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ABSTRACT 
 

 
 

This thesis presents a new convenient method for the synthesis of malonic acid half esters 

and thioesters under solvent-free conditions. The relative acidity of a broad variety of MAHOs and 

MAHTs has been estimated by an innovative and simple method based on the  determination of 

observed rate constants from hydrogen-deuterium exchange experiments of malonates. The 

results obtained from kinetic experiments allowed us to select the more suitable artificial malonyl 

carriers in decarboxylative aldol-type condensations. 

In the second part of the thesis, the first example of a base and metal -free decarboxylative 

aldol condensation is described. Three different catalytic systems have been successfully 

employed to carry out mild condensations between malonates and aldehydes. One of these 

catalytic systems involves the first use of an antibiotic (valinomycin) in the catalysis of 

decarboxylative aldol condensations. 

In the last part of the thesis, a new versatile and regioselective method to obtain 

monofunctionalised calix[4]arenes blocked in a cone conformation is described. A broad range of 

monoarmed calix[4]arenes have been synthesised and the properties of some of these 

calix[4]arenes studied. In addition, a simple method for the preparation of multi functional 

calix[4]arenes blocked in the cone conformation has been developed, using a procedure based on 

the discovery of new reaction conditions for efficient Cannizzaro reactions of diformyl 

calix[4]arenes. Finally, the synthesis of a bio-inspired bifunctional mercapto-calix[4]arene has been 

carried out, in order to mimic part of the active site of a PKS. The new mercapto-calix[4]arene 

prepared, which carries two sulfhydryl groups in the upper rim, has been successfully loaded with 

two malonyl molecules and employed to mimic the condensing function of PKS. 
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1.1 Introduction to polyketide synthases (PKS) and malonyl group carriers. 

 

1.1.1 PKS: A sophisticated type of molecular assembly line.
1
 

 

Polyketide synthases (PKS) are a group of enzymes responsible for the synthesis of an 

important family of natural products known as polyketides. The exceptional activity of polyketides 

against cancer and other important diseases makes them one of the most relevant and promising 

type of natural substances with potential as lead compounds for pharmaceutical applications. For 

that reason, over the past decades scientists have devoted themselves to elucidate and 

understand the mechanistic pathways involved in the biosynthesis of polyketides by 

microorganisms and plants. 

Polyketides are natural organic molecules presenting a wide variety in size and structural 

complexity. Nevertheless, all polyketides have a common origin as they ar e obtained from primary  

polyketone chains synthesised by polyketide synthases in microorganisms and plants. By the 

action of the PKS, the primary polyketone chain undergoes a number of specific transformations 

and cyclisations leading to the desired polyketide. The mechanism of biosynthesis of polyketides 

by PKS enzymes resembles a molecular assembly line where an initial polyketone chain is 

extended and modified by a sequence of finely programmed catalytic trasformations at specific  

positions in the chain (figure 1.1).  

 

 

Figure 1.1 Schematic representation of polyketides biosynthesis by modular PKS.  

 

Scientists have made important advances in the understanding of the mechanistic pathways 

involved in the biosynthesis of polyketides whilst organic chemists have dedicated great efforts to 
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develop novel syntheses of polyketides in a laboratory scale in order to study their pharmacological 

activity and potential applications in medicine.  

The enormous interest in polyketides not only derives from their exceptional properties as 

immunosuppressants, antibiotics, antitumoral agents and antifungals but for their capacity to treat a 

great number of important diseases.  

 

 

Figure 1.2 Synthesis of polyketones, polyketides and fatty acids catalyzed by different types of 

enzymes.
1 

 

To give a clear proof of the importance of polyketides in health care and thus in the 

pharmaceutical industry, the worldwide sales of drugs based on polyketides as active 

pharmaceutical ingredients reached more than fi fteen billion dollars over the last decade which 

makes polyketides the best seller drugs around the world.
2
  

The primary polyketone chain used in the synthesis of polyketides is generated from an acyl 

group and is extended through condensation reactions with malonyl groups. The condensation step 
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is repeated several times leading to the elongation and growth of the polyketide chain that will be 

further modified by other catalytic functions within the PKS (figure 1.2).  

The modification of the primary polyketone chain is very specific and sophisticated. It may 

also lead to a broad range of metabolites as, for instance, the simple aromatic polyketide 6 -methyl 

salicylic acid or the more complex macrocyclic structures like ery thromycin-A (figure 1.3). The 

modifications carried out by the different catalytic functionalities within the PKS also involve 

extremely mild conditions at room temperature and in the absence of strong acids or bases.  

 

 

Figure 1.3 Structure of 6-methyl salicylic acid and erythromycin-A.
1 

 

The link between the polyketide chains and the enzyme is always accomplished by a 

sulfhydryl group that forms a thioester bond. Malonyl groups use the same type of linkage and are 

transported to the active site of the PKS by different carriers. The condensation between polyketide 

chains and malonyl thioesters is carried out in the active site of PKS following a decarboxylative 

Claisen condensation. As a result of a successive series of decarboxylative Claisen condensations, 

PKS is able to extend the length of the polyketide chains by two carbon atoms per condensation.  

The nascent polyketide chain is further modified by the PKS by other functions like ketoreductases 

(KR), dehydratases (DH) or aromatases allowing PKS to finely tune the functionality and structure 

of the new active metabolites obtained.  

In the active site of PKS, hydrogen bond interactions between two amino acid residues 

(histidine and asparagine) and a thioesters linkage allows the activatio n of malonyl groups attached 

to Coenzyme-A and also facilitates the generation of a thioester enolate that is involved in the 

condensation reaction with a nearby polyketide chain attached itself to a cysteine residue within the 
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enzyme via a thioester bond. During the elongation step, the condensation between the malonyl 

groups and a polyketide chain is driven by the loss of a molecule of carbon dioxide during the 

decarboxylation of the malonyl group (figure 1.2). The mechanisms involved in further modificat ions 

of the nascent chain are catalyzed by several different functions present in the PKS and are 

generally very complex and shopisticated processes. 

The mechanistic pathways for the biosynthesis of polyketides are very similar to those found 

in the biosynthesis of fatty acids by the fatty acid synthases (FAS). However, the enzymatic factors  

that dictate the generation of one specific type of natural product and instead of another remain 

unknown. There is not much information either about the type of chemical factors involved in the 

determination of the chain length, the degree of oxidation of the chain and also the type of 

cyclisation suffered by the linear polyketide chains.  

 Over the last years, advances in genetic engineering have allowed scientists to s tudy in 

greater detail the complex mechanisms involved in PKS.
1
 Functional modules in PKSs are formed 

by highly complex protein structures that catalyse not only single transformations but also cascade 

reactions. This particular feature makes PKS a natural  and a highly versatile molecular machine 

capable of synthesizing both small and structurally simple biomolecules and larger and complex 

structures with molecular weights over a thousand Daltons.  

The molecular structure of polyketides may also vary from ve ry rigid multi-cyclic structures like 

the chemotherapy drug doxorubicin (aromatic polyketide), to more flexible molecules like pederin 

(isolated from hemolymph of female Paederus beetle) as another example of natural product with 

anti-tumoral properties (figure 1.4). 

 The functionalities that can be found in polyketides are very diverse and include, among 

others, functional groups like carboxylic acids, esters, ketones, olefins or aromatic rings. The 

stereochemistry and the functional groups present in the structure of the polyketides will determine 

their biological function in microorganisms and plants.  
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Figure 1.4 Molecular structures of polyketides doxorubicin and pederin.
1 

   

1.1.2 Classification of Polyketide Synthases.
1
 

 

PKS can be classified in three different groups depending on the operating mechanism 

during the biosynthesis of polyketides (scheme 1.1). PKS type I presents several multi functional 

subunits, each of them being able to perform a certain number of biosynthetic steps, normally  

following a non-iterative mechanism. PKS type II is formed by a group of discrete catalytic functions 

that can work in an iterative way in order to extend and modify the crescent polyketone chain.  

Finally, PKS type III is formed by a single active site capable of carrying out multiple biosynthetic 

steps in order to obtain the desired polyketide.  

The properties of each type of PKS are summarized in the table 1.1. According to the mode 

of operation, only PKS type I follows a modular and an iterative mechanism respectively. The rest 

of PKS can only operate under iterative processes. The transport and activation of the malonyl 

groups used during the elongation step are different depending on the type of PKS involved. In 

PKS type I, the transport of malonyl groups to the active site of the enzyme is carried out by the 

acyl carrier protein (ACP), while in PKS type II and type III this task is conducted by acyl -CoA 

oxidase (ACO) and coenzyme-A (CoA) respectively.  
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Scheme 1.1 Synthetic mechanisms for each type of PKS.
1 

 

 Finally, different types of PKS produce different types of polyketides. PKS type II and III 

carry out the biosynthesis of polyketides that contain aromatic groups in their structures whilst PKS 

type I can produce both aromatics and non aromatic polyketides. 

 

Table 1.1 Main features for different types of PKS.
1
 

Type of PKS Mode of operation Substrate activation Products 

I Modular ACP Reduced 

I Iterative ACP Reduced and aromatic 

II Iterative ACO Aromatic  

III Iterative CoA Aromatic  
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1.1.2.1 PKS type I. 

 

PKS type I consists in a group of enzymes characterised by presenting multiple functional 

groups located within the same polypeptide region which allows these types of enzymes to carry  

out different  synthetic transformations in the same active site. PKS type I is involved in the 

synthesis of a structurally diverse class of natural products including polyketides like orsellinic acid 

or the more structurally complex squalestatin S1 also known as Zaragozic acid, a potent inhibitor of 

squalene synthase and therefore an inhibitor of sterol synthesis lowering plasma cholesterol (figure 

1.5).  

 

 

Figure 1.5 Example of polyketides produced by PKS type I.
1
 

 

PKS type I can be, at the same time, classified in three different subcategories, according to 

the content of reductase functions in their catalytic sites:  

 

A) Non-reducing PKS type I (NR-PKS-I).  

B) Partially reducing PKS type I (PR-PKS-I).  

C) Highly reducing PKS type I (HR-PKS-I).  

 

The structure of non-reducing PKS type I and the functionalities present in its active site 

were published by Crawford et al. in 2008.
3
 However, the structures and reaction mechanisms of 

PR-PKS-I and HR-PKS-I remain quite unknown. It has been found that PKS type I can produce 

long-chain polyunsaturated fatty acids (PUFA) by using a different synthetic pathway to the one 
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employed by PUFA synthases in eukaryote cells. This class of PKS type I can present up to nine 

different active functions cooperating in the same enzymatic region.
4
 Since PKS type I can present  

several functions within the same protein, some of these enzymes are the largest proteins found in 

nature.
5
 A good example of this is the enzyme MLSA-I from mycolactone polyketide synthase that  

presents eight different interconnected functions and a molecular mass of 1.8 MDa.
6
 

 

1.1.2.2 PKS type II. 

 

PKS type II take the form of a cluster of proteins where several enzymatic functions are 

located in the same region. Each of these groups of enzymatic functions or modules are able to 

carry out one specific transformation in an iterative process.
7
 In this type of enzyme, there is a 

distinctive group of proteins known as “minimal PKS” responsible for the chain elongation step and 

also the condensation of malonyl and acyl thioesters. In general, “Minimal PKS” is made up of two 

ketosynthase condensing enzymes and an acyl carrier module where the nascent chain is attached 

through a pantothenyl arm. 

Additional enzymatic subunits like ketoreductases, cyclisases, aromatases, transferases, 

oxygenases, glycosyl-transferases and N, O and C-methyltransferases assist to “minimal PKS” 

during the biosynthesis of complex polyphenolic polyketides.
8
 

The specific function of some protein regions present in PKS type II enzymes remains 

unknown due to the difficulties of isolating highly unstable polyketide intermediates and to the great  

interdependence between different subunits within the enzymatic cluster respectively, making it  

extremelly challenging to reproduce the function of isolated enzymes.  

 

1.1.2.3 PKS type III. 

 

PKS type III are formed by a single and multi functional active site capable of multitasking to 

perform the catalysis of Claisen condensations during the chain elongation step, the control of the 

number of cycles during the chain elongation process and the control of different intramolecular 

condensations and aromatizations in the polyketide during the folding step leading to active 
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aromatic metabolites. Due to the relatively low complexity of the synthetic pathways found in PKS 

type III, a good number of factors that determine the folding mechanism of the polyketide chain are 

well established in this type of enzymes.
9
 

In contrast to PKS type II, where every type of synthetic transformation is carried out by a 

specific enzymatic subunit, in the case of PKS type III, all  the biosynthetic transformations have 

place in the same active site.
10 

 

1.1.3 Natural malonyl group carriers: Coenzyme-A and ACP. 

 

During the biosynthesis of polyketides and fatty acids, the transportation of malonyl units in 

the active site of PKS and FAS is required in order to extend polyketide chains. Coenzyme-A and 

ACP (acyl carrier protein) are able to covalently link malonyl groups through a thioester function 

allowing the transference of malonate units to the active site of the enzyme via a trans-

thioesterification reaction. The thioester linkage plays a double role in this process. On one side,  

the lower stability of thioesters compared to esters facilitates the trans-esterification reaction and 

the transference of malonyl groups to the active site of PKS and FAS respectively. On the other 

side, the presence of a sulfur atom in the thioester linkage facilitates the formation of enolate 

thioesters that participate in the Claisen condensation during the chain elongation step.                             

 

1.1.3.1 Coenzyme-A.  

 

Coenzyme-A constitutes, along with the acyl carrier protein, the most important acyl and 

malonyl carriers in the biosynthesis of polyketides and fatty acids, and has a key role in hundreds 

of synthetic and degradative processes in living organisms.
11

 Coenzyme-A is an essential 

compound very much needed for the correct function of these enzymes, acting not only as a carrier 

but also as a cofactor. Coenzyme-A was first reported on 1945 by Lipmann et al.
12

 and its name 

makes reference to its ability to co-catalyze acetylation reactions. 
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Figure 1.6 Chemical structure of coenzyme-A.
13

 

 

The structure of coenzyme-A presents a 3’-phosphoadenosine group coupled to pantothenic 

acid by a diphosphate linkage in the 5’ position of ribose (figure 1. 6). The terminal carboxylic 

function is linked to -mercaptoethylamine via a peptide bond.
13

 Coenzyme-A participates in the 

synthesis of polyketides and fatty acids by carrying malonyl and acetyl groups forming malonyl -

CoA and acetyl-CoA respectively. Malonyl-CoA is generated from acetyl-CoA, bicarbonate and a 

molecule of ATP (adenosine triphosphate) in an irreversible process catalyzed by acetyl -CoA 

carboxylase.
14

 

 

 
Scheme 1.2 Formation of malonyl-CoA catalyzed by acetyl-CoA carboxylase.

14
 

 

Acetyl-CoA carboxylase presents a biotin arm connected to a biotin carrier protein through 

the -amino group of a lysine residue. The formation of malonyl-CoA involves two synthetic steps. 

Initially, a carboxyl group is transferred from bicarbonate to the biotin fragment in the carrier protein 
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with the consumption of a molecule of ATP. In the second step, the biotinyl group transfers the 

carboxyl group to acetyl-CoA to generate malonyl-CoA (scheme 1.2).  

 

1.1.3.2 Acyl carrier protein (ACP).  

 

Nuclear magnetic resonance (NMR) was used to determine the structure of an acyl carrier 

protein domain in solution. The structure of an ACP domain from 6-deoxyerythronolide B synthase 

(DEBS), a modular PKS, was first time reported in 2007 by Alekseyev et al.
15

 The reported ACP 

domain (ACP-2 of DEBS) contains three-helical bundles and an additional short helix in the second 

loop simirlarly to the structure found in the ACP of fatty acid synthases type I.  

The function of ACP during the biosynthesis of polyketides is to accept the main polyketide 

chain from an acyl transferase (AT) and to collaborate with ketosynthase (KS) d omains in the 

elongation of the polyketide chains and in the modification of carbonyl groups respectively. The 

acyltransferase domain (AT) is responsible for participating in the polyketide chain elongation and 

has the ability to specifically select the required building blocks needed for the condensation 

reactions that form the polyketide chain.
16

 

 

 

Figure 1.7 Chemical structure of ACP linker.17 

 

The ACP domain presents both a phosphopantetheine and a cysteamine terminal group 

where a sulfhydryl group is responsible for linking either malonyl groups, to transfer them to the 

active site of PKS, or the nascent polyketide chain during the elongation process (figure 1. 7).
17

 

Other domains, like ketoreductase (KR), enoyl reductase (ER) or dehydratase (DH) participate in 

the modification of the new extended chain and determine the type of functional groups attached to 

the -carbon of the polyketide chain.  
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The interaction between malonyl-ACP and the condensing enzyme (KS) in the act ive site of 

the PKS allows the decarboxylative Claisen condensation between malonic acid half thioesters and 

acyl thioesters leading to the generation of polyketone chains. The newly formed chains can be 

further modified by other functions like ketoreduction, dehydration or enoylreduction to generate 

modified polyketide chains that are once again, transferred to the KS domain by acyl transferase 

(AT) to begin a new cycle of chain elongation.  

 

1.1.4 Artificial malonyl group carriers. Synthesis of MAHOs and MAHTs.  

 

Malonyl coenzyme-A and malonyl ACP are natural half malonic acid thioesters involved in 

the transport and condensation of malonyl groups in the acive site of PKS. In the active site of 

chalcone synthase (CHS), one of the best known polyketide synthases, a cysteine residue is 

believed to react with an imidazolium-thiolate and histidine ion pair that enables its deprotonation.  

 

 

Figure 1.8 Proposed mechanism of substrate loading, malonyl decarboxylation and polyketide 

extension.
10

 

 

Once cysteine is activated, it is able to accept the nascent polyketide chain involved in a 

decarboxylative condensation process (figure 1.8). The decarboxylation of malonyl-CoA is 

catalyzed by PKS by means of hydrogen bonding interactions between  the malonyl group and the 

histidine and the asparagine residues that contribute to the formation and stabilization of the 

thioester enolate. The cysteine residue in KS transports the polyketide chain and also participates 
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in the condensation reaction with malonyl-CoA. During the condensation step, the polyketide chain 

is transferred and then the sulfhydryl group in the cysteine residue is free to accept a new poly --

keto intermediate from coenzyme-A. After decarboxylative condensation and the subsequent chain 

elongation, the newly formed polyketide precursor is then transferred from Co -A to ACP. The 

sulfhydryl group in coenzyme-A is then available to accept a new malonyl group that can 

participate in a new decarboxylative Claisen condensation.  

The key step in the activation of malonyl-CoA in the active site of PKS is therefore, the 

hydrogen bond interactions between amino acid residues and the malonyl group that enable the 

performance of mild decarboxylative Claisen condensations at room temperature and in t he 

absence of either strong acids or bases.  

A great effort has been deployed over the last years by organic chemists in the development 

of new bio-inspired mild decarboxylative aldol-type and Claisen condensations. Inspired by the 

biochemistry of polyketide (PKS) and fatty acid synthases (FAS), organic chemists have been able 

to develop mild decarboxylative processes for the formation of carbon-carbon bonds carried out at  

room temperature, in open vessels and in the presence of wet solvents.  

The mild catalysis of these important reactions has been generally achieved by the use of 

bases in combination with the use of coordinative metals that can effectively coordinate to carbonyl 

groups. A good example is the use of amine bases or imidazole derivatives in combination with 

divalent metals like magnesium or copper. Investigations about mild decarboxylative condensations 

have also led to the development of new stereoselective aldol-type condensations, successfully 

achieved due to the use of either chiral bases or ligands that coordinate to the formed enolate.
18

 

However, the research carried out over the last two decades to develop bio -inspired 

decarboxylative condensations has been mainly focused on the nature of the catalyst, the use of 

different types of co-ordinative metals and the effects created by the solvent employed. Very little 

attention has been paid to the effect that malonyl carriers could induce on this type of reactions. In 

the vast majority of reported papers in the literature, only a very limited number of malonyl carriers  

are used in the formation of MAHOs and MAHTs. In just a few papers, however, several malonyl 

carriers are employed and also their role during decarboxylative condensations is compared. One 

of those papers found in the literature was reported by Matile et  al. in 2001 where Claisen self-
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condensations of MAHTs were carried out and seven different types of malonyl carriers were also 

screened.
19

 In this study, important differences in the reaction yield were obtained when different  

malonyl carriers were used. Malonyl carriers bearing strong electron donating groups gave the best 

yields. However, malonyl carriers bearing strong electron withdrawing groups were not assessed,  

what reduces the scope of the study.
 

Substituents at the -position of MAHOs and MAHTs respectively also represent an 

alternative way of tuning the behaviour of these malonates in mild decarboxylative condensations. 

In the same work, Matile and co-workers reported that the presence of a methyl group in the alpha 

position of malonates had a very negative effect in Claisen self-condensations, as no condensation 

products were obtained. Nevertheless, further investigations on the effect of different substituents 

at the -position may lead to new and more efficient decarboxylative condensations.  

The use of arti ficial malonyl carriers may eventually lead to extremelly mild and efficient 

aldol-type and Claisen condensations, affording new and useful strategies towards the f ormation of 

carbon-carbon bonds or the polymerization of malonates. The malonyl group carrier, linked through 

an ester or thioester function to a malonyl residue in MAHOs and MAHTs, may also facilitate the 

formation of stable enolates via intramolecular interactions. The use of chiral malonyl carriers may 

also induce stereoselectivity in the condensation reactions making them even more versatile 

processes (scheme 1.3).  

 

 

Scheme 1.3 (a) Polymerization of MAHTs and (b) decarboxylative aldol condensation of MAHTs with 

aldehydes. 

A bio-inspired mild polymerization of malonates has never been achieved before and may 

potentially lead to the development of simple protocols for the preparation of important types of 

secondary metabolites such as polyketides. The effect of malonyl group carriers on the reactivity 
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and properties of MAHOs and MAHTs will be studied and described in detail in chapters 1 and 2 of 

this thesis. 

Different methods were employed in the past for the synthesis of malonic acid half esters 

and thioesters. In 1976, Junek et al. reported the use of Meldrum’s acid as a good malonyl 

equivalent in the preparation of MAHOs. In that work, the synthesis of a good number of esters was 

achieved by heating a mixture of phenol and Meldrum’s acid at 100 ºC for 90 minutes (scheme 

1.4). After purification, the desired malonic acid half esters were obtained in moderate to good 

yields (36 - 98%).
20

   

 

 

Scheme 1.4 Reaction between phenolic substrates and Meldrum’s acid. 

 

The majority of protocols towards the synthesis of malonic half esters described 

subsequently have involved the used of Meldrum’s acid.
21 

 Other methods employed malonic acid as malonyl group equivalent. In 2007, Levonis and 

co-workers reported the selective monoesterification of malonic acid catalyzed by boric acid.
22 

However, Meldrum´s acid was rarely used in the synthesis of MAHTs likely due to MAHTs 

instability with temperature. Other different malonyl equivalents were used instead in the 

preparation of half thioesters, such as malonyl chloride,  or malonic acid. In the case of malonic  

acid, ethyl polyphosphate
23

 or the catalytic system POCl3/DMAP
24

 were used in monoesterification 

reactions (scheme 1.5). Yields reported for the synthesis of MAHTs are generally lower than those 

for oxyester analogues.  

 



 

 

- 28 - 

 

 

Scheme 1.5 Alternative routes towards the synthesis of MAHTs under mild temperatures.  

 

1.1.5 Aims. 

The aim of the first chapter of this thesis is to develop a new and simple synthetic protocol 

that allows the preparation of malonic acid half oxyesters and thioesters, starting from readily  

available reagents. The new developed method will be employed in the preparation of multiple 

malonates, using different phenols and thiophenols as arti ficial malonyl carriers. The effect of the 

malonyl carriers in the relative acidity of the molecule will be study by 
1
H-NMR spectroscopy. 

 

1.2 Results and discussion. 

 

1.2.1 Solvent-free synthesis of Malonic Acid Half Oxyesters and Thioesters.  

 

As was explained in the introductory section of this chapter, both coenzyme-A and ACP use 

a thiol group in order to transport malonyl groups to the active site of PKS in the biosynthesis of 

polyketides. The thioester function involved in the linkage between Co-A or ACP and malonyl 

groups presents a double advantage. On one hand, it allows the mild transfer of malonyl groups to 

the active site of PKS by transesterification, which can be catalyzed by acyltransferases. On the 
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other hand, the thioester function facilitates the formation of enolate thioesters to participate in 

decarboxylative Claisen condensations during the chain elongation step.  

From a chemical point of view, malonyl-CoA and malonyl-ACP can be considered as a 

special type of malonic acid half thioesters (MAHTs). In both cases, a sulfhydryl group in a 

structurally complex molecule is responsible for linking malonyl fragments. It is well known in the 

literature that MAHTs can undergo decarboxylative aldol-type and Claisen condensations under 

mild conditions in the presence of a base (tertiary amines, imidazole derivatives, etc.) and divalent  

metals. Decarboxylative condensations are also reported where malonyl groups are -

monosubstituted by aliphatic or aromatic groups. The presence of an extra substituent attached in 

the alpha position introduces a steric constraint that very often leads to high ratios of undesired 

decarboxylated product and therefore to poor yields in decarboxylative Claisen and aldol -type 

condensations.  

In the same way, malonic acid half oxyesters (MAHOs) can also undergo aldol-type 

condensations under mild conditions. Decarboxylative Claisen condensations, however, are not so 

common in MAHOs under mild conditions and usually require the use of harsh conditions like very  

strong bases and coordinative metals.  

In both, MAHTs and MAHOs, the type of malonyl group carrier attached to the molecule will  

determine their physical and chemical properties, and therefore will have an effect in the formation 

of enol or enolate (thio)esters in decarboxylative aldol-type and Claisen condensations. 

The influence that malonyl carriers have on malonyl groups in decarboxylative 

condensations was never studied with detail in the past. This  fact encouraged us to synthesise a 

broad variety of MAHOs and MAHTs, in order to study their properties and chemical behaviour in 

decarboxylative condensations. For our study, we concluded that the use of substituted phenols  

and thiophenols was very convenient. The majority of substituted phenols and thiophenols are 

commercially available, and a wide number of examples bearing very different substituents in 

different positions (ortho, meta and para) can be found. The wide availability of different phenols  

and thiophenols, allows the insertion of electron donating (EDG) and electron withdrawing groups 

(EWG) in the aromatic ring. The inductive or hyperconjugative effects caused by the substitution of 

the phenyl ring with EDGs and EWGs will be efficiently transmitted to the rest of the molecule.  
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Another interesting aspect we considered when choosing phenols and thiophenols as malonyl 

group carriers was the fact that groups attached in the ortho position in the aromatic ring, may 

participate during the formation of enol or enolate species. The existence of such ortho effects 

might be confirmed by the comparison in reactivity between the ortho-substituted malonate and the 

para-substituted analogue, where the int ramolecular interaction between the substituent and the 

formed enol or enolate is not possible. 

We decided to tackle the study of malonates in two steps: in the first place, by studying the 

influence of malonyl group carriers on the physical properties of malonates, like acidity or pKa 

values, and in the second place, by studying the reactivity of malonates bearing different malonyl 

carriers in decarboxylative condensations. 

During the earliest steps of our investigation, we found surprisingly that pKa1 and pKa2 values 

for different types of MAHOs and MAHTs were either not determined or reported previously in the 

literature. In fact, only the apparent pK1 values for a few examples of malonic acid half oxyesters  

were found published in the literature.
25

 No pKa2 values for malonates were found in the literature 

using both SciFinder
®
 and Reaxys

®
 databases.  

At the beginning of our research, some scientific publications found in the literature indicated 

that the use of different malonyl carriers led to the formation of malonates with different properties  

and reactivity. As mentioned in the int roductory section, Matile et al. achieved the self-

condensation of malonates when MAHTs were treated with benzimidazole derivatives and divalent  

magnesium salts. Different malonyl carriers based on thiophenols and other mercapto compounds 

were used for the preparation of malonic acid half thioesters. MAHTs, were used afterwards in 

decarboxylative Claisen self-condensation reactions. The experiments showed that different  

malonyl carriers afforded very different yields in this type of reaction, indicating that malonyl 

carriers were greatly influencing the reactivity of the malonates. In that work, malonyl carriers  

based on phenols and other alcohols were also employed in the preparation of MAHOs but, 

interestingly, MAHOs did not undergo Claisen self-condensation, showing once again the influence 

of malonyl carriers on the properties and reactivity of malonates in decarboxylative Claisen and 

aldol-type condensations. 
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Before embarking on the synthesis of MAHOs and MAHTs and their use in decarboxylative 

condensations, we studied theoretically how malonates could be influenced by substituted phenols  

and thiophenols. In first place, the presence of an oxygen or sulfur atom in the (thio)ester linkage,  

should exert a great influence on the pKa and on the formation of enolates. The 2p-3p orbital  

overlapping between the heteroatom and the carbonyl carbon is much lower in the case of 

thioesters, which modifies the contribution of certain resonance structures, having a great impact 

on the pKa value and on the stability of the thioester function. In second place, the electron density 

in the aromatic ring should also have a great influence on the pKa of MAHOs and MAHTs. The 

presence of electron donating or electron withdrawing groups in the aromatic ring produces 

inductive and hyperconjugative effects that can affect the pKa value of malonates. As was 

mentioned before, groups attached alpha to the (thio)ester function have a great influence on the 

formation of enolates and on the pKa values of malonates, and  also introduce steric constraints in 

the molecule. Finally, we thought that substituents attached to the ortho position to the (thio)ester 

function, may contribute to the stabilization or destabilization of the enol form by intramolecular 

interaction with the carbonyl oxygen. Groups attached in the ortho position, unlike groups placed in 

the para position, are close enough to the (thio)ester function to create, for instance, an 

intramolecular hydrogen bonding, modifying the ability to form enol species (scheme 1.6). Because 

of that, we decided to prepare not only ortho substituted MAHOs and MAHTs, but also the para 

substituted analogues, in order to determine differences in pKa values and reactivity. 
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Scheme 1.6 Keto-enol equilibrium for some MAHTs. 

 

Once all theoretical aspects were analysed, the study of malonates in mild decarboxylative 

condensations was divided in three well differentiated parts. First, the synthesis of a wide variety of 

MAHOs and MAHTs, derived from phenols and thiophenols bearing a wide range of substituents of 

a very different nature. Secondly, the determination of the relative acidity of the prepared 

malonates which should reflect their trend to produce enolate species. Finally, the use of the 

synthesised MAHOs and MAHTs in mild decarboxylative aldol condensations with aldehydes and 

ketones.  

Under the best of circumstances, the selection of suitable malonyl group carriers may lead to 

the development of new mild decarboxylative aldol -type and Claisen condensations, likely to be 

used in the synthetic mild polymerization of malonates, never achieved to date, and also in the 

synthesis of polyketones, polyketides and fatty acids.  

Prior to studying the effects of malonyl carriers on the properties and reactivity of MAHOs 

and MAHTs, the first task was the preparation of several examples of phenol and thiophenol based 

malonic acid half oxyesters and thioesters. From all the methods mentioned in the introductory  

section, the use of Meldrum’s acid seems to be the simplest and most convenient protocol for t he 

preparation of MAHOs and MAHTs. Meldrum’s acid and a nucleophile (alcohols and thiols for our 

purpose) can be mixed, either under neat conditions or in an organic solvent, generally toluene,  

and the resulting mixture heated at 100 ºC (or above) for one to four hours, to obtain the desired 
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malonate after purification by column chromatography (scheme  1.7). In this type of reaction,  the 

temperature plays an important role. Temperatures at 100 ºC or above are needed in order to 

activate the molecule of Meldrum’s acid. At these temperatures, Meldrum’s acid decomposes to 

produce acetone and the corresponding ketene, which can be trapped by different nucleo philes in 

the reaction mixture.  

 

 
Scheme 1.7 Synthesis of malonic acid half oxyesters and thioesters from Meldrum’s acid. 

 

However, this methodology was not found to be efficient in the synthesis of MAHTs. In the 

synthesis of MAHTs using Meldrum’s acid, yields are normally low and a mixture of products is 

obtained, being the main product the decarboxylation product, as a consequence of the 

decomposition of MAHTs at high temperature (scheme 1.8).  

 

 
Scheme 1.8 Common reaction products in the synthesis of MAHTs from Meldrum’s acid.  

 

Attempts to reduce the ratio of decarboxylation product in the mixture by decreasing the 

reaction temperature were unsuccessful, since high temperatures are required to generate reactive 

ketenes from Meldrum’s acid. 

The lack of a suitable protocol for the preparation of MAHTs in the literature, made us 

consider the necessity to develop a new and more efficient method, suitable for both MAHOs and 

MAHTs. In order to prepare a wide variety of malonates, a quick and simple new protocol was 

needed. The new method also required the use of milder temperatures, around 50 or 60 ºC to 

avoid the decarboxylation of MAHTs during the reaction. Finally, a simple work up procedure and 

also a simple purification method were highly desirable.  
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Since malonates, and especially thioester malonates, decompose at elevated temperatures, 

we realised that the new method required the use of an alternative and more reactive source of 

malonyl moieties. Typical alternatives to the use of Meldrum’s acid in the literature include malonic  

acid, malonyl chloride and alkyl malonates. Malonic acid needs to be activated by N,N’-

dicyclohexylcarbodiimide (DCC) or  N,N’ -diisopropylcarbodiimide  (DIC) in the presence of catalytic 

amounts of 4-dimethylaminopyridine (DMAP). However, the use of activating agents such as DCC 

and DIC in the reaction, leads to arduous purification processes as they are used in equimolar 

quantities. Malonyl dichloride is more reactive than malonic acid, though a catalyst is still needed 

and double esterification is also likely to occur, leading to mixtures of products and difficulties in 

purification. Last of all, the transesterification reaction of alkyl malonates requires the use of 

catalysts and can also lead to mixtures of products.  

An exhaustive search in the literature of new types of malonyl derivatives, allowed us to find 

an unusual and very reactive malonic acid derivative. Half malonyl chloride 21 was first reported in 

1908 to be used in the generation of ketenes.
26

 In 1955 Gastambide et al. used half malonyl 

chloride to remove traces of alcohols from organic mixtures,
27

 and after that, this compound has 

been barely used. Half malonyl chloride was described as a very reactive molecule,  able to slowly  

decompose at room temperature to afford the corresponding ketene and hydrogen chlor ide 

(scheme 1.9).  

 

 

Scheme 1.9 Spontaneous decomposition reaction of half malonyl chloride.  

  

Half malonyl chloride can be prepared in a multi-gram scale by refluxing 1 equivalent of 

malonic acid and 1 equivalent of thionyl chloride in diethyl ether for two hours. After removing the 

solvent and volatiles, half malonyl chloride can be used without further purification. Due to its 

sensitivity to the atmospheric moisture, any attempts of purification by column chromatography or 

recrystallization are fruitless.  Moreover, its analysis by solution 
1
H-NMR spectroscopy and other 

wet analytical techniques becomes very difficult. A convenient method to estimate the purity of half 
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malonyl chloride is the determination of the melting point. The melting point of half malonyl chloride 

is 60-65 ºC, much lower than the melting point of malonic acid (135 -136 ºC).
28

 The other possible 

product in the reaction, malonyl dichloride, is a liquid at room temperature.  

Half malonyl chloride decomposes very quickly when heated to afford hydrogen chloride and 

the corresponding ketene, which in the presence of water generates malonic acid. Half malonyl 

chloride, however, can be stored under nitrogen and at low temperature (−20 ºC) for several 

months without apparent decomposition.  

Following the protocol described by Gastambide in 1955, half malonyl chloride was prepared 

in a multi-gram scale in our laboratory. The resulting pale yellow solid was reacted with phenol in 

anhydrous diethyl ether under a nitrogen atmosphere at room temperature. However, after stirring 

for 2 hours at room temperature, no reaction was observed by TLC. The addition of pyridine was 

required to promote the reaction. After an arduous purification to remove the excess of pyridine 

needed to promote the reaction, the desired 3-oxo-3-phenoxypropanoic acid was obtained as a 

white solid in a 27% yield.  

Inspired by some previously reported methods that use Meldrum’s acid as a source of 

malonyl groups the same reaction between half malonyl chloride and phenol was carried out under 

neat conditions. An equimolar mixture of reactants was gently heated, using for the purpose a heat  

gun, for a couple of minutes until the mixture melted and became homogeneous. The mixture was 

then allowed to reach room temperature and a crude sample was dissolved in dichloromethane.  

TLC analysis of the sample showed practically no starting material left and the generation of a new 

and more polar major product. The crude mixture was purified by column chromatography and, the 

isolated white solid analyzed by 
1
H and 

13
C-NMR spectroscopy. The obtained product was shown 

to be the desired malonic acid half oxyester (scheme 1.10). 

This promising result was followed by an optimization of the process employed. Different 

parameters, such as the number of equivalents of half malonyl chloride, the reaction temperature 

and the reaction time were adjusted. As previously discussed, lower temperatures were used 

during the preparation of MAHTs whilst MAHOs were prepared in few minutes after heating the 

reaction mixture at 100 ºC. Phenols afforded the desired malonates in moderate to good yields with 

very small proportions of decarboxylation product. Thiophenols were reacted at 65 ºC for a longer 
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period of time compared to phenols to minimise decarboxylation byproduct and increase yields  

(scheme 1.10).  

 

 
Scheme 1.10 Reactivity of half malonyl chloride under neat conditions.  

 

Finally, a new convenient method, suitable for the synthesis of both MAHOs and MAHTs, 

was established. The new protocol allowed the preparation of a wide variety of aryl MAHOs and 

MAHTs in moderate to good yields on a multigram scale and employing simple work up and 

purification procedures (for MAHOs examples see figure 1.9; for MAHTs see figure 1.10).  

Different substituted phenols and thiophenols were employed as nucleophiles during the 

solvent free esterification reactions. Several MAHOs and MAHTs, bearing both electron donating 

and electron withdrawing groups, were prepared in moderate to good yields. MAHOs and MAHTs 

bearing substituents attached in the ortho position were prepared along the para substituted 

analogues, in order to determine whether different reactivities between malonates were observed 

due to intramolecular interactions between substituents in the ortho position and the carbonyl 

oxygen.  
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Figure 1.9 MAHOs prepared under the new methodology.  

 

The reaction with half malonyl chloride did not afford the desired products when either 

phenol or thiophenol starting materials bore acid -sensitive groups in their structure. Hydrogen 

chloride, generated in situ after decomposition of half malonyl chloride, was responsible for the 

cleavage of those acid-sensitive groups leading in many cases, to the decomposition of the starting 
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materials and to very unsoluble reaction crudes, impossible to solubilise for further purification and 

characterization.  

 Due to the high reactivity and versatility of half malonyl chloride, the Staudinger reaction 

with the imine 44 was attempted (scheme 1.11).
29

 However, no reaction was observed and only  

unreacted imine was recovered. The absence of reaction may suggest that the presumed formed 

carboxyl ketene may be involved in other processes like self-condensation or dimerization.  

 

 

Scheme 1.11 Half malonyl chloride-imine attempted reaction at low temperature.
29
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Figure 1.10 MAHTs prepared under the new methodology. 
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1.2.2 Determination of the relative acidity of MAHOs and MAHTs.  

 

The synthetic method developed during the first stage of our research, allowed us to prepare 

pure samples of a variety of MAHOs and MAHTs for the study of the physical and chemical 

properties. During the synthesis of malonates, MAHTs showed less thermal stability than MAHOs, 

experiencing a quick loss of carbon dioxide at temperatures around 100 ºC.  The melting points 

were also slightly different depending on the type of malonyl carrier present in the molecule, being 

in general higher for MAHTs. The solubility of malonates in both organic and aqueous solutions 

was different depending on the nature of the aryl group present in the molecule.  

In order to study the behaviour of malonates during decarboxylative aldol-type 

condensations, we thought that determining the relative acidity of most of the synthesised MAHOs 

and MAHTs was important to find a correlation between the type of malonyl carrier used and the 

reactivity of malonates in decarboxylative aldol-type condensations. Since the first step of the 

decarboxylative aldol-type and Claisen condensations is the deprotonation of malonates, we were 

confident  that the acidity of malonates should play  an important role i n the reactivity of malonates. 

In the same way that malonyl and acyl esters present a very different reactivity in aldol -type 

condensations, due to the enormous difference in pKa values, smaller differences in the acidity of 

MAHOs and MAHTs should also lead to different reactivities in mild decarboxylative 

condensations.  

The experimental determination of pKa values in the laboratory is normally carried out in 

aqueous solution, where the rate of hydrogen exchange or acid-base reaction, carried out at  

different and constant pH values, leads to the calculation of pKa values. The majority of malonates 

are only partially soluble in water. This fact prevented the use of pH regulated aqueous solutions in 

the determination of pKa values for malonates and led us to the use of other alternative methods. 

The relative acidity for organic molecules can be estimated by different methods using 

exclusively organic solvents for the purpose. As an example, the methods involving kinetic studies  

of hydrogen exchange reactions can lead to the determination of the relative acidity.  Determining 

the hydrogen exchange rates can be carried out by different spectrometric techniques.  
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For our investigation, determining the absolute acidities or pKa values was not essential. The 

values of the relative acidity for each molecule of malonate would allow us to establish a correlation 

between the acidity and the reactivity of malonates in aldol -type reactions. To illustrate this, the 

pseudo first order rate constants, which can be determined for MAHOs and MAHTs, could be 

linked to the relative acidity of these molecules and therefore provide some information with regard 

to, either the ease or the difficulty in the formation of an enolate from a specific malonate. Thus, we 

needed to establish which of the prepared MAHOs and MAHTs might afford the most suitable 

substrates for an eventual mild decarboxylative aldol condensation. Similarly, we needed to predict 

which phenols or thiophenols might contribute more positively to the formation of a reacti ve enol or 

enolate in decarboxylative aldol condensations. Finally, we were also interested in studying the 

effects of the different groups attached to the aryl units on the acidity and reactivity of the prepared 

molecules.  

The full characterization of 3-oxo-3-phenoxypropanoic acid 24 to elucidate its structure was 

made by 
1
H-NMR spectrometry. The NMR sample was prepared by dissolving 7 mg of MAHO 24 in 

0.7 mL of methanol-d4, and the NMR experiment was carried out at room temperature in an 

automated 400 MHz Varian spectrometer. However, the sharp peak corresponding to the 

hydrogens attached to the -position between the ester and the acid moieties in the molecule was 

not present in the spectrum. This signal was observed when the product was dissolved in a non 

protic deuterated solvent like CDCl3. At that moment, we realised the -hydrogens of MAHOs and 

MAHTs were so acidic that they could be exchanged by deuterium in deuterated protic solvent s 

within few minutes (figure 1.11). 
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Figure 1.11 Progress of hydrogen-deuterium exchange for 3-oxo-3-phenoxypropanoic acid dissolved 

in methanol-d4 followed by 
1
H-NMR spectroscopy. 

 

The fact that the exchange of the -protons with deuterium occurred, provided us with a very 

useful and simple method to determine the relative acidity of MAHOs and MAHTs.  The hydrogen-

deuterium exchange has been previously and successfully employed for the determination of the 

rate constants and even pKa values, when water was used as solvent.
30

 Since the majority of 

MAHOs and MAHTs are only partially soluble in water, we thought it would be difficult to determine 

pKa values from H-D exchange experiments. However, the fact that MAHOs and MAHTs were able 

to exchange their protons with deuterated methanol in only a few minutes, made possible to 

determine the observed rate constants by measuring the amount of deuterium incorporated to the 

molecule in a particular period of time. This type of exchange experiments were successfully  

applied in the past in order to determine the mentioned observed rate constants (Kobs) and pKa 

values. In 1992, Richard and Amyes reported the measurement of the observed rate constants for 

ethyl thioacetate.
31

 The deuterium exchange experiments, involving the -protons of ethyl 
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thioacetate in 3-quinuclidinone buffers in deuterated water (D2O), were followed by 
1
H-NMR 

spectroscopy. In those experiments, the observed rate constants for the 3-quinuclidinone-catalyzed 

hydrogen-deuterium exchange were determined after exchange of 30-37% of the first -proton in 

the methyl group of ethyl thioacetate.  

In order to determine the effect that malonyl carriers may have in the acidity of malonates, 

the hydrogen-deuterium exchange experiments had to be performed under strictly controlled and 

consistent conditions. Preliminary exchange experiments for 3 -oxo-3-phenoxypropanoic acid and 

3-oxo-3-(o-methoxyphenoxy)propanoic acid were very promising, showing different hydrogen-

deuterium exchange rates for -hydrogens and, allowing the selection of optimal conditions for the 

exchange experiments. These preliminary experiments showed, as expected, that the rate of 

exchange was affected by the temperature inside the NMR spectrometer. Thus, the internal 

temperature in the NMR spectrometer was set up at 20 ºC and all experiments were carried out at  

this temperature. We thought that the presence of other protic species in the reaction media, such 

as residual water in the solvent, might affect the H-D exchange rates since, additional hydrogen-

deuterium exchanges might occur. For this reason, all the exchange NMR experiments were 

carried out using the same bottle of deuterated methanol, always kept under an argon atmosphere.  

Even though the concentration of deuterated solvent can be considered as constant during 

the NMR experiments, due to it is present in a huge excess, we decided to employ a constant  

concentration of malonates in the NMR samples to avoid any possible deviation by the different  

concentrations.  

After optimizating the process, the best conditions found for the hydrogen-deuterium 

exchange NMR experiments were:  

- Internal temperature in the spectrometer probe set up at 20 °C.  

- Methanol-d4 99.8 atom % D from Aldrich
®
 used as solvent and as the deuterium 

source.  

- 70 µM solution of MAHO or MAHT in methanol -d4 (no buffer additive was employed). 

- 5 mm Norell Standard Series NMR tubes. 

- 500 MHz Bruker spectrometer.  
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In a typical H-D exchange experiment, a series of 
1
H-NMR spectra (16 scans) were recorded 

every five minutes for a period of ninety minutes. After processing every spectrum obtained,  the 

peaks were integrated and normalized. The value of the integral for the peak corresponding to the 

methylene group (-position) was normalized and determined from the spectrum recorded every 5 

minutes. The successive experiments showed to what extent, the value of the integral 

corresponding to the -hydrogens was substantially decreasing every 5 minutes, indicating a fast 

deuterium exchange with methanol-d4. In the case of 3-oxo-3-phenoxypropanoic acid 24, the value 

of the integral dropped from 2 to 1.63 after four minutes of the beginning of the H -D exchange 

experiment (figure 1.12). Fourteen minutes later, the H-D exchange experiment afforded a value of 

the integral of 1.01, indicating that half of the hydrogens were already exchanged by deuterium. 

After 89 minutes of exchange experiment, practically all the -hydrogens were substituted by 

deuterium and a value of the integral of 0.07 was obtained from the 
1
H-NMR spectrum. 
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T = 4 min 

T = 9 min 

T = 14 min 

Figure 1.12 Determination 

of the % of methylenic 

protons in 3-oxo-3-

phenoxypropanoic acid. 
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The same experiment above was also performed for several MAHOs containing different 

types of malonyl carriers. The results obtained are summarized in the table 1.2. The majority of 

malonates containing electron withdrawing malonyl carriers present a higher rate of exchange, as a 

faster drop in the integral value with the time is observed, showing a clear t rend. The exchange 

rates for MAHOs substituted in the ortho position and, the exchange rates for the para substituted 

analogues are always different. However, the differences in the exchange rates between ortho and 

para substituted analogues do not follow a clear trend. 

 

Table 1.2 Integral values for methylenic hydrogens during H-D exchange experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAHOs 

  

Time / sec 2-CN 2-NO2 4-NO2 2-Cl 4-Cl 4-CN 4-MeO 2.6-Me 

         

0 2 2 2 2 2 2 2 2 

240 1.661 0.995 1.227 1.212 1.726 0.9 1.703 1.485 

540 1.233 0.445 0.633 0.622 1.374 0.429 1.456 1.082 

840 0.948 0.235 0.362 0.356 1.132 0.245 1.264 0.816 

1140 0.733 0.14 0.215 0.213 0.939 0.152 1.093 0.617 

1440 0.572 0.09 0.138 0.138 0.782 0.105 0.957 0.473 

1740 0.452 0.063 0.096 0.098 0.657 0.084 0.829 0.366 

2040 0.359 0.053 0.072 0.075 0.555 0.072 0.723 0.287 

2340 0.287 0.051 0.059 0.064 0.466 0.065 0.637 0.225 

2640 0.232 0.046 0.052 0.055 0.392 0.063 0.56 0.18 

2940 0.186 0.044 0.048 0.053 0.337 0.06 0.487 0.146 

3240 0.156 0.044 0.046 0.05 0.29 0.06 0.422 0.119 

3540 0.126 0.043 0.045 0.049 0.249 0.059 0.371 0.098 

3840 0.11 0.042 0.045 0.05 0.217 0.06 0.332 0.079 

4140 0.092 0.042 0.043 0.049 0.191 0.06 0.296 0.069 

4440 0.079 0.043 0.044 0.049 0.171 0.06 0.262 0.062 

4740 0.069 0.042 0.044 0.049 0.15 0.06 0.245 0.055 

5040 0.031 0.042 0.044 0.049 0.137 0.06 0.218 0.05 

5340 0.028 0.042 0.044 0.049 0.124 0.06 0.193 0.045 

5640 0.05 0.042 0.044 0.049 0.118 0.06 0.183 0.043 

 

MAHOs 

 

Time / sec 4-CO2Me Phenol 4-Br 2-Br 2-COOMe 4-CF3 2-CF3 2-MeO 

         

0 2 2 2 2 2 2 2 2 

240 0.987 1.649 1.89 1.918 1.762 1.664 1.435 1.655 

540 0.556 1.248 1.72 1.704 1.517 1.39 1.12 1.245 

840 0.346 1.001 1.582 1.529 1.362 1.189 0.867 0.98 

1140 0.223 0.806 1.456 1.369 1.203 0.998 0.691 0.775 

1440 0.152 0.648 1.347 1.242 1.07 0.861 0.548 0.617 

1740 0.108 0.526 1.234 1.119 0.954 0.737 0.453 0.497 

2040 0.081 0.429 1.133 1.009 0.834 0.639 0.365 0.4 

2340 0.067 0.352 1.042 0.911 0.748 0.557 0.296 0.327 

2640 0.058 0.291 0.955 0.825 0.662 0.484 0.25 0.272 

2940 0.052 0.242 0.885 0.747 0.598 0.418 0.205 0.223 

3240 0.05 0.202 0.805 0.686 0.523 0.366 0.171 0.185 

3540 0.049 0.171 0.743 0.616 0.479 0.321 0.144 0.157 

3840 0.05 0.146 0.683 0.566 0.424 0.283 0.122 0.137 

4140 0.05 0.125 0.633 0.513 0.37 0.247 0.108 0.118 

4440 0.05 0.109 0.585 0.468 0.343 0.215 0.097 0.102 

4740 0.05 0.096 0.535 0.42 0.303 0.193 0.091 0.091 

5040 0.05 0.086 0.498 0.382 0.288 0.18 0.08 0.082 

5340 0.05 0.077 0.462 0.353 0.245 0.158 0.073 0.073 

5640 0.05 0.072 0.426 0.324 0.231 0.144 0.066 0.067 
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When substituted thiophenols were used as malonyl carriers, the hydrogen-deuterium 

exchange rates were much higher than in the case of MAHOs. For many malonic acid half 

thioesters, almost 100 % of -hydrogens were exchanged by deuterium after 30 minutes of the 

experiment. In the figure 1.13, the evolution of the peak for -hydrogens in 3-oxo-3-

phenylthiopropanoic acid 14 is shown. As it can be observed, the sharp peak for the -hydrogens 

disappears after 9 minutes of exchange reaction. The integral values obtained for different MAHTs  

are summarized in the table 1.3.  

 

 

 

 

 

Figure 1.13 Evolution of methylene peak in exchange experiments for 3-oxo-3-phenylthiopropanoic 

acid in methanol-d4. 
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Table 1.3 Integral values for methylene hydrogens of MAHTs during H-D exchange experiments. 

MAHTs 

 Time / sec Thiophenol 2-Cl 4-Br 4-CF3 4-MeO 2-MeO 4-Cl 

        0 2 2 2 2 2 2 2 

240 0.557 1.17 0.306 0.596 0.974 1.524 0.946 

540 0.201 0.585 0.07 0.233 0.523 1.075 0.373 

840 0.095 0.32 0.047 0.122 0.357 0.787 0.162 

1140 0.062 0.188 0.044 0.072 0.243 0.58 0.057 

1440 0.053 0.117 0.044 0.052 0.17 0.435 0.046 

1740 0.049 0.079 0.044 0.046 0.15 0.329 0.039 

2040 0.046 0.06 0.044 0.045 0.138 0.25 0.037 

2340 0.047 0.05 0.044 0.042 0.122 0.194 0.036 

2640 0.046 0.044 0.044 0.044 0.111 0.153 0.036 

2940 0.046 0.04 0.044 0.044 0.105 0.125 0.035 

3240 0.046 0.038 0.044 0.044 0.108 0.104 0.034 

3540 0.046 0.038 0.044 0.044 0.105 0.089 0.035 

3840 0.046 0.036 0.044 0.044 0.105 0.079 0.035 

4140 0.046 0.037 0.044 0.044 0.105 0.069 0.035 

4440 0.046 0.037 0.044 0.044 0.105 0.064 0.035 

4740 0.046 0.037 0.044 0.044 0.105 0.06 0.035 

5040 0.046 0.037 0.044 0.044 0.105 0.058 0.035 

5340 0.046 0.037 0.044 0.044 0.105 0.055 0.035 

5640 0.046 0.037 0.044 0.044 0.105 0.056 0.035 

 

 

The integral values obtained for both,  MAHOs and MAHTs, were plotted against the time to 

represent the exchange curves as a better presentation of the experimental data gathered (figure 

1.14).  

 

 

Figure 1.14 H-D exchange curves for MAHOs and MAHTs. 
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Some interesting findings and conclusions can be extracted from the exchange curves:  

 

1) In broad terms, MAHTs present higher exchange rates than the corresponding 

oxyesters.  

2) The compounds bearing strong electron withdrawing groups, experience faster 

deuterium-hydrogen exchange.  

3) The position of the substituent in the aromatic ring (ortho or para) does not always 

produce the same effect, when malonates with substituents in different positions are 

compared.  

 

To support the qualitative conclusions mentioned above, the molecular orbital theory  

applied to this type of compounds was looked at in detail. When half malonic acid oxyester and 

thioesters are compared, the only difference in their structures is  the heteroatom linking the aryl 

group and the polyketone chain.  

The different properties between esters and thioesters are well established in the literature. 

As an example, the different behaviour during acyl transfer reaction in oxyesters and thioesters  

was successfully explained in the past and supported by the molecular orbital theory. Considering 

all the possible resonance structures present in MAHOs and MAHTs, some differences in the 

contribution of every structure can be found (see scheme 1.12). 

 

 
Scheme 1.12 Resonance structures for MAHOs and MAHTs.  

 

The contribution of the interaction between orbitals 2p-3p in the sulfur atom is much weaker 

compared to the oxygen atom because of the smaller orbital overlap. As a consequence, the 

resonant structure III in thioesters provides a smaller contribution to the global electronic structure 
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of the molecule. Therefore, the carbonyl group in thioesters is less stabilized and more polarized,  

being more reactive functional groups. 

The same principle can be applied to explain the acidity of the alpha protons. The higher 

contribution to the resonance hybrid from the structure II, generates a more electropositive carbon 

which could better stabilize the carbanion formed. Also, the higher positive density located in the 

carbon atom generates a weaker C-H bond in the -position, making these protons more acidic.  

That may also explain why, in the case of thioesters, the keto-enol equilibrium could be 

shifted to the enol form (since the keto form is less stable). This theory also explains why electron 

withdrawing groups in the aromatic ring afford more acidic methylenic hydrogens. This, may be 

explained due to the lower availability of oxygen and sulfur lo ne pairs, as a consequence, the 

resonance structure III does not contribute much to the resonance hybrid.  

 

1.2.3 Kinetic study of hydrogen-deuterium exchanges for MAHOs and MAHTs. 

Determination of the relative acidity from observed rate constants.  

 

Hydrogen-deuterium exchange curves provide a good qualitative method to determine the 

relative acidity of MAHOs and MAHTs. However, the exchange curves for malonates presenting a 

similar relative acidity are difficult to compare and do not provide a quantitative and t hus a 

measurable value.  

As already mentioned, several methods based on spectrometry were used in the past to 

determine rate constants and pKa values. In 2008 Miyagi and Nakazawa developed a method to 

determine the pKa values of histidine residues in proteins by using mass spectrometry. The method 

was based on quantifying the amount of deuterium incorporated in the C2 of imidazole after 

incubation in deuterium oxide (scheme 1.13). In the mechanism of H-D exchange reaction, the 

rate-determinating step was the abstraction of the protonated imidazolium-C2 proton. The method,  

based on electrospray mass spectrometry allowed the determination of the rate constant which 

reflected the pKa for the ionization of imidazole. Incubation of a peptide in heavy water resulted in 

partial H-D exchange in the C2 position of imidazole from the histidine residue and in a change in 
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the relative abundance of isotopes obtained from the mass spectrum. Only peaks M and M+1 were 

used for the calculation of the observed rate constant (Kobs). 

 

 
Scheme 1.13 Mechanism of H-D exchange reaction at the imidazole C2-position of histidine.

75
 

 

In a similar way, we thought that the relative acidity of malonates could be determined by 

studing the changes caused by deuterium incorporation at the C2-position. We decided to calculate 

the observed rate constants during the first minutes of H-D exchange experiments. This decision 

was made based on the principle that equilibrium is not yet reached during the first minutes of H-D 

exchange, thus the reaction can be considered as a first order kinetic (n=1) and a linear correlation 

is obtained in order to determine the observed rate constant.  

As it was mentioned before, the progress of the H-D exchange was monitored by 
1
H-NMR 

spectroscopy. Considering the following reaction:  

 

 
Scheme 1.14 H-D exchange reaction between malonates and deuterated methanol.  

 

the rate equation for the H-D exchange reaction according to the concentration of the 

reactants would be:  

 

 
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1 1
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Since the hydrogen-deuterium exchange curves present an exponential shape, we will  

consider that the order of the kinetics of the reaction is 1. We will also consider that, the 

concentration of deuterated methanol, employed as solvent, is so elevated that it remains constant  

during the whole exchange experiment. Considering these assumptions in the equation 1:  
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d Malonate
K Malonate

dt
       (2) 
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    (4) 

 

In exchange NMR experiments, the relationship between the concentration of malonates at a 

particular time “t” and the initial concentration of malonates, can be obtained from the normalized 

values of the integral for the peak corresponding to the -hydrogens: 

 

                             
 
 

0

( )
Malonate

f z
Malonate

                                          (5) 

 

Considering that the initial concentration of hydrogenated MAHOs or MAHTs integrates for 2 

protons at  t=0 ([Malonate]0=2), and also that  the concentration of MAHOs and MAHTs at any time 

is given by the normalized integral value corresponding to the -hydrogens (Imethylene,t), the equation 

4 is rewritten as: 
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  ln ( ) obsf z K t                                (7) 

 

Finally, plotting  ln ( )f z against time (t) gives a linear correlation whose slope value 

determines the value of the observed rate constant for malonates.  

The calculated observed rate constants for different malonic acid half oxyesters are shown in 

the following plots. 

 

A) 3-Oxo-3-(2-methoxyphenoxy)propanoic acid (36) and 3-Oxo-3-(4-

methoxyphenoxy)propanoic acid (35). 
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B) 3-Oxo-3-(2-chlorophenoxy)propanoic acid (40) and 3-Oxo-3-(4-chlorophenoxy)propanoic 

acid (37). 

 

 

 

 

 

 

 

 

 

 

 

 

C) 3-Oxo-3-(2-bromophenoxy)propanoic acid (41) and 3-Oxo-3-(4-bromophenoxy)propanoic 

acid (38). 
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D) 3-Oxo-3-(phenoxy)propanoic acid (24) and 3-Oxo-3-(2,6-dimethylphenoxy)propanoic acid 

(26). 
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E) 3-Oxo-3-(2-(methoxycarbonyl)phenoxy)propanoic acid (34) and 3-Oxo-3-(4-

(methoxycarbonyl)phenoxy)propanoic acid (33). 
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F) 3-Oxo-3-(2-(trifluoromethyl)phenoxy)propanoic acid (43) and 3-Oxo-3-(4-

(trifluoromethyl)phenoxy)propanoic acid (42). 
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G) 3-Oxo-3-(2-cyanophenoxy)propanoic acid (32) and 3-Oxo-3-(4-cyanophenoxy)propanoic 

acid (31). 
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H) 3-Oxo-3-(2-nitrophenoxy)propanoic acid (30) and 3-Oxo-3-(4-nitrophenoxy)propanoic acid 

(29). 
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In the same way, the observed rate constants were calculated for malonic acid half 

thioesters from the representation of  ln ( )f z  against time: 

I) 3-Oxo-3-(2-methoxyphenylthio)propanoic acid (47) and 3-Oxo-3-(4-

methoxyphenylthio)propanoic acid (46). 
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J) 3-Oxo-3-(2-chlorophenylthio)propanoic acid (54) and 3-Oxo-3-(4-

chlorophenylthio)propanoic acid (52). 
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K) 3-Oxo-3-(4-bromophenylthio)propanoic acid (55) and 3-Oxo-3-(4-

(trifluoromethyl)phenylthio)propanoic acid (57). 
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L) 3-Oxo-3-phenylthiopropanoic acid (14) and 3-Oxo-3-phenoxypropanoic acid (24). 
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The calculated observed rate constants by exchange experiments for each malonate studied 

are summarized in tables 1.4 and 1.5.  

 

Table 1.4 Observed rate constant (Kobs) for MAHOs. 

   MAHO Kobs / s
-1

 Intercept R
2
 

2-Methoxy -7,60E-04 -4,53E-02 9,97E-01 

4-Methoxy -4,74E-04 -4,47E-02 9,97E-01 

2,6-dimethyl -9,22E-04 -8,23E-02 9,96E-01 

Phenol -7,40E-04 -4,09E-02 9,97E-01 

2-Chloro -1,87E-03 -7,30E-02 9,93E-01 

4-Chloro -6,58E-04 -3,76E-03 9,98E-01 

2-Bromo -3,44E-04 1,96E-02 9,99E-01 

4-Bromo -2,80E-04 3,82E-03 1,00E+00 

2-Methoxycarbonyl -4,60E-04 -1,04E-02 9,89E-01 

4-Methoxycarbonyl -2,06E-03 -1,03E-01 9,71E-01 

2-Trifluoromethane -8,33E-04 -9,20E-02 9,88E-01 

4-Trifluoromethane -5,64E-04 -3,62E-02 9,96E-01 

2-Cyano -8,92E-04 8,65E-03 9,99E-01 

4-Cyano -2,23E-03 -1,72E-01 9,73E-01 

2-Nitro -2,34E-03 -1,08E-01 9,86E-01 

4-Nitro -1,97E-03 -2,79E-02 9,97E-01 
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From the calculated data, it can be observed that, in the case of oxyesters, all the ortho 

substituted malonates present a higher rate constant than the corresponding para substituted 

derivatives, except for MAHOs presenting cyano and methoxycarbonyl groups as substituents. 

That means that, when the substituents are placed in the ortho position, MAHOs present higher 

relative acidities and a faster hydrogen-deuterium exchange reaction is observed in these cases. 

 

Table 1.5 Observed rate constant (Kobs) for MAHTs. 

MAHT Kobs / s
-1 Intercept R2 

2-Methoxy -1,12E-03 -4,62E-03 9,99E-01 

4-Methoxy -2,04E-03 -1,21E-01 9,53E-01 

2-Chloro -2,09E-03 -3,91E-02 9,96E-01 

4-Chloro -3,08E-03 2,33E-03 9,99E-01 

4-Bromo -6,16E-03 -1,43E-01 9,65E-01 

4-Trif luoromethane -3,95E-03 -9,41E-02 9,63E-01 

Thiophenol -3,57E-03 -2,09E-01 9,60E-01 

 

 

By comparing tables 1.4 and 1.5, it can be concluded that thioesters are, in the majority of 

the cases, more acidic than oxyesters as can be observed by the higher rate constants and 

therefore by faster hydrogen-deuterium exchanges. These conclusions can be better observed in 

figure 1.15 where the observed rate constant (Kobs) for each malonate is represented in a bar 

diagram.  
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Figure 1.15 Observed rate constants for malonic acid half oxyesters (MAHOs) and thioesters 

(MAHTs). 
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Figure 1.15 Continuation. 
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Important changes in exchange rates are found when strong electron withdrawing groups 

are attached to the aromatic ring, regardless of the position they hold within the aromatic ring.  

Malonates carrying electron donating groups are in general less acidic than malonates bearing 

electron withdrawing groups, although some exceptions are found.  

 However, the biggest difference in the relative acidity arises when MAHOs and MAHTs are 

compared with each other. Malonic acid half thioesters are in general much more acidic than the 

corresponding oxyesters and therefore, in principle, better candidates as enolate equivalents in 

decarboxylative aldol condensations.  

 

1.3 Conclusions.  

 

A convenient method for the synthesis of MAHOs and MAHTs has been successfully 

developed. The new method uses readily available reagents and avoids arduous work up and 

purification steps, however it is not compatible with compounds bearing acid -sensitive groups in 

their structure.   

A broad range of MAHOs and MAHTs have been prepared in moderate or good yields. The 

relative acidity of these compounds has been estimated by H-D exchange experiments using 
1
H-

NMR spectroscopy and observed rate constants (Kobs) have been calculated.  
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In general, the observed rate constants obtained from H-D exchange experiments have 

proved MAHTs to be more acidic than MAHOs and malonates bearing EWG more acidic than 

those bearing EDG.  
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Base and metal-free decarboxylative 

aldol-type condensations. 
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3.1 Introduction to Claisen and aldol condensations. 

 

3.1.1. The Claisen condensation.  

 

By making use of Claisen condensations, PKS present in bacteria, fungi and plants are 

able to grow polyketide chains and synthesize a great number of active metabolites that form part  

of many relevant pharmaceutical drugs like tetracycline, daunorubicin, rapamycin, erythromycin or 

lovastatin.
32

 

In the organic chemistry field, the Claisen condensation consists of the nucleophilic  

addition-elimination of an ester enolate to a carboxylic acid derivative such as an ester, a thioester 

or an acid chloride.
33

 The Claisen condensation can be performed between the same two 

molecules (self-condensation) or between two different substrates. 

 

 

Scheme 2.1 Different types of Claisen condensations. 

 

In organic chemistry, Claisen condensations are normally achieved by treatment with 

strong bases and when the reaction proceeds intramolecularly it is known as the Dieckmann 

condensation (scheme 2.1). In decarboxylative Claisen condensations (scheme 2.1, c), a 

carboxylic group is attached to the enolizable -carbon in the molecule, making the protons 
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attached to this position more acidic (lower pKa). As a consequence, these types of molecules can 

be easily enolised by weak bases, allowing the formation of carbon-carbon bonds under mild 

conditions. Some examples of molecules that can undergo decarboxylative Claisen condensations 

are malonic acid half esters (MAHOs) and malonic acid half thioesters (MAHTs).  

 

3.1.2. The aldol condensation.
33

 

 

Another type of condensation that can be catalysed by bases is the aldol condensation. The 

aldol condensation is the addition of the -carbon either of ketones or aldehydes to a carbonyl 

group. This reaction is typically catalyzed by strong bases such as alkoxides, amides or amines. 

Milder bases such as hydroxide salts can also be used but in this case the deprotonation at the -

carbon is not quantitative. However, enough amount of enolate is normally generated for the 

reaction to proceed.  

The aldol condensation represents a very powerful and convenient method for the 

preparation of -unsaturated aldehydes, ketones and esters and also for the preparation of -

hydroxy carbonyl compounds. Dehydratation of the -hydroxyl carbonyl compound after the aldol 

addition is often spontaneous and prevents the isolation of this intermediate in some occasions.  

The retro-aldol reaction is also possible from -unsaturated or -hydroxy carbonyl 

compounds by treatment with hydroxide salts. The aldol reaction can be also carried out under 

acidic catalysis. Thus, different protonic acids in conjuction with a chiral diamine have been 

effectively used in the past in the catalytic asymmetric direct aldol reaction of aldehydes in 

acetone.
34

 In this type of catalysis, the dehydration process becomes much more common. The 

different types of aldol condensation are summarized in the table 2.1. Aldol condensations  can be 

classified in four different groups depending on the nature of the starting materials involved in the 

reaction.  
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Table 2.1 Types of aldol reactions. 

Reaction Acive H component Carbonyl compound Subsequent reaction 

Aldol reaction Aldehydes or ketones Aldehydes or ketones Dehydration (may follow) 

Aldol-type reaction 
Ester or carboxylic acid 

derivatives 
Aldehydes or ketones Dehydration (may follow) 

Knoevenagel reaction 
Cyano or 

nitrocompounds 
Aldehydes or ketones Dehydration (normally follows) 

 

 

3.1.6.1 Aldol condensation between two aldehydes. 

 

The aldol reaction between two aldehydes can be divided in two subgroups:  

 

- Condensation between the same type of aldehyde. 

- Condensation that involves two different types of aldehydes (cross aldol 

condensation).  

 

Aldehydes must present hydrogens in the -position of the carbonyl unit and strong bases 

such us alkoxides and alkali metal amides are normally used to catalyse the reaction. In the case 

of cross aldol reactions, two different products are possible. In the simplest case, one of the 

aldehydes does not present hydrogens in the -position and only one product is formed after the 

condensation (scheme 2.2). The -hydroxy carbonyl compound formed during the aldol 

condensation is produced as at least two different isomers, since at least one stereogenic centre is  

formed during the reaction. In the second case, both types of starting aldehydes are enolizable. In 

this version, two different products can be formed and again, at least one stereogenic centre is 

created in each -hydroxy carbonyl compound formed during the condensation reaction (scheme 

2.2).  
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Scheme 2.2 Types of aldol condensations. 

 

The most typical conditions to carry out cross aldol condensations involve the use of strong 

amide bases in aprotic solvents. One of the aldehydes is treated with the strong base at low 

temperature to stabilize the enolate anion and then, the second aldehyde is added to allow the 

condensation reaction. In the case of -substituted carbonyl compounds, the aldol reaction leads to 

a mixture of diastereoisomers after the generation of two stereogenic centres during the reaction 

(scheme 2.2).  

 

3.1.6.2 Aldol condensation between two ketones. 

 

As in the previous case, the aldol reaction between two ketones can be performed using the 

same type of ketone or two different types (scheme 2.3). The reaction conditions are very similar to 

those employed during the aldol condensation of aldehydes. Hydroxide and alkoxide salts in protic 

solvents or amide bases in aprotic solvents and low temperature are the most common reaction 

conditions. In the case of asymmetric ketones, the nucleophilic attack normally proceeds via the 

less substituted -carbon.  
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 Scheme 2.3 Types of aldol condensations between ketones. 

 

 

3.1.6.3 Aldol condensation between aldehydes and ketones (Claisen-Schmidt 

reaction). 

 

The simplest case in this type of aldol condensation is the condensation between a ketone 

and an aldehyde without hydrogens in the -position. This is known as the Claisen-Schmidt  

reaction.  When enolizable aldehydes are used instead, complex mixtures of products are normally  

obtained, although aldehydes are more likely to act as electrophiles due to their higher reactivity 

(scheme 2.4).  

 

 

Scheme 2.4 Aldol condensation between ketones and non enolizable aldehydes.  

 

2.1.3 Use of MAHOs and MAHTs in decarboxylative Claisen and aldol -type 

condensations.  

 

As previously discussed, decarboxylative condensations are a mild and simple method for 

the generation of carbon-carbon bonds in organic chemistry. These types of bio-mimetic 
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decarboxylative processes allow the formation of new bonds in the absence of either strong bases 

or acids under mild temperatures. Malonic acid half esters and thioesters are the most common 

substrates used in this type of reaction. MAHOs and MAHTs can be activated by different types of 

catalysts, like for example mild bases. After activation, MAHOs and MAHTs can react with different  

types of electrophiles such as aldehydes, ketones and molecules containing carbon-carbon double 

bonds.  

In nature, the Claisen condensation occurs by the formation of a thioester enolate, after 

initial decarboxylation of a malonate, which reacts in a second step with a nearby acyl thioester 

(scheme 2.5, pathway 2). However, mechanistically, there is a second route (pathway 1) to achieve 

Claisen or aldol-type condensation products, where the decarboxylation occurs after the addition 

step (scheme 2.5). Kinetic and NMR experiments of Me-MAHTs (-methylated MAHTs) suggest 

that the addition of the enolate to the electrophile proceeds first, followed by the decarboxylation 

(pathway 1).
23

 

 

 

Scheme 2.5 Possible mechanistic pathways in aldol-type and Claisen condensations.
23 

 

2.1.3.1 Use of MAHOs and MAHTs in decarboxylative aldol-type reactions. 

 

In 2003, Scott and co-workers reported the self-condensation of malonic acid half oxyesters 

catalyzed by an organic base. The use of Hünig’s base (DIPEA or N,N-diisopropylethylamine) 

along TSTU (N,N,N′,N′-tetramethyl-O-(N-succinimidyl)uronium tetrafluoroborate) as a promoter of 

the reaction,  allowed the self-condensation of MAHOs in excellent yields at room temperature and 

in short periods of time (less than one hour).
35 
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In 2005, List et al. reported the synthesis of (E)-,-unsaturated esters via a modified 

Doebner-Knoevenagel reaction between MAHOs and aldehydes (either aliphatic or aromatic), 

catalyzed by DMAP in N,N-dimethylformamide, obtaining excellent stereo and regioselectivity 

yields.
36

 

In 2005, Shair et al. reported the catalytic aldol condensation between -methylated MAHTs 

and aldehydes mediated by Cu(II) salts.
37

 In 2006, Coltart and co-workers published a simple aldol 

addition of thioesters to aldehydes in the presence of Mg(II) salts and Hünig’s  base affording -

hydroxythioesters with excellent yields.
38

 

In a similar way, Thomas et al. reported a decarboxylative Doebner-Knoevenagel 

condensation between MAHTs and aldehydes in 2007.
39

 The reaction was carried out by dissolving 

an equimolar mixture of MAHT, aldehyde and 5-methoxybenzimidazole in THF and stirring the 

solution at room temperature after the addition of ytterbium triflate as catalyst (10 % mol). This  

methodology afforded good regio- and stereoselectivity and high yields for a variety of screened 

aldehydes, although further improvements are needed in the case of aliphatic aldehydes where 

yields obtained were poor.  

The fact that PKS use two amino acid residues during the catalysis of the decarboxylative 

Claisen condensations in its active site, inspired organic chemists to use bi-functional catalysts in 

these types of reactions. In 2007, Wennemers et al. used cinchona alkaloid derivatives as 

bifunctional catalysts able to catalyse the decarboxylative Michael type addition of malo nic acid half 

thioesters to nitro-styrene (scheme 2.6).
40

 

 

 

Scheme 2.6 Bifunctional catalyst employed by Wennemers and co-workers in the Michael addition of 

MAHTs to nitro-olefins.
40 
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In 2009, Fagnou and co-workers reported that both MAHOs and MAHTs can react with 

aldehydes via decarboxylative aldol-type reaction when either stoichiometric or catalytic amounts of 

triethylamine were present in the reaction mixture.
23

 

The stereoselective synthesis of -aminoesters from MAHTs, via decarboxylative Mannich 

reaction was also reported in 2007 by Ricci and co -workers.The Mannich reaction was catalyzed 

by chiral cinchona alkaloid derivatives in tetrahydrofuran at low temperatures, affording moderate 

enantiomeric excesses.
41

 

In 2010, Rouden et al. published a 
1
H-NMR mechanistic study of the triethylamine-promoted 

Mannich reaction between MAHOs and imines in DMF-d
7
.
42

 

Tan and co-workers reported the use of bicyclic guanidines as efficient catalysts in 

decarboxylative Manich reactions. tert-Butyl MAHTs and N-tosylimines were reacted in the 

presence of catalytic amounts of a guanidine derivative affording the desired Mannich products in 

good yields and with excellent enantiomeric excesses.
24

 

 

2.1.3.2 Use of MAHOs and MAHTs in decarboxylative Claisen condensations.  

 

The use of MAHOs and MAHTs in Claisen condensations started in 1975 when Scott and 

co-workers reported the use of catechol as a suitable template for promoting int ramolecular Claisen 

condensations between malonyl and acyl groups.
43

 Scott et al. used isopropylmagnesium salts as 

catalysts to afford catechol monoacetoacetate in a modest 30% yield. However, this reaction 

required the use of a strong base to proceed, and the reaction conditions were far harsher than the 

conditions used by PKS in plants, bacteria and fungi. 

In 1978, Kobuke and Yoshida reported the first example of a mild Claisen condensation 

carried out under enzyme-free conditions. Imidazole and magnesium(II) acetate were used as 

catalytic system.
44

 For the reaction, malonic acid half thioesters were employed instead of malonic  

acid half oxyesters. N-Butyl thiomalonate was reacted with one equivalent  of phenyl thioacetate in 

the presence of imidazole and magnesium(II) acetate for 87 hours to afford the desired n-butyl 

acetothioacetate in a moderate 60% yield. When magnesium(II) acetate was not  added to the 

mixture, no Claisen condensation was observed.  As self-condensation of malonic acid half 
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thioesters was not observed during the experiments, it was inferred that the conditions employed 

were not suitable for MAHT polymerization and the mild synthesis of polyketones or polyketides in 

the laboratory. In an attempt to mimic the mechanism of the fatty acid and polyketides biosynthesis, 

the reaction between n-butyl thiolmalonate and methyl-N,S-diacetyl cysteinate was also attempted.  

However, very little product was formed under these conditions likely due to the poor performance 

of cysteinate as leaving group.  

It was in 2001 when Matile et al. first found the conditions to perform a mild self-

condensation of MAHTs in the presence of Mg(II) salts and imidazole.
19

 In an attempt to find some 

suitable conditions for the controlled oligomerization of malonates under mild conditions and based 

on Kobuke et al. work, Matile and co-workers decided to optimize the initial conditions by modifying 

the leaving group, the base and the metal involved respectively. After some optimization work, the 

first example of malonic acid half thioesters self-condensation was achieved in a good 71% yield.  

However, oligomerization of MAHTs was not observed in the condensation experiments. This fact 

highlights indeed the suitability of those conditions to afford the mild synthesis of artificial 

polyketones and polyketides. 

A few years later, in 2007, Scott et al. reported the first example of self-condensation of half 

malonic acid oxyesters under mild conditions. Based on the belief that primitive organisms used 

RNA instead of proteic enzymes for the catalysis of metabolic pathways, it was decided to use 

nucleoside malonates as starting material for the Claisen self -condensation. After some 

optimization work, a mild self-condensation of nucleoside malonates was achieved in nearly 90% 

yield after thirty hours of incubation at 37 ºC. The condensation experiments where carried out in 

aqueous acidic conditions and in some experiments, polynucleotides Poly -U or Poly-A were added 

in order to study the template effects that finally were not observed. Magnesium(II) salts were used 

as catalyst and this role was proven essential to make the reaction to proceed. As a control 

experiment, mono-phenyl malonate was incubated under the reaction conditions for the same time,  

and no Claisen self-condensation was observed.
45
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2.1.4 Aims. 

 

The aim of this chapter is to develop a new mild decarboxylative aldol condensation under 

metal and base-free conditions. To achieve that, different ionophores will be employed as catalysts 

in a water-rich biphasic solvent. Using the new developed method, some of the MAHTs prepared in 

chapter 1 will be condensed with aldehydes and ketones.  

 

2.2 Results and discussion. 

 

2.2.1 Base and metal-free decarboxylative aldol condensation. Co rrelation between 

reactivity of MAHOs and MAHTs and observed rate constants.  

 

Natural evolution allows living organisms to select the most convenient chemical processes 

to adapt to new and challenging environments. Thus, living organisms take advantage of a wide 

variety of thermodynamically favoured chemical reactions in order to synthesise biomolecules 

under mild conditions. A good example of that is the use of thermodynamically favoured 

decarboxylative Claisen condensations during the synthesis of polyketides and other metabolites 

in plants and microorganisms.  

In the active site of PKS, the formation of thioester enolates from malonic acid half 

thioesters and the decarboxylative cross-Claisen condensation of malonates are catalyzed under 

mild conditions, allowing the generation of covalent carbon-carbon bonds. The use of malonic 

acid half thioesters by PKS as an ester enolate synthon inspires organic chemists to develop new 

and more environmentally friendly mild aldol -type and Claisen condensations based on 

decarboxylative processes taking place in polyketides biosynthesis. 

Although the use of MAHOs and MAHTs as enolate equivalents allowed organic chemists 

to develop bio-inspired aldol-type and Claisen condensations in the laboratory, the catalysis of 

these processes required very often the use of bases and coordinating divalent metals. 

During the last decade, several works were published in relation to the development of mild 

deprotonations. Several molecules containing highly acidic hydrogens  were activated under base-
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free conditions. In 2009, Maruoka et al. reported the conjugate addition of 3-aryloxindoles to -

nitrostyrene catalyzed by quaternary ammonium salts in the absence of base. The reaction only 

required the use of catalytic amounts of a quaternary ammonium salt to promote the addition 

reaction. The formation of ion pairs between enolizable 3-aryloxindoles and quaternary 

ammonium salts was believed to be involved in the reaction mechanism.
46

 In a similar manner, in 

January 2012 Maruoka et al. reported the reaction between -substituted nitroacetates and 

formaldehyde catalyzed under base-free neutral conditions. Similarly to the previous work, 

Maruoka and co-workers were able to activate nitroacetate species by the use of catalytic 

amounts of a chiral quaternary ammonium salt acting as a phase-transfer catalyst.
47

 

In our pursuit for an unprecedented base and metal -free decarboxylative aldol 

condensation, we thought that the presence of quaternary ammonium salts in a water-rich 

biphasic solvent could be a convenient method for the activation of MAHOs and MAHTs. Similarly 

to Maruoka’s work, we thought the formation of ion pairs between malonates and quaternary 

ammonium salts, such as tetra-n-butylammonium bromide (TBAB), might favour the formation of 

malonyl enols and catalyse decarboxylative aldol condensations in the absence of base.  

Preliminary studies of the decarboxylative aldol condensation between 3-oxo-3-

phenoxypropanoic acid and p-nitrobenzaldehyde were carried out by reacting an equimolar 

mixture of the MAHO and the aldehyde in a biphasic solvent mixture water/toluene 50:50 v/v 

(scheme 2.7). One equivalent of tetra-n-butylammonium bromide was employed in an attempt to 

promote the reaction. The resulting reaction mixture was vigorously stirred at 40 ºC for 24 hours. 

After this time, the mixture was extracted with dichloromethane, and after drying over magnesium 

sulfate, the solvent was removed to afford a crude product. The 
1
H-NMR spectrum of the crude 

product showed the presence of unreacted starting material and the desi red product of aldol 

condensation 62. The crude product was purified by column chromatography on silica gel (neat 

dichloromethane) and the desired product was obtained as a white solid in a modest 27% yield. 

1
H-NMR, 

13
C-NMR and mass spectrometry confirmed the white solid to be the desired product of 

aldol condensation.  
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Scheme 2.7 Decarboxylative aldol condensation between 3-oxo-3-phenoxypropanoic acid and p-

nitrobenzaldehyde catalysed by TBAB. 

 

At that point, we were delighted at being able to carry out an unprecedented 

decarboxylative aldol condensation under metal and base -free conditions. Although the reaction 

yield was only 27%, we were interested in the study of the reaction between para-

nitrobenzaldehyde and other MAHOs and MAHTs previously synthesised. 

 In a second set of experiments, we decided to carry out  the reaction between p-

chlorothiophenol half malonic acid and 4-nitrobenzaldehyde under the same reaction conditions. 

After 24 hours of reaction, TLC analysis showed that most of the starting material was consumed 

and that a new major compound was formed.  After standard work up, 
1
H-NMR of the crude 

product showed the desired product to be the majority component in the crude mixture (86% 

yield, calculated by peak integration). The same reaction did not work in the absence of TBAB or 

water. 

Encouraged by this excellent result, we were interested in finding whether a correlation 

between the rate constants obtained from hydrogen-deuterium exchange experiments and the 

reactivity of malonates in this type of base-free decarboxylative aldol condensation could be 

established.  

In a third set of experiments, we decided to carry out aldol condensations between 4 -

nitrobenzaldehyde and different MAHOs and MAHTs in order to study the connection between 

observed rate constants and reactivity of malonates. The reactions were performed using an 

equimolar mixture of malonate, aldehyde and a quaternary ammonium salt in a biphasic mixture 

water/toluene 50:50 v/v, at 40 ºC. The reaction mixtures were stirred for 24 hours at this 

temperature and after that time, the crude mixtures were extracted with dichloromethane and 

dried over magnesium sulphate. Finally, the solvent was removed under reduced pressure  to 

afford the crude products that were analysed by 
1
H-NMR spectroscopy. 

1
H-NMR spectrum 
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allowed the identification of two new products in the crude product and also showed the presence 

of unreacted 4-nitrobenzaldehyde. The proportion of each product was estimated by integration of 

representative peaks, using the starting aldehyde as the limitating agent in the reaction. The 

results obtained for each MAHO and MAHT reacted are summarised in the table 2.2.  

 

Table 2.2 Products ratio after base-free decarboxylative aldol condensation between malonates 

and 4-nitrobenzaldehyde. 

  

Z = X =       Hydroxyester     Elimination Starting 
Aldehyde 

O OMe  27%  53%  20% 

O H  44%  29%  27% 

O Cl  42%  29%  29% 

O CF3  35%  20%  45% 

S OMe  63%  7%  30% 

S H  74%  3%  23% 

S Cl  84%  2%  14% 

S CF3  75%  2%  23% 

 

 

In first place, we were delighted to observe that all  the malonates tested were able to 

undergo decarboxylative aldol condensation. Secondly, we were gladly surprised about the 

relatively high reaction rate observed under these new mild reaction conditions. High conversions 

to the products were achieved after 24 hours of reaction. Thirdly, the presence of elimination 

product in the reaction mixtures was much lower in the case of thioesters. This fact could be 

explained by the influence that the thioester function has in the rest of the molecule. This 

influence was also observed during the H-D exchange experiments, where half malonic acid 

thioesters showed higher observed rate constants. The experiments showed that a change in the 

malonyl carrier can improve the selectivity of the reaction. Thus, the aldol reactions were in 
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general very selective to the -hydroxythioester product when thiophenols were attached to the 

malonyl group (table 2.2). 

After these experiments, we were quite confident of the achievement of the first example of 

decarboxylative aldol condensation under base and metal -free conditions. However, we were 

also concerned about the possibility that traces of amine in the commercially available quaternary  

ammonium salt could be actually acting as the catalyst in the aldol condensation. The quaternary 

ammonium salt employed during these bio-inspired experiments was tetra-n-butylammonium 

bromide 99.9% assay supplied by Sigma-Aldrich
®
. The material data sheet from this supplier 

stated that this quaternary ammonium salt may contain small amounts of tributylamine. Small 

amounts or even traces of amine in the reaction mixture could be acting as the true catalyst in our 

decarboxylative aldol experiments. We found it incredibly difficult to find a suitable method to 

remove the last traces of amine from the starting quaternary ammonium salt. We thought about 

the possibility of carrying out a recrystallisation of the quaternary ammonium salt in a mixture of 

organic solvents. However, even if we were able to obtain a very pure sample of quaternary 

ammonium salt free from amines by recrystallisation, the lack of a suitable analytical technique to 

detect traces of amine in the product seemed to make this methodology unfeasible.  

Rather than questioning the presence of t ributylamine in the ammonium salt as the likely 

catalyst in the reaction, we proposed a theoretical mechanism to explain the activation of 

malonates by TBAB. In that mechanism, the formation of malonyl enols  would be favoured by the 

formation of ion pairs between MAHTs and TBAB. Malonyl enols would then react with aldehydes 

to afford -hydroxythioesters and tetra-n-butylammonium hydroxide. TBAB would be regenerated 

in the aqueous phase after the reaction of tetra-n-butylammonium hydroxide with traces of 

previously formed hydrobromic acid (figure 2.1). As proving the absence of tertiary amines in 

commercial quaternary ammonium salts was not possible, we thought about the possibility of 

developing a similar catalytic system, based on the same principle, which avoided the use of 

quaternary ammonium salts. 
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Figure 2.1 Proposed mechanism for the activation of MAHTs under base and metal-free conditions. 

 

The new catalytic system needed to have the ability to form lipophilic ion pairs in an 

efficient manner. A suitable catalyst should be able to bind malonates and to transport them to 

the organic phase to assist during enolization and decarboxylative aldol condensation, in a similar 

way to the tetra-n-butylammonium cation. Therefore, the catalyst we were looking for was a 

substance able to behave as an ionophore.  

An ionophore is a natural or artificial substance capable of complexing cations in a way that 

makes the whole complex that is formed soluble in hydrophobic media like organic solvents or the 

lipidic membranes in cells. The positive charge associated with these complexes is compensated 

by the counteranion which can promote different properties (figure 2.2).  
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Figure 2.2 Schematic figure of ionophores based on crown ethers.  

  

When an ionophore is solubilised in a biphasic mixture formed by an aqueous and an 

organic solution, these substances are able to transport specific cations from the aqueous phase 

to the hydrophobic phase. The complex cation-ionophore and the counteranion (that 

compensates the charge of the complex) can be solubilised in the organic phase. The 

hydrophobic structure of ionophores allows the complexation of cations and provides an effective 

hydrophobic cover for metals that can be solubilised in organic solvents and that can travel 

through lipidic membranes in cells.
48

 

In a similar way to ionophores, quaternary ammonium salts also present a positively 

charged core, represented by a nitrogen atom, which is surrounded by hydrophobic aliphatic 

chains, increasing the solubility of the charged molecule and allowing their solubility in highly 

hydrophobic organic solvents. As ionophores, quaternary ammonium salts are also able to 

transport counteranions into hydrophobic phases.  

Ionophores are, hence, a type of metal-binding compound that can be obtained either from 

natural sources or by synthetic methods. In biology, there are three classes of metal -binding 

compounds:  

 

- Metal chelators. 

- Metal shuttles. 

- Metal ionophores. 

 

Some examples of natural ionophores binding metals are dithiocarbamates, which can bind 

zinc and copper, and antibiotics like monensin (binding Pb), zincophorin (Zn) or valinomycin (K).
48

 

On the other hand, within the group of ionophores obtained by arti ficial means, the group formed 
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by macrocyclic polyethers, known as crown ethers, stands out.  Calixarenes have also been 

employed as a new type of macrocyclic ionophore over the past decade.
49

 

 

2.2.2 Alternative catalytic systems for base and meta l-free decarboxylative aldol 

condensations.  

 

The most common synthetic ionophores are crown ethers. Crown ethers are organic 

macrocycles able to transport ions from an aqueous phase to a hydrophobic phase. Many 

different crown ethers were synthesised in the past decades and their properties were widely 

reported in the literature (figure 2.3).
50

 

 

 
 

Figure 2.3 Examples of crown ethers reported in the literature.
50 

 

Since Pedersen et al. reported the first example of a crown ether in 1967,
51

 it has been a 

great development in the synthesis of this type of macrocycle with the capacity to complex 

specific cations. Some of these macrocycles, like for instance Lariat ethers, were succesfully 

used as synthetic ionophores for many years. Although the vast majority of work involving crown 

ethers was related to the complexation of metals as the guest species, the complexation of 

ammonium cations and neutral molecules by crown ethers were reported in the literature. Many 

examples of crown ethers were successfully used as ion sensors due to their ability of changing 

the color of the solution when the macrocycle binds a specific metal. The applications of crown 
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ethers go from biological applications, acting as membrane amphiphiles or ion channels, to other 

applications like sensor chemistry or electrochemistry.
52

 

With the definition of ionophore in mind,  we thought about the possibility of using crown 

ethers or other ionophores as equivalent substitutes for quaternary ammonium salts during t he 

catalysis of decarboxylative aldol condensations, acting as an ion transporter of cations and 

malonates into the organic phase.  

At the same time we were looking for suitable ionophores to catalyse decarboxylative aldol 

condensations, Maruoka et al. reported the use of crown ether derivatives to carry out the 

conjugate additions of -ketoesters to -nitrostyrene.
53

  

In Maruoka’s work, a similar mechanism to the mechanism we postulated for the catalysis 

of base and metal -free decarboxylative aldol condensations by quaternary ammonium salts was 

proposed. In the proposed mechanism, the transference of an ion pair potassium-enolate to the 

organic phase was catalysed by the action of a crown ether and allowed the conjugate addition of 

-ketoesters to -nitrostyrene. Similarly to Maruoka’s mechanism, we proposed a mechanism for 

the decarboxylative aldol condensation between MAHTs and aldehydes, catalyzed by the crown 

ether 18-crown-6. The proposed mechanim is shown in the figure 2.4.  
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Figure 2.4 Proposed mechanism for the decarboxylative aldol condensation between MAHTs and 

pentafluorobenzaldehyde catalyzed by 18-crown-6. 

 

Based on the theoretical mechanism, we decided to react p-chlorothiophenyl half malonic 

acid and pentafluorobenzaldehyde, but this time, using a catalytic system formed by potassium 

chloride and a crown ether. Equimolar amounts of MAHT and aldehyde were dissolved in a 

biphasic solvent mixture formed by toluene and a potassium chloride saturated aqueous solution. 

18-Crown-6 (30% mol) was added to the mixure and the resulting solution was vigorously  stirred 

for 24 hours at 40 ºC. After work up and purification by column chromatography, the desired aldol 

product 79 was obtained in a good 84% isolated yield (scheme 2.8). Similarly to the catalysis by 

quaternary ammonium salts, the reaction did not  proceed when water,  crown ether or potassium 

chloride were not added to the reaction mixture.  
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Scheme 2.8 Decarboxylative aldol condensation catalysed by a crown ether and KCl (aq). 

 

With this experiment, we indirectly proved that a base-free catalysis using quaternary 

ammonium salts was in principle possible and, therefore, that the catalysis should also be able to 

be promoted by the use of TBAB in biphasic solvent mixtures, even in the absence of t races of 

tertiary amines.  

We wanted to take these experiments further, so we thought about the possibility of 

carrying out a regioselective version of this new decarboxylative aldol reaction. We also thought 

of using a chiral ionophore to catalyze this type of reaction. We checked the properties of different 

chiral ionophores in the literature and finally, we decided that the chiral antibiotic valinomycin 

could be a good candidate for our purpose, mainly due to its great ability to coordinate alkali 

metals like potassium. Valinomycin (figure 2.5) is a biomolecule with a strong biological activity 

mimicing processes that are normally carried out by proteins, like the transport of cations across 

the cell membranes. An undesired transport of cations is normally poisonous for the cells. The 

main function of valinomycin is  acting as an ion-carrier (antibiotic ion-carrier). The reason for the 

valinomycin activity is its ability to complex potassium cations and to create species with a 

hydrophobic external cover that allows the transport of potassium across lipidic membranes.
54
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Figure 2.5 Structure of the antibiotic valinomycin.

54
 

 

 The reaction using valinomycin as ionophore proceeded with a very good yield (62% 

isolated product after six hours of reaction) and represented the first example in the literature of a 

decarboxylative aldol condensation catalyzed by an antibiotic (scheme 2.9).  

 

 
Scheme 2.9 Decarboxylative aldol condensation catalysed by the antibiotic valinomycin. 

 

The mechanism operating in this case must be very similar to the mechanism operating 

through the action of crown ethers. As a good potassium chelator, valinomycin should be able to 

transport potassium and the corresponding counteranion, malonate, to the organic phase. The 

formation of a malonyl enol and its reaction with p-nitrobenzaldehyde, would lead to the formation 

of -hydroxy thioesters (figure 2.6). No enantiomeric excess could be observed in the product by 

measuring the specific rotation. Even though valinomycin presents a chiral structure, the resulting 

complex with potassium does not behave as a chiral counter cat ion for malonates. When 

valinomycin complexes potassium, the macrocycle folds in such a manner that an essentially 

non-chiral spherical complex is obtained, losing any capacity to induce stereoselectivity.
55
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Figure 2.6 Proposed mechanism for the decarboxylative aldol condensation catalysed by the 

antibiotic valinomycin. 

 

In summary, we were able to develop three different catalytic systems for carrying out the 

first example of metal and base-free decarboxylative aldol condensation between malonates and 

aldehydes. The three possible catalytic systems are:  

 

 

- TBAB in water / toluene.  

- Saturated KCl aqueous solution / toluene / crown ether.  

- Saturated KCl aqueous solution / toluene / valinomycin.  
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2.2.3 Mechanism and scope of the reaction. 

 

The reaction mechanism of base catalysed aldol -type condensations involves the 

deprotonation of -hydrogens to generate enolate species that can react with different 

electrophiles. Strong bases and dry aprotic solvents are normally required in this type of 

reactions. However, the use of strong bases prevents the use of some important functional 

groups incompatible with the presence of strong bases. During the decarboxylative aldol reaction 

of malonates, the presence of a carboxylic group attached to the -position favours the 

deprotonation of malonates and the formation of enolate esters. The great ability of MAHOs and 

MAHTs to undergo decarboxylative aldol condensation resides in two fundamental features. First, 

the presence of a carboxylic group attached in the alpha position weakens the bonds between the 

-hydrogens and the carbon, increasing the acidity of those hydrogens and making more 

accessible the formation of an enolate ester. Moreover, after deprotonation of malonate, the 

formed carbanion is stabilized by both inductive and hyperconjugative effects in the molecule. 

Secondly, the presence of a carboxylic group in the molecule allows the reaction to be driven by 

the loss of carbon dioxide during the process. Although the mechanism for decarboxylative aldol 

condensations is well known, it is not clear whether decarboxylation takes place before or after 

the addition to the electrophile species, and both mechanisms have to be taken into account 

when new conditions for decarboxylative adol condensation are employed. Therefore, 

decarboxylative aldol condensation can follow two different mechanistic pathways (scheme 2.10).   

 

 
Scheme 2.10 Mechanistic pathways in decarboxylative aldol condensations.  
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In the case of our newly developed base-free decarboxylative aldol condensation 

conditions, the fact that decarboxylated malonate was not observed by 
1
H-NMR spectroscopy 

during the reaction, suggests that the mechanism operating in this case must go through the 

formation of a tertiary carbon center previous to the decarboxylation (upper pathway).  

The mechanism for the activation of malonates we propose is in agreement with the idea 

that acidic MAHOs and MAHTs can form lipophilic ion pairs with quaternary ammonium salts and 

potassium complexes. The formed lipophilic malonates in the organic phase can afford malonyl 

enols that can react with electrophiles present in the reaction media, such as ketones or 

aldehydes.  

In order to study the scope of the reaction, different electrophiles were used in this type of 

decarboxylative aldol condensation and the results obtained, were compared with data gathered 

from the same reaction reported in the literature, carried out under basic catalysis (see scheme 

2.11).  When 3-oxo-3-phenylpropanoic acid was reacted with ethyl pyruvate in a biphasic mixture 

chloroform/water 50/50 v/v and in the presence of one equivalent of TBAB used as catalyst, the 

desired product was obtained in a 73% yield. The same reaction was reported in the literature 

under basic catalysis affording the desired product in 70% yield.
24

 3-(Benzylmercapto)-3-

oxopropanoic acid was reacted with benzaldehyde in similar conditions to afford the desired beta -

hydroxythioester product in a low 25% yield, showing the catalysis of this reaction proceed very 

slowly when poor electrophiles were used. The same reaction reported in the literature, carried 

out under basic catalysis and in the presence of copper (II), afforded the condensation product in 

a lower 22% yield.
56

 Finally, we also evaluated our base and metal-free protocol when the 

aldehyde was bearing an unprotected hydroxyl group, which may potentially react with the formed 

thioester enol. 3-Hydroxy-4-nitrobenzaldehyde 90 was reacted with 3-(thiophenol)-3-oxo-2-methyl 

propanoic acid 89 to afford the desired mixture of diastereoisomers (scheme 2.11, c). Compound 

91 had already been reported by Shair and co-workers in 2005,
37

 and the absolute configuration 

of the secondary alcoholic stereogenic center was determined using the method developed by 

Kishi et al.
57

 and based on 
13

C-NMR experiments with Pr(tfc)3. Thus, the syn:anti ratio was 

determined by 
1
H-NMR analysis and found to be syn:anti 9/1. Very interestingly, when the 

1
H-

NMR spectrum for the mixture of diastereoisomers obtained through our TBAB-based method 
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was compared against 
1
H-NMR data reported by Shair et al., we found that the syn:anti ratio had 

inverted, leading to a moderate excess of anti diastereoisomers. The syn:anti ratio was calculated 

by 
1
H-NMR analysis and found to be syn:anti 1/(3.6). Therefore, the mechanism operating under 

the influence of TBAB
58

 afforded preferentially anti diastereoisomers, which is a relevant 

contribution to this type of aldol reaction and complements previous work reported in the 

literature.    

 

 

Scheme 2.11 Aldol condensations catalysed by TBAB under base-free conditions and in the absence 

of metals. 

 

2.3 Conclusions. 

 

In conclusion, we have developed a simple and mild new method for the decarboxylative 

aldol-type condensation of malonates with aldehydes and ketones. A series of experiments show 

that the reaction can proceed without the presence of either base or metals, and can be promoted 

by substances such as tetra-n-butylammonium bromide, crown ethers or natural ionophores. This 

new methodology may be of a great interest in those areas of chemistry where substrates  present 

functional groups that are incompatible with the presence of strong bases, as it is the case of 

biological and biochemical systems. 
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Interestingly, no self-condensation of MAHTs or MAOHs was observed during any of the 

aldol reactions performed so far. This might be due to the fact that thioesters or oxyesters are not 

electrophilic enough to react with the formed enols during the reaction. This explanation is in 

agreement with the fact that, non activated aldehydes, such as benzaldehyde, afforded very poor 

yields during metal and base-free decarboxylative aldol condensations.  

In the last part of our research project, we were focused on the chemistry of calix[4]arenes 

as versatile cyclic scaffolds for the mimicry of enzymes and in the development of a  bi-functional 

calix[4]arene capable to bond two subunits of malonic acid half thioester, to study synergistic 

effects in Claisen condensations and to mimic the condensing function of PKS.  
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Synthesis of multifunctional cyclic scaffolds 

and their applications in the mimicry of PKS. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

- 92 - 

 

3.1 Introduction to calixarenes as versatile scaffolds for the mimic of PKS. 

 

3.1.1. The origin of calixarenes.
59

 

 

In 1942, investigations in the field of phenol-formaldehyde chemistry carried out by Alois 

Zinke and Erich Ziegler led to the discovery of the first example of synthetic basket shaped 

molecules, known as calixarenes. The idea of protecting the para-position of phenols with alkyl 

groups during condensation reactions allowed Zinke and Ziegler the first preparation of a new class 

of synthetic macrocycles. The oligomerization of 4-tert-butylphenol produced a new class of 

basket-like molecules that further led on to a new area of chemistry based on calixarenes. Unlike 

cyclodextrins, that needed to be isolated from natural sources and whose production is expensive,  

or crown ethers which do not present a basket-like shape but a more discotic-like shape, the Zinke 

and Ziegler cyclic oligomers were the first example of artificial basket -like molecules prepared in 

the laboratory. 

In 1970,  Gutsche and co-workers, intrigued by the new advances in biochemistry and the 

mimicry of enzymes, decided to employ Zinke and Ziegler macrocycles as scaffolds in the mimicry  

of the active site of some enzymes. The unique shape of that new class of macrocycles made them 

very useful in the field of synthetic metalloenzymes and also in the field of molecular receptors. 

Moreover, calixarenes were presented as very versatile scaffolds for the synthesis of 

multifunctional macrocycles with potential applications in different disciplines of science.  

The relevance of calixarenes as a new type of macrocycle was mainly based on the ease of 

their preparation and the great number of chemical modifications likely to occur in their structure 

depending on the nature of the substituents attached. One advantage of calixarenes is that most of 

them can be prepared in a multi-gram scale using straightforward one-pot protocols, following 

simple work up and purification methods. Moreover, these macrocycles can be prepared in 

different conformations that increase their versatility when used in many innovative applications 

such as host-guest supramolecular chemistry, smart catalysts or artificial sensors.  
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3.1.2. Definition and nomenclature.
59

 

 

Calixarenes are organic macrocycles constituted by phenol subunits that are connected 

through the ortho positions by methylene bridges (figure 3.1). The name “calixarene” comes from 

the combination of the words “calix” (whose origin comes from “calix c rater”, a type of Greek vase) 

and “arene”, making reference to the aromatic rings that form the macrocycle. The term 

“calixarene” was first established by Zinke and Ziegler in 1942 during their investigations in the 

phenol-formaldehyde chemistry. 

  

 

Figure 3.1 General structure of calixarenes (left) and structure of calix[4]arene. 

 

In the systematic nomenclature, the size of the macrocycle is indicated by the number of 

phenol units in the structure included between the words calix and arene in brackets (calix[n]arene,  

where “n” is the number of phenol units in the macrocycle).  The smallest calixarene presents three 

phenol units forming its structure but, calixarenes with over ten phenol units in their structure may 

also exist as an example of the larger calixarenes. There are different types of calixarenes 

depending on the size of the macrocycle (number of phenol units in the macrocycle), being 4, 6 

and 8 the most thermodynamically stable and therefore, the most accessible calixarenes (ta ble 

3.1).  

 

Table 3.1 Reaction yields of the one-pot syntheses of calix[n]arenes. 

 Number of phenol rings in macrocycle 

Group in para position    n =     4 5 6 7 8 

Me        - - - 22% - 

iPr         10% - 26% - - 

tBu         49% 10% 83% 6% 62% 

Benzyl        - 33% 16% - 12% 
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3.1.3. Calixarenes in the 21
st

 century.  

 

The number of publications based on calixarenes, regardless their applications, serves to 

illustrate the relevance of these cyclic oligomers within the past four decades.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Number of publications related to calix[n]arene within the last five decades                   
(n= number of aryl moieties participating in the cyclic oligomer).  

 

 

By the end of 1990s, the number of publications related to calixarenes experienced a 

significant growth, reaching a considerable number of publications within the first decade of 21
st

 

century. Among the number of publications of calix[n]arenes, publications of calix[4]arenes are 

predominant compared to those calixarenes formed with more than four aryl moieties in their cyclic 

oligomeric structure (figure 3.2). 

 A combination of several factors explain why the number of calix[4]arene publications 

dominate over the number of publications of calix[6]arenes,  calix[8]arenes and some other 

calix[n]arenes (figure 3.3). Calix[4]arenes have a great stability and are easily functionalized. Both 

advantages, combined with their relative rigidity and their conformational control, have made 

calix[4]arenes very versatile molecules. 
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% Number of publications of calix[n]arene in the period 1979-2013

74.0% calix[4]arene 

2.6% calix[5]arene

15.4% calix[6]arene

0.4% calix[7]arene

7.6% calix[8]arene

 

Figure 3.3 Number of publications of calixa[n]arene in percentage within the last four decades. 

 
 

The vast majority of chemistry developed on calix[4]arenes corresponds to the cone 

conformation with tetra-functionalised and 1,3-difunctionalised upper rim respectively. The ease of 

synthesis and conformational control as well as their applications in coordination chemistry as 

complexing agents, have made calix[4]arenes the most explored macrocycles. However, the 

number of references relating to the preparation o f 1,2-difunctionalised and monofunctionalised 

calix[4]arenes is much less abundant. Thus, a relative small number of synthetic protocols can be 

found in the vast literature of calix[4]arenes. In addition, most of the protocols found in the 

literature, either describe the synthesis of monosubstituted calix[4]arenes from the mono-

halogenated calix[4]arene, treated with a slight excess of n-butyllithium,
60

 or involve the use of 

hazardous substances like titanium(IV) chloride.
61

 Due to the lack of control of the halogenation 

selectivity, mono-halogenation is considered as a low to moderate conversion process. Moreover,  

the isolation of mono-halogenated calix[4]arene is a very ardous process that affords low yields. 

Therefore, despite the major advances made in the calix[4]arenes chemistry within the past years, 

there are still few areas to develop such as  finding more selective synthetic approaches as well as  

processes involving a greener chemistry. With regards to calix[4]arenes applications, there is  

further scope in areas such as host-guest interaction, chiral calixarenes and molecular machines.  

 

3.1.4. Structure of calix[4]arenes.
59

 

 

Three different regions can be differentiated in the structure of calixarenes:  

- Lower rim, constituted by the phenolic hydroxyl groups.  
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- Methylene bridges, working as linkers between phenol moieties. 

- The upper rim, which can be functionalized by the insertion of several functional 

groups (figure 3.4).  

 

 
Figure 3.4 Functionalisable regions in calix[4]arenes. 

 

 Locking a conformation in place, as a single conformation, allows tuning of the reactivity and 

the properties of calix[4]arenes. Due to the free rotation between aromatic rings and methylene 

bridges in the macrocycle, calixarenes with free hydroxyl groups can adopt several different  

conformations, affecting their supramolecular and physical properties.  Once the macrocyle is 

synthezised, different methods are employed to lock the structure in a single conformation such as, 

the insertion of bulky aliphatic or aromatic groups in the lower rim or, some more sophisticated 

methods introducing trans-annular bridges in the lower rim giving more rigid structures.  

The number of conformations calixarenes can adopt depend on the size of macrocycle, type 

of groups attached in the lower rim and functionalities installed in the upper rim. Thus, the most 

common calixarene, calix[4]arene, can adopt up to four different conformations (figure 3.5).  

 

Figure 3.5 Different conformations adopted by calix[4]arene. 
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 A simple method to determine the conformation adopted by calix[4]arenes has been well 

established in the literature.
62

 The method is based on 
13

C-NMR spectroscopy and allows the 

determination of the conformation in just a few minutes. De Mendoza and co-workers published the 

correlation found between the 
13

C-NMR chemical shift of the methylene bridges and the orientation 

of the two phenol units attached to them for a series of different calix[4]arenes.  The 
13

C-NMR 

chemical shifts of the methylene bridges followed a clear trend with the neighbour phenols and 

their relative orientation. It was found that, when a methylene group was surrounded by two phenol 

moieties adopting a syn conformation, the 
13

C-NMR chemical shift for that methylene bridge was 

always close to 31 ppm. However, when the neighbour phenol rings were pointing out in opposite 

directions, adopting an anti conformation, the 
13

C-NMR chemical shift was always shifted downfield 

near to 37 ppm. The differences in the 
13

C-NMR chemical shifts observed are believed to be due to 

steric factors. In the table 3.2, the 
13

C-NMR chemical shifts of the methylene bridges for different  

calix[4]arenes are shown, as well as the conformations that can be inferred from the 
13

C-NMR 

chemical shifts.  

 

Table 3.2 Determination of the conformation of calix[4]arenes by 13C-NMR chemical shift of the methylene 

bridges (R indicates the type of group attached in the lower rim and R’ the group in the upper rim). 

R R’ Aromatic carbons Ar2CH2 shift Conformation 

H H 4 31.6 cone 
H Cl 4 30.7 cone 

COCH3 H 12 37.4, 30.7 Partial cone 
COCH3 

t
Bu 4 38.2 1,3-alternate 

COC6H5 
t
Bu 4 30.2 cone 

 

 

In the case of small calixarenes (four or five phenol moieties in the macrocycle), the 

conformation can be locked by the simple insertion of bulky groups or long aliphatic chains in the 

lower rim. The presence of bulky groups in the lower rim prevents the rotation of phenol rings 

through the macrocycle cavity and avoids the equilibrium between different conformations.  

As discussed above, calixarenes presenting free hydroxyl groups in the lower rim can adopt 

different  conformations in solution. In moderate and non polar solvents, calix[4]arene adopts a 

perfect cone conformation due to the hydrogen bond interaction between hydroxyl groups that  

stabilizes the structure. In this type of solvent, the 
1
H-NMR spectrum of a calix[4]arene shows a 
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singlet peak with chemical shift between 8 and 10 ppm, for which the integral corresponds to four 

protons, confirming the equivalence of the hydroxyl groups in the lower rim as well as the symmetry 

of the molecule in the cone conformation. More polar solvents such as DMF or DMSO tend to 

interfere with the hydrogen bonding in the lower rim, disturbing the cone conformation. The cone 

conformation in calix[4]arenes can be locked by relatively simple methods.  The treatment of 

calix[4]arene with sodium hydride followed by addition of 1-iodopropane allows the insertion of 

propyl chains in the lower rim blocking the conformation. The insertion of shorter aliphatic chains in 

the lower rim, like methyl or ethyl groups, does not provide enough bulkiness to avoid the free 

rotation of the phenol rings and therefore does not stop the equilibrium between conformations.  

However, O-alkylated calix[4]arenes locked in the cone conformation,  do not present a 

perfect basket shape. The impossibility of hydrogen bonding occurring in the lower rim, as a 

consequence of the O-substitution, obliges calix[4]arenes to adopt a more stable flattened cone 

conformation where two of the phenol moieties  are facing parallel to each other with the other two 

pointing out of the cavity. This conformation is known as the pinched cone conformation and has 

an important role in the supramolecular properties of calix[4]arenes (figure 3.6).  

                      

                      

 
Figure 3.6 Equilibrium between two possible pinched cone conformations for 

tetrapropoxycalix[4]arene. 

 

 

The preferred pinched cone conformation of O-substituted calix[4]arenes reduces the space 

available in the calixarene cavity and therefore, the capacity of calix[4]arenes to accept small 

molecules in their cavity. As a consequence, very few small molecules or group of atoms can be 

accommodated inside the cavity. Thus, the resulting host-guest complexes tend not to be very  
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stable, mainly due to the poor rigidity of the macrocyle with a constant conformational equilibrium 

between the two possible pinched cone conformations 

In 25,26,27,28-tetrahydroxycalix[4]arene, geminal protons of the methylene bridges are not 

equivalent. Therefore, two doublets with integrals corresponding to four protons each are found in 

the 
1
H-NMR spectrum. However, when the temperature is high enough, the interconversion 

between the two possible cone conformations makes the geminal protons equivalent and therefore 

a singlet peak, with a chemical shift between 3 and 4 ppm and integrating for eight protons, is 

obtained (scheme 3.1). 

 

 
Scheme 3.1 Equilibrium between two equivalent cone conformations in 25,26,27,28-

tetrahydroxycalix[4]arene. 

 

At room temperature or lower temperatures, the typical signal for the hydrogens of the 

methylene bridges is a pair of doublets with 
1
H-NMR chemical shifts laying between 3 and 5 ppm. 

The measured coupling constant for these doublets is 12-14 Hz, typical coupling values for geminal 

protons. Table 3.3 below shows the required rotation energy for the phenol moieties to rotate 

through the cavity of different calixarenes. The inversion energy has been calculated from NMR 

experiments carried out at different temperatures. From these experiments it can be concluded that  

the energy barrier is almost independent of the type of group attached to the para position of the 

aryl moieties, and also that the speed of interconversion greatly depends on the stablilty of the 

hydrogen bonds formed in the lower rim. When hydrogen bonds are disturbed in the presence of 

very polar solvents, the speed of interconversion increases and the energy barrier decreases.  

Another interesting feature is that the protons of the hydroxyl groups in the lower rim are 

more acidic than the proton in monomeric phenol. This is also due to the hydrogen bonds occurring 

between the hydroxyl groups that weaken the hydrogen-oxygen bond, making those protons more 

labile.  
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Table 3.3 Energy barriers for the ring inversion of calix[n]arenes (R indicates the group attached in 

the upper rim and G2−G1 represents the Gibbs free energy of the transition state).  

 CDCl3 Py-d
5
 

n / R G2−G1/ Kcal/mol Tc / K G2−G1 / Kcal/mol Tc / K 
4 / H 14.9 309 11.8 251 
4 / t-Butyl 15.7 325 13.7 288 

4 / C6H5 15.3 317 12.8 271 
4 / t-Octyl 14.6 303 12.4 260 
6 / t-Butyl 13.3 284 9.0 219 

8 / t-Butyl 15.7 326 <9.0 <183 

 

Melting points are normally high for calixarenes, especially for those where the hydroxyl 

groups in the lower rim are not substituted.  In these cases, melting points are normally above 250 

ºC. Some examples are p-tert-butylcalix[4]arene melting at 342-344 ºC, p-tert-butylcalix[6]arene 

melting at 372-374 ºC and p-tert-butylcalix[8]arene melting at 418-420 ºC.  

Different protocols allow the isolation of calix[4]arene in different conformations. The 

formation of a specific conformer during the synthesis of calix[4]arene depends on different  

variables such as the solvent, the rate of the reaction, or the type of base used. In general,  the 

cone conformation is favoured by a template effect when small alkali cations (lithium, sodium, etc.) 

are present in the reaction mixture. Alkali cations are able to strongly coordinate the four oxygens 

present in the lower rim of calix[4]arenes, favouring the formation of cone conformations. Bigger 

alkali cations, as cesium or potassium, do not allow tetra-complexation and can only stabilise the 

“1,3-alternate” conformation and the “partial cone” conformation.  

Locking a conformation in large calixarenes requires arduous synthetic protocols. A standard 

protocol is the insertion of transannular ethyleneglycol bridges in the lower rim in combination with 

the attachment of bulky groups to the remaining hydroxyl groups to avoid conformational 

interconversion.  In these cases, the groups attached in the lower rim can be further modified by 

reactions such as hydrolysis, transesterification, aminolysis, reduction or oxidation.  

 

3.1.5. Synthesis of calixarenes.
59

 

 

The synthesis of calixarenes can be performed by two different synthetic approaches. The 

most common method to synthesise calixarenes is the one-pot reaction of para substituted phenols  

and formaldehyde or paraformaldehyde. In this case, the oligomerization reaction of para 
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substituted phenols leads into a mixture of calixarenes with different sizes and the desired 

macrocycle is isolated from the reaction mixture generally purifying by recrystallization although 

column chromatography is also possible. The second approach involves a stepwise condensation 

of para substituted phenols. This method requires a higher number of synthetic and puri fication 

steps generally leading to lower overall yields. Although the second method is more arduous and 

time consuming, the step by step synthesis allows the preparation of calixarenes with different  

functionalities attached in the upper rim, being therefore a more versatile protocol. As starting 

materials, ortho-bromo p-alkylphenols are normally employed as monomers.  

 

3.1.6.1 One-pot synthesis of calixarenes. 

 

As mentioned above, the one-pot synthesis of calixarenes consists in the condensation of p-

alkylated phenols and aqueous formaldehyde under basic catalysis where the cyclic oligomers are 

preferred over the lineal analogues. After removal of the water formed during the condensation 

step, the crude product obtained is formed by a mixture of different size cal ixarenes (scheme 3.2).  

The ratio of different calixarenes present in the reaction mixture will depend on the reaction 

conditions such as temperature, solvent, catalyst and para-alkylated phenol employed during the 

condensation. Calixarenes presenting an even number of phenol moieties forming the macrocycle 

can be obtained in high proportions and can be easily prepared in a multigram scale with moderate 

to good yields over 60%. The condensation reaction can be tuned in order to generate size-specific  

calixarenes and even odd calixarenes like calix[5]arene in a gram scale in the laboratory.  
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Scheme 3.2 One-pot synthesis of calixarenes from para-tert-butylphenol and formaldehyde. 

 

Calixarenes containing four, six or eight phenol units forming the macrocycle have been 

normally found to be the major products in this kind of oligomerization.  Long reaction times favour 

the formation of calix[4]arene as it is the more thermodynamically stable product. Thus, 

calix[4]arene can be obtained from a mixture of calix[6]arene and calix[8]arene by heating at high 

temperatures (above 200 ºC) in the presence of catalytic amounts of base. Calix[8]arene is the 

kinetic product. Large cyclic oligomers can be obtained when para-substituted phenols bearing 

large bulky groups are employed during the condensation reaction.  

One inconvenience in the one-pot synthesis is the impossibility to obtain calixarenes bearing 

different groups or functionalities in the upper rim. This can only be achieved by follo wing a multi-

step or stepwise protocol. 

Interestingly, the one-pot condensation reaction between para-n-alkyl and para-phenyl 

substituted phenols and formaldehyde, under basic catalysis, has never been achieved. This fact 

has been explained by the low solubility of the formed intermediates, preventing the formation of 

cyclic oligomers.  

 

3.1.6.2 Stepwise synthesis of calixarenes.
59

 

 

The first stepwise synthetic approach for the preparation of calixarenes was developed by 

Hayes and Hunter in the 1950s and allowed the preparation of calixarenes with different groups 
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attached in the para position of the phenol units in the upper rim. Ortho-bromo p-alkylphenols were 

normally employed as starting material in this kind of condensation reactions.  

The stepwise synthesis of calixarenes involved the preparation of linear oligomers, using o-

bromo p-alkylphenol as monomer and the newly formed lineal oligomer could be cyclised in the 

final step (scheme 3.3).  

 

 
 

Scheme 3.3 Stepwise synthesis of calixarenes. 

 

The most frequent protocol employed in the formation of phenol -based oligomers used the 

repetition of several hydroxymethylation-condensation steps. The cyclization step was carried out  

after dehalogenation of the linear oligomer and, in the presence of very low concentrations of 

oligomer to avoid intermolecular reactions.  

Due to the high number of steps involved in the process, overall yields tend to be low, even 

when each synthetic step proceeded with moderate or good yield. As was mentioned b efore, this 

synthetic approach allowed the preparation of calixarenes with different substituents attached in the 

upper rim. However, due to the reaction conditions employed during the condensation of phenol 

units, groups attached in para position ought to be carefully selected to avoid undesired reactions. 
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3.1.6. Reactivity of calix[4]arenes.
59

 

 

Three different regions, lower rim, upper rim and methylene bridges, define the reactivity of 

calix[4]arenes. Calix[4]arenes obtained from the condensation of p-substituted phenols  in the one-

pot reaction,  can be mainly modified in two different regions. The simplest and most common 

approach to obtain calix[4]arene derivatives, is the alkylation of hydroxyl groups in the lower rim.  

This can be easily achieved by esterification, sulfonylation or nuceophilic substitution, after the 

base mediated deprotonation of the hydroxyl groups.  

Another alternative, is the functionalization of the upper rim after de -alkylation of 

calix[4]arenes. This functionalization is normally carried out by electrophilic aromatic substitution,  

allowing the insertion of several types of electrophiles in the upper rim like halogens, nitro groups 

or aminomethyl groups.
63

 However, the lower rim is historically the most functionalized region in 

calix[4]arenes due to the presence of nucleophilic hydroxyl groups.  

The methylene bridges represent the most difficult area to functionalize in calix[4]arenes and 

only a few examples of this type of derivatives are so far reported in the literature.
64

 The method 

employed in calix[4]arenes generally  consisted of the selective bromination of these positions with 

NBS to achieve the monobromination of each methylene bridge, followed by an interconversion of 

functional group such as nucleophilic substitution or Friedel -Crafts reaction.  

In the chemistry of calix[4]arenes, selective reactions towards the synthesis of mono-, bis- or 

tri-functionalized macrocycles are challenging and also play an important role in the development 

of versatile multifunctional calix[4]arenes. 

 

3.1.6.1 Reactions involving hydroxyl groups.  

 

Different synthetic strategies involving the hydroxyl groups in the lower rim of calix[4]arenes 

allow the selective functionalization of both, the lower and the upper rim. Initial modifications 

carried out in the lower rim have a great influence in the reactivity of the para positions in the upper 

rim. Derivatization of calix[4]arenes normally begins with modifications in the lower rim.
 65
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Very selective and efficient methods were developed for the synthesis of O-substituted 

calix[4]arenes. These methods allowed the mono-, bis-, tri - and tetra-substitution of calix[4]arenes, 

depending on the choosen strategy.
66

 

Regioselective reactions in the lower rim of calix[4]arenes play an important role in the 

preparation of useful macromolecules employing calix[4]arene as building blocks. The selective 

mono-functionalization of the lower rim is achieved through several methods. The most popular 

approach is the direct monoalkylation of the lower rim, using a base and equimolar quantit ies of an 

alkylating electrophile. Examples of this approach are, the use of potassium carbonate in 

acetonitrile, cesium fluoride in N,N-dimethylformamide (DMF),
67

 sodium hydride in toluene or 

barium hydroxide in DMF.
68

 Tetra-O-substituted calix[4]arenes and 1,3-distal di-substituted 

calix[4]arenes are also employed as starting substrates in the synthesis of mono -O-substituted 

derivatives. A good example of that, is the controlled cleavage of ethers in the lower rim by the use 

of the right number of trimethylsilyl iodide equivalents.
69

 Mono-ester calix[4]arenes can also be 

obtained from 1,3-diesters by treatment with a mild base like imidazole.
70

 

The most regioselectively efficient reactions in the lower rim of calix[4]arenes are either the  

protection of all the hydroxyl groups in one synthetic step or the 1,3 functionalization. 1,3 -Distal 

alkylation or acylation of hydroxyl groups are successfully achieved by the use of two equivalents 

of a weak base like potassium carbonate. The high selectivity is explain ed by the stability of certain 

intermediate species during the O-functionalization (scheme 3.4).  
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Scheme 3.4 Reaction mechanism for 1,3-O-functionalization of calix[4]arenes. 

 

The second deprotonation in the lower rim of calix[4]arenes generates two possible 

intermediates with different stability. Deprotonation in the position 3, leads to an oxyanion that can 

be greater stabilised by the action of two hydrogen bonding interactions. This difference in stability 

is enough to promote the regioselective formation of 1,3-distal calix[4]arenes when two equivalents 

of a mild base are used during the reaction.  

Formation of 1,2-proximal O-substituted calix[4]arenes was also achieved in the past but 

yields were normally much lower than in the case of 1,3-distal derivatives, due to the absence of 

good selective synthetic protocols. Selective tri-functionalization of the lower rim from unsubstituted 

calix[4]arene is carried out by tri-esterification, using mild bases like imidazole derivatives. 

Complete O-substitution in the lower rim, as the simplest process, can be carried out under 

basic or acidic conditions. The treatment with a strong base, to activate the hydroxyl groups, 

followed by the addition of an electrophiile is the most common method to obtain complete 

substitution in the lower rim. Hydroxyl groups can also react in the presence of good electrophiles  

and certain catalysts. 
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3.1.6.2 Blocking the conformation of calix[4]arenes.  

 

Blocking a specific conformation for calix[4]arenes was possible, both by the use of selective 

protocols, and protecting groups (scheme 3.5). In general, partially O-alkylated calixarenes can 

adopt different conformations (cone, partial cone, 1,3-alternate, etc.).  Since free hydroxyl groups 

allow phenol rings to rotate around the methylene bridges through the central cavity, syn and anti  

conformers are obtained. 

  

 

Scheme 3.5 Selective 1,3-distal-O-alkylation of calix[4]arenes. 

 

When 1,3-diether calix[4]arenes are syn conformers, a cone conformation is obtained and a 

pair of doublets (AX system) is observed by 
1
H-NMR spectroscopy for the methylene bridges, 

where the doublets are separated by 0.6 ppm. Anti-1,3-diethers, also show one pair of doublets 

(AB system) by 
1
H-NMR however, in this case, the gap between doublets is smaller with a value of 

0.2 ppm.  

The regioselectivity of the reactions performed on the hydroxyl groups in the lower rim is 

modulated by the bulkiness of the substituents introduced and template effects, mainly due to the 

formation of metal complexes in the course of the reaction,
71

 the nature of the solvent used and the 

nature and bulkiness of the functional groups attached in the upper rim (scheme 3.6).  
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Scheme 3.6 The treatment of 5,11,17,23-tetra-para-tert-butyl-25,26,27,28-tetrahydroxycalix[4]arene with sodium 
carbonate and ethyl bromoacetate in acetone yields quantitatively, the corresponding calix[4]arene derivative 
in the cone conformation, whilst the treatment with cesium carbonate affords quantitatively the corresponding 
calix[4]arene derivative in the partial cone conformation. 

 

The partial cone conformation can also be obtained in good yields by a two step synthetic 

approach starting from 25,26,27,28-tetrahydroxycalix[4]arene (scheme 3.7). 

 

 
Scheme 3.7 The treatment of 25,26,27,28-tetrahydroxycalix[4]arene and benzyl bromide with potassium 
carbonate  in acetonitrile affords 25,27-dibenzyloxy-26,28-dihydroxycalix[4]arene. Further treatment with 
ethyl iodide and potassium tert-butoxide in tetrahydrofuran, affords the corresponding calix[4]arene 

derivative in the partial cone conformation. 

 
 

 

 

 

 

 

 

 

 

 

 
Scheme 3.8 Synthesis of 1,2-alternate calix[4]arene from a partial cone calix[4]arene intermediate and 1,3-
alternate calix[4]arene from 25,26,27,28-tetrahydroxycalix[4]arene respectively. The template effect of the 

metal ion, as well as the bulkiness of the functionalities attached to the lower rim of the calixarene, are also 
represented to demonstrate their importance in modulating the conformational selectivity. 
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The 1,2-alternate and 1,3-alternate conformations are obtained with moderate yields. The 

1,2-alternate conformation is obtained by a two-step approach whilst, the 1,3-alternate 

conformation is easily obtained in one step from 25,26,27,28-tetrahydroxycalix[4]arene (scheme 

3.8).
72,73

 

 

3.1.6.3 Chemistry in the upper rim of calix[4]arenes. 

 

Tert-butyl groups attached to the upper rim of calix[4]arenes can be easily removed by 

different protocols such as, the treatment with aluminium(III) chloride and phenol as transalkylating 

acceptor (scheme 3.9) or, the use of tri fluoroacetic acid (TFA) in combination with sodium 

dithionite.
74

 

 

 

Scheme 3.9 De-tert-butylation reaction of calix[4]arene catalyzed by aluminium(I II) chloride. 

 

The cleavage of functionalities from the upper rim is very important in calixarenes, since the 

free para position can be easily functionalized (i.e. electrophilic aromatic substitution).  The same 

reactivity principles observed in phenol derivatives can be successfully applied on calixarenes. 

Reactions such as nitration, halogenation, sulfonation, chloromethylation, aminomethylation,  

acylation, metal-halogen exchange or C-C couplings are some representative examples.  Fries and 

Claisen rearrangements are also possible.  

The p-quinone methide route is an important  protocol, developed by Gutche in the 1990s, 

that allowed an easy functionalization of the upper rim. The protocol consisted in the 

aminomethylation of the para position of plain calix[4]arene (scheme 3.10).  Further conversion of 

the amino group into a quaternary ammonium salt, allowed its substitution by other nucleophiles  

like cyanides, hydroxides, methoxides, malonates, phenoxides among others.  
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Scheme 3.10 p-Quinone methide route. Selective synthesis of monoarmed calix[4]arenes. 

 

Selective functionalization of the upper rim in calixarenes is very important. Nevertheless, 

most of the selective functionalizations in the upper rim described up to the present are achieved 

by carrying out firstly a regioselective functionalization of the hydroxyl groups in the lower rim. The 

initial and partially selective functionalization of hydroxyl groups in the lower rim induces a different  

reactivity in the para positions of the phenol moieties of the macrocycle. O-alkylated phenol units, 

show lower reactivity towards electrophilic aromatic substitution (SEAr) in the para positions than 

non O-alkylated analogues due to the different electronic effects caused in the ring by the 

substitution (scheme 3.11).  

To date, the most successful examples of selective functionalization of hydroxyl groups in 

the lower rim are, the de-alkylation of partially O-alkylated calix[n]arenes (n=4, 6) under carefully  

controlled conditions, and the selective O-alkylation such as 1,3-O-dialkylation and the selective 

Claisen rearrangement in calix[4]arenes (scheme 3.11).
    

 

 

 
Scheme 3.11 Upper rim functionalization of calix[4]arenes. A) Selective 1,3-O-dipropylation of 

calixarene 10. B) Functionalization of calix[4]arenes by Claisen rearrangement. 
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3.1.6.4 Chemistry in the methylene bridges of calix[4]arenes. 

 

There are two further available positions to functionalyse calixarenes though they are much 

less common. One of them is the outer face region of calixarenes, formed by the external area 

around the benzene rings that can be functionalised by coordination chemistry, i.e. formation of 

metal complexes with low-valence transition metals.
75

 The second are the methylene bridges 

joining the phenolic units together in the cyclic structure. The monosubstitution at these positions 

opens the scope of functionalising calixarenes, as the methylene protons are not equivalents, being 

the equatorial position the preferred one.
76

 

Further modification of calix[4]arenes allows the preparation of a great number of 

macrocycles with potential applications in supramolecular chemistry,
77

 metal sequestering
78

 and 

catalysis.
79

 

 

3.1.6.5 Transannulation reactions in calix[4]arenes. 

 

Transannulation reactions, the generation of bicyclic molecules from a medium or large ring, 

are also involved in the synthesis of natural products like terpenes, polyketides, steroids and 

alkaloids. Transannulation reactions can be achieved by the use of different processes like aldol 

condensation, Diels-Alder cycloaddition, ionic cyclisation, atom-transfer reaction or radical 

cyclisation.
80

 

The application of transannulation reactions in calixarenes was very limited in the past and 

only a few examples were reported in the literature.  

In 2003, Neri and co-workers reported the synthesis of transannular spirodienona 

calixarenes under the action of strongly basic oxidizing systems.
81

 Later, in 2008, Ungaro et al. 

reported the 1,3-transannulation of calix[4]arenes in the upper rim. When the 1,3-disubstituted 

calix[4]arene 111 was treated with Cbz-alanine in the presence of PyBOP and a base, an 

intramolecular reaction between the amino group and the activated carboxylic acid had taken place 

unexpectedly (scheme 3.12). The 
1
H-NMR spectrum of the crude product showed the aromatic 
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protons in ortho to the amino (NH) and carbonyl (CO) groups to be highly shielded, affording 

unusual low chemical shifts of 5.5 and 5.6 ppm respectively.
82

  

 

 
Scheme 3.12 Intramolecular condensation between amino and carboxylic groups during the 

synthesis of peptidocalix[4]arenes. 

 

 

A photochemical transannulation reaction of calix[4]arene 114 was reported in 2010 by Diker 

and co-workers when, a solution of this compound in benzene was irradiated with a mercury lamp 

in the presence of iodine and potassium carbonate to afford a 37% yield of the desired product via 

the transannular [2 + 2] cycloaddition reaction of the stilbene units (scheme 3. 13).
83

 Again, the 

upfield shift for the meta-phenolic protons at 5.5 and 5.9 ppm, confirmed the transannular reaction.  

 

 

Scheme 3.13 Transannular [2 + 2] cycloaddition reaction of the stilbene units in calix[4]arene 114. 
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In 2012, Casnati et al. reported the Cannizzaro transannular disproportionation of 1,3-distal 

diformyl calix[4]arene locked in the cone conformation.
84

 Under strongly basic conditions, the 1,3-

distal dialdehyde could undergo disproportionation while the 1,2-proxymal isomer was unable to 

disproportionate. The reaction was reported to proceed via a transannular transition state with a 3-

atom bridge and the product formation rate was consistent with an intramolecular process, showing 

a first-order dependence with the substrate concentration (scheme 3.14). The insertion of bulky 

groups in the lower rim of calix[4]arenes locks the conformation and allows a better control of the 

structure. However, the insertion of bulky groups still allows certain degree of flexibility, being 

possible the rotation through the bridged methylene groups connecting the phenol rings. This  

makes possible the interconversion between a pure cone conformation with C4V symmetry and, a 

flattened cone conformation (the already mentioned pinched cone conformation) with symmetry  

C2V. The pinched cone conformation allows calix[4]arenes to locate the functional groups installed 

on 1,3-distal positions very close to each other, favouring the performance of transannular 

reactions.  

 

 
Scheme 3.14 Intramolecular Cannizzaro reaction of calix[4]arene 116 in aqueous methanol. 

 

 

3.1.7. Biomimetic applications of calix[4]arenes.
85

 

 

In 1970, Gutsche, intrigued by the new advances in the biochemistry and enzyme mimic 

fields, proposed calixarenes as a convenient scaffold for the mimicry of enzymes. Calix[4]arenes 

represent a very suitable scaffold for the mimicry of enzymes due to their basket shape structure 
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and their moderate flexibility that allow the functional groups, in both the upper and lower rim, to 

adapt themselves to guest molecules by small changes in the conformation, i.e. changing from 

pure cone to pinched cone conformations through low energy barriers. Moreover, the fact that  

calix[4]arenes present  eight different, easily functionalizable positions, allo w an easy access to 

multifunctional calix[4]arenes where synergic effects between different functional groups in the 

molecule are possible.  

Supramolecular chemistry has become a high-profile topic over the last decades and plays 

an important role in the mimicry of enzymes. Supramolecular chemistry is an area of the chemistry 

studying the non covalent interactions between molecules and their organization in space. In an 

attempt to reproduce the chemistry of natural processes, chemists are working to control weak 

interactions such as dispersion and electrostatic forces and hydrogen bonding, which could 

contribute into a supramolecular coordination, leading to regio - or enantioselective processes. The 

design of macromolecular receptors is a representative example of the importance of non-covalent  

interactions. Artificial receptors contain suitable and complementary functionalities that can interact 

non-covalently with specific molecules. The design of arti ficial receptors, metalloenzymes or smart  

materials, normally requires the use of molecular scaffolds. Calixarenes, particularly calix[4]arene,  

are one of the macromolecules attracting more attention as molecular scaffolds and play an active 

role in the enzyme-mimic field. Their macrocyclic structures are able to reproduce the active site of 

enzymes by the insertion into their structures of active functional groups. These types of biomimetic 

structures are important because of their potential applications, not only to produce artificial 

catalysts or receptors but also to be used in the study of the mechanisms carried out by natural 

enzymes. 

The most important features as a scaffold of an enzyme based, artificial calixarene are:  

 

- Molecular recognition: 

The scaffold must present different functionalities able to selectively interact with the 

target substrates. Very often, such functionalities are also able to orientate those 

substrates before the reaction occurs, inducing a predetermined regio- or 

enantioselectivity.  
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- Turnover rate:  

The artificial enzyme-based, bio-inspired scaffolds must be able to perform the reaction 

a great number of times before becoming partially or fully inactive.  

- Reaction rate:  

Reactions must be considerably accelerated in the presence of these scaffolds as 

catalysts. 

- Mild conditions:  

The catalysis performed by these scaffolds must be suitable to occur under mild 

conditions of room temperature, atmospheric pressure, absence of strong bases or 

acids, etc. 

 

- Low complexity: 

Biomimetic structures must present just the necessary active functions to carry out the 

catalytic activity as only the structure in the enzymatic active pocket is imitated.  

- Broad range solubility:  

Good solubility properties in different solvent systems to widen the scope to different  

processes.  

 

In order to design a biomimetic structure, there are two main approaches to the mimicry of 

enzymes. The first approach is focused on the enzymatic function regardless of the complex 

structural features or supramolecular interactions. The second is based on the type of interactions 

occurring between the substrates and the enzyme.  

 

3.1.7.1 Mimicry of the enzymatic function.
85

 

 

To mimic the enzymatic function of an enzyme, robust and long li fe catalytic systems having 

weak interactions with the substrates are required. Those characteristics lead to high turnover 

frequencies (TOF) and turnover numbers (TON) at room temperature and atmospheric pressure.  

The interactions between the substrates and the catalytic system must be strong enough to 
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minimize the t ransition state energy barrier. The formation of adducts should be avoided though.  

The structure of the catalytic system must also provide a minimum flexibility for the substrates to 

accommodate properly and react after adopting a specific orientation.  

Macromolecules possessing the features described above are used in the catalysis of a 

variety of bio-inspired reactions. Some of these molecules are cyclodextrins, macrocyclic 

polyethers and calixarenes. 

One of the most common and studied biochemical reactions, is the cleavage of phosphate 

esters catalyzed by metalloenzymes like phosphorous nuclease, DNA -polymerase, phospholipase-

C, and alkaline-phosphatase.  

Several metallic cations such as Zn(II), Fe(III), Mn(II) or Mg(II) are found in the active site of 

these enzymes. The metallic cation activates the phosphate group allowing the cleavage of the 

molecule through a five member transition state. p-Nitrophenyl esters (HPNP) are used as 

convenient substrate models for the cleavage of phosphate esters due to their simple quantification 

by UV-VIS spectroscopy (max = 400 nm). 

 

3.1.7.1.1 Hydrolysis catalysed by Zn(II)-complexes.
86

 

 

Calix[4]arenes fuctionalised with a single or several pyridine chelating agents in the upper 

rim are described in the literature and their catalytic properties have been reported. The 

calixarenes containing pyridine type ligands in their structure are able to strongly complex divalent  

metals like Zinc(II). The compounds shown below (figure 3.7) are effectively used in the hydrolysis 

of several substrates involved in natural processes like phenyl phosphates.  
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Figure 3.7 Calix[4]arene-based model for metallo-phosphodiesterases. 

 

Monoarmed calix[4]arene 118  loaded with Zn(II) is reported to have six times more catalytic 

activity than the control compound 119. This enhancement in the catalytic activity is explained by 

the contribution of the hydrophobic effects in the calix[4]arene cavity what facilitates the 

stabilization of a nearby metal-water bond which participates in the catalysis to a certain extent.  

 Analogous di-substituted complexes were shown to be fi fty times more active that the 

monoarmed complexes (figure 3.8). This is explained by a synergic effect between the two metallic 

centres. Thus, the bis-armed macromolecule was able to coordinate the RNA model substrate 2-

hydroxypropyl-4-nitrophenyl phosphate (HPNP) at two different points where one metallic centre 

was coordinated to the phosphate group and the other was coordinated to the hydroxyl group. The 

reaction was finally achieved by an intramolecular cyclization (figure 3.8). An increase in the rigidity 

of the calix[4]arene scaffold resulted in a negative effect in the catalytic efficiency, being the activity 

reduced eight times (figure 3.9). 
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Figure 3.8 Proposed mechanisms for HPNP cleavage by calix[4]arene complex 120. 

 

The insertion of a third metallic centre in the upper rim enhanced the reaction rate by 40%, 

what was explained by a cooperative effect. It was also found that tri -metallic complexes were able 

to form more stable adducts, decreasing the substrate affinity. 

 

 

Figure 3.9 Rigid bis-armed calix[4]arene complex for the catalysis of hydrolysis reactions. 

 

 

 

 



 

 

- 119 -  

 

3.1.7.1.2 Hydrolysis catalysed by Cu(II)-complexes.
85

 

 

The hydrolysis of phosphate esters is carried out by phosphoesterase metalloenzymes and 

several other amino acid residues. During the hydrolysis of phosphate monoesters, residues of 

histidine, serine and arginine, along with two metallic atoms of zinc and magnesium respectively, 

are found to be key elements in the catalysis of this type of reactions.  

During the mimicry of these enzymes, the amino acid residues are replaced by simpler 

organic bases able to perform the same function (i.e. in the mimic of RNase A, imidazole and other 

amino derivatives).  

Di-substituted calix[4]arenes complexing Cu(II) are reported in the literature and their 

activities in the cleavage of HPNP and  ethyl p-nitrophenyl phosphate (EPNP) are found to be 

much higher than in the case of mono-substituted analogues where a cooperative effect is not  

possible. In this kind of system, the pKa for the solvation water bound to the copper atom is found 

to be lower than expected, by showing again the hydrophobic effect generated by the aromatic 

cavity of calix[4]arenes allowing a catalysis under neutral conditions.  

More complex bifunctional calixarenes containing copper (II) chelators and hydroxymethyl 

groups have also been tested in transesterification reactions of HPNP. Other bi -functional 

calix[4]arene complexes bearing extra amino groups showed a high activity in the catalysis of 

intramolecular transesterification of HPNP. 

 

3.1.7.1.3 Mimicry of acyltransferases. 

 

Imidazole derivatives are frequently used as good acceptor -donor species of acyl groups. 

Calix[4]arenes bearing imidazole groups in the upper rim are reported in the literature and their 

catalytic properties well studied (figure 3.10).
87

 The presence of a nucleophilic group in the 

calixarene scaffold resulted in an enhancement in the hydrolysis rate by a 52%. When the 

calixarene cavity was not present in the catalytic system and the control substrate was used 

instead, the catalytic activity decreased by a 13%. The di-substituted calixarene generated an 

increase of the initial reaction rate by 50% compared with the mono-substituted catalyst by showing 
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a cooperative effect. At pH values close to neutral, half of the imidazole moieties are protonated,  

which makes bi-functional imidazole calixarenes good acid -base catalysts for the hydrolysis of 

esters in aqueous solution. This catalysis is efficiently applied to the hydrolysis of p-nitrophenyl 

benzoate.  

 

 

Figure 3.10 Imidazole substituted calix[4]arenes.
87

 

 

3.1.7.1.4 Mimicry of ribonucleases.  

 

Lanthanide complexes have proved to be good catalysts in the bio-mimetic hydrolytic 

cleavage of HPNP. The first examples of bio-mimetic macromolecules based on regioselective 

ribonucleases were reported by Shinkai et al. in 1991, where water soluble sulfonate calix[4]arenes 

were used for the cleavage of cyclic phosphates of cytidine, adenosine, uridine and guanosine 

(figure 3.11).
88

 The regioselective cleavage of cyclic ribonucleosides phosphate was achieved in 

acidic media, where cyclodextrins resulted to be only active in neutral or alkaline conditions.  
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Figure 3.11 Synthetic water-soluble calix[4]arene employed in the regioselective cleavage of 2’,3’-

cyclic phosphates.
88

 

 

Very low catalytic activity was shown by bigger macromolecules like calix[6]arene and 

calix[8]arene. This could be explained because of the high flexibility and number of conformations 

these macrocycles can adopt. It was also found that the calixarene cavity was essential for the 

regioselectivity.  Thus, the regioselectivity was not improved when a monomeric analog (4 -hydroxy-

benzenesulfonic acid) was used in the reaction. The electrostatic interactions between the 

macromolecule and the substrate played an important role in the catalytic process.  

 

3.1.7.2 Mimicry based on the structure of enzyme active sites. 

 

The complexity and high molecular weight of enzymes make impossible the exact 

synthetically-achieved reproduction of the proteic structure in the laboratory. The study of the active 

site and surrounding areas in enzymes showed the catalysis of the enzyme sites presented many 

similarities to the catalysis synthetically performed in the laboratory. 

One of the big challenges of the enzyme mimicry  is the preparation of artificial ligands, able 

to reproduce the coordination sphere of the metallic atoms occuring in the active sites of enzymes.  

 

3.1.7.2.1 Structural models based on calixarene-Cu(I) complexes. 

 

Calix[6]arene derivatives are used to form Cu(I) complexes (figure 3.12).
89

 In this type of 

complexes, the metallic centre is protected by the calixarene scaffold, avoiding undesired metal -

metal interactions. The complex can also accept small molecules carrying coordinative atoms like 

nitrogen, with nucleophilic lone pairs. A NMR study of the coordination of several nitriles with the 
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metallic center has provided interesting conclusions about the binding of dif ferent nit riles to these 

mono-nuclear copper complexes. 

 

 

Figure 3.12 Tridentate N-ligand based on calix[6]arene.
89

 

 

These types of complexes present an available coordinative site that can selectively interact 

with small molecules like acetonitrile or allylnitrile, but not with bulkier nitriles. It was also observed 

that the calixarene cavity protected the metal centre from undesired reactions such as dimerization,  

and could act as a molecular funnel.  

 

3.1.7.2.2 Structural models based on calixarene-Zn(II) complexes. 

 

A biomimetic calix[6]arene-Zn(II) complex was reported by Sénèque et al. where the metallic 

atom is tri-coordinated by three histidine residues (figure 3.13).
90

 In this particular complex, the 

highly “Lewis acidic” Zn(II) cation was placed in a tetrahedral environment presenting a labile site 

which was facing the calixarene pocket. This position, which was initially occupied by a water 

molecule, could be exchanged by small molecules like amines, amides, alcohols, sulfoxi des, 

nitriles, as it was determined by H-NMR spectroscopy. Interestingly, secondary, tertiary and 

aromatic amines did not show substantial complexation. These studies concluded that this kind of 

calixarene was able to selectively complex small molecules depending on structural features of the 

guest molecule such as types of functionalities present in the structure or size of the guest 

molecule. In addition, these macrocyclic systems proved to be very versatile, allowing the tuning of 
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steric and electronic properties.
91 

In the same work, the X-ray structures of the corresponding 

ethanol and formamide aducts were presented. These structures showed that the hydrogen 

bonding and CH/ interactions are essential in order to stabilise the complex formed by host and 

substrate.  

 

 

Figure 3.13 Biomimetic calix[6]arene-based Zinc complexe.
90

 

 

A different study focused on the nature of the coordinative nitrog en source, finding that 

imidazole, benzimidazole and pyrazole were also good nitrogen donors in the formation of stable 

tetrahedral zinc complexes. The calixarenes adopted a cone conformation presenting a cavity 

which could accept  small molecules like acetonitrile. Interestingly, pyridine did not prove to be a 

good ligand in this kind of Zn(II) complex.
92

 

 

3.1.8 Aims. 

 

The aim of the last part of our research is to develop new synthetic protocols towards the 

efficient preparation of upper rim mono- and multi-substituted calix[4]arenes locked in the cone 

conformation. These synthetic methods will be employed in the preparation of a new bio-inspired 

calix[4]arene, in an attempt to mimic the condensing function of polyketide synthases.  
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3.2 Results and discussion. 

 

3.2.1. Regioselective synthesis of monosubstituted calix[4]arenes locked in the cone 

conformation.  

 

A common representation for the operating mechanism of PKS involves the use of different 

functional modules that participate in the catalysis of specific transformations during the 

biosynthesis of polyketides in microorganisms and plants. Each functional module is sequenced in 

such as specific manner that the polyketide chain can be finely tune to produce a very specific  type 

of biomolecule (figure 3.14). 

 

 
Figure 3.14 Schematic representation for the modular mechanism of PKS.  

 

Within this context, polyketide synthases present the ability to bring together a variety of 

active functions that  are specialised in the catalysis of important biochemical transformations. This  

idea of bringing together a group of catalysts, so that cascade reactions can be performed in the 

same reaction media, motivated organic chemists in the use of cyclic scaffolds for the mimicry of 

enzymes. Of all the macrocycles known in the literature, calixarenes, and more specifically  

calix[4]arenes, appear to be a very convenient type of macromolecule for the mimicry of enzymes. 

This is due to its great versatility, the high control on its structural conformation and the substantial  

number of functionalizable positions within the macrocyclic structure. Thus, calixarenes have been 

used for a long time as scaffolds and also successfully employed in the mimicry of enzymes like for 

example aldolases, acyltransferases or ribonucleases. Ho wever, most of the studies involving 

mimicry of enzymes have been based on the use of metallic centres anchored in calixarenes and 

not so much attention has been devoted to the use of calixarenes in organocatalysis. Thus, the 
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preparation of multifunctional calixarenes bearing different functional groups, similarly to modular 

PKS, which are able to act as independent organocatalytic centres, correspond to a novel field of 

investigation which present many challenges.  

In addition to our investigations of the properties  of artificial malonyl carriers and mild 

decarboxylative condensations we were equally interested in the use of cyclic scaffolds for the 

mimicry of enzymes that were able to catalyse decarboxylative Claisen condensations. Bearing this 

idea in mind, we decided to develop new synthetic methods that allowed the preparation of mono,  

di and multi-functionalised calix[4]arenes with applications in biomimetic catalysis. Our initial idea 

was to design a macrocyle capable of mimicking the active site of a PKS where two thiol groups 

are placed nearby (figure 3.15).  

 

 

Figure 3.15 Bio-inspired mercapto-calix[4]arene to mimic part of the active site of a PKS.  

 

Furthermore, the preparation of multifunctional calix[4]arenes bearing different 

organocatalysts at the upper rim might lead to the mimic of some PKS functions such as chain 

elongation (KS), reduction of carbonyl groups (KR) or dehydration reactions (ER) (figure 3.16).  

 

 

Figure 3.16 Multifunctional calix[4]arene bearing different biomimetic functions.  
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With the idea of multi functionalising calixarenes in mind, we started the synthesis of new 

calix[4]arenes with potential applications in catalysis and enzyme mimicry. Different approaches 

can be followed during the preparation of multifunctional structures based on calix[4]arene. One 

option may be the insertion of different and compatible functional groups in the macrocycle acting 

as selective and independent catalysts. These functional groups  might be attached to either the 

upper or to the lower rim (figure 3.17).  

 

 

Figure 3.17 Multifunctional calix[4]arene inspired in the active site of PKS.  

 

Another approach may be the preparation of several monoarmed calix [4]arenes bearing 

different functionalities, followed by the oligomerisation of several units of selected 

monofunctionalised calix[4]arenes, acting as a chemical toolbox (figure 3.18). 

 

 

Figure 3.18 Multifunctional oligomer formed by the linkage of three different monoarmed 

calix[4]arenes. 
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During the first stage of our investigations in the field of calixarenes, we were interested in the 

regioselective functionalisation of the upper rim of calix[4]arenes, particularly in the selective 

monofunctionalisation.  

As was explained in the introductory section, only a few protocols were reported in the 

literature with regards to the monofunctionalisation of calix[4]arenes. However, none of them 

afforded calix[4]arenes locked in the cone conformation. The development of a selective and a 

simple method for the preparation of monoarmed (monofunctionalised) calix[4]arenes locked in the 

cone conformation may be very useful in the chemistry of this type of macrocycle. The study of the 

properties of simple monoarmed calix[4]arenes, may be greatly helpful in the preparation and 

understanding of more complex multisubstituted calix[4]arenes. Moreover, monosubstituted 

calix[4]arenes might be employed as a suitable starting material in the synthes is of multisubstituted 

calix[4]arenes. 

Another motivation that encouraged us to prepare monoarmed calix[4]arenes was the fact 

that very few synthetic protocols were available in the literature. In our opinion, a simple and highly  

regioselective protocol for the preparation of monoarmed calix[4]arenes was needed  (scheme  

3.15).  

 

Scheme 3.15 Schematic monofunctionalisation of calix[4]arenes locked in the cone conformation. 

 

In 1988, David Gutche and Kye Chun Nam published the reaction between calix[4]arene 96, 

formaldehyde and a secondary amine to generate tetraaminocalixarenes in high yields.
93

 Although 

the first attempts to carry out this reaction led to a mixture of polymers, the use of lower reaction 

temperatures and the use of a mixture of polar solvents (tetrahydrofuran and acetic acid) allowed 
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the preparation of Mannich bases in high yields (70-90%), after stirring the reaction mixture for 24 

hours at room temperature. The tertiary amino groups installed in the upper rim of the 

calix[4]arene, were easily converted into the corresponding quaternary ammonium salts by 

treatment with an excess of iodomethane (scheme 3.16).  

It is known that trialkyl benzyl quaternary ammonium salts are unstable when heated around 

80 ºC or above,
94

 or when irradiated with intense UV light.
95

 Trialkyl benzyl quaternary salts 

decompose to form tertiary amines and highly reactive quinone methides. Thus, when a solution of 

calix[4]arene 134 in dimethylsulfoxide was heated at 60 ºC in the presence of a nucleophile, the 

amino group was efficiently substituted. The use of different nucleophiles allowed the synthesis of 

several tetrasubstituted calix[4]arenes (scheme 3.16).  

 

Scheme 3.16 Upper-rim functionalisation of calix[4]arene via the para quinone methide route.
93

 

 

The proposed formation of para quinone methide in calix[4]arene was supported by the 

observation that, when the hydroxyl groups in the lower rim were alkylated, the formation of para 

quinone methide was prevented and, as a consequence, the substitution reaction in the upper rim 

did not proceed.  
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As already mentioned, in 1994, Gutsche et al. developed a selective method for the 

preparation of monosubstituted calix[4]arenes. The use of tetrahydrofuran as solvent in the 

synthesis of Mannich bases allowed the selective formation of monosubstituted amino 

calix[4]arenes.
96

 Treatment with iodomethane, to form the corresponding quaternary ammonium 

salt, followed by heating at around 80 ºC in the presence of a nucleophile, led to the preparation of 

a variety of monoarmed calix[4]arenes. Quaternized amino groups could be substituted by 

nucleophiles  such as alkoxides, aryl oxides, Grignard reagents, secondary amines or alkyl sodium 

malonates (scheme 3.17). 

 

 

Scheme 3.17 Synthesis of OH-free monosubstituted calix[4]arenes by Gutsche et al.
96

 

 

Although in the paper published by Gutsche and co-workers the selective formation of 

monoamino calix[4]arene was described, no explanation was given for such selectivity. In our 

opinion, the exclusive isolation of monoamino calix[4]arene was mainly due to solubility issues. We 

believe calix[4]arene 106 must exist in a zwitterionic form that would explain its low solubility in the 

majority of organic solvents like THF, methanol, chloroform, diethyl ether, acetonitrile or toluene.  

Calix[4]arene 106 was only found to be soluble in very polar solvents like N,N-dimethylformamide,  

dimethylsulfoxide,  N,N-dimethylacetamide or acetic acid. This would also explain, why 

tetrasubstituted calix[4]arenes were obtained as major product when acetic acid was used as part  
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of the solvent system, since the use of a highly polar solvent allowed solubilization and further 

reaction of intermediates.  

In our opinion, the para quinone methide route represents one of the few methods reported 

in the literature that truly allows the access to monoarmed calix[4]arenes through a selective,  

simple and efficient process. The route allows the preparation of monoarmed calix[4]arenes in high 

yields, is easily scalable and  requires short reaction times and simple purifications.  

However, there is an important aspect that the para quinone route does not  cover. The 

conformation of monoarmed calix[4]arenes obtained by this method is not locked in the cone 

conformation. To achieve conformational stability is crucial in order to control the properties and 

reactivity of calix[4]arenes. Besides, the para quinone route affords calix[4]arenes where free 

hydroxyl groups located in the lower rim can be involved in a number of side reactions. In the 

previously mentioned paper published by Gutsche et al., only tetraamino calix[4]arenes were 

blocked in the cone conformation by treatment with sodium hydride, followed by p-

bromobenzenesulfonyl chloride in anhydrous tet rahydrofurane. However, no examples of 

monoamino calix[4]arenes locked in a cone conformation were reported in that publication.  

We thought that the lack of a convenient protocol for the O-alkylation of monoamino 

calix[4]arenes was a good opportunity to continue Gutsche’s work and to create a method to 

generate O-alkylated monoarmed calix[4]arenes blocked in the cone conformation, and in that  

process, employ normal, stable and widely used substituents on the lower rim OH groups rather 

than the unusual and reactive 4-bromobenzenesulfonyl group chosen by Gutsche for his  

tetrasubstituted examples.  

In order to obtain O-alkylated monoamino calix[4]arenes, O-propylation using 1-iodopropane 

might be the most convenient option. Once inserted, propoxy groups are reasonably inert to side 

reactions and their bulkiness prevents phenol rings from rotating through the calixarene cavity. O-

propylation of calix[4]arenes is a very well known process in the literature and the reaction 

conditions are well established. Standard conditions involve initial deprotonation of hydroxyl groups 

by a strong base, like sodium hydride, in an anhydrous solvent, followed by the addition of the 
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alkylating agent (in most cases 1-iodopropane). Stirring the reaction mixture overnight at  room 

temperature normally affords the desired O-alkylated calix[4]arene in high yields. 

However, attempts to O-propylate calix[4]arene 106 following the standard conditions 

described above were unsuccessful (scheme 3.18).  

 

 

Scheme 3.18 Attempted O-propylation of calix[4]arene 106 following standard conditions. 

 

When calix[4]arene 106 was deprotonated with six equivalents of sodium hydride in THF and 

treated with an excess of 1-iodopropane, a pale yellow solid was obtained as the only product in 

the reaction mixture. The resulting pale yellow solid was analysed by 
1
H-NMR and the resulting 

spectrum showed very broad peaks that were not consistent with the structure of the desired 

calixarene 149 (spectrum 3.1).  

 

Spectrum 3.1 
1
H-NMR spectrum of isolated product after attempting O-alkylation in calix[4]arene 106. 
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After considering the possibility of side reactions that might be taking place, we thought that 

the obtained product may consist in a mixture of oligomers resulting from the self-condensation of 

calixarenes. We also realised that the amino group in the upper rim may react with 1 -iodopropane 

to form the quaternary ammonium salt that can decompose easily to afford the p-quinone methide.  

In that case, deprotonated hydroxyl groups in the lower rim of calixarenes may act as nucleophiles  

and react with p-quinone methides to produce oligomers (scheme 3.19).  

 

 

Scheme 3.19 Proposed mechanism for the formation of calix[4]arene oligomers. 

 

Thus, we thought we were experiencing a problem of selectivity between O- and N-

alkylation. The O- versus N-alkylation competitions are well known in the literature and some 

studies have been carried out in order to determine how the O/N alkylation ratio can be modulated 

under different conditions. Smith and Robertson studied the competition between O- and N-

alkylation in the reaction between oxime salts and methyl and benzyl bromide.
97

 That study showed 

that, the affinity of electrophiles for either one nucleophilic centre or another depends on factors like 

type of solvent, electronic nature and structure of alkylating agent and concentration of reactants. 

For instance, it was found that  for benzophenone oxime salts the use of bulky electrophiles and 

polar solvents in the alkylation reaction increased the proportion of O-alkylated product.  
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Similarly to Smith and Robertson, we thought we may also be able to find reaction conditions 

to favour O-alkylation. Therefore, we decided to study the effect of different solvents and alkylating 

agents in the O-propylation reaction of monoamino calixarene 106 with the hope of improving the 

selectivity and obtaining the desired monoarmed cone calix[4]arenes in moderate or good yields.  

The use of an excess of sodium hydride, followed by 1-iodopropane in tetrahydrofuran at 

room temperature (table 3.4, entry 1) afforded a complex mixture of oligomers. The use of slightly 

bulkier electrophiles, such as propyl methanesulfonate in tetrahydrofuran, stopped the 

oligomerization but in this case, starting material was recovered as the major product.  

It was reported in the literature that, the addition of quaternary ammonium salts to the 

reaction media could increase the solubility of organic salts and make the reactions more 

efficient.
98

 The addition of 3 equivalents of tetra-n-butylammonium chloride to the reaction mixture 

(entry 2) when THF was employed as solvent, did not produce any positive effect in the reaction 

and a mixture of oligomers was obtained once again as the main product.  

The use of a more polar solvent like dimethylsulfoxide, instead of tetrahydrofuran, led to 

much promising results. When the propylation of calixarene 106 was attempted in DMSO, at 100 

ºC, using propyl methanesulfonate as alkylating agent, the desired product was firstly obtained in a 

poor 15% yield (entry 7). This time, the isolated product showed a 
1
H-NMR spectrum with sharp 

peaks in which all the chemical shifts and peak integrals were consistent with the desired mono-

armed propylated calix[4]arene 149 (spectrum 3.2). The new monoamino calix[4]arene 149 was 

fully characterized by HRMS, 
1
H and 

13
C-NMR spectroscopies and FT-IR (ATR) spectroscopy. 

Surprisingly, when dimethylsulfoxide was used as solvent, the addition of tetra-n-butylammonium 

chloride (TBAC) to the reaction mixture, just before the addition of the alkylating agent, significantly 

increased the reaction yield from a poor 15% to a moderate 60% (entry 8). This reaction was 

performed several times, confirming its reproducibility and also the great contribution of TBAC to 

the selectivity and to the yield in the reaction, when DMSO was used as solvent (scheme  3.20). In 

contrast, the use of 1-iodopropane in DMSO always led to complex mixture of calixarenes.  
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Spectrum 3.2 
1
H-NMR spectrum of new monoarmed calix[4]arene 149. 

 

In addition to this study, we also investigated the use of microwave irradiation in the O-

alkylation reaction.  Microwave irradiation is known by reducing reaction times and increasing 

selectivities, affording in general, cleaner raction crudes and higher yields.  

 

 

Scheme 3.20 Optimised reaction conditions for O-alkylation of compound 106. 
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The alkylation reaction of monoamino calixarene 106 under microwave irradiation when 1-

iodopropane was used as alkylating agent and DMSO as solvent, afforded the desired product in a 

modest 24% (table 3.5, entry 1). The use of other solvents like N,N-dimethylacetamide, led to a 

complex mixture of calixarenes and the use of formamide afforded only starting material. The use  

of N,N-dimethylformamide gave the best results (entries 6, 7 and 8) although the combination with 

quaternary ammonium salts led to complex mixtures of calixarenes (entries 3,4 and 5). The use of 

1-iodopropane as alkylating agent and DMF as solvent afforded the desired product in a moderate 

55% yield after microwave irradiation at 90 ºC for 80 minutes (table 3.5, entry 7) 

After the optimization work carried out and summarized in tables 3.4 and 3.5, which involved 

the screening of several solvents, electrophiles and reaction conditions, we were able to develop 

two suitable protocols (table 3.4, entry 8 and table 3.5, entry 7) for the preparation of O-propylated 

monoarmed calix[4]arenes in a moderate yield. The desired product obtained by the means of both 

methods, thermal heating and microwave irradiation, was found to be locked in the cone 

conformation. This was proved by 
13

C-NMR spectrometry, following the method reported in the 

literature by De Mendoza and co-workers that was previously explained in the introductory section.  

The 
13

C-NMR spectrum of the isolated product showed two peaks for the methylene bridges at  

31.00 and 30.95 ppm. These values proved that all the phenol rings were orientated in the same 

direction and therefore, the new monoamino calix[4]arene was adopting a cone conformation,  

locked by the bulkiness of propyl chains in the lower rim (spectrum 3.3). The fact that two different  

types of methylene bridges were found in the 
13

C-NMR spectrum was not surprising. This can be 

explained by the formation of a pinched cone conformation, where two opposite phenol rings are 

pointing outward.  
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Spectrum 3.3 
13

C-NMR spectrum of cone 5-(N,N-dimethylaminomethyl)-25,26,27,28-tetra-n-

propoxycalix[4]arene. 

 

 The developed method allowed the first and simple preparation of a monoarmed 

calix[4]arene confined in the cone conformation. The method was also highly selective to upper rim 

monofunctionalisation and allowed the preparation of cone monoarmed calix[4]arenes on a multi-

gram scale with very simple work ups and purifications. 
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Table 3.4 Optimization reactions towards the O-alkylation of monoarmed calix[4]arene 106. 

 

 

 

 

 

 

 

 

 

 

 

 

We thought that monoamino calix[4]arene 149 may have a great potential as a precursor of 

many other monoarmed calix[4]arenes blocked in the cone conformation. Calix[4]arene 149 may 

act as a “gate compound”, where the amino group installed in the upper rim may be converted into 

different useful functionalities. Therefore, we started to look for possible different transformations 

that allowed the conversion of bis-alkyl benzylamines into other functional groups. 

 

 

 

 

100  
  TBAC  

  2.5 
  Mixture of  calixarenes 

  - 
  

Entry 
  Solvent 

  El ectrophile 
  Temperature / ºC 

  Ammonium Salt 
  Time / h 

  Product 
  Yield 

  

1 
  THF 

  1 - Iodopropane  
  21 

  - 
  24 

  Oligomers  
  - 

  

2 
  THF 

  1 - Iodopropane  
  21 

  TBAB  
  24 

  Oligomers  
  - 

  

3 
  THF 

  Propy l methanesulf onate 
  21 

  - 
  24 

  Starting material 
  - 

  

4 
  THF 

  Propy l methanesulf onate 
  21 

  TBAB  
  24 

  Oligo  mers 
  - 

  

5 
  DMSO  

  1 - Iodopropane  
  100  

  - 
  2.5 

  Mixture of  calixarenes 
  - 

  

6 
  DMSO  

  1 - Iodopropane  
  100  

  TBAC  
  2.5 

  Mixture of  calixarenes 
  - 

  

7 
  DMSO  

  Propy l methanesulf onate 
  100  

  - 
  2.5 

  Desired product 
  15% 

  

8 
  DMSO  

  Propy l methanesulf onate 
  100  

  TBAC  
  2.5 

  Desired product 
  60% 

  

9 
  DM F 

  Propy l methanesulf onate 
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Entry Solvent Electrophile Ammonium Salt Product Yield 

1 DMSO 1-Iodopropane - Desired product 24% 

2 DMA 1-Iodopropane - Mixture - 

3 DMF Propyl methanesulfonate TMBC Mixture - 

4 DMF Propyl methanesulfonate TEAC Mixture - 

5 DMF Propyl methanesulfonate TBAC Mixture - 

6 DMF Propyl methanesulfonate - Desired product 52 % 

7 DMF 1-Iodopropane - Desired product 55 % 

8 DMF Propyl p-toluenesulfonate - Desired product 34 % 

9 DMF Propyl trifluoromethanesulfonate - Decomposition - 

10 Formamide 1-Iodopropane - Starting Material - 

Table 3.5 Optimization reactions towards the O-alkylation of calix[4]arene 106 under microwave 

irradiation. Reactions were carried out at 90 ºC for a period of 80 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quaternization of the tertiary amine, followed by treatment with a nucleophile and heating 

was not a likely transformation, since Gutsche et al. already proved the high stability of the 

quaternary amines attached to the calixarenes. Our initial strategy was focused on the 

transformation of monoarmed amino calix[4]arene 149 into a few other monoarmed calix[4]arenes, 

bearing versatile functionalities, which were able to act as starting materials for a broad family of 

monosubstituted calix[4]arenes.  

Two key functionalities were identified as greatly versatile groups to install in the upper rim of 

monoarmed calix[4]arenes. These groups were:  
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- Halogens: Benzyl chlorides or bromides can afford a great number of new 

functionalities by simple nucleophilic substitution. 

- Aldehydes: The formyl group can be transformed into many interesting compounds like 

imines, carbon-carbon double bonds (Knoevenagel reaction), alcohols or carboxylic 

acid derivatives.  

After a thorough search in the literature, the transformation of t ertiary benzylamines into the 

corresponding benzyl chloride derivatives was found in a paper published on 2009 by Kolesinska et  

al.
99

 The reaction of interest was part of a wider work related to the preparation of melamine 

derivatives. In that work, cyanuric chloride was efficiently reacted with N,N-dimethylbenzylamine 

150 to afford N,N-dimethylaminotriazine 153 in 90% yield, along benzyl chloride that was obtained 

as byproduct in 92% yield (scheme 3.21).  

 

 

Scheme 3.21 Synthesis of benzyl chloride from N,N-dimethylbenzylamine and cyanuric chloride.  

 

Treatment of calixarene 149 with cyanuric chloride in dichloromethane at room temperature 

for one hour, afforded the desired chloromethyl calix[4]arene 154 in a low 23% yield (scheme 3.22).  

 

 

Scheme 3.22 Synthesis of chloromethyl calix[4]arene 154 using cyanuric chloride. 



 

 

- 140 -  

 

Attempts to increase the reaction yield by extending the reaction time or increasing the 

reaction temperature were unsuccesful. In the paper published by Kolesinska’s and co-workers, it 

was explained that, for the reaction to proceed, the three chlorine atoms of cyanuric chloride should 

be substituted by amines, in order to generate an unstable compound that decomposed to form 

benzyl chloride and melamine derivatives. When only one or two of the chlorine atoms were 

substituted by amines, no formation of products was observed. That suggests that in our case,  

three monoarmed calixarenes must react with one molecule of cyanuric chlori de before 

decomposition and formation of products occur. Due to the bulkiness of calixarenes, the formation 

of trisubstituted species might be difficult which might explain the low yields obtained.  

We decided then, to look for a more suitable route with higher yields and lower reaction 

times. Knabe et  al. reported the conversion of N,N-dimethyl-4-methoxybenzylamine into the 

corresponding benzyl chloride by treatment with ethyl chloroformate.
100

 An electron donating group 

in the para position of benzylamines was essential for the reaction to proceed.  

In order to increase the yield of this interesting reaction, ethyl chloroformate was used 

instead of cyanuric chloride and the mixture with calix[4]arene 149 heated in chloroform at 55 ºC 

for 30 minutes. After this time, the solvent and volatiles were removed under reduced pressure and 

the crude product was filtered through silica to afford the desired calix[4]arene 154 in a moderate 

65% isolated yield. Finally, the yield was increased up to 71 % yield when the mixture was stirred 

at room temperature in chloroform for one hour (scheme 3.23).  

 

 

Scheme 3.23 Synthesis of chloromethyl calix[4]arene 154 using ethyl chloroformate. 



 

 

- 141 -  

 

The cone conformation was kept during the functional group interconversion as could be 

confirmed by 
13

C-NMR spectroscopy (spectrum 3.4).  

 

Spectrum 3.4 
13

C-NMR spectrum of cone 5-(chloromethyl)-25,26,27,28-tetra-n-propoxycalix[4]arene 

154. 

 

A peak at 30.85 ppm was found in the 
13

C-NMR spectrum for the bridge methylenes of 

calix[4]arene 154, confirming the cone conformation.  

In this way, we have created a simple and efficient protocol to afford the versatile 

chloromethyl calix[4]arene in good yields after an easy purification. In a route that we named as the 

“Chloroformate Route”, chloromethyl calix[4]arene 154 was employed in a range of nucleophilic 

substitutions acting as the electrophile and affording several new monosubstituted calix[4]arenes 

blocked in the cone conformation (conformations were confirmed in each case by 
13

C-NMR 

spectroscopy). Reaction of chloromethyl calix[4]arene 154 with nucleophiles such as cyanide,  

cyanate, thiocyanate or phosphite was successfully carried out (scheme 3.24). Treatment of 154 

with trimethylphosphite at 95 ºC for 48 hours afforded the Arbuzov product in 39 % yield. This  

compound is a precursor for Horner-Wadsworth-Emmons reactions. Treatment of 154 with 
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potassium cyanide in DMF afforded the corresponding cyanomethylcalixarene in a good 81% yie ld,  

which can also be used in ‘click’ chemistry. 

 

 

Scheme 3.24 Synthesis of monoarmed calix[4]arenes by nucleophilic substitution.  

 

Monosubstituted amino calix[4]arene 149 was also successfully employed as “gate 

compound” during the synthesis of new monoarmed calix[4]arenes (scheme 3.25). Calixarene 149 

was converted into the corresponding mono-formyl calix[4]arene by oxidation of the amino group 

with meta-chloroperbenzoic acid (mCPBA), followed by reflux in toluene in the presence of acetic 

anhydride (Polonovski rearrangement). In the Polonovski rearrangement,  the nucleophilic oxygen 

in the N-oxide is able to attack an electrophile, normally acetic anhydride or acyl chloride, to give 

an imminium salt which, after a series o f rearrangements, affords the desired aldehyde (scheme 

3.25). We named this route as the “N-oxide route”. The “N-oxide route” afforded for first time a 

selective methodology for the preparation of mono-formyl calix[4]arene in good to moderate yield 

without the use of neither pyrophoric n-BuLi nor difficult purifications. The access to the mono-

formyl calix[4]arene can allow the use of many synthetic transformations like reduction to the 

alcohol, formation of imines, reductive amination, Horner–Wadsworth–Emmons reaction, Wittig 

reaction, aldol condensation, oxidation to the acid, etc. The formyl group in calix[4]arene 163 was 

reduced to the alcohol by treatment with sodium borohydride, affording calix[4]arene 164 in 67% 

yield (scheme 3.25).  
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Scheme 3.25 Functional group interconversion of calix[4]arene 149. 

 

A second transformation was the direct oxidation of dimethylamino calix[4]arene to the 

carboxylic acid by treatment with potassium permanganate in wet tetrahydrofuran. This reaction 

afforded the desired compound 159 in a moderate yield (27%) and produced useful mono-formyl 

calixarene as a side product though can be easily removed by column chromatography .  

Treatment of calix[4]arene 154 with sodium azide in DMF afforded the azide compound 160 

in the cone conformation and in 84 % yield (spectrum  3.5). This  compound is of particular interest 

in ‘click’ chemistry. Calix[4]arene 160 was successfully reduced to the corresponding aminomethyl 

calix[4]arene 161 by treatment with lithium aluminium hydride (scheme 3.25).  
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Spectrum 3.5 
13

C-NMR spectrum of cone 5-(azidomethyl)-25,26,27,28-tetra-n-propoxycalix[4]arene 160. 

 

In conclusion, we were able to obtain a series of new transformations that allow ed the 

preparation of many types of monosubstituted calix[4]arenes blocked in the cone conformation.  

 

3.2.2. Applications of monosubstituted calix[4]arenes. 

 

Our new methodology allowed for first time a simple access to monoarmed calix[4]arenes. 

Our desire was to use one of these new monoarmed calix[4]arenes in both supramolecular and 

sensor chemistry. Our first idea consisted in the use of these monoarmed macrocycles as sensors  

for small molecules or metals. We thought about the possibility of installing a ferrocene group on 

the upper rim of calix[4]arene (figure 3.19). The cavity could be then targeted by different metals  

and the interaction measured by fluorescence spectroscopy. In this way, hydroxymethyl  

calix[4]arene 164 was reacted with the ferrocene derivative 165 to afford, as far as we are aware,  

the first example of monoferrocenyl calix[4]arene 166. A 50 µM solution of ferrocene calix[4]arene 

166 in acetonitrile (0.5 ml) was mixed with a 250 µM  solution of a heavy metal (CdCl2, SnCl2 and 
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CuCl2) and the fluorescence emission measured after irradiation at 240 nm. We found that the 

fluorescence intensity was strongly quenched when Cu(II) was present in the mixture, showing a 

high sensitivity to this metal. Softer bivalent metals like cadmium or tin did not have much effect in 

the fluorescence intensity. This experiment illustrates how this new type of calix[4]arene can be 

used as sensor (figure 3.19).  A likely explanation for the fluorescence quenching may be the 

strong electron transfer from the carbonyl group in the upper rim of calix[4]arene 166 to the metallic 

centre.  
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Figure 3.19 Synthesis of monoarmed ferrocenyl calix[4]arene and its use as a sensor for metals. 

 

The second application was linked to supramolecular chemistry and it was related to the 

possibility of forming host-guest complexes. We thought monoarmed calix[4]arenes were very good 
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scaffolds for the preparation of nanocapsules. The formation of nanocapsules could be easily 

achieved by the condensation of suitable pairs of complementary monoarmed calixarenes by 

simple reactions such as esterification or “click chemistry”. To illustrate that, we reacted 

azidomethylcalix[4]arene 160 and the propargyl ester of carboxy calix[4]arene 159 to afford an 

example of a head to head asymmetric dimer based on calix[4]arenes and prepared by a simple 

method (scheme 3.26).  

 

Scheme 3.26 Synthesis of head to head dimer based on monoarmed calix[4]arenes. 

 

Compounds such as the dimer 167 may be used as a host molecule for smaller species such 

as small organic molecules or quaternary ammonium salts. The fact that the formed dimer is 

asymmetric may lead to host-guest complexes where the guest molecule may adopt a preferred 

orientation, allowing molecular recognition.  

 

3.2.3. Highly efficient Cannizzaro reaction. Easy access to multifunctional 

calix[4]arenes. 

 

The development of a simple methodology that allows the generation of chiral functionalised 

calix[4]arenes still remains a challenge. Only a few methods for the synthesis of chiral calixarenes 

are reported in the literature, and all of them require of a large number of synthetic steps.
101

 The 

abilty to prepare inherently chiral multisubstituted calix[4]arenes is of great importance as this 

would allow their use in relevant fields of science. Chiral calix[4]arenes may potentially be used as  
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a new family of chiral ligands, as new stationary phases employed in the fabrication of chiral 

chromatographic columns or as a new family of chiral organocatalysts in organic chemistry.  

Building on our research on monosubstituted calix[4]arenes, we wondered whether some of 

the monoarmed calix[4]arenes described before could be used as starting materials for the 

preparation of multisubstituted calixarenes and eventually, for the preparation of more 

sophisticated chiral calixarenes. We also wondered whether a functional group installed on the 

upper rim of monoarmed calix[4]arenes could modulate the insertion of a second different  

functional group in the available para positions on the upper rim.  In that case, the presence of two 

different functional groups in the upper rim could then modulate the insertion of a third group,  

leading directly to chiral calix[4]arenes in only a few synthetic steps.  

In order to control the insertion of a second functional group in the upper rim, we considered 

two different possibilities. First, the insertion of a chiral functional group, able to orientate the 

insertion of a second functional group in the upper rim, and secondly, the insertion of a functional 

group capable of reacting intramolecularly and selectively with one of the available para positions 

on the upper rim of calix[4]arenes. Both methods would allow the selective installation of two 

different  functional groups on the upper rim of calix[4]arenes. The selective addition of a third 

different functional group, would directly lead to chiral calix[4]arenes. We decided to start our 

investigations towards the synthesis of multifunctional calix[4]arenes with the second approach 

which involved the use of an intramolecular reaction. This decision was taken after studing the 

transannular reactions for calix[4]arenes described in the introductory section.
 

The fact that alkylated calix[4]arenes normally adopt a pinched cone conformation, makes it 

possible that two opposite aromatic rings can be placed very close each other. We thought this 

conformation could allow the reaction between the first introduced functional group and the 

opposite para position in the macrocycle. By way of illustration, the insertion of an acid chloride 

functionality on the upper rim could allow intramolecular Friedel-Crafts acylations. The formation of 

a pinched cone conformation,  may ideally lead to selective acylation of the opposite phenol ring 

(scheme 3.27). In that case, an upper rim 1,3-bridged calix[4]arene would be selectively formed 

between two opposite aromatic rings. The resulting ketone from the Friedel -Crafts acylation could 
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be then derivatized to afford a chiral calix[4]arene. The regioselective insertion of a third group on 

the upper rim of these type of chiral calix[4]arenes could be achieved  by asymmetric induction,  

leading to chiral tri - and tetrasubstitued calix[4]arenes.  

 

 

Scheme 3.27 Attempted transannular reaction in calix[4]arene 169. 

 

Compound 168 was successfully prepared by alkaline hydrolysis of cyanomethyl 

calix[4]arene 155. Compound 155 was dissolved in ethanol and a 4M NaOH solution added. The 

mixture was microwave irradiated for 3 hours at 120 ºC to afford acid 168 in 68% yield. The 

carboxylic goup was transformed into an acid chloride in a second step, by treatment with thionyl 

chloride and the resulting calixarene was submitted without further purification to the next step to 

avoid any decomposition. Intramolecular Friedel -Crafts acylation of calix[4]arene 169 was 

attempted using a diluted solution of this compound in dry toluene and aluminium t richloride was 

employed as Lewis acid catalyst. The solution was stirred at room temperature overnight. After the 
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work up, 
1
H-NMR spectrum of the crude product showed very broad peaks (spectrum 3.6) that may 

suggest the formation of polymeric material. This result could be explained by the intermolecular 

polymerization of calix[4]arene 169.  

Intramolecular transannular reaction also did not proceed when compound 169 was treated 

with boron tri fluoride as Lewis acid. Again, very broad peaks were observed by 
1
H-NMR 

spectroscopy. 

 

 

Spectrum 3.6 
1
H-NMR spectrum of isolated product obtained after the treatment of monoarmed 

calix[4]arene 169 with AlCl3 in dry toluene. 

 

At that point, we realised that the intramolecular reaction of 169 may be badly affected by 

entropic factors. This reaction may require high structural order, placing two opposite aromatic 

rings close to each other in a pinched cone conformation at the same time that, the carboxylic 

group was conveniently orientated so that aromatic electrophilic substitution in the opposite ring 

could proceed. During the intermolecular Friedel-Crafts acylation, however, the formation of a 

pinched cone conformation is not required for the reaction to proceed.  

The distance between opposite phenol rings however should not be a problem for an 

intramolecular reaction to proceed. As was explained in the introduction, several  examples of 
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intramolecular reactions have been reported where the formation of a two-atom transannular bridge 

has been successfully achieved. 

In our opinion, the reaction should be more entropically favoured when the two functional 

groups involved in the reaction were placed in the para position of different and opposite aryl 

moieties. In this way, the formation of a suitable pinched cone conformation should be enough to 

allow the intramolecular reaction between opposite functional groups.  

Following this hypothesis, we decided to prepare a 1,3-disubstituted calix[4]arene and 

attempt an intramolecular and transannular reaction in the macrocycle.  

We thought 1,3-diformyl calix[4]arene 171 may be a good candidate for our intramolecular 

reactions since aldehydes can undergo self-reaction, leading to disproportionation and affording 

two different products. Depending on the catalyst used, the disproportionation of aldehydes can 

lead to different type of products. When hydroxide salts are used as catalyst, the resulting products 

from the condensation of two aldehydes are an acid and an alcohol ( Cannizzaro reaction, scheme 

3.28, vide infra).  

 

Scheme 3.28 Mechanism of Cannizzaro reaction. 
 
 

However, when aluminium alkoxides are employed as catalysts, two aldehydes are also able 

to disproportionate and condense to afford an ester function (Tischenko reaction, scheme 3.29).  
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 Scheme 3.29 Mechanism of Tischenko reaction. 

 

We decided to continue our investigations on transannular reactions attempting the 

intramolecular Tischenko reaction of 1,3-diformyl calix[4]arene 171, whose product should be a 

more rigid disubstituted calix[4]arene (scheme 3.30).  

 

 

Scheme 3.30 Attempted intramolecular Tischenko reaction in calixarene 171.  
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  The starting material 171 was synthesised from calix[4]arene 96 in a 16% overall yield 

following a protocol described in the literature (scheme 3.31).
102

 In the first step, calixarene 96 was 

selectively O-alkylated in the positions 1 and 3 using potassium carbonate and 1-iodopropane. In 

the second step, the upper rim was selectively brominated followed by further O-alkylation in the 

lower rim. In the last step, dibromo calix[4]arene 173 was treated with n-butyllithium at –78 ºC,  

followed by the addition of anhydrous N,N-dimethylformamide to afford diformyl calix[4]arene 171 

in 44% yield.  

 

 

Scheme 3.31 Stepwise synthesis of diformyl calix[4]arene 171.  
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Several catalysts were used in the intramolecular Tischenko reaction. In first place, a 

thioalkoxide salt was employed, but no reaction was observed. In a second attempt, sodium 

hydride was used as a catalyst,
103

 and a new product was formed in the reaction. However, this  

product was isolated in very low yield (5%). Furthermore, the obtained product was not the desired 

Tischenko product but one which resulted from a Cannizzaro reaction (scheme 3.32). To explain 

the unexpected reactivity we assumed that small amounts of water in the solvent employed during 

the reaction (toluene) could be generating small amounts of sodium hydroxide after reacting with 

sodium hydride and, the sodium hydroxide generated in situ may be catalysing the intramolecular 

Cannizzaro reaction. 

 

 

Scheme 3.32 Cannizzaro product obtained after attempting a Tischenko reaction in calix[4]arene 171. 

 

At that point, we realised the Cannizzaro reaction could be equally useful in the preparation 

of bi-functional calix[4]arenes starting from symmetrical calixarenes. Therefore, we decided to turn 

our efforts into finding a more suitable catalyst for this type of reactions in calix[4]arenes. This  

reaction is not new in calix[4]arenes and as discussed in the introductory section, an intramolecular 

Cannizzaro reaction had already been achieved by Casnati et al.
 
However, this reaction proceeded 

only in moderate yield (60%), after very long reaction times, and we decided to optimize reaction 

conditions in order to obtain a more efficient reaction. A literature reference was found in which the 

intermolecular Cannizzaro reaction of 2-chlorobenzaldehyde was successfully achieved in only a 

few minutes, after grinding a neat mixture of potassium hydroxide and the aldehyde (scheme 

3.33).
104 
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Scheme 3.33 Solvent-free Cannizzaro reaction of 2-chlorobenzaldehyde.
104

 

 

In order to reduce the reaction times reported by Casnati et al., we thought this solvent-free 

approach could be useful.  Thus, calixarene 171 was placed in a glass mortar to which was added 

an excess of potassium hydroxide along a few drops of THF and the resulting mixture, was ground 

for five minutes. TLC analysis of the resulting paste revealed that most of the calixarene 171 had 

disappeared and a new and more polar product had formed. The grinding operation was continued 

for five more minutes after placing the glass mortar in a heater at  90 -100 ºC and until complete 

consumption of the starting material was observed by TLC. After cooling down, the resulting white 

solid was dissolved in 2M hydrochloric acid aqueous solution and then extracted with diethyl ether.  

After drying over anhydrous magnesium sulfate and removing the solvent under reduced pressure,  

the desired product was obtained in yields over 90% (scheme 3.34).  

 

 

Scheme 3.34 Highly efficient Cannizzaro reaction of calix[4]arene 171. 

 

The fact that close to quantitative yields were obtained in the reaction, strongly indicated that 

the Cannizzaro reaction was taking place intramolecularly. Otherwise, a mixture of products, bis-
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alcohol and bis-carboxylic acid together with the desired product, may have been obtained instead,  

due to random intermolecular reactions. The generally accepted mechanism  for the Cannizzaro 

reaction involves the attack of hydroxide anion to one formyl group to form a hydrate monoanion,  

which may not be reactive enough to transfer a hydride anion. The initial monoanion, may then be 

deprotonated by a second hydroxide anion in a rate-determinating step, to afford a highly reactive 

species capable of transferring a hydride anion to the opposite aldehyde. This aldehyde would then 

afford a more stable negatively charged calixarene derivative that, after neutralization with aqueous 

HCl solution, would afford the desired product (scheme 3.35).  

  

 

Scheme 3.35 Proposed mechanism for intramolecular Cannizzaro reaction of calix[4]arene 171. 

 

We were delighted with the results obtained from such a simple reaction and we wondered i f 

the reaction would still work efficiently if other bulkier groups were attached to the available para 

positions, making the resulting product more versatile. To test this, the bromo- and iodo-analogues 

of calixarene 171 were prepared (scheme 3.36). The Cannizzaro reaction of 178 and 181 afforded 

the desired products in high yields (82% and 94%, respectively). These new products are more 

versatile than calix[4]arene 174 and could be further functionalised through different C-C coupling 

reactions, leading to chiral tetrasubstituted calix[4]arenes in only a few synthetic steps. 
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Scheme 3.36 Synthesis of halogenated diformyl calix[4]arenes and intramolecular Cannizzaro 

reaction. 

 

Finally, we also prepared a deuterated version of calix[4]arene 171 (scheme 3.37). 

Cannizzaro reaction of calixarene 184 afforded the deuterium labelled compound 185 in moderate 

65% yield.  

 

Scheme 3.37 Synthesis and intramolecular Cannizzaro reaction of deuterated bis-formyl calix[4]arene 

184. 

 

In a cross-over experiment, a mixture of deuterated and non deuterated calix[4]arene 171 

was grinded with KOH for 30 minutes to afford a mixture of Cannizzaro products (figure 3.20). As 

predicted, 
2
H-NMR spectra of starting materials and products showed how the single peak 

corresponding to the deuterium labelled formyl groups was replaced by a new single peak at 

around 4.0 ppm, which is consistent with the chemical shift of deuterium attached to a benzylic 
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carbon and it is in agreement with the 
2
H-NMR spectra of benzyl alcohol-d7 previously reported in 

the literature.
105 

 

 

 

 

 

 

Figure 3.20 D-NMR spectrum before and after Cannizzaro reaction of an equimolar mixture of 

deuterated and non deuterated bis-formyl calix[4]arene 171. 

 

Although further experiments will need to be carried out in the future in order to confirm the 

intramolecular nature of this type of reaction, the fact that very high yields have been obtained 

during our investigations strongly suggest that the reaction must proceed intramolecularly. 

Otherwise, a mixture of different calix[4]arenes should have been observed by 
1
H-NMR 

spectroscopy (figure 3.21).  

 

 

Figure 3.21 Expected mixture of products after a hypothetical non intramolecular Cannizzaro reaction 

of calix[4]arene 171. 

 

After developing a simple and more efficient protocol for the Cannizzaro reaction of diformyl 

calix[4]arenes, we decided to address the more challenging issue of a PKS mimic by preparing a 

new bifunctional mercapto-calix[4]arene which could act as malonyl group carrier.  
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3.2.4. Synthesis of bio-inspired mercapto-calix[4]arenes. Mimicry of PKS.  

 

The last part of our research was greatly influenced by the investigations des cribed in the 

previous chapters of this thesis. This last part links the synthesis of calix[4]arenes with the 

synthesis of MAHTs and also, with the development of new mild decarboxylative condensations. 

We were convinced that the experience and knowledge acquired during every different stage of our 

research would be very valuable in the development and preparation of the more advanced bio-

inspired macromolecules with potencial applications in catalysis and many other fields.  

We decided to attempt the mimicry of one of the key functions that are carried o ut in the 

active site of PKS. We were interested in the preparation of a cyclic scaffold able to carry out  

intramolecular Claisen condensations, mimicking the chain elongation step of PKS.  

In the active site of a PKS, two sulfydryl groups are placed close to each other so a Claisen 

condensation can be performed during the chain extension step of polyketide biosynthesis. In a 

similar way, we thought bifunctional mercapto-calix[4]arenes could mimic the principle of this  

process. In plants and microorganisms, the Claisen condensations between malonyl-CoA and the 

polyketide chain are catalyzed by several amino acid residues in the active site of PKS. In our 

case, we thought it was a good idea to employ the experience gained during the catalysis of mild 

decarboxylative aldol condensations, to develop suitable experimental conditions for the catalysis 

of an intramolecular, metal and base-free, decarboxylative Claisen condensation on the upper rim 

of calix[4]arenes. Thus, we thought that, for our bio-mimetic approach, quaternary ammonium salts 

could be trialled during the catalysis of intramolecular Claisen condensations.  

Our synthetic plan was divided in three different stages:  

 

- Synthesis of a bifunctional mercapto-calix[4]arene.  

- Attachment of malonyl groups to the upper rim of mercapto-calix[4]arene.  

- Intramolecular decarboxylative Claisen condensations in calix[4]arenes.  
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A) Synthesis of a bifunctional mercapto-calix[4]arene.  

 

We started the synthesis of mercapto-calix[4]arenes from the same starting material 

employed for the intramolecular Cannizzaro reactions. In the first step, bis -formyl calix[4]arene 171 

was successfully  reduced to the diol calixarene 186 by treatment with an excess of sodium 

borohydride in a mixture of DCM/methanol. The desired product was obtained in 91% yield 

(scheme 3.38). The hydroxyl groups in calixarene 186 were efficiently substituted by bromine 

atoms after treatment with phosphorous tribromide in dry dichloromethane. In the next synthetic 

step, the bromine atoms were replaced by sulfhydryl groups in a two step reaction initiated by the 

nucleophilic substitution at the bromomethyl groups in calixarene 188 by thiourea, followed by 

basic hydrolysis of the resulting salt, affording the desired bifunctional thiol calix[4]arene 128 in a 

low 24% yield. 

 

 

Scheme 3.38 Synthesis of bifunctional thiol calix[4]arene 128, inspired in the active site of PKS. 
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In order to confirm the formation of calix[4]arene 128, thiol groups were acetylated. 

Compound 128 was treated with an excess of acetic anhydride and a catalytic amount of silver 

triflate to obtain the desired acetylated product 189 after 10 minutes of reaction (scheme 3.38).  

Calix[4]arene 189 was fully characterised and the data obtained was in agreement with the 

proposed structure.  

 

B) Attachment of malonyl groups to the upper rim of mercapto-calix[4]arene 128. 

 

The next stage was the loading of malonyl groups onto the prepared mercapto -calix[4]arene. 

To do so, we used the same methodology that was employed during the preparation of MAHOs 

and MAHTs in chapter 1. The reaction between freshly prepared half malonyl chloride and 

mercapto-calix[4]arene 128 was attempted under neat conditions. The mixture was heated at 65 ºC 

for 90 minutes. After cooling, and adding dichloromethane, TLC analysis showed the formation of a 

new product and the consumption of most of the starting thiol calix[4]arene. However, after 

standard work up and purification by column chromatography on silica gel, the isolated product 

proved not to be the desired product. The isolated product seemed in fact to be a complex mixture 

of oligomers that exhibited 
1
H-NMR spectrum with very broad peaks.  

At that moment, we realised that the strong acidic conditions used during the reaction with 

half malonyl chloride could be protonating the sulfhydryl groups in calix[4]arene 128 and promoting 

the cleavage of sulfydryl groups, followed by the polymerization of calix[4]arenes through 

thioetherification reaction.  

To avoid the cleavage of sulfhydryl groups, and to confirm that strong acidic conditions were 

incompatible with this type of substrate, we decided to attempt the reaction again but changing 

from the half malonyl chloride to Meldrum’s acid as the activated malonic acid. We thought the 

reaction with Meldrum’s acid should proceed under neutral conditions, avoiding the formation of 

hydrogen chloride during the esterification reaction. A neat mixture of thiol calix[4]arene 128 and 

Meldrum’s acid was heated at 100 ºC for 30 minutes. After this  time, the mixture was cooled to 

room temperature and dichloromethane was added. TLC analysis of the crude product showed the 
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consumption of most of the starting calix[4]arene. A new product was formed which was purified by 

column chromatography on silica gel (eluting with dichloromethane followed by a mixture of 

dichloromethane / diethyl ether = 4:1, V/V) and a white solid was obtained. 
1
H-NMR and MALDI-

TOF mass spectrometry proved the solid to be the desired product obtained in a modest 38% yield 

(scheme 3.39).  

 

 

Scheme 3.39 Synthesis of new malonyl mercapto-calix[4]arene 190. 

 

C) Intramolecular decarboxylative Claisen condensations in calix[4]arenes.  

 

The last stage of our research plan was the study of intramolecular and decarboxylative 

Claisen condensation in malonyl mercapto-calix[4]arene 190. We decided to attempt the 

intramolecular Claisen condensation of malonates under different mild conditions. For the purpose,  

we used both reported conditions from the literature and the conditions previously  employed during 

the performance of base and metal -free decarboxylative aldol condensations described in chapter 

2. 

Several samples of calix[4]arene 190 were dissolved in deuterated chloroform and the 

intramolecular Claisen condensation was attempted using different catalytic systems. Each test 

reaction was followed by 
1
H-NMR spectroscopy to monitor changes in the starting material and 

also to check the formation of new products in the reaction.  
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In the first attempt of intramolecular Claisen condensation, a mixture of compound 190 (8 

mg) and tetra-n-butylammonium bromide (1 equivalent) were dissolved in a biphasic mixture 

formed by chloroform-d and deuterium oxide 1:1 (total volume = 7 mL) (scheme 3.40).  

 

 
Scheme 3.40 Attempted intramolecular Claisen condensation of bis-malonyl calix[4]arene 190. 

 

The reaction mixture was stirred for 72 hours at room temperature. 
1
H-NMR spectrum of the 

mixture were recorded every 24 hours in order to follow the evolution of reactants. During the first 

24 hours of reaction, all -hydrogens in malonates were exchanged by deuterium coming from 

deuterium oxide. However, no changes in the starting material were observed as all the signals for 

malonyl calix[4]arene remained unchanged. After 72 hours of reaction, no further changes in the 

1
H-NMR spectrum were detected confirming that quaternary ammonium salts were not a suitable 

catalyst for the transannular decarboxylative Claisen condensation and showing that the use of a 

bifunctional scaffold, to place two molecules of malonate nearby, was not in itself enough to 

promote the intramolecular reaction.  

 In the second attempt of intramolecular Claisen condensation, 8 mg of malonyl 

calix[4]arene 190 were dissolved in 7 mL of chloroform-d along one equivalent of imidazole and 0.5 

equivalents of magnesium(II) bromide. The mixture was stirred for 72 hours at room temperature 

and monitored by 
1
H-NMR spectroscopy. After this time no changes in the 

1
H-NMR spectrum were 

observed, indicating that the system imidazole/magnesium(II) was also not suitable for the catalysis 

of this type of int ramolecular decarboxylative condensation.  
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 In the last attempt, 8 mg of calixarene 190 were mixed with 1 equivalent of 

diisopropylethylamine and 0.5 equivalents of magnesium(II) bromide in 0.7 mL of chloroform-d. The 

solution was stirred for 72 hours at room temperature and the reaction monitored by 
1
H-NMR 

spectroscopy as in the two previous experiments. After that time, 
1
H-NMR spectrum of the reaction 

mixture revealed no changes. In these two last cases, however, no H-D exchange was observed,  

since only aprotic CDCl3 was used as solvent.  

The obtained results confirmed that, as  was found by Matile et  al., mild decarboxylative 

Claisen condensations are very sensitive processes where fine tuning of reaction conditions is  

required in order to promote the self-condensation of malonates.  

Further studies need to be carried out in order to determine the effect that the calix[4]arene 

scaffold may induce in this type of condensation. In the catalysis of intramolecular Claisen 

condensations by TBAB, the use of a scaffold to place two malonates in close proximity had no 

clear benefits. The use of higher amounts of base or the use of stronger bases, in combination with 

the use of other metals different to the employed magnesium(II), may lead to the first example of 

intramolecular Claisen condensation in calix[4]arenes.  

 

3.3 Conclusions.  

 

A selective and versatile method to prepare monoarmed calix[4]arenes , that involves simple 

work  up and purification, has been developed. Using this methodology, several examples of 

monosubstituted calix[4]arenes have been synthesised, some of them showing properties with 

potential applications in sensors and nanocapsules.  

A highly efficient protocol for the Cannizzaro reaction of diformyl calix[4]arenes has been 

discovered. The new reaction conditions reduce reaction times, avoid the use of solvents and allow 

the preparation of upper rim trisubstituted calix[4]arenes in only five synthetic steps. 

Finally, a bio-inspired mercapto-calix[4]arene bearing malonic acid fragments in the upper 

rim has been successfully synthesised. Intramolecular Claisen condensations have been attempted 

under different conditions but no reaction has been observed so far. In future works, additional 

solvents, bases, metals and quaternary ammonium salts should be screened in order to obtain the 
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suitable conditions that can promote a Claisen condensation in this type of calix[4]arene. The 

successful catalysis of Claisen condensations in calix[4]arenes may allow the synthesis of 

polyketones in a controlled manner.  
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Experimental part 
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4.1 General experimental methods. 

 

Solvents were purchased from ROMIL
®
 (Cambridge, UK) or Sigma-Aldrich

®
 and used as 

supplied. All commercially available chemicals and reagents were used as supplied. All reactions 

requiring anhydrous conditions were conducted in flame-dried glass apparatus under an 

atmosphere of nitrogen. All new products were characterized by 
1
H-NMR, 

13
C-NMR, IR and MS. 

1
H 

and 
13

C-NMR spectrum were recorded on 300 MHz and 400 MHz Varian spectrometers and 400 

MHz and 500 MHz Bruker spectrometers and unless otherwise specified, deuterated chloroform 

was used as the solvent. NMR solvents were purchased from Apollo Scientific Limited
®
 or Sigma-

Aldrich
®
 and dried over type 4Å molecular sieves prior to use. CDCl3 was further filtered through 

basic alumina. Chemical shifts (δ) are reported in ppm and referenced to the residual solvent signal 

(CDCl3: δ = 7.26 ppm for 
1
H-NMR and δ = 77.16 ppm for 

13
C-NMR spectrum). Peak multiplicities 

are designated as: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of 

triplets (dt), multiplet (m), broad (br).  Coupling constants are reported in Hertz (Hz).  Ion 

mass/charge (m/z) ratios are reported as values in atomic mass units. Low-resolution mass 

spectrometry (LRMS) was performed in a Shimadzu Maldi -TOF mass spectrometer and high-

resolution mass spectrometry (HRMS) was performed in a QTOF-MS-ES+, a FTMS+pNSI, or a 

FTMS-pAPCI mass spectrometer, depending on the molecule. Microwave syntheses were 

performed on a Personal Chemistry Emrys Creator. Melting points were recorded using open 

capillary tubes on melting point apparatus. Thin layer chromatography was performed on Merck 

aluminum plates coated with 0.2 mm silica gel-60 F254. Flash column chromatography was 

performed on silica gel (Kieselgel 60).  
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4.2 Protocols and experimental data for MAHOs and MAHTs. 

 

4.2.1 General procedure for the synthesis of MAHOs.  

Malonyl monochloride (0.3 g, 2.45 mmol, 3 equivalents) and the corresponding phenol (0.82 

mmol, 1 equivalent) were stirred neat at 100 °C for two minutes during which time the reaction 

mixture became liquid and homogeneous. After cooling to room temperature, to the resulting 

mixture (solid or oil) was added dichloromethane to produce a precipitate which was collected by 

filtration and the residual organic solvent was removed under reduced pressure affording an impure 

product. Subsequent purification by flash column chromatography using dichloromethane first, 

followed by dichloromethane / diethyl ether (9.5:0.5, V/V) afforded the desired MAHO.  

 

4.2.2 Experimental data for MAHOs.  

 

i) 3-Oxo-3-phenoxypropanoic acid (24).
20

  

 

24 

White solid (0.114 g, 77% yield). Mp 66 - 68 °C, chloroform (lit. 71 ºC, benzene). 
1
H-NMR 

(CDCl3, 400 MHz)  8.99 (br s, 1H, COOH), 7.42-7.37 (m, 2H, Ar-H), 7.29-7.24 (m, 1H, Ar-H), 7.15-

7.13 (m, 2H, Ar-H), 3.69 (s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3) 171.79, 165.07, 150.39,  

129.68, 126.49, 121.42, 41.26 ppm. FTIR [ATR] 1751, 1695, 1592, 1522, 1483, 1459, 1417, 1321,  

1279, 1243, 1223, 1191, 1143, 1070, 1019, 1007, 968, 939, 909, 826, 749, 692 cm
−1

. HRMS Calcd 

for C9H8O4 [M + Na]
+
 203.0320, found 203.0325.  
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ii) 3-Oxo-3-(2,6-dimethylphenoxy)propanoic acid (26).
20

  

 

26 

  White solid (0.113 g, 66% yield). Mp 102 - 104 °C, chloroform (lit. 122 ºC, benzene). 
1
H-

NMR (CDCl3, 400 MHz)  7.08 (s, 3H, Ar-H), 3.73 (s, 2H, CH2), 2.18 (s, 6H, CH3). 
13

C-NMR (101 

MHz, CDCl3)  171.83, 164.19, 147.85, 130.20, 128.86, 126.49, 40.89, 16.37 ppm. FTIR [ATR] 

1751, 1694, 1616, 1591, 1477, 1442, 1409, 1380, 1321, 1279, 1244, 1223, 1165, 1147, 1092,  

1038, 1017, 991, 964, 938, 911, 836, 801, 776, 732, 695 cm
−1

. HRMS Calcd for C11H12O4 [M + 

Na]
+
 231.0633, found 231.0627 (FTMS-pNSI spectrometer used in this case).  

 

iii) 3-Oxo-3-(2-tert-butylphenoxy)propanoic acid (27).  

 

27 

  Pale yellow oil (0.126 g, 65% yield). 
1
H-NMR (500 MHz, CDCl3)  7.40 (dd, 1H, J = 7.5, 1.5 

Hz, Ar-H), 7.25-7.18 (m, 2H, Ar-H), 7.05 (dd, 1H, J = 7.5, 1.5 Hz, Ar-H), 3.72 (s, 2H, CH2), 1.34 (s, 

9H, CH3). 
13

C-NMR (126 MHz, CDCl3) 165.24, 149.00, 141.06, 127.53, 127.21, 126.45, 123.73,  

41.73, 41.68, 34.58, 30.31 ppm. FT-IR (ATR) 1761.5, 1716.5, 1605.5, 1576, 1488, 1469.5, 1442,  

1407.5, 1395.5, 1364.5, 1324.5, 1284.5, 1256.5, 1200.5, 1180, 1138.5, 1125.5 cm
−1

. MS (MALDI-

TOF) calculated for C13H16O4 [M]
+
 236.3, found 236.0. HRMS Calcd for C13H15O4 [M − H]

− 

235.0976, found 235.0976 (FTMS-pNSI spectrometer used in this case). 
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iv) 3-Oxo-3-(2-allylphenoxy)propanoic acid (28).  

 

28 

  Pale yellow oil (0.049 g, 27% yield). 
1
H-NMR (500 MHz, CDCl3)  7.19-7.12 (m, 3H, Ar-H),  

7.01-6.99 (m, 1H, Ar-H), 5.85-5.77 (m, 1H, CH=CH2), 4.99-4.96 (m, 2H, CH=CH2), 3.61 (s, 2H,  

CH2), 3.25 (d, 2H, J = 6.5 Hz, CH2-Ar). 
13

C-NMR (126 MHz, CDCl3)  171.90, 164.86, 148.59,  

135.87, 131.94, 130.73,  127.66, 126.83, 122.18, 116.41, 41.17, 34.52. FT-IR (ATR) 1764, 1745,  

1698, 1580, 1480, 1436, 1398, 1331, 1295, 1273, 1207, 1176, 1165, 1153, 1093, 1056, 1009, 952,  

910, 845, 791, 702, 677 cm
−1

. HRMS calculated for C12H11O4 [M − H]
−
 219.0663, found 219.0665 

(FTMS-pNSI spectrometer used in this case).  

 

v) 3-Oxo-3-(4-nitrophenoxy)propanoic acid (29).
25

  

 

29 

White solid (0.122 g, 66% yield). Mp 73 - 75 °C, chloroform. 
1
H-NMR (CDCl3, 400 MHz)  

8.29 (d, 2H, J = 8 Hz, part A system AX), 7.33 (d, 2H, J = 8 Hz, part X system AX), 3.74 (s, 2H,  

CH2). 
13

C-NMR (101 MHz, CDCl3)  171.18, 163.86, 154.88, 145.87, 125.49, 122.46, 41.19 ppm. 

FTIR [ATR] 1770, 1717, 1683, 1615, 1589, 1523, 1487, 1418, 1391, 1335, 1267, 1204, 1184,  

1152, 1127, 1011, 966, 944, 858, 780, 738, 694, 671 cm
−1

. HRMS Calcd for C9H7NO6 [M + Na]
+
 

248.0171, found 248.0163. 
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vi) 3-Oxo-3-(2-nitrophenoxy)propanoic acid (30).  

 

30 

White solid (0.046 g, 25% yield). Mp 92 - 93 °C. 
1
H-NMR (CDCl3, 400 MHz)  8.13 (dd, 1H, 

J = 8, 1.6 Hz, Ar-H), 7.69 (td, 1H, J = 8, 1.6 Hz, Ar-H), 7.45 (t, 1H, J = 8 Hz, Ar-H), 7.32 (dd, 1H, J = 

8 Hz, 1.6 Hz, Ar-H), 3.79 (s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  170.84, 164.15, 143.63,  

141.51, 135.18, 127.41, 126.12,  125.29, 40.84 ppm. FTIR [ATR] 1778, 1704, 1524, 1343, 1265,  

1209, 1121, 1082, 965, 936, 920, 872, 857, 816, 795, 731, 695, 672, 656 cm
−1

. HRMS Calcd for 

C9H7NO6 [M + Na]
+
 248.0171, found 248.0164. 

 

vii) 3-Oxo-3-(4-cyanophenoxy)propanoic acid (31).
24

  

 

31 

White solid (0.101 g, 60% yield). Mp 94 - 95 °C, chloroform (lit. 76 - 80 ºC) 
1
H-NMR (CDCl3,  

400 MHz)  7.71 (d, 2H, J = 8 Hz, part A system AX), 7.28 (d, 2H, J = 8 Hz, part X system AX), 

3.71 (s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  171.04, 164.00, 153.52, 133.97, 122.69, 118.11,  

110.50, 41.20 ppm. FTIR [ATR] 1771, 1704, 1601, 1500, 1427, 1399, 1339, 1318, 1300, 1274,  

1230, 1201, 1168, 1137, 1018, 970, 919, 864, 824 cm
−1

. HRMS Calcd for C10H7NO4 [M + Na]
+
 

228.0273, found 228.0269. 
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viii) 3-Oxo-3-(2-cyanophenoxy)propanoic acid (32).  

 

32 

Colorless solid (0.103 g, 61 % yield). Mp 81 - 84 °C. 
1
H-NMR (CDCl3, 400 MHz)  9.39 (br 

s, 1H, COOH), 7.70-7.62 (m, 2H, Ar-H), 7.39-7.35 (m, 2H, Ar-H), 3.78 (s, 2H, CH2). 
13

C-NMR (101 

MHz, CDCl3)  170.79, 163.76, 151.77, 134.41, 133.51, 126.93, 123.22, 114.80, 106.84, 41.05 

ppm. FTIR [ATR] 1770, 1712, 1603, 1487, 1450, 1402, 1323, 1302, 1276, 1253, 1217, 1179, 1140,  

1101 cm
−1

. HRMS Calcd for C10H7NO4 [M + Na]
+
 228.0273, found 228.0284.  

 

ix) 3-Oxo-3-(4-methoxycarbonyl)phenoxy)propanoic acid (33).   

 

33 

White solid (0.119 g, 61% yield). Mp 92 - 94 °C. 
1
H-NMR (CDCl3, 400 MHz)  8.08 (d, 2H, J 

= 8 Hz, part A system AX), 7.21 (d, 2H, J =  8 Hz, part X system AX), 3.92 (s, 3H, COOCH3), 3.70 

(s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  171.04, 166.41, 164.43, 153.91, 131.44, 128.37,  

121.54, 52.49, 52.45, 41.22 ppm. FTIR [ATR] 1768, 1721, 1696, 1602, 1556, 1506, 1434, 1411,  

1336, 1279, 1216, 1152, 1110, 1094, 1017, 959, 940, 925, 864, 844, 802, 756, 696 cm
−1

. HRMS 

Calcd for C11H10O6 [M + Na]
+
 261.0364, found 261.0364.  
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x) 3-Oxo-3-(2-(methoxycarbonyl)phenoxy)propanoic acid (34).   

 

34 

White solid (0.041 g, 21% yield). Mp 64 - 66 °C. 
1
H-NMR (CDCl3, 400 MHz)  8.04 (dd, 1H, 

J = 8, 1.6 Hz, Ar-H), 7.59 (td, 1H, J = 8, 1.6 Hz, Ar-H), 7.35 (t, 1H, J = 8 Hz, Ar-H), 7.16 (d, 1H, J = 

8 Hz, Ar-H), 3.87 (s, 3H, COOCH3), 3.77 (s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3) 170.48,  

165.70, 164.89, 150.18, 134.29, 132.04, 126.76, 123.72, 122.83, 52.55, 52.53, 40.87 ppm. FTIR 

[ATR] 1755, 1708, 1607, 1578, 1485, 1435, 1400, 1337, 1300, 1266, 1204, 1147, 1131, 1081,  

1042, 963, 933, 886, 841, 810, 746, 700, 675, 656 cm
−1

. HRMS Calcd for C11H10O6 [M + Na]
+
 

261.0375, found 261.0367. 

 

xi) 3-Oxo-3-(4-methoxyphenoxy)propanoic acid (35).
24

  

 

35 

White solid (0.105 g, 61% yield). Mp 92 - 93 °C, chloroform (lit. 88 - 90 ºC) 
1
H-NMR (CDCl3,  

400 MHz)  7.05 (d, 2H, J = 8 Hz, part A system AB), 6.89 (d, 2H, J = 8 Hz, part B system AB), 

3.80 (s, 3H,  OCH3), 3.67 (s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  171.34, 165.59, 157.73,  

143.88, 122.21, 114.68, 55.75, 41.08 ppm. FTIR [ATR] 1749, 1713, 1601, 1509, 1434, 1335, 1202,  

1185, 1148, 1099,  1032, 844, 829, 754, 656 cm
−1

. HRMS Calcd for C10H10O5 [M + Na]
+ 

233.0426,  

found 233.0419. 
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xii)  3-Oxo-3-(2-methoxyphenoxy)propanoic acid (36).   

 

36 

  Colorless oil (0.078 g, 45% yield). 
1
H-NMR (CDCl3, 400 MHz)  9.56 (br s, 1H, COOH) 

7.24-7.20 (m, 1H, Ar-H), 7.08 (d, 1H, J = 4 Hz, Ar-H), 6.98-6.92 (m, 2H, Ar-H), 3.82 (s, 3H, OCH3),  

3.70 (s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  171.21, 164.85, 151.01, 139.41, 127.56, 122.69,  

120.95, 112.71, 56.04, 40.68 ppm. FTIR [ATR] 1764, 1732, 1606, 1499, 1458, 1440, 1409, 1308,  

1281, 1255,  1194, 1171, 1130, 1109, 1041, 1022, 940,  920, 857, 829, 796, 748, 666 cm
−1

. HRMS 

Calcd for C10H10O5 [M + Na]
+
 233.0426, found 233.0433.  

 

xiii) 3-Oxo-3-(4-chlorophenoxy)propanoic acid (37).
20

  

 

37 

White solid (0.113 g, 64 % yield). Mp 93 - 95 °C, chlroform (lit. 97 ºC, cyclohexane). 
1
H-

NMR (CDCl3, 400 MHz)  7.36 (d, 2H, J = 8 Hz part A system AX), 7.06 (d, 2H, J = 8 Hz, part X 

system AX), 3.68 (s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  171.57, 164.72, 148.81, 131.99,  

129.79, 122.83, 41.15 ppm. FTIR [ATR] 1755, 1694, 1589, 1510, 1486, 1447, 1402, 1333, 1294,  

1243, 1200, 1162, 1146, 1083, 1013, 951, 933, 843, 815, 789, 741, 711, 687 cm
−1

. HRMS Calcd 

for C9H7O4
35

Cl [M + Na]
+
 236.9931, found 236.9937. 
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xiv) 3-Oxo-3-(4-bromophenoxy)propanoic acid (38).
101

  

 

38 

White solid (0.147 g, 69% yield). Mp 121 - 122 °C, chloroform. 
1
H-NMR (CDCl3, 400 MHz) 

 7.51 (d, 2H, J =  8 Hz, part A system AX), 7.03 (d, 2H, J = 8 Hz, part  X system AX ), 3.68 (s, 2H,  

CH2). 
13

C-NMR (101 MHz, CDCl3)  171.53, 164.60, 149.37, 132.76, 123.24, 119.69, 41.19 ppm. 

FTIR [ATR] 1759, 1734, 1695, 1482, 1446, 1398, 1334, 1295, 1199, 1164, 1145, 1064, 1012, 933,  

843, 704, 681 cm
−1

. HRMS Calcd for C9H6O4
79

Br [M − H]
−
 256.9455, found 256.9468 (FTMS-pNSI 

spectrometer used in this case). 

 

xv)  3-Oxo-3-(4-iodophenoxy)propanoic acid (39).  

 

39 

Colourless oil (0.193 g, 77% yield). 
1
H-NMR (500 MHz, CDCl3)  7.70 (d, 2H, J = 9 Hz, part 

A system AX), 6.90 (d, 2H, J = 9 Hz, part X system AX), 3.68 (s, 2H, CH2). 
13

C-NMR (126 MHz, 

CDCl3)  171.57, 164.54, 150.18, 138.77, 123.60, 90.71, 41.17 ppm. FT-IR (ATR) 1761, 1717, 

1639, 1611.5, 1583.5, 1559, 1540, 1530, 1488.5, 1452.5, 1408, 1366, 1321, 1285, 1211.5, 1184, 

1167.5, 1137, 1087.5 1050, 1037 cm
−1

. HRMS Calcd for C9H6O4I [M − H]
−
 304.9316, found 

304.9314 (FTMS-pNSI spectrometer used in this case).  
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xvi)3-Oxo-3-(2-chlorophenoxy)propanoic acid (40).  

 

40 

Colourless oil (0.120 g, 68% yield). 
1
H-NMR (CDCl3, 400 MHz)  7.45 (dd, 1H, J = 8, 1.6 

Hz, Ar-H), 7.32-7.28 (m, 1H, Ar-H), 7.24-7.18 (m, 2H, Ar-H), 3.75 (s, 2H, CH2). 
13

C-NMR (101 MHz, 

CDCl3)  171.30, 164.02, 146.60, 130.58, 128.01, 127.71, 126.84, 123.62, 40.82 ppm. FT-IR [ATR] 

1769, 1716, 1585, 1475, 1449, 1408, 1326, 1261, 1208, 1134, 1121, 1060, 1029, 94 6, 928, 865,  

824, 796, 747, 710, 686, 658 cm
−1

. HRMS Calcd for C9H7O4
35

Cl [M + Na]
+
 236.9931, found 

236.9931. 

 

xvii) 3-Oxo-3-(2-bromophenoxy)propanoic acid (41). 

 

41 

 Pale yellow solid (0.151 g, 71% yield). Mp 59 - 60 °C, chloroform. 
1
H-NMR (CDCl3, 400 

MHz)  7.62 (dd, 1H, J = 8, 1.6 Hz, Ar-H), 7.35 (td, 1H, J = 8, 1.6 Hz, Ar-H), 7.21-7.14 (m, 2H, Ar-

H), 3.76 (s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  171.23, 164.03, 147.86, 133.63, 128.75,  

128.02, 123.66, 115.99, 77.36, 40.91 ppm. FT-IR [ATR] 1770, 1721, 1623, 1582, 1556, 1542,  

1471, 1445, 1408, 1327, 1259, 1207, 1133, 1046, 1026, 947, 929, 864, 823, 799, 749, 706, 672,  

651 cm
−1

. HRMS Calcd for C9H7O4
79

Br [M + Na]
+
 280.9425, found 280.9438.  
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xviii)  3-Oxo-3-(4-(trifluoromethyl)phenoxy)propanoic acid (42).  

 

42 

White solid (0.112 g, 55% yield). Mp 89 - 89 °C, chloroform. 
1
H-NMR (CDCl3, 400 MHz)  

9.62 (s, 1H, br), 7.67 (d, 2H, J = 8 Hz), 7.27 (d, 2H, J = 8 Hz), 3.72 (s, 2H) ppm. 
13

C-NMR (101 

MHz, CDCl3)  171.7, 164.3, 152.8 (q, JC-F = 1.4 Hz), 128.9 (q, JC-F = 33.1 Hz), 127.1 (q, JC-F = 3.7 

Hz), 123.9 (q, JC-F = 273.1 Hz) 122.0, 41.2 ppm. FT-IR [ATR] 1761, 1723, 1613, 1514, 1434, 1416,  

1327, 1294,  1217, 1167, 1119, 1100, 1065, 1018, 970,  936, 856, 813, 795, 7 27, 682 cm
−1

. HRMS 

Calcd for C10H7O4F3 [M + Na]
+
 271.0194, found 271.0189.  

 

xix)3-Oxo-3-(2-(tri fluoromethyl)phenoxy)propanoic acid (43).   

 

43 

White solid (0.120 g, 59% yield). Mp 81 - 83 °C, chloroform. 
1
H-NMR (CDCl3, 400 MHz)  

10.06 (s, 1H, br), 7.68 (d, 1H, J = 8 Hz), 7.60 (t, 1H, J = 8 Hz), 7.38 (t, 1H, J = 8 Hz), 7.31 (d, 1H, J 

= 8 Hz), 3.73 (s, 2H) ppm. 
13

C-NMR (101 MHz, CDCl3)  171.7, 164.2, 147.7 (q, JC-F = 1.9 Hz),  

133.4, 122.9 (q, JC-F = 4.8 Hz), 126.6, 124.2, 122.9 (q, JC-F = 31.9 Hz), 122.9 (q, JC-F = 273.7 Hz), 

41.00 ppm. FT-IR [ATR] 1785, 1713, 1615, 1588, 1494, 1458, 1426, 1349, 1322, 1269, 1203,  

1173, 1126, 1051, 997, 967, 937, 919, 870, 827, 805, 764, 703, 680 cm
–1

. HRMS Calcd for 

C10H7O4F3 [M + Na]
+
 271.0194, found 271.0195.  
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4.2.3 General protocol for the synthesis of MAHTs.  

A neat mixture of malonyl monochloride (0.2 g, 1.63 mmol, 3 equivalents) and the 

corresponding thiophenol (0.54 mmol, 1 equivalent) was stirred at 65 °C for two hours. After 

cooling to room temperature, to the resulting mixture (solid or oil) was added dichloromethane. The 

resulting precipitate was collected by filtration and the residual organic solvent was removed under 

reduced pressure affording an impure product. Purification by flash column chromatography using 

dichloromethane and then dichloromethane / diethyl ether (9.5: 0.5 V/V) afforded the desired 

MAHT. 

 

4.2.4 Experimental data for MAHTs.  

 

i) 3-Oxo-3-(phenylthio)propanoic acid (14).
24

  

 

14 

Colourless oil (0.063 g, 59% yield). 
1
H-NMR (CDCl3, 400 MHz)  7.45 (s, 5H, Ar-H), 3.72 

(s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  190.04, 170.98, 134.62, 130.18, 129.58, 126.56, 48.42 

ppm. FT-IR [ATR] 1695 (br), 1584, 1478, 1441, 1399, 1300, 1237, 1157, 1094, 1039, 1021, 997,  

936, 915, 814, 744, 706, 688 cm
−1

. HRMS Calcd for C9H8O3S [M + Na]
+
 219.0092, found 219.0101. 
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ii) 3-Oxo-3-(4-methoxyphenylthio)propanoic acid (46).
40

  

 

46 

Pale yellow oil (0.075 g, 61% yield). 
1
H-NMR (CDCl3, 400 MHz)  7.35 (d, 2H, J = 8 Hz,  

part A system AX ), 6.96 (d, 2H, J = 8 Hz, part  X system AX) 3.83 (s, 3H, CH3), 3.70 (s, 2H, CH2).  

13
C-NMR (101 MHz, CDCl3)  191.67, 170.17, 161.28, 136.29, 117.16, 115.26, 55.57, 47.98 ppm. 

FT-IR [ATR] 1723, 1704, 1593, 1574, 1496, 1463, 1441, 1408, 1292, 1251, 1175, 1107, 1027, 936,  

828, 799, 745, 720, 701 cm
−1

. HRMS Calcd for C10H10O4S [M + Na]
+
 249.0198, found 249.0204.  

 

iii) 3-Oxo-3-(2-methoxyphenylthio)propanoic acid (47).
106

  

 

47 

Pale yellow solid (0.062 g, 51% yield) Mp 100 - 101 °C, chloroform. 
1
H-NMR (CDCl3, 400 

MHz)  7.47-7.41 (m, 2H, Ar-H), 7.03-6.97 (m, 2H, Ar-H), 3.85 (s, 3H, OCH3), 3.72 (s, 2H, CH2).  

13
C-NMR (101 MHz, CDCl3)  189.99, 170.83, 159.31, 136.74, 132.50, 121.38, 114.74, 111.84,  

56.17, 48.05 ppm. FT-IR [ATR] 1726, 1693, 1584, 1525, 1481, 1467, 1437, 1416, 1387, 1308,  

1285, 1250, 1168, 1137, 1068, 1043, 1002, 945, 912, 833, 797, 750, 688 cm
−1

. HRMS Calcd for 

C10H10O4S [M + Na]
+
 249.0198, found 249.0188. 
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iv) 3-Oxo-3-(4-methylphenylthio)propanoic acid (48).
19

  

 

48 

White solid (0.047 g, 41% yield). Mp 108 - 110 °C, chloroform.
1
H-NMR (CDCl3, 500 MHz)  

7.33 (d, 2H, J = 8 Hz, part A system AB), 7.24 (d, 2H, J = 8 Hz, part B system AB), 3.71 (s, 2H,  

CH2), 2.39 (s, 3H, CH3). 
13

C-NMR (126 MHz, CDCl3)  190.46, 171.24, 140.38, 134.55, 130.72,  

123.19, 48.38, 21.61 ppm. FT-IR (ATR) 1718, 1682, 1604, 1496, 1454, 1422, 1304, 1274, 1202,  

1158, 1098, 1072, 994, 910, 800, 766, 700, 642, 610 cm
−1

. HRMS Calcd for C10H9O3S [M – H]
−
 

209.0278, found 209.0273 (FTMS-pNSI spectrometer used in this case). 

 

v) 3-(2,6-di-methylphenylthio)-3-oxopropanoic acid (49).  

 

49 

Pale yellow solid (0.028 g, 23% yield). Mp 84 - 86 ºC, chloroform. 
1
H-NMR (500 MHz, 

CDCl3)  7.18 (t, 1H, J = 7.5 Hz, Ar-H), 7.10 (d, 2H, J = 7.5 Hz, Ar-H), 3.67 (s, 2H, CH2), 2.30 (s, 

6H, CH3). 
13

C-NMR (126 MHz, CDCl3)  189.05, 171.45, 143.01, 130.59, 128.60, 125.98, 48.36,  

21.73 ppm. FT-IR (ATR) 1711.5, 1681, 1461.5, 1423, 1395, 1375, 1302, 1288.5, 1275, 1150 cm
−1

. 

MS (MALDI-TOF) calculated for C11H11O3S [M] 223.0, found 224.0. HRMS calculated for 

C11H11O3S [M − H]
−
 223.0434, found 223.0432 (FTMS-pNSI spectrometer used in this case).  
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vi) 3-Oxo-3-(naphthalen-2-ylthio)propanoic acid (50).
107

  

 

 

50 

White solid (0.069 g, 52% yield). Mp 110 - 114ºC, chloroform. 
1
H-NMR (500 MHz, CDCl3) δ 

7.99 (s, 1H, Ar-H), 7.89 (d, 1H, J = 8.5 Hz, Ar-H), 7.86 (dd, 2H, J = 12, 7.5 Hz, Ar-H), 7.55 (dq, 2H, 

J = 7, 1.5 Hz, Ar-H), 7.47 (dd, 1H, J = 8.5, 1.5 Hz, Ar-H), 3.77 (s, 2H, CH3). 
13

C-NMR (126 MHz, 

CDCl3)  190.47, 170.47, 134.78, 133.73, 133.67, 130.68, 129.29, 128.22, 127.99, 127.68, 126.94,  

123.78, 48.35 ppm. FT-IR (ATR) 1707, 1680, 1584, 1498, 1406, 1272, 1158, 1026, 940, 900, 866,  

824, 796, 738, 654 cm
−1

. HRMS Calcd for C13H9O3S [M − H]
−
 245.0278, found 245.0271 (FTMS-

pNSI spectrometer used in this case). 

 

vii) 3-Oxo-3-(4-nitrophenylthio)propanoic acid (51).  

 

51 

White solid (0.068 g, 52% yield). Mp 117 - 119 ºC, chloroform. 
1
H-NMR (CDCl3, 500 MHz) 

δ 8.28 (d, 2H, J = 9 Hz, part A system AX), 7.65 (d, 2H, J = 9 Hz, part X system AX), 3.78 (s, 2H,  

CH2). 
13

C-NMR (126 MHz, CD3CN)  189.66, 167.55, 149.60, 136.38, 136.09, 125.05, 49.63 ppm. 

FTIR [ATR] 1714, 1682, 1606, 1579, 1534, 1478, 1426, 1399, 1390, 1369, 1348, 1303, 1276,  

1173, 1151, 1105, 1089, 1067, 1016, 990,  909, 852, 743, 729, 683, 639, 626, 608 cm
−1

. HRMS 

Calcd for C9H7NO5S [M − H]
−
 239.9972, found 239.9970 (FTMS-pNSI spectrometer used in this 

case). 
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viii)3-Oxo-3-(4-chlorophenylthio)propanoic acid (52).
107

  

 

52 

Pale yellow solid (0.062 g,  50% yield). Mp 120 - 122 °C, chloroform. 
1
H-NMR (CDCl3, 400 

MHz)  7.41 (d, 2H, J = 8 Hz, part A system AB), 7.37 (d, 2H, J = 8 Hz, part B system AB), 3.72 (s, 

2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  189.32, 170.50, 136.70, 135.82, 129.86, 124.97, 77.48,  

77.16, 76.84, 48.40 ppm. FT-IR [ATR] 1713, 1683, 1572, 1477, 1417, 1390, 1304, 1280, 1177,  

1156, 1112, 1096, 1083, 1017, 992, 909, 820, 786, 747, 703, 680 cm
−1

. HRMS Calcd for 

C9H6O3
35

ClS [M − H]
−
 228.9732, found 228.9737 (FTMS-pNSI spectrometer used in this case). 

 

ix) 3-Oxo-3-(3-chlorophenylthio)propanoic acid (53).  

 

53 

 Pale yellow oil (0.072 g, 58% yield). 
1
H-NMR (CDCl3, 500 MHz)  7.46 (t, 1H, J = 2 Hz, Ar-

H), 7.43-7.41 (m, 1H, Ar-H), 7.37 (t, 1H, J = 8 Hz, Ar-H), 7.34-7.32 (m, 1H, Ar-H), 3.73 (s, 2H, CH2).  

13
C-NMR (126 MHz, CDCl3)  188.90, 170.65, 135.14, 134.29, 132.70, 130.55, 130.40, 128.18,  

48.48 ppm. FT-IR (ATR) 1700 (br), 1568, 1462, 1400, 1294, 1234, 1160, 994, 936, 876, 778, 678,  

636 cm
−1

. HRMS Calcd for C9H6
35

ClO3S [M − H]
−
 228.9732, found 228.9727 (FTMS-pNSI 

spectrometer used in this case). 
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x) 3-Oxo-3-(2-chlorophenylthio)propanoic acid (54).  

 

54 

White solid (0.056 g, 45% yield). Mp 99 - 100 °C, chloroform. 
1
H-NMR (CDCl3, 400 MHz)  

7.56-7.52 (m, 2H, Ar-H), 7.40 (td, 1H, J = 8.0, 1.6 Hz, Ar-H), 7.32 (td, 1H, J = 8.0, 1.2 Hz, Ar-H),  

3.76 (s, 2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  187.95, 170.94, 138.67, 137.18, 131.88, 130.56,  

127.64, 126.14, 48.41 ppm. FT-IR [ATR] 1721, 1695, 1575, 1454, 1400, 1328, 1285, 1239, 1187,  

1160, 1119, 1040, 1021, 942, 928, 905, 791, 759, 705 cm
−1

. HRMS Calcd for C9H7O3NaS
35

Cl [M + 

Na]
+
 252.9702, found 252.9706.  

 

xi) 3-Oxo-3-(4-bromophenylthio)propanoic acid (55).  

 

55 

Pale yellow solid (0.061 g,  41% yield). Mp 123 - 126 °C, chloroform. 
1
H-NMR (CDCl3, 400 

MHz)  7.57 (d, 2H, J = 8 Hz, part A system AB), 7.30 (d, 2H, J = 8 Hz, part B system AB), 3.72 (s, 

2H, CH2). 
13

C-NMR (101 MHz, CDCl3)  189.39, 169.73, 136.02, 132.82, 125.57, 124.98, 48.32.  

FT-IR [ATR] 1716, 1688, 1566, 1472, 1457, 1430, 1417, 1388, 1304, 1282, 1158, 1067, 997, 912,  

817, 731 cm
−1

. HRMS Calcd for C9H6O3
79

BrS [M − H]
−
 272.9227, found 272.9219 (FTMS-pNSI 

spectrometer used in this case). 
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xii) 3-Oxo-3-(4-fluorophenylthio)propanoic acid (56).  

 

56 

Pale Yellow solid (0.075 g, 65% yield). Mp 72 - 75 ºC, chloroform. 
1
H-NMR (500 MHz, 

CDCl3)  8.47 (s, 1H, br), 7.43-7.40 (m, 2H), 7.13 (dd, 2H, J = 8.5, 8.5 Hz), 3.72 (s, 2H) ppm. 
13

C-

NMR (126 MHz, CDCl3)  189.8, 171.1, 164.0 (d, JCF = 251.65 Hz). 136.8 (d, JCF = 8.8 Hz), 121.9,  

116.8 (d, JCF = 22.2 Hz), 48.4 ppm. FT-IR (ATR) 1712, 1684, 1588, 1490, 1418, 1388, 1304, 1280,  

1220, 1156, 1092, 994, 908 cm
–1

. MS (MALDI-TOF) calculated for C9H7FKO3S 253.0 [M + K]
+
, 

found 252.8. HRMS Calcd for C9H6O3FS [M − H]
−
 213.0027, found 213.0025 (FTMS-pNSI 

spectrometer used in this case). 

 

xiii) 3-Oxo-3-(4-trifluoromethylphenylthio)propanoic acid (57).  

 

57 

  Pale yellow solid (0.071 g, 50% yield). Mp 83 - 84 °C, chloroform. 
1
H-NMR (CDCl3, 400 

MHz)  8.71 (s, 1H, br), 7.69 (d, 2H, J = 8 Hz), 7.58 (d, 2H, J = 8 Hz), 3.76 (s, 2H) ppm. 
13

C-NMR 

(101 MHz, CDCl3)  188.4, 170.4, 134.7, 132.1 (q, JC-F = 33.0 Hz), 131.1 (q, JC-F = 1.3 Hz), 126.4 

(q, JC-F = 3.7 Hz), 123.8 (q,  JC-F = 273.70 Hz),  48.6 ppm. FT-IR [ATR] 1718, 1698, 1608, 1423,  

1400, 1326, 1303, 1279, 1169, 1129, 1106, 1064, 1018, 993, 958, 928, 909, 837, 706 cm
–1

. HRMS 

Calcd for C10H7F3O3S [M + H]
+
 265.0141, found 265.0140. 
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xiv) 3-(2-Methoxy-2-oxoethylthio)-3-oxopropanoic acid (58).  

 

58 

Pale yellow oil (0.031 g, 30% yield). 
1
H-NMR (500 MHz, CDCl3)  7.66 (s, 1H, COOH), 3.77 

(s, 2H, CH3OCOCH2S), 3.74 (s, 3H, OCH3), 3.68 (s, 2H, SCOCH2COOH). 
13

C-NMR (126 MHz, 

CDCl3)  189.65, 170.22, 168.85, 53.15, 48.50, 31.67 ppm. FT-IR (ATR) 2960, 2931, 1724 (br),  

1688, 1438, 1386, 1302, 1156, 1002, 942, 886, 780, 638 cm
−1

. MS (MALDI-TOF) calculated for 

C6H8NaO5S 215.0 [M + Na]
+
, found 215.9. HRMS Calcd for C6H7O5S [M − H]

−
 191.0020, found  

191.0015 (FTMS-pNSI spectrometer used in this case).  

 

xv) 3-(Benzylthio)-3-oxopropanoic acid (59).
39

  

 

59 

White solid (0.062 g, 55% yield). Mp 54 - 56 ºC, chloroform (lit. 62 - 63 ºC,  

hexane/benzene). 
1
H-NMR (CDCl3, 500 MHz)  7.33-7.25 (m, 5H, Ar-H), 4.20 (s, 2H, PhCH2S),  

3.65 (s, 2H, SCOCH2COOH). 
13

C-NMR (126 MHz, CDCl3)  190.78, 171.35, 136.51, 129.01,  

128.87, 127.72, 48.63, 34.05 ppm. FT-IR (ATR) 1718, 1682, 1422, 1304, 1274, 1158, 1098, 1072,  

994, 910, 800, 766, 700, 642, 610 cm
−1

. MS (MALDI-TOF) Calculated for C10H10NaO3S 233.0 [M + 

Na]
+
, found 233.5. HRMS Calcd for C10H9O3S [M − H]

− 
209.0278, found 209.0272 (FTMS-pNSI 

spectrometer used in this case). 
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xvi)3-(Cyclohexylthio)-3-oxopropanoic acid (60).
107

  

 

60 

Colourless oil (0.048 g, 44% yield). 
1
H-NMR (500 MHz, CDCl3)  8.92 (s, 1H, COOH), 3.58 

(s, 2H, SCOCH2COOH), 1.94-1,27 (m, 11H, cyclohexyl). 
13

C-NMR (126 MHz, CDCl3)  191.49,  

171.39, 49.04, 43.47, 32.78, 25.90, 25.54 ppm. FT-IR (ATR) 2930, 2854, 1718, 1680, 1448, 1400,  

1298, 1264, 1160, 996, 912, 888, 858, 818, 732, 646 cm
−1

. MS (MALDI-TOF) calculated for 

C9H14NaO3S [M + Na]
+
 225.0, found 225.5. HRMS Calcd for C9H13O3S [M − H]

−
 201.0591, found 

201.0585 (FTMS-pNSI spectrometer used in this case).  

 

4.2.5 NMR Deuterium Exchange Experiments. 

2
D-

1
H exchange experiments were carried out using a 500 MHz Bruker spectrometer. The 

internal temperature in the NMR probe was set at 20 °C and d4-methanol 99.8 atom % D from 

Aldrich® was used as the deuterated solvent. The sample was weighed in a 5 mL glass vial and 

just before the experiment, dissolved in the required amount of d4-methanol to afford a 70 µM 

solution. The solution was quickly transferred into a 5 mm NMR tube (Norell Standard Series) using 

a glass Pasteur pipette and the tube was introduced into the NMR spectrometer. After locking for 

d4-methanol and shimming, a 
1
H-NMR spectrum (16 scans) was acquired and processed to check 

the phase (this step took 4 minutes overall). Subsequently, 
1
H-NMR spectrum (16 scans) were 

recorded every 5 minutes for a 90 minute experiment. After processing the spectrum, the peaks 

were integrated and normaliz ed. The integral value of the peak for the methylene group was plotted 

against time. 
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4.3 Procedures and experimental data for decarboxylative aldol reactions. 

 

4.3.1 General procedure for base-free decarboxylative aldol reaction catalysed by 

TBAB.  

Malonic acid half thioester (1 equivalent) and 1 equivalent of the corresponding electrophile 

were mixed in toluene. One equivalent of N,N,N,N-tetrabutylammonium bromide and distilled water 

(same volume as toluene) were added to the solution. The resulting biphasic mixture was 

vigorously stirred for 24 hours at 40 ºC. After this time, the mixture was diluted with water (10 mL) 

and extracted with dichloromethane (3 x 10 mL). After drying over magnesium sulphate, filtration,  

and removing the solvent under reduced pressure a crude product was obtained as a pale yellow 

oil. The product was purified by column chromatography on silica gel (dichloromethane).  

 

4.3.2 General procedure for base-free decarboxylative aldol reaction catalysed by 

dicyclohexano-18-crown-6. 

Malonic acid half thioester (1 equivalent) and 1 equivalent of the corresponding electrophile 

were mixed in toluene (3 mL). 0.3 Equivalents of dicyclohexano-18-crown-6 and saturated KCl 

aqueous solution (3 mL) were added and the resulting biphasic mixture stirred for 24 hours at 40 

ºC. After this time, the mixture was diluted with water (10 mL) and extracted with dichoromethane 

(3 x 10 mL). After drying over magnesium sulphate and removing the solvent under reduced 

pressure, a crude product was obtained which was purified by column chromatography on silica gel 

(dichloromethane). 

 

4.3.3 Procedure for base-free decarboxylative aldol reaction catalysed by 

valinomycin. 

Malonic acid half thioester 55 (0.015 g, 0.055 mmol) and 4-nitrobenzaldehyde (0.008 g,  

0.055 mmol) were mixed in toluene (0.4 mL) and saturated potassium chloride aqueous solution 
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(0.3 mL). Valinomycin (0.25 eq, 0.015 g, 0.014 mmol) was added to the reaction mixture and the 

biphasic mixture stirred for 3 hours at room temperature. After this time, more malonic acid half 

thioester 55 (0.008g, 0.029 mmol) was added and the mixture stirred for 3 additional hours. The 

reaction mixture was diluted with water (10 mL) and extracted with dichloromethane (3 x 10 mL).  

After drying over magnesium sulphate and removing the solvent under reduced pressure, a crude 

product was obtained which was purified by column chromatography (silica gel, dichloromethane) 

to afford 0.013 g of desired product as a white solid (62% yield).  

 

4.3.4 Experimental data. 

 

i) 4-Chlorophenyl 3-hydroxy-3-(pentafluorophenyl)propanethioate (79).
58

 

 

 

 3-(4-Chlorophenylthio)-3-oxopropanoic acid (0,010 g, 0,043 mmol) and 

pentafluorobenzaldehyde (0.008 g, 0.043 mmol) were mixed in toluene (0.25 mL). Dicyclohexano-

18-crown-6 (0.005, 0.013 mmol) and saturated potassium chloride aqueous solution (0.25 mL) 

were added and the resulting mixture stirred at 40 ºC for 24 hours. After this time, the mixture was 

diluted with water (10 mL) and extracted with dichloromethane (3 x 10 mL). After drying over 

magnesium sulphate and removing the solvent under reduced pressure, a crude product was 

obtained which was purified by column chromatography on silica gel (dichloromethane). 0.014 g of 

desired product were isolated as a white solid (84% yield). Mp 121 - 122 ºC, chloroform. Rf = 0.52 

(dichloromethane). 
1
H-NMR (CDCl3, 500 MHz)  7.41 (d, 2H, J = 9 Hz, part A system AB ), 7.34 (d,  

2H, J = 9 Hz, part B system AB), 5.61-5.57 (m, 1H, CHOHC6F5 ), 3.50 (dd, 1H, J = 16, 9 Hz, 

SCOCH2C), 3.11 (dd, 1H, J = 16, 4 Hz, SCOCH2C), 2.94 (d, 1H, J = 5.5 Hz, CHOH). 
13

C-NMR (126 

MHz, CDCl3)  195.5, 146.3-145.8 (m), 144.4-143.8 (m), 142.7-140.0 (m),  139.1-138.5 (m), 137.1-
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136.7 (m), 136.6, 135.8, 129.8, 125.0, 114.8 (t,  J=17.4 Hz), 62.4, 48.9 ppm. FTIR [ATR] 3501,  

1694, 1653, 1573,  1523, 1499, 1415, 1391, 1370, 1311,  1291, 1123, 1095, 1067, 1033, 999, 983,  

935, 826, 655, 628 cm
−1

. HRMS Calcd for C15H9O2Cl1F5S1 [M + H]
+
 382.9926, found 382.9917. 

 

ii) 4-Bromophenyl 3-hydroxy-3-(4-nitrophenyl)propanethioate (81). 

 

 

 3-(3-Bromothiopheny)-3-oxopropanoic acid (0.015 g, 0.055 mmol) and 4-

nitrobenzaldehyde (0.008 g, 0.055 mmol) were dissolved in toluene (0.4 mL) and potassium 

chloride saturated aqueous solution (0.4 mL). Valinomycine (0.015 g, 0.014 mmol) was added and 

the mixture stirred vigorously for 3 hours at room temperature. After this time, additional 3 -(3-

bromothiopheny)-3-oxopropanoic acid (0.007 g, 0.048 mmol) was added and the mixture stirred for 

an additional 3 hours at room temperature. The mixture was di luted with water (10 mL) and 

dichloromethane (10 mL), the organic layer was separated and the aqueous layer was extracted 

with dichloromethane (3 x 10 mL). After drying over magnesium sulphate, filtration, and removing 

the solvent under reduced pressure the crude product was purified by column chromatography 

(silica gel, dichloromethane) to afford 0.013 g of desired product as a white solid (62% yield). Mp 

110 - 111 ºC, chloroform. Rf = 0.40 (dichloromethane). 
1
H-NMR (CDCl3, 500 MHz)  8.23 (d, 2H, J 

= 9 Hz), 7.58-7.56 (m, 4H), 7.26 (d, 2H, J = 9 Hz), 5.33-5.30 (m, 1H), 3.18 (d, 1H, J = 4 Hz), 3.12-

3.04 (m, 2H). 
13

C-NMR (126 MHz, CDCl3)  196.36, 149.26, 147.73, 136.00, 132.79, 126.66,  

125.70, 124.84, 124.04, 69.89, 51.81 ppm. FTIR [ATR] 3493, 1679, 1605, 1514, 1472, 1387, 1344,  

1275, 1108, 1067, 1011, 981, 856, 818, 745, 731 cm
−1

. HRMS Calcd for C15H13O4N1Br1S1 [M + H]
+
 

381.9743, found 381.9736. 
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iii) Ethyl 2-hydroxy-2-methyl-4-oxo-4-(phenylthio)-butanoate (86).
24

  

 

 

3-Oxo-3-phenylthiopropanoic acid 14 (0.022 g, 0.112 mmol) and ethyl pyruvate 85 (0.013,  

0.112 mmol) were mixed in chloroform (0.22 mL). Phase transfer catalyst TBAB 

(tetrabutylammonium bromide, 0.036g, 0.112 mmol) and distilled water (0.22 mL) wer e added and 

the mixture stirred vigorously at room temperature for 24 hours. The mixture was diluted with water 

(10 mL) and extracted with dichloromethane (3 x 10 mL), dried over magnesium sulphate, filtered 

and the solvent removed under reduced pressure to afford a crude product which was purified by 

column chromatography (silica gel, dichloromethane) to obtain 0.022 g of the desired product 86 as  

colourless oil (73% yield). Rf = 0.27 (dichloromethane). 
1
H-NMR (CDCl3, 500 MHz)  7.40 (s, 5H,  

Ar-H), 4.27-4.21 (m, 2H,OCH2CH3), 3.65 (s, 1H, CR3OH), 3.28 (d,  1H, J = 16 Hz,SCOCH2C), 3.06 

(d, 1H, J = 16 Hz, SCOCH2C), 1.45 (s, 3H, CH3C), 1.28 (t, 3H, J = 7.5 Hz, OCH2CH3). 
13

C-NMR 

(126 MHz, CDCl3)  195.66, 175.29, 134.60, 129.79, 129.42, 127.15, 73.00, 62.30, 52.47, 26.47,  

14.23 ppm. FTIR [ATR] 3501, 3062, 2983, 2936, 2876, 1732, 1705, 1479, 1442, 1393, 1374, 1326,  

1268, 1210, 1158, 1113, 1013, 962, 937, 782, 748, 706, 690, 624 cm
−1

. MS (MALDI-TOF) 

Calculated for C13H16NaO4S 291.07 [M + Na]
+
, found 291.07.  
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iv) Benzyl 3-hydroxy-3-phenylpropanethioate (88).
38

  

 

 

Following the general protocol, 0.006 g (8% yield) of desired product were obtained after 

column chromatography on silica gel (dichloromethane) as a colourless oil. Rf = 0.50 

(dichloromethane). 
1
H-NMR (CDCl3, 500 MHz)  7.38-7.28 (m, 10H, Ar-H), 5.23 (dt, 1H, J = 9.0, 3.5 

Hz, CHOHPh), 4.2 (d, 2H, J = 4.5 Hz, PhCH2S), 3.08-3.03 (m, 1H, CHOH), 3.00-2.95 (m, 2H, 

SCOCH2CHOHPh). 
13

C-NMR (126 MHz, CDCl3)  198.23, 142.36, 137.22, 128.96, 128.82, 128.75,  

128.08, 127.53, 125.79, 71.00, 52.41, 33.45 ppm. FTIR [ATR] 3445, 3087, 3063, 3031, 2961,  

2918, 1683, 1495, 1455, 1410, 1323, 1289, 1243, 1200, 1184, 1086, 1057, 1028, 981, 762, 740,  

700, 613 cm
−1

. MS (MALDI-TOF) Calculated for C16H16NaO2S 295.08 [M + Na]
+
, found 295.12.  

 

v) 2-Methyl-3-oxo-3-(phenylthio)-propanoic acid (89).
37

 

 

 

 

To a solution of half methylmalonyl chloride (0.6 g, 4.39 mmol) and thiophenol (0.161 g, 

1.465 mmol) in anhydrous acetonitrile (5 mL), tri flic acid (0.013 mL, 0.022 g, 0.146 mmol) was 

added via syringe and the solution refluxed for 3 hours under nitrogen. After cooling under nitrogen,  

the solvent  and volatiles were removed under reduced pressure. The crude residue was dissolved 

in dichloromethane and washed with distilled water (3 x 20 mL), dried over magnesium sulphate,  

filtered, and the solvent removed under reduced pressure to afford a crude product which was 

purified by column chromatography (silica gel, dichloromethane followed by dichloromethane /  

diethyl ether 9.5/0.5 V/V). 0.090 g of desired product were obtained as a colourless oil (29% yield).  
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1
H-NMR (500 MHz, CDCl3)  7.48-7.41 (m, 5H), 3.80 (q, J = 7.2 Hz, 1H), 1.55 (d, J = 7.2 Hz, 3H);  

FTIR [ATR] 2987, 2948, 1723, 1474, 1441, 1203 cm
−1

. 

 

vi) Phenyl β,3-dihydroxy-α-methyl-4-nitro-benzenepropanethioate (91).
37

 

 

 

Compound 89 (0.090 g, 0.428 mmol) and 4-nitro-3-hydroxybenzaldehyde (0,078 g, 0.428 

mmol) were dissolved in chloroform (2 mL). Phase transfer catalyst TBAB (tet rabutylammonium 

bromide, 0.138 g, 0.428 mmol) and distilled water (2 mL) were added and the mixture was stirred 

vigorously at 40 ºC for 24 hours. The mixture was diluted with chloroform (10 mL) and water (10 

mL) and the aqueous layer was extracted with chloroform (3 x 15 mL). The organic solution was 

dried over magnesium sulphate, filtered and the solvent removed under reduced p ressure to afford 

a crude product which was purified by column chromaography on silica gel (dichloromethane).  

0.069 g (syn:anti ratio = 1 / 3.6, determined by integration of peaks at 5.19 and 4.84 ppm) of 

desired compound were obtained as a yellow solid (48% yield). Rf = 0.26 (dichloromethane). 
1
H-

NMR (500 MHz, CDCl3)  10.61 (s, 1H, mixture of isomers), 8.10 (d, 1H, J = 8.5 Hz, anti isomer), 

8.09 (d, 1H, J = 8.5 Hz, syn isomer), 7.35-7.45 (m, 6H, mixture of isomers), 7.19 (d, 1H, J = 1.5 Hz, 

syn isomer), 7.15 (d, 1H, J = 1.5 Hz, anti isomer), 6.98 (dd,  1H, J = 9.0, 2.0 Hz, anti isomer), 6.97 

(dd, 1H, J = 8.5, 2 Hz, syn isomer), 5.19 (d, 1H, J = 3.5 Hz, syn isomer), 4.84 (d, 1H, J = 7.0 Hz, 

anti isomer), 3.10 (q, 1H, J = 7 Hz, anti isomer), 3.06-3.01 (m, 1H, syn isomer), 1.23 (d, 3H, J = 7.0 

Hz, anti isomer), 1.22 (d, 3H, J = 7.5 Hz, syn isomer). MS (MALDI-TOF) Calculated for 

C16H15NNaO5S 356.06 [M + Na]
+
, found 356.14. 
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4.4 Protocols and experimental data for cyclic scaffolds. 

 

i) 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrahydroxy-calix[4]arene (93).
108

  

 

A three-necked 3L round-bottom flask was charged with p-tert -butylphenol (250 g, 1.7 mol),  

formaldehyde (155 mL, 38% solution in water, 2.1 mol) and 10 M NaOH aqueous solution (3 mL,  

3.0 mmol). The reaction mixture was heated at 100 ºC, using  mechanical stirring and a nitrogen 

stream, until the solution became very viscous and white foam was formed. Heating and stirring 

were stopped and the reaction mixture was allowed to cool under nitrogen. Diphenyl ether (2L) and 

toluene (100 mL) were added and the resulting suspension was heated to 170 ºC, allowing water to 

evaporate. Once most of the water had been removed, the solution was refluxed for 5 hours. After 

cooling under nit rogen, the reaction mixture was transferred into a conical flask and ethyl acetate 

(1.5 L) was added. The solid formed was filtered by suction using a Buchner funnel and washed 

with acetone (500 mL).  The obtained white solid was oven dried at  60 ºC under reduced pressure 

to afford 158 g of desired product 93, used without further purification (59% yield). 
1
H-NMR (CDCl3, 

500 MHz)  10.34 (s, 4H), 7.05 (s, 8H), 4.25 (d, br, 4H, J = 13 Hz), 3.49 (d, br, 4H, J = 13 Hz), 1.21 

(s, 36H). 
13

C-NMR (126 MHz, CDCl3)  146.82, 144.52, 127.84, 126.09, 34.16, 32.76, 31.55 ppm. 

FTIR [ATR] 3148, 3027, 2957, 2907, 2869, 1481, 1428, 1393, 1362, 1307, 1285, 1241, 1199,  

1159, 872, 782, 739 cm
−1

. MS (MALDI-TOF) Calculated for C44H56NaO4 671.41 [M + Na]
+
, found 

671.58.  
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ii) 25, 26, 27, 28-Tetrahydroxycalix[4]arene (96).
108

  

 

To a solution of calixarene 93 (15 g, 23.12 mmol) and phenol (10.44 g, 111.0 mmol) in 

toluene (150 mL), AlCl3 (16.18g, 121.0 mmol) was added and the resulting mixture was stirred at rt  

for 1.5 hours. The solution was then poured into a beaker containing ice (200g) and the resulting 

biphasic mixture was separated. The aqueous phase was extracted with dichloromethane (3 x 50 

mL). The combined organic layers were dried over magnesium sulfate and concentrated under 

reduced pressure to afford a yellow oil.  Trituration of the oil with cold diethyl ether (100 mL) 

afforded 6.80g of desired product 96 as a white solid (69% yield). 
1
H-NMR (CDCl3, 500 MHz)  

10.22 (s, 4H), 7.08 (d, 8H, J = 7.5 Hz), 6.75 (t, 4H, J = 7.5 Hz), 4.29 (s, br, 4H), 3.57 (s, br, 4H).  

13
C-NMR (126 MHz, CDCl3)  148.92, 129.12, 128.38, 122.39, 31.85 ppm. FTIR [ATR] 3152, 3094,  

2984, 2935, 2869, 2779, 1594, 1470, 1449, 1416,  1381, 1267, 1246, 1197, 912, 834, 775, 754,  

733, 650 cm
−1

. MS (MALDI-TOF) Calculated for C28H24NaO4 447.16 [M+Na]
+
, found 447.25. 

 

iii) 25, 27-Dipropyloxy-26,28-dihydroxycalix[4]arene (97).
109 

 

 

Calixarene 96 (5.69 g, 13.40 mmol), 1-iodopropane (5.13 g, 30.20 mmol) and potassium 

carbonate (2.08 g, 15.01 mmol) were dissolved in 55 mL of anhydrous acetonitrile under nitrogen.  

The mixture was refluxed for 24 hours. After cooling, a white solid precipitated which was filtered by 

suction in a Buchner funnel and washed with acetonitrile (3 x 10 mL) to afford 5.54 g of desired 
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product as a white solid (81% yield). Rf = 0.65 (petroleum ether / dichloromethane 1:1, V/V). 
1
H-

NMR (CDCl3, 500 MHz)  8.31 (s, 2H), 7.06 (d, 4H, J = 7.5 Hz), 6.93 (d, 4H, J = 7.5 Hz), 6.75 (t, 

2H, J = 7.5 Hz), 6.65 (t, 2H, J = 7.5 Hz), 4.33 (d, 4H, J = 13 Hz), 3.99 (t, 4H, J = 6.5 Hz), 3.39 (d,  

4H, J = 13 Hz), 2.12-2.05 (m, 4H), 1.33 (t, 6H, J = 7.5 Hz). 
13

C-NMR (126 MHz, CDCl3)  153.51,  

152.03, 133.62, 129.04, 128.55, 128.29, 125.41, 119.08, 78.45, 31.57, 23.64, 11.06 ppm. FTIR 

[ATR] 3307, 3061, 3024, 2960, 2929, 2876, 1592, 1465, 1386, 1344, 1300, 1267, 1249, 1221,  

1199, 1160, 1089, 1067, 1041, 1003, 963, 907, 837, 821, 757, 736 cm
−1

. MS (MALDI-TOF) 

Calculated for C34H36NaO4 531.25 [M + Na]
+
, found 531.39.  

 

iv) 5-(N,N-dimethylaminomethyl)-25,26,27,28-tetra-hydroxycalix[4]arene (106).
96

 

 

To a solution of calixarene 96 (4.56 g, 10.74 mmol) in tetrahydrofuran (90 mL), aqueous 

solutions of formaldehyde 37% (v/v) (1.74 g, 21.48 mmol) and of dimethylamine 40% (V/V) (2.48 g,  

22.02 mmol) were added using a syringe. The solution was stirred for 2 hours at rt. The white solid 

precipitated was isolated by filtration on a Buchner funnel and washed with cold water, methanol 

and acetone respectively.  The solid was vacuum dried to obtain 4.09 g of desired product as a 

white solid (79% yield). 
1
H-NMR (CDCl3, 500 MHz)  7.05 (m, 6H), 6.98 (s, 2H), 6.72 (t, 3H, J = 7.5 

Hz), 4.25 (s, br, 4H), 3.53 (s, br, 4H), 3.19 (s, 2H), 2.19 (s, 6H ppm). FTIR (ATR) 3043, 3012, 2951,  

2921, 2856, 1729, 1702, 1653, 1591, 1467, 1435, 1362, 1292, 1253, 1236, 1206, 1161, 1131,  

1082, 1064, 910, 762, 740 cm
−1

.  MS (MALDI-TOF) Calculated for C31H31NO4 481.22 [M]
+
, found 

481.27.  
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v) 11,23-Dibromo-26,28-dipropoxycalix[4]arene (107).
110

  

 

To a solution of calixarene 97 (1.17 g, 2.30 mmol) in 30 mL of dry dichloromethane,  

bromine (0.29 mL, 0.92 g, 5.75 mmol) was added via syringe. The solution was stirred for 3 hours  

at room temperature and then the white precipitate formed was filtered by suction on a Buchner 

funnel and washed with dichloromethane (3 x 10 mL). The solid was dried under reduced pressure 

to afford 1.112 g of the desired compound 107 (72% yield) that was used without further 

purification. MS (MALDI-TOF) Calculated for C34H34
79

Br2NaO4 [M + Na]
+
 689.07, found 689.61.  

 

vi) 5,17-Bis(mercaptomethyl)-25,26,27,28-tetrapropoxycalix[4]arene (128).  

 

 

Calixarene 188 (0.096 g, 0.123 mmol) was dissolved in anhydrous tetrahydrofuran (2 mL) 

and thiourea (0.023 g, 0.308 mmol) was added. The mixture was microwave irradiated at 90 ºC for 

30 minutes. The resulting cloudy solution was allowed to cool to room temperature and then 1M 

sodium hydroxide (2 mL, 0.080 g, 0.002 mmol) aqueous solution was added using a syringe. The 

reaction mixture was microwave irradiated for an additional 15 minutes at 80 ºC. After cooling to 

room temperature and quenching with 1M hydrochloric aqueous solution (3 ml), the aqueous layer 
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was extracted with dichloromethane (3 x 10 mL). After drying over magnesium sulfate, filtration,  

and removing the solvent under reduce pressure, the crude product was purified by column 

chromatography on silica gel (petroleum ether / dichloromethane  4:1, V/V) to afford 0.019 g of 

desired product as a white solid (24% yield). Rf = 0.7 (petroleum ether / dichloromethane 1.1, V/V). 

1
H-NMR (CDCl3, 500 MHz) 6.61-6.56 (m, 10H), 4.42 (d, 4H, J = 13 Hz), 3.84 (t, 4H, J = 7.5 Hz),  

3.82 (t, 4H, J = 7.5 Hz), 3.41 (d, 4H, J = 6 Hz), 3.12 (d, 4H, J = 13 Hz), 1.96-1.87 (m, 8H), 1.56 (t, 

2H, J = 6 Hz), 0.99 (t, 6H, J = 7.5 Hz), 0.98 (t, 6H, J = 7.5 Hz). 
13

C-NMR (126 MHz, CDCl3)  

156.57, 155.97, 135.49, 134.99, 134.20, 128.27, 127.79, 122.22, 76.84, 31.11, 28.83, 23.37, 23.35,  

10.46, 10.43 ppm. FTIR [ATR] 2962, 2933, 2875, 1463, 1385, 1308, 1284, 1248, 1217, 1197,  

1166, 1131, 1105, 1082, 1068, 1038, 1007, 966, 889, 871, 801, 760,  738, 704 cm
−1

. HRMS Calcd 

for C42H56NO4S2 [M + NH4]
+
 702.3645, found 702.3642.  

 

vii) 5-(N,N-dimethylaminomethyl)-25,26,27,28-tetra-n-propoxycalix[4]arene (149). 

 

A. Under thermal conditions. To a stirred solution of calixarene 106 (2 g, 4.15 mmol) in 

anhydrous dimethyl sulphoxide (30 mL) under nitrogen was added sodium hydride (60% in 

mineral oil, 0.83 g, 20.76 mmol) at room temperature. The resulting suspension was stirred 

for 30 minutes and tetrabutylammonium chloride (3.46 g, 12.46 mmol) and n-propyl 

methanesulphonate (3.44 g, 24.92 mmol) were added. The reaction mixture was then stirred 

at 100 ºC for 3.5 hours. After cooling to room temperature, the reaction mixture was poured 

into water (100 mL). The aqueous layer was decanted off and the remaining brown oil was 

then washed with water. The oily residue was dissolved in chloroform and filtered through a 

silica plug flushing with chloroform (to remove the excess of n-propyl  methanesulphonate) 
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followed by a mixture of chloroform / methanol 9:1, V/V to afford 1.727 g of compound 149 

as a pale yellow foam (64% yield). 

B. Under microwave irradiation. To a stirred solution of calixarene 106 (0.500 g, 1.038 mmol) 

in anhydrous N,N-dimethylformamide (17 mL) was added sodium hydride (60% in mineral 

oil, 0.21 g, 5.190 mmol) under nit rogen. The resulting suspension was stirred for 30 minutes 

at room temperature and a solution of n-propyl  methanesulphonate (0.660 g, 4.780 mmol) in 

anhydrous N,N-dimethylformamide (3 mL) was then added using a  syringe.  The reaction 

mixture was heated at 90 ºC under microwave irradiation for 80 minutes.  The reaction 

mixture was then poured into water (100 mL) and the aqueous phase was extracted with 

diethyl ether (3 x 30 mL). The combined organic phases were washed with an aqueous 

solution of potassium carbonate 1% (w/v), dried over magnesium sulphate and concentrated 

under reduced pressure to give a pale yellow oil. The oily residue was dissolved in 

dichloromethane (5 mL) and filtered through a silica plug flushing with dichloromethane to 

remove the excess of  the electrophile, followed by a mixture of dichloromethane / methanol 

9:1, V/V to yield 0.466 g of desired product as a pale yellow foam (69% yield).  Rf = 0.60 

(dichloromethane / methanol 9:1, V/V). 
1
H-NMR (CDCl3, 400 MHz)  6.67-6.50 (m, 11H),  

4.44 (d, 2H, J = 12 Hz), 4.43 (d, 2H, J = 12 Hz), 3.89-3.79 (m, 8H), 3.22 (s, 2H), 3.15 (d, 2H, 

J = 12 Hz), 3.14 (d, 2H, J = 12 Hz), 2-1.87 (m, 14H), 1.02-0.96 (m, 12H). 
13

C-NMR (CDCl3,  

75 MHz)  156.86, 156.70, 156.31, 135.56, 135.51, 135.21, 135.02, 129.78, 128.47, 128.22,  

122.27, 122.00, 77.04, 76.80, 44.17, 31.00, 30.95, 23.32, 23.24, 10.42, 10.40, 10.27 ppm. 

FTIR [ATR] 2961, 2934, 2874, 1455, 1384, 1246, 1212, 1194, 1087, 1067, 1037, 1006, 965,  

908, 758, 730 cm
−1

. Calcd for C43H56NO4 [M + H]
+
 650.4204, found 650.4199.  
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viii) 5-(chloromethyl)-25,26,27,28-n-propoxycalix[4]arene (154).
111

  

 

A solution of 149 (0.346 g, 0.532 mmol) and distilled ethyl chloroformate (0.130 g, 1.198 

mmol) in chloroform (5 mL) was stirred at room temperature for 3 hours. After this time, the solvent  

was removed under reduced pressure and the resulting pale yellow oil was filtered through a silica 

plug flushed with dichloromethane to afford 0.260 g of desired compound as a white foam (76% 

yield). Rf = 0.91 (petroleum ether / dichloromethane V/V 2:3). 
1
H-NMR (CDCl3, 400 MHz)  6.79-

6.68 (m, 6H), 6.45-6.43 (m, 5H), 4.45 (d, 2H, J = 12.0 Hz), 4.44 (d, 2H, J = 12.0 Hz), 4.20 (s, 2H),  

3.92-3.78 (m, 8H), 3.16 (d, 2H, J = 12 Hz), 3.15 (d, 2H, J = 12 Hz), 1.98-1.87 (m, 8H), 1.06-1.02 

(m, 6H), 0.96 (t, 6H, J = 8 Hz). 
13

C-NMR (CDCl3, 75 MHz)  157.09, 156.65, 156.37, 135.80,  

135.46, 135.18, 134.70, 130.64, 128.54, 128.42, 128.33, 127.86, 121.97, 121.59, 76.70, 76.67,  

76.57, 46.79, 30.85, 23.19, 23.01, 10.32, 10.29, 10.00 ppm. FTIR [ATR] 2961, 2932, 2921, 2874,  

1455, 1284, 1246, 1215, 1193, 1086, 1067, 1037, 1005, 966, 908, 758, 732 cm
−1

. HRMS Calcd for 

C41H49ClO4 [M]
+
 640.3314, found 640.3317 (FTMS-pAPCI spectrometer used in this case). 
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ix) 5-(Cyanomethyl)-25,26,27,28-n-propoxycalix[4]arene (155).  

 

Calix[4]arene 154 (0.071 g, 0.111 mmol) was reacted with sodium cyanide (0.009 g, 0.183 

mmol) in N,N-dimethylformamide (3 mL). The mixture was heated at 100 ºC under microwave 

irradiation for 1 hour. The mixture was allowed to cool to room temperature and dichloromethane 

(15 mL) was added. The organic layer was washed with water (3 x 15 mL), dried over magnesium 

sulfate and concentrated under reduced pressure. The crude product was further purified by 

preparative TLC (silica gel, petroleum ether (40-60) / chloroform 3:7, V/V) to afford 0.057 g of 

calix[4]arene 155 as a colorless oil (81% yield). Rf = 0.58 (petroleum ether / dichloromethane 2:3,  

V/V). 
1
H-NMR (CDCl3, 400 MHz)  6.85-6.71 (m, 6H), 6.46-6.40 (m, 3H), 6.27 (s, 2H),  4.44 (d, 4H, 

J = 12 Hz), 3.96-3.86 (m, 4H), 3.79-3.75 (m, 4H), 3.26 (s, 2H), 3.15 (d, 2H, J = 12 Hz), 3.13 (d, 2H, 

J = 12 Hz), 1.97-1.85 (m, 8H), 1.07-1.02 (m, 6H), 0.94 (t, 6H, J = 8 Hz). 
13

C-NMR (CDCl3, 75 MHz) 

 157.41, 156.45, 156.15, 136.23, 135.67, 134.67, 128.94, 128.67, 128.02, 127.48, 123.03, 122.24,  

121.62, 118.52, 76.96, 76.94, 31.02, 23.41, 23.37, 23.16, 22.90,  10.56, 10.55,  10.12 ppm. FTIR 

[ATR] 2962, 2933, 2875, 1589, 1454, 1385, 1247, 1215, 1194, 1086, 1005, 965, 755, 387 cm
−1

. 

HRMS Calcd for C42H53N2O4 [M + NH4]
+
 649.4000, found 649.3997.  
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x) 5-(Cyanatemethyl)-25,26,27,28-n-propoxycalix[4]arene (156).  

 

Following the protocol for the synthesis of calixarene 155, derivative 154 (0.100 g, 0.156 

mmol) was reacted with potassium cyanate (0.025 g, 0.312 mmol) to afford an impure compound 

which was purified by preparative TLC (dichloromethane / ethyl acetate   9.5:0.5, V/V) to yield 0.031 

g of a colorless oil (30% yield). Rf = 0.81 (dichloromethane / diethyl ether 9:1, V/V). 
1
H-NMR 

(CDCl3, 300 MHz)  6.77-6.48 (m, 9H), 6.34 (s, 2H), 4.44 (d, 2H, J = 12 Hz), 4.43 (d, 2H, J = 12 

Hz), 3.90-3.85 (m, 6H), 3.78 (t, 4H, J = 9 Hz), 3.13 (d, 2H, J = 15 Hz), 3.11 (d, 2H, J = 15 Hz), 1.98-

1.84 (m, 8H), 1.01 (t, 6H, J = 9 Hz), 0.95 (t, 6H, J = 9 Hz). 
13

C-NMR (CDCl3, 75 MHz)  156.98,  

156.45, 155.87, 135.68, 135.47, 135.08,  134.80, 128.44, 127.87, 127.15, 122.02, 121.50, 77.16,  

76.76, 76.72, 44.43, 30.86, 23.17, 23.00, 10.29, 10.00, 0.83 ppm. FTIR [ATR] 2961, 2931, 2923,  

2874, 1590, 1456, 1386, 1247, 1215, 1195, 1087, 1008, 967 cm
−1

. MS (MALDI-TOF) m/z Calcd for 

C42H49KNO5 [M+K]
+
 686.32, found 686.26.  
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xi) 5-(S -Thiocyanatemethyl)-25,26,27,28-n-propoxycalix[4]arene (157).  

 

Potassium thiocyanate (0.038 g, 0.387 mmol) was added to a  solution of calixarene 154 

(0.124 g, 0.193 mmol) in 3 mL of N, N-dimethylformamide. The resulting suspension was heated at  

100 ºC under microwave irradiation for 1 hour. The reaction mixture was then poured into distilled 

water (20 mL) and a white solid precipitated. The solid was collected by filtration, washed with 

water and dried under reduced pressure. The product was purified by preparative TLC on silica gel 

(petroleum ether (40-60) /  dichloromethane 1:1, V/V) to afford 30 mg of desired compound 157 as  

a pale yellow oil (23% yield). Rf = 0.70 (petroleum ether (60-40) / dichloromethane 2:3, V/V).  
1
H-

NMR (CDCl3, 300 MHz)  6.83-6.41 (m, 9H), 6.33 (s, 2H),  4.44 (d, 4H, J = 12 Hz), 3.94-3.74 (m, 

10H), 3.15 (d, 2H, J = 12 Hz), 3.14 (d, 2H, J = 12 Hz), 1.98-1.83 (m, 8H), 1.04 (t, 3H, J = 6 Hz), 

1.03 (t, 3H,  J = 6 Hz), 0.94 (t, 6H, J = 6 Hz). 
13

C-NMR (CDCl3, 75 MHz)  157.14, 156.90, 156.28,  

135.97, 135.52, 135.44, 134.55, 128.69, 128.58, 128.43, 127.77, 127.00, 122.08, 121.56, 112.58,  

76.76, 38.54, 30.83, 30.81, 23.20, 22.97, 10.35, 10.31, 9.94 ppm. FTIR [ATR] 2962, 2931, 2920,  

2875, 2155, 1588, 1457, 1385, 1284, 1215, 1195, 1087, 1007, 967 cm
−1

. HRMS Calcd for 

C42H53O4N2S [M + NH4]
+
 681.3721, found 681.3716.  

The same reaction also produced 5-(N-thiocyanatemethyl)-25,26,27,28-n-propoxycalix[4]arene 

(0.025 g, 20% yield) that was also isolated (white solid) and fully characterised. 
1
H-NMR (CDCl3, 

300 MHz)  6.85-6.41 (m, 9H), 6.26 (s, 2H), 4.45 (d, 2H, J = 12 Hz), 4.44 (d, 2H, J = 12 Hz), 4.22 

(s, 2H), 3.96-3.86 (m, 4H), 3.80-3.74 (m, 4H), 3.15 (d, 2H, J = 12 Hz), 3.14 (d, 2H, J = 12 Hz), 1.99-

1.84 (m, 8H), 1.05 (t, 3H, J = 6 Hz), 1.03 (t, 3H, J = 6 Hz), 0.94 (t, 6H, J = 6 Hz). 
13

C-NMR (CDCl3, 

75 MHz)  157.21, 156.26, 156.23, 136.04, 135.53, 135.27, 134.46, 128.74, 128.48, 127.80,  

127.11, 126.38, 122.09, 121.46, 77.17, 76.76, 76.74, 48.16, 30.87, 30.84, 23.22, 23.20, 22.97,  



 

 

- 202 -  

 

10.37, 10.35, 9.93 ppm. FTIR [ATR] 2961, 2933, 2925, 2874, 2093, 1585, 1463, 1456, 1442, 1385,  

1339, 1215, 1194, 1086, 1007, 967 cm
−1

. HRMS Calcd for C42H53O4N2S [M + NH4]
+
 681.3721,  

found 681.3717. 

 

xii) 5-(Dimethylphosphonomethyl)-25,26,27,28-n-propoxycalix[4]arene (158).  

 

A solution of compound 154 (0.118 g, 0.184 mmol) in trimethyl phosphite (1 mL) was 

stirred at 95 ºC under nit rogen for 48 hours. The excess of trimethyl phosphite was removed under 

reduced pressure and the product purified by preparative TLC (silica, chloroform / ethyl acetate  

9.5:0.5, V/V) to afford 52 mg of the desired compound as a colorless oil (39% yield). Rf = 0.19 

(petroleum ether / dichloromethane 2:3, V/V). 
1
H-NMR (CDCl3, 400 MHz)  6.66-6.52 (m, 11H),  

4.46 (d, 2H, J = 16 Hz), 4.43 (d,  2H, J = 16 Hz), 3.87-3.81 (m, 8H),   3.55 (d, 6H, J = 12 Hz), 3.15 

(d, 2H, J = 16 Hz), 3.14 (d, 2H, J = 16 Hz), 2.86 (d, 2H, J = 24 Hz), 1.96-1.88 (m, 8H), 1.02-0.98 

(m, 12H). 
13

C-NMR (CDCl3, 75 MHz)  156.94, 156.71, 156.10, 156.05, 135.65, 135.61,  135.49,  

135.22, 135.02, 129.79, 129.70, 128.35,  128.32, 128.30, 124.13, 124.01, 122.09, 121.82, 76.84,  

76.81, 52.93, 52.84, 33.13, 31.30, 31.00, 30.92, 23.26, 23.23, 10.34, 10.32, 10.28 ppm. FTIR 

[ATR] 2959, 2933, 2874, 1456,  1246, 1210, 1195, 1087, 1059, 1033, 1007, 966, 909, 886, 809,  

761, 731 cm
−1

. HRMS Calcd for C43H59NO7P [M + NH4]
+
 732.4024, found 732.4019.  
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xiii) 5-(Carboxy)-25,26,27,28-tetra-n-propoxycalix[4]arene (159).
112

  

 

To a solution of compound 149 (0.146 g, 0.225 mmol) in tetrahydrofuran (14 mL) was 

added potassium permanganate (0.426 g, 2.696 mmol) and distilled water (1 mL). The suspension 

was refluxed for 10 minutes and further diluted with tetrahydrofuran (30 mL) to be filtrated on a 

sintered funnel (porosity 1). The filtrates were concentrated under vacuum and the resulting pale 

brown oil was purified by preparative TLC on silica gel (dichloromethane / diethyl ether 4:1, V/V) to 

afford 0.037 g of calix[4]arene 159 as a colorless oil (27% yield). Rf = 0.67 (dichloromethane / 

diethyl ether 9:1, V/V). 
1
H-NMR (CDCl3, 300 MHz)  7.30 (s, 2H), 6.67-6.44 (m, 9H), 4.46 (d, 2H, J 

= 12 Hz), 4.43 (d, 2H, J = 12 Hz), 3.94-3.77 (m, 8H), 3.20 (d, 2H, J = 15 Hz), 3.14 (d, 2H, J = 15 

Hz), 1.96-1.84 (m, 8H), 1.03-0.96 (m, 12H). 
13

C-NMR (CDCl3, 75 MHz)  171.61, 161.93, 156.86,  

156.75, 135.82, 135.63, 135.23, 134.71, 130.68, 128.82, 128.46, 128.36, 122.76, 122.40, 122.10,  

77.37, 76.92, 76.85, 31.03, 23.39, 23.32, 23.28, 10.39, 10.36, 10.31 ppm. FTIR [ATR] 2962, 2916,  

2875, 1682, 1455, 1288, 1210, 1197, 1107, 1087, 1037, 1006, 966, 758 cm
−1

. HRMS Calcd for 

C41H52NO6 [M + NH4]
+
 654.3789, found 654.3788.  
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xiv) 5-(Azidomethyl)-25,26,27,28-n-propoxycalix[4]arene (160).  

 

To a solution of compound 154 (0.125 g, 0.195 mmol) in N,N-dimethylformamide (3 mL) 

was added sodium azide (0.014 g, 0.214 mmol). The mixture was  heated at 100 ºC under 

microwave irradiation for 1 hour. The mixture was allowed to cool to room temperature and 

dichloromethane (15 mL) was added. The organic layer was washed with water (3 x 15 mL), dried 

over magnesium sulfate and concentrated under reduced pressure. The crude product was further 

purified by column chromatography (silica gel, petroleum ether / dichloromethane 7:3 (V/V)) to 

afford 0.106 g of a pale yellow oil (84% yield). Rf = 0.81 (petroleum ether / dichloromethane 2:3,  

V/V).  
1
H-NMR (CDCl3, 400 MHz)  6.72-6.63 (m, 6H), 6.52-6.45 (m, 3H), 6.41 (s, 2H), 4.45 (d, 2H, 

J = 12 Hz), 4.44 (d, 2H, J = 12 Hz), 3.92 (s, 2H), 3.90-3.79 (m, 8H), 3.15 (d, 4H, J = 12 Hz), 1.97-

1.87 (m, 8H), 1.02 (t, 3H, J = 8 Hz), 1.01 (t, 3H, J = 8 Hz), 0.97 (t, 6H, J = 8 Hz). 
13

C-NMR (CDCl3, 

100 MHz)  157.02, 156.68, 156.59, 135.74, 135.50, 135.39, 135.01, 128.61, 128.45, 128.23,  

128.11, 122.17, 121.72, 76.86, 58.49, 54.86, 31.17, 23.51, 23.39, 13.94, 10.64, 10.43 ppm. FTIR 

[ATR] 2961, 2932, 2920, 2875, 2092, 1455, 1384, 1301, 1282, 1246, 1214, 1194, 1129, 1086,  

1067, 1038, 1006, 966, 759 cm
−1

. HRMS Calcd for C41H53N4O4 [M + NH4]
+
 665.4061, found 

665.4060. 
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xv) 5-(Aminomethyl)-25,26,27,28-tetra-n-propoxycalix[4]arene (161).  

 

To a solution of calixarene 160 (0.149 g, 0.230 mmol) in anhydrous diethyl ether (6 mL),  

lithium aluminum hydride (0.052 g, 1.380 mmol) was added and the resulting suspension  was 

stirred under nitrogen at room temperature for 6 hours. The mixture was quenched with water and 

washed with water (3 x 5 mL). After drying and removing the solvent under reduced pressure, a 

white solid was obtained, which was purified by preparative TLC on silica gel (dichloromethane /  

methanol 9:1, V/V) to afford 0.044 g of desired product as a colorless oil (31% yield). 
1
H-NMR 

(CDCl3, 400 MHz)  6.75-6.64 (m, 6H), 6.51-6.44 (m, 3H), 6.38 (s, 2H), 4.44 (d, 2H, J = 12 Hz),  

4.43 (d, 2H, J = 12 Hz), 3.91-3.87 (m, 4H), 3.79 (t, 4H, J = 8 Hz), 3.44 (s, 2H), 3.14 (d, 2H, J = 12 

Hz), 3.13 (d, 2H, J = 12 Hz), 2.21 (s, 2H, br), 1.98-1.86 (m, 8H), 1.02 (t, 3H, J = 8 Hz), 1.01 (t, 3H, J 

= 8 Hz), 0.96 (t, 6H, J = 8 Hz). 
13

C-NMR (CDCl3, 100 MHz)  157.08, 156.55, 155.59, 135.77,  

135.71, 135.03, 134.95, 128.60, 128.54, 128.04, 126.97, 122.13, 121.72, 77.01, 76.97, 76.83,  

68.85, 58.49, 31.21, 31.16, 23.52, 23.36, 13.86, 13.82, 10.67, 10.40 ppm. FTIR [ATR] 2959, 2919,  

2873, 1454, 1433, 1383, 1246, 1212, 1193, 1126,  1085, 1066, 1037, 1005, 965, 889, 842, 833,  

757, 735, 702 cm
−1

. HRMS Calcd for C41H52O4 N [M + NH4]
+
 622.3891, found 622.3883. 
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xvi) 5-(N,N-dimethylaminomethyl)-25,26,27,28-tetra-n-propoxycalix[4]arene N-oxide (162).  

 

 A solution of compound 149 (0.197 g, 0.303 mmol) and 3-chloroperbenzoic acid 77% 

(w/w) (0.149 g, 0.667 mmol) in chloroform (3 mL) was stirred for 1 hour at room temperature. The 

organic solution was washed with 1M sodium hydroxide (3 x 15 mL) and water (3 x 15 mL), dried 

over magnesium sulfate and concentrated under reduced pressure. The crude product was purified 

by column chromatography (silica gel, chloroform / methanol 9.5:0.5, V/V) to afford 0.141 g of a 

pale yellow oil (70% yield).  Rf = 0.56 (dichloromethane / methanol 9:1, V/V). 
1
H-NMR (CDCl3, 300 

MHz)  7.02-6.79 (m, 6H), 6.39-6.38 (m, 5H), 4.47 (d, 2H, J = 12 Hz), 4.42 (d, 2H, J = 12 Hz), 4.08-

3.92 (m, 4H), 3.88 (s, 2H), 3.74-3.64 (m, 4H), 3.16 (d, 2H, J = 12 Hz), 3.15 (d, 2H, J = 12 Hz), 2.22 

(s, 6H), 2.10-1.84 (m, 8H), 1.10-1.01 (m, 6H), 0.93 (t, 6H, J = 9 Hz). 
13

C-NMR (CDCl3, 100 MHz)  

157.21, 156.87, 155.61, 136.71, 136.26, 134.74, 134.04, 131.80, 129.20, 128.74, 127.68, 123.68,  

122.63, 122.43, 99.21, 77.71, 76.81, 76.52, 58.49, 56.30, 30.96, 23.63, 23.19, 13.87, 10.86, 10.84,  

10.08 ppm. FTIR [ATR] 2960, 2932, 2874, 1455, 1384, 1300, 1282, 1247, 1218, 1208,  1195, 1171,  

1131, 1105, 1087,  1066, 1037, 1005, 964,  942, 905, 885, 843, 836,  758 cm
−1

. HRMS Calcd for 

C43H56NO5 [M + H]
+
 666.4153, found 666.4151.  
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xvii) 5-Formyl-25,26,27,28-tetra-n-propoxycalix[4]arene (163).
113

 

A. From compound 162.  

 

A mixture of calixarene 162 (3.33 g, 5 mmol) and acetic anhydride (3.30 mL, 35 mmol) in 

dichloromethane (40 mL) was refluxed for 1 hour under nitrogen. After cooling, the reaction 

mixture was washed with a saturated aqueous solution of sodium hydrogen carbonate (3 x  

25 mL) and water (3 x 25 mL), dried over magnesium sulphate and concentrated under 

reduced pressure to give a crude which was purified by column chromatography on silica gel 

(petroleum ether (40-60) / ethyl acetate 9:1, V/V) to afford 1.53 g of desired product as a 

white foam (49% yield).  

 

B. From compound 149.
114

  

 

To a solution of compound 149 (0.146 g, 0.225 mmol) in tetrahydrofuran (14 mL) was 

added potassium permanganate (0.426 g, 2.696 mmol) and distilled water (1 mL). The 

suspension was refluxed for 10 minutes and further diluted with tetrahydrofuran (30 mL) to 
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be filt rated on a sintered funnel (porosity 1). The filtrates were concentrated under vacuum 

and the resulting pale brown oil was purified by preparative TLC on silica gel 

(dichloromethane /  diethyl ether 4:1, V/V) to afford 0.027 g of desired product 163 as a 

colorless oil (20% yield).  Rf = 0.53 (petroleum ether / dichloromethane 2:3, V/V). 
1
H-NMR 

(CDCl3, 400 MHz)  9.56 (s, 1H), 6.99 (s, 2H), 6.73-6.40 (m, 9H), 4.48 (d, 2H, J = 12 Hz),  

4.43 (d, 2H, J = 12 Hz), 3.92-3.77 (m, 8H), 3.22 (d, 2H, J =  12 Hz), 3.15 (d, 2H, J = 12 Hz),  

1.94-1.89 (m, 8H), 1.05-0.96 (m, 12H). 
13

C-NMR (CDCl3, 75 MHz)  191.87, 162.11, 156.90,  

156.31, 136.05, 135.85, 134.74, 134.71, 130.96, 130.01, 128.86, 128.34, 127.94, 122.23,  

121.89, 76.84,  76.65, 76.62,  30.83, 23.24, 23.17, 23.02, 10.28, 10.22, 10.01 ppm. FTIR 

[ATR] 2962, 2932, 2924, 2875, 1691, 1588, 1455, 1433, 1383, 1277, 1246, 1209, 1193,  

1121, 1086, 1066, 1036, 1004, 965, 909, 890, 759, 733 cm
−1

. HRMS Calcd for C41H52NO5 [M 

+ NH4]
+
 638.3840, found 638.3834.  

 

xviii) 5-(Hydroxymethyl)-25,26,27,28-tetra-n-propoxycalix[4]arene (164).
115

  

 

To a solution of calixarene 163 (0.281 g, 0.453 mmol) in toluene (4 mL) and ethanol (8 

mL), sodium borohydride (0.021 g, 0.555 mmol) was added and the reaction was stirred at room 

temperature for 3 hours. The solvent was then removed under reduced pressure and the residue 

was dissolved in dichloromethane (10 mL), washed with water (15 ml), dried over magnesium 

sulfate and the solvent removed under vacuum to afford 0.019 g of desired product (67% yield). 
1
H-

NMR (CDCl3, 300 MHz)  6.82-6.42 (m, 9H), 6.38 (s, 2H),  4.44 (d, 4H, J = 15 Hz),  4.19 (s, 2H), 

3.94-3.88 (m, 4H), 3.77 (t, 2H, J = 9 Hz), 3.76 (t, 2H, J = 9 Hz), 3.14 (d, 4H, J = 12 Hz), 1.99-1.84 

(m, 8H), 1.04 (t, 3H, J = 9 Hz), 1.03 (t, 3H, J = 9 Hz), 0.94 (t, 6H, J = 9 Hz). 
13

C-NMR (CDCl3, 75 
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MHz)  157.14, 156.41, 155.99, 135.84, 135.74, 134.81, 134.67, 134.22, 128.56, 128.54, 127.87,  

127.07, 122.00, 121.38, 77.16, 76.78, 76.73, 65.30, 30.88, 30.83, 23.19, 22.97, 10.34, 9.94 ppm.  

FTIR [ATR] 2962, 2934, 2916, 2874, 1588, 1454, 1245, 1212, 1194, 1086, 1037, 1007, 967, 758,  

521, 507 cm
−1

. HRMS Calcd for C41H54NO5 [M + NH4]
+
 640.3997, found 640.3994.  

 

xix) 5-(Ferrocenecarboxymethyl)-25,26,27,28-tetra-n-propoxycalix[4]arene (166).  

 

To a stirred solution of ferrocene monocarboxylic acid (8.42 mg, 0.037 mmol) under 

nitrogen, 2.5 equivalents of oxalyl chloride (0.012 g, 0.092 mmol) were added and the solution 

stirred for 2 hours at room temperature. The volatiles were removed under reduced pressure and 

the reaction crude was dissolved in anhydrous dichloromethane (2 mL) to which was added 

calixarene 164 (0.023 g, 0.037 mmol) and pyridine (6.0 µl, 5.84 mg, 0.074 mmol). The mix ture was 

stirred for 1 hour at room temperature followed by 1 hour at 50 ºC. After removal of the solvent and 

volatiles under reduced pressure, the product was isolated by preparative TLC on silica gel 

(petroleum ether (40-60) / ethyl acetate 5:1, V/V) to afford 10 mg of an orange oil  (32% yield). 
1
H-

NMR (CDCl3, 400 MHz)  6.75-6.49 (m, 11H), 4.84 (s, 2H), 4.79 (s, 2H), 4.45 (d, 2H, J = 12 Hz), 

4.44 (d, 2H, J = 12 Hz), 4.40 (s, 2H), 4.13 (s, 5H), 3.88 (t, 4H, J = 8 Hz), 3.80 (t, 4H, J = 8 Hz), 3.17 

(d, 2H, J = 16 Hz), 3.15 (d, 2H, J = 16 Hz), 1.97-1.85 (m, 8H), 1.03-0.94 (m, 12H). 
13

C-NMR 

(CDCl3, 100 MHz)  171.59, 157.06, 156.50, 135.76, 135.51, 135.06, 134.90, 129.64, 128.53,  

128.46, 128.07, 122.08, 121.75, 77.36, 76.79, 71.69, 71.61, 70.53, 70.03, 66.13, 31.17, 31.13,  

23.45, 23.41, 23.33, 10.58, 10.57, 10.36, 1.17 ppm. F TIR [ATR] 2960, 2932, 2923, 2874, 1713,  
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1456, 1381, 1272, 1247, 1214, 1194, 1127, 1107, 1086, 1067, 1057, 1036, 1005, 966, 820, 759 

cm
−1

. HRMS Calcd for C52H62FeNO6 [M + NH4]
+
 852.3922, found 852.3924.  

 

xx) 1-(5-methyl -25,26,27,28-n-propoxycalix[4]arene)-4-(5-methylcarboxy-25,26,27,28-n-

propoxycalix[4]arene)-1H-1,2,3-triazole (167).  

 

To a solution of calixarene 159 in anhydrous diethyl ether (5 mL), thionyl chloride (0.03 mL, 

0.049 g, 0.410 mmol) was added under a nitrogen atmosphere using a syringe. The resulting 

solution was stirred under nitrogen at rt for 20 minutes and then the solvent and volatiles were 

removed under reduced pressure. The crude product was dissolved in anhydrous diethyl ether (5 

mL) and propargyl alcohol (0.046 g, 0.82 mmol) was added, followed by pyridine (0.024 mL, 0.024 

g, 0.301 mmol). The solution was stirred for 30 minutes at rt and then the solvent and volatiles  

were removed under reduced pressure. The crude product was purified by column chromatography 

on silica gel eluted with dichloromethane to afford 0.075 g of desired ester as a pale yellow oil 

(41% yield), which was used in the next step without further purification. 
1
H-NMR (CDCl3, 300 MHz) 

 7.38 (s, 2H), 6.65-6.54 (m, 9H), 4.84 (d, 2H, J = 3 Hz), 4.46 (d, 2H, J = 15 Hz), 4.44 (d, 2H, J = 15 

Hz), 3.97-3.77 (m, 8H), 3.21 (d, 2H, J = 15 Hz), 3.15 (d, 2H, J = 15 Hz), 2.48 (t, 1H, J = 3 Hz), 1.98-

1.84 (m, 8H), 1.03-0.96 (m, 12H). 
13

C-NMR (101 MHz, CDCl3)  164.87, 155.30, 134.76, 134.28,  

134.02, 133.08, 129.08, 127.39, 127.19, 127.06, 121.71, 121.10, 120.88, 77.16, 76.31, 75.99,  

75.72, 75.67, 75.57, 73.43, 50.82, 29.94, 29.91, 22.27, 22.25, 22.20, 9.35, 9.26, 9.23 ppm.  

 To 5-(azidomethyl)-25,26,27,28-n-propoxycalix[4]arene (0.096 g, 0.148 mmol), L-sodium 

ascorbate (2.35 mg, 0.012 mmol), copper sulfate pentahydrate (3 mg, 0.012 mmol) and tris[(1-

benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (6.29 mg, 0.012 mmol) in N,N-dimethylformamide (3 mL),  

the propargyl ester (0.080 g, 0.119 mmol) was added and the resulting suspension was irradiated 
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at 80 ºC in a microwave reactor for 80 minutes. After quenching with water (10 ml),  the crude 

product was extracted with diethyl ether (3 x 10 mL) and the combined org anic fractions dried over 

magnesium sulfate. After filtering and removing the solvent under reduced pressure, the crude 

product was purified by column chromatography (eluting first with dichloromethane and then 

dichloromethane / ethyl acetate, 8:2 v/v) to afford 0.073 g of the desired compound 167 as a pale 

yellow oil (46% yield).  
1
H-NMR (CDCl3, 500 MHz)  7.35 (s, 2H), 7.24 (s, 1H), 6.88-6.41 (m, 19H),  

6.22 (s, 2H), 5.33 (s, 2H), 4.99 (s, 2H), 4.46-4.41 (m, 8H), 3.97-3.73 (m, 16H), 3.18-3.08 (m, 8H),  

1.97-1.85 (m, 16H), 1.06-0.92 (m, 24H). 
13

C-NMR (126 MHz, CDCl3)  166.56, 161.45, 157.19,  

156.77, 156.47, 156.29, 156.06, 136.15, 135.80, 135.63, 135.40, 135.23, 134.95, 134.33, 134.10,  

130.06, 128.73, 128.52, 128.34, 128.24, 128.10, 127.82, 127.76, 127.30, 123.11, 122.15, 122.10,  

121.76, 121.49, 77.26, 76.91, 76.88, 76.72, 76.62, 57.68, 54.06, 53.46, 30.97, 30.93, 23.40, 23.30,  

23.28, 23.23, 23.10, 10.60, 10.56, 10.41, 10.28, 10.26, 10.08 ppm. IR [ATR] 2962, 2934, 2876,  

1715, 1456, 1385, 1304, 1286, 1247, 1191, 1159,  1087, 1067, 1045, 1006, 967, 909, 891, 832,  

760, 736 cm
−1

. HRMS Calcd for C85H100N3O10 [M + H]
+
 1322.7403, found 1322.7369.  

 

xxi) 5,17-Diformyl-25,26,27,28-tetrapropoxy-calix[4]arene (171).
116

  

 

A solution of calixarene 173 (2.584 g, 3.44 mmol) in anhydrous tetrahydrofuran (30 mL) under 

nitrogen was cooled at −78 ºC before adding n-butyllithium 2.5 M in hexanes (5.51 mL, 13.75 

mmol) using a syringe.  The solution was stirred at −78 ºC for 30 minutes before adding anhydrous 

N,N-dimethylformamide (4.26 mL, 55.1 mmol) using a syringe.  The reaction mixture was stirred at  

−78 ºC for further 30 minutes and then allowed to slowly reach room temperature. After quenching 

with water (30 ml) and removing the volatiles under reduced pressure, the aqueous layer was 
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extracted with diethyl ether (3 x 30 mL). The combined organic fractions were washed with water (3 

x 20 mL), dried over magnesium sulphate, filtered, and the solvent was removed under reduced 

pressure to afford a crude product as colourless oil. The product was purified by column 

chromatography (silica gel, dichloromethane) to afford 0.978 g of desired product as a white solid 

(44% yield). Rf = 0.28 (dichloromethane).  
1
H-NMR (CDCl3, 500 MHz)  9.47 (s, 2H), 7.00 (s, 4H),  

6.75-6.69 (m, 6H), 4.47 (d, 4H, J = 13 Hz), 3.91-3.86 (m, 8H), 3.23 (d, 4H, J = 13 Hz), 1.95-1.87 

(m, 8H), 1.03 (t, 6H, J = 10 Hz), 0.97 (t, 6H, J = 10 Hz). 
13

C-NMR (126 MHz, CDCl3)  191.81,  

162.08, 156.70, 136.07, 134.92, 131.16, 129.98, 128.91, 122.79, 77.36, 77.13, 31.07, 23.51, 23.29,  

10.51, 10.30 ppm. FTIR [ATR] 2964, 2934, 2876, 2793, 2728, 1694, 1597, 1456, 1434, 1384,  

1279, 1248, 1217, 1161, 1123, 1082, 1065, 1036, 1004, 963, 936, 889, 839, 802, 759, 737, 701,  

672, 650, 624, 604 cm
−1

. HRMS Calcd for C42H49O6 [M + H]
+
 649.3524, found 649.3518.  

 

xxii) 5,17-Dibromo-25,26,27,28-tetrapropoxy-calix[4]arene (173).
117

  

  

To a solution of calixarene 107 (2.68 g, 4.02  mmol) in 30 mL of anhydrous N,N-dimethylformamide 

was added NaH (60% in mineral oil, 0.80 g, 20.10 mmol) and the suspension stirred for 30 minutes 

at room temperature. 1-Iodopropane (2.35 mL, 4.10 g, 24.12 mmol) was added using a syringe and 

the solution was stirred overnight at room temperature. The reaction was quenched with water (50 

mL) and the resulting precipitated solid was collected by filtration to afford 1.91 g of desired 

compound as a white solid (63% yield). Rf = 0.87 (petroleum ether / dichloromethane 1:1, V/V). 
1
H-

NMR (CDCl3, 500 MHz) δ 6.77 (s, 4H), 6.64-6.63 (m, 6H), 4.40 (d, 4H, J = 13.5 Hz), 3.85-3.80 (m, 

8H), 3.11 (d, 4H, J = 13.5 Hz), 1.94-1.85 (m, 8H), 0.99 (t, 6H, J = 10 Hz), 0.98 (t, 6H, J = 10 Hz). 

13
C-NMR (126 MHz, CDCl3) δ 156.51, 155.84, 137.36, 134.51, 130.90, 128.55, 122.62, 114.84,  
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77.05, 76.94, 30.99, 23.32, 10.44, 10.40 ppm. FTIR [ATR] 2962, 2933, 2876, 1574, 1456, 1385,  

1293, 1250, 1210, 1157, 1102, 1081, 1067, 1037, 1005, 965, 909, 865, 848, 760, 735 cm
−1

. MS 

(MALDI-TOF) Calculated for C40H46
79

Br2NaO4 771.17 [M + Na]
+
, found 771.41.  

xxiii) 5-Carboxy-17-(hydroxymethyl)-25,26,27,28-tetrapropoxy-calix[4]arene (174).  

 

Calixarene 171 (0.020 g, 0.031 mmol) was placed in a glass mortar and heated at 100 ºC.  

Potassium hydroxide (0.173 g, 3.08 mmol) was then added and the mixture ground at this 

temperature for 2 minutes. A few drops of tetrahydrofuran were added and the mixture was ground 

until it became dry. The process was repeated 5 times until no starting material was observed by 

TCL (dichloromethane). The paste was allowed to cool at room temperature and then quenched 

with 2M hydrochloric acid aqueous solution (5 ml) and extracted with diethyl ether (3 x 5 mL). After 

drying over magnesium sulphate, filtration, and removing the solvent under reduced pr essure,  

0.019 g of desired product were obtained as a white solid (92% yield). Rf = 0.22 (dichloromethane / 

diethyl ether 18:1, V/V). 
1
H-NMR (CDCl3, 500 MHz)  7.00 (s, 2H), 6.97-6.95 (m, 4H), 6.86-6.83 (m, 

2H), 6.23 (s,2H), 4.44 (t, 4H, J = 13.0 Hz), 4.10 (s, 2H), 4.01-3.89 (m, 4H), 3.77 (t, 2H, J = 5 Hz), 

3.70 (t, 2H, J = 5 Hz), 3.17 (d, 2H, J =  15 Hz), 3.13 (d, 2H, J =  15 Hz), 1.97-1.83 (m, 8H), 1.07 (t, 

3H, J = 7.5 Hz), 1.06 (t, 3H, J = 7.5 Hz), 0.91 (t, 6H, J = 7.5 Hz). 
13

C-NMR (126 MHz, CDCl3)  

171.37, 160.84, 157.38, 155.37, 136.44, 135.74, 134.74, 134.21, 134.03, 130.13, 129.29, 128.86,  

126.03, 122.68, 122.51, 77.00, 76.72, 64.39, 31.13, 31.05, 23.56, 23.19, 10.80, 10.73, 10.11 ppm. 

FTIR [ATR] 2962, 2932, 2875, 1683, 1599, 1543, 1516, 1456, 1432, 1385, 1305, 1283, 1247,  

1211, 1197, 1129, 1106, 1082, 1066, 1036, 1006, 966 cm
−1

. HRMS Calcd for C42H50O7Na1 [M + 

Na]
+
 689.3449, found 689.3439.  



 

 

- 214 -  

 

xxiv) 11,23-Dibromo-5,17-diformyl-25,26,27,28-tetrapropoxy-calix[4]arene (178).
118

 

 

Calixarene 171 (0.131 g, 0.202 mmol) and sodium bromide (0.083 g, 0.808 mmol) were 

dissolved in acetonitrile (8 mL) and then a solution of oxone® (0.496 g, 0.808 mmol) in water (2 

mL) was added to the solution using a syringe. The resulting orange solution was stirred at room 

temperature for 30 minutes and acetonitrile was then added until a white solid was formed. The 

solid was removed by filtration and the filtrate was concentrated under reduced pressure to afford a 

crude product as pale yellow oil. The product was filtered through silica gel (dichloromethane /  

diethyl ether 9:1, V/V) to afford 0.157 g of desired compound as a white solid (96% yield). Rf = 0.45 

(dichloromethane). 
1
H-NMR (CDCl3, 500 MHz)  9.60 (s, 2H), 7.14 (s, 4H), 6.82 (s, 4H), 4.42 (d,  

4H, J = 13.5 Hz), 3.93-3.90 (m, 4H), 3.84-3.81 (m, 4H), 3.21 (d, 4H, J = 13.5 Hz), 1.92-1.85 (m, 

8H),  1.01-0.97 (m, 12H). 
13

C-NMR (126 MHz, CDCl3)  191.61, 162.10, 155.67, 136.59,  135.70,  

131.49, 131.38, 130.25, 115.48, 77.36, 77.28, 77.23, 30.97, 23.40, 23.25, 10.34 ppm. FTIR [ATR] 

2963, 2933, 2876, 1740, 1694, 1598, 1457, 1431, 1384, 1307, 1281, 1240, 1202, 1160, 1124,  

1108, 1065, 1035, 1001, 962, 865, 850, 773, 737 cm
−1

. HRMS Calcd for C42H46O6Br2Na1 [M + Na]
+
 

827.1553, found 827.1545. 
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xxv) 11,23-dibromo-5-carboxy-17-(hydroxymethyl)-25,26,27,28-tetrapropoxy calix[4]arene 

(179).  

 

The same protocol as described for the synthesis of calixarene 174 afforded 0.132 g of 

desired product as a pale yellow solid (82% yield). Rf = 0.30 (dichloromethane / diethyl ether 18:1,  

V/V). 
1
H-NMR (CDCl3, 500 MHz)  7.16 (s, 2H), 7.02-7.00 (m, 4H), 6.39 (s, 2H), 4.40 (d, 2H, J = 15 

Hz), 4.37 (d, 2H, J = 15 Hz), 4.26 (s, 2H), 3.94-3.84 (m, 4H), 3.80 (t, 2H, J = 7.5 Hz), 3.72 (t, 2H, J 

= 7.5 Hz), 3.15 (d, 2H, J = 15 Hz), 3.10 (d,  2H, J = 15 Hz), 1.91-1.82 (m, 8H), 1.03 (t, 3H, J =  7.5 

Hz), 1.01 (t, 3H, J = 7.5 Hz), 0.92 (t, 6H, J = 7.5 Hz). 
13

C-NMR (126 MHz, CDCl3)  170.93, 161.01,  

156.31, 155.58, 138.09, 137.36, 134.84, 134.41, 133.74, 131.64, 131.23, 130.41, 126.54, 123.19,  

115.04, 64.44, 31.05, 30.95, 23.46, 23.43, 23.13, 10.63, 10.57, 10.15 ppm. FTIR [ATR] 2963,  

2933, 2876, 1683, 1600, 1574, 1456, 1429, 1385, 1308, 1283, 1241, 1200, 1163, 1127, 1108,  

1065, 1036, 1003, 964, 920, 908, 864, 804 cm
−1

. HRMS Calcd for C42H48O7
79

Br2Na1 [M + Na]
+
 

845.1659, found 845.1652. 

 

 

 

 

 

 



 

 

- 216 -  

 

xxvi) 5,17-Diiodo-25,26,27,28-tetrapropoxy-calix[4]arene (180).
119

   

 

To a solution of calixarene 97 (1.0 g, 1.97 mmol) in dichloromethane (100 mL), iodide 

monochloride (1.60 g, 9.83 mmol) was added and the solution stirred for 6 hours at room 

temperature. After this time, the precipitated solid was collected by filtration and washed with 

dichloromethane to obtain 0.815 g (54% yield) of 11,23-diiodo-26,28-dipropoxycalix[4]arene as a 

pale yellow solid that was used without further purification. 
1
H-NMR (CDCl3, 500 MHz) δ 8.39 (s, 

2H), 7.34 (s, 4H), 6.93 (d, 4H, J = 7.5 Hz), 6.81 (m, 2H), 4.22 (d, 4H, J = 13 Hz), 3.95 (t, 4H, J = 6 

Hz), 3.30 (d, 4H, J = 13 Hz), 2.08-2.01 (m, 4H), 1.29 (t, 6H, J = 7.5 Hz). FTIR [ATR] 3348, 3322,  

3303, 3190, 2957, 2921, 2873, 1583, 1456, 1438, 1427, 1386, 1346, 1287, 1269, 1217, 1197,  

1149, 1105, 1071, 1041, 998, 956, 767 cm
−1

. MS (MALDI-TOF) Calculated for C34H34I2NaO4 

783.04 [M + Na]
+
, found 783.39. 

To a suspension of 11,23-diiodo-26,28-dipropoxycalix[4]arene (0.68g, 0.890 mmol) in 

anhydrous N,N-dimethylformamide (20 mL) was added sodium hydride (0.21 g, 5.34 mmol, 60% in 

mineral oil) and the mixture stirred for 30 minutes at 60 ºC. 1-Iodopropane (0.52 mL, 5.34 mmol) 

was added using a syringe and the reaction mixture was heated at 90 ºC under microwave 

irradiation for 3 hours. After cooling, the reaction mixture was quenched with water and extracted 

with diethyl ether (3 x 50 mL). After drying over magnesium sulphate, filtration, and removing the 

solvent under reduced pressure, 0.330 g of calix[4]arene 180 were obtained as a white solid (44% 

yield). Rf = 0.90 (petroleum ether / dichloromethane 1:1, V/V). 
1
H-NMR (CDCl3, 500 MHz)  7.12 (s, 

4H), 6.54-6.47 (m, 6H), 4.36 (d, 4H, J = 13.5 Hz), 3.86 (t, 4H, J = 7.5 Hz), 3.77 (t, 4H, J = 7.5 Hz),  

3.08 (d, 4H, J = 13.5 Hz), 1.92-1.86 (m, 8H), 1.00 (t, 6H, J = 7.5 Hz), 0.95 (t, 6H, J = 7.5 Hz). 
13

C-

NMR (126 MHz, CDCl3)  157.16, 156.06, 138.41, 137.19, 133.87, 128.30, 122.62, 85.64, 77.01,  
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76.99, 30.78, 23.40, 23.24, 10.56, 10.27, 1.16 ppm. FTIR [ATR] 2962, 2932, 2875, 1567, 1456,  

1385, 1292,  1249, 1208, 1158, 1102, 1082,  1067, 1036, 1005, 965, 891, 862, 837, 819, 800, 759,  

739 cm
−1

. MS (MALDI-TOF) Calculated for C40H46I2NaO4 867.14 [M + Na]
+
, found 867.56.  

 

xxvii) 11,23-Diiodo-5,17-diformyl-25,26,27,28-tetrapropoxy-calix[4]arene (181).  

 

Calixarene 180 (0.746 g, 0.883 mmol) was dissolved in chloroform (5 mL) and 

hexamethylenetetramine (0.74g, 5.30 mmol) was added followed by trifluoroacet ic acid (13 mL) 

which was added using a syringe. The reaction mixture was then heated at 100 ºC under 

microwave irradiation for 1 hour. After cooling to room temperature, the reaction mixture was 

carefully quenched with 2M NaOH aqueous solution and extracted with dichloromethane (3 x 30 

mL), dried over magnesium sulphate, filtered, and the was solvent removed under reduced 

pressure to afford a crude product that was purified by column chromatography on silica gel 

(dichloromethane followed by a mixture dichloromethane / diethyl ether 9:1, V/V) to afford 0.607 g 

of desired compound as a white solid (76% yield). Rf = 0.35 (dichloromethane). 
1
H-NMR (CDCl3, 

500 MHz)  9.51 (s, 2H), 7.15 (s, 4H), 6.99 (s, 4H), 4.39 (d, 4H, J = 13.5 Hz), 3.87-3.84 (m, 8H),  

3.18 (d, 4H, J = 13.5 Hz), 1.92-1.83 (m, 8H), 1.02 (t, 6H, J = 7.5 Hz), 0.95 (t, 6H, J = 7.5 Hz). 
13

C-

NMR (126 MHz, CDCl3)  191.64, 161.68, 156.87,  137.64, 137.52, 135.30, 131.54, 130.03, 86.31,  

77.73, 77.30, 31.08, 30.77, 23.44, 23.18, 10.47, 10.20 ppm. FTIR [ATR] 2962, 2932, 2875, 1694,  

1597, 1566, 1456,  1434, 1383, 1307, 1280, 1248, 1200,  1161, 1124, 1064, 1035, 1001, 960, 885,  

863, 839, 738, 677 cm
−1

. HRMS Calcd for C42H46O6I2Na1 [M + Na]
+
 923.1276, found 923.1263.  
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xxviii) 11,23-diiodo-5-carboxy-17-(hydroxymethyl)-25,26,27,28-tetrapropoxy calix[4]arene 

(182).  

 

Same protocol as described for the synthesis of calixarene 174 afforded 0.047 g of desired 

product as a white solid (94% yield). Rf = 0.32 (dichloromethane / diethyl ether 18:1, V/V). 
1
H-NMR 

(CDCl3, 500 MHz)  7.33-7.31 (m, 4H), 7.03 (s, 2H), 6.26 (s, 2H), 4.37 (d, 2H, J = 12.5 Hz), 4.34 (d,  

2H, J = 12.5 Hz), 4.18 (s, 2H), 3.99-3.87 (m, 4H), 3.74 (t, 2H, J = 7 Hz), 3.67 (t, 2H, J = 7 Hz), 3.12 

(d, 2H, J = 15 Hz), 3.08 (d, 2H, J = 15 Hz), 1.91-1.82 (m, 8H), 1.05 (t, 3H, J = 7.5 Hz), 1.04 (t, 3H, J 

= 7.5 Hz), 0.89 (t, 6H, J = 7.5 Hz). 
13

C-NMR (126 MHz, CDCl3)  171.26, 160.63, 157.49, 155.26,  

138.98, 138.26, 137.84, 137.40, 134.76, 134.01, 133.28, 130.20, 126.35, 123.29, 85.94, 64.24,  

30.87,  30.76, 30.46,  29.57, 23.49, 23.04, 10.75, 10.67, 10.01 ppm. FTIR [ATR] 2962, 2933, 2876,  

1683, 1601, 1456, 1434, 1385, 1309, 1284, 1248, 1199, 1162, 1126, 1108, 1066, 1036, 1004, 964,  

862, 839, 738 cm
−1

. HRMS Calcd for C42H52O7N1I2 [M + NH4]
+
 936.1828, found 936.1820.  

 

xxix) D2-5,17-diformyl-25,26,27,28-tetrapropoxy-calix[4]arene (184).  
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Same protocol as described for the synthesis of calixarene 171. N,N-dimethylformamide-d7  

was used to quench the reaction instead. After purification by column chromatography on silica gel 

(neat dichloromethane) 0.041 g of desired calixarene were obtained as white solid (47% yield). 
1
H-

NMR (CDCl3, 500 MHz)  7.00 (s, 4H), 6.80-6.69 (m, 6H), 4.47 (d, 4H, J = 13.5 Hz), 3.91-3.86 (m, 

8H), 3.23 (d, 4H, J = 13.5 Hz), 1.95-1.88 (m, 8H), 1.03 (t, 6H, J = 7 Hz), 0.97 (t, 6H, J = 7 Hz). 
13

C-

NMR (126 MHz, CDCl3)  191.52 (t, JC-D = 24.8 Hz), 162.09, 156.72, 136.07, 134.94, 131.08,  

129.97, 128.92, 122.79, 122.64, 31.07, 23.51, 23.29, 10.51, 10.30. ppm. FTIR [ATR] 2962, 2933,  

2875, 1683, 1668, 1597, 1456, 1385, 1283, 1249, 1218, 1163, 1133, 1036, 1004, 965, 925, 76 

cm
−1

. HRMS Calcd for C42H46D2O6Na1 [M + Na]
+
 673.3469, found 673.3456.  

 

xxx) D2-5-carboxy-17-(hydroxymethyl)-25,26,27,28-tetrapropoxy-calix[4]arene (185).  

 

The protocol as described for the synthesis of calixarene 174 was employed. Purification of 

the crude product by column chromatography on silica gel (dichloromethane followed by a mixture 

dichloromethane / diethyl ether 4:1, V/V) afforded 0.018 g of desired product as a white solid (65% 

yield). Rf = 0.21 (dichloromethane / diethyl ether 18:1, V/V). 
1
H-NMR (CDCl3, 500 MHz)  6.99-6.95 

(m, 6H), 6.86-6.83 (m, 2H), 6.22 (s, 2H), 4.44 (d, 2H, J = 15.0 Hz), 4.42 (d, 2H, J = 15.0 Hz), 4.01-

3.89 (m, 4H), 3.77 (t, 2H, J = 7.5 Hz), 3.69 (t, 2H, J = 7.5 Hz), 3.26 (d, 2H, J = 12.5 Hz), 3.22 (d,  

2H, J = 12.5 Hz), 1.97-1.83 (m, 8H), 1.07 (t, 3H, J = 7.5 Hz), 1.05 (t, 3H, J = 7.5 Hz), 0.91 (t, 6H, J 

= 7.5 Hz). 
13

C-NMR (126 MHz, CDCl3)  171.33, 160.80, 157.40, 155.36, 136.48, 135.79, 134.70,  

134.07, 133.99, 130.11, 129.30, 128.88, 126.06, 122.71, 122.51, 77.11, 77.00, 77.00, 76.71, 76.71,  

31.13, 31.05, 23.56, 23.19, 10.81, 10.74, 10.10 ppm. FTIR [ATR] 2962, 2934, 2876, 1683, 1600,  
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1456, 1428, 1385, 1306, 1284, 1247, 1197, 1140, 1106, 1082, 1067, 1037, 1006, 966, 920, 891,  

759 cm
−1

. HRMS Calcd for C42H52D2NO7 [M + NH4]
+
 686.4018, found 686.4020.  

 

xxxi) 5,17-Bis(hydroxymethyl)-25,26,27,28-tetrapropoxycalix[4]arene (186).
120

 

 

 

Calixarene 171 (0.111 g, 0.171 mmol) was dissolved in tet rahydrofuran (1 mL) and 

methanol (3 mL) was added. Sodium borohydride (0.026 g, 0.684 mmol) was added and the 

reaction mixture was stirred for 1 hour at room temperature. After this time, the solvent was 

removed under reduced pressure and the residue dissolved in dichloromethane and washed with 

1M sodium hydroxide aqueous solution (3 x 10 mL). After drying over magnesium sulphate,  

filtration, and removing the solvent under reduced pressure 0.102 g of desired product were 

obtained as a white solid (91% yield). Rf = 0.32 (dichloromethane / diethyl ether, V/V = 18: 1).
 1

H-

NMR (CDCl3, 500 MHz)  6.92 (d, 4H, J = 7.5 Hz), 6.80-6.77 (m, 2H), 6.38 (s, 4H), 4.47 (d, 4H, J = 

13.5 Hz), 4.17 (s, 4H), 4.00-3.96 (m, 4H), 3.74 (t, 4H, J = 7 Hz), 3.15 (d, 4H, J = 13.5 Hz), 2.02-

1.87 (m, 8H), 1.07 (t, 6H, J = 7.5 Hz), 0.94 (t, 6H, J = 7.5 Hz). 
13

C-NMR (126 MHz, CDCl3)  

157.28, 155.69, 136.09, 134.49, 134.33, 128.85, 126.54, 122.29, 77.20, 76.72, 65.00, 31.16, 23.54,  

23.17, 10.74, 10.15 ppm. FTIR [ATR] 3324, 3307, 2961, 2932, 2875, 1456, 1385, 1307, 1282,  

1263, 1249, 1218, 1197, 1166, 1128, 1107, 1082, 1067, 1038, 1008, 968, 907, 889, 867, 836, 802,  

760, 737, 703, 627 cm
−1

. MS (MALDI-TOF) Calculated for C42H52Na1O6 675.37 [M + Na]
+
, found 

675.65.  
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xxxii) 5,17-Bis(bromomethyl)-25,26,27,28-tetrapropoxycalix[4]arene (188).
121

 

 

 

Calixarene 186 (0.102 g, 0.156 mmol) was dissolved in anhydrous dichloromethane (5 mL) 

under a nit rogen atmosphere. Phosphorous tribromide (15 µl, 0.043 g, 0.156 mmol) was added 

using a syringe and the solution stirred for 30 minutes at room temperature. After quenching with 

distilled water (5 ml) the organic phase was separated and washed with water (3 x 10 mL), dried 

over magnesium sulphate, filtered, and the solvent removed under reduced pressure to afford 

0.099 g of desired product as a white solid (81% yield). Rf = 0.37 (petroleum ether / 

dichloromethane 1.1, V/V). 
1
H-NMR (CDCl3, 500 MHz)  6.67-6.61 (m, 6H), 6.60 (s, 4H), 4.42 (d,  

4H, J = 13.5 Hz), 4.18 (s, 4H), 3.87-3.81 (m, 8H), 3.13 (d, 4H, J = 13.5 Hz), 1.96-1.87 (m, 8H), 1.00 

(t, 6H, J = 7.5 Hz), 0.98 (t, 6H, J = 7.5 Hz).  
13

C-NMR (126 MHz, CDCl3)  157.12, 156.66, 135.58,  

135.03, 130.91, 128.95, 128.44, 122.36, 77.01, 76.84, 34.88, 31.04, 23.41, 23.30, 10.46, 10.38 

ppm. FTIR [ATR] 2962, 2932, 2875, 1588, 1464, 1385, 1308, 1285, 1249, 1208, 1168, 1133, 1082,  

1067, 1037, 1006, 966, 890, 760, 739 cm
−1

. MS (MALDI-TOF) Calculated for C42H50
79

Br2Na1O4 

799.20 [M + Na
+
], found 799.51. 
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xxxiii) 5,17-Bis(acetylthiomethyl)-25,26,27,28-tetrapropoxycalix[4]arene (189): 

 

 

To a solution of calixarene 128 (0.012g, 0.018 mmol) in toluene (0.1 mL), acetic anhydride 

(0.036 g, 0.350 mmol)  and silver tri flate (0.2 mg, 0.876 µmol ) were added and the mixture stirred 

at 60 ºC for 10 minutes. The solvent and volatiles were removed under reduced pressure a nd the 

crude product purified by column chromatography on silica gel (dichloromethane) to afford 0.008 g 

of desired product as a white solid (59% yield). Rf = 0.68 (dichloromethane). 
1
H-NMR (CDCl3, 500 

MHz)  6.62 (s, 4H), 6.53-6.48 (m, 6H), 4.39 (d, 4H, J = 13.0 Hz), 3.90 (s, 4H), 3.85-3.77 (m, 8H),  

3.09 (d, 4H, J = 13.0 Hz), 2.33 (s, 6H), 1.93-1.86 (m, 8H), 0.99 (t, 6H, J = 7.5 Hz), 0.95 (t, 6H, J =  

7.5 Hz). 
13

C-NMR (126 MHz, CDCl3)  195.58, 156.27, 156.17, 135.66, 134.47, 130.25, 129.99,  

128.64, 128.00, 122.14, 33.44, 30.91,  30.38, 23.26,  23.19, 10.42, 10.21 ppm. FTIR [ATR] 2961,  

2930, 2874, 1692, 1456, 1385, 1284, 1248, 1216, 1196, 1132, 1106, 1083, 1067, 1039, 1007, 965,  

759, 627 cm
−1

. HRMS Calcd for C46H60O6N1S2 [M + NH4]
+
 786.3857, found 786.3850. 
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xxxiv) 5,17-Bis(carboxyacetylthiomethyl)-25,26,27,28-tetrapropoxycalix[4]arene (190): 

 

 

A mixture of calixarene 128 (0.131 g, 0.191 mmol) and Meldrum’s acid (0.276 g, 1.912 

mmol) was stirred at 100 ºC for 30 minutes. After cooling, dichloromethan e (10 mL) was added and 

the formed solid removed by filtration. The filt rates were concentrated under reduced pressure to 

afford a crude product which was purified by column chromatography on silica gel 

(dichloromethane followed by a mixture dichloromethane / diethyl ether 4:1, V/V) to afford 0.062 g 

of desired product as a white solid (38% yield). 
1
H-NMR (CDCl3, 500 MHz)  6.72 (s, 4H), 6.54-

6.52 (m, 4H), 6.46-6.44 (m, 2H), 4.39 (d, 4H, J = 13.0 Hz), 3.93 (s, 4H), 3.86-3.76 (m, 8H), 3.60 (s, 

4H), 3.10 (d, 4H, J = 13.0 Hz), 1.98-1.87 (m, 8H), 1.00 (t, 6H, J = 7.5 Hz), 0.97 (t, 6H, J = 7.5 Hz).  

13
C-NMR (126 MHz, CDCl3)  191.45, 170.57, 156.31, 156.21, 135.46, 134.67, 129.13, 129.01,  

128.39, 122.42, 77.02, 48.45, 34.27, 30.90, 23.40, 23.35, 10.45 ppm. FTIR [ATR] 2964, 2935,  

2877, 1728, 1683,  1464, 1435, 1385, 1307, 1285, 1248,  1216, 1197, 1168, 1037, 1008, 966, 910,  

759, 734 cm
−1

. MS (MALDI-TOF) Calculated for C48H56NaO10S2 879.32 [M + Na]
+
, found 879.64. 
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