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Abstract

Acentrosomal microtubules are not bound to a microtubule organising

centre yet are still able to form ordered arrays. Two clear examples

of this behaviour are the acentrosomal apico-basal (side wall) array

in epithelial cells and the parallel organisation of plant cortical mi-

crotubules. This research investigates their formation through math-

ematical modelling and Monte Carlo simulations with the software

programs developed ourselves.

In epithelial cells there is a generally accepted ‘release and capture’

hypothesis for the transfer of centrosomal microtubules onto the side

wall array. We use a combination of mathematical and Monte Carlo

simulation models to perform the first modelling of this hypothesis.

We find that a tubulin concentration dependent dynamic instability is

not a good fit to this hypothesis but that a reduced centrosomal nucle-

ation rate in response to an increased number of side wall microtubules

makes the hypothesis work in biologically reasonable conditions. We

propose that the loss of nucleation rate is a result of ninein being

transferred from the centrosome to the side wall. We show OpenCL

to be a useful tool in building a simulation program for parameter

searches.

We use a Monte Carlo simulation model to investigate how the col-

lision induced catastrophe (CIC) probability affects the formation of

the ordered array of cortical plant microtubules. We find that with

entrainment an ordered array stops forming once the CIC drops be-

low 0.5. We find that the severing action of katanin is able to restore

order at CIC probabilities below 0.5 but the speed at which crossovers

must be severed becomes unfeasibly fast as the CIC decreases. This



implies that at very low CICs observed in nature (∼0.1), katanin may

be necessary but not sufficient to create the ordered array. We also

provide a customisable and intuitive cortical microtubule simulation

software to aid in further research.
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Chapter 1

Introduction

Microtubules play an integral part in the cell life cycle. They are responsible for

a variety of roles including cellular division, intra-cellular transport and arrange-

ment of intra-cellular organelles [Desai and Mitchison, 1997]. A microtubule is

a hollow rod composed of α and β-tubulin heterodimers. The α and β subunits

are structurally similar showing ∼46% amino acid homology [Burns, 1991]. Both

subunits have GTP binding sites, however, only the GTP bound to the β subunit

can be hydrolysed. The tubulin heterodimers chain together to form protofila-

ments and each microtubule is composed of 12-17 of these protofilaments stacked

as vertical helices, with the exception of a microtubule composed of 13 protofil-

aments where each protofilament is straight [Chrétien and Wade, 1991]. The

diameter of a microtubule is 25 nm but the length of a microtubule can be much

longer than this depending on cell type, for example, 40 µm long microtubules

have been observed in hippocampal neurons [Yu and Baas, 1994]. Microtubules

are polarised with the β-tubulin exposed end considered the plus end and the

α-tubulin exposed end the minus end and undergo dynamic instability switching

rapidly between growing and shrinking states [Mitchison and Kirschner, 1984].

Arguably, some of the most popular images of microtubules show them as

extending across the cell from a fixed point in a radial manner. The point from

which they extend is known as the centrosome and its components are highly

conserved across a variety of organisms [Doxsey et al., 1994; Stearns et al., 1991].

As such both the centrosome and the microtubules that nucleate from it are

well studied [Andersen, 1999]. As microtubules grow there is the recruitment of
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microtubule binding proteins which enable the microtubules to interact with other

cellular components not only affecting the localisation of the cell components but

also the structure of the microtubule array [Akhmanova and Hoogenraad, 2005].

However, a group of microtubules whose behaviour is less understood are those

that are not bound to the centrosome - acentrosomal microtubules.

1.1 Acentrosomal microtubules

Acentrosomal microtubules, whilst sharing the same make up, are less intuitive

than their centrosomal counterparts, posing many questions as to their location,

structure and interactions. Acentrosomal microtubules may have their own nu-

cleation complexes in situ [Chan et al., 2003; Murata et al., 2005; Zimmerman

et al., 2004] or may be transported there via motor proteins [He et al., 2005;

Sharp et al., 1997]. Acentrosomal microtubules may be anchored at one end

of the microtubule [Moss et al., 2007] or both ends of the microtubule may be

free allowing the microtubule to migrate across its environment [Shaw et al.,

2003]. These microtubules may be less dynamic than in the centrosomal array

with many acentrosomal microtubules being stabilised [Bulinski and Gundersen,

1991]. However, even in the absence of a microtubule organising centre, acentro-

somal microtubules are able to form highly organised arrays with two prominent

examples of this being epithelial cells and plant cell cortical microtubules.

1.2 Epithelial cells

As epithelial cells polarise there is a rapid shift in the organisation of micro-

tubules. The centrosome moves towards the apex of the cell and the radial array

of microtubules shrinks significantly and a new population of microtubules is

observed on the side walls of the cell running from the apex of the cell to the

base [Bacallao et al., 1989; Bré et al., 1987; Buendia et al., 1990]. A graphical rep-

resentation of this is shown in Figure 1.1. This behaviour has also been observed

in MDCK cells following reassembly of the microtubule array after depolymeri-

sation via nocodazole [Meads and Schroer, 1995]. The establishment of this side
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Figure 1.1: A graphical representation of microtubules in a polarised epithelial
cell.

wall array is very important for the rapid transport of proteins to the cell sur-

faces [Mays et al., 1994]. It is believed that the microtubules on the side walls do

not nucleate there but instead are transferred there from the centrosomal array

through a ‘release and capture’ model [Mogensen et al., 1997, 2000]. As part

of the polarisation process ninein, a centrosomal protein, relocates to the side

wall [Mogensen et al., 2000] having being transported there by the centrosomal

microtubules [Moss et al., 2007].

In a recent study, Bellett et al. [2009] show that the plus ends of the centro-

somal microtubules bind to the side wall at the adherens junction. Also located

at these binding sites are β-catenin and cadherin. Based from these observa-

tions, Bellett et al. [2009] made the following ‘release and capture’ hypothesis as

to how the side wall array forms (henceforth referred to in this thesis as the Bellett

hypothesis) (Figure 1.2). Microtubules grow out from the centrosome in a radial

manner and attract the +TIP binding proteins EB1 and CLIP-170. The plus

ends that encounter the adherens junction (also referred to in this thesis as the

attachment zone) are captured by dynein complexes. Ninein is then transported

3



Adherens junction

Nucleus

Centrosome Dynein

Ninein+TIP

1. 2.

3. 4.

Figure 1.2: A diagram of the Bellett hypothesis with emphasis on a single micro-
tubule. (1) Microtubules nucleate and grow out in a radial manner from the cen-
trosome and attract +TIP proteins. (2) Microtubule plus ends attach to dynein
at the adherens junction and force from the dynein motor triggers the transport
of ninein from the centrosome to the adherens junction. (3) The dynein motor
then pulls the microtubule away from the centrosome and down towards the base
of the cell. (4) Once the minus end is at the adherens junction it is stabilised by
the ninein and the plus end of the microtubule continues to grow to the base of
the cell.
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via motor proteins along the microtubule from the centrosome to the adherens

site. Then force generated by the dynein at the adherens junction pulls the mi-

crotubule from the centrosome and down towards the base of the side wall. Once

the minus end reaches the adherens junction it is stabilised and bound by the

ninein and the microtubule continues to grow towards the cell base. The Bellett

hypothesis induces two important research questions. Firstly does the hypothe-

sis hold true under biologically reasonable conditions and what assumptions, if

any, need to be made. Secondly, whilst the Bellett hypothesis implies that the

centrosomal array shrinks due to microtubules being pulled from it onto the side

wall, this does not fully explain the shrinking/disappearance of the centrosomal

array - why do new centrosomal microtubules stop growing? Is there negative

feedback from the increased side wall array? We propose two possible reasons for

the shrinking on the centrosomal array. The amount of free tubulin (the build-

ing block of microtubules) does impact microtubule stability [Janulevicius et al.,

2006] so as the side wall increases it would reduce the amount of tubulin and

therefore could reduce the stability of the centrosomal array. A second reason is

that as ninein is proposed to stabilise the minus ends of the side wall array, it

could be that its loss from the centrosome reduces its own ability to stabilise its

microtubules.

A suitable candidate cell for computational modelling of epithelial cells is

the MDCK cell [Gaush et al., 1966]. It is a model cell type for epithelial cell

studies and is widely studied in the academic world with more than 6200 related

papers found since 1966 in PubMed [PubMed, 2015]. MDCK cells have several

characteristics which make them well suited for epithelial cell studies such as fast

growth, clear junctions between cells and a strong apico-basal polarisation that

occurs whether it is grown as a mono cellular layer or a full three dimensional

culture [Dukes et al., 2011]. Given their popularity in the scientific world they

are a strong candidate for modelling techniques. Also as MDCK cells (in addition

to cochlear Kolliker epithelial cells) were used in the study where Bellett et al.

[2009] derived their hypothesis, it is highly appropriate that they be used in our

computational modelling. To the best of our knowledge the Bellett hypothesis

has not been modelled before.
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Figure 1.3: A diagram showing the results (dotted red arrow) of three different
interactions an incident microtubule (solid black arrow) may have when encoun-
tering a barrier microtubule.

1.3 Cortical microtubules

Acentrosomal cortical microtubules in plant cells and the arrays they form are

different to those in epithelial cells. Cortical microtubules nucleate on the cell cor-

tex, not from a centrosome, and form highly organised parallel arrays [Wasteneys

and Ambrose, 2009]. Cortical microtubules are attached to the plasma mem-

brane [Hardham and Gunning, 1978] creating an almost two dimensional envi-

ronment. The cortical arrays are believed to provide a structure for factors driving

cell elongation though not necessarily through the deposition of cellulose [Him-

melspach et al., 2003] but the correct formation of these arrays is very important

as they help to determine the growth axis of the cell [Szymanski and Cosgrove,

2009]. The cortical microtubules are neither anchored nor stable at their minus

end and are therefore free to grow across the cortex through ‘treadmilling’ (grows

faster at its plus end than it shrinks at its minus end) [Shaw et al., 2003].

Due to the microtubules ability to move across the cortex, and the two di-
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mensional environment, microtubules do interact with each other. Possible out-

comes of a microtubule to microtubule collision include collision induced catastro-

phe (CIC), entrainment (microtubule grows parallel to barrier microtubule) and

crossover (microtubule grows straight over the barrier microtubule)(Figure 1.3).

For more detail on these events see Section 2.5. Entrainment has been shown to

be a very strong factor in formation of a parallel array [Allard et al., 2010; Dixit

and Cyr, 2004; Eren et al., 2010] but what is less studied is the proportion of non-

entrainment events that crossover or undergo CIC. Collisions that do not entrain

result in CIC depending on cell type for example a very low 9% in Arabidopsis

thaliana petiole epidermal cells [Wightman and Turner, 2007] to a moderate 60%

in tobacco BY2 cells [Dixit and Cyr, 2004]. This begs the question how does an

ordered array form when there is a high probability of crossover (low interaction)

between microtubules? Allard et al. [2010] propose that when entrainment alone

is allowed that cortical microtubules form an ordered array even when the CIC

probability is zero. This, however, seems strange as there does not appear to

be any inhibitory factor in their results that would prevent two ordered arrays

crossing over each other with one running perpendicular to the other. There-

fore it would be important to investigate what is the critical probability of CIC

that at which the cortical array is no longer able to form through entrainment

alone. Following on from this would be to investigate how plant cells form an

ordered array when their observed CIC is less than this critical value. In such

circumstances the protein katanin is a good candidate for investigation.

Katanin is a microtubule severing protein [McNally and Vale, 1993] that cuts

a microtubule into two segments. The microtubule segment upstream of the

cut (newly exposed plus end) enters the catastrophe state (although it can still

undergo rescue) whereas the microtubule segment downstream (now minus end

exposed at crossover site) continues in its previous state thus increasing the num-

ber of microtubules in the cell [Roll-Mecak and Vale, 2006](Figure 1.3). In cor-

tical microtubule arrays the microtubules are preferentially severed at crossover

sites [Wightman and Turner, 2007] and 97% of severances target the overlying

microtubule (the microtubule that was incident on the collision) [Zhang et al.,

2013]. The severing action of katanin has been shown to be essential to the forma-

tion of an ordered array [Burk et al., 2001; Wightman and Turner, 2007; Zhang
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Katanin(a) (b) (c)

Figure 1.4: A diagram showing katanin severing. (a) Katanin approaches a grow-
ing microtubule. (b) Katanin severs the microtubule creating two microtubules.
(c) The microtubule downstream of the severing site continues in its original
growth state whereas the microtubule upstream of the severing site enters a
shrinking state.

et al., 2013]. Therefore a second research question would be at what probabilities

of CIC would the action of katanin be sufficient to cause an ordered array? It is

also of note that whilst there have been several computational modelling studies

on cortical microtubules (for details see Chapter 2), at the time of research, there

did not appear to exist modelling software for them. Development of flexible

software designed to be used by others would greatly facilitate future modelling

studies.

A good candidate cell to be used in computational modelling of cortical mi-

crotubules would be one from Arabidopsis thaliana. This is an appropriate choice

because Arabidopsis is not only widely used as a model organism for plant stud-

ies but is also used for recent cortical microtubule biological and computational

studies [Allard et al., 2010; Eren et al., 2010; Kawamura and Wasteneys, 2008].

This means that there are existing established parameter sets which would be a

great aid in developing a model and also other models to compare against.
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1.4 Aims

Based on the research questions identified for the formation of acentrosomal mi-

crotubule arrays for epithelial cell microtubules and plant cortical microtubules

we proposed the following research aims.

1. To model the Bellett hypothesis of the formation of the side wall acentroso-

mal array in a MDCK cell to observe whether it can adequately explain the

formation of the side wall microtubule array and explore potential mecha-

nisms for the shrinking of the centrosomal array.

2. To model the role of catastrophe both spontaneous and induced in the

formation of the cortical acentrosomal array.

To achieve these aims we define the following objectives:

1.4.1 Objectives for Aim 1

1. Develop a computational model of the Bellett ‘release and capture’ hypoth-

esis.

2. Investigate whether tubulin concentration dependent dynamic instability

explains the shrinking centrosomal array.

3. Investigate whether loss of ninein from the centrosome to the adherens

junction could explain the shrinking centrosomal array.

1.4.2 Objectives for Aim 2

1. Develop a parallelisable computational model that is representative of cor-

tical microtubule behaviour with a graphical output that is intuitive to use

across a range of platforms.

2. Use the computational model to validate the dynamic instability parameters

through parameter searches on spontaneous catastrophe and rescue.

3. Use the computational model to observe how the order of the cortical array

changes as the probability of CIC decreases from 1 to 0.

9



4. At CIC probabilities where order fails to occur, model how order changes

compared to the response/severing time of katanin.

1.5 Thesis chapter summary

Here we present brief summaries of the other chapters included in this thesis.

• Chapter 2: Here we provide a literature review on microtubule dynamic

instability, interactions between microtubules and proteins and some of its

functions in different cell types. We also include a description of previous

computational models of microtubules including general dynamic instabil-

ity, and models specific to cortical and epithelial microtubules.

• Chapter 3: In this chapter we present our research methodology. Based on

the aims and objectives presented in Chapter 1 we discuss existing method-

ologies and their advantages/disadvantages. In particular we consider the

appropriateness of trying to develop a mathematical model versus a Monte

Carlo simulation model and the use of OpenCL as an alternative paralleli-

sation technology for our parameter searches.

• Chapter 4: In the software design chapter we implement the methods

discussed in the research methodology chapter to create computational mi-

crotubule models for both the MDCK and the cortical microtubules. We

discuss the requirements of the software and how they relate to the choice

of programming language, both for the standalone graphical models and for

the approach we use in parallelisation in order to perform the parameter

searches. We present the behavioural logic used in our simulations through

flowcharts and class diagrams of our models.

• Chapter 5: In this results chapter we present the results of our research

into modelling the Bellett hypothesis as to the formation of the side wall

microtubule array in MDCK cells. We present a large scale parameter

search of the relationship between the catastrophe and rescue rates on the

centrosomal and side wall arrays as influenced by free tubulin concentration.

We do not, however, observe a realistic shrinking of the centrosomal array
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in response to an increased side wall array. However, we do observe such a

relationship when simulating a loss of nucleating stability at the centrosome

in response to ninein being relocated to the side wall.

• Chapter 6: In this chapter we present our results of our cortical micro-

tubule research. We show that the catastrophe and rescue rates observed

in live studies are a good fit for the model as deviation from those values

causes a drop in the order of the array. We observe a sigmoid-like relation-

ship between decreasing the CIC rate and the order of the cortical array

with the order of the array rapidly falling as the CIC probability drops be-

low 0.5. AT CIC below 0.5 we find that action by katanin is able to bring

about an ordered array but at 0.1 CIC the rate at which katanin would have

to act appears unrealistically fast which implies that there are additional

mechanisms in controlling the order of the cortical array in cells where the

CIC probability is very low.

• Chapter 7: Finally in Chapter 7 we provide our conclusions that we have

formed as a result of our research. We highlight the scientific contributions

of our research and discuss future work that may be undertaken.
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Chapter 2

Literature Review: Microtubules

2.1 Summary

In this chapter we present a brief background on microtubules. We highlight

the roles of microtubules before delving into their structure and how they are

added to cell. We discuss some of the interactions microtubules have between

themselves and also with other proteins that enable them to perform their role

within the cell. Finally we present a selection of previous computational models

that have been used to explore microtubule dynamics and order.

2.2 Microtubule Roles

Microtubules are involved in a variety of important cellular processes including:

1. Cellular Transport - Microtubules provide a framework through the cell

that allows motor proteins such as dynein and kinesin to quickly transport

vesicles and organelles throughout the cell [Gross, 2004].

2. Cellular Replication - Microtubules play an essential role in cellular division

as they are responsible for the formation of the mitotic spindle [Carminati

and Stearns, 1997]. Due to this role microtubules can be a target for anti-

cancer drug therapy [Zhou and Giannakakou, 2005].
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3. Cell Motility - Microtubules form part of the structure of cilia and flag-

ella which contribute to individual cell movement and the movement of

substances outside the cell [Haimo and Rosenbaum, 1981].

2.3 Microtubules and Dynamic Instability

Dynamic instability refers to the microtubules switching between growing and

shrinking states. Changing from a growing to a shrinking state is known as catas-

trophe and the reverse as rescue with much greater growth/shrinkage happening

at the plus end. A cause for the switching between growth and shrinking states is

the establishment of a GTP cap at the plus end of the microtubule [Mitchison and

Kirschner, 1984]. Tubulin is added to a growing microtubule with GTP bound

to the beta-subunit stabilising the end of the microtubule but over time this is

hydrolysed to a GDP destabilising the tubulin(Figure 2.3). Should the protective

GTP cap become too small (for example the rate at which GTP-tubulin is added

becomes slower than the rate at which the GTP-tubulin is hydrolysed within the

microtubule) then the end destabilises and rapidly shrinks. It is proposed that at

least 14 GTP-tubulin dimers are required to maintain the stability of the growing

microtubule [Caplow and Shanks, 1996; Drechsel and Kirschner, 1994]. The two

state model can be described by four parameters being the growth, shrinkage,

catastrophe and rescue rates. A third ‘paused’ state has been observed where

the microtubule is neither growing nor shrinking [Brittle and Ohkura, 2005]. The

paused state can also be divided into two states, those entering paused from a

growing state and those entering paused from a shrinking state thus creating a

four state model [Keller et al., 2008].

2.4 Nucleation

There is an additional tubulin subunit, γ-tubulin, that is required for the nucle-

ation of microtubules [Oakley et al., 1990; Oakley and Oakley, 1989]. In animal

cells the γ-tubulin is contained in γ-tubulin ring complexes (γ-TuRC) within the

centrosome and acts as a building point for the microtubule and stabilises/anchors

the minus end [Zheng et al., 1995]. Whilst the majority of microtubule nucleation
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Figure 2.1: A figure showing dynamic instability in microtubules. Tubulin is
added to the plus end of the microtubule with GTP bound β-tubulin. This GTP
is later hydrolysed to GDP whilst part of the microtubule structure and when
the microtubule switches to a shrinking state these GDP-bound subunits become
exposed at the plus end and are rapidly lost.

happens at the centrosome in animal cells, nucleation can occur acentrosomally,

for example at the golgi body [Efimov et al., 2007]. In plant cells microtubules

can also nucleate without the need of γ-TuRCs and a centrosome and poten-

tially have multiple nucleation sites throughout the cell [Erhardt et al., 2002].

In addition, microtubules can also act as nucleation sites for other microtubules

through the recruitment of γ-tubulin and termed microtubule dependent nucle-

ation [Murata et al., 2005]. The angle at which the nascent microtubules grow

out from the existing microtubule is a range centred around 40◦[O. Wasteneys

and E. Williamson, 1989]. In the case of branched nucleation there is a bias

for the nascent microtubule to grow towards the existing microtubule’s plus end

although there does not appear to be a bias as to which side of the microtubule

that the nascent microtubule branches from [Chan et al., 2009]. In addition to

branched nucleation, there are cases where the nascent microtubule grows parallel

to the existing microtubule [Chan et al., 2009; Nakamura et al., 2010; Wasteneys

and Ambrose, 2009].
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Figure 2.2: A diagram showing the results (dotted red arrow) of three different
interactions an incident microtubule (solid black arrow) may have when encoun-
tering a barrier microtubule.

2.5 Microtubule to Microtubule Interactions

Whilst microtubule interactions may be quite rare when considering centrosomal

nucleation they are quite commonplace in cortical plant cells as microtubules

grow attached to the plasma membrane essentially creating a two dimensional

environment [Hardham and Gunning, 1978]. This, coupled with multiple sites

of nucleation, increases the chances of a growing microtubule encountering a

barrier microtubule. When two microtubules collide there are several possible

outcomes depending on cell type and the nature of the collision. Examples of

possible interaction results are shown in Figure 2.5. The incident microtubule

may undergo collision induced catastrophe (CIC) due the force exerted when

encountering the barrier microtubule [Janson et al., 2003] and the chance for

catastrophe increases as the angle of collision increases [Dixit and Cyr, 2004].

If the angle of collision is shallow (40◦ [Dixit and Cyr, 2004], 45◦ [Wightman

and Turner, 2007]) the incident microtubule may bend and grow parallel to the
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barrier microtubule and is said to have entrained (or undergone ‘zippering’), form-

ing bundles of microtubules each separated by a 25 nm gap due to microtubule

binding proteins [Chan et al., 1999]. This outcome does not appear to be influ-

enced by whether the growth directions of the incident and barrier microtubules

are parallel or anti-parallel to each other [Dixit and Cyr, 2004].

2.6 Microtubule to Protein Interactions

There are many proteins that act to affect microtubule stability and order. Two

classes of these proteins are MAPs (microtubule associated proteins) and +TIPs

(those that act on the plus end of the microtubule). Some examples of these

types of protein are:

1. MAP-65: A member of the MAP-65 group promotes both order and stabil-

ity within microtubules by cross linking parallel microtubules into bundles,

creating a 25nm spacing between them [Chan et al., 1999].

2. CLASP: CLASPs are found on the cell cortex and assist in the stabilisation

of microtubules through rescue [Mimori-Kiyosue et al., 2005]. They are

also thought to control the orientation of cortical arrays in plants cells by

selectively facilitating the growth of microtubules around specific sharp cell

edges [Ambrose et al., 2011].

3. Septin-GTPase: A network of septin filaments provides directionality to

microtubule growth and promotes growth along this network but inhibiting

catastrophe thus keeping the microtubule in a growing state [Bowen et al.,

2011].

4. EB1: EB1 and its homologues are recruited to the plus end of the micro-

tubule and have a myriad roles including the recruitment of other stabilis-

ing and growth promoting factors and also the stabilisation of chromosomes

during cellular division [Tirnauer and Bierer, 2000].

5. KIF17: KIF17 acts with EB1 at the plus ends of microtubules and has a

role in both the stabilisation and polymerisation of microtubules thought to
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be due to the selective localisation of APC (adenomatous polyposis coli - a

catastrophe inhibitor) and the capping of the plus end [Jaulin and Kreitzer,

2010].

2.7 Models of Dynamic Instability

Gliksman et al. [1993] propose a two state (growth/shrink) Monte Carlo simula-

tion model of microtubule dynamics in newt lung epithelial cells. In this model

microtubules are stable at the minus end emulating the attachment of the minus

end to the centrosome. The plus end switches between growth and shrinkage ac-

cording to catastrophe and rescue frequencies. The growth rate is dependent on

the amount of unpolymerised tubulin with the cell whereas the shrinkage, catas-

trophe and rescue rates are static. Each simulation was run until the microtubules

reached a steady-state although it is unclear how many independent simulations

were done for each parameter set. This model was used to show how changes in

the catastrophe, rescue and microtubule nucleation rates could account for the

change in microtubule dynamics observed in the mitotic spindle when the cell

switches between interphase and mitosis.

Janulevicius et al. [2006] propose a two state model investigating how the

concentration of free tubulin affects microtubule dynamic instability. Similar

to [Gliksman et al., 1993] the greater the free tubulin concentration the greater

the microtubule growth rate. However, in this model the free tubulin concentra-

tion also influences the catastrophe and rescue rates such that the catastrophe

rate increases and the rescue rate decreases as the free tubulin concentration de-

creases. All dynamics occur at the plus end of the microtubule as the minus end

is considered to be anchored. Their simulations use a Monte Carlo event based

approach whereby each iteration a single event such as tubulin attaching to a

microtubule causing it to grow or a growing microtubule undergoing catastrophe

occurs. They simulate across a range of cell volumes from 1-100 µm, however, it

should be noted that the cell volume is only indicative of the total amount of free

tubulin and does not place any physical constraints on the microtubules. They

observe that as the cell volume decreases the distribution of microtubule growth

and shrinkage times change from exponential to gamma-like distributions. This
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change in distribution has been observed in live cells suggesting that a limited

amount of free tubulin may have a contributory effect in addition to structural

changes in the microtubules over time that may alter their dynamic instability

parameters.

Tindemans and Mulder [2010] propose a two state (growing/shrinking) mathe-

matical model representing microtubule dynamic instability and also katanin sev-

ering. The system is represented by coupled differential equations; one represent-

ing the growing population and the other the shrinking population. Movement

between the two populations occurs through spontaneous catastrophe/rescue and

severing only. Both populations have the boundary condition such that there are

no infinitely long microtubules. The model does not require the minus end to

be static and any shrinkage in the minus end can be accounted for by offsetting

the plus end growth and shrinkage rates. All rates used within the model are

assumed to remain constant throughout including the severing rate which is per

unit length. They observe that increasing the severing rate reduces the aver-

age length of the microtubules and also tightens the distribution of microtubule

lengths. Surprisingly they also show that the total number of microtubules at

a steady state is independent of the severing rate which appears to contradict

results observed in live cells [Roll-Mecak and Vale, 2006]. However, they explain

this as a result of their model parameters staying constant over time which is

unlikely to be the case within a live cell.

2.7.1 Models of Epithelial cell microtubules

Reilein et al. [2005] propose a computational model of epithelial cell acentrosomal

microtubules but they model the array that forms on the basal-cortex of the cell.

They simulate 30 microtubules with dynamic instability only at the plus ends

with length dependent catastrophe and rescue. The microtubules grew in a 5 µm

by 5 µm two dimensional environment with a random nucleation location and

growth direction. A new microtubule is nucleated when a microtubules is lost

through complete depolymerisation so that the number of microtubules remains

constant. The catastrophe rate was greatly increased if a microtubule passed

the environment boundary. If a microtubule interacts with another microtubule
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or a randomly placed dot representing APC on the cortex then the rescue rate

of the microtubule is increased 30 fold to emulate stabilisation. The model was

coded in MatLab. They found that where there were no interactions between

the microtubules or APC dots that a steady state length was reached but not

a steady pattern. By allowing interactions between microtubules and the APC

dots they observed that both a steady state and pattern could be achieved.

2.7.2 Models of Cortical Microtubules

Dixit and Cyr [2004] propose a three state model (growing/paused/shrinking)

investigating the role of entrainment in creating an ordered array. In their model

microtubule ‘shallow’ collisions (< 40◦) can lead to entrainment and ‘steep’ colli-

sions result in catastrophe or crossover. They performed five independent Monte

Carlo simulations of a very small sample of 20 microtubules using a combination

of Microsoft excel and CorelDraw. They observed that ordered arrays occurred in

each of these five simulations (although the orientation of the array was different

in each one) that did not occur when the simulations were performed without

entrainment. Whilst both the low number of simulated microtubules and low

number of repeats would not be sufficient to draw a statistically significant con-

clusion it strongly suggests entrainment as a mechanism for cortical microtubule

self organisation.

Baulin et al. [2007] propose a simplified two state model (growing/paused)

of cortical microtubules. The microtubules are rigid and grow as straight lines.

The minus end is constantly shrinking and the plus end is in a growing state but

switches to paused when it encounters a barrier microtubule. Once the barrier

microtubule no longer blocks the incident microtubule, the incident microtubule

returns to a growing state. This is the only interaction between microtubules.

The microtubules are nucleated in a random location with a random orientation.

Under these conditions order occurs although without a specific orientation. Bi-

asing the growth direction of the microtubules towards a certain angle and/or

replacing certain periodic boundaries with hard edges both cause order to occur

quicker and also in a certain direction. Their model was also extended to three

dimensions where they introduced an additional parameter for the diameter of
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the microtubules although it is not stated what value was used for this. Ordered

domains were still observed to form in three dimensions (although there was

much less distinction between ordered domains due to the additional dimension

of movement).

Eren et al. [2010] propose a three dimensional model of an Arabidopsis cell

presenting it as a cylinder. In their model the ends of the cylinder were consid-

ered to be catastrophe inducing edges and therefore there was a strong selective

pressure on microtubules to grow into a transverse array. The order of the micro-

tubule array was measured using an entropy parameter. From their model they

observe that the order of the cortical array is sensitive to large changes in the

entrainment angle (20◦, shorter microtubules, higher entropy. 60◦, longer micro-

tubules, quicker loss of entropy at the start of the simulation by stabilises with

a higher entropy). They observe that allowing entrainment has a greater impact

on the order of the cortical array compared to edge induced collision and collision

induced catastrophe. They also modelled the effects of microtubule dependent

nucleation, whereby 38% of nucleations grew parallel to the existing microtubule

and 62% grew branched at angle drawn from a distribution with a mean of 40◦.

Whilst it was observed that microtubule dependent nucleation had a significant

effect on the polarity of the cortical array it did not have a significant effect on the

entropy of the array. Whilst they used a Monte Carlo model they only performed

10 independent simulations for each set of parameters. Their model was coded

in MatLab.

Allard et al. [2010] investigate the role of entrainment, collision induced catas-

trophe and branched nucleation using parameters from Arabidopsis thaliana.

They model the plant cell as a single square face with all four edges as peri-

odic boundaries. They replicate the plus end pause model of [Baulin et al., 2007]

and achieve an ordered structure but show that if the microtubules either undergo

collision induced catastrophe or crossover instead of a paused state when encoun-

tering a barrier microtubule then order is not achieved. They observed that at

low rates of collision induced catastrophe the microtubules do not interact enough

and at higher rates the lifespan of the microtubules is too short. They propose

that entrainment is sufficient to bring about order even the collision induced

catastrophe rate is zero. They show that increasing the entrainment angle from
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40◦ to 60◦ actually reduces the rate at which an ordered array is formed. Similar

to [Baulin et al., 2007] they found that changing a set of edges from periodic

boundaries to catastrophe inducing biased the orientation of the ordered array

to be parallel to those edges. They found that increasing the ratio of branched

microtubule dependent nucleation to microtubule independent nucleation caused

the microtubules to be clumped in bundles separated by large areas of empty

space and hence were not representative of a real cell. For each experiment they

performed 10 independent simulations with differing starting conditions.

Ambrose et al. [2011] investigate the role of catastrophe inducing cell edges

and the CLASP protein in creating an ordered cortical array. They model the

plant cell as a cube with microtubules growing on each of the six faces and use

similar growth and entrainment parameters to [Allard et al., 2010]. The 12 edges

between faces are divided into 3 groups; longitudinal, transverse and radial with

each group having their own catastrophe inducing rate. They simulate the role of

the CLASP protein at cell edges by reducing the catastrophe rate at those edges.

Using this model they show that by altering the location of CLASP they are

able to change the orientation of the microtubule array and replicate microtubule

patterns observed in different stages of a live cell.
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Chapter 3

Research Methodology

3.1 Introduction

Having defined our aims and objectives in Chapter 1 we present our research

methodology that we will use to achieve them. Influenced by previous computa-

tional modelling approaches we evaluate the appropriateness of a mathematical

or Monte Carlo simulation model for our MDCK and cortical models. We discuss

collision detection, parallelisation (required for efficient parameter searches and

simulation repeats) and microtubule visualisation techniques.

3.2 Modelling approach

There are two main methods used in the computational modelling of micro-

tubules; a PDE model or a stochastic Monte Carlo simulation model. The PDE

model abstracts microtubule behaviour to mathematical equations and is deter-

ministic meaning that given the same set of starting variables the model will

always output the same result. This can be very advantageous when perform-

ing large scale parameter searches as each set of parameters would only need to

be run once. However, whilst it may be possible to develop appropriate mathe-

matical equations to describe the model, the complexity of the system can make

it difficult to solve these equations. As such complex microtubule behaviour

could increase the run time of the mathematical model potentially offsetting the
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advantage of it being deterministic. Therefore current mathematical models of

microtubules typically only cover the relatively simple behaviour of dynamic in-

stability, switching between growing and shrinking states and do not include any

interactions between microtubules themselves although a recent model included

microtubule severing [Tindemans and Mulder, 2010]. This suggests that there

would be a large jump in difficulty in modelling more complex behaviour.

Monte Carlo approaches are stochastic meaning that within the model there

is an element of randomness which requires that the model be repeated many

times in order to observe all events and thus generate a robust result. This has

the immediate disadvantage that parameter searches would take longer than a

deterministic model but this is greatly offset by the fact that complex micro-

tubule behaviour is easier to simulate and may be more intuitive to develop. It

appears that for microtubule simulations that involve some interaction between

the microtubules, Monte Carlo methods are the standard approach [Allard et al.,

2010; Ambrose et al., 2011; Eren et al., 2010]. As there are substantial differ-

ences in microtubule behaviour in the MDCK and cortical plant cells we consider

them separately as to whether a mathematical or Monte Carlo approach is more

appropriate.

3.2.1 MDCK microtubules

The aim of our MDCK research is to perform large scale parameter searches on

the spontaneous catastrophe and rescue rates then it would be of great bene-

fit to produce a mathematical model to reduce the runtime of such parameter

searches. The MDCK microtubules are good candidates for mathematical mod-

elling as their behaviour is relatively simple as the microtubules do not interact

with each other. The side wall microtubules essentially represent a standard

mathematical dynamic instability model with the exception that they stabilise

at a certain length defined by the geometry of the cell. The centrosomal pop-

ulation all nucleate from the same point within the cell and if we consider all

other components of the cell to be static then the collision events (catastrophe or

attachment) can be modelled as a function of the microtubule length. A poten-

tial issue is that the centrosomal rescue rate will influence the length dependent
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catastrophe rates as any proportion of microtubules that under went collision

induce catastrophe at length x and were subsequently rescued must not undergo

collision induced catastrophe until it reaches length x once more. Whilst this

added complexity can be avoided by setting the centrosomal rescue rate to zero,

it would be useful to have a simulation model not only to validate the mathemat-

ical model but also to be used when investigating the effects of the centrosomal

rescue rate. Also one objective of our MDCK research is to produce a real time

graphical output of a MDCK cell to aid in the representation and validation of

experimental results. Therefore it is necessary to create a Monte Carlo simulation

model for that purpose alone as a mathematical model would not be capable of

representing individual microtubules. Even though we had to develop a simula-

tion model we believed that the mathematical model was still worth developing

as it was likely to offset its development cost due to increased efficiency in the

parameter searches.

3.2.2 Cortical microtubules

Based on our aims we decided that a Monte Carlo simulation method was the

appropriate approach to take. Due to the complexity of the microtubule interac-

tions being that much greater than existing microtubule mathematical models,

coupled with random nucleation location and growth direction, we determined

that it would be very difficult to solve equations which could adequately repre-

sent this behaviour. A further requirement of other model is to be able to visualise

the patterning formed by the cortical microtubules which would be easier with a

Monte Carlo model. Also as the aim is to produce a piece of software that can

be used and expanded by other researches, a simulation based model would be

much easier to add new and modify existing microtubule interactions.

3.3 Collision detection

An integral part of Monte Carlo simulations where microtubules interact with

other bodies through proximity is the detection of collisions between the growing

microtubule and other objects (including other microtubules) within the simula-
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tion environment. Where microtubules have the potential to collide with other

microtubules, a brute force collision detection approach, whereby each micro-

tubule plus end is compared with all other microtubules, would have a complex-

ity of O(n2). This can add up to greatly increased simulation times where the

number of microtubules is large and the number of repeats (necessary in Monte

Carlo simulations) is high. Therefore it is necessary to use an appropriate col-

lision detection technique. We can divide these into a priori and a posteriori

techniques.

3.3.1 A priori

A priori techniques predict where and when a collision will occur before the mi-

crotubules are grown. Such techniques can be highly effective in situations where

collisions happen between a growing microtubule and static objects and the mi-

crotubule growth behaviour is highly predictable. Such a technique is highly

appropriate for our MDCK simulation model. The centrosomal microtubules are

all anchored at the centrosome which is in a fixed location in the cell. As the

other cellular components are also in static locations then based on the random

direction assigned to a microtubule upon nucleation one can calculate which cel-

lular component the microtubule will collide with, the outcome of the collision

(attachment or catastrophe) and the length the microtubule at the collision point.

As we can calculate the point of impact on the attachment zone we can also infer

the length at which the microtubule encounters the cell base once it is on the side

wall. Therefore throughout the simulation we only need to monitor the length of

the microtubule and when it is greater or equal than its collision length we then

apply the appropriate change.

Such a method could have advantages with our cortical microtubule model as

it would be possible to calculate at what time step a microtubule could collide

with another microtubule (assuming the microtubules remain in a growing state

throughout) which would reduce and also potentially simplify the collision checks

made. For example we know that microtubule a will collide first with microtubule

b in 20 time steps. Therefore no collision detection is necessary until those time

steps have elapsed. Then we can test whether b is the expected length (reduced
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through periods of pause and shrinkage) or even exists prior to resolving the col-

lision. The disadvantages are that the more complex the microtubule behaviour

gets, such as free tubulin dependent growth rates and changes and a non constant

growth direction, the harder it is to predict when and where the collisions occur.

Also if a change in behaviour was added, the collision code itself would have to

be updated limiting its use when developing the simulation software.

3.3.2 A posteriori

A posteriori techniques would grow all microtubules in the simulation within a

given time step and then calculate whether any collisions have occurred. The

point of collision would have to be back calculated and the positions of the mi-

crotubules changed to reflect the outcome. This is the approach used in [Allard

et al., 2010] and [Ambrose et al., 2011] and would therefore be appropriate to use

in our cortical microtubule model. As the collision detection code is independent

of the microtubule behaviour (microtubules are either intersecting or they are

not) then it would also make the cortical simulation software more robust. A

key efficiency issue associated with a posteriori collision detection is how often

should you check for collisions. The most accurate result would be obtained but

having the smallest time step in between collision checks as this minimises col-

lisions being missed. However, the smaller the time step the less likely it is for

a collision to occur. As collision detection is one of the most computationally

intensive parts of the simulation, it may be necessary to trade off some of the

accuracy for a decreased runtime by increasing the time step between collisions

(for example Allard et al. [2010] only check for collisions every 0.05 minutes).

3.3.3 Parameter searches through parallelisation

Parameter searches are highly parallelisable and could greatly benefit from het-

erogeneous computing. Examples vary from the Cell Broadband Engine, which

combines a processor core with eight data accelerator cores and is used in the

Sony Playstation 3 [Shi et al., 2010] to supercomputers exploiting the linking of

thousands of individual processors [Barker et al., 2008] but for many within re-

search the more accessible form of effective heterogeneous is a high performance
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cluster. However a perhaps more accessible and potentially more efficient alter-

native is to use the computer’s graphics processing unit (GPU). At the time of

research, one of the more powerful CPUs, the Intel® Core™i7-980X is capable

of running 16 threads. However, the AMD Radeon™HD 7950, a mid-range GPU,

has a total of 1792 stream processors and thus capable of performing over one

hundred times more threads than the Intel® CPU. Therefore assuming the code

or algorithm in question is parallelisable, it should be possible to decrease the

runtime by several orders of magnitude.

3.3.4 OpenCL versus CUDA

To perform operations on GPUs one can use CUDA [Nickolls et al., 2008] which is

specific to NVIDIA GPUs, and OpenCL [Aaftab, 2011] which is aimed to be the

cross platform standard for GPU computing. The debate as to whether to use

CUDA or OpenCL can be argued on two metrics: portability and performance.

Portability is the easier metric to measure as CUDA is specific to NVIDIA GPUs

and therefore if you are either using an AMD GPU or want to make your ap-

plication available to the widest audience then OpenCL is the obvious choice.

However, fair comparisons to determine the cost of portability on performance

between CUDA and OpenCL are difficult due to the differences in architecture

between AMD and NVIDIA GPUs and the different coding strategies needed to

optimise kernel code (code that is execution in parallel on the GPU) on NVIDIA

and AMD GPUs and differences in the compiler used [Fang et al., 2011] i.e.

NVIDIA GPUs use a scalar architecture whereas AMD GPUs use a vectorised

architecture with a preference for using the float4 data type [Stone et al., 2010].

The true nature of the portability is shown by [Du et al., 2012] who show that

using a kernel that performs matrix multiplication (SGEMM), which is optimised

for a NVIDIA Tesla C2050, on a ATI Radeon 5870 causes the performance to

drop to approximately 47% at peak compared to using a kernel optimised for the

ATI GPU. Likewise, using the ATI optimised SGEMM kernel on the NVIDIA

card caused an approximate 90% reduction in performance compared to using

the NVIDIA optimised kernel So whilst OpenCL code is likely to give the same

output across different GPUs the performance is likely to greatly decrease when
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run on a non-optimised architecture. Comparing OpenCL and CUDA perfor-

mance on a NVIDIA Tesla C1060 using the Parboil benchmark MRI-Q, [Komatsu

et al., 2010] observed that, as long as both CUDA and OpenCL code and com-

pilers were optimised to the Tesla architecture, both produced similar sustained

performances. This suggests that there is no significant inherent performance

advantages to using CUDA over OpenCL on NVIDIA cards (assuming proper

optimisation) and therefore, due to OpenCLs portability, OpenCL is used as the

heterogeneous computing approach in this thesis.

3.3.5 How does OpenCL work?

Global memory Constant Memory

GPU

Local Memory Local Memory

CPU

Work Item

Work GroupPrivate memory

Figure 3.1: A diagram showing the memory and work architecture of OpenCL
on a GPU with a CPU as the host device.

Whilst an in depth guide to the inner workings of OpenCL can be found in

the OpenCL Specification Guide (at the time that this research was conducted

it was version 1.2) [Aaftab, 2011] what follows here is a brief summary of the
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runtime of an OpenCL application using a GPU. The code in an OpenCL can

be split in two parts - the host code which runs on the CPU and the kernel

code which is executed by each of the processing elements on the GPU. Each

instance of a kernel (one for each thread) has a unique global ID that ranges from

0 to the total number of threads minus one. Each kernel instance also belongs

to a work group and has both a work group ID (ranging from 0 to the number

of threads divided by work group size) and a local ID within that work group

(ranging from 0 to work group size minus one) meaning that each kernel instance

can be uniquely identified by its global ID or a combination of both its work

group ID and local ID. There is no limit to the number of threads that can be

requested to run but the number than can be run in parallel is limited by the

number of processing elements on the GPU. The host code can be written in any

language (with popular languages such as C#, C ,C++, Java and Python having

OpenCL bindings) and is responsible for specifying the number of threads, the

work group size and allocating memory to be used by the CPU and GPU. There

are three types of memory that are assigned by the host code: global, constant

and local (Figure 3.1). Both global and constant memory are put into a shared

cache between the CPU and GPU. Constant memory is read only for the GPU so

is used for sending invariant data to be read and processed by the GPU. Global

memory is used for data that may be changed over the execution of a kernel and

for the transfer of results from the finished kernel to the CPU. Local memory is

only available to the GPU but is still assigned by the host code. In addition there

is private memory, which is memory that is used by each individual kernel. The

time it takes to transfer of data from the CPU to the GPU and back again is an

important consideration when deciding whether OpenCL is appropriate to your

algorithm as it may offset any gains achieved by parallelisation.

3.3.6 Optimising OpenCL

Although true optimisation would be specific to the exact hardware that is being

targeted, we present here some of the more general optimisation strategies [An-

drade, 2011].

1. Memory Coalescing: Memory Coalescing is about reducing the number of
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read calls the GPU makes to internal memory as each call has associated

time cost. For each call a minimum number of elements is loaded into

GPU and if each of these elements is used (each kernel access the element

corresponding to its global ID) then the access is said to be coalesced.

However, if each kernel was accessing the element using a multiple of its

global ID then it is probable that elements will be loaded by the GPU which

will not be used and is thus an inefficient usage of memory access.

2. Local Memory: The advantage of using local memory over global memory

is that read and write access to the local memory is faster than accessing

the global memory. Using local memory would therefore be useful if you

required multiple accesses to global memory within the same work group

and/or as place to store intermediate results.

3. Kernel Calls: Transferring data from the host to the device is computa-

tionally expensive and therefore multiple kernel calls should be avoided by

keeping as much of the code as possible on the device.

4. Vectorisation: The vector architecture of AMD GPUs causes it to prefer

vector calculations with a preferred float width of 4.

5. Loop unrolling: By unrolling loops you reduce the overhead of iterating

through the loop although the extent of performance gain would be depen-

dent on how much code is being executed within the loop with the greatest

relative gains being observed when the loop contents is minimal.

6. Native Functions: Native functions use native instructions on the device to

perform the calculation. For this reason the native functions are generally

faster but their accuracy is limited by their implementation on the device.

3.3.7 OpenCL in practice

Khanna and McKennon [2010] use OpenCL to perform numerical modelling

of gravitational wave sources. They observe a 25x performance increase using

OpenCL on a NVIDIA C1060 Tesla compared to a AMD 2.5 GHz Phenom 9850
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quad-core processor. Its also worth noting that they achieved a similar perfor-

mance gain when using CUDA on the same GPU. Shimobaba et al. [2010] use

OpenCL to accelerate the calculation of a computer-generated hologram (CGH),

generating a CGH of a resolution of 1920 x 1024 from a 3D object composed

of 1024 points in 31 ms using a ATI Radeon HD5850, almost 2000x faster than

on the CPU (Intel Core 2 Quad Q6600). They also report an over 10 fold in-

crease in performance from an optimised kernel over an unoptimised kernel (422

ms). Hoffmann et al. [2010] obtain a speed up of approximately 1500 when us-

ing an OpenCL implementation of a spiked neural network over a Matlab CPU

implementation.

3.3.8 OpenCL or computing cluster?

Whilst OpenCL does appear to have good potential for the parallelisation of mi-

crotubule parameter searches there are some drawbacks particularly when com-

pared to using a computing cluster. The first is that there is likely to be a

development overhead in translating the model code into a C99 format whereas

there is potentially much less overhead in transferring simulation code to the clus-

ter where the cluster supports your chosen programming language. Also OpenCL

may not be appropriate to simulate larger and more complex models as it becomes

harder to optimise the code to suit the GPU architecture and the limited memory

may become an issue. Therefore We plan to use both the cluster and OpenCL in

my research with more detailed justifications as to the particular choice given in

the Software Design chapter.

3.4 Microtubule visualisation

In previous studies microtubules are typically visualised as lines [Allard et al.,

2010; Baulin et al., 2007; Reilein et al., 2005] even in three dimensional stud-

ies [Baulin et al., 2007]. In our MDCK graphical model, the microtubules are vi-

sualised as cylinders (although they are simulated as lines). This is to aid proper

depth perception and clarity as they being rendered in a three dimensional en-

vironment and also provide an output closer to those from live cell imaging. A
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clear output is important as we will be using the graphical model to validate

the microtubule behaviour. In the cortical graphical model the microtubules are

visualised as lines (the same way as they are simulated). The reason for this is

two fold. Firstly given the two dimensional environment and the relatively small

diameter of a microtubule, it would be very difficult to observe any appreciable

effect of rendering the microtubules as cylinders. Secondly it is faster to render

lines which therefore causes the graphical simulation to progress faster.
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Chapter 4

Software Design and

Implementation

4.1 Introduction

In this chapter we discuss our approach to the design and implementation of

the software used in our research. At the time of this research there did not,

to the best of the authors knowledge, exist specific software for the modelling of

microtubules. One of the most probable reasons for this is that computational

microtubule models tend to target a certain behaviour or hypothesis of micro-

tubules within a specific cell type which makes it difficult to extend said models

to a wider range of cell types. Also as microtubule behaviour is often simplified

for simulation models, for example abstracted to straight lines instead of curved

rods, there may not be a significant computational overhead in coding that sim-

ulation. Therefore in order to perform our research it was necessary to code our

own simulation models de novo. Due to the large differences in requirements

for modelling MDCK cells compared to cortical plant cells we present each sepa-

rately beginning with the MDCK software as this was the first to be done in our

research. For both models we discuss the initial requirements, the implementa-

tion and testing of the software. In this chapter we do not cover the parameters

used in the software as this varies on the experiment nor the derivation of the

PDE models as these are presented in the respective MDCK and cortical results
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chapters.

4.2 Modelling microtubules in MDCK cells

4.2.1 Software Requirements

Based on our aims and objectives and our planned research the software require-

ments are to be able to:

1. Simulate an MDCK cellular environment with microtubule behaviour ac-

cording to the Bellett hypothesis.

2. Produce a graphical output to visualise the microtubule array in aid in

presentation and validation of results.

3. Run large scale parameter searches targeting the catastrophe and rescue

rates and output meaningful results in a time efficient manner.

A simulation model is necessary to satisfy the second requirement and in

doing so also satisfies the first requirement. This simulation model could then

be stripped of its graphical output and then parallelised on a cluster for the

parameter searches. Whilst this approach would greatly reduce development

time given that there would have to be a simulation model it would not lead to

efficient parameter searches. For each parameter set the simulation would need

be repeated > 100 times to produce a reliable result. Even using a low resolution

parameter such as 10x10 would require a minimum of 10000 simulations. In

addition, the UEA cluster limited the number of concurrent jobs per user to

∼250 which would further compound the overall inefficiency of this approach.

Therefore our aim was to develop an additional mathematical model to be used

for as many parameter sets as possible.

4.2.2 Graphical Simulation Model Design

To begin, we consider the physical components of the simulation model which do

not have any actions themselves. These are listed along with their represented
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shape in Table 4.1. Whilst the centrosome is indeed a 3D object we abstract

it to a single point in our model as it represents the nucleation point of all

microtubules in the model. We simplify the shape of the MDCK cell by modelling

it as a cylinder. The free tubulin would not be represented visually as it is not

typically visible in cell imaging studies that involve microtubules and therefore it

is sufficient to represent it as a concentration only.

Table 4.1: The physical components and their representation in the simulation
model.

Component Representation
Nucleus Sphere

Centrosome Point
Cell membrane Hollow cylinder

Adherens junction Region of cell membrane
Free tubulin Numeric (concentration)

The microtubule is the remaining physical component of the model and is the

actor in the simulation. In keeping with good object orientated programming

practices the microtubule is encapsulated in its own class to improve both re-

usability and understandability of the code. As microtubules are hollow rods an

accurate representation of them would be as hollow cylinders. However, as the

diameter of a microtubule is very small relative to the size of the other physical

components in the simulation and the microtubules do not interact with them-

selves then they can be simplified as 2D lines in a 3D space for the purposes of

running an efficient simulation but these 2D lines can be visualized as cylinders

for the purposes on the graphical representation.

We show the UML diagram of our epithelial cell graphical model in Figure 4.1.

The Mt class represent a microtubule. Its variables and functions are mostly

self-explanatory with the exception of the state variable which would take three

different values; 0 = shrinking, 1 = growing, 2 = paused. The Game1 class

(so called as this model was developed using the Microsoft XNA Game Studio)

simulates the cell by iterating through the simulation logic, shown as a flowchart

in Figure 4.2, with each iteration being indicative of one time step until the

required simulation time is reached. The output of the simulation can be parsed

to a file and include the number and total length of the microtubules in each
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Figure 4.1: A class diagram of the MDCK graphical simulation model. Vector3
is a data type that holds three float values, in this case representing the x, y and
z coordinates in 3D space. Mt represents a microtubule, Game1 the simulation,
and Program creates and runs the simulation.

population at given times during the simulation. The graphical output can be

disabled for faster run speeds

It should be noted that there is no collision detection method shown in the

main class. This is because as stated in our research methodology we use an a
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priori collision detection method and therefore only need to calculate potential

collisions upon nucleation.

Figure 4.2: A flow chart of microtubule behaviour in the simulation. AZ =
attachment zone, and length refers to microtubule length.
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4.2.3 Parameter Search Simulation Model

Whilst the aim is to use a PDE model for the parameter searches this may not

prove possible for all parameter sets. As we want to avoid serial processing,

one option would be to disable the graphical output on the graphical simulation

model and add an additional loop to the code such that the simulation ran for

1000 times and output a mean set of results for a given parameter set. However,

due to cluster throttling this would not be an efficient way of performing a high

resolution parameter search. An alternative would be to parallelise the model

on the graphics card through OpenCL, again repeating each parameter set 1000

times to produce a mean output. This does however have two key disadvantages.

At the time of production the C99 language used on the kernel did not support

classes and the code would have to be rewritten to reflect that. Also it would be

difficult to optimise the code for the GPU and the same code would likely run

faster on the CPUs used in the cluster. However, as the simulation is reasonably

lightweight, converting the code to C99 compatible format would not be complex.

The main advantage for using OpenCL would be that a high rate of concurrency

could be achieved as there were more than double the cores on our GPU than the

server throttle limit plus it would not be liable to cluster downtime or excessive

loads caused by factors/persons outside of our control. Therefore we decided to

parallelise the simulation model through OpenCL.

4.2.4 Programming Language

The language we used to develop this software was C# with the following justi-

fications. Importantly the authors were already familiar with it. As an efficient

object orientated programming language with a good quality IDEs it would al-

low for rapid development and testing and be suitable for simulations in which

thousands of iterations are required. Use of an object orientated language would

also permit relatively straight forward addition of added functionality that may

be required as research is being undertaken. The XNA framework allows a 3D

simulated real time graphical representation of the cell model. There are also

freely available libraries such as Cloo.dll and OpenClTemplate.dll which assist in

the integration of OpenCL.
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There were a couple of disadvantages in using C#. Firstly the UEA (Uni-

versity of East Anglia) cluster did not support C# which would mean that any

parameter sets that we could not represent as partial differential equations would

have to be run in series. However as this was only one parameter set and pre-

liminary testing showed that the simulation model resolves very quickly it was

decided that this would not have a large impact on the time to do the research.

Secondly C# is a Windows platform specific programming language and would

therefore limit the portability of our software. However, as this research was in-

vestigating a specific hypothesis within a specific cell type it was decided that the

software was likely to be for personal use only and therefore the lack of portability

would not be an issue.

To produce the three dimensional meshes used in our graphical simulation we

used the Blender software.

4.2.5 Implementation and Testing

4.2.5.1 IDEs

The code for all projects, including those developed in C# and C, was imple-

mented using the Visual Studio IDE using the XNA framework for graphical

rendering.

Whilst the kernel code was written in Visual Studio as it was easier to debug

within that environment, we also used the OpenCLCodeChecker utility to ensure

that the code would compile correctly before sending it to the graphics card .

The OpenCLCodeChecker is a small utility either outputs a green light stating

that the code would successfully run on the graphics card or a red light complete

with an error log to show where the errors are in the code.

4.2.5.2 Graphical Simulation Model

The first model to be built was the graphical simulation model and this was done

in stages. First the microtubule class was constructed and a test harness was used

to ensure the microtubules were behaving as expected. The second stage was to

implement the graphical representation of the cell and microtubules. Finally the
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simulation logic was added and therefore knowing that both the microtubules

and the graphical representation worked, we could use not only the numerical

outputs of the simulation but also observe in real-time whether the simulation

was running correctly.

Figure 4.3 shows a sample run of the graphical simulation model used to

ensure that the microtubules are behaving as expected. We observe that at the

beginning of the simulation, Figure 4.3b the vast majority of the microtubules

are present on the centrosomal array. As the simulation progresses we observe

microtubules encountering the attachment zone and being pulled onto the side

wall. At 60 minutes the side wall array is well established (Figure 4.3f) whereas

the centrosomal array has almost disappeared.

4.2.5.3 Simulation and PDE Models

Once we had validated the simulation model we implemented the PDE model

and validated it against an average of 1000 runs performed on the simulation

model with the results shown in Figure 4.4. We observe very high correlation in

both the growing and shrinking populations in both the centrosomal and side wall

microtubule arrays showing that the PDE model is correctly implemented. Both

the simulation and PDE code we then ported into kernels for use in OpenCL,

using an intermediary step of coding them in C to assist in the debugging. The

kernel code was then validated using the OpenCLCodeChecker utility before the

parameter searches were performed.

4.3 Modelling microtubules in Cortical Plant cells

4.3.1 Requirements

Based on our aims and objectives the software requirements are to be able to:

1. Simulate cortical microtubules and calculate their order.

2. Produce a graphical output to visualise the microtubule array in aid in

presentation and validation of results.
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(a) T = 0, C = 0, S = 0 (b) T = 2, C = 242, S = 0

(c) T = 5, C = 293, S = 18 (d) T = 10, C = 245, S = 45

(e) T = 20, C = 163, S = 82 (f) T = 60, C = 16, S = 140

Figure 4.3: A sample 60 minute run of the MDCK graphical simulation model
used to validate the simulation with the side wall creating negative feedback on
the centrosomal nucleation rate. T = time(min), C = number of centrosomal mi-
crotubules, S = number of side wall microtubules. We initially see a rapid expanse
of the centrosomal array which then shrinks as the side wall array increases.

3. Perform parameter searches targeting spontaneous catastrophe and rescue

rates, collision induced catastrophe, and katanin response time and observe
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(a) (b)

(c) (d)

Figure 4.4: Comparison of the MDCK Simulation and PDE models. The data
shown for the simulation model is the average of 1000 runs. The simulation and
PDE data is very highly correlated with Pearson correlation coefficients greater
than 0.998 in all four populations.

their effect on order.

4. Be used by other microtubule researchers.

As we determined in our methodology that a mathematical model would not

be suitable for this research we can use a simulation model to satisfy all these

requirements.
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4.3.2 Graphical Simulation Model Design

In this model there are only two physical components; the cell membrane and

the microtubules. As the cortical microtubules grow along the cell membrane

the simulation environment can be simplified to two dimensions. As such the

cell membrane can be represented as a box with each of the edges being a peri-

odic boundary simulating that a cortical microtubule is able to grow all the way

around the cell membrane and back to itself. Although in a 2D environment a

microtubule might be best represented as a rectangle (flattened cylinder) we de-

cided to simulate them as a line as the diameter of the microtubule is very small

relative to the size of the cell and would increase the speed at which collisions

could be resolved.

The class diagram of our cortical model is shown in Figure 4.5. Whilst our

intention was to re-use as much code from the MDCK model as possible, it was

mostly insufficient due to the added complexity of microtubule to microtubule

interactions present in the cortical model. In the cortical model we define a

microtubule as being a collection of microtubule subunits (Mts). This is because

the addition of entrainment can cause microtubules to have sections with different

directions and the periodic boundaries mean that microtubules would not be able

to presented as a continuous line. Another class is for the storing of crossover

events and tracking them throughout the simulation so that they can later be

acted upon by katanin. It stores the two microtubules involved in the crossover,

the respective microtubule subunits and the point of crossover and implements a

method for simulating the effect of katanin severing said crossover.

There are two output classes; GraphicalVersion and LineCol. Both of these

classes are largely identical and accept parameters as command line arguments

but differ in their output. The GraphicalVersion, as its name suggests, outputs

a real time graphical model of a single simulation along with the microtubule

order, number and length. The purpose of this class is to get a visual output of

how combinations of parameters can effect ordering whilst providing an insight

into what patterns may emerge as additional information to the order parameter.

LineCol, on the other hand, does not have any of the graphical parameters and

instead is designed to repeat a simulation for a given set of parameters multiple
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times and then output the means of the microtubule order, number and length

at time intervals in order to provide a more robust result.

Figure 4.5: The cortical microtubule model class diagram.
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The design logic of the simulation is shown in the flowchart in Figure 4.6 with

microtubules entering the model through random nucleation throughout the cor-

tex and being removed once their length is less than or equal to zero. In addition

to the logic shown in the flow chart, katanin may act on the overlying micro-

tubule present in a crossover (which may be either growing, shrinking or paused),

severing it at the crossover site and adding the upstream element of severing site

as a new microtubule into the shrinking population and the downstream element,

now shorter, remains in its original state.

4.3.3 Parallelised Simulation Model Design

As we did not believe it feasible to produce PDE models of the cortical micro-

tubules we had to parallelise the simulation model in order to perform parameter

searches. As the cortical microtubule model is more computationally expensive

than the MDCK model this would limit the scale at which the parameter searches

could be performed. There were two target areas for parallelisation and our choice

was influenced by the nature of our cluster hardware. Firstly we could parallelise

the parameter search itself and for each parameter set run each simulation multi-

ple times in series. This could be counter productive as although it would allow

us a larger parameter search scope the longer time it would take for each pa-

rameter set to run would put it on the long queue within the cluster and make

it more vulnerable to congestion particularly when running parameter sets that

increase the microtubule count and thus the runtime. Alternatively we could

parallelise a given parameter set performing 200 repeats (on the short queue of

the cluster) before cluster throttling would begin. Initial experiments suggested

an approximate run time of 5-10 minutes for a single model of a simulated 60

minute duration. By parallelising 200 parameter searches and repeating each set

200 times in series we would be looking at an approximate run time of 1000-2000

minutes. By parallelising each parameter set 200 times and performing a smaller

set of say 20 parameter sets in series we would be looking at a much lower esti-

mated time of 100-200 minutes. The latter was the approach that we used as we

did not believe that much would be gained by performing very high resolution

parameter searches and that parallelisation of the repeats would generate results
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Figure 4.6: A flowchart of the behaviour of the cortical simulation model. The
state transitions indicate spontaneous switches between states that are not in-
duced by interactions with another microtubule.
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faster.

4.3.4 Programming Language

For this software it would not be beneficial to use C# as the parameter searches

would have to be run on the UEA cluster which does not support C# and it would

be an inefficient use of time to code the graphical version in one language and

the cluster version in another language especially it would just be the graphical

version minus the graphics. In addition a requirement of the GUI is that it can be

used by other researchers in the field and the platform dependence C# has with

the Windows operating system would be disadvantageous. Therefore, for this

software, we decided to use the Java programming language which is supported

on the UEA cluster. Like C# it is a good object orientated language that we were

already familiar with. It has the benefit of being platform neutral and will run

on any system with a Java Runtime Environment installed which would greatly

increase the potential audience of our software. Whilst Java does have OpenGL

bindings for graphical output we will only be representing a 2D environment and

therefore the native functions in Java will be sufficient .

4.3.5 Implementation and Testing

4.3.5.1 IDEs

As Java was used as the programming language we used the NetBeans IDE for

the cortical model. This IDE was used due to author familiarity and also the

prevalence of plug-ins for the automatic generation of class diagrams.

We developed the model using a procedural approach and used the graphical

output and the order parameters for validation. Firstly we implemented the

model without entrainment or crossover to observe whether the microtubules were

growing correctly and that the collision detection code was working as intended.

A sample test run of a 60 minute simulation is shown in Figure 4.7. There are no

crossovers observed and all microtubules are within the cell environment showing

the collision detection code has been implemented correctly. An ordered array

is not expected as collision based catastrophe is not sufficient to create ordered
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(a) Order = 0.46, 5 minutes (b) Order = 0.22, 20 minutes

(c) Order = 0.12, 40 minutes (d) Order = 0.51, 60 minutes

Figure 4.7: Testing the cortical microtubule implementation without entrainment
or crossovers at 5, 20, 40 and 60 minutes into the simulation. Order ranges from
0 to 1 where 1 is perfectly ordered. The microtubules are not expected to reach
an ordered state.

arrays.

Next we enabled entrainment at an angle of 40 degrees whilst still prevent-

ing crossovers to ensure that the collision detection is not compromised and a

sample test run is shown in Figure 4.8. We observed no crossovers and clear

entrainment as bundles of microtubules form. We observed an increase in order

as the simulation progresses leading to a single dominant domain by 60 minutes

(Figure 4.8d).
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(a) Order = 0.15, 5 minutes (b) Order = 0.32, 20 minutes

(c) Order = 0.68, 40 minutes (d) Order = 0.75, 60 minutes

Figure 4.8: Testing the cortical microtubule implementation with entrainment
and no crossovers at 5, 20, 40 and 60 minutes into the simulation. Order ranges
from 0 to 1 where 1 is perfectly ordered. The microtubules are expected to reach
an ordered state within 60 minutes.

Once we were satisfied with the graphical version and the microtubule be-

haviour, the graphical components were simply removed and the code was ready

to be run on the cluster with no additional testing required. A script was written

in Python to collate and average the results from each cluster run of a particular

parameter set.
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4.3.6 Graphical Model Evaluation

The model we developed has the following feature set which would make it very

useful for use in future studies.

• A 3 state model with customisable dynamic instability parameters. The

model can be reverted to a 2 state model simply by zeroing the transition

parameters to the paused state.

• Coded in an object orientated language so easier to add new features.

• Platform independence with good cluster suitability.

• View the simulation in real time.

• Modifiable entrainment.

• Modifiable CIC/crossover rates.

• Tracking of microtubule crossovers.

• Katanin action at crossover sites.

The model does, however, have some limitations. For example the model

does not currently offer microtubule dependent nucleation (branched/parallel)

although this could be a straightforward future addition. Our model also simu-

lates the plant cortical membrane as a single two dimensional area with periodic

boundaries at all four edges. The is an adequate and accepted approximation of

a three dimensional cell [Allard et al., 2010]. Eren et al. [2010] did propose a three

dimensional cylindrical model, however, their claim that it is three dimensional

is questionable given that there is only one growth face (the side of the cylinder

- the top and bottom of the cylinder act as catastrophe inducing or reflective

boundaries) and therefore it appears it is really a two dimensional model which

is then mapped onto a cylinder when visualised. The same could be emulated

on our model through periodic boundaries at the sides and catastrophe/reflective

boundaries at the top and bottom. However, a clear advantage of a multi-faced

three dimensional model, such as used in [Ambrose et al., 2011] would be if you
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want to simulate different growth parameters and structures in different locations

of the cortex (such as at the top versus the base) which would be difficult in our

model.
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Chapter 5

Modelling the Bellett hypothesis

of side wall formation in MDCK

cells

5.1 Introduction

In this chapter we present our research in modelling the Bellett hypothesis using

the mathematical and simulation models described in Chapter 4. We begin by

defining the relevant geometry of the MDCK cell and the dynamic instability

parameters used. We then describe briefly the behaviour of the simulation and

our partial differential equation (PDE) implementation. We present the results

of parameter searches on tubulin concentration dependent dynamic instability

and side wall dependent centrosomal nucleation rate. We find that a side wall

dependent nucleation rate is the best fit for the Bellett hypothesis and propose

that the reason for the shrinking of the centrosomal array is due to the loss of

ninein to the side wall.

5.2 Cell Geometry

The cell is modelled as a cylinder containing a centrosome, a spherical nucleus

and an adherens belt which functions as the side wall attachment zone. The
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Figure 5.1: The dimensions and positions of the MDCK cell and its components
used in our model.

dimensions of the cell and the positions and sizes of the components are shown in

Figure 5.1. All microtubules nucleate at the centrosome and undergo catastrophe

upon collision with the cell membrane or nucleus. Using the dimensions shown

in Figure 5.1, the maximum length of a centrosomal microtubule is 8.43µm and

the maximum length of a side wall microtubule is 9.6µm due to restriction from

the geometry.

5.3 Model Parameters

The nucleation rate of the model is a constant 50 min−1. In the absence of

growth/rate data specifically for MDCK cells we use the microtubule growth and

shrinkage equations and values proposed in [Walker et al., 1988] and [Janulevicius

et al., 2006] to generate equations for the growth speed (v+), shrinkage speed

(v−), centrosomal spontaneous catastrophe (rcc) and rescue (rcr) rates and side

wall spontaneous catastrophe (rsc) and rescue (rsr) rates.
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v+ = ((ka ∗ [T ])− kd) (5.1)

v− = ks (5.2)

rcc = (Cc ∗ [T ]) + bc (5.3)

rcr = (Cr ∗ [T ]) + br (5.4)

rsc = (Sc ∗ [T ]) + bc (5.5)

rsr = (Sr ∗ [T ]) + br (5.6)

where [T] is concentration of free tubulin. The units of v+ is in tubulin

molecules gained per minute and the units of v− is tubulin molecules lost per

minute. Both speeds are multiplied by 0.008/13 (length of tubulin divided by

the number of tubulin molecules in a ring) to convert the speeds into µm min−1.

The unit of the rates is min−1 and the units and values and description of the

remaining variables are shown in Table 5.1.

Table 5.1: The constants used to determine the growth, shrinkage, catastrophe
and rescue rates, converted into min−1 from [Walker et al., 1988] and [Janulevicius
et al., 2006].

Description Constant Value Unit
Tubulin association (growth) ka 534 µM−1min−1

Tubulin disassociation (growth) kd 2640 min−1

Tubulin disassociation (shrink) ks 43980 min−1

Centrosomal catastrophe Cc -0.0348 µM−1min−1

Side wall catastrophe Sc -0.0348 µM−1min−1

Catastrophe bc 0.552 min−1

Centrosomal rescue Cr 0.3 µM−1min−1

Side wall rescue Sr 0.3 µM−1min−1

Rescue br -1.8 min−1

We estimate starting tubulin concentration of our MDCK cell to be 13.89

µM (all microtubules deploymerised) by taking the steady state concentration

in [Janulevicius et al., 2006] and adding the tubulin of 150 depolymerised 9.3

µm side wall microtubules which we would estimate to be present at our steady

state. This gives an initial (and max) v+ of 2.94 µm min−1 and v−, which is in-

54



dependent of tubulin concentration, is 27.06 µm min−1. Whilst v+ is within the

bounds observed in MDCK cells [Bré et al., 1990], v− appears to be unrealisti-

cally high as v− observed in MDCK cells is approximately double the v+ [Bowen

et al., 2011]. Therefore v− was set to 6 µm min−1. v+ and v− are the same

for both the centrosomal and side wall populations. The total simulated time

of each model is 120 minutes and each model starts with all tubulin existing in

an unbound, de-polymerised state. It should be noted that depending on the

tubulin concentration both the rescue and catastrophe rates have the potential

to be negative. At base Cc and Sc catastrophe rates become negative at tubulin

concentrations greater than 15.86 µM so this is not an issue as our maximum

tubulin concentration is 13.89µM. At base Cr and Sr rescue rates become nega-

tive when the tubulin concentration is less than 6µM which could happen as the

microtubule count increases. However, as we decrease the catastrophe and res-

cue coefficients the more likely that the catastrophe and rescue rates will become

negative. Should either the centrosomal or side wall rescue rate become negative

it is treated as being zero.

5.4 Simulation

In the simulation microtubules are divided into four populations; centrosomal

growing (m+
c ), centrosomal shrinking (m−

c ), side wall growing (m+
s ) and side wall

shrinking(m−
s ). Microtubules are added to m+

c according to the nucleation rate,

with an initial length of zero. Each time step (δt = 0.001 min) each microtubule

undergoes a single event. m+
c microtubules either undergo spontaneous catastro-

phe at rate rcc and are transferred to the m−
c population or grow at speed v+. If,

after growth, they collide with the nucleus or cell membrane they undergo colli-

sion dependent catastrophe and are transferred to the m−
c population. However if

they collide with the attachment zone they are transferred to the m+
s population.

The transfer to the m+
s population causes the minus end of the microtubule to

move from the centrosome to the collision point and the plus end to be pulled

vertically down towards the base of the cell so that the length of the microtubule

is conserved. If the length of the microtubule becomes less than zero it is re-

moved from the model. m+
s microtubules either catastrophe at rate rsc and are
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transferred to the m−
s population or grow at speed v+. Basal membrane proteins,

which interact with the plus ends of microtubules, have been identified which may

stabilise the side wall microtubules once they reach the cell base [Hotta et al.,

2010; Mogensen et al., 2002]. Therefore if the m+
s microtubule collides with the

base of the cell, the microtubule stops growing and is considered to be fully stable

and no longer subject to spontaneous catastrophe for the duration of the simu-

lation. m−
s microtubules either rescue back to the m+

s population at rate rsr or

shrink at speed v− and are removed from the simulation if their length becomes

less than zero.

According to the Bellett hypothesis, once a centrosomal microtubule has at-

tached to the side wall, ninein needs to be transferred along the microtubule

before it is then pulled down onto the side wall. This adds complexity to the

model as one would need to consider a pause period for the ninein to arrive, the

rate at which the microtubule is pulled by the dynein motor on the side wall and

whether the minus end of the microtubule should be subject to dynamic insta-

bility once it becomes exposed from the centrosome. Therefore to simplify the

model we have the microtubule instantly pulled down onto the side wall once it

attaches. We do not believe that this will greatly influence the results as dynein

has a motor speed of 5-10 µms−1 [Cross, 2004] which is ∼200 times faster than

the maximum growth speed of the microtubules in our model. Even if we consider

that the motor may only operate at a tenth of its speed when pulling the micro-

tubule there is still unlikely to be a sizeable change in the microtubule length in

the time it takes to transfer to the side wall.

5.5 PDE implementation

Similar to the simulation, the partial differential equation system is derived by

considering four separate microtubule populations, the growing and shrinking

populations attached to the centrosome and the growing and shrinking popu-

lations attached to the side wall. This formulation is related to [Tindemans

and Mulder, 2010] where one independent growing and shrinking population was

considered without spatial restriction.

The coupled system is written as follows,
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∂m+
c

∂t
= −v+∂m

+
c

∂l
− rcm

+
c + rrm

−
c (5.7)

∂m−
c

∂t
= v−

∂m−
c

∂l
+ rcm

+
c − rrm

−
c (5.8)

∂m+
s

∂t
= −v+∂m

+
s

∂l
− rcm

+
s + rrm

−
s + Φatt (5.9)

∂m−
s

∂t
= v−

∂m−
s

∂l
+ rcm

+
s − rrm

−
s (5.10)

where m+
c is the growing population attached to the centrosome, m−

c the

shrinking population attached to the centrosome, m+
s the growing side wall pop-

ulation and m−
s the shrinking side wall population. Parameters which govern the

behaviour of the system are the growth speed, v+, the shrink speed , v−, the

spontaneous catastrophe and rescue rates, rc and rr. Φatt represents the transfer

of microtubules onto the side wall through the Bellett hypothesis.

As we model the MDCK cell as a cylinder we can calculate the length of a

microtubule when it collides with the cell membrane/nucleus/attachment zone

based on the nucleation angle of the microtubule, θ, where θ ∈ [0, π]. Therefore

for any given value of θ, l0(θ) denotes the length of the microtubule at collision and

θ ∈ [θ1, θ2] denotes the angles at which this collision occurs with the attachment

zone. Therefore we can define Φatt as:

Φatt = m+
c v

+δ(l − l0(θ))(θ ∈ [θ1, θ2]) (5.11)

To model collisions that occur outside the attachment zone and thus result in

CIC we use the following two boundary conditions:
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m−
c (l0, t) =

v+

v−
m+

c (l0, t), θ /∈ [θ1, θ2] (5.12)

m−
c (l0, t) = 0, θ ∈ [θ1, θ2] (5.13)

The first shows the movement of microtubules to the shrinking population

at their collision length when their nucleation angle would not cause them to

collide with the attachment zone. This supplemented by the second equation

which shows that there is no movement to the centrosomal shrinking population

when their nucleation angle would put them into collision with the attachment

zone as these collisions would result in the microtubules moving into the side wall

population. In addition, we have the following boundary conditions:

m+
c (0, t) =

rn

v+
(5.14)

m−
c (0, t) = 0 (5.15)

m+/−
s (0, t) = 0 (5.16)

showing microtubules enter the centrosomal growing population at length zero

according to the nucleation rate rn and that in the centrosomal shrinking and both

side wall populations there are no microtubules with zero length.

We also need to account for microtubules in the side wall population stabilising

once they reach the base of the cell. We define this length of the side wall

microtubule, which is dependent on the angle of the microtubule at nucleation,

lsb(θ) as:

lsb(θ) = lsw + lr(cot(θ)− cot(θ2)) (5.17)

where lsw is the length between the attachment zone and the base of the cell

and lr is the radius of the cell. The count of side wall microtubules that stabilise,

m0
s(t), can be defined as:

m0
s(t) = v+

∫ t

0

m+
s (lsb,t)dt (5.18)
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As the microtubules can only enter the side wall shrinking population through

spontaneous catastrophe from the side wall growing population it follows that

there can be no shrinking side wall microtubules of length greater than or equal

to lsb. Therefore:

m−
s (lsb, t) = 0 (5.19)

5.5.1 Numerical solution

The coupled partial differential equation system 5.7-5.10 is solved numerically

using a finite difference scheme. For each equation we discretise the microtubule

length in terms of a uniform grid with N mesh points spanning from the minimum

to the maximum microtubule length thus,

xi =
l(i− 1)

N − 1
, i = 1, ..., N (5.20)

Partial derivatives in x are written in terms of the three-point central differ-

ence formula,

∂m

∂x
≈ m(xi+1)−m(xi−1)

2h
(5.21)

where h = xi − xi−1, the separation between mesh points. At x0 and xN−1

the central difference cannot be calculated and so the forward and backward

differences are used respectively.

To compute the time evolution of the microtubule populations the right-hand

side of the PDEs are integrated using the trapezoidal rule to obtain,

m(l, tj+1) = m(l, tj) + (RHS terms) dt (5.22)

where dt is the separation between time-points.

5.5.2 Exploration of parameter space

Due to the difficulty of determining through experiment the parameters governing

the search-and-capture system we proceeded with a thorough investigation of

59



the parameter space for certain paired combinations four key parameters. Our

motivation for doing this was twofold. First we wished to study the influence of

changing these parameters upon the overall behaviour of the system and second

to see whether the Bellett hypothesis was sufficient to explain the phenomena

observed within physiologically reasonable parameters.

To perform the parameter search we varied two of the four parameters (Cc,

Cr, Sc and Sr) and kept the remaining two at their base values.: Cc vs. Cr,

Cc vs. Sc and Sc vs. Sr. We chose the pairings Cc vs. Cr and Sc vs. Sr to

maximise/minimise the stabilities of the centrosomal and side wall arrays respec-

tively. Cc vs. Sc was chosen so that the relative stabilities of the two arrays could

be investigated. In the two searches where the centrosomal rescue rate was not

targeted by parameter search, the centrosomal rescue rate was set to zero so that

the faster mathematical model could be used. This condition should be more

favourable to the increase of the side wall array/decrease of the centrosomal ar-

ray as with the base centrosomal catastrophe rate it is likely that the majority of

rescue events would be on microtubules that have undergone CIC thus prolonging

the existence of microtubules that are not targeted to the attachment zone.

The parameter range used for Cc and Sc was from -0.068208 to 0.0696µM−1min−1

in increments of -0.001392µM−1min−1. The parameter range used for Sr was from

0 to 1.188µM−1min−1 in increments of 0.012µM−1min−1. In each parameter search

there were 100 x 100 models run. There are zero microtubules at initiation and

the model was run for a simulated time of 120 minutes and output both the total

length and number of microtubules in the centrosomal and side wall populations.

Table 5.2: Comparison between run times using an OpenCL (parallelised) imple-
mentation and a standard serial implementation when performing a parameter
search with the simulation and PDE models.

Model OpenCL Serial Estimate % Reduction
Simulation 8.3 hours 402 hours 97.9

PDE 1.5 hours 89 hours 98.3

Using the PDE model, all 10000 pairings for a parameter set were completed

within a single OpenCL call. For the simulation model, each of the 10000 pairings

was run 1000 times to derive a consensus for that pairing. Therefore each call
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to OpenCL included 10 pairings with each pairing represented 1000 times (10000

models per call). To reduce the runtime of the simulation model the time step

was increased to 0.01 mins. The total runtime for a parameter search using the

PDE and simulation models using OpenCL compared to running the parameter

search in series is shown in Table 5.2. As the runtime for the PDE model is

independent of changes in the catastrophe and rescue rates the serial runtime

estimate was obtained by multiplying the run time for single PDE model by

10000. The simulation model runtime, however, is dependent on the catastrophe

and rescue rates with runtime increasing as the catastrophe rates decrease and

the rescue rates increase and so the serial runtime figures were estimated using

the base line parameters. We observe an approximate 98% reduction in run times

using parallelisation with OpenCL.

5.6 Results

The primary aim of these investigations is to revisit and perform a thorough

analysis of the Bellett hypothesis to see whether it holds under physiologically

reasonable conditions. We performed these investigations using numerical simu-

lation due to the challenges of making the necessary experimental observations.

It is clear that any model must address the following:

1. The effectiveness of the search-and-capture process for transporting centro-

somal microtubules to the side-walls

2. The observed increase and subsequent decrease of the centrosomal micro-

tubule population

3. The time scales involved for the dynamics and stabilisation of the system

throughout the entire lifecycle of the search-and-capture process

4. What reasonable mechanisms might exist which account for any discrepan-

cies between a detailed model of the hypothesis and current experimental

observations.
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5.6.1 Centrosomal Catastrophe Rate versus Centrosomal

Rescue Rate

The heat maps in Figure 5.2 show the influence upon the microtubule popula-

tions as a function of the centrosomal catastrophe and rescue rates. The size and

length of the side wall array is greatest when the centrosomal catastrophe and

rescue rates are low (Figures 5.2b and 5.2d) as it increases the cycling of new

centrosomal microtubules that are not directed to the side wall without destabil-

ising microtubules that are directed to the side wall. Intuitively increasing the

centrosomal catastrophe rate has a negative impact upon both the total length

and size of the side wall array. At low centrosomal rescue rates, increasing the

centrosomal catastrophe rate decreases both the total length and size of the cen-

trosomal array but at high centrosomal rescue rates, increasing the centrosomal

catastrophe rate has the opposite effect. A possible reason for this is that the side

wall array decreases and therefore there is more tubulin available to the centro-

somal microtubules. Increasing the centrosomal rescue rate increases the number

of centrosomal microtubules as it directly prolongs their lifespan and increases

the size and total length of the side wall array when the centrosomal catastro-

phe rate is not low. However, we do observe the total length of the centrosomal

array shrinking if the rescue rate is raised too high as less tubulin slows growth

rates. At low centrosomal catastrophe rates increasing the centrosomal rescue

rate causes a drop then rise in the number of microtubules on the array but it

should be noted that the length of the side wall array drops showing that few of

the side wall microtubules are able to grow to their full length.

These heat maps highlight the complex interplay between the parameters and

how some properties which might be assumed to increase the speed of the search-

and-capture process (in this case increasing centrosomal microtubule stability)

can actually have the opposite effect. Therefore the effectiveness of a search and

capture process is dependent upon all parameters being correctly tuned.
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(a) (b)

(c) (d)

Figure 5.2: Parameter search: Centrosomal catastrophe versus centrosomal res-
cue after 120 minutes. The value of the colours is shown to the right of each
map. Increasing Cr has a positive effect on centrosomal total length but becomes
negative at high Cr (a). Increasing Cr has a positive effect on the number of
centrosomal microtubules (b). In both centrosomal heat maps decreasing Cc has
a positive effect at low Cr but this is the reverse at high Cr. Both the side wall
total length (b) and the number of microtubules on the side wall (d) decrease
with increasing Cc. In both we observe an increase when Cr is increases at high
Cc but a decrease followed by an increase when Cc is low.

63



(a) (b)

(c) (d)

Figure 5.3: Parameter Search: Side wall catastrophe versus side wall rescue after
120 minutes. The value of the colours is shown to the right of each map. The
total length of the centrosomal array shows a very low sensitivity to Sc and Sr

with a less than 1 µm difference observed across the whole heat map (a). The
total length of the side wall population (b), and both the number of centrosomal
(c) and side wall (d) microtubules increases as Sc decreases and Sr increases.
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5.6.2 Side wall Catastrophe Rate versus Side wall Rescue

Rate

Figure 5.3 shows the influence of the side wall catastrophe and rescue rates upon

the centrosomal and side wall populations. As might be expected the total length

and number of microtubules in the side wall array increases with an increasing

side wall rescue rate and a decreasing side wall catastrophe rate (Figures 5.3b

and 5.3d). We observe that the positive effect of increasing the side wall res-

cue rate appears to cap out as increasing it further would have little affect if

most catastrophes are already being rescued. We do see a similar relationship

in the number of centrosomal microtubules (Figure 5.3c) likely due to a reduced

growth rate reducing the chance of CIC but we only observe a difference of ∼4

microtubules across the parameter search. The effect on the total length of the

centrosomal array is even smaller with less than 1 µm difference in the centro-

somal population across the entire heat map (Figure 5.3a). This does appear to

indicate that side wall population would not be capable of removing the centro-

somal population simply through reducing the free tubulin concentration.

5.6.3 Centrosomal Catastrophe Rate versus Side wall Catas-

trophe Rate

Figure 5.4 shows the effect of the centrosomal and side wall catastrophe rates on

the centrosomal and side wall populations. Both the number of microtubules on

the centrosomal and side wall arrays (Figures 5.4c and 5.4d) and the total length

of these two arrays (Figures 5.4a and 5.4b) decreases as the centrosomal rate.

The effect of the centrosomal catastrophe rate dominates the side wall catas-

trophe rate as the centrosomal catastrophe rate directly influences the number

of microtubules that the side wall catastrophe rate can act upon. Whilst it is

intuitive that both the side wall total number of microtubules and total length

decrease as the side wall catastrophe rate increases, it is not intuitive that both

the centrosomal number of microtubules and total length also decrease. This

could be due to high amounts of free tubulin increasing the growth speed and

thus the rate of CICs.
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(a) (b)

(c) (d)

Figure 5.4: Parameter Search of Centrosomal catastrophe versus side wall catas-
trophe after 120 minutes. The value of the colours is shown to the right of each
map. In all four heat maps we observe the same trend. Numbers and length
decreases as Cc increases. Increasing Sc, however, causes a reduction in all four
heat maps but this is only noticeable when Cc is low.

To investigate parameter sets where the side wall population is largest com-

pared to the centrosomal population we plot the ratio of the total side wall mi-

crotubule length to the total centrosomal microtubule length (Figure 5.6.3). We
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Figure 5.5: The ratio of the total length of the side wall array to the total length
of the centrosomal array in the centrosomal catastrophe rate versus side wall
catastrophe rate parameter search. The value of the colours is shown to the right
of the map.

do observe that the side wall population is greatest relative to the centrosomal

population when Cc is close to its base value of -0.0348µM−1min−1 and Sc is de-

creased to -0.03828 µM−1min−1. If we use this parameter set whilst leaving Sr at

its base value and Cr at zero we can see that the side wall population increases

and reaches the ∼150 side wall microtubules that we would expect at 120 min-

utes but does not appear to be approaching a steady state(Figure 5.6). Also the

centrosomal population does not show a decrease throughout the simulated 120

minutes which is at odds with the experimental observations.

5.6.4 Side wall dependent nucleation rate

To investigate the possibility of the centrosomal nucleation rate decreasing as the

number of microtubules on the side wall increases we redefine the nucleation rate

as:

nuc = base nuc rate− (base nuc rate ∗ Stot

Smax

) (5.23)

where Stot is the total number of microtubules, shrinking, growing and stable,
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(a) (b)

Figure 5.6: Number and total length of the side wall and centrosomal microtubule
populations using the estimated parameters from the parameter search assuming
free tubulin concentration only dependence. The total length of the side wall
population increases in a linear manner whereas the total length of the centroso-
mal population briefly increases in the first 5 minutes before flattening out (a).
The total number of side wall microtubules increases linearly over time whereas
the centrosomal population has an initial sharp increase in the first 5 minutes in
the number of microtubules before sustaining a much slower rate of increase over
the next 115 minutes (b).

that are present on the side wall and Smax is the maximum number of microtubules

we expect to see on the side wall. The base nucleation rate is doubled from 50

min−1 to account for the decrease in rate as the model progresses and Smax is set

to 150. This means that microtubule nucleation rate will be zero when we have

the expected number of microtubules on the side wall.

We use the side wall dependent nucleation rate with the parameters used in

Figure 5.6 in our mathematical model to observe the changes in the microtubule

arrays over time (Figure 5.7). We observe a relationship that is very similar

to that observed in live cells. There is a rapid increase in the centrosomal mi-

crotubule population both in number and length in the first 10 minutes of the

model but then it rapidly shrinks as the side wall population increases. As the

centrosomal population is now in decline the rate of increase in the side wall pop-
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ulation also declines which causes the side wall population to approach a steady

state of 134 microtubules and contains over twenty times more tubulin than the

centrosomal array after two hours.

(a) (b)

Figure 5.7: Number and total length of the side wall and centrosomal microtubule
populations using the estimated parameters from the parameter search using
both a microtubule dependent nucleation rate and free tubulin concentration
dependence. The total microtubule length of the centrosomal population rapidly
increases until microtubules start transferring to the side wall population. At this
point the total centrosomal microtubule length decreases towards zero whilst the
side wall population increases past 1200 µm (a). This relationship is also observed
in the total number of microtubules with the side wall population reaching 133
microtubules and the centrosomal population decreasing past 20 microtubules
(b).

5.7 Discussion

5.7.1 Tubulin dependent dynamic instability

Our results suggest that free tubulin dependent dynamic instability is not suf-

ficient to explain the formation of the acentrosomal side wall array in epithelial

cells according to the Bellett hypothesis. Whilst with certain parameters we do
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observe the side wall reaching a suitable size, it does not appear to be approach-

ing a steady state and we do not observe a shrinkage in the centrosomal array.

The reason for this is that the side wall array is more sensitive to changes in

the stability of the centrosomal array than the centrosomal array is to changes

in the side wall. This means that for a suitably sized side wall array to form

the centrosomal array must have favourable stability parameters. However, the

centrosomal array is then more resistant to the lowering tubulin concentration

and therefore there is not sufficient negative feedback. A limitation to this model

could be that the tubulin dependent dynamic instability parameters are linear

and therefore are unlikely to bring about sudden changes in the parameters that

would be required. Whilst tubulin dependent dynamic instability may not be

a good overall fit for the Bellett hypothesis it does imply that the centrosomal

array needs a low spontaneous catastrophe rate for a large side wall array to

form. This is consistent with the recruitment of +TIP proteins on the centro-

somal array described by Bellett et al. [2009] as they would act to stabilise the

microtubule Akhmanova and Hoogenraad [2005].

5.7.2 Side wall dependent nucleation rate

We show that an arbitrary side wall dependent centrosomal nucleation rate is

a good fit for the Bellett hypothesis. However, what is not clear is why an

increased side wall microtubule population should reduce the nucleation rate at

the centrosome. A possible reason for this is the transference of ninein from the

centrosome to stabilise the minus end of the side wall microtubules. There is

strong evidence that this is the case. Ou et al. [2002] show that the injection

of ninein specific antibodies disrupts the centrosome’s ability to function as an

organising centre. In a recent paper, Shinohara et al. [2013] observe that the

downregulation of ninein through a Pax6 mutant and/or the direct knock out of

ninein through RNA silencing causes a significant impairment of the centrosomal

microtubule array in rat apical progenitor cells. Therefore we show that through

computational modelling that the Bellett hypothesis for the formation of the side

wall array can work in biologically reasonable conditions but we propose that the

reason for the shrinkage of the centrosomal array is due to the transference of
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ninein to the side wall.

It would be beneficial for future studies to investigate the nucleation rate of

a MDCK centrosome as the cell goes through differentiation to observe whether

the shrinkage of the centrosomal array is due to an increased instability of the

microtubules or a reduction in nucleation rate.

5.7.3 Benefits of OpenCL

In this work we also highlight the potential benefits of using OpenCL for paralleli-

sation even when running non-mathematical models, achieving run time reduc-

tions of ∼98% compared to running in serial. More optimisation could potentially

reduce this further. However, it is important to note that the simulation model

was small without a high degree of complexity. For more complex simulations it

may be more time efficient to use a cluster for parallelisation even if the amount

of concurrency is less.
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Chapter 6

Modelling the role of

catastrophe, crossover and

katanin in the self organisation of

cortical microtubules

6.1 Introduction

In this chapter we present our research in modelling the role of sponaenous cat-

strophe, collision induced catastrophe(CIC) and katanin in the formation of the

plant cell acentrosomal cortical array. Part of this chapter (not including the

katanin modelling) has been published in [Mace and Wang, 2014]. An expanded

version of the this paper, which includes the katanin modelling, has been submit-

ted to an IET Systems Biology special edition journal ‘Computational Models

& Methods in Systems Biology & Medicine’ and has been provisionally accepted

subject to revisions.

We begin by describing the dynamic instability parameters used and the types

of microtubule interactions. We show that the observed catastrophe and rescue

rates in live cells produce an ordered model but the order is sensitive to changes

from these rates. We show that, with entrainment, reducing CIC below 0.5 causes

the cortical array to lose order. We show that katanin can restore order to the

72



Table 6.1: Wild type microtubule dynamic instability parameters used in the
simulation. Data from [Allard et al., 2010; Kawamura and Wasteneys, 2008].

Parameter Value

vp
g 6.50 µm min−1

vp
s 12.0 µm min−1

vm
s 0.53 µm min−1

fgp 0.380 min−1

fgs 1.590 min−1

fsp 0.440 min−1

fsg 1.990 min−1

fpg 1.400 min−1

fps 0.700 min−1

array but argue that at low CIC probabilities katanin would have to act infeasibly

fast to be solely responsible for an ordered array.

6.2 Methodology

To model the microtubules we use a similar three state model (growing, shrinking

and paused) proposed in [Allard et al., 2010]. Growing microtubules grow at their

plus-end at rate vp
g and switch to paused or shrinking states at frequencies fgp and

fgs respectively. Shrinking microtubules shrink at their plus-end at rate vp
s and

switch to paused or growing states at frequencies fsp and fsg respectively. Paused

microtubules remain static at their plus-end and switch to growing or shrinking

states at frequencies fpg and fps respectively. All three states of microtubule

shrink at rate vm
s at their minus-ends. The values used for these parameters are

taken from data used in a simulation by [Allard et al., 2010] who obtained them

from microtubules observed in wild type (WT) Arabidopsis thaliana cultured at

31◦C [Kawamura and Wasteneys, 2008] and are shown in Table 6.1. It should

be noted that there is an apparent conflict between the value of fgs as 1.590 is

used in [Allard et al., 2010] but the data in [Kawamura and Wasteneys, 2008]

appears to suggest 0.590 with no apparent explanation for the discrepancy. For

consistency we use the value presented in [Allard et al., 2010] in our model but

also consider the effect of a significantly lower fgs in our analysis.
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6.2.1 Microtubule Collisions

The outcome of a microtubule collision is dependent on the angle of the collision,

θc. If θc <= 40◦ then the incident microtubule entrains and begins growing

parallel to the barrier microtubule with a distance between them of 25 nm [Chan

et al., 1999]. If θc > 40◦, then either a collision induced catastrophe (CIC) occurs

according to the CIC rate and the incident microtubule immediately enters a

shrinking state or the incident microtubule grows over the barrier microtubule

creating a crossover. When katanin severing is investigated we assume that it

is uniformly spread throughout the cell, in a non-rate inhibiting amount, that it

targets the overlying microtubule, and that the time it takes to reach and sever

all crossover sites is constant.

6.2.2 Microtubule Order

To observe the order of the cortical microtubule array we use the order parameter

S proposed in [Allard et al., 2010]:

S = Σili(cos
2(θi − Ω)− sin2(θi − Ω))/Σili (6.1)

As cos2(x)− sin2(x) = cos(2x) we simplify this parameter to:

S = Σili(cos(2(θi − Ω)))/Σili (6.2)

where i indexes each microtubule in the microtubule array and ranges from

1 to n where n is the total number of microtubules. Ω is the dominant angle of

the microtubule array and θi the angle of the ith microtubule and li the length

of the microtubule. The dominant angle is defined as the angle which has the

minimum total difference from the angles of all the microtubules weighted by the

microtubule length.

In the case of an entraining microtubule, the microtubule is first divided into

multiple microtubules at the points of entrainment before the order is calculated

(a microtubule that has entrained twice becomes three microtubules each with a

single growth direction). S is between 0 and 1 with 1 indicating all microtubules

sharing the same direction.
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6.2.3 Simulation Environment

The plant cell is modelled as a 10 µm by 10 µm square. The cell walls are consid-

ered periodic boundaries, such that a microtubule that reaches the cell wall will

continue growing from the opposite side of the cell maintaining the same state and

direction. Microtubules are nucleated in a growing state, with a random growth

direction, in a random location within the cell at a rate k0 = 10 µm−2min−1 [Al-

lard et al., 2010]. In this model we do not consider branched or microtubule

dependent nucleation as it does not appear to enhance the cortical array [Allard

et al., 2010]. To advance the simulation, we use a fixed time step of 0.001 min.

Each time step, new microtubules are added according to the nucleation rate and

existing microtubules change states according to the state change rates. Micro-

tubules that do not change state are then grown or shrunk or paused at their

plus-end depending on their current state. All microtubules are then shrunk

from their minus-end and removed from the simulation if their length is less than

or equal to zero. Microtubule collision detection is the most computationally

expensive part of our model as each microtubule must be compared against all

other microtubules to see if a collision has occurred and the more computation

that is required, which may slow down the simulation. Therefore as a compro-

mise between accuracy and speed, collision detection and crossover existence is

resolved every five time steps instead of every time step. Throughout the sim-

ulation we assume that there is an abundance of free tubulin and therefore the

dynamic instability parameters do not alter as the size of the microtubule array

increases. We also assume that the microtubule nucleation rate is not limited and

that the γ-tubulin rings are immediately removed once growth starts to coincide

with shrinkage beginning at the microtubule minus end.

To investigate the effects of the state change rates we apply a sequence of

multipliers to the target rate ranging from 0 to 2.0 in a step size of 0.2. All

other parameters are kept at their WT value and the CIC rate was set to 1.0.

When investigating the CIC to crossover rate and also the effects of katanin, the

microtubule dynamic instability parameters were kept at their WT value.

Due to the high degree of randomness that is present in the model (micro-

tubule nucleation location, microtubule growth direction, growth state changes)
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a single run of the model would not be likely to produce a reliable result for

a particular parameter set. Therefore the simulation was run 200 times for 60

minutes for each value of the parameter and the mean of the microtubule order

calculated and presented in the Results section.

6.2.4 Software

The simulation model was implemented in Java and the UEA high performance

computing cluster was used to run multiple simulations of the same parameter

set. A separate version of the model which includes a graphical output was used

for visual confirmation of the results.

6.3 Results

6.3.1 The role of growing to shrinking frequency

We observe that the order of the microtubule array is greatest when fgs is at the

WT value (Figure 6.1a). From the simulation snapshot (Figure 6.1b) we observe

a clear single growth domain and evidence of microtubule bundling. Decreasing

fgs from its WT value causes the order to decrease with the rate of decline slowing

as fgs approaches 0. We observe that at 0fgs
WT (Figure 6.1c) there are not only

more microtubules than at the WT value of fgs but also denser bundles. This

is due to the average lifetime of the microtubule increasing and thus increases

the chance of microtubules growing long enough to interact with each other.

However, there is not a single dominant direction, with horizontal, diagonal and

vertical domains present. A probable cause for this is that in the absence of fgs, a

larger proportion of rescue events will occur on microtubules that have undergone

CIC (some catastrophe events will still occur spontaneously by going to the pause

then shrinking state) and therefore by increasing the lifetime of microtubules that

have conflicting directions, the more differing domains have the chance to occur.

Were we to use the fgs as indicated in [Kawamura and Wasteneys, 2008] (0.59),

this would be equal to a multiplier of 0.37 which would result in an approximate

order of 0.68 and would likely have multiple domains and as such would not be
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(a) (b) S = 0.83, fgs = fgs
WT

(c) S = 0.57, fgs = 0fgs
WT (d) S = 0.31, fgs = 2fgs

WT

Figure 6.1: The change in order of the microtubule array as a result of change
in the growing to shrinking frequency, fgs. (a) the mean order of 200 simulations
at 60 minutes when applying a range of multipliers to fgs. Error bars indicate ±
standard deviation. The greatest order is observed when fgs is at its WT value.
Increasing fgs past the WT value causes a much more rapid decline in order
compared to decreasing fgs past the WT value. (b) A snapshot of the model at
60 minutes using fgs

WT . A clear single dominant growth direction is observed.
(c) A snapshot of the model at 60 minutes using 0fgs

WT . Instead of a single
dominant growth direction there appear to be two. (d) A snapshot of the model
at 60 minutes using 2fgs

WT . The microtubule array is very sparse and does not
have a clear dominant growth direction.
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biologically reasonable. Increasing fgs from the WT value causes a rapid drop in

order. This due to the lifetime of the microtubules being decreased and therefore

microtubules have reduced length and there are less interactions between them.

This leads to sparse, unordered arrays as shown in Figure 6.1d where fgs is double

the WT value.

6.3.2 The role of shrinking to growing frequency

We observe a similar relationship with fsg as we did with fgs where increasing

or decreasing the rate past a certain point causes the order of the microtubule

array to decrease (Figure 6.2a). However, in the case of fsg the highest order is

not observed at the WT value but at 0.8fsg
WT . The snapshot for 0.8fsg

WT shows

a clear dominant vertical domain (Figure 6.2b). Lowering fsg from 0.8fsg
WT

towards 0fsg
WT causes a greater drop in microtubule ordering compared to in-

creasing fsg towards 2fsg
WT . This is due the spontaneous catastrophe rates no

longer being opposed and as such the microtubule lifetime decreases leading to

fewer interactions as evidenced by the snapshot for 0fsg
WT (Figure 6.2c) where,

although there are some areas of order, the array is sparse. The effects of de-

creasing fsg, however, are not as pronounced as increasing fgs. This is due to vp
g

being close to half vp
s and therefore fsg has a smaller time frame to act upon the

microtubule. Increasing fsg causes a decline in order as the life time of micro-

tubules increases prolonging conflicting domains. At 2fsg
WT we observe a greater

increase in microtubule count and cell coverage although a less uniform micro-

tubule direction. The loss in order in the 2fsg
WT model is less than the 0fsg

WT

model as a proportion of the increased fsg still acts to counteract spontaneous

catastrophe rates.

6.3.3 The role of collision induced catastrophe (CIC)

It has been reported that microtubules are able to form an ordered array in

the absence of CIC but in the presence of entrainment [Allard et al., 2010]. To

investigate this, we ran simulations using the WT parameters but altering the

proportion of collisions greater than the entrainment angle that result in catas-

trophe or cause the microtubule to cross over the barrier microtubule with no
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(a) (b) S = 0.89, fsg = 0.8fsg
WT

(c) S = 0.63, fsg = 0fsg
WT (d) S = 0.70, fsg = 2fsg

WT

Figure 6.2: The change in order of the microtubule array according to changes in
the shrinking to growing frequency, fsg. (a) The mean order of 200 simulations
at 60 minutes when applying a range of multipliers to fsg

WT . Error bars indicate
± standard deviation. Increasing fsg past the WT value causes a decline in
the order. There is a slight increase in order by decreasing fsg to 0.8 of the
WT value but decreasing fsg further causes a sharp decline in the order. (b) A
snapshot of the model at 60 minutes using 0.8fsg

WT . A single dominant growth
direction is observed. (c) A snapshot of the model at 60 minutes using 0fsg

WT .
The microtubule array is more sparse than the 0.8fsg

WT model and a dominant
growth direction less pronounced. (d) A snapshot of the model at 60 minutes
using 2fsg

WT . The microtubule array is thicker than the 0.8fsg
WT model but a

single dominant growth direction is less clear.

79



(a) (b) S = 0.84, 0.8 CIC

(c) S = 0.63, 0.4 CIC (d) S = 0.10, 0.1 CIC

Figure 6.3: (a) The mean order of 200 simulations at 60 minutes when changing
the fraction of collisions greater than the entrainment angle that result in a CIC.
Error bars indicate ± standard deviation. (b) A snapshot of the model at 60
minutes using 0.8 CIC. A clear single dominant direction is observed. (c) A
snapshot of the model at 60 minutes using 0.4 CIC. Whilst the dominant direct
appears to be vertical, there are many microtubules growing across it. (d) A
snapshot of the model at 60 minutes using 0.1 CIC. There is no clear dominant
direction of microtubule growth.

structural consequences. We observe that at high proportions of CIC (0.5 to 1.0)

the simulation generates highly ordered microtubule arrays (Figure 6.3a). The

highest order is observed at 0.8 CIC which could indicate a positive effect in
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permitting some cross over events but the difference is unlikely to be significant.

It is possible that, at high values of CIC, the chance for a microtubule to cross

over an existing bundle of microtubules is very low and this is countered by the

ability of microtubule bundles to pass random small barrier microtubules. With

the exception of a few visible cross-over events, a snapshot of a 0.8 CIC simulation

at 60 minutes is very similar to those observed in Figures 6.1b and 6.2b showing

a single dominant direction domain.

However, as the fraction of CIC decreases below 0.5 we observe a rapid de-

crease in order as CIC approaches 0 contrary to the findings in [Allard et al.,

2010]. At 0.4 CIC (Figure 6.3c) there are signs of a dominant diagonal direction

but also an increased presence of long, unbundled, conflicting crossover micro-

tubules. At 0.1 CIC (Figure 6.3d) there is little evidence of any order at all. A

reason for this is that low probabilities of CIC greatly reduce the level of interac-

tion between microtubules as the incident microtubule can simply pass through

conflicting barrier microtubules. Also the lifetime of the microtubule greatly

increases as the spontaneous state change rates become the predominant/only

method of entering a shrinking state.

6.3.4 Katanin and Crossovers

Figure 6.4 shows the distribution of natural crossover expirations (those that

cease to exist solely due to the growth/shrinkage of the underlying/overlying

microtubules and not through katanin severing) at CIC values of 0.1, 0.4 and 0.8

using the same parameters as Figure 6.3. We chose these CIC values as 0.1 is

similar to the rate observed in [Wightman and Turner, 2007] in live experiments,

0.4 as it is here that the order drops rapidly compared to higher rates and 0.8 as we

observed the greatest order there (Figure 6.3). As CIC decreases we observe both

a higher number of crossover expirations and a greater mean time to expiration

as such conditions increase the number of microtubules within the cell and also

their individual life spans. In all three cases, the distribution of expirations is

skewed to the left and the most frequent expiration time is 0.01 minutes. A

contributing factor to this is that within this simulation, 0.01 minutes is the time

it takes for a microtubule to crossover a barrier microtubule but then collide
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(a) CIC 0.1, Mean 0.222 (b) CIC 0.4, Mean 0.141

(c) CIC 0.8, Mean 0.081

Figure 6.4: The mean count of crossover expirations of 200 simulations at 60
minutes at CIC values of 0.1, 0.4 and 0.8 using the same parameters as Figure 6.3.
Error bars indicate ± standard deviation and the black vertical dotted line shows
the mean crossover expiration time. Only the first 49 time intervals are shown
on the graphs.

with an entraining microtubule and subsequently shrink back past the crossover

point. Therefore we observe a higher frequency of 0.01 minute expirations relative

to all other expirations as we increase the CIC proportion as it becomes more

likely that a microtubule will undergo catastrophe if it collides with an entraining

microtubule barrier microtubule post crossover.

Note that there are also crossovers showing an expiration time of 0 minutes.
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(a) CIC 0.1 (b) CIC 0.4

(c) CIC 0.8

Figure 6.5: The mean order of 200 simulations at 60 minutes at CIC values of 0.1,
0.4 and 0.8 using the same parameters as Figure 6.3, but also simulating the role
of katanin. We define katanin severing time as the time it takes for the katanin
protein to localise to and sever a microtubule crossover. Error bars indicate ±
standard deviation.

As crossover events and expirations are observed in 5 time step intervals as part

of collision detection, then it is possible that if a microtubule nucleates very close

to an existing microtubule, due to minus end shrinkage and plus end growth,

the microtubule can completely pass over the barrier microtubule causing the

crossover event to cease to exist in the same iteration.

We observe that at CIC 0.8 (Figure 6.5c) enabling katanin does not appear to
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affect the order of the microtubule array even if the katanin was able to instantly

sever nascent crossovers. This is because a highly ordered array already forms

without the need for katanin and as such any microtubules growing contrary to

that array will be swiftly removed through collision induced catastrophe, greatly

dwarfing the effect of crossover severance.

On the other hand, at 0.1 CIC (Figure 6.5a) the katanin must localise and

sever the crossover almost immediately (0-0.02 minutes) for it to create an ordered

array. Longer than 0.08 minutes severing time gives the microtubule enough time

to be extended far from the crossover point that its disruptive effect on the order

of the cortical array is not mitigated by the severing. At 0.4 CIC (Figure 6.5b)

we again observe an increase in order by enabling katanin but again observe a

steady decline in order as the severing time increases. The rate of decline is much

slower than at 0.1 CIC, with an order of greater than 0.7 still being observed with

a severing time of 0.2 minutes as the higher CIC contributes to order through

more induced catastrophes.

However is it biologically feasible that katanin is able to localise and sever a

crossover site with 0.2 minutes (12 seconds)? The mean time for katanin to sever

a crossover site has been observed at 41 ± 14 seconds [Zhang et al., 2013]. Whilst

a direct comparison is difficult as that study was conducted at room temperature

so one would expect lower kinetics compared to that of 31◦C and it is not clear

what the CIC rate was in that study it would imply at least that the 0.02 minutes

(1.2 seconds) required for a high order at 0.1 CIC is unrealistic and additional

mechanisms to katanin are required to create order at very low CIC rates.

6.4 Discussion

6.4.1 Catastrophe versus rescue rate

We conclude that the formation of an ordered cortical array is more sensitive to

changes in catastrophe rate compared to the rescue rate. We observe that us-

ing the state change parameters as per [Allard et al., 2010] causes the simulated

model to generate an ordered array within a biologically reasonable time frame.

However, a less ordered array is formed when using data direct from [Kawamura
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and Wasteneys, 2008]. This shows that computational modelling can be a valu-

able tool in confirming observed microtubule dynamics. We show that there is

a balance between the catastrophe and rescue rates where changing one and not

the other to compensate can result in a loss of order. However, as both the catas-

trophe and rescue rates also affect the length and number of microtubules this

must also be considered in addition to maximising the order parameter as there

should still be a biologically reasonable number of microtubules in the cell. As the

order of the microtubules appears to be more sensitive to the catastrophe rate,

it suggests that allowing the microtubule to survive long enough to interact with

others is an important part in establishing an ordered microtubule array. Also in

a 3-state model there are four other state change parameters that could affect the

formation of the cortical array and therefore further work could be to observe how

each parameter interacts with the others. Also the state change rates may not

be uniformly spread throughout all the microtubules - for example a microtubule

in a bundle may be made more stable due to cross linking proteins [Van Damme

et al., 2004]. It should be noted that when calculating the mean order of the

simulations that the standard deviation appears to be quite large compared to

the mean across most of our results. This is an effect of the randomness inherent

within the simulation as mentioned in Section 6.2.3 and highlights the need for

many simulations to be run for each parameter set. However, the standard de-

viation is lower relative to the mean when the parameter set encourages a high

order as would be expected compared to parameter sets which lead to disorder.

6.4.2 CIC versus crossover

We conclude that through microtubule to microtubule interactions alone an or-

dered array forms when the CIC rate is above 0.5 but the order rapidly decreases

as CIC decreases below that. Our threshold value of 0.5 CIC is not far from

the 0.6 observed in tobacco BY2 cells [Dixit and Cyr, 2004] but far larger than

the 0.09 observed in Arabidopsis thaliana petiole epidermal cells [Wightman and

Turner, 2007]. This implies that where there are low levels of CIC, and thus

increased cross overs, self organisation through microtubule to microtubule inter-

actions alone is not sufficient and therefore additional microtubule interactions,
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such as the severing action of katanin, are required to bring order.

6.4.3 The effect of katanin at low CIC

We conclude that where the CIC rate is too low to create order by itself, katanin is

able to create an ordered array through severing, however, at very low CIC rates

it is unlikely that katanin is able to act fast enough and additional mechanisms to

microtubule to microtubule interactions would be required for an ordered array to

be established. If we consider the role of katanin in a microtubule-to-microtubule

interaction order model, the difference between CIC and entrainment and katanin

is that whilst both entrainment and CIC actively prevent disorder from occurring

either by causing the microtubule to grow alongside the array or to be annihilated

through rapid catastrophe, katanin acts by limiting but not fully removing an

element of disorder (crossover) that has already occurred. To be effective at

this role, the plus end growth speed of the microtubule must be sufficiently slow

enough that the microtubule does not extend too far from the crossover site before

katanin is able to sever it and also the CIC rate must be low enough for crossovers

to occur. However, both these requirements act to inhibit order as greater growth

speed leads to more microtubule interactions and less crossovers means more

meaningful interactions. Therefore we propose that katanin’s role in forming

ordered cortical arrays is reliant on external factors driving the order/orientation

of microtubules as opposed to random microtubule to microtubule interactions.

An example of such a factor could be CLASP which permits microtubules across

certain catastrophe inducing edges where expressed [Ambrose et al., 2011]. This

biases the orientation of microtubules and so contributes to order thus lessening

the requirement of microtubule to microtubule interactions. Future work would

then be to model this and see if both a realistic severing time and microtubule

order could be achieved.

86



Chapter 7

Conclusions

7.1 Summary of Scientific Contributions

In this thesis we used computational modelling to investigate the formation of

ordered acentrosomal microtubule arrays in two cell types; epithelial cells and

cortical plant cells. Our scientific contributions are:

1. In epithelial cells we propose that the Bellett hypothesis can explain the

formation of the acentrosomal array but add our own proposition that it is

the loss of ninein from the centrosome that causes the centrosomal array to

shrink as the side wall increases.

2. We highlight the potential of OpenCL as an alternative to a high perfor-

mance cluster when performing biological modelling with a high degree of

parallelisation.

3. We show that cortical microtubules are able to generate ordered structures

where the CIC probability is >= 0.5 when entrainment is permitted and

there is no severing of crossovers.

4. At CIC probabilities of ∼0.4 we propose that katanin can cause an ordered

array but at very low CIC (0.1) katanin alone, whilst necessary, is not

sufficient to create an ordered array.

5. We developed simulation software for cortical microtubules that can be used

and expanded by the scientific community for future modelling studies.

87



7.2 Epithelial cell research

Our aim was to investigate the Bellet hypothesis as to how to microtubules moved

from the centrosome to the side walls in epithelial cells using an MDCK cell as

a model cell type. We hypothesised that the concentration of free tubulin and

the relative catastrophe and rescue rates of the centrosomal population could

explain the shrinking of the centrosomal microtubule population as the side wall

population grows. We created both Monte Carlo simulation and PDE models

of the MDCK microtubules and parallelised them through OpenCL to perform

parameter searches on the centrosomal and side wall catastrophe and rescue rates.

Whilst we observed the side wall population reaching an appropriate size within

the specified time frame, we did not observe a corresponding decrease in the

centrosomal population as side wall population was very sensitive to changes in

the centrosomal dynamic instability. Therefore we modelled the loss of nucleation

potential from the centrosome, corresponding with ninein being transported to

the side wall, by adding a negative feedback term reducing centrosomal nucleation

as the side wall population increased. Here we observed an increase in the side

wall and decrease in the centrosomal populations that was similar that observed

in life cell experiments and therefore we propose that the Bellett hypothesis can

work but with the added proviso that the nucleation rate of the centrosome drops

as the amount of ninein on the side wall increases.

7.3 Cortical microtubule research

Our primary aim was to investigate how catastrophe, both spontaneous and col-

lision induced, affected the formation of ordered cortical microtubule arrays. Our

objectives were to investigate the impact of katanin at low rates of collision in-

duced catastrophe (high chance of crossover) and to generate a simulation model

for cortical microtubules as there were not any available. We created an in-

tuitive Monte Carlo simulation model in Java that accepted a wide amount of

dynamic instability and cellular parameters that could provide a graphical output

for individual runs but also a version that could be run on a cluster for param-

88



eter searches. By performing parameter searches, with microtubule entrainment

enabled, we observed that changes in the spontaneous catastrophe rate, both

positive and negative, had a negative effect on the formation of the ordered mi-

crotubule array. We also observed that an ordered array no longer formed once

the probability of CIC was less than 0.5, with peak order being observed at 0.8

probability. Through modelling the role of katanin we observed that at low rates

of collision induced catastrophe observed in some cortical cells, katanin would

have to act implausibly fast to create an ordered array and therefore we propose

that katanin, whilst it is a necessary element of creating ordered arrays, requires

additional mechanisms of controlling the order of the microtubules.

7.4 Cortical microtubule software

Our objective was to produce a cortical microtubule model that would assist in

future research studies. We believe we have achieved this as our model provides

fully changeable dynamic instability parameters in addition to entrainment and

cross over severing. It is also platform independent and provides a real time view

of the simulation. Being written in an object orientated manner it should also

not be overly complex to update with additional features/interactions.

7.5 Future work

Future work would be to expand the cortical microtubule model to a multiple

surface three dimensional model. This would allow greater control over spatially

distributed factors and also pave the way towards large, tissue based models. As

the microtubules themselves do not differ between cell types it should be able to

expand the simulation model into different cell types by adding a different geom-

etry and behavioural protocols. Also in order to make the simulation model more

complete an OpenCL component could be added to enable parameter searches.

As an alternative to Monte Carlo simulation studies it could be advantageous

to instead model microtubules as nematic liquid crystals. Nematic liquid crystals

are rod like structures in a fluid whose energetically favourable configuration is to
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align in parallel. This is very similar to the observed behaviour microtubules [Hitt

et al., 1990]. As there is a large body of mathematical work on liquid crystals,

modelling microtubules as them could provide strong analytical solutions and

yield further insight into their behaviour. A recent study has used a liquid crystal

model of microtubule cytoskeleton aggregates [Fan and Li, 2015].

90



References

Munshi Aaftab. OpenCL Specification Version 1.2. http://www.khronos.org/

registry/cl/, 2011. 27, 28

Anna Akhmanova and Casper C Hoogenraad. Microtubule plus-end-tracking

proteins: mechanisms and functions. Current Opinion in Cell Biology, 17(1):

47–54, 2005. 2, 70

Jun F. Allard, Geoffrey O. Wasteneys, and Eric N. Cytrynbaum. Mechanisms of

self-organization of cortical microtubules in plants revealed by computational

simulations. Molecular Biology of the Cell, 21(2):278–286, 2010. 7, 8, 20, 21,

23, 26, 31, 50, 73, 74, 75, 78, 81, 84

Chris Ambrose, Jun F Allard, Eric N Cytrynbaum, and Geoffrey O Wasteneys.

A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical mi-

crotubule organization in Arabidopsis. Nature Communications, 2:430, 2011.

16, 21, 23, 26, 50, 86

Søren S.L. Andersen. Molecular characteristics of the centrosome. International

Review of Cytology, 187:51–109, 1999. 1

D. Andrade. OpenCL Optimization I. http://www.cmsoft.com.br, 2011. 29

R. Bacallao, C. Antony, C. Dotti, E. Karsenti, E. H. Stelzer, and K. Simons.

The subcellular organization of Madin-Darby canine kidney cells during the

formation of a polarized epithelium. The Journal of Cell Biology, 109(6 Pt 1):

2817–2832, Dec 1989. 2

91

http://www.khronos.org/registry/cl/
http://www.khronos.org/registry/cl/
http://www.cmsoft.com.br


REFERENCES

Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson, Mike Lang, Scott

Pakin, and Jose C. Sancho. Entering the petaflop era: the architecture and

performance of Roadrunner. In Proceedings of the 2008 ACM/IEEE conference

on Supercomputing, SC ’08, pages 1:1–1:11, Piscataway, NJ, USA, 2008. IEEE

Press. ISBN 978-1-4244-2835-9. URL http://dl.acm.org/citation.cfm?

id=1413370.1413372. 26

Vladimir A. Baulin, Carlos M. Marques, and Fabrice Thalmann. Collision induced

spatial organization of microtubules. Biophysical Chemistry, 128(2):231–244,

2007. 19, 20, 21, 31

Gemma Bellett, Jane M. Carter, Jennifer Keynton, Deborah Goldspink, Colin

James, David K. Moss, and Mette M. Mogensen. Microtubule plus-end and

minus-end capture at adherens junctions is involved in the assembly of apico-

basal arrays in polarised epithelial cells. Cell Motility and the Cytoskeleton, 66

(10):893–908, 2009. 3, 5, 70

J.R. Bowen, D. Hwang, X. Bai, D. Roy, and E.T. Spiliotis. Septin GTPases

spatially guide microtubule organization and plus end dynamics in polarizing

epithelia. The Journal of Cell Biology, 194(2):187–197, 2011. 16, 55
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