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Abstract

Atmospheric flow over orography is a classic research area, while the atmospheric re-

sponse to surface heating has become a focus more recently in the context of solar heating

and forest fires. Here, for the first time, these forcing mechanisms are superposed to

examine atmospheric flow over a mountain with a heated summit, i.e. an active volcano.

Intense rainfall over active volcanoes is known to trigger dangerous volcanic hazards,

from remobilising loose surface material into lahars or mudflows, to initiating explosive

activity such as pyroclastic flows. The effect of a heated volcanic surface on the atmo-

spheric circulation is investigated here – including examining the triggering of precipita-

tion over the volcano. Recent activity at the Soufrière Hills Volcano (SHV), Montserrat,

Eastern Caribbean, is a well-documented example of such rainfall–volcano interactions.

Hence, Montserrat is used as a template for the experiments, although the experimental

setup is general so the results will have applicability for other tropical island volcanoes.

The Weather Research and Forecasting (WRF) atmospheric model has been used for

the study, run in an idealised configuration with horizontal grid sizes down to 100 m.

Initially, the effect of the heated surface is studied through idealised simulations over a

Gaussian mountain with an imposed surface temperature anomaly on the volcano summit.

Subsequently, a digital elevation model (DEM) of Montserrat is used to study the effects

over this specific island. The atmospheric structure in most simulations is that of a typical

tropical setting – easterly Trade Winds, capped by a temperature inversion. In these cases,

localised convection triggered by the heat source can overcome convective inhibition and

force deep convection, if there is sufficient convective available potential energy. A sig-

nificant increase in precipitation over the volcano covering a 4 km2 area is consistently

simulated for surface temperature anomalies above 40◦C, an area-average value that is

exceeded at the SHV. For a range of realistic atmospheric conditions, covering up to 18%

of days in a relevant climatological study in the Caribbean, the precipitation increase is

well above the observed threshold (5–10 mm hr−1) required to trigger explosive volcanic

activity. Hence, the thermal forcing of the atmosphere due an active, but non-erupting,

volcano appears to be an important factor in rainfall–volcano interactions and should be

taken into account in hazard assessment.
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Chapter 1

Introduction

1.1 Introduction

Volcanoes have always been a source of awe and fear, often being deified and revered by

local people. Their beauty is matched by their potential for destruction, with a number of

devastating hazards such as pyroclastic flows, lahars and tsunamis being associated with

volcanic eruptions. The study of volcanic hazards, like many geological hazards, is made

difficult by the complexity of the underlying physics of the initiation mechanisms. In the

case of volcanoes, rainfall is featured prominently, acting as a trigger for explosive erup-

tions, pyroclastic flows, and lahars. Due to this link, the impact of rainfall on volcanoes

is a topic that has been investigated over the years. However, the opposite, the impact of

a volcano on rainfall and atmospheric flow in general remains an unexplored field.

The aim of this study is to analyse the effect of surface heating due to volcanic activity

on the atmospheric circulation and rainfall. Thus, the main hypothesis tested by the study

is that: the thermal forcing by a volcano can generate atmospheric circulation changes

that can cause localised rainfall and impact the behaviour of the volcano. The conceptual

model being tested (Figure 1.1) uses a framework of an easterly background flow with a

tradewind inversion. The flow over the top of the volcano is subject to thermal forcing

via the surface fluxes from the strongly heated volcanic surface. This is hypothesised

to be sufficient for convective plumes to break through the inversion, releasing the high

values of convective available potential energy (CAPE) present in the background state,

and leading to intense localised rainfall over the volcano.

This chapter is organised as follows. Initially the basic theory of atmospheric flow in
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Figure 1.1: (a) Conceptual model under study. (b) Schematic describing the proposed mechanism.
A background of easterlies with a shallow cumulus field under the tradewind inversion meets
the volcano. The flow over the summit of the volcano is heated and locally breaks through the
inversion, resulting in deep convection and high local rainfall rates.

the vicinity of mountains and related phenomena will be presented (Section 1.2), followed

by a brief discussion on orographic rainfall (Section 1.3), and flow over heated terrain

(Section 1.4). After this some basic characteristics of volcanic lava domes and volcanic

hazards will be presented (Section 1.5), followed by an introduction to Montserrat, the

island that has provided a motivation and a “template” for this study (Section 1.6). Finally

there is a short discussion (Section 1.7) and a presentation of the thesis structure.

1.2 Orographic flow and gravity waves

Orographic flow is the resulting flow as the air in the atmosphere is forced to interact with

isolated mountains or mountain ranges. This interaction creates a variety of phenomena

depending on a number of parameters, such as mountain height and aspect ratio, atmo-

spheric stability and wind speed among others. The area has been heavily researched in

the last century, starting with studies such as the ones by Queney (1948), Eliassen and

Palm (1961) and Drazin (1961). The starting point for obtaining a linear solution here is

the following set of equations for a stratified Boussinesq fluid (a fluid studied under the

Boussinesq approximation, where density differences are considered sufficiently small to

be neglected if they are not multiplied by g):

ρ0
Du

Dt
= −∇p− ρgk + µ∇2u (1.1)

∇u = 0 (1.2)
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Dρ

Dt
= κ∇2ρ (1.3)

where ρ0 is a constant reference density, u is the velocity vector, p is pressure, ρ is den-

sity, g is the acceleration due to gravity, µ is viscosity and κ is the von Kármán constant.

Equation 1.1 is the Navier-Stokes equation (a form of the Cauchy momentum equation),

Equation 1.2 is the continuity equation, and Equation 1.3 is used to allow for mass diffu-

sion. Three assumptions are made to simplify the equations, that the flow is: (i) inviscid,

and (ii) non-diffusive, or ∂/∂t = µ = κ = 0, and that the horizontal scale is significantly

larger that the vertical (LHL
−1
V � 1). Finally, these are used with two conservation laws,

Bernoulli’s Law and the conservation of potential vorticity, to produce:

p ∗ (x, y, z) = g

∫ ∞
z

ρ′dz (1.4)

where p∗ is the difference between the pressure at a point (x,y,z) and at a point at the

same elevation far away (inf ,inf ,z), ρ′ is the density anomaly. Despite the complexity,

progress in the mathematical approach towards a solution has been made by the use of

linear theory: for example to study the resulting gravity waves (also known as mountain

waves) as the flow is forced to go over the obstacle (Smith, 1980, 1989).

There are two kinds of gravity waves, internal and external. Although there is famil-

iarity with external gravity waves (the waves seen at the surface of water) internal gravity

waves are more difficult to picture. These are created in the same way by the restoring

forces of buoyancy: as an air parcel is vertically displaced (for example due to forced

ascent or descent), in a stably stratified atmosphere, a restoring force will act to acceler-

ate the parcel back towards the original level of equilibrium. In the absence of pressure

gradient forces the parcel will oscillate vertically at a frequency called the Brunt-Väisälä

frequency (N ):

N2 =
g

θ0

dθ

dz
(1.5)

where θ0 is the potential temperature at the surface, and dθ/dz is the mean vertical gra-

dient of the ambient potential temperature. Note, N is only defined for a statically stable
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atmosphere. Oscillations at any frequency less that N can be accommodated by a cer-

tain angle in the sloping trajectory. It is, though, impossible to have oscillations at higher

frequencies. The linearised solution of airflow over an idealised mountain, along with a

schematic of the distributions of various physical quantities is presented in Figure 1.2.

For a comprehensive presentation of the original equations and solutions, the reader is

referred to Queney (1948) and Smith (1989).

a. b.

Figure 1.2: (a) Linearised solutions by Queney (1948) for hydrostatic airflow over a Witch-of-
Agnesi shaped ridge. The steady pattern is composed of vertically propagating gravity waves
which do not disperse (Smith, 1989). Panel (a) shows vertical velocity as a function of height
through the troposphere (b) The instantaneous distribution of velocity, pressure and buoyancy
perturbations in an internal gravity wave on the x-z plane. The phase of the wave is constant along
the slanting, dashed and solid lines. Velocity and pressure perturbations have extrema along the
solid lines; buoyancy perturbations are zero along the solid lines. Buoyancy perturbations have
extrema, and velocity and pressure perturbations are zero along the dashed lines. Small arrows
indicate the perturbation velocities, which are always parallel to the lines of constant phase. Large
arrows indicate the direction of the phase propagation and the group velocity (Durran, 1990)

Aside from the gravity wave response in the flow, several other effects can be ob-

served. Based on results from linear theory, Smith (1989) was able to produce a regime

diagram of the non-dimensional mountain height (ĥ = H N U−1, where H is the height

of the obstacle, N is the Brunt-Väisälä frequency and U is the incoming wind speed)

against the aspect ratio of the mountain (R = Ly L
−1
x , where R = Li is the length of the

mountain in the i direction), detailing the limits within which the different effects would

be observed (Figure 1.3a). Aside from mountain waves, the two responses noted in the

figure are “flow splitting” and “wave breaking”. Flow splitting necessitates the existence

of a point at a certain height where, due to the lack of kinetic energy, the air parcel cannot

ascend and splits into two parts flowing around the mountain (Figure 1.3d). The existence

or not of flow splitting, along with the Froude number (the inverse of non-dimension
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Figure 1.3: (a) Regime diagram based on Smith (1989). The diagram defines flow regimes as a
function of the non-dimensional mountain height ĥ and the aspect ratio of the hill (R). Curve A/B
shows the limit of stagnation aloft (wave breaking)/in the windward slope (flow splitting). The
dotted lines signify the area beyond which linear theory is technically invalid, while dashed lines
are the suggested critical values for flow splitting and wave breaking within the non-linear regime
(Ólafsson and Bougeault, 1996). (b) Streamlines in steady airflow over an isloated ridge when the
Scorer parameter permits trapped lee waves (Durran, 1990). Right side: Possible geometry of (c)
nonsplit (flow over) and (d) split (flow around) flow past a hill. Split flow is characterised by the
existence of a stagnation point at which streamlines can divide. Streamlines shown on the lower
boundary.

mountain height, Fr = ĥ−1) can help broadly characterise the flow regime as a “flow

around” (low kinetic energy, flow splitting or “blocked”) or “flow over” (high kinetic en-

ergy, no flow splitting) regime (Figure 1.3c). Wave breaking is the phenomenon where,

due to the unsustainable amplitude of the oscillation, energy from the wave is transformed

to turbulent kinetic energy. Both effects signify a non-linear response and cannot be fully

explained by linear theory. The validity of this regime diagram (Figure 1.3a) has been

broadly confirmed by Ólafsson and Bougeault (1996), while phenomena in the non-linear

areas were first investigated by Smolarkiewicz and Rotunno (1989, 1990). Despite the

fact that the accuracy and exact limits of the chart have been questioned (specifically the

critical value for wave breaking; Ólafsson and Bougeault, 1996), it is still used in order

to obtain general insight on the expected phenomena, especially for cases that fall within
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the linear theory area. Vertical variations in the incoming flow speed and Brunt-Väisälä

frequency can also lead to a qualitatively different kind of wave - a trapped lee wave (Fig-

ure 1.3b). In this case the activity is largely confined in the troposphere. The existence of

such waves is based on the Scorer parameter (l = N U−1): in a two layer setting trapped

lee waves are expected when l2L − l2U > 0.25 π2 H−2, where lL and lU are the Scorer

parameters for the lower and upper atmosphere respectively.

As computational power and numerical models have become more advanced, com-

putational modelling has allowed studies in the non-linear regime. Smolarkiewicz and

Rotunno (1989, 1990) studied the mountain wave response as well as the flow charac-

teristics in the very non-linear areas (Fr � 1). Some basic results from these studies

are presented in Figure 1.4. For Fr = 0.2 (Figure 1.4a) there is an absence of a strong

gravity wave response, instead there is the generation of rotors and the creation of two

twin counter-rotating vortices in the lee of the mountain. As the Froude number increases

(Fr = 0.2; Figure 1.4b) the response becomes more linear with the propagation of gravity

waves. Additionally, in both cases areas of hydraulic jumps (almost vertical jumps in the

streamlines) can also be seen in the lee, starting at low heights in Figure 1.4b and higher

in Figure 1.4c. Long (1954) suggested that a hydraulic jump occurs due to the transition

from subcritical (Fr < 1) to supercritical (Fr > 1) flow at the top of the mountain. As a

parcel is forced to descend, under these circumstances, the parcel continues to accelerate

during descent, producing very high wind speeds (known as downslope wind), and the

parcel can rapidly return to its original level as the potential energy of the parcel can be

transformed to kinetic energy in a hydraulic jump. For a more comprehensive analysis the

reader is directed to Smith (1989) and Durran (1990).

1.3 Orographic rainfall

Orographic rainfall occurs as a result of air mechanically lifted over an obstacle (a moun-

tain or ridge). The phenomenon is based on the Clausius-Clapeyron relation - as air is

forced to ascend over a mountain it will adiabatically cool until it saturates and the wa-

ter vapour will start condensing into liquid water, eventually leading to rainfall on the

windward side (Figure 1.5). Understanding in the area has been expanded by the use of



1.3 Orographic rainfall 7

a.

b.

c. f.

e.

d.

Figure 1.4: Streamlines in the x-z (left column) and x-y (right column) plane through the centre of
a circular bell-shaped mountain (left column) and on the surface of the topography (right column),
for (a), (d) Fr = 0.2, (b), (e) Fr = 0.7, (c), (f) Fr = 2.2. Airflow is from right to the left. From
Smolarkiewicz et al. (1988).

observational data along with mathematical and computational modelling, helping estab-

lish a deeper understanding of the underlying physics (Roe, 2005). As with orographic

flow studies, mathematical modelling tends to focus on applying linear theory to parts

that can be approximated by linear processes (e.g. Smith and Barstad, 2004), while com-

putational modelling is used for a mix of studies with ranging degrees of idealisation,

to help understand specific phenomena, the relation between the numerous control pa-

rameters (mountain, location or atmosphere-related) and the resulting rainfall, and case
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studies, used to test our understanding and offer insights on specific, and sometimes ex-

treme, events (Miglietta and Buzzi, 2001; Kirshbaum and Durran, 2004; Chen and Lin,

2005).

a. b.

Figure 1.5: Development of orographic cloud systems: (a) illustration of the orographic lifting
effect and (b) pseudoadiabatic chart representations. Shown on the figure are the level of free
convection (LFC), and the unsaturated and saturated adiabats (Γa and Γs respectively). Modified
from (Barros and Lettenmaier, 1994)

The stability of the atmosphere can greatly affect the resulting flow, with a stable at-

mosphere leading to reduced orographic rainfall, and an unstable environment leading

to enhanced orographic rainfall, connected to the convective instability (CIN) of the at-

mosphere that is triggered by the flow (Figure 1.6). Although when dealing with dry

atmosphere cases it is fairly easy to categorise the expected flow into the “flow around”

and “flow over” regimes as seen in Section 1.2, it becomes impossible to categorise moist

cases based solely on the moist Froude number, as other parameters such as convective

available potential energy (CAPE) and an inversion in the temperature profile can heavily

affect the flow (Chen and Lin, 2005).

Due to the potential impact this process can have in the local climate it has been

featured prominently in research at the midlatitudes (see review papers by Roe, 2005;

Houze, 2012). There has been a notable gap of focus in the Tropics or sub-Tropics as out-

lined by (Minder et al., 2013). There, the local climate is dominated by humid, easterly

winds known as the trade winds. Although islands tend to be less significant in size than

mountain ranges the interactions between the very moist air flowing over the sea and the

mountains can have a significant impact heavily depending on the location and the topo-

graphic characteristics. Recent studies have shown that aside from the diurnally-forced

deep convection and tropical cyclones (Houze, 2012), shallow convection, controlled not

by thermal forcing but forced ascent, can have a significant effect on the local precipi-

tation, for example in Dominica (Kirshbaum and Smith, 2009; Minder et al., 2013) and
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Figure 1.6: Orographic influences on atmospheric circulation: (a) blocking, (b) no blocking in
a stable atmosphere, and (c) no blocking in a conditionally unstable atmosphere. (Barros and
Lettenmaier, 1994)

Guadeloupe (Cécé et al., 2014). Although the resulting flows vary depending on the loca-

tion and the size of the island and the mountain, the general response can be summarised

as greater cloud cover over the windward side, with enhanced convection and precipita-

tion as the cumulus field created over the ocean interacts first with the coastline and then

with the mountain. Depending on the mountain characteristics, the resulting orographic

rainfall can be substantially higher (a factor of 10) than both the rainfall over the sea, and

the rainfall caused by the convection as the flow meets the land (Kirshbaum and Smith,

2009; Smith et al., 2009). For a more comprehensive discussion on orographic rainfall

the reader is directed to Barros and Lettenmaier (1994), Roe (2005) and Houze (2012).

1.4 Flow over heated terrain

Another area that has benefited greatly by the advance of computational models is the

study of (dry or moist) flows over heated terrain. For this kind of perturbation to have

an effect on the flow, the heating needs to be applied in a way that creates baroclinicity -

either uniform heating over a mountain or differential heating over a flat surface (Crook

and Tucker, 2005).



10 Introduction

a.

b.

c.

d.

e.

f.

Figure 1.7: Results from studies on flow over heated terrain. Left column: Normalised vertical
velocity for flow past heated terrain based on a linear solution: (a) the orographic response, (b)
thermal response, (c) combined response. Contour interval is 0.1 (non-dimensionalised vertical
velocity). From Crook and Tucker (2005). Right column: The strength of thermally induced
mountain updrafts, as shown by vertical velocity (shading) over a 60–min window on hours 5–6
of a dry simulation for: (d) U = 0 m s−1, (e) U = 1.5 m s−1, (f) U = 3 m s−1. Flow from left to
right. The overlaid black contours are potential temperature isolines. From Kirshbaum (2011).

Crook and Tucker (2005) created a mathematical model based on linear theory that

was able to capture the essential features of numerical model runs and real case studies

(Figures 1.7a–1.7c; Tucker and Crook, 2005). They showed that, for a linear case, the

flow responds in a very similar way to the mountain, i.e. by a series of gravity waves

of characteristics depending on the heating source. As this is a linear approximation,

the combined forcing resulted in the combined effect of the two forcings. Kirshbaum

(2011) also studied the effect of solar heating on a mountain, by use of computational

modelling (results from the dry simulations can be seen in Figures 1.7d–1.7f). Without

background wind (Figure 1.7d) the heating leads to a symmetric, localised convective
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cell but as the wind grows stronger the cell is moved towards the lee of the mountain

and almost dissipates (Figures 1.7e–1.7f). Much like the thermal forcing in Figure 1.7b,

gravity waves propagating on top of the convective cell can also be seen in Figures 1.7e–

1.7f.

Kirshbaum (2013) expanded this research in an effort to study the limits of linear the-

ory, as well as to further study and categorise possible regimes in the flow. For this study

he used dry simulations and tested two theories: linear theory (modified from Crook and

Tucker, 2005) and the heat-engine theory, based on thermodynamics that was initially pro-

posed by Rennó and Ingersoll (1996) and later extended in numerous studies (Souza et al.,

2000; Tian and Parker, 2003; Kirshbaum, 2013). Kirshbaum (2013) demonstrated that the

application of linear theory for two layer flows (for example an atmospheric structure with

characteristics varying between the boundary layer and the troposphere) is severely lim-

ited due to the non-linear effects that are introduced by the difference between the layers.

The flow responses were separated into three groups, “Growth-Decay” (GD), “Ventila-

tion” (VE), and “Stratification” (ST), depending on the relative magnitude of the forcings.

The GD response happens when the heating term is balanced by the time-dependancy of

the heating source and/or dissipation terms. For the VE regime the heating is balanced by

the linear advection term and for the ST regime, the heating is balanced by the stability

term.

As in Section 1.3, this kind of mechanism can be associated with the strengthening

or generation of severe storms in a similar way as mountains can enhance rainfall: they

can act as a trigger for convection that, in a combination with an unstable or conditionally

unstable atmosphere can produce severe weather (Crook and Tucker, 2005; Kirshbaum,

2011). The initiation of such a storm can be seen in Figure 1.8. Kirshbaum (2011) argued

that instead of deep ascent of a single updraft, it is more likely that the convection is

caused by a rapid succession of thermals vented through the convergence zone into a

deepening cloud mass. This can be seen in Figure 1.8f, where the updrafts noted as C1

and C2 merge and develop to form deep convection.

Recently attention has also focused on the impact of wild fires in the generation of

pyrocumulus clouds (Gatebe et al., 2012) and the initialisation of storms (Cunningham

and Reeder, 2009). Wild fires lead to a localised maximum in surface temperature, along
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a. b.

c. d.

e. f.

g. h.

Figure 1.8: Plots of the mixing ratio of hygrometeors in simulations on initiation of deep convec-
tion by Kirshbaum (2011). Plots shown for t =510–615 min. The boundary layer top, is shown
by the thick black line. A period of shallow convection during t =510–570 min is followed by the
initiation of deep convection during t =585–615 min. Forward (black solid lines) and backward
(black dashed lines) 30–min parcel trajectories are overlaid on (e) and (f) to show the origin and
evolution of air parcels within the updrafts. The C1 and C2 labels on (f) correspond to two active
updrafts that later merge to initiate deep convection. (Kirshbaum and Smith, 2009)

with the release of water vapour and chemical by-products from burning. Depending on

the atmospheric structure they can generate deep convection, pyrocumulus clouds and

severe storms. As in the solar heating cases, the result is a localised convection cell

that is able to break through the convective inhibition of the lower atmosphere and force

deep convection extending up to the tropopause. Unlike the solar heating cases, these

storms often occur under strong winds, but the extension and propagation of the storm

still depends heavily on the atmospheric structure (Cunningham and Reeder, 2009).

Finally, another similar area is rainfall enhancement by the urban heat island (UHI),
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specifically by the anomalous increase in sensible heat flux over a large city. The link

between this sensible heat flux and rainfall over and downwind major cities has been

studied based on both statistical analysis of observational data (over Atlanta; Dixon and

Mote, 2003) as well as based on numerical modelling (over northern Taiwan; Lin et al.,

2011). Results in both cases have shown significant enhancement in the generation of

rainfall, consistent with the results from other studies on flow over heated terrain.

1.5 Lava domes and volcanic hazards

The aim of the study is to extend the research on heated terrain to flows over “dome-

building” volcanoes. These are volcanoes with high-viscosity magma that solidifies quickly

as it reaches the surface, forming a high temperature plug (a “lava dome”) blocking the

conduit (Figure 1.9). After it forms, the lava dome continues to grow, either endogenically

or exogenically. In the first case the dome expands internally to accommodate the increase

in lava and in the second case the dome grows externally as fresh lava is piled above the

surface of the dome (Parfitt and Wilson, 2008). Due to non-linear dynamics caused by

crystallization and degassing of the highly viscous lava, domes evolve unpredictably and

the growth style can change with time during an eruptive period (Melnik and Sparks,

1999; Hale and Wadge, 2008). Lava domes can grow to reach several hundreds of metres

both horizontally and vertically and can grow steadily on various timescales, from days

to years (Francis, 2008). Due to the intermittent buildup of gas pressure, erupting domes

can often experience episodes of explosive eruption and erosion which in time leads to

instability, explosive eruption and the wholesale destruction of the dome before the cycle

starts anew (Francis, 2008). This destruction is called a “dome collapse”.

A key point for the atmospheric response is the surface temperature of the dome.

Along with the area and the height of the dome, the surface temperature also changes over

time depending on a variety of factors, mainly to do with the magma composition, growth

style and atmospheric conditions. Hicks et al. (2009) created a mathematical model for a

dome in an effort to predict the equilibrium surface temperature by studying the surface

energy balance (Figure 1.10a). They conclude that the surface temperature of a dome is a

function of the carapace thickness (depth of solidified lava), wind speed, and gas flux from

the interior (Figure 1.10b). Furthermore they identify two characteristic timescales for the
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a. b.

Figure 1.9: (a) Initiation of a new lava dome in the Soufrière Hills volcano. The Tar River Delta
and Valley looking to the west on 21 February 2003. The Tar River slopes to the East from the
SHV dome. (b) The large dome (summit c. 1050 m asl) has an apparent conical profile. Since
the previous large collapse on 29 July 2001, 19 months of deposition from pyroclastic flows has
filled much of the Tar River Valley and expanded the delta. Image copyright NERC/Government
of Montserrat. (Wadge et al., 2014)

thermal evolution of a dome: one has an order of magnitude of minutes, over which the

dome carapace reaches a quasi-steady state and one with an order of magnitude of days

as the thermal profile approaches the new equilibrium state.

a. b.

Figure 1.10: (a) Schematic diagram showing diffusive heat fluxes in the dome and magmatic gas
and advective heat fluxes in the magmatic gas in a dome interior. Surface heat fluxes are due
to radiation, atmospheric convection, and magmatic gas advection. All heat fluxes are assumed
to be perpendicular to the lava dome surface and at an angle α to the vertical. (b) Steady-state
temperatures in an impermeable dome, as a function of carapace thickness L, for radiative heat
fluxes only (U = 0 m s−1) and radiative and convective heat fluxes with U = 2, 5, and 10 m s−1.
From Hicks et al. (2009).

As a dome-building volcano, SHV features various volcanic hazards. An explosive

eruption is an energetic eruption, producing ash and other volcanic material as well as

ballistic debris. Note the difference to an effusive eruption, when the products are mainly
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lava flows and volcanic domes. These two kinds of eruptions are characterised by differ-

ent time scales: an explosive eruption takes place over hours or days, while an effusive

eruption can take place over months or years. An explosive eruption can occur during an

effusive eruption. This is the case in Montserrat where the main effusive eruption started

in 1995 continuing until the present and is at times marked by explosive eruptions (see

Section 1.6). For a dome-building volcano, an explosive eruption is usually accompanied

by a partial or wholesale dome collapse. An explosive eruption can also be accompanied

by a pyroclastic flow. Pyroclastic flows (or pyroclastic density currents) are mixtures of

hot, dry rock fragments and gases that due to their high density flow over the ground at

high speeds. Pyroclastic flows can also occur without an eruption if unstable parts of a

dome fail. They are generally comprised of two parts, a flow of course fragments mov-

ing along the ground, accompanied by a turbulent cloud of ash that rises above the flow.

Rainfall during or after the eruption can initiate lahars. A lahar is a cement-like debris

flow caused by the remobilisation of hot or cold volcanic material (either during or after

an eruption) rapidly flowing down the slopes and/or river valleys of a volcano. Pyroclastic

flows are considered to be the deadliest volcanic hazard due to their speeds, temperatures

and generally unpredictable nature, followed by lahars: in the 20th century pyroclastic

flows had caused more than 36000 deaths, while lahars 28400 (Tilling, 1989). For more

detailed information on volcanic hazards the reader is directed to the US Geological So-

ciety volcano hazards program site1, as well as Francis (2008) and Parfitt and Wilson

(2008).

a. b.

Figure 1.11: Schematic diagram of a thermodynamical model for rainfall-triggered dome col-
lapse. (a) Fluxes of energy within and at the surface of the hot dome; diffusive heat flux (FD),
surface radiative cooling (FR), convective heat flux (FC), background surface radiative warming
(FB), surface latent heat flux (FE). The inset shows the surface temperature structure at a fissure,
and the accumulation of liquid water at the surface and percolation into surface fissures, once
the surface has cooled to 100 C. (b) Vapourisation of water within the fissures into high pressure
steam, leading to dome collapse and pyroclastic flows. From Matthews and Barclay (2004).

1volcanoes.usgs.gov/vsc/glossary/
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Both of these volcanic hazards are associated with heavy rainfall over the volcano.

In the case of lahars this connection is obvious and straightforward - rainwater acts as

a trigger, mobilising sediment down the flanks of the volcano. Heavy rainfall has also

been implicated in triggering explosive eruptions, dome collapses, and pyroclastic flows

at a number of volcanoes, such as Mount St. Helens, U.S.A. (Mastin, 1994), Unzen,

Japan (Yamasato et al., 1998), Merapi, Indonesia (Voight et al., 2000), Piton de la Four-

naise, Réunion Island (Violette et al., 2001), Soufrière Hills Volcano (SHV), Montserrat

(Matthews et al., 2002; Carn et al., 2004; Barclay et al., 2006; Matthews et al., 2009) and

Stromboli, Italy (Hort et al., 2003). Several mechanisms have been hypothesised for this

rainfall triggering, including mechanical erosion of the surrounding talus fan and gravita-

tional destabilisation of the dome, and the formation of a rainfall-saturated cap that blocks

the upward flow of magmatic gas leading to a pressurised failure (Figure 1.11; Matthews

and Barclay, 2004; Hicks et al., 2010, 2014).

1.6 Montserrat and the Soufrière Hills Volcano

The island of Montserrat is a British Overseas Territory, part of the Lesser Antilles in the

West Indies, located in the Caribbean. It is approximately 16 km long and 11 km wide

and has several peaks, the highest being SHV, whose height varies depending on the state

of the dome, 1050 m asl at the time of writing (Wadge et al., 2014). Montserrat is a

subtropical island and as such easterly trade winds play a major role in determining the

climate. Aside from the trade winds the island is also affected by hurricanes and the rainy

season lasts typically from June until November (Barclay et al., 2006).

The SHV is a Peléan lava dome complex consisting mainly of hornblende andesite

(Rea, 1974). Compared to other volcanoes found in the central islands of the Lesser

Antilles arc it is a small volcano. It is monitored by the Montserrat Volcano Observatory,

stationed on the island (the location is marked as MVO Figure 1.12).

SHV is one of the most intensively studied volcanoes in the world and has had a varied

recent eruption history. From the initial eruption in 1995 the volcano has produced over

a cubic kilometre of andesitic magma and has had undergone numerous cycles of lava

dome creation (both endogenically and exogenically) and collapses, producing an almost

uncountable amount of pyroclastic flows and lahars. The recent activity of the volcano
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Figure 1.12: Map of Montserrat with the topography as it was in late 2009. Contours are at 100 m
intervals, the main roads in red. The outline of the largely buried English’s Crater is shown by
the dashed black line with GW marking Gages Wall and FW marking Farrells Wall. The location
of the MVO is marked with a star. A shaded relief digital elevation model (DEM) image of
Montserrat and its submarine shelf is inset. (Wadge et al., 2014)

is split in five phases tied with specific domes. Phase 1 (November 1995–March 1998)

was marked with a 4-month precursory episode and accelerating dome growth, commonly

accompanied by collapses and explosions. Before the eruption in 1995 the island’s pop-

ulation is estimated at 13000, but during this initial phase two-thirds of the population
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Figure 1.13: (a), (b), Images taken from Windy Hill (4 km NNW of the dome) looking south
to the volcano (a) before (b) and after the dome collapse of 12–13 July 2003. The dashed black
line shows the skyline after the collapse. The summit of the dome was about 1100 m asl be-
fore and about 850 m asl after the collapse. The post-collapse summit known as the NW But-
tress on the right was itself destroyed during the explosion of 4 March 2004. Image copyright
NERC/Government of Montserrat. (c), Superimposed profiles of the dome at different times, from
the same location. Blue profiles are from Phase 2 (1999–2003), red profiles are from Phase 3
(2005–May 2006) and green profiles are from Phase 4 (May 2006–April 2007). The purple profile
is based on an AVTIS-3 radar image in May 2011. Thick dashed lines represent the approximate
positions of the boundary between core lava and the talus on different domes. (Wadge et al., 2014)

were forced to flee as the southern part of the island was abandoned and put into an ex-

clusion zone. Nineteen deaths were caused by pyroclastic flows (Voight et al., 1999).

Infrastructure, including the previous capital, Plymouth, and the W. H. Bramble airport

were buried due to a succession of pyroclastic flows and lahars. In phase 2 (Novem-

ber 1999–July 2003, Figure 1.13) after two major collapses followed the creation of the

largest dome built to date. The period ended with an increase in pyroclastic flows lead-

ing to the collapse of the dome. Phase 3 (August 2005–April 2007) featured precursory

phreatomagmatic activity and one dome collapse but ended with a large dome in place.

Phase 4 (July 2008–January 2009) featured two short episodes, explosions and extrusion

on the western side of the dome. Finally, Phase 5 (October 2009–February 2010) featured

extrusion to the west, south and north, explosions and ended in a large north-directed col-

lapse. Figure 1.13c, shows profiles of the lava dome at various times during the different
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phases. Note the change in the horizontal and vertical extent. For a more detailed record

of the SHV eruption the reader is referred to two comprehensive reviews of the erup-

tion history, focusing on the 1995–1999 period (Sparks and Young, 2002) and the overall

eruption (Wadge et al., 2014).

1.6.1 Meteorological monitoring in Montserrat

Barclay et al. (2006) carried out a long field campaign in Montserrat during Phases 1 and

2 (from 1998 to 2003). The aim of this campaign was two-fold, to examine the impact

of rainfall on volcanic activity and secondary hazards (including pyroclastic flows, dome

collapses, explosions, and lahars), as well as to study the weather systems responsible for

rainfall in Montserrat.

Results reveal a statistically significant link between rainfall and activity: more than

20 mm of rain on a random day cause an 2.9% increase in the probability of a dome

collapse to a total of 9.2%, and an increase by a factor of 2.6 for pyroclastic flows and

5.4 for explosions. It has been noted, though, that results are sensitive to the state of the

volcano. Identifying lahars is a difficult task as their seismic signal is often masked by

stronger seismic activity, leading to underestimates, however, the study noted that there

was a 56% probability for lahar activity for days with > 20 mm of rain, 26% for 10–

20 mm, and 18% for days with < 10 mm.

Rainfall in Montserrat was seen to have a strong annual cycle with the majority of

heavy rainfall occuring during the wet season, from May to December. Heavy rainfall in

Montserrat has been caused by forecastable, large-scale systems over 50% of the time,

however, the remaining days were associated with small-scale, effectively unforecastable

systems. The study, thus, concludes with a recommondation that monitoring and warning

programmes in Montserrat should use a network, and not a single rain gauge.

1.7 Summary

In the current chapter a brief review of several different topics relevant to the thesis has

been presented. The various research areas covered in this chapter are expected to pro-

vide context for this study. Several phenomena associated with orographic flows, such

as gravity waves, wave splitting and hydraulic jumps, can be anticipated in the numerical
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modelling experiments. The most directly related research area is that of the effect of

heated terrain. Research in the field is still at an early stage, but relevant characteristics

that have been identified include a strong localised convection in the area of the heating

and rainfall intensification.

Changes in rainfall patterns in the vicinity of volcanoes, especially dome-building

ones, such as the Soufrière Hills Volcano located in the island of Montserrat, are of ex-

treme importance when it comes to hazard assessment as two of the deadliest volcanic

hazards, pyroclastic flows and lahars, are directly or indirectly associated with heavy

rainfall. It is thus envisaged that results pointing towards rainfall intensification over a

volcano can be of great use in future hazard assessment and mitigation.
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1.7.1 Thesis Structure

The rest of the thesis is structured as follows:

Chapter 2 - Methodology and experimental setup

A thorough description of the numerical model and its configurations, plus other elements

of methodology and experimental settings used in the following chapters.

Chapter 3 - Flow over an idealised volcano: Dry runs

Presentation of a set of heavily idealised simulations carried out for an initial test of the

study’s hypothesis where moisture and microphysics are switched “off” in the model con-

figurations.

Chapter 4 - Flow over an idealised volcano: Moist runs

Presentation of semi-realistic runs over idealised topography. This setting was chosen to

allow for a meaningful analysis of the associated phenomena that can be applied in any

volcano situated in the tropics.

Chapter 5 - Deep convective rainfall over Montserrat and implications for vol-

canic hazards

Focus on more realistic runs and the implications the study has for the volcanic hazard

assessment in Montserrat.

Chapter 6 - Conclusions and future work

General discussion on the results of the study as a whole and summary of the conclusions.





Chapter 2

Methodology and experimental

setup

2.1 Introduction

In this chapter, a thorough description of the model setup for the experiments examined

in this study is presented. All simulations are carried out using the Weather Research

and Forecast (WRF) model, specifically version 3.3.1 in idealised setting. The model

was developed by a variety of collaborative partners and is now primarily maintained and

supported by the National Center for Atmospheric Research (NCAR) in Colorado, USA.

WRF features a fully compressible, three-dimensional nonhydrostatic model, with the

governing equations solved in flux-form. The model adopts an Arakawa-C grid, a time-

splitting explicit advection scheme and a terrain-following height coordinate (Skamarock

et al., 2008). More information about the model can be found at the model’s website

at: http://www.wrf-model.org. WRF was chosen as it supports a large range of physical

and dynamical parameterisation schemes and is open-source software, allowing for easy

customisation of the source code.

The basic model domain for each chapter, along with the parameterisation choices are

outlined in Sections 2.2 and 2.3. Sections 2.4 and 2.5 feature an analysis of the surface

temperature distribution of a lava dome and its representation in the WRF simulations.

Finally, a small study of sounding data for the Caribbean is presented and compared to

the atmospheric profiles that are used to initialise the simulations (Sections 2.6 and 2.7).
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2.2 WRF domain

This section details the different ways the domain was set up in the simulations of Chap-

ters 3–5, including information on grid and domain size, mountain characteristics, land-

use and boundary conditions among others.

The basic domain consists of an isolated volcano, located near the centre of the domain

and surrounded by flat land (Chapter 3) or ocean (Chapters 4 and 5). Note that the terms

“volcano” and “mountain” are used interchangeably throughout the thesis. In Chapters 3

and 4, the volcano’s characteristics remain the same in all simulations; it is represented

by a Gaussian equation with a half-width of approximately 10 km and a height of 1 km

(Figure 2.1a), using the following equation:

h(x, y) = htop exp

[
−
(
x− xs
Lx

)2

−
(
y − ys
Ly

)2
]

(2.1)

where xs and xy are the coordinates of the volcano’s centre, htop (1000 m) is the maximum

height and Lx and Ly are parameters relating to the half-width (in our case both were set

at 5700 m). Although the simulations are idealised, the specific values are chosen so that

the mountain has similar characteristics to the topography of Montserrat. A detailed list

of the characteristics can also be seen in Table 2.1, showing each chapter as a column of

the table.

Characteristic Chapter 3 Chapter 4 Chapter 5
Run Time (h) 12 12 9

Time Step (sec) 2 2 1.5/0.5
Grid Size (m) 300 300 300/100

Model Top (km) 11 16 16
Grid Points E-W 400 680 500/200
Grid Points S-N 400 250 200/200
Grid Points Vert 75 147 147

Mountain Height (km) 1 1 DEM
Mountain Width (km) 20 20 DEM

Sea No Yes Yes
Boundary Conditions Periodic Periodic Periodic/Nested

Table 2.1: Domain choices for the WRF model.

For Chapter 3 (Figure 2.1b) the mountain is positioned in the centre of the domain

while the domain dimensions are 120× 120 km. The grid spacing (∆x) is 300 m, leading

to 400 grid points in both directions. The top of the domain is at 11 km, with the vertical
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Figure 2.1: (a) Gaussian mountain used in the simulations for Chapters 3 and 4. (b), (c) Domains
for Chapters 3 and 4 respectively. (d) Smoothed DEM for Montserrat used in Chapter 5. (e)
Domain used in the simulations for Chapter 5. Height contours in (b) and (c) are at 5, 100, 500
and 900 m, while in (d) every 100 m starting at 5 m. Grid points outside of the grey area in (c) and
(e) are set as water. The wind in all cases is easterly, as indicated by the arrows.

grid (75 levels) spacing varying with height as detailed later in the section. The domain is

comprised of land for all grid points and all of the boundaries are set to periodic.

In Chapter 4 (Figure 2.1c) the domain length is 204 km in the x and 70 km in the

y direction, with a grid spacing of ∆x = 300 m, leading to a 680 × 250 grid. Grid

points where the height would be less that 1 m are explicitly set to 0 m and are marked as

“water”, thus introducing the difference between land and sea (Figure 2.1c). The mountain

is placed in the centre of the domain, at a distance of 102 km upstream (distance from the

eastern boundary) to allow for the air to cover a sufficient distance over sea, allowing for

a field of cumuli to be developed (similarly to Kirshbaum, 2011). The top of the domain

is at 16 km over 147 grid points, again varying with height.

In Chapter 5 the model domain consists of an isolated island (Montserrat) featuring

the volcano, surrounded by water (Figures 2.1d,2.1e). Nesting was used in Chapter 5 in

order to cover complex processes in detail. The grid spacing is 300 m (100 m in the inner

domain) and the domain represents a 150×60 km (20×20 km) area it is now represented
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by a 500×200 grid (200×200). The DEM used in the simulations was derived from data

from the Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER)

mission. The 30 m resolution original data were converted to 300 m resolution, smoothed

and imported to the initialisation code for the simulations. Note that some experiments in

Chapter 5 required a change in the wind direction. Instead of changing the wind direction

in the prescribed input sounding, the DEM data were rotated and input at the appropriate

angle. This was done to make sure that the domain was set up properly with respect to the

boundaries, and at the same time keep the computational time relatively short to allow for

numerous experiments.

Vertical spacing increases with height, varying between 50 and 500 m for Chapter 3

and 1000 m for Chapters 4 and 5, as seen on Figure 2.2. Figure 2.2a shows the grid

point height in meters, while Figure 2.2b shows the eta levels, which is what is input into

the model code. “Eta level” is a normalised pressure unit starting at 1 for the surface,

going down to 0 at the model top (Skamarock et al., 2008). The distribution used for

the simulations allows higher resolution in the lower part of the atmosphere where cloud

formation and generally more detailed physics are needed, while the vertical resolution

remains moderate (ranging from 200–500 m) up until the tropopause.
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Figure 2.2: (a) Height increment and (b) eta level, by model level, for Chapters 3–5.

The simulation time for all experiments is set between 9–12 hours. The first 3 hours

are spent on model “spin up” (hours 1–2) and approaching a quasi-steady state (hours

2–3). The simulations continue for an additional 6–9 hours to provide the output required

for the study. For all runs, the final 3–6 hours are mainly used to make sure that the model

did not diverge radically from the quasi-steady state within this period but are not used



2.3 WRF parameterisation 27

in the analysis. It was decided not to allow the model to run more than 12 hours in total

when running idealised experiments, as the boundary conditions are open and so there

is no direct control on the vertical structure of the atmosphere. After a certain amount

of time the model strays too far away from the initial conditions and outside the chosen

parameter space.

The simulations are carried out on the University of East Anglia’s (UEA) high per-

formance cluster, Grace1. Grace has a total of 4148 cores, running Red Hat compatible

Centos 5.8 and the Platform LSF workload manager. The theoretical peak performance is

65 TFlops.

2.3 WRF parameterisation

2.3.1 Physics

The choice of the physics’ modules used in the simulations can be seen in Table 2.2, with

each chapter represented by a column.

Characteristic Chapter 3 Chapter 4 Chapter 5
Microphysics n/a Lin et al (6-class) Lin et al (6-class)
Surface Layer Monin-Obukhov Monin-Obukhov Monin-Obukhov

Soil Model Thermal Diffusion Thermal Diffusion Thermal Diffusion
Boundary Layer n/a n/a n/a

Radiation n/a n/a n/a

Table 2.2: Physics parameterisation module choices for all chapters.

Microphysics

No microphysics’ module is used in Chapter 3 as the focus of the study is on the flow

dynamics for a dry atmosphere. The Purdue Lin scheme (based on the studies by Lin

et al., 1983 and Rutledge and Hobbs, 1983), a relatively complex 6-phase scheme, is used

for Chapters 4 and 5. This scheme was chosen because deep convection past the freezing

point, extending up until the tropopause is expected and the Purdue Lin scheme has been

used extensively in storm-related research (Hong and Lin, 2006). Furthermore the focus

of the study is on rainfall so an accurate representation of the complex microphysical

processes is essential for the validity of the results.

Surface layer
1http://rscs.uea.ac.uk/high-performance-computing
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A simple Monin-Obukhov similarity theory based scheme is used for all of the simulations

discussed in the thesis (Skamarock et al., 2008).

Soil model

A 5-layer thermal diffusion model (Noah Scheme) is used throughout all of the simula-

tions (Skamarock et al., 2008). Using a soil physics prameterisation for the duration of the

simulations was vital for the study as this allows for specification of the surface temper-

ature. The scheme provides heat and moisture fluxes to the boundary layer scheme. For

Chapters 3 and 4 the “Barren and Sparsely Vegetated” class (z0 = 0.01 m) of the scheme

is used as the land type.

Other (Radiation, boundary layer, cumulus)

The radiation scheme is switched off for all simulations. While it is acknowledged that di-

urnal effects play a major role in mesoscale circulations in the tropics, we want to isolated

the impact of volcanic heating on the atmosphere without the complication of a diurnal

cycle. Furthermore, it has been established that for moderate to strong trade winds im-

pacting a mesoscale island, forced convection due to ascent governs the dynamics, rather

than solar forcing (Smith et al., 2009; Minder et al., 2013). The lack of a radiation scheme

does not affect the order of magnitude of the surface heat fluxes (that are mainly calcu-

lated by the soil model) and, as no simulations lasts more that 12 hours and as the focus

of the study was not in the daily change in rainfall, it is decided that the an extra level of

complexity added to the results by the introduction of a change in the fluxes throughout

the day is better to be avoided. At the current resolution the boundary layer scheme is

not needed as primary eddies are explicitly resolved (Kirshbaum and Fairman, 2014). A

turbulence closure scheme is used instead. As for the cumulus scheme, the grid resolution

is sufficiently high so that rain is produced by the model without needing the added effect

of a parametrisation scheme.

2.3.2 Dynamics

Details of the dynamics’ choices used in the simulations can be seen in Table 2.3, with

each chapter represented by a column.

Diffusion and TKE closure

The option for evaluation of mixing terms in physical space, along with the 1.5 turbulence
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Characteristic Chapter 3 Chapter 4 Chapter 5
Diffusion Mixing Terms Mixing Terms Mixing Terms

Numerical Diffusion 6th Order 6th Order 6th Order
TKE Closure 1.5 Order Closure 1.5 Order Closure 1.5 Order Closure

Damping Layer Inverse Rayleigh Inverse Rayleigh Inverse Rayleigh
Layer Depth (km) 5 5 5

Table 2.3: Dynamics parameterisation module choices for all chapters.

order closure is chosen for all of the simulations (Skamarock et al., 2008). On top of that,

sixth-order monotonic horizontal diffusion is applied to all variables for stability and to

minimise spurious behaviour at poorly resolved scales (Knievel et al., 2007).

Damping layer

A w-Rayleigh damping layer is utilised in order to prevent reflection of gravity waves

propagating upwards from the top of the domain (Klemp et al., 2008). The strength of

the damping layer increases exponentially by height. As the top of the domain differs

between the simulations of Chapter 3 and Chapters 4 and 5, the depth of this sponge layer

changes from 15 km in the first case to 8 km in the final simulations.

2.4 Lava dome temperature analysis

Fine details of the distribution of surface temperature (Tsfc) of lava domes are difficult

to acquire (Macfarlane et al., 2012). This is mainly due to the lack of appropriate equip-

ment to observe the usually cloud-covered, lava domes effectively and independently of

the weather. Despite this, a rudimentary analysis of the surface temperature distribution

has been undertaken here in order to obtain values that are appropriate to use in the atmo-

spheric model.

A picture of the Soufrière Hills lava dome, presented by Macfarlane et al. (2012),

is shown in Figure 2.3a, along with a near simultaneous surface temperature, recorded

using an infra-red camera (Figure 2.3b). The lava dome in the picture is approximately

300× 200 m and shot at an angle. Although not visible in the current crop, further away

from the dome the surface temperature quickly drops to a background temperature of

300 K.

Even though in the simulations for all chapters the horizontal resolution is sufficient

for orographic flows, it leads to the volcanic dome being resolved in the model as a small
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Figure 2.3: Image of a volcanic dome and the surface temperatures recorded by an infra-red
camera and analysed in Matlab. Images taken over a period of 45 min on the 4th Nov, 2005
(Macfarlane et al., 2012). Note that one pixel is approximately one meter in both horizontal and
vertical directions.

number of grid points, especially in Chapters 3 and 4. As the fine surface temperature

details of the dome cannot be represented in the WRF surface boundary conditions, it is

only the average values that are of interest.

The surface temperature distribution can be split in two parts, an average increase in

temperature over the area of the dome (at a temperature of approximately 350–360 K)

and perturbations added on top of this increase (hot spots with temperatures up to approx-

imately 600 K, corresponding to the yellows in Figure 2.3b). Despite the random element

added by these hotspots it can be seen that the mean result is a rather uniform distribution.

To further study the relation between these two factors surface temperature histograms

were produced (Figure 2.5). Each histogram features specific surface temperature win-

dows, shown along with the percentage of the area covered.
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Figure 2.4: Average surface temperature (solid line) across Figure 2.3, (a) horizontally and (b)
vertically, surrounded by minimum and maximum temperatures across each direction (dashed
lines).

Figure 2.5a shows that the temperature distribution is very skewed towards the lower

temperatures, showing that approximately 80% of the area is covered by temperatures
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Figure 2.5: Histograms of surface temperature using: (a), (b) the whole data, (c) only the data for
hot spots. In panel b all the the hot spots (Tsfc > 370 K) are shown as a single bin.

ranging between 320–350 K. The rest of the area is split evenly between low, almost un-

perturbed temperatures (300–310 K) and hot spots (370–610 K). As far as the hot spots

are concerned (Figure 2.5c) the distribution is once again skewed towards lower hot spot

temperatures with an average of 400 K. Judging from the histogram it can be seen that

the average increase in temperature can be mainly attributed to the average part and not to

the hotspots. Despite the very high surface temperatures of the hotspots, when averaged

over the dome, they are typically only approximately 7 K perturbations over the relatively

uniform dome anomaly (Tsfc = 350 K). The amount of hotspots in the picture was cal-

culated to be 10%, as seen in Figure 2.5b. Other infra-red pictures of the lava dome sent

from the volcanic observatory generally present a similar surface temperature distribution.

Dome size and temperature both vary from the time that the dome is created until it

collapses. The declining effect the dome would have is studied in Chapter 3 and thus

the temperature anomaly values were generally restricted between 20 and 60 K. Although

average dome values above 60 K can be expected, especially in the early stages of the
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dome creation, it was decided to focus on the most typical situations, especially as during

the initial stages the lava dome is relatively small in extent.

2.5 Surface temperature specification

The different settings for the surface temperature anomaly (Ta) can be seen in Table 2.4.

The dome diameter (Dd) is calculated as the number of grid points with a specified in-

creased temperature in Chapter 3, or twice the half-width of the distributions used in

Chapters 4 and 5, multiplied by the respective grid spacing.

Characteristic Chapter 3 Chapter 4 Chapter 5
Ta (K) 0:20:60 0:20:60 0,60
Dd (m) 2500 2500 2500

Table 2.4: Temperature anomaly choices for all chapters.

The surface temperature in the model is specified through the initialisation code. Spec-

ifying a surface heat flux value was also considered. However it was decided that spec-

ifying the surface temperature would be simpler as it was more directly connected with

the characteristics of the dome that were used as motivation. The surface temperature

anomaly is time independent in each experiment, leading to a nearly-constant surface heat

flux once the simulation has reached a quasi-steady state. In all chapters the surface tem-

perature anomaly was added as a perturbation over the ambient surface temperature using

the (Figure 2.6). A typical dome at SHV ranges between 500 and 1000 m in diameter

(Wadge et al., 2014), shaded in all panels of Figure 2.6.
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Figure 2.6: Surface temperature anomaly distributions used in all simulations.

The progressive reduction in the surface temperature anomaly distributions leads to a

wider surface temperature anomaly than the typical dimensions for the dome in Soufrière
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Hills, Montserrat. This smooth profile was utilised in order to avoid computational errors

and model instability that occurred due to the overly steep changes in the values. For a

cross-section across the centre of the volcano the temperature anomaly is imposed over

roughly 9 grid points following Equation 4.2:

T ′(x, y) = Ta exp

[
−
(
x− x0
Wx

)2

−
(
y − y0
Wy

)2
]

(2.2)

where T ′ is the temperature perturbation, x0 and y0 are the coordinates of the lava dome,

Ta is the maximum temperature anomaly and Wx and Wy are parameters relating to the

half-width (both set at 900 m). The surface temperature anomaly is time independent in

each experiment, leading to a nearly-constant surface heat flux once the simulation has

reached a quasi-steady state.

2.6 Brief atmospheric sounding study

2.6.1 General description

In order to construct the input soundings used in Chapters 4 and 5, a small sounding study

was carried out, based on data from the radiosonde station on the island of Guadeloupe

in the Caribbean. Guadeloupe was chosen due to the proximity to Montserrat and the

amount of sounding and rainfall data available. Specifically the analysis was done using

soundings from Le Raizet airport over the month of August 2011 (Figure 2.7). This

month was selected as atmospheric conditions seemed representative of a typical rainy

season for the Caribbean, with most of the days featuring an unstable atmosphere and

the passing of Tropical Storm Emily (1–2 August) and Hurricane Irene (21–24 August)

over the island. Although the period of study is relatively short results are in agreement

with results from extended climatological studies (Jordan, 1958; Dunion, 2011) and field

projects (Siebasma et al., 2003).

The soundings were obtained from the University of Wyoming atmospheric sound-

ings’ web page2 and information about the cyclones was obtained from the University

of Wisconsin-Madison web page3. Finally rainfall data were gathered from the Tropical
2weather.uwyo.edu/upperair/sounding.html
3tropic.ssec.wisc.edu/storm archive/atlantic.php



34 Methodology and experimental setup

Figure 2.7: Map of area of study. Guadalupe data were used due to the proximity to Montserrat.
The box around Guadeloupe shows the grid points of the TRMM data used for the rainfall analysis.

Rainfall Measuring Mission (TRMM) database4.

In general, the atmospheric conditions for most of the days of August 2011 can be

split into three categories that share common characteristics (Table 5.1). Characteristics

related to the atmospheric stability and rainfall were studied. The lifted index is used to

determine the stability of the lower half of the troposphere, with negative values indicating

higher possibility of thunderstorms. The convective available potential energy (CAPE) is

a measure of the amount of energy available for convection, with higher values indicating

greater potential for severe weather. The convective inhibition (CIN) is a measure of the

amount of energy needed to initiate convection and is always negative, with more negative

values indicating greater stability. Finally precipitable water is a measure of the depth of

liquid water at the surface if all of the water vapour in a vertical column (extending from
4trmm.gsfc.nasa.gov/
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the 300 mb surface) would precipitate.

CAPE/CIN Lifted Index CAPE (J kg−1) CIN (J kg−1) Prec Water (mm) #Days

All days −2± 2 1128± 764 −77± 82 47± 9 31
High/Low −4± 2 1740± 587 −15± 11 51± 10 14
High/High −3± 1 1099± 557 −50± 22 47± 9 2
Low/High −1± 1 342± 275 −185± 64 41± 5 13

Table 2.5: Some general characteristics for the August 2011 soundings. The soundings are split
into three categories depending on the value and the relative relation of CAPE and CIN (leftmost
column). All values shown are averages among the days in the group under study along with the
standard deviation.

In most of the days the atmosphere is either unstable or has a very shallow neutral

or stable layer topped with an unstable upper part of the atmosphere. Many days feature

an inversion capping an unstable lower troposphere. The vast majority of days exhibits

an, at least marginally, unstable boundary layer (as evident from the lifted index values).

Precipitable water is the least changeable parameter, with an average at 47 mm and small

standard deviation. Over the whole month (for days with CAPE and CIN values), CAPE

ranges between 3 and 2528 J kg−1, with an average of 1128 J kg−1, while CIN ranges

from -0.31 to -289 J kg−1 with an average of -77 J kg−1. The time series for both CAPE

and CIN can be seen at Figure 2.8, along with scatter plots for the duration of August.

Although not necessarily so, the majority of days features either a combination of high

CAPE and low CIN or the opposite (as seen in Table 5.1).

2.6.2 Rainfall

The TRMM data set was used to obtain values for rainfall (Figure 2.8b). As Guadeloupe

is roughly sixteen grid points in the data two values are presented, the overall maximum

(plotted in blue) and the average (plotted in red). It can be seen that the month is approx-

imately evenly split between days with little to no rainfall and days an average rainfall of

approximately 20 mm day−1 and maximum values of 60 mm day−1. Only on one day

both average and maximum are over 100 mm day−1.

A distinction between days with shallow and deep convective rainfall can be seen in

Figure 2.9. Despite the fact that rainfall values consistent with shallow convective rainfall

(between 0 to 30 mm day−1) can be seen even for days with very little CAPE and high

CIN, higher amounts of rainfall are limited to days with CIN ranging from 0 to -50 J kg−1.

On top of that days with very high amounts of rainfall are limited in the upper right part
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of the graph, having CIN less that -25 J kg−1 and CAPE more that 1500 J kg−1.
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Figure 2.9: Scatter plot of CAPE and CIN. Contouring indicates the amount of rainfall.

There were 17 occurrences of an inversion throughout the studied dataset. Figure

2.10 shows a scatter plot of inversion height and inversion size with the average rainfall

as contours. The size of the inversion is calculated as the difference of the pressure levels

from the point the atmosphere becomes stable up to the point it becomes conditionally

unstable. The highest amount of rainfall occurs on days when the inversion size is small

(starting at 150 hPa) and the inversion is located fairly low in the atmosphere (at around

750 hPa). Overall, on days with an inversion the rainfall is limited to less that 40 mm
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day−1, showing that an inversion can act to limit the amount of rainfall to values close to

those of shallow convection.
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Figure 2.10: Inversion height, inversion size and rainfall for the August 2011 soundings.

2.6.3 Vertical structure

Averages of vertical profiles (potential temperature, wind speed, relative humidity, and

mixing ratio) are now studied for days featuring an inversion in the temperature profile.

The inversion is located between the heights of 2 and 3 km. Above the inversion the at-

mosphere is, on average, convective with the stratosphere capping located approximately

at 14 km. Wind speed remains constant above the boundary layer for the lower part of the

troposphere and is then reduced towards the upper troposphere, before reaching a peak

of approximately 2–3 times the lower tropospheric value in the stratosphere. Below the

inversion, the atmosphere has a layer with high relative humidity, with an average of ap-

proximately 70%, but it decreases significantly above the inversion, leading to a much

drier upper troposphere. Relative humidity is one of the most changeable characteristics

with the area one standard deviation away from the mean value covering values from

10–70% for the biggest part of the atmosphere.

2.6.4 Wind speed

Wind speed was studied for a layer between 1000 and 1700 m in order to be representative

for the lower parts of the atmosphere but high enough as to not be influenced by the

boundary layer. The distribution is relatively symmetric, but has a slight skew towards
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Figure 2.11: (a) Potential temperature, (b) Wind speed, (c) Relative humidity, and (d) Mixing
ratio for the days with an inversion in Guadalupe, August 2011. The thick black line is the mean
value, shaded areas are one standard deviation away and dashed lines are minimum and maximum
values.

lower wind values. The average value is 5 m s−1 while the standard deviation is 3 m s−1.

For the wind direction, the data were averaged until the height of 1700 m. The prevalent

wind direction was easterly, with an average at 80◦ and a standard deviation of 20◦.

5%

10%

15%

20%

WEST EAST

SOUTH

NORTH

2 − 4
4 − 6
6 − 8
8 − 10
10 − 12
12 − 14
14 − 16

2 4 6 8 10 12 14
0

2

4

6

8

10

12

Wind Speed (m s−1)

#
D

ay
s

a. b.

U
 (m

 s
-1

)

Figure 2.12: (a) Histogram of low tropospheric wind values. (b) Wind rose for data averaged
across the low troposphere. Based on the August 2011 soundings.
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2.7 Input sounding specification

Different soundings are used between the different chapters. For Chapter 3 the focus of

the study is on the dry dynamics and thus a very idealised atmospheric structure is used,

with the Brunt-Väisälä frequency (N ) being constant with height and no humidity (blue

line in Figure 2.13). Chapter 4 explores a more complicated parameter space and a total

of 4 input soundings are used, all based on a similar atmospheric structure; a relatively

neutral boundary layer capped by an inversion at about 2 km, followed by an unstable

upper atmosphere. An example initial sounding can be seen in Figure 2.13, marked by the

red line. Wind speed for all simulations is set to easterly and, above the boundary layer,

is constant with height typically at −1, −4, −7, and −10 m s−1.

 

 

Chapter 3

Chapter 4

Figure 2.13: A skew-T diagram with the sounding used in the simulations for Chapters 3 (blue
line) and 4 (red line), representing an idealised atmosphere where N is constant with height and
a quasi-realistic atmospheric structure with an inversion. The red line is for the strong inversion
case.

Figure 2.14 shows the different sounding types used in Chapter 4, namely strong and

weak inversion (Figure 2.14a) and dry and wet atmosphere above the inversion (Figure

2.14b), for a range of different wind speeds (Figure 2.14c, showing the 6 and 15 m s−1

cases). The maximum difference in potential temperature between the strong and weak

inversion profiles is 1 K at the peak of the inversion (at a height of 2 km). The “Dry” and
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“Wet” tropospheric humidity profiles are similar near the surface with an almost saturated

layer between 0 and 2 km with the “wet” relative humidity 5% higher. In the “dry” profile

the relative humidity drops steeply, while the “wet” profile features a moister troposphere

(10% difference on average).
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Figure 2.14: Details from the 4 different profiles used in Chapter 4. (a) Potential temperature
profile for the first 2.5 km (b) Differential of potential temperature with respect to height (c)
Relative humidity profiles featuring a wet and dry troposphere above the inversion (d) Wind speed
profiles. The shaded areas in all plots show the area around the mean values plus and minus one
standard deviation, as obtained from the sounding analysis and shown previously in Figure 2.11.

Comparing the profiles used to the profiles obtained from the sounding analysis, it can

be seen that as far as potential temperature is concerned (Figure 2.14a,b) the profiles used

differ slightly compared to the values obtained from the soundings. Namely the inversion

on average tends to be located slightly higher, approximately at a height of 2.5 km, and the

upper atmosphere tends to be less convective but is still unstable. Nevertheless they have
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the same qualitative behaviour and ultimately the reason why this specific structure was

used in for the potential temperature profile was to facilitate comparison with literature

as it is based in the study done by (Siebasma et al., 2003) and later used by Kirshbaum

and Smith (2009) for a study in the Caribbean. As far as humidity is concerned (Figure

2.14c), it can be seen that the profiles used are in good agreement with the values obtained

from the soundings, as the “dry” profile is close to the average value minus one standard

deviation, while the “wet” profile is closer to the average. Finally, although the profile

used for the wind speed is not detailed it is close to the profiles obtained from the sounding

analysis, at least for the lowest 1–2 km in the atmosphere (Figure 2.14d). It must be noted

here that the majority of the effects studied here are expected to develop with the first

2 km of the atmosphere so a larger focus was given at this area.

2.8 Summary

The input data and settings for the simulations were chosen to be representative of the

conditions for a lava dome in the Tropics, specifically for an island in the Caribbean.

The specific values of the surface temperature anomaly were chosen as they were a good

approximation of the conditions in the Soufrière Hills volcano, as demonstrated by the

analysis of infra-red imagery. Furthermore, for Chapters 4 and 5, an effort was made

to choose representative and realistic initial conditions in a complex parameter space.

For this reason a small climatological study was done for August 2011 with data from

Guadeloupe. It was shown that average atmospheric conditions during the rainy season

are unstable, demonstrated by a combination of high CAPE and low CIN values. This

instability leads to a high amount of rainfall, typically 20–30 mm day−1 with higher

amounts of rainfall possible. Furthermore an inversion in the atmosphere is a frequent

feature and can generally act to limit the amount of convection and consequently rainfall.

A number of input soundings were created broadly conforming to these results, featuring

a low-level inversion of varying strength, with appropriate profiles for relative humidity,

wind speed and atmospheric instability.





Chapter 3

Flow over an idealised volcano: Dry

experiments

3.1 Introduction

As a first step in studying the interaction of a volcano and the atmosphere, a simplified

problem is considered. The model atmosphere at this stage is highly-idealised: stably

stratified and unchanging with height. It is also “dry”, meaning that there is no water in

any state. This approach is taken in order to study the atmospheric response at a funda-

mental level, without the complexity of moist processes. The volcano is also idealised,

represented by a mountain with a heated summit. The general understanding gained from

this chapter will then be used in later chapters to help interpret the results of more realistic

and complex simulations.

Orographic flow in the vicinity of mountains and ridges is a classic problem in mete-

orology, with initial studies such as the ones by Queney (1948), Eliassen and Palm (1961)

and Drazin (1961). In order to study a Boussinesq flow, the basic equations that describe

the flow are the momentum and continuity equations, along with the equation for mass dif-

fusion. Progress in the mathematical approach towards a solution for this orographic flow

was made by the use of linear theory to study the resulting gravity waves (also known

as mountain waves) as the flow is forced to go over the obstacle (Smith, 1980, 1989).

Linear theory can be used to create an analytical solution for a complex mathematical
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equation. Using linear theory, an equation is analysed to series of progressively less sig-

nificant (higher order) terms, and only first order terms are kept. As such, a linear solution

exhibits features simpler that the general, non-linear case and can only be used for cer-

tain limits, in which the assumption that higher-order terms are less significant holds; for

example, in the case of orographic flow, that the wind speed is sufficiently high. Due to

the limitations of linear theory and with the rapid advance of computational power and

mesoscale models, computational modelling quickly become a staple, helping research

focus on non-linear phenomena (Smolarkiewicz and Rotunno, 1989, 1990) as well as the

effects of more advanced physics that initially had to be neglected; for example the effect

of the Coriolis force (Ólafsson and Bougeault, 1996; Hunt et al., 2001) or the existence

of a boundary layer (Weng et al., 1997; Belcher and Hunt, 1998; Petersen et al., 2003;

Smith, 2007).

The main result of these idealised studies has been the investigation of the flow- and

gravity wave-related phenomena (such as flow splitting, wave breaking, mountain wakes

and lee waves). Using linear theory, Smith (1989) created a flow regime chart to broadly

categorise flows and link them with expected phenomena (Figure 3.1). To do this he in-

vestigated two key parameters: non-dimensional mountain height (ĥ) which is defined as

ĥ = H N U−1, where H is the height of the obstacle, N is the Brunt-Väisälä frequency

and U is the wind speed, and the aspect ratio of the hill (R), defined as R = Ly L
−1
x

(Figure 3.1). Note that the non-dimensional mountain height is equivalent to an inverse

Froude number, i.e. Fr = UN−1H−1 in this study. The validity of the chart has been

broadly confirmed by Ólafsson and Bougeault (1996), while phenomena in the non-linear

areas were first investigated by Smolarkiewicz and Rotunno (1989, 1990). Despite the

fact that the accuracy and exact limits of wave breaking in the chart have been questioned

(Ólafsson and Bougeault, 1996), it is still used in order to obtain general insight on the

expected phenomena, especially for cases that fall within the linear theory area. Simu-

lations carried out for this chapter start at a regime of non-linearity (higher Fr−1 - low

wind speeds) where the formation of lee vortices in the lee is expected (Smolarkiewicz

and Rotunno, 1989), and progress towards a regime of linearity without complex phenom-

ena (low Fr−1 - high wind values). Unlike the vertically propagating mountain waves,

trapped lee waves are caused by vertical variations in the incoming flow speed and the
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Brunt-Väisälä frequency. For an atmosphere to allow lee waves the Scorer parameter

(l = N U−1) between two layers (for example the boundary layer and the free atmo-

sphere) must fulfil the following criteria: l2L − l2U > 0.25 π2 H−2, where lL and lU are

the Scorer parameters for the lower and upper atmosphere respectively. The existence of

a boundary layer also causes a shift of gravity wave patterns further upstream, weakening

of the wave intensity and a consequent reduction in drag and momentum flux (Jiang et al.,

2008).

Figure 3.1: Regime diagram based on Smith (1989). The diagram defines flow regimes as a
function of the non-dimensional mountain height ĥ and the aspect ratio of the hill (R). Curve A/B
shows the limit of stagnation aloft (wave breaking)/in the windward slope (flow splitting). The
dotted lines signify the area beyond which linear theory is technically invalid, while dashed lines
are the suggested critical values for flow splitting and wave breaking within the non-linear regime.
The shaded area is an indication of the regime areas under study in this chapter (extending up to
ĥ = 100).

Recently the effect of surface temperature forcing on orographic flow has been re-

ceiving an increasing amount of attention. Crook and Tucker (2005), considering the case

of solar heating, investigated the effect of heated terrain on flow over a mountain set-

ting, using computational modelling to test the results produced by the theory. Kirshbaum

(2013) and Kirshbaum and Wang (2014) extended this work and tested two theories: a

linear theory (modified from Crook and Tucker, 2005) and a heat-engine theory, based

on the thermodynamics of the flow that was initially proposed by Rennó and Ingersoll

(1996) and later extended in numerous studies (Souza et al., 2000; Tian and Parker, 2003;

Kirshbaum, 2013). Kirshbaum (2013) demonstrated that the application of linear theory
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for two layer flows (for example an atmospheric structure with characteristics varying be-

tween the boundary layer and the troposphere) is severely limited due to the non-linear

effects that are introduced by the difference between the layers. In a different context,

Cunningham et al. (2005) and Cunningham and Reeder (2009) studied the effect of wild

fires and the generation of convection and pyrocumulus clouds. Although this regime

is closer to the research topic of this study, the focus has been on investigating moist

processes. Additionally, no general theory has yet been proposed, as research is mainly

focused on computational modelling and case studies.

Across all studies the main result of the heating perturbation is the generation of a

convective plume (Crook and Tucker, 2005; Cunningham et al., 2005; Kirshbaum, 2013).

Additionally, another series of gravity waves can be generated superimposed over the

normal mountain waves (Crook and Tucker, 2005). Despite the fact that there is no ex-

pectation of quantitative similarities between the results, as the regimes under study are

different both in respect to the intensity of the heating as well as the spatial extent, some

qualitative similarities between the studies could be expected.

The aim here is to extend the theory of orographic flow over a heated surface for the

case of an active dome-building volcano, not undergoing an explosive eruption. In these

volcanoes as lava is extruded, it quickly solidifies due to its high viscosity and forms

a brittle, high-temperature plug over the conduit (Parfitt and Wilson, 2008). The abrupt

increase in surface temperature over the area of the dome will be referred to as the “surface

temperature anomaly” (Ta). For more details see Chapter 2, Section 2.4. This study is

carried out through a series of idealised simulations for varying wind speeds and surface

temperature anomaly values.

The chapter is organised as follows. Section 3.2 details the setup for the numerical

simulations, along with a justification of the choices made. Section 3.3 presents the con-

trol runs, i.e. simulations with no surface heating. Sections 3.4 and 3.5 present a series of

perturbation simulations, studying changes brought by an increase in Ta and Fr respec-

tively. Finally, an overall discussion covering the whole parameter space is presented in

Section 3.6, after which the chapter concludes with a summary of the main findings.
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3.2 Experimental configuration

The simulations presented in the chapter were carried out using the Weather and Research

Forecast (WRF) model, version 3.1, running in idealised mode. The domain is set up

with a 400 × 400 grid with equal horizontal spacing ∆x = ∆y = 300 m, representing

120 km in both the x and y directions (Figure 3.2a,b). The mountain is represented by the

following Gaussian equation:

h(x, y) = htop exp

[
−
(
x− xs
Lx

)2

−
(
y − ys
Ly

)2
]

(3.1)

where xs and xy are the coordinates of the volcano’s centre, htop (1000 m) is the maxi-

mum height and Lx and Ly are parameters relating to the half-width (both set at 5700 m).

Although the simulations are idealised, these dimensions were chosen so that the moun-

tain has similar topography to that of Monsterrat.
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Figure 3.2: (a) Domain used in the experiments. Dimensions are written both in kilometres
and number of grid points to allow for appreciation of both the grid size and the corresponding
dimensions of the simulation. The z-axis in the simulations goes up to 11 km. The black line
represents the cross-section shown in vertical plots. (b) The whole domain of the simulations.
(c) Surface temperature anomaly profiles. The shaded area shows the typical Soufrière Hills lava
dome diameter (0.5–1 km).

There are 75 levels in the vertical. The vertical grid spacing is 50 m from the surface

up to 2 km, then increases linearly to 500 m over 4 km and remains 500 m up to the

model top, at 11 km. The time step is 2 seconds and each simulation lasts for 6 hours.

Sensitivity tests with a 1 second time step revealed no changes in the results. The first
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3 hours are spent on model “spin up” (hours 1-2) and approaching a quasi-steady state

(hours 2–3). All results presented are 3h averages from hours 3 to 6 during quasi-steady

state conditions. Sensitivity tests up to 12h showed only minor changes in the output.

The surface-layer related physics schemes are used to implement the surface heating

on the top of the volcano, specifically a thermal diffusion model for the soil scheme and a

Monin-Obukhov scheme for the atmospheric surface layer (Skamarock et al., 2008). No

boundary layer, microphysics or radiation schemes were utilised during the simulations

(See Chapter 2 for more information).

The atmospheric sounding used for the initial conditions represents a completely ide-

alised atmosphere with N = 0.01 s−1 being constant with height. Simulations are carried

out for four incoming flow speeds (constant with height), ranging from 0.1 m s−1 up to

10 m s−1, corresponding to Froude number values from 0.01 up to 1.

With respect to the surface temperature anomaly, simulations were run for four values

in total, for Ta = 0 K (no temperature anomaly, control runs), and Ta = 20 up to 60 K,

by increments of 20 K (Table 3.1). The surface temperature anomaly (approximately 9

grid points wide) is imposed on top of the normal mountain lapse rate and is represented

by the following Gaussian equation:

T ′(x, y) = Ta exp

[
−
(
x− x0
Wx

)2

−
(
y − y0
Wy

)2
]

(3.2)

where T ′ is the temperature perturbation, x0 and y0 are the coordinates of the lava dome,

Ta is the maximum temperature anomaly and Wx and Wy are parameters relating to the

half-width (both set at 900 m), see Figure 3.2c. Despite the fact that this progressive

reduction leads to a wider surface temperature anomaly than the typical dimensions for

the dome in Soufrière Hills, Montserrat (in this setup the “dome” covers an overall area of

2500× 2500 m, compared to an average size of 400× 1000 m; Wadge et al., 2014), this

smooth profile was utilised in order to avoid computational errors and model instability

that occurred due to the overly steep change in the values. The full range of simulations

can be seen in Table 3.1.

The key parameters (e.g. Fr, Ta, U , N , H etc) were defined to cover a reasonable

amount of parameter space for flow over an isolated mountain (see Figure 3.1), yet also



3.3 Control runs 49

Parameter Values
Ta (K) 0:20:60

Wx, Wy (m) 900
Fr 0.01, 0.1, 0.4, 0.7, 1

|U | (m s−1) 0.1, 1, 4, 7, 10
N (s−1) 0.01
htop (m) 1000
Lx, Ly (m) 5700

Table 3.1: The full range of parameters chosen for the simulations discussed in this chapter. Note
that the Froude number is calculated using values of |U | between 0.5 and 2 km.

keep the simulations physically realistic and their number manageable. Since this inves-

tigation ultimately aims to be used for case studies in Montserrat, it was decided that

characteristics of the obstacle that are similar in terms of the control parameters, such as

mountain height and half-width, would remain unchanged.

3.3 Control runs

Initially, results from the control simulations (Ta = 0 K) are analysed and compared to

the theoretically expected flows. Figures with multiple plots in this section start from the

Fr = 0.1 case (|U | = 1 m s−1; Panel a) and end with the Fr = 1 case (|U | = 10 m s−1;

Panel d). Horizontal plots are shown at the third model level (a height of 150 m) to be

representative of the low-level flow but not affected adversely by the surface layer. Note,

the colour axis is always saturated at both ends (dark blue and red values).

3.3.1 General features

All four panels show easterly flow impinging on the mountain, leading to ascent on the

windward slopes and descent on the lee side. Starting from a low Froude number (Fr =

0.1, a non-linear regime; Figure 3.3a) as the wind increases there is a progression from a

“flow around” towards a “flow over” regime (for example Fr = 1; Figure 3.3d).

For low Froude numbers, non-linear phenomena such counter-rotating vortices in the

lee of the mountain can also be seen (Figures 3.3b,c). Unlike many studies a non-slip

condition is not used here, leading to friction in the lower levels and the development of

a boundary layer. This leads to the presence of other complex phenomena, such as flow

separation, seen in the lee of the mountain, mainly in Figures 3.3c,d.
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Figure 3.3: Vertical velocity (shaded contours) with the horizontal wind vectors for: (a) Fr = 0.1,
(b) Fr = 0.4, (c) Fr = 0.7 and (d) Fr = 1.0, on the third model level (150 m). Note the scaling
of the horizontal wind vector changes over the four panels. Height contours at 100, 500, and
900 m. Ta = 0 K across all panels.

3.3.2 Gravity waves

As the easterly flow approaches the mountain, the flow is forced over and around, and

gravity waves are generated in the lee (Figure 3.4), leading to areas of vertical acceleration

and deceleration (Figure 3.5). The strength of the gravity waves increases with Fr as more

flow is forced over the mountain.

At low Froude numbers (Figures 3.4a and 3.5a) the flow is too weak to go over the

mountain so it is forced to diverge (indicated by the horizontal isentropes), creating an area

of flow blocking in the windward side and a small area of flow reversal in the lee, similar

to Smolarkiewicz and Rotunno (1989) (Figures 3.4a and 3.5a). The situation changes

gradually as the Froude number increases with the gravity waves becoming stronger and

the vertical velocity range changing by one order of magnitude. Aside from vertically

propagating mountain waves for Fr ≥ 0.7, there is a pronounced lee wave response

(Figures 3.4c,d). This is caused by the existence of turbulence and the boundary layer
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Figure 3.4: Vertical velocity (shaded contours) with isentropes (brown lines) overlaid, across a
cross-section in the middle of the domain, for: (a) Fr = 0.1, (b) Fr = 0.4, (c) Fr = 0.7, (d)
Fr = 1. Isentropes plotted between 299 and 316 K, every 1 K. Ta = 0 K across all panels.
Control runs.

as for both cases the Scorer parameter criteria is fulfilled (a maximum boundary layer

velocity of approximately 5.7 m s−1 for Fr > 0.7). An extensive area of flow reversal

can be seen in the lee for Fr > 0.4 (Figure 3.5), maximised at Fr = 0.4 and being

reduced to two separate rotors for Fr = 1. Small hydraulic jumps can also be seen in all

cases except for the Fr = 0.1, similarly to Ólafsson and Bougeault (1996).

To further investigate the vertical velocity characteristics, three vertical profiles, at

locations -3, +3 and +15 km (see Figure 3.6) are shown in Figure 3.7. Although the upper

limits are influenced by the damping layer the figures act to illustrate the gross changes in

wave activity as the Froude number increases.

Starting from Figure 3.7b, wave activity is evident. In Figures 3.7c,d, gradually

stronger amplitudes of gravity waves are seen. The windward point always starts at pos-

itive values, capturing the ascent of the flow, while the leeward point always starts with

negative values, capturing the descent. Descent in the lee is always stronger than ascent

on the windward side, due to augmentation by downslope winds. As the Froude number
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Figure 3.6: Location of points used for the vertical velocity profiles presented in Figure 3.7. The
thin black lines represent the w = 0 cm s−1 vertical velocity contours for the Fr = 0.4 case.

increases there is an increase in the height of both the maximum and minimum values for

both windward and lee points, as well as an increase in the wave length. This is consis-

tent with the change in the tilt of the mountain waves as previously discussed and with

previous work (Smith, 1989; Smolarkiewicz and Rotunno, 1989).
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Figure 3.7: Vertical structure of vertical velocity at the three points seen in Figure 3.6, for the
cases under study: (a) Fr = 0.1, (b) Fr = 0.4, (c) Fr = 0.7 and (d) Fr = 1.

3.3.3 Turbulence characteristics

Subgrid turbulent kinetic energy (TKE) as output by the model, can be seen in Figures 3.8

and 3.9. As the wind speed increases throughout the four simulations, there is a visible

increase in turbulence in the lee.

The maximum values of turbulent kinetic energy (ranging between 0.2 and 1 m2 s−2)

can be found in the lee for higher Froude number values, forced closer to the surface due

to the increasingly strong downslope winds for higher Froude numbers (Figure 3.8). Due

to the stratification in the atmosphere the increase in TKE is largely constrained within

about 1 km of the surface.

At Fr = 0.7 there is a substantial increase in TKE in the lee of the mountain, with

a peak close to the mountain and a secondary peak further downwind. A further increase

in the Froude number results in larger TKE values but the horizontal distribution become

narrower and is drawn closer to the mountain (Figure 3.9c,d). A similar increase in TKE

(both in magnitude and distribution) has been noticed in studies of atmospheric flow past

three-dimensional obstacles, for example by Eckermann et al. (2010), while experiments
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Figure 3.8: As Figure 3.4 but for TKE. Isentropes plotted between 299 and 316 K, every 1 K.
Control runs.

by Minder et al. (2013) showed a qualitatively similar increase in TKE in the lee of the

mountain of Dominica, but with higher values (up to 17 m2 s−2) due to the fact that re-

solved turbulence is also included and a combination of moist convection, higher incom-

ing flow speed, and use of more realistic, steeper and aerodynamically rougher terrain.

3.3.4 Overview of control runs

Figure 3.10 shows several diagnostics across all the control simulations as a function of

Froude number. Figure 3.10 illustrates that the increase of vertical velocity is roughly

symmetrical with the peak values reached at the gravity wave response area (see also

Figures 3.4 and 3.7). Maximum positive (reverse) horizontal winds are found in the lee

of the mountain and reach a peak at Fr = 0.4 (Figure 3.10b). Finally, as seen in Section

3.3.3, an increase in the incoming flow speed leads to a large increase in TKE of the

system, especially between Fr = 0.2 and 0.4, located mainly in the lee of the mountain

(Figure 3.10c). This is due to the onset of wave activity and turbulence in the lee, as seen
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Figure 3.9: Total TKE across the height of the atmosphere for the control runs.

in Figure 3.9. Note that the TKE value here is the maximum and not the total across the

atmosphere. The maximum height of the trail is always close to 1 km after strong mixing

is triggered (Figure 3.10d). Note that the “TKE trail” introduced here is an important

characteristic of the flow as it will be used as a proxy for the convective plume triggered

by the surface temperature anomaly, with the “TKE trail height” showing the height up to

which volcanically-induced turbulent mixing occurs. Values shown here will be used as a

baseline for the comparison.

As discussed throughout this section, the model was found to replicate the theoreti-

cally expected results, e.g. (Smith, 1989; Smolarkiewicz and Rotunno, 1989; Eckermann

et al., 2010). Characterisation of the flows by the use of the Froude number is justified as

the flow changes from a “flow around” regime in low Froude number simulations, towards

a “flow over” regime as the Froude number is increased. For cases with relatively high

Froude number (Fr > 0.4) a series of gravity waves were triggered, with characteristics

as expected by linear theory (Smith, 1989) and tested in numerous studies (Smolarkiewicz
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Figure 3.10: (a) Maximum and minimum vertical velocity against Froude number. (b) Max-
imum (positive) U wind component. (c) Maximum TKE, and (d) maximum height where
TKE> 0.2 m2 s−2. All simulations carried out at Ta = 0 K (control simulations).

and Rotunno, 1989; Ólafsson and Bougeault, 1996). In the non-linear regime lee vortices,

lee waves and flow reversal in the lee were apparent in the simulations as expected by the

studies of Smolarkiewicz and Rotunno (1989). The turbulent kinetic energy of the system

also increases in response to the increase Froude number in a way similar to previous

studies (Eckermann et al., 2010; Minder et al., 2013).

3.4 Surface temperature anomaly runs for constant Fr

The effect of different temperature anomalies imposed over a moderate wind field, char-

acterised by a Froude number of 0.4, is now considered. For ease of comparison figures

with multiple plots will start with the control case (Ta = 0 K, Panel a in all figures, as

presented in the previous section), and then progress through increasingly higher temper-

ature anomalies (Panels b to d in all figures, with Ta = 20, 40 and 60 K respectively).

Note that many of the figures in the section are more focused over the mountain top.
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3.4.1 General features

Figure 3.11 shows the atmospheric flow response to the range of surface temperature

anomalies. An area of ascent in the lee the mountain summit is created, interacting de-

structively with the area of downslope wind in the lee, disrupting the control pattern. The

more intense the thermal forcing, the closer the area of ascent is to the summit. The ascent

indicates a convective plume which introduces an area of flow reversal with weak leeside-

vortices drawing air back towards the plume centre. This acts in tandem with the flow

reversal already found in the lee (as shown previously in Figure 3.3). This area of flow

reversal is less noticeable for low Ta values (Ta = 20 K), but reaches a peak with reverse

winds of approximately 1.5 m s−1 (half of the incoming flow speed) in the Ta = 60 K

case (Figure 3.11d). Horizontally, the area affected is relatively small and even in the

stronger cases does not extend outside of the 5× 5 km area, constrained on the lee of the

temperature anomaly.
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Figure 3.11: Surface contour plots of vertical velocity with the horizontal wind vectors on the
third model level (150 m): (a) Ta = 0 K, (b) Ta = 20 K, (c) Ta = 40 K, and (d) Ta = 60 K.
Height contours at 500 and 900 m. Fr = 0.4 across all panels.
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The term “convective plume” will be used to describe an area of increased convection

and mixing over or on the lee of the surface temperature anomaly. This will either be iden-

tified using vertical velocity (wmax > 2 m s−1) or sub-grid TKE (TKEmax >0.2 m2 s−2).

Note that, while in low Froude number cases this is easily identifiable due to the other-

wise low values in w and TKE, it becomes more difficult to isolate it in higher Froude

number cases. As such, for Fr > 0.4 comments about the plume will be made based on

comparisons with respective control cases. When studying particular characteristics, data

for TKE will be used (see Section 3.6 for details).

3.4.2 Convective plume and gravity waves
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Figure 3.12: Vertical velocity (shaded contours) with isentropes (brown lines) overlaid, across a
cross-section in the middle of the domain, for: (a) Ta = 0 K, (b) Ta = 20 K, (c) Ta = 40 K, (d)
Ta = 60 K. Isentropes plotted between 299 and 316 K, every 1 K. Fr = 0.4 across all panels.

The control case reflects a standard isentrope cross-section where a series of station-

ary gravity waves propagate upwards (Figure 3.12a). As seen in the horizontal plots the

temperature anomaly acts to introduce a convective plume just downwind of the summit,

manifested by an increase in vertical velocity and a series of small-scale gravity waves,

similar to results for dry simulations presented by Kirshbaum (2011).
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Even for relatively weak thermal forcing (Ta = 20 K – Figure 3.12b), the circulation

enforced by the plume is superposed on the gravity wave activity and acts to alter the

mountain wave response. As the convective plume intensifies, this superposition of the

plume activity and the normal mountain wave response leads to different activity patterns.

This behaviour is consistent with previous research (Crook and Tucker, 2005). In the

vicinity of the temperature anomaly the strong descent that dominates the leeside of the

control simulation effectively disappears for Ta > 20 K. The dependency of the plume-

generated response to the plume characteristics can be clearly identified. In this respect

the plume can be said to act as “virtual terrain”, effectively acting as a steep, tall hill,

overlaid on top of the normal mountain, forcing the flow that is not directly in the vicinity

to go over and around it. Although the immediate effects of the plume are very localised,

noticeable alterations in the flow extend as far as 20 km downstream.
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Figure 3.13: As Figure 3.12 but contour plots of U -wind component. Isentropes plotted between
299 and 316 K, every 1 K.

In the U -wind component plots, a more extended area of flow separation and reversal

can be seen in the lee (Figure 3.13), with increasingly stronger positive values as the

strength of the thermal forces increases - with reverse flow up to 5 m s−1 (Figure 3.13d).
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As noted earlier, the area of downslope wind disappears and is replaced by the area of

flow reversal that starts closer to the summit as the surface temperature anomaly strength

increases. This can have implications for mixing of ash and other volcanic emissions in

the lee of a volcano.

Looking at the vertical profiles of w it can be seen that the +3 km profile (on the

windward side) remains unaffected by the temperature anomaly, remaining almost iden-

tical throughout the set of simulations. On the other hand the lee-side profiles change

drastically. What can be seen here is the effect of the superposition of the two different

sets of gravity waves along with the area of flow separation. Starting at Figure 3.14b, the

lower area in the atmosphere that featured the maximum downwards values of vertical

velocity is now taken up by a heavily damped oscillation that is of a similar amplitude

and slightly lower frequency, as would be expected from a steep but short obstacle, su-

perimposed over the normal mountain waves. For stronger thermal forcing the vertical

velocity profile for the lower atmosphere switches from negative to positive values - the

disappearance of the downslope wind detailed previously.
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Figure 3.14: Vertical structure of vertical velocity at three points, 17 km away from the peak
towards the windward side and 3 km before and after the peak, all across the middle of the domain,
for the cases under study.
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3.4.3 Turbulence characteristics

The convective plume is marked by a considerable increase in TKE – over one order

of magnitude in the simulations with surface heating – signifying the amount of mixing

carried out. The control case is marked by relatively low sub-grid TKE values (for this

Fr = 0.4 setting), so here, TKE can be used as a proxy for the plume (Figure 3.15). As

expected, the turbulent kinetic energy reaches a peak in the area of the plume with values

up to roughly 1 m2 s−2 close to the surface. Although most of the area of high turbulence

seems to be confined to the plume, as the imposed temperature anomaly is increased there

is an area on the lee side (at 8 km) with small but noticeable TKE values – this is the area

where the flow reversal is aided as seen previously in Figures 3.12 and 3.13. Note that,

due to the strong stratification of the cases presented here, advection of TKE follows the

atmospheric layers closely, as seen previously in Figure 3.8.
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Figure 3.15: As Figure 3.12 but contour plots of TKE. Isentropes plotted between 299 and 316 K,
every 1 K.
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3.4.4 Summary of changes by Ta

Overall, the plume, even for low surface temperature anomaly values, has a significant

effect on the atmospheric flow. At Fr = 0.4 (not a very energetic flow) the introduction

of the plume can be seen by several diagnostics marked by nearly a tripling of vertical

velocity at Ta = 60 K (Figure 3.16a), an increase in the strength of the flow reversal area

in the lee (Figure 3.16b), an increase of the maximum TKE by one order of magnitude

(Figure 3.16c), and a progressively higher plume height – shown by the increase in the

maximum TKE height (Figure 3.16d).
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Figure 3.16: (a) Maximum and minimum vertical velocity against surface temperature anomaly.
(b) Maximum (positive) U wind component. (c) Maximum TKE, and (d) maximum height where
TKE> 0.2 m2 s−2. All simulations carried out at Fr = 0.4.

The main effect of the surface temperature anomaly was seen to be the introduction of

a convective plume. The plume has been seen to act superposed over the normal mountain

wave activity of the mountain, modifying areas of original strong ascent or descent, in-

cluding the area of strong downslope wind close to the surface. The plume acts as “virtual

terrain” forcing the incoming flow to go over and around it. The introduction of this extra

obstacle acts to trigger a set of plume-generated gravity waves that are superimposed over
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the control (i.e. normal) mountain waves. Finally, the plume was seen to increase the area

and strength of flow reversal in the lee.

As far as mixing is concerned, it was shown that having the addition of the anomaly

intensifies mixing over the peak of the hill leading to values at least an order of magnitude

higher than in the control cases. Due to this dramatic increased in the TKE of the flow,

identification of areas of high TKE is proposed as a diagnostic to help identify the extent

and impact of the plume.

3.5 Surface temperature anomaly runs for constant Ta

The effect of different incoming flow speeds on a plume for a specified surface tempera-

ture anomaly (Ta = 60 K) is now analysed. By keeping the stability of the atmosphere

constant throughout the experiments, changes in the incoming flow speed (|U | = 1–

10 m s−1) cause a change in Fr (0.1–1). Figures with multiple plots in this section will

start from the Fr = 0.1 case (Panel a) and end with the Fr = 1 case (Panel d), i.e. the

layout mirrors that of Section 3.3 and so figures can be directly compared.

3.5.1 General features

Several features are highlighted in this section. First of all, it can be seen that the shape

of the plume is very sensitive to the wind speed – this is a change from a fairly symmetric

circular shape towards a “>” shape (Figure 3.17). The position and strength of the plume

are also strongly affected due to advection by the wind: in the weak wind cases the plume

develops almost on top of the temperature anomaly, while as the wind intensifies the

plume is advected further downwind, as far as 4 km downwind for the Fr = 1 case.

The relative strength of the plume compared to the rest of the flow decreases as the flow

becomes stronger. While the plume has a strong localised effect in the flow for the Fr =

0.4 case (as discussed in depth in Section 3.4), the effect on the large-scale flow is lessened

for the Fr = 0.7 and 1 cases.

3.5.2 Convective plume and gravity waves

As seen previously, as the Froude number is increased, advection acts to push the plume

(as seen by the strong convection) further downwind, creating different interactions with
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Figure 3.17: Surface contour plots of vertical velocity with the horizontal wind vectors on the third
model level (150 m) for: (a) Fr = 0.1, (b) Fr = 0.4, (c) Fr = 0.7 and (d) Fr = 1.0. Maximum
vector lengths are shown beneath each plot. Ta = 60 K across all panels.

the large-scale flow and related wave activity (Figure 3.18). For low Froude number values

(Figure 3.18a,b) the plume effects dominate the flow, while for higher Froude numbers the

plume plays a secondary role, depending on the relative positioning of the plume and the

gravity waves triggered by the mountain. In this respect, the plume can be said to act

as “virtual terrain”, forcing the flow over and around it and producing a set of secondary

gravity waves in a similar way a mountain would, clearly seen in Figure 3.18b. The

difference here is that the plume is a highly variable “mountain” and is greatly affected

by the incoming flow speeds, starting with a height of 1 km, but changing shape and

height under a stronger wind. The secondary gravity wave response also varies as the

“virtual terrain” characteristics change, however they can always be seen interacting with

the normal mountain waves.

For a very low incoming flow speed (Fr = 0.1) a plume-induced circulation can be

seen very close to the surface heating anomaly: with strong ascent enveloped by two areas
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Figure 3.18: Vertical velocity (shaded contours) with isentropes (brown lines) overlaid, across a
cross-section in the middle of the domain, for: (a) Fr = 0.1, (b) Fr = 0.4, (c) Fr = 0.7, (d)
Fr = 1. Isentropes plotted between 299 and 316 K, every 1 K. Ta = 60 K across all panels.

of negative vertical velocity. There is convergence into the plume with higher U values

on the windward side and flow reversal in the lee so air is drawn in into the plume (Figure

3.19a). At the top of the plume there is the inverse, with air diverging (see Figures 3.18

and 3.19). For Fr > 0.1 the plume interacts with lee wave activity creating different

areas of destructive and constructive interference. As seen previously this is the reason

why there is no downslope wind across the centre of the mountain (Figures 3.19b, c).

For strong surface forcing, the plume is advected downwind, as seen by division of the

downslope wind area (approximately at -10 km; Figure 3.18d), enhanced by constructive

interference. This disrupts the resonance that naturally occurs at Fr = 1: in the control

case lee waves continue for for than 40 km (Figure 3.4d), while in the for Ta = 60 K they

stop at approximately 30 km downwind Figure (3.18d).

Looking at theU -wind component, it can be seen that for very weak incoming flow the

temperature anomaly is able to overcome the easterly flow and create its own weak plume
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circulation (Figure 3.19a) of approximately 1 m s−1 at the top of the plume. This weak

circulation becomes overwhelmed by the oncoming flow for Fr > 0.1 and the effect

of the plume changes from very localised to a larger-scale change in the flow reversal

zone, affecting both maximum flow reversal wind values and area. This is illustrated by

comparing Figure 3.19 to Figure 3.5), when there is surface heating the leeside reverse

flow is significantly stronger for all Froude numbers.
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Figure 3.19: As Figure 3.18 but contour plots of the U -wind component. Isentropes plotted
between 299 and 316 K, every 1 K.

3.5.3 Summary of changes by Fr

Several diagnostics are now used to summarise the changes discussed in this section. For

low Froude numbers the plume can be clearly seen as the increase in the maximum verti-

cal velocity (Figure 3.20a). For higher Froude number values (Figure 3.20b–d) the impact

is lessened due to a combinations of strong advection and the fact that the flow is able to

go over the mountain and, thus, maximum vertical velocities are now comparable to the

plume. The increase seen for Fr = 1 is possibly the combination of a very energetic flow
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and the constructive interference of the plume and lee waves as discussed previously. The

maximum U -wind component (Figure 3.20b) increases with the Froude number, how-

ever, unlike the control simulations (Figure 3.10), the peak value is now at Fr = 1, as the

plume was seen to enhance rotor activity in the lee, while control simulations’ peak was

at Fr = 0.4. In contrast to the control simulations, here the maximum in TKE values is

driven by the mixing occurring in the plume and not the orography forcing. The maxi-

mum TKE remains largely unchanged across all experiments, showing that there is a limit

to the energy input from the plume (Figure 3.20c). The maximum TKE height (in this

case strongly related to the convective plume height) decreases drastically with increasing

Froude number as the plume is strongly advected by the wind (Figure 3.20d).
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Figure 3.20: (a) Maximum and minimum vertical velocity against Froude number. (b) Max-
imum (positive) U wind component. (c) Maximum TKE, and (d) maximum height where
TKE> 0.2 m2 s−2. Results from simulations with Ta = 60 K are plotted in black, while control
simulations are shown with gray lines.

It has been shown that the response to the temperature anomaly is highly sensitive to

the Froude number of the incoming flow, with two different flow regimes in evidence. For

small Froude numbers (between 0.1 and 0.4), the flow is dominated by a primarily vertical

plume-induced circulation. For Froude numbers larger than 0.4 the oncoming flow is able
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to alter the plume and the result is different patterns of wave activity depending on the

constructive and destructive interference of the plume and the mountain waves.

3.6 Surface temperature anomaly runs - Overall changes

3.6.1 Convective plume definition and features

So far the TKE trail has been used as a useful proxy for the convective plume. Here, a

justification for this reasoning will be provided, using computational and theoretical ar-

guments. From the computational side, even though the current resolution is high enough

to efficiently resolve the plume (with a width of approximately 900 m, or 3∆x, for the

Ta = 60 K, Fr = 0.1 case shown at Figure 3.11a) the internal structure of the plume

cannot be resolved at this scale. Hence, mixing occurring at smaller scale would be pa-

rameterised and output by the model as sub-grid turbulence. It was seen that, especially

for low Froude number cases, the plume introduces the largest amount of TKE in the

system and thus a clear signal can be retrieved. For higher Froude number cases where

the system already has turbulent mixing in the lee of the mountain or a more energetic

boundary layer the response becomes mixed but is still a good indication for the plume.

According to air parcel theory, an air parcel heated over the lava dome would rise adi-

abatically following the dry adiabat, until it reaches a height where it is no longer buoyant

– the height where the environmental potential temperature and the potential temperature

of the heated air parcel are equal. To test whether the height calculated by the TKE trail

conforms to this theory, the temperature the air over the lava dome is heated to is calcu-

lated and plotted against the respective height of the unperturbed potential temperature

isoline upstream (Figure 3.21).

The temperature of the air over the lava dome increases linearly with Ta for each

Froude number setting. As the Froude number increases, air is advected away more

rapidly and mixed, resulting in increased ventilation of the plume and a decrease in the

maximum temperature. For Fr > 0.4 this also appears to be an almost linear reduction

closely following the low air temperature for the control case. It can be expected that for

Fr � 1 this behaviour will change and all lines will converge towards the control case

due to plume being completely ventilated, however this is not seen here. In the Fr = 0.01
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Figure 3.21: (a) Air temperature directly over the lava dome against Froude numbers for the differ-
ent surface temperature anomaly values. (b) Scatter plot of maximum TKE plume height against
the height of the unperturbed potential temperature isoline corresponding to the temperature the
air parcels over the temperature anomaly were heated up to, shown in Panel a.

(|U | = 0.1 m s−1) cases, the maximum air temperature is less than the Fr = 0.1 cases.

This is most likely due to weak downwelling in the simulations – due to the low amount

of energy in the system a weak katabatic flow is created bringing colder air from higher

altitudes over the lava dome. This is reflected in a small decrease of air temperatures in

the control simulations.

As expected from air parcel theory, there is a good correlation between the projected

height of the heated air parcel and the TKE trail. This is especially true for low Froude

number cases that feature less complicated physics due to the absence of advection, dis-

tinguishable as the points featuring the highest plumes per data set in Figure 3.21b. Thus,

at the current grid spacing and for a temperature anomaly of this magnitude, the TKE

output directly by the model can be used as an indication of the plume trail. This analysis

also shows that it is possible to express plume height as a function of potential tempera-

ture, a more objective choice than height above ground, as this would appear to change

depending on the atmospheric profile. In brief, the plume acts in accordance with an air

parcel model.

Several diagnostics concerning the convective plume as well as the resulting flow in

general are now studied (Figure 3.22). All calculations were carried out for a cross-section

across the middle of the domain. As previously, the “TKE Trail Height” was calculated

as the maximum height where TKE> 0.2 m2 s−2. Cases where the maximum TKE was

lower than the threshold were omitted. Both “TKE Trail Length” and “Flow Reversal

Length” were calculated as the length of an area starting over or in the lee of the lava
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dome, from the point where TKE> 0.2 m2 s−2 and U > 1 m s−1 until the first point

where the values dropped below the respective thresholds.
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Figure 3.22: Various diagnostics against surface temperature anomaly (x-axis) for different
Froude numbers (lines): (a) Maximum vertical velocity, (b) Maximum turbulent kinetic energy,
(c) Maximum height of the TKE trail, (d) TKE trail length, (e) Maximum positive (reverse) value
for the U -wind component, (f) Flow reversal area length. All diagnostics are calculated for a
cross-section across the middle of the domain.

As noted previously, the most notable increase in the maximum vertical velocity oc-

curs for Fr ≤ 0.4. For Fr < 0.4 the increase in the maximum value is linear as Ta

increases, while for Fr ∼ 0.4 a linear increase is apparent for Ta > 20 K. After this

threshold the flow becomes too energetic for the convective plume to cause a discernible

increase (Figure 3.22a). An increase in Ta is mirrored in the maximum TKE values across

all cases, but for Fr ≤ 0.4 this is a clear and linear increase, while for more energetic

flows and smaller surface temperature anomalies the increase is less substantial (Figure

3.22b).
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The height of the TKE trail is proportional to the thermal forcing and inversely pro-

portional to the Froude number (Figure 3.22c). For low Froude numbers the increase

is almost linear, while for higher Froude numbers, the TKE trail seemingly reaches a

plateau for the Fr = 1 cases. The TKE trail length provides a distinct categorisation for

the different flow regimes and a diagnostic for the degree of skewing in the plume (Figure

3.22d). For Fr ≤ 0.4 the length is between 1–1.5 km (similar to the diameter of the lava

dome), suggesting a mostly vertical plume. For Fr > 0.4 the values increase to values of

5–12 km, showing that the plume is advected, heavily ventilated and no longer vertical.

For most cases the maximum reverse U -wind component increases with Ta, but the

most significant increase is seen for the Fr = 0.7 and 1 cases, where between Ta =40

and 60 K, Umax is increased by a factor of 1.5 and 1.8 respectively (Figure 3.22e). The

flow reversal area length can also be used as a diagnostic for the categorisation of the flow

regime (Figure 3.22f). For a Froude number between 0.4 and 0.7 the flow reversal area

length is approximately 20 km, while for lower or higher numbers it is between 0 and

3 km. For most cases it is insensitive to changes in Ta, with the exception of Fr = 1,

where the length increases from 3 to 13 km between Ta =40 and 60 K – signifying a

change in the flow regime.

3.6.2 Discussion of plume characteristics

Figure 3.23 shows a regime diagram for the parameter space under study. There are

three categories and each of the simulations is represented as a symbol depending on the

characteristics of the flow.

The first category, “No Plume”, marked as an asterisk in the diagram, covers the cases

where there is either no temperature anomaly (Ta = 0 K), a strong vertical plume is not

apparent, and rotor activity is not enhanced – practically cases that do not belong in the

two remaining categories due to a potential combination of weak thermal forcing and

strong advection. The second category, “Vertical Plume” features cases where the ratio

of the length of the TKE trail (from the top of the mountain) to its height is less than

3, so (HTKE − 1) ∗ LTKE < 3, where HTKE and LTKE are the height and length

of the TKE trail respectively. The final category, “Enhanced Rotors” are cases where

there is a significant increase in either the flow reversal U -wind component compared
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Figure 3.23: Regime diagram for the simulations presented in the chapter.

to the control case (Umax|Ta>0 > 1.5 Umax|Ta=0) and the length of the flow reversal

zone is over 10 km. Note that, as seen in Sections 3.4 and 3.5, the plume always causes

enhanced rotor activity, but here a relatively high limit was set in order to isolate cases

where the convective plume had a considerable impact on rotor activity. A simulation

could potentially be characterised by a combination of the last two categories, however

this did not occur within the parameter space studied here. Note, although an effort to

produce quantitative criteria was made here, some degree of qualitativeness remains.

From this regime diagram it can be seen that, for the plume to have a noticeable

effect on the flow, a temperature anomaly threshold between 20 and 40 K is necessary,

closer to 40 K for higher Froude numbers. Potentially, this, coupled with the fact that

the temperature anomaly that was used in the simulations was wider than the observed

lava dome, might lead to a further increase in the threshold value. For typical conditions

in Montserrat both categories are potentially important – the “Vertical Plume” category

can create a very strong localised perturbation, while the “Enhanced Rotors” category

could enhance recirculation and affect the distribution of volcanic emissions in the lee of

the lava dome. As seen in Chapter 2 (Section 2.6, Figure 2.12) the average wind speed
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was approximately 5 m s−1 and the values were distributed evenly between 1–8 m s−1,

meaning that depending on the lava dome temperature both flow regimes can be expected.

Although the heating regime was markedly different, similar vertical plumes, enhanced

flow reversal and generally interaction with the mountain wave pattern has been noted by

(Kirshbaum and Wang, 2014), studying flow past a heated mountain.

3.7 Summary

The aim of this chapter was to study the orographic flow over a heated surface in a new

heating regime, that of a strong but relatively small heat source, referred to as “surface

temperature anomaly”, on the top of a mountain. This configuration simulates a hot lava

dome, on top of an active, non-erupting volcano. A parameter space consisting of a range

of realistic wind and temperature anomaly values was chosen, representing a sufficient

amount of typical atmospheric and volcanic conditions.

The main change brought on by the temperature anomaly is the addition of a con-

vective plume in the vicinity of the anomaly. A temperature anomaly of at least 20 K is

required for a plume. The main force that drives the flow is the amount that an air parcel

is heated while it passes over the temperature anomaly, as the plume is created to lift the

air parcel to the level in the atmosphere where the surrounding potential temperature is

equal to the new temperature of the air parcel. The stronger the increase in the air parcel

temperature, the more abrupt this ascent is. It was seen through the experiments that the

maximum plume height is reached for a 0.1–1 m s−1 wind (Fr = 0.01–0.1), where the

lack of strong advection allowed for a warming of the air over the lava dome by 3–6 K. At

the current grid resolution the subgrid TKE was found to be a useful diagnostic to identify

the convective plume.

Low incoming flow speeds allow the plume to develop predominantly into the vertical

and the result in the flow remains localised. Higher incoming flow speeds have two ef-

fects: the air is heated by a smaller amount and the plume is advected towards the lee side

of the dome. This acts to enhance rotor activity in the lee and creates complex interac-

tions between the plume and gravity wave activity – both vertically propagating mountain

waves and horizontally propagating lee waves. The resulting flow is broadly seen as a

superposition of the convective circulation and the “normal” orographic flow response,
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pointing towards a linear behaviour in the response for both of the forcings. In extreme

cases, where a weak temperature anomaly is faced with a strong wind it was shown that

the wind has the capability to effectively dissipate the plume, eliminating the effect of the

lava dome.



Chapter 4

Flow over an idealised volcano:

Moist experiments

4.1 Introduction

In an effort to thoroughly analyse the effects of an active, non-erupting volcano on atmo-

spheric flow, the idealised component of this study has been split into two parts. The first

part (presented in Chapter 3) featured a series of highly idealised “dry” simulations (dry

in the sense that moisture in the atmosphere was explicitly set to zero and no microphysics

modules were employed in the model). The second part (this chapter) simulates the effect

of the heated volcanic surface on a “moist” atmospheric circulation, with water simulated

in all phases. Here, the simulations focus on the role of the volcano in changing the flow

and associated rainfall.

Rainfall is a well-established trigger for volcanic hazards. This link is self-evident

for “secondary” volcanic activity such as lahars – volcanic mudflows composed of re-

mobilised volcanic sediment and rainwater (Major and Newhall, 1989; Smith and Fritz,

1989). Perhaps unexpectedly, rainfall can also trigger “primary” volcanic activity such

as pyroclastic flows and volcanic dome collapses, as documented at Mount St. Helens,

U.S.A. (Mastin, 1994), Unzen, Japan (Yamasato et al., 1998), Merapi, Indonesia (Voight

Parts of the chapter have been reviewed for publication:
Poulidis, A.-P., Renfrew, I. A. and Matthews, A. J. (2015) Thermally induced convection and precipitation
over a volcano. Journal of the Atmospheric Sciences (under revision).
The experimental setup was agreed on by all authors. I have carried out the simulations, the data analysis and
wrote the first draft of the paper. This was then revised based on comments from the co-authors.
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et al., 2000), Piton de la Fournaise, Réunion Island (Violette et al., 2001), Soufrière Hills

Volcano (SHV), Montserrat (Matthews et al., 2002; Carn et al., 2004; Barclay et al., 2006;

Matthews et al., 2009) and Stromboli, Italy (Hort et al., 2003).

Interestingly, there is, however, a further unexplored possibility: that the heated sum-

mit of a volcano interacts with the orographic flow to force atmospheric convection and

enhanced precipitation, thus potentially creating a positive volcano-rainfall feedback. Here

this possibility will be examined through numerical modelling. The numerical exper-

iments presented here are generalised, but are carried out for the tropical atmospheric

conditions representative of those at SHV, Montserrat, where such rainfall-volcanic inter-

actions are well established. It is worth noting that, nearly half of the approximately 1500

active or potentially active volcanoes in the world lie in the tropics (Simkin and Siebert,

1994).

Even though orographic rainfall, the result of air mechanically forced to ascend over

a hill or mountain, can greatly affect precipitation in the Tropics, it is a field that has

received relatively little attention. Recent studies as part of the Dominica Experiment

(DOMEX; Smith et al., 2012) have shown that, aside from diurnally-forced deep con-

vection and tropical cyclones (Houze, 2012), shallow convection from forced ascent can

have a significant effect on the local precipitation (Kirshbaum and Smith, 2009; Smith

et al., 2009; Minder et al., 2013). This has also been established for other islands in the

Caribbean (Cécé et al., 2014). Although the resulting flows vary depending on the loca-

tion and the size of the island and the mountain, the general response can be summarised

as greater cloud cover over the windward side, with enhanced convection and precipita-

tion as the cumulus field created over the ocean interacts first with the coastline and then

with the mountain. Depending on the mountain characteristics, the resulting orographic

rainfall can be substantially higher (a factor of 10) than both the rainfall over the sea, and

the rainfall caused by the convection as the flow meets the land (Kirshbaum and Smith,

2009; Smith et al., 2009).

Orographic flow in the vicinity of hills and ridges is a classic problem in meteorology

(see for example Queney, 1948; Eliassen and Palm, 1961; Drazin, 1961; Smith, 1980,

1989; Smolarkiewicz and Rotunno, 1989 and Ólafsson and Bougeault, 1996). However
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orographic flow over heated topography has not been as widely studied. The main ra-

tionale behind previous research has been to investigate the impact of solar heating in

triggering localised convective updrafts and their effect on weather systems (Crook and

Tucker, 2005; Lewis et al., 2008; Kirshbaum, 2011). The general result is a strengthening

or generation of severe storms akin to the way mountains can enhance rainfall (Crook

and Tucker, 2005; Kirshbaum, 2011). Although linear theory has been used to study the

effect of sufficiently weak thermal forcing (Crook and Tucker, 2005; Tucker and Crook,

2005), Kirshbaum (2013) demonstrated that the application of linear theory for two layer

flows is severely limited due to the non-linear effects that are introduced by the difference

between the layers.

Recently, attention has focused on the impact of wild fires in the generation of py-

rocumulus clouds (Gatebe et al., 2012) and the initialisation of storms (Cunningham and

Reeder, 2009). Wild fires lead to a localised maximum in surface temperature, along with

the release of water vapour and chemical by-products from burning. Depending on the

atmospheric structure they can generate deep convection, pyrocumulus clouds and severe

storms. As in the solar heating cases, the result is a localised convection cell that can

break through the convective inhibition of the lower atmosphere and force deep convec-

tion. Unlike the solar heating cases, these storms often occur under strong winds, but the

extension and propagation of the storm still depends heavily on the atmospheric structure

(Cunningham and Reeder, 2009).

The rationale for studying the effects of heated terrain on the atmosphere here is differ-

ent: it is to examine how a volcano can influence the atmospheric flow. The focus of this

study is on flows over active dome-building volcanoes, not undergoing an explosive erup-

tion. Dome-building volcanoes are a category of volcanoes that extrude high-viscosity

magma through a central conduit. The magma cools and solidifies, blocking further flow

up the conduit and forming a pressurised lava dome. This lava dome can become unstable

due its weight and internal pressure and fail, leading to explosive dome collapse and pyro-

clastic flows. Heavy rainfall has been implicated in triggering some such dome collapses

and pyroclastic flows at a number of volcanoes, including SHV, Montserrat (Matthews

et al., 2002). Hence, any enhancement of rainfall by the heated surface of the volcanic
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Figure 4.1: (a) Conceptual model under study. (b) Schematic describing the proposed mecha-
nism.

dome may lead to a positive feedback, increasing the probability of these dangerous vol-

canic hazards.

As already discussed, the Soufrière Hills Volcano, Montserrat has been chosen as

the “template” for the idealised simulations presented here. Montserrat is located in the

Tropics (16.75◦ N, 62.20◦ W) and is part of the lesser Antilles, Eastern Caribbean. It

has been volcanically active since 1995, with a series of devastating eruptions and active

dome-building cycles over the last 20 years. For an overview of volcanic activity see

Sparks and Young (2002) and Wadge et al. (2014).

The conceptual model being tested assumes a tradewind cumulus regime in an east-

erly background flow with a tradewind inversion (Figure 4.1). The flow over the top of

the volcano is subject to thermal forcing via the surface fluxes from the strongly heated

volcanic surface. This is hypothesised to be sufficient for convective plumes to break

through the inversion, releasing the high values of convective available potential energy

(CAPE) present in the background state, and initiating intense localised rainfall over the

volcano. Although beyond the scope of this study, this enhanced rainfall may then trigger

an already unstable volcanic dome to collapse (by the mechanisms described above) or

secondary volcanic hazards such as lahars.

In the study, the volcano is simulated simply as a realistic increase in the surface tem-

perature of an otherwise passive mountain. In reality volcanoes are a source of ash and

various gaseous emissions. Although the volcanic gas composition varies significantly

between different volcanoes, in general the gases released are formed of water vapour,

carbon dioxide, sulphur dioxide and traces of other chemicals (Parfitt and Wilson, 2008).
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These emissions, along with the volcanic ash, are known to have an impact on cloud mi-

crophysics in the vicinity of the volcanic conduit, for example affecting cloud seeding due

to the abundance of cloud condensation nuclei (CCN) and other processes (Durant et al.,

2008) and causing acid rain (Lane and Gilbert, 1992). However, these secondary effects

are not studied here. Rather, what is examined is the primary response of the atmospheric

flow to the increase in temperature, i.e. a thermally-induced convective plume. The effect

of the ash and gas emissions and any interactions with the thermal circulation will need

to be considered in future work. Interactions between aerosols (for example the volcanic

plume) and precipitation is still an open topic in research, with aerosols being implicated

in both aiding and inhibiting rainfall (Rosenfeld et al., 2008; Stevens and Feingold, 2009).

On one hand, clouds with a low CCN concentrations rain out too quickly, but on the other

hand, clouds with a heavy concentration evaporate much of their water (Rosenfeld et al.,

2008). Furthermore, the efficiency of coalescence (the main driver of rainfall in liquid

cloud) increases with cloud water content and decreases with drop concentration – added

CCN slow the conversion of cloud drops into raindrops by nucleating larger concentra-

tion of smaller drops. Hence, added aerosols (which increase drop concentration) are

expected to reduce precipitation and have been known to shut off precipitation from shal-

low, short-lived clouds (Rosenfeld et al., 2008; Stevens and Feingold, 2009). However,

clouds with very high liquid-water content are too efficient at generating precipitation and

are less susceptible to this mechanism (Stevens and Feingold, 2009). Finally, accelerating

the conversion of cloud water to precipitation could enhance rainfall amounts (Rosenfeld

et al., 2008). As this is a very complex problem a large number of high resolution exper-

iments would need to be carried out to test this in the context of volcanically-generated

rainfall.

The chapter is organised as follows. Initially a short description of the experimental

setup is presented (Section 4.2). Results are presented in two main sections: control exper-

iments (Ta = 0 K; Section 4.3) and surface temperature anomaly experiments (Ta > 0 K;

Section 4.4). The latter is further divided into three sub-sections discussing the sensitivity

of the results to Ta (Section 4.4.1) and the atmospheric conditions (Section 4.4.2), fol-

lowed by a section of further detailed analysis of results (Section 4.4.3). After that, the

temporal evolution of the plume is analysed (Section 4.5). The chapter then concludes
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with a brief discussion (Section 4.6) and a summary of the main results (Section 4.7).

4.2 Experimental configuration

4.2.1 Model setup

The numerical simulations were carried out using the Weather and Research Forecast

(WRF) model, version 3.3.1, running in an idealised configuration. The model domain

consists of an isolated volcano, located near the centre of the domain and surrounded by

ocean (Figure 4.2). Note that the terms “volcano” and “mountain” are used interchange-

ably throughout the rest of the thesis. The domain has 680 by 250 grid points with a grid

spacing of ∆x = ∆y = 300 m in both directions, so representing 204 km in the x and

75 km in the y direction. There are 147 levels in the vertical. The vertical grid spacing is

50 m up to a height of 4 km, increases linearly to 200 m up to 12 km and the increases

linearly up to 1000 m until the model top, at 16 km. The time step is 2 seconds with each

simulation run for 9 hours. The first 3 hours are spent on model “spin up” (hours 1-2) and

approaching a quasi-steady state (hours 2–3). All results presented are 3h averages from

hours 3 to 6. Sensitivity tests up to 9h showed only minor changes in the output. The

height (h) of the volcano has a Gaussian profile with a half-width of approximately 10 km

and a height of 1 km:

h(x, y) = htop exp

[
−
(
x− xs
Lx

)2

−
(
y − ys
Ly

)2
]

(4.1)

where xs and ys are the coordinates of the volcano’s centre, htop = 1000 m is the max-

imum height and Lx and Ly are parameters relating to the half-width (both were set at

5700 m - see Figure 4.2a). Although the simulations are idealised, these dimensions were

chosen so that the mountain has similar topography to that of SHV.

A suite of physical parametrisations are implemented in WRF. The surface-layer re-

lated physics schemes are used to implement the surface heating on the top of the vol-

cano, specifically a thermal diffusion model for the soil scheme and the Monin-Obukhov

scheme for the atmospheric surface layer (Skamarock et al., 2008). The relatively com-

plex 6-phase ‘Purdue Lin’ microphysics scheme is used based on the studies by Lin et al.
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Figure 4.2: (a) Cut-away of the topography of the idealised Gaussian mountain. (b) Model do-
main. The mountain is centred at x = 0, y = 0. Selected height contours are shown at 1 m (bold)
and then at 100, 500, and 900 m, corresponding to the bold contours in (a). The model surface type
is land where the height is over 1 m (shaded area), and water everywhere else. The background
wind is easterly, as indicated by the arrows on the eastern (upwind) boundary. (c) Cross-section
through the centre of the volcano showing surface temperature anomaly (surface temperature mi-
nus ambient surface temperature). The shaded areas show typical lava dome dimensions.

(1983) and Rutledge and Hobbs (1983). This scheme was chosen because deep convec-

tion past the freezing point, up to the tropopause was expected (Hong and Lin, 2006). The

radiation and boundary-layer schemes are switched off for all simulations. The lack of

a radiation scheme does not grossly affect the magnitude of the surface heat fluxes (con-

trolled by the soil model) and, as no simulations last more that 9 hours and as the focus of

the study is on a quasi-steady response, then not implementing a radiation scheme is an

appropriate simplification. Finally, at the current resolution a boundary layer scheme is

not needed as primary eddies are explicitly resolved (Bryan et al., 2003; Kirshbaum and

Fairman, 2014). For a more detailed discussion see Chapter 2.

Aside from these schemes, an option for diffusion that evaluates mixing terms in

physical space and 1.5-order TKE closure is used in all simulations. A Runge-Kutta

third-order time scheme is used for the computations. A fifth-order and a third-order

scheme are used for momentum and scalar advection, respectively, in the horizontal and
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vertical dimensions (Skamarock et al., 2008). A w-Rayleigh damping layer is used above

8 km to reduce the errors from spurious gravity waves being reflected on the top of the

domain (Klemp et al., 2008), and sixth-order monotonic horizontal diffusion is applied

to all variables for stability and to minimise spurious behaviour at poorly resolved scales

(Knievel et al., 2007).

4.2.2 Initialisation sounding

All simulations have been initialised horizontally homogeneously from a prescribed at-

mospheric profile. The profiles used (Figure 4.3) are based on those of Siebasma et al.

(2003), which are marine soundings from the Caribbean during the BOMEX experiment,

that have been simplified and used in several previous modelling studies (e.g. Siebasma

et al., 2003; Kirshbaum and Smith, 2009). Several idealised profiles have been prescribed

with changes in: inversion strength, tropospheric humidity, and ambient wind speed. The

soundings include a temperature inversion at the top of the “tradewind cumulus” regime.

The difference in the maximum potential temperature (θI ) between the “Strong Inversion”

and “Weak Inversion” profiles is 1 K at the peak of the inversion (close to 2 km, Figure

4.3a). Above the inversion the potential temperature continues to increase upwards with

a constant dry Brunt-Väisälä frequency (Nd = 0.01 s−1 – not shown). The “Dry” and

“Wet” tropospheric humidity profiles are similar near the surface with an almost saturated

layer between 0 and 2 km – 5% more saturated for the “wet” case (Figure 4.3b). In the

“dry” profile the relative humidity drops steeply, while the “wet” profile features a moister

troposphere. The combination of “Strong Inversion” and “Dry Atmosphere” profiles rep-

resents the sounding used by Kirshbaum and Smith (2009), while the “Weak Inversion”

and “Wet Atmosphere” were chosen based on a trade-off between: (i) being able to force

a regime changes, but at the same time (ii) represent realistic changes over that profile,

based on the radiosonde study presented in Chapter 2. The wind speed profiles increase

through the surface layer to constant values of 1, 4 and 7 m s−1 from the East, in keeping

with a sub-tropical tradewind inversion climate. The characteristics of the profiles used

here also broadly conform to the climatological profiles created by Dunion (2011), based

on over 6000 July-October radiosondes from the Caribbean region.

The parameter choice in the prescribed atmospheric profiles leads to moist Froude
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Figure 4.3: Thermodynamic profiles used in the simulations. (a) Potential temperature profiles for
“weak inversion” (solid line) and “strong inversion” (dashed line). (b) Relative humidity profiles
for “dry” atmosphere (solid line) and “wet” atmosphere (dashed line). (c) Wind speed profiles for
“weak easterlies” (dashed line), “moderate easterlies” (solid line), and “strong easterlies” (thick
line). Note the change in vertical structure.

number (Fw) values between approximately 0.1 and 0.7. Here the moist Froude number

is defined as Fw = U N−1w h−1, where U is the incoming flow speed, Nw is the moist

Brunt-Väisälä (or buoyancy) frequency and h is the maximum height of the mountain.

Nw is calculated using the virtual potential temperature profile. Note that, as both Nw

and U change throughout the atmosphere, the calculation here was carried out for the

lowest 2 km in the atmosphere. Although using the whole atmosphere would provide

information for the temperature inversion it would decrease the value of the parameter in

assessing the flow regime. Within this parameter space it is expected that the flow will be

mainly confined to a “flow around” regime, with the higher wind cases on the border of

being able to cross to the “flow over” regime (Smith, 1989). However, it should be noted

that in a moist atmosphere it becomes inappropriate to categorise the flow based solely on

the moist Froude number, as other parameters such as CAPE and temperature inversions

can heavily affect the flow (Chen and Lin, 2005).

4.2.3 Imposed temperature anomaly on the volcano summit

The surface temperature in the model is specified at initialisation, by gradually increas-

ing the surface temperature towards the summit. A grid spacing of 300 m was chosen

for WRF, which although sufficient for resolving orographic flows and deep convection

(Bryan et al., 2003) does mean the volcanic dome is only crudely resolved by a relatively
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small number of grid points, i.e. the fine surface temperature details of the dome (e.g. the

hotspots; Chapter 2, Figure 2.3) are not represented in the WRF surface boundary con-

ditions. Instead surface temperature anomalies of between 0 and 60 K are specified. For

a cross-section across the centre of the volcano (Figure 4.2c) the temperature anomaly is

imposed over roughly 9 grid points following Equation 4.2:

T ′(x, y) = Ta exp

[
−
(
x− x0
Wx

)2

−
(
y − y0
Wy

)2
]

(4.2)

where T ′ is the temperature perturbation, x0 and y0 are the coordinates of the lava dome,

Ta is the maximum temperature anomaly and Wx and Wy are parameters relating to the

half-width (both set at 900 m). A typical dome at SHV ranges between 500 and 1000 m in

diameter (Wadge et al., 2014), shaded in Figure 4.2c. The surface temperature anomaly

is time independent in each experiment, leading to a nearly-constant surface heat flux

once the simulation has reached a quasi-steady state. This is the same surface temperature

distribution as the one used in Chapter 3 to allow for direct comparison of results.

As the response of the flow to heated terrain has been found to be non-linear (Kirsh-

baum, 2013), the main simulations were carried out for a range from Ta = 0 (control runs)

to Ta = 60 K by increments of 20 K (temperature forcing runs). The parameter combi-

nations – average relative humidity (RH), inversion strength (θI ), wind speed (|U |), and

surface temperature forcing (Ta) – used in the suite of model integrations are summarised

in Table 4.1.

Experiment Name RH (%) θI (K) |U | (m s−1) Ta (K)
Dry-Strong Inversion 50 308.2 1, 4, 7 0:20:60
Dry-Weak Inversion 50 307.2 1, 4, 7 0, 60
Wet-Strong Inversion 60 308.2 1, 4, 7 0, 60
Wet-Weak Inversion 60 307.2 1, 4, 7 0:20:60

Table 4.1: Summary of simulations. RH is the average relative humidity above the inversion,
θI is the potential temperature at the peak of the inversion, |U | is the value of the easterly winds
above the inversion and Ta is the value of the temperature anomaly. Experiment names refer to
the combination of the relative humidity and temperature inversion values.

4.3 Control experiments: Flow over an isolated island

Here, control simulations are presented in order to outline the basic flow response to the

orography in the absence of any surface temperature forcing. Results are presented for
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three wind values (|U |=1, 4, and 7 m s−1, equivalent to Fw = 0.1, 0.4 and 0.7), for

the two “extreme” atmospheres: a dry profile with a strong inversion and a wet profile

with a weak inversion – i.e., those least and most conducive to moist convection. All

figures presented have the same layout, columns have the same atmospheric structure

characteristics (θI=308.2 K, RH =50 % for the left-hand column and θI = 307.2 K,

RH = 60 % for the right-hand column), while rows have the same incoming flow speed

(|U |=1 m s−1 for the top row, |U |=4 m s−1 for the middle row, and |U |=7 m s−1 for the

bottom row). The first combination of characteristics will be referred to as “Dry-Strong

Inversion”, while the second “Wet-Weak Inversion”. Note, all plots show restricted parts

of the full domain and all data shown are 3h averages.

4.3.1 Flow response and rainfall

Figure 4.4 shows vertical velocity at the third model level on terrain following coordinates,

overlaid with vectors for the horizontal wind. This level was chosen as it is representative

of low-level flow (150 m above the surface), but outside of direct surface layer influence.

All panels show easterly flow (coming from the right) with more ascent on the windward

side and more descent in the lee side. Some degree of convection can be seen all over

the domain. A number of streamlines are plotted to facilitate comparison between the

different cases.

As |U | increases the simulations change from a regime of “flow around” the moun-

tain, where vertical motion is constrained to isolated cells (w approximately between

±0.3 m s−1 – Figures 4.4a,b) to a regime of “flow over” the mountain with ascent on

the windward slopes, and descent on the leeward slopes (w approximately between −2–

1 m s−1 – Figures 4.4e,f). Isolated small-scale convective cells can be seen in all cases.

For very low wind speeds the flow is heavily affected by localised circulation with numer-

ous small-scale vortices resolved (highlighted in Figure 4.4b by the collapsed streamline).

At |U | = 4 m s−1 two counter rotating vortices can be seen in the lee, as expected for

a Froude number of 0.4 (Smolarkiewicz and Rotunno, 1989). For higher wind speeds

a strong mountain wave response is triggered as the flow progresses towards the linear

theory area (Smith, 1989). The results are in perfect agreement with results presented in

Chapter 3 (for example Figure 3.3). No major changes can be seen in the general flow
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Figure 4.4: Vertical velocity (shading) with the horizontal wind vectors (every 10th is plotted)
on the third model level for: (a) |U | = 1 m s−1, “Dry-Strong Inversion”, (b) |U | = 1 m s−1,
“Wet-Weak Inversion”, (c) |U | = 4 m s−1, “Dry-Strong Inversion”, (d) |U | = 4 m s−1, “Wet-
Weak Inversion”, (e) |U | = 7 m s−1, “Dry-Strong Inversion”, and (f) |U | = 7 m s−1, “Wet-Weak
Inversion”. Note that the colour bar (as in most of the figures that follow) is non-linear near zero
to make a clear distinction between positive and negative values. Streamlines shown starting at
y = 4 km for all cases. Height contours are at 5, 100, 500 and 900 m. The fields shown are 3h
averages here and in the rest of the section. Control runs (Ta = 0 K).

between the two different atmospheric structures (Dry-Strong and Wet-Weak Inversion).

Figure 4.5 shows horizontal contour plots of surface rainfall rates (R). All rainfall rates

are averages over the study period (hours 3–6), converted to hourly rates. The rainfall re-

sponse is very different depending on the atmospheric conditions. For low incoming flow

speeds the rainfall is mainly convection based. In the Dry-Strong Inversion case there is

rainfall in the lee of the mountain as a result of lee-side convergence (Roe, 2005), as well

as scattered rainfall due to individual convective cells (Figure 4.5a). In the Wet-Weak
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Figure 4.5: As Figure 4.4 but for rainfall rate (R). The thick black contour line signifies R >
0.5 mm hr−1, while shaded areas show R over 1, 2, and 5 mm hr−1. Control runs.

Inversion case, rainfall due to larger convective cells is visible, scattered around the do-

main, possibly due to the influence of strong individual cells in the flow (Figure 4.5b).

Both cases feature rainfall rates of R > 2 mm hr−1, consistent with moderate to deep

convection. On average cloud tops below 5 km are associated with a rainfall rate of ap-

proximately 2.6 mm hr−1, while cloud tops below 2 km are associated with 1.6 mm hr−1.

The term “deep convection” will be used here to describe rainfall rates of 2 mm hr−1,

on average associated with cloud tops over 3 km. This is used slightly inappropriately as

it encompasses both deep convection and “moderate” convection, but it is used to make

the distinction between convection below the inversion and above. For |U | = 4 m s−1

there is a switch towards a more orographically-forced rainfall regime, as the wind is
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now strong enough to disrupt the evolution of strong convective cells. However, as seen

in Figure 4.4c,d the flow is not energetic enough to go entirely over the mountain and

as such the orographic response is minimal and can only be seen only in the Wet-Weak

Inversion case (Figures 4.5c,d). At |U | = 7 m s−1 orographic rainfall dominates. Al-

though convective rainfall can still be seen, elongated in the direction of the wind, the

domain is now dominated by rainfall over the mountain – concentrated at the crest in the

Dry-Strong Inversion case and more wide-spread in the Wet-Weak Inversion case (Figures

4.5e,f). In the Dry-Strong Inversion case the orographic rainfall is consistent with shallow

convection (R < 2 mm hr−1), while in the Wet-Weak Inversion case deep convection

(R > 2 mm hr−1) is triggered as the incoming flow is already close to saturation.

Figure 4.6 shows a vertical cross-section across the middle of the terrain, in the x

direction. Results are averaged over 5 grid points (1.5 km) in the y direction. Vertical

velocity is shaded, while black lines represent (liquid) cloud mixing ratio, and brown con-

tours potential temperature. Below the main part of the plot, the first subplot shows mean

(black lines) and maximum (brown dashed lines) rainfall intensity. Maximum values are

values sustained for at least 30 mins to filter out very high but not long-lasting rainfall

rates. Finally, the subplot below that shows the frequency for rainfall over a certain limit:

1 mm hr−1 (green), 5 mm hr−1 (blue), and 10 mm hr−1 (red). A frequency of 1 denotes

continuous rainfall over the 3 hours of integration. Note that some extreme values in

both vertical velocity and rainfall can be expected if the cross-section intersects a deep

convective cell.

Results here show the progression from the “flow around” regime (flat isentropes,

convective rainfall cells, no gravity waves or orographic rainfall), towards the “flow over”

regime. For |U | = 1 m s−1 the cloud water mixing ratio is distributed fairly equally

over the domain. In the Dry-Strong Inversion case, convection is contained beneath the

tradewind inversion and significant amounts of rainfall are only found in the lee of the

mountain (Figure 4.6a). In the Wet-Weak Inversion case, high maximum rainfall rates

(R > 5 mm hr−1) can be seen across the whole domain, however these are short-lived as

they are not picked up by the rainfall frequency distribution, pointing towards randomly

distributed quick deep convective bursts that quickly get mixed with the dry air above the

inversion (Figure 4.6b). For |U | = 4 m s−1, the flow is more strongly controlled and the
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Figure 4.6: Vertical velocity (shading) with isentropes (brown lines) and cloud water mixing
ratio (black lines) overlaid, along a cross-section in the middle of the domain. Rainfall water
mixing ratio of 0.01 g kg−1 is denoted by the thin black line and the cloud water mixing ratio is
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Beneath each main plot, subplots show mean and maximum rainfall intensity in mm hr−1 (black
and brown lines; right-hand axis), and the frequency of rainfall intensity over specific limits (green
for 1 mm hr−1, blue for 5 mm hr−1, and red for 10 mm hr−1; left-hand axis). Control runs.

influence of the mountain is more prominent as there is a relative decrease in cloud cov-

ering in the lee. Very little rainfall is seen in either cases as the flow prohibits convective

motion more strongly (Figure 4.6c,d). Finally, for |U | = 7 m s−1, cloud cover greatly in-

tensifies as the flow is forced over the mountain and is accompanied by persistent rainfall.

Mountain waves on the lee side, stronger in the Dry-Strong Inversion case as the atmo-

sphere is more strongly stratified (Figure 4.6e). In the Wet-Weak Inversion case persistent

deep convective rainfall can be seen (frequently over 5 mm hr−1 over the mountain top),

triggered as the more moist flow impinges on the mountain (Figure 4.6f).
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There is a build-up in turbulent kinetic energy (TKE) in the lee of the mountain as

the flow becomes more energetic (Figure 4.7). For low incoming flow speed, w is close

to zero everywhere in the domain, both at the surface and a height of 1 km. For higher

|U | there is ascent on the windward side and strong descent in the lee (as seen in Figure

4.6), enhanced by the katabatic (downslope) wind effect. Although this is a well-known

and studied effect, its generation is still debated, with the most prevalent theory being

that it is an analogous phenomenon to hydraulic jumps in shallow-water flows (Durran,

1990). The mountain wave response can also be seen in the |U | = 7 m s−1 case (Figure

4.7e,f). The U -wind component shows a fairly consistent behaviour for all simulations,

decreasing in the windward side, increasing in the lee and then decreasing after that, with
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a flow reversal area visible after that. The flow reversal zone never exceeds a height of

1 km. These results are in agreement with those presented in Chapter 3 for the dry runs

(for example Figures 3.5 and 3.8) and are in agreement with other studies (Eckermann

et al., 2010).

Figure 4.8 shows vertical profiles of cloud water mixing ratio (qC) and other hydrom-

eteors (rain, snow, ice and graupel; qH ) for three areas, over the sea, over the windward

side, and over the leeside of the mountain (marked as “Sea”, “Windward” and “Lee” on

the insert in Figure 4.8b). Once again, although a wider area was chosen, results can be

influenced if a convective cell was within the area of study.
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Figure 4.8: Vertical profiles of cloud water mixing ratio (qC ; black lines) and other hydromete-
ors (rain, snow, ice and graupel; qH ; blue lines) for locations “Sea”, “Windward”, and “Lee” as
illustrated in the insert of Panel c. Note the change in the x axis. Control runs.

For |U | = 1 m s−1 cloud water mixing ratio and hydrometeor profiles appear rel-

atively similar irrespective of the location (Figure 4.8a,b). This agrees with the results

presented previously – for low incoming flow speeds the mountain plays a lesser role. All
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characteristics peak beneath the inversion. In the Wet-Weak Inversion case, wider distri-

bution can be seen for most characteristics as convection is more prevalent and the atmo-

sphere is mixed more thoroughly, moving the inversion peak higher. For |U | = 4 m s−1,

in the Dry-Strong Inversion case (Figure 4.8c) a significant increase in cloud water mix-

ing ratio can be seen in the lee as there is consistent high level cloud (also seen in Figure

4.6c). The Wet-Weak Inversion case appears fairly similar to the respective |U | = 1 m s−1

simulation, however values above the inversion are significantly decreased (Figure 4.8d).

Finally, for |U | = 7 m s−1 the peak values can be seen for the windward side, higher

than both the sea and leeside locations (Figures 4.8e,f). As previously, for the Dry-Strong

Inversion case the distribution is more confined below the inversion.

4.3.2 Control experiments overview

The control results can generally be explained in terms of the atmospheric conditions

and correspond well to previous studies of similar situations (e.g. Kirshbaum and Smith,

2009; Minder et al., 2013). For low incoming flow speeds the flow is mainly controlled

by random convection across the domain. As the flow passes over the sea a layer of

low level (shallow) cumulus clouds is formed beneath the inversion due a combination

of instability beneath the inversion, convection in the boundary layer, high humidity in

the atmosphere, and moisture fluxes. In the Dry-Strong Inversion case, the convection

is largely confined beneath the inversion, aside from the leeside, where there is rainfall

due to convergence (Roe, 2005). In the Wet-Weak Inversion case deep convective bursts

appear at random over the domain, owing to the more favourable conditions for moist

convection. This leads to rainfall over the sea from sporadic deep convection, as the

inversion is weakened and the atmosphere above the inversion becomes more humid. For

low wind speeds Minder et al. (2013) found that although convective cells were triggered

randomly in the domain, they were not strong enough to generate rainfall, something that

agrees with the Dry-Strong Inversion experiment results. In the Wet-Weak Inversion case,

strong convection and deep convective rainfall is generated due to the decreased strength

of the inversion, as well as a more humid lower atmosphere. Note, low-level humidity has

been known to play a major role in initiating moist convection (Kirshbaum, 2013).

As the incoming flow speed increases, convection is inhibited and the flow enters
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a more mechanically-driven regime. As the flow crosses over land the cumulus field

intensifies and high amounts of rainfall are consistently generated over the mountain,

with an average rainfall intensity of at least 1 mm hr−1 – at least 5–10 times more that the

average rainfall over the sea. In the Wet-Weak Inversion case this increases to up to 50

times higher rainfall rates over the windward side compared to the sea, as the more moist

flow meets the mountain and deep convection is consistently generated. These results

are in good agreement with studies focusing on trade winds impacting on a subtropical

mountain (Cuijipers and Duynkerke, 1993; Kirshbaum and Smith, 2009; Minder et al.,

2013; Cécé et al., 2014).

4.4 Temperature anomaly experiments: Flow over an isolated

volcano

The response of the atmospheric circulation to the surface temperature anomaly on the

volcano summit is now examined. Initially the focus is on the changes brought by differ-

ences in the surface thermal forcing, for the Dry-Strong Inversion and Wet-Weak Inversion

simulations for |U |=1 m s−1, and a range of temperature anomaly values between 0 and

60 K. Note that the same analysis carried out for the |U | = 4 m s−1 simulations yielded

similar results. After that the focus will be on the changes brought by differences in the

atmospheric conditions.

4.4.1 Sensitivity to thermal forcing

4.4.1.1 Flow response and rainfall

Figure 4.9 show horizontal plots of vertical velocity (shaded) and horizontal wind (vec-

tors), following the format of Figure 4.4, for various values of Ta. Note that the figures are

focused on a 5×5 km area at the top of the mountain, so that the resulting structure can be

seen in some detail. The increase in the temperature anomaly forces a concentrated area

of ascent mainly focused over the top of the mountain (Figure 4.9). This thermally-forced

ascent is circular and always appears over and in the lee of the dome with w > 1 m s−1. It

is surrounded by weaker, scattered convection at random (w < 0.3 m s−1) in the domain.

As Ta increases the magnitude of the flow response strengthens, the area of the plume
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Figure 4.9: Left column: Dry-Strong Inversion, Right column: Wet-Weak Inversion volcanic
heating simulations. Vertical velocity (shading) with horizontal wind vectors on the third model
level for: Ta = (a) 0 K, (b) 20 K, (c) 40 K and (d) 60 K with |U | = 1 m s−1. Height contours at
500 and 900 m.

becomes larger (the area of w > 1 m s−1) and two counter-rotating vortices can be seen

in the lee of the mountain top, drawing air back towards the convective plume – extra

streamlines were initialised at x = 2 and y = 1 km emphasise this pattern. Such vortices

are common features of wild fires (Cunningham et al., 2005), but in this case they do not

develop the same vertical structure and are only found near the surface, possibly due to the

strength of the forcing. Although these vortices are a ubiquitous feature in plumes there

is still debate on their generation and evolution (Cunningham et al., 2005). The plume’s

major impact is limited to a 2× 2 km area surrounding the temperature anomaly, focused
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towards the lee of the dome. As with the control runs (Figure 4.4) the basic flow response

is similar for the Dry-Strong Inversion and Wet-Weak Inversion cases.
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Figure 4.10: As Figure 4.9 but for rainfall. The thick black contour line signifies R >
0.5 mm hr−1, while shaded areas show R over 1, 2, and 5 mm hr−1. Dry-Strong Inversion (left
column) and Wet-Weak Inversion (right column) simulations and |U | = 1 m s−1.

Figure 4.10 shows rainfall rates at the surface. As expected by the limited area of

the effect, the general rainfall patterns remain largely unaffected for all simulations. All

Dry-Strong Inversion simulations show a similar image, scattered patches of low intensity
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rainfall and a stronger response in the lee of the mountain. Wet-Weak Inversion simula-

tions show a different image – larger patches of rainfall with intensity often as much as

10 mm hr−1 over the entire mountain. In the lee of the dome in the Wet-Weak Inversion

cases there is a patch (approximately 1×1 km2 in area) associated with the thermal forcing

and fixed in space (at approximately x = −4–0 km), that has progressively higher rainfall

intensity values – up to 2 mm hr−1 for Ta = 20 K and up to more than 10 mm hr−1 for

Ta = 40 and 60 K. This volcanically-triggered rainfall is not qualitatively different from

the typical convective rainfall in the simulations. In the Dry-Strong Inversion case a low

rainfall patch is also evident.

As it is difficult to isolate volcanically-triggered rainfall from random convection at

scatter plot is constructed to compare rainfall intensity values close to the surface tem-

perature anomaly in the control case (x-axis) and each of the temperature anomaly cases

(y-axis; Figure 4.11). Each scatter plot is created using rainfall intensity data for every

grid point within a 3 km radius from the surface temperature anomaly, for every time

step between 3 and 6 hr. In all cases, random convection is generally confined between 0

and 2.5 mm hr−1. For Ta = 20 K there is a small amount of extra rainfall in the heated

case, with some rainfall values over 2 mm hr1, however the effect is very weak (Figure

4.11a). The response is considerably more robust for Ta = 40 and 60 K Figure 4.11b,c).

For these cases there is an increase in the maximum rainfall intensity values in the heated

cases from 3 mm hr1 to 10 and 6mm hr1 respectively. This increase in concentrated in

areas where there is little or no rainfall in the control case.
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Figure 4.11: Scatter plots comparing rainfall intensity for the control case (x-axis) and the surface
temperature experiments (y-axis) for Ta = (a) 20 K, (b) 40 K, and (c) 60 K. Data are shown for
each grid point and at every time step from hours 3–6.

These results present the first main confirmations of the study’s hypothesis - as the
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mean value of the lava dome temperature increases and exceeds a threshold value (de-

pending on the atmospheric conditions) deep convection is generated consistently over or

in the lee of the lava dome. However, this volcanically-triggered rainfall is not easily dis-

tinguished from the general rainfall in these plots. The focus will now be to differentiate

this lava dome-triggered rainfall from other random convection in the model by showing

that it is a robust and nearly-constant response once the model has reached a quasi-steady

state. For conciseness in the remainder of the thesis this rainfall response to the surface

heating will generally simply be referred to as “the rainfall anomaly”.
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As previously, vertical cross-sections across the middle of the domain for no surface

heating show the shallow cumulus confined below the temperature inversion, strongly in

the Dry-Strong Inversion case and more weakly in the Wet-Weak Inversion case (Figures

4.12a,b). However, when the surface temperature forcing is switched on, a plume accom-

panied by increased cloud cover is introduced. For the Dry-Strong cases this is controlled

by the temperature inversion and it never seems to break through the inversion (Figures

4.12c,e,g). The rainfall previously seen in the lee of the dome appears at a consistent

distance but is a very weak and erratic response, associated with a frequency of 0.2 for

R > 1 mm hr−1. In the Wet-Weak Inversion cases there is a stronger vertical development

in the plume as it reaches a height of 3–4 km. Rainfall here is triggered beneath the plume

and it is a more robust response – for Ta = 20 K there is a 0.5 frequency for rainfall over

1 mm hr−1 (Figures 4.12d), which becomes a frequency of 1 for Ta = 40 K (Figures

4.12f). For Ta = 60 K the frequency for R > 5 mm hr−1 is also 1 (Figures 4.12h).

Stronger rainfall rates (R > 10 mm hr−1) appears for both Ta = 40 and 60 K cases with

a low frequency, comparable to deep convective rainfall at other parts of the domain as

deep convective bursts are not continuous but cycle on and off over a convective timescale

(see Section 4.5).

As in Chapter 3, TKE can be a useful proxy for the convective plume, due to the

large amount of sub-scale mixing and turbulence triggered (Figure 4.13). As Ta increases

both for the Dry-Strong and Wet-Weak Inversion cases the height of the TKE plume also

increases. Note that the Wet-Weak Inversion profile allows for a notable extension of the

TKE plume height. The increase is mirrored in both w and U -wind component at the

surface, with w increasing from 1 (Figure 4.13c,d) to 1.5 m s−1 (Figure 4.13e–h) and

forcing a circulation mirrored in the U -wind component. Comparing results from the

Dry-Strong and Wet-Weak Inversion cases for the same Ta, the plume is always higher

for the latter, following the cloud heights in Figure 4.12. This is also shown as the wind

component behaviour is similar both close to the surface and at a height of 1 km from the

surface.

Figure 4.14 shows a comparison of the vertical profiles of cloud (black lines) and hy-

drometeors (gray lines), over the sea (dashed line), over the windward side of the mountain

(solid line) and over the lee side (thick line). As expected for the first two cases, results
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Figure 4.13: Turbulent kinetic energy (TKE; shaded) with isentropes. Beneath the main plot,
subplots show vertical velocity and the U -wind component at a height of 150 m (black lines; right-
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Inversion (right column) simulations and |U | = 1 m s−1.

are fairly similar, allowing for small qualitative differences due to the stochastic nature of

the convection. This changes for Figures 4.14e–h with the onset of deep convection. As

Ta increases over 40 K, there is a robust increase of both the cloud water mixing ratio and

the other hydrometeors in the lee, approximately 1.2–1.5 times for the Dry-Strong Inver-

sion and 2–3 times for the Wet-Weak Inversion. The convection structure is illustrated

by a secondary peak in cloud water at a height of 4 km for Figure 4.14d,f and an almost

equal spread all the way up to the tropopause in Figure 4.14h. The low level cloud below

the inversion remains largely unaffected pointing towards the fact that the deeper cloud is

generated by moisture brought in by the plume circulation.

The hydrometeor profile for the Wet-Weak Inversion cases shows a large decrease

above a height of 4 km in the troposphere (freezing point), where rain water mixing ratio
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Figure 4.14: Vertical profiles of cloud water mixing ratio (qC ; black lines) and other hydromete-
ors (rain, snow, ice and graupel; qH ; blue lines) for locations “Sea”, “Windward”, and “Lee” as
illustrated in the insert in Figure 4.8b. Note the change in scale in the x axis.

drops to zero and ice hydrometeors start increasing. This profile matches the theoretically

expected profile for an oceanic area in the Tropics. For example, Zipser and Lutz (1994)

showed that there is a steep decrease in the radar reflectivity above the freezing point,

owing to the relative weakness of the convective cells and the inability to consistently lift

raindrops above the freezing level. Furthermore, by examining lower reflectivity values

they showed that the decrease in reflectivity over the freezing point does not indicate the

cloud top, but rather a layer of low reflectivity cloud - consistent with the cloud water

mixing ratio profile seen here.
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4.4.1.2 Rainfall anomaly characteristics response

As seen in Section 4.4.1.1 for the Wet-Weak Inversion sounding, deep convection was

triggered spontaneously across the domain. However, there was a persistent increase of

rainfall in the lee of the lava dome. Characteristics of this volcanically-triggered rainfall

will now be examined. The aim here is to identify areas of intense and persistent rainfall

that did not occur during the control simulations. To do this, results from the control

case were subtracted from the Ta > 0 K cases and, in order to differentiate between

random, short-lived rainfall and rainfall as a response to the surface temperature anomaly,

the following algorithm was devised. For each experiment and for every point in the

domain, rainfall anomalies with |Ra| > 0.1 mm hr−1 were noted, and a population of

rainfall anomaly durations (D) was created. The average (D) and standard deviation (σD)

was then calculated for each case; for example in the case of the Wet-Weak Inversion

profile with Ta = 60 K, D = 57 min and σD = 17 min. The average duration for the Dry

Atmosphere profile cases was roughly 40–45 min, while for the Wet Atmosphere cases it

was 55-60 min. For the rainfall anomaly to qualify as being persistent (so linked to the

surface forcing) it had to satisfy the following conditions: (i) Da > D+ 2 σD (where Da

is the duration of the potential lava dome generated rainfall anomaly), and (ii) be located

over or in the lee of the dome (−10 < x < 1 km).

For the Dry-Strong Inversion experiments no points were found to fulfil these criteria,

pointing towards the fact that the rainfall in the lee was either random convection, or not

intense or persistent enough. In the Wet-Weak Inversion cases, a significant area in the

lee of the domain was found to have persistent rainfall (for example, in the case of the

Wet-Weak Inversion profile with Ta = 60 K, Da = 113± 22 min). Three characteristics

of this rainfall anomaly will now be examined: Rainfall anomaly area (grid points in the

lee of the dome that received over 0.1, 1 and 5 mm hr−1 for at least D + 2 σD min),

rainfall anomaly intensity (average and maximum characteristics over these grid points

sustained over different time periods), total rainfall anomaly (the product of the previous

two for Ra > 0.1 mm hr−1 and average rainfall anomaly intensity for 3 hr), as well as the

maximum w over the rainfall anomaly area.

Rainfall anomaly area is studied for three thresholds: 0.1, 1 and 5 mm hr−1 (Fig.
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Figure 4.15: (a) Rainfall anomaly area, (b) Rainfall anomaly intensity, (c) Total rainfall anomaly
(rainfall volume over 3 hours (in m3 hr−1), (d) Maximum w over the rainfall anomaly area. All
plotted against temperature anomaly for Wet-Weak Inversion simulations. Panels b and c are
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4.15a). The first threshold shows the full extent of the lava dome influence when con-

sidering practically all rainfall intensities. The second threshold, consistent rainfall over

1 mm hr−1, has been linked with the remobilising of sediment on the slopes of a vol-

cano, while the third threshold, over 5 mm hr−1, has been implicated in the triggering

of volcanic eruptions and pyroclastic flows (Matthews et al., 2002; Barclay et al., 2006;

Matthews et al., 2009). For all rainfall intensity thresholds, rainfall anomaly area gen-

erally increases with Ta. Note, this increase is not linear – there is a significant leap

in the values between Ta = 20 and 40 K. Results are fairly similar for Ra > 0.1 and

> 1 mm hr−1, with rainfall anomaly area values at 1 km2 for Ta = 20 K and 4–6 km2 for

Ta ≥ 40 K, but rainfall anomaly area values are significantly smaller forRa > 5 mm hr−1,
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with 0 km2 for Ta = 20 K, increasing to 1–1.5 km2 for Ta ≥ 40 K. Mean rainfall anomaly

intensity values over the study period increase linearly with Ta, from 0 up to 5 mm hr−1

(Fig. 4.15b). This linear behaviour changes when looking at the maximum rainfall inten-

sity sustained over 3 hr, with a steep gradient between Ta = 20 and 40 K, and becomes

even more pronounced for maximum rainfall intensity sustained over 30 mins. This points

toward a change between Ta = 20 and 40 K, with deep convection triggered consistently

in the later case. Total rainfall anomaly increases by a factor of 8 between Ta = 20 and

40 K but then only by a factor of 1.2 between 40 and 60 K (Fig. 4.15c). Maximum

w shows a similar behaviour, with an increase from 2.1 to 3.1 m s−1 between the first

two experiments and then a small decrease between the last two (Fig. 4.15d). Note, for

Ta = 0 K the value is the maximum w up to a height of 2 km over the volcano. In short,

for Ta ≥ 40 K, consistent intense (deep convective) rainfall is triggered by the surface

heating.

As seen here, once consistent deep convection is triggered (for Ta ≥ 40 K in the

experiments), the rainfall anomaly has relatively similar characteristics, with the largest

changes occurring between Ta = 20 and 40 K. This behaviour points towards the fact that

the temperature anomaly acts to trigger convection, but once triggered the characteristics

of both the convection and the rainfall are largely controlled by realistic processes in the

atmosphere. The rainfall triggered by the lava dome has also been seen to consistently be

over the threshold to affect volcanic hazards around the lava dome.

Sensitivity tests carried out for a number of microphysics modules (WSM5, WSM6,

Thompson, Milbrant, and Morrison schemes; Skamarock et al., 2008) and at different

grid spacings (∆x =150, and 75 m) revealed that, aside from the well-established sen-

sitivities in both the microphysics schemes (?) and the grid spacing (Bryan et al., 2003;

Kirshbaum and Smith, 2009), results were qualitatively similar, with the most change-

able characteristic being the rainfall anomaly area that ranged between 5–9 km2 for the

different microphysics schemes and increased to 13–14 km2 for the higher resolution sim-

ulations.
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4.4.2 Sensitivity to atmospheric conditions

In this section, the effect of the background atmospheric state (wind speed, humidity and

inversion strength) on the characteristics of the rainfall over the volcano will be examined

using data from across all different atmospheric profiles and incoming flow speeds for

Ta = 60 K (Figure 4.16). This is similar to Figure 4.5, for the control simulations, but

includes results from the Dry-Weak Inversion and Wet-Strong Inversion as well.
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Figure 4.16: Rainfall intensity over the volcano in the Ta = 60 K experiments for the |U | = 1,
4 and 7 m s−1 (columns); a dry (RH = 50%) and wet (RH = 60%) atmosphere, and a strong
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contours at 500, 700 and 900 m.
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4.4.2.1 Incoming flow speed: Alters flow and rainfall regime

As seen in Section 4.3, as |U | increases (left to right in Figure 4.16) there is a signifi-

cant change in the rainfall regime: for |U | = 1 m s−1, rainfall is mainly convective and

appears randomly in the domain, |U | = 4 m s−1 is an inbetween case where strong con-

vective motion is inhibited and weak to moderate orographic rainfall can be found in the

windward side depending on the atmospheric conditions, and |U | = 7 m s−1 has a strong

orographic response, with intense rainfall triggered persistently on the windward side and

over the summit, especially for the more convective atmospheric profiles. Volcanically-

triggered rainfall can be seen for |U | = 1–4 m s−1 for the Wet Atmosphere soundings,

while any response for |U | = 7 m s−1 is mixed with the increased orographic rainfall

over the summit, or advected downstream. For |U | between 1–4 m s−1 an increase in the

incoming flow speed has two effects: (i) a decrease in the average rainfall intensity and

(ii) an increase in the downstream distance of the triggered rainfall from the temperature

anomaly on the volcano summit.

4.4.2.2 Humidity: Increases chance of triggering rainfall

An increase in the prescribed tropospheric relative humidity has a dramatic effect on the

rainfall rates in general and on the generation of volcanically-triggered rainfall. It leads

to significantly larger areas of all types of rainfall across the volcano – relatively high

humidity is essential for the triggering of rainfall by the lava dome, and also drastically

changes the general atmospheric response to the mountain.

4.4.2.3 Inversion strength: Minor changes in rainfall patterns

For the Dry Atmosphere simulations, the effect of the inversion strength is negligible. For

the Wet Atmosphere simulations, a decrease in the inversion strength has a mixed effect:

for |U | = 1 m s−1 a weaker inversion leads to more widely spread rainfall, but for stronger

incoming wind is seems to limit the rainfall. This could possibly be the result of mixing

with drier air above the inversion, however in total the changes are minimal and can also

be attributed to the stochastic nature of rainfall generation in the model. This implies that

realistic changes in the inversion strength [O(1 K)] are too small to qualitatively affect the

rainfall distribution.
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4.4.3 Integrated rainfall anomaly characteristics

We now examine the dependence of the integrated rainfall anomaly characteristics on

background wind speed, humidity and inversion strength. The conditions for rainfall

to be considered as volcanically-triggered were described in Section 4.4.1.2. As previ-

ously discussed (see Figure 4.16), the relative humidity profile plays a discerning role.

Overall, rainfall is triggered by the surface temperature anomaly consistently in the Wet

Atmosphere simulations, but the incoming flow speed proves to be a limiting factor as

U > 4 m s−1 are enough to severely limit the potential of the lava dome to trigger large

amounts of rainfall. Note that, additional sensitivity tests at 2.5 m s−1 were carried out at

this part. For all characteristics there is a noticeable difference between a very low wind

regime (|U | = 1–2.5 m s−1), a moderate wind regime (|U | = 4 m s−1) and a strong

wind regime (|U | = 7 m s−1). Increased “weak” wind (|U | = 2.5 m s−1) has a positive

impact on the rainfall generation (possibly due to the increase in sensible heat flux), but

too strong advection can act to inhibit it.

Mean rainfall anomaly intensity decreases drastically for higher wind speeds (Figure

4.17a). As seen in the control simulation results, a wind speed of |U | = 4 m s−1 was

enough to severely limit the generation of convection and for |U | = 7 m s−1 most of

the rainfall was orographically-generated. A similar trend can be seen for the maximum

rainfall intensity values sustained for 3 and 0.5 hr (Figure 4.17b,c). As noted previously

in Section 4.4 the marked decrease in rainfall intensity between |U |=1 and 4 m s−1 points

towards the inability of the thermal forcing to consistently trigger deep convection. How-

ever, maximum rainfall sustained for 3 hr is close to 1 mm hr−1, which shows the capa-

bility of volcanically-generated rainfall to trigger lahars in the long-term and maximum

rainfall sustained for 0.5 hr is in many cases over 10 mm hr−1 – the limit for rapid la-

har initiation. Note that higher maximum rainfall sustained for 0.5 hr can be seen for

|U | = 7 m s−1, possibly due to the preconditioning of the flow over the windward side.

Downward drift (Figure 4.17d) was calculated as the average distance of the rainfall

anomaly points from the centre of the temperature anomaly. Downwind drift starts with

relatively small values (rainfall generated close to the lava dome), increases with incom-

ing flow speed (convection advected by the wind), but then decreases for high wind speeds

(the rainfall is once again generated close to the rainfall anomaly). This, along with the
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Figure 4.17: (a) Average rainfall anomaly, (b)–(c) Maximum rainfall anomaly intensity sustained
for 2 and 0.5 hr respectively, (d) Average rainfall anomaly intensity, (d) Downwind drift, (e)–
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anomaly area. All characteristics plotted against background wind speed for all simulations with
Ta = 60 K.

results for the average and maximum rainfall anomaly intensity, points towards a differ-

ent initiation mechanism: for low Froude number cases (convective rainfall regime) the

surface heating acts as the main initiator for the rainfall, while for high Froude number

values it acts as a localised perturbation, leading to localised but very small amounts of

rainfall. This is in agreement with anomaly area calculations (Figure 4.17e,f). Although

small amounts of rainfall where generated for all incoming flow speed values, the only

experiments that consistently produced rainfall over 1 and 5 mm hr−1 rainfall anomaly

intensities where the ones where |U | = 1 m s−1. The results here have implications

for volcanic hazards – for |U | = 4 m s−1 rainfall was seen to be triggered further away

from the lava dome in areas where no rainfall is expected, while for |U | = 7 m s−1,

this is extra rainfall close to the temperature anomaly, added on top of a large amount of
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orographically-triggered rainfall. In short, |U | of 4 m s−1 can act to trigger lahars in areas

where rainfall is not expected, while |U | of 7 m s−1 the surface heating acts in an already

potent environment and the small extra amounts of rainfall generated could trigger lahars

in borderline cases.

Total anomaly rainfall (calculated as the product of the average rainfall intensity and

the rainfall area; Figure 4.17g) offers a more concise look on the previously discussed

results – there is a marked decrease in the total rainfall anomaly as |U | increases, 60% for

the Wet-Strong Inversion and approximately 90% for the Wet-Weak Inversion profiles.

However, as the calculation here is made using all rainfall rates, the rainfall generated

for higher wind speeds is still considerable, as low amounts of rainfall are generated over

large areas. Average relative humidity values over the windward side 4.17h) show that a

minimum value of approximately 90% is needed for the temperature anomaly to have an

effect in the incoming flow. Finally, maximum w values in the plume (up to a height of

2 km) show an inverse relationship with |U |, expected as the plume is heavily advected

and convection inhibited for larger |U |.

4.4.4 Temperature anomaly experiments overview

The main impact of a surface temperature anomaly on the volcano summit has been the

introduction of a strong convective plume on, or just downwind of, the thermal anomaly

depending on the incoming flow speed and the magnitude of the anomaly. For small val-

ues of Ta the plume is capped by the trade wind inversion, but above a critical value of

Ta (between 20–40 K in the simulations here) the plume breaks through the inversion and

triggers a localised storm; i.e. deep convection accompanied by high rainfall rates. The

resulting deep convection has been shown to be sensitive to both the atmospheric condi-

tions and the intensity of the thermal forcing although the associated rainfall intensities

are not. A drier atmosphere with a stronger inversion limits this effect as moist convection

is inhibited. This leads to a plume and consistent cloud cover but not to rainfall. A moister

atmosphere with a weaker inversion allows for a large area of rainfall accompanying the

cloud cover.

This rainfall has been shown to be very sensitive to the incoming flow speed. Both

the area and the intensity of the rainfall can be impacted as stronger winds can severely
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inhibit the generation of deep convection. This high sensitivity to wind strength has been

noted by Kirshbaum (2011) who found that for a heated mountain incoming flow speeds

of over 3 m s−1 were enough to completely inhibit deep convection. In the experiments

here an incoming flow speed of 4 m s−1 was found to severely limit convection but not

completely inhibit it. This difference can be attributed to the intensity of the surface

heating – up to 60 K leading up to an O(103 W m−2) sensible heat flux. However, in the

experiments here, this is confined to a relatively small area (approximately 1×1 km), lead-

ing to a strong but very localised perturbation. Further away from the thermal anomaly

the strength of the controlling parameters and the large scale flow (stability through the

inversion and to a lesser extent a weak katabatic flow) as well as the mixing with drier

air above the inversion quickly dilutes the plume, i.e. the storm dissipates if conditions

become prohibitive. The dependence on the atmospheric conditions is clear when com-

paring the Dry-Strong Inversion and Wet-Weak Inversion simulations: a 10% increase in

relative humidity and a 1 K decrease in inversion strength controls the initiation of any

rainfall.

The resulting rainfall intensity ranges between a few mm hr−1 sustained for several

hours up to bursts of 10 mm hr−1 sustained over shorter periods of time. Generally, rain-

fall over a threshold of 5 mm hr−1 is required to initiate volcanic hazards such as lahars

or explosive activity (Barclay et al., 2006). Thus, depending on the state of the dome this

initialisation mechanism should be considered when dealing with hazard assessment, es-

pecially as it suggests lahars could be expected even on days when synoptic-scale rainfall

is not forecast. It should be noted that although for the parameter space studied here the

rainfall was generally advected away from the lava dome, the rainfall intensity is enough

to increase the possibility of a rainfall-triggered dome collapse or pyroclastic flows and,

due to the danger posed by the hazard, this possibility should generally be considered for

days with low winds.

Both the convective plume and the resulting rainfall are in qualitative agreement with

other studies where there is thermal forcing at the surface, e.g., associated with wildfires

(Cunningham and Reeder, 2009) or solar heating (Kirshbaum, 2011). Conceptually the

mechanism is the same for all cases, a strong thermal source causes convection that may

be able to overpower the convective inhibition of the atmosphere. For wild fires a more
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widespread (typically km in scale) thermal forcing leads to more widespread storms cov-

ering several square kilometers. For solar heating, the heating regime is usually weaker

and the forcing is a function of the mountain height, thus the area of the perturbation is the

area of the mountain – typically several kilometers wide (Tian and Parker, 2003; Crook

and Tucker, 2005; Kirshbaum, 2011). In contrast, here the volcanic dome sets the scale

of the storm.

4.5 Temporal evolution of the plume

So far, results have been presented for steady-state conditions. While the simulations

certainly reach a quasi-steady state condition with the periodical repetition of a specific

behaviour, some variability with time does exist. Note that as the temperature anomaly is

introduced explicitly at the start of the simulations, the normal initialisation of the model

and the initial response to the heating cannot be disentangled. Thus the focus of this

section will be on studying the periodic cycle of generation of a perturbation and release

via deep convection and cloud/rainfall generation, starting at t = 3 h using 10 min output

data from the Wet-Weak Inversion simulation for |U | = 1 m s−1 and Ta = 60 K.

Figure 4.18 shows the temporal evolution of vertical velocity, total hydrometeor mix-

ing ratio (cloud water, ice and rainwater), relative humidity, and turbulent kinetic energy

versus height at a specific point (x = −0.6 km) along with a vertical cross-section across

the middle of the domain for three different times. As seen in Figures 4.18a–4.18d, there is

a periodicity in the behaviour of the plume – both the strength and the height of maximum

w alternates between low and high values with a periodicity of approximately 20–30 mins.

This is mirrored in the hydrometeor bevaviour and can also be partially seen in relative

humidity (here the periodic behaviour is mainly seen in the height of the very high rel-

ative humidity layer). Turbulent kinetic energy is generally restricted to low values but

is greatly increased as deeper convection is initiated. Overall this behaviour can be ex-

plained as follows: As fresh, moist air arrives (note that due to the lack of orographic

rainfall the air has lost little of its humidity during the ascent), it is forced to ascend in the

plume (Figure 4.18e). This causes condensation and the generation of a thick low cloud

just above the inversion. With the influx of fresh air this initial cloud starts rapidly ex-

panding (Figure 4.18f). During this expansion, rainfall is generated and vertical velocity
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reaches a maximum, accelerating as it reaches higher altitudes in the troposphere. This

generated cloud is then advected with the wind and the formation of a new cloud starts

(Figure 4.18g). If deep convection is initiated, the cloud can travel up to 2–3 km but

is very strongly mixed with the drier surrounding air before eventually dissipating. The

period of this cycle is approximately 20 mins and this cycle continues with small varia-

tions throughout the post-spin-up simulation, until the end of the experiment. Note it also

continues in the same way after 6 hours of simulations but as time progresses everything

diverges as the inversion layer starts breaking up at later stages in the simulations. As an

order of magnitude this period is consistent with cumulus cloud development timescales

(Cuijipers and Duynkerke, 1993; Kirshbaum and Durran, 2004).
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Figure 4.18: Panels a.–d. show the temporal evolution of: (a) vertical velocity, (b) total hydrom-
eteor mixing ratio, (c) relative humidity, and (d) turbulent kinetic energy, versus height at point
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results are from the Wet-Weak Inversion simulation. Time shown in minutes after 3h.

This convective cycle can be seen as similar to the one described by Kirshbaum
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(2013). Studying deep convection initialised by thermal forcing in the Black Forest moun-

tains in central Europe, Kirshbaum (2013) investigated several hypotheses for initialisa-

tion mechanisms and argued that instead of deep ascent of a single updraft, it is more

likely that the convection is caused by a rapid succession of thermals vented through the

convergence zone into a deepening cloud mass. Similarly in the simulations studied it was

seen that each cycle started with a small core low in the atmosphere that eventually grows

into a deep cloud before eventually the process runs out of “fuel”, stops and the formation

of the core starts anew.

Note that to further investigate the microstructure of the generated cloud and the evo-

lution, very high resolution LES simulations (approximatelyO(10m)) would be required,

and these are beyond the scope of this study. Sensitivity runs conducted at a higher reso-

lution (∆x = ∆y = 100 m) revealed that despite some quantitative changes in the maxi-

mum values and the period of the cycle, the qualitative behaviour of the phenomenon was

unchanged.

4.6 Discussion

Deep convection triggered by the lava dome was seen to have a cyclical temporal evolu-

tion. When studying the average response it was seen that the resulting storm was sensitive

to various parameters, but to different degrees. These control parameters are now ranked

depending on their potential to affect the storm (Table 4.2).

Control Parameter Change Effect Justification
Ta O(20 K) Primary Controls the initialisation and rainfall response.
RH O(10%) Primary Controls the initialisation of rainfall.
|U | O(3 m s−1) Primary Controls rainfall regimes and initiation.
θI O(1 K) Secondary Does not force significant changes in rainfall.

Table 4.2: Ranking of control parameters by simulated impact for the changes of the size listed.

Significant changes were brought about by the temperature anomaly, by the increase

in humidity, and by the incoming flow speed. Hence, these are noted as “primary” effects.

The temperature inversion strength was generally not able to force significant changes in

the resulting storm, so was labelled as “secondary”. Note that this rationale holds for the

order of magnitude of change shown in Table 4.2 – it is possible that smaller or larger

changes in the parameters could yield different results.
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initialisation soundings in tephigrams “away” from the temperature anomaly (a,d) and “over” the
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1 m s−1 (e,f). Aside from tephigram lines, dewpoint temperature (dashed), temperature (solid,
red) and the air parcel trajectory (solid, blue) lines are shown. Total CAPE, low-height CAPE and
total CIN are calculated from RAOB.
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Using a theoretical “air parcel” model applied locally at the lava dome can also help

interpret the relative importance of some control parameters. To illustrate the points men-

tioned in the discussion, the RAOB software1 is used to analyse air parcels at two points

along the middle of the domain (y = 0 km): one at x = −20 km, over the sea (“away”

from the dome; Figure 4.19a,d), and “over” the lava dome (x = 0 km) for two incoming

flow speeds (Figure 4.19b,e for |U | = 7 m s−1 and Figure 4.19c,f for |U | = 1 m s−1).

The different incoming flow speeds were used as they led to different low-level heating of

the atmosphere.

Profiles are prescribed from the initial soundings and a lower level temperature is set

from model output. This is calculated as the average temperature from the lowest 2 model

levels over hour 3 of the simulation. Initially, this temperature fluctuates due to turbu-

lent mixing, but as the model reaches a quasi-steady-state, the temperature settles to an

almost-constant value. This specific time was chosen as it coincided with the initiation of

convection over the lava dome. The analysis was carried out for the Dry-Strong Inversion

and Wet-Weak Inversion simulations (Figure 4.19).

All tephigrams show large or very large amounts of CAPE, for example, from 2212

to 2566 to 2998 J kg−1 for a location closer to the dome and lower wind speed (for the

Dry-Strong Inversion case). As seen in the simulations, the temperature anomaly had the

largest impact, as heating makes the air parcel buoyant and locally increases the CAPE

(Figures 4.19a–c and 4.19d–f). As the surface thermal forcing increases, a larger area is

heated over the threshold and starts convecting, increasing the area of the storm. Although

not shown directly in the tephigram analysis (all tephigrams are shown for Ta = 40 K),

this change is reflected in the storm area in Figure ??a. Relatively small changes in the

inversion strength do not affect the projected trajectory of a heated, very buoyant air parcel

over the dome as the temperature difference of the parcel compared to the environment at

the peak of the inversion is 2.5–3.5 K (Figure 4.19c,f). They result in very small changes

in CAPE (334 J kg−1 over the dome).

Due to increased advection and turbulent mixing, an increase in incoming flow speed

has a direct effect on the temperature over the lava dome – it rises from 28.6 C for |U | =

7 m s−1 to 30.8 C for |U | = 1 m s−1. In this context increasing incoming flow speeds acts
1 The RAwinsonde OBservation (RAOB) software is a multi-functional sounding analysis programme

that can read radiosonde data, create sounding diagrams, and calculate forecast diagnostics. More information
can be found at http://www.raob.com/
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similarly to an decreasing thermal forcing. However, the full effect of wind speed (i.e. the

switch from convective to orographic rainfall) extends beyond the simplified view of the

atmosphere offered by air parcel theory.

An increase in humidity also has a large effect as it directly influences the lifting con-

densation level and indirectly influences the level of free convection and as a results the

CAPE and CIN calculations. In the tephigrams the increase in humidity between the left

and right columns leads to a decrease in CIN and increase in low-level CAPE. This can be

used to explain changes in rainfall between the Dry-Strong Inversion (very little amount

of rainfall for |U | = 1 m s−1) and the Wet-Weak Inversion simulations (widespread con-

vection for |U | = 1 m s−1). However it should be noted that the calculations here are

made using a surface value and thus the calculation only provide indicative results.

4.7 Summary

As moist atmospheric flow meets an obstacle, be that a mountain or a ridge, part of it

is forced to ascend, which can lead to orographic precipitation. A moist flow can also

interact with differentially heated terrain, as baroclinicity is created, forcing localised

convection that can, under certain conditions, trigger deep convection and intense rainfall.

What has been investigated here is whether a lava dome, a hot but small area on the

summit of a volcano, can act to trigger deep convection on an isolated island impacted by

moist easterly trade winds. A parameter space covering typical atmospheric conditions

has been examined for a range of realistic volcanic surface temperature anomalies.

Depending on the prescribed conditions the volcanically heated dome can create a

convective plume which penetrates through the tradewind inversion, resulting in a lo-

calised storm, with convergence into the plume from counter-rotating vortices and associ-

ated high rainfall rates. For the atmospheric conditions examined, a temperature anomaly

of at least 20 to 40 K is required to trigger a volcanic storm. Changes in the surface tem-

perature anomaly, the relative humidity profile and incoming flow speed strongly impact

the rainfall location, distribution, and amount. In particular, volcanically-triggered rainfall

is most distinct for low wind speeds (|U | < 4 m s−1). Modest changes in the inversion

strength have a secondary impact.
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The simulations presented here are highly idealised. The effects of volcanic emis-

sions, a source of both water vapour and cloud nuclei, as well as short and long wave ra-

diation are not considered and simplifications of topography, heating and the atmospheric

conditions have been made. Nevertheless care has been taken to keep the simulations

realistic and general. As such, this kind of triggering of deep convection is possible for

any active volcano, not undergoing an explosive eruption, provided that the forcing and

atmospheric conditions are fulfilled. Consequently, the rainfall generation mechanism

proposed here will affect the weather and climate locally and could have an impact on

volcanic hazards such as pyroclastic flows, lahars or debris flows. Indeed this mechanism

could offer an explanation for occurrences of volcanic hazards in days with little or no

synoptic-scale rainfall in various volcanoes in the tropics.



Chapter 5

Deep convective rainfall over

Montserrat and implications for

volcanic hazards

5.1 Introduction

In the previous chapters an idealised approach has been taken for the problem of atmo-

spheric flow over an active volcano. In Chapter 3, dry, highly-idealised simulations were

presented to study the fundamental response with a minimum number of complicating

factors; while in Chapter 4, moist processes were added to the simulations allowing a

focus on precipitation. The main conclusion from the previous chapters was that a con-

vective plume is created in response to the heated lava dome (an area of heating forced by

a local anomaly in surface temperature). This plume can conditionally act to overcome

convective inhibition and trigger a localised storm, leading to high rainfall rates. In both

the previous chapters the topography was an idealised Gaussian-shaped mountain.

In this chapter, simulations are carried out over realistic topography, based on a high-

resolution digital elevation model (DEM) of Montserrat. The aim of the chapter is to

analyse the effect of this topography on the atmospheric circulation and associated rainfall

(both convective and orographic), and discuss the implications for volcanic hazards in

the Soufrière Hills Volcano (SHV), Montserrat – an active and much studied volcano.

Although Montserrat is the focus here, many of the results can be generalised to other
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tropical island settings, so are relevant for numerous active volcanoes.

As with any fluid, the interaction between the atmosphere and obstacles leads to nu-

merous complex phenomena. In the case of mountains and ridges, it leads to gravity wave

generation, flow blocking and reversal, and downslope winds amongst others, depend-

ing on numerous parameters controlling the problem (Smith, 1980; Smolarkiewicz et al.,

1988; Ólafsson and Bougeault, 1996). In the case of a moist atmosphere the forced ascent

can often lead to orographic rainfall (Durran, 1990), while in some cases these localised

perturbations can grow and lead to widespread instability and storms (Roe, 2005; Houze,

2012). Such effects play a major role in a humid, usually convective, tropical atmosphere,

such as that over Montserrat, increasing precipitation in the winward side up to ten times

compared to the sea (Kirshbaum and Smith, 2009; Smith et al., 2009). The Tropics and

sub-Tropics are characterised by Trade Winds – near-constant easterly winds stemming

from the combined effect of the Hadley cell and the Coriolis force. Tradewind regimes

often feature a temperature inversion in the vertical which acts as a barrier to widespread

deep convection and the transition into mesoscale systems. This inversion often manifests

itself via a field of scattered shallow cumulus clouds (Kirshbaum and Smith, 2009).

Dictated by the alignment of tectonic plates, at present, out of approximately 1500

volcanoes (Simkin and Siebert, 1994) almost half of active volcanoes are in the Tropics

or sub-Tropics (Pareschi, 1996). A large number of these are on island arcs (e.g. the

Caribbean Sea, Indonesia, etc). So for this first study of orographic flow response to

a heated volcano SHV, Montserrat was chosen as the subject of study. The island of

Montserrat is a British Overseas Territory, part of the Lesser Antilles in the West Indies,

located in the Caribbean Sea. compared to other islands in the West Indies it is relatively

small (16 km long and 11 km wide), has four main peak, the Soufrière Hills Volcano

(SHV) being the tallest at 1050 m asl a the time of writing (Wadge et al., 2014).

SHV is a relatively small Peléan lava dome complex (Rea, 1974). It has been active

since 1995, with a series of devastating eruptions and active dome-building cycles over

the last 20 years (Table 5.1) and has been one of the most intensively studied volcanoes of

recent years. Since the start of the eruption it has caused 19 deaths and the destruction of

settlements on the south part of the island, including Plymouth, the previous capital, and

the original airport (Voight et al., 1999; Robertson et al., 2000). It is monitored by the
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Montserrat Volcano Observatory (MVO)1 , stationed on the island. For a detailed overview

of related research see Sparks and Young (2002) and Wadge et al. (2014).
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Figure 5.1: Location of Montserrat, West Indies (16.75◦ N, 62.20◦ W, approximately 16 by 11
km).

Phase Dates
Duration

(days)
Character

1
15/11/1995
10/3/1998

846
4 month precursory episode. Dome growth with

collapses common
1-2 627 Dome collapses and mild explosive activity

2
27/11/1999
28/7/2003

1339
Largest dome built to date after two major collapses.

Late increase in pyroclastic flows, ends in
wholesale collapse

2-3 735 Very low residual activity until April 2005

3
1/8/2005
20/4/2007

627
Precursory phreatomagmatic. One wholesale collapse,

ends with a large dome in place
3-4 465 Very low residual activity until May 2008

4
28/7/2008
3/1/2009

158
Two short episodes. Explosions and extrusion on

western flank of dome
4-5 273 Very low residual activity until October 2009

5
9/10/2009
11/2/2010

125
Extrusion to the west, south and north. Explosions later.

Ends in large north-directed collapse

Table 5.1: Eruptive history for for the SHV since the initial 1995 eruption. Modified from Wadge
et al. (2014)

Dome-building volcanoes are a category of volcanoes that extrude high-viscosity

magma through a central conduit. The magma cools and solidifies, blocking further flow

up the conduit and forming a pressurised lava dome. This lava dome can become unsta-

ble, due to its own gravitational weight and internal pressure from within the volcanic
1http://www.mvo.ms/
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system. Subsequent failure of the lava dome can lead to explosive dome collapse and

pyroclastic flows. Heavy rainfall has been implicated in triggering such dome collapses

and pyroclastic flows at a number of volcanoes, including SHV, Montserrat (Matthews

et al., 2002). Several mechanisms have been hypothesised for this rainfall triggering, in-

cluding mechanical erosion of the surrounding talus fan and gravitational destabilisation

of the dome, and the formation of a rainfall-saturated cap that blocks the upward flow of

magmatic gas leading to a pressurised failure (Matthews and Barclay, 2004; Hicks et al.,

2010, 2014). Hence, any enhancement of rainfall by the heated surface of the volcanic

dome may lead to a positive feedback, increasing the probability of these dangerous vol-

canic hazards.

Lava domes are mainly connected with two volcanic hazards: pyroclastic flows and

lahars. A pyroclastic flow is a density current composed of hot gas and tephra that hugs

the ground and travels downhill from the lava dome after an explosion (Figure 5.2a). The

speed of a pyroclastic flow can reach 200 m s−1 and the temperature can reach 1000 K.

Pyroclastic flows are thought to be the deadliest volcanic hazard, causing both damage

to infrastructure and more than 36000 deaths in the 20th century (Tilling, 1989). Lahars

are another category of lethal secondary volcanic hazards, with more than 28400 recorded

deaths after 1900 (Figure 5.2b). A lahar is a mixture of water, rock fragments and pyro-

clastic material flowing down the slopes of a volcano (Smith and Fritz, 1989). It has the

consistency of wet concrete and can carry material ranging from clay to 10 m boulders.

The size and composition of a lahar can change drastically throughout its lifetime, starting

out as a narrow flow but growing larger and deeper as rock debris is eroded and additional

water is incorporated. Hence, a lahar can range between meters wide and centimeters

deep, flowing with a speed of a few meters per second; up to hundreds of meters wide and

tens of meters deep, flowing with a speed of several tens of meters per second.

The chapter is organised as follows. Initially a short description of the experimental

setup is presented (Section 5.2). The results are presented in five sections. Control sim-

ulations are presented in Section 5.3 to allow for comparison with results from previous

chapters. After this, the focus is on different characteristics of rainfall over Montserrat –

convective (|U | = 1 m s−1; Section 5.4); mixed (|U | = 4 m s−1; Section 5.5); orographic

(|U | = 7 m s−1; Section 5.6) – and then changes to the overall impact of rainfall (both



5.2 Experimental setup 121

a. b.

Figure 5.2: Common volcanic hazards in Montserrat. (a) Small pyroclastic flow above Perches
Estate, Montserrat, July 2008. The dome is to the right. (Copyright by Greg Scott, Caribbean He-
licopters) (b) Remains of Catholic Church, Plymouth, buried under pyroclastic material deposited
from consecutive lahars, February 2006 (Copyright by Richard Roscoe, photovolcanica.com)

convective and orographic) on associated hazards on Montserrat (Section 5.7). Finally,

there are conclusions in Section 5.8.

5.2 Experimental setup

The simulations presented in this chapter were carried out using the Weather and Re-

search Forecast (WRF) model, version 3.3.1, running in idealised mode. WRF features

a fully compressible, three-dimensional nonhydrostatic model, with the governing equa-

tions solved in flux-form. The model adopts an Arakawa-C grid, a time-splitting explicit

advection scheme and a terrain-following height coordinate (Skamarock et al., 2008).

More information about the model can be found at the model’s website at http://www.wrf-

model.org.

5.2.1 Domain

The model domain consists of an isolated island (Montserrat) featuring the SHV, sur-

rounded by ocean (Figure 5.3). The DEM used in the simulations was derived from data

from the Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER)

mission2 (Yamaguchi et al., 1998). The 30 m resolution original data were regridded to

300 m resolution, smoothed and then imported into the initialisation code for the sim-

ulations. Note that the terrain appears altered due to the smoothing, both horizontally

(area, horizontal detail) and vertically (height). Unfortunately, this is an inherent prob-

lem in high-resolution modelling over steep terrain (Lundquist et al., 2010; Zhong and
2ASTER GDEM is a product of METI and NASA.
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Katapodes-Chow, 2013). Although Montserrat does not have very high peaks, it is very

steep (an increase of up to 900 m over 3 km in the windward side). This makes it unre-

solvable at high resolution using parameterisations currently available in WRF, unless a

certain amount of smoothing is applied. Thus, care will be taken when presenting results,

especially concerning the relative position of the catchments and the rainfall.
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Figure 5.3: (a) ASTER-derived DEM for Montserrat. Contours every 100 m starting at 5 m. (b)
Smooth topography used in the simulations. Contours as before. (c) Location of catchments and
drainages, projected on the 5 and 100 m contour lines of the DEM used in the simulations (blue
lines). (d) Comparison of average and maximum height (over the West-East direction) before
(dashed lines) and after (solid lines) smoothing the topography. (e) The domains used in the
simulations for easterly winds (indicated by the arrows). Grid points outside of the grey area are
set as water.

In order to simulate the flow over this complex orography (Figure 5.3a) but keep

computational time reasonable, a nested domain was used with a grid spacing of ∆x =



5.2 Experimental setup 123

∆y = 300 m [500×200 grid points representing 150 km in the x (West-East) and 60 km in

the y (South-North) direction] for the coarse domain and a grid spacing of ∆x = ∆y =

100 m (200 × 200 grid points representing 20 km in both x and y directions) centred

over the island. There are 147 levels in the vertical and the model top is at 16 km. A

suite of physical parametrisations are implemented in WRF. These are identical to those

used in Chapter 4. In keeping with the previous chapters the radiation and boundary

layer schemes were switched off during the simulations (see Chapter 2 for details on the

parameterisation choices).

The location of the various river catchments are presented in Figure 5.3b. These were

calculated by Froude (2015), using a digital elevation model comprised of the 2010 topog-

raphy of the Soufrière Hills at 1 m resolution based on LiDAR data (Cole et al., 2010) plus

1983 topography of other volcanic centres on the Island of Montserrat (digitised from the

Montserrat Tourist Map) and a 1999 theodolite survey of the Soufrière Hills lava dome at

10 m resolution (Wadge, 2004). The ArcMap 10.1 hydrology tool set was used to compile

these data into a catchment database.

5.2.2 Experimental Design

The main objective of this chapter is to study both volcanically- and orographically-

generated rainfall for the island of Montserrat. To achieve this, a number of different

experiments with varying atmospheric structure, wind and surface temperature anomaly

characteristics have been designed (Table 5.2).

Experiment Name RH (%) θI (K) |U| (m s−1) Wind Dir. (o) Ta (K)
Control 50, 60 307.2, 308.2 1, 7 90 0, 60

Convective 60 307.2 1 45, 70, 90, 110, 135 0, 60
Mixed 60 307.2 4 45, 70, 90, 110, 135 0, 60

Orographic 60 307.2 7 45, 70, 90, 110, 135 0, 60

Table 5.2: All simulations carried out for this chapter. RH is the average relative humidity, θI is
the potential temperature at a height of 2 km (the height of the inversion), |U| is the incoming flow
speed and Ta is the surface temperature anomaly

In order to facilitate comparisons to previous results, initially, the simulations are

carried out using the two idealised profiles from Chapter 4 – the Dry-Strong Inversion

and the Wet-Weak Inversion soundings. After these initial experiments only the Wet-

Weak Inversion profile was used, to allow for a more detailed investigation of the effect

of other parameters: wind speed and wind direction. Note that, due to the large number
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of simulations carried out for this chapter, results will be presented from a selected group

of simulations per section.

5.2.3 Imposed temperature anomaly on the volcano summit

As in previous chapters, the surface temperature anomaly is specified at initialisation, by

a Gaussian increase in the surface temperature towards the summit (Figure 5.4a). The

equation for the temperature anomaly is:

T ′(x, y) = Ta exp

[
−
(
x− x0
Wx

)2

−
(
y − y0
Wy

)2
]

(5.1)

where T ′ is the surface temperature perturbation, x0 and y0 are the coordinates of the

lava dome’s centre (the highest point of the smoothed DEM was chosen here), Ta is the

maximum temperature anomaly (60 K) and Wx and Wy are parameters relating to the

half-width (both were set at 900 m). The temperature anomaly is set in the coarse domain

and the interpolated automatically in WRF for the fine domain. As the response of the

flow to an incremental increase in Ta was studied extensively in previous chapters, here

the simulations were carried out only for 0 and 60 K in order to focus on other control

parameters.
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Figure 5.4: (a) Cross-section through the centre of the volcano showing surface temperature
anomaly (surface temperature minus ambient surface temperature). The shaded areas show typical
lava dome dimensions. (b) Horizontal contour plot of the surface temperature anomaly over the
lava dome. Temperature anomaly contours every 10 K. Height contours starting at 200 m and
every 100 m.
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5.3 Montserrat control experiments

The aim of this section is to present and analyse results from selected control (Ta = 0 K)

simulations and provide a comparison to idealised topography results of Chapter 4. Poten-

tial changes brought on by the use of the DEM and changes in the parametrisation and res-

olution are investigated. Results are shown for several incoming flow speeds (|U | = 1, 4,

and 7 m s−1, equivalent to Fw = 0.1, 0.5 and 1 calculated for a maximum height of 700 m)

for a wind direction of 90◦ (easterly) and the Wet-Weak Inversion profile (θI = 307.2 K,

RH = 60 %). The sensitivity of the results to other wind directions will be investigated

in the following sections. All results here are shown from Domain 1 (coarse) in order to

include parts of the flow away from the island and are 3h averages from hours 4–6.

Simulations of atmospheric flow over Montserrat show a varied response depending

on the incoming flow speed: as easterly winds impinge on the island, for low |U | there is

very strong diversion of the flow (“flow around” regime), while for higher |U | there is a

shift towards a “flow over” regime (Figure 5.5). However, unlike flow over a simplified

Gaussian mountain, Montserrat is made up by a series of peaks, with the most prominent

ones being Soufrière Hills in the south, Centre Hills in the middle and Silver Hills in the

north. This gives rise to a combination of terrain-related effects such as flow stagnation,

channelling and gap flows.

For |U | = 1 m s−1, the flow is very strongly diverted and flow reversal can be seen as

a series of vortices are created in the lee (Figure 5.5a). Although there is a large degree of

randomness in the number and orientation they generally act to bring the flow towards the

centre of the island, illustrated by the streamlines. Despite the element of randomness, the

overall effect is similar to the twin counter-rotating vortices for flow over a simple Gaus-

sian mountain (Smolarkiewicz and Rotunno, 1989). Aside from flow diversion several

areas of gap flow can be seen between the three peaks. This flow regime is also reflected

in the vertical cross-section, when looking at the isentropes. As potential temperature is a

preserved quantity, flat lines here point towards a flow forced to go around the island and

not over (which would be shown by perturbed isentropes). Random convection can be

seen all over the domain with the higher rainfall rates concentrated on the windward side

and the lee of the island (Figure 5.5d). This flow regime will be referred to as “convective”

for the rest of the chapter.
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Figure 5.5: Results from the control runs (Ta = 0 K) for the Wet-Weak Inversion profile, and
|U | = 1–7 m s−1. (a)–(c) Vertical velocity (shading) with horizontal wind vectors; (d)–(f) vertical
velocity (shading), isentropes (brown lines) and cloud water mixing ratio (black lines) on cross-
sections through the middle of the lava dome. In (a)–(c) every 5th vector is plotted and height
contours shown for 5, 100, 100, 350 and 600 m. Steamlines (thick black lines) starting at x = 3
and 6 km in the windward side are shown to emphasise the flow response. In (d)–(f) isentropes are
every 2 K between 299 and 308 K, cloud water mixing ratio contours are at 2, 5, and 10 g kg−1

and rainfall intesity (mm h−1) are plotted (in green) against the right-hand axis.

For |U | = 4 m s−1, the flow response is similar as there is still very strong divergence

on the windward side (Figure 5.5b), however there is a strong element of “flow over”,

especially in the southern part of the island. This is accompanied by an area of weak

ascent on the windward side and strong descent on the lee. No lee vortices are visible

here, possibly due to a combination of a relatively high moist Froude number (FW ∼ 0.5)

and negative interference from the two peaks, however there is weak convergence towards

the centre of the island in the lee and a weak wake area mainly concentrated between the

two southern peaks. Long island wakes like this are a ubiquitous feature in islands in the

Caribbean (Smith et al., 1997). In the vertical cross-section, a number of shallow clouds

can be seen mixed with deep convective clouds found mainly over the coastline and the

windward side (Figure 5.5e). This is possibly a mixed results of the weak flow over

the mountain, along with frictional convergence (Roeloffzen et al., 1986; Kirshbaum and
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Smith, 2009). This cloud cover is reflected in the very strong rainfall (R > 10 mm hr−1)

located over the windward side. The katabatic flow and wave activity (both mountain

waves and lee-side waves) can be seen in the lee, however this response is weak due to

the instability in the atmosphere. This flow regime will be referred to as “mixed” from

now on.

For |U | = 7 m s−1, the flow has switched to a “flow over” regime (Figure 5.5c).

Some elements of the “mixed” regime can be seen over the island and in the lee (gap

flow between the peaks, and a slight convergence along with a wake on the lee), however

there is no divergence on the windward side. In the vertical, there is now a very strong

response to the mountain as deep convection is triggered consistently over the windward

side (Figure 5.5f). This instability spills to the leeside of the island and wave response

is now very strongly mixed with the general convection. Also, due to a combination of

relatively high Froude number (close to 1) and an aspect ratio close to 2, the flow is still

expected to be in the non-linear regime with wave breaking apparent according to the

diagram by Smith (1989), presented in Chapter 1 (Figure 1.3a). High rainfall rates can

be seen covering the entire island, with the peak located over the windward side due to

advection.

Horizontal rainfall intensity contour plots add further evidence to the flow regimes

as described previously. For the “convective” regime (|U | = 1 m s−1) deep convection

can be seen at random across the domain, covering some areas of the island, but mainly

concentrated over the sea (Figure 5.6a). This is due to a combination of the flow being

diverted from the island, and the lack of moist fluxes over the island. For higher incoming

flow speeds the relative timescales negate this effect but for the very low wind speeds

here this can potentially affect results. Rainfall in the lee of the island can be attributed

to lee-side convergence as in Chapter 4 (Figure 4.5), however, rainfall here appears to

generally be more controlled. This could be due to the increase in resolution, for example

Kirshbaum and Smith (2009) noted that increased resolution led to decreased rainfall,

but it can also be attributed to the differences in the orography. In the “mixed” regime

(|U | = 4 m s−1), heavy rainfall rates are concentrated on the windward side of the island,

and over the northern part, possibly as the flow is able to flow over the relatively short

terrain and Silver Hills (Figure 5.6b). Compared to results from Chapter 4 (Figure 4.5) the



128 Deep convective rainfall over Montserrat and implications for volcanic hazards

more consistent rainfall in the windward side can definitely be attributed to the orography

as, unlike the Gaussian mountain studied in Chapter 4, there is strong flow splitting in the

windward side. Finally, in the “orographic” regime deep convective rainfall covers the

entire island with very high rainfall rates (R > 10 mm hr−1) concentrated close to the

two main peaks (Figure 5.6c).
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Figure 5.6: Results from the control runs (Ta = 0 K) for the Wet-Weak Inversion profile. (a)–(c)
Horizontal plots of rainfall intensity for |U | = 1, 4, and 7 m s−1 (respectively), with terrain height
(black lines; contours are 50, 100, 350, and 600 m), and the catchment in Montserrat (brown lines)
overlaid. (d) Average deep convective rainfall intensity over the island (only R > 5 mm hr−1

taken into account), (e) Area that receives rainfall with R > 5 mm hr−1, and (f) Total rainfall over
the island.

Deep convective rainfall characteristics are presented in Figure 5.6d–f. Only areas

with R > 5 mm hr−1 are taken into account in the calculations here as in most of the

cases the entire island is covered with rainfall of R > 1 mm hr−1. All characteristics

increase as the incoming flow speed increases. Average rainfall intensity over the island

(Figure 5.6d) is close to 5 mm hr−1 for the convective case as deep convection is limited

over the island but reaches a plateau close to 10 mm hr−1 for other cases. As noted

in Chapter 4 (Section 4.4.1.2) this is due to the fact that deep convective rainfall rates

are mainly controlled by the atmospheric structure – once triggered it remains relatively

unaffected by the orography. Rainfall area (the area of the island that receives rainfall
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with R > 5 mm hr−1) increases from 10 km2 (less than 10% of the island) to 70 km2 and

then to 110 km2 in the “orographic” regime, covering 100% of the island (Figure 5.6e).

The almost linear increase is mirrored in the total rainfall volume (Figure 5.6f).

Results presented here correspond well to previous studies of similar tropical island

settings (e.g. Kirshbaum and Smith, 2009; Minder et al., 2013; Cécé et al., 2014), how-

ever heavier rainfall is seen here due to the use of the Wet-Weak Inversion profile which

allows for more consistent deep convection in the simulations. Results are also similar

to those presented in Chapter 4 (for example see Figures 4.4–4.5). Rainfall rates on the

windward side differ slightly from the results of the previous chapter, here stronger rain-

fall is more consistently generated and it is generally stronger over the land. This is caused

by the use of the realistic DEM and is in agreement with other studies of islands in the

Tropics (for example Kirshbaum and Smith, 2009). Montserrat is not a circular island and

its more elliptic shape, coupled with the steep angle of the slopes, creates more of a bar-

rier and forces a larger part of the flow to go over the topography, creating a more intense

perturbation to the flow, and resulting in higher precipitation rates (Kirshbaum and Dur-

ran, 2004). Another, possibly smaller, source of quantitative differences is the change in

the resolution in the experiments here. Grid-size sensitivity is a known issue of numerical

weather prediction models and results for the rainfall produced for any given setting are

known not to converge for grid resolutions between 300 and 100 m (Bryan et al., 2003).

Between the change in the shape and the change in the resolution, quantitative differences

in the results can be expected but they do not affect the main qualitative results.

Finally, it must be noted that due to smoothing the shift towards the “flow over” regime

might be slightly overemphasised. On average there is an approximately 30% decrease

in the height of the mountains (with the top of Soufrière Hills reduced to 700 m from

1000 m), so in reality results might be representative for a 30% higher incoming flow

speed. This is an insignificant increase for low |U | but becomes more significant for

higher values, i.e. results for |U | = 7 m s−1 could be seen as more representative of

10 m s−1. This is reflected by the increase in the Froude number – there has been a

change from Fw = 0.7 in Chapter 4 to Fw = 1 here. As mentioned previously, this is

a practically unavoidable issue due to an inherent issue that eta-coordinate models have

with flow over steep topography (Lundquist et al., 2010; Zhong and Katapodes-Chow,
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2013).

Note that simulations were also carried out using the Dry-Strong Inversion profiles

and they were qualitatively similar to the ones presented in Chapter 4 – the flow response

is the same, with mountain waves appearing more pronounced due to the stronger stability,

however rainfall was limited in the high |U | cases and the windward side of the island.

As the focus here is on deep convection generation, and especially triggering by the lava

dome, the focus on the rest of the chapter will be on the Wet-Weak Inversion profile

results.

5.4 Convective Rainfall Regime (|U | = 1 m s−1)

The sensitivity of the volcanically-generated storm to the impinging wind direction is now

evaluated for |U | = 1 m s−1. Note a change in wind direction is analogous to a change in

the topography encountered by the flow. Results are presented for Ta = 60 K simulations,

using the Wet-Weak Inversion profile, for three different wind directions, WD = 45◦,

90◦, and 135◦. Ten simulations were carried out in total for 5 wind directions (45◦, 70◦,

90◦, 110◦ and 135◦), using the Wet-Weak Inversion profile and Ta = 0 K and 60 K. The

wind direction values were approximately the average, the average plus and minus one

standard deviation and the maximum and minimum wind direction encountered using the

soundings from Guadeloupe (see Figure 2.12b). Again, results are 3hr averages for hours

4–6, but results are now shown from Domain 2 (fine) and focused over the island to show

localised changes in greater detail.

Note that during the experiments presented here, instead of changing the wind direc-

tion in the prescribed input sounding, the DEM data were rotated and input at the appro-

priate angle. This was done to ensure that the background wind was always perpendicular

to the upwind boundary for accuracy, and to keep the computational time relatively short.

Although all horizontal plots are re-oriented so that the y-axis points S–N, some vertical

cross-sections are following the original model coordinates across the wind direction. In

these cases the x-axis is marked as “Model x Distance”.

A change in wind direction can be seen to have a very strong influence in the general

circulation (Figure 5.7). It creates different areas of ascent and descent and shifts the

overall circulation. Similar changes of rainfall patterns depending on the mountain shape
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Figure 5.7: Results from the Ta = 60 K simulations, using the Wet-Weak Inversion profile, for
|U | = 1 m s−1. Vertical velocity (shading) with horizontal wind vectors and height contours
(black lines) shown for 1, 100, 500 and 900 m for a wind direction of: (a) 45◦, (b) 90◦, and (c)
135◦. (d)–(f) As previous but focused on a 2× 2 km area over the lava dome.

have been investigated in various studies (for example Watson and Lane, 2014). For

WD = 45◦ the flow impinges on the island at an angle. As expected, this causes flow

splitting, however the characteristics of the flow splitting are now very asymmetrical:

in the northern part of the island, wind vectors are tilted to an easterly direction, while

in the southern part the turn in the wind vectors is less apparent (Figure 5.7a). A gap

flow can once again be seen between Centre and Soufrière Hills and channelling can be

seen south of the island, as the diverted flow converges with the non-diverted flow. Lee-

side vortices can be seen south-west of the island. As in previous chapters, the hot lava

dome introduces a localised area of convection that acts to draw in the surrounding flow

(Figure 5.7d). The effect of this convective plume is once again limited to a 1 × 1 km

area. For WD = 90◦ the flow strongly resembles the control case (Figure 5.5a) with

the exception of the area over the lava dome (Figures 5.7b,e). Differences in some of the

characteristics of the flow can be seen, for example the lee vortex in the north of the island
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appears stronger here, but these are due to the element of randomness in the flow and the

quantitative results is the same. Note that the area of convection over the lava dome is

not exactly facing towards 90◦ and has a small southward tilt. This effect is caused by

the general circulation enforced by the orography. The WD = 135◦ case differs from the

previous two as the flow is now oriented across the length of the island (Figure 5.5c,f).

As expected from the flow there is divergence in the windward (south-west) side, with the

flow in the west side of the island turning to a southerly wind, however there is also strong

channelling, mainly across the west side and at points the flow turns towards the island

(for example at x = −5 km and y = −1 km). This can be the effect of random convection

that can locally alter the flow, however it can also be cause by weak rotor activity due to

the angle at which the flow impinges on the island. The main lee-side vortices can be seen

in the north-west side of the island. Note that the area is now reduced compared to the

previous cases.

Rainfall generation follows the general flow patterns seen previously (Figure 5.8a–c).

Away from the dome rainfall generation appears relatively random in all cases, with large

areas of consistent rainfall generated in the lee of the island for WD = 90◦ and 135◦

(Figure 5.8b,c). In the vicinity of the lava dome, strong rainfall is generated consistently,

covering a 2 × 2 km area over and in the lee of the temperature anomaly. As noted

previously, there is a small influence by the topography but the orientation of the rainfall

patch is largely dictated by the wind direction. The volcanically-triggered rainfall can

also be easily identified in the rainfall plots along the wind direction (Figure 5.8d–f). As

in the control simulation (Figures 5.5d and 5.6a) rainfall is more consistently triggered

away or over the coastline, however now there is an additional peak starting over the lava

dome and extending for 2–3 km in the lee. Results here are similar to ones presented in

Chapter 4 (Figure 4.10), however as in the control simulation, rainfall generation appears

more controlled. The average background value of approximately 1 mm hr−1 across the

domain matches the value found by Derbyshire et al. (2004) in a study of deep convection

across different models for a relative humidity of 90%. Note that rainfall intensity in the

vicinity of the lava dome is consistently over 5 mm h−1 (the threshold for the initiation of

explosive activity; Matthews et al., 2009) and at parts over 10 mm h−1 the threshold for

quick lahar generation used in Montserrat (MVO, personal communication).
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Figure 5.8: Results from the Ta = 60 K simulations, using the Wet-Weak Inversion profile, for
|U | = 1 m s−1. Horizontal plots of rainfall intensity (shaded) for with height contours (black
lines) shown for 1, 100, 500 and 900 m and catchments (brown lines) overlaid for a wind direction
of: (a) 45◦, (b) 90◦, and (c) 135◦. (d)–(f) Vertical cross-section across the lava dome shown in
the direction of the wind (at 45, 90, and 135 degrees respectively). (g) Average deep convective
rainfall intensity over the island (solid line) and volcanically-triggered (dashed line), (h) Area that
receives rainfall with R > 5 mm hr−1, and (i) Total rainfall volume. Note, only R > 5 mm hr−1

taken into account for the calculations.

Characteristics of the rainfall over the island as well as volcanically-triggered rainfall

are now studied for all 5 wind directions (45, 70, 90, 110, and 135 degrees). For rain-

fall to count as “volcanically-triggered” the same criteria apply as they did in Chapter 4 –

after subtracting the results of Ta = 0 K simulations the rainfall anomaly needs to be long-

lasting and located in the vicinity of the lava dome. As previously, onlyR > 5 mm hr−1 is
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considered. As discussed many times average rainfall intensity is one of the more consis-

tent characteristics and appears relatively insensitive to changes in the wind direction (Fig-

ure 5.8g). Averaged over time, rainfall intensity is higher for the volcanically-triggered

part as it is more consistently triggered. Rainfall area is more changeable characteristic,

increasing for the overall rainfall and decreasing for the volcanically-triggered rainfall

(Figure 5.8h). For WD = 45◦ volcanically-triggered rainfall accounts for more than

50% of the total rainfall over the island, while for WD = 135◦ this decreases down to

approximately 25%. As with the control simulation, the total rainfall volume is mostly in-

fluenced by the rainfall area. Overall, results here are both qualitatively and quantitatively

similar to results previously presented in Chapter 4 (for example Figure ??). Although

results are generally similar for all wind directions there is some variability in the area

of the volcanically-triggered rainfall: averaged across the five wind directions the area is

approximately 4.5 ± 1.7 km2. This is most likely due to a combination of the effects of

the orography and the stochastic nature of rainfall generation in the model.

In general, the simulations produce results that are consistent with previous chapters.

The effect of the surface temperature anomaly fade out over a small distance and the

circulation over the island is typical for a flow with a small Froude number. While the

general qualitative response is the same as Chapter 4, there are differences due to the use

of a realistic DEM, with complex interactions between the plume-induced circulation,

gravity waves and the topography. However, this does not seem to affect the resulting

rainfall anomaly caused by the lava dome in a significant way. Overall, the combination

of the use of realistic topography, an increase in resolution create some changes over the

generated rainfall but the main results remain both qualitatively and quantitatively similar.

Note that, as in Chapter 4, simulations using the Dry-Strong Inversion profile showed

a weak response to the surface heating, however the average rainfall intensity over the

simulation was less that R > 1 mm hr−1 – deep convective bursts occurred, but were not

consistent enough to have an important effect.

5.5 Mixed Rainfall Regime (|U | = 4 m s−1)

The ”mixed” rainfall regime is now examined. As with Section 5.4 results are presented

for 3 different wind direction, at WD = 45◦, 90◦, and 135◦ for the Wet-Weak Inversion
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profile and |U | = 4 m s−1 (Fw = 0.5). Looking at the general atmospheric circulation

over the island, results follow theoretically expected patterns: in all cases there is a degree

of flow splitting on the windward side and convergence in the lee (Figure 5.9a–c). The

strongest flow splitting occurs for WD = 45◦ in the north of the island where wind

vectors turn easterly and for WD = 135◦ in the west where wind vectors turn southerly.

Flow splitting for WD = 90◦ is less intense than the control case, signifying a small

degree of variability in the simulations. Lee vortices can only be seen for WD = 45◦

in the south-east side of the island. As noted previously, this different behaviour can be

expected from basic orographic flow theory (Smith, 1989). For WD = 45◦, the relative

aspect ratio of the island to the flow is almost 2 and wave breaking in the lee can be

expected. On the other hand, for WD = 135◦ the relative aspect ratio is now close to 0.5

and the flow is expected to be in the linear regime (Figure 1.3a in Chapter 1).
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Figure 5.9: As Figure 5.7 for |U | = 4 m s−1.

Close to the lava dome, the convective plume is now strongly influenced by the wind.

The area of the plume is decreased to approximately 0.5 × 1 km, advected downwind



136 Deep convective rainfall over Montserrat and implications for volcanic hazards

and elongated across the general direction of the wind. Unlike the results from the “con-

vective” regime, it is also affected by the orography: in most of the cases the convective

plume can be seen to be slightly off-centre from the average wind direction in the area.

This is due to the destructive interference between the plume and the downlope winds in

the lee. This effect was previously seen in Chapter 3 (for example Figure 3.17), but here it

appears off-kilter due to the asymmetry of the terrain and the relative position of the lava

dome with respect to the mountain slopes.

Once again, the circulation over the island can be used to explain the occurring rainfall

patterns (Figure 5.10a–c). As in the control simulation, deep convective rainfall is largely

confined to the windward side. The largest area of deep convective rainfall is generated in

the west of the island for WD = 135◦, possibly due to the fact that due to the northerly

component in the wind, much of the flow occurs over the lower slopes and deep convection

is more consistently triggered. As seen in Figure 5.9b, flow splitting in the windward side

is less intense that the control runs. This is reflected here as less rainfall is generated over

the north of the island (Figure 5.10).

As in Chapter 4, volcanic triggering of rainfall is greatly decreased for this wind

speed. Looking at rainfall intensity across the wind direction (Figure 5.10d–f), small

areas of volcanically-triggered rainfall can be identified for WD = 90◦ and 135◦, ap-

proximately 3–5 km downwind of the lava dome, while any response is heavily mixed

with orographic rainfall for WD = 45◦. As previously, average rainfall intensity over

the island is relatively independent of the wind direction with an average value of ap-

proximately 10 mm hr−1 (Figure 5.10g). Volcanically-triggered rainfall on the other hand

ranges between 1–4 mm hr−1. This is in agreement with results as seen previously and

shows the large impact orography can have once a certain incoming flow speed thresh-

old is passed. Volcanically-generated rainfall is now a very small percentage of the total

rainfall (∼ 1–2%), with the total area of the island that receives R > 5 mm hr−1 now

increased to approximately 50 km2 (Figure 5.10h). However, as noted in Chapter 4, even

though rainfall intensity is significantly decreased, it is still an important effect that needs

to be considered as the location of this extra rainfall is now on the lee of the island where

rainfall is not expected. As previously, the trend is reflected in the total rainfall volume

(Figure 5.10i).
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Figure 5.10: As Figure 5.8 for |U | = 4 m s−1.

5.6 Orographic Rainfall Regime (|U | = 7 m s−1)

The “orographic” rainfall regime is now considered. As expected for a Froude number

of 1 the island has a smaller impact in the flow for all wind directions (Figure 5.11a–c).

As in the control simulation, interaction with the orography is still visible at parts, for

example small divergence on the windward side of the hills, a small degree of gap flow

and channelling between hills and a wake in the lee of the island, however the wind vector

remain fairly consistent and close to the original wind direction. The change towards the

“flow over” regime can be seen in all cases, marked by the extended area of ascent in

the respective windward side of the island. Over the lava dome the effect of the increase
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Figure 5.11: As Figure 5.7 for |U | = 7 m s−1.

in wind speed is stronger advection and greater reduction in the strength of the plume

(Figure 5.11d–f).

Rainfall generation has also switched towards an “orographic” regime (Figure 5.12a–

c). As in the control simulation a large part of the island is covered with rainfall over

5 mm hr−1 and rainfall rates over 10 mm hr−1 can be seen over and in the lee of the

mountain peaks. Along the wind direction the rainfall distributions are now relatively

uniform along the three cases, with peak rainfall rates located over the crest or on the

lee of the island (Figure 5.12d–f). Note that, horizontally, the position of the rainfall

peak values sometimes appears off-centre when compared to the peak of the mountains

(for example Figure 5.12c). This is due to the combined effect of channelling and con-

vergence (visible in Figure 5.11c). Average rainfall rate over the island is relatively un-

changed for all wind direction and is less that the “mixed” regime case. This can be ex-

plained as stronger wind (i.e. the vertical wind shear between the boundary layer and the

free troposphere) is now acting against single-cell deep convection (Schlesinger, 1973).

Volcanically-triggered rainfall is greatly decreased with an average rainfall intensity close
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Figure 5.12: As Figure 5.8 for |U | = 7 m s−1.

to 1 mm hr−1 (Figure 5.12g), similar to results in Chapter 4 (Figure 4.16). The overall

significance of this rainfall is greatly decreased as rainfall over 5 mm hr−1 is consis-

tently triggered over the island. This is further illustrated in Figures 5.12h and 5.12i. The

percentage of the volcanically-triggered rainfall area is now decreased to less than 1%.

Interestingly, the total area of the island that receives rainfall over 5 mm hr−1 changes

considerably between the simulations, ranging between 60 and 110 km2 – between 55

and 100% of the total area, possibly due to the angle at which the incoming flow meets

the island.

Overall, results here are typical for a small island located in the Tropics (Minder et al.,

2013; Cécé et al., 2014), however, as noted before, higher than typical rainfall rates are
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caused by the use of the Wet-Weak Inversion profile. As far as volcanically-triggered rain-

fall, it is consistent with existing literature [for example Kirshbaum (2011)] where it was

found that advection by the wind plays a major role in inhibiting the generation of deep

convection. For a weak incoming flow a strong and robust response can be seen in the gen-

erated rainfall. However as the wind increases, this response becomes weaker and more

susceptible to influence from the orography. Finally for strong winds (|U | > 7 m s−1

the rainfall response becomes insignificant. Results were also seen to be consistent be-

tween the control and temperature anomaly simulations and also largely consistent with

simulations previously presented in Chapters 3 and 4. The use of a realistic DEM adds a

significant component of complexity in the resulting rainfall patterns as well as a degree

of variability in the results. These findings are summarised in Figure 5.13.
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~1 km for |U|~1 m s-1
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Figure 5.13: Schematic summarising the main findings of the study. As the flow impinges on
the island a very strong response can be seen close to the lava dome for low wind speeds. For
higher wind values this volcanically-triggered rainfall is advected downwind and the response is
weakened.

5.7 Implications for hazard risk assessment in Montserrat

Studying of the volcanically-generated storm has shown (among other findings) that: for

low wind speeds, very strong rainfall is triggered close to the lava dome and is relatively

unaffected by changes in the terrain, while for stronger wind this response weakens, and
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becomes increasingly susceptible to advection and local orographic effects. These find-

ings will be used to investigate the impact volcanically-triggered rainfall could have on

volcanic hazards in Montserrat, mainly focusing on lahar generation. For this purpose

results from all thirty simulations are used (Wet-Weak Inversion simulations with Ta = 0

and 60 K and |U | = 1, 4, and 7 m s−1 and WD = 45◦, 70◦, 90◦, 110◦, and 135◦).

Lahar generation is a complex process, depending on factors such as the time between the

eruption and rainfall, antecedent rainfall and the intensity and duration of the triggering

rainfall (Major and Newhall, 1989; Froude, 2015), factors that are beyond the scope of

investigation here. However a threshold rainfall rate of 10 mm h−1 for lahar triggering is

given as an approximate value by the MVO and this will be used here.

In order to estimate which catchments would be affected under the common wind

conditions, results from different wind direction were averaged for each value of incoming

flow speed. These results were plotted over the catchments in Montserrat: each catchment

was assigned a colour depending on the amount of rainfall it would receive, red for rainfall

over 10 mm hr−1, green for rainfall over 5 mm hr−1 and white for anything less than that

(Figure 5.14). For a catchment to count as being affected, at least 1 km2 of the catchment

needed to be covered by rainfall.

Overall the results here reflect those presented in Sections 5.4–5.6. In the control runs,

for |U | = 1 m s−1 none of the catchments consistently received more that 10 mm hr−1 of

rainfall across the different wind directions and the most commonly affected catchments

are situated along the coastline, including Farm Ghaut and most of the northern catch-

ments (Figure 5.14a). For |U | = 4 m s−1 (Figure 5.14b), a large number of catchments

in the windward side are now expected to receive more than 10 mm hr−1, including Dry

Ghaut, Tar River, White’s Ghaut, Tuitt’s Ghaut, Farm Ghaut, as well as half of the north-

ern catchments situated towards the west (see Figure 5.3c for locations). The lee side is

less affected with some of the catchments expected to receive 5 mm hr−1 (White River,

Gingoes Ghaut, Fort Ghaut, Belham and the rest of the northern catchments) and the rest

expected to receive less than 1 mm hr−1. For |U | = 7 m s−1 (Figure 5.14c) most of the

island is expected to receive 5 mm hr−1 for any wind direction. The more heavily affected

catchments are not situated towards the centre of island, surrounding Soufrière Hills (Fort
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Figure 5.14: Catchments affected by the lava dome-generated rainfall. Catchments in red were
seen to receive rainfall over 10 mm hr−1, while catchments in green received rainfall over
5 mm hr−1. All results are averaged over 5 different wind direction. First row: Control simu-
lations (Ta = 0 K) with |U | = (a) 1, (b) 4, and (c) 7 m s−1. Second row: Temperature anomaly
simulations (Ta = 60 K) with |U | = (d) 1, (e) 4, and (f) 7 m s−1.

Ghaut, Belham, Tuitt’s Ghaut, and Tar River). As noted previously, aside from lahar gen-

eration this regime is also important when considering rainfall-triggered volcanic activity

(Matthews et al., 2009).

As seen throughout the chapter, the largest impact lava dome heating has is for low

wind speeds (Figure 5.14d). There is a considerable change in the affected catchments

as Fort Ghaut in the south-west and Belham in the north-west of the lava dome are now

expected to receive 10 mm hr−1 for most of the common wind directions. Other catch-

ments surrounding the lava dome are also susceptible to volcanically-triggered rainfall,

including Gingoes Ghaut and White River in the south and Tuitt’s Ghaut in the north.

As expected, for stronger winds (Figure 5.14e–f) the impact of the lava dome is lessened
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and is indiscernible for results averaged over the different wind directions. Comparing

control and temperature anomaly simulations results show a small variability in the af-

fected catchments, but the main results are similar – heavy rainfall is concentrated in the

windward side for |U | = 4 m s−1 and over the centre of the island for |U | = 7 m s−1.

Validating these results is a difficult task and would require extensive fieldwork. Even

for the MVO, gathering concrete data about lahars in Montserrat every day is a nearly

impossible task due to the number of rivers and the fact that usually lahars occur si-

multaneously, making accurate recording by seismography impossible. However, visual

verification of lahars that fit the description (resulting from persistent localised rainfall in

the vicinity of the lava dome) was provided by the MVO, especially for the Fort and Gin-

goes Ghauts (MVO, personal communication). Futhermore, Froude (2015) studying lahar

activity in Montserrat has also argued that consistent rainfall over the Belham catchment

might have been the reason for the change in the area of the catchment in recent years –

an extension towards the lava dome.

In order to provide a guide to aid the MVO, a handout is compiled to assess the possi-

bility of volcanically-generated rainfall for a given day (Figure 5.15). As this is aimed at a

non-atmospheric science audience, care was taken to introduce all aspects discussed and

simplify it as far as possible. An effort was made to choose diagnostics directly available

from atmospheric soundings made available at the University of Wyoming website3 . As

the main forcing for the rainfall is the surface temperature anomaly, this was chosen as

the first check. If the thermal forcing is large enough, the second check is whether the

atmosphere is sufficiently humid and that there is instability at a relatively low height.

The mean mixed layer mixing ratio parameter is calculated as the mean value for the mix-

ing ratio up to a height of 500 m. This gives an indication about the humidity content

of the lower atmosphere. In the Tropics (surface pressure of 1013 hPa and a temperature

300 K) an average mixing ratio of 18 g kg−1 is equivalent to 85% relative humidity in

the boundary layer. In the sounding analysis in Chapter 2 this was the average minus

one standard deviation for the relative humidity (so ∼ 33% of the soundings will have

MMLR>18). The threshold for the level of free convection was chosen to represent the

atmospheric characteristics in the study here. Finally, the convective inhibition in the at-

mosphere (CIN, or CINS here) is checked to ensure that the the convective plume will
3http://weather.uwyo.edu/upperair/sounding.html
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Figure 5.15: A handout detailing the necessary conditions for volcanically-triggered rainfall to be
made available to the MVO. To be printed as an A4 or A3 size poster.

be strong enough to trigger deep convection (−20 J kg−1 was the amount of CIN in the

Dry-Strong Inversion profile). If any of the parameters is below the threshold no rain-

fall is expected (Category i – Shallow Rainfall). Results from the Dry-Strong Inversion

presented in Chapter 4 would representative in this case. Based on the sounding study
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(Chapter 2, Section 2.6), 63% of the soundings fall into this category.

If all parameters are above the threshold, deep convective rainfall is possible and the

wind speed close to the surface is checked. For half a barb (5 knots or 2.5 m s−1) this

leads to “Category ii – Convective rainfall”. This limit was chosen as it would lead to

the category when volcanically-triggered rainfall has the strongest impact according to

the study here and represents the results presented in Section 5.4. Out of the soundings

studied, 5% belonged to this category. If the wind is over this threshold, a final check is

made. If the wind vectors have a full barb (10 knots or 5 m s−1) this leads to (Category iii

– Windward-side Rainfall; 10% of soundings, representing the results in Section 5.5)

and if its over that to Category iv (Storm Conditions; 22% of soundings, Section 5.6).

The percentages calculated here correspond well to the climatological study findings of

Dunion (2011). Estimated from the data presented there, percentages for each category

would be: Category i: 57%, Category ii: 4%, Category iii: 14%, and Category iv: 25%.

As seen in Section 5.4, a change in the wind direction introduces small changes in

the rainfall area, as well as rainfall intensity for low |U |. Hence, in order to estimate

the catchments that would be affected for any wind speed a 2D rainfall distribution was

created based on data from simulations for the 5 available wind direction. This was placed

in the lee of the lava dome and rotated from 0–350◦, while making note of catchments that

would receive more that 10 mm hr−1. The results from this are presented in the lower part

of the handout.

Note that this is an empirical guide based on initial estimations from the model ex-

periments conducted during the study and other relevant studies. Based on the soundings

studied in Chapter 2, the categories are distributed evenly amongst the 4 categories, with

11% of days displaying potential for volcanically-triggered rainfall. Note that this analysis

is based only on the atmospheric soundings, the lava dome temperature – a very discrim-

inating factor – is neglected as long-term data are not available. Due to the large number

of experimental parameters in the study, sensitivity to some parameters (such as low-level

relative humidity) has not been thoroughly examined. In short, the guide is indicative of

likely volcanically triggered storm occurrence, it should not be viewed as definitive.

Even though the study here has been limited to Montserrat and SHV there are numer-

ous volcanoes in the Tropics where this mechanism can occur. In order to use the results



146 Deep convective rainfall over Montserrat and implications for volcanic hazards

directly, a number of conditions need to be met: it needs to be an active, dome-building

volcano close to the Tropics, with a height comparable to SHV (below the tradewind inver-

sion). Using the Smithsonian Institution Global Volcanism database5 , several volcanoes

with these criteria are found in several locations such as the Caribbean, Nicaragua, Costa

Rica, Mexico, Indonesia and the Philippines (Table 5.3). If the location requirement is

eased, another match is the Shinmoedake peak in the Kirishima volcano, located in the

island of Kyushu in Southern Japan (31.54 N, 130.53 E). It is an active dome-building

volcano with recent activity and a height of 1421 m. Although it is north of the Tropics it

is still located in a very humid area, with heavy rainfall and lahars.

Name Country Location (◦) Height (m) Latest Eruption (CE)
Arenal Costa Rica 10.4 N, 84.7 W 1670 2010
Batur Indonesia 8.2 N, 115.4 E, 1717 2000

Camiguin Philippines 9.2 N, 124.6 E 1552 1953
Concecion Nicaragua 11.54 N, 85.6 E 1700 2011

La Soufrière St. Vincent 13.20 N, 61.11 W 1234 1979
Momotombo Nicaragua 12.4 N, 86.5 W 1297 1905

Pelee Martinique 14.8 N, 61.2 W 1394 1932
San Cristobal Nicaragua 12.7 N, 87.0 E 1745 2014

Soufriere Guadeloupe 16.0 N, 61.7 W 1467 1977
Soputan Indonesia 1.1 N, 124.7 E 1784 2012

Table 5.3: List of monitored dome-building volcanoes matching the requirements for volcanically-
generated rainfall. Criteria were: i. Existence of lava dome, ii. Latitude < 23◦, iii. Height
< 2000 m, iv. Latest eruption after 1900 CE.

If the dome-building criterion is disregarded there is a number of volcanoes that could

be affected mainly in the Philippines, Malaysia, and Indonesia. Examples of volcanoes of

comparable height (up to approximately 2 km) that have had activity in recent years and

are situated near populated areas include Bulusan, Philippines, and Kelut and Tangkuban-

parahu, Indonesia. The analysis has shown that volcanically-triggered rainfall can occur

for very low surface temperature anomalies (as low as 20 K). Diffusion of heat in non-lava

dome-building volcanoes is very different and a “surface temperature anomaly” cannot be

used in the direct way it was used for dome-building volcanoes, but it can be expected that

a volcanically-generated rainfall can be triggered in days with a large-scale convective

system when a small temperature perturbation by the volcano could act to focus rainfall

over the volcano. For volcanoes without a lava dome this could still act to trigger lahars

in the lee of the volcano (an area usually protected by the rainfall shadow) as well as non-

lava dome related eruptions such as the ones observed in Merapi, Indonesia (Voight et al.,
5http://www.volcano.si.edu/
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2000) and Piton de la Fournaise, Reunion Island (Violette et al., 2001). As the focus of

the study here was dome-building volcanoes, further study would be needed to make a

correct assessment of this possibility. Taller volcanoes, with the summit above the usual

tradewind inversion (> 2 km) can also be studied in this context.

5.8 Summary

The impact of volcanically-generated rainfall for the island of Montserrat has been pre-

sented. A series of high-resolution simulations were carried out in order to simulate the

flow and rainfall over the island. The change from an idealised mountain to a realistic to-

pography, as well as an increase in grid resolution to 100 m allowed for the testing of the

sensitivity of volcanically-triggered rainfall to one new, important parameter – the wind

direction. There were changes to the convective core of the plume, but these changes were

found to have little effect on the rainfall generated for low wind speeds (|U | ∼ 1 m s−1).

For moderate winds (|U | ∼ 4 m s−1), the additional rainfall was found to be sensitive to

the larger scale orographic flow while higher winds (|U | ∼ 7 m s−1) where seen to greatly

inhibit this effect.

Results for the most common wind directions have shown that two major catchments

on Montserrat can be affected by volcanically-triggered rainfall ofR ∼ 10 mm hr−1 (Fort

Ghaut and Belham) while three can consistently receive volcanically-triggered rainfall of

R ∼ 5 mm hr−1 (Gingoes Ghaut, White River and Tuitt’s Ghaut). It must be noted,

though, that the simulations are still idealised and thus can only be used to provide a

first-order estimate of the impact. Despite the fact that data covering lahar generation is

difficult to gather in Montserrat, the results broadly agree with what has been seen by the

volcanic observatory: lahars triggered in the lee of the dome by heavy localised rainfall.

Using the theoretical analysis of the air parcel model allows for an easy way of es-

timating days with a high risk of a volcanically-triggered storm and thus a checklist for

assessing the possibility of volcanically-generated rainfall for any given day has been

compiled for potential use by the MVO and other observatories. Although only Montser-

rat was considered for this study, the results can be generalised for all volcanoes in the

Tropics and sub-Tropics, approximately 45% of all active volcanoes. This effect would

thus need to be considered for appropriately sized volcanoes, especially on days without
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predicted synoptic-scale rainfall, when heavy localised rainfall could trigger an unex-

pected hazard.



Chapter 6

Conclusions and future work

6.1 Summary

The interaction of the atmosphere and a hot volcanic lava dome has been studied via a

series of high-resolution numerical simulations using the WRF model. A tropical, oceanic

setting was used in the simulations with varying degrees of idealisation. In this chapter,

the main findings are summarised and future work is suggested.

6.1.1 Dry atmospheric flow over a volcano

In Chapter 3, highly-idealised numerical simulations were used to study the fundamental

response of the atmosphere to surface heating from a lava dome – the hot summit of a

volcano. The simulations were carried out for several different incoming flow speeds and

surface temperature anomaly values.

The heated surface of the volcano triggers a strong convective plume over or on the

lee of the lava dome. This response is very localised (typically order of 1 km from the

dome) due to the spatial extent of the lava dome but is a very resilient feature, remaining

unaffected by the incoming flow speed for most of the simulations. The plume is accom-

panied by a pair of counter-rotating vortices on the lee side, acting to draw air towards

the base of the plume, while the top of the plume acts as “virtual terrain”, forcing the

flow to go over or around it and triggering a secondary set of gravity waves. The height

of the plume depends on the strength of the surface temperature anomaly and reaches a

height approximately determined by its equilibrium potential temperature. The thermal
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circulation, its structure and associated gravity waves depend on the incoming flow speed

(or Froude number) and the strength of the temperature anomaly.

After categorising the results, a regime diagram for dry atmospheric flow over a vol-

cano has been produced. Three regimes were identified – “no plume” (advection stronger

than convection), “vertical plume” (convection stronger that advection), and “enhanced

rotors” (in-between regime). The most common flow was the no plume regime followed

by the strong plume regime depending on the balance between convection and advection,

i.e. the surface heating against the Froude number. For low incoming flow speeds and

a strong surface temperature anomaly the plume was seen to produce its own convective

circulation, but its effects diminish as the incoming flow speed increases. Under increas-

ingly stronger incoming flow speeds the plume was also seen be tilted towards the lee side

or dissipate, becoming effectively ventilated by the wind.

6.1.2 Moist atmospheric flow over a volcano

In Chapter 4, numerical simulations were used to study the response of a more realistic,

moist atmosphere, based on the atmospheric structure of the Tropics. Although still highly

idealised, Montserrat, a volcanic island in the Caribbean, was chosen as a template. The

main aim of the simulations was to test whether the convective plume previously seen in

the dry simulations was strong enough to counteract low-level convective inhibition (in the

simulations manifested by a tradewind inversion) and force the flow into a regime of deep

convection with associated convective precipitation. For this purpose a complex, multi-

dimensional parameter space was investigated, covering typical atmospheric conditions,

temperature inversion strengths and realistic volcanic surface temperature anomalies.

The response was once again the generation of a convective plume. After a threshold

surface temperature anomaly value, this plume was seen to break through the tradewind

temperature inversion, resulting in localised deep convection over and in the lee of the

lava dome, accompanied by high amounts of rainfall. For low winds this rainfall was

triggered close to the lava dome. The rainfall rates produced were large but typical for

the simulation of deep convection (Kirshbaum and Durran, 2004). Advection by the wind

was seen to push the area of rainfall away from the lava dome, but it was never seen to

form into a large-scale system.
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Three characteristics of this volcanically-triggered rainfall were analysed: rainfall

anomaly area, total rainfall anomaly, and rainfall anomaly intensity. The first two were

seen to be proportional to the strength of the surface forcing and all characteristics were

influenced heavily by the humidity content and the incoming flow speed. For conditions

that were not conducive to convection (RH ∼ 80% in the boundary layer), only the sur-

face heating caused increased cloud cover in the lee but any rainfall triggered was weak

and intermittent. Conditions that were more conducive to convection (RH ∼ 85% in the

boundary layer) allowed the storm to extend spatially (up to 3–4 km2) and the rainfall

distribution to be less concentrated to the centre. Rainfall intensity was the least change-

able characteristic, largely unaffected by changed in the control parameters. Air parcel

theory was used to explain and provide a theoretical background to the phenomenon. By

choosing a realistic low-level air temperature to represent the temperature of a heated

parcel over the lava dome, an initial estimation of the local CAPE and CIN was used to

gain insight on the storm characteristics as, depending on the conditions and wind speed,

low level CAPE was increased from 20–21 J kg−1 to 50, and 80 J kg−1, and CIN was

decreased from a value between −13–−30 by 10–20 J kg−1.

Studying the initialisation and evolution of the volcanically-triggered rainfall, a peri-

odic behaviour was discovered. As moist air arrives it is forced to ascend, causing con-

densation and thick, low-level clouds over the lava dome. As new air is forced into this

environment the cloud starts expanding, accompanied by the generation of rainfall. To-

wards the end of the cycle the cloud is advected away and the formation of a cloud begins

anew. The cloud that is advected was seen to dissipate quickly after due to mixing with

the dry air. The period of this cloud generation was seen to be consistent with cumulus

cloud development timescales. Rather than having the deep ascent of a single updraft, this

mechanism can be seen as the result of ascent of multiple thermals, ascending through the

preconditioned environment, consistent with Kirshbaum (2013).

6.1.3 Moist atmospheric flow over Montserrat

In Chapter 5, high-resolution simulations using realistic topography based on a digital

elevation model (DEM) of Montserrat were used to study volcanically-generated rainfall

in a realistic context and the impact to volcanic hazards. The result of the flow over the
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lava dome was the triggering of a localised storm with similar characteristics to those of

the Chapter 4 simulations.

In order to explore the limits of the volcanically-triggered storm, a range of experi-

ments were conducted for 3 different wind speeds (weak, moderate, and strong winds) and

different wind directions. For a weak wind field, volcanically-generated rainfall remained

a ubiquitous feature for all wind directions, acting to focus rainfall over the lava dome and

changes in the topography (expressed by the change in wind direction) were seen to have

a secondary effect. Increasingly stronger winds had a large impact in the results, causing

a shift between a “convective” rainfall regime, where volcanically-triggered rainfall dom-

inated the results, to an “orographic” regime with mechanically-forced convection, which

resulted in the radical decrease in the area of the volcanically-triggered rainfall anomaly

up to the point of complete inhibition.

There are two kinds of volcanic hazards tied with rainfall in Montserrat, explosive

activity (accompanied by pyroclastic flows) and lahars. Rainfall intensity near the lava

dome was over the threshold for triggering both, but the main focus in the chapter was on

lahars, as advection by the wind forced the rainfall away from the dome in the parameter

space studied here. Results from the most common wind speeds were analysed together

in order to provide an estimate for the affected catchments in Montserrat, depending on

different wind speeds. For low winds (|U | ∼ 1 m s−1) it was found that the majority of

catchments in the lee of the lava dome were impacted by volcanically-triggered rainfall.

For moderate winds (|U | ∼ 4 m s−1) the effect of volcanically-triggered rainfall was

decreased and heavy rainfall occurred mainly on the windward side. Finally, for strong

winds (|U | ∼ 7 m s−1) heavy rainfall occurred over the entire island, more consistent

over the the catchments near the peaks. By compiling the main results, a checklist was

created to help the observatory in Montserrat assess the hazard on a daily basis.

6.2 Conclusions

The aim of this study was to explore possible interactions between a volcano and a trop-

ical atmosphere, specifically a lava dome-building volcano not undergoing an explosive

eruption. The main effect was quickly found to be the introduction of a convective plume,

borne from the heated air on top of the volcano. Under realistic conditions this was found
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to be able to trigger rainfall by making use of the potential energy of the tropical atmo-

sphere, to generate localised volcanically-triggered rainfall. For weak winds, this was

found to occur over and in the lee of the lava dome and featured large, persistent rainfall

rates (over 10 mm h−1), sufficient to trigger volcanic hazards. In this way, even though

the area of the immediate effect is constrained, the repercussions are not, especially when

considering the impact on volcanic hazards. The positioning and persistence of the storm

can increase the chance of lahar triggering during days with no large-scale rainfall and, al-

though for the parameter space studied here the rainfall was generally advected away from

the lava dome, the rainfall intensity is enough to increase the possibility of a rainfall-

triggered dome collapse or pyroclastic flows. For stronger winds (|U | > 7 m s−1) the

effect of the heating is diminished as orographic rainfall dominates.

Despite the fact that the study was based on idealised simulations and a number of

approximations were used, the results were kept realistic and general. In this sense, the

studied mechanism can be applied to other lava-dome building volcanoes in the Tropics –

the location of almost 45% of the active volcanoes. Considering that pyroclastic flows and

lahars are the two most dangerous volcanic hazards, causing loss of both life and property,

this illustrates the wider implications of this mechanism and a need for further, individual

studies for other candidate volcanoes.

6.3 Future work

There are a number of ways that this work can be expanded, dealing with the degree of

idealisation both in the atmosphere and in the way the volcano is represented. Radiation

was neglected here as a simplification and to allow us to isolate the direct effect of the

volcanic heating patch. However, a more realistic study of the temporal, daily evolution

of the dome could be conducted. Another effect that was ignored was the cooling of the

dome due to the rainfall – a mechanism that can act to eliminate the storm as the dome

cools below the threshold required for convection. This mechanism is one of the triggers

for rainfall-generated dome collapses (Matthews and Barclay, 2004) and further study is

deemed necessary.

A more realistic representation of the volcano can also be studied, simulating the

volcano as more than a heat source and including volcanic emissions such as chemicals
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and ash. This would require use of more advanced models (for example WRF-Chem) in

order to simulate the volcanic plume chemistry and advection as well as the atmosphere.

Finally, the fine details of the plume, both spatially and temporally, can be studied by

use of dedicated large eddy simulation (LES) models, such as Cloud Model 1 (CM1) – a

high-resolution model specifically created to study deep convection and storm-generation.

In order to carry out in-depth simulations of the plume a resolution of order 10 m would

be required. The limited spatial extend of the volcanically-triggered storm lends itself to

such ultra-high-resolution modelling. Another possible route to explore would be a more

accurate representation of the dome topography. Due to their geological composition,

volcanoes can be very steep, and this inherent steepness can enhance orographic rainfall.

However, WRF, as an eta-coordinate model, is not equipped to deal with this, and as such,

a different model would need to be utilised.

An additional way to extend the work would be to focus on other volcanoes in the

Tropics. In the simulations presented in the thesis, the volcano characteristics were con-

strained to those of Montserrat, a relatively small volcano. There is a number of similar

dome-building volcanoes where the results of the study could be used, including Arenal,

Costa Rica, Concecion, Nicaragua, and Soputan, Indonesia. However, changes in the

height of the lava dome, topography of the area, or a non-oceanic setting could all prove

to be sources of variation in the results, as well as a change of focus to non-dome building

volcanoes, such as Bulusan in the Philippines and Kelut in Indonesia.



Appendix A

A Short Atmospheric

Thermodynamics Glossary

This appendix provides a short glossary to accompany the “Volcanically-generated Rain-

fall” handout (Figures 5.15 and A.1). It is aimed at “users” of the research who may be,

for example, volcano observatory scientists. Four example soundings are also included,

plotted on Skew-T diagrams, as generated from the University of Wyoming atmospheric

soundings web page1 .

Atmospheric Inversion: A layer in which temperature increases with altitude. The prin-

cipal characteristic of an inversion layer is its marked static stability, so that very little

vertical transport can occur within it.

Atmospheric Sounding: A profile of atmospheric measurements (such as temperature or

water vapour) at various heights or pressure levels.

Convective Available Potential Energy, CAPE (J kg−1): CAPE is a measure of instabil-

ity through the depth of the atmosphere, related to updraft strength in storms. Forecasters

often refer to “weak” (CAPE less than 1000 J kg−1), “moderate” (CAPE from 1000–

2500 J kg−1), “strong” (CAPE from 2500–4000 J kg−1), and “extreme” (CAPE greater

than 4000 J kg−1) instability.

Convective Inhibition, CIN or CINS (J kg−1): Convective inhibition represents resis-

tance to convection in the atmosphere. An air parcel must have enough energy to over-

come this for storm initiation.
1weather.uwyo.edu/upperair/sounding.html
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Level of Free Convection, LFC or LFCT (km or hPa): The LFC is the level at which a

lifted air parcel begins to move freely upwards.

Lifted Index, LI or LIFT: The lifted index is the temperature difference between the

500 hPa temperature and the temperature of a parcel lifted to 500 hPa. Negative values

denote unstable conditions. LI is more of a measure of actual ”instability” than CAPE

because it represents the potential buoyancy of a parcel at a level, whereas CAPE is inte-

grated through the depth of the troposphere.

Mixing Ratio (kg kg−1): The ratio of the mass of a variable atmospheric constituent to

the mass of dry air. Here, this refers to water.

Precipitable Water (mm): The total atmospheric water vapour contained in a vertical

column of unit cross-sectional area extending between any two specified levels, com-

monly expressed in terms of the height to which that water substance would stand if

completely condensed and collected in a vessel of the same unit cross section.

Shallow/Deep Convection: Convection in the atmosphere occurs when thermally driven

turbulent mixing is present. Shallow convection occurs when vertical motions take parcels

from the lower atmosphere to a height below 500 hPa (approximately 6 km), while deep

convection occurs when the parcels are taken above 500 hPa.

Skew-T Graph: A thermodynamic diagram used for forecasting (see Figures A.2–A.5).

It shows curves that depict the paths followed by lifted parcels. The basic curves are tem-

perature (purple lines that slope up to the right), potential temperature (green lines that

slope up to the left), and equivalent potential temperature (blue lines).

Definitions are modified from the NOAA “Explanation of SPC Severe Weather Parameters”2

and the American Meteorological Society “Glossary of Metorology”3 sites.

2http://www.spc.noaa.gov/sfctest/help/sfcoa.html
3http://glossary.ametsoc.org/wiki/Main Page
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Lahar triggering from volcanically-generated rainfall

http://www.spc.noaa.gov/sfctest/help/sfcoa.html - Detailed explanations of sounding parameters
http://www.theweatherprediction.com/thermo/skewt - An introduction to a Skew-T graph

Go to weather.uwyo.edu/upperair/sounding.html
Select "GIF: Skew-T" for the "Type of plot" field, and a day.
Type "78897" (Le Raizet, Guadeloupe) or "78526" (San Juan, Puerto Rico)
   for "Station number". 

The lava dome temperature is the driving force of the rainfall.
Computer simulations have shown that the average surface temperature
over the lava dome needs to be at least 20 K over the surface
temperature away from the dome.

This is to check how humid the atmosphere is.
Rainfall requires a high humidity content in the atmosphere.
These are to check how stable the atmosphere is.
Rainfall needs a layer of potential instability at a relatively low height.
*Remember, -15>-20, but -30<-20.

Check these numbers on the right side of the sounding.

Half barb?

Get sounding

Is the dome "hot"? 

MLMR > 17
LFCT > 500
CINS > -20*

Full barb?

No

No

Yes

Yes

No No

Yes Yes
i. Shallow Rainfall ii. Convective Rainfall iii. Windward-side Rainfall iv. Storm Conditions

Atmospheric Soundings and GlossaryExplanation

As air flows over a lava dome it 
is heated. If the dome is 
sufficiently hot, and 
atmospheric conditions allow for 
it, then localised deep 
convection can be triggered 
with deep clouds and intense 
rainfall, capable of triggering 
volcanic hazards such as lahars 
and pyroclastic flows.

Vertical profiles of temperature, humidity and wind are regularly 
made by radiosondes. Sounding diagnostics are used to determine 
the potential for convective conditions and rainfall, including:

*Indicative pictures

Name                                                            
MLMR (Mean Mixed Layer Mixing Ratio, g kg-1)
   The mean water vapour mixing ratio over the lower atmosphere

LFCT (Level of Free Convection, hPa)
   The height at which an air parcel will become buoyant

CINS (Convective Inhibition, J Kg-1)
   The least amount of energy a parcel needs to have to ascent

WIND VECTORS (knots)
   Wind speed and direction. Wind speed is shown in knots:
     -Half a barb indicates 5 knots
     -A full barb indicates 10 knots

Indicates
Humidity

Humidity/Stability

Stability

Mechanical Energy

Heat Flux
Shallow

LocalisedDeepConvection

Tradewind Inversion

LocalisedRainfall

Volcano

Tropical
Atmosphere
with CAPE

Clouds

Clear atmosphere and dome visible. 
Shallow convection (<1mm hr-1) or 
no rainfall expected, concentrated 
on the windward-side.

Generally clear atmosphere with 
clouds near dome. High amounts of 
volcanically-triggered rainfall near 
dome can be expected.

Significant amounts of rainfall 
expected all over the island.

Co
nd

iti
on

s Deep clouds and significant rainfall 
on the windward side. Low chance 
of enhanced volcanically-triggered 
rainfall in the lee of the dome.

On days when volcanically-triggered rainfall is expected 
(Categories ii-iii), numerical simulations give rainfall 
rates over 10 mm h-1 within 1 km of the dome.
To see an estimate of catchments that could be affected, 
look at the lowest 2 wind vectors on the bottom right 
side of the sounding and estimate the wind direction.

Volcanically-Generated Rainfall Over Montserrat

What type of rainfall is likely?

To estimate the wind direction, try placing the wind vector in one of 
the small circles on the left, with the tip pointing towards the centre.

Wind Direction

Contact DetailsUseful links
Alex Poulidis - a.pouldis@uea.ac.uk
Ian Renfrew - i.renfrew@uea.ac.uk

Adrian Matthews - a.j.matthews@uea.ac.uk

Check the 2 lowest wind vectors in the right hand side of the sounding.

Figure A.1: Larger version of the handout to be made available to volcano observatories.
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Figure A.2: A sample sounding for Category i (Shallow Rainfall). All soundings are obtained
from the University of Wyoming atmospheric soundings web page.

Figure A.3: A sample sounding for Category ii (Convective Rainfall).
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Figure A.4: A sample sounding for Category iii (Windward-side Rainfall).

Figure A.5: A sample sounding for Category iv (Storm Conditions).
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Ólafsson, H., and P. Bougeault (1996), Nonlinear flow past an elliptic mountain ridge, J.
Atmos. Sci., 53(17), 2465–2489.

Pareschi, M. T. (1996), Physical modelling of eruptive phenomena: Lahars, in: Monitor-
ing and Mitigation of Volcanic Hazards (Scarpa, R., and R. I. Tilling, eds.).

Parfitt, E. A., and L. Wilson (2008), Fundamentals of physical volcanology, Blackwell
Publishing.
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