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Abstract

This thesis comprises two main themes. The first of these is concerned primarily with

the validity and utility of data acquired from web-based psychophysical experiments.

In recent years web-based experiments, and the crowd-sourced data they can deliver,

have been rising in popularity among the research community for several key reas-

ons – primarily ease of administration and easy access to a large population of diverse

participants. However, the level of control with which traditional experiments are per-

formed, and the severe lack of control we have over web-based alternatives may lead

us to believe that these benefits come at the cost of reliable data. Indeed, the results

reported early in this thesis support this assumption. However, we proceed to show that

it is entirely possible to crowd-source data that is comparable with lab-based results.

The second theme of the thesis explores the possibilities presented by the use of

crowd-sourced data, taking a popular colour naming experiment as an example. After

using the crowd-sourced data to construct a model for computational colour naming,

we consider the value of colour names as image descriptors, with particular relevance

to illuminant estimation and object indexing. We discover that colour names represent a

particularly useful quantisation of colour space, allowing us to construct compact image

descriptors for object indexing. We show that these descriptors are somewhat tolerant

to errors in illuminant estimation and that their perceptual relevance offers even further

utility. We go on to develop a novel algorithm which delivers perceptually-relevant,

illumination-invariant image descriptors based on colour names.
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Chapter 1

Introduction

This thesis introduces, and makes contributions to, several seemingly disparate sub-

topics of colour science and photographic imaging. Unifying these disparate topics

however, is the story of data, specifically data acquired from crowd-sourcing via the

internet.

We begin by investigating the acquisition of this data. We explore some of the mo-

tivations behind web-based data collection, and note that, while other disciplines have

been successfully exploiting this paradigm for quite some time, progress in the colour

science field has been slow and, often, delivered unreliable data. We investigate the

reasons behind this, and develop web-based experiments of our own which are capable

of successfully delivering reliable results.

After exploring data acquisition, we use data gathered in this way to investigate

the seemingly diverse topics of illuminant estimation, object recognition, and colour

naming. After establishing the relationship between these topics and demonstrating the

utility of computational colour naming (using a model constructed using crowd-sourced

data), we develop a novel algorithm to assign illumination-invariant colour names to

images, with the objective of enabling object indexing and human-led image search.

In considering how to procure reliable psychophysical data and use this in develop-

1



CHAPTER 1. INTRODUCTION 2

(a) (b)

Figure 1.1: Two differing approaches to web-based paired comparisons

ing robust imaging algorithms, the focus of this thesis is necessarily broad. This said,

we have developed compelling, interlinked, practical systems that validate the imple-

mentation and practice of crowd-sourcing experimental data. We advocate a similar

schema for others working on imaging problems where human judgement is an import-

ant criterion.

1.1 Outline of the Thesis

The thesis is organised as follows:

Chapter 2 first covers some general background. The topics covered in this chapter

are those that recur several times in the later chapters and so require a foundational

explanation before introducing the individual concerns of those later chapters.

Chapter 3 examines the concept of taking the paired comparison paradigm onto

the web. We first evaluate an existing web-based experiment (Mei, 2010a) (as seen

in fig. 1.1a) by replicating it under laboratory conditions and comparing the results

from each variant. Disappointingly, we do not find strong correlation between the two

sets of results. However, we then construct our own web-based experimental platform

(fig. 1.1b), taking appropriate care over various aspects which are made apparent from

the earlier comparison. These prove to be crucial to the success of web-based experi-

ments, as the results acquired by our web-based platform are much more highly con-



CHAPTER 1. INTRODUCTION 3

cordant with the lab-based alternative. We corroborate these positive results by per-

forming an additional experiment on the same web-based platform using an entirely

different class of image processing algorithm, and compare the results to published

lab-based findings (Connah et al., 2007).

Chapter 4 introduces a new statistical technique for the assessment of paired com-

parison experiments (web-based or otherwise). We observe that many researchers can

struggle to recruit large numbers of observers to participate in experiments and so a

measure of whether or not a sufficient number has yet contributed would be desirable.

Similarly, for larger-scale experiments, there is utility in an indicator of when is an ap-

propriate time to begin drawing conclusions from the data gathered so far. We build

on commonly used (Thurstone, 1927) analyses of paired comparison data to construct

a simple measure, although the concept is applicable to other analytical approaches.

Chapter 5 begins our exploration of applications for crowd-sourced data. We take

freely-available data from an existing large-scale web-based colour naming experi-

ment (Munroe, 2010) and use it to construct a model for computational colour nam-

ing. Inspired by Funt et al. (1998), who investigated whether a suite of commonly-

used illuminant estimation techniques are sufficient to enable object recognition across

multiple illumination conditions, we perform similar experiments to ascertain whether

those same techniques are sufficient to enable consistent colour naming (using our new

naming model). Upon discovering that colour names are somewhat resilient to inaccur-

ate illuminant estimation, we postulate that they might better serve the object indexing

problem than the histograms constructed from traditional colour space quantisations.

We show that histograms derived from distributions of colour names in images (see

fig. 1.2) can perform comparably to, and often better than, the traditional approach, all

the while offering a more compact representation. Moreover, we show that this repres-

entation provides further utility: as it encodes perceptually-relevant image data, it can

be used as a key by which to index images for searching by human-generated queries.
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(a) Original image (b) Colour names (c) Colour name histogram

Figure 1.2: Colour-name-based histogram for example image

Chapter 6 builds upon the discoveries made in chapter 5. We note that, while colour

names can provide useful colour descriptors, the approach in the previous chapter first

requires an illuminant estimation step. Even though we have seen that colour names

are, to an extent, resilient to inaccuracies in illuminant estimation, it would be desirable

to omit this step altogether. As such, we seek to develop an algorithm which allows

the designation of colour names to surfaces in images as they would appear under a

canonical illuminant, regardless of the actual scene illuminant. In so doing we would

be able to recover perceptually meaningful image descriptors, which would be useful

for both machine object indexing and human image search, while being illumination-

invariant. To deliver such an algorithm, we make use of some well-known properties of

the diagonal model of image formation (described in section 2.1) and some constraints

imposed by existing illuminant estimation techniques (section 2.2), and combine these

within a boolean discrete relaxation framework. The described algorithm succeeds in

meeting the stated objectives, albeit with some specific reservations.

Chapter 7 draws conclusions from this thesis.



Chapter 2

Background

This thesis introduces many subtopics in the fields of colour image processing, com-

puter vision, and image understanding. The later chapters will separately introduce

their concerns and include their own background sections to cover motivation, related

work etc. This separate background chapter serves to provide a grounding in topics

which require explanations that are too detailed for inclusion in other chapters, are per-

tinent to several other chapters, or are relevant but non-essential to the narrative of the

later chapters.

5
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Illumination
Source E(λ)

Image Sensor R(λ)

Surface Sx(λ)

Figure 2.1: Model of image formation

2.1 Image Formation

As seen in fig. 2.1, we can model the process of image formation as the response to the

product of the spectral power of the scene illuminant, the spectral reflectances of the

surfaces in the scene, and the spectral sensitivity of the camera sensors. These physical

variables can be brought together as a single equation:

ρxk =

∫
ω

E(λ)Sx(λ)Rk(λ) dλ, (2.1)

where E(λ) is the spectral power distribution of the scene illuminant, which strikes

a surface with reflectance Sx(λ) at some spatial location x, and is collected by the

camera sensor Rk(λ) for each of k sensor classes (usually k ∈ [R,G,B]). We integrate

over (usually) the visible spectrum ω to give a sensor response. This model, while not

accounting for surface texture (Oren and Nayar, 1995), specular highlights (Lee, 1986;

Shafer, 1985), or inter-reflections (Funt et al., 1991), provides a tolerable approximation

of the actual camera response to a given scene (Wandell, 1987).

If the spectrum of the illuminant is equivalent to the output of eq. (2.1) with a pure
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white surface (i.e. S(λ) = 1), then the camera response to the illuminant can be defined

as

ρEk =

∫
ω

E(λ)Rk(λ) dλ. (2.2)

Equally, the response to a given surface under a pure white illuminant is written as:

ρS,xk =

∫
ω

Sx(λ)Rk(λ) dλ. (2.3)

It is useful to reformulate eq. (2.1) using eqs. (2.2) and (2.3) as:

ρxk ≈ ρEk ρ
S,x
k . (2.4)

This simplification (Borges, 1991; Worthey and Brill, 1986) is shown to hold for

many typical sensors, so long as they are sufficiently narrowband (Finlayson et al.,

1994), and in the case where the narrowband requirement is not met directly in the

camera native space, it has been shown (Chong et al., 2007) to generally hold in some

alternative basis (we can multiply the sensors, or equally the sensor responses, by a

3 × 3 matrix such that eq. (2.4) holds with regard to the new basis). It is then possible

to model the process of illumination change in the language of matrix multiplication:


ρxR

ρxG

ρxB

 ≈

ρER 0 0

0 ρEG 0

0 0 ρEB




ρS,xR

ρS,xG

ρS,xB

 . (2.5)

This is known as the diagonal model of image formation (Finlayson et al., 1994),

and can be represented more compactly as

¯
ρx ≈ E

¯
Sx, (2.6)
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Acquired
Image Demosaic Denoise

White
Balance

Colour
Correct

Tone
Adjust

Figure 2.2: A typical image processing pipeline, adapted from Ramanath et al. (2005)

where E denotes a diagonal matrix in which the kth diagonal element is ρEk from

eq. (2.2) and
¯
Sx is a vector in which the kth element is ρS,xk from eq. (2.3). The RGB

value at the pixel corresponding to physical location x becomes
¯
ρx.

This model represents an approximation of the physical processes occurring during

image formation, culminating in a sensor response from the imaging device. However,

this raw form can be very different from the images used for display purposes. The

process of rendering an image for display is complex (Ramanath et al., 2005), as alluded

to in fig. 2.2, and has many vendor-specific variations. The topics discussed in this thesis

will consider images and data at various stages throughout this process, but a complete

end-to-end overview of every subprocess is outside of our current purview.

2.2 Illuminant Estimation

Illumination conditions have profound effects on the content of images, and a single

surface can elicit very different pixel values from one image to another if the illumin-

ation conditions are altered. Illuminant estimation is the task of estimating the illu-

mination conditions of a scene after an image has been taken. Often the definition of

this task is extended by the desire to generate a new image which is free from the ef-

fects of the prevailing scene illuminant and re-rendered under a synthetic pure white

light (white balance) or by generating descriptors for scene content which are invariant

under changes in illumination (colour constancy).

This thesis does not seek directly to contribute any new methods of illuminant es-

timation but, as will be seen in later chapters, illumination impacts deeply on some
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other topics under consideration. As such, we require a basic understanding of some of

the more authoritative techniques in the illuminant estimation canon.

All of the illuminant estimation techniques discussed here adopt the diagonal model

of image formation introduced in the previous section, and so have the objective of

finding
¯
E, given only the image values

¯
ρ. Once this illuminant estimate is made (or

indeed, if the illumination is known), removing it, and thus rendering the scene under a

pure white illuminant, is straightforward (Drew and Funt, 1992; Finlayson and Morovic,

2000; Vrhel and Trussell, 1992):

ˆ
¯
ρx = E−1

¯
ρx. (2.7)

As well as the restrictions imposed by the diagonal model, the methods discussed

below all assume that every scene is illuminated by a single illuminant. This is an

assumption which is often broken by real-world imagery – images taken outdoors are

often illuminated by both skylight and direct sunlight, images taken indoors will often

have an artificial light source as well as daylight from a window, and shadows and

inter-reflections between objects can also be considered to be secondary illumination

conditions. There are algorithms designed to consider multiple illuminants (Finlayson

et al., 1995; Kawakami and Ikeuchi, 2009), but we will not discuss them here.

2.2.1 Max RGB

Attributed to the work of Land and McCann (1971), the Max RGB algorithm defines

the illuminant estimate as the maximum pixel value in each image channel. Under the

assumption that no surface can reflect more light than that which is incident upon it, the

maximally reflected value must be the closest estimate to the illuminant (assuming there

are no clipped pixels). If the image contains a white patch, which reflects all incident

light, then this method works well. Equally, if there is a bright yellow and a bright blue
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surface, then the per-channel maximum is the same as if there were a perfect white in

the scene. This can be formalised thus:

ρ̂Ek = max
x

(
¯
ρxk). (2.8)

2.2.2 Grey World

The Grey World algorithm (Buchsbaum, 1980) is founded on the assumption that the

mean surface reflectance in a scene is achromatic. Under a pure white illuminant, a

scene with high colour variation should have an average pixel value which equates to

grey. By shifting the illuminant in a greenish direction, for example, the mean pixel

value for the same scene should move in the same greenish direction. It follows from

this observation that the illuminant can be estimated, subject to some unknown scaling

factor, by simply taking the mean of all pixel responses in the image:

ρ̂Ek = mean
x

(
¯
ρxk). (2.9)

2.2.3 Shades of Grey

Finlayson and Trezzi (2004) observed that the Max RGB and Grey World estimates can

be posited as extremes of Minkowski family norms. Let
¯
x = [x1, . . . , xN ], then for any

p ≥ 1 a norm can be defined by:

‖
¯
x‖p =

{
N∑
i=1

|xi|p
}1/p

. (2.10)

An estimate for the scene illuminant can be made by taking a norm for each image

channel
¯
pk:

ρ̂Ek = µ(
¯
ρk), (2.11)
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where the norm µ(
¯
x) is normalised by the number of pixels N present in the image

channel

µ(
¯
x) =

‖
¯
x‖p
N 1/p

. (2.12)

Max RGB and Grey World are equal to the L1-norm and L∞-norm respectively.

Finlayson and Trezzi noted that these two algorithms will return a correct estimate if

the maximum pixel is white, or if the average pixel is grey, respectively. They suggested

that a middle ground, where the average pixel value is some shade of grey, might return

better results. In effect, they proposed that brighter pixels are more important in illu-

minant estimation (Fredembach and Finlayson, 2008). After performing experiments

with varying norms, they achieved favourable performance using an L6 norm.

2.2.4 Grey Edge

Van De Weijer et al. (2007) proposed the Grey Edge hypothesis, an assumption that

the average of the reflectance differences in a scene can be used as a more reliable cue

for illuminant colour than the surfaces themselves. This edge-based algorithm can be

seen as a pre-processing step for other colour constancy algorithms, i.e. first an image

derivative is calculated, and then that derivative is used by Max RGB, Grey World etc.

instead of the original image.

All of these simple statistical methods can be unified under one formalism as fol-

lows:

sˆ
¯
ρE
n,p,σ

=

(∫ ∣∣∣∣δn¯ρx,σδxn

∣∣∣∣p dx

)1/p

, (2.13)

where the camera response at the spatial location x is given by
¯
ρx. The image is first

smoothed by a Gaussian filter with standard deviation σ to help compensate for image

noise. The smoothed image is then differentiated with an order n differential operator



CHAPTER 2. BACKGROUND 12

(where order 0 would indicate no differentiation – i.e. the Shades of Grey family of al-

gorithms discussed above without utilising the Grey Edge observation). The Minkowski

family p-norm is then calculated on the differentiated, smoothed image, giving the illu-

minant estimate ˆ
¯
ρE . The scalar s is an undetermined scaling factor, acknowledging that

recovery of the magnitude of the illuminant is not possible using this method.

2.2.5 Gamut Mapping

The final method considered in this thesis takes a different approach to the above stat-

istical methods. Gamut Mapping, as introduced by Forsyth (1992), relies on a priori

knowledge of the surfaces which are likely to appear in images. First, a reference

gamut is built of plausible pixel values under a known reference illuminant. The object-

ive of the algorithm is then to find a plausible illuminant estimate which, after removal

of the effects of the illuminant, shifts all the observed image pixel values so that they

lay inside the reference gamut.

Consider the example in fig. 2.3. This example is presented in two dimensions to

aid with visual understanding, but the principal holds in higher dimensions. Indeed it is

quite feasible, and often advantageous, to carry out the algorithm in a two-dimensional

chromaticity space (Finlayson, 1996). However, for work done later in this thesis, three-

dimensional RGB space is used for consistency with the other methods described above.

In fig. 2.3a, an example reference (or canonical) gamut is shown by the shaded area.

The gamut is constructed by sampling the pixel values of a large number of surfaces

under a canonical illuminant, and is then represented by the convex closure of those

pixel values. When an image is taken under a different illuminant, pixel values can

be generated which lie outside the canonical gamut (note that this is not inevitable for

every pixel – the gamuts of different illuminants will often have significant overlaps).

If, for each of these pixel values, we generate a map from that value to each point on the

convex hull of the canonical gamut, then the convex hull of those mappings represents
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(b) Intersection of plausible mappings

Figure 2.3: Example of gamut mapping

the convex set of all possible mappings from the pixel value to any point within the

canonical gamut. This is demonstrated in fig. 2.3a: the points outside the gamut are

mapped onto it by the dotted and dashed lines – the gamut is, in this case, defined by

four vertices and so each point has four mappings. In fig. 2.3b we see that those two sets

of mappings have their own corresponding convex closures, the intersection of which

defines the set of plausible mappings which will map every point into the canonical

gamut.

As suggested by the fact that the intersection in fig. 2.3b is not a singular point,

this method generally does not reduce to a single unique answer, and so a method is

used to select one mapping from the plausible set. There are several approaches to

this choice, such as choosing the mapping which maximises the volume of the image

gamut (Forsyth, 1992) (i.e. results in the most colourful image), or using a statistical

approach (Finlayson and Hordley, 1999).

While this thesis focuses on simple statistical methods which exploit properties of
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the diagonal model of image formation, the wider field of illuminant estimation is

large (Finlayson et al., 2002b; Finlayson and Schaefer, 2001; Funt et al., 1996; Ger-

shon et al., 1987; Maloney and Wandell, 1986; Tan et al., 2003). Outside the scope of

this thesis, some algorithms attempt to find and exploit physical properties in images,

such as specular highlights, mutual illumination, and shadows. Others require detailed

calibration or extensive training.

2.2.6 Evaluating Illuminant Estimation

Given these differing approaches to illuminant estimation, we need a way of comparing

and evaluating the differing approaches. To do this, we compare the estimates generated

by an illuminant estimation technique to ground-truth data which is known a priori. In

so doing, we are again accepting the assumptions of the diagonal model, and that the

scene we are investigating is frontally illuminated by a single illuminant and contains

only Lambertian surfaces. Within these confines we can compare the vector represent-

ing the scene’s true illuminant
¯
ρE to the estimate ˆ

¯
ρE . It is possible to use the RMS

error for this, but as this error intrinsically encodes intensity, most authors opt for the

intensity invariant angular error, which expresses the error as the angle between the two

vectors:

angular error = cos−1
(

ˆ
¯
ρE ·

¯
ρE
)
, (2.14)

where ˆ
¯
ρE ·

¯
ρE is the dot product of the normalised vectors containing the illuminant

estimate and the ground-truth measurement.
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2.3 Tone Mapping Operators

Later in this thesis, chapter 3 undertakes several comparisons of the output of a num-

ber of image processing algorithms. However, the purpose of the later work is not

to directly compare and contrast those algorithms, but to understand more about the

methods we use to evaluate observer preference among them. As the image processing

algorithms introduced are not themselves under direct scrutiny, many differing collec-

tions of algorithms could suffice. The algorithms which were chosen fall in to two

main categories: tone mapping operators (TMOs), and colour-to-greyscale (C2G) al-

gorithms. We give a brief description of these two classes of algorithm below, and list

the specific algorithms under comparison. However, since we are only concerned with

how to compare their outputs, and not with the differences in the output themselves, we

refrain from detailed descriptions of the differing approaches; there are many sources

of such comparisons in the existing literature (Connah et al., 2007; Drago et al., 2002;

Ledda et al., 2005; Čadı́k et al., 2008; Yoshida et al., 2005).

The first class of image manipulation algorithm are tone mapping operators. These

are functions designed to map pixel values of high dynamic range images into a low

dynamic range space such that those images can be viewed on low dynamic range mon-

itors or printed using a conventional printer, all the while attempting to preserve the

colour, contrast and brightness information present in the original image. Many ap-

proaches to this problem exist and have been evaluated in detail by several authors,

such as Ledda et al. (2005). The operators used are:

Drago

Adaptive Logarithmic Mapping For Displaying High Contrast Scenes

Drago et al. (2003)
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EMPJ

Photographic Tone Reproduction For Digital Images

Reinhard et al. (2002)

Filter

Fast Bilateral Filtering For The Display Of High-Dynamic-Range Images

Durand and Dorsey (2002)

GD

Gradient Domain High Dynamic Range Compression

Fattal et al. (2002)

Hier

Hierarchical Tone Mapping For High Dynamic Range Image Visualization

Qiu and Duan (2005)

LCIS

LCIS: A Boundary Hierarchy For Detail-Preserving Contrast Reduction

Tumblin and Turk (1999)

LocalHA

Tone-Mapping High Dynamic Range Images By Novel Histogram Adjustment

Duan et al. (2010)

Mantiuk08

Display Adaptive Tone Mapping

Mantiuk et al. (2008)

Reinhard

Dynamic Range Reduction Inspired By Photoreceptor Physiology

Reinhard and Devlin (2005)
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Ward

A Visibility Matching Tone Reproduction Operator For High Dynamic Range

Scenes

Larson et al. (1997)

The results of applying these operators to an example image (here we use the ‘Bel-

gium’ scene from the dataset detailed in appendix A) are shown in fig. 2.4. For com-

parison, the raw linear image is shown in fig. 2.4a. This image appears dark because

the range of brightnesses that can be captured (10000:1) is large compared to the range

of brightnesses that can be reproduced on printed paper (100:1). This demonstrates the

value of tone mapping algorithms – for making 10000:1 visible in 100:1.

2.4 Colour To Greyscale

The second class of image manipulation algorithm referred to later in the thesis are

colour-to-greyscale algorithms. These are algorithms designed to reduce colour im-

ages, usually three-dimensional RGB, into one-dimensional greyscale images. There

are many existing approaches to solving this problem, a collection of which are re-

viewed by Connah et al. (2007). We use the same collection of algorithms as Connah

et al.:

ALS

Grey Color Sharpening

Alsam and Kolås (2006)

BAL

Spatial Color-To-Grayscale Transform Preserving Chrominance Edge Informa-

tion

Bala and Eschbach (2004)
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(a) Linear HDR image (b) Drago (c) EMPJ

(d) Filter (e) GD (f) Hier

(g) LCIS (h) LocalHA (i) Mantiuk08

(j) Reinhard (k) Ward

Figure 2.4: Tone mapping operators applied to ‘Belgium’ scene
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GRU

The Decolorize Algorithm For Contrast Enhancing, Color To Grayscale Conver-

sion

Grundland and Dodgson (2007)

LUM

Luminance

Per-pixel luminance values. Assuming an image colour space of sRGB, this is

given by:

lum = 0.2172×R + 0.7152×G+ 0.0722×B (2.15)

RAS

Rasches method

Rasche et al. (2005a,b)

SOC

Multispectral Image Visualization Through First-Order Fusion

Socolinsky and Wolff (2002)

The results of applying these operators to an example image (here we use the

‘Monet’ scene from the dataset detailed in appendix B) are shown in fig. 2.5. This

illustrates why the colour-to-greyscale problem has been the focus of so much research.

In the ‘LUM’ image (fig. 2.5e), the ‘sun’ disappears and the semantic meaning of the

reproduction is changed. In some sense a good grey scale reproduction should convey

the same meaning as the colour original.
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(a) Original Image

(b) ALS (c) BAL (d) GRU

(e) LUM (f) RAS (g) SOC

Figure 2.5: Colour-to-greyscale operators applied to ‘Monet’ scene
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2.5 Paired Comparisons

In chapter 3, we shall be considering observer preference experiments between the al-

gorithms described in sections 2.3 and 2.4. One of the most widely adopted standards

for modern preference experiments is ISO 3664 (ISO, 2009), which makes assertions

about many factors such as display calibration and ambient illumination. Like all stand-

ards, ISO 3664 was developed with input from many different organisations and aca-

demics. It represents a ‘best practice’ guide and is, in effect, a reasonable compromise

to the methods employed in individual organisations. The factors that are frequently

highlighted in the literature – which, it should be noted, are not necessarily specific to

paired comparisons – are summarised below.

The display device used in the experiment should be calibrated to a standard such as

sRGB (Stokes et al., 1996). This assures that the colour balance and intensity are regu-

lated such that they can be accurately reproduced by other experimenters. The control

of display characteristics is also tightly coupled with regulation of ambient illumina-

tion in the viewing environment. The room should be dimly lit, but not dark (to avoid

eye strain), by a controlled illumination device at a specific colour temperature – D65

in most cases. The illumination source should be placed behind the display device, to

avoid glare, and the display should have a ‘hood’ placed over it. The observer should

also be given time before commencing the experiment to allow their eyes to adjust to

the viewing conditions of the room. Observers are often pre-screened to determine any

colour vision anomalies and only colour-normal observers are considered. Of course

there are cases where non-colour-normal observers are desired, but for generic observer

preference care should be taken to avoid skewing results with colour-anomalous ob-

servers.

The observer is positioned, and the interface designed, so that the observed images

subtend an observable angle at the observer’s retina which is below some threshold –

such as 10 ◦. This can be achieved simply by seating the observer at a fixed distance
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Figure 2.6: Experimental setup

from the display. If the exact viewpoint needs to be controlled, the observer might be

asked to view the images with the aid of a chin rest, as in fig. 2.6. As well as taking care

over the observable angle, it is also important to display the images against a neutral

grey background – often a variegated or ‘checkerboard’ pattern as in fig. 2.7 – and to

ensure that the images are visually separated.

There is some flexibility in how observers make a preference judgement. For ex-

ample, an observer can be given some fixed amount of time to observe the images – ten

seconds for example – after which point the images are removed and the observer makes

their judgement. Alternatively, observers might be permitted to make their decision as

soon as they see fit and be given as long as they wish to evaluate the images.

Typically, preference experiments are used to evaluate the outputs of several al-

gorithms. For a single image processed by N algorithms there are ‘N choose 2’ pairs.

Thus, clearly there are a large number of pairwise judgements to be made for even a

small number of algorithms. Further, to remove bias in the selection procedure it is

accepted practice to show each pair more than once with the order (which image is on

the left) altered. Given that the number of comparisons which an observer must com-

plete increases rapidly as the number of differing algorithms increases, the time taken to

complete each comparison can be important in tackling eye strain and boredom among
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Figure 2.7: Typical interface of a paired comparison experiment

observers. To ease observer fatigue, a preference experiment can be split into sessions

typically lasting no more than thirty minutes. Often, experimenters limit the number of

images and algorithms under review so that the whole experiment can be undertaken in

thirty minutes (no more than one session).

2.6 Analysis of Paired Comparison Experiments

2.6.1 Thurstone’s Law of Comparative Judgement

When seeking a preference metric of the perceived quality of several differing image

treatments, an intuitive approach is to compare every treatment with every other in a

pairwise fashion as described above, resulting in a ‘tournament’ of comparisons where

the image that receives the greater preference ‘wins’ each comparison. The problem
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then is aggregating the results from each comparison in the tournament into a defin-

itive collection of preference scores. A common approach to this problem, which is

still an active area of research (Keener et al., 1993), is the application of Thurstone’s

(Thurstone, 1927) law of comparative judgement.

Thurstone proposes that a discriminatory process between two stimuli, causing re-

sponses SA and SB, can be modelled as a normally distributed random variable, where

the distribution represents the value of SA − SB over many observations, under the

assumption that SA and SB are themselves normally distributed. The mean of this

distribution should give a good approximation of the true value of SA − SB. This ap-

proach allows us to make an estimate of the scale of SA−SB, even though observers do

not make any explicit assertions of that scale, rather they are only ever asked to judge

which of the two stimuli produces the ‘greater’ response. To accomplish this, Thurstone

adopts some sets of assumptions, grouped by various cases which may apply to the ex-

perimental design. Here we shall only discuss case V, which is the most commonly

applied case in the imaging science literature, and the case which we apply for the work

described later in the thesis.

Given two stimuli, where the response SA is judged as greater than SB, it is not

assumed that these responses will always be unanimous, owing to the variances in the

scale values, σ2
A and σ2

B. Rather the proportion of times that SA is judged greater that

SB will give rise to a normal distribution such as that shown in fig. 2.8, where the shaded

area represents the proportion of time that treatment A is preferred over treatment B,

P (SA > SB) or, equivalently, P (SA − SB > 0). The case V solution imposes the as-

sumption that σ2
A = σ2

B. The value of σ2
A and σ2

B can be set at any arbitrary value,

normally 1 is used such that the standard deviation of the distribution SA − SB is
√

2.

Given these assumptions, the measured value of P (SA > SB) should follow the normal

cumulative distribution function
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Figure 2.8: Distribution of SA − SB

H (SA − SB) =
1

2
√
π

∫ +∞

0

exp

(
−1

2

(
t− (SA − SB)√

2

)2
)
dt, (2.16)

with mean SA − SB and standard deviation
√

2. There are other suitable alternative cu-

mulative probability functions for H , which are discussed by Engeldrum (2000). From

here, given the assumption H (SA − SB) = P (SA > SB), it is possible to determine

the scale value difference SA − SB by inverting H ( · ). This gives the relation

SA − SB = H−1 (H (SA − SB)) = H−1 (P (SA > SB)) . (2.17)

The above description handles only the trivial case of comparing two differing treat-

ments. To extend the model into the case of three or more stimuli, we can insert the

probabilities of all the comparisons in the tournament into a proportion matrix. So, for

the case of three treatments t:
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P =


P (S1 > S1) P (S1 > S2) P (S1 > S3)

P (S2 > S1) P (S2 > S2) P (S2 > S3)

P (S3 > S1) P (S3 > S2) P (S3 > S3)

 . (2.18)

To construct P , we first create a frequency matrix F , where each fij is a tally of the

number of times that treatment i is preferred over treatment j. We then normalise F

by the total number of observations n to give P . We can then construct our final score

matrix, S, by calculating the score differences

S = H−1 (P ) =


S1 − S1 S1 − S2 S1 − S3

S2 − S1 S2 − S2 S2 − S3

S3 − S1 S3 − S2 S3 − S3

 . (2.19)

From this score matrix we can then derive final score values for each treatment

considered. We can observe from eq. (2.19) the sum of the first row of S

1

t

t∑
i=1

(S1 − Si) = S1 − S̄. (2.20)

If we assume that the mean of the scale values S̄ = 0, then we can directly calculate

the scale value S1. Repeating this procedure for each row of S gives us the scale values

for every treatment. Note that this summation method only suffices when the score

matrix is complete – that is, every observer has completed every preference choice for

every pair of treatments i and j. However, this is not always the case (as will become

apparent in chapter 3). Under such circumstances it is said that the score matrix is

incomplete or unbalanced, and to calculate the final score values the summation method

is usually replaced with a least-squares approach (Morrissey, 1955).

It is important to note that this procedure will find the correct scale values assum-
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ing that the underlying model assumptions hold. Testing the validity of these model

assumptions is discussed in section 2.6.2.

For all the following statistical definitions, we continue to use the following nota-

tion: n = number of observers, t = number of algorithms (or treatments), F = fre-

quency matrix, P = proportion matrix, S = score matrix. However, in some applic-

ations we modify n to be the number of observations, as it is common to structure

experiments such that each observer views every image pair in both [AB] and [BA]

orientations. Further, each of these orientations may be repeated, giving a total of four

(or more) repetitions for each image pair.

2.6.2 Mosteller’s Test

As described above, Thurstone’s case V solution makes several assumptions about the

data being analysed. Specifically that the variances for the underlying discriminal pro-

cesses are equal and that the coefficient of the correlation between observer responses

is zero. However, there are occasions when these assumptions do not hold and the case

V solution is inadequate. To detect these situations, Mosteller (1951) put forth a chi-

square test to evaluate the goodness-of-fit of the model to the data. This test is based on

an arcsine transformation of a matrix of probabilities reconstructed from the final score

matrix. This reconstruction converts the proportions into normal deviates with a mean

value of zero and a constant variance 1/n.

First we have to construct a matrix of probabilities assuming normal deviates (based

on the assumptions of the case V solution). This matrix P ′ is constructed from the

relation

p′ij = P (Si > Sj) =
1√
2π

∫ +∞

−(Si−Sj)

exp

(
−t

2

2

)
dt. (2.21)

Once we have these probabilities p′ij , as well as the original proportions pij , we
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convert these into angles in radians, θ′ij and θij , by using the arcsine transformation

θ′ij = sin−1
(
2p′ij − 1

)
. (2.22)

This transformation approximates H−1 from eq. (2.17) and converts the binomially

distributed proportions into asymptotically normal random variables. With the values

for θ′ij and θij , we can now calculate the χ2 statistic, as formulated by David (1988), as

χ2 = n
∑
i<j

(
θij − θ′ij

)2
, (2.23)

where n is the number of observers. The degrees of freedom for the test are

(t− 1) (t− 2) /2. (2.24)

When the χ2 value obtained from this test is lower than the χ2 value at some significance

level p (for the given degrees of freedom), we cannot reject that, at that significance

level, pij and p′ij are from the same distribution, and so we accept that the case V

solution is suitable for this data.

2.6.3 Score Difference Test

Upon compilation of a Thurstonian analysis, the outcome is a collection of assign-

ments of scores to image treatments. From these scores it is possible to generate an

ordinal ranking. However if the scores for two different treatments only differ by a

small amount, we may be hesitant to assign a definitive ranking. To quantify this uncer-

tainty, we can use the score difference test, described by Ledda et al. (2005).

This test groups a collection of scores such that two scores within the same group

cannot be declared significantly different at a given significance level. Formally, we are

grouping the scores (where score, in this case, refers to the row sum fi of the frequency
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matrix) so that the variance-normalised range of the scores within each group is less

than or equal to some value R+
α .

Calculating R+
α is equivalent to finding some R′ such that P (R ≥ R′) ≤ α. The

distribution of the range R is asymptotically the same as the distribution of a variance-

normalised range, Wt, of a set of normal random variables with variance = 1 and t

samples (David, 1988). This gives us

P

(
Wt,α ≥

2R− 1
2√

nt

)
, (2.25)

where Wt,α is the value of the upper percentage point of Wt at significance level α,

which is tabulated in many statistics texts, e.g. Pearson and Hartley (1966). From here

we can directly calculate the value of R+
α given the value of Wt,α:

R+
α =

⌈
1

2
Wt,α

√
nt+

1

4

⌉
. (2.26)

To this resultant integer value, R+
α , we ascribe the following quality: if the score

difference between two image treatments is less than R+
α , those two treatments cannot

be described as perceptually different at the chosen significance level, α.

2.6.4 Kendall’s Coefficients of Consistency and Agreement

Kendall Coefficient of Consistency

As well as applying the widely used Thurstonian analysis to produce scores for our

images, we can also use the frequency matrix F to derive some extra statistics which

help to explain the behaviour of observers.

We would hope that, in general, observers are consistent when they make their pref-

erence choices. An inconsistency, in this case, refers to the situation where an observer

prefers image A over B, and image B over C, but then prefers image C over A. Kendall

and Smith (1940) define such an occurrence as a circular triad, and they can occur in
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situations where the compared stimuli do not elicit very different responses, meaning

that the observer has difficulty differentiating between them or, specifically to cases in

image preference, in situations where different image treatments perform well in some

image regions but not others, and the observer then chooses different image regions on

which to base their preference for one comparison than they do for another.

When only a small collection of stimuli are being compared, it is simple to count

these violations of consistency directly from the matrix F . However, for larger values

of t, Kendall and Smith (1940) describe a process for calculating the frequency of the

inconsistencies:

c =
t

24

(
t2 − 1

)
− 1

2
z, (2.27)

where

z =
∑(

fi −
(t− 1)

2

)2

, (2.28)

and fi =
∑t

j=1 fij , the row sum of the frequency matrix for a single observer.

Kendall and Smith (1940) compare the calculated count of inconsistencies to the

maximum possible number of inconsistencies for that value of t. This normalised

measure of consistency, Ω, has a maximum value of one in the case where there are

no violations of consistency, and decreases to zero as the observed inconsistencies in-

crease.

Ω =


1− 24c

t3 − 4t
t even

1− 24c

t3 − t
t odd.

(2.29)

Low values for Ω can be interpreted as an indicator that a particular observer was

poor at making consistent preference choices. Alternatively, if Ω is low across many ob-
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servers, it is an indicator that the stimuli being judged were too similar for the observers

to make consistent choices.

It is important to note that, when giving summary statistics for an experiment, Ω is

calculated separately for each observer and then averaged across all observers.

Kendall Coefficient of Agreement

Suppose we have a frequency matrix compiled for n observers. Each coefficient in this

matrix can assume values in the range 0, . . . , n. The value of fij will be n iff fji = 0,

which means that every observer agreed unanimously on their preference of the image

pair [i, j]. If all observers are in complete agreement for every image pair then there will

be
(
t
2

)
coefficients equal to n, and

(
t
2

)
equal to 0, with the remaining t elements lying

on the diagonal. It would be entirely possible for this situation to arise even in the case

of extremely low consistency. Conversely, a situation of complete disagreement would

be evident if each coefficient had the value n/2 when n is even, or (n± 1)/2 when n is

odd. If two observers make the same preference judgement on a pair of images [i, j], we

denote this as one agreement. It is possible to calculate the number of pairs of observers

in agreement over each pair of images as in Kendall and Smith (1940):

Σ =
∑
i 6= j

(
fij
2

)
. (2.30)

Σ is now a count of the total number of observed agreements. To convert this into a

useful measure of agreement, we must normalise it by the maximum possible number

of agreements given n and t

u =
2Σ(
n
2

)(
t
2

) − 1. (2.31)

This gives the final measure of observer agreement, which can range from 1 in the

case of perfect agreement, to −1/(n− 1) when n is even, and −1/n when n is odd.
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To gain some significance measure of the coefficient of agreement, we can use the

χ2 test described by Ledda et al. (2005) to test the null hypothesis that all observers

made their preference judgements entirely at random.

χ2 =

(
t

2

)
(1 + u (n− 1)) . (2.32)

This test has
(
t
2

)
degrees of freedom.

2.6.5 Comparing Thurstonian Analyses

Kendall Rank Correlation Coefficient

To compare the results of two variations of a paired comparison preference experiment

(as in chapter 3), we need a measure of computing the correlation between the two.

Given the ordinal nature of the ranking derived from the scores output from a Thursto-

nian analysis, it follows to use a rank-correlation statistic such as Kendall’s τ (Kendall,

1938).

To compute this statistic from two rank orders, those rankings must first be re-

arranged so that one is considered as a ‘correct’, or objective, order. For example,

consider the two rankings A and B:

A = (2, 1, 5, 4, 3)

B = (1, 3, 4, 5, 2).

To rearrange these rankings, consideringA objectively, the elements ofA are rewrit-

ten such that they are in increasing order, while maintaining the corresponding elements

of B:
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A′ = (1, 2, 3, 4, 5)

B′ = (3, 1, 2, 5, 4).

Once this reordering is completed, a measure, k, of the ordered pairs within the

ranking B′ can be calculated:

k =
∑
i<j


1 if B′j > B′i

0 otherwise
. (2.33)

This can then be normalised to give the correlation coefficient τ .

Σ = 2k −
(
t

2

)
, (2.34)

τ =
2Σ

t(t− 1)
. (2.35)

Kendall (1938) gives a method for computing a significance measure, p, for τ . This

measure is based on the likelihood of the observed correlation occurring given two

independent variables. A low value for p indicates that a correlation to the extent of

τ is unlikely to occur and so we reject the null hypothesis that the two variables are

independent.

Sprow et al. Chi-Squared Goodness-of-Fit

From the Thurstonian analysis, we have access to more than just ordinal rank data.

The scores give scale values as well as a rank ordering. In light of this, there may be

some situations where a rank correlation statistic does not tell the whole story. Consider

the scenario with three treatments A, B, C as shown in fig. 2.9. Shown are the scores
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Figure 2.9: Rank position swaps do not reveal scale of score differences

across two experiments producing two different rankings. While the score for A remains

constant across both rankings, B and C receive different scores. What is revealed is that

while B exhibits a relatively small change in score (from 0.5 to 1.5), it creates a rank

position swap. Meanwhile the difference in score for C is larger (from 0 to -1.5), but

does not result in a rank position swap. Rank correlation statistics do not expose these

situations and can penalise small changes in score while not penalising large changes.

To address this, Sprow et al. (2009) devised a χ2 statistic, similar in construction

to Mosteller’s test (Mosteller, 1951). Instead of comparing the observed results of the

experiment to an expected distribution based on normal deviates, this test treats one

experiment as the ‘observed’ data, and the other as the ‘expected’ data. This statistic is

defined as:

χ2 =
∑
j<l

(
njl ·n′jl
njl + n′jl

)
·
(
arcsin (2pjl − 1)− arcsin

(
2p′jl − 1

))2
, (2.36)

where P and P ′ are the proportion matrices of the ‘expected’ and ‘observed’ data re-

spectively, andN andN ′ are matrices representing the total number of comparisons per

pair in each of the experiments. This statistic accommodates for differing numbers of

observers (and thus differing variance) between the two experiments and, due to its for-

mulation, allows for unbalanced experiments, where each image pair is not necessarily
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viewed an equal number of times to every other pair.

Much like Mosteller’s, this test examines at what significance level can we assert

that pij and p′ij are from two different distributions. As such, and in juxtaposition with

the significance measure for Kendall’s τ , a low p–value from this statistic indicates a

poor correlation.

2.7 Computational Colour Naming

In computer vision and image processing, computational colour naming may be defined

as the task of assigning perceptual colour name labels to given numeric colour descriptors.

For example, given the RGB triplet (1, 0, 0), we would probably be seeking the colour

name label “red”. Colour names are important not only because they provide an effi-

cient quantisation of a colour space, but also because they are of perceptual relevance

to ourselves. Thus, we seek not only a mapping from numbers to names but a mapping

that will make – at least broadly – the same colour designations that we do as humans.

In this work, we do not seek to introduce new methods of computational colour naming

– the colour naming model will be used as input to further processing in chapters 5

and 6 – and so here we provide a brief background and introduce our preferred method.

Clearly colour names are complex; we each have different perceptions of colour

and differing vocabularies with which to describe them. Individuals also have differing

levels of quantisation by which they categorise names: that which one person may la-

bel “pink”, another may subdivide into “magenta”, “fuchsia”, “salmon”, “bubblegum”

etc. In spite of all this diversity, Berlin and Kay (1969) found that, across many lan-

guages and cultures, colour names develop hierarchically from a set of basic colour

terms which slowly expands as a language evolves; English is considered to have el-

even basic colour terms. However, this remains a contentious subject – authors who

have studied cultures with differing ‘visual diets’ (Roberson et al., 2005, 2000) argue
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(a) Input image (b) Image reduced to eleven basic colours

Figure 2.10: Colour name labelling

that cultural and linguistic differences can affect colour perception, while others main-

tain that colour names have a universal basis (Kay and Regier, 2003).

In light of this, it is unreasonable to conjecture a perfect computational solution

to the problem – the objective is not yet well-defined. For our purposes, a reasonable

expectation is that a colour naming model be able to correctly label pixel values with

one of the basic English colour terms in such a way that is largely agreeable to a majority

of human judgements, as in fig. 2.10, where each pixel in fig. 2.10b is coloured with

the representative pixel value for that colour name. For the case of the (1, 0, 0) ←

red example this seems straight forward enough, but on the continuum between “red”

and “orange”, humans will place the boundary point at different locations from each

other. To further exacerbate this, humans will make different choices under different

circumstances – under different viewing conditions, if the colour is on a textured surface

etc. For the purposes of this thesis however, we are not concerned with these details. All

we desire is a model capable of reducing complex three-dimensional colour spaces into

a discrete set of labels, in such a way that is largely harmonious with English speakers.

The literature introduces many computational approaches to colour naming, such as
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simple multivariate probabilistic methods (Chuang et al., 2008; Heer and Stone, 2012)

to more finely-tuned parametric approaches such as the Triple Sigmoid with Elliptical

center (TSE) approach introduced by Benavente et al. (2008). We found that a model

based on multivariate probability density functions suffices to arrive at a color naming

model that meet the needs of the experiments in chapters 5 and 6.

Given some training data (discussed in chapter 5) of human labelled pixel values,

we train a model comprising of a multivariate probability distribution for each colour

name - we used the eleven English colour names defined by Berlin and Kay (1969). So,

given a collection of RGB values which are labelled “pink” a model can be construc-

ted from the mean and covariance of those data points, under the assumption that the

distributions of those values are normal (which is likely an incorrect assumption in real-

ity, but practically suffices). We experimented with a mixture of Gaussians approach

(that is each individual colour name is represented by multiple Gaussian probability

distributions, each with a weighting factor), and found that results were improved only

marginally, and so for the sake of simplicity we continue with the use of a single mul-

tivariate probability distribution for each colour name.

Equation (2.37) recapitulates the general formulation of a multivariate normal dis-

tribution probability density function with mean µ and covariance matrix Σ, where |Σ|

is the determinant of Σ.

fx(x1, . . . , xk) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.37)

For the case of our colour naming model in three-dimensional RGB space, k = 3

and x1, . . . , xk = R,G,B. We assemble a full collection of these functions f1, . . . , f11,

one for each of the colour name categories.

After constructing this model, we can generate a likelihood vector
¯
λx of the prob-
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Figure 2.11: RGB cube populated with probability distributions for each colour name

abilities that x can be correctly labelled with each of the eleven colour names

¯
λx = [f1(x), . . . , f11(x)]. (2.38)

From this likelihood vector we need to select one colour name to assign to x. The

simplest approach to this is to choose the maximum likelihood

kmax = arg max
k=1,...,11

{fk(x)} . (2.39)

The name label for x is then the colour name associated with the index kmax

Label(x) = Labelkmax . (2.40)

Figure 2.11 shows a depiction of the RGB cube sampled at uniform locations, the

dot at each sample location is coloured with the representative pixel value for the colour

name attributed to that sample location.



CHAPTER 2. BACKGROUND 39

2.8 Object Indexing

The recognition and identification of objects in a scene is a foundational topic in the

field of computer vision. At a very high level, we can decompose the task into two main

subproblems – a) distinguishing individual objects in a scene and correctly isolating

them from their surroundings, and b) identifying and understanding individual objects.

Although it is of great interest, we shall not be considering the first of these subproblems

in this work.

The second part of the problem, object identification, has many candidate approaches;

objects carry many cues which can be useful for identification. Important among these

cues are shape and colour (Beis and Lowe, 1994, 1997; Berens et al., 2000; Berretti

et al., 2000; Chen et al., 1999; Hassan et al., 2009; Mahmoudi et al., 2003; Qiu, 2002;

Schettini et al., 2002; Swain and Ballard, 1991; Yu, 2009). The geometric shape of an

object can allow us to pattern-match and identify objects against a database. If we then

introduce some machine learning techniques it is possible to identify objects by their

subcomponents (Felzenszwalb and Huttenlocher, 2005), e.g. this object has four legs,

therefore it might be a horse (of course with only this information to work with, we

could also be looking at a chair – such techniques require more complex inputs in real-

ity). If we stick with our four-legged example, it is easy to understand how matching

the shape of a horse against a reference shape can lead to identification – many chil-

dren’s educational books will use examples such as this in teaching children to identify

animals. However, such an approach is very fragile: a side-on view of a horse is very

different from a front-on view. We could expand our reference dataset with many views

of horses, but it might be more appropriate to consider some extra cues. Adding colour-

based recognition provides some key benefits, such as rotational invariance and (lim-

ited) tolerance to changes in point-of-view; in our example case it will also give us the

added benefit of determining horses from zebras. Clearly this is a complex problem,

and approaches that utilise many cues will give the best results, but a comprehensive
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review of the state-of-the-art is outside of the scope of this thesis. Instead, we shall

be focussing on a solely colour-based object indexing approach by Swain and Ballard

(1991).

The work of Swain and Ballard (1991), which is now approaching twenty-five years

of age, has grown old gracefully and stood the test of time. Despite the fast pace of

innovation in the field, Swain and Ballard’s technique remains well-discussed and well-

referenced, due in part to the fact that it is a very powerful, yet at the same time very

simple approach to object indexing. Central to the technique is the concept of compar-

ing the distribution of colours in a query object image to the distributions of colours

in a database of reference object images. The query object is matched to the object in

the database with a colour distribution most closely matching that of the query object

image.

To perform this colour distribution matching, a database of model images must first

be compiled. It should be emphasised here that this technique can only match against

known objects – a query object of an apple can only be successfully identified if the

database contains an image of an apple with the same (or very similar) colour distribu-

tion. Moreover we shall not discuss any safeguards against false positives – if a query

image has no correct match in the database then the closest match will always be re-

turned (this could be mitigated to a certain extent by requiring a certain threshold for a

positive match, but this will not be considered here).

Once a corpus of model images has been assembled, each image is processed to

acquire a colour histogram for each object in the database (every object image must

first by masked to exclude any background pixels). To do this, the colour space (assume

RGB for now) of the images is quantised into a predefined number of bins. For example,

we could partition the RGB cube into 4×4×4 bins, but the binning does not necessarily

have to be symmetrical – we could use 8× 4× 2 if we so wished. We will refrain from

discussing optimal binning strategies at this stage, as this will be discussed later in the
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Figure 2.12: Example object with corresponding histogram. For ease of visualisation, the
shown histogram is in two dimensions, as described in section 2.8.1

thesis. After quantising the colour space, the number of pixels with colour values that

fall into each bin are counted for each image; i.e. with a 2 × 2 × 2 binning strategy,

we would, for each image, calculate an 8-component vector where the first component

contains the sum of the number of pixels which fall into the first bin etc. This vector

represents the histogram for each image, and is the key for that object by which we will

query the database. Figure 2.12 depicts an example image along with its corresponding

histogram (for the two-dimensional (r, g) chromaticity representation – discussed more

in section 2.8.1).

Figure 2.13 outlines how the technique is used to match a query image against the

compiled database. Given a query image, we first calculate the query image histogram

via the method described above, and then compare it to each histogram in the database.

The model object with the most closely matching histogram is identified as the matching

object.

To compare two histograms, Swain and Ballard define a measure of histogram in-

tersection as:



CHAPTER 2. BACKGROUND 42

Figure 2.13: Summary of Swain and Ballard’s (Swain and Ballard, 1991) histogram-based
object indexing

H(T,M) =

∑n
j=1min(Tj,Mj)∑n

j=1Mj

, (2.41)

where T is the histogram of the test (or query) image, M is the histogram of the model

object image, and n is the total number of histogram bins. This measure gives a score

between 0 and 1, where 1 indicates that the histograms are identical. Selecting the

closest match is as simple as selecting the model object image associated with the his-

togram with the highest score.
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2.8.1 Object Recognition in Chromaticity Space

In their original work, Swain and Ballard construct their image histograms in three-

dimensional RGB space as described above. However, for many applications, this

introduces some problems. The RGB colour space encodes chromatic values as well

as intensity information. The latter may be undesired, e.g. when the same object ap-

pears brighter or darker in different images it is the intensity information that causes

the discrepancy. Once intensity is factored out the chromaticity values remain con-

stant. To compound this issue, this object indexing approach is often used in concert

with various illuminant estimation approaches and, as mentioned in section 2.2, many

illuminant estimation techniques are unable to recover intensity information. We will

further examine the implications of illuminant estimation for object recognition later in

this thesis.

To circumvent these issues arising from constructing image histograms from a three-

dimensional colour space which encodes intensity, some authors (Berens et al., 2000;

Funt et al., 1998) choose to first convert their object images into a two-dimensional

chromaticity space. In such colour spaces the intensity information of RGB is effect-

ively discarded and we are left with just the chromatic component of the colour inform-

ation. A commonly used standard chromaticity space is the (r, g) space:

r =
R

R +G+B
, g =

G

R +G+B
. (2.42)

With object images converted into this colour space, we can now construct our his-

tograms in two dimensions. In so doing, we may lose some discriminatory power when

querying our database (this will be discussed later in the thesis), but we gain resilience

to changes in intensity arising from varying exposures or illuminant estimation.

By constructing an object image database as described above, Swain and Ballard

showed that they were able to distinguish between objects in a comprehensive object
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database to a satisfactory degree (how to measure the precision of the matches returned

by the approach is discussed below). The method is also resilient to changes in rotation

of objects, moderate changes in point-of-view (as shown in fig. 2.14), partial occlusion

and, if two-dimensional histograms are used, changes in intensity. The approach does

have some distinct drawbacks however. Firstly, it is only capable of indexing images of

single objects in isolation, when in reality objects are usually viewed as part of a broader

scene with many other objects and varying backgrounds. Segmenting an image to ex-

tract the individual objects contained within is a nontrivial exercise in itself. Further,

as alluded to when discussing the inclusion of illuminant estimation into the method,

changes in illumination conditions can be extremely detrimental to the method. Al-

though we can discard the intensity information and be resilient to the inability of many

illuminant estimation techniques to recover intensity, slight errors in the recovery of

the chromatic component can be very problematic (Finlayson et al., 2002a; Funt et al.,

1998).

2.8.2 Evaluating Object Recognition Performance

To quantify the effectiveness of the method, we need a measure of correctness for object

recognition. Swain and Ballard (1991) noted that the method does not necessarily return

one object as the match candidate, rather it can be seen as a method of sorting the

entire database by likelihood of matching the query object. From this observation they

introduced the notion of a rank for the results output from the method. That is, if the

resulting sorted list of database entries correctly places the desired object at the top of

the list, then the rank is 1; if the method fails to deliver the correct result directly, but

has at least placed the correct result in second place in the sorted list, then the rank is 2,

and so on. From this rank concept, Swain and Ballard introduce a measure they refer to

as the match percentile:
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(d) View B histogram

Figure 2.14: Two views of same object, with corresponding histograms

MP =
Nmodels − rank
Nmodels − 1

, (2.43)

whereNmodels is the number of model objects in the database. This measure gives scores

between 0 and 1. While a score of 1 suggests that the object was correctly recognised

and placed at the top of the sorted list, 0 indicates that the correct match was in fact

placed at the bottom of the sorted list. We can multiply this value by 100 to obtain a

percentile score.
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2.9 Discrete Relaxation

Many problems within the field of image processing (among many others), and the al-

gorithms which are employed to solve them, are based on the concept of constraint

propagation (Boykov et al., 2001; Hummel and Zucker, 1983; Pelillo, 1997; Waltz,

1975). Broadly speaking this is a computational approach which allows local con-

straints to be propagated across a global solution.

A trivial example would be to arrange the letters A, B and C using the constraints

that:

1. A must come before B and

2. B must come before C.

If we consider only the first rule we could satisfy the constraint with any of the

orderings ABC, ACB or CAB; if we only consider the second rule then any of ABC,

BAC or BCA suffice. It is only by taking the two rules in unison, and propagating the

constraints, that we come to the correct ordering ABC.

If we this reformulate this ordering challenge as a graph problem, we can picture a

three-node graph as in fig. 2.15, where each node has to be labelled with one of A, B or

C.

??? ??? ???

Figure 2.15: A to-be-labelled three node graph

Figure 2.16 shows the process of applying a discrete relaxation approach to our

graph labelling problem. Not shown is a final pass through all nodes that would need to

be made, wherein it is noted that no changes are made to each node. Once every node

has been visited with no modifications taking place, we can return our final labelling.
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ABC ABC ABC
(1) Begin by assigning all possible labels to each

node

A ABC ABC
(2) Consider first node: discard B as it violates the

first constraint 1, discard C as it violates the
second constraint

A AB ABC
(3) Consider second node: discard C as it violates

the second constraint

A AB C
(4) Consider third node: discard A as it violates

the first constraint, discard B as it violates the
second constraint

A AB C
(5) Consider first node: no labels can be discarded

A B C
(6) Consider second node: discard A as it violates

the first constraint

A B C
(7) Consider third node: no labels can be discarded

Figure 2.16: Solving a trivial labelling problem with discrete relaxation

We now introduce some vocabulary. In the language of relaxation labelling, the

constraints described for our trivial example above are known as binary constraints,

because they describe constraints that operate on relationships between two labels. We

also have the concept of unary constraints, which constrain single labels in isolation;

for example, we could have introduced the constraint “A can only be assigned to the first

node” (indeed, if we had utilised that constraint in the walk through in fig. 2.16 we could

1The constraint is that “A must come before B” – a corollary of this is that B must follow A.
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have arrived at the solution rather sooner). As we discarded labels, we did so because

they were inconsistent with the constraints under consideration. All remaining labels

are said to be consistent, and the final product is deemed to be a consistent labelling.

With our vocabulary in place we can introduce an informal description of the dis-

crete relaxation algorithm as follows:

1. Assign labels to each object, adhering to unary constraints.

2. For each object in turn, consider the binary constraints and delete the inconsistent

labels for that object.

3. If any object has no remaining consistent labels, stop – there is no consistent

labelling available. Otherwise, repeat Step 2 until a consistent labelling is found.

This description outlines discrete relaxation at a conceptual level, but to begin to

implement it we need to introduce some formalisms. Let

• U = {u1, . . . , un} be a collection of n objects (the nodes in the graph in our

example problem)

• Λ = {λ1, . . . , λm} be a set of m labels (A, B and C in our example)

• E be the set of edges representing relationships between objects in U

• L be an n×m binary matrix where

Li,j =


1 if ui can be consistently labelled with λj

0 otherwise
. (2.44)
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• R be an n× n set of m×m binary compatibility matrices where

Ri,j(l,m) =


1 if uj ← λm is consistent with ui ← λl

0 otherwise
. (2.45)

We can begin by constructing an initial labelling L under the conditions of the unary

constraints. Each object to be labelled is represented by a row Li in the matrix L, if λj

satisfies the unary constraints for that object then the element in the j th column of that

row (Li,j) will be 1, else 0.

We then need to construct a set of compatibility matrices R, representing the bin-

ary constraints. There will be one matrix for each relationship between any two ob-

jects (n × n, although an optimised algorithm will not require a fully populated set of

matrices), and each matrix will have the same number of rows and columns as the num-

ber of possible labels m. Ri,j will contain a 1 in the l,mth element if λm does not break

the binary constraints for Uj , given that Ui has been labelled with λl. Each compatib-

ility matrix only describes the relationship between one pair of objects in isolation, it

does not encode any restrictions on the possible labels for those two objects given their

context outside of that one relationship.

From this starting point we can run a consistency algorithm, such as that in al-

gorithm 1, to propagate the constraints and arrive at a final labelling. Algorithm 1 is

taken from Henderson (1990), which also gives a much more thorough introduction to

discrete relaxation techniques in general.

This algorithm, and any other boolean discrete relaxation algorithm, prunes the pos-

sible labels that could be designated for each object. It does not guarantee that the final

labelling will result in each object having one unique label assigned to it. In the extreme,

consider the case where the initial labelling L contains all 1s, as does every compatib-

ility matrix – this is a perfectly valid (empty) set of constraints and a labelling with no
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Algorithm 1 A queue-based consistency algorithm, from Henderson (1990)
1: function CONSISTENT

2: Q← {(i, j)|(i, j) ∈ E and i 6= j}
3: while Q 6= ∅ do
4: remove (k,m) from Q
5: if ¬SUPPORT(k,m) then
6: Q← Q ∪ {(i, k)|(i, k) ∈ E and i 6= k and i 6= m}
7: end if
8: end while
9: end function

10:
11: function SUPPORT(i,j)
12: consistent← true
13: for all λ ∈ Li do
14: support← false
15: for all λ′ ∈ Lj do
16: support← (support orRi,j(λ, λ

′))
17: end for
18: if ¬support then
19: consistent← false
20: Li ← Li − {λ}
21: end if
22: end for
23: support← consistent
24: end function

discarded labels would be a perfectly valid output of the algorithm. Conversely, it is

perfectly plausible to construct a set of constraints which are impossible to consistently

propagate, and it is feasible to attain a labelling with no consistent labels for one or

even all objects. The more likely outcome is that the algorithm will discard some, but

not necessarily all, labels for each object and pruning the remaining labels will require

further processing dependent on the task at hand.

For a more real-world application of this method in image understanding, we turn to

scene labelling. Consider the scene depicted in fig. 2.17a. We wish to label each object

in that scene with the following possible labels:
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B Background (the wall in the image, but we will use “Background” as we have another

label using the letter W)

C Cupboard (or drawers, but we have another label using D)

D Desk

F Floor

L Lamp

M Monitor

W Window

In fig. 2.17b we can see a segmentation of the scene and all possible labels applied to

each segment. Note that the segmentation shown is illustrative only and is not intended

to be accurate – it serves to guide the eye to the correct area of the scene.

If we now introduce the following unary constraints, we can arrive at the labelling

in fig. 2.17c:

• Background touches the top image border

• Cupboard is rectangular

• Floor touches the bottom image border

• Lamp is not rectangular

• Monitor is rectangular

• Window is rectangular
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These unary constraints can be fairly powerful on their own – notice how the lamp

(the yellow segment) has been reduced to two candidate labels by only its shape and

position. However, if we now introduce the following binary constraints, we can use

discrete relaxation to arrive at the final consistent, unique, labelling seen in fig. 2.17d:

• Cupboard is under Desk

• Desk is below Window

• Floor is below all other labels

• Lamp is on top of Desk

• Monitor is on top of Desk

• Window is above Desk

• Window is surrounded by Background

Clearly this scene diagram and the constraints introduced above still only serve

as an example. For a real-world scene labelling task we would need more advanced

constraints.
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(a) Base Scene

BCDFLMW

BCDFLMW

BCDFLMW
BCD
FL
MW

BCDFLMW BCDF
LMW

BCDFLMW

(b) Initial labelling

BCDMW

CDMW

CDMW DL

CDMW CD
MW

CDFMW

(c) Labelling after enforcing unary constraints

B

W

M L

D C

F

(d) Final consistent labelling

Figure 2.17: Example scene labelling



Chapter 3

Web-Based Paired Comparisons

Paired comparison experiments are frequently used to gather observer preference data in

many areas of image enhancement. However, due to the large quantity of comparisons

each individual must complete, these experiments are typically carried out with few

observers. Taking this method onto the web is a quick way of gaining a larger number of

observers and preference judgements. This chapter examines the validity of web-based

paired comparisons and whether the loss of control over viewing conditions causes

significantly different results when compared to a lab-based alternative.

54
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3.1 Introduction

The images we encounter every day are often the products of long chains of image pro-

cessing algorithms. The display version of an image is often extremely different from

the raw image data that was captured by the imaging device. The pipelines that take raw

images and transform them into display-quality imagery are often exceedingly complex

(the example in fig. 2.2 represents a stripped down process to highlight the key compon-

ents), and each component has been tuned to meet the needs of that particular pipeline.

Irrespective of the niche served by a specific pipeline (be it optimising for print, white

balance, etc.), the parameters involved will have been tuned to optimise some measure

of ‘goodness’, as determined by some human observer(s). ‘Goodness’, however, is a

vague and subjective notion, and so when tasked with quantifying it many researchers

will seek some more well-understood proxies such as brightness or contrast. But, it is

often precisely this judgement of sheer observer preference that camera manufacturers

and purveyors of image manipulation software must address.

This question of observer preference can be evaluated systematically in a psycho-

physical experiment, whereby two or more pipelines are evaluated in tandem and presen-

ted to observer(s). Raw image data for several scenes (which scenes to use will be de-

pendent on the specific task at hand, but a suite of differing scenes should generally

always be used to gather data points across as wide a sample of input data as possible)

will be processed by the competing pipelines to deliver a collection of image repro-

ductions. These reproductions are presented to an observer and their preference among

them is recorded. In so doing it is important that care is taken with the preparation and

presentation of the images, for we do not wish the results of our experiment to depend

upon conscious or unconscious biases, or upon artefacts of how the images are viewed.

The observer should be blinded to which pipeline produced which reproduction, and in

many cases it may also be necessary that the observer is also naı̈ve to the purpose of the

evaluation. Further concerns are discussed in section 2.5.
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For the two-alternative case, where one pipeline A is evaluated against some other

B, a paired comparison paradigm is clearly sufficient – the observer can view a repro-

duction from A alongside one from B and make a clear indication of which they prefer.

By repeating this across several differing scenes and averaging the preference judge-

ments, it is possible to make an assertion as to which pipeline is, on average, preferred.

But often we are interested in evaluating many more than two competing pipelines at

once. How then, should we handle the addition of more competing pipelines? Per-

haps it is still feasible to present reproductions from A, B and C to an observer and ask

them for a direct preference, but this task quickly becomes far too hard for an observer

as we add more and more options. To circumvent this, we adhere to the paired com-

parison paradigm and display reproductions to the observer in a pairwise fashion – to

evaluate A, B and C, an observer would compare [AB], [AC] and [BC]. Maintaining a

simple binary decision for the observer for each iteration of the experiment keeps the

task simple for the observer and so more reliable results should be collected.

However, the paired comparison paradigm is not without issue. As more competing

pipelines are added to the experiment, the number of comparisons that an observer must

make grows rapidly – for N pipelines there are
(
N
2

)
(‘N choose 2’) pairs of reproduc-

tions. For even a modest number of observers and a small number of repetitions of each

comparison, it takes a long experimental session to obtain complete image preference

data. Such experimental sessions can be laborious and often boring for observers to

complete, and so apathy may begin to affect experimental results. For this and many

other reasons, it can be exceedingly hard for researchers to recruit sufficient numbers of

observers. Further, the requisite preparation of viewing conditions may be challenging

and time consuming for many researchers. So, the premise of conducting a preference

experiment can be rather daunting and those that do often have to settle for observer

numbers that are lower than may be desired – it is not uncommon to see experiments

carried out with fewer than ten observers (Connah et al., 2007), which can be problem-
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atic from the viewpoint of statistical significance.

So then, if researchers must continue to undertake paired comparison preference

experiments (and the lack of a more efficacious alternative dictates that we do), is there

anything that can be done to ease the practical burden? Some experimenters have be-

gun to carry out pairwise comparison studies over the internet using an interface im-

plemented in a regular web browser. Web-based paired comparison experiments can

certainly provide a quick and easy method of gaining a potentially very large number

of participants in exchange for a minimal amount of time and effort on the part of the

researcher. But do these benefits come at the cost of reliable data?

Web-based experiments can lack the control over confounding variables that lab-

based studies provide, and as such it is not obvious that they will deliver data that are

useful. Of course controlled, lab-based, image viewing was adopted for a reason; we

cannot, for example, calibrate a remote observer’s monitor. However, it can be argued

that having no control over these confounding variables gives a more ‘real-world’ rep-

resentation of observers, and that the effects of the variance in these conditions will

become minimised as the numbers of observers and differing viewing environments

increase. Given a greater set of preference data we would like to be able to arrive at

stronger conclusions (and so make stronger recommendations about which reproduc-

tions perform most favourably).

In this chapter we take an empirical approach to evaluating the validity of data ac-

quired by web-based paired comparison experiments. First, we examine an existing

web-based paired comparison experiment (Mei, 2010a), concerned with tone mapping

operators for high dynamic range scenes, by carrying out a lab-based replicate and

cross-examining the results from the web-based variant. In so doing we find that ob-

server judgements made in the web-based experiment differ markedly from those made

by observers in our lab (under controlled standard viewing conditions).

Learning lessons from the shortcomings of the existing web-based experiment, we
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then construct our own web-based experimental platform and re-examine the results

from the lab-based counterpart in contrast with the new data. Adopting somewhat min-

imal advances in the control over image presentation proves to be crucial in making the

web application work.

These two pieces of evidence suggest that image preference studies can be success-

fully transplanted to the web so long as sufficient care is taken over image presentation.

Significantly, in a third contribution of the chapter we track the similarity or otherwise

of the preference results as a function of the number of observations. We do obtain

convergence between lab- and web-based preference data but only after sufficient pref-

erence judgements are made.

3.2 Background

Over the past quarter of a century since its invention, the world wide web has changed

many aspects of modern life. Thanks to its unbridled proliferation, the web has given

billions access to a vast corpus of information. But in addition to being a fantastic

engine for the dissemination of information, the web has also become an excellent

tool for harvesting new information. Web-based experiments are widely used in many

fields outside of colour and imaging science (Kawrykow et al., 2012; Lakhani et al.,

2013; Saunders et al., 2014), and so many attempts have been made to gather data from

participants over the web within the field. Several of these attempts are introduced

and examined by Birnbaum (2004). However, a large amount of the successful among

these studies have followed survey-based formats, suggesting that the presentation and

viewing conditions of the experiment have little or no impact on the results gathered. In

colour science however, the environment around the participant, the screen upon which

they are observing any displayed images, and ambient lighting conditions, along with

numerous other factors, can all play a significant role in the participant’s responses.
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For studies that do concern these factors, we can begin by noting the work of

Rasmussen (2008), who used a web-based experiment to investigate defect detection.

Observers were presented with two duplicates of the same image, one of which had been

modified to exhibit some ‘defect’, or noise, and the time taken for observers to identify

which of the two images was defective was recorded. The results of this experiment

were not compared to any lab-based alternative, but as every comparison had a correct

answer, the authors could quantify the level of correctness of the observers, which was

generally positive. The reported level of engagement was affected by the manipulation

of the data: some data points were discarded according to some filtering steps, such as

removing user sessions below a certain accuracy level, or excluding observers who did

not complete a minimum of one hundred observations. This was done in an attempt to

remove the effects of spurious participants. This particular study also required a calib-

ration stage to be completed by observers, and so represents a more restrictive kind of

experiment to what we envisage in this chapter. By the time observers actually begin

contributing meaningful data, they have already spent some significant time completing

the calibration stage. While this can be seen as a good thing – an observer who has

invested their time into the experiment may feel more of a sense of ownership and so

be more likely to contribute high quality data – it is more often seen as a high barrier

to entry, and so discourages potential observers from participating. In an attempt to

combat this, observer engagement was encouraged by presenting the experiment in a

game-like format: observers were challenged to identify the defects within the quick-

est time possible. Engagement was further incentivised by the inclusion of a monetary

reward for top performers.

In other web-based work where presentation and viewing environment may affect

results, Zuffi et al. carried out a web-based readability test (Zuffi et al., 2007) as part

of a larger study examining a suite of differing experimental paradigms, with varying

degrees of control over viewing conditions (Zuffi et al., 2008). The web-based portion
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of this research attempted to isolate the thresholds for lightness differences between text

and background colour on web pages, and was compared to a lab-based control experi-

ment. Similar results between the two replicates were indeed found. Unfortunately the

authors do not describe the details of their recruitment process for either the lab-based

or, more crucially, the web-based experiments. Interestingly however, they do reveal

that in this experiment there were actually fewer web-based participants than those in

the lab. This is quantified in terms of observations as opposed to direct observer num-

bers, with 664 observations for the lab-based experiment and 546 on the web. From this

we can suggest that the web experiment was not well advertised and that perhaps some

number of those participating in it were also participants in the lab-based experiment or

may have been ‘expert observers’ (colleagues and friends of the authors themselves).

Despite these potential biases, that the two experimental formats produced similar res-

ults is encouraging.

Moving on to the research specifically involving the paired comparison paradigm,

there has unfortunately been a comparatively small number of paired comparison ex-

periments carried out on the web. Those that have been attempted have shown varying

degrees of success, but there has been little effort in empirically comparing the results

gathered to any ‘ground truth’ lab-based data. Some notable attempts to date are studies

by Jiang et al. (2011) and Sprow et al. (2009).

As part of a larger study, Jiang et al. (2011) performed a web-based paired com-

parison experiment and contrasted it with a lab-based counterpart using the same data-

set. The wider study involved three experiments concerning reproductions of fine art

pieces. Two lab-based paired comparison experiments were carried out, one with and

one without a hardcopy original of the art piece present. A variant of the no-hardcopy

experiment was then transplanted onto the web – for obvious reasons no web-based

version of the experiment with the hardcopy present could be carried out. Interestingly,

but perhaps not surprisingly, it was found that the two lab-based variants showed little
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correlation, suggesting that the presence of the hardcopy leads observers to make dif-

ferent preference choices. However, and more profoundly for our current objectives,

strong correlation at the 95% level was found between the web-based experiment and

the no-hardcopy lab-based experiment (i.e. two variants which both lack the hardcopy

reference, but which only differ in being lab- or web-based). Eighty-eight observers

were reported for the web-based experiment.

A study by Sprow et al. (2009) focussed on web-based and lab-based variants of a

paired comparison preference experiment concerning a gamut mapping task. The ex-

periment presented an sRGB reference image as well as two images mapped to various

device gamuts by competing gamut mapping algorithms. This study attracted a larger

number of participants to the web-based experiment – around 700, and 70 observers

for the lab-based experiment, highlighting one of the key motivations for our pursuit of

web-based experiments. Generally, very strong correlation (>90%) was shown between

the two sets of results. These results are important, and promising, for our objective

but they do come with some notable caveats: many observers were friends, relatives

and coworkers of the authors and many were also recruited by solicitation via the ECI

(European Colour Initiative) mailing list, which may have caused a strong bias toward

expert observers. Some observers also participated in both variants, with 43 of the 70

observers in the lab variant contributing to the approximately 700 total for the web

variant. This particular study utilised a questionnaire and adjustment/characterisation

images to gather extra data about observers’ display devices. This extra intrusion was

kept as minimal as possible, but would likely still drive away a substantial amount of

possible observers had they not been recruited directly from the colour community.

In recent years, there have been several web-based experiments in the wider field

of colour science, e.g. the colour naming experiments of Moroney (2003) and Mylonas

et al. (2013). These examples have been extremely successful in exploiting the power of

the internet to collect data at a large scale, and arguably, due to the requirement of such
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a large range of participants, could not have been done otherwise. Similarly Darrodi

(2012) utilised a large-scale web-based experiment to gather data from a wide range of

participants about colour semiotics. Again, this research would arguably not have been

feasible without exploiting a web-based paradigm – indeed, the data gathered by the

web-based experiment allowed for greater insight and further conclusions to be made

that were not delivered by a similar lab-based experiment.

Non-academic projects, such as Munroe’s colour naming experiment (Munroe, 2010)

(this will be discussed in more detail section 5.2.1), which attracted over 220,000 par-

ticipants1, and the ‘typewar’ platform (Tauber, 2009) show the huge potential for mass

data collection and the public interest in scientific research performed in this way. This

concept of ‘crowd-sourcing’ data is not new to the internet, but it has recently undergone

a rise in popularity due in part to the surge in adoption of social networking sites and

their integration with third-party services. This leads us to a significant concern which

researchers should be cognizant of when undertaking web-based research – attracting

participants and maintaining engagement. Recruitment through mailing lists and pre-

existing contacts is effective, but it carries the problem of introducing a sampling error

in that the participants already have a vested interest in the results and/or are expert ob-

servers. Casual web users have little or no commitment to the study in which they are

voluntarily participating, and the task of keeping them engaged and entertained without

introducing bias into the results can be problematic. The offer of a material reward

for participation, or for top contributors, has been used in the past but it introduces the

problem of participants manipulating the system for their own reward, without taking

any care over their responses.

The contributions in this chapter begin by investigating the web-based paired com-

parison experiment launched in 2010 by Mei (2010a). This experiment collected user

preferences of differing reproductions of high dynamic range scenes processed by a

1This estimate is based on user sessions, it does not account for participants taking part more than
once.
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Figure 3.1: Interface of the web-based paired comparison experiment of Mei (2010a)

suite of tone mapping operators, as viewed through a visitor’s web browser on their

own computer. The full results of this work are reported in Qiu et al. (2011) – in sum-

mary, thirteen different scenes (listed in appendix A) were used to evaluate the TMOs

listed in section 2.32. Upon arrival at the site the visitor was presented with two images

of the same scene treated by two different TMOs, and could click on either one to sub-

mit a preference. Alternatively the visitor had the option to click a button to indicate a

lack of preference, or a ‘tie’ situation. The interface was as shown in fig. 3.1. While the

experiment was running, the results of the preference choices were collated, ranked and

made available online (Mei, 2010b).

We wish to evaluate the validity of the results gathered by Mei’s web experiment

(hereafter referred to as the Nottingham-Web experiment), as contrasted to a lab-based

alternative. The next section describes our approach to this evaluation.

2Abbreviated TMO names have been kept consistent with those used in Mei’s web experiment.
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Figure 3.2: Interface of our lab-based TMO experiment

3.3 Experimental Design – Evaluating the Validity of an

Existing Web-Based Experiment

To compare results with the web-based research, a controlled paired comparison exper-

iment (hereafter referred to as the Lab-TMO experiment) was carried out with fourteen

unpaid participants who were naı̈ve to the objective of the experiment. Viewing con-

ditions were prepared in accordance with ISO standard 3664:2009 (described in sec-

tion 2.5), and images were displayed on a HP LP2480ZX monitor calibrated to sRGB

standard (Stokes et al., 1996). The interface of the Lab-TMO experiment was as depic-

ted in fig. 3.2. Observers were not positioned with a chinrest, but the chair on which

they sat was set at a fixed distance from the monitor and the height was adjusted ac-

cording to the observer. With this arrangement the average image size subtended at the

retina was approximately 6 ◦ visual angle, with approximately 1 ◦ of padding between

the two images. Viewing time was not limited but was monitored – the average viewing

time was 5.5 seconds per image pair.

The Lab-TMO pairwise comparison was run using the same collection of scenes

and TMOs as used in the Nottingham-Web experiment. As in the web experiment,



CHAPTER 3. WEB-BASED PAIRED COMPARISONS 65

different subsets of the algorithms were used for each of the different scenes. The

original reason for the absence of some scene-operator combinations in the Nottingham-

Web experiment is unknown but, lacking the ability to retroactively acquire any missing

data, the Lab-TMO experiment used the same subsets for consistency in results. There

were 2 scenes for which 6 algorithms were evaluated (giving (6×5
2

)× 2 = 30 pairs), 5

scenes where 7 algorithms were tested (105 pairs), another 4 scenes where 8 algorithms

were tested (112 pairs), 1 scene where with 9 algorithms (36 pairs), and 1 final scene

with 10 algorithms (45 pairs). In grand total there were 328 pairs of images. Each pair

was viewed in [AB] and [BA] orientations, where A and B are images for the same scene

processed by two different tone mapping algorithms, making a total of 328 × 2 = 656

comparisons per observer. Due to this large amount of comparisons undertaken, the

average observer completed the experiment in one hour, however this was split into

sessions lasting no more than thirty minutes each in order to minimise eye strain and

loss of concentration among observers.

The images used in the lab-based experimental variant were taken directly from

Mei (2010a), and resized with bicubic resampling to fit within the intended observable

angle at a standardised viewing distance of approximately one metre. Note that the

images displayed to participants in the Lab-TMO experiment were exactly the same as

in the Nottingham-Web experiment (save for displayed size); it is solely the change in

environment and presentation which is of interest.

The instructions given to the user in the Nottingham-Web experiment were “Click on

the image you think is better”, with a tie option given as “Or It’s hard to say” (emphasis

indicates clickable button text). The instructions given in the Lab-TMO conditions were

modified slightly, as the user did not click on images to indicate preference, but had

separate physical buttons to select either image or the tie option, as such the instructions

given were “Choose the image you think is better, or press [the tie button] if it is hard

to say”, while the physical buttons were demonstrated.
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3.4 Results – Validity of an Existing

Web-Based Experiment

It has become commonplace to analyse paired comparison data of this kind by us-

ing Thurstone’s law (Thurstone, 1927) of comparative judgement, as described in sec-

tion 2.6.1. However, a Thurstonian analysis of the Nottingham-Web study was not com-

piled, nor is the original raw data available to create one. Instead, the authors used what

they called the ‘Image Quality Ranking Index’ (or IQRI), detailed in Qiu et al. (2011).

This index for a particular reproduction t is defined as:

IQRIt =
v

wt + dt
2

, (3.1)

where w is the number of wins for reproduction t, d is the number of tie situations

involving t, and v is the total number of votes cast across all comparisons involving t; a

lower IQRI score indicates a more favourable ranking.

Clearly, we wish to compare our experimental results from Lab-TMO with the web-

based Nottingham-Web rankings (available at Mei (2010b)). In the absence of Thur-

stone data, we do this by comparing the IQRI rankings of both experiments using the

Kendall rank correlation coefficient (Kendall, 1938), as described in section 2.6.5. This

is a measure of the level of correlation between two sets of ranked data, giving a score

ranging from 1, indicating perfect correlation, to −1, indicating that one ranking is cor-

related with the inverse of the other. A score of 0 indicates that the two rankings are

uncorrelated.

This correlation coefficient was computed for the IQRI rankings for all scenes.

Table 3.1 shows, for each scene, the value for the Kendall rank correlation coefficient,

τ , and where there is a significant similarity, the corresponding p-value.

As shown in table 3.1, the ‘Synagogue’ and ‘Tinterna’ scenes both have very high

rank correlation (p< 0.01 and p< 0.05 respectively); however, the rank correlations for
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Table 3.1: Rank correlations for all scenes in the Nottingham-Web and Lab-TMO experi-
ments

Scene τ Significance

Atrium Night 0.4286

Belgium 0.5111 p < 0.05

Bristol Bridge 0.7143 p < 0.05

Clock Building 0.0714

Fog 0.4444

Foyer 0.3333

Indoor 0.5238

Memorial 0.5000

Synagogue 0.7857 p < 0.01

Tahoe 0.4667

Tinterna 0.8667 p < 0.05

Tree 0.2381

Venice 0.1429

the ‘Clock Building’ and ‘Venice’ scenes produce drastically different results. Overall,

only four of the thirteen scenes produced rankings which were correlated across the two

experiments at the 95% level. Figure 3.3 provides a visual representation of the rank

correlations for all scenes. These parallel coordinate graphs display the Nottingham-

Web ranking on the left axis and the Lab-TMO ranking on the right. Crossing lines

provide a visual cue to the level of correlation between the two rankings.

In light of the discrepancy between the two sets of rankings, it is important to eval-

uate the quality metrics of the Lab-TMO data in isolation, so that we can uncover any

statistical artefacts which may impact our lab-to-web comparison. The Kendall coeffi-

cients of agreement among observers, and of intra-observer consistency were calculated

for the data from the lab-based experiment; for future reference, we also calculated the

Mosteller score for each scene (all these statistics are described in section 2.6).
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Figure 3.3: Rank correlations between Nottingham-Web and Lab-TMO variants, for all
scenes, based on the IQRI metric
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Figure 3.3: Rank correlations between Nottingham-Web and Lab-TMO variants, for all
scenes, based on the IQRI metric (cont.)
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Figure 3.3: Rank correlations between Nottingham-Web and Lab-TMO variants, for all
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Figure 3.3: Rank correlations between Nottingham-Web and Lab-TMO variants, for all
scenes, based on the IQRI metric (cont.)

Table 3.2 shows the summary statistics for all scenes; the columns under the ‘Agree-

ment’ and ‘Consistency’ headings show that, remarkably, all scenes showed signific-

antly high inter-observer agreement (p < 0.001 for all scenes) and also high levels of

intra-observer consistency. The lower consistency score for the ‘Belgium’ and ‘Foyer’

scenes may suggest that observers were basing their decisions on different image fea-

tures depending on the image pair presented. Upon inspection of the different repro-

ductions of those scenes, it is evident that some operators perform well in the highlights

but fail in the shadows, while some others perform conversely. Observers may have

chosen to favour highlight performance for some image pairs, and shadow performance

for others.

The columns under ‘Mosteller’ show the χ2 score and corresponding significance

level (p-values greater than 0.05 are omitted for clarity) for the Mosteller test, which

shows that, for the majority of the tone-mapped scenes, the Thurstone Case V solution

adequately describes the preference data. However, the significantly high scores for the

‘Synagogue’ and ‘Tahoe’ scenes should be noted – these suggest that, for these scenes,
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Table 3.2: Summary statistics for all scenes in the Lab-TMO experiment

Scene
Mosteller Agreement Consistency

χ2 Significance u χ2 Significance Ω

Atrium Night 16.438 0.280 179.643 p < 0.001 0.691

Belgium 42.425 0.239 335.571 p < 0.001 0.592

Bristol Bridge 15.052 0.222 195.821 p < 0.001 0.719

Clock Building 24.126 0.433 355.357 p < 0.001 0.800

Fog 13.727 0.229 258.393 p < 0.001 0.694

Foyer 6.313 0.155 108.679 p < 0.001 0.577

Indoor 13.883 0.194 130.857 p < 0.001 0.707

Memorial 18.268 0.252 218.286 p < 0.001 0.646

Synagogue 36.019 p < 0.05 0.252 218.536 p < 0.001 0.815

Tahoe 19.535 p < 0.05 0.225 105.929 p < 0.001 0.633

Tinterna 18.058 0.274 126.000 p < 0.001 0.718

Tree 18.532 0.287 183.679 p < 0.001 0.719

Venice 4.668 0.227 149.429 p < 0.001 0.694

the assumptions of the Case V solution may not hold and that these scenes should be

treated with some caution when we later compare the web-based results to these lab-

based results.

The data in this table convey that the observers in our lab made consistent preference

judgements, and, finally, that the observers agreed with each other on image preference

choices to a significantly high degree.

These results may initially seem disappointing in the light of our objective of per-

forming preference experiments on the web in order to make their administration easier

for researchers. However, we can begin to suggest some plausible reasons for the seem-

ingly poor performance of the Nottingham-Web experiment, which will be discussed

in section 3.8. To gain some further insight however, we developed our own web-

based experimental platform to perform more in-depth analysis of the contrasting res-
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ults between lab-based and web-based experimental variants. In so doing we will be

able to generate full Thurstonian analyses for the experiments, and so we will be dis-

pensing with the IQRI metric. We do not assert that the IQRI metric is in any way

erroneous, but it is not the commonly accepted standard for the analysis of paired com-

parison experiments. Table 3.2 shows that the Thurstone Case V solution is, in most

cases, sufficient for the task of analysing preference data for these tone mapping oper-

ators (although notably not in all cases). If we compare the rankings generated for the

Lab-TMO experiment by both the IQRI and traditional Thurstone approaches, we find

that, broadly, the same rankings are produced. However, the results are not identical for

all scenes – fig. 3.4 shows the scenes for which differing rankings are produced.

3.5 Experimental Design – A New Web-Based Platform

Extending from the work in the previous section, we observe that the Nottingham-Web

experiment suffered from low numbers of participants and did not control for some

factors which could still plausibly be controlled and/or monitored even in a web-based

scenario (further discussed in section 3.8). In light of this we opted to implement our

own web-based research platform (Harris, 2011) so that we could gain greater control

over the web-based data collection. We will now compare observer preferences from

this new web-based platform and from controlled experiments carried out in our own

lab, as introduced in section 3.3.

One of the limitations of the Nottingham-Web web-based experiment was that, due

to the design of the page and the size of the images compared, only an estimated

20% (Google Inc, 2009) of visitors to the site would be able to observe the entirety

of both images in a pair on their screen without scrolling. Worse still, for an estimated

50% of observers the resolution of their display device would cause the page layout

to display one image stacked atop the other, meaning that the observer would have to
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scroll vertically between the two images, and would never be able to make a direct com-

parison of both images on the screen at the same time. In our system, the layout is fixed

so that images will always be shown side-by-side, and the data gathered show that 87%

of observers were able to see the entirety of both images at the same time without any

scrolling. To facilitate this, we resized the images to a smaller scale than was used in

the Nottingham-Web experiment. We used the same size images for both our lab- and

web-based experiments. All images were resized using bicubic resampling and, for the

web experiment, we ensured that there would be no client-side rescaling of the images.

In previous similar experiments, authors have often recruited observers through

friends and colleagues, or at conferences or through mailing lists etc. as noted in sec-

tion 3.2. Obviously this can lead to an unrealistic sample of observer populations, as

those recruited from within the community are likely to be expert observers, and anyone

who is personally recruited is likely to feel an obligation to complete a large number of

preference choices, or to spend more time scrutinising their decisions in order to ‘get

it right’. We therefore opted against personal recruitment and targeted the wider online

audience for our experiments. The project was publicised through social media and

advertised through various other websites unrelated to colour science. For example, the

project was built using some popular open source tools including Django and Pinax,

and so the project was promoted among those open source communities. This attracted

many observers who were enthusiastic to participate, but were not ‘expert observers’

from a colour science perspective. Thanks to this recruitment policy, participants were

attracted much more organically and represent a much better sample of internet users

‘in the wild’. We actively avoided directly recruiting from colour communities.

Observers were free to complete as many or as few preference choices as they

wished. If an observer submitted only a handful of preference choices these were ad-

ded to the pool of data with equal weighting to those submitted by an observer who

submitted hundreds.
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Figure 3.5: Interface of the our web experiment

Also in opposition to some previous approaches, we opted to have no calibration

process, questionnaires or adjustment images. Observers visiting the site were imme-

diately presented with their first preference choice, as depicted in fig. 3.5. Primarily

it was thought that immediate presentation of the task at hand would be more likely

to engage observers and encourage them to partake; presentation of welcome pages,

splash screens, or anything of the sort are well known to increase the ‘bounce rate’ on

websites. It is also noted that even if a calibration process were implemented, it would

likely be of little value: observers’ viewing conditions are likely to change with time,

especially on mobile devices. Furthermore, observers could be employing multiple dis-

plays, returning to the site on multiple devices, or they could be using a device with an

auto-dimming or otherwise automatically adjusting display.
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Figure 3.6: Comparisons completed per observer

3.6 Results – A New Web-Based Platform

Here we present data collected by our web-based platform over a span of one year

of operation, during which time over twenty-six thousand preference judgements were

submitted by more than one thousand observers. The mean number of comparisons

per observer is 18.9, with a standard deviation of 35.3 – the distribution of completed

comparisons per observer is shown in fig. 3.6. Unfortunately, due to its unbalanced

nature, we cannot complete the same summary statistics as above for the web-based

data. Expecting web observers to complete every possible combination of images, in

order to facilitate the balanced paradigm, is simply unreasonable. Indeed if we omit all

unbalanced sessions from our data we would be left with only two complete, balanced,

sessions.

Our web-based variant of the Lab-TMO experiment is hereafter referred to as the

Web-TMO experiment. Table 3.3 shows how the Web-TMO data compare to the Lab-

TMO data – we are now considering how the Thurstonian analysis of one variant cor-
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Table 3.3: Correlations for all scenes in the Lab-TMO and Web-TMO experiments

Scene
Kendall Rank Correlation Sprow Goodness-of-Fit

τ Significance χ2 Significance

Atrium Night 0.905 p < 0.01 23.123

Belgium 0.733 p < 0.01 48.589

Bristol Bridge 0.571 p < 0.05 72.106 p < 0.001

Clock Building 0.357 150.678 p < 0.001

Fog 0.333 98.427 p < 0.001

Foyer 0.333 83.700 p < 0.001

Indoor 0.714 p < 0.05 17.081

Memorial 0.643 p < 0.05 34.599

Synagogue 0.857 p < 0.01 26.182

Tahoe 0.467 48.377 p < 0.001

Tinterna 0.867 p < 0.05 20.508

Tree 0.810 p < 0.05 62.485 p < 0.001

Venice 0.619 41.896 p < 0.01

relates with the other. The results of both the Kendall rank correlation coefficient and

the Sprow goodness-of-fit test (as described in section 2.6.5) are shown. Recall the dis-

parity in the significance measures for the Kendall and Sprow statistics – a low p-value

for the Kendall rank correlation coefficient suggests a strong correlation, while a low

p-value for the Sprow goodness-of-fit test suggests a poor correlation. We can see that

eight of the thirteen scenes give significantly correlated rank orderings. However, for

the ‘Clock Building’, ‘Fog’, ‘Foyer’, ‘Tahoe’ and ‘Venice’ scenes, both of the Kend-

all and Sprow measures agree that those scenes showed poor correlation, although we

should bear in mind the results given above of the Mosteller test as applied to the Lab-

TMO data, which suggest that the ‘Synagogue’ and ‘Tahoe’ scenes may be ill-suited for

the case V solution.

Interestingly, for ‘Bristol Bridge’ and ‘Tree’, significant rank correlation is achieved
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but the Sprow test indicates a poor goodness-of-fit. This is examined in further detail in

section 3.6.1, with the aid of data from a second suite of image processing algorithms.

Figures 3.7 and 3.8 show the rank position swaps and the results of the Thurstonian

analyses for both web-based and lab-based variants of the TMO experiments. Figure 3.7

is presented similarly to fig. 3.3, this time with Web-TMO rank on the left axis, and the

Lab-TMO rank on the right. However, these graphs have been augmented by the ad-

dition of the vertical lines to the right of the right-hand axis. These lines represent the

groupings made by the score difference test described in section 2.6.3; for any collection

of two or more algorithms grouped by one of these lines it is proclaimed by the score

difference test that these algorithms cannot be asserted to be perceptually dissimilar at

the chosen significance level, which in this case is α = 0.05. This statistic was calcu-

lated for the lab-based data, as we are treating our Lab-TMO experiment as a ground

truth, but also as the score difference test requires data from a balanced experiment.

The addition of this statistic adds an interesting perspective to our data; consider for

example the ‘Atrium Night’ scene described in fig. 3.7a. We can see that there is only

one rank position swap between the Web-TMO and Lab-TMO rankings (which is sup-

ported by table 3.3), but the addition of the score difference test reveals that this swap is

between two algorithms which are not perceptually dissimilar. In light of this, we may

be more willing to accept this rank position discrepancy between the two rankings and

suggest that the results produced by each variant are similar enough to assert that they

are the same. This insight becomes even more interesting when considering scenes such

as ‘Fog’ – this scene has many rank position swaps, and indeed the Kendall τ correla-

tion in table 3.3 is very low. However, we can see from fig. 3.7e that all but two of the

algorithms are declared by the score difference test to be not perceptually dissimilar –

when those algorithms are applied to this scene, at least. So, such discordance between

the two rankings is perhaps not surprising – indeed the algorithms which are not de-

clared dissimilar by the test are not affected by any rank position swaps. Similar trends
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Figure 3.7: Rank correlations between Web-TMO and Lab-TMO variants, for all scenes,
based on Thurstone Case V scores
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Figure 3.7: Rank correlations between Web-TMO and Lab-TMO variants, for all scenes,
based on Thurstone Case V scores (cont.)
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Figure 3.7: Rank correlations between Web-TMO and Lab-TMO variants, for all scenes,
based on Thurstone Case V scores (cont.)



CHAPTER 3. WEB-BASED PAIRED COMPARISONS 83

Web-TMO Lab-TMO

EMPJ

Hier

Mantiuk08

Drago

LocalHA

Reinhard

Filter

(m) Venice

Figure 3.7: Rank correlations between Web-TMO and Lab-TMO variants, for all scenes,
based on Thurstone Case V scores (cont.)

can also be seen in the ‘Belgium’, ‘Bristol Bridge’, ‘Indoor’, ‘Synagogue’ and ‘Tint-

erna’ scenes, where even though the rankings for these scenes may have many swaps,

they are always between algorithms which, according to this test, are not dissimilar at

the 95% level.

Figure 3.8 reveals some interesting features from the scores for each algorithm de-

rived by the Thurstone analysis of each variant. While rank position swaps are not so

easy to visualise in these graphs, they help to reveal differences in absolute scores. For

example fig. 3.8l can help to explain why table 3.3 shows strong Kendall rank correl-

ation (supported by fig. 3.7l) for the ‘Tree’ scene while also reporting significant poor

correlation according to the Sprow test. We can see in fig. 3.8l that, while the Web-TMO

scores reveal the same ordinal trend as the Lab-TMO scores (save for the two swaps),

they are shifted negatively for all algorithms except LocalHA and Reinhard. Since these

z-scores from a Thurstone analysis must always sum to zero (under the case V assump-

tions), the more positive scores in the Web-TMO experiment for these two algorithms

have had the effect of dragging the scores for all the other algorithms in a negative

direction.
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Figure 3.8: Thurstone Case V scores for Lab-TMO and Web-TMO variants, for all scenes
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Figure 3.8: Thurstone Case V scores for Lab-TMO and Web-TMO variants, for all scenes
(cont.)
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Figure 3.8: Thurstone Case V scores for Lab-TMO and Web-TMO variants, for all scenes
(cont.)
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Figure 3.8: Thurstone Case V scores for Lab-TMO and Web-TMO variants, for all scenes
(cont.)
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Figure 3.8: Thurstone Case V scores for Lab-TMO and Web-TMO variants, for all scenes
(cont.)

3.6.1 Adding a Second Dataset

To corroborate the results from our TMO experiments, we also ran a further experiment

examining observer preference for colour-to-greyscale algorithms. For the lab-based

variant of this experiment (hereafter referred to as Lab-C2G), we used existing data

published by Connah et al. (2007). The C2G operators compared by Connah et al. are

listed in section 2.43, and the images used to test these operators are listed in appendix B.

The control conditions for the Lab-C2G experiment are summarised in Connah et al.

(2007), but they were largely similar to those we used for the Lab-TMO experiment

and met the same standards requirements. We are not concerned with a full analysis of

the results generated from the Lab-C2G experiment from the perspective of evaluating

C2G operators, again we are only concerned with how the lab-based data compare to a

web-based replicate. To establish a reference for what level of confidence we can hold

the lab-based data to, we recapitulate the summary statistics for the Lab-C2G data in

table 3.4, with the addition of the results of the Mosteller test (which was not calculated

in Connah et al. (2007)).
3Abbreviated C2G operator names have been kept consistent with those used in Connah et al. (2007).
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Table 3.4: C2G experiment: summary statistics for lab data

Scene
Mosteller Agreement Consistency

χ2 Significance u χ2 Significance Ω

Girl 4.362 0.040 28.833 p < 0.05 0.714

Hats 3.026 0.061 36.000 p < 0.01 0.604

Heron 11.569 0.521 194.833 p < 0.001 0.885

Monet 24.199 p < 0.01 0.435 165.167 p < 0.001 0.807

Parrot 13.172 0.386 148.000 p < 0.001 0.818

Poppies 9.070 0.226 92.833 p < 0.001 0.755

We can see that, as in the Lab-TMO experiment, there were high levels of intra-

observer consistency for all scenes. However, for the ‘Girl’ and ‘Hats’ scenes, the

inter-observer agreement was slightly lower – it is still significantly high (p < 0.05 and

0.01 respectively) but it is not at the p < 0.001 level as in the other scenes. The reasons

for the poorer performance for these scenes are discussed by Connah et al. (2007); it

is suggested that, for these scenes in particular, the compared algorithms all perform

similarly and different observers may be selecting different criteria to judge the minor

differences in these images.

The Mosteller test shows positive results for five of the six scenes but, as with ‘Syn-

agogue’ and ‘Tahoe’ from the TMO experiment, we should perhaps be wary when

considering the ‘Monet’ scene due to its significantly high χ2 score.

Our web-based variant of the C2G experiment, hereafter referred to as Web-C2G,

ran parallel to the Web-TMO experiment on our web-based research platform discussed

in the previous section. Observers were randomly assigned to one of the two experi-

ments on their first visit to the site, but could opt-in to a different experiment if they so

wished. Similarly, if an observer completed all the comparisons for a particular experi-

ment (a feat managed by only two observers out of over one thousand), they would be

assigned to the other upon their next visit. Table 3.5 shows how the web data compare
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Table 3.5: C2G experiment: correlations between lab and web results

Scene
Kendall Rank Correlation Sprow Goodness-of-Fit

τ Significance χ2 Significance

Girl 0.333 17.970

Hats 0.867 p < 0.05 15.422

Heron 0.867 p < 0.05 99.281 p < 0.001

Monet 0.600 48.534 p < 0.001

Parrot 0.867 p < 0.05 29.811

Poppies 0.733 p < 0.05 27.162

to the lab data for the C2G experiment – much like table 3.3, these data represent the

first year of data collection.

Four out of six scenes give significantly correlated rank orderings, while ‘Monet’

exhibits weak correlation according to both the Kendall and Sprow measures – although

we should once again bear in mind the results of the Mosteller test which suggest that

the ‘Monet’ scene is ill-suited for the case V solution.

Figures 3.9 and 3.10 show the rank position swaps and the results of the Thurstonian

analyses for both web-based and lab-based variants of the C2G experiments. As with

fig. 3.7, the graphs in fig. 3.9 have been augmented by the groupings discerned by the

score difference test at the α = 0.05 level.

The ‘Girl’ scene presents an interesting situation: it exhibits weak rank correla-

tion according to the Kendall measure, but favourable goodness-of-fit according to the

Sprow measure. Figure 3.10a shows the results of the Thurstonian analysis of the ‘Girl’

scene for both the lab and web variants plotted on the same axes. It is evident that the

scores are very similar in both experiments, but the minor fluctuations happen to cause

significant rank differences. The ordinal rankings, seen in fig. 3.9a, produce many

rank position swaps between the two variants, but they are all within the bounds of the

perceptibly similar. This highlights the danger of relying solely on a rank correlation
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Figure 3.9: Rank correlations between Web-C2G and Lab-C2G variants, for all scenes,
based on Thurstone Case V scores

measure to quantify the similarities or otherwise of our lab- and web-based variants.

Notably, if we carry out the score difference test for all scenes in the C2G experi-

ments, this same explanation holds true for every scene that does not exhibit signific-

antly high rank correlation – the rank position swaps are always among those algorithms

which are, according to the score difference test applied to the lab-based data, not sig-

nificantly dissimilar. This is an important point to underline – for every scene that does

not exhibit strong rank correlation, the rank position swaps causing that weak correl-

ation are all among algorithms which are not perceptibly dissimilar. The same is not

always true for the TMO experiments, but does hold in many cases.
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Figure 3.10: Thurstone Case V scores for Lab-C2G and Web-C2G variants, for all scenes
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Another interesting situation arises for the ‘Heron’ scene, as well as ‘Bristol Bridge’

and ‘Tree’ from the TMO experiment: significantly strong rank correlation is achieved

but the Sprow test indicates a poor goodness-of-fit. Figure 3.10c shows how this can

be the case for the ‘Heron’ scene – the rank orderings are very similar, with only one

position swap between the ‘BAL’ and ‘LUM’ algorithms, however the web results are

somewhat muted in comparison to the lab results. This could be due to the larger num-

ber of observers for the web experiment. The results for ‘Bristol Bridge’ and ‘Tree’

show similar properties.

3.7 Correlation Over Time

A feature of our web-based platform is the ability to compute all the statistics used

above in real time. This means that we can examine the correlation between the lab-

based and web-based variants as a function of time or, equivalently, the number of

comparisons completed. In so doing, we will consider the TMO and C2G experiments

in unison. Figures 3.11 and 3.13 show, for the TMO experiments and the C2G exper-

iments respectively, Kendall rank correlation between the lab- and web-based variants

as a function of the number of comparisons made in the web variants, while figs. 3.12

and 3.14 show the correlation based on the Sprow measure, again as a function of the

number of comparisons. The grey horizontal lines show the value of τ for the Kendall

graphs, and χ2 for Sprow, required to be significant at the 95% and 99% levels.

If we first consider those scenes where both statistical measures are in agreement

that high correlation was achieved, namely ‘Atrium Night’, ‘Belgium’, ‘Indoor’, ‘Me-

morial’, ‘Synagogue’ and ‘Tinterna’ for the TMO experiments, and ‘Hats’, ‘Parrot’ and

‘Poppies’ for C2G, we can see that significant correlation is achieved for all but one

of those scenes after approximately three hundred comparisons, or about sixteen in-

dividual observers (based on the mean number of comparisons per observer of 18.9).
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Figure 3.11: Correlation over time for all scenes in the TMO experiments, based on the
Kendall rank correlation coefficient
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Figure 3.11: Correlation over time for all scenes in the TMO experiments, based on the
Kendall rank correlation coefficient (cont.)
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Figure 3.11: Correlation over time for all scenes in the TMO experiments, based on the
Kendall rank correlation coefficient (cont.)

While the ‘Hats’ scene required a little longer for the Kendall rank correlation statistic

at approximately five hundred comparisons (or ≈ 27 observers).

Conversely, for the remaining scenes we can observe that the levels of correlation

between the lab- and web-based rankings, while not achieving significantly high levels,

do still stabilise after approximately five hundred comparisons. This suggests that five

hundred comparisons is sufficient to obtain a stable result from a cohort of generic

web users, but that this result cannot necessarily be relied upon to correlate with a lab-

based experiment. This stability despite lack of correlation may also suggest a deeper

underlying difference in preference metric for observers on the web.

3.8 Discussion

These results compare the outcomes of two very different experimental paradigms. Al-

though both are paired comparison experiments and both are comparing the same col-

lections of images, the levels of control in the lab-based experiments contrast greatly

with the almost total lack of control in the web-based counterparts. It is not the intention

of this work to examine why one algorithm (TMO or C2G) is preferred over another
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Figure 3.12: Correlation over time for all scenes in the TMO experiments, based on the
Sprow et al. measure of correlation
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Figure 3.12: Correlation over time for all scenes in the TMO experiments, based on the
Sprow et al. measure of correlation (cont.)



CHAPTER 3. WEB-BASED PAIRED COMPARISONS 99

0 500 1,000 1,500
0

50

100

150

200

No. of comparisons

χ
2

(m) Venice

Figure 3.12: Correlation over time for all scenes in the TMO experiments, based on the
Sprow et al. measure of correlation (cont.)

in each particular experiment – rather, the data of interest pertains to the extent of the

similarity between the juxtaposed sets of rankings, and what factors can account for any

differences.

It is noted that our Web-TMO experiment achieved higher levels of correlation with

the Lab-TMO counterpart than did the Nottingham-Web experiment. If we examine

the differences in how the Web-TMO experiment was conducted in contrast with the

Nottingham-Web experiment, we can uncover some perhaps important differences that

could go some way to explaining the conflicting results.

Many conventions of displaying images to a participant were not sufficiently ad-

dressed by the interface of the Nottingham-Web experiment. Aside from the many as-

pects of the environment which are beyond the feasible control of any web-based inter-

face (such as ambient lighting, viewing angle, viewing distance, and screen resolution),

the presentation of the Nottingham-Web experiment introduced some complications of

its own. For example, the images were displayed against a bright yellow background,

bordered by other colourful interface elements. Conversely, the Web-TMO (and Web-

C2G) experiment employed a neutral background, with a variegated surround around

the displayed images. The web-based platform used for the Web-TMO and Web-C2G
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Figure 3.13: Correlation over time for all scenes in the C2G experiments, based on the
Kendall rank correlation coefficient
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Figure 3.14: Correlation over time for all scenes in the C2G experiments, based on the
Sprow et al. measure of correlation
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experiments had several supporting webpages in addition to the main experimental in-

terface. For example the Thurstone scores and several other statistics were computed in

real time and displayed for review by any interested party, similarly descriptions of the

algorithms under scrutiny and the images used were made available. All of these pages

were also displayed with a consistent neutral colour scheme in an attempt to reduce

any ordering effects if a participant viewed any of this information and then went on to

contribute data.

With the Nottingham-Web experiment, the images to be compared were not resized

on the server but were sent to the participant’s browser at full resolution and resized

in-browser. Due to the different implementations of image resizing across browsers,

this means that some observers will have been presented with images resized using

bicubic resampling, some with bilinear, and some with nearest neighbour. This will

undoubtedly have resulted in the creation of image artefacts for some observers, but

less so for others. Meanwhile our web-based experiments employed consistent server-

side resizing of the images.

Even though the images were resized in the Nottingham-Web experiment, the layout

in which they were displayed was not consistent. For most scenes many participants

had to scroll to see the entirety of each image in the displayed pair. Worse still, the lack

of control over layout means that those with a low screen resolution will have had to

scroll to see one image stacked vertically atop the other, meaning that they would not

be viewing both images on the screen at the same time and so could not make a direct

comparison. As discussed in section 3.5, our platform accounted for this.

After making a preference choice in the Nottingham-Web experiment, a ‘thank you’

page was displayed to the participant. This page was redirected back to the main screen

after a delay of one second via the use of a ‘meta refresh’. A subset of web users are

likely to have this functionality disabled and may have attempted to navigate back to the

main screen either by using their browser’s back button, which would have presented
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them with the same image pair once more, or possibly by refreshing the ‘thank you’

page, which would have resubmitted their preference choice to the server. This is part

of a wider possible source of sampling error: the Nottingham-Web experiment did not

disallow multiple completions of the same comparison by the same observer. Not only

does this permit data distortion through malicious intent, it allows more enthusiastic

participants to contribute repeated data and so, intentionally or not, skew the results.

The average web user has little incentive to complete all comparisons, as they are not

under monitored conditions, and so may become bored with a web-based experiment

fairly quickly and only submit a small number of preference choices. The visitors who

are more likely to donate a larger number of comparisons are those who are already

interested in such studies, such as other researchers and photographers. These expert

observers will likely have inherently different preference choices to the general popu-

lation. Our web-based platform employed more sophisticated randomisation of image

pairs, data anonymisation and tamper-evident hashing to combat this. Participants were

assigned image pairs randomly and could only submit their preference choice for a

given pair once, unless they completed an entire experiment and restarted. Participants

were not aware of which pair of algorithms they were comparing (unless they were such

an expert observer that they could identify the algorithm from the image appearance).

Although it is feasible that these implementation details may have introduced biases

into the Nottingham-Web experiment, these effects would likely be negligible. The more

influential differences between the two experimental paradigms are more likely to be

psychological effects elicited by the different contexts in which observers participated.

For consistency with the Nottingham-Web experiment, the Lab-TMO and Web-TMO

experiments had a ‘tie’ option available to participants, allowing them to opt out of

submitting a preference judgement for a particular image pair. This ‘skip’ option was

rarely used: only 2.7% of comparisons were skipped in the Lab-TMO variant, and 4.5%

in the Web-TMO counterpart. However, this slight increase in opt-outs for the web
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experiment may go some way toward explaining the muted results we see in scenes

such as ‘Heron’. The ability of observers to opt out of a preference choice may lead

to loss of data in situations where two image versions are very similar. If observers

were forced to make a choice, they may take more time and consideration in choosing

an image version which, albeit very slightly, outperforms the other; however, if they

are given the ability to opt out they may quickly decide that the two versions are too

similar to make a preference judgement, and those detailed discrimination data become

lost. In the general case this should not incur too much penalty. If one image obviously

outperforms another then the observer is unlikely to choose the ‘tie’ option. However,

if two algorithms perform very similarly, as is the case with several of the algorithms

compared in these experiments, then these detailed preference choices could lead to

rank position swaps.

After completing the Lab-TMO experiment, observers were consulted about the

factors which influenced their preference decisions. Many revealed that they used dif-

ferent image features to inform their decision about different scenes; rather than taking

the image as a whole they used specific regions or features of each scene to influence

their decision. Further to this, observers noted that certain images had certain recurring

artefacts generated by some TMOs but not others, and would intentionally seek these

artefacts out upon being presented with an image pair of a certain scene. These cues to

decision making are learned as the observer completes more comparisons. An observer

beginning the experiment may take more time considering the image as a whole be-

fore making their decision, but as they continue they learn which salient image features

to look for. This could be an important factor separating the lab and web variants. It

is known that the observers in the web variants did not all complete large numbers of

comparisons before ceasing their participation. This implies that the rankings of the

web variants are likely to be made up of a greater number of observers each undertak-

ing a smaller number of comparisons, which in turn means that each comparison in the
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web variants is more likely to have been made by a participant who is still unaware of

these image features. This is another interesting point in favour of carrying out these

kinds of experiments on the web – from this perspective at least, the balanced paradigm

can actually be detrimental. As observers contribute larger amounts of comparisons,

they learn to ‘cheat’, and so the data they continue to contribute may be biased. Mean-

while a web-based observer would likely cease participation before this inclination had

manifested.

During consultation, the majority of observers in the Lab-TMO experiment men-

tioned the ambiguity in the instructions given. These were chosen to be as similar as

possible to those in the Nottingham-Web experiment, and it is easy to see how differ-

ences of interpretation could arise. The prompt ‘choose the image you think is better’

could be interpreted as ‘choose the image you think most represents a natural scene’

or ‘choose the image you think has more artistic merit’ or even ‘choose the image you

would prefer to hang on your wall’, all of which could produce vastly different results.

Observers noted that, because they were partaking in the experiment under laboratory

conditions, they felt that they should choose images which looked more natural. It is

plausible that observers of the Web-TMO variant may have interpreted the prompt as

in the latter interpretations above, considering that the sort of images traditionally as-

sociated with ‘HDR photography’ and ‘tone mapping’, especially among online photo

sharing websites such as Flickr, are those over-saturated, extremely crisp images such

as those shown in fig. 3.15, which are seen to be more artistic. If we suggest that the

lab-based observers were choosing images which appeared more natural, while the web

observers were choosing images which were more artistic (usually distinctly unnatural),

then the two sets of observers were deriving completely different judgement metrics

from similar instructions, due to the context in which the instructions were given (a

formal, laboratory environment, or the informal environment of the internet). This may

go some way to explaining the stability in the web results despite lack of correlation
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(a) https://www.flickr.com/photos/dcab2/3419699844

(b) https://www.flickr.com/photos/whosdadog/3106530236

Figure 3.15: Examples of images found on image sharing websites such as Flickr when
searching for ‘HDR photography’

https://www.flickr.com/photos/dcab2/3419699844
https://www.flickr.com/photos/whosdadog/3106530236
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with the lab results, which was noted at the end of the previous section.

It is clear the question being asked of the observer is important. Prompts can easily

be interpreted in many different ways depending on their environment. However, often

in these kinds of experiment, we are seeking general observer preference. In both the

TMO and C2G cases (and in many more like them), we are not looking for observer

opinion on a specific metric such as ‘which image appears more saturated?’, but we are

seeking to quantify a quality as broad and expansive as general observer preference.

All of these points share a common theme: transplanting paired comparison exper-

iments onto the web does not, necessarily, mean the complete surrender of all control

over the experiment. With consideration over presentation, and large numbers of ob-

servers, it is entirely possible to achieve reliable results.

3.9 Conclusions

The results in this chapter compare the outcomes of two differing experimental tech-

niques. At the start of the chapter, we compared an existing web-based preference

experiment to a lab-based replicate, and we go on to carry out the same task using the

same lab-based data except with our own web-based counterpart. Given the similar-

ity of the experiments, it is surprising that we do not find similar results. Comparing

our Lab-TMO results to those of the Nottingham-Web experiment, we find only four

of thirteen scenes show significantly high rank correlation, but comparing those same

lab-based results to the results gathered from our Web-TMO experiment we achieve

significant rank correlation for eight of the same thirteen scenes.

In light of this preferable performance obtained by the Web-TMO experiment (and

indeed by Web-C2G), we can begin to suggest some key features of web-based experi-

ments that future researchers should consider. Arguably the most important feature is to

replicate standardised viewing conditions as closely as is feasible. Our web-based ex-
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periments displayed images in a consistent side-by-side layout against a neutral, varie-

gated grey background, with neutrally coloured interface elements surrounding the main

interface – this is perhaps the starkest contrast to the bright yellow background and

colourful interface elements seen in the Nottingham-Web experiment. However, these

considerations have to be made in tandem with other objectives. For example, it could

be argued that the optimum interface would be a full-screen neutral background dis-

played with only the images under comparison – i.e. with no other interface elements

– but this interface would be hard to navigate for the user and takes no consideration

into providing instruction. In taking experiments onto the web we have to be cognizant

of the general expectations of web-based interfaces and design our experimental plat-

form within those confines. Building interfaces in a web browser also introduces other

concerns. Web-based observers will be completing experiments using a wide variety

of different devices, which means we have to be aware of issues arising from differing

display resolutions and layouts (portrait or landscape – particularly for handheld/mobile

devices). Steps can be taken to ensure consistent display within reasonable limits – it

is possible, for example, using modern web technologies, to ensure that images will

always be presented side-by-side and that no scrolling will be necessary to view images

in their entirety – a precaution not taken in the Nottingham-Web experiment. Due to in-

consistencies in browser-based rescaling implementations, we recommend all rescaling

be done server-side.

It was noted in section 3.8 that the Nottingham-Web experiment displayed a ‘thank

you’ page after each comparison was submitted. In that section the possible detrimental

implications of that particular implementation were discussed, but we suggest that such

a step be omitted altogether, as it interrupts the observer and can disrupt their visual

adaptation to the main experimental interface. In further technical implementation con-

siderations, we suggest that future observers be aware of possible malicious intent and

biasing of results by expert observers. Our web-based experiments made appropriate
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use of randomisation, hashing, and data anonymisation to ensure that it was not apparent

which image was generated by which algorithm (unless the observer was experienced

enough to tell from the visual appearance of the image). These steps also ensured users

could not repeat the same preference choice many times (comparisons were intention-

ally repeated as discussed in section 3.3, but observers could not bias results by voting

beyond this designed repetition).

Also noted in section 3.8 was that the Nottingham-Web experiment employed a ‘tie’

option, which was replicated in the Lab-TMO and Web-TMO experiments, but not in

Lab-C2G or Web-C2G. Such an option should be carefully considered, as it allows ob-

servers to opt out of preference choices at the expense of lost data – we advocate for a

forced choice paradigm with no such option. We also recommend judicious considera-

tion over the instructions given to observers – these should be as precise as possible to

protect against misinterpretation.

Our experiments attracted sufficiently large numbers of participants, indeed the

Nottingham-Web experiment did not reach the five hundred comparisons level which,

according to our results, seems to be the point at which stable results are achieved. Fu-

ture researchers should be mindful that they do not attempt to draw conclusions from

experiments before sufficient judgements have been made – chapter 4 introduces a pos-

sible consideration.

Finally, we recommend a statistically robust Thurstonian analysis of results (as op-

posed to IQRI for example). Such an analysis, in concert with the supplemental ana-

lyses discussed in section 2.6, permits a thorough understanding of the results attained

through paired comparison experiments, and can help to reveal any deficiencies (for ex-

ample if competing algorithms do not produce results which are perceptually different

to a significant degree).

Lab-based paired comparisons, with all the control and standardisation under which

they are typically carried out, are seen by many as the ‘correct’ way of performing
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visual psychophysics, while web-based techniques are criticised and often disregarded

for their lack of traditional control. However, we have shown that when sufficient care is

taken over presentation and the other practicalities of web-based experiments, often the

results from web-based paired comparisons can closely correlate with those carried out

under laboratory conditions. It is also shown that, when the results do not correlate, this

can be attributed to lack of discriminatory power among the images being compared, or

is indicative of an underlying problem in the images under comparison that may suggest

they are ill suited for this type of experiment in general.

We observe that convergence in results can be met, so long as careful consideration

is given to image presentation, the phrasing of the prompt given to the observer and

whether or not general web users may have a predisposition to favour certain images

that a lab observer may not. We also note that many previous studies in this area have

exhibited poor results that may be attributable to small numbers of observers, or to

samples of web users that are not generally representative of the observers on the web

at large.



Chapter 4

Temporal Stability of Ranks for Image

Preference

When evaluating observer preference among differing image processing algorithms, we

are often interested in assigning a rank order to a collection of competing algorithms.

In so doing, we will often structure experiments as described in section 2.5. However,

these types of experiments can present practical and logistical obstacles such as those

discussed in chapter 3, namely the setup of the experimental interface and viewing con-

ditions, and time and expense of recruiting sufficient numbers of observers. Given these

challenges of performing preference experiments, it would be desirable to have a meas-

ure of the stability of the ranking obtained from those observers that have completed

the experiment to date. With such a measure, it would be possible to assess whether the

current number of observers represents a sufficient sample size. If so, then it may no

longer be necessary to continue the laborious process of recruiting more observers. For

web-based experiments, the measure could indicate when to cease the study.

In this chapter, we use the data from some existing published preference experi-

ments, and from some new experiments discussed in chapter 3, to show that a measure

of the stability of a ranking can be determined solely from its current state. To de-
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rive this measure we use a novel perturbation analysis of the score matrix (described in

section 2.6.1) constructed during the analysis of paired comparison experiments. We

determine the minimum number of anomalous observers (i.e. those who are, for each

comparison, voting contrary to the current consensus) that would be required to change

the current ranking to a significant degree.



CHAPTER 4. TEMPORAL STABILITY OF RANKS 113

4.1 Introduction

Psychophysical experiments, in particular paired comparison experiments, are a key

part of the evaluation process of many image processing developments. Yet, despite

their pervasiveness, there are still many differing approaches to their execution emer-

ging in the literature. A key contributor to this variance, as mentioned in chapter 3,

is the difficulty associated with recruiting observers. This difficulty, and the differing

resources available to researchers to address it, can cause observer numbers to vary

greatly between experiments, from the handful in Connah et al. (2007), to hundreds as

in Sprow et al. (2009), and into the thousands as seen in chapter 3. However it does not

necessarily follow that we should reject conclusions from experiments that have lower

numbers of observers. It is quite feasible that lower sample sizes could be sufficient to

yield valid results. What would be useful then, is some measure of the robustness of the

current results of an experiment, at which point the quantity of observers attained so far

can be deemed sufficient to draw reliable conclusions.

Over time, as data is gathered from more observers, the analyses of psychophysical

experiments generally stabilise (although not always – if two or more images perform

similarly then the perceived preference among them, especially from a rank ordering

perspective, could remain perpetually unstable), and at such point continuing to recruit

more observers is no longer strictly necessary. In order to test the stability of a set of

results at a given point in time, we seek to test the resilience of that result set to change

by re-posing the question of “is the current quantity of observers sufficient to draw

reliable conclusions?” as “assuming all new observers are in ubiquitous disagreement

with the current results, how many new observers are the current data resilient to?”.

To answer this question, and in so doing meet our objective of quantifying sufficient

observer numbers, we introduce a method built upon Thurstonian (Thurstone, 1927)

analyses of paired comparison experiments. The method could feasibly be modified for

use with other methods of analysis, or with different experimental paradigms.
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4.2 Anomalous Observers

The proposed method centers on the notion of simulated anomalous observers. We

define an anomalous observer to be an observer whose preference judgements are al-

ways contrary to the current consensus. At a given point in time (after some number of

real observers have completed the experiment), we seek to determine how many anom-

alous observers the current ranking is resilient to, or equivalently, how many anomalous

observers would be required to affect significant change in the current results.

Our simple approach is to compile a preference matrix after each real-world ob-

server completes the experiment, and then simulate the addition of anomalous observ-

ers to the experimental results. The effect of the simulated observers on the preference

matrix is calculated after each simulation and, given some significance measure, the

output of our stability measure is the number of anomalous observers required to cause

significant change. The implication of this concept is that the anomalous observers rep-

resent a worst-case scenario – if a result set is resilient to the addition of n anomalous

observers, then it would require at least n additional real observers to cause a change in

the results. By comparing n with the current number of real observers, we can estimate

the likelihood that the current sample size is sufficient.

4.2.1 Choice of Appropriate Significance Measure

The choice of significance measure, to determine the significance or otherwise of the

effects of the anomalous observers, is important. However, due to differing objectives

across experiments, it is infeasible to suggest a measure that works in all circumstances.

For example, in many pieces of research the objective is simply to discover a rank or-

dering of some collection of competing image processing algorithms – the individual

scores representing the differences in scale between each algorithm is of no concern. In

such cases, the simple approach of declaring any change in rank ordering to be signific-
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ant may well be sufficient.

In other cases, there may be certain treatments with which the experimenter is more

concerned. If the psychophysical experiment is being carried out in order to evaluate

the effectiveness of a new image processing algorithm, it may be that the experimenter

only considers rank position changes concerning that particular algorithm important,

and effectively ignores any changes amongst the ‘also-ran’ treatments.

Alternatively, a more comprehensive tool such as Kendall’s rank correlation coeffi-

cient (Kendall, 1938) (described in section 2.6.5) could be used, with some prescriptive

significance level as a threshold. However, a problem with only considering ordinal

rank correlation is that rank position swaps between treatments with only small inter-

vals between them would be considered as equivalent to rank position swaps between

treatments separated by large intervals (as demonstrated in fig. 2.9), which in many

cases would be undesirable. To address this situation a measure such as that defined

by Sprow et al. (2009) (described in section 2.6.5), which is based on a chi-square test,

could be employed. For these purposes, the real results can be used as the ‘expected’

distribution, while the results after the addition of the anomalous observers are treated

as the ‘observed’ distribution.

Any of these approaches, and many others, could be viable, depending on the task at

hand. In section 4.3 it is shown that the measures discussed above reveal similar trends

when applied to our resilience test, although they may produce differing absolute values.

4.2.2 Creating Anomalous Observers

Once an appropriate significance measure has been chosen, the implementation of our

method is simple. First, a ‘ground truth’ preference matrix F is compiled from the data

provided by the real observers to date (these preference data may then be transformed

into some other representation as required by the chosen significance measure or, if the

experimenter is only concerned with a subset of the treatments, a submatrix of F may
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Algorithm 2 Simple algorithm to increase perturbation of the frequency matrix
1: function RESILIENT

2: c← 1
3: while ¬SIGNIFICANT(F, F + cP) do
4: c← c+ 1
5: end while
6: return c
7: end function

be used). If n treatments are being compared, then F is an n×nmatrix, and Fij denotes

the number of times algorithm i is preferred over algorithm j.

To simulate the data for one anomalous observer a new matrix P is created of the

same size as F where

Pij =


1 iff Fij < Fji

0.5 iff Fij = Fji

0 otherwise

. (4.1)

P is then multiplied by the number of repetitions in the particular experiment - a

common paradigm is to display every image pair twice: once in [AB] format, then

again as [BA], often this is then repeated once more, to give a total of four repetitions

for each image pair. At this point P represents one anomalous observer voting contrary

to consensus for the entire experiment.

To arrive at our final quantity of anomalous observers required to affect significant

change, we follow algorithm 2. First, a counter c = 1 is initialised, then P is multiplied

by c. The chosen significance measure is then applied to F and F+cP - if the difference

is significant then exit and return c, otherwise increment c and loop until the change is

significant.
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4.3 Results

To demonstrate what can be revealed by the use of this technique, we use existing data

from some paired comparison experiments. Figure 4.1 shows how the number of an-

omalous observers required to affect significant change in results increases (generally)

with the number of real observers. This is perhaps intuitive: given more observations,

the ranking will become more resilient to change, but with this new statistical tool it is

possible to quantify this observation.

Figures 4.1a and 4.1b show the resilience of the rankings produced by the Lab-C2G

experiment (Connah et al., 2007) introduced in chapter 3, using rank order change and

the Sprow et al. chi-squared test respectively as the significance measures. In these

examples, any rank ordering change was deemed significant, and an alpha level of 0.05

was used as the significance criterion for the Sprow et al. test.

The spikes in fig. 4.1a demonstrate the sensitivity of using rank order change as

the significance measure. These fluctuations likely arise from the fact that, while real

observer numbers are low (as is the case for this particular experiment), each single

observer (real or anomalous) can have a significant impact on the current ranking – the

larger differences in images are identified early on, but the more nuanced differences

may take many more observers to identify. While these smaller differences are surfa-

cing, small changes in score can result in big changes in rank ordering – exactly the

problem described in fig. 2.9 and the motivation behind the introduction of the Sprow

et al. test. The smoothness benefit of the more incisive Sprow et al. measure is clear to

see in fig. 4.1b.

Figure 4.1c shows data taken from the Web-C2G experiment discussed in chapter 3.

As the web-based data is unbalanced (not every observer necessarily completes every

preference judgement), the x-axis in this plot shows the number of observations made

– it is still assumed, however, that one simulated anomalous observer completes every

preference choice, and so the results represent a worst-case scenario. In this case, for
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(a) Lab-C2G experiment (Connah et al., 2007), any rank order change is significant
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(b) Lab-C2G experiment (Connah et al., 2007), using Sprow et al. measure of significance
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(c) Web-C2G experiment, any rank order change is significant

Figure 4.1: Resilience of rankings to anomalous observers
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(a) Web-C2G
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(b) Web-TMO

Figure 4.2: Resilience of ranks generated by Web-C2G and Web-TMO experiments, ex-
pressed as a percentage of real observations made. Any rank order change is
considered to be significant. The plots contain one line for each scene in both
experiments

simplicity, we deem any rank order change to be significant. These data show that our

approach can be similarly applied to large-scale data as well as to experiments with

smaller observer numbers, and in so doing reveals the same general trends. However,

as shown in fig. 4.2, the larger scale data also reveals some interesting further insights.

Figure 4.2a depicts the required anomalous observations for the Web-C2G experi-
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ment as percentages of the current numbers of real observations. The data are broken

into multiple plots, one for each different scene in the experiment, but all using the same

collection of image treatments. The reason for the downward trend may not at first be

apparent, but this is due to the initial small numbers of real observers being similar in

scale to the required anomalous observers – the base case being results after one real ob-

server require only one anomalous observer to affect change, which in percentage terms

is 100%. As the number of real observers increases, so then does the required number

of anomalous observers, but it is not a linear relationship – hence the shape of the plots.

Interestingly, stability is achieved at approximately 10%, and so we may prescribe for

future iterations of this experiment that 10% is a target amount for reliable results. In

fig. 4.2b, this analysis is repeated for the Web-TMO experiment (also in chapter 3),

and similar convergence is found at approximately 10%. The trends in fig. 4.2 suggest

that all the scenes in both our web-based experiments achieved stable rankings and, in

support of the assertions in chapter 3, did so at around the 500 comparisons level.

4.4 Conclusions

This chapter presents a new technique for quantifying the resilience of a ranking from

a psychophysical experiment to anomalous data, and demonstrates how it can be used

to estimate whether sufficient observers have completed a given experiment to provide

reliable results and conclusions. Given an appropriate significance measure, this tech-

nique can be used to provide a worst-case estimate of the quantity of new observers

required to change the results to a significant degree.

Unfortunately it is not possible to prescribe some target value for our metric that

experimenters can use as a generally applicable objective. The construction of this

method is entirely dependent on the experiment at hand, the data gathered therefrom,

and what the experimenter deems to be significant change in their results. For example,
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from an experiment with two or more very similarly performing image treatments may

arise a situation where the rank ordering of those two treatments is in constant flux

with each new observer - in this situation our metric, if using rank order change as the

significance measure, would report that the results are only resilient to one anomalous

observer no matter what the quantity of real observers. Due to this limitation, this

metric should not be used in isolation - the context of the particular experiment should

always be considered, and the value delivered by our metric may be subject to further

inspection.

We observed that our own web-based experiments depicted in fig. 4.2 achieved sta-

bility after approximately 500 comparisons had been completed, but this observation

was made with the benefit of hindsight - our experiments continued beyond this point

and so we have sufficient data to make the observation. However, the objective of the

development of the metric, and indeed the reason why future experimenters may wish

to apply it, is so that experiments can be ceased at the point when sufficient comparis-

ons for stable results have been completed. So then, how can such a decision be made

without the benefit of hindsight? Recall that the quantity delivered by the metric is a

worst-case estimate - i.e. a value of 10 indicates that at least 10 new observers, voting

contrary to consensus, are required to affect change. In reality, new observers are un-

likely to be completely anomalous. A plausible method for estimating the likelihood of

recruiting anomalous observers would be a Monte Carlo simulation based upon the cur-

rent observer population. For example, if our metric indicated that the current ranking is

resilient to a number of anomalous observers equal to 10% of the current number of real

observers, a simulation that extracted random samples of 10% of the current population

and generated rankings from only their input would be able to suggest the likelihood

of recruiting that amount of anomalous observers given their current distribution in the

sampled population.

It is hoped that future work can build upon this metric to deliver a measure that is
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more statistically robust - i.e. which can, without further inspection, and without being

data dependent, deliver a measure of the statistical power of the current number of

observers recruited into a particular experiment.



Chapter 5

Illuminant Estimation for Colour

Naming

With the validity of data sourced from large-scale web-based experiments demonstrated

in chapter 3, this chapter continues with a demonstration of the utility of such data. We

use existing data delivered by a very large-scale web-based colour naming experiment

to train a computational colour naming model, and with that model seek to answer the

question of whether existing illuminant estimation techniques can be used to provide the

colour naming model with data of sufficient quality such that stable colour names can

be delivered across changes in illumination. In so doing, we observe that colour names

provide a perceptually important representation of colour, and so we test whether colour

names can be successfully utilised as a meaningful representation of image content, by

means of an object indexing task.

123
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5.1 Introduction

There is an ever-growing body of research in the field of illuminant estimation, and

while this is an important (and popular) endeavour, progress has been slow. Over recent

decades there have been many papers published which have inched the state-of-the-art

closer toward a solution, but there remains much room for improvement. The literature

in this field includes some work which poses the question of whether the state-of-the-art

is good enough to produce satisfactory results for some concrete objective. Specifically

in the cases of Funt et al. (1998) and Finlayson et al. (2002a) that objective is object

indexing, as introduced in section 2.8. In this chapter we revisit the approaches used

by Funt et al. (1998) and Finlayson et al. (2002a), but also introduce colour naming as

an objective – i.e. using the same suite of algorithms used to test the object indexing

objective, can we successfully colour-correct images taken under varying illumination

conditions such that they appear the same as those taken under a canonical white illu-

minant, to such a degree that the colour names designated to the colours in the image

by a computational colour naming model are the same?

After demonstrating the stability or otherwise of colour names across illuminant

estimates of varying accuracy, we then, in section 5.4, reintroduce the object recognition

problem using the knowledge gained from the colour naming experiment. Specifically,

we investigate the feasibility of using the distribution of colour names present in an

image as an image descriptor with which we can perform object recognition. From

there, in section 5.5, we suggest that colour names are an inherently human-like way of

describing image content and demonstrate a simple method by which the same scheme

can be used to facilitate both machine object recognition and image search based on

human queries. This chapter concludes in section 5.6.
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5.2 Background

In 1998, Funt et al. (1998) sought to examine whether the field of illuminant estimation

had matured to a point where results from the contemporary methods were good enough

to be useful, in particular for the case of colour-based object recognition. To this end,

colourful objects are represented by their histograms and object identity is defined as

the closest histogram found in an object histogram database. Unfortunately, the con-

clusion at that time was that the best methods of the time were not reliably accurate

enough to deliver results which were sufficient for successful object recognition. Later,

Finlayson et al. (2002a) re-examined the same question with the addition of a newer

illuminant estimation method (Finlayson et al., 2002b) and, contrary to the previous

work, concluded that the performance of this newer method was sufficient for success-

ful object recognition; though the success of that method lay in using an algorithm that

required extensive, detailed, calibration. Unfortunately the use of such an algorithm is

not always possible, for instance when dealing with images from the web, as little in-

formation besides the image data itself is known. These negative results are unfortunate

as colour has been shown to be a useful cue for object recognition and image indexing

when the illuminant colour is known (Flickner et al., 1995; Swain and Ballard, 1991).

In complementary research, colour naming has also proven to be useful for object

recognition, image indexing and image search (Flickner et al., 1995). In image search,

the query “red car” requires some model of colour naming in order to be served sat-

isfactorily. The task of separating red cars from all others is, however, dependent on

being able to disambiguate the surface colour of the car from the illumination condi-

tions. For example the lighting conditions of a car showroom with red spotlights may

cause a white car to appear reddish, and so presenting an image of that car would be in-

appropriate for our “red car” query. Retrieving pictures of a red car clearly also requires

a semantic understanding of what a “car” looks like, which is of great interest (Ever-

ingham et al., 2010), but is not within the scope of this thesis.



CHAPTER 5. ILLUMINANT ESTIMATION FOR COLOUR NAMING 126

In this chapter, we evaluate a collection of simple illuminant estimation algorithms

(described in section 2.2) which, crucially, require little or no calibration. In section 5.3,

we take a similar approach to that of Funt et al. (1998), but instead of using object re-

cognition performance as a metric, we analyse the ability of these algorithms to produce

images which can be correctly labelled with colour names.

5.2.1 Munroe Dataset

To build our colour naming model (as described in section 2.7), we used a freely-

available colour naming dataset compiled via web-based data collection by Munroe

(2010), which was also used by Heer and Stone (2012) and Beretta and Moroney

(2012). As part of Munroe’s data collection exercise, participants were first asked to

complete basic demographic information before continuing to label samples from the

sRGB (Stokes et al., 1996) cube which were displayed against a white background.

Participants could complete as few or as many responses as they wished; there were no

limits on participation levels and no limits on time to label each sample. There were

no constraints on the labels that participants could use. Due to this, we took some

pre-processing steps when using this data set to remove spurious and “spammy” data.

Munroe calculated a spam score for each participant based upon the rarity of their la-

bels in comparison to other participants, and using the same labels for many highly

differing colour samples. We only used data from participants with a spam score lower

than the median. The dataset also contains data from many languages - we extract only

those labels contributed by participants who self-reported as native English speakers.

Finally we extracted only data corresponding to the basic colour terms of Berlin and

Kay (1969); this extends to discarding data with names such as “dark green” and “light

green” and using only labels of the basic form “green”.

For our experiments we attempted multiple approaches at the above pre-processing

steps, such as conflating responses for “dark green” and “light green” into the stemmed
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“green” label, and using different thresholds for spam scores. However, we found that,

within reasonable limits, these differing configurations had little impact on the outcome

of our experiments. We also note the work of Moroney and Beretta (2011) and Beretta

and Moroney (2012), who experimentally validated these data by means of a controlled,

lab-based, validation experiment. They showed that excessive filtering of the data is not

necessary.

It should also be noted that, following the lead of other authors (Heer and Stone,

2012), we built our colour naming model in the CIE L*a*b* colour space. That is, the

Gaussian mixture model described in section 2.7 is constructed in CIE L*a*b*, and the

process of assigning a colour name label to a pixel value includes an implicit conversion

into that colour space. However, for the sake of simplicity we shall ignore this detail

going forward and simply refer to the process of assigning colour name labels given

RGB pixel values.

5.3 Resilience of Colour Names to Illuminant Estima-

tion Errors

Funt et al. (1998), and later Finlayson et al. (2002a), evaluated how performance in an

object recognition task degraded with illuminant estimation accuracy. To do this, both

pieces of work used the colour indexing approach of Swain and Ballard (1991), which

represents images as colour histograms and then uses histogram intersection (see sec-

tion 2.8) as a metric of image similarity. The colour histogram forms a query which is

matched against a database of histograms for an object data set – the closest matching

histogram identifies the query object. The ability of this technique to function after

inaccurate illuminant estimation reduces to whether pixels are assigned to the same his-

togram bins as they would be given perfect illuminant estimation. Herein lies the prob-

lem: with anything other than perfect illuminant estimation, some colour values shift
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Figure 5.1: Differing illumination conditions in SFU Object Recognition dataset (Funt
et al., 1998). The same object is shown under five different lighting conditions

across the boundaries of histogram bins. This becomes more of a problem as the level

of quantisation of the colour space becomes finer (in order to support better discrimin-

ation between similar object histograms), or as the illuminant estimation becomes less

accurate.

Figure 5.1 demonstrates the importance of illuminant estimation accuracy; under

these radically varying lighting conditions (for the purposes of illustration these images

have not been corrected for the illumination conditions), it easy to see how the col-

our values can drift from one histogram bin to another as the illumination conditions

change. However, even with no correction for illumination, a human-made labelling of

the colour names present in the object would likely be consistent across the different

images.

In this chapter, we are interested in how computational colour naming degrades with

illuminant estimation accuracy. Our hypothesis is that colour names, because they rep-

resent a coarse, perceptually important, quantisation of colour, will be sufficiently stable

to support object recognition even when illuminant estimation is far from accurate. For

context, we also test the coarseness of traditional colour histograms – although Funt

et al. (1998) found colour constancy not to suffice for object recognition, they used a

fine quantisation of colour space. Inaccurate illuminant estimation implies that a colour

value (RGB triplet) corresponding to the same surface is mapped to different histogram

bins under different illumination conditions. The more inaccurate the estimation, the

poorer the colour-based recognition. Before presenting object recognition results based

purely on colour names, we wish to investigate the quantity of colour values which are
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Figure 5.2: Process for determining correctness of bin/name assignments

mapped to the same histogram bin using varying quantisations of the colour space, and

the quantity which are identified with the same colour name, under different illumina-

tion conditions normalised using a range of colour constancy algorithms.

The mean results for the collection of illuminant estimation algorithms described

in section 2.2 are presented in table 5.1. The test images used were from the pub-

lished datasets of Barnard et al. (2002) – we used a hybrid set of all the images in the

mondrian, specular, metallic and fluorescent collections (71 objects under nine com-

mon illuminants). A simple threshold technique was used to isolate the objects in the

images from the background (the objects are presented against a black background).

To quantify bin/name correctness, each image is first treated with each illuminant es-

timation method (the illuminant is estimated, and then the scene is re-rendered under

a white illuminant, based on this estimate) and then categorised by histograms with

several levels of bin quantisation, and also labelled with the colour naming model de-

scribed above. These categorisations are compared to the categorisations with perfect

illuminant estimation (the data sets include ground-truth data), and the score given to

each image is the proportion of pixels categorised identically – see fig. 5.2. These res-
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Table 5.1: Correctness of bin/name assignments (expressed as percentage of correctly as-
signed pixels) with varying illuminant estimation errors. Values shown are the
means across all images

Method Error
Histograms (%)

Names (%)
16×16 8×8 4×4 2×2

Do Nothing 17.12◦ 25 41 67 83 67

Actual 0.00◦ 100 100 100 100 100

Grey World 10.97◦ 33 51 72 80 73

Max RGB 10.03◦ 37 58 79 87 79

Shades of Grey 8.06◦ 47 64 81 88 83

General Grey World 7.82◦ 49 65 81 87 84

1st Order Grey Edge 7.22◦ 49 65 83 89 84

2nd Order Grey Edge 6.75◦ 51 67 84 90 85

Pixel-Based Gamut Mapping 6.37◦ 53 69 84 90 87

Edge-Based Gamut Mapping 7.11◦ 39 57 82 89 81

ults are averaged across all images and aggregated by the illuminant estimation method

used. The angular error of the illuminant estimates made by the different algorithms is

also detailed in table 5.1.

When the actual illuminant is used, all normalised images are perfectly colour con-

stant and 100% of the colours are mapped to the same names and bins. Also, as a

general trend, the better the illuminant estimate, the more colours are stably mapped to

the same bin/name. Encouragingly the colour name designations are better than the bin

assignments of all but the 2×2 histograms.

As noted above, illuminant estimation is subject to an unknown scaling factor. To

counter this, previous researchers have built their image histograms in an intensity-

invariant chromaticity space such as that described in section 2.8.1. These two-dimen-

sional histograms are those evaluated in table 5.1. However, for colour naming we

require full three-dimensional colour data, so that “black” can be distinguished from
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Figure 5.3: Effect of exposure correction step

“grey” and “white”, for example. To facilitate this we implemented a naı̈ve “exposure

correction” step after illuminant estimation. The images were scaled so that the pixel

value at the 95th percentile became equal to 255. This simple approach, as demonstrated

in fig. 5.3, sufficed for correct colour naming on our test images (with varying test

data the scaling factor would likely need to be adjusted – we used slightly differing

scaling factors for the other datasets described below). The name correctness measure in

table 5.1 is taken after this scaling step. This step is of particular importance for the SFU

datasets (Barnard et al., 2002; Funt et al., 1998), as they are deliberately underexposed

to avoid any clipped pixels.

The results for the chromaticity histograms shown in table 5.1 show that stability is

greater for more coarsely binned histograms. This is intuitive, since pixel values have

to “move” further from their correct value before they would be miscategorised. Indeed

the name-based histograms (with 11 bins – one for each colour name) seem to fit in

between those histograms with the most similar coarseness (4×4 = 16 bins, and 2×2 =

4 bins). The response to this observation could be to opt for coarser histograms for the

task of object recognition; however, coarser histograms are defined by fewer paramet-

ers, and so offer less discriminatory power among large databases of such histograms.
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Table 5.1 reveals that the stability of colour name labelling of pixel values after in-

accurate illuminant estimation is comparable to the stability of histogram binning for

similarly quantised histograms, with a minimum of 73% of pixel values labelled con-

sistently for the poorest performing algorithm (ignoring the 67% ‘Do Nothing’ result).

5.4 Object Indexing

Funt et al. (1998), and Finlayson et al. (2002a) already evaluated the performance

of various illuminant estimation techniques in the framework of the colour indexing

method of Swain and Ballard (1991) described in section 2.8. However, they used pixel

chromaticity values as described in section 5.3 to build their histograms. We shall do the

same for comparison, but also build a new set of histograms based on the distribution

of colour names in each image. For our first experiment we used the same collection of

images as Funt et al. (1998), referred to as the SFU Object Recognition dataset.

Figure 5.5a describes the results comparing mean illuminant estimation error against

object recognition performance for the various chromaticity histograms, and for the

name-based histograms. Each data point corresponds to one of the algorithms tested in

table 5.1. We used the same object recognition score as Finlayson et al. (2002a) – the

match percentile, described in section 2.8.2. The average match percentile indicated in

figs. 5.5 and 5.6 is simply the mean of the aggregated match percentiles.

We see in fig. 5.5a that the name-based histograms outperform the chromaticity

histograms quite significantly, and so it is worth revisiting the paradigm of employ-

ing chromaticity histograms for this purpose. The rationale for the use of chromaticity

histograms is to account for the unknown scaling factor of the illuminant estimation

methods. However, we are applying our “exposure correction” step for this same pur-

pose in order to facilitate colour naming based on three-dimensional data. In light of

this, we could construct three-dimensional RGB histograms using the same “corrected”
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Figure 5.4: Differing illumination conditions in ALOI dataset (Geusebroek et al., 2005).
Lighting conditions vary from 2175K in the top left image to 3075K in the
bottom right

images as used for the name histograms.

To test this, and to validate the legitimacy of this simple correction approach, we

introduce another image database: The Amsterdam Library of Object Images (ALOI)

(Geusebroek et al., 2005). This expansive dataset has been constructed to fill many

needs within the field of colour research, and as such it includes a database of objects

photographed under varying illumination. This is a much larger dataset than the oth-

ers described here, containing images of one thousand different objects viewed under

twelve illumination conditions (ranging from 2175K to 3075K, as seen in fig. 5.4), and

so represents a more real-world scale of image database. We carried out our experiment

with the entire set of objects, using the 3075K illuminant as our canonical illuminant.

The camera used in constructing the dataset was white-balanced to this illuminant, and

so 3075K appears white while the other illuminants towards 2175K appear more red-

dish.

In figs. 5.5a and 5.6a we see the same general trends for the chromaticity and name-

based histograms, as well as for RGB histograms in figs. 5.5b and 5.6b. It is expected

that the RGB histograms should outperform the chromaticity histograms (under the

assumption that the “exposure correction” is sufficient), as the additional dimensionality

of the data representation allows for greater discriminatory power among the database

of object images. What is surprising here is that the name-based histograms perform
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Figure 5.5: Object recognition performance for chromaticity-, RGB-, and colour-name-
based histograms for SFU Object Recognition dataset (Funt et al., 1998)
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(c) Best-performing chromaticity and best-performing RGB vs colour names

Figure 5.5: Object recognition performance for chromaticity-, RGB-, and colour-name-
based histograms for SFU Object Recognition dataset (Funt et al., 1998) (cont.)

similarly well and, under the conditions of less accurate illuminant estimation, often

outperform the RGB histograms.

Encouragingly, performance of the name-based histograms is on the same order as

the best colour histogram approaches, but we use just eleven colour names instead of

the 8×8×8 = 512 or 16×16×16 = 4096 bins used for the traditional colour histograms.

This is in contrast to the experiments of Funt et al. (1998), as the results they reported

were in part due to discarding intensity information. Even when we do encode intensity

we need many more bins for colour histograms compared with a name based signature.

The power of using colour names is therefore established.
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Figure 5.6: Object recognition performance for chromaticity-, RGB-, and colour-name-
based histograms for ALOI dataset (Geusebroek et al., 2005)
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Figure 5.6: Object recognition performance for chromaticity-, RGB-, and colour-name-
based histograms for ALOI dataset (Geusebroek et al., 2005) (cont.)

5.5 Query by Colour Name

If we consider specifically the case of image search, image descriptors that are compact

and resilient to errors in illuminant estimation are particularly valuable. The value of

this compact representation becomes more important as the size of the image search

corpus becomes larger. This is also a favourable representation for this particular ap-

plication as it can more closely model how a human may describe an image. For ex-

ample, an individual searching for a beachside scene may be able to describe that scene

as [40% yellow (for the sand on the beach), 40% blue (for the sea), 10% brown, 10%

green (for the customary palm tree in the foreground)]. This very human-like descriptor

lends itself excellently as a key with which to query an image database, and it can be

used directly with the histogram intersection technique described above.

To test this scenario, we performed an experiment using histogram intersection to
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(a) Teddy Bear with
Santa Hat

(b) Juggling Ball (c) Rubber Duck (d) Snowman Orna-
ment

(e) Santa Ornament (f) Papa Smurf (g) Diet Coke Can (h) Marmite Jar

Figure 5.7: Subset of ALOI dataset (Geusebroek et al., 2005) used for query-by-colour-
name experiment (Shown larger in fig. C.1)

query the ALOI image dataset with colour name histograms described by human volun-

teers. We first selected an appropriate test set of objects to search for. We chose these

test objects so that human labellers could gain a colour understanding of the object

without first having to see the corresponding image and without being explicitly told

any colour names. For example “rubber duck” and “Marmite jar” convey an implicit

understanding of the colour of the object without the need to show an example image to

the participant, while “coffee cup” is ambiguous and “red toy car” explicitly expresses

a colour name. The set of test objects that we felt adequately met these conditions (for

UK-resident British-English-speaking participants) amounted to eight objects, shown

in fig. 5.7. While this test set may be small, it still serves as a useful demonstration.

We asked participants to describe the colour distribution of the test objects given

only the object name – for example [90% yellow, 8% orange, 2% black] given the name

“rubber duck”. We then used these descriptions to create a normalised colour histogram

vector from the eleven standard colour terms described above, which we used to query

the entire 1000-object database (under only the 3075K illuminant). Using only these

descriptors, we were able to achieve an average match percentile of 88% across eight

participants. Given the object name “Juggling Ball”, six of the eight participants gave
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Figure 5.8: Top three search results using colour name descriptor [25% blue, 25% green,
25% red, 25% yellow], which was the most common human labelling for the
prompt “Juggling Ball”

the same descriptor – [25% blue, 25% green, 25% red, 25% yellow]; fig. 5.8 contains

the top three results after querying the ALOI dataset using that descriptor.

These results are again encouraging. Previous authors (Mehtre et al., 1995) have

noted that histograms based on colour names can be powerful descriptors for object

recognition, and we now show that a very simple eleven component colour name his-

togram is a powerful descriptor for both object recognition as well as human-guided

image search. It is not clear that such a verbal query can be handled using traditional

colour histograms.

5.6 Conclusion

We have shown that histograms derived from colour names allow for greater recall in

the task of object recognition than chromaticity-based histograms, and comparable re-

call to full three-dimensional RGB histograms with the advantage of a more compact

representation. While this could be used to improve the task of object recognition under

varying illumination, this task has already been effectively solved by other means (Funt

and Finlayson, 1995; Healey and Slater, 1994). However these findings open questions

into the power of colour names as image descriptors. In the results shown here, we at-

tain similar, if not better, performance to full three-dimensional RGB histograms using

only an eleven component vector of colour names. This has significant implications for
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applications such as image search; if each image in a corpus can be effectively repres-

ented by a much smaller descriptor (11 bins for names vs. 16×16×16 = 4096 bins for

the best-performing RGB histogram), the overall storage size of the entire corpus can

be significantly reduced. Berens et al. (2000) showed the value of smaller histogram

sizes by compressing traditional chromaticity histograms. We have also shown that this

representation offers a powerful descriptor for human understanding of image content.

The use of colour-name-based histograms as image descriptors offers clear advantages

in terms of the required storage space, resilience to illumination changes, and relevance

to human understanding.



Chapter 6

Constraint Propagation for

Illumination Invariance

We have seen in chapter 5 that data sourced from the web can be successfully used to

develop algorithms with practical applications in the field of image processing. In that

chapter, we learned that colour names provide an incisive representation of the colour

content of images, and that such a representation has useful practical applications in

image indexing for querying by machines and humans alike. Colour names were also

shown to be somewhat resilient to errors in illuminant estimation accuracy produced by

a suite of commonly used illuminant estimation algorithms.

This chapter seeks to circumvent the illuminant estimation step utilised in chapter 5.

Our objective is to develop an algorithm capable of computational colour naming, but

which can accept an image taken under any illumination condition and produce the same

output – i.e. identify a surface as appearing ‘red’ under a canonical white illuminant,

regardless of whether the actual scene illuminant is daylight, fluorescent etc.

We seek to solve for colour constancy in a restricted sense – by determining illu-

mination-invariant image descriptors. We seek only to recover correct colour names,

not the full three-dimensional aspect of colour.

141



CHAPTER 6. CONSTRAINT PROPAGATION 142

6.1 Introduction

The results in chapter 5 show that colour names, based upon human designations of

RGB values to categorical colour name labels, can be very useful for object indexing.

Moreover colour names have the desirable property of being more resilient to changes

in illumination than some other quantisations of colour space. However, this resilience

is not absolute. As illumination conditions deviate further from the canonical conditions

(or equivalently, as illuminant estimation error increases), pixel values become miscat-

egorised – for example as illumination changes from a reference white to a tungsten

illuminant, surfaces initially categorised as ‘white’ may become ‘red’.

Other authors (Finlayson and Hordley, 2001) have carried out related work in ob-

ject indexing by dispensing with the traditional RGB, or two-dimensional chromaticity,

histograms and instead constructing histograms from a one-dimensional illumination-

invariant descriptor. The results generated by this approach were very favourable, as

compared to post-illumination-estimation chromaticity histograms.

So then, is it possible to calculate an illumination invariant colour descriptor which

is based on colour names? Such a descriptor would retain the benefits of the illumina-

tion invariant descriptor used by Finlayson and Hordley (2001), but would also have the

benefits of being suitable for queries formulated by humans, as described in chapter 5.

As presented in section 6.3, we formalise this as a discrete relaxation problem,

where the ratios of neighbouring colours propagate and constrain the colour names in

image regions.

6.2 Background

Much research has been undertaken to better understand perceptually-relevant colour

names (Benavente et al., 2008, 2012; Heer and Stone, 2012; Moroney, 2003), and there

is much experimental psychology literature attributing colour names (Olkkonen et al.,
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2009), as well as several other perceptual phenomena such as contrast (Foster, 2003;

Land, 1977), mutual reflections (Kraft and Brainard, 1999) and colour memory (Hansen

et al., 2006, 2007), as contributors to human colour constancy (Hurlbert, 1999). How-

ever exploiting this link between perceptually important phenomena and illuminant es-

timation remains a sparsely explored area. One notable contribution is that of Vazquez-

Corral et al. (2012), which favours illuminant estimates which enable the colours in an

image to be better ‘anchored’ to basic colour terms. That this approach generates fa-

vourable estimates shows that the perceptual importance of colour names can help with

the illuminant estimation problem.

The method we seek, however, is not strictly an illuminant estimation approach: we

are seeking a colour constancy algorithm – i.e. an algorithm which will allow us to make

constant colour name designations to surfaces regardless of illumination conditions.

We do not hope to recover the scene illuminant, nor the corresponding pixel values for

surfaces under a canonical illuminant. In this regard, the work of Finlayson and Hordley

(2001) is relevant. This work notes that much of the literature in modern illuminant

estimation accepts the argument of Maloney and Wandell (Maloney and Wandell, 1986;

Wandell, 1987), namely that the recovery of full three-dimensional RGB illuminant

estimates may be over-ambitious, and authors have instead shifted the target toward

the recovery of constant chromaticity recovery. Finlayson and Hordley (2001) take

the reductionist approach of two dimensional recovery one step further and attempt to

recover a one-dimensional descriptor. We hope to take this even further still and recover

a constant singular categorical descriptor for each surface.

To meet this aim, we exploit the same property of the diagonal model as Finlayson

and Hordley (2001), albeit in a different way. As discussed in section 2.1, if illumina-

tion change can be modelled as a diagonal transform, it then follows that the ratios of

neighbouring pixel values will remain constant across all illumination changes (save for

clipping and quantisation errors). Consider two pixel values
¯
ρx and

¯
ρy, corresponding
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to two surfaces x and y. The diagonal model suggests that any illumination change can

be modelled as a separate multiplicative operation to all elements ρxk (and correspond-

ingly for ρyk) for all k. This means that for any illuminant E, the kth element of
¯
ρx will

be scaled by the same factor as the kth element of
¯
ρy, and so their ratio will remain

constant:

r =
¯
ρE,y

/
¯
ρE,x ∀ (E) , (6.1)

where the division operator, in this case, represents an element-wise operation. This

ratio constraint is employed by several methods in the literature (Funt and Finlayson,

1995; Nayar and Bolle, 1993). However, care must be taken not to apply this obser-

vation too liberally: as noted by several authors (Barnard et al., 1997; D’Zmura, 1992;

Finlayson et al., 1995; Tsukada and Ohta, 1990) illumination is not usually uniform

across an image, there usually exists a gradient or illumination field. For example, con-

sider a single flat matte surface imaged frontally: if the illumination source in this scene

is placed to the left of the surface, then there will be an illumination gradient from left

to right across the image. Further still, many scenes contain more than one illumination

source, and the illumination conditions across the scene vary as a mixture of the com-

peting illumination sources. Barnard et al. (1997); D’Zmura (1992); Finlayson et al.

(1995); Tsukada and Ohta (1990), as well as identifying this issue, actually exploit it to

add a further constraint to their illuminant estimation schemes. For our purposes, we

shall not be exploiting this phenomena, but we will take measures to mitigate its effects

by only considering the ratios between neighbouring pixels – as the illumination field

changes gradually across a scene, the differences in illumination conditions between

one pixel and its neighbours are largely negligible.

At this point it also important to remember, as noted in section 2.1, that the ratio

constraint derived from the diagonal model does not always hold in RGB or camera-

native colour spaces. In light of this, all the processing in this chapter is performed
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Figure 6.1: Network of local ratio constraints across entire image

in Sharp space as defined by Süsstrunk (2005). This colour space is based upon a

chromatic adaptation transform designed to optimise the ratio constraint. Later in this

chapter we will, for the sake of simplicity, continue to refer to “RGB triplets” and the

like, but in these cases we are in fact referring to points in Sharp space.

6.3 Method

Employing the ratio constraint discussed above, distributed across the whole image,

gives us a network of local ratio constraints to be satisfied as depicted in fig. 6.1. How

then do we convert these ratio constraints into invariant colour names?

To begin, let us first reintroduce some of the discrete relaxation nomenclature seen

in section 2.9. Recall that we have

U = {u1, . . . , un}, (6.2)

which is a collection of n objects, to each of which we seek to assign one of m labels
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Λ = {λ1, . . . , λm}. (6.3)

In this case, U is the collection of n pixels in our image and Λ is the collection of eleven

colour names (we have, throughout this and the previous chapter been working with the

eleven basic colour terms defined by Berlin and Kay (1969), but the same principles

hold if we were to extend to a larger quantity of labels). To solve this problem with

discrete relaxation we need to construct a matrix L, an n × m binary matrix which

encodes our candidate labels λm for each un, as well as our set of compatibility matrices

R.

To implement our method we need a mapping of RGB values (
¯
ρ) to colour names

(Λ) – we re-used the Gaussian mixture colour naming model introduced in chapter 5

(hereafter referred to as the GMM), which essentially provides a large lookup table

mapping RGB values to categorical colour names. To construct L andR, consider again

our two surfaces x and y, which under unknown illumination give rise to the pixel values

¯
ρx and

¯
ρy, related by constant ratio r. The GMM allows us to fix ˆ

¯
ρx to some arbitrary

value and ascertain the name given to that value. Then we can set ˆ
¯
ρy = rˆ

¯
ρx and use

the GMM once again to determine the name given to the new value of ˆ
¯
ρy. This allows

us, at a high level, to ask ‘if x is “red”, then what colour must y be?’. To rephrase

this in the language of discrete relaxation: ‘which pairs of colour names are compatible

with the ratio r?’. Of course there are many discrete pixel values which are designated

the name “red”, and so there may be several compatible colour names for y under the

assumption that x is “red”. If we repeat this postulation for all possible values of ˆ
¯
ρx, we

can generate a complete compatibility matrix Rx,y for x and y, where the compatibility

matrix is an 11×11 binary matrix where each column represents a putative colour name

for x and, correspondingly, each row encodes the possibilities for y. We could construct

this matrix by naı̈vely iterating over all possible values in the RGB cube for ˆ
¯
ρx but, as

will be discussed below, a more efficient implementation is possible.
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With a collection of compatibility matrices R constructed in this way, we have the

basis for a problem which can be solved by discrete relaxation as described in sec-

tion 2.9 (for now we initialise L to be all ones, but we will revisit this later). The sec-

tions below discuss further refinements and optimisations but, at its core, our method

can be described by this simple application of discrete relaxation to a network of local

ratio constraints.

6.3.1 Segmentation

Clearly, if we were to repeat the process of generating compatibility matrices for every

pair of pixels in the image, the computational cost would be high. Fortunately, however,

this is not necessary. Colour names are seldom finely scattered across an image – as

can be seen in fig. 6.2, colour names appear in patches, corresponding with the areas

covered by the surfaces in the image. Because of this, we can segment our input images

and deal with the ratios between average pixel values of patches in the image, instead

of between individual pixels. Therefore, the collection of objects U , as defined in the

previous section, is now the collection of image segments, or patches, to which we wish

to assign colour names.

As the patches in the image can be fairly large, we have to be wary of the nonuni-

formity of the illumination conditions, as described in section 6.2. If we have a surface

occupying a large area of the image which is all “blue”, it is entirely possible (indeed

likely) that the pixel values at one side of this patch are a different “blue” to those at

the opposing side, due to the varying illumination across the surface. To tackle this,

when computing our ratios we should consider only those pixels close to the border

between the two patches we are considering (see fig. 6.3). Therefore when considering

two neighbouring patches x and y,
¯
ρx is now defined to be the average of the pixel

values in x which are close to the border with y, and vice-versa with
¯
ρy.
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(a) Original image

(b) Image labelled by GMM

Figure 6.2: Distribution of colour names in image
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A B C D

Figure 6.3: Pixels close to the border between two colour patches are less susceptible to
spatially varying illumination – pixels B and C have similar lighting conditions,
while A and D do not

There are many approaches to image segmentation (Achanta et al., 2012; Cheng

et al., 2001; Fu and Mui, 1981). We performed experiments with mean-shift segment-

ation and several “superpixel” approaches, but found best results with a simple altern-

ative: we cluster the pixels in the image by the colour names designated to them by the

GMM. While this may seem unintuitive for reasons described in earlier sections (the

GMM applied to an image under unknown illumination conditions may label a surface

“pink” which under white light is actually “white”), the actual labels designated by the

GMM are, at this stage, unimportant - we are only using this information to identify

differently coloured patches in the scene.
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6.3.2 Additional Constraints

A problem with the method as introduced so far is that the labels designated to a scene

by the GMM under any illuminant E, are just as valid as those under any other illu-

minant. In other words, for a pair of pixels which are labelled as “white” and “yellow”

under a canonical white illuminant, and “pink” and “orange” under some other illumin-

ant, the method cannot distinguish whether the first of those pixels should be definitively

labelled as “white” or “pink”, nor the second as “yellow” or “orange”. Indeed every la-

belling generated by the GMM under any possible illuminant is compatible with the

ratio constraint, and so on its own the ratio constraint offers insufficient utility to meet

our objective of calculating illumination-invariant descriptors.

To address this problem, we introduce two further constraints to the generation of

the compatibility matrices, as well as a new unary constraint.

Gamut Constraints

Our first additional constraint on the generation of compatibility matrices is built upon

the observation that, under a finite set of known plausible illuminants, the plausible

pixel values generated by a single surface is also finite. As such, we shall refer to this

constraint as the plausible illumination constraint. Consider again the diagonal model,

where any illuminant can be characterised by a diagonal matrix E, and where any pixel

value
¯
ρx observed under that illuminant can be mapped back to its corresponding value

ˆ
¯
ρx under a canonical white illuminant by E−1. If we have a representative set of plaus-

ible illuminants, we can generate a corresponding set of all the mappings back onto

the canonical illuminant, which we can characterise by its convex hull E−1. If we now

have a pixel value
¯
ρx as observed under an unknown illuminant, we can multiply it

by each point on E−1 to generate a new convex set X which characterises all the pos-

sible surfaces (as observed under the canonical illuminant) which could give rise to this

observed pixel value under unknown illumination conditions.
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As suggested toward the beginning of this section, we could generate the compat-

ibility matrix for x and y by naı̈vely iterating over the entire RGB cube as candidate

values for ˆ
¯
ρx, and multiplying each by r to give candidate values for ˆ

¯
ρy. However, to

satisfy our objective of designating illumination-invariant descriptors (λx, λy) to x and

y, we seek only the candidate values ˆ
¯
ρx and ˆ

¯
ρy which can be plausibly manifested by

the surfaces x and y under the canonical illuminant. We now know that, under the ca-

nonical illuminant, only a subset of the RGB cube, X , represents surfaces which can

give rise to the observed value
¯
ρx. Also, since this set is characterised by its convex hull,

we need only multiply the points on the hull defining X by r to give a corresponding

convex hull Y ′ for all the corresponding values (as defined by the ratio constraint) for

ˆ
¯
ρy. Furthermore, we know from the same observation that

¯
ρy can only be manifested

from some set of surfaces Y , and since Y is related to
¯
ρy by the same multiplicative

operation that relates X to
¯
ρx, Y and Y ′ are equal.

The introduction of the plausible illumination constraint means that X character-

ises all the candidate pixel values for ˆ
¯
ρx which satisfy the ratio constraint under the

canonical illuminant, and similarly with Y for ˆ
¯
ρy.

We can now introduce a second, albeit similarly motivated, gamut constraint which

we shall call the plausible surface constraint. The constraint described above is built on

the observation that, under a characteristic collection of known plausible illuminants,

an observed pixel value under unknown illumination (within the plausible set) can only

be generated by a finite set of surfaces. This idea is parallel to the gamut constraint

traditionally applied in illuminant estimation techniques based on gamut mapping (as

described in section 2.2.5) – that, with a known set of plausible surface reflectance func-

tions, the set of pixel values that can be observed under a single illuminant is a subset of

the entire RGB cube. We too can exploit this observation by generating a gamut S of all

pixel values that can be observed under the canonical illuminant. Then, when building

compatibility matrices, we can intersect X and Y with S to further constrain the search
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space for candidate values for ˆ
¯
ρx and ˆ

¯
ρy.

We first intersect X with S to give X ′, the set of candidate values for ˆ
¯
ρx which sat-

isfy the ratio constraint, the plausible illumination constraint, and the plausible surface

constraint (only for
¯
ρx at this stage). We now multiply X ′ by r to give Y ′. Note that,

contrary to what was noted earlier in this section, Y ′ is now not equal to Y – due to the

intersection of X with S, Y ′ is now a subset of Y . Further intersecting Y ′ with S gives

Y ′′, the set of candidate values for ˆ
¯
ρy which satisfy the ratio constraint, the plausible

illumination constraint, and the plausible surface constraint for both
¯
ρx and

¯
ρy. Finally

multiplying Y ′′ by r−1 gives X ′′, the final set of plausible values for ˆ
¯
ρx which satisfy all

constraints. By passing corresponding pairs of candidate (ˆ
¯
ρx, ˆ

¯
ρy) values from X ′′ and

Y ′′ to the GMM, we can build our final compatibility matrix for x and y.

Unary Constraint

Recall from section 2.9 that the discrete relaxation algorithm allows for unary con-

straints to be imposed. To exemplify this, we can pose the objective of our illumination

invariant colour naming algorithm more concretely. Suppose we have an image which,

after segmentation (as described above), depicts twenty coloured patches. We are seek-

ing to label each of those twenty patches with one of eleven colour names. To meet this

aim, we construct a 20×11 binary matrix L, where each row corresponds with a colour

patch in the image, and each column with a candidate colour name. A ‘one’ in a loca-

tion in L indicates that the corresponding colour patch can be consistently labelled with

the colour name associated with that column. With the algorithm we have introduced

so far, L is initialised to be all ones and, by means of a discrete relaxation algorithm, is

‘pruned’ in accordance with the compatibility matrices.

However, L does not have to be initialised to all ones – we can encode unary con-

straints by pruning some of the matrix before running the relaxation algorithm. We

have introduced above the notion of a priori knowledge of plausible surfaces and plaus-
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ible illuminants for scenes. With both of these, it is possible to enumerate the plausible

pixel values that can be generated by any surface under any illuminant by taking the

outer product of the two sets.

Suppose that
¯
ρi,j is the pixel value generated by surface i under illuminant j and

that

¯
ρi,j ← λk (6.4)

means that under illuminant j, surface i is designated the colour name label at index k

by the GMM. For each plausible surface i, let us construct a set of the possible colour

names which that surface can be given under every illuminant j (excluding the canonical

illuminant), which we can represent as a vector:

pi,jk =


1 if

¯
ρi,j ← λk

0 otherwise
. (6.5)

Now consider the special case of surface i under the canonical illuminant, which we

shall call c. We determine the index of the colour name label given to a surface i under

c to be λc, i.e.

¯
ρi,c ← λc. (6.6)

We can now aggregate all these sets across all surfaces i and all illuminants j (ex-

cluding c) to generate an 11×11 matrix P :

Pc,k = Pc,k ∨ pi,jk , (6.7)

where ∨ indicates a logical “OR” operation. P now provides a lookup table of plaus-

ible labels under unknown illuminants, given a label under the canonical illuminant.
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Accordingly, Pᵀ provides a lookup of plausible labels under the canonical illuminant,

given a label from a surface under unknown illumination. For example, we may find

that a surface which is labelled “blue” under unknown illumination could have a cor-

responding label of “purple” or “green” under the canonical illuminant, but can never

come from a surface which is labelled “red” under the canonical illuminant.

With this information, we can construct L in such a way that we encode the unary

constraint that if a surface is designated some colour name label λ under unknown

illumination, it can only be plausibly labelled with a subset of Λ under the canonical

illuminant. Formally

¯
li =

¯
pλ. (6.8)

This initialisation of L constrains the result of our algorithm in a similar fashion

to that of the plausible illumination gamut constraint, but does so in a more discrete

way. Additionally, the pre-pruning of L means that fewer possible labellings are passed

to the discrete relaxation algorithm and so there is less processing to complete. The

addition of this unary constraint, therefore, reduces the overall computational cost of

the algorithm – P does not need to be recalculated for each image.

6.3.3 Summary of Method

The steps comprising the method have been discussed above in an order which has al-

lowed us to introduce foundational ideas first, before considering additional constraints

which build upon them. For clarity, we summarise the method here in chronological

order:



CHAPTER 6. CONSTRAINT PROPAGATION 155

Pre-processing Steps

1. Use a collection of plausible illuminants to generate a gamut E−1, with which to

enforce the plausible illumination constraint.

2. Use a collection of plausible surface reflectance functions to generate a gamut S,

with which to enforce the plausible surface constraint.

3. Use the collections of plausible surfaces and illuminants to generate P – with

which to enforce the unary constraint.

Processing an Individual Image

1. Begin with an image under unknown illumination conditions (within the plausible

set defined above).

2. Segment the image to identify distinct image patches.

3. Use P and the colour names designated by the GMM to neighbouring patches to

generate L.

4. For each pair of x, y of neighbouring patches, generate Rx,y as in fig. 6.4.

5. Use L and R to label the image patches with illumination-invariant colour name

labels using discrete relaxation.
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¯
ρx

¯
ρy

r

(1) Calculate r from the observed values of
¯
ρx and

¯
ρy

X

(2) Satisfy the plausible illumination constraint by
multiplying

¯
ρx by E−1 to give X , the plausible

candidate values for ˆ
¯
ρx under the canonical illu-

minant

S

X ′

(3) Intersect X with S to give X ′, which satisfies the
plausible surface constraint for

¯
ρx

Figure 6.4: Method summary: construction of compatibility matrices. Figures are shown in
two dimensions for visual clarity – this is a three-dimensional process in reality



CHAPTER 6. CONSTRAINT PROPAGATION 157

X ′

¯
ρy

Y
Y ′

r

(4) Multiply each point on X ′ by r to give Y ′ which,
since it is a subset of Y , satisfies the plausible
illumination constraint for

¯
ρy

S

Y ′′ (5) Intersect Y ′ with S to give Y ′′, which satisfies all
constraints for

¯
ρy

Y ′′

X ′′ r−1

(6) Multiply each point on Y ′′ by r−1 to give X ′′,
which satisfies all constraints for

¯
ρx. Pass

pairs of candidate values from X ′′ and Y ′′ to
the GMM to ascertain corresponding pairs of
colour names (λx, λy). For each pair i, set
Rx,y(λix, λ

i
y) = 1

Figure 6.4: Method summary: construction of compatibility matrices (cont.)
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6.4 Experiments

To test the algorithm, we conducted two experiments. Firstly we tested the fundament-

als of the algorithm using synthetic data, where we can force the assumptions of the

diagonal model to hold. Then we moved to real-world data and, ultimately, tested the

core objective of the algorithm – can it deliver illumination-invariant descriptors of im-

age content which are sufficient to enable both machine object indexing, and human

querying by colour name?

6.4.1 Synthetic Data

For our tests with synthetic data we used the collections of measured real-world illu-

minant spectral power distributions and surface reflectance spectra published in Barnard

et al. (2002). For the canonical illuminant, we used a synthesised pure white illumin-

ant, i.e. the E term from eq. (2.6) is the identity matrix. With these collections we

generated the gamuts necessary for the constraints described in section 6.3.2. We used

the CIE 1931 colour matching functions (Smith and Guild, 2002) to calculate sRGB

co-ordinates, which were then converted into Sharp space (and, accordingly, into CIE

L*a*b* as required by the GMM).

After completing the preprocessing necessary for enforcing constraints, one hun-

dred experimental runs were completed, as per the following procedure (summarised in

fig. 6.5):

1. Randomly select twenty-five surfaces from the surface collection.

2. Arrange the chosen surfaces into a 5 × 5 grid of image patches.

3. Render the grid under the canonical (white) illuminant and label the resulting

image with the GMM.
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4. Randomly select an illuminant from the illuminant collection and re-render the

grid under that illuminant.

5. Label the re-rendered image with our new method.

6. Compare the labels generated in steps 3 and 5, and note the number of patches

labelled identically.

Unfortunately, in carrying out this experiment we found that the constraints intro-

duced above are, in many cases, insufficient to enable the algorithm to converge to a

unique solution for every colour patch. What this means is that for many colour patches

(approximately 25% in this experiment) the algorithm is unable to prune the possible

colour names to a single, unique, label – or, more formally, several labellings are sim-

ultaneously consistent for these colour patches. This can be seen in fig. 6.5d – the

patches containing red crosses represent those for which multiple labels are consist-

ent. Fortunately, for the majority of patches (>80%), the algorithm is able to reduce

the candidate set of eleven labels to one, two, or three possible consistent labels. Fur-

thermore, these labels will usually be those that occupy neighbouring areas of the CIE

L*a*b* colour space – i.e. a patch which should be labelled “blue” might be assigned

[“blue”, “purple”], but a patch that should be “red” will, generally, not be assigned

[“red”, “green’].

In light of this finding, before investigating correctness it would be useful to report

the number of solutions that the algorithm converges to – fig. 6.6 provides these data

for the synthetic data experiment. A subset of the colour patches do indeed converge

to a unique answer – of the twenty-five patches in each experiment, the mean number

to converge to a unique answer was 6.5. Also noteworthy is that we see a non-zero

number of patches which are reduced to zero candidate labellings. This means that,

for these patches, there are no possible labellings which are consistent according to the

constraints introduced above. This is perhaps surprising, as we are dealing with syn-
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(a) Surface selection rendered under canonical
white illuminant

(b) Ground-truth colour name labelling as des-
ignated by GMM

(c) Surface selection re-rendered under test il-
luminant

(d) Colour name labelling as designated by our
algorithm (crosses indicate patches that did
not converge to a single solution)

Figure 6.5: Synthetic images (a, c) rendered using surface and illuminant spectra measured
by Barnard et al. (2002), and colour-name-labelled counterparts (b, d)
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Figure 6.6: Number of simultaneously consistent labellings per colour patch, for synthetic
data

thetic data in which the assumptions of diagonal model have been artificially enforced,

but a possible explanation is discussed in section 6.5.

Of those patches which do converge to a unique answer (mean 6.5 out of twenty-five

patches), a mean of 6.1 are, encouragingly, labelled correctly. Furthermore, across all

patches the correct label is erroneously discarded only 3% of the time.

In summary of these results from synthetic data, we observe that the algorithm is

able to prune the candidate set of eleven labels to a single, unique, label on approxim-

ately 25% of occasions, and to three or fewer consistent labels on approximately 84% of

occasions. If, under this caveat, we define correctness to be whether or not the correct

label remains in the reduced candidate set after the algorithm has run, we see that 97%

of patches are correctly assigned. Of the patches for which the algorithm does converge

to a unique solution, 93% are correctly labelled.
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6.4.2 Consistent Labellings for Object Recognition

If we use the same name-based histogram intersection scheme from chapter 5, it may

seem from the results reported above that our algorithm will be insufficient to meet our

objective of calculating colour-name-based illumination-invariant descriptors for object

indexing. If the algorithm is unable to definitively assign a colour patch with a single

unique label, and instead we are left with, for example, [“blue”, “purple”] as the con-

sistent labels, we would be unsure whether to count the corresponding pixels in the

“blue” or the “purple” histogram bins. However, under the assumptions introduced in

section 6.3, this non-unique labelling should be similarly manifested under any illu-

mination conditions – i.e. under the assumptions of the diagonal model and our gamut

constraints, a patch which our algorithm labels [“blue”, “purple”] under some illumin-

ant E, should also be labelled [“blue”, “purple”] under all other illuminants. If then, we

can encode this non-unique but consistent labelling into our histograms used for object

indexing, we should still be able to achieve illumination invariance.

An approach to this could be to add further histogram bins for each possible inter-

section of labels – so there would be eleven bins for the basic colour terms, plus an

additional bin for [“blue”, “purple”], one for [“red”, “yellow”] and so on. However,

after all intersections had been enumerated, especially if we went so far as to encode

all intersections of up to eleven names, we would have many bins in each histogram.

One motivating advantage of the eleven-component vector representing a histogram of

colour names is its compactness, and so this approach would be undesirable. A sim-

pler approach is to retain the use of an eleven-component vector, and simply count the

[“blue”, “purple”] labelling in both the “blue” and “purple” bins. Below we show that,

in spite of its apparent naı̈veté, this approach is sufficient to deliver positive results.

To test this, we repeated the approach taken in chapter 5, but using colour name

histograms constructed using our new algorithm. Once again we used the SFU object

recognition dataset (Funt et al., 1998) to test object recognition performance – we used
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Figure 6.7: Distribution of match percentiles for new method, using the SFU object recog-
nition dataset (Funt et al., 1998)

the “syl-cwf” illuminant as the canonical illuminant. Across all objects and illuminants

(leaving aside the canonical) we were able to achieve a mean match percentile of 76%.

This is perhaps somewhat disappointing in comparison to the 96% achieved by Fin-

layson and Hordley (2001), however we achieve a median match percentile of 100%.

Indeed for 64% of scenes (across all objects and illuminations), a match percentile of

100% is achieved. This reveals that the mean is heavily influenced by a minority of

poorly-performing scenes, as shown by the distribution in fig. 6.7.

Upon closer inspection it is revealed that our method delivers consistently poor res-

ults for the “javex” object in particular. The mean match percentile for this scene is 52%

(a match percentile of 50% would be expected by random chance). A visual inspection

(see fig. 6.8), suggests that the reason for the poor performance observed for this object

in particular may simply be because it is colour deficient – i.e. there is not a high enough

degree of colour diversity in the scene. As an optimisation to our algorithm we avoid

processing small colour patches by means of a spatial threshold. For the “javex” scene

the red area was insufficiently large and was ignored by our algorithm, meaning that
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Figure 6.8: “Javex” object from SFU object recognition dataset (Funt et al., 1998)

the only remaining colour patches were either blue or white (the black backgrounds of

the images were masked out prior to any further processing). These two colour classes

offered little constraint to the algorithm and so it was unable to successfully prune many

candidate labellings.

6.4.3 Consistent Labellings for Query by Colour Name

The results presented so far are promising, but it may seem that the method described

above of counting labels into multiple histogram bins may negatively affect the ability

to query the colour name histograms with human-generated queries. To test this we

repeated the experiment using the ALOI dataset (Geusebroek et al., 2005) described in
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section 5.5, but this time using histograms constructed as described above, and using

our new labelling algorithm.

At first we repeated the experiment with only the 3075K illuminant (as per sec-

tion 5.5) and, encouragingly, achieved a mean match percentile of 81% across all ob-

jects. This is slightly lower than the 88% reported in section 5.5, which may in part

be attributable to the construction of the histograms, but is generally a positive result.

However, we then repeated the experiment with every other illuminant in the dataset

(the objects are imaged under a range of twelve illumination conditions from 2175K to

3075K – the camera was white balanced to 3075K which results in the apparent illu-

mination conditions varying from reddish to white) and, remarkably, the mean match

percentile across all illuminants was 82%.

6.5 Discussion

The results presented above are indeed encouraging. Although the illumination-invariant

object recognition match percentiles are not as high as those achieved by Finlayson

and Hordley (2001) (75% as opposed to their 96%), that we can perform illumination-

invariant object recognition whilst also meeting our second objective of preserving per-

ceptually relevant descriptors is noteworthy. However, there are two particular issues

outstanding which merit some further examination. The first is that, for some patches,

the algorithm discards the correct colour name label and/or reduces the plausible set

to zero candidates (as seen in section 6.4.1), i.e. there is no consistent labelling. The

second, conversely, is that the algorithm is sometimes not able to reduce the candidate

set of plausible labels to a useful extent (as seen with the “javex” scene in section 6.4.2)

– there are multiple consistent labellings. We address these two issues separately below.
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6.5.1 Inconsistent Labellings

Firstly, let us address the issue of over-pruning the candidate set of plausible labels such

that no labelling is deemed consistent. By design, discrete relaxation algorithms will

not discard a consistent labelling. This issue then is not that the algorithm discards a

valid labelling, but that there is no valid labelling of the data. This is due to a failure

of the assumptions we introduced in sections 6.2 and 6.3. In particular, this is likely to

be a failing of the ratio constraint. In utilising this constraint, we tacitly accept that the

diagonal model of image formation is correct. As mentioned in section 2.1, while this

model generally holds (and in particular it should suffice while using the Sharp space

introduced in section 6.2), it can be imprecise. In many computational approaches

these failings are not noticeable; for example the approaches of many classical illu-

minant estimation schemes discussed in section 2.2 means that these slight errors are

usually hidden by averaging pixel values. However, the construction of the algorithm

described above means that a slight error can cascade and be manifested as a failure of

the algorithm.

Of particular note is that this situation arises in section 6.4.1, where the assumptions

of the diagonal model have been enforced (i.e. the synthetic rendering of a scene under

some illuminant E is done by representing E as a diagonal matrix). The reason for this

is that, in order to increase the realism of the image synthesis, the rendered images are

quantised to eight bit integer values. This step is included in the model as an acknow-

ledgment that real-world image data is usually sourced from JPEG images, or perhaps

TIFF or RAW data which can handle greater bit depth, as opposed to arbitrary-precision

data. In so doing we can explicitly contravene the ratio constraint. For example, con-

sider two pixel values
¯
ρx and

¯
ρy, for which we shall only examine the scalar values for

a single colour channel k: ρxk and ρyk. Under some illuminant Ea:
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ρEa,x
k = 7,

ρEa,y
k = 20.

Under some other illuminant Eb, for which the irradiance in the part of the spectrum

covered by sensor channel k is half that of Ea, we would expect

ρEb,x
k = 3.5,

ρEb,y
k = 10.

However, due to quantisation ρEb,x
k = 4, and thus the ratio constraint is violated:

ρEa,x
k

ρEa,y
k

6= ρEb,x
k

ρEb,y
k

. (6.9)

Generally, this inequality does not incur too much of a penalty. The construction

of the compatiblity matrices is not done by enumerating all possibilities
¯
ρx and

¯
ρy and

then checking if their ratios are equal to r, but by deriving the possible values for
¯
ρy

by multiplying the values for
¯
ρx by r. By doing this we explicitly encode the observed

error into our compatibility matrices. Usually this is of no consequence, the errors are

so small and the plausible pixel values so numerous that there is no ill effect. However,

on the infrequent occasion that the error is large enough, or that the plausible pixel

values for
¯
ρy are very close to a border between colour names, this can mean that a

colour name pair is deemed inconsistent when it should in fact be consistent. In this

scenario, the error can cascade leading to ultimate failure of the algorithm.
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(a) Original image

(b) Image labelled by GMM (c) Image labelled by discrete relaxation
method

Figure 6.9: Real image labelled by GMM, and by new method

6.5.2 Multiple Consistent Labellings

The second issue, which we see in section 6.4.2, is that sometimes the algorithm has

insufficient constraint to successfully prune the candidate labellings. This is particu-

larly apparent for the “javex” scene discussed above, but is representative of a broader

problem with the algorithm: even under optimum conditions, the algorithm does not

converge to a unique answer for the majority of image patches. As seen by the favour-

able object indexing and human-based-querying results above, this is not necessarily

a large problem for these particular applications. However, if we wanted to use this
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algorithm to assign definitive illumination-invariant colour name labels – perhaps for

the purpose of visual display as in fig. 6.2b – we would not usually be able to do so.

Figure 6.9 shows a real image for which the method has produced a result suitable for

this purpose, but even in this example there are still some patches (the cat’s nose, some

parts of the basket, and the clipped pixels in the window) where a unique solution has

not been possible. This problem could perhaps be addressed by the addition of further

constraints to the method, however no further constraints are immediately apparent that

would not have a drastic effect on computational cost.

6.6 Conclusion

Chapter 5 demonstrated that colour names can be useful for object indexing, and also

as a key by which to index images for querying by colour name. However the results

in chapter 5 were dependent upon images first being colour corrected by means of an

illuminant estimation algorithm. Also, as illuminant estimation accuracy degraded, so

then did the utility of colour names for this purpose. In this chapter we sought to over-

come this problem, and in so doing obviate the need for the illuminant estimation step

altogether, by developing an algorithm capable of assigning colour name labels to im-

ages regardless of the prevailing illumination conditions in the scene. Crucially, these

labels should be perceptually relevant, and indeed are derived from human designations

of colour names to surface colours under a canonical white illuminant. In short, given

a surface which appears white under a pure white illuminant, but imaged under a tung-

sten illuminant which makes it appear reddish, the algorithm should return “white”.

Further, it should be capable of making this designation reliably enough that we can

still successfully perform machine object indexing and querying by human-generated

labels.

By utilising some commonly used observations, namely that image ratios are in-
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variant to illumination changes, and the gamut constraints typically applied in gamut-

mapping-based illuminant estimation algorithms, and combining them into an algorithm

based on classical boolean discrete relaxation, we were able to meet these objectives.

Our algorithm is capable of labelling objects in scenes with unknown illumination with

perceptually-relevant colour names such that they can be successfully retrieved from a

database of object images by using the object indexing approach of Swain and Ballard

(1991), whilst simultaneously being easily indexed by colour-name-based descriptors

given by human queries.

The method introduced does have some caveats, and there are failure cases. Fur-

ther, the approach does not outperform other existing approaches to either of these two

objectives in isolation: illuminant-invariant object indexing is better solved by other

approaches (e.g. Finlayson and Hordley (2001)), and human-based querying by colour

name is better served by the simple approach described in chapter 5. However, that the

approach described here performs favourably for both of these objectives in unison is

quite remarkable.



Chapter 7

Final Conclusions and Future Work

This thesis has covered several subtopics in the field of colour science and photographic

imaging. While the topics themselves are somewhat disparate, this thesis has followed

the story of the acquisition and validation of large-scale web-based data, an example

application of such data, and finally onto derivations of that application into new al-

gorithms for photographic imaging.

We saw in chapter 3 that web-based paired comparison experiments can deliver ac-

ceptable and valuable results so long as certain conditions are met. Namely care must

be taken over image presentation to ensure a consistent experience for as many observ-

ers as is feasible, the images used for comparison must be carefully selected so as to

not introduce bias in the context of web-based experiments, and careful attention must

be given to the phrasing of any prompts given to observers. We showed that, when

these steps are taken, we can achieve results that are concordant, to a highly significant

degree, to those results acquired from lab-based experiments. Furthermore, we identi-

fied potential reasons for why historical attempts at similar experiments have failed to

deliver such results. These results are promising, and indeed valuable. Web-based data

collection is potentially revolutionary for psychophysical experimentation, so long as it

is performed correctly. The experiments in chapter 3, however, cover but one particular
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experimental paradigm – paired comparisons. Future work should extend into various

other experimental paradigms. Ultimately, it would be desirable to construct an open

experimental platform offering many experimental paradigms, upon which research-

ers could easily develop web-based experiments with little effort or monetary expense.

Such a platform would offer much utility as, unfortunately, it seems that, while other

fields are capitalising on web-based research and crowd-sourced data, the colour re-

search community has made only limited use of this approach.

After observing a need that we, and other experimenters, have for a measure of

completeness for paired comparison experiments, in chapter 4 we proposed a statistical

tool to quantify the stability or otherwise of paired comparison data. We proposed a

method based on the notion of simulated anomalous observers, that is observers whose

contributed data would cause maximal perturbation to the currently acquired data. This

tool can be applied to provide an estimate of whether or not sufficient observers have

completed an experiment, such that reliable results have been gathered and valid con-

clusions can be derived therefrom.

In chapter 5 we began our exploration of potential applications for web-based data,

using freely-available data from an existing experiment (Munroe, 2010). We invest-

igated how computational colour naming (using a model built using the web-sourced

data) was affected by illuminant estimation accuracy, and whether colour names could

be usefully applied in the context of the object recognition framework of Swain and

Ballard (1991). We found that colour names represent a particularly useful quantisation

of colour space, offering similar or greater utility than traditional colour histograms,

particularly under the conditions of inaccurate illuminant estimation. Furthermore, we

demonstrated that histograms constructed from the colour names present in an image

not only represent useful image descriptors from a machine object indexing perspective,

but that they are also highly perceptually relevant. This allows the same representation

to be used to index an image corpus for searching by human-generated queries.
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We noted that the colour-name-based descriptors used in chapter 5 were construc-

ted by first correcting images using traditional illuminant estimation algorithms and,

in chapter 6, sought to eliminate this need by directly deriving perceptually-relevant

illumination-invariant image descriptors based on colour names. We developed an al-

gorithm, using well established observations about the diagonal model of image form-

ation, that was able to deliver such descriptors via the application of a classical boolean

discrete relaxation approach. The method was able to assign colour-name-based descri-

ptors to image patches as they would appear under a canonical illuminant, regardless of

the actual illumination conditions of the image. These descriptors retained the utility

for object indexing and human-based querying as seen in chapter 5, but also provided

for illumination invariance. While the results for these specific applications of this

approach were satisfactory, the descriptors delivered were unsuitable for other applic-

ations such as colour name labelling for display purposes. This was due to the fact

that, in many cases, the algorithm was unable to definitively assign image patches with

a single, unique, label – e.g. for a blue colour patch the algorithm may converged to

[“blue”, “purple”], as opposed to the singular “blue”. Future work could extend to dis-

covering additional constraints to alleviate this issue. Further, the approach described

used a boolean discrete relaxation approach – there may also be merit in a probabilistic

approach.

This thesis describes contributions which span several topics. The topics discussed

in the earlier chapters are fast-moving, and we believe that the contributions made are

both valuable and timely. Meanwhile, the contributions made in the later chapters per-

tain to more mature and slow-moving topics. The foundations that we build upon are,

in some cases, decades old, and as such represent well-tested and well-understood tech-

niques and observations. We believe that our contributions provide valuable new ways

of exploiting these foundations, and that the results delivered by doing so are particu-

larly noteworthy.
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(a) Atrium Night
Karol Myszkowski

(b) Belgium
Dani Lischinski

Figure A.1: High dynamic range image dataset
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(c) Bristol Bridge
Greg Ward

(d) Clock Building
Greg Ward

Figure A.1: High dynamic range image dataset (cont.)
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(e) Fog
Jack Tumblin

(f) Foyer
Harlan Hambright

Figure A.1: High dynamic range image dataset (cont.)
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(g) Indoor
Jacques Joffre

(h) Memorial
Paul Debevec

Figure A.1: High dynamic range image dataset (cont.)
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(i) Synagogue
Dani Lischinski

(j) Tahoe
Greg Ward

Figure A.1: High dynamic range image dataset (cont.)
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(k) Tinterna
Greg Ward

(l) Tree
Industrial Light and Magic

(m) Venice
Gian Luca Brizi

Figure A.1: High dynamic range image dataset (cont.)



Appendix B

Colour to Greyscale Dataset

181



APPENDIX B. COLOUR TO GREYSCALE DATASET 182

(a) Girl
Eastman Kodak Company

(b) Hats
Eastman Kodak Company

Figure B.1: Colour to greyscale image dataset
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(c) Heron
‘Rumbold Vertical Three: Orange Disc
in Scarlet with Green’
Patrick Heron

(d) Monet
‘Impression, Sunrise’
Claude Monet

Figure B.1: Colour to greyscale image dataset (cont.)
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(e) Parrot
Unknown origin

(f) Poppies
Unknown origin

Figure B.1: Colour to greyscale image dataset (cont.)
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(a) Teddy Bear with Santa Hat

(b) Juggling Ball

Figure C.1: Subset of ALOI dataset (Geusebroek et al., 2005) used for query-by-colour-
name experiment



APPENDIX C. SUBSET OF ALOI DATASET 187

(c) Rubber Duck

(d) Snowman Ornament

Figure C.1: Subset of ALOI dataset (Geusebroek et al., 2005) used for query-by-colour-
name experiment (cont.)
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(e) Santa Ornament

(f) Papa Smurf

Figure C.1: Subset of ALOI dataset (Geusebroek et al., 2005) used for query-by-colour-
name experiment (cont.)
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(g) Diet Coke Can

(h) Marmite Jar

Figure C.1: Subset of ALOI dataset (Geusebroek et al., 2005) used for query-by-colour-
name experiment (cont.)
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