads and known miRNAs sequences was required.
miRNAs with an aggregate count of less than 10 in all samples
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were eliminated (see Supplemental file ‘‘GA_Read_Counts’’); then
the total read count for each lane was scaled relative to the library
size (total number of reads that mapped to known miRNAs). Read
counts of technical replicates were then merged, and log2 (fold-
change) values were calculated for each miRNA. P-values were sub-
sequently calculated using a binomial approximation to Fisher’s
exact test for each miRNA.

Real-time RT-PCR (qPCR)

For SYBR green-based assays, sRef samples equivalent to 10 mg
total RNA were polyadenylated, reverse-transcribed using a tagged
and anchored oligo-dT primer, and then amplified using a gene-
specific forward primer and universal reverse primer (see Supple-
mental file ‘‘qPCR Primers’’) in the presence of SYBR green as
described by Git et al. (2008). For TaqMan assays (ABI), total
RNA samples were reverse-transcribed using a pool of gene-
specific primers and amplified using individual gene-specific
assays. All RT reactions were performed with three different
RNA inputs, and all PCR reactions were carried out in triplicate.
RNU48 and 5S rRNA were used as non-miRNA reference genes
for TaqMan and SYBR green qPCR, respectively. The measured Ct
values were M:11.24, P:11.63, N:11.70 (RNU48) and M:16.20,
P:16.50, N:16.27 (5S rRNA), and the magnitude of the variance
did not warrant DDCt normalization. Where miRNAs were tested
by both methods, the average correlation was 0.94.

iMLE algorithm

The input for the algorithm is a table of discrete DE calls (up-
regulated, +1; not DE, 0; down-regulated, !1) for each miRNA/
comparison combination (rows) made by each experimental plat-
form at a particular threshold value with P-value <0.05 (columns).
An initial ‘‘truth’’ value was assigned for each row according to the
majority of calls. A matrix (i,j) was then generated for each platform,
representing the proportion of cases where the assay called various
j for each Truth i, e.g., P(!1,!1) + P(!1,0) + P(!1,+1) = 1.
Subsequently the algorithm reiterated two steps until Truth values
converged: (1) selected for each row the Truth (!1/0/+1) with the
highest maximal likelihood estimate [MLE, defined as the product
of all platform probabilities to have given this Truth call under the
existing (i,j) parameters], followed by (2) a recalculation of the
platform matrices.

To determine the optimal cutoffs for each platform, the iMLE was
performed in an iterative fashion, where cutoffs were fixed for all but
one tested platform at a time, for which a series of discrete cutoffs
was tested, and the cutoff that yielded the highest number of correct
calls was fixed as a temporary optimum. This was repeated across all
platforms until each platform cutoff converged to a stable value. The
following measures were then extracted from the platform matrices:
TP [the average of (1,1) and (!1,!1)]; TN (0,0); FP [average of
(0,1) and (0, !1)]; FN [average of (1,0) and (!1,0)]; reverse
[average of (1, !1) and (!1,1)].

An outline of the algorithm is included in Supplemental file
‘‘iMLE Algorithm,’’ and the code for the implementation of the
algorithm is available from the authors upon request.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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Abstract

Background: The demands of microarray expression technologies for quantities of RNA place a limit on the
questions they can address. As a consequence, the RNA requirements have reduced over time as technologies
have improved. In this paper we investigate the costs of reducing the starting quantity of RNA for the Illumina
BeadArray platform. This we do via a dilution data set generated from two reference RNA sources that have
become the standard for investigations into microarray and sequencing technologies.

Results: We find that the starting quantity of RNA has an effect on observed intensities despite the fact that the
quantity of cRNA being hybridized remains constant. We see a loss of sensitivity when using lower quantities of
RNA, but no great rise in the false positive rate. Even with 10 ng of starting RNA, the positive results are reliable
although many differentially expressed genes are missed. We see that there is some scope for combining data
from samples that have contributed differing quantities of RNA, but note also that sample sizes should increase to
compensate for the loss of signal-to-noise when using low quantities of starting RNA.

Conclusions: The BeadArray platform maintains a low false discovery rate even when small amounts of starting
RNA are used. In contrast, the sensitivity of the platform drops off noticeably over the same range. Thus, those
conducting experiments should not opt for low quantities of starting RNA without consideration of the costs of
doing so. The implications for experimental design, and the integration of data from different starting quantities,
are complex.

Background
Gene expression microarrays have become a routine
analysis tool; from their introduction [1] to recent head-
line publications [2-4] their widening use has been pri-
marily down to better understanding of how to design
[5,6], use and analyse [7,8] microarray experiments. An
important, if somewhat forgotten, design issue has been
the amount of starting material needed to produce high
quality microarray data. Ten years ago, around 10 μg of
total RNA was required and even three years ago many
labelling protocols required 1 μg. The introduction of
Illumina BeadChips with a standard labelling reaction
requiring only 250 ng of total RNA made analysis of
some previously unconsidered sample types possible;

e.g. limited clinical samples or samples requiring consid-
erable microdissection and pooling.
Whilst many researchers continue to push the limits

of starting materials [9], development of robust standard
labelling protocols has further decreased the amount of
RNA required for microarrays. Until recently 250 ng of
starting mRNA was recommended for the Illumina Bea-
dArray platform. Now 50 ng to 100 ng is suggested
http://www.illumina.com/technology/direct_hybridizatio-
n_assay.ilmn. If one can indeed use so little starting
material then this is of tremendous importance in terms
of the scope of experiments that become possible. How-
ever, there is a wealth of literature that is based upon
250 ng, and it is important that future results are com-
parable to those obtained previously. One small compar-
ison has previously been made [10]. This study found
that reproducible signal was obtainable from as little as
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25 ng, but the study was not large enough to quantify
the costs of such an approach.
Microarray dilution experiments [11,12], where two

samples are mixed together in a number of differing
(known) ratios and those mixtures hybridized to arrays,
have proven to be valuable tools for the comparison and
investigation of microarray platforms, most notably in
the MAQC project [13]. We employ a nine-level dilu-
tion design to investigate the effect of changing the
quantity of starting mRNA on the performance of Illu-
mina BeadArrays. We consider the previously recom-
mended level of 250 ng, the current recommended
levels of 100 ng and 50 ng and one other (10 ng).
Here, we examine the costs and consequences of redu-

cing the amount of starting RNA, with consideration for
the issues of experimental design and meta-analysis,
while also providing a unique bead-level dilution experi-
ment to serve as a public resource to the Illumina-using
community. We use the Illumina HumanWG-6 V3 Bea-
dArray, analysed at the bead-level as we have previously
recommended [14]. One of the benefits of using the
bead-level data is that we can analyse separately the two
array-sections assigned to any one sample, thus allowing
inferences to be made about the more flexible HT12 Bea-
dArrays also. In addition to our purposes, we are creating
a unique public resource, and have designed our experi-
ment to be generally useful to the community.

Methods
Experimental Design
Six samples can be hybridized to the Illumina HumanWG-
6 V3 chip, each sample on two array-sections of approxi-
mately 1, 000, 000 beads that are distributed amongst
approximately 50, 000 bead-types. We treat the two
sections as separate arrays for the purposes of analysis,
due to previously observed inter-section differences
[14,15]. This also has the effect of making our results
comparable to those one might expect from the Illumina
HT-12 array which takes 12 samples, allocated one section
each.
We have used two reference RNA samples, previously

employed in the MAQC study [13], which have subse-
quently become a standard for microarray [16] and
next-generation sequencing [17] studies. These are the
Stratagene Universal Human Reference RNA (hereafter
“UHRR”), and the Ambion Human Brain Reference
RNA (hereafter “Brain”). Nine levels of mixture, includ-
ing the four employed in the first MAQC study, were
then created. These are 100:0, 99:1, 95:5, 90:10, 75:25,
50:50, 25:75, 10:90 and 0:100, where mixtures are pre-
sented as UHRR:Brain.
These nine levels allow for investigation of broad

trends, and for the detection of subtle differences. Com-
bined with the four levels of starting material that we

are investigating, this leads to 36 samples to be arranged
across six Illumina HumanWG6 V3 BeadChips. Clearly
it would not be desirable to confound levels of starting
material with BeadChips as we would be unable to dis-
tinguish our comparison of interest from technical varia-
tion. However it is desirable that our data resemble data
from a ‘real-world’ experiment else they have no exter-
nal validity and, in general, experiments are conducted
on BeadChips using only one level of starting material.
Our design was chosen to address this tension

between internal and external validity. Each BeadChip
was run with samples from two starting quantities of
RNA (three samples from both chosen starting quanti-
ties), and each possible combination of the two starting
quantities was run once and only once amongst the six
BeadChips. Full details of the design are given in Section
1 of Additional File 1.

Laboratory methods
Stock UHRR tubes were prepared following manufac-
turer’s recommendation and pooled to create a stock of
1 mg/ml; Brain RNA was received at 1 mg/ml. The
quality was checked using the Agilent Bioanalyser. The
RNA was accurately diluted to a working stock of
100 ng/μl and the dilution series was created to the spe-
cifications given above. The minimum pipetting volume
used was 10 μl.
The Illumina TotalPrep-96 Kit (4397949) was used to

process the samples using the range of input concen-
trations in question. For the 50 ng and 10 ng input
quantities a 1:10 dilution of working RNA was used.
Quality and quantity of the cRNA was checked before
proceeding with hybridisation to Human WG-6 V3
BeadArray. The Illumina WGGX DirectHyb Assay
Guide (11286331 RevA) protocol was followed for
hybridisation, washing and scanning of the BeadArray,
with the scanner set to return bead-level data (Addi-
tional File 1, Section 2). Quality assessment was
achieved via examination of metrics files (Additional
File 1, Section 3), agreement with previous MAQC
data sets (Additional File 1, Section 4), and perfor-
mance of housekeeping controls (Additional File 1,
Section 5).

Preprocessing and statistical analysis
Illumina BeadScan files were processed and analysed
using the beadarray package [18] from Bioconductor.
Arrays were pre-processed on the log2-scale on a per-
array-section basis. BASH [19] was used to remove
high-frequency spatial artefacts, followed by outlier
removal (outliers being defined as observations more
than three median absolute deviations from the med-
ian), and expression detection score calculation. The
detection score is a standard measure for Illumina
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expression experiments, and can be viewed as an
empirical estimate of the p-value for the null hypoth-
esis that there is no expression. Between-array-section
quantile-normalization was performed within each
starting material level, and a non-linear regression
model fitted across dilution levels within each starting
RNA level.
Our approach demands reporting of raw, bead-level,

Illumina data, which exceeds the MIAME requirements.
As popular repositories are not designed for the storage
of raw (bead-level) data from random arrays, the files
are available to download from our website at http://
www.compbio.group.cam.ac.uk/Resources/Dilution/Dilu-
tion.html.

Statistical model
A previously proposed [20] non-linear model was used
as the theoretical model for the dilution curve:

E U Bmrp m rp m rp mrp= + − +log ( ( ) )2 1c c � (1)

where Emrp is the observed (normalized) log-intensity
for probe p at starting RNA quantity r in mixture level
m, cm is the proportion of the mixture that is UHRR,
Urp is the intensity associated with probe p at starting
RNA level r in the UHRR sample, and Brp is similarly
defined for the Brain sample. The !mrp are independent
measurement errors with mean zero and standard devia-
tion srp.
This model implicitly assumes a linear relationship

between quantity of RNA and measured intensity. This
assumption is known not to hold over the full range of
observed intensities for microarrays [21], and specifically
for Illumina BeadArrays [14]. While some models allow
for non-linearity [22], they do not relate it to the known
physico-chemical causes. To do so would be difficult
and, in any case, would not obviously be advantageous
in our situation.
The model can be rewritten in terms of ∆rp = Urp

- Brp,

E Bmrp m rp rp mrp= + +∆log ( )2 c � (2)

and we fit this model in R using the nls() function,
weighting each observation by the number of beads that
contributed to the observation. Under this formulation,
it is clear that the test of ∆ = 0 from the summary.
nls() function in R provides an approximate and
quick test of a difference in log-intensities.

Restricting the analysis-group of bead-types
We have re-annotated the bead-types on the array [23],
and have identified 23, 562 “perfect” bead-types (using
the August 2009 annotation). These are bead-types that
have a full 50 mer match to a reliable transcript, and do
not possess additional undesirable properties (e.g. map-
ping to transcripts masked by repeat regions, having a
non-unique transcriptomic match, mapping to tran-
scripts that do not align well to the reference genome,
etc.). Additionally, we define an ‘analysis-group’ of bead-
types as a subset of these perfect bead-types that possess
two further properties: 1) That their GC content is con-
ducive to hybridization (i.e. in the range of 20-35 bases),
which excludes a further 506 bead-types, and 2) That
they occur at least six times on each array-section (see
Additional File 1, Section 6). All analyses will be
restricted to this ‘analysis-group’ unless otherwise stated.

Results
Numbers of beads
The random assembly of Illumina arrays is often a vir-
tue, but prevents the conduct of true replicate experi-
ments. In particular, the number of usable beads on
each array can vary, and will influence performance.
There are a number of reasons why disparities emerge.
Not all beads are decoded by Illumina when the array is
manufactured, (which alone leads to the 10 ng experi-
ment having approximately 80, 000 beads more per
array-section than the 100 ng experiment). Further
beads are ‘lost’ due to spatial artefacts and to beads
being classed as outliers during summarization. The
numbers in our experiment are given in Table 1.
It has been observed previously that spatial artefacts

can be associated with nearby regions where beads are
non-decoded [24], so it may not be coincidental that the

Table 1 Numbers of beads
Quantity of starting RNA: 250 ng 100 ng 50 ng 10 ng

Total decoded 18,801,235 17,835,076 17,926,750 19,274,434

Removed by BASH 200,459 408,721 284,088 50,449

Removed in summarization 651,323 614,495 603,619 582,345

Remaining 17,949,453 16,811,860 17,039,043 18,641,640

In analysis-group bead-types 7,963,638 7,475,940 7,563,440 8,248,259

Summing across all array-sections in the four experiments, we list the total numbers of beads (as decoded by Illumina), the numbers we remove as being in
spatial artefacts using BASH [19], those removed as being outliers in the summarization, the remainders, and the numbers remaining that lie in the analysis-
group of bead-types.
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experiment with the greatest number of beads loses few-
est to spatial artefacts. The differing numbers of beads
may cause concern, although it should be noted that the
median number of replicates for a bead-type only varies
from 21 for the 10 ng experiment to a still very healthy
19 for the 100 ng experiment. The lack of monotonicity
is also helpful; the trends that we show do not correlate
with the total bead-numbers, suggesting that these num-
bers are not driving the results. Whilst we take 250 ng
of starting RNA as our gold standard for comparison,
we can also gain reassurance through comparisons to
the 100 ng experiment which contained fewest beads.
As noted above, we restrict analyses to an analysis-

group containing only ‘perfect’ bead-types, with desir-
able GC composition and at least six beads on each
array-section. This reduces the number of bead-types
considered to 21, 627. This also has a marginal effect on
improving the balance between experiments in terms of
the numbers of beads analysed.

Detection of expression
In Table 2 is presented a summary of agreement between
experiments for the detection of expression (using a
significance level of < 0.01) for the analysis-group (see
also Additional File 1, Section 7). If no bead-types were
truly expressed, we would expect to see 3, 579 apparently
showing expression in at least one array-section and nine
showing expression in both UHRR and brain. Even
acknowledging this, we see that a substantial number of
the analysis-group show expression above negative-con-
trol levels.
Naturally, any bead-type that shows expression in both

Brain and UHRR should show expression in all mixtures
of those two samples, and we see that the proportion of
bead-types satisfying the former that are also returned
by the latter exceeds 80% for the 250 ng, 100 ng and
50 ng experiment but reduces to below 70% for the
10 ng experiment. Agreement between experiments is
reported in Table 3, and is encouraging. Performance in
terms of sensitivity while not perfect at 100 ng only
decreases dramatically when we reach 10 ng, but here
still returns 2/3 of the bead-types that were detected in
both UHRR and Brain using 250 ng. Notably, the false
discovery rate is fairly constant, staying below 10% even

at 10 ng. Thus while one will detect expression in fewer
bead-types using less starting RNA, the validity of that
which is detected is preserved.

Expression of control bead-types
The detection p-values for expression depend on the
performance of negative control bead-types for their
calculation. This platform has 759 negative control
bead-types, which should have no match to the human
transcriptome. Due to the nature of the calculation, at
least seven (1%) of these will themselves apparently
detect significant expression. Table 4 summarizes the
numbers seen in our experiments. We see markedly
more than seven negative control bead-types being
called as ‘detected’, and far more than would be
expected by chance being consistently called as detected.
Such observations could have explanation other than

the bead-types showing specific signal. For instance,
thermodynamic variation could lead to some negative
control bead-types regularly being called as ‘detected’,
but evidence of differential expression is harder to
explain. Using Benjamini-Hochberg control for false dis-
covery rate, there are still three negative control bead-
types for the 250 ng starting material experiment (two
for 100 ng, eight for 50 ng, and four for 10 ng) that
show differential expression. The greatest evidence of a
negative control showing specific hybridization is for
bead-type ILMN_1343923 (Additional File 1, Section 8).
The amount of starting RNA varies between experi-

ments, but the amount of cRNA used is the same in
every case, so there is no reason to anticipate overall
changes in intensity levels. However, the intensity levels
change for both the housekeeping bead-types (bead-
types that target genes EEF1A1, GAPDH, TXN, ACTB,
TUBB2A, RPS9, UBC) and the negative control bead-
types, suggesting that the levels of non-specific hybridi-
zation vary according to the amount of starting material
(Table 4, Figure 1).
The log-intensity levels for the housekeeping control

bead-types decrease at a greater rate than those for the
negative control bead-types (except when saturation
effects are apparent). Thus the log-fold-change in inten-
sities from housekeeping gene to negative control
(a measure of signal to noise) decreases with the

Table 2 Expression detected
Quantity of starting RNA: 250 ng 100 ng 50 ng 10 ng

...at least one array-section 15,880 15,597 15,691 14,090

...both UHRR and Brain 11,992 11,248 10,965 8,775

...all array-sections 9,964 9,178 8,996 5,975

mean number of array-sections 6.94 6.59 6.47 4.95

For each of the four experiments, we report the number of analysis-group bead-types for which expression was detected in at least one of the 18 array-sections,
at least one of the two 100% UHRR array-sections and at least one of the two 100% Brain array-sections, and in all 18 array-sections. Additionally for the analysis-
group bead-types, we report the mean number of array-sections out of 18 in which expression is detected.
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amount of starting RNA. This change in performance is
apparent even at 100 ng levels of starting material.
Other control bead-types on the Illumina BeadArray
platform are not sample dependent, and do not vary
considerably between starting quantities of RNA.

Magnitude of expression
Figure 2 shows MA plots for the analysis-group of bead-
types comparing single array-sections of 100% UHRR.
Although true agreement with intensities from 250 ng is
clearly poor when small amounts of starting material
are used, the rank-correlation between array-sections
remains high even for 10 ng of starting RNA (Table 5),
suggesting that it may be possible to normalize samples
arising from different starting levels of RNA.
It is also clear from Figure 2 that intensities generally

decrease with the quantity of starting RNA, as was observed
specifically for the control bead-types. This loss of signal
leads to an apparent diminishing of technical biases (e.g. if
all signal were lost then we would cease to observe the
diminishment of signal as target locations become more 5’
along the gene), which should not be mistaken for a benefit.

Differential expression
The number of bead-types identified as showing differen-
tial expression (p < 0.001, for the non-linear model),

decreases with the amount of starting material much
as did the number for which expression was detected
(Table 6). Naturally, differential expression implies
expression, so we might expect to see the numbers for
differential expression bounded by the numbers we saw
for expression. The decline in numbers of bead-types for
which differential expression is noted is more marked
than would be required simply by this constraint. More-
over we should note that due to the nature of the two
tests, it is entirely possible to detect differential expres-
sion across the set of array-sections, but not detect
expression in any individual array-section (Additional
File 1, Section 9): evidence that the filtering of bead-types
based on expression-detection scores requires caution.
Once more, the sensitivity (defined as for expression

detection) is high with a drop-off only when 10 ng of start-
ing RNA are used, and the FDR (defined as for expression
detection) remains low across all quantities of starting
RNA (Table 7). If we break down the comparison by the
magnitude of differential expression (taking 250 ng as the
gold standard and comparing the log-expression between
100% UHRR and 100% Brain), then it is apparent (Figure
3) that one pays a price for using the 10 ng level of starting
material across the full range of log-fold changes (Addi-
tional File 1, Section 10). The performance of the 100 ng
and 50 ng starting levels is better, and matches 250 ng
outside the range of 0.25 to 1.25. Within that range, they
return a lower proportion of bead-types as being differen-
tially expressed, while the 100 ng level of starting material
also outperforms the 50 ng level.

Signal to noise
The variance of observations is not independent of their
value. Since expression levels decrease as the quantity of
starting RNA decreases, it is not possible to assess the
change in variance as the quantity of starting RNA
decreases, without simultaneously considering the level
of expression.
From the non-linear model we can compare the esti-

mate of the difference in expression levels to the estimated

Table 3 Consistency in expression detection between
quantities of starting RNA

reference experiment

test experiment 250 ng 100 ng 50 ng

10 ng 0.67/0.09 0.71/0.09 0.73/0.09

50 ng 0.86/0.06 0.89/0.09

100 ng 0.86/0.08

For the numbers of bead-types with detected expression in both 100% Brain
and 100% UHRR reporting “X/Y” where X is the proportion of bead-types
reported for the reference experiment also reported for the test experiment
(e.g. a measure of sensitivity), and Y is the proportion of bead-types reported
by the test experiment that were not reported by the reference experiment
(e.g. FDR). So for example, taking 250 ng as a gold-standard, for this detection
measure the 100 ng experiment has 86% sensitivity and an FDR of 0.08.

Table 4 Control bead-type summary
Quantity of starting RNA: 250 ng 100 ng 50 ng 10 ng

Negative controls detected in UHRR 37 32 20 0

Negative controls detected in Brain 35 40 29 24

Negative controls detected in all array-sections 10 6 2 0

Negative controls detected in at least one array-section 88 89 98 99

Negative controls: median log-intensity UHRR 5.78 5.79 5.73 5.58

Negative controls: median log-intensity Brain 5.80 5.82 5.72 5.58

Housekeeping controls: median log-intensity UHRR 13.46 13.14 13.09 11.32

Housekeeping controls: median log-intensity Brain 12.47 12.52 12.03 10.64

Giving a) the numbers of the 759 negative-control bead-types that show expression in one or more array-sections, and b) median log-intensities for negative-
control and housekeeping bead-types in 100% UHRR and 100% Brain array-sections.
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standard error of the difference. This side-steps the com-
plications of the variance and fluorescence levels changing
in a dependent manner as the amount of starting material
changes. Considering only the analysis-group of bead-
types, the median ratios of standard error to estimate are
0.23, 0.28, 0.31 and 0.52 for 250 ng, 100 ng, 50 ng and 10
ng of starting RNA respectively. The median ratios of the
two signal to noise ratios are 1.12, 1.16 and 1.76 for 100
ng, 50 ng or 10 ng respectively comparing to a reference
starting quantity of 250 ng.

Discussion
Meta-analysis
Inevitably, there will be occasions when we wish to com-
bine data sets generated using different quantities of start-
ing material, possibly because we are performing a meta-
analysis across different experiments, or possibly because
not all samples within a single experiment can supply the
desired quantity of starting RNA. Our analysis has, so far,
considered the different quantities of starting material in
this study as being different experiments, but we will now
briefly consider strategies for combining them.
Consider if samples were run in strata of starting RNA, e.

g. we have an experiment where some samples were run
using 250 ng, while others were run using 50 ng. The strata
were not balanced in terms of experimental design, so we
may not wish to obtain two simple estimates for the para-
meters of interest (one from each stratum) and then com-
bine the estimates. Our strategy for analysis may depend
on whether some samples had been run in both strata.
Consider further that we only have Brain run at 50 ng

and UHRR at 250 ng, and we wish to transform the
50 ng Brain data for comparison with UHRR. Essentially
we wish to simulate a 250 ng Brain data set from this
restricted data set, and can use the fact that we do have
Brain run at 250 ng to assess the performance. We will
consider both the scenario where we have only the two
samples with which to work, and a second where we
have additionally run UHRR at 50 ng.
If we are in this first scenario, then there is little

option but to normalize between the samples. The high
rank correlation we have observed between data arising
from different starting amounts of RNA gives cause for
optimism that a simple quantile-style normalization of
the 50 ng data to the expression profile of the 250 ng
data will prove successful. With data available from
samples run at both starting levels, we can use the 50
ng UHRR and 250 ng UHRR samples to estimate the
bias due to starting RNA quantity (via fitting a locally
smooth regression) and can then project the 50 ng
Brain sample with that model to obtain our prediction
for how a 250 ng Brain sample would look. Such an
approach shows a marginal improvement over the basic
attempt in our example (Figure 4).

Figure 1 The change in control bead-type performance with
quantity of starting RNA. Illustrating for array-sections hybridized
to either 100% Brain or 100% UHRR, the log2-intensities seen for
selected control bead-types. The medians, ranges and interquartile
ranges of the 759 negative control bead-types are illustrated with
box and whisker plots, while the profiles of the seven housekeeping
controls are also indicated.

Figure 2 The change in expression with quantity of starting
RNA. Depicted are “MA” plots where the difference of two log2-
intensities (y-axis) is plotted against the average of the log2-
intensities. Here we show the agreement of log2-intensity between
a section of the 250 ng experiment and all four levels of starting
RNA (using replicate array-sections to make the 250 ng vs 250 ng
comparison).
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Using the additional data (50 ng UHRR) makes only a
small improvement to our ability to transform the 50 ng
Brain data and in a real experiment running 50 ng of an
additional sample may provide greater value to the ulti-
mate analysis. We should be wary of trying to use a
sample for both bias-estimation and analysis as there
will be a lack of independence between these samples
and all those that are bias-corrected using the results.
Moreover the small improvement we see here, over the
simpler quantile-normalization style approach, comes
using samples that have large numbers of expressed
genes. For bias correction of this nature to be useful, we
need to observe a wide range of log-intensities which in
turn requires large numbers of genes to be expressed.
Thus the appropriateness of this more complicated
method will be dependent on the size of the experiment
and the nature of the samples being hybridized.

Implications for experimental design
A number of implications for experimental design are
obvious. It is clear that all things being equal, of the

range of starting quantities of RNA considered here, it
is preferable to use 250 ng. If there are limitations to
the amount of starting RNA available, then the more
starting material used the better (within this range
examined). Should the amount of available RNA differ
between samples then more subtle decisions are

Table 5 Squared rank correlations
Quantity of starting RNA

250 ng 100 ng 50 ng 10 ng

250 ng 0.954 0.933 0.921 0.784

100 ng 0.933 0.916 0.789

50 ng 0.924 0.784

10 ng 0.797

Giving the square of Spearman’s rank correlation for the intensities of the analysis-group bead-types between 100% UHRR array-sections.

Table 6 Differential expression detected
250 ng 100 ng 50 ng 10 ng

amongst all bead-types 15,753 (32%) 14,361 (29%) 13,741 (28%) 9,579 (19%)

amongst analysis group 11,021 (51%) 10,169 (47%) 9,788 (45%) 7,084 (33%)

Showing the numbers (and percentage) of bead-types from the complete set of 49,575 for which differential expression between Brain and UHRR was detected.
Also showing the same measures for the analysis-group bead-types.

Table 7 Consistency in detection of differential
expression between quantities of starting RNA

reference experiment

test experiment 250 ng 100 ng 50 ng

10 ng 0.62/0.04 0.67/0.04 0.69/0.05

50 ng 0.83/0.07 0.88/0.08

100 ng 0.86/0.06

For the numbers of bead-types for which differential expression between
UHRR and Brain was detected we report “X/Y” where X is the proportion of
bead-types reported for the reference experiment also reported for the test
experiment (e.g. a measure sensitivity), and Y is the proportion of bead-types
reported by the test experiment that were not reported by the reference
experiment (e.g. FDR). So for example, taking 250 ng as a gold-standard, for
this detection measure the 100 ng experiment has 86% sensitivity and an FDR
of 0.06.

Figure 3 The power to detect differential expression by
quantity of starting RNA. Illustrating, for the analysis-group of
bead-types, the increased ability to detect large log2-fold changes
(for all levels of starting RNA), and how the relationship (between
that ability and the size of the log-fold change) varies with the
quantity of starting RNA. The empirical log fold change calculated
from the 250 ng experiment is depicted on the x-axis, which is
divided into 50 bins, each containing 2% of the bead-types
(indicated by the vertical lines). On the y-axis are indicated 95%
confidence intervals for the proportion of bead-types in each bin
for which differential expression will be detected.
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required. On the basis of the signal-to-noise results, we
can infer that if using 100 ng or 50 ng then the sample
size would need inflating by a factor of at least 1.2 to
achieve the same performance, while if using 10 ng,
then in the region of three times the numbers will be
required. Thus, when we have the choice and free from
other pressures, reducing the starting RNA level is only
desirable if it allows sample numbers to be increased by
these factors.
The combination of multiple starting RNA levels in one

experiment will be problematic. If we wish to normalize
using data from the same sample hybridized from multiple
quantities of starting RNA, then clearly we must stratify
samples into a few starting quantities. If we do not have,
or do not wish to make, recourse to replicate samples
hybridized from several RNA quantities, and are simply
going to normalize samples together, then there is merit
in using as much starting RNA as possible for each sam-
ple, as was noted in the previous section.
In this scenario, where all samples are independent, it

would still be hard to criticize a design that opted for a
fixed number of starting levels, especially if this came at

minimal cost to quality (i.e. 250 ng reduced to 220 ng
but not to 10 ng) and allowed balance of experimental
criteria to be achieved within each stratum of starting
quantity. Such an approach is suboptimal by our criter-
ion, but may be more robust to those unexpected events
that befall real-world experiments.

Conclusions
We have presented a bead-level Illumina BeadArray
dilution control experiment that will be a valuable
resource for the Illumina analysis community. As
intended, the experiment also answers an important
experimental question regarding the required levels of
starting RNA, however it also allows for a number of
questions to be addressed regarding experimental
design when large quantities of RNA are difficult to
obtain.
We have shown that reliable signal is obtainable

using as little as 10 ng of starting RNA. However we
have also seen that lower levels of starting RNA are
associated with a bias in expression levels (which may
be correctable), and drop in sensitivity (which will
not be).
This increase in noise implies that, if using less start-

ing RNA, more samples would be needed in an experi-
ment to achieve the same levels of precision. However,
it seems that few false discoveries result from using
even as little as 10 ng of starting RNA. Thus while a
small experiment using a low starting quantity of RNA
may fail to identify many subtle changes, one can have
confidence in any changes that are reported.

Additional material

Additional file 1: Supplementary material. File giving details of 1)
Experimental Design: Array Layout, 2) Lab Methods: Obtaining bead-level
data, 3) Lab Methods: Quality assessment metrics, 4) Lab Methods:
Quality assessment - comparison with MAQC, 5) Lab Methods: Quality
assessment - Association between starting RNA quantity and intensity, 6)
Criteria for including bead-types, 7) Results: Detection, 8) Results:
Negative controls, 9) Results: Differential expression but no expression,
and 10) Results: Differential expression - detection of small changes.
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    Chapter 2   

 Introduction to miRNA Profi ling Technologies 
and Cross-Platform Comparison       

         Sarah   Aldridge    and    James   Hadfi eld         

  Abstract 

 MicroRNA analysis has been widely adopted for basic and applied science. The tools and technologies 
available for quantifying and analysing miRNAs are still maturing. Here, we give an introductory overview 
of the main tools and the challenges in their use. We also discuss the importance of basic experimental 
design, sample handling and analysis methods as the impact of these can be as profound as the choice of 
miRNA analysis platform. Whether the reader is interested in a gene-by-gene or genome-wide approach 
choosing the platform to use is not trivial. Careful thought given before starting an experiment will make 
the execution much easier.  

  Key words:   MicroRNA ,  Microarray ,  Sequencing ,  Reverse transcription quantitative PCR ,  In situ 
hybridisation ,  Comparison    

 

 MicroRNA (miRNA) analysis has rapidly gained a foothold in 
many labs and is quickly becoming a routine research tool being 
used in large cohort studies on clinical samples  (  1  ) , is showing 
promise in cancer research  (  2  )  and has been reported as useful in 
tumour classifi cation  (  3  )  (also reviewed in  see  ref.  4  ) . MiRNAs 
hold particular appeal in clinical setting as they have been shown to 
be very stable in both plasma and serum  (  5–  7  ) . The tools used to 
measure and detect miRNAs have been largely borrowed from 
mRNA expression analysis and array-based comparative genomic 
hybridisation (aCGH) to interrogate DNA copy-number state. The 
use of microarrays in both mRNA and copy-number is now routine 
and gradually moving into clinical use; in fact, both techniques are 

  1.  Introduction
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already being challenged by next-generation sequencing (NGS) 
methods as the emerging standard method  (  8,   9  ) . And NGS analysis 
of miRNA has recently been reported as useful in prediction of 
clinical outcome  (  10  ) . Analysis and comparison of different 
sequencing methods is only just starting to be published  (  11  ) . 

 Array-based methods for mRNA and aCGH have been exten-
sively compared  (  12–  14  )  and the technologies have matured such 
that they are now routine experimental tools. The different platforms 
all produce high-quality data and the decisions on choice are often 
subjectively made. No single platform achieves gold-standard status. 
Developments in mRNA and aCGH arrays are now primarily an 
increase in the amount of data generated; i.e., total numbers of 
probes interrogated. MiRNA analysis techniques have not yet 
reached the same level of maturity, but the articles in this publication 
demonstrate how far we have come in a short time and discuss 
some of the issues yet to be resolved.  

 

 MiRNAs and other nucleic acids are detected, quantifi ed, and 
otherwise analysed by three primary methods: hybridisation, PCR, 
and sequencing. The hybridisation-based Southern  (  15  )  and 
Northern  (  16  )  blotting techniques introduced in the 1970s ultimately 
led to the development of microarrays  (  17  ) . The polymerase chain 
reaction  (  18  )  was further developed and reverse-transcription 
quantitative real-time PCR (RT-qPCR) has become the gold-standard 
technique for nucleic acid quantitation. Sanger sequencing  (  19  )  
has developed much since its introduction in 1977 and is still the 
fundamental approach underlying NGS platforms  (  20–  22  ) , even 
though these systems rely on quite different methods to generate 
sequence data. 

 Compared to other nucleic acids however, analysis of miRNA 
is signifi cantly complicated by several factors: miRNA length, discrim-
ination between pre-, pri-, and mature miRNAs, variable Tm of 
primers or probes, RNA ligase sequence bias, high degrees of 
homology in miRNA families and high rates of miRNA discovery. 
Combinations of these issues impact the different methods for 
miRNA detection and quantitation and must be considered when 
designing miRNA experiments. A further complicating factor is 
that not all the miRNAs present in the central miRNA repository 
“miRBase”  (  23  )  are necessarily real. Resequencing experiments 
conducted by the Bartel lab  (  24  )  found that about 10% of miRBase 
miRNAs were not present in their dataset and may have been 
artefactual in other datasets. 

 A recent review of the major issues with miRNA detection and 
quantifi cation  (  25  )  explains all of the issues listed above and more.  

  2.  Problems with 
miRNA Detection 
and Quantitation
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  The method chosen for preparation of RNAs, including small RNA 
from cells or tissues is an often overlooked but important aspect of 
any RNA analysis. The extraction method chosen for RNA, total 
RNA including the small RNA species or small RNAs alone, can 
have a downstream effect on the results obtained from a study. 
Techniques for assessing the quality of small RNA is still an area for 
which the best practise is still undecided. The impact of methods 
papers comparing nucleic acid extraction methods is under-valued 
and this information is often consigned to supplementary methods 
and commonly never makes it into a formal publication, although 
there are studies looking into the impact of extraction methodology 
 (  26–  31  ) . All of these give the very clear and easily understood mes-
sage that any study should use standardised protocols throughout 
and employ a single RNA isolation method to avoid the small but 
potentially signifi cant affects on gene expression analysis due to the 
RNA preparation method. This is further emphasised in the 2008 
review by ( 25 )   . 

 Debey et al. and Kim et al. both focussed on the impact of 
pre-analytical variables, including RNA extraction on gene expres-
sion profi ling from blood. Debey et al. noted that none of the 
methods tested outperformed the others. Kim et al. reviewed several 
studies that tested RNA extraction methods but came to similar 
conclusions about standardisation. Campo Dell’Orto and Ach 
et al. both compared three methods of RNA extraction and com-
pared gene expression measurements on arrays and with qRT-PCR. 
Ach et al. compared: TRIzol (Invitrogen) coupled with isopropa-
nol precipitation, miRNeasy (Qiagen) and mirVana (Life 
Technologies). They used Agilent miRNA microarrays and real-time 
PCR to show that very few miRNA gene expression levels were 
affected by extraction method. Campo Dell’Orto et al. compared: 
miRNeasy, TRIzol, and TRIzol followed by RNeasy (Qiagen) 
cleanup. They used Affymetrix HG-U133 Plus 2.0 microarrays to 
show that the extraction method used does have an impact on gene 
expression experiments. They suggested the use of a single method 
but went further in recommending other pre-analytical variables 
be optimised before gene level analysis. Debey et al. compared: 
extraction of PBMC cells with TRIzol followed by RNeasy cleanup 
to whole blood PAXgene (Qiagen) or QIAamp (Qiagen) RNA 
extraction. They used Affymetrix HGU133A arrays to demonstrate 
the impact of extraction method on gene expression experiments. 
Git et al. investigated the best methods for RNA extraction and 
QC and have used extraction methods based on the Qiagen 
miRNeasy protocol in their 2010 comparison study. They also 
performed subsequent yield and quality assessment on Agilent 
Bioanalyser small RNA series II chips, spectrophotometric analysis 
and by urea/polyacrylamide gel electrophoresis. 

  3.  miRNA Analysis 
Technologies

  3.1.  Extraction 
Methods
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 Many of the microarray and sequence-based analysis methods 
now use total RNA as an input rather than fractionated miRNA. 
We would very strongly recommend the advice given in all the 
papers discussed above. A single sample handling and RNA extrac-
tion methods should be used in a study. Considering the relatively 
high cost, and time committed to performing miRNA expression 
studies efforts should be put into these upstream pre-analytical 
variables and ideally these should be performed by experienced or 
practised operators. Users should never compare samples that have 
been extracted using different methods.  

  Reverse transcription Quantitative PCR (RT-qPCR) protocols are 
varied, but essentially rely on conversion of RNA to cDNA and 
subsequent locus-specifi c quantifi cation by comparison to a stan-
dard reference gene or sample. It is the most sensitive assay technol-
ogy currently available although re-sequencing may ultimately have 
equal single copy sensitivity  (  32  ) . Recently, guidelines for reporting 
qPCR experiments have been published  (  33  )  further strengthening 
the reliability and intra-lab accessibility of such data. 

 Methods are available which use either TaqMan probes or 
SYBR Green. The TaqMan probe-based method  (  34  )  starts with a 
reverse transcription step using gene-specifi c stem loop primers, 
which will reverse transcribe both precursor and mature miRNA 
 (  35,   36  ) . The alternative SYBR Green-based method  (  37  )  uses 
tagged and anchored oligo- dT primers for reverse transcription of 
polyadenylated small RNAs for mature miRNAs  (  38  )  followed by 
SYBR Green-based detection. Platforms for medium to high-
throughput analysis of miRNA have been an area of intense devel-
opment of recent years. These have taken the form of assay plates 
that can assess tens or hundreds of miRNAs across multiple samples 
in a highly parallel format  (  39,   40  ) . If large numbers of samples are 
available for analysis, then RT-qPCR is hard to beat. However, 
unlike for mRNA, miRNA RT-qPCR is constrained by the detec-
tion limitations mentioned above. At least two studies have thus 
questioned the use of RT-qPCR as a “gold standard” for miRNA 
quantifi cation  (  25,   29  ) .  

  The use of in situ hybridisation (ISH) allows miRNA analysis to be 
performed directly in tissues of interest and facilitates identifi cation 
of miRNA expression in specifi c cell types in complex organs or 
heterogeneous tumours. Although not a high-throughput tool, 
ISH can be a very important validation technique once genome-
wide miRNA analysis has been conducted. There are several pub-
lished methods for miRNA ISH ,  largely using locked nucleic acids 
(LNA) probes. Probes with LNAs included in the design show 
increased hybridisation affi nities for RNA and miRNA targets over 
standard probes  (  41–  43  ) . Incorporation of LNAs increases the 
thermal stability of the probe/RNA complex  (  44  ) . This is important 

  3.2.  Reverse 
Transcription 
Quantitative PCR

  3.3.  In Situ 
Hybridisation
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as probes for miRNAs need to be short, but the ISH conditions 
must be stringent to allow for accessibility and hybridisation of 
relatively short probes  (  45  )  .  Exiqon offers a commercial design 
service for miRNA ISH probes, which include a proportion of 
LNAs in the probe sequence. Low signal strength is one downside 
of LNA probes, but this can be improved by the use of 3 ¢  and 5 ¢  
labelled probes  (  45  ) .  

  Microarrays can be produced in-house  (  46  )  or purchased commer-
cially ( see  Table  1  for a non-exhaustive list). Any array-based 
method is subject to the same problems of probe design and 
hybridisation artefacts as described previously. Another problem, 
discussed in some of the comparison studies, is that not all manu-
facturers are willing to freely distribute probe sequence information. 
This data is required for a thorough analysis of miRNA probe 
characteristics. There is also a risk of obsolescence with microar-
rays; the Illumina BeadArray and Ambion miRNA platforms were 
withdrawn in early 2010 both of which performed well in miRNA 
comparison studies. Users of these products have little control over 
decisions like this yet comparing results from datasets generated on 
different platforms is very complex.  

 The choice of microarray platform is not easy to make. Agilent 
has almost complete fl exibility in array design, Ambion included 

  3.4.  Microarrays

   Table 1 
  Platforms analysed in different comparison studies   

 RT-qPCR  Microarray platforms  Sequencing 

 SYBR  TaqMan 
 ABI 
 LDA  Af  Ag  Am  C  E  Il  In  L  T  Illumina  SOLiD 

 Ach  •  • 

 Baldwin  •  •  •  •  •  •  • 

 Chen  •  • 

 Dreher  •  •  •  • 

 Git  •  •  •  •  •  •  •  •  • 

 Pradervand  •  •  •  •  • 

 Sah  •  •  •  •  • 

 Sato  •  •  •  •  •  • 

 Yauk  •  •  •  •  • 

   Af  Affymetrix,  Ag  Agilent,  Am  Ambion,  C  Combimatrix,  E  Exiqon,  Il  Illumina,  In  Invitrogen,  L  LC sciences, 
 T  Toray  
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putative miRNAs not present in miRBase, Exiqon use LNA to 
increase specifi city, Combimatrix support reuse of arrays, Affymetrix 
offer a single array containing miRNAs from fi ve species, and other 
platforms all offer something unique. The technical differences in 
the available platforms include: printing and surface technology, 
slide format, labelling, hybridisation, one- or two-colour detection 
chemistries, probe design, and cost. The input RNA sample 
requirements also differ widely, from 100 ng of total RNA to 1  m g 
of small RNA fraction. Replicate spots are useful in downstream 
analysis and range from 1 to more than 300, with mean spot replicate 
numbers being from 2 to 5. Surprisingly, the number of replicates 
is not necessarily constant within a single array platform. 

 Microarrays are the most obvious choice for users with tens to 
hundreds of samples for which they wish to perform high-
throughput miRNA analysis.  

  NGS technology was fi rst used to profi le small RNA sequences in 
 C. elegans  on the 454 platform  (  47  ) . This study identifi ed several 
small RNA species and demonstrated that NGS had great potential 
as a platform for small RNA analysis. Libraries are prepared for 
NGS using methods based on traditional small RNA cloning tech-
niques. Adapters are ligated to the ends of the small RNA molecules 
and these are then used as templates for sequencing  (  48  ) . Small 
RNA cloning methods for NGS have proved to be technically chal-
lenging and time consuming although protocols are improving 
and alternative methods are becoming available. It is known that 
biases can be introduced during library production and the impli-
cations this has for downstream NGS sequencing has been explored 
 (  49,   50  ) . Several steps of the small RNA cloning protocol are noted 
as hotspots for bias introduction, including adapter ligation, PCR 
amplifi cation, reverse transcription, and gel isolation. 

 NGS is particularly well suited to the discovery of novel small 
RNA species, as the technique is not constrained by the use of 
hybridisation probes for which prior knowledge of sequence is 
required. Advances in sequencing technology have accelerated 
both the discovery rate of new miRNAs and modifi cations to exist-
ing miRNA entries, refl ecting subtle variations in mature miRNA 
sequences (e.g., post-transcriptional editing or terminal residue 
addition)  (  51  ) . With the advent of next-generation sequencers 
with increased capacity for data generation, coupled with advance-
ment in small RNA library preparation methods, many researchers 
are making use of methods for indexing and multiplexing pools of 
small RNA libraries to maximise data return. There is a lack of 
consensus over the best methods for data normalisation, a down-
side that this platform shares with other methods for small RNA 
analysis. In addition, associated tools for computational analysis are 
in their infancy.   

  3.5.  Next-Generation 
Sequencing
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  Caveat lector ; the discussion below will almost certainly be outdated 
by the time you read this. We would prefer readers to use this section 
as a springboard for discussions in their own labs. The rate of 
change in sequencing technologies is far too great to keep up with 
in written form. At the time of writing, for instance, Illumina had 
just announced a 1.14 Tb run on their HiSeq 2000 platform that 
would allow over 200 exomes in a single run. 

 There has been much discussion on when, not if, sequencing 
will supplant microarrays as the analysis method of choice. This 
discussion is happening almost everywhere that users are run-
ning microarrays and is particularly evident on forums like 
SEQanswers (  http://www.seqanswers.com    ). In many cases, the 
quality of data obtainable from a sequence-based analysis is supe-
rior to microarray. 

 For gene expression analysis, the same levels of detail can be 
obtained from 10 M sequence reads vs. a standard 3 ¢  gene expres-
sion array  (  8,   9  ) . Montgomery et al. showed that this relatively 
small number of reads produced a similar dynamic range to micro-
arrays but with improved ability to detect and quantify alternatively 
spliced and very abundant transcripts. Bashir et al. observed that 
90% of observed transcripts in a 35 M read dataset can be detected 
with just 1 M sampled reads, which compares well with the 
Montgomery et al. analysis. They also noted that an initial sampling 
run, using highly multiplexed libraries, for instance, could be used 
as an experimental design tool for transcript sequencing projects. 
The analysis of alternative splicing has exploded with the advent of 
NGS. A recent comparison  (  52  )  of SOLiD sequencing and 
Affymetrix exon arrays looked specifi cally at expression of individ-
ual exons, and transcription outside currently annotated loci. They 
showed that over 80% of exons were detected on both platforms 
but that RNA-Seq appeared to have a lower background error rate. 
RNA-Seq was also more sensitive in detecting differentially 
expressed exons and they could fi nd thousands of novel transcripts 
with previously unreported exon–exon junctions. Lastly, discovery 
of new transcripts (mRNAs, miRNAs, LINC RNAs, etc.) is simply 
not possible using a microarray. 

 For structural variation analysis, the same levels of detail can 
also be obtained from about 10 M reads  (  8  ) . However, as much SV 
analysis is being done using genotyping intensities from micro-
arrays and the SNP calls bring additional information on LOH that 
can be used in many studies, there is not a clear choice between the 
platforms. To obtain the same depth of SNP coverage as an array 
may require 10–30-fold sequencing of a genome. Sequencing will 
allow breakpoints and CNV junctions to be mapped to single-
nucleotide resolution. Bashir et al. showed that they could resolve 

  4.  Microarrays 
vs. Sequencing
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90% of breakpoints using a mix of 200 bp and 2 kb insert size 
libraries. There is a trade-off between detection and resolution; for 
a given number of reads increasing library insert size increases the 
probability of structural variation detection; however, this decreases 
ultimate resolution of breakpoints. As the number of reads increases 
in datasets, this issue is reduced. However, many researchers will 
aim to perform structural variation analysis of tens, possibly hun-
dreds of individuals in a single sequencing run in the near future. 
An important observation they made was that detection of small 
structural variations requires the use of libraries with a low insert 
size distribution and that the distribution must be smaller than the 
size of the structural variant itself. But even though technologies 
and methods are improving, long insert library preparation still 
requires large amounts of nucleic acid. In the case of clinical samples, 
this can be a major obstacle and the experimental design should 
balance “sample-cost” vs. structural variation detection and/or 
resolution. 

 It is likely that the choice between microarrays and sequencing 
will be made on secondary factors, such as the platforms locally and 
easily available.  

 

 The use of microarrays for differential miRNA expression led to 
the adoption of the same or similar tools for their analysis. However, 
there is an assumption in many mRNA analysis tools that mean 
mRNA levels are relatively stable and that only a subset of mRNAs 
might be truly differentially expressed. This is certainly not the 
case for miRNA analysis, where the number of miRNAs expressed 
is quite low and there can be stark differences between samples 
when looking for differentially expressed miRNAs. The methods 
for processing data can have a similar impact on fi nal results as the 
technology used in a study  (  53  ) . Novel methods for miRNA analysis 
are, and will continue to be developed. Git et al. implemented a 
novel algorithm to get around the need to choose a reference 
technology or “gold standard” in their 2010 study. 

 Understanding the inherent biases in the technique being 
analysed is important if sensible and biologically meaningful results 
are to be obtained. The use of spike-in control miRNAs does not 
necessarily make analysis simpler. However, good experimental 
design where all variables are considered and a controlled randomised 
design is used with a single analytical technique will allow useful 
comparisons to be made. Different biases present in the varied 
technologies may make certain effects impossible to detect.  

  5.  Data Analysis
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 MiRNA analysis methods have only recently been systematically 
compared  (  26,   29,   53–  59  ) . While microarrays from nine array 
suppliers were used in these studies none has been used across all 
those discussed here, one study used six, two used fi ve and four 
more used three or four array platforms each (Table  1 ). Since not 
all studies compared the same arrays, it is somewhat unfair to try 
and suggest which array platform performs “best”; of course, this 
is exactly what most readers of these papers want to fi nd out! 

 Comparisons, and choices, are complicated by the debate about 
the merits of microarray vs. sequencing vs. real-time PCR as the 
method of choice. So while there is a large choice of microarray 
platforms, there is almost as much choice from the non-microarray-
based systems ( see  Table  1 ). Table  1  shows which platforms were 
used in the comparison studies we compared. The different platforms 
generally showed good within- and between-platform reproducibility 
and correlated well with qPCR, as reported in each study. 

 Git et al. carried out the most extensive comparison, which 
encompassed six microarray platforms, real-time PCR using either 
SYBR Green following reverse transcription with a tagged and 
anchored oligo-dT primer or TaqMan-based assays with reverse 
transcription using a pool of gene-specifi c primers and NGS on the 
Illumina GAIIx platform.  

 

 All comparison studies published have the same fl aw; they are 
outdated as soon as they are available in print. The protocols for 
sample handling, microarray design or next-gen sequencing tech-
nologies improve at a rate far outstripping the ability of authors to 
produce and analyse comparison datasets. However, these studies 
are useful to others in deciding which platform to use in a project. 
Any comparison is likely to reveal shortcomings in the assumptions 
made about samples, platforms and analysis methods at the start of 
the process. These may not necessarily be resolvable once the study 
is complete. 

 The biological samples chosen and the methods used to extract, 
quantify, and quality assess them before any biological analysis is 
made can have a profound effect on the outcome of comparison 
studies. While many groups have suggested the use of standard 
samples for use as controls in biological studies, these can only 
have an impact if these standards are used in the majority of 
published experiments, which they are not. The samples used in the 
comparison studies addressed here varied signifi cantly: Ach et al. 

  6.  Comparison 
Studies

  7.  Pitfalls 
of Comparisons
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used Ambion normal human tissue RNA, HeLa, and ZR-75-1 cell 
lines; Baldwin et al. used two commercially available RNA samples; 
Chen et al. used mouse myoblast RNA; Dreher et al. used an HPV-
transfected human cell line; Git et al. used an RNA pool from nor-
mal breast tissue, and two breast cancer cell lines that were 
representative of samples used in cancer research; Pradervand et al .  
used human heart and brain total RNA from Stratagene; Sah et al. 
used human placenta total RNA spiked with seven synthetic miRNAs 
in complex pools; Sato et al. used two human RNAs from Ambion; 
Yauk et al. used two pools of mouse tissue RNA. The majority of 
these used commercially available RNAs or cell lines that would be 
relatively easy for others to acquire if they wanted to repeat any 
aspects of these studies or use them as controls in other work. 

 A comparison study needs to consider the real-world applica-
tion of any methods being compared. Protocols for microarray, 
RT-qPCR, and next-gen sequencing vary from lab to lab. Authors 
of comparison studies need to decide whether to use manufactur-
ers recommended protocols and starting materials or use their own 
experience. Both signifi cantly affect the performance of platforms 
for measuring miRNAs. 

 The challenges of probe design for miRNAs and the rapidly 
evolving miRBase database mean that it is important to only com-
pare probes targeting the same miRNA sequence. Several of the 
comparison papers specifi cally compared probe sequences and Git 
et al. commented on the availability, or not, of probe sequence 
information from the companies compared.  

 

 Nearly, all technologies used in the comparison studies above 
performed acceptably in the different measures of performance 
discussed in each paper. As there are such large differences between 
and within the available technologies and between platforms, it is 
important to consider the choice for a particular experiment, and 
understand that each experimental factor will have an impact on 
the fi nal results. Comparison studies allow us to quickly assay the 
performance of a wide variety of systems to measure miRNAs and 
are of very real benefi t to individual scientists. Unfortunately, they 
do not carry the gravitas of primary scientific publications 
focussing on biological insights. It would help if these papers were 
referenced more frequently if the comparison paper aided the 
choice of platform. 

 The choice of platform for miRNA analysis needs to balance 
time, precision, accuracy, cost, and sample type. RT-qPCR is likely 
to yield the highest sensitivity, use minimal sample and cost least, 
but is not necessarily practical for profi ling hundreds of miRNAs. 

  8.  Conclusions
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Microarrays allow the profi ling of tens or hundreds of samples 
across the known miRNA’ome is shortened from miRNA tran-
scriptome   , but are limited by probe design. If it is important to 
discover new miRNAs, distinguish between isoforms or analyse 
RNA editing then sequencing is the only method to consider.      
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The genomic and transcriptomic
architecture of 2,000 breast tumours
reveals novel subgroups
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Doug Speed2,5{, Andy G. Lynch1,2, Shamith Samarajiwa1,2, Yinyin Yuan1,2, Stefan Gräf1,2, Gavin Ha3, Gholamreza Haffari3,
Ali Bashashati3, Roslin Russell2, Steven McKinney3,4, METABRIC Group{, Anita Langerød6, Andrew Green7, Elena Provenzano8,
Gordon Wishart8, Sarah Pinder9, Peter Watson3,4,10, Florian Markowetz1,2, Leigh Murphy10, Ian Ellis7, Arnie Purushotham9,11,
Anne-Lise Børresen-Dale6,12, James D. Brenton2,13, Simon Tavaré1,2,5,14, Carlos Caldas1,2,8,13 & Samuel Aparicio3,4

The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and
transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene
expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical
follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy
number aberrations (CNAs) were associated with expression in 40% of genes, with the landscape dominated by cis-
and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer
genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA–RNA profiles revealed
novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk,
oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs.
Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR
deletion-mediated adaptive immune response in the ‘CNA-devoid’ subgroup and a basal-specific chromosome 5
deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer
population, derived from the impact of somatic CNAs on the transcriptome.

Inherited genetic variation and acquired genomic aberrations contrib-
ute to breast cancer initiation and progression. Although somatically
acquired CNAs are the dominant feature of sporadic breast cancers, the
driver events that are selected for during tumorigenesis are difficult to
elucidate as they co-occur alongside a much larger landscape of random
non-pathogenic passenger alterations1,2 and germline copy number
variants (CNVs). Attempts to define subtypes of breast cancer and to
discern possible somatic drivers are still in their relative infancy3–6, in
part because breast cancer represents multiple diseases, implying that
large numbers (many hundreds or thousands) of patients must be
studied. Here we describe an integrated genomic/transcriptomic
analysis of breast cancers with long-term clinical outcomes composed
of a discovery set of 997 primary tumours and a validation set of 995
tumours from METABRIC (Molecular Taxonomy of Breast Cancer
International Consortium).

A breast cancer population genomic resource
We assembled a collection of over 2,000 clinically annotated primary
fresh-frozen breast cancer specimens from tumour banks in the UK

and Canada (Supplementary Tables 1–3). Nearly all oestrogen receptor
(ER)-positive and/or lymph node (LN)-negative patients did not receive
chemotherapy, whereas ER-negative and LN-positive patients did.
Additionally, none of the HER21 patients received trastuzumab. As such,
the treatments were homogeneous with respect to clinically relevant
groupings. An initial set of 997 tumours was analysed as a discovery group
and a further set of 995 tumours, for which complete data later became
available, was used to test the reproducibility of the integrative clusters
(described below). An overview of the main analytical approaches is
provided in Supplementary Fig. 1. Details concerning expression and
copy number profiling, including sample assignment to the PAM50
intrinsic subtypes3,4,7 (Supplementary Fig. 2), copy number analysis
(Supplementary Tables 4–8) and validation (Supplementary Figs 3 and
4 and Supplementary Tables 9–11), and TP53 mutational profiling
(Supplementary Fig. 5) are described in the Supplementary Information.

Genome variation affects tumour expression architecture
Genomic variants are considered to act in cis when a variant at a locus
has an impact on its own expression, or in trans when it is associated
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with genes at other sites in the genome. We generated a map of CNAs,
CNVs (Supplementary Fig. 6, Supplementary Tables 12–15) and
single nucleotide polymorphisms (SNPs) in the breast cancer genome
to distinguish germline from somatic variants (see Methods), and
to examine the impact of each of these variants on the expression
landscape. Previous studies8 have shown that most heritable gene
expression traits are governed by a combination of cis (proximal) loci,
defined here as those within a 3-megabase (Mb) window surrounding
the gene of interest, and trans (distal) loci, defined here as those
outside that window. We assessed the relative influence of SNPs,
CNVs and CNAs on tumour expression architecture, using each of
these variants as a predictor (see Methods) to elucidate expression
quantitative trait loci (eQTLs) among patients.

Both germline variants and somatic aberrations were found to
influence tumour expression architecture, having an impact on
.39% (11,198/28,609) of expression probes genome-wide based on
analysis of variance (ANOVA; see Methods), with roughly equal
numbers of genes associated in cis and trans. CNAs were associated
with the greatest number of expression profiles (Fig. 1, Supplementary
Figs 7–13 and Supplementary Tables 16–20), but were rivalled by
SNPs to explain a greater proportion of expression variation on a
per-gene basis genome-wide, whereas the contribution from CNVs
was more moderate (Fig. 1b and Supplementary Table 21). The true
ratio of putative trans versus cis eQTLs is hard to estimate9; however,
the large sample size used here allowed the detection of small effects,
with 5,401 and 5,462 CNAs significantly (Šidák adjusted P value
,0.0001) associated in cis or in trans, respectively. Whereas cis-
associations tended to be stronger, the trans-acting loci modulated
a larger number of messenger RNAs, as described below.

Expression outliers refine the breast cancer landscape
As shown above, ,20% of loci exhibit CNA-expression associations in
cis (Supplementary Fig. 14). To refine this landscape further and identify
the putative driver genes, we used profiles of outlying expression (see
Methods and ref. 10) and the high resolution and sensitivity of the

Affymetrix SNP 6.0 platform to delineate candidate regions. This
approach markedly reduces the complexity of the landscape to 45 regions
(frequency . 5, Fig. 2) and narrows the focus, highlighting novel regions
that modulate expression. The full enumeration of regions delineated by
this approach and their subtype-specific associations (Supplementary
Figs 15 and 16 and Supplementary Tables 22–24) includes both known
drivers (for example, ZNF703 (ref. 11), PTEN (ref. 12), MYC, CCND1,
MDM2, ERBB2, CCNE1 (ref. 13)) and putative driver aberrations (for
example, MDM1, MDM4, CDK3, CDK4, CAMK1D, PI4KB, NCOR1).

The deletion landscape of breast cancer has been poorly explored,
with the exception of PTEN. We illustrate three additional regions of
significance centred on PPP2R2A (8p21, Fig. 2, region 11), MTAP
(9p21, Fig. 2, region 15) and MAP2K4 (17p11, Fig. 2, region 33),
which exhibit heterozygous and homozygous deletions (Supplemen-
tary Figs 15, 17–19 and Supplementary Table 24) that drive expres-
sion of these loci. We observe breast cancer subtype-specific (enriched
in mitotic ER-positive cancers) loss of transcript expression in
PPP2R2A, a B-regulatory subunit of the PP2A mitotic exit holoenzyme
complex. Somatic mutations in PPP2R1A have recently been reported
in clear cell ovarian cancers and endometrioid cancers14,15, and
methylation silencing of PPP2R2B has also been observed in colorectal
cancers16. Thus, dysregulation of specific PPP2R2A functions in luminal
B breast cancers adds a significant pathophysiology to this subtype.

MTAP (9p21, a component of methyladenosine salvage) is fre-
quently co-deleted with the CDKN2A and CDKN2B tumour suppressor
genes in a variety of cancers17 as we observe here (Supplementary Figs
17c and 18). The third deletion encompasses MAP2K4 (also called
MKK4) (17p11), a p38/Jun dual specificity serine/threonine protein
kinase. MAP2K4 has been proposed as a recessive cancer gene18, with
mutations noted in cell lines19. We show, for the first time, the recurrent
deletion of MAP2K4 (Supplementary Figs 17d and 19) concomitant
with outlying expression (Supplementary Fig. 15) in predominantly
ER-positive cases, and verify homozygous deletions (Supplementary
Table 9) in primary tumours, strengthening the evidence for MAP2K4
as a tumour suppressor in breast cancer.
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Figure 1 | Germline and somatic variants influence tumour expression
architecture. a, Venn diagrams depict the relative contribution of SNPs, CNVs
and CNAs to genome-wide, cis and trans tumour expression variation for
significant expression associations (Šidák adjusted P-value #0.0001).

b, Histograms illustrate the proportion of variance explained by the most
significantly associated predictor for each predictor type, where several of the
top associations are indicated.
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Trans-acting associations reveal distinct modules
We next asked how trans-associated expression profiles are distributed
across the genome. We mapped these in the expression landscape by
examining the matrices of CNA–expression associations (see Methods).
This revealed strong off-diagonal patterns at loci on chromosomes 1q,
7p, 8, 11q, 14q, 16, 17q and 20q (Fig. 3a), including both positive and
negative associations, as well as numerous trans-acting aberra-
tion hotspots (defined as CNAs associated with .30 mRNAs).
Importantly, these aberration hotspots can be grouped into pathway
modules, which highlight known driver loci such as ERBB2 and MYC,
as well as novel loci associated with large trans expression modules
(Supplementary Tables 25 and 26). The T-cell-receptor (TCR) loci on
chromosomes 7 (TRG) and 14 (TRA) represent two such hotspots that
modulated 381 and 153 unique mRNAs, respectively, as well as 19
dually regulated genes (Supplementary Fig. 20). These cognate
mRNAs were highly enriched for T-cell activation and proliferation,
dendritic cell presentation, and leukocyte activation, which indicate
the induction of an adaptive immune response associated with
tumour-infiltrating lymphocytes (Fig. 3b, Supplementary Fig. 20 and
Supplementary Tables 27 and 28), as described later.

In a second approach, we examined the genome-wide patterns of
linear correlation between copy number and expression features (see
Methods), and noted the alignment of several off-diagonal signals,
including those on chromosome 1q, 8q, 11q, 14q and 16 (Sup-
plementary Fig. 21). Additionally, a broad signal on chromosome 5
localizing to a deletion event restricted to the basal-like tumours was
observed (Supplementary Fig. 21), but was not detected with the
eQTL framework, where discrete (as opposed to continuous) copy
number values were used. This basal-specific trans module is enriched
for transcriptional changes involving cell cycle, DNA damage repair
and apoptosis (Supplementary Table 29), reflecting the high mitotic
index typically associated with basal-like tumours, described in detail
below.

Integrative clustering reveals novel subgroups
Using the discovery set of 997 breast cancers, we next asked whether
novel biological subgroups could be found by joint clustering of copy
number and gene expression data. On the basis of our finding that cis-
acting CNAs dominated the expression landscape, the top 1,000 cis-
associated genes across all subtypes (Supplementary Table 30) were
used as features for input to a joint latent variable framework for
integrative clustering20 (see Methods). Cluster analysis suggested 10
groups (based on Dunn’s index) (see Methods and Supplementary Figs
22 and 23), but for completeness, this result was compared with the
results for alternative numbers of clusters and clustering schemes (see
Methods, Supplementary Figs 23–27 and Supplementary Tables 31–
33). The 10 integrative clusters (labelled IntClust 1–10) were typified
by well-defined copy number aberrations (Fig. 4, Supplementary Figs
22, 28–30 and Supplementary Tables 34–39), and split many of the
intrinsic subtypes (Supplementary Figs 31–33). Kaplan–Meier plots of
disease-specific survival and Cox proportional hazards models indicate
subgroups with distinct clinical outcomes (Fig. 5, Supplementary Figs
34, 35 and Supplementary Tables 40 and 41). To validate these results,
we trained a classifier (754 features) for the integrative subtypes in the
discovery set using the nearest shrunken centroids approach21 (see
Methods and Supplementary Tables 42 and 43), and then classified
the independent validation set of 995 cases into the 10 groups
(Supplementary Table 44). The reproducibility of the clusters in the
validation set is shown in three ways. First, classification of the valid-
ation set resulted in the assignment of a similar proportion of cases to
the 10 subgroups, each of which exhibited nearly identical copy number
profiles (Fig. 4). Second, the groups have substantially similar hazard
ratios (Fig. 5b, Supplementary Fig. 35 and Supplementary Table 40).
Third, the quality of the clusters in the validation set is emphasized by
the in-group proportions (IGP) measure22 (Fig. 4).

Among the integrative clusters, we first note an ER-positive sub-
group composed of 11q13/14 cis-acting luminal tumours (IntClust 2,
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Figure 2 | Patterns of cis outlying expression refine putative breast cancer
drivers. A genome-wide view of outlying expression coincident with extreme
copy number events in the CNA landscape highlights putative driver genes, as
indicated by the arrows and numbered regions. The frequency (absolute count)
of cases exhibiting an outlying expression profile at regions across the genome is

shown, as is the distribution across subgroups for several regions in the insets.
High-level amplifications are indicated in red and homozygous deletions in
blue. Red asterisks above the bar plots indicate significantly different observed
distributions than expected based on the overall population frequency (x2 test,
P , 0.0001).
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n 5 45) that harbour other common alterations. This subgroup
exhibited a steep mortality trajectory with elevated hazard ratios
(discovery set: 3.620, 95% confidence interval (1.905–6.878); valid-
ation set: 3.353, 95% confidence interval (1.381–8.141)), indicating
that it represents a particularly high-risk subgroup. Several known
and putative driver genes reside in this region, namely CCND1
(11q13.3), EMSY (11q13.5), PAK1 (11q14.1) and RSF1 (11q14.1),
which have been previously linked to breast13,23 or ovarian cancer24.
Both the copy number (Fig. 4) and expression outlier landscapes
(Fig. 2) suggest at least two separate amplicons at 11q13/14, one at
CCND1 (11q13.3) and a separate peak from 11q13.5-11q14.1 spanning
UVRAG–GAB2, centred around PAK1, RSF1, C11orf67 and INTS4,
where it is more challenging to distinguish the driver24. Notably, the

expression outlier profiles for this region are enriched for samples
belonging to IntClust 2 (Fig. 2, inset region 23) and all 45 members
of this subgroup harboured amplifications of these genes, with high
frequencies of amplification also observed for CCND1 (n 5 39) and
EMSY (n 5 34). In light of these observations, the 11q13/14 amplicon
may be driven by a cassette of genes rather than a single oncogene.

Second, we note the existence of two subgroups marked by a paucity
of copy number and cis-acting alterations. These subgroups cannot be
explained by low cellularity tumours (see Methods). One subgroup
(IntClust3, n 5 156) with low genomic instability (Fig. 4 and Sup-
plementary Fig. 22) was composed predominantly of luminal A cases,
and was enriched for histotypes that typically have good prognosis,
including invasive lobular and tubular carcinomas. The other sub-
group (IntClust 4, n 5 167) was also composed of favourable outcome
cases, but included both ER-positive and ER-negative cases and varied
intrinsic subtypes, and had an essentially flat copy number landscape,
hence termed the ‘CNA-devoid’ subgroup. A significant proportion of
cases within this subgroup exhibit extensive lymphocytic infiltration
(Supplementary Table 45).

Third, several intermediate prognosis groups of predominantly
ER-positive cancers were identified, including a 17q23/20q cis-acting
luminal B subgroup (IntClust 1, n 5 76), an 8p12 cis-acting luminal
subgroup (IntClust 6, n 5 44), as well as an 8q cis-acting/20q-
amplified mixed subgroup (IntClust 9, n 5 67). Two luminal A sub-
groups with similar CNA profiles and favourable outcome were
noted. One subgroup is characterized by the classical 1q gain/16q loss
(IntClust 8, n 5 143), which corresponds to a common translocation
event25, and the other lacks the 1q alteration, while maintaining the
16p gain/16q loss with higher frequencies of 8q amplification
(IntClust 7, n 5 109). We also noted that the majority of basal-like
tumours formed a stable, mostly high-genomic instability subgroup
(IntClust 10, n 5 96). This subgroup had relatively good long-term
outcomes (after 5 years), consistent with ref. 26, and characteristic cis-
acting alterations (5 loss/8q gain/10p gain/12p gain).

The ERBB2-amplified cancers composed of HER2-enriched (ER-
negative) cases and luminal (ER-positive) cases appear as IntClust 5
(n 5 94), thus refining the ERBB2 intrinsic subtype by grouping addi-
tional patients that might benefit from targeted therapy. Patients in
this study were enrolled before the general availability of trastuzumab,
and as expected this subgroup exhibits the worst disease-specific sur-
vival at both 5 and 15 years and elevated hazard ratios (discovery set:
3.899, 95% confidence interval (2.234–6.804); validation set: 4.447,
95% confidence interval (2.284–8.661)).

Pathway deregulation in the integrative subgroups
Finally, we projected the molecular profiles of the integrative sub-
groups onto pathways to examine possible biological themes among
breast cancer subgroups (Supplementary Tables 46 and 47) and the
relative impact of cis and trans expression modules on the pathways.
The CNA-devoid (IntClust 4) group exhibits a strong immune and
inflammation signature involving the antigen presentation pathway,
OX40 signalling, and cytotoxic T-lymphocyte-mediated apoptosis
(Supplementary Fig. 36). Given that trans-acting deletion hotspots
were localized to the TRG and TRA loci and were associated with
an adaptive immune response module, we asked whether these dele-
tions contribute to alterations in this pathway. The CNA-devoid sub-
group (IntClust 4) was found to exhibit nearly twice as many deletions
(typically heterozygous loss) at the TRG and TRA loci (,20% of cases)
as compared to the other subtypes (with the exception of IntClust 10),
and deletions of both TCR loci were significantly associated with
severe lymphocytic infiltration (x2 test, P , 1029 and P , 1028,
respectively). Notably, these trans-associated mRNAs were signifi-
cantly enriched in the immune response signature of the CNA-devoid
subgroup (Supplementary Fig. 36) as well as among genes differentially
expressed in CNA-devoid cases with severe lymphocytic infiltration
(Supplementary Fig. 37). We conclude that genomic copy number loss
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at the TCR loci drives a trans-acting immune response module that
associates with lymphocytic infiltration, and characterizes an otherwise
genomically quiescent subgroup of ER-positive and ER-negative
patients with good prognosis. These observations suggest the presence
of mature T lymphocytes (with rearranged TCR loci), which may
explain an immunological response to the cancer. In line with these
findings, a recent study27 demonstrated the association between CD81

lymphocytes and favourable prognosis.
Also among the trans-influenced groups is IntClust 10 (basal-like

cancer enriched subgroup), which harbours chromosome 5q dele-
tions (Supplementary Fig. 21). Numerous signalling molecules, tran-
scription factors and cell division genes were associated in trans with
this deletion event in the basal cancers, including alterations in
AURKB, BCL2, BUB1, CDCA3, CDCA4, CDC20, CDC45, CHEK1,
FOXM1, HDAC2, IGF1R, KIF2C, KIFC1, MTHFD1L, RAD51AP1,
TTK and UBE2C (Supplementary Fig. 38). Notably, TTK (MPS1), a
dual specificity kinase that assists AURKB in chromosome alignment
during mitosis, and recently reported to promote aneuploidy in breast
cancer28, was upregulated. These results indicate that 5q deletions
modulate the coordinate transcriptional control of genomic and
chromosomal instability and cell cycle regulation within this subgroup.

In contrast to these subtype-specific trans-associated signatures,
the high-risk 11q13/14 subgroup was characterized by strong

cis-acting associations. Like the basal cancers, this subgroup also
exhibited alterations in key cell-cycle-related genes (Supplementary
Fig. 39), which probably have a role in its aggressive pathophysiology,
but the nature of the signature differs. In particular, the regulation of
the G1/S transition by BTG family proteins, which include CCND1,
PPP2R1B and E2F2, was significantly enriched in the 11q13/14 cis-
acting subgroup, but not the basal cancers, and this is consistent with
CCND1 and the PPP2R subunit representing subtype-specific drivers
in these tumours.

Discussion
We have generated a robust, population-based molecular subgroup-
ing of breast cancer based on multiple genomic views. The size and
nature of this cohort made it amenable to eQTL analyses, which can
aid the identification of loci that contribute to the disease phenotype29.
CNAs and SNPs influenced expression variation, with CNAs
dominating the landscape in cis and trans. The joint clustering of
CNAs and gene expression profiles further resolves the considerable
heterogeneity of the expression-only subgroups, and highlights a
high-risk 11q13/14 cis-acting subgroup as well as several other strong
cis-acting clusters and a genomically quiescent group. The reproducibility
of subgroups with these molecular and clinical features in a validation
cohort of 995 tumours suggests that by integrating multiple genomic
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Figure 4 | The integrative subgroups have distinct copy number profiles.
Genome-wide frequencies (F, proportion of cases) of somatic CNAs (y-axis,
upper plot) and the subtype-specific association (–log10 P-value) of aberrations
(y-axis, bottom plot) based on a x2 test of independence are shown for each of
the 10 integrative clusters. Regions of copy number gain are indicated in red
and regions of loss in blue in the frequency plot (upper plot). Subgroups were

ordered by hierarchical clustering of their copy number profiles in the discovery
cohort (n 5 997). For the validation cohort (n 5 995), samples were classified
into each of the integrative clusters as described in the text. The number of cases
in each subgroup (n) is indicated as is the in-group proportion (IGP) and
associated P-value, as well as the distribution of PAM50 subtypes within each
cluster.
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features it may be possible to derive more robust patient classifiers. We
show here, for the first time, that subtype-specific trans-acting aberra-
tions modulate concerted transcriptional changes, such as the TCR
deletion-mediated adaptive immune response that characterizes the
CNA-devoid subgroup and the chromosome 5 deletion-associated cell
cycle program in the basal cancers.

The integrated CNA-expression landscape highlights a limited
number of genomic regions that probably contain driver genes,
including ZNF703, which we recently described as a luminal B specific
driver11, as well as somatic deletion events affecting key subunits of the

PP2A holoenzyme complex and MTAP, which have previously been
under-explored in breast cancer. The CNA-expression landscape also
illuminates rare but potentially significant events, including IGF1R,
KRAS and EGFR amplifications and CDKN2B, BRCA2, RB1, ATM,
SMAD4, NCOR1 and UTX homozygous deletions. Although some of
these events have low overall frequencies (,1% patients) (Figs 2,
Supplementary Fig. 15 and Supplementary Tables 22–24), they may
have implications for understanding therapeutic responses to targeted
agents, particularly those targeting tyrosine kinases or phosphatases.

Finally, because the integrative subgroups occur at different
frequencies in the overall population, focusing sequencing efforts
on representative numbers from these groups will help to establish
a comprehensive breast cancer somatic landscape at sequence-level
resolution. For example, a significant number (,17%, n 5 167 in the
discovery cohort) of breast cancers are devoid of somatic CNAs, and
are ripe for mutational profiling. Our work provides a definitive
framework for understanding how gene copy number aberrations
affect gene expression in breast cancer and reveals novel subgroups
that should be the target of future investigation.

METHODS SUMMARY
All patient specimens were obtained with appropriate consent from the relevant
institutional review board. DNA and RNA were isolated from samples and
hybridized to the Affymetrix SNP 6.0 and Illumina HT-12 v3 platforms for
genomic and transcriptional profiling, respectively. A detailed description of
the experimental assays and analytical methods used to analyse these data are
available in the Supplementary Information.
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CANCER GENOMICS

Noninvasive Identification and Monitoring of
Cancer Mutations by Targeted Deep
Sequencing of Plasma DNA
Tim Forshew,1* Muhammed Murtaza,1,2* Christine Parkinson,1,2,3* Davina Gale,1*
Dana W. Y. Tsui,1* Fiona Kaper,4† Sarah-Jane Dawson,1,2,3 Anna M. Piskorz,1,2

Mercedes Jimenez-Linan,3,5 David Bentley,6 James Hadfield,1 Andrew P. May,4 Carlos Caldas,1,2,3,7

James D. Brenton,1,2,3,7‡ Nitzan Rosenfeld1,2‡

Plasma of cancer patients contains cell-free tumor DNA that carries information on tumor mutations and tumor
burden. Individual mutations have been probed using allele-specific assays, but sequencing of entire genes to de-
tect cancer mutations in circulating DNA has not been demonstrated. We developed a method for tagged-amplicon
deep sequencing (TAm-Seq) and screened 5995 genomic bases for low-frequency mutations. Using this method, we
identified cancer mutations present in circulating DNA at allele frequencies as low as 2%, with sensitivity and spec-
ificity of >97%. We identified mutations throughout the tumor suppressor gene TP53 in circulating DNA from 46
plasma samples of advanced ovarian cancer patients. We demonstrated use of TAm-Seq to noninvasively identify
the origin of metastatic relapse in a patient with multiple primary tumors. In another case, we identified in plasma
an EGFRmutation not found in an initial ovarian biopsy. We further used TAm-Seq to monitor tumor dynamics, and
tracked 10 concomitant mutations in plasma of a metastatic breast cancer patient over 16 months. This low-cost,
high-throughput method could facilitate analysis of circulating DNA as a noninvasive “liquid biopsy” for person-
alized cancer genomics.

INTRODUCTION
Circulating cell-free DNA extracted from plasma or other body fluids
has potentially transformative applications in cancer management
(1–7). Characterization of tumor mutation profiles is required for in-
formed choice of therapy, given that biological agents target specific
pathways and effectiveness may be modulated by specific mutations
(8–11). Yet, mutation profiles in different metastatic clones can differ
significantly from each other or from the parent primary tumor (12, 13).
Evolutionary changes within the cancer can alter the mutational spec-
trum of the disease and its responsiveness to therapies, which may
necessitate repeat biopsies (14–17). Biopsies are invasive and costly and
only provide a snapshot of mutations present at a given time and lo-
cation. For some applications, mutation detection in plasma DNA as a
“liquid biopsy” could potentially replace invasive biopsies as a means
to assess tumor genetic characteristics (2–7). Sensitive methods for de-
tecting cancer mutations in plasma may find use in early detection
screening (1), prognosis, monitoring tumor dynamics over time, or de-
tection of minimal residual disease (3, 18, 19). In high-grade serous

ovarian carcinomas (HGSOC), mutations in the tumor suppressor
gene TP53 have been observed in 97% of cases (20, 21), but these are
located throughout the gene and are difficult to assay. A cost-effective
method that could detect and measure allele frequency (AF) of TP53
mutations in plasma may be highly applicable as a biomarker for
HGSOC (22).

Circulating DNA is fragmented to an average length of 140 to
170 base pairs (bp) and is present in only a few thousand ampli-
fiable copies per milliliter of blood, of which only a fraction may be
diagnostically relevant (2, 3, 23–25). Recent advances in noninvasive
prenatal diagnostics highlight the clinical potential of circulating
DNA (25–28), but also the challenges involved in analysis of circulating
tumor DNA (ctDNA), where mutated loci and AFs may be more var-
iable. Various methods have been optimized to detect extremely rare
alleles (1, 2, 6, 7, 29–31), and can assay for predefined or hotspot
mutations. These methods, however, interrogate individual or few
loci and have limited ability to identify mutations in genes that lack
mutation hotspots, such as the TP53 and PTEN tumor suppressor
genes (32). In patients with more advanced cancers, ctDNA can com-
prise as much as 1% to 10% or more of circulating DNA (2), presenting
an opportunity for more extensive genomic analysis. Targeted
resequencing has been recently used to identify mutations in selected
genes at AFs as low as 5% (33–35). However, identifying mutations
across sizeable genomic regions spanning entire genes at an AF as
low as 2%, or in few nanograms of fragmented template from circu-
lating DNA, has been more challenging.

In response, we describe a tool for noninvasive mutation analysis
on the basis of tagged-amplicon deep sequencing (TAm-Seq), which
allows amplification and deep sequencing of genomic regions span-
ning thousands of bases from as little as individual copies of fragmented
DNA. We applied this technique for detection of both abundant and
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rare mutations in circulating DNA from blood plasma of ovarian and
breast cancer patients. This sequencing approach allowed us to
monitor changes in tumor burden by sampling only patient plasma
over time. Combined with faster, more accurate sequencing technolo-
gies or rare allele amplification strategies, this approach could poten-
tially be used for personalized medicine at point of care.

RESULTS

Targeted deep sequencing of fragmented DNA by TAm-Seq
To amplify and sequence fragmented DNA, we designed primers to
generate amplicons that tile regions of interest in short segments of
about 150 to 200 bases (Fig. 1A and table S1), incorporating universal
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Fig. 1. Overview of tagged amplicon sequencing (TAm-Seq). (A) Illustration
of amplicon design. Primers were designed to amplify regions of interest in
overlapping short amplicons (table S1). Amplicon design is illustrated for a
region covering exons 5 to 6 of TP53. Colored bars, segmented into forward
and reverse reads, show regions covered by different amplicons (excluding
primer regions). Sequencing adaptors are attached at either end, such that a
single-end read generates separate sets of forward and reverse reads (fig. S1).
Because amplicons are mostly shorter than 200 bp, the forward and reverse
reads also partially overlap. Figure adapted fromUniversity of California, Santa
Cruz, Genome Browser (http://genome.ucsc.edu/). (B) Workflow overview. Mul-
tiple regions were amplified in parallel. An initial preamplification step was

performed for 15 cycles using a pool of the target-specific primer pairs to pre-
serve representationofall alleles in thetemplatematerial. Theschematicdiagram
showsDNAmolecules that carrymutations (red stars) being amplified alongside
wild-typemolecules. Regions of interest in thepreamplifiedmaterialwere then
selectively amplified in individual (single-plex) PCR, thus excluding nonspecific
products. Finally, sequencing adaptors and sample-specific barcodes were
attached to the harvested amplicons in a further PCR. (C) Distribution of ob-
served nonreference read frequencies, averaged over 47 FFPE samples, across
all loci and all nonreference bases. Inset expands the low-frequency range. (D)
Distribution of the observed background nonreference read frequencies aver-
aged over 47 FFPE samples for the 12 different A/C/G/T base substitutions.
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adaptors at 5′ ends (fig. S1). Performing single-plex amplification with
each of these primer pairs would require dispersing the initial sam-
ple into many separate reactions, considerably increasing the prob-
ability of sampling errors and allelic loss. Multiplex amplification
using a large set of primers could result in nonspecific amplification
products and biased coverage. We therefore applied a two-step ampli-
fication process: a limited-cycle preamplification step where all primer
sets were used together to capture the starting molecules present in
the template, followed by individual amplification to purify and select
for intended targets (Fig. 1B) (Supplementary Methods). The final
concentration of each primer in the preamplification reaction was
50 nM, reducing the potential for interprimer interactions, and 15 cy-
cles of long-extension (4 min) polymerase chain reaction (PCR) were
used to remain in the exponential phase of amplification. We used a
microfluidic system (Access Array, Fluidigm) to perform parallel single-
plex amplification from multiple preamplified samples using multiple
primer sets. An additional PCR step attached sequencing adaptors
(fig. S1) and tagged each sample by a unique molecular identifier
or “barcode” (table S2). Sequencing adaptors were separately attached
at either end and the products mixed together, such that single-end
sequencing generated separate sets of forward and reverse reads. We
performed 100-base single-end sequencing (GAIIx sequencer, Illumina),
with an additional 10 cycles using the barcode sequencing primer,
generating ~30 million reads per lane. This produced an average read
depth of 3250 for each of 96 barcoded samples for 48 amplicons read
in two possible orientations.

Validation and sensitivity for mutation identification in
ovarian tumor samples
We designed a set of 48 primer pairs to amplify 5995 bases of genomic
sequence covering coding regions (exons and exon junctions) of TP53
and PTEN, and selected regions in EGFR, BRAF, KRAS, and PIK3CA
(table S1) by overlapping short amplicons (Fig. 1A). The sequenced
regions cover mutations that account for 38% of all point mutations
in the COSMIC database (v55) (32). We used TAm-Seq to sequence
DNA extracted from 47 formalin-fixed, paraffin-embedded (FFPE)
tumor specimens of ovarian cancers (table S3), which were also se-
quenced for TP53 by Sanger sequencing (36) (Supplementary Meth-
ods). DNA extracted from FFPE samples is generally degraded and
fragmented as a result of fixation and long-term ambient storage. We
amplified DNA from each sample in duplicate, tagging each replicate
with a different barcode. Using a single lane of sequencing, we gen-
erated 3.5 gigabases of data passing signal purity filters, producing
mean read depth of 3200 above Q30 for each of the 9024 expected
read groups (48 amplicons × 2 directions × 94 barcoded samples). Back-
ground frequencies of nonreference reads were ~0.1% (median, 0.03%;
mean, 0.2%; in keeping with Q30 quality threshold applied), yet varied
substantially between loci and base substitutions (Fig. 1C) and showed
a clear bias toward purine/pyrimidine conservation (Fig. 1D). Sixty-six
percent of loci had mean background rate of <0.1%, and 96% of loci
had background rate of <0.6%.

The data set interrogated nearly 18,000 possible single-base substi-
tutions for each sample, which introduces a risk of false detection. To
control for sporadic PCR errors and reduce false positives, we called
point mutations in a sample only if nonreference AFs were above the
respective substitution-specific background distribution at a high con-
fidence margin (0.9995 or greater), and ranked high in the list of non-
reference AFs, in both replicates (Supplementary Methods). Duplicate

sequencing data were obtained for 44 samples, and 43 single-base sub-
stitutions were called (table S3). These matched 100% of mutations
identified by Sanger sequencing and included three additional muta-
tions at low AFs that were below detection thresholds of Sanger sequenc-
ing (fig. S2). The upper bound of AFs that may have been missed was
estimated (Supplementary Methods) at <5% for 36 of 44 FFPE sam-
ples (82%) and <10% for 42 of 44 samples (95%), with median value
of 1.3% and mean value of 2.7%. Mutant AFs were highly reproduc-
ible in duplicate samples. For 42 of 43 mutations called, the difference
in measured frequency between duplicates was less than 0.08, and the
relative difference was 25% or less (Fig. 2A). Mutant AFs correlated
significantly with tumor cellularity in the FFPE block (correlation
coefficient = 0.422; P = 0.0049, t test) (Fig. 2B).

In a separate run, we sequenced libraries prepared from six differ-
ent diluted mixtures of six FFPE samples, with a different known point
mutation in TP53 in each, to mean read depth of 5600. Of more than
100,000 possible non-SNP (single-nucleotide polymorphism) substitu-
tions, we identified all 33 expected point mutations present at AF >1%,
including 6 mutations present at AF <2%, with one false-positive called
with AF = 1.9%. Using less stringent parameters (Supplementary Meth-
ods), we identified three additional mutations present at AF = 0.6%
(Fig. 2C), with no additional false positives. Thus, we obtained 100%
sensitivity, identifying mutations at AFs as low as 0.6%. A positive pre-
dictive value (PPV) of 100% was calculated for mutations at AF >2%,
and a PPV of 90% for mutations identified at AF <2% (Fig. 2D).

Quantitative limitations of mutation detection
When applying TAm-Seq to measure a predefined mutation (as op-
posed to screening thousands of possible substitutions), the frequency
of the mutant allele can be read out directly from the data at the
desired locus. False detection is less likely, and criteria for confident
mutation detection for a predefined substitution can be less stringent
than those described above for de novo mutation identification (Sup-
plementary Methods). The minimal nonreference AFs that could be
detected depend on the read depth and background rates of nonrefer-
ence reads, which vary per locus and substitution type. Minimal de-
tectable frequencies increase when higher confidence margins are used
(Supplementary Methods) and had a median value of 0.14% at con-
fidence margin of 0.95 and 0.18% at confidence margin of 0.99 (fig.
S3). The minimal detectable frequency would also be limited if a min-
imal number of reads is applied for confident mutation detection; for
example, a minimum of 10 reads implies that sequencing depth of
5000 would be required to detect mutations at AF as low as 0.2%.
For alleles present at ~10 or fewer copies in the starting template, re-
producibility would also be limited by sampling noise, because these
alleles may be over- or underrepresented in any particular reaction.

To characterize the quantitative accuracy of TAm-Seq as applied to
circulating DNA, we simulated rare circulating tumor mutations by
mixing plasma DNA from two healthy individuals. Using the same
set of primers as used for the FFPE experiment, we identified that
these two individuals differed at five known SNP loci (table S4). Total
amplifiable copies in both plasma DNA samples were determined by
digital PCR and mixed to obtain minor AFs ranging from 0.16% to
40% (Supplementary Methods). We sequenced diluted templates
containing between 250 and <1 expected copy of the minor allele (ta-
ble S5). The coefficient of variation (CV) of the observed AFs was
equal on average to the inverse square root (1/√n) of the expected
number of copies of the rare allele (Fig. 3A), which is the theoretical
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limit of accuracy set by the Poisson distribution for independently
segregating molecules. We compared the observed AF to the expected
AF for cases where more than six copies of the minor allele were
expected. Of 24 such cases, the root mean square (RMS) relative error
between the expected and the observed frequency was 14%, with on-
ly 2 of 24 cases exhibiting more than 20% discrepancy. For samples
with expected minor AF of 0.025, the RMS error was 23% (Fig. 3B).

Noninvasive identification of cancer mutations
in plasma circulating DNA
We applied TAm-Seq to directly identify mutations in plasma of can-
cer patients. We studied a cohort of samples from individuals with
HGSOC. These samples were first analyzed for tumor-specific muta-
tions using digital PCR (Supplementary Methods), a method that is
highly accurate (2, 3, 7, 37) but requires design and validation of
a different assay for every mutation screened and relies on previous
identification of mutations in tumor samples from the same patients
(2, 3). We initially selected for analysis seven cases that had relatively
high levels of circulating mutant TP53DNA in the plasma (as assessed
by digital PCR). Using the equivalent amount of DNA present in 30

to 120 ml of plasma, we performed du-
plicate preamplification reactions for each
sample. For all seven patients, TP53 tu-
mor mutations were identified in the cir-
culating DNA at frequencies of 4% to 44%
(Table 1). In one plasma sample collected
from an ovarian cancer patient at relapse,
we also identified a de novo mutation in the
tyrosine kinase domain of EGFR (exon 21),
at AF of 6% (patient 27, Table 1). We sub-
sequently validated the presence of this
mutation in plasma by performing repli-
cate Sanger sequencing reactions of highly
diluted template (Supplementary Meth-
ods), and 4 of 91 wells that were successful-
ly Sanger-sequenced contained the EGFR
mutation (fig. S4). We further validated
the presence of this mutation by design-
ing a sequence-specific TaqMan probe
targeting this mutation and performing
digital PCR (Table 1). The mutation was
also identified by TAm-Seq in additional
plasma collected from the same individual
(sample 16, Table 2). This mutation in
EGFR was not found in the ovarian mass
removed by interval debulking surgery
15 months before the blood sample was
collected, although the same sample did
contain the concomitant TP53 mutation
found in the same patient’s plasma, at AF
of 85% (patient 27, table S3). We subse-
quently used TAm-Seq to sequence seven
additional samples collected at the time
of initial surgery including deposits in
right and left ovaries and omentum. The
EGFR mutation was detected in the two
omental samples above the 0.99 confi-
dence margin (fig. S3) at AF of 0.7%, but

was not detected in the six ovarian samples (below the 0.8 confidence
margin). Without previous identification in plasma, this mutation
would not have been directly identified on screening those samples
using high-specificity mutation identification criteria owing to its
low AF. In contrast, the TP53 mutation was identifiable in all biopsy
and plasma samples (Fig. 4A). The frequency of mutant alleles in the
relapsed tumor could not be directly assessed because a biopsy at re-
lapse was not available.

We validated the TAm-Seq method on a larger panel of plasma
samples in which levels of tumor-specific mutations were measured
in parallel using patient-specific digital PCR assays. DNA extracted
from 62 additional plasma samples collected at different time points
from 37 patients with advanced HGSOC was amplified in duplicate
(table S6), using DNA present in ~0.15 ml of plasma per reaction
(range, 0.06 to 0.2 ml). Amplicon libraries were tagged and pooled
together for sequencing with libraries prepared from 24 control sam-
ples. This generated an average sequencing depth of 650 for 62 plasma
samples, sufficient to detect mutations present at AFs of 1% to 2%. Of
>1.5 million possible substitutions, 42 mutations were called using
the parameters previously optimized for FFPE analysis (table S6).
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Fig. 2. Identification of mutations in ovarian cancer FFPE samples by TAm-Seq. (A) Concordance be-
tween duplicate measurements of AFs of mutations identified in fragmented DNA extracted from
FFPE samples. The mutation frequency in each library was calculated as the fraction of reads with
the mutant (nonreference) base. Solid line indicates equality. Dotted lines indicate a difference in
AF of 0.05. (B) Correlation of AF with FFPE tumor cellularity. The measured mutant AF (average of
both repeats) correlated significantly with the cellularity, estimated from histology (table S3). (C) Con-
cordance between duplicate measurements of AFs of mutations identified in a mixture of DNA
extracted from different FFPE samples. (D) Summary of mutations called in FFPE using TAm-Seq,
sorted by increasing AF. Dotted line indicates AF of 2%.
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Table 1. Mutations identified by TAm-Seq in plasma samples from seven
ovarian cancer patients. TAm-Seq was used to sequence DNA extracted
from plasma of subjects with HGSOC (stage III/IV at diagnosis). Plasma
was collected when patients presented with relapse disease, before initia-
tion of chemotherapy. For patient 46, DNA from a formalin-fixed, paraffin-

embedded (FFPE) sample was not included in the TAm-Seq set and the
mutation was validated in FFPE by Sanger sequencing. CA125 was
measured at time of plasma collection. Mean depth of coverage at the mu-
tation locus in the TAm-Seq data was averaged over the repeats (RMS
deviation = 850). AF, allele frequency; N, no; Y, yes.

Patient
ID

Age at
diagnosis

Time elapsed
since surgery
(months);
number of
previous
lines of

chemotherapy

CA125
(U/ml)

Plasma per
amplification

reaction
(ml)

Gene

Mutation
and base
change
(genome

build hg19)

Protein
change

Detected
in

FFPE

Mean
depth

(sequencing
reads)

Mean AF
using

TAm-Seq

Mean
AF

using
digital
PCR

8 60 13; 1 2122 50 TP53 17:7577120 C>T p.R273H Y 5000 0.09 0.10

12 62 27; 3 365 50 TP53 17:7577579 G>T p.Y234* Y 5000 0.10 0.08

14 58 50; 3 260 120 TP53 17:7578212 G>A p.R213* Y 5800 0.15 0.12

25 61 9; 1 944 110 TP53 17:7578404 A>T p.C176S Y 4800 0.04 0.08

27† 68 15; 1 1051 90 TP53 17:7578262 C>G p.R196P Y 7700 0.06 0.14

EGFR 7:55259437 G>A p.R832H N 5700 0.06 0.05

31 64 12; 1 313 30 TP53 17:7578406 C>T p.R175H Y 4500 0.44 0.56

46 56 30; 2 1509 30 TP53 17:7578406 C>T p.R175H Y 4200 0.23 0.30

*Indicates stop codon. †Both a TP53 and an EGFR mutation were identified in this sample (Fig. 4A).

Fig. 3. Noninvasive identification and
quantification of cancer mutations in plasma
DNA by TAm-Seq. (A) Sampling noise in
sequencing of sparse DNA using dilutions
of plasma DNA from healthy individuals.
CV of triplicate AF readings was calculated
for each of the five SNPs in each of the
mixes, which had varying numbers of copies
of the minor allele (n) (blue dots). Bin av-
erages (red diamonds) are the mean CVs
calculated for each bin (bin edges denoted
by the dotted vertical lines). A linear fit to
the log2 of the mean CV as a function of
the log2 expected copy number was cal-
culated (black line). Two data points, with
(n = 100, CV = 0.0064) and (n = 32, CV =
0.0185), were omitted from the figure for
enhanced scaling. Three data points with
minor allele copies of <0.8 were omitted
from the analysis (n = 0.51, CV = 0.62; n =
0.41, CV = 0.86; n = 0.20, CV = 0.99). (B)
Expected versus observed frequency of
rare alleles in a dilution series of circulating
DNA. Mean observed frequency was calcu-
lated for each of five SNPs for samples,
where expected initial number of minor
allele copies was greater than 6. Expected
frequencies were calculated on the basis
of quantification by digital PCR. Dotted
lines represent 20% deviation from the ex-
pected frequencies. Inset highlights cases
with expected minor AF <0.025. (C) Muta-
tions identified in 62 plasma samples from patients with advanced HGSOC
using TAm-Seq. AFs are based on digital PCR measurement for con-
firmed mutations (identified or missed by TAm-Seq), and on TAm-Seq
for the false positives called using parameters optimized for analysis

of FFPE samples. The dashed horizontal line indicates AF of 2%. Mu-
tations detected by digital PCR at AF <1% are not shown. (D) AFs
measured by TAm-Seq versus digital PCR for mutations identified in
plasma DNA.
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Table 2. Mutations identified by TAm-Seq in a set of 62 plasma sam-
ples from ovarian cancer patients. Forty mutations were identified by
TAm-Seq using stringent parameters for mutation calling. Plasma sam-

ples described in this table are distinct from those in Table 1, but pa-
tients included overlap. Additional data on patients and mutations are
provided in table S6.

Sample
number

Plasma volume per
amplification reaction (ml)

DNA amount per
amplification reaction (ng) Gene Protein

change
Mean depth

(sequencing reads)
Mean AF using

TAm-Seq
Mean AF using
digital PCR

1 70 0.9 TP53 p.R273C 640 0.260 0.167

2 160 4.2 TP53 p.R248Q 340 0.244 0.150

3 160 5.7 TP53 p.R248Q 640 0.507 0.410

4 120 9.9 TP53 p.R213X 810 0.059 0.035

5 120 1.4 TP53 p.C141Y 680 0.021 0.013

6 120 2.1 TP53 p.C141Y 720 0.044 0.038

7 190 17.9 TP53 p.I195N 800 0.091 0.081

8 160 14.8 TP53 p.R175H 510 0.608 0.627

9 160 10.7 TP53 p.R175H 550 0.526 0.604

10 160 6.1 TP53 p.R175H 530 0.651 0.682

11 160 4.9 TP53 p.R175H 490 0.526 0.581

13 160 2.8 TP53 p.C135R 480 0.039 0.045

14 160 2.5 TP53 p.C135R 610 0.046 0.120

15 160 3.0 TP53 p.C135R 470 0.091 0.068

16† 130 3.7 TP53 p.R196P 1070 0.088 0.135

EGFR p.R832H 614 0.048 0.050

17 160 4.2 TP53 p.C176S 580 0.113 0.432

18 160 4.4 TP53 p.C176S 620 0.029 0.108

20 140 5.2 TP53 p.R175H 650 0.201 0.226

21 140 3.6 TP53 p.R175H 650 0.085 0.074

22 140 4.1 TP53 p.R175H 630 0.081 0.125

23 140 3.7 TP53 p.R175H 710 0.074 0.106

24 140 7.1 TP53 p.R175H 760 0.269 0.286

25 130 3.9 TP53 p.R273H 750 0.094 0.099

26 160 5.7 TP53 p.R282W 640 0.048 0.061

27 150 3.6 TP53 p.C141Y 480 0.321 0.364

29 150 9.5 TP53 p.E258K 190 0.548 0.253

31 160 3.6 TP53 p.C135Y 620 0.040 0.034

32 140 2.4 TP53 p.E56X 1480 0.137 0.122

33 160 13.2 TP53 p.K132N 740 0.216 0.206

34 60 5.3 TP53 p.K132N 570 0.151 0.201

36 160 5.8 TP53 p.K132N 620 0.191 0.275

37 160 9.4 TP53 p.K132N 530 0.287 0.362

38 160 10.1 TP53 p.K132N 590 0.275 0.331

39 160 16.4 TP53 p.K132N 700 0.315 0.323

40 160 19.7 TP53 p.K132N 830 0.435 0.482

41 160 15.0 TP53 p.K132N 730 0.452 0.445

42 160 8.5 TP53 p.K132N 560 0.185 0.245

43 150 3.6 TP53 Splicing 680 0.143 0.121

44‡ 170 5.2 TP53 p.C238R 1543 0.071 0.073

†Both a TP53 and an EGFRmutation were identified in this sample, collected from patient 27 (Table 1), 25 months after initial surgery (Fig. 4A). ‡The amplicon containing the mutation failed
amplification in this sample in the initial experiment and was identified successfully in repeat analysis.
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Thirty-nine of these matchedmutations detected by digital PCR in those
samples (Fig. 3C). Three potential false positives were called, at AF
of 3.1%, 1.3%, and 0.7% (the latter in a control sample). Using higher-

stringency parameters for mutation identification (Supplementary
Methods), we retained only the 39 validated mutations called, with
no false positives (Table 2).
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Fig. 4. Clinically relevant applications of plasma DNA sequencing using
TAm-Seq. (A) Retrospective analysis by TAm-Seq of plasma samples col-
lected during patient follow-up and biopsy specimens collected at initial sur-
gery. We identified a mutation in exon 21 of EGFR (dark blue boxes) in two
separate plasma samples, collected 15 and 25 months after initial surgery
from patient 27 (Tables 1 and 2). This mutation was not directly identified
in eight tumor biopsy specimens collected at the time of initial surgery (two
from omental mass, two from left ovary, and four from right ovary). Having
identified the mutation in the plasma samples, we examined this mutation
using the lower-specificity criteria defined for mutation detection (Supple-
mentary Methods) and detected the mutation in the two specimens that
hadbeen collected from the omentumat the timeof surgery (light blue boxes)
but not in the six ovarian specimens. A mutation in TP53 was identified in all
tumor and plasma samples collected from this patient (Tables 1 and 2 and
table S3), but not in white blood cells (buffy coat). Percentages indicate mu-
tant AFs. Empty boxes and “ND” indicate samples where a mutation was not
identified or detected (below 0.8 confidencemargin). (B) Monitoring frequency

of mutant DNA in plasma of an ovarian cancer patient (patient 46) over time
using TAm-Seq and digital PCR. TAm-Seq results are reported as the mean fre-
quency of duplicate analyses. Parallel data are shown for digital PCR and serum
CA125. Shaded regions indicate periods of chemotherapy, and vertical
dashed lines indicate radiological assessment of patient responses: PR, partial
response; SD, stable disease; PD, progressive disease. (C) Monitoring frequency
of mutant DNA in plasma of an ovarian cancer patient (patient 31) over time.
(D) Dynamics of 10 tumor-specificmutations inplasmaof abreast cancerpatient
(not included in theother sets of samples analyzed). (E) Retrospective analysis
of samples from synchronous primary tumors (bowel and ovarian) collected at
the time of initial surgery and three plasma samples collected at relapse. In
primary tumors from this patient (not included in the other sets of samples
analyzed), a TP53mutationwas identified in the ovarian cancer (red box), and
mutations in PIK3CA, KRAS, and TP53 were identified in the bowel cancer
(green box). At relapse, a biopsy was not performed on the pelvic mass. The
TP53mutation that was identified in the ovarian primary tumor (p.R273H) was
detected inplasma,whereas thebowel-associatedmutationswerenotdetected.
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Of 40 point mutations detected at AF >2% by digital PCR, 38
(95%) were identified by TAm-Seq in a single experiment (Fig. 3C).
One additional mutation was located in an amplicon that failed in that
sample and was identified in repeated analysis; the other was likely
missed by TAm-Seq owing to sampling noise, because it was found
in one of the duplicate preamplified libraries but not the other (table
S6). One of three mutations detected by digital PCR at 1% < AF < 2%
was identified by TAm-Seq (Fig. 3C). Eleven additional point mutations
detected by digital PCR at AF <1% were not detected by TAm-Seq at
these settings. TAm-Seq and digital PCR measurements of AF had ex-
cellent agreement, with correlation coefficient of 0.90, increasing to
0.97 when discarding the two strongest outliers (Fig. 3D). Thus, we
screened 62 samples across sizeable genomic stretches, using minute
amounts of plasma DNA (median, 4 ng), and obtained 97.5% sensitivity
with PPV of 100% for identifying mutations at AF >2% in plasma by
TAm-Seq. Using parameters optimized for FFPE samples, one potential
false positive was called at AF >2%, reducing the PPV to 97.5% (Table 3).

Monitoring levels of ctDNA
Various methods have been suggested to monitor changes in muta-
tion load in plasma. These can have enhanced sensitivity compared to
TAm-Seq for tracking individual mutations, but require design of per-
sonalized assays (3, 18, 19). None of these methods have been widely
adopted. We therefore applied TAm-Seq as a generic tool to measure
changes in the frequency of ctDNA over time. We studied serial plasma

samples collected during follow-up and treatment of two patients with
relapsed HGSOC, collected during 104 and 273 days of follow-up and
treatment, respectively. Frequencies of mutant TP53 alleles were mea-
sured by TAm-Seq and in parallel by digital PCR using a mutation-
specific probe. The two methods of quantification had excellent
agreement. Mutant AFs in plasma of ovarian cancer patients re-
flected well the clinical course of the disease compared to the serum
marker CA125, showed marked decrease when systemic treatment
was initiated, and increased in parallel to disease progression. In the
first case (Fig. 4B), a 56-year-old woman with relapsed ovarian cancer
(patient 46) was treated with fourth-line carboplatin + paclitaxel
chemotherapy for six cycles (pink-shaded region). Radiology showed
partial response on mid-treatment computed tomography (CT) scan.
End-of-treatment CT showed stable disease. Twelve weeks from the
end of her fourth-line treatment, the patient developed progressive dis-
ease. The patient then initiated fifth-line chemotherapy with liposomal
doxorubicin (purple-shaded region). In the second case (Fig. 4C), a 64-
year-old woman with relapsed ovarian cancer (patient 31) was treated
with second-line ECX (epirubicin, cisplatin, and capecitabine) chemo-
therapy for six cycles. Radiology showed stable disease on mid- and
end-of-treatment CT scans. The patient then remained off treatment,
until she progressed 3 months later.

TAm-Seq can be flexibly adapted to sequence different genomic
regions by designing primers to amplify regions of interest. We used
this capability to study dynamics of multiple mutations in parallel.

Table 3. Summary of mutations identified in 69 plasma samples of ovarian cancer patients. Samples were analyzed by TAm-Seq and in parallel by digital
PCR. Using parameters optimized for plasma DNA, false-positive calls were lost, whereas all confirmed calls were retained, resulting in specificity and PPV
of 100%.

First set of plasma samples

Plasma samples analyzed 7

Point mutations originally detected by digital PCR, using patient-specific assays targeting mutations identified in tumor samples 7

Point mutations identified directly in plasma by TAm-Seq 8

De novo mutations identified by TAm-Seq only, subsequently confirmed by digital PCR 1

Second set of plasma samples

Plasma samples analyzed 62

Point mutations detected by digital PCR at AF >2% 40

Point mutations with AF >2% (by digital PCR) identified by TAm-Seq 39

Point mutations missed by TAm-Seq due to sampling error 1

Sensitivity of TAm-Seq for identifying mutations at AF >2% 97.5%

PPV of mutations called by TAm-Seq with AF >2% 97.5%*

ctDNA in ovarian cancer

Advanced ovarian cancer patients in both sets† 38

Patients where TAm-Seq identified cancer mutations 20

*One unconfirmed substitution was called at AF >2% using parameters optimized for FFPE material. †The first set included 7 patients (Table 1), and the second set included 37 patients
(table S6), 6 of whom overlap.
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Whole-genome sequencing of tumor material was used to identify tu-
mor mutations in a patient with metastatic breast cancer undergoing
two phases of chemotherapy. Ten mutations were selected, and short
amplicons (<120 bp) were designed to cover the mutation loci (table
S7). Serial plasma samples were collected over the course of 497 days,
both before and after treatment. We performed TAm-Seq in duplicate,
using DNA from 0.08 ml of plasma per amplification, and tracked
dynamics of all mutations in parallel (Fig. 4D). The patient was treated
with single-agent epirubicin (gray-shaded region). After 4 months off
treatment, a CT scan showed progressive disease and the patient com-
menced further treatment with paclitaxel chemotherapy. The 10 mu-
tations followed a common pattern of sharp decline in AF upon onset
of therapy and an increase in AF upon disease progression after ter-
mination of therapy (Fig. 4D).

Finally, we used TAm-Seq to study plasma from a patient who had
a history of two synchronous primary cancers, bowel and ovarian, which
were resected simultaneously. After a 5-year remission, a pelvic mass of
uncertain origin was detected. A biopsy was considered to guide selec-
tion of therapy but was not performed owing to risk of complications
and comorbidities. The patient commenced empirically on an ovarian
cancer chemotherapy regimen, to which she responded. Retrospective
analysis by TAm-Seq of FFPE from the primary tumors collected at
initial surgery, and three plasma samples collected serially at the time
of relapse (5 years and 5 months, 5 years and 7 months, and 6 years
after initial surgery), showed that the patient’s plasma at relapse con-
tained the TP53 (p.R273H) mutation identified in the ovarian primary
tumor (exceeding the 0.98, 0.93, and 0.97 confidence margins, respec-
tively), but not the PIK3CA (p.E545K), KRAS (p.G12V), or TP53
(p.R248W) mutations identified in the primary bowel cancer (below
the 0.8 confidence margin) (Fig. 4E). Had these results been available,
uncertainty and treatment delays may have been avoided, as well as the
risk of prescribing chemotherapy for an inappropriate tumor site. An
alternative possible outcomemay have involved a finding of the PIK3CA
orKRASmutations (present in the primary bowel cancer) in the patient’s
plasma at the time of relapse. Such a finding, if available to clinicians at
the time,may not only have led to alternate chemotherapy being offered
but may have also opened the possibility of enrolment into a trial for
targeted therapy with mammalian target of rapamycin (mTOR), phos-
phatidylinositol 3-kinase (PI3K), ormitogen-activatedprotein kinase ki-
nase (MEK) inhibitors (11).

DISCUSSION

Detection of rare mutations in circulating DNA has long been pursued
owing to its potentially transformative impact on cancer diagnosis and
management. Important progress has been made using sequence-
specific assays that target predefined mutations and that detect ex-
tremely rare alleles. Assays such as PCR (6, 7), ligation (5), and primer
extension/mass spectrometry (27) can identify specific, predefined
mutations in plasma samples. Enhanced detection down to 1 mutant
allele in 10,000 or more wild-type alleles can be obtained using a va-
riety of methods, such as peptide nucleic acid and primer extension
(“PPEM”) (38), ligation followed by quantitative PCR (“LigAmp”) (39),
bead-based digital PCR in emulsions (“BEAMing”) (2, 3), microfluidic-
based (7) or droplet-based digital PCR (40), or microinsertion/deletion/
indel-activated pyrophosphorolysis (“MAP”) (29). Nonetheless, iden-
tification of rare mutations in tumor suppressor genes such as TP53,

which are widely mutated in cancers but lack a well-defined hotspot
region, remains an elusive goal.

In patients with advanced cancers, mutant alleles can reach a size-
able fraction of DNA. For example, Dukes’ D colorectal cancers have
median 8% mutant AF (2). Screening of entire genes for mutations
would therefore be useful for some applications, even if analytical se-
lectivity is limited to a few percent. Advances in massively parallel se-
quencing make new approaches possible. These have largely focused
on large-scale analyses, including whole-genome or whole-exome se-
quencing (41). This generates a large amount of data on genomic re-
gions that do not, at present, inform clinical decisions. Moreover, the
depth of coverage for clinically significant loci is not sufficient to de-
tect changes that occur at low frequency (<5%). Such approaches have
recently been complemented by methods for examination of individ-
ual amplicons at great depth (30).

The intermediate scale of sequencing is most likely to have imme-
diate impact on clinical genomics. Targeted sequencing has been ap-
plied for tumor DNA (34, 35) and cyst fluid (33) to detect mutations
down to 5% AF, but has not been applied for analysis of circulating
tumor nucleic acids. Here, we demonstrate noninvasive identification
of mutant alleles in plasma, at AFs as low as 2%, by targeted deep se-
quencing of circulating DNA. Our TAm-Seq method uses a combina-
tion of short amplicons, two-step amplification, sample barcodes, and
high-throughput PCR. Because the amplicons are short, this method
effectively amplifies even small amounts of fragmented DNA such as
are present in circulating DNA. The two-step amplification permits
extensive primer multiplexing that enables the amplification and se-
quencing of sizeable genomic regions by tiling short amplicons without
loss of fidelity or efficiency. Duplicate sequencing of each sample is used
to avoid false positives stemming from PCR errors. Sample barcodes
and high-throughput PCR reduce the per-sample costs to a range where
this may be widely applicable. Preparing TAm-Seq libraries for se-
quencing from 48 samples takes less than 24 hours and involves only
few hours of hands-on time. New platforms for massively parallel se-
quencing allow for fast turnaround times, which make this approach
practical in a clinical setting.

The sensitivity presently achieved can provide useful diagnostic in-
formation in certain advanced cancers. We studied a cohort of sub-
jects with advanced HGSOC in which the tumor suppressor gene TP53
is a driver mutation (20). Of the 69 plasma samples collected from
38 different individuals with advanced HGSOC, we identified muta-
tions in TP53 in 46 samples (67%) from 20 of the cases (53%). In con-
trast, a previous study using a ligase detection reaction with bespoke
primers found mutated TP53 sequences in plasma for only 30% of
advanced ovarian cancer patients (5), and a study using single-strand
conformation polymorphism found no ctDNA in preoperative plasma
samples from high-grade serous cancer patients (42).

Targeted agents, such as inhibitors of poly(adenosine diphosphate–
ribose) polymerase (PARP), or tyrosine kinase inhibitors targeting
epidermal growth factor receptor (EGFR), may be applicable for sys-
temic treatment of advanced HGSOC (8, 10, 22). In a recent study of
203 HGSOC tumors, EGFR was found to be the most frequently mu-
tated oncogene and was mutated in nearly 10% of cases (10). In one
case, we identified in plasma a de novo mutation in the tyrosine kinase
domain (exon 21) of EGFR, located 26 amino acids upstream of the
L858R activating mutation widely documented for lung cancer. In a
subset of tumor samples collected from the same patient 15 months
earlier, this mutation was detected at AF of 0.7%, but could not have
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been identified by analysis of those samples alone without previous
knowledge of the mutation identified in plasma (Fig. 4A). In a clinical
setting, identification of such a mutation could potentially guide treat-
ment with alternative molecularly targeted therapy (10). Current clinical
recommendations in lung adenocarcinoma suggest mutation assess-
ment in exons 18 to 21 of EGFR (a region of ~560 bp) in the tumor tis-
sue to identify patients eligible for treatment with gefitinib or erlotinib
(9). Using a commercial PCR-based in vitro diagnostic kit (Qiagen),
28 different EGFR variants can be assayed (not including the mutation
we identified), but the sample needs to be subdivided into seven dif-
ferent reactions. When sample is limited or mutant alleles are rare, this
could introduce sampling errors.

Using standard amplification primers tailored to the mutation loci,
we also used TAm-Seq to monitor the dynamics of 10 mutations in
plasma DNA of a single patient with metastatic breast cancer, using
minute amounts of input DNA. Previous studies have followed up to
two mutations in any individual patient (3, 19). Tracking multiple mu-
tations can provide insight into clonal evolution and, at the same time,
increases the robustness for tumor monitoring by compensating for
effects of sampling noise or mutational drift. For example, if a patient
has only five copies of a mutant allele per milliliter of plasma (on av-
erage), there is a 37% probability that this mutation will not be present
in a 0.2-ml sample, and even a perfect assay will fail to detect residual
tumor, whereas a method that measures multiple mutations in parallel
can have a low likelihood of a false-negative result even if the detection
rate for each mutation is less than 50%.

A current limitation of TAm-Seq is the detection limit compared
to assays that target individual loci (2, 3, 7, 40), which have been
shown to detect two to three orders of magnitude lower frequencies.
Our approach may be sufficient for analyzing plasma from patients
with certain advanced cancers, but further improvement may be nec-
essary before this method can be more widely used in the clinic. Higher
read depth or fidelity, additional replicates, or improved algorithms
could allow for enhanced mutation detection without change to proto-
cols. An alternative strategy is through rare allele enrichment, for ex-
ample, by combining TAm-Seq with protocols such as COLD-PCR
(co-amplification at lower denaturation temperature PCR) (31).

Previously proposed methods for personalized monitoring of tu-
mor dynamics relied on expensive custom-designed probes (3) or iden-
tification of rearrangements using whole-genome sequencing (18, 19).
These have better analytical sensitivity than currently achieved by
TAm-Seq, but are difficult to implement on a routine basis. TAm-Seq
strikes a balance between sensitivity and ease of use and could facil-
itate study and application of circulating DNA. Using TAm-Seq, we
identified cancer mutations in the plasma of most advanced ovarian
cancer patients and tracked dynamics of TP53 mutations without re-
quiring any specially designed probes. In summary, TAm-Seq is a flex-
ible and cost-effective platform for applications in noninvasive cancer
genomics and diagnostics. We have shown that this method can be
used for high-throughput sequencing of plasma samples to identify
and monitor levels of multiple cancer mutations in circulating DNA.
This could also be applied to screen for rare mutations in a variety of
heterogeneous sample types such as low-cellularity tumor specimens,
cytological samples, or circulating tumor cells (16). With further de-
velopments, this and derivative methods may be applied in molecular
screening for earlier detection or for differential diagnosis of cancer
from benign masses. For genetic analysis of FFPE or small biopsy sam-
ples, TAm-Seq can be applied as is, as a cost-effective clinical aid.

MATERIALS AND METHODS

Sample collection
FFPE blocks were obtained from the pathology archives at Addenbrooke’s
Hospital (Cambridge, UK). Plasma samples were collected upon dis-
ease relapse, before and during chemotherapy treatment. Sample collec-
tion for this study was approved by Cambridgeshire Research Ethics
Committee (REC 08/H0306/61 and 07/Q0106/63). Peripheral blood
samples were collected into EDTA tubes and centrifuged at 820g for
10 min within 1 hour of collection to limit degradation of cell-free DNA
and leukocyte lysis. Aliquots (1 ml) of plasma were centrifuged in a bench-
top microfuge at 14,000 rpm for 10 min. The supernatant was trans-
ferred to sterile 1.5-ml tubes and stored at −80°C before extraction.

Extraction of DNA from FFPE and blood plasma
Paraffin blocks were cut as 8-mm sections on plain glass slides. Targeted
regions for sampling were marked on adjacent hematoxylin and eosin
sections by the study pathologist and recovered by scrape macrodis-
section. Between 3 and 20 sections were macrodissected depending on
the tissue sample’s size. DNA from FFPE sections was extracted with
QIAamp DNA FFPE Tissue Kit (Qiagen) according to the manufac-
turer’s instructions.

Circulating DNA was extracted from between 0.85 and 2.2 ml of
plasma with the QIAamp Circulating Nucleic Acid kit (Qiagen), fol-
lowing the manufacturer’s instructions, and with the QIAvac 24 Plus
vacuum manifold. Carrier RNA was added to ACL lysis buffer to en-
hance binding of nucleic acids to the QIAamp membrane with the
aim to enhance yields.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/4/136/136ra68/DC1
Methods
Fig. S1. PCR strategy and primer design.
Fig. S2. Sanger traces for mutations identified by tagged-amplicon sequencing.
Fig. S3. Background frequencies and detection limits for base substitutions.
Fig. S4. Replicate dilute Sanger sequencing of a mutation identified in plasma.
Table S1. Target-specific primers.
Table S2. Unique sequencing barcodes.
Table S3. Mutations identified in FFPE samples.
Table S4. SNPs identified in circulating DNA from two plasma control samples.
Table S5. Frequency of SNP alleles in dilution series of DNA from control plasma.
Table S6. Additional data for Table 2 for mutations identified in plasma samples.
Table S7. Mutations and amplicons studied in one breast cancer patient.
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Non-invasive analysis of acquired resistance to
cancer therapy by sequencing of plasma DNA
Muhammed Murtaza1*, Sarah-Jane Dawson1,2*, Dana W. Y. Tsui1*, Davina Gale1, Tim Forshew1, Anna M. Piskorz1,
Christine Parkinson1,2, Suet-Feung Chin1, Zoya Kingsbury3, Alvin S. C. Wong4, Francesco Marass1, Sean Humphray3,
James Hadfield1, David Bentley3, Tan Min Chin4,5, James D. Brenton1,2,6, Carlos Caldas1,2,6 & Nitzan Rosenfeld1

Cancers acquire resistance to systemic treatment as a result of clonal
evolution and selection1,2. Repeat biopsies to study genomic evolu-
tion as a result of therapy are difficult, invasive and may be con-
founded by intra-tumour heterogeneity3,4. Recent studies have
shown that genomic alterations in solid cancers can be characterized
by massively parallel sequencing of circulating cell-free tumour
DNA released from cancer cells into plasma, representing a non-
invasive liquid biopsy5–7. Here we report sequencing of cancer
exomes in serial plasma samples to track genomic evolution of meta-
static cancers in response to therapy. Six patients with advanced
breast, ovarian and lung cancers were followed over 1–2 years. For
each case, exome sequencing was performed on 2–5 plasma samples
(19 in total) spanning multiple courses of treatment, at selected time
points when the allele fraction of tumour mutations in plasma was
high, allowing improved sensitivity. For two cases, synchronous
biopsies were also analysed, confirming genome-wide represen-
tation of the tumour genome in plasma. Quantification of allele
fractions in plasma identified increased representation of mutant
alleles in association with emergence of therapy resistance. These
included an activating mutation in PIK3CA (phosphatidylinositol-4,5-
bisphosphate 3-kinase, catalytic subunit alpha) following treatment
with paclitaxel8; a truncating mutation in RB1 (retinoblastoma 1)
following treatment with cisplatin9; a truncating mutation in
MED1 (mediator complex subunit 1) following treatment with
tamoxifen and trastuzumab10,11, and following subsequent treat-
ment with lapatinib12,13, a splicing mutation in GAS6 (growth
arrest-specific 6) in the same patient; and a resistance-conferring
mutation in EGFR (epidermal growth factor receptor; T790M) follow-
ing treatment with gefitinib14. These results establish proof of prin-
ciple that exome-wide analysis of circulating tumour DNA could
complement current invasive biopsy approaches to identify muta-
tions associated with acquired drug resistance in advanced cancers.
Serial analysis of cancer genomes in plasma constitutes a new para-
digm for the study of clonal evolution in human cancers.

Serial sampling of the tumour genome is required to identify the
mutational mechanisms underlying drug resistance2. Serial tumour
biopsies are invasive and often unattainable. Tumours are heterogen-
eous and continuously evolve, and even if several biopsies are obtained,
these are limited both spatially and temporally. Analysis of isolated
circulating tumour cells (CTCs) has been proposed, but circulating
tumour DNA (ctDNA) is more accessible and easier to process15.
Previous studies of tumour mutations in plasma have analysed indi-
vidual loci, genes or structural variants to quantify tumour burden and
to detect previously-characterized resistance-conferring mutations1,6,16–18.
Genome-wide sequencing of plasma samples is used in prenatal dia-
gnostics, demonstrating comprehensive coverage of the genome19.
More recently, genome-wide sequencing of plasma DNA has been

demonstrated as a potential tool for detection of disease or analysis
of tumour burden in patients with advanced cancers5,7. These studies
established that plasma DNA contains representation of the entire
tumour genome7, mixing together variants originating from multiple
independent tumours5. This suggests that deeper sequencing of plasma
DNA, applied to selected samples with high tumour burden in blood,
may allow assessment of clonal heterogeneity and selection. In this
study, we applied exome sequencing of ctDNA as a platform for
non-invasive analysis of tumour evolution during systemic cancer
treatment (Fig. 1).

*These authors contributed equally to this work.
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Figure 1 | Identification of treatment-associated mutational changes from
exome sequencing of serial plasma samples. Overview of the study design:
plasma was collected before treatment and at multiple time-points during
treatment and follow-up of advanced cancer patients. Exome sequencing was
performed on circulating DNA from plasma at selected time-points, separated
by periods of treatment, and germline DNA. Mutations were identified across
the plasma samples, and their abundance (allele fraction) at different time-
points compared, generating lists of mutations that showed a significant
increase in abundance, which may indicate underlying selection pressures
associated with specific treatments. These lists contained mutations known to
promote tumour growth and drug resistance, but also mutations of unknown
significance. Accumulating such data across large cohorts could identify genes
or pathways with recurrent mutations.
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We performed whole exome sequencing of plasma DNA in six
patients with advanced cancers (Supplementary Table 1): two with
breast cancer (cases 1 and 2), three with ovarian cancer (cases 3–5),
and one with non-small-cell lung cancer (NSCLC, case 6). Exome
sequencing was performed on multiple plasma samples from each
patient separated by consecutive lines of therapy, spanning up to
665 days of clinical follow up (range 109–665 days, median 433 days).
The ability to detect genomic events using redundant sequencing is
dependent on the allele fraction (AF) of the mutant alleles in the
samples analysed (ratio of mutant reads to depth of coverage at that
locus), the sequencing depth, and the background noise rates of
sequencing. Levels of ctDNA were previously quantified in these
patients using digital PCR and tagged-amplicon deep sequencing6

(TAm-Seq; Fig. 2, upper subpanels), allowing us to focus on samples
with a high mutant AF in plasma, in which genomic changes related

to the tumour could be identified even at relatively modest depth of
sequencing. Comparison of AF measured using exome sequencing,
digital PCR and TAm-Seq showed a high degree of concordance
(correlation coefficient 0.8, P , 0.0001; Supplementary Fig. 1). Using
as little as 2.3 ng of DNA (4%–20% of the DNA extracted from
2.0–2.2 ml of plasma), and an average of 169 million reads of sequenc-
ing per sample, we analysed the coding exons of all protein-coding
genes at an average unique coverage depth ranging from 31-fold to
160-fold across 19 plasma samples (Supplementary Table 2). Con-
sistent with previous reports5,7, we observed copy number aberrations
(CNAs, both gains and losses) in plasma samples in all patients
across the whole genome (Supplementary Figs 2–7). These were
strongly modulated by the fraction of tumour DNA in plasma and
were particularly prominent in plasma samples in which mutant AF
exceeded 50%.
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Figure 2 | Mutations showing evidence of genomic tumour evolution. All
panels (a–f) are made up of an upper and a lower subpanel. Upper subpanels,
time courses for allele fractions (AF; data points) of ‘anchor’ mutations used for
initial quantification of ctDNA levels, and the fractional concentration of
tumour DNA (tumour burden; grey dashed lines). ‘Anchor’ mutations were
measured using digital PCR or TAm-Seq6 for all available plasma samples, and
using exome sequencing at selected time points indicated by E1, E2, E3 (and E4
and E5 for case 5). Tumour burden was estimated from exome data (an
adaptation of genome-wide aggregated allelic loss7). In a, AF was averaged over
six mutations measured in parallel using digital PCR. In b, a single mutation in

ATM (predicted amino acid change I2948F) was measured by TAm-Seq. In
c, d and e, a single mutation in TP53 was measured by digital PCR for each case
(R175H, K132N and R175H, respectively). In f, digital PCR was used to
measure abundance of a deletion in exon 19 of EGFR (not quantified in exome
sequencing data) and the EGFR T790M mutation. Lower subpanels, AF in
exome data for selected mutations (blue, green and orange datapoints, see key)
for each of the cases. Additional details are listed in Table 1, and a full list of
mutations that showed a significant increase in abundance is included in
Supplementary Tables 2–7. ECX, epirubicin, cisplatin and capecitabine; C-LD,
carboplatin and liposomal doxorubicin; LD, liposomal doxorubicin.
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For two cases, sequencing data were also available from metastatic
tumour biopsies, collected at the same time as plasma samples (case 1
sample E1, and case 4 sample E2), and from tumour samples collected
at the patients’ initial presentation, 9 and 4.5 years earlier. CNAs were
concordant between plasma and metastasis DNA in both patients
(Fig. 3a, b, and Supplementary Fig. 7). Mutations identified in sequencing
data20–23 from the plasma or metastatic biopsy were compared (Sup-
plementary Information). In case 1 with breast cancer, 151 mutations
were identified in either the plasma or the synchronous biopsy. Of
these, 93 mutations were found in both, and mutant AFs for these were
higher in the plasma sample compared to the metastatic biopsy. The
correlation coefficient of mutant AFs was positive (0.71) for mutations
that were also found in the primary tumour, but negative (20.22) for
other mutations (Fig. 3c). In case 4 with ovarian cancer, 895 mutations
were identified in either plasma or the tumour biopsy. For 172 muta-
tions found in both, AFs were positively correlated (0.72) and were
higher in the metastatic biopsy, which also contained 686 ‘private’
mutations with AF , 0.2 that were not found in either the plasma or
the earlier tumour sample (Fig. 3d).

To identify changes in the mutation profiles of the tumours, we
compared the abundance of somatic mutations found in plasma before
and after each course of systemic treatment. For each patient, we
examined a conservative list of mutations, including all mutations that
were called in any of the plasma samples with a Bonferroni-corrected
binomial probability of ,0.05 assuming a background sequencing
error rate of 0.1%. For each mutation and course of treatment
(spanned by a pair of plasma samples), a P-value for a possible change
in mutant AF was calculated as the binomial probability of obtaining
the observed number of mutant reads, given the sequencing depth and
the observed abundance in the paired time-point, normalized by the
fractional concentration of tumour-derived DNA in the plasma (based
on genome-wide aggregated allelic loss5, Supplementary Table 3).
Overall, 364 non-synonymous mutations passed with false discovery

rate of ,10% for significant changes in normalized abundance, rang-
ing from 15 to 121 for each case (median 49). These include mutations
in well-known cancer genes, genes linked to drug resistance and drug
metabolism, and genes not previously associated with carcinogenesis
or therapy resistance (Supplementary Tables 4–9). Selected examples
are shown in Table 1 and Fig. 2.

We highlight here five examples. In case 1 with breast cancer, a
strong increase was observed in the abundance of an activating muta-
tion in PIK3CA following treatment with paclitaxel (Fig. 2a and
Table 1). This mutation has been shown to promote resistance to
paclitaxel in mammary epithelial cells8. In case 2, a patient with an
oestrogen-receptor (ER)-positive, HER2-positive breast cancer, treat-
ment with tamoxifen in combination with trastuzumab led to an in-
crease in abundance of a nonsense mutation near the carboxy terminus
of MED1, an ER co-activator that has been shown to be involved in
tamoxifen resistance10,11. After further treatment of this patient with
lapatinib in combination with capecitabine, we observed an increase
in abundance of a splicing mutation in GAS6, the ligand for the tyro-
sine kinase receptor AXL (Fig. 2b, Table 1). Activation of the AXL
kinase pathway has been shown to cause resistance to tyrosine kinase
inhibitors in NSCLC13 and resistance to lapatinib in ER-positive,
HER2-positive breast cancer cell lines12. In case 4 with ovarian cancer,
following treatment with cisplatin, we observed increase in abundance
of a truncating mutation in the tumour-suppressor RB1 (Fig. 2d,
Table 1), predicted to inactivate the RB1 protein (Supplementary
Fig. 8). In the matched metastasis biopsy obtained after treatment,
the mutation was found in 95% of sequencing reads (59 of 62), with
apparent loss of heterozygosity at 13q containing the RB1 gene (Fig. 3a,
b). Loss of RB1 has been linked with chemotherapy response9. Case 6
was a NSCLC patient with an activating mutation in EGFR who was
treated with gefitinib but progressed on treatment. Analysis by digital
PCR detected the EGFR T790M mutation in plasma at progression,
but not at the start of treatment. This mutation inhibits binding of
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Figure 3 | Genome-wide concordance between plasma DNA and tumour
DNA. a, b, Sequencing data were used to assess CNAs in the plasma sample
(a) and in the synchronous metastatic tumour biopsy (b) from case 4. Panels
show log R ratio (LRR), calculated on the basis of exome data, between plasma
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gefitinib to EGFR and has been established as the main driver of
acquired resistance to gefitinib14. Unbiased analysis of plasma DNA
by exome sequencing identified selection for this mutation amongst
genomic changes that occurred following therapy (Fig. 2f, Table 1).

In this proof of principle study, we demonstrate that exome analysis
of plasma ctDNA represents a novel paradigm for non-invasive charac-
terization of tumour evolution. Our data, together with recent reports5,7,
show that CNAs and somatic mutations identified in ctDNA are
widely representative of the tumour genome and provide an alternative
method of tumour sampling that can overcome limitations of repeated
biopsies. Cell-free DNA fragments from multiple lesions in the same
individual all mix together in the peripheral blood5, therefore ctDNA is
likely to contain a wider representation of the genomes from multiple
metastatic sites, whereas mutations present in a single biopsy or minor
sub-clone may be missed. This strengthens the case for the use of
ctDNA as a biomarker for monitoring tumour burden or for the ana-
lysis of hotspot mutation regions1,6,16,17, but also indicates that tracking
different mutations for assessment of tumour heterogeneity and clonal
evolution is now possible. Our data identified a subset of genes that were
positively selected following treatment, many of which have been prev-
iously associated with drug resistance. Other changes may represent
‘passenger’ mutations or false-positives, but some are likely to contri-
bute to resistance to therapy. Accumulating data across a large number of
cases could identify new genes or pathways that are frequently mutated
following specific treatment types, and help refine analysis algorithms.

The approach we describe here may be broadly applicable to a large
fraction of advanced cancers, where the median mutation burden in
plasma (before start of treatment) is 5%–10% (refs 6, 16, 24). Analysis of
acquired drug resistance is of particular utility in advanced or metastatic
cancers, which is the target population for nearly all early phase clinical
trials. Improvements in sequencing and associated technologies may
enable similar analysis in cases with a lower tumour burden in plasma.
At present, this non-invasive approach for characterizing cancer exomes
in plasma is readily applicable to patients with high systemic tumour

burden, enabling detailed and comprehensive evaluation of clonal
genomic evolution associated with treatment response and resistance.

METHODS SUMMARY
Patients and samples. Cases 1–5 were recruited as part of prospective clinical
studies at Addenbrooke’s Hospital, Cambridge, UK, approved by the local
research ethics committee (REC reference nos 07/Q0106/63, 08/H0306/61 and
07/Q0106/63). Case 6 was recruited as part of the ‘Hydroxychloroquine and
gefitinib to treat lung cancer’ study (NCT00809237) at the National University
Health System, Singapore, approved by the National Healthcare Group NHG
IRB—DSRB 2008/00196. Written informed consent was obtained from patients,
and serial blood samples were collected at intervals of $3 weeks.
Extraction and sequencing of plasma DNA. DNA was extracted from plasma
using the QIAamp circulating nucleic acid kit (Qiagen) according to the manu-
facturer’s instructions. Barcoded sequencing libraries were prepared using a com-
mercially available kit (ThruPLEX-FD, Rubicon Genomics). Pooled libraries were
enriched for the exome using hybridization (TruSeq Exome Enrichment Kit,
Illumina), quantified using quantitative PCR and pooled in 1:1 ratio for paired-
end sequencing on a HiSeq2500 (Illumina).
Variant calling and analysis. Sequencing data were demultiplexed and aligned
to the hg19 genome using BWA20. Pileup files for properly paired reads with
mapping quality $60 were generated using samtools22. AFs were calculated
for all Q30 bases. A mutation was called if $4 mutant reads were found in plasma
with $1 read on each strand, and no mutant reads were observed in germline DNA
or in a prior plasma sample with $10-fold coverage. For comparison between
consecutive plasma samples in a patient, we calculated the binomial probability of
obtaining the observed AF (or greater) if the abundance of the mutant allele,
normalized by tumour load in plasma (based on a modified genome-wide aggre-
gated allelic loss method5), had remained constant between the two samples.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Sample collection. Cases 1–5: patients were recruited as part of prospective clin-
ical studies at Addenbrooke’s Hospital, Cambridge, UK, approved by local
research ethics committee (REC reference nos 07/Q0106/63, 08/H0306/61 and
07/Q0106/63). Written informed consent was obtained from the patients. Serial
blood samples were collected in EDTA tubes at intervals of $3 weeks, and cen-
trifuged within 1 h at 820g for 10 min to separate the plasma from the peripheral
blood cells. The plasma was then further centrifuged at 20,000g for 10 min to pellet
any remaining cells. The plasma was then stored at 280uC until DNA extraction.

Case 6: this patient was recruited as part of the ‘Hydroxychloroquine and
gefitinib to treat lung cancer’ study (NCT00809237) at the National University
Health System, Singapore, approved by the National Healthcare Group NHG IRB-
DSRB 2008/00196. Blood was collected in CPT tubes (BD Vacutainer) before
gefitinib was started, and at monthly intervals while the patient was on treatment,
until disease progression. Blood collected was spun within 1 h at 1,500g for 20 min,
and the plasma fraction was frozen at 280 uC. Thawed samples were recentrifuged
at 20,000g for 10 min to further separate any cellular portions.
Extraction of plasma DNA. DNA was extracted from aliquots of plasma using the
QIAamp circulating nucleic acid kit (Qiagen) according to the manufacturer’s instruc-
tions (see Supplementary Table 1 for volumes used). DNA was eluted into buffer
AVE, eluted twice through each column to maximize yield, and stored at 220 uC.
Extraction of normal and tumour DNA. DNA from tumour sections was
extracted using DNeasy tissue or DNA Allprep kits (Qiagen) according to manu-
facturer’s instructions. Matched germline DNA was derived from normal peri-
pheral blood leucocytes. After the collection of plasma from each blood sample, the
remaining layer of normal peripheral blood lymphocytes (‘buffy coat’) was
removed. This layer was either subjected to red cell lysis using a red cell lysis buffer
(155 mM NH4Cl, 10 mM KHCO3 and 0.1 mM EDTA pH 7.4) and DNA extracted
using a standard phenol-chloroform extraction protocol; or frozen at 280 uC
before extraction using QIAamp DNA mini kit (Qiagen).
Sequencing of plasma DNA. Concentration of DNA for each plasma sample was
determined using digital PCR, with an assay targeting RPP30 for case 2, TP53 for
cases 3–5 and EGFR for case 6. For case 1, DNA concentration and ‘anchor’ mutation
AF were calculated by averaging results from six assays targeting PIK3CA, MET,
IQCA1, CD1A, KIAA0406 and ZFYVE21. Libraries were generated using a commer-
cially available kit for fragmented DNA (ThruPLEX-FD, Rubicon Genomics).
2.3–40 ng of DNA (Supplementary Table 2) was used to generate a sequencing
library using manufacturer’s protocols. Separate unique molecular identifiers were
used for each sample. 30ml of the library volume was obtained for each sample. 2–5
plasma DNA libraries from each patient were made and pooled together for exome
capture using hybridization (TruSeq Exome Enrichment Kit, Illumina). Pools were
concentrated using vacuum (Eppendorf Vacuum Concentrator) and prepared to
40ml volume. Exome enrichment was performed following manufacturer’s proto-
cols. Enriched libraries were quantified using quantitative PCR and pooled in 1:1
ratio for paired-end next generation sequencing on HiSeq2500 (Illumina).
Sequencing of normal and tumour DNA. Sequence data for tumour and germ-
line samples for case 1 have been reported previously. In brief, genomic libraries
from tumour and matched normal tissue were prepared using the standard
IIlumina paired-end sample preparation kit according to the manufacturer’s
instructions. DNA fragments of 300 bp in size were sequenced using paired-end
100 bp reads on a HiSeq2000 (Illumina) achieving a depth of .303. Germline
samples for cases 2–6 and tumour sample for case 4 were sheared using Covaris
and exome sequenced as described above.
Digital PCR. The principle of microfluidic digital PCR and its use for quantifica-
tion of tumour DNA has been described previously6,18. Assays were designed based
on TaqMan chemistry. All digital PCR analysis was carried out on the BioMark
system using 12.765 Digital Arrays (Fluidigm) following manufacturer’s instruc-
tions and protocol. Briefly, 3.5ml from the eluted DNA was heated to 95 uC for
1 min and placed on ice, then mixed with TaqMan Universal PCR Master Mix
(Applied Biosystems) and sample loading buffer (Fluidigm) into a final reaction
volume of 10ml and loaded into each panel of the chip. The reaction mix was then
automatically partitioned into 765 reaction chambers. The numbers of starting
template DNA molecules were calculated using Poisson statistics based on the
number of positive amplifications6,18.
Analysis of sequencing data. Sequencing reads were demultiplexed allowing zero
mismatches in barcodes. Paired-end alignment to the hg19 genome was per-
formed using BWA version 0.5.9 for all exome sequencing data including germline
samples, plasma samples and tumour metastasis where generated20. PCR dupli-
cates were marked using Picard. Local realignment was performed using Genome
Analysis Tool Kit (GATK)21. Pileup files were generated for the genomic regions
targeted by exome enrichment using samtools v0.1.1722. For plasma samples,
properly paired reads with mapping quality $60 were used to generate the pileup.
AFs for each single-base locus were calculated for all bases with phred quality $30.

For germline DNA, an additional pileup file was generated (using a mapping
quality cut-off of $1 and without any base quality cut-offs) and was used as
reference for calling somatic variants. A mutation was called if no mutant reads
for an allele were observed in germline DNA at a locus that was covered at least 10
fold, and if at least 4 reads supporting the mutant were found in the plasma data
with at least 1 read on each strand (forward and reverse). At loci with ,10-fold
coverage in normal DNA and no mutant reads, mutations were called in plasma if
a prior plasma sample showed no evidence of a mutation and was covered ade-
quately (10 fold or more). All mutations were annotated for genes and function as
well as repeated genomic regions using ANNOVAR23.

AF was defined as the number of high quality reads supporting a mutation as a
fraction of the total number of high quality reads covering the locus. For each patient,
AF and number of reads for any mutations called with the above parameters were
identified in all plasma samples. A binomial probability of obtaining the observed
number of reads given depth in each plasma sample was calculated. The minimum of
these probability values was corrected using Bonferroni correction for 62 million 3 n
hypotheses tested, where n was the number of plasma samples sequenced (3 samples
for cases 1–4, 5 samples for case 5 and 2 samples for case 6). Mutations with
corrected P-values under 0.05 were retained for further analysis in plasma samples.
Estimation of CNAs. To assess CNAs, plasma DNA and tumour sequencing data
were compared to germline DNA data at single nucleotide polymorphisms (SNPs)
covered within the targeted exome region. The SNPs were identified from the
publicly available 1000 Genomes Project data.

Depth information was normalized by dividing the depth of each SNP by the
median depth across all SNPs. The log R ratio (LRR) was computed as the base-10
logarithm of the sample depth (metastasis or plasma) divided by the depth of the
normal. Each chromosome was segmented by an iterative process that considered
non-overlapping blocks of 1,000 data points. Points lying at least 1.5 standard
deviations away from the median LRR for the block were removed from the mean
LRR computation. If the difference in mean LRR between two consecutive blocks
was less than 0.12, the blocks were merged into a single segment whose mean LRR
was re-computed using points from both blocks.

Segmentation of B allele frequency (BAF) plots was similarly performed, con-
sidering windows of 1,000 data points and starting new segments if the difference
in median frequency was greater than 4%. Blocks whose median frequency was
within 8% of the median chromosome frequency in the normal sample were
considered consistent with the BAF of the normal sample.
Comparison of mutations between plasma and tumour. For tumour/plasma
comparison presented for cases 1 and 4, we identified all mutations called in data
from synchronous plasma and metastatic tumour samples, as described above. We
retained all mutations adequately covered in both samples (minimum 50 reads in
plasma, minimum 10 reads in synchronous tumour whole genome data for case 1,
minimum 50 reads in synchronous tumour exome data for case 4). We further
discarded all mutations with no coverage in archived tumour samples obtained
earlier (9 years earlier for case 1, and 4.5 years earlier for case 4).
Identification of mutations that changed in representation over treatment. To
estimate systemic tumour burden, we calculated fractional concentration of
ctDNA in blood using an adaptation of genome-wide aggregated allelic loss5.
AFs of SNPs from the 1000 Genomes Project were obtained for germline and
plasma data. SNPs with 0 , AF , 1 in germline DNA were identified. SNPs where
the minor AF in the germline data deviated from heterozygosity were identified
using a binomial probability of obtaining the observed number of minor allele
reads given depth in germline DNA and expected AF of 0.5. SNPs with probability
,0.25 were discarded from further analysis.

Of the remaining SNPs, significant deviation from heterozygosity in any of the
sequenced plasma samples, determined by a binomial distribution using sequenc-
ing depth and expected AF of 0.5, was used to identify loss of heterozygosity
(LOH). SNPs with a probability ,0.01 in any of the sequenced plasma samples
were retained for estimation of tumour burden as described previously5. Fractional
ctDNA burden was calculated as follows:
1 – [(sum of reads in the lost alleles)/(sum of reads in the retained alleles)]

AFs for all mutations were normalized by the estimated tumour burden. For any
comparison between two consecutive plasma samples in a patient, we calculated
the binomial probability for the observed difference in AF assuming no difference
in normalized abundance. For a comparison between (for example) E1 and E2, we
calculated the probability of obtaining the observed number of mutant reads or
greater in E2 if normalized abundance in E2 had remained the same as in E1; this
probability was multiplied by the probability of the observed number of mutant
reads or less in E1 if the normalized abundance in E1 was the same as observed in
E2. Where no mutant reads were obtained in the E1, only the reverse direction was
used for this analysis. Changes in representation with a false discovery rate of 10%
or lower, which were exonic non-synonymous or splicing mutations, were retained
and are presented in Supplementary Tables 2–7.
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Genomic alterations in cancer
A small number of hereditary cancer syndromes 
are directly caused by germline mutations and 
heritable genetic variation may also play a role 
in many sporadic cancers. However, the great 
majority of human cancers are driven by somatic 
mutations within the cancer-cell genome that 
occur during life. Understanding the diver-
sity and function of these somatic mutations 
is the cornerstone of current cancer research 
and detecting known mutations of clinical 
significance reliably is increasingly forming an 
important part of clinical practice. The major 
impetus for elucidating the nature and function 
of somatic mutations in cancer genomes is the 
potential for the development of effective tar-
geted anticancer therapies, the archetypal exam-
ple being the tyrosine kinase inhibitor imatinib, 
which directly inhibits the BCR–ABL fusion 
gene product arising from the translocation 
t(9;22) in chronic myeloid leukemia, and which 
has revolutionized the treatment and  outcome of 
this previously devastating disease [1].

Nucleotide substitutions are the most com-
mon genomic alterations in tumors – usually 
at a stated rate of one substitution per million 
nucleotides [2]. Insertion and deletions are 

ten-times less common. The rate of mutation 
varies significantly. For example, skin mela-
nomas occurring as a result of UV radiation 
exposure, display substantially more muta-
tions than hematopoietic tumors [3–5]. Even 
small point mutations or microdeletions can 
be vitally important to detect, as they may have 
major relevance to the patient’s prognosis and 
future treatment [6]. Much larger acquired chro-
mosomal translocations are a well-characterized 
feature of hematological malignancy but have 
also been demonstrated in solid-organ tumors 
[7,8]. Smaller copy-number variations (CNVs) in 
tumor genomes can also result in the amplifica-
tion of oncogenes and/or inactivation of tumor-
suppressor genes contributing directly to tumor 
pathogenesis. Additionally, loss of heterozygosity 
(LOH) of tumor suppressor genes is increasingly 
being recognized as an important genomic alter-
ation contributing to tumor initiation and pro-
gression [9]. After an inactivating mutation of the 
first allele, LOH occurs either as a result of loss 
of function of the remaining normal allele or as 
a result of uniparental disomy where the mutant 
allele is duplicated and the remaining normal 
allele lost. Reliable detection of all of these types 
of mutation within cancer genomes of individual 
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patients is necessary if we are to offer truly personalized cancer 
care to our patients.

Current methods
The mainstay of current cancer diagnosis is histological examina-
tion of tumor cells with immunohistochemical analysis. These 
methods are relatively blunt instruments that fail to distinguish 
between molecularly distinct subtypes of tumors, which may have 
individual tumor biology, prognosis and treatment. In a variety of 
cancers, especially hematological, more specific molecular tests are 
now widely employed to provide more detailed information about 
individual patients’ disease. It is routine practice, for example, to 
examine bone marrow samples from patients with acute leukemia 
using flow cytometry, in order to identify the pattern of cell-
surface-marker expression characteristic of the different subtypes. 
Furthermore, metaphase cytogenetics and FISH can be used to 
detect gross chromosomal abnormalities, which can then be used 
to risk-stratify patients and, in many cases, to guide their treat-
ment. Previously, no systematic approach had been adopted to 
study complex karyotypes in solid-organ tumors; however, recent 
discoveries of important translocations in a variety of tumors have 
highlighted the importance of detecting such aberrations [7,10].

Traditional sequencing techniques remain the mainstay of 
detecting germline mutations responsible for hereditary forms of 
cancer, for example, BRCA1 and BRCA2 mutations in breast can-
cer. More recently, DNA sequencing has expanded into routine 
clinical practice to assess tumor cells for specific mutations, partic-
ularly with respect to their response to various targeted therapies 
(TABLE 1). To date, most diagnostic laboratories use automated ver-
sions of the classical ‘chain termination’ method described by Fred 
Sanger in 1977 to determine DNA sequence. Pyrosequencing is a 
common alternative method that relies on detection of a chemi-
luminescence signal released by a luciferase enzyme as a pyro-
phosphate group is released by DNA polymerase at the addition 
of each nucleotide. Pyrosequencing is more sensitive than the 
Sanger method but can only sequence shorter DNA templates. 
Hence, it is best used clinically for hotspot sequencing of short 

DNA/exon sequences where known mutations are commonly 
found. Pyrosequencing is also useful for use with formalin-fixed, 
paraffin-embedded (FFPE) tissue sections, which usually yield 
short fragmented DNA. Overall, owing to the limited bandwidth 
and throughput of such first-generation techniques, they have 
only been applied clinically in a targeted way to look for small 
numbers of known mutations with  established clinical relevance.

However, with growing knowledge of many different genes 
that contribute to the pathophysiology of a particular tumor, 
there has been a shift in focus to genome-wide techniques that 
can interrogate a larger proportion of the cancer genome in a 
more unbiased way. A range of technologies can be used in this 
way, including gene expression profiling, array-based comparative 
genomic hybridization (aCGH), SNP-CGH and next-generation 
sequencing (NGS). These techniques are well established in can-
cer research and have offered remarkable insights into tumor biol-
ogy. There is thus a growing expectation that these technologies 
should now become incorporated into clinical practice and bring 
about a real change to the diagnosis and treatment of individual 
cancer patients’ management. In the authors’ opinion, CGH 
(including both oligonucleotide array CGH, aCGH and SNP 
probe-based SNP-CGH) and NGS are the two high-throughput 
technologies at the forefront of making this transition (FIGURE 1). 
They both possess particular strengths and weaknesses, which 
will influence their clinical utility in the future.

aCGH/SNP-CGH
CGH was developed for molecular cytogenetic analysis of solid 
tumors, and it has developed significantly over the past two dec-
ades, moving to array-based formats [11]. The first of these were 
bacterial artificial chromosome (BAC) arrays; however, these 
have limited chromosomal resolution and have proven difficult 
to manufacture on a commercial scale [12–14]. Because of this, 
BAC arrays have been replaced almost entirely by arrays of oligo-
nucleotides, which can be manufactured more reproducibly and 
at very high probe densities, allowing almost base-pair resolu-
tion. Oligonucleotide array CGH (aCGH) is normally performed 

Table 1. List of US FDA approved cancer drug therapies.

Disease Mutation Drug therapy Current test platform

DLBCL c-myc R-CODOX-M-IVAC chemotherapy

CML BCR–ABL translocation Imatinib/dasatinib/nilotinib

AML (promyelocytic) RARA–PML mutation All-trans retinoic acid

Breast cancer HER2 amplification Trastuzumab/lapatinib/pertuzumab

EML–ALK translocation; EGFR mutation Crizotinib; gefitinib/erlotinib

Colorectal cancer KRAS Cetuximab/panitumumab Traditional sequencing

Gastric cancer HER2 amplification Trastuzumab

Melanoma BRAF mutation Vemurafenib Traditional sequencing

Medullary thyroid cancer RET mutation Vandetanib

c-kit mutation Imatinib/sunitinib IHC

Adapted with permission from [77].
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using either arrays of long-oligos designed 
to hybridize with specific genomic loci 
(aCGH) or using arrays of oligos designed 
to report specific SNP genotypes (more 
commonly referred to as SNP-CGH 
and developed by companies such as 
Affymetrix [CA, USA] and Illumina [CA, 
USA]). This can be confusing as both tech-
nologies require a comparison to be made 
to generate data for cancer diagnostic or 
prognostic use. The authors use the terms 
aCGH and SNP-CGH to point readers to 
the  differences in the technologies.

aCGH allows detection of copy number 
differences between a test and reference 
sample of DNA. Both samples are labeled 
with different fluorophores and then added 
to a glass slide containing several thousand 
(up to and over 1M) fixed oligonucleotide 
probes dispersed evenly throughout the 
genome (they can also be targeted to be 
denser in known regions). The samples 
hybridize to the probes and the relative 
fluorescence intensity from the test and 
reference sample are compared in order to 
ascertain the CNVs at a particular locus. 
Oligonucleotide probes are particularly 
advantageous, as they can be standard-
ized across all arrays used, are devoid of 
repetitive sequences, and are subsequently 
much more reproducible. They can be 
spaced more densely across specific parts 
of the genome, allowing for better detection of smaller genomic 
changes and providing increased sensitivity. They can also be 
customized as information about the genome is updated, and 
multiple probes can target a single region, allowing for more 
robust data analysis and increasing reproducibility, sensitivity and 
confidence in CNV calls [15]. Using this method, copy-number 
changes affecting regions as small as 5–10 kb can be detected. 
High-resolution CGH arrays are now available that allow accu-
rate detection of structural variations at resolutions of 40–80 bp, 
appropriate for detection of microdeletions and duplications [16]. 
However, small sequence alterations or single basepair mutations 
will still not be detected; neither will balance chromosomal trans-
locations or inversions for which FISH remains an important 
technique [17]. Another disadvantage of standard aCGH is its 
relative inability to detect areas of LOH. These can be detected 
in cancer cells by noticing the presence of heterozygosity at a 
particular genetic locus in the germline DNA but the absence 
of it at the same locus in the cancer-cell genome. This can be 
more readily ascertained by using SNP-CGH analysis designed 
for genome-wide association studies (GWAS) to form a virtual 
karyotype. SNP-CGH is a related microarray technology that 
uses oligonucleotide probes corresponding to allelic variants of 
selected SNPs [18]. Hybridization of genomic DNA to both probe 

variants indicates heterozygosity, while a signal for only one allele 
indicates either homozygosity or LOH. This technique can also 
use the intensity of the genotype signal and B-allele frequency to 
determine DNA copy number. Although individual SNP probes 
have significantly lower sensitivity to detect CNV than BAC or 
oligonucleotide probes, they are generally present in much higher 
numbers, thus compensating for their lower sensitivity. SNP 
arrays commonly make use of 1 million probes or more, allow-
ing data analysis to determine copy-number status over multiple 
probes [19]. Both aCGH and SNP-CGH arrays are analyzed using 
multiple probes to generate copy-number data for genomic loci. 
The circular binary segmentation algorithm was developed for 
copy-number analysis using microarrays [20]. The resolution of 
the array is determined by the type and number of probes present 
on the array, and on the analysis method used (TABLE 2). The same 
basic algorithm has been developed for use with NGS data [21].

NGS
Sanger sequencing was used for the Human Genome Project [22], 
but despite the significant technical improvements to this ‘first-
generation’ technology, new second-generation screening or NGS 
technologies are required for sequencing multiple human genomes 
at adequate depth. Over the last 5 years, three companies have 

Figure 1. Workflows and suitability of genomics tools for copy-number variation 
and loss-of-heterozygosity. (A) Two-color aCGH microarrays: tumor and normal 
DNAs are differentially labeled and applied to the same slide for direct estimation of CNV 
from the resulting probe signals, but not LOH. (B)
tumor and normal DNAs are labeled and applied to separate arrays; in silico analysis 
allows both CNV and LOH analysis to be completed. (C)
are converted to sequencing libraries, which are sequenced to a specified depth or 
coverage (the average number of times each base is read); in silico analysis allows CNV 
calls to be made for 10× coverage data and both CNV and LOH from 30× coverage data. 
aCGH: Array-based comparative genomic hybridization; CGH: Comparative genomic 

generation sequencing.

CNV

LOH

aCGH SNP-CGH NGS
10× 30×

Tumor Normal Tumor Normal Tumor Normal
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provided the most widely used NGS systems: Illumina, Roche 
(NJ, USA) and Life Technologies (CA, USA). An overview of 
the various NGS technologies is provided below, but the authors 
would refer readers to an excellent review by Baylor College of 
Medicine’s Michael Metzker for further details [23].

Roche/454: pyrosequencing
454 Life Sciences Corp. developed the first NGS technology and 
fundamentally changed perceptions of what might be achieved 
with sequencing [24], and in 2010, the first NGS human genome 
was published using 454 sequencing [25]. Libraries are prepared by 
ligating oligonucleotide adapters to fragmented genomic DNA. 
DNA is denatured and single-stranded adapter-ligated fragments 
are hybridized to micrometer-sized beads. DNA fragments are 
amplified on the beads in an emulsion-PCR, resulting in beads 
carrying tens of millions of copies of the original DNA frag-
ment. After PCR, the emulsion is broken, and DNA-coated beads 
are purified, denatured and loaded into the wells of a ‘picotiter’ 
plate. The wells of the picotiter plate are large enough for only 
a single bead to be loaded; each well carrying a bead will gener-
ate an individual DNA sequence. Pyrosequencing is performed 
by cyclical addition of individual nucleotides, sulfurylase and 
luciferase. As each nucleotide is incorporated into the growing 
strand, an inorganic pyrophosphate group is released and con-
verted to ATP by the sulfurylase. Luciferase uses the ATP to 
convert luciferin to oxyluciferin, producing a light signal that is 
directly proportional to the number of inorganic pyrophosphate 
molecules released and the number of nucleotides incorporated. 
The first publication generated 250,000 reads of 80–120 bp in 
length [17]. Around 1  million sequences of up to 700 bp in length 
are currently  generated in a GS-FLX (Roche) run.

Illumina method: sequencing by synthesis
The Illumina HiSeq is the most widely adopted NGS instrument 
to date and was used to sequence the first cancer genomes [5,26]. 
Illumina have significantly refined the sequencing-by-synthesis 
technology (SBS) it acquired from Solexa in 2006, improving 
chemistry, instruments and software. Libraries are prepared by 
ligating Y-shaped oligonucleotide adapters. These are prepared 
from two oligonucleotides that share complementarity at one end; 
when annealed and ligated to DNA fragments they allow different 
sequences to be added to the end of each fragment. The library 
of DNA fragments is enriched by PCR ready for clustering and 
sequencing. Libraries are denatured to pM concentration and are 
introduced to an Illumina flowcell; the fragments hybridize to 
complementary oligonucleotides on the surface of the flow cell 
and are copied by DNA polymerase. These daughter molecules are 
then ‘bridge-amplified’ by repeated cycles of chemical denatura-
tion and polymerase extension to produce discrete clusters each 
containing about 1000 molecules. SBS uses fluorescently labeled 
and reversibly blocked terminator deoxy nucleoside-triphosphates 
in a cyclic sequencing reaction. Nucleotides are incorporated by 
DNA polymerase into the growing DNA strand, the flow cell is 
imaged to determine which nucleotide has been incorporated 
into each individual cluster, and finally the terminator is removed 

by chemical cleavage ready for the next round of incorporation, 
imaging and cleavage [27]. The early Solexa-based sequencers from 
Illumina generated reads of 35 bp in 2007 and generated around 
30 million sequences or 1 Gb of data from a flow cell. Read length 
has increased to 150 bp on the HiSeq 2500 system, which gener-
ates over 1.5 billion sequences (or 3 billion paired-end sequences) 
and 300 Gb of data from a single flow cell as of December 2012. 
The cost of sequencing a human genome on the HiSeq 2000 was 
estimated to be just US$6500 in 2011 [28]. The authors estimate 
that at the time or writing the cost of a 30x human genome was 
US$4000, and the cost of a 10x human genome was US$1300. 
Illumina released a lower throughput personal genome sequencer, 
the MiSeq in 2011.

Life Technologies: sequencing by ligation
Life Technologies initially developed the Agencourt Personal 
Genomics support oligonucleotide ligation detection (SOLiD™) 
sequencing technology in their SOLiD 3, 4 and 5500 instru-
ments, but these have not seen widespread adoption by the 
sequencing community due to reduced throughput and a more 
complex workflow. The SOLiD system uses emulsion PCR to 
generate template beads for sequencing by ligation. Beads are 
then deposited onto a slide and primers hybridize to the adap-
tor sequence on the template beads. Four fluorescently labeled 
probes compete for ligation to the sequencing primer. Multiple 
cycles of ligation, detection and cleavage are performed, with 
the number of cycles determining the eventual read length of up 
to 75 bp. More recently, Life Technologies acquired Ion Torrent 
to release the PGM™ and Proton™ sequencers. These systems 
use a very similar approach to the original 454 pyrosequencing. 
The sequencing is performed on a semiconductor chip that has 
wells into which individual emulsion PCR beads can be loaded. 
Sequencing is performed in a similar cyclical manner, but as each 
nucleotide is incorporated hydrogen ions are released, which 
change the pH of the well. This is detected by the ion sensors 
in the semiconductor chip, which then produces a ‘flowgram’ 
format similar to the Roche/454 ‘pyrogram’. Life Technologies 
effectively obsoleted their own SOLiD technology with their 
Ion Torrent products.

Personal NGS instruments & targeted resequencing
The development of benchtop ‘personal’ NGS instruments such 
as MiSeq (Illumina) and PGM (Ion Torrent) present real oppor-
tunities for the use of NGS in a clinical setting. The authors have 
not included GS Junior (Roche/454) in this list as the authors 
do not believe it will compete in the long term against the other 
technologies. These bench-top instruments offer several advan-
tages over the larger ‘whole genome’ sequencing instruments. 
They are generally much cheaper to buy, they are very much faster 
to run and the volume of data generated is smaller and therefore 
easier to manage. Both the MiSeq and PGM can perform multiple 
sequencing runs in a day, offering laboratories greater throughput 
and flexibility. This comes with a reduction in the Gb of sequence 
data generated. Rather than 100s of Gb, only single digit or tens 
of Gb are generated. This is not the obvious drawback that it may 
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seem as the clinically relevant portion of the genome is currently 
quite small. Although still quite new, the technologies are already 
being compared; however, this may be premature given the rapid 
pace of development [29].

Many groups are taking advantage of this by adopting tar-
geted sequencing of specific regions of interest. There are multiple 
methods to target the genome, the simplest of which is PCR. 
Methods differ in the amount of target that can be captured, in 
the amount of DNA used and in the throughput, cost and time of 
a single assay. Choosing a target-enrichment strategy will depend 
on project-specific requirements and personal preferences. Many 
laboratories have been using targeted resequencing, an excellent 
example of which is the comparison of technologies and the use 
in a screening test for carriers of 448 severe childhood recessive 
illnesses [30]. The authors of this study also discussed the need 
for confirmatory testing and suggest that the high confidence 
achieved with 10× coverage made this unnecessary. These applica-
tions are developing rapidly and the authors discuss them further 
in the ‘Expert commentary’ of this review.

Clinical applications of aCGH & NGS
Screening
Screening at-risk populations for cancer-susceptibility genes is an 
evolving field. Germline mutations in the tumor-suppressor genes 
BRCA1 and BRCA2 are known to predispose breast and ovarian 
cancers. Less than 1% of the population carry BRCA mutations, 
however, lifetime risks of breast cancer are as high as 80% among 
affected women [31]. Although recent data have demonstrated that 
family history is not a reliable indicator of BRCA status, women 
with a strong family history of these cancers are offered genetic 
testing, and mutation carriers may be offered prophylactic oopho-
rectomy and bilateral mastectomy [32,101]. At present, the majority 
of BRCA testing is performed using the US company Myriad’s 
BRACAnalysis® technique, which uses a combination of PCR and 
traditional Sanger sequencing [102]. Recently, a number of labo-
ratories have developed NGS-based BRCA tests, which can con-
currently sequence multiple other-candidate genes with a faster 
turnaround time and reduced cost compared with BRACAnalysis 
[33]. Use of these tests is currently limited, however, by Myriad’s 

patenting of the BRCA1 and BRCA2 genes.

Diagnosis & prognostication
Microarray technology is increasingly being used to compare 
tumor and germline DNA from cancer patients, allowing detec-
tion of somatic lesions acquired by the tumor cells. A large num-
ber of studies have employed both aCGH and SNP arrays as 
global approaches to detect CNVs and LOH in a research setting. 
In a clinical context, these techniques are particularly applicable 
to the diagnosis of hematological malignancies where chromo-
somal aberrations are well described. For example, a recurrent 
area of difficulty in clinical practice is the accurate diagnosis 
of lymphoma subtypes with the current combination of histo-
logical, immunohistochemical and targeted molecular techniques. 
Chromosomal translocations, particularly those involving the 
immunoglobulin loci, are a hallmark of many types of B-cell 

lymphomas, and specific disease entities display characteristic 
genomic alterations by which they can be distinguished [34–36]. 
These observations led Takeuchi and colleagues to use aCGH 
to generate a computational differential diagnosis [36]. With this 
method, they correctly classified 88% of the diffuse large B-cell 
lymphomas (DLBCL) and mantle-cell lymphomas and 83% of 
the activated B-cell and germinal center B-cell subtypes in their 
cohort. These results demonstrate that CNVs detected by aCGH 
can be used for classifying lymphomas into biologically and clini-
cally distinct diseases or subtypes. With growing knowledge of 
disease-specific chromosomal rearrangements, it may be possible 
to apply aCGH techniques to routine diagnosis of lymphoma sub-
types, although this remains to be validated in more  substantial 
clinical studies.

Prognostic markers of disease benefit both patients and doc-
tors, enabling better-informed decisions regarding treatment. 
Despite previous attempts at subclassification, until recently, 
DLBCL remained a biologically heterogeneous tumor with no 
clear prognostic biomarkers [37]. Analysis of 40 patients with 
DLBCL showed that aCGH not only reliably detected CNVs, 
but in addition the investigators observed a different cytogenetic 
profile in those patients achieving complete versus partial remis-
sion. Such approaches have the potential of using high-resolution 
genome scanning to identify new regions associated with poor 
outcome, and could help with stratification of patients with 
aggressive lymphoma in the future [38]. Similarly, high-resolution 
aCGH has been successful in detecting CNVs that are exclusive 
to either chemoresistant or chemoresponsive DLBCL [39]. More 
recently, MYC gene rearrangements were shown to be of prognos-
tic significance in patients with DLBCL, and although currently 
detected by PCR-based and FISH techniques, would be reliably 
detected by aCGH methods [40]. Prognostication based on cyto-
genetic findings is common practice in many other hematological 
malignancies, including acute myeloid leukemia (AML), acute 
lymphoblastic leukemia (ALL) and chronic lymphocytic leuke-
mia (CLL). A recent study validated the use of a 250,000-SNP 
array for clinical use by demonstrating 98.5% concordance with 
a standard CLL FISH panel. SNP array karyotyping also detected 
areas of LOH not detected by the FISH panel, which would also 
have remained undetected with aCGH [41].

aCGH techniques have been applied in a range of other hema-
tological malignancies, albeit from a research/gene-discovery per-
spective. Targeted diseases include multiple myeloma, AML and 
myelodysplastic syndromes (MDS) [42–44]. In general, these results 
have revealed a number of more complex chromosomal defects 
than detectable with metaphase cytogenetics (MC). Of particu-
lar importance were microdeletions involving specific genes; for 
example, 4q involving TET2 in MDS. Analysis of 140 patients 
with AML using MC and SNP array demonstrated a clear advan-
tage of SNP array in detecting unbalanced lesions and areas of 
uniparental disomy. In addition, this enhanced detection led to 
improved predictive power even for known mutations such as the 
FLT3 internal tandem duplication [45]. Similar results have been 
reported for MDS [46]. In a cohort of 430 patients with MDS, 
combined MC/SNP array karyotyping has conclusively shown 
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a higher diagnostic yield of chromosomal defects (74 vs 44%; 
p < 0.0001), compared with cytogenetics alone, often through 
detection of novel lesions. The presence and number of new SNP 
array-detected lesions were in themselves independent predictors of 
overall and event-free survival [47]. This underscores the significant 
diagnostic and prognostic contributions of SNP array-detected 
defects in MDS and related diseases [48].

The evidence for clinical application of NGS techniques is also 
mounting and is highlighted in a dramatic case where standard 
MC failed to identify a PML–RARA fusion event in a patient 
with acute promyelocytic leukemia whose absence would have 
necessitated a more aggressive treatment regimen culminating in 
allogeneic bone marrow transplantation. With a high index of sus-
picion, the responsible clinicians arranged for whole-genome NGS 
and successfully identified a cryptic gene fusion within 7 weeks of 
biopsy. The patient was thus spared an allogeneic bone marrow 
transplant with its high attendant treatment-related mortality [49].

With regards to solid tumors, outcomes in cancers of unknown 
primary origin are most likely to benefit from NGS-based tech-
nologies. Cancers of unknown primary origin are diagnosed in 
cases when a metastatic lesion is found in a patient in whom a 
primary lesion cannot be identified despite appropriate investiga-
tions [50]. It is usually associated with a poor prognosis, in part due 
to the uncertainty of the diagnosis. At present, a number of gene 
expression-based arrays are being investigated in clinical trials and 
it is probable that NGS will play an increasing role in this field.

Treatment, response & relapse
The emergence of small-molecule inhibitors and antibodies 
against ‘druggable’ gene targets is revolutionizing cancer thera-
peutics. The success of these therapies depends on the genetic 
profile of the individual tumor being treated. Personalizing anti-
cancer therapy therefore relies upon identifying each patient’s 
cancer-specific driver mutations.

The significance of BRCA mutations, for example, is not limited 
to screening alone, as chemotherapy agents such as cisplatin and 
PARP inhibitors have demonstrated greater efficacy in BRCA-
deficient tumors [51]. The ALK inhibitor crizotinib is highly 
effective in advanced non-small-cell lung cancers that feature 
EML4–ALK fusion [52]. A growing number of such somatic cancer 
mutations are being identified. Of particular clinical significance 
currently are mutations in KRAS and EGFR genes within the 
context of advanced colorectal cancer and non-small-cell lung 
cancer (NSCLC), respectively. Colorectal cancer patients with 
mutant KRAS fail to derive benefit from anti-EGFR therapies 
(e.g., cetuximab) [53]. Conversely, NSCLC patients with somatic 
mutations in EGFR who receive the EGFR inhibitor, gefitinib, 
have far superior outcomes to patients receiving standard chemo-
therapy [6]. Although as yet there is no clear consensus on how 
best to identify EGFR and KRAS mutations, in the clinic a num-
ber of sequencing-based methods are being used [54,55]. Recently, 
targeted NGS of 24 NSCLC FFPE tissue specimens identified 
a KIF5B–RET gene fusion in one sample. The fusion gene was 
seen in 11 out of 561 additionally screened tumors. RET inhibi-
tion with multitargeted tyrosine kinase inhibitors represents a 

promising treatment in these patients. The study emphasizes that 
NGS can have significant clinical application, even using minimal 
tissue from FFPE tumor biopsies [56]. It is inevitable that with 
time, further such mutations will be identified and while currently 
single-agent targeted drug therapies are commonly used, future 
therapies will rely on targeted drug combinations with the aim 
of improving efficacy and reducing drug resistance, particularly 
as it is increasingly being recognized that many of the muta-
tions within an individual cancer type are also present to variable 
degrees in multiple other cancer types [57].

Although not part of routine clinical practice, there are tantaliz-
ing glimpses of how sequencing technology may be applied within 
the clinic. Researchers in Boston (MA, USA) have developed 
a multiplexed PCR-based assay (SNaPshot™), which identifies 
more than 50 mutations in a number of important NSCLC genes. 
Over 15 months, they used the SNaPshot assay to genotype 552 
NSCLCs as part of standard care. More than 50% of cases were 
positive for a driver mutation. In over 30 patients, a less common 
mutation was identified for which there was a plausible targeted 
therapy (e.g., BRAF and HER2). In one case, a patient presented 
with a contralateral lung lesion 2 years after curative surgery. The 
second lesion was genetically distinct from the previous primary, 
making the patient eligible for aggressive therapy. The authors 
concluded multiplexed genotyping to be a clinically feasible 
approach to support diagnostic and treatment decisions and to 
facilitate clinical trial enrollment [58].

Another pertinent example is BRAF in malignant melanoma. 
Metastatic melanoma has a devastating prognosis with median 
survival from diagnosis of 8–18 months. In 2002, a landmark 
paper identified mutations in the BRAF oncogene in 59% of 
melanoma cell lines [59]. The majority of mutations were reported 
in BRAF exon 15: T1796A leading to substitution of valine by 
glutamic acid (V600E). Mutations in BRAF cause constitutive 
activation of downstream signaling through the MAP kinase 
pathway. Consequently, drugs targeting BRAF were developed 
and the most promising of these in early-phase clinical trials was 
vemurafenib (PLX4032). These findings were confirmed in a rand-
omized Phase III trial where response rates in the vemurafenib arm 
were 48% compared with 5% in the standard chemotherapy arm. 
Despite high response rates, the duration of response to targeting 
BRAF in melanoma is disappointingly short-lived at a median of 
around 6.7 months, indicating acquired resistance [60]. For most 
targets, acquired resistance usually occurs due to secondary muta-
tions within the target [61]. However, in the case of BRAF sequenc-
ing, resistant tumors demonstrated no evidence of such mutations 
[62]. Wagle et al. subsequently used targeted resequencing of mela-
noma from an individual patient to identify a new mechanism 
of acquired resistance to vemurafenib [63]. Hybridization capture 
and resequencing of 138 cancer genes in the tumor samples taken 
before and after relapse revealed a new mutation in the MEK1 
kinase only present in the relapse sample. It is extremely unlikely 
that such novel mutations would have been discovered by tradi-
tional genotyping approaches. NGS may thus play a vital role, not 
only in planning patients’ therapy but also in understanding and 
ultimately bypassing mechanisms of drug resistance. A number 
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of other resistance mechanisms have now been identified, includ-
ing upregulation of N-RAS or PDGFR and methods to overcome 
these in the clinical setting are being examined [62]. Such studies 
are leading to a paradigm shift in the management of melanoma 
specifically, and in cancer trial design as a whole.

Radiotherapy (RT) has an important role in anticancer therapy 
and also stands to benefit from advances in gene technology. RT 
is involved in the management of 40% of cancer patients cured of 
their disease. However, toxicity within healthy tissue remains one 
of its main limitations. In 2009, a Radiogenomics Consortium 
was established within the UK with the main aim of identifying 
genetic variants, primarily SNPs, associated with the develop-
ment of normal tissue toxicities resulting from radiation therapy 
[64]. Radiogenomics is a field in its infancy, but already the idea 
of tailoring RT doses based on radiosensitivity of the primary 
tumor and adjacent healthy tissue is beckoning. The first GWAS 
in a large group of RT patients has demonstrated no associations 
with late toxicity for any of the candidate SNPs, emphasizing that 
further research in this area is much needed [65].

Although routine analysis of cancer genomes using NGS is an 
aim for the short to medium term, more imminently clinical trials 
are likely to incorporate high-throughput sequencing to generate 
comprehensive, individual mutational landscapes. A recent pilot 
study explored the practical challenges of applying high-through-
put sequencing in such a setting. The group enrolled patients with 
advanced or refractory cancer and performed whole-genome and 
RNA/transcriptome sequencing of the tumor, as well as targeted 
whole-exome sequencing of the tumor and normal DNA. They 
identified potentially informative mutations, including structural 

rearrangements, CNVs, point mutations and gene-expression 
alterations in a clinically relevant time frame of 4 weeks. A multi-
disciplinary Sequencing Tumor Board was then commissioned to 
provide clinical interpretation of the sequencing results obtained, 
and two of the patients were subsequently enrolled into clini-
cal study protocols based on their cancer-genomic profile within 
24 days of biopsy [66]. This is an early glimpse of the personalized 
medicine approach the authors will be able to adopt for cancer 
patients in the future. It is likely, however, that for the foresee-
able future a combination of traditional techniques, including 
histology, immunohistochemistry, MC and FISH, will continue 
to be applied with increasing  contributions from high-throughput 
technologies (FIGURE 2).

Biomarkers
The potential to develop personalized genomic biomarkers using 
NGS is particularly promising. These are patient-specific muta-
tions that can be analyzed by NGS, PCR, quantitative PCR or 
digital PCR, and can be used in monitoring patient response 
to therapy. The personalized analysis of the rearranged ends 
method uses patient-specific rearrangements from tumor samples 
[67]. PCR assays can then be developed to detect rearrangements 
in normal blood, differentiating circulating tumor DNA from 
normal-genome equivalents. Researchers have developed these 
biomarkers in cancers including colorectal and breast, enabling 
mutant DNA molecules to be detected when present at a level of 
0.001%. Limitations include the fact that rearrangements may 
be lost as a cancer evolves, and the clinical significance of such 
low levels of tumor DNA may be difficult to define. However, 

Prognosis
Patient empowerment
Appropriate therapeutic 
decisions

Personalized therapy
Targeted small 
molecules
Disease response
Drug toxicity

Disease monitoring
Depth of remission
Personalized 
biomarkers
Relapse prediction

Relapse

Diagnosis
Clinically relevant 
subtypes
Cancer of unknown 
origin
Detection of subclones

Screening
Germline mutations
High-risk populations
Neonatal screening

Figure 2. Role of high-throughput technologies in a patient’s cancer journey.
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a number of applications include accurately identifying surgical 
margins free of tumor, and assessing response to anticancer treat-
ments. This is an area of clinical research where we are likely to 
see significant developments over the next 3 years.

Expert commentary
aCGH has been adopted by many clinical genetics laboratories 
as a first-line test for congenital abnormalities due to its auto-
matability and potential to transform cancer genetics due to its 
detection-resolution for CNVs, deletions, amplifications, dupli-
cations and aneuploidies [68–70]. A range of aCGH platforms are 
commercially available and the individual clinical laboratory must 
match its requirements. Factors to be considered when choosing 
a platform include its resolution and sensitivity in addition to its 
cost and logistical aspects such as turnaround time and hands-on 
time. TABLE 2 summarizes some of these data for a range of available 
platforms. SNP-CGH is additionally useful for determining copy 
number-neutral rearrangements through LOH analysis, which can 
be used to infer tumor ploidy and stromal contamination using 
allele-specific copy-number analysis of tumors [71]. These factors 
mean that SNP arrays are a promising diagnostic, albeit currently 
more expensive, modality for clinical CGH applications in cancer. 
However, it must be appreciated that SNPs are not homogene-
ously distributed through the genome and the depth of coverage is 
thus not uniform. In addition, DNA derived from FFPE material 
is often unsuitable for this approach without significant techni-
cal and informatics adjustments. Array-based or SNP-CGH are 
also unable to detect balanced chromosomal translocations or 
inversions (for which FISH remains an important technique) 
and single basepair mutations and small insertions/deletions may 
also be missed [17].

Recent guidelines for the design and performance of clinical 
copy-number arrays have been released by the American College 
of Medical Genetics [72]. These state that arrays should use probe 
spacing that is compatible with detecting gains and losses of 
greater than 400 kb and SNP probes should be included where 
possible to provide supportive information for LOH applications. 
Manufacturers should also provide software to detect 99% of 
CNVs greater than 400 kb with a false-positive rate of less than 
1%. The UK National Genetics Reference Laboratories recently 
compared five microarray platforms for identification of copy 
number aberrations [103]. They ran the same 12 cytogenetically 
abnormal samples and observed a core set of 15 abnormalities 
detected across the three arrays with highest probe density. This 
underscores the ACMG’s findings that increased probe density 
is of fundamental importance. The rapid development of both 
aCGH and SNP-CGH technologies has meant that guidelines 
and comparisons are often made on a set of defined products. 
Comparisons have been made using clinical genetics samples and 
FFPE material [73,74]. Studies must be carried out very carefully 
if meaningful comparisons are to be made [75].

With the advent of highly accurate NGS assays with short run 
times and rapidly falling costs that are able to detect the full 
complement of genetic alterations found in cancer, there is no 
doubt that the longer term future of cancer genomics lies with 

high-throughput sequencing technologies. A range of competing 
platforms are available, with Illumina technology currently prov-
ing the most popular due to its simplicity of sample preparation 
and ease of method development. Illumina combines short pieces 
of DNA with Y-shaped adapter oligos to create PCR amplifiable 
fragment libraries. Almost any DNA source can be used as a tem-
plate including cDNA, meaning the number of available methods 
is very large [104]. In the last 5 years, the Illumina technology has 
improved from 1 Gb to over 1 Tb of data per run, and more recent 
technologies such as Ion Torrent have huge potential and may 
develop along a similar trajectory. The Illumina SBS chemistry 
is still improving, with almost ‘Sanger length’ reads of 700 bp 
being demonstrated in early 2012. When choosing a platform 
for sequencing cancer genomes, it is important to be aware of the 
depth of sequencing and physical coverage it offers, and to appre-
ciate that NGS techniques can be affected by sequencing bias; 
for example, with poor coverage in areas of high GC content. To 
detect alterations reliably in a human genome sample of 3 billion 
bases requires at least 30-fold coverage on average (i.e., genera-
tion of 90 billion bases of sequence data per sample). For cancer 
samples, however, the depth of coverage needs to be increased to 
allow for increased ploidy, detection of cancer subclones and to 
account for the varying degrees of contamination with normal 
cells. This naturally carries a more substantial data load.

An alternative approach to simplify the use of NGS in a clinical 
context is to sequence only the exome or other specific regions of 
interest (ROI). An exome, or specific ROI, can be captured from a 
whole-genome sequencing library by hybridization to biotinylated 
‘bait’ oligonucleotides. Methods were originally developed for 
solid-surface array-based capture but these have almost univer-
sally been replaced by in-solution solution-based capture [67,76–78]. 
Elution of only those library molecules that are bound to capture 
oligonucleotides creates a library with reduced complexity com-
pared with the original whole genome library preparation. Several 
groups have compared the two different methods, and Mamanova 
et al. also compared these against PCR and molecular inversion 
probes [79]. New methods are being rapidly developed for tar-
geted resequencing assays. For most clinical scenarios, the analysis 
of specific loci will prove faster, more cost-effective and require 
smaller amounts of nucleic acids for analysis and be significantly 
easier to interpret than whole-genome or exome analysis. There 
are increasing numbers of clinical molecular genetics laboratories 
adopting NGS for routine testing that are using PCR amplifica-
tion as the method of choice for ROI selection [80]. PCR is sensi-
tive and specific, allowing detection of rare alleles in complex and 
heterogenous samples, even in circulating nucleic acid extracted 
from plasma [81]. The development of disease-specific NGS ‘pan-
els’ may prove controversial, with differing opinions on what to 
include in any given panel. However, since many genes may play 
an as yet undiscovered role in a particular disease, panels should 
probably be as inclusive as technology allows while retaining the 
low-cost, short turn around time and ease of analysis amplicons 
bring. Smaller panels are likely to have an impact where larger 
numbers of samples are routinely available or in the context of 
screening assays. Very recently, Illumina released their TruSight™ 
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cancer panel developed in conjunction with the Institute of 
Cancer Research and the Royal Marsden Hospital [105].

The year 2012 has seen the rapid uptake of lower yielding but 
faster ‘personal’ NGS sequencer instruments. The MiSeq from 
Illumina and PGM from Ion Torrent both allow sample prepara-
tion, sequencing and data analysis to be completed in under 24 h, 
opening the possibility for real-time clinical sequencing. Although 
these instruments are currently insufficient to provide whole-
genome sequencing they are ideally suited to focused evaluation 
of specific cancer genes clinically useful for diagnosis, prognosis 
or therapy. New NGS technologies are under development, the 
most promising in the authors’ opinion is the strand-sequencing 
approach being developed by Oxford Nanopore Technologies 
(Oxford, UK). They have coupled DNA polymerase to a nano-
pore, allowing label- and amplification-free sequencing. Although 
this is still in development, read lengths of up to 100,000 bp have 
been described and the possibility of a 20-min human genome 
sequence has been suggested although at an unknown cost. With 
the advent of such relatively inexpensive personal genome sequenc-
ers running highly accurate simple assays, there is no doubt that 
NGS technologies are poised ready to make their presence felt in 
clinical practice.

Five-year view
Over the last few years, the authors have witnessed a groundbreak-
ing technological revolution, which has given us unprecedented 
access to the human germline and somatic genome. As with most 
branches of biology, cancer research has benefited greatly from 
such progress. As a result, researchers throughout the world have 
embarked on a systematic characterization of cancer genomes and 
are rapidly identifying the pathogenetic mutations underlying 
most forms of cancer. Over the next 5 years, the authors will have 
cataloged the complement of mutations for most forms of cancer, 
established their patterns of coexistence, and in many cases deter-
mined their clinical relevance. The International Cancer Genome 
Consortium is currently undertaking whole-genome analysis of 
50 cancer subtypes that are of significant importance around 
the globe. Overall, the project aims to study over 25,000 cancer 
genomes at a genomic, epigenomic and transcriptomic level. The 
vast amount of information being generated by this international 
collaborative effort is made freely available through the Catalogue 
of Somatic Mutations in Cancer [82,106]. The next step in develop-
ing greater confidence with the use of NGS technology in clini-
cal practice will arise through integration of sequencing data in 
sophisticated clinical trials that take into account the subtleties 
of phenotypic subdivisions based on individual patients’ cancer-
genomic features. This will, in time, lead to the development of 
a clinical grade database of clinically relevant cancer-associated 
mutations that influence significant therapeutic decisions, leading 
to  improvements in patient care.

Sequence-based technologies are likely to dominate future cancer 
diagnostics, as they are capable of both incorporating and replac-
ing current methodologies such as karyotyping and CGH, and 
more accurately predict phenotypic characteristics such as anti-
gen expression, which are currently detected by flow cytometry 

or immunohistochemistry. As sequencing technology becomes 
increasingly affordable, it will find application in all branches of 
pathology, including hematology, histopathology, microbiology and 
human genetics. Another advantage of sequence-based techniques 
is their unprecedented sensitivity, allowing detection of minimal 
residual disease. A recently developed protocol for single cancer-
cell analysis, for example, may prove useful to study blood-borne 
or disseminated cancer cells in bone marrow and other organs that 
may persist after resection of the primary tumor. Molecular analysis 
of these cells may reveal unique information to tailor therapies and 
prevent seeding of metastases and subsequent relapse. Other groups 
are developing plasma-based tumor-DNA analysis methods. These 
could be used not only for making an initial diagnosis, but also 
as a form of minimal disease monitoring and personalized tumor 
markers, which may eventually be more robust and sensitive mark-
ers of disease progression than radiological detection of relapse. 
Such examples of intermediate scale of sequencing are most likely 
to have immediate impact on clinical genomics [67,81].

A number of challenges remain, however, before NGS technol-
ogy, can play a central role in clinical cancer care. The authors 
growing understanding of tumor biology itself presents the great-
est challenge. A cancer is an evolving unit of related malignant 
cells with significant tumor heterogeneity. Evaluation of biopsy 
material thus provides only a localized snapshot of the genetic 
features at a single point in a tumor’s evolution. Even primary 
and metastatic tumors from the same patient may exhibit marked 
differences [83]. This has significant implications for both diagnos-
tics and therapeutics [84]. The authors’ appreciation of the role of 
epigenetic dysregulation in tumorigenesis is also deepening, and 
these changes would not currently be detected by either aCGH 
or NGS technologies [85]. Although high-throughput assays to 
detect epigenetic changes are unlikely to be incorporated into rou-
tine clinical practice in the near future, a recent study looking at 
integrated DNA copy number and methylation profiling of lym-
phoid neoplasms using a single Illumina Infinium Methylation 
assay demonstrated results that were comparable with using an 
Affymetrix 250K SNP array [86].

Although the costs of sequencing and data storage and process-
ing have reduced significantly in recent years, and the speed and 
breadth of genome sequencing is increasing, the widespread use 
of such technology in routine clinical practice outside first-world 
teaching institutes may remain prohibitively expensive for a few 
years yet [107]. Targeted or exome-only sequencing approaches may 
be adopted more readily in clinical practice and prove more cost 
effective in the short to medium term. A recent study that exome-
sequenced genomic alterations against eight cancer cell lines found 
95% concordance with an Affymetrix SNP array and detected 
19 out of 21 of the mutations reported in the Sanger COSMIC 
database for these lines, highlighting the feasibility of such an 
approach [87]. With current systems, the period of time required to 
generate sequencing data and to analyze, validate and interpret the 
results to produce a clinically actionable report may be clinically 
inappropriate for symptomatic patients requiring urgent treat-
ment. Real-time NGS techniques such as the Oxford Nanopore 
Technology – although insufficient to provide whole-genome 
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sequencing currently – may be suitable for more focused evalua-
tion of specific cancer genes clinically useful for diagnosis, prog-
nosis or therapy. With the advent of such highly accurate, simple 
assays with short run times that can run on relatively small inex-
pensive instruments, there is no doubt that the technology itself 
has outpaced the methods of analysis and interpretation that are 
certainly the most significant current challenges to widespread 
use of NGS in clinical practice [28]. The computational resources 
required for assembly, annotation and analysis followed by clini-
cally relevant interpretation are becoming the main bottlenecks. 
Novel algorithms for assembly and analysis will be vital, however, 
to prevent the volume of sequencing data overwhelming available 
resources. The challenge of interpreting genome-wide data is a 
challenge that cannot be understated, with driver and passenger 
mutations difficult to distinguish in a disordered, aberrant can-
cer genome. With the advent of benchtop sequencers that could 
be used routinely in hospital laboratories, specialized sequencing 
centers may begin to serve principally as bioinformatics resources 
that lend computational and interpretive resources and exper-
tise to clinicians. Cancer genomics is not the only area where we 
can expect to see NGS advances being deployed in. Other fields 
can make use of the technologies and redefine clinical practice. 
The recent use of NGS in enhancing the detection of MRSA 
transmission in a hospital special care baby unit is an exciting 
 demonstration of what is possible in other healthcare settings [88].

These developments will have profound implications on the 
future direction of research into the molecular pathogenesis and 
therapy of different cancers. Additionally, they have direct impli-
cations for the clinical management of individual patients and for 
the targeting of existing therapies. The format of the interaction 
between clinicians and outputs of diagnostic genomic data is hard 
to predict, but it is likely to involve a significant informatics com-
ponent. What is clear is that national and international databases 
will be established for each cancer type, linking somatic muta-
tions to disease phenotypes, drug responses, patient outcomes and 
probably a number of other variables. The genomic information 
derived from individual patients will be compared with one or 

more curated databases, and this will generate not only diagnostic 
data but also prognostic information; advice on the most appro-
priate therapy; and, potentially, information regarding tumor 
etiology, drug toxicity and other clinically pertinent parameters. 
The extent of sequencing (e.g., targeted set of genes vs exome vs 
genome) will determine the breadth of the advice that can be 
provided. A sustained collaboration between research and clini-
cal laboratories, and frontline and healthcare practitioners, will 
be vital to allow this to occur [89]. It will be essential to adopt a 
multi disciplinary approach toward cancer-genome analyses with 
oncologists, pathologists, geneticists, biostatisticians, bioethicists 
and policy-makers working together to meet the challenges and 
opportunities afforded by these new technologies and to allow 
rapid translation of the new biomarkers and therapeutic targets 
into routine clinical practice.

Finally, successful integration of these emerging technologies 
into clinical practice will necessitate greater public and patient 
understanding of their benefits and implications. These tech-
nologies pose a number of ethical issues that must be taken into 
consideration: from detection of genetic variants of unknown 
significance to counseling for clinically significant incidental find-
ings, as well as data management and confidentiality issues. These 
factors will thus have specific implications for the traditional doc-
tor–patient relationship and the way clinical consultations are 
conducted, requiring appropriate training of medical and nursing 
staff to allow the successful integration of these technologies into 
routine clinical practice, and leading to an acceleration of the 
momentum toward personalized cancer medicine and tangible 
benefits for patients [90,91].
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Key issues

A range of clinically significant alterations occur in cancer genomes ranging from single point mutations to larger areas of copy-number 
variation or loss of heterozygosity. Reliable detection of such mutations within individual cancer genomes is necessary if we are to offer 
truly personalized cancer care to our patients.

limited way. High-throughput technologies such as array-comparative genomic hybridization and next-generation sequencing provide 
unprecedented levels of information regarding individual tumors and can be exploited to characterize the tumor more fully.
These technologies cannot only aid initial diagnosis, but also provide clinically valuable information about chemosensitivity and 
resistance, informing therapeutic decisions. In addition, they may provide information about prognosis and disease monitoring with 
personalized biomarkers.
Developments in a range of competing next-generation sequencing platforms has lead to a dramatic reduction in cost, and increase 
in breadth and accuracy of sequencing. Although many technologies can be integrated into clinical services, it is likely that the future 
of cancer genomics will be underpinned by high-throughput sequencing technologies. Alternative technologies such as genome 
expression profiling and array-comparative genomic hybridization may, however, play an important role until the time when sequencing 
technology is readily available and interpretable.
A range of biological, technical and socioethical challenges need to be addressed as sequencing technologies become fully integrated 
into clinical practice.
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At least 5% of individuals with hypertension have adrenal 
aldosterone-producing adenomas (APAs). Gain-of-function 
mutations in KCNJ5 and apparent loss-of-function mutations  
in ATP1A1 and ATP2A3 were reported to occur in APAs1,2.  
We find that KCNJ5 mutations are common in APAs resembling 
cortisol-secreting cells of the adrenal zona fasciculata but are 
absent in a subset of APAs resembling the aldosterone-secreting 
cells of the adrenal zona glomerulosa3. We performed exome 
sequencing of ten zona glomerulosa–like APAs and identified 
nine with somatic mutations in either ATP1A1, encoding the 
Na+/K+ ATPase a1 subunit, or CACNA1D, encoding Cav1.3. 
The ATP1A1 mutations all caused inward leak currents under 
physiological conditions, and the CACNA1D mutations 
induced a shift of voltage-dependent gating to more negative 
voltages, suppressed inactivation or increased currents.  
Many APAs with these mutations were <1 cm in diameter 
and had been overlooked on conventional adrenal imaging. 
Recognition of the distinct genotype and phenotype for  
this subset of APAs could facilitate diagnosis.

APAs are the most common curable cause of hypertension4,5 and are 
often due to specific somatic mutations1,2. Gain-of-function muta-
tions in the potassium channel KCNJ5 were found in approximately 
40% of APAs1,3,6,7, and mutations in ATP1A1 and ATP2A3, two P-type 
ATPases regulating Na+, K+ and Ca2+ transport, were recently discov-
ered in a further 7% of APAs2. Here we report mutations in two genes 
regulating Na+, K+ and Ca2+ transport (ATP1A1 and CACNA1D) 
and highlight the existence of distinct APA subtypes with different  

mutation profiles. Functional studies of these mutations provide 
explanations for their dominant effects.

We looked for somatic mutations in APAs with a zona glomerulosa– 
like phenotype. The zona glomerulosa is the principal site of aldoster-
one secretion and cell turnover in the adrenal gland, but, paradoxically, 
classical ‘Conn’s tumors’ tend to resemble cells of the cortisol-secreting 
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Figure 1 Somatic mutations in ATP1A1 and CACNA1D in APAs. (a) Schematic 
of Na+/K+ ATPase subunit 1 and Cav1.3. Colored circles indicate the 
positions where somatic alterations or deletions have been described in 
APAs. (b) An overview of the E2.Pi Na+/K+ ATPase showing the tripartite 
complex of  (gray),  (purple) and  (green) subunits with the extracellular 
space on top and the membrane represented by two horizontal gray lines. 
The two occluded K+ molecules (red) and the substitutions and deletions 
identified in APAs (colored as in a) are indicated. The image was generated 
with PyMOL using Protein Data Bank (PDB) 2ZXE.
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zona fasciculata8–10. We identified ten zona glomerulosa–like APAs 
(>50% compact zona glomerulosa–like cells and low CYP17A1 mRNA 
expression)3 for exome sequencing (Supplementary Table 1a). Nine 
of the ten zona glomerulosa–like APAs harbored somatic mutations in 
the genes encoding the 1 subunit of the Na+/K+ ATPase (ATP1A1) or 
an L-type Ca2+ channel (CACNA1D). Two had an ATP1A1 mutation  

encoding p.Leu104Arg, one had a deletion of codons 100–104 
(p.del100_104), as also independently identified2, and we addi-
tionally found one mutation resulting in a substitution of residues 
960–963 by a serine residue (p.GluGluThrAla963Ser) in ATP1A1. 
In CACNA1D, we identified four different substitutions affecting 
conserved residues (Fig. 1, Table 1, Supplementary Figs. 1 and 2, 
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Figure 2 Differences between ATP1A1- or CACNA1D-mutant and KCNJ5-mutant  
APAs. (a) Clinical and immunohistochemical presentation of APAs in the Cambridge  
cohort. KCNJ5-mutant APAs were diagnosed by CT scan, and lateralization of  
aldosterone secretion was confirmed through adrenal vein sampling (AVS). Several  
CACNA1D-mutant APAs were reported as ‘normal’ by CT scan but lateralized  
on AVS. Several ATP1A1- (and CACNA1D-) mutant APAs were diagnosed by  
[11C]-metomidate PET-CT scan28, as both CT scan and AVS did not confirm lateralization,  
in some cases owing to coexisting cortisol-secreting adenomas, as detected by CYP11B1  
expression. Adrenal glands containing APAs were stained for enzymes synthesizing cortisol  
(CYP11B1) and aldosterone (CYP11B2) and for the protein encoded by the mutated gene. ATP1A1- and CACNA1D-mutant APAs have low CYP11B1 
expression, consistent with a zona glomerulosa–like phenotype (mRNA expression shown in Supplementary Fig. 4). Scans are shown of the whole 
adrenal cross-section. Immunohistochemistry is representative of three adrenal glands. Scale bars, 5 mm. (b) Heatmap of genes differentially expressed 
in eight KCNJ5- compared to five ATP1A1- or CACNA1D-mutant APAs. Left, 43 genes had a false discovery rate (FDR) of <0.5% and showed >2-fold 
difference in expression. Right, for proof of concept that the genes upregulated in zona glomerulosa–like APAs may indicate a zona glomerulosa origin, 
NPNT expression was validated by quantitative PCR (qPCR) in a larger cohort and in zona fasciculata (ZF) and zona glomerulosa (ZG) samples. Error 
bars, upper limits. Statistical analysis was by Student’s unpaired t test. NPNT was selected for having the second highest fold difference in expression 
and because a validated antiserum for immunohistochemistry was available. Immunohistochemistry for NPNT was performed in normal adrenal 
tissue adjacent to a pheochromocytoma. Scale bar, 100 m. Unsupervised hierarchical clustering of 1,475 genes correlating by 0.6 with CYP11B2 
expression separated the 2 sets of genotypes (shown in Supplementary Fig. 4).

Table 1 Somatic mutations in ten zona glomerulosa–like APAs

Sample ID Sex
APA diameter 

(mm)
Number of 
adenomas

Compact  
cells (%)

Gene expression profile  
(fold change of APA/AAG) Somatic alteration

Mutation 
detection 
methodCYP11B2 CYP11B1 CYP17A1 ATP1A1 CACNA1D

 1 M 18 1 80 949 0.45 0.04 p.Leu104Arg 1
 2 M 16 4 80 1,233 0.11 0.09 p.Leu104Arg 1
 3 M 15 2 60 3,846 0.15 0.07 p.del100_104 2
 4 M 13 2 100 3,898 0.21 0.13 p.GluGluThrAla963Ser 2
 5 M 9 1 20 54 0.03 0.06 p.Val259Asp 2
 6 F 14 1 60 140 0.54 0.53 p.Gly403Arg 2
 7 M 5 2 50 19 1.37 0.10 p.Pro1336Arg 2
 8 M 9 1 50 697 0.29 0.53 p.Pro1336Arg 3
 9 M 15 3 60 8,990 0.22 0.05 p.Ile750Met 1
10 F 14 2 80 26,434 0.05 0.03

Genes in which more than two APAs were found to harbor a newly identified somatic mutation are shown. Mutation detection methods included the following: 1, pairwise  
comparison analysis of exome sequencing data; 2, individual analysis of samples sent for exome sequencing; and 3, genotyping of known mutations in the ATP1A1 and  
CACNA1D genes through targeted sequencing. M, male; F, female; APA, aldosterone-producing adenoma; AAG, adjacent adrenal gland.
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and Supplementary Table 1b,c). The tenth zona glomerulosa–like  
APA had a CTNNB1 substitution mutation encoding p.Ser33Cys. 
None of the ten zona glomerulosa–like APAs had KCNJ5 mutations, 
and none of the ATP1A1 or CACNA1D somatic mutations were  
found in 100 healthy, normotensive individuals or in 8,000 publically 
available exomes.

To confirm that APAs are associated with ATP1A1 and CACNA1D 
somatic mutations, we screened our remaining Cambridge cohort 
and two independently ascertained cohorts, a Dutch and a Czech 
cohort (where visible nodules on adrenal imaging were not a pre-
requisite for inclusion). We genotyped all three cohorts for the five 
substitution mutations in ATP1A1 and CACNA1D and identified 
deletions and additional substitutions through microfluidic sequenc-
ing of ATP1A1 and CACNA1D exons. We found the ATP1A1 muta-
tion encoding p.Leu104Arg in 3 of 53 APAs, 4 of 39 adenomas and 
1 of 91 nodular lesions (1/50 subjects) in our remaining Cambridge, 
Czech and Dutch cohorts, respectively. No further deletion mutations  
(of ATP1A1) were found in either the Dutch or Czech cohort. We also 
found three of the CACNA1D mutations in these cohorts, together 
with three previously undescribed mutations of conserved residues, 
one of which occurred twice (7/142 subjects) (Supplementary Figs. 1  
and 2 and Supplementary Table 2).

The phenotype of APAs with the new mutations was compared with 
that of KCNJ5-mutant APAs. Individuals with the newly discovered 
mutations were mainly older males; the APAs were smaller (some 0.5 cm  
in diameter) with more compact, zona glomerulosa–like cells. In the 
Cambridge cohort, clinical presentation, immunohistochemistry for 
the gene products, the transcriptome and the presence of spironolac-
tone bodies differed between genotypes (Fig. 2 and Supplementary 
Figs. 3–6). Among the genes upregulated in zona glomerulosa–like 
APAs with ATP1A1 or CACNA1D mutations, several also showed 
higher expression in normal zona glomerulosa than in zona fascicu-
lata3 (Fig. 2 and Supplementary Fig. 4).

We tested the functional effects of the ATP1A1 mutations by 
expression of mutant constructs in Xenopus laevis oocytes (Fig. 3). 
The Leu104Arg, del100_104 and Val332Gly2 mutants showed no 
K+-stimulated pumping, but, at physiological membrane potentials,  
they all caused a marked ouabain-sensitive and voltage-dependent 
inward current that was partly inhibited by K+ (Fig. 3a,c). Although 

the GluGluThrAla963Ser mutant did respond to K+ with forward  
pumping, it also caused a ouabain-sensitive inward current (Fig. 3a,b), 
and, under physiologically relevant conditions (−80 mV and 3 mM 
extracellular K+), the net contribution of the GluGluThrAla963Ser 
mutant was an inward current (Fig. 3c).

To determine which ions carry the currents, we varied the extra-
cellular pH and exchanged Na+ for N-methyl-d-glucamine (NMDG) 
for the Leu104Arg and del100_104 mutants. For the Leu104Arg 
mutant, a change in pH of 1 changed the reversal potential by about 
20 mV, whereas removal of extracellular Na+ had little effect on the 
reversal potential, suggesting that protons are the main carrier of the 
current. In contrast, the del100_104 mutant responded only a little 
to pH changes, whereas Na+ removal shifted the reversal potential by 
about 50 mV, suggesting that Na+ is the main carrier of current for 
the del100_104 mutant (Fig. 4a,b). Because both the Leu104Arg and 
del100_104 mutants are linked to zona glomerulosa–like APAs, it is 
likely that pathology is due to a common downstream effect of the 
Na+/K+ ATPase becoming permeable to either Na+ or protons.

Na+/K+ ATPases and the related Ca2+ ATPases have a highly con-
served leucine in the middle of transmembrane helix 1 (M1) at the 
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Figure 3 Gain-of-function alterations in the Na+/K+ ATPase cause inward 
current under physiological conditions. (a) Examples of the raw currents 
measured in individual oocytes expressing the human Na+/K+ ATPase 
with 1, either wild type or with one of the four alterations identified. 
Representative of 6–22 measurements. In wild-type pumps, extracellular 
K+ activates forward pumping, with maximal current generated at positive 
membrane potentials, and that value is usually used for normalization.  
In the absence of extracellular K+, the difference between currents in Na+ 
with and without ouabain is small. In contrast, the four mutants identified 
in APAs have distinct inward, ouabain-sensitive currents in Na+. To pool 
measurements from different oocytes, normalization of the mutant data 
therefore has to be carried out fundamentally differently. We used the 
inward leak in Na+, namely subtracting out the ouabain-sensitive current 
measured in K+-free buffer at −80 mV. (b) Enlarged view of the current 
curves showing that extracellular K+ activates an outward current with 
GluGluThrAla963Ser but not with Leu104Arg mutant channel. For the 
Leu104Arg mutant, extracellular K+ is a competitive, non-conducting 
inhibitor, suggesting that the leaking pumps are in a conformation open to 
the outside, where they are able to bind K+ (which competes with leaking) 
but unable to occlude K+ and therefore unable to pump. (c) Extracellular 
K+ inhibits the leak current in a dose-dependent manner. Leu104Arg 
mutant: error bars, s.e.m.; n = 3–7 oocytes; average normalization  
value = 452 nA. GluGluThrAla963Ser mutant: error bars, s.e.m.; n = 3–8 
oocytes; average normalization value = 94 nA.
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position corresponding to Leu104 in Na+/K+ ATPase subunit 1. The 
crystal structure of the Na+/K+ ATPase shows that Leu104 is only  
4 Å from a key ion-binding residue in M4, Glu334, at the so-called 
site II that is important for both Na+ and K+ binding (Fig. 1b)11. For 
the closely related Ca2+ ATPase SERCA, a recent structure shows 
how Ca2+ entry (corresponding to Na+ entry in the Na+/K+ ATPase) 
depends on a 12-Å sliding of M1 relative to M4 within the membrane, 
creating an opening toward site II (Fig. 4c)12,13. The p.Leu104Arg 
and p.del100_104 alterations as well as the p.Val332Gly substitution2 
are all expected to affect the sliding of M1 and the structural context 
of Glu334 (Figs. 1b and 4c). In contrast, the p.GluGluThrAla963Ser 
substitution is on the other side of the transmembrane domain 
and includes Glu961, a glutamate of debated importance for the  
Na+-specific site III (Fig. 1b)14,15, and the GluGluThrAla963Ser 
mutant responds differently to K+, so its leaking mechanism may 
differ from those identified for the other mutants. Unlike a previ-
ously described inwardly rectifying proton leak in wild-type sodium 
pumps15–17, the strong leaks created by the Na+/K+ ATPase 1 
mutants identified here are present at physiological potentials and 
concentrations of Na+ and K+ (Fig. 4).

No major germline mutation of ATP1A1 has been described, sug-
gesting that loss of function would be either incompatible with life2 
or harmless. From our finding that all ATP1A1 mutations identified 
in APAs cause inward leak currents, we infer that their heterozygous 
loss of pumping activity is not sufficiently deleterious to cause APAs. 
Notably, concentrations of ouabain that inhibit substantially more 
than half of the pump activity either inhibit or cause a transient 
increase in aldosterone secretion18–21. Increased aldosterone synthesis 
and secretion by human adrenocortical (H295R) cells transfected with 

vector encoding ouabain-resistant Leu104Arg ATP1A1 (compared to 
vector encoding wild-type protein or empty vector) was unaffected 
by blockade of endogenous Na+/K+ ATPases (Fig. 4d). This finding 
seems to implicate gain of function rather than haploinsufficiency; 
however, both consequences of these mutations could be important, 
and further experiments with gene knockdown will be of interest.

Six of the seven newly discovered somatic mutations of CACNA1D 
encoding Cav1.3 affect conserved sites within functional domains 
known to form the channel activation gate (p.Gly403Arg, p.Ile750Met 
and p.Phe747Leu), the voltage sensor (p.Arg990His) and the cyto-
plasmic S4-S5 linker coupling the voltage-sensing domain to the 
pore (p.Pro1336Arg and p.Val259Asp) (Fig. 1b and Supplementary 
Fig. 2). Disease-related mutations at positions corresponding to 
p.Gly403Arg and p.Ile750Met in closely related 1 subunits (Fig. 1b) 
are known to affect channel function by shifting voltage dependence 
to more negative potentials and/or by slowing voltage-dependent 
inactivation22–24. Expression of the initial four Cav1.3 mutants in a 
human embryonic kidney cell line (tsA-201), together with acces-
sory 3 (unless otherwise stated) and 2 1 subunits indeed resulted 
in gating changes suggestive of a gain-of-function phenotype. The 
Val259Asp and Ile750Met mutants shifted voltage-dependent activa-
tion and steady-state inactivation of Cav1.3-mediated inward Ca2+ 
currents (ICa) by 15 mV to more negative voltages, independent of 
the concentration of charge carrier (15 or 2 mM extracellular Ca2+)  
(Fig. 5a,b and Supplementary Table 3). The Val259Asp, Ile750Met 
and Pro1336Arg substitution mutants also slowed the biexponential 
ICa inactivation time course during prolonged (5-s) depolarizations 
(Fig. 5c and Supplementary Table 4). They also increased the ratio 
of tail current amplitude (Itail) to integrated ON gating charge (QON, 
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Figure 4 Leu104Arg and del100_104 ATP1A1  
mutants have different ion selectivities. (a) Effects  
of extracellular H+ and Na+ concentrations. For the  
Leu104Arg mutant, acidic pH increases the leaking  
current, and absence of Na+ decreases it. Error  
bars, s.e.m.; n = 3–4 oocytes. Average normalization  
value = 393 nA. Average reversal potentials  
(  s.d.): pH 6.4, −42  10 mV; pH 7.4, −23  5 mV;  
pH 8.4, 2.8  4 mV; without Na+, pH 7.4, −30  4 mV.  
For the del100_104 mutant, pH has little influence, but absence of Na+  
reduces the leak and its reversal potential. Error bars, s.e.m.; n = 3–4 oocytes. Average  
normalization value = 649 nA. Average reversal potentials (  s.d.): pH 6.4, −14  4 mV;  
pH 7.4, −12  5 mV; pH 8.4, −7  3 mV; without Na+, pH 7.4, −68  8 mV. (b) Schematic of  
how the p.Leu104Arg and del100_104 ATP1A1 alterations change the transport mode of the  
sodium pump from actively pumping to passively conducting a cation leak of mostly H+  
(Leu104Arg) or Na+ (del100_104). (c) Surface representations showing the ion-binding  
glutamate 334 (green) buried in the occluded K+-bound E2.Pi structure (PDB 2ZXE) and  
accessible in E1 (the structure is a Na+/K+ ATPase 1 homology model generated with Modeller  
from SERCA PDB 4H1W12) when M1 (cyan) moves. The asterisks indicate the position of Leu104,  
which is not exposed to the surface. (d) Increased aldosterone production in human adrenocortical cells  
(H295R) following transfection with vector expressing Leu104Arg ATP1A1. H295R cells were transfected with either vector control or with vector 
expressing ouabain-resistant wild-type ATP1A1 or the Leu104Arg ATP1A1 mutant. Cells were incubated in serum-free medium for 24 h before 
supernatants were collected (basal; white) and replaced with medium containing either 10 M ouabain for 4 h (red) or 10 nM angiotensin II for 24 h 
(black). Shown are aldosterone concentration per microgram of protein and CYP11B2 mRNA levels relative to 18S rRNA. Error bars: for aldosterone results, 
s.e.m.; for CYP11B2 mRNA results, upper limit. *P < 0.05 compared to vector control; #P < 0.05 compared to wild type (Student’s unpaired t test).
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reports the number of active channels at the plasma membrane), 
indicating higher average ICa per active channels (Fig. 5d and 
Supplementary Table 3). Similar current properties were seen upon 
coexpression with palmitoylated 2a subunits, which are known to 
stabilize slower inactivation kinetics (Supplementary Tables 3 and 4). 
The Gly403Arg mutant was more difficult to analyze because of lower 
maximum conductance (Supplementary Fig. 7a). This was not a result 
of lower protein expression of this mutant, as shown by immunoblot-
ting of transfected tsA-201 cells (Supplementary Fig. 7b). However, 
Gly403Arg-mediated ICa showed substantially reduced inactivation 
over 500 ms, again indicative of gain of function (Fig. 5e,f).

Taken together, these gating changes suggest that a zona 
 glomerulosa–like APA harboring these mutant Cav1.3 channels would 
have increased Ca2+ entry, causing increased intracellular Ca2+-
 mediated signaling and, thus, enhanced aldosterone secretion. In a 
minority of individuals with APAs, an L-type Ca2+ channel blocker 
causes profound reductions in plasma aldosterone concentrations, 
sometimes masking diagnosis25. Because an L-type Ca2+ channel 
blocker is now a first-line therapeutic option for the treatment of 
hypertension and because the APAs with CACNA1D mutations can 
be particularly small, they are more likely to be masked or overlooked 
as a common cause of hypertension.

Because the CACNA1D mutations target multiple repetitive sites 
for gain of function, the seven sites reported here seem unlikely to be 

the final tally. In KCNJ5, we also identified a previously unreported 
somatic mutation around the selectivity filter, encoding p.Glu145Lys 
(Supplementary Fig. 1), making this the sixth mutation found in this 
gene in APAs. In the P-type ATPases, the strongly dominating hotspot 
seems to be at the cytoplasmic ion entry site, so any additional pump 
mutations found in APAs would most likely affect this site.

The strong correlation between APAs and recurrent somatic muta-
tions in well-known genes regulating intracellular cations is notable. 
The frequent coexistence of a zona glomerulosa–like APA with zona 
fasciculata–like or non-secretory adenoma indicates that the muta-
tions increasing aldosterone synthesis and secretion may be separate 
from those causing adenoma formation. In our small APAs, usually 
unchanged in size for many years, synthesis may have superseded 
proliferation and protected against the increased cell turnover 
 characteristic of low aldosterone production, as seen in the adrenal 
glands of Cyp11b2-null mice and in the thin zona glomerulosa of 
salt-loaded humans where CYP11B2 expression is often patchy or 
absent10,26,27. That increased hormone production by APAs is due 
to constitutively upregulated hormone production, rather than to 
increased cell mass, was suggested by the increased uptake of the 
CYP11B radiotracer in our positron emission tomography–computed 
tomography (PET-CT) studies28 (Fig. 2) and by the comparison of 
CYP11B2 mRNA and protein expression levels in APAs and normal 
zona glomerulosa (Fig. 2 and Supplementary Fig. 4).
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Figure 5 Functional consequences of CACNA1D mutations on Cav1.3 channel function. (a) Voltage dependence of activation (G/Gmax) and steady-state  
inactivation (I/Icontrol) of wild-type Cav1.3 (n = 11) and Cav1.3 mutants Val259Asp (n = 10) and Ile750Met (n = 11) expressed in tsA-201 cells 
(expressed with 3 and 2 1, 15 mM Ca2+ as charge carrier). Activation data were calculated from current-voltage relationships (Online Methods).  
(b) Current-voltage relationship of mutants Val259Asp (n = 9) and Ile750Met (n = 9) (2 mM Ca2+ charge carrier). No changes in voltage-dependent gating 
were observed for mutant Pro1336Arg (activation, n = 10; inactivation, n = 8), and it was therefore omitted from the graphs. Fitted parameters for 
Pro1336Arg and other mutants are given in Supplementary Table 3. (c) ICa (15 mM Ca2+) inactivation during 5-s depolarizations to Vmax. Representative 
normalized currents are shown for wild-type channels and the indicated mutants. Double-exponential inactivation time-course statistics are given in 
Supplementary Table 4 (wild type, n = 9; Val259Asp, n = 9; Ile750Met, n = 9; Pro1336Arg, n = 10). (d) Effects of Cav1.3 alterations (Val259Asp, 
n = 10; Ile750Met, n = 8; Pro1336Arg, n = 9) on channel conductance. ICa current traces obtained during 10-ms depolarizations to the reversal 
potential (Vrev) were normalized to the area of the QON gating charge of wild-type channels to show the relative increase in tail current. Representative 
superimposed traces are shown separately for each mutant with wild-type channels (for statistics, see Supplementary Tables 3 and 4). (e,f) Effect of 
Cav1.3 alteration p.Gly403Arg. (e) Example of normalized ICa traces for wild-type and Gly403Arg channels (expressed with 2 1 and 1b) elicited 
by 500-ms depolarization to +10 mV with 10 mM Ca2+ charge carrier. (f) Mean percent inactivation at 500 ms was reduced for Gly403Arg mutant 
channels (n = 15–16) compared to wild-type channels (n = 14–18). Error bars, s.e.m. **P = 0.0094; ***P < 0.0001 (Student’s unpaired t test).
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In summary, a substantial proportion of APAs resembling adrenal 
zona glomerulosa cells harbor gain-of-function mutations in genes 
important for the regulation of Na+ and Ca2+, ATP1A1 and CACNA1D, 
respectively. Mutations in both genes appear to be more common in 
cohorts enriched for smaller, zona glomerulosa–like APAs, highlight-
ing the notion that diagnosis should not rely on finding a definite 
nodule upon adrenal imaging.

URLs. PyMOL, http://www.pymol.org/; OriGene, http://www.origene. 
com/; TreeView software, http://rana.lbl.gov/EisenSoftware.htm; 
Exome Power Calculation software, http://darth.ssg.uab.edu:8080/
epc/index.jsp.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Disease-causing variants will be submitted to 
ClinVar. Exome data are available upon request within a scientific 
cooperation. Gene expression data are available from the NCBI Gene 
Expression Omnibus (GEO) under accession GSE48303.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Subjects. Individuals with unilateral primary aldosteronism were recruited 
from three centers (Addenbrooke’s Hospital, University of Cambridge, n = 63; 
University Hospital Hradec Kralove, n = 39; Radboud University Nijmegen 
Medical Centre, n = 50). Case detection and subtype identification were in 
accordance with institutional guidelines. Primary hyperaldosteronism was 
diagnosed by an elevated aldosterone/renin ratio (ARR) and followed up by 
confirmatory studies (CT scan or MRI and/or adrenal venous sampling and/or 
[11C]-metomidate PET-CT scan28). Adrenalectomy reversed the biochemical 
abnormalities. Cambridge and Czech subjects gave written informed con-
sent for genetic investigation, which was approved by the Cambridgeshire 2  
Research Ethics Committee and the University Hospital Hradec Kralove 
Ethics Committee, respectively. Samples from Dutch subjects were used in 
accordance with the code of conduct of research with human material in  
The Netherlands.

For exome sequencing, we selected ten zona glomerulosa–like APAs ( 50% 
compact zona glomerulosa–like cells and low expression of CYP17A1) and 
three zona fasciculata–like APAs with somatic KCNJ5 mutations (as sensitiv-
ity controls) from the Cambridge cohort. Paired genomic DNA for 9 of the 
10 zona glomerulosa–like APAs from either venous blood (subject 8) or the 
peritumoral tissue (subjects 1–5, 7 and 9) were also exome sequenced.

We estimated sample size in two ways. The cruder estimation showed that 
if 30% of samples had a new mutation in the same gene, there would be (0.7)9 
(=0.04) probability of not finding at least two mutated samples in a cohort of 
ten. The public domain software of Zhi and Chen (Exome Power Calculation 
software) showed that, in ten affected individuals, a 40% mutation frequency 
would be required to provide 80% power, if sequencing sensitivity were 99% 
and ten genes passed the somatic mutation filter.

Nucleic acid extraction. DNA or RNA was extracted from 209 adenomas/
nodules in 152 affected individuals. In addition, DNA or RNA was extracted 
from 51 paired peritumoral adrenal cortices and 3 paired peripheral DNA 
samples, 11 non-aldosterone-secreting adenomas (8 Cushing adenomas,  
2 adrenal mass and 1 incidentaloma) and 100 peripheral DNA samples from 
healthy, normotensive subjects. DNA was extracted using standard procedures. 
Total DNA-free RNA was isolated using the TRIzol Plus RNA Purification 
System (12183-555, Life Technologies) along with the PureLink DNase  
Set (12185010, Life Technologies). Reverse transcription of 1 g of RNA was 
performed using the Reverse Transcriptase System (Promega) with a 1:1  
mixture of random hexamer and oligo(dT) primers according to the manu-
facturer’s instructions.

Exome sequencing. Exome sequencing was performed by BGI Shenzen. In 
brief, qualified genomic DNA was randomly fragmented by Covaris, resulting 
in DNA fragments with a base-pair peak at 200 to 300 bp, and adaptors were 
then ligated to the resulting fragments’ ends. Extracted DNA was amplified by 
ligation-mediated PCR, purified and hybridized to the NimbleGen SeqCap EZ 
Exome 44M array (Roche NimbleGen) for enrichment. Each captured library 
was subjected to high-throughput sequencing using the HiSeq2000 platform, 
and all samples achieved >30× read coverage. Raw image files were processed 
by Illumina base calling Software 1.7 with default parameters. Sequences for 
each library were generated as 90-bp paired-end reads.

Variant detection. After removing reads containing sequencing adaptors 
and low-quality reads, high-quality single-end reads were aligned to human 
genome Build 37(hg19) using Burrows-Wheeler Aligner (BWA). Potential 
SNPs were detected by SOAPsnp, and potential small insertion-deletions 
(indels) were detected by SAMtools. Standard quality control was performed 
at each stage of the analysis pipeline for the clean data, the alignment and  
the called variant.

Pairwise comparison analysis of single-nucleotide variants (SNVs), somatic 
indels and CNVs were detected by Varscan, GATK and ExomeCNV, respec-
tively. In the pairwise comparison analysis, several heuristic rules were applied: 
(i) both the tumor and matched normal samples should be covered sufficiently 
( 10×) at the genomic position compared; (ii) the average base quality for a 
given genomic position should be at least 15 in both the tumor and normal 
samples; (iii) the variants should be supported by at least 10% of the total reads 

in the tumors, and no reads supporting high-quality variants were allowed in 
normal controls; and (iv) the variants should be supported by at least five reads 
in the tumors. Then, ANNOVAR was used to annotate the variant results, with 
variants passing the following three quality checks defined as high-probability 
somatic mutations: (i) the somatic mutation had a high probability of occur-
ring only in the APA (P  1 × 10−4); (ii) the somatic mutation did not exhibit 
strand bias, where depth of the supporting reads on one strand was less than 
5×; and (iii) depth of the supporting reads at that locus was at most 200×.

Variant sequencing. Confirmation of 23 of the 24 high-probability somatic 
mutations that passed the quality check filters on exome sequencing was per-
formed by PCR amplification and Sanger sequencing. Mutations in ATP1A1, 
CACNA1D or KCNJ5 detected by exome sequencing, TaqMan genotyping  
or microfluidic sequencing were confirmed by PCR amplification and  
Sanger sequencing.

ATP1A1 and CACNA1D genotyping. DNA or cDNA of Cambridge samples 
and DNA of Dutch and Czech samples were genotyped using custom TaqMan 
genotyping assays (Applied Biosystems) for the substitution mutations found 
in ATP1A1 (encoding p.Leu104Arg) and CACNA1D (encoding p.Val259Asp, 
p.Gly403Arg, p.Pro1336Arg and p.Ile1750Met).

Microfluidic sequencing. Multiplex target-specific amplification was per-
formed on the Access Array microfluidic system (Fluidigm) according to the 
manufacturer’s recommendations. Target-specific primers (TS-Forward or 
TS-Reverse) were designed with a custom pipeline to tile the coding regions 
of genes ATP1A1 (Ensembl transcript ENST00000295598), CACNA1D 
(ENST00000288139) and KCNJ5 (ENST00000529694). Amplicon lengths 
varied between 151 and 395 bp (average of 220 bp); melting temperatures 
varied between 57.4 °C and 61.2 °C (average of 59.9 °C). Each target-specific 
primer consists of a universal 5  end and a target-specific 3  end.

After PCR products were barcoded using a 10-base indexing system, they 
were analyzed using Agilent 2100 BioAnalyzer (Supplementary Fig. 8). Single-
end sequencing of 150 bases of pooled library was performed on an Illumina 
Genome Analyzer IIx sequencer using custom sequencing primers targeted to 
the CS1 and CS2 tags according to the manufacturer’s recommendations.

Microarray analysis. RNA was analyzed on GeneChip Human Gene 1.0 ST 
arrays (Affymetrix). Each array comprises 764,885 distinct probes, which 
interrogate 28,869 well-annotated genes (Affymetrix). Following hybridi-
zation, arrays were washed and stained with a streptavidin-phycoerythrin 
conjugate using an automated protocol on a GeneChip Fluidics Station 450 
followed by scanning on a GeneChip (GCS3000) Scanner. Quality control, data 
processing and analysis were performed using GeneChip Command Console 
Software (Affymetrix) and Partek Genomic Suite v. 6.5. All samples were nor-
malized by the GC-RMA method (gene chips–robust multichip analysis) with 
quantile normalization and median polish for probe set summarization. False 
discovery rate control (Benjamini-Hochberg method) was used to correct for 
multiple testing. Differentially expressed genes were defined by a fold-change 
difference of >2 and P < 0.05.

Plasmids. Plasmids encoding human 1 and 1 subunits of the Na+/K+ 
ATPase were purchased from OriGene and subcloned into the pXOON vector  
using EcoRI and NotI. Mutations encoding p.Gln118Arg and p.Asn129Asp 
were introduced into 1 by PCR to reduce ouabain sensitivity, yielding the 
construct referred to as wild type. The other mutations and deletions were 
also introduced via PCR.

The human wild-type Cav1.3 channel (CACNA1D gene, GenBank accession 
EU363339) containing alternative exons 8a and 42 was previously cloned into 
pGFP− vector (no GFP tag and mammalian system expression controlled by 
CMV promoter)29. The mutations encoding the p.Val259Asp, p.Gly403Arg, 
p.Ile750Met and p.Pro1336Arg alterations were cloned in the above mentioned 
construct using a standard PCR approach.

Na+/K+ ATPase electrophysiology. RNA was transcribed from NheI-digested 
plasmids with the mMESSAGE ULTRA kit (Ambion). RNA for 1 (1 ng) 
and 1 (10 ng) were coinjected into oocytes from X. laevis. After 1–6 d at  
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15 °C, two-electrode voltage clamping was performed in 115 mM Na,  
110 mM sulfamic acid, 1 mM MgCl2, 0.5 mM CaCl2, 5 mM BaCl2, 10 mM 
HEPES and 1 M ouabain. Unless otherwise indicated, the pH was 7.4. In 
potassium-containing buffers, sodium was replaced by equimolar potassium, 
and in sodium-free solutions, NMDG replaced sodium. To determine steady-
state currents, a series of 200-ms 20 mV steps was run, and the 10 mM ouabain 
background current was subtracted.

Cav1.3 electrophysiology. Cell culture and transient expression of Cav1.3 
constructs in tsA-201 cells were performed as described30. Whole-cell patch-
clamp recordings were performed at room temperature. Borosilicate glass elec-
trodes were pulled (micropipette puller, Sutter instruments) and fire polished 
(microforge, Narishinge MF-830) at a final resistance of 1.5–2.5 M. Cells were 
recorded at a sampling rate of 2–5 kHz using an Axopatch 200B amplifier 
(Axon Instruments), digitized with Digitizer 1322A (Axon Instruments) and 
recorded with pClamp 10.2 software (Axon Instruments). Recording solu-
tion consisted of the following: bath solution, 15 mM or 2 mM CaCl2, 10 mM  
HEPES, 150 mM or 170 mM choline-Cl and 1 mM MgCl2, adjusted to  
pH 7.4 with CsOH; intracellular solution, 135 mM CsCl, 10 mM HEPES, 
10 mM Cs-EGTA and 1 mM MgCl2 adjusted to pH 7.4 with CsOH. Cells 
were held at a holding potential of −80mV before a step protocol of 10 ms to 
different voltages was applied to determine the current-voltage relationship. 
Currents were leak subtracted using a P/4 protocol. Inactivation time course 
was measured during 5-s depolarizations from −80mV to Vmax and fitted to 
a standard double-exponential decay using GraphPad Prism 5 (GraphPad 
Software). The voltage dependence of inactivation was measured by apply-
ing a control test pulse (10 ms to Vmax) followed by a 5-s conditioning step 
and a subsequent 20-ms test pulse to Vmax (30-s recovery between protocols). 
Inactivation was calculated as the ratio between the current amplitudes of 
the test versus control pulse. As an estimate of the changes in single-channel 
properties, the ionic tail current during repolarization following a 10-ms depo-
larization step pulse to the reversal potential was normalized to the ON-gating  
current obtained upon depolarization in the same pulse (Supplementary 
Table 3). Current-voltage curves were fitted to the equation I = Gmax(V −  
Vrev)/(1 + exp−(V − V0.5)/k), where Vrev is the reversal potential, V the test  
potential, I the peak current, Gmax the maximum conductance, V0.5 the 
half-maximal activation voltage and k the slope. The voltage dependence of  
Ca2+ conductance was fitted according to a Boltzman distribution G = Gmax/ 
(1 + exp−(V − V0.5)/k). Steady-state inactivation parameters were obtained  
by fitting the data to a modified Boltzmann equation G = (1 − Gmax)/(1 +  
exp(V − V0.5)/k) + Gmax. To reduce noise in some experiments, protocols were 
repeated up to five times, and recordings were averaged as described31.

tsA-201 cell lysis and immunoblotting. After 72 h of transfection with vectors 
encoding wild-type and mutant hCav1.3 and 1b, tsA-201 cells were homog-
enized in PBS, pH 7.4 at 4 °C containing 1% IGEPAL and protease inhibitors 
(Complete, Roche), were sonicated for 10 s and were incubated on ice for  
45 min. Whole-cell lysates were then centrifuged at 14,000g for 30 min at 4 °C, 
and pellets were discarded. Aliquots of supernatant were assayed for total pro-
tein (Bradford assay; Bio-Rad). Aliquots of whole-cell lysate corresponding to 
20 g of total protein were diluted with Laemmli sample buffer supplemented 
with 100 mM DTT and 25mM N-ethylmaleimide and were resolved by SDS-
PAGE on 3–8% Tris-acetate gels (Invitrogen) and transferred to polyvinyli-
dene fluoride membrane (Bio-Rad) by protein blotting (semi-dry; Bio-Rad). 
The primary antibodies used included antibody to Cav1.3 (mouse mono-
clonal, Neuromab; 3 g/ml) and antibody to GAPDH (mouse monoclonal; 
Ambion, MAB 5718; 1:25,000 dilution), and the secondary antibody was HRP- 
conjugated goat antibody to mouse (Bio-Rad). Signal was obtained by HRP 
reaction with fluorescent product (ECL Plus, GE Healthcare) and membranes 
were scanned on a Typhoon 9410 phosphorimager (GE Healthcare).

Cell culture and experimentation. H295R human adrenocortical carcinoma 
cells (originally obtained from ATCC) were cultured in DMEM/Nutrient  

F-12 Ham supplemented with 10% FCS, 100 U of penicillin, 0.1 mg/ml strepto-
mycin, 0.4 mM l-glutamine and ITS (insulin-transferrin–sodium selenite 
medium) at 37 °C in 5% CO2. Cells were transfected with either vector control 
or ouabain-resistance vector encoding wild-type ATP1A1 or the Leu104Arg 
ATP1A1 mutant using standard procedures. Transfected cells were plated into 
24-well plates (100,000 cells per well) in 0.5 ml of growth medium. After 
48 h of transfection, H295R cells were serum deprived in unsupplemented 
medium for 24 h and were then incubated in fresh medium with the treatments 
specified in the legend to Figure 2. Supernatants for aldosterone concentration 
measurement were collected after respective incubation time of treatments, 
and cells were harvested for analysis of mRNA. Genotypes of the transfected 
cells were confirmed by TaqMan genotyping.

Aldosterone concentration measurements. Aldosterone concentrations were 
determined by 125I radioimmunoassay using a commercially available Coat-
A-Count kit (Diagnostic Products Corp). Aldosterone concentrations were 
normalized to total cell protein, determined by extraction of protein with lysis 
buffer and BCA protein assay (Pierce Biotechnology).

Laser capture microdissection (LCM). LCM was used to acquire samples of 
zona fasciculata and zona glomerulosa cells in peritumoral adrenal tissue from 
eight individuals with pheochromocytoma. Procedures for sample acquisition 
and methodology have been described in detail elsewhere5.

Quantification of mRNA expression. Cells were kept in RNAlater (Ambion) 
until RNA was extracted. Total RNA was isolated and reverse transcribed 
using methods mentioned previously. mRNA expression of genes of  
interest was quantified using commercially available TaqMan ABI probes 
(Applied Biosystems), and CYP11B2 and CYP11B1 expression was quanti-
fied using custom-made TaqMan probes (Invitrogen) that had been validated 
for specificity5. The housekeeping 18S rRNA (Applied Biosystems) was used 
for normalization.

Immunohistochemistry. Immunohistochemistry was performed on formalin- 
fixed, paraffin-embedded adrenal sections (4 m) using an automated immuno-
stainer with cover tile technology (Bond-III system, Leica Biosystems). 
Commercial antibodies to ATP1A1 (A276, Sigma; 1:1,000 dilution), CACNA1D 
(clone N38/8, UC Davis/NIH NeuroMab Facility; 1:500 dilution) and KCNJ5 
(HPA017353, Sigma; 1:100 dilution) and custom-made antibodies to CYP11B2 
(1:10 dilution) and CYP11B1 (1:100 dilution) were used as the primary anti-
bodies. The antiserum selective for CYP11B1 was affinity purified against 
the immunizing antigen and was subsequently purified against a CYP11B2 
antigen column to remove any cross-reacting antibodies. Selective antisera 
were generated in the same way for CYP11B2. Negative control experiments, 
in which primary antibodies were omitted, resulted in a complete absence 
of staining. Images were captured using a standard bright-field microscope,  
a U-TV1-X digital camera and CellD software (Olympus UK).

Statistical analysis. If not stated otherwise, group results are expressed as 
mean values with s.e.m. and compared using Student’s unpaired t tests. The 
significance level of P < 0.05 was considered to indicate statistical signifi-
cance. Statistical analysis was performed using standard statistical software. 
For ATP1A1 electrophysiological data, statistical analysis was performed by 
individual one-way ANOVA with the Bonferroni post-hoc test. For CACNA1D 
electrophysiological data, statistical analysis was performed by Clampfit 10.2 
(Axon Instruments) and Sigma Plot 12 (Systat Software).

29. Koschak, A. et al. 1D (Cav1.3) subunits can form L-type Ca2+ channels activating 
at negative voltages. J. Biol. Chem. 276, 22100–22106 (2001).

30. Singh, A. et al. C-terminal modulator controls Ca2+-dependent gating of Cav1.4 
L-type Ca2+ channels. Nat. Neurosci. 9, 1108–1116 (2006).

31. Baig, S.M. et al. Loss of Cav1.3 (CACNA1D) function in a human channelopathy 
with bradycardia and congenital deafness. Nat. Neurosci. 14, 77–84 (2011).
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The availability of massive amounts of DNA sequence data, from 1000s of genomes even
in a single project has had a huge impact on our understanding of biology, but also creates
several problems for biologists carrying out those experiments. Bioinformatic analysis of
sequence data is perhaps the most obvious challenge but upstream of this even basic
quality control of sequence run performance is challenging for many users given the volume
of data. Users need to be able to assess run quality efficiently so that only high-quality data
are passed through to computationally-, financially-, and time-intensive processes. There
is a clear need to make human review of sequence data as efficient as possible. The
multi-genome alignment tool presented here presents next-generation sequencing run
data in visual and tabular formats simplifying assessment of run yield and quality, as well
as presenting some sample-based quality metrics and screening for contamination from
adapter sequences and species other than the one being sequenced.

Keywords: next-generation sequencing, quality control, contamination screen

INTRODUCTION
It is vital in any laboratory to assess the quality of the data being
generated. In a next-generation sequencing (NGS) facility the vol-
umes of data can be overwhelming and automated quality control
(QC) reporting is an ideal. There are many metrics to consider
when looking at a sequencing run, some are run specific, others
sample specific and many can be affected by both run and sample.
Understanding what individual metrics mean in a particular con-
text is complex and can require significant experience. Tools that
help simplify analysis by building on this experience and removing
subjectivity are becoming increasingly vital. We have developed
the multi-genome alignment (MGA) contamination screen that
can be used to calculate a few key, simple but important met-
rics, primarily data yield and quality, whilst also providing some
additional sample related QC.

Tools like MGA are not new. Perhaps the earliest example of
a QC tool is the Phred (Ewing et al., 1998) package developed
to improve methods for gel-based Sanger-sequencing trace anal-
ysis and base quality scoring. The abstract of this paper written
15 years ago is surprisingly relevant today, stating:“it is particularly
important that human involvement in sequence data processing
be significantly reduced or eliminated” and that there is a need to
“make human review (of sequence data) more efficient.” Almost

every molecular biologist working today has seen and benefitted
from this work in their Sanger sequencing results. Life Tech-
nologies (formerly Applied Biosystems, Santa Clara, CA, USA)
produced a free tool, Sequence Scanner v1.0 (Applied Biosystems,
2005), that allowed a very quick visual check of 96 samples. This
move away from inspection of individual traces to a more gross
assessment of a Sanger sequencing run was necessitated by the
increase in sample volumes due to the introduction of automated
capillary sequencers. The introduction of microarrays was accom-
panied by QC tools that allowed the vast amounts of data to be
assessed before starting complex analysis pipelines. Two of the
major providers included such tools; Affymentrix (Santa Clara,
CA, USA) provided a simple text-based reporting tool in their
MAS5.0 (Hubbell et al., 2002) primary data analysis package and
Agilent Technologies (San Francisco, CA USA) provided a very
comprehensive visual, graphical, and text-based tool in their Fea-
ture Extraction software (Agilent, 2013). For NGS data the most
widely used software, not provided by instrument vendors, for
quality analysis of data is FastQC (Andrews, 2010), which presents
multiple metrics for each dataset, including per base sequence
quality score, per base GC content and duplication rate. A feature
of the most of the tools above is their reliance on multiple metrics
to report on the quality of what are complex assays. However, the
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use of individual metrics must be evaluated carefully alongside
others including the starting sample QCs, and in the context of
the sample or run being considered.

The MGA tool presented here aims to provide a subset of met-
rics that can be quickly assessed with minimal explanation, and
allow users of NGS data to determine if the data generated are of
sufficient yield and quality. The tool is not intended to be compre-
hensive nor used in isolation, rather as part of a formal assessment
of experimental quality.

MATERIALS AND METHODS
The MGA contaminant screen is an alignment-based method for
detecting contamination in genomic or transcriptomic sequenc-
ing libraries. A sample of read sequences and base quality scores
is extracted from the FASTQ files produced by the sequencing
instrument. In practice, we have found that a sample of 100,000
reads is sufficient to detect moderately low levels of contamina-
tion. This represents a small fraction of the data usually generated
from a lane of sequencing. The screen can be run on any number
of FASTQ datasets so it would be feasible to look separately at every
library in a multiplexed pool to determine the likely contamina-
tion in each. We generally assess contamination at the lane level
on the basis that libraries from difference sources are not typically
grouped together on the same lane.

Two differing alignment approaches are taken for (1) identi-
fying sequences likely to have originated from a different species
to that being sequenced and (2) detecting the presence of adapter
sequences ligated to the ends of sequence fragments. The screen
is not capable of detecting contaminant sequences from the same
species as that being sequenced.

For detecting cross-species contamination the sampled reads
are trimmed to 36 bases and aligned using bowtie (Langmead et al.,
2009) to a set of reference genome sequences representing possible
contaminants. This includes several mammalian species that are
used in our laboratory as well as several thousand bacteria, viruses,
and other microorganisms. The latter are grouped together so that,
for example, the sampled reads are aligned to a collection of bac-
terial reference genome sequences and results reported for the set;
consequently, the screen may detect bacterial contamination but
will not be specific about the contaminant species. We choose to
trim the read sequences so that the results from different sequenc-
ing runs can be compared and to derive baseline alignment and
error (or mismatch) rates; trimming also helps reduce the compu-
tational cost and allows for detection of contaminants in runs with
adapter contamination (see below). The reads are also aligned to
the reference sequence for phi X 174 bacteriophage, commonly
used as a spike-in control. Controls are differentiated from target
species and contaminants in the final report.

The alignment results for each species, or collections of ref-
erence genomes in the case of bacteria, viruses, and fungi, are
collated and species are ranked based on the number of reads
aligning to each. Each read may align to multiple species as a result
of sequence homology between species. To distinguish likely con-
tamination from sequence homology each read is assigned to a
single species based on the above ranking. For example, if the
target species is human, some of the reads may also align to the
mouse genome. Assuming that more reads align to the human

reference sequence than that for mouse, all reads that align to both
will be assigned to human, and only those that uniquely map to
the mouse genome (and not another higher-ranked species) will
be assigned to mouse.

The method for detecting sequencing adapters differs because
it is possible that only a part of a read sequence is adapter. This can
occur when the genomic fragment is shorter than the number of
bases sequenced such that the sequencing runs through to adapter
on the 3′ end. Accordingly, we report adapter contamination sep-
arately since sequences can be associated both with cross-species
and adapter contamination. The sampled reads are first converted
to FASTA format and then aligned to a set of adapter and primer
sequences using the exonerate sequence alignment tool (Slater and
Birney, 2005); this is run using a local alignment model with affine
gaps, similar to the Smith–Waterman–Gotoh algorithm (Smith
and Waterman, 1981; Gotoh, 1982).

Results are presented in both a tabular and graphical form
(Figure 1 and supplementary file), the latter as a stacked bar
chart in which each portion of the bar represents the assigned
reads for a particular species. The bars are colored green if
they match the target species, orange if they match the con-
trol, and red if they match another species. The transparency
of the bars is adjusted depending on the error or mismatch
rate of alignments for the species, with lower mismatch rates
corresponding to more opaque bars drawing attention to likely
contamination. Adapter contamination is displayed as a separate
mauve bar.

The various sampling, trimming, conversion, alignment, and
collation steps are defined in an analysis workflow and exe-
cuted using an in-house workflow management system on a
high-performance compute cluster. The MGA screen can also
be run on a multi-processor server or high-end workstation.
For a single dataset or lane, we align to reference sequences for
23 species and collections of several 1000 bacteria, viruses, and
fungi. Each alignment job takes approximately 5 min and the
results for eight lanes of an Illumina HiSeq-2000 flow cell are
usually available within 15 min of the FASTQ sequence data
being available on the compute cluster (overall CPU is around
3–4 hours).

The software, as well as instructions for installing and
running MGA, are available here: https://github.com/crukci-
bioinformatics/MGA

RESULTS
The MGA tool has been used for every sequencing run performed
at the Cambridge Institute genomics core for the past three and a
half years, on Illumina’s (San Diego, CA, USA) GAIIx, HiSeq, and
MiSeq platforms.

This graphical representation allows very quick estimation of
the yield and quality of each flow cell or lane.

It is relatively simple to determine the difference between
“good” and “bad” flow cells (Figures 1C,D), “good” and “bad”
samples (Figure 1B lanes 1–4 vs lanes 5 and 6 or 7 or 8) or flow
cells which will require significant investigation by the sequencing
lab (Figure 1A) or the user (Figure 1D). However, the interpreta-
tion of results needs to be taken in context of the type of library or
run, as either can significantly influence QC metrics. The flow cell
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FIGURE 1 | (A) 997M reads, lots of bad libraries and higher than expected
PhiX indicating poor quantification of sequencing libraries: Lanes 1 and 2
user A: 25%A, 73%U, 3.5%E, > 1%Ad. Lanes 3,4 and 7 user B: 97%U,
these libraries were from a species that was not included in the set of
reference genomes aligned to using MGA, 1–2%P. Lanes 5,6 and 8
individual users, lane 5 shows 13% mouse genome contamination, lane 6
35%U, 34%Ad, lane 8 92%A, 0.2%E, 6.6%P. (B) 1180M reads, quality can
be attributed to different library preparations. Lanes 1–4 user A: 99%A, low
error rate, and no adapter. Lane 5 user B: 53%A, 46%U, 37%Ad (a known

problem with this library type). Lane 6 user C: 92%A, 5.8%U, 43%Ad.
Lane 7 user D: 59%A, 0.55%E, 38%U. Lane 8 user D 91%U. (C) 1432M
read. Lane 1 user A: 98%A, 0.3%E. Lane 2 and 3 user B 87–93%A,
6–11%U, 0.6–0.8%E, 3–6%Ad. Lane 4 user C: 96%A, 0.3%E. Lane 5–8
user D: 90–97%A, 2–8%U, 0.2–0.36%E, 1–5%Ad. (D) 1193M reads, a good
flow cell with what look like poor libraries. Lanes 1–8 user A: 11–24%A,
72–84%U, 2.5–3.6%E, 5–16%Ad. %A, percent aligned to the target
genome; %U, percent unmapped; %P, percent PhiX control genome; %E,
error rate; %Ad, percent aligned to adapter sequences.

shown in Figure 1D is known to be a reduced representation bisul-
fite sequencing (Meissner et al., 2005)run and the alignment of this
data is expected to be poor; the high yield of this flow cell suggests
the user will be happy with the results generated and no further
investigation is likely to be necessary. Flow cell B (Figure 1B) lanes
5 and 6 show high adapter contamination of the sequencing lane;
this is likely to point to issues with sample preparation in the labo-
ratory where the samples originated. These examples demonstrate
how MGA can facilitate sequencing users identification of issues
with particular sequencing lanes/flow cells.

DISCUSSION
The MGA contaminant-screen tool was originally conceived to
answer queries about contamination in the sequencing process.
Contamination can occur at any point along the sequencing pro-
cess, in a research laboratory where samples are being extracted
and libraries prepared, or in a sequencing facility where many
thousands of libraries are being handled. An early analysis script
simply interrogated the level of PhiX in each lane as we hypothe-
sized that if contamination arose in the sequencing laboratory then
PhiX, which should only appear in lane 8 (the control lane) would

also be present in lanes 1–7 at variable levels. Analysis confirmed
that significant PhiX contamination in lanes 1–7 was limited to a
handful of flow cells.

The utility of the tool in this instance demonstrated how useful
a similar approach would be as part of our routine QC of each
sequencing lane. The use of a control lane increases sequencing
costs by 12.5% and is no longer routine. We moved to a process
of unbalanced loading of PhiX: 1% in lanes 1–7 and 5% in lane 8.
This simple method allows us to detect any inversion of the flow
cell, and to determine if low yield is the result of a sequencing
or sample issue. If low yield is due to poor clustering/sequencing
then the percentage of PhiX will be as expected, whereas if it is due
to poor library quantification then the percentage of PhiX will be
incorrect, in any low-yield lanes. This has become an important
tool in deciding how and when to repeat sequencing runs with low
yield, and determining who should pay for the repeat lane(s).

When designing the MGA visualization we considered the met-
rics most useful to determine the yield and quality of a particular
sequencing run. As an Illumina run can contain one or two flow
cells, and as most flow cell lanes contain a single sample, we
present results in a per lane format. We also tried to consider
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the context that these reports might be used in and the limitations
our methods might have. Illumina provide many QC metrics in
their instrument control software. Commonly analyzed metrics
are yield, percentage passed filters (%PF), error rate, phasing and
prephasing, cluster density, and per cycle reporting of Q-score and
percent Q30 data. The very commonly used FastQC tool provides
a modular set of analyses that imports data from BAM, SAM, or
FASTQ files and generates eleven summary plots including basic
run statistics including number of reads, per base sequence qual-
ity, and duplicate sequences. A more recent tool is Illumina’s QC
app (Illumina Inc, 2013), which generates an automated Library
QC report containing several QC metrics in tabular and visual
form. The MiSeq QC app incorporates a diversity estimate (Daley
and Smith, 2013) for each sample that can be used to determine
the limit of sequencing depth. The MGA primarily visualizes two
details important to all users and managers of NGS data; yield and
quality, it also presents data that can be useful in determining why
a particular run/lane is sub-optimal in the accompanying tables.

Multi-genome alignment is one tool that core facility managers,
bioinformaticians or users can use to assess their sequence data.
The use of multiple tools can be confusing so in most cases users
will limit themselves to one or two methods. However, there is not
currently a single QC tool for NGS data that provides all the met-
rics users might require, and different types of user will require
different tools at different times. MGA allows very quick inter-
pretation of per lane yield and quality with minimal explanation,
allowing the Genomics Core facility at the Cancer Research UK
Cambridge Institute to inspect each of approximately 2000 lanes
per year.
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