

‘I liked it, but it made you think too much’:

A case study of computer game authoring in the
Key Stage 3 ICT curriculum.

Claire Johnson

Submitted for the qualification of Doctor of Philosophy

University of East Anglia
Faculty of Social Sciences

School of Education and Lifelong Learning

September 2014

“This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with the author and that use of any
information derived there from must be in accordance with current UK Copyright Law.

In addition, any quotation or extract must include full attribution.”

Dedicated to my son Sam,

whose enjoyment of computer games

planted the seed for this study.

And to my mother and father,

who would have been quite chuffed

if they had known about it.

Abstract

Abstract

The importance of giving pupils opportunities to become producers of digital media

is well documented in the literature (see Harel, 1991; Papert, 1993; Kafai, 1995;

Harel Caperton, 2010; Luckin et al., 2012; Nesta, 2012; Sefton-Green, 2013),

however there has been little research in this area in the context of the UK Key

Stage 3 ICT curriculum.

The purpose of this study is to achieve an understanding of how authoring computer

games in a mainstream secondary setting can support the learning of basic game

design and programming concepts. The research explores pupils’ experiences of

the process they followed and the areas of learning they encountered as they made

their games, and considers what they valued and what they found difficult in the

game authoring activity.

The research draws on the learning theory of constructionism, which asserts the

importance of pupils using computers as ‘building material’ to create digital artefacts.

In the process of creating these artefacts, over time, computers become ‘objects to

think with’, enabling pupils to learn how to learn (Papert, 1980b; Harel and Papert,

1991a).

Data were collected in planning documents, journals and the games pupils made, in

recordings of their working conversations, and in pair and group interviews. Findings

indicate that as well as learning some basic programming concepts, pupils enjoyed

the activity, demonstrated positive attitudes to learning and felt a sense of

achievement in creating a complex artefact which had personal and cultural

significance for them.

This research acknowledges the need to develop accessible units of work to

implement aspects of the new Computing curriculum (DfE, 2013c), especially for

teachers and pupils who have little prior knowledge of the field. It suggests that

computer game authoring may offer a viable entry and considers the extent to which

constructionist approaches are suitable for this kind of work.

Table of contents

 i

Table of contents

Table of contents ... i

List of tables ... v

List of figures .. vii

Acknowledgements ... ix

Chapter 1 Introduction .. 1

1.1 Background .. 1
1.2 A brief history of the ICT curriculum ... 2
o 1.2.1 The Key Stage 3 sample teaching units ... 3
1.3 Why computer game authoring? .. 4
o 1.3.1 The ICT curriculum ... 4
o 1.3.2 The return of game authoring ... 6
o 1.3.3 Digital participation ... 8
o 1.3.4 Creativity ... 8
o 1.3.5 Exploring ICT pedagogy ... 9
1.4 Selection of the game authoring software .. 10
1.5 Authoring games with Game Maker ... 11
o 1.5.1 The structure of a Game Maker game .. 12
1.6 The Research ... 13
o 1.6.1 Research questions .. 14
o 1.6.2 Assumptions ... 15
1.7 Structure of the thesis .. 15

Chapter 2 A literature review .. 17

2.1 Introduction .. 17
o 2.1.1 The scope of the literature review .. 17
2.2 Game-based learning ... 18
o 2.2.1 Game-based learning in ICT .. 19
2.3 Research in computer game authoring .. 21
2.4 Game authoring and motivation ... 22
2.5 Literacy and narrative development ... 24
2.6 Game authoring across the curriculum .. 26
2.7 Digital, game and media literacy .. 28
2.8 Learning by design ... 30
2.9 Game authoring and computer programming .. 32
2.10 Game Maker .. 38
2.11 Summary .. 40

Chapter 3 The theoretical framework .. 43

3.1 Introduction .. 43
3.2 The 8 big ideas of constructionism ... 45
3.3 Summary .. 59
o 3.3.1 Constructionism and the current study ... 59

Chapter 4 Research design and methodology ... 61

4.1 Introduction .. 61
4.2 Qualitative research ... 61
o 4.2.1 Qualitative research and computing education............................. 61

Table of contents

 ii

4.3 Rationale for selecting case study ... 62
o 4.3.1 Limitations of case studies ... 63
4.4 Research design .. 64
o 4.4.1 Pilot study ... 64
o 4.4.2 Selecting a sample ... 65
o 4.4.3 Participants ... 66
o 4.4.4 The scheme of work ... 66
o 4.4.5 Working in pairs .. 67
4.5 Data collection .. 68
o 4.5.1 Data set .. 68
o 4.5.2 Interviews ... 69
o 4.5.3 Digital voice recordings .. 73
o 4.5.4 Authored games ... 74
o 4.5.5 Pupil documents ... 75
o 4.5.6 Observation notes .. 76
4.6 Data analysis .. 76
o 4.6.1 Use of NVivo 8 for data analysis .. 76
o 4.6.2 Analysis of authored games ... 79
o 4.6.3 Analysis of pupil documentation ... 86
o 4.6.4 Analysis of observation notes ... 86
4.7 Validity and reliability of the data .. 86
o 4.7.1 Problems with data collection ... 86
4.8 Ethics ... 88
4.9 Summary .. 89

Chapter 5 Making games – the process .. 91

5.1 Introduction .. 91
o 5.1.1 A constructionist designed activity .. 91
5.2 Resources .. 91
o 5.2.1 ‘Just in time’ learning .. 92
o 5.2.2 Learner control ... 93
5.3 Learning to learn .. 96
o 5.3.1 Objects to think with ... 96
o 5.3.2 Learner-directed activity ... 98
o 5.3.3 Styles of learning .. 101
o 5.3.4 Pupil journals .. 102
o 5.3.5 Learning by doing ... 104
o 5.3.6 Freedom to get things wrong .. 105
o 5.3.7 Working in pairs .. 107
o 5.3.8 Learning from others .. 109
o 5.3.9 Taking time ... 110
5.4 Summary .. 112

Chapter 6 Making games – the outcomes ... 113

6.1 Introduction .. 113
6.2 Creating a narrative .. 113
o 6.2.1 Representations ... 113
o 6.2.2 Initial narrative ideas ... 116
o 6.2.3 Game design document ... 122
6.3 Designing the visual appearance of the game 123
o 6.3.1 Storyboard .. 123
o 6.3.2 Graphics ... 125
6.4 Designing the game play .. 129
o 6.4.1 Animation .. 129

Table of contents

 iii

o 6.4.2 Usability .. 131
o 6.4.3 Interactivity ... 134
o 6.4.4 Sound ... 136
o 6.4.5 Timing ... 136
o 6.4.6 Challenge ... 137
6.5 Talking like game designers ... 139
6.6 Use of software .. 140
6.7 Summary .. 142

Chapter 7 Learning to program with Game Maker ... 145

7.1 Introduction .. 145
7.2 Learning to program ... 146
o 7.2.1 Sequence ... 146
o 7.2.2 Events ... 147
o 7.2.3 Objects ... 152
o 7.2.4 Actions .. 154
o 7.2.5 Conditional statements ... 159
o 7.2.6 Loops .. 161
o 7.2.7 Variables ... 162
o 7.2.8 Use of mathematical concepts.. 164
o 7.2.9 Program organisation ... 168
7.3 Computational thinking ... 170
7.4 Summary .. 176

Chapter 8 Problems with programming .. 179

8.1 Introduction .. 179
8.2 Program design .. 181
o 8.2.1 Language .. 182
8.3 Programming concepts .. 184
o 8.3.1 Sequence ... 184
o 8.3.2 Objects ... 185
o 8.3.3 Events ... 192
o 8.3.4 Actions .. 198
o 8.3.5 Setting values/parameters/arguments .. 201
o 8.3.6 Conditional statements ... 203
o 8.3.7 Loops .. 204
o 8.3.8 Variables ... 205
o 8.3.9 Miscellaneous errors .. 208
8.4 Summary .. 209

Chapter 9 Affective values of authoring computer games 213

9.1 Introduction .. 213
9.2 Enjoyment and engagement .. 213
o 9.2.1 Fun ... 214
o 9.2.2 ‘Hard fun’ .. 216
o 9.2.3 Interaction with the software ... 219
o 9.2.4 Creativity ... 220
9.3 Preparation for work ... 222
9.4 Different relationship with technology .. 223
9.5 New identities ... 226
o 9.5.1 New identities as learners .. 227
9.6 Summary .. 228

Table of contents

 iv

Chapter 10 Discussion and conclusions ... 229

10.1 Introduction .. 229
10.2 Making games – the process ... 229
o 10.2.1 Learning by doing – big idea no.1 .. 230
o 10.2.2 Technology focused tasks – big idea no. 2 231
o 10.2.3 Hard fun – big idea no. 3 .. 231
o 10.2.4 Learning to learn – big idea no. 4 ... 232
o 10.2.5 Taking time – big idea no. 5 ... 234
o 10.2.6 Freedom to get things wrong – big idea no. 6 235
o 10.2.7 Teacher as co-learner – big idea no. 7 235
o 10.2.8 Using computers to learn – big idea no. 8 236
10.3 Making games – the outcomes .. 238
o 10.3.1 Difficulties with game design .. 238
o 10.3.2 Narrative ... 239
o 10.3.3 Graphics ... 240
o 10.3.4 Usability .. 241
o 10.3.5 Interactivity ... 241
10.4 Learning to program ... 242
o 10.4.1 Program design .. 242
o 10.4.2 Learning programming concepts .. 243
o 10.4.3 The language of programming ... 245
o 10.4.4 Code reading/program comprehension 246
o 10.4.5 Computational thinking ... 247
10.5 Affective values of authoring computer games 248
10.6 Implications of the research ... 250
10.7 Contributions of the research ... 253
10.8 Limits of the research ... 256
10.9 Future work .. 257
10.10 Concluding remarks ... 259

References .. 261

Appendices ... 295

Appendix 1: Analysis of pupil authored games .. 297
Appendix 2a: Pupil information booklet ... 330
Appendix 2b: Parent information and consent form ... 334
Appendix 3a: Interview schedule – group interviews ... 336
Appendix 3b: Interview schedule – paired interviews .. 338
Appendix 4: Prompt sheet for digital voice recordings 339
Appendix 5: Data coding .. 340
Appendix 6: The Game Maker interface .. 342
Appendix 7: Outline scheme of work ... 343
Appendix 8: Pupils’ storyboards .. 348

List of tables

 v

List of tables

Table 1: Concepts used to frame the analysis of game design features 80
Table 2: Concepts used to frame the analysis of programming constructs 81
Table 3: SOLO taxonomy adapted to evaluate game design and programming

concepts ... 84
Table 4: Digital voice recordings of pupil working conversations 87
Table 5: Planning the game interactions using conditional statements 160
Table 6: Type and frequency of variables used... 164
Table 7: Programming concepts evidenced in authored games 176
Table 8: Use of language in pupils’ planning documents 183
Table 9: Use of correct terminology in pupils’ planning documents 183
Table 10: Example initial planning document .. 185
Table 11: Misunderstanding events .. 193
Table 12: Generalising events and actions ... 194
Table 13: Use of non-user events ... 194
Table 14: Lack of precision in referring to events and actions 195
Table 15: Conflating actions .. 198

List of figures

 vii

List of figures

Figure 1: Flowol 2 burglar alarm flowchart .. 4
Figure 2: The Game Maker 7 interface.. 12
Figure 3: The structure of a game in Game Maker .. 13
Figure 4: A script in Scratch’s colour coded blocks ... 35
Figure 5: Kodu’s ‘When…do’ condition/action rule tiles .. 37
Figure 6: Alice’s programming panel ... 38
Figure 7: The eight big ideas of constructionism ... 45
Figure 8: Pupils’ Jesson band ability level ... 66
Figure 9: Convergence of multiple sources of evidence .. 68
Figure 10: Results of a matrix query.. 79
Figure 11: Matrix showing the SOLO levels applied to game features evaluated ... 85
Figure 12: Graphical icons showing textual hint .. 97
Figure 13: Game Maker’s resource explorer ... 100
Figure 14: AE’s animated splash screen ... 130
Figure 15: Title bar game icon ... 132
Figure 16: Loading graphic .. 132
Figure 17: Score, health and lives status bar .. 132
Figure 18: Title screens offering user options ... 133
Figure 19: OWSW’s instructions screen and KW’s high score table 133
Figure 20: Use of messages ... 134
Figure 21: Game Maker’s sprite, object and room properties boxes 141
Figure 22: Programming constructs in Game Maker ... 146
Figure 23: Game Maker’s visual and textual information 147
Figure 24: The event selector .. 147
Figure 25: Number of events used in each game .. 148
Figure 26: Type of events used in the games ... 149
Figure 27: The control actions ... 155
Figure 28: Example of code comments ... 156
Figure 29: A conditional statement .. 159
Figure 30: Number of different variables used in each game 164
Figure 31: Coordinates in Game Maker .. 165
Figure 32: Angles in Game Maker ... 166
Figure 33: Programming difficulties coded by ability and gender 180
Figure 34: Objects disappearing from the screen .. 187
Figure 35: Confusing events and actions .. 193
Figure 36: Evaluative score for games .. 251

Acknowledgements

 ix

Acknowledgements

I would like to express my heartfelt thanks to my supervisors, Professor Victoria

Carrington and Professor Terry Haydn, for their invaluable guidance and

encouragement, and to Dr John Woollard for setting me on the path and supporting

me along the way.

Thanks also to the many online and offline colleagues who took the time to respond

to queries and share their expertise, especially Dr Jake Habgood and Dr Simon

Watts. I am indebted to Carly Sharples (Faculty Librarian) for helping me sort out my

Endnote woes and for buying me all the expensive books I asked for!

I’m also grateful to Pad, Nick, and James for helping me with funding in the early

days, to Jon for all the ‘PhD conversations’ and to Sam, Pad and Sarah for their

unwavering moral support.

Special thanks are due to the pupils who took part in this study for their enthusiasm

and hard work and for sharing their experiences and opinions so willingly.

And, of course, to my family for rooting for me and for keeping out of my way!

Claire Johnson 2014

Introduction

 1

Chapter 1 Introduction

1.1 Background

Debates surrounding the use of computers in education have a history that spans at

least 30 years (Millwood, 2009). One argument which endures is that as part of their

learning, young people should be given opportunities to use technology to create digital

artefacts (Papert, 1980b, 1993; Luckin et al., 2012; Nesta, 2012; Sefton-Green, 2013).

Yet there has been little research in this area in the context of the United Kingdom’s

(UK) Key Stage 3 ICT curriculum.

This study explores the introduction of a unit of work in computer game authoring

delivered as part of the UK ICT1 curriculum for Year 9 pupils. The research considers

pupils’ experiences of the activity, and sheds light on what they learned and what they

found difficult when authoring computer games. Data were drawn from recordings of

their working conversations, pair and group interviews, and by scrutinising the planning

and design documents they produced and the computer games they created over an 8

week, 16 hour period.

The research was conducted at a time of flux in the UK secondary ICT curriculum,

which, since the 2007 publication of the revised National Curriculum programme of

study, has experienced turbulent changes, culminating in 2012 with the disapplication

of the programme of study and the attainment target (Gove, 2012b). In 2013 the

subject was redesignated as Computing and a programme of study for first teaching in

September 2014 prescribes a new curriculum which incorporates at its core computer

science, where pupils are taught “the principles of information and computation, how

digital systems work, and how to put this knowledge to use through programming”

(DfE, 2013c).

Against this background, computer game authoring emerges as an important area of

inquiry, because it is an increasingly popular context in which to introduce

programming concepts and practices at Key Stage 3.

1 In this study, ICT (Information and Communication Technology) refers to the secondary
curriculum subject taught in UK schools, as defined by the National Curriculum (DfES and QCA,
2004) and associated programmes of study (DCSF, 2008) in operation between 2007 and 2012.

Introduction

 2

While research interest has been shown in the area of computer game authoring, much

of this research explores how authoring computer games is an important literacy,

design or media activity (Robertson and Good, 2004; Buckingham and Burn, 2007b;

Pelletier et al., 2010; Beavis et al., 2012; Merchant et al., 2013), and how it supports

learning in a range of subjects in the primary phase (Harel, 1991; Kafai, 1995; Kafai

and Resnick, 1996a; Baytak and Land, 2011b) or in out of school contexts (Peppler

and Kafai, 2005; Kafai et al., 2009b). As Chapter 2 will show, little research relating to

computer game authoring has been published from a UK secondary ICT perspective.

1.2 A brief history of the ICT curriculum

This section offers a brief history of the ICT2 curriculum in UK secondary schools from

2000 onwards, which provides the background to and context of the current research.

Computers have been used in schools since the mid-1980s, but there was no IT

curriculum at Key Stage 3 until 1988, when it was introduced as part of the National

Curriculum for Design and Technology (Hammond et al., 2009). In 1995 Information

Technology became a subject in its own right (DfE, 1995) and new requirements for

teaching IT at Key Stage 3 were published (SCAA, 1995). When the National

Curriculum was revised in 1999 IT was renamed ICT (Information and Communication

Technology) (DfEE, 1999).

The 1999 National Curriculum set out what children should learn in Information

Technology in five Strands of IT Capability (DfES, 1999):

 Communicating information (communicate in words, pictures and sounds).

 Handling information (gather, store and interrogate information).

 Modelling (explore models and simulations, write a control program, produce a

spreadsheet).

 Measurement and control (use IT to control systems and equipment including

sensors, monitor, measure and record data, develop sequences of instructions).

 Applications and effects (develop awareness of the role of new technology in

the wider world).

2 In considering the evolution of the subject (including its name), throughout this thesis, the term
ICT is most often used, since that was the subject’s appellation for the period in which the
research was conducted.

Introduction

 3

At this time, ICT was a new subject in many schools in England and Wales (Hammond,

2004). Advisory schemes of work had been introduced in 2000 and consisted of fifteen

sample teaching units (QCA, 2000). The ICT strand of the Key Stage 3 National

Strategy (DfES, 2002a) introduced revised units between 2002 and 2003. Although not

statutory, these became widely used as frameworks for what was taught and what

software was used in schools (Lawson, 2010) and informed the content of many of the

commercially produced textbooks, online schemes of work and curriculum guides

published (for example, Leafline, 2003; Doyle, 2004; Furlonger and Haywood, 2004).

The emphasis in these materials was on the development of ‘ICT capability’ - and

mainly involved the use of office productivity software and to a lesser extent, web

design and control software, to enable pupils to develop a range of systems and

publications and the knowledge, skills and understanding underpinning these. The

contexts for the tasks were often related to the practices of businesses and

organisations, and this was mirrored in coursework scenarios at Key Stage 4.

1.2.1 The Key Stage 3 sample teaching units

Sample teaching units 7.6, 8.5 and 9.1 (DfES, 2002b, 2003b, 2003c) delivered the

programming content of the Framework in the context of the visual programming

system Flowol 2 (Bowker, 1998). Pupils learned that technology is used to control

everyday events, such as the operation of traffic lights and car park barriers, automated

greenhouses and theme park rides. They learned about the programming concepts of

input, output, decisions, loops and sub-routines. Practical activities included developing

and refining flowcharts to control simulations of such systems (see Figure 1). However,

whilst these activities introduced pupils to the main building blocks of programming,

they offered only closed systems with finite inputs and outputs.

Similar flowcharting exercises were included in the ill-fated Key Stage 3 ICT summative

assessment test (QCA/RM, 2003), planned for first national rollout in 2008 but

abandoned in 2007. ‘Refocused’ as optional ‘formative assessment tasks’ to support

teacher assessment at the end of Key Stage 3, the test incorporated a task in

‘sequencing instructions’, which assumed knowledge of flowcharting software and

required pupils to understand the use of variables, logical operators (<, >, =) and the

terms ‘input’, ‘process’, ‘output’ and ‘sub-routine’ (QCA/NAA, 2008).

It becomes clear that the ‘control and monitoring/sequencing instructions’ element, as it

appeared in the sample teaching units tasks and the test, was narrowly defined, and

Introduction

 4

Figure 1: Flowol 2 burglar alarm flowchart

as a consequence, the learning, in terms of programming, afforded by these units (13

hours teaching time in total over 3 years), was somewhat limited.

1.3 Why computer game authoring?

Computer games are an integral part of many young people’s lives. Recent figures

suggest that eight in ten children aged 5-15 years play computer games using a fixed

or portable games player at home (Ofcom, 2013). However, when it comes to making

computer games, the UK figure is significantly lower, at 52% (Stokes, 2014).

1.3.1 The ICT curriculum

At the outset of the research in 2007, my interest lay in exploring the potential of

computer game authoring as an engaging, relevant and challenging scenario for

delivering the ‘sequencing instructions’ strand of the Programme of Study for Key

Stage 3 (QCA, 2007b); according to OFSTED this area was the least well taught in the

ICT curriculum (OFSTED, 2009; OFSTED, 2011). Since then, other imperatives have

taken centre stage, as the following section describes.

From the mid-2000s there had been growing concerns in the ICT and computer

science education community with the status and content of the subject. ICT was often

taught by non-specialists and presenting information took precedence over processing

and/or controlling information as the dominant output in many units of work (Peyton

Jones et al., 2007; OFSTED, 2009; OFSTED, 2011). This concern with the content of

Introduction

 5

the secondary ICT curriculum and the uptake of computing at tertiary level was echoed

internationally (see Tucker, 2006; Peyton Jones et al., 2007). Amongst stakeholders in

higher education and industry there was a feeling that ‘ICT’ had usurped much of the

content of latter-day ‘computer studies’ programmes (Webb and Cox, 2007). This

disquiet heralded a call for the return of a ‘computer science’ element to the secondary

ICT curriculum, spearheaded by the Computing at School group and supported by

prominent industry players (see CAS, 2008a; CAS, 2008b; Peyton Jones, 2010;

Livingstone and Hope, 2011; Schmidt, 2011; BCS, 2012; CAS, 2012a; Furber, 2012).

One of the major examination boards, OCR, released a General Certificate of

Secondary Education (GCSE) specification in Computing (OCR, 2010), which was

piloted between 2010 and 2012 in response to this demand; new specifications for a

GCSE in Computer Science were later announced in January 2012 by AQA, Edexcel

and WJEC.

Amid this activity, the Secretary of State for Education delivered the death knell for ICT

in his 2012 BETT speech (Gove, 2012b), in which he dubbed the subject ‘offputting’,

‘demotivating’ and ‘dull’ and announced the withdrawal of the programme of study from

September 2012. A new programme of study for ICT was released in draft format in

January 2013 (BCS, 2012), to take effect from September 2014, its content the subject

of much debate. By February 2013 the National Curriculum Framework for consultation

(DfE, 2013d) had recast the subject as ‘Computing’ to reflect substantially revised

curriculum content and to remove the reported negative associations of ICT (DfE,

2013b); the programme of study was published in its final form in September 2013.

This contained much more ‘computing’ content than previously, and the requirement to

include at least one textual programming language at Key Stage 3 placed new

demands on many ICT teachers (Nesta, 2014). Not surprisingly, the pedagogy of ICT

has been described as unclear throughout this period (Webb, 2002; Hammond, 2004;

Hadjerrouit, 2008).

Against this background, the importance of strengthening the delivery of programming

becomes clear. The Programme of Study for Key Stage 3 ICT (QCA, 2007b), in

operation from 2007-2012, referred to this area of learning as ‘sequencing instructions’,

but until recently, very little ‘traditional’ programming using textual languages was

learned at Key Stage 3. Visual programming software, such as Flowol 2 (Bowker,

1998) had been commonly used to cover the control/programming element of ICT in

many schools, largely because it was featured software in the National Strategy for ICT

sample teaching units (DfES, 2002b, 2003b, 2003c). But the graphics were limited, the

Introduction

 6

scenarios not always compelling and the systems were not open-ended - an onscreen

object animates along a prescribed path, a Belisha beacon flashes at a zebra crossing.

While the teaching of aspects of programming had always been present in the Key

Stage 3 ICT curriculum, for GCSE ICT there had been no requirement to program at

all, throughout the 2000s, although the topic appeared as an optional coursework unit

(e.g. ICAA, 2001; OCR, 2009b) and as a question in examination papers (e.g. AQA,

2005; OCR, 2006), where pupils were required to sequence commands to draw a

specified shape, for example. Whilst there were optional programming units in GCSE

ICT and vocational Key Stage 4 specifications (e.g. OCR, 2009b; OCR, 2012a), it was

not until 2010 onwards that GCSE specifications for Computing began to appear, which

included a mandatory programming project (OCR, 2011; AQA, 2012a; Edexcel, 2012b;

WJEC, 2012). At that point, the imperative of strengthening the learning of

programming at Key Stage 3 began to gather momentum.

1.3.2 The return of game authoring

Whilst programming games had been popular in the 1980s in schools and homes, on

computers such as Acorn's BBC model B, RM's 380Z and the Sinclair Spectrum, it

became less common in the 1990s as the PC became the dominant system in school

and the curriculum subject ICT emerged as a hybrid of Business Studies and IT

(Hammond et al., 2009), focused on the use of ‘office’ software (Stevenson, 1997) and

the development of systems to meet the needs of organisations.

By the late 2000s however, making computer games had resurfaced in ICT classrooms

- promoted in the UK as part of the National Strategy for ICT (DCSF, 2008b) and in the

Scottish Curriculum for Excellence outcomes (LTS, 2009). Following the National

Curriculum revision in 2007 a new programme of study for Key Stage 3 ICT was

released (QCA, 2007b), statutory from September 2008. A ‘sequencing instructions’

strand replaced the previous control and monitoring element, and this allowed schools

a broader interpretation of the sort of learning in programming they could deliver and a

wider choice in what type of software they could use to deliver this strand.

Subject leader development training materials to support the new framework (DCSF,

2008b) featured a ‘sequencing instructions’ task for Year 7 - to create a computer

game for Year 3 pupils. This task offered an arguably more engaging and authentic

learning experience than previous units; however, it was accompanied by other tasks

(write a user guide, a test plan and an evaluation) - and was allocated 6 hours for

Introduction

 7

completion. The time given to programming the game itself was, at most, 3 hours and

this had implications for what could be learned about the process.

The public release of Scratch (Resnick et al., 2003) in 2007, a media-rich tool designed

to teach young people the basics of programming and computational thinking, was

enthusiastically greeted by teachers and pupils alike, because it allowed much more

creative freedom and agency than the control software referred to previously, had an

easy entry point and was cost-free to schools. Similarly, free versions of game

authoring software, such as Game Maker 7 (YoYo Games, 2007), and commercial

offerings such as MissionMaker (Immersive Education, 2007) brought the possibility of

making games into the mainstream and introduced pupils to programming concepts

and practices in the context of making a real, playable game - arguably a more

rewarding outcome than the ‘mimics’ and simulations which had been the dominant

fare of control software. As textbooks and other resources were released which

included game authoring tasks (see Burtoft et al., 2008; Giles et al., 2008; Jones and

Wilson, 2008; Reeves, 2008; Waller, 2009) the activity became increasingly common at

Key Stage 3.

At Key Stage 4 specifications which included the creation of a computer game as an

optional coursework task had been released earlier (e.g. Edexcel, 2006); DiDA’s

‘Games Authoring’ unit was piloted in September 2009 (Edexcel, 2009). Since 2010,

specifications for GCSE ICT, and vocational awards also offered game authoring units

(OCR, 2009b; Edexcel, 2012c; OCR, 2012a), as do more recent GCSE specifications

for Computing (AQA, 2012a; Edexcel, 2012b). Yet at the outset of the research in

2007, there was little prior learning of game authoring in the Key Stage 3 ICT

curriculum to prepare pupils for these new Key Stage 4 courses.

There is no doubt that units of work featuring game design are being offered by more

schools now than when the period of this research started (Repenning et al., 2010;

Swacha et al., 2010). But little research which explores computer game authoring as

part of the UK Key Stage 3 ICT curriculum has been undertaken.

The game authoring activity at the centre of this research had been originally designed

to meet the learning objectives of the ‘sequencing instructions’ sub-strand of the

National Curriculum for ICT (DCSF, 2008a). But this research also seeks to identify

what other positive outcomes may occur when pupils author computer games, beyond

the generic requirements of the National Curriculum Framework for ICT and the

Introduction

 8

programme of study, since much of the literature surrounding game authoring

highlights factors beyond the learning of curriculum content alone as benefits of the

activity (see Chapter 2).

1.3.3 Digital participation

Beyond preparing pupils for Key Stage 4 courses, there are other compelling

arguments for including game authoring in the curriculum. Making digital media is

important because young people need to be able to participate fully in the digital culture

in which they live and make informed use of digital technology and media in their own

lives (Hague and Williamson, 2009: 3). This involves becoming ‘digitally literate’, which

foregrounds constructing/making/writing - not just reading/playing digital material

(Papert, 1993; Salen, 2007; Resnick et al., 2009a; Harel Caperton, 2010). In particular,

young people should be given the opportunity to be producers as well as consumers of

computer games, since they are a significant cultural artefact (Robertson and Good,

2004; Habgood, 2006; Prensky, 2008; Williamson, 2009; Harel Caperton, 2010).

Others suggest that as a learning activity, computer game authoring gives value to

pupils’ prior, informal learning in playing computer games and bridges the gap between

young people’s use of technologies out of school, and the less wide-ranging uses of

technology in schools (Buckingham et al., 2003). Introducing computer game authoring

also develops young people’s ‘gaming literacy’, enabling them to engage creatively and

critically with this medium (Buckingham and Burn, 2007a; Salen, 2007). More recently,

the importance of ‘learning through making’ with digital technologies has been

reasserted (Nesta, 2012; Beckett, 2013; Mozilla, 2013a; Nesta et al., 2013; Sefton-

Green, 2013), yet although a rising trend in practice is observed, it has not been

subject to a great deal of research (Luckin et al., 2012).

1.3.4 Creativity

Creativity is identified in government education policy documents as one of seven

dimensions which should permeate the curriculum (QCA, 2009). To foster creativity

young people should be given opportunities to “appreciate the full range of … the

creative industries” (QCA, 2009: 21). The new Computing programme of study states

that pupils should “create … digital artefacts for a given audience” (DfE, 2013c: 2). But

beyond government policy, there are other drivers for promoting game authoring as a

creative practice in ICT education. Perhaps chief of these is that the ICT curriculum

affords possibilities for particular sorts of creativity that are not so present elsewhere in

the curriculum, since ‘new technologies’ possess distinctive features (identified as

Introduction

 9

‘provisionality’, ‘interactivity’, ‘capacity’, ‘range’, ‘multi-modality’ and ‘social credibility’)

which can support creative practices that other media and tools might not offer

(Loveless and Wegerif, 2004; Carbonaro et al., 2008).

Moreover, activities which may be termed ‘creative’, as opposed to practical or

functional, should be part of the ICT curriculum in order to give pupils the opportunity to

be expressive with technology (thus it includes game authoring, web page design,

graphics, video, animation, audio production); these areas of learning were strongly

supported in the research school. Beyond the ‘surface’ creativity that resides in the

production of any computer generated outcome, there is an ‘expressive’ creativity that

lies in being able to program, since programming offers the ability to create new uses

for computers, rather than consuming the behaviours provided for us by others

(Woollard, 2009).

Furthermore, activities such as game authoring, which involve learners in creating

aspects of interactivity, are unique to the ICT curriculum (because they involve some

sort of programming and because they involve the design of user interaction) and

deserve greater understanding in terms of the nature of the learning involved.

Other rhetorics of creativity can also be invoked to argue the case for computer game

authoring. Banaji and Burn (2007) refer to the idea of ‘democratic creativity’ and

cultural re/production, which sees creativity as inherent in our cultural lives and resists

the notion of creativity as the preserve of a minority of talented, gifted, artistic people -

or residing only in certain cultural products (films, art, theatre, music). In this spirit,

offering pupils opportunities to author computer games gives them access to a broader

range of representational resources and enables them to engage with new sites of

display (Jewitt, 2008).

1.3.5 Exploring ICT pedagogy

Introducing new curriculum content provides an opportunity to explore different

approaches to learning. Making a computer game is a complex, extended activity

(Harel, 1991; Kafai, 1995) and this has implications for pedagogy. The unit of work

followed in the current study was an implementation of a constructionist learning

activity, characterised by its collaborative work pattern, extended time frame and

personally and culturally meaningful outcomes (see Chapter 3), and presents a

scheme of work built around the use of Game Maker 7 software (YoYo Games, 2007).

Introduction

 10

Pupils worked in pairs over an 8 week, 16 hour period to research, plan and make their

games. In their pairs, they worked collaboratively, in so far as they pursued a single

goal (Pritchard and Woollard, 2010: 62), negotiating and sharing their conceptions of

the task and how to tackle its elements, co-constructing their understandings through

interactions with each other and the software. At other times, they worked

cooperatively within their working pairs, pursuing separate tasks (Stahl et al., 2006:

411), or with other members of the class, sharing their knowledge and showing others

how to solve problems or achieve particular effects. Collectively, they worked as a

‘community of practice’ (Lave and Wenger, 1991) of novice game programmers,

sharing resources, viewing each other’s work in progress, interacting and learning

together. The role of the teacher necessarily changed according to the different stages

of the project. A more ‘instructional’ role was adopted at the start, as pupils learned the

software and planned their games. Once underway with making their games, pupils

took ownership of their learning in terms of how they managed their time and what

tasks they completed. At this stage the teacher’s role was focussed on guiding the

process, providing resources and learning material, ‘scaffolding’ and troubleshooting,

working with individuals and pairs rather than the class as a whole. The unit of work

offered an extended, open-ended, multimodal experience, which contrasted with the

more tightly-structured National Strategy sample teaching units delivered previously at

the research school.

1.4 Selection of the game authoring software

One of the first tasks of the research was to establish which software would offer pupils

the most accessible means to develop game authoring and basic programming skills,

and to create a satisfying end-product in a relatively short period of time, an important

consideration for this school-based research. Game Maker 7 was selected on the basis

that its visual programming environment and drag and drop functionality offers an easy

entry point, but a high ceiling in terms of enabling pupils of different abilities to learn

about game authoring and programming concepts and practices.

A second reason for selecting Game Maker is that it is widely used in UK schools and

supported by several textbooks and resources aimed at Key Stage 3 (see Giles et al.,

2008; Jones and Wilson, 2008; Reeves, 2008; Waller, 2009). Current GCSE ICT and

Computing specifications feature Game Maker in their sample assessment material

(OCR, 2012b), as recommended software (AQA, 2012d; Edexcel, 2012a; OCR, 2012b)

Introduction

 11

and in their training events (see AmmA, 2011; AQA, 2012d). The software is also

increasingly used in education internationally (from primary to tertiary levels) to deliver

elements of learning in programming (see Claypool and Claypool, 2005; Baytak et al.,

2008; Whitehead, 2008; Dalal et al., 2009; Gamble, 2009; Hernandez et al., 2010;

Hoganson, 2010; Kuruvada et al., 2010b).

However, it should be noted that Game Maker was not originally written for educational

use. Rather, it was developed to promote children’s interest in game design and

programming for recreational/hobbyist purposes, whilst also incorporating features to

appeal to older users with some programming knowledge (Overmars, 2015). Publicly

released in 1999, as a free download, Game Maker first attracted an amateur

audience, only later making its entry into educational settings. At tertiary level it has

been used as a rapid prototyping tool to teach game design principles to students who

already knew how to program (Habgood, 2013). But the idea that the software should

enable novices to learn to program with visual symbols first and then progress to using

its built-in textual language (GML) was an important design principle from the start.

Yet, despite its widespread use, there is little published research on whether making

games with such environments leads to increased understanding of programming

concepts (Denner et al., 2012) and at the time of writing, no research has been

published in how Game Maker is used to support the teaching and learning of

programming in the UK Key Stage 3 ICT curriculum.

1.5 Authoring games with Game Maker

Game Maker enables users to create two-dimensional (2D) computer games without

any prior programming experience. Instead of writing textual code, users drag and drop

graphical representations of functions and other programming components to define

game objects’ behaviours. Figure 2 below illustrates the graphical programming icons

on the right.

Game Maker also includes a ‘conventional’ textual programming language, GML, which

allows users to move on from visual programming as their understanding of

programming constructs develops, and may be conceived as an ‘ideal tool’ for learning

to program since its functionality can be extended alongside the user’s growing

Introduction

 12

Figure 2: The Game Maker 7 interface

capability (Yatim and Masuch, 2007). This scalability of use was an important factor in

the selection of Game Maker for this study.

1.5.1 The structure of a Game Maker game

A Game Maker game is made up the following components:

Rooms - the game space - each level of a game will have its own room.

Backgrounds - graphical resources which are loaded into the room to create the

appearance of the game world.

Objects - programmable entities which exhibit behaviours and possess attributes.

Player and non-player characters interact with objects according to the events and

actions specified for them.

Sprites - the graphical representations of an object.

Events - inputs assigned to objects trigger their behaviour - a keyboard press, a mouse

click, a collision of objects on screen, for example.

Actions - actions assigned to an event produce an output - an object may bounce, a

sound may play, points may be scored, for example.

Figure 3 shows how these components are structured.

Introduction

 13

Figure 3: The structure of a game in Game Maker (Kirk, 2006: 31)

Pupils learn how to combine these components and how to select and sequence

events and actions to create a playable game. For each action assigned to an object,

pupils have to make choices which define the game play itself. For example they must

specify the speed and direction of objects, what happens if the player loses all their

lives, when a sound should play, how the score should increase. In so doing they have

to use mathematical concepts (negative number, the use of coordinates, relative and

absolute value), physical concepts (position, speed, acceleration, collisions), and

programming concepts (sequence, conditions, variables, loops).

1.6 The Research

The research was conducted with one group of Year 9 pupils (13-14 year olds), over an

8 week period (16 hours) at a mixed, comprehensive school in South East England.

The researcher was the group’s timetabled teacher and Curriculum Leader for ICT.

The research explores the implementation of a unit of work in computer game

authoring as part of the Key Stage 3 ICT curriculum, in which pupils constructed a

game narrative, created or sourced game assets (graphics, background music, sound

effects), and designed and programmed game object and player interactions and game

play.

Room

Background Object

Sprite Event

Action

Play
sound

Introduction

 14

Game Maker 7, the software used in this research, does not require sophisticated

programming; events and actions are selected from libraries of pre-programmed

‘blocks’ and compiled to create the game and its interactivity. This research seeks to

explore the extent to which authoring computer games using Game Maker can support

the learning of basic game design and programming concepts. The emphasis is on

what learning, specific to the ICT curriculum, takes place when pupils author computer

games, rather than on the literacy, narrative development, or media aspects of game

authoring, which is the area of interest of much of the research literature (see Good

and Robertson, 2006b; Robertson and Good, 2006; Buckingham and Burn, 2007b;

Robertson and Nicholson, 2007; Hayes and Games, 2008; Harel Caperton, 2010;

Beavis et al., 2012; Merchant et al., 2013).

In this it makes an important contribution to the field of computer science education,

since little research has been targeted at secondary level (Begel and Klopfer, 2004),

and there have been few studies of whether authoring computer games increases

children’s understanding of computer science concepts (Denner et al., 2012), or what

kind of knowledge students learn from creating games using visual programming

languages (Koh et al., 2010). Moreover, there are few studies which look at the

learning of computing concepts through game authoring within a classroom setting

(Wilson et al., 2012).

Both the activity and the research draw on the learning theory of constructionism,

described in more detail in Chapter 3. Constructivism asserts that learners construct

their own knowledge and understanding, based on their prior experiences and that

learning is socially and situationally mediated (Pritchard and Woollard, 2010).

Constructionism extends this idea by suggesting that learning is more successful when

it arises out of learners constructing a real artefact (Papert, 1991b).

1.6.1 Research questions

The study seeks to address the following research questions:

 What are pupils’ perceptions about the process and outcomes of their learning

during a constructionist-designed game authoring activity?

 How does computer game authoring using Game Maker support the learning of

basic programming concepts and practices?

 What difficulties do pupils have with game authoring (game design and game

programming)?

Introduction

 15

 What affective value is there to pupils in authoring computer games?

In exploring these questions, a greater understanding of the pedagogy of computer

game authoring in the ICT curriculum will be achieved. The need for the ICT curriculum

to place greater emphasis on computing has been outlined above. The context for

introducing game authoring as one way of doing this has been set alongside the use of

flowcharting software, which was widely adopted for learning programming at Key

Stage 3 previously (see DfES, 2002b, 2003b, 2003c). The need to provide an

accessible introduction to basic programming concepts for teachers and pupils who do

not have a strong background in computer science is important in the current context

(see Nesta, 2014).

1.6.2 Assumptions

This study examines the proposition that there is value to introducing computer game

authoring in the Key Stage 3 ICT curriculum and seeks to explore where specifically

that value lies. It is suggested that computer game authoring provides an accessible

and motivating introduction to the practices and concepts of basic computer

programming. This assumption is made on the basis of the researcher’s experience

with similar activities in an extra-curricular context, where noticeable positive

motivational effects were observed. The assumption is also supported by the literature

surveyed in Chapter 2, relating to the practice of computer game authoring in schools

and after school programmes. It is further supported by the emergence of examination

specifications in the UK which offer electives in computer game authoring activities. In

academia, a growing number of UK conferences feature game authoring and/or game-

based learning in their programmes (e.g. DIGRA 2014, Games Britannia 2014,

European Conference on Games Based Learning 2014, Games Learning Society

2014, Serious Play 2014); publications in academic journals relating to computer game

authoring also suggest that there is value to the activity (see Chapter 2).

1.7 Structure of the thesis

This chapter has set the scene for the research. In Chapter 2 I survey the literature

surrounding game authoring and follow on from this to outline the theoretical framework

for the research in Chapter 3. Chapter 4 describes the research design and methods

used to capture and analyse the data. Chapters 5-9 consider the research findings and

Chapter 10 presents a discussion and conclusion.

A literature review

 17

Chapter 2 A literature review

2.1 Introduction

In this chapter I review the literature relating to computer game authoring thematically,

grouping research projects by their primary focus: motivation; literacy and narrative

development; digital, game and media literacy; programming. It becomes clear that

there is a gap in the research literature in studies of game authoring in the UK

secondary ICT curriculum. This is not surprising, given that the activity has only

recently entered the mainstream, as games technologies, the rise of digital media,

software and curricular developments have converged to make it a possibility.

2.1.1 The scope of the literature review

The literature review confines its scope to research relating to the use of software to

create computer games in mainstream and informal educational settings. It refers only

in passing to the field of game-based learning (the use of commercial computer games

and game technologies for education), since the focus of the present research is on

making games, rather than playing games, for learning.

A significant amount of research has been conducted in the field of game-based

learning, as evidenced in recent overviews (see Pivec, 2009; Perotta et al., 2013), but

until recently, less interest has been shown in computer game authoring (Baytak and

Land, 2010). In much of this research, the focus has been on how game authoring

supports the learning of mathematics at primary level (Harel, 1991; Kafai, 1995; Shaw

et al., 2012; Ke, 2014), narrative or literacy development (Robertson and Good, 2004,

2005; Carbonaro et al., 2005; Howland et al., 2013) or how it adds to the secondary

Media Studies curriculum (Buckingham and Burn, 2007b; Pelletier et al., 2010). Other

research focuses on the motivational benefits of creating games and on the social

learning that surrounds it (Robertson and Howells, 2008; Jung and Park, 2009; Molins-

Ruano et al., 2014), but there is little research which explores the learning benefits of

creating computer games from the UK Key Stage 3 ICT perspective, and which takes

account of the realities of school (Perotta et al., 2013).

A literature review

 18

2.2 Game-based learning

Although interest in the potential of computer games for education can be traced back

to the 1970s and 80s (O'Neil et al., 2005; Bragge and Storgards, 2007), the rise in

popularity of computer games has led to a surge in research in the area of game-based

learning, as indicated in continuing publication of overviews of the field over the past 13

years (see Prensky, 2001; Gee, 2003b; Kirriemuir and McFarlane, 2004; Mitchell and

Savill-Smith, 2004; Sandford and Williamson, 2005; Squire, 2005; Becta, 2006; de

Freitas, 2006; Egenfeldt-Nielsen, 2006; ELSPA, 2006; Sandford et al., 2006; Bryant et

al., 2007; Pivec and Pivec, 2008; Ke, 2009; Klopfer et al., 2009; Pivec, 2009;

Williamson, 2009; LTS, 2010; Bray, 2011; Felicia, 2011; Tobias and Fletcher, 2011;

Connolly et al., 2012; Hwang and Wu, 2012; Larsen McClarty et al., 2012; Felicia,

2013; Perotta et al., 2013). It is beyond the scope of this study to review this literature

but a brief summary of some points of interest relating to the use of games in schools is

presented here, as a background to, and to distinguish this research area from the

current study, which is concerned with exploring computer game authoring as part of

the Key Stage 3 ICT curriculum.

Becta’s ‘Computer Games in Education Project’ (Becta, 2006), identifies the benefits of

learning with games to be increased motivation and collaboration and development in

ICT and thinking skills. In its second ‘Emerging Technologies for Learning’ report

(Bryant et al., 2007) Facer et al. suggest that rather than simply using commercial

computer games in the classroom, more attention should be paid to how principles of

games-based learning “might inform the creation of radically new learning

environments” (Facer et al., 2007: 52), echoing Prensky’s claim that “as a learning tool,

computer games may be the most powerful mechanism ever known” (Prensky, 2002:

2).

Yet in the mid-2000s, the empirical evidence for the effectiveness of games as learning

environments was scant (O'Neil et al., 2005). While some research claimed that

learning with games was only effective when supported by effective instructional

measures (Egenfeldt-Nielsen, 2006), other reports recorded a negative effect of games

on learning, but a positive effect on motivation (Rieber, 2005). More recent reviews find

that the most frequently occurring impacts are improved knowledge acquisition and

understanding and affective and motivational outcomes (Connolly et al., 2012: 661).

Other publications encourage and validate the use of computer games for learning and

suggest the need for a pedagogy of games (Ulicsak and Williamson, 2010). NFER’s

A literature review

 19

latest survey of games based-learning in schools (Perotta et al., 2013) suggests that

there is a split in the literature regarding the extent to which computer games impact on

academic achievement; some studies observe improvements and others do not.

Attitudes to learning are improved when games and simulations are used, compared to

traditional methods, but the evidence for improved attainment is less secure (ibid.).

However, it is a consistent finding that computer games have a positive impact on

problem-solving skills, broader knowledge acquisition, motivation and engagement.

As the interest in game-based learning in schools increases, the development of

games to support learning and teaching across the curriculum continues to grow

(Larsen McClarty et al., 2012). Where once the use of commercial off-the-shelf games

was considered to be an innovative approach to increase engagement and attainment

in subjects such as literacy (Sandford and Williamson, 2005; Rylands, 2007) and

history (Squire, 2004) for example, in subsequent years the ‘gamification’ of learning

material and the use of games as a teaching strategy has become commonplace (see

for example, Bryant et al., 2007; Robertson, 2009; LTS, 2010). Nowadays

commercially produced teaching resources and online educational programmes which

include games designed to teach subject specific material proliferate (Bober, 2010). In

the United States (US) the Quest to Learn school is designed with game-based

learning as its defining feature (Salen et al., 2011). The notion of gamification has also

spilled over into assessment practices, typified by the digital badge movement (see

Mozilla, 2013b) and the use of points and reward features in online learning

environments such as Khan Academy (Khan Academy, 2012).

In short, although there is much theoretical support for the benefits of digital games in

learning and education, there is mixed empirical support (Larsen McClarty et al., 2012;

Perotta et al., 2013), yet it is clear that as a pedagogical tool, game-based learning is

gaining a stronghold. This may be because it offers an alternative learning experience

to traditional approaches and because such playful, immersive environments require

(inter)active participation, which alongside their dynamic, multimodal qualities and

immediate feedback provide motivating learning encounters.

2.2.1 Game-based learning in ICT

In terms of the curriculum subject ICT, there is a lack of empirical evidence regarding

the learning of computer science concepts via game-based approaches within school

settings (Papastergiou, 2009), yet studies which do exist suggest that using a gaming

approach is more effective in promoting students’ knowledge of computing concepts,

A literature review

 20

and more motivational than a non-gaming approach (ibid.) and that students

experience reduced task difficulty and anxiety levels, and increased motivation when

using games to learn programming concepts, compared to learning experiences in

traditional lectures (Liu et al., 2011).

Although several games have been developed to support the teaching and learning of

computing topics, including programming, these are developed as academic research

projects at tertiary level (Harteveld et al., 2014) (see for example, Natvig and Line,

2004; Barnes et al., 2008; Chaffin et al., 2009; Yeh, 2009; Muratet et al., 2011; Schmitz

et al., 2011; Kazimoglu et al., 2012) and to my knowledge are not widely used in

schools. Other games such as Robocode (Nelson, 2001), Lightbot (Yaroslavski, 2008),

Robozzle (Ostrovsky, 2009), CodeCombat (Saines et al., 2013) and Hakitzu (Kuato,

2013) have some potential for the secondary sector ICT/Computing curriculum, but

have not been the subject of recent academic research.

Research projects which focus on the development of game-based learning

environments for teaching computer science at secondary level are exemplified by

Engage (Rodríguez et al., 2013), a three-dimensional (3D) platformer game in which

pupils solve puzzles in the form of programming tasks, and CodeSpells (Esper et al.,

2013), a game which immerses programming into game play to teach middle school

students to code in Java. This work seeks to identify successful programming practices

including: collaboration and the role of dialogue in supporting pupil engagement

(Rodriguez et al., 2013); learner-structured, self-driven activities; access to immediate

feedback and support; the importance of exploration, creativity, and play, and the

creation of meaningful artifacts (Esper et al., 2013). Another study describes Gram’s

House, a game designed to teach computing concepts and to appeal to girls’ interests,

developed as part of an ongoing research project to encourage girls to study computing

in high school and beyond (Stewart-Gardiner et al., 2013). Yet despite the promise of

this research, these learning environments have not yet migrated to mainstream school

settings and the extent to which such research informs or impacts on the current UK

situation is unclear, although discussions about the pedagogy of programming have

begun to surface in forums and publications concerned with the teaching of computer

science (e.g. CAS, 2008a; CAS, 2014).

A literature review

 21

2.3 Research in computer game authoring

Notwithstanding the importance of the research into game-based learning, the present

study is concerned with pupils’ experience of making their own computer games, and

the following section surveys the literature in this increasingly mainstream practice.

Computer games are a significant cultural artefact (Fromme and Unger, 2012) and the

idea that pupils should be given the opportunity to be producers as well as consumers

of computer games is strongly supported in the literature (see Kafai, 1995; Robertson

and Good, 2004; Habgood, 2006; Buckingham and Burn, 2007a; Salen, 2007; Hague

and Williamson, 2009; Williamson, 2009; Harel Caperton, 2010; Li, 2010).

Yet although the idea of game authoring as an educational activity is gaining in

popularity, evidence of the learning outcomes of game authoring is not well

documented (Tiong and Yong, 2008). There are few published studies to date on the

effects of computer game development as a pedagogical activity generally (Owston et

al., 2009) or in teaching computing in particular (Smith and Grant, 2000). There is also

little evidence of the role of game design and programming in digital literacy

development (Harel Caperton, 2010); more broadly, the educational potential of

construction activities with digital media is not well explored (Zorn, 2009). Few formal

studies involving children and adolescents have been conducted (Carbonaro et al.,

2008; Baytak and Land, 2010) and there has been little research into the specific field

of game development education (Northcott and Miliszewska, 2008). In particular, there

is little published research on how Game Maker, the authoring tool used in this

research, has been used by educators to teach programming concepts at secondary

level (Hayes and Games, 2008; Daly, 2009).

Despite a growing number of accessible tools for digital media creation the educational

benefits of these programming languages are rarely the focus of research (Stolee and

Fristoe, 2011) and although the importance of ‘learning through making’ with digital

technologies has been reasserted by public bodies and industry more recently (Nesta,

2012; Beckett, 2013; Mozilla, 2013c; Sefton-Green, 2013; Aardman/Nominet Trust,

2014), it is acknowledged that the observed rising trend in practice has not been

adequately researched (Luckin et al., 2012). In particular, few studies are focused on

game making within classrooms (Wilson et al., 2012) and within the context of ICT

education in the secondary phase. The present study is designed to contribute to the

knowledge base of this, to date, poorly documented but increasingly important area.

A literature review

 22

2.4 Game authoring and motivation

It is a consensus in the literature that young people find computer game authoring

motivating (see Harel, 1991; Kafai, 1995; Howland et al., 1997; Chamillard, 2006;

Kafai, 2006b; Denner, 2007; Sanford and Madill, 2007b; Repenning and Ioannidou,

2008; Cheng, 2009; Jung and Park, 2009; Fowler and Cusack, 2011; Robertson, 2012,

2013; Hwang et al., 2014; Ke, 2014; Molins-Ruano et al., 2014).

Key publications in this area focus on game design as a source of motivation in the

primary phase. The ‘Adventure Author’ project (Robertson and Howells, 2008) studied

a Year 5 class who made computer games over an 8 week period. The analysis notes

the enthusiasm and motivation for learning and the determination to reach high

standards which arose out of the activity. Making games is motivating, the authors

argue, because learners are actively engaged in authentic, rich tasks and exercise a

variety of skills (creating characters, dialogue, and the visual design, and programming

the action) to create a complex artefact. In making games, young people can pursue

their own lines of enquiry, and in so doing develop a sense of ownership and self-

determination, which are powerful levers for learning. Motivation also arises because

the resulting artefact is of value in popular culture and can be enjoyed by a real

audience (Robertson and Howells, 2008). Moreover, the use of game authoring

software itself is motivating, since pupils can learn autonomously using the software as

a sounding board for their ideas.

Other studies find that making games is motivating because it offers a playful way of

learning (Li, 2010). Li’s study of 21 primary, summer camp pupils reports that they were

highly engaged when making games and found the activity ‘fun’, which led to increased

commitment for learning. In this mixed methods case study, most students displayed

positive emotions whilst making their games and felt proud of their completed versions.

They valued the autonomy they were given and expressed a sense of ownership and

control of their learning. Also motivating was the new identity they adopted as ‘teacher’,

showing peers how to use the software and how to improve their games. Motivation

and engagement were also evidenced in their persistence in problem-solving. Errors

and problems were frequent occurrences but such challenges spurred pupils on,

because they were real problems to be solved and directly linked to their final game

outcomes.

A literature review

 23

Similar findings are reported in a study of secondary pupils who made games to learn

about computer programming (Sanford and Madill, 2007a). Making games motivated

these pupils because in creating something important to themselves they experienced

feelings of empowerment and ownership (ibid.: 585). Giving and using peer feedback,

and playing each other’s games were rewarding for pupils and they felt great

satisfaction and a sense of achievement in creating a challenging product. Pupils were

also motivated by the feedback provided by the software, which allowed them to see

their own progress through the running of the game.

Game authoring is also motivating because it gives pupils the freedom to create

original characters and gameplay. When making games, pupils draw upon and reflect

their own interests and preferences in the game genre, characters, setting, and

interfaces they choose to create and gain a perception of themselves as producers and

originators. This ability to create and manipulate one’s own products is a unique

motivational catalyst (Howland et al., 1997).

In an Australian study conducted with 20 schools (DEECD, 2010), findings report that

pupils were motivated by and engaged when making games with Kodu (Microsoft

Research, 2009) because they enjoyed being able to create their own games and felt

more confident in their use of ICT. The activity gave rise to increased ‘learning

together’ as pupils took on roles as experts and taught their peers. In particular,

increases in motivation of previously disengaged pupils were noted and previously

quiet children ‘blossomed’ using the Kodu program.

Increased motivation is also reported in a case study of UK secondary pupils (Passey,

2012), who created levels for the commercial game Little Big Planet 2 (Sony, 2011) in

after school clubs over a five month period. This research reports that pupils valued

learning by doing, and being able to demonstrate their creativity. They also valued

being given the opportunity to achieve professional outcomes and to engage with

industry partners. Other indicators that pupils found the project motivating included

increased engagement and enthusiasm, improved attendance, high levels of in-depth

discussion, and the pursuit of high standards. They enjoyed learning dynamically, using

multimodal material, rather than the static forms (texts, pages, diagrams) often

predominant in school settings. Importantly, some pupils who were disengaged with

learning became re-engaged through the project; less confident pupils became more

communicative and self-esteem increased. Whilst this research is situated in the

secondary phase it differs from the current study in that students were authoring levels

A literature review

 24

for a commercially produced computer game, rather than creating their own games

from scratch. They did so largely in after-school contexts, over a much longer period,

working in teams, with input from industry professionals. The focus was to develop

cross-curricular 21st century skills and to foster interest in the computer games industry,

rather than to learn about game design and programming in the context of the ICT

curriculum. Yet despite these differences, the current study shares common ground

with Passey’s evaluation. Both studies identify a range of positive outcomes arising

from complex, project-based activity and observe increased levels of confidence and

engagement with learning for some pupils, as well as increased exposure to

developing ‘soft’ skills, such as planning, working with others and problem-solving. In

both studies pupils valued the extended time frame, although extended activities and

attendance were identified as problematic within mainstream school settings. Passey’s

recommendations for increased use of collaborative tools and practices are also

echoed in the present study.

These studies note that game authoring is motivating because pupils can pursue their

individual interests, produce something of cultural significance and enjoy the

playfulness inherent in the activity and learning in a dynamic, multimodal medium.

However, because so much of the literature cross-references motivation, this review

now turns to other research focuses.

2.5 Literacy and narrative development

A second body of work looks at how authoring computer games supports literacy and

narrative development. Research surrounding the ‘Adventure Author’ project

(Robertson and Nicholson, 2007) explores the development and use of software to

enable young people to author computer games as a route to developing their narrative

skills, since many children have difficulty in expressing themselves in writing and need

to be given motivating and enabling opportunities to engage with story making (see

Dillon, 2004; Good and Robertson, 2004; Robertson and Good, 2004; Robertson,

2004; Robertson and Good, 2005; Good and Robertson, 2006a; Good et al., 2007;

Howland et al., 2008). This research describes how game authoring develops literacy

and narrative skills via the production of non-linear narratives and branching dialogue.

Related work focuses on the development of tools to support multimodal interactive

writing, since it is difficult for young people to create compelling storylines without some

method of keeping track of the development of their game narratives (Howland et al.,

A literature review

 25

2013). For these researchers, having to learn a programming language in order to

author games distracts children from developing narrative skills. To address this,

related research describes the development of Script Cards (Howland et al., 2006),

software which enables pupils to create interactive stories, using graphics and natural

language.

Game authoring also supports literacy development in terms of the range of activities

pupils are engaged in when designing their games. These include seeing games as

texts, learning to critique games and engaging with the ‘paratexts’ surrounding games

(Buckingham and Burn, 2007a; O'Mara and Richards, 2012). Moreover, game

authoring provides opportunities for alternative forms of narrative development outside

the realm of text or speech (Carbonaro et al., 2008), where narratives are represented

in dynamic, visual and interactive modes and pupils are engaged in ‘multimodal

literacy’ practices (Burn, 2007; Beavis, 2013). Case study research using

MissionMaker (Immersive Education, 2007) at secondary level finds that game design

develops pupils’ awareness of what constitutes narrative and provides new

opportunities for the production of narrative in which children learn about the ‘grammar’

of games (Buckingham and Burn, 2007b; Burn, 2007). This incorporates a first or third

person player point of view, the imperative mood in which instructions are given and

the ‘If…’ clause, where much of the game play is based on conditionality. The authors

note the affinity between computer games and oral narratives (e.g. folk and fairy tales)

in terms of the episodic structure, the economies of health and magic, the character

archetypes and the narrative roles they occupy. Additionally, game narratives involve

the construction of rules; choices and interactions within the game may change the

course of subsequent game play; life, health and score economies have impacts on the

story. Pupils need to understand this ‘grammar’ when they play and create their own

games, it is argued.

Other case study research explores how making games using Kodu (Microsoft

Research, 2009) supports literacy development in middle school pupils (Tesk and

Fristoe, 2010), and foregrounds how compositional practices and skills are enriched by

authoring in a digital mode, because notions of user experience and audience are

central to this process.

But game authoring is not just used as a context in which to develop narrative and

literacy skills - it has benefits for other subjects too.

A literature review

 26

2.6 Game authoring across the curriculum

The breadth of learning experience that game authoring affords was identified by Kafai

(Kafai, 1995) in a study in which Year 4 children made their own educational fraction

games using the Logo programming language. During the six month project, children

adopted many roles, as users, designers, writers of storylines, teachers (of fractions

concepts), and programmers. They developed increased understanding of

programming and mathematical concepts, as well as metacognitive skills in planning

and monitoring their work. Kafai’s research exemplifies constructionism in practice in

the primary phase, however, the extended time frame of the research brings into

question the applicability of its findings for current mainstream secondary ICT settings.

Kafai’s students spent 92 hours on programming and 20 hours on other activities

related to the project. While Kafai observes that the long term involvement in the

project was essential for students’ learning (ibid.: 290), it would be difficult to integrate

such an approach into the current UK ICT curriculum, which is typically allocated one

hour a week at Key Stage 3.

Similar research was conducted by Idit Harel in her Instructional Software Design

Project (Harel, 1991), where computer games were authored in Logo by 17 Year 4

pupils, over a four month period, to teach younger students about fractions. Findings

showed that in creating their games, pupils achieved greater mastery of both Logo and

fractions and that learning them simultaneously was more effective than learning either

in isolation (Harel, 1991: 391). The constructionist philosophy underpinning the

research was seen to facilitate personal engagement, the gradual evolution of different

kinds of knowledge and the sharing of that knowledge with others. As with Kafai’s work,

the importance of learning over time is emphasised, although Harel acknowledges the

‘extreme’ environments established by the research project (Harel, 1991: 337), which

involved 70 hours of work. This intensive approach carries through to her current work,

which presents an online game design curriculum requiring a time commitment of

between 40 and 120 hours (Harel Caperton et al., 2010). This sets it apart from the

current study, which endeavours to introduce game authoring into the ‘everyday’ UK

ICT curriculum, with its discontinuous and fragmentary provision.

More recent case study research in how making games supports the learning of

mathematics (Ke, 2014) found that middle school pupils’ dispositions towards the

subject were significantly more positive after making games in Scratch, and they made

better connections with everyday mathematical experiences, but that game

A literature review

 27

construction and narrative involved pupils more than the representation and integration

of mathematical content.

Game authoring has also been used in the science classroom, in a study which

adopted an experimental design to identify whether making games had any influence

on Year 5 pupils’ knowledge of nutrition concepts (Baytak et al., 2008). Although there

was no significant difference in pre- and post-test scores, qualitative data indicated that

understanding of nutritional concepts was conveyed in pupils’ game narratives,

although lack of programming skills limited the extent to which they could apply their

knowledge.

While this study found that there were no significant differences in science knowledge

before and after the game-making intervention, another empirical study (Yang and

Chang, 2013) demonstrated significant improvements in understanding of science

concepts when a biology topic was integrated with programming classes to create a

computer game using RPG Maker (Enterbrain, 2005). The same tool was used to

explore whether learning history at tertiary level could be enhanced through game

authoring (Lim and Binti Md Sabri, 2013). Five students participated in a voluntary

workshop (one hour a week over 8 weeks) to develop a historical role-playing game

and findings from this research showed that game authoring promoted collaboration

and engagement, generated different perspectives of historical events and gave

students an alternative arena in which to present historical knowledge.

Despite the importance of the research reviewed in this section, its usefulness to the

current study is only partial, since the dominant site for much of this research is the

primary school. Although the research involves the creation of computer games, the

emphasis is on the learning which is achieved in a range of curriculum subjects. In

contrast, the focus of the current study is on how authoring computer games supports

the learning of basic game design and programming concepts within the ICT

curriculum. Furthermore, its interest in the collaborative and creative aspects of

computer-based constructionist activities differs from the literature on computer

supported collaborative learning (for example, see Luckin, 2010). Luckin’s interest lies

in how sociocultural theory can be extended in the design of educational technology

and technology-rich learning activities. Building on Vygotsky’s notion of the Zone of

Proximal Development, Luckin refers to a Zone of Collaboration (Luckin, 2010: 28)

which consists of interactions between collaborating individuals, and their more able

partner (which includes technology), the resources available and the artefacts created.

A literature review

 28

Whereas the software she evaluates is designed to support collaboration in the primary

phase between learners and their more able partners, Game Maker, the software used

in the current study, was not designed for this purpose. Indeed its interface provided

little support either for domain knowledge, or the development of metacognitive skills.

Collaboration in the current study then, was supported, not so much by the software,

but by pupils working with a partner, with peers, within the collective of the group, in the

context of a complex, open-ended design task. In contrast, Luckin’s research refers to

software which supports collaborative learning in the completion of well-defined, closed

tasks, which Luckin acknowledges is a limitation of the work (Luckin, 2010: 91).

2.7 Digital, game and media literacy

Other studies of computer game authoring view the activity as part of the media studies

curriculum, where computer games are seen as ‘new media’ and the creation of

computer games is a new, ‘digital literacy’ practice (Buckingham and Burn, 2007b;

Peppler and Kafai, 2007b; Willett, 2007; Payton and Hague, 2010; Kafai and Peppler,

2011). The argument here is that computer games are an important cultural form and

as such pupils need to develop a critical understanding of how this medium works by

analysing game texts and exploring their appeal. They also need to be given the

opportunity to ‘write’ games as well as ‘read’ them, since creating games allows for a

more profound and engaging form of learning than analysis alone (Buckingham and

Burn, 2007b).

Research conducted from a media studies perspective is exemplified by the literature

surrounding the ‘Making Games’ project, which describes the development of the 3D

game authoring tool, MissionMaker and its use in secondary schools (Buckingham and

Burn, 2007a; Buckingham and Burn, 2007b; Pelletier, 2007). The software enables

users to create graphic-rich 3D games, which are populated with ready-made

characters, objects and environments. Opportunities for developing understanding of

the design of games as media artefacts are uppermost in this software, but

opportunities for developing understanding of programming concepts are limited to ‘If

… then’ constructs. In these respects, the research relating to MissionMaker is of only

partial relevance to the current study. Its focus on computer games as a new cultural

form, a medium that young people should learn to critically evaluate and understand,

important though it is, is of less concern to the ICT curriculum and the research focus

of this study. From an ICT perspective, authoring computer games enables pupils to

A literature review

 29

develop programming skills, to plan and create interactivity, to consider human

computer interface design and other ICT curriculum-related learning (Dalal et al.,

2012). Authoring computer games from these perspectives is missing from the ‘media

literacy’ and MissionMaker research.

A further area of interest from a media studies perspective is that computer games are

‘popular’ texts, which merit study in an inclusive curriculum. Thus game authoring might

be more accessible to some children than traditional forms of textual study (Burn,

2007). Viewing the playing and making of games in this light is also part of a

‘democratisation [of learning]’ - where students’ out of school cultures are recognised

as valid and worthy of consideration in the school curriculum (Buckingham, 2003;

Beavis, 2013). Similar arguments in terms of democratising the creation of digital

media and providing alternative pathways into participatory culture are also advanced

in other studies (Peppler and Kafai, 2007a; Resnick et al., 2009a; Williamson, 2009).

The current research acknowledges the importance of such perspectives, but is more

concerned with the ICT-related learning which arises out of programming interactive

media.

Other researchers have introduced the notion of ‘game literacy’ as a subset of media

literacy (Burn, 2007; Salen, 2007; Zimmerman, 2009). According to this perspective,

developing ‘game literacy’ is important because children learn to view games as

designed systems (Salen, 2007) and become systems literate - they learn to

understand games as dynamic sets of parts with complex interrelationships, see the

structures that underlie them, and gain awareness of how these structures function

(Zimmerman, 2009). The idea here is that being able to successfully understand,

navigate, modify, and design systems is an important 21st century skill (Zimmerman,

2009).

According to Pelletier (Pelletier, 2005), developing game literacy involves studying

systems in a different sense, in so far as games can be analysed as semiotic systems,

sets of signs which can be ‘read’ and ‘written’. Making games involves more open-

ended and conscious manipulation of game-based semiotic resources than is achieved

through game play alone. It is a means to develop understanding of media as cultural

phenomena and to gain an awareness of the practical skills and creative abilities

involved in media production. In creating games pupils use technologies more

productively, and are able to participate in and contribute to media culture (Pelletier,

2005).

A literature review

 30

For Sanford and Madill, authoring computer games develops students’ ‘operational

literacy’ (Sanford and Madill, 2007b), which incorporates both software skills and the

ability to understand the conceptual content and applications of a particular program

(ibid.). Their study examined the ‘new literacy’ practices that secondary-aged boys

engaged in when making games with Stagecast Creator (Tesler et al., 1997), out of

school over a nine week period, and observed operational literacy to be widely

practised (Sanford and Madill, 2007b). This competence in the skills, processes and

techniques involved in making a computer game included understanding user input

mechanisms (such as the use of a controller, mouse or keyboard), reading visual

instructions, using and adapting semiotic systems, creating icons to communicate with

players, and using technological language and the wider discourse of computer games.

From the perspective of these researchers, authoring games is important because it

develops creative and critical practice in the realm of digital media, and brings students

into contact with a range of new literacies arising from this. For other researchers, the

focus is less about the product or the literacy and practical skills developed in its

creation, and more about the design process involved, which is discussed in the next

section.

2.8 Learning by design

Making computer games involves pupils in a design process, and foregrounds the

importance of ‘learning by design’ (Kafai, 1995; Kafai and Resnick, 1996a; Kafai,

2006b; Peppler and Kafai, 2010; Ke, 2014). According to Kafai pupils have little

experience in following the design process from beginning to end, which involves

researching, planning, problem-solving, dealing with time constraints, modifying

expectations and bringing everything together (Kafai, 1996: 71), because conventional

school assignments rarely give pupils the opportunity to spend an extended period of

time on complex projects (ibid.). For Kafai learning by design is important because it

helps young people to learn how to learn. Since there is no single solution to the design

problems involved in making a computer game, pupils can choose how they approach

the task: their designs can emerge in the process of being created, or they can plan,

implement and test their games iteratively. In following the design process, the pupils in

her study developed a range of strategies to deal with the complexity of the game-

making activity (they broke program code down into procedures and sub-procedures

and re-used procedures that worked), but importantly, they needed a complex

A literature review

 31

programming project for it to make sense for them to do so. Kafai’s later research in

learning by design and making games describes how strengthening the notion of

audience throughout the design process, by tasking pupils to design tangible game

controllers for their games, and providing authentic audiences to showcase their work,

encourages pupils to consider usability, functionality and player experience and to

respond to user feedback, all important aspects of the design process (Davis et al.,

2013).

The importance of design as an educational imperative is also recognised in more

recent studies (Salen, 2007; Hayes and Games, 2008). Key research from this

perspective centres on the development of Gamestar Mechanic (Games, 2008a), an

online, multiplayer role-playing game, designed to develop ‘21st century literacy skills’

by teaching the language and principles of game design. Learners develop a ‘game

designer discourse’ (Games, 2008a) through the design and play of computer games.

Game authoring is valued as a design practice because it encourages systemic

thinking, specialist language and literacy skills, computational literacies and software

design skills. However, current implementations of the Gamestar Mechanic curriculum

(E-line Media, 2013) are delivered in schools over a semester (50+ lessons) and would

be difficult to incorporate in the time available for ICT in many UK secondary schools.

Since it is difficult to learn about game design within the structure of the conventional

secondary school timetable, extended programmes requiring a substantial commitment

in terms of time (6-8 hours a week) have been developed to remedy this. Globaloria

(Harel Caperton et al., 2006) offers an online environment in which students use social

media to support their learning as they create web-games, using Adobe Flash (Adobe

Systems, 2007). The programme enables students to ‘learn to be’ as they participate in

a “networked, software design-based learning community” (Harel Caperton, 2010: 6).

Research surrounding Globaloria identifies six ‘contemporary learning abilities’ afforded

by game authoring in this context, which include making an original game, learning to

project manage game production, publishing digital media, developing social learning

skills, and learning to research from and evaluate web sites and web applications.

These competencies are important aspects of game media literacy and necessary for

effective learning and working in today’s technology-driven landscape and global

workplace (Harel Caperton, 2010).

Other research which focuses on learning by design seeks to support the challenges of

making a computer game by developing software to scaffold the process (Robertson

A literature review

 32

and Nicholson, 2007). Game design problems are often open-ended, change over time

and have multiple solutions, which can pose difficulties for novice game makers. This

research looks at how the development of a ‘Designer’s Notebook’ tool can support

learners in an out-of-school workshop manage the ‘complex process of design’ and

investigates the meta-cognitive skills which young people develop in the process of

game design, including planning, reflection and self-organisation.

The importance of providing support for learning-by-design projects is acknowledged

more recently (Ahmadi and Jazayeri, 2014) with the development of AgentWeb, an

online game design environment which incorporates integrated learning resources,

including video tutorials, synchronous communication tools such as chatrooms and

instant messaging, and asynchronous communication via integration with Facebook

and forum comments. This research suggests that such systems foster cooperative

and collaborative learning and may offer effective models to support learners engaged

with complex game design projects both within and without school settings.

According to these researchers, making computer games is an important design

activity which gives pupils a real opportunity to develop as learners and to build

important 21st century digital literacy competences within the context of a complex

design project.

2.9 Game authoring and computer programming

Previous sections in this literature review have illustrated how game authoring has

been researched from a variety of perspectives. Making computer games emerges as

a motivating context for learning about a range of subjects at primary level as well as

supporting the development of literacy and narrative skills; at secondary level it is an

important context for developing game and media literacy. In both phases, pupils enjoy

the opportunities it offers to be playful and creative and this brings positive effects in

terms of increased commitment to learning.

However, beyond developing generic learning and digital literacy skills or enhancing

knowledge and understanding in other subjects, there is another body of research

which looks at how game authoring introduces pupils to programming concepts and

practices, and it is to this area that we now turn.

A literature review

 33

In ICT education the notion that pupils should be engaged in activities which go beyond

the presentation of information to the development of systems which process data and

‘make things happen’ (QCA, 2007b) is strongly advocated (Peyton Jones et al., 2007).

The newly-minted Programme of Study for Computing (DfE, 2013c) transforms that

idea into educational policy and is the culmination of recent combined lobbying on the

part of industry and educationalists to revamp a reportedly ailing ICT curriculum and

bring computer programming and computational thinking centre stage (see CAS,

2008a; Livingstone and Hope, 2011; Schmidt, 2011; Furber, 2012).

Making computer games fits neatly into the picture, since all game authoring requires

some form of programming. Accordingly, game authoring is being increasingly used

from primary to tertiary levels as a motivating and contemporary scenario to support

the learning and teaching of this aspect of computer science (see Denner et al., 2005;

Sanford and Madill, 2007a; Hayes and Games, 2008; Repenning and Ioannidou, 2008;

OCR, 2009b; OCR, 2011; AQA, 2012b; AQA, 2012c; Edexcel, 2012a; OCR, 2012a).

However, learning to program is a difficult task (du Boulay, 1986; Soloway and

Spohrer, 1989; Jenkins, 2002; Robins et al., 2003; Dagdilelis et al., 2004; Lahtinen et

al., 2005; Parsons and Haden, 2007; Hernandez et al., 2010; Saeli et al., 2011). Du

Boulay identifies 5 areas which commonly cause problems: understanding what

programming is for; understanding what is going on inside the machine; learning to use

notation (syntax, semantics) and structures (loops, conditions), and learning how to

specify, develop, test and debug programs (du Boulay, 1986: 57).

Difficulties in learning to program also arise because pupils expect that the computer

will interpret what they mean rather than do what they write (Pea, 1986), and because

novices don’t understand the specialist meanings everyday words have in computing or

realise the level of detail required in writing programs (du Boulay, 1986: 62).

Other areas of difficulty in learning to program are that pupils find it difficult to break

down problems into more manageable sub-problems and fail to pre-plan the necessary

components of the program (Pea, 1983; Perkins, 1986). Another common source of

error is that pupils merge processes when they should be implemented separately

(Spohrer and Soloway, 1989). In fact, basic program planning emerges as the major

source of difficulty for novice programmers (Robins et al., 2003). In particular pupils

need more instruction on ‘how to put the pieces together’ (Soloway and Spohrer, 1989:

412).

A literature review

 34

Taking a different perspective, Perkins et al. (1986) suggest that difficulties in

programming arise from pupils’ dispositions, behaviour and attitudes to learning. Their

research suggests that many pupils disengage from tasks when errors arise and delete

rather than try to fix errors, or avoid dealing with mistakes and turn their attention

instead to a different task. Others neglect to track what their programs are doing by

reading code as they write it, or try to repair programs by tinkering haphazardly with

code without thinking about the problem or its solution. While these forms of impulsive,

unreflective programming can be remedied by teaching pupils to read/track their code

and check their work, pupils commonly neglect to do this and rarely do so without

prompting (Perkins, 1986: 270). According to this research, pupils’ experiences of

writing programs could be improved if better learning practices were encouraged.

Difficulties also arise because programming has a relatively undeveloped pedagogy,

pupils may only learn it for one hour a week, many teachers are new to programming

themselves (Perkins, 1986: 262) and non-motivating contexts are often used to teach

programming concepts (Good et al., 2007).

Because of the difficulties learners have with learning to program (Kelleher and

Pausch, 2005), visual programming languages have been developed to make

programming more accessible (Baldwin and Kuljis, 2000). Such languages use

graphical representations (such as flow charts and icons) of program elements as the

constituents of a program, instead of text. These graphical elements are combined in a

drag and drop environment to create the program code, and because of their

accessibility, visual languages are preferred over textual systems as a means to

introduce programming in primary and secondary schools (Murnane, 2010).

This section describes visual programming languages commonly used in UK schools

which are featured in research projects relating to the teaching of programming and/or

game authoring and then goes on to survey the research surrounding Game Maker,

the game authoring tool used in this study.

Scratch

Scratch (Resnick et al., 2003) is widely used in UK primary and secondary schools to

create 2D games and animations (see Burtoft et al., 2008; Scott, 2011; The LEAD

Project, 2012). Pupils select graphical blocks to compile behaviours for game objects,

which when ‘run’ produce a visual output. These blocks resemble jigsaw pieces, and

can only be combined in syntactically correct formations (see Figure 4).

A literature review

 35

Figure 4: A script in Scratch’s colour coded blocks

For the researchers involved in the development of Scratch, young people need to

learn to ‘write’ as well as ‘read’ the full range of digital media. Digital media creation is

seen as an important 21st century skill and an avenue for creative self-expression.

Accordingly, the program has spawned a large body of research in digital media

production, although much of this research is conducted in the context of after school

programmes for ‘underserved’ communities, where the focus is on programming

artefacts in the ‘media arts’, rather than game authoring alone (see Peppler and Kafai,

2005; Peppler and Kafai, 2007b; Maloney et al., 2008; Kafai and Peppler, 2011).

Significant research interest has been shown in how creating games with Scratch

supports the learning of programming concepts (Peppler and Kafai, 2005; Maloney et

al., 2008; Li, 2010; McInerney, 2010; Baytak and Land, 2011a; Adams and Webster,

2012). One such study (Adams and Webster, 2012) analysed 300 Scratch projects

created by middle school summer camp children and found that making games is a

better scenario than creating stories and animations for teaching students about

variables and conditionals in particular, as well as other important programming

concepts (loops, Boolean expressions).

One of the strengths of using Scratch to learn about programming is that it is

accessible to novice programmers and teachers with non-computing backgrounds alike

(Maloney et al., 2008; McInerney 2010). An analysis of 536 Scratch game projects,

created by 8-18 year olds in an extended US after-school programme, documents the

A literature review

 36

learning of key programming concepts even in the absence of instructional

interventions or experienced mentors. Programming concepts evidenced included

sequence, threads, loops, conditional statements, Boolean logic, variables, and

random numbers, although some of these concepts were not easily discovered alone

(Maloney et al., 2008).

Another investigation of games made in Scratch (Baytak and Land, 2011b) found that

Year 5 pupils (n=10) learned to use a range of programming constructs in their games,

although they needed some teacher help and rarely used complex commands. Wilson

et al.’s Scratch research (2012) found that mixed gender pairs achieved the highest

mean score for use of programming concepts and produced the most functional

games.

Other work focuses on the social dimension of using Scratch and how its online

community supports young people as designers of interactive media (Brennan and

Resnick, 2013) and evaluates the competing roles of structure versus agency in digital

media creation in and out of school settings (Brennan, 2013b).

However one study suggests that the exploratory learning promoted by Scratch might

actually be detrimental to learning programming (Meerbaum-Salant et al., 2010),

observing that using Scratch engenders habits of programming which are not helpful,

including a bottom-up approach to program development and a tendency to

decompose programs into too many scripts. These behaviours are problematic

because they are at odds with accepted practice in computer science, which

encourages the planning and design of programs and the use of programming

constructs to structure programs before they are implemented.

Kodu

Using a different paradigm, Microsoft Kodu (Microsoft Research, 2009) offers a tile-

based visual language to enable children to create 3D games (see Figure 5). Kodu

differs from other educational programming environments in that it runs on the Xbox

games console as well as desktop computers and was designed for children who have

never known a world without visual user-interfaces and game consoles (Coy, 2013).

In one quantitative study (Stolee and Fristoe, 2011) researchers counted the number of

programming concepts used in 346 games shared on the Kodu Xbox Live community

website and found that users were able to express several computer science concepts

A literature review

 37

Figure 5: Kodu’s ‘When…do’ condition/action rule tiles

including variables, conditions, Boolean logic, objects and the flow of control. Related

research (Fristoe et al., 2011) describes the development of a set of gender-inclusive

game mechanics added to Kodu to enable girls to create games based on features

such as dynamic relationships, social interactions and storytelling. The research

describes after-school sessions in which self-selected middle school girls evaluate

these game extensions, and finds that although girls liked these new capabilities, few

used them in the games they made because of their complexity.

Alice

Alice (Cooper et al., 1999) offers a visual environment to teach students programming

concepts as they create 3D games, animations, and stories (see Figure 6). Recent

research (Werner et al., 2012a) measured the frequency of programming constructs

used in 231 games created in Alice by middle school pupils (n=325) in out-of-school

classes and in-school electives and found that they learned about sequential,

conditional and parallel execution and that nearly a third of games contained

conditionals and variables, nearly half contained functions and 85% used events.

Another study (Kelleher and Pausch, 2007), found Storytelling Alice (Kelleher, 2006) to

be a motivational means to learn about programming for middle school girls (n=23). In

a 4 hour game project, all managed to create a sequential program, 87% included

multiple methods and several used loops and parameters; however, conditionals and

variables were not so straightforward and targeted assignments were needed to deliver

these concepts successfully. In a longer, 20 hour out-of-school programme, the games

produced showed that middle school pupils were able to positively engage with

computing concepts such as algorithmic thinking, programming, modelling and

abstraction (Werner et al., 2009).

A literature review

 38

Figure 6: Alice’s programming panel

This section has given a flavour of the research surrounding 3 visual programming

environments used to teach programming at Key Stage 3 in the UK. Many of these

studies feature intensive, out-of-school programmes, with primary or middle school

pupils, and are rarely located in the UK Key Stage 3 ICT context. In contrast, the

present study explores how basic programming concepts are introduced via game

authoring as part of the ‘everyday’ formal ICT curriculum.

The next section surveys the literature surrounding Game Maker, the game authoring

tool selected for this study.

2.10 Game Maker

Research conducted in the United States reports how Game Maker has been used to

introduce computing concepts associated with game implementation, such as objects,

conditional statements and loops, and to encourage uptake of computer science

courses at tertiary level (Chamillard, 2006; Dalal et al., 2009). In this context, Game

Maker’s graphical interface was found to be useful for introducing programming

concepts first, before transitioning to its textual language (Hernandez et al., 2010).

Using this staged approach resulted in improved student performance in programming

assessments over previous years. Dalal et al. (2012) come to similar conclusions in

their research, which uses Game Maker for rapid game creation as an alternative

approach to teaching programming concepts, suggesting that it complements the use

of textual programming languages in computer science education.

Other US research describes how Game Maker was used in a 4 day summer camp for

18 pupils in Years 6-12 (Guimaraes and Murray, 2008). The study identifies strategies

A literature review

 39

to increase student engagement and learning, and recommends a ‘play, modify, create’

model for game authoring. The authors stress the importance of allowing students to

practice reading and modifying the code in sample games before they engage in any

code creation themselves, noting that students are usually given the task of creating

programs before they have learned how to read and understand them (Guimaraes and

Murray, 2008).

More recent US research has investigated how Game Maker can be used to support

the learning of computer science concepts, as well as addressing learning objectives in

other subjects such as mathematics and English (Doran et al., 2012). This study

describes the evolution of a 10 week out-of-school programme and focuses on the

pedagogy of game authoring. The authors recommend giving pupils time to plan their

program segments and write the pseudocode for them before they implement their

games and including ‘guided errors’ to increase pupils’ debugging abilities, noting that

pupils responded best when they were encouraged to make mistakes rather than avoid

them. The authors also describe errors they made in the programme, which included

giving pupils free choice in their game designs; this made delivering the programme

more difficult because teachers had to provide different instruction for each pair. Pupils’

unrealistic expectations of the games they could produce also caused problems. In

subsequent iterations the programme was modified to include more structure and more

development time, and clarified the sorts of games pupils could realistically create. The

task was recast as creating a prototype, focusing on game mechanics rather than

graphics and aesthetics. This allowed for more structured, targeted lessons to be

delivered (Doran et al., 2012). These lessons learned closely reflect similar

experiences in the current research.

Game Maker also features in research which investigates how game authoring can

enhance the learning of science in the primary phase (Baytak et al., 2008; Baytak and

Land, 2010; Baytak et al., 2011). This case study follows Year 5 pupils (n=10) who

make games to teach younger pupils about nutrition (Baytak et al., 2011). Findings

show that making games allowed pupils to represent their knowledge about nutrition in

concrete and personally meaningful ways, and that the activity was engaging and

motivating for pupils (Baytak and Land, 2010). However, there were challenges,

notably with implementing game designs with limited programming skills and

customising graphics (Baytak et al., 2011). Another problem was that the process of

creating games dominated classroom activity, to the extent that the topic focus -

learning about nutrition, was marginalised (Baytak et al., 2011). Indeed there was no

A literature review

 40

significant difference in pre-test and post-test scores of pupils’ knowledge (Baytak et

al., 2008). While the report observes that pupils used increasing numbers of actions in

their games as the project progressed (Baytak et al., 2008) there is no reference to

learning about programming beyond this.

Other research studies which refer to Game Maker do not investigate the learning in

programming that is achieved when pupils create games, or its utility in the ICT

curriculum. Rather, their main focus is on how the program has been used to enhance

particular aspects of learning, such as creativity (Eow et al., 2010), or digital literacy

and multi-literacies (Sanford and Madill, 2007a; Beavis and O'Mara, 2010; Beavis et

al., 2012; O'Mara and Richards, 2012) or multimedia design (Beavis et al., 2012) or

how the program has been used as a motivation for learning in other subjects (Fluck

and Meijers, 2006; Baytak et al., 2008), or how making games enhances collaborative

working practices and promotes social constructivist learning environments (Madill and

Sanford, 2009). There are few published studies which focus on Game Maker and how

it is used to teach programming or game authoring concepts in the UK secondary ICT

curriculum (Hayes and Games, 2008; Daly, 2009).

2.11 Summary

In this chapter I have set the context for the study by reviewing the literature relating to

computer game authoring, organising the various research focuses into themes,

although there is often a crossover between these. According to this literature, game

authoring motivates and engages learners in a range of contexts, and has been used

as an alternative approach to learning subject content across the curriculum, to support

literacy and narrative development, and to provide an engaging and accessible

introduction to computer programming. It is apparent that there is significant interest in

the area of computer game authoring, from a range of perspectives, but that there is a

gap in the literature relating to the study of how computer game authoring is used in the

UK Key Stage 3 ICT curriculum to support the learning and teaching of basic

programming concepts. The present research adds to knowledge in this respect and

seeks to address the following research questions, which explore areas of interest not

widely focussed on in other studies:

1. Since game authoring was a new context for learning for the pupils in this

study, and taking into account the recent debates surrounding the ICT

curriculum (see Chapter 1), this research seeks to explore pupils’

A literature review

 41

perceptions of the process and outcomes of their encounters with such new

curricula. Did they enjoy the activity, what did they make of the resources

and software provided and was working in pairs on an extended, open-

ended task, in which they had some control over their own intellectual

activity and learned in the process of making a digital artefact, an effective

way of working?

What are pupils’ perceptions about the process and outcomes of their

learning during a constructionist-designed game authoring activity?

2. As noted in Chapters 1 and 2, Game Maker is widely used in UK secondary

schools, but under-researched in that context. Does this visual programming

tool, with its graphical interface and integrated development environment

provide an accessible and effective means of learning basic programming

concepts for Year 9 pupils?

How does computer game authoring using Game Maker support the

learning of basic programming concepts and practices?

3. Chapter 1 provided a background for why engaging and accessible contexts

for learning to program are important for the new Computing curriculum.

Arising out of this is the need for a greater understanding of the difficulties

pupils have with designing and programming computer games.

What difficulties do pupils have with game authoring (game design and

game programming)?

4. Several studies reviewed in Chapter 2 identify a range of positive outcomes

which occur when pupils author computer games in primary and out-of-

school contexts. As an extension of this, the current research explores what

value there might be to pupils in a secondary mainstream setting in

authoring computer games, beyond the learning of curriculum content. Does

the activity generate positive outcomes in terms of affect or in changed

attitudes to learning or in respect of pupils’ relationships with technology?

What affective value is there to pupils in authoring computer games?

In the next chapter I outline the conceptual framework which underpins the research

and analysis.

The theoretical framework

 43

Chapter 3 The theoretical framework

3.1 Introduction

This thesis builds its conceptual and analytic frame from the work of Seymour Papert

and the learning theory of constructionism which he first conceived some 30 years ago

(Papert, 1980b, 1993). Throughout the intervening period numerous researchers have

been influenced by Papert’s ideas (e.g. Edith Ackermann, Karen Brennan, Idit Harel,

Celia Hoyles, Yasmin Kafai, Ken Kahn, Richard Noss, Mitchel Resnick), but rather than

promoting new constructs, they refer to Papert’s work and apply his principles in their

own later research. Proceedings of the biennial Constructionism conference contain

papers which describe the use of new computational tools and refer widely to

constructionism, but they do not significantly add to the theory. For example, Kafai and

Burke’s paper, Mindstorms 2 (Kafai and Burke, 2014) argues that ‘computational

participation’ increasingly embraces social connectivity and that this has changed

practices from writing code to creating applications, from composing from scratch to

remixing others’ work, from designing tools to facilitating communities and from screen-

based environments to tangibles. This work presents a development of constructionist

practice, not of the underlying theory, acknowledging instead that Papert’s vision is at

last coming to fruition (Kafai and Burke, 2014).

This chapter therefore outlines the key characteristics of Papert’s original theory,

acknowledging its constructivist roots in Jean Piaget’s research in epistemology (Piaget

and Inhelder, 1969; Piaget, 1972; Piaget, 1973). Papert worked with Piaget from 1958

till 1963 and later acknowledged that Piaget’s ideas were at the centre of the concerns

of his book, ‘Mindstorms’ (Papert, 1980b: 217), in which he advanced his ideas of

constructionism and presented Logo (Papert et al., 1967) as an archetypal

constructionist learning environment. It is beyond the scope of this study to refer to

Piaget’s theories in detail. Instead, I show how Papert has built on a number of key

ideas within a computing framework to develop the learning theory of constructionism.

Papert defined constructionism, his “personal reconstruction of constructivism” (Papert,

1993: 143), in a proposal to the National Science Foundation, as follows:

The theoretical framework

 44

The word constructionism is a mnemonic for two aspects of the theory of

science education underlying this project. From constructivist theories of

psychology we take a view of learning as a reconstruction rather than as a

transmission of knowledge. Then we extend the idea of manipulative materials

to the idea that learning is most effective when part of an activity the learner

experiences is constructing a meaningful product (Papert, 1986).

His purpose here was to extend the constructivist learning theory that children build

their own understandings, by suggesting that they do so more effectively when they are

able to actively construct artefacts that have some resonance for them. The process of

making a product is one aspect of constructionism; the idea that such products should

also have cultural and personal significance is another defining factor.

Papert later promoted the term to describe the theory of learning which grew out of his

work in developing the Logo programming language. He chose the word to evoke and

to synthesise the psychological term ‘constructivism’ and the image of a construction

set (such as Lego or Meccano). The key idea is that “building knowledge structures (‘in

the head’) goes especially well when the subject is engaged in building material

structures (‘in the world’) as children do with construction sets” (Papert, 1991a: xi).

Significantly, constructionism extends the connotation of ‘construction set’ to include

programming languages - ‘sets’ from which programs can be made (Papert, 1993: 142)

and much of the research surrounding the evolution of constructionism is related to

computer-based learning environments which involve some sort of programming

activity (see Harel, 1991; Harel and Papert, 1991a; Kafai and Resnick, 1996a).

This research was conducted by Papert and the Epistemology and Learning Research

Group at the Massachusetts Institute of Technology (MIT) Media Laboratory, from 1985

onwards. The group’s work sought to advance the idea that “computational technology

would give rise to a new science of expressive media” (Papert, 1991b: ix). Crucially,

the computer would not be used solely to deliver instructional material - children would

instead learn how to use computers to express their understanding of geometry, write

programs, create graphics or make a computer game, for example. Children would

learn to be “producers instead of consumers” of educational software (Papert 1993:

107). This idea was important at a time when computers had just begun to be widely

available in schools and discussions of how computers should be used and how they

would change the learning landscape were then, as now, widespread. Papert’s vision

was that the computer would not be used as a tool to reinforce traditional methods of

The theoretical framework

 45

teaching and learning, but that it would radically transform them. Constructionist

computer-based learning environments would enable children to interact with powerful

ideas (Papert, 1980b), and give them ‘good things to do’ so that they can ‘learn by

doing’ better than they could before (Papert, 1980s).

Researchers working alongside Papert at MIT have published widely about

constructionism in practice in the United States, both within formal educational settings,

and in out-of-school programmes, with a particular focus on exploring how computer

programming activities promote learning in mathematics and science education in the

primary phase (see Harel, 1991; Harel and Papert, 1991a; Kafai, 1995; Kafai and

Resnick, 1996a), and more recently, how they enable learners to develop digital

literacy skills in the creation of multimedia artefacts (Kafai et al., 2009b; Resnick et al.,

2009b). The current study builds on this work by exploring how the constructionist

activity of authoring a computer game supports the development of basic computer

programming skills within the mainstream UK Key Stage 3 ICT context.

3.2 The 8 big ideas of constructionism

As the concept of constructionism developed, Papert crystallised its key characteristics

into ‘8 big ideas’ (Papert, 1999 in Stager, 2007) as shown in Figure 7.

Figure 7: The eight big ideas of constructionism

The theoretical framework

 46

These ideas were used as the guiding principles in the foundation of the

Constructionist Learning Lab3, the first learning environment built entirely from the

ground-up to support constructionism (Stager, 2007).

In the following section Papert’s eight big ideas are introduced to present

constructionism as a set of principles which together articulate the theory of learning

which underpins the present thesis.

1. Learning by doing

“The first big idea is learning by doing. We all learn better when learning is part of doing
something we find really interesting. We learn best of all when we use what we learn to
make something we really want” (Papert, 1999a).

At its simplest, constructionism can be defined as “learning-by-making” (Papert,

1991b), although as Papert observes, constructionism is best conceived by actively

building an understanding of it, rather than accepting a definition of it. Moreover, the

theory and applications of constructionism have a much wider reach than a simple

definition can encapsulate (Papert, 1991b). While constructionism shares constructivist

views of learning as “‘building knowledge structures’ through progressive internalization

of actions …” (Papert, 1991b: 1), it then adds the idea that this happens “especially

felicitously when the learner is engaged in the construction of something external or at

least sharable … a sand castle, a machine, a computer program, a book” (Papert,

1990b: 3).

The key idea here is that making something tangible supports learners in thinking

about their own thinking. In computer-based constructionist learning activities, children

learn to program, not for its own sake, but to create a personally meaningful artefact,

such as a computer game, or a piece of software to teach others about a school topic,

or a program to control a robot, or an animation. Importantly, using the computer as a

constructive medium in this way is empowering and dispels the idea that technology is

something that only ‘other people’ can understand and make (Papert, 1996a: 48). In

the process of making digital artefacts, it is argued, children learn how to learn, and

how to think computationally. In short, constructionist activities which allow children to

make a product offer more authentic outcomes for learning than focussing on “the

3 The Constructionist Learning Lab, designed by the Seymour Papert Institute, was a pilot of an
alternative learning environment commissioned by Maine’s State Education Department as an
educational intervention for the Maine Youth Center, a residential facility for young offenders
(Cavallo et al., 2004).

The theoretical framework

 47

acquisition of knowledge and facts without a context in which they can be immediately

used and understood” (Papert, 1986: 8).

This vision for learning with computers challenges what Papert saw as the reductive,

instructionist uses to which computers were predominantly being put in schools, as

exemplified by computer aided instruction (Papert, 1980b, 1993). He hoped instead

that computers would enhance learning and transform education, “provide rich soil for

the growth of intuitions and concepts for thinking, learning and playing” (Papert, 1970:

vii-3), “add new degrees of freedom to what children learn and how they learn it”

(Papert, 1980a: 209).

2. Technology as building material

“If you can use technology to make things you can make a lot more interesting things.
And you can learn a lot more by making them” (Papert, 1999a).

To realise the full potential of computers to enhance learning requires appropriate

computer-based learning environments and activities. An important part of

constructionist philosophy was the development of such environments. Papert

developed the Logo programming language as a tool to support an alternative,

constructionist method for learning mathematics. This language was used to give

commands to a ‘turtle’, initially a physical floor robot and later, a virtual onscreen

object. The turtle gave a visual output to commands given to it and enabled users to

create turtle graphics and later, games and animations. With environments such as

Logo, the computer was used to build knowledge at the same time as building a

computational artefact. The Logo turtle was designed as a “constructed, computational

‘object to think with’” (Papert, 1980b: 11) and supports learning because it offers

possibilities for children to identify personally with the computer. For example, a Logo

program runs a sequence of operations on the child’s behalf and the child can identify

with the movement of the turtle on the screen. To control the movement of the turtle

children use mathematical concepts, such as angles, distance, size, and rotation in a

meaningful context, thus “knowledge is acquired for a recognisable personal purpose”

(Papert, 1980b: 21). Papert referred to this as ‘knowledge in use’ (Papert, 1993: 63)

and distinguished it from knowledge to be memorised and regurgitated in tests and

examinations, or outcomes which are otherwise dissociated from the process of

learning.

The theoretical framework

 48

Throughout his publications, Papert was eager to characterise the computer as a

means to enable exploratory learning. For him the role of the computer was to give

children a sense of empowerment, to enable them to do more than they could do

before and to allow them to learn certain concepts in a natural way, through play

(Papert, 1984). For Papert, the computer was a ‘mudpie’ (Papert, 1984), ‘material’, that

can be ‘messed around with’ just as paints, clay, crayons, wood, rulers and other

materials can (Franz and Papert, 1988). In his view, educational computing should be

active, exploratory, student-directed, and computers should be used as a constructive

medium to enable children to do things and make things (Papert, 1998a), not reduced

to tools of the ‘information age’, their primary use to provide information or access to

information.

According to Papert, computer-based constructionist learning environments can help

children build more advanced intellectual structures, but in order for them to do so,

more emphasis needs to be put on making such environments available in our culture.

Teachers need to make available those cultural materials which are relevant to

intellectual development (Papert, 1980b: 32) and exploit ‘cultural trends’ in their

educational interventions (Papert, 1980b: 181). In terms of the focus of the current

research, one of those cultural trends is computer games.

3. Hard Fun

“We learn best and we work best if we enjoy what we are doing. But fun and enjoying
doesn’t mean ‘easy’. The best fun is hard fun” (Papert, 1999a).

Constructionism is not solely concerned with learning in cognitive terms but also in

terms of affect (Papert, 1986; Kafai and Resnick, 1996b). ‘Affect’ in this context refers

to the relationship between learners and the work they do and the level of engagement

which arises from it. The key idea is that learners become more intellectually engaged

when they are given activities and projects which are personally meaningful to them

(Kafai and Resnick, 1996a: 2).

Whilst learners will be more engaged with projects that have some resonance for them,

they will also enjoy it more if what they are doing is challenging. Papert’s notion of ‘hard

fun’ was first articulated in his book The Connected Family (Papert, 1996a), inspired by

a child who, having used computers for the first time, described the experience as fun,

but really hard (Papert, 1996a: 53). Papert interpreted this to mean that it was fun

because it was hard, that challenging activities give rise to enjoyable learning

The theoretical framework

 49

experiences. But these challenging activities have to be personally and culturally

relevant. They must connect with children’s interests and with areas of knowledge and

skills which are needed in the future (Papert, 2002: A7). Papert suggests that the

concept of ‘hard fun’ is “widely present in children’s thinking” (Papert, 1996: 53),

particularly in the context of computer games, since the best games involve children in

some “very hard learning” (Papert, 1998b: 87), but children are not daunted by

challenging activities as long as they are also interesting (Papert, 1998b: 88).

Papert later describes ‘hard fun’ as a fundamental principle of learning (Papert, 1996a:

52) and contrasts it with “‘touchy feely … make it fun, make it easy’ approaches to

education” (Papert, 2002: A7) and the marketing messages of educational software

companies which claim to make learning ‘easy’ (Papert, 1998b: 87). For Papert, that

should not be the goal of education or curriculum design. Indeed, “[his] whole career in

education has been devoted to finding kinds of work that will harness the passion of the

learner to the hard work needed to master difficult material” (Papert, 2002: A7).

The difficult material that Papert refers to includes programming and mathematics,

which were the areas of learning most involved in early constructionist activities (see

Papert, 1980b, 1993). In creating Logo, Papert sought to make those subjects more

tangible and accessible to young learners, although critics of Logo claimed that it was

too difficult for children (Pea, 1983; diSessa, 1997). Papert’s notion of ‘hard fun’ grew,

partly, in response to these critiques. Moreover, much of the early research

surrounding the evolution of constructionism (e.g. Harel, 1991; Harel and Papert,

1991a; Kafai, 1995) found that using Logo to complete creative design tasks such as

programming computer games was inherently difficult because it involves an

integration of skills across a wide range of subjects, as well as meta-cognitive skills

such as planning, reflecting and self-organisation (Kafai, 1995). Such complex projects

require learners to develop strategies for dealing with complexity (Kafai, 1996), rather

than avoiding it, and this is recognised as an important element of learning to learn in

constructionist ideology.

4. Learning to learn

“Many students get the idea that ‘the only way to learn is by being taught’. This is what
makes them fail in school and in life. Nobody can teach you everything you need to
know. You have to take charge of your own learning” (Papert, 1999a).

Much of the early research surrounding the theory of constructionism is concerned with

the design of learning environments which enable children to learn how to learn. In

The theoretical framework

 50

developing Logo, Papert designed a ‘microworld’ that he hoped would give children

access to new ways of learning and thinking; as they encountered basic programming

concepts for the first time and learned to communicate with the computer they were

also engaged in a process of learning how to learn.

Constructionist learning environments

Papert was interested in how the design of computer-based learning environments

could support children’s cognitive development (Papert, 1980b: 161). He designed the

Logo turtle as a ‘transitional object’, so called because it exists in the child’s world but

enables the child to make contact with abstract mathematical ideas, such as distance

and angles, since these have to be defined to make the turtle move. This idea of

‘transition’ is further enabled in constructionist learning environments since they

provide a context for children to develop their learning skills by allowing them to

construct ‘transitional theories’ as they explore and build and play. For Papert,

transitional theories are part of the process of learning to think (Papert, 1980b: 132),

not deficiencies or cognitive gaps in understanding but ways of “flexing cognitive

muscles, of developing … the necessary skills for more orthodox theorizing” (Papert,

1980b: 133).

Papert hoped that Logo would remove much of the complexity of learning, since it

allowed children to play freely with its elements. As they interact and explore with the

turtle, they develop personal understandings based on their previous experiences

(Papert, 1980b: 162). They use the turtle as an ‘object to think with’ and this makes

learning more visible to them, since the turtle provides immediate visual feedback of

their ideas. The turtle supports learning also because it enables ‘syntonic’ learning,

where children can identify ‘bodily’ with the learning material. As children manipulate

on screen, visual objects or computer-controlled robots, for example, they can use their

bodies to try out angles, distances, rotations (Papert, 1980b). This way of learning

establishes a connection between the child and the learning material, and is

qualitatively different from what Papert refers to as ‘dissociated’ learning (Papert,

1980b: 47), where there is no connection between the child, the learning material, or

the outcome. In this way, constructionist learning environments such as Logo

humanise learning “by permitting more personal, less alienating relationships with

knowledge” (Papert, 1980b: 177). They also give rise to creative exploration, since

children are able to take charge of the turtle and use it for their own purposes, and this

leads to invention, and creativity (Papert, 1993: 176), outcomes which are less likely to

arise in instructionist uses of the computer.

The theoretical framework

 51

In addition, working within the visual plane of turtle graphics allows access to new

modes of thinking (Papert, 1980b: 98) and expression. For example, Logo enables

children to do new things with words; they learn that they can now draw a circle or

make an object move, or repeat an action with words. They learn to ‘think dynamically’,

to control things which move (Papert, 1980b: 94). They learn to create structures in a

modular fashion, which helps them to build and to debug their programs. This aids

learning because “When knowledge can be broken up into ‘mind-size bites’ it is more

communicable, more assimilable, more simply constructible” (Papert, 1980b: 171).

In these ways, Papert saw constructionism as a mode of learning more suited to some

kinds of learner than ‘instructionism’4, which he argued was prevalent in US schools at

the time. For Papert, the focus in education on improving teaching methods and

curricula was misplaced. For significant change to occur learners needed to be given

better opportunities to construct (Papert, 1990b: 3), and making available computers,

appropriate software and constructionist activities was one way of doing this. Where

traditional instructionist approaches to education define what children need to know,

constructionism asserts that children will learn better by finding for themselves the

specific knowledge they need, when they need it; computers and good learning

activities support this endeavour (Papert, 1993: 139).

Styles of learning

Another feature of constructionist learning environments is that they support different

styles of learning. Papert observes that children are natural learners and learn a “vast

quantity of knowledge” without direct instruction before they go to school (Papert,

1980b: 7). This natural, spontaneous learning that occurs as part of living in the world

he refers to as ‘Piagetian learning’. To his mind, this form of learning should be given

more status in schools, since “the best learning takes place when the learner takes

charge”, rather than when they are told what to do and what to learn (Papert, 1993:

24). Papert suggests that constructionist learning environments, such as Logo, foster

Piagetian learning (Papert, 1980b: 187) because they enable children to learn through

exploration, without direct instruction, give the learner control of their own intellectual

activity and allow for personal expression.

But while Papert values the kind of learning which happens without deliberate teaching,

he does not advocate eliminating instruction or leaving children to their own devices,

4 Instructionism refers to “educational practices that are teacher-focused, skill-based, product-
oriented, non-interactive and highly prescribed” (Jonassen, 1996).

The theoretical framework

 52

rather the focus should be on “supporting children as they build their own intellectual

structures with materials drawn from the surrounding culture”, introducing new

constructive elements into the culture of schools and making suitable learning material

available (Papert, 1980b: 31-32).

In addition to his concerns with how computers can enhance the learning process,

Papert was also interested in the different ways in which children approach their work

(Papert, 1991b: 5). Constructionism values a ‘bricoleur’ approach, where children are

“guided by the work as it proceeds rather than staying with a pre-established plan”

(Papert, 1991b: 6). Papert refers to this style of learning as ‘tinkering’ or ‘bricolage’5.

This way of working is playful, exploratory and experimental and in Papert’s view, is as

valid as more formal, structured approaches (Papert, 1993: 144) and the “curriculum

driven learning” characteristic of traditional schools (Papert, 1980b: 156).

Concrete learning

Extending this idea of different styles of learning, Papert argues that there is also a

need to rethink what sorts of knowledge, and what ways of knowing, should have

‘privileged status’ in schools (Papert, 1993: 19). He considers that the value placed on

abstract, formal knowledge in schools is discriminatory and oppressive to those who do

not learn in this way (Papert, 1993: 148) and argues for an ‘epistemological pluralism’,

which values concrete as well as abstract forms of knowledge (Turkle and Papert,

1990).

While Piaget’s theory of cognitive development distinguishes between ‘concrete’ and

‘formal’ thinking and regards formal, abstract reasoning as more advanced (Piaget and

Inhelder, 1969), for Papert, concrete thinking is no less valid (Turkle and Papert, 1990;

Papert, 1993: 151) and he argues that schools need also to value more concrete ways

of knowing (Papert, 1993: 137). The computer has a unique role to play here in that it

can concretise (and personalise) formal or abstract concepts and in so doing support

children in their development from child to adult thinking (Papert, 1980b: 21). For

example, working with a computational entity such as Logo’s turtle allows children to

externalise, or to make concrete, their ideas (Papert, 1980b: 145) because they can be

seen; once seen those ideas can be reflected upon, evaluated and amended if

necessary. Furthermore, whilst providing concrete materials for learning, environments

such as Logo allow children to create something concrete in turn. At the same time

5 Papert borrows the term from Claude Levi Strauss, who in his book Structural Anthropology
(Levi Strauss, 1963-76) uses the word ‘bricolage’ to refer to improvisational methods of theory
building in primitive science.

The theoretical framework

 53

they bring children closer to formal, abstract thinking because as they write and test

computer programs they learn about computational thinking, the sort of thinking that is

necessary when working with computers, such as procedural thinking, systematic

thinking and problem solving, all forms of abstract, formal thinking (Papert, 1980b:

174).

Collaboration

But constructionism is not solely defined by computer-based materials and activities.

The surrounding environment also plays an important part, in terms of the nature of the

relationships (with knowledge, with others) which are set up within it. Constructionist

learning environments are defined by their “interactionist and affective characteristics”

and by their affinity with collaborative learning and the social construction of knowledge

(Kafai and Harel, 1991: 85). Moreover, the traditional notion of collaboration as working

directly with others, is extended by the idea of “collaboration through the air” (ibid.: 88),

where learners interact with free-flowing ideas and concepts present within the learning

environment of the community of practice of the classroom. The integration of these

different ways of working collaboratively characterises the constructionist approach

(Kafai and Harel, 1991: 103).

Papert suggests that another strategy to facilitate learning is to improve the

connectivity within the learning environment, by developing learning cultures, rather

than focussing on interventions with individuals (Papert, 1993: 105). Within such

cultures children learn by sharing their designs and experiences with others (Kafai et

al., 2009b: 81). It is a more collaborative, collegiate way of learning and importantly,

learners of all abilities can make a contribution to it. Furthermore, constructionist

learning activities, which focus on the production of shareable artefacts, designed for

real purposes and audiences, also emphasise the social and the collaborative

dimensions of the theory. Other forms of connectivity are strengthened in such open-

ended projects because children must be able to access knowledge when they need it

and this may involve collaborating with peers, and ‘experts’, and accessing wider

networks via the internet (Papert, 1994).

5. Taking time

“The fifth big idea is taking time – the proper time for the job. Many students at school
get used to being told every five minutes or every hour: do this, then do that, now do
the next thing. If someone isn’t telling them what to do they get bored. Life is not like
that. To do anything important you have to learn to manage time for yourself. This is
the hardest lesson for many of our students” (Papert, 1999a).

The theoretical framework

 54

An important feature of constructionist philosophy is the idea that effective learning is

more likely to occur when children are given time to become personally, intellectually

and emotionally involved in their work (Papert, 1970: vii-4). However, this is unlikely to

occur in the regular school day, where children are expected to switch in and out of

several projects, in a fragmented timetable, conditions which do not allow for “personal

appropriation and expression of personal intellectual style” (Harel and Papert, 1991b:

67). By contrast, longer projects enable learners to try several ideas, to have the

experience of putting something of oneself in the final result (Papert, 1970: vii-8). Units

of work which arise out of the constructionist approach offer learners extended routes

for learning because they are “not done and dropped but continued for many weeks”,

allowing pupils “time to think, to dream, to gaze, to get a new idea and try it and drop it

or persist, time to talk, to see other people’s work and their reaction to yours” (Papert,

1991b: 4).

On a practical level, computer-based constructionist activities which involve the

creation of digital artefacts demand extended time allocations since they are often

design-based, open-ended tasks, which integrate multiple processes, skills and

disciplines. Early constructionist research describes software design projects which

took several months to complete (Harel, 1991; Kafai, 1995) and identifies this long

period of involvement as crucial for learning the programming and design concepts

required to develop software (Kafai, 1995: 14). More recent constructionist curricula

also span extended time frames: Globaloria (Harel Caperton et al., 2010) courses

demand 40-55 hours; Gamestar Mechanic (E-line Media, 2013) requires a semester

long, 50 plus lessons.

For Papert, giving children time to learn something is ‘an obvious principle’ (Papert,

1993: 89). Learning takes time because the connections and associations which are

part of it do not come all at once but emerge gradually, almost as an act of ‘cultivation’

(ibid.: 104). Moreover, immersion in an extended project gives children a sense of what

it is like to carry out a complex project and to manage the problems which arise out of

their own work and ideas (Papert, 1994).

6. Freedom to get things wrong

“You can’t get it right without getting it wrong. Nothing important works the first time.
The only way to get it right is to look carefully at what happened when it went wrong.
To succeed you need the freedom to goof on the way” (Papert, 1999a).

The theoretical framework

 55

Constructionism promotes the idea that it is important for learning to give pupils the

freedom to get things wrong. Papert refers to this as the ‘biggest idea of all’ and

suggests that, in the context of school, children often have a model of learning which is

dominated by a sense of being ‘right’ or ‘wrong’, which inhibits learning and which is at

odds with how many of us actually learn in the real world, by being ‘vaguely right’ or

‘fumbling’ toward a solution or understanding (Papert, 1993: 167). Computer-based

constructionist activities offer an alternative model for learning where concepts of ‘right’

and ‘wrong’ are less applicable. Whilst many children “lack a model of understanding

something through a process of additions, refinements, debugging and so on” (Papert,

1970: 9), learning to program introduces them to an alternative epistemology, where

isolating and correcting errors, evaluating and refining procedures and making things

work is an iterative process. Errors in this context are to be studied, not avoided

(Papert, 1980b: 61), since they are a source of information (Papert, 1993: 184).

Moreover, in programming activities ‘right’ and ‘wrong’ are not absolutes – but exist on

a continuum - a program might have a ‘bug’ but still function to some extent. And these

bugs can be fixed by exploration and play (Papert, 1980b: 62). Such constructionist

approaches change children’s relationship with ‘right’ and ‘wrong’ and this is important

for their development as learners because they see that problems can be solved in

stages, that mistakes do not invalidate the whole enterprise.

These changing perspectives of right and wrong are joined by other shifts. For Papert,

partial and qualitative knowledge constitutes ‘good’ knowledge, as much as complete

and quantitative forms (Papert, 1993: 21). Learners can begin by “knowing something

in a very fumbly sort of way” (Papert, 1993: 64). In any case, he acknowledges, most

things are only partially understood (Papert, 1980b: 117) and as developing learners,

children can benefit from coming to realise that partial understandings are inevitable

when dealing with understanding complex ideas.

In traditional epistemology, knowledge is valued for being correct and considered

inferior if it lacks precision (Papert, 1993: 185), but alternative epistemologies are

introduced when dealing with constructionist programming activities. As an example

Papert refers to the difference between the precise commands needed to create

programs to draw turtle graphics and the ‘vague’ and general programs which can be

written to control a turtle equipped with sensors which makes use of feedback (Papert,

1993: 187). The key idea here is that in engaging with different sorts of programs

(drawing a circle in Logo, programming multiple agents in simulations, writing programs

The theoretical framework

 56

which make use of feedback) children are acquainted with practices which are less

concerned with precision and correctness and more to do with emergent thinking.

When engaged in programming, ‘knowing the right answer’ is less important, since

what matters is getting things to work (Fonseca et al., 1999), and children learn that

there may be multiple solutions to the problems they encounter.

7. Teacher as co-learner

“Do unto ourselves what we do unto our students. We are learning all the time. We
have a lot of experience of other similar projects but each one is different. We do not
have a preconceived idea of exactly how this will work out. We enjoy what we are
doing but we expect it to be hard. We expect to take the time we need to get this right.
Every difficulty we run into is an opportunity to learn. The best lesson we can give our
students is to let them see us struggle to learn” (Papert, 1999a).

In constructionist learning environments the teacher is present as a co-learner and the

mode of learning is less dominated by lesson plans or a set curriculum (Papert, 1980b;

Kafai, 2006a). Pupils are given ownership of their learning and encouraged to manage

tasks and timing themselves. Instruction itself is more distributed and negotiated,

“constructed in interactions between the teacher and students” (Kafai, 2006a: 36). In

this vision of learning experts and novices learn together for real purposes (Papert,

1980b: 179), activities are participatory and authentic. Teacher interventions are driven

by pupils’ experiences and interests and they share their own learning discoveries and

responses to activities. Importantly, the flow of ideas and instruction is reciprocal.

Papert’s idea of teacher as co-learner was partly pragmatic: when Logo was first

introduced in schools in the 1980s, the use of computers and of Logo itself was a new

venture for many teachers. Children saw their teachers learning through exploration

and from mistakes they had made. While other collaborations were ‘fictions’ where the

teacher already knew the answers, in Logo projects, teachers new to programming

learned alongside their pupils and thus were engaged in real intellectual collaboration

(Papert, 1980: 115). Moreover, writing open-ended programs throws up authentic,

individual problems that neither teacher nor learner will have encountered before. In

sharing these problems and the experience of finding solutions to them, children

“participate with a good learner in an act of learning” and learn to become good

learners themselves (Papert, 1999b: ix). From a constructionist perspective, teachers

should do a lot of learning in the presence of children and in collaboration with them

(ibid.: xv) since this encourages children to view learning as a lifelong process.

The theoretical framework

 57

Beyond school settings, constructionism promotes the idea of ‘teacher as co-learner’ in

after-school clubs, where the interaction between individuals is more akin to an

apprenticeship model (Kafai et al., 2009b). In Computer Clubhouses for example,

‘teachers’ are mentors, volunteers from business or undergraduate students, who learn

about new creative technologies alongside club members (Kafai et al., 2009b).

Mentoring in these contexts is conceived as a form of partnership, where both parties

have something to offer the other.

8. Using computers to learn in a digital world

“We are entering a digital world where knowing about digital technology is as important
as reading and writing. So learning about computers is essential for our students’
futures but the most important purpose is using them now to learn about everything
else” (Papert, 1999a).

Constructionist learning activities bring to the fore areas of knowledge which are crucial

in the modern world if young people are to participate with understanding in the

construction of what is new (Papert, 1999b: ix). Papert refers to this area of knowledge

as ‘cybernetics’ (Papert, 1993), a subject which incorporates computational thinking,

systems thinking and programming. In order for this knowledge to be accessible to

young learners and to make it so, a different culture for computer use needs to be

developed. In this context, Papert presents constructionism as a conceptual framework

for how computers could be used in education, so that “computational material [is used]

as an expressive medium” (Papert, 1991b: 4) and a ‘medium for thinking’ (ABC Online,

2004) rather than a new tool added to old practices (Papert, 1997).

However, whilst “computers … provide an especially wide range of excellent contexts

for constructionist learning” (Papert, 1991b: 8), computers themselves are not the

primary concern. Papert resists ‘technocentric’ views which ascribe more importance

than is appropriate to technology alone as an agent of change in education (Papert,

1990a). Rather, he is interested in how computers can be harnessed to positively affect

the nature of the learning process and the production of knowledge by students.

While Papert lamented school as a paper-based system unsuitable for digital society

(ABC Online, 2004), he acknowledged that widespread use of educational technology

would inevitably lead to new ways of thinking and learning. This he saw as an

evolutionary process, which would be augmented by the use of computers in the home

(Papert, 1996b), since it takes time for technology to give rise to new practices and the

new cultures that support them.

The theoretical framework

 58

The development of Logo and its application in schools was itself an evolutionary

process. Early Logo projects were short-term tasks commonly used to introduce pupils

to programming and turtle geometry (Papert, 1997). The later development of

Lego/Logo (Sargent et al., 1996) allowed pupils to construct robots and machines

which were controlled by Logo programs. This gave pupils access to new types of

programming structures, which involved the use of feedback given by sensors. Short-

term projects gave way to extended projects in which children used new versions of

Logo (LogoWriter, MicroWorlds) to design and produce real products such as computer

games (Harel, 1991; Kafai, 1995), where programming creates on screen action arising

from the interactions between objects and the properties of objects. In such ventures,

computers are used for ‘real world’ purposes (Papert and Solomon, 1971), rooted in

children’s culture and learning is more authentic because much of it arises out of the

need to achieve particular effects in context (Papert, 1994).

To Papert’s mind, computers “should serve children as instruments to work with and to

think with, as the means to carry out projects, the source of concepts to think new

ideas” (Papert, 1993: 168). His concern was that computers were being used in limited

ways, such as for computer aided instruction, which neither harnessed the computer’s

potential, nor improved children’s learning experience. In contrast, by learning to

program computers children learned about how computers work and this was important

at a time when such technology was becoming increasingly opaque to lay people

(Papert, 1993). Papert wanted to steal programming from the technologically privileged

and give it to children (ibid.: 180) and to provide routes to ‘softer’, more playful

relationships between children and technology, such as those which are set up when

children create programmable entities that they are interested in or make computer

games, for example.

In Papert’s view the focus on the presence of computer technology in schools, on the

development of mechanical skills or the use of specific ‘office’ software applications, or

on how such technologies give access to information, denies children any deep

understanding of computing or agency over the technology. Papert wanted to see

computers used as “something the child himself will learn to manipulate ... thereby

gaining a greater and more articulate mastery of the world, a sense of the power of

applied knowledge and a self-confidently realistic image of himself as an intellectual

agent” (Papert, 1970: vii-1).

The theoretical framework

 59

3.3 Summary

This chapter has outlined the learning theory of constructionism, which evolved

alongside the introduction of computers in schools, and has presented Papert’s own

synthesis of its main principles as ‘eight big ideas’. In summary, the approach argues

that children learn best by doing, and specifically, by making computer-based artefacts

which have personal and cultural meaning for them. In making such artefacts, young

people are engaged in a process of constructing their own understanding of the

knowledge required to make it. Part of that process involves learning how to find the

knowledge they need and how to solve problems and correct mistakes along the way.

This is best done when children are given sufficient time to become personally involved

in what they are learning and making. Important also is to give children some control

over their learning and some freedom over how they approach their work.

Acknowledging that making things with computers often involves some kind of

programming and that such activities can be difficult, the theory seeks to find ways to

support learners in their endeavours. These include situating learning in the context of

use, encouraging collaboration between teachers and peers, and making available

suitable computer-based learning environments which provide concrete opportunities

for learning.

From being a theory of learning ‘in evolution’ (Papert, 1991b), constructionism is

nowadays a commonly cited theoretical framework within educational research (Bulfin

et al., 2013). In particular, this theory of learning informs much of the research into

computer game authoring from a programming perspective (see Harel, 1991; Harel and

Papert, 1991b; Kafai, 1995; Kafai and Resnick, 1996a; Kafai et al., 2009b) and thus

provides an appropriate theoretical frame for the current study.

3.3.1 Constructionism and the current study

The current research explores constructionism as a suitable approach for learning how

to design and program a computer game, using Game Maker, in the context of the

mainstream UK secondary ICT curriculum. This focus complements and extends the

bulk of constructionist research which has been conducted in the United States, using

Logo to teach primary aged pupils about mathematics (Harel, 1991; Kafai, 1995; Kafai,

2006b) and more recently, using Scratch in out-of-school contexts to create multimedia

artefacts (Kafai et al., 2009b) and in the primary phase to teach about programming

and science (e.g. Baytak and Land, 2011a, 2011b).

The theoretical framework

 60

In particular this study embraces the notion that pupils should be producers as well as

consumers of digital media and gives them an opportunity to use computers as a

means of creative expression to make a product of personal, social and cultural

relevance to them, an enterprise not strongly present in the National Curriculum

programme of study in operation until 2012. It explores pupils’ perceptions of the

constructionist approach they followed and their responses to the outcomes they

produced and considers to what extent such ways of working are effective in learning

basic programming concepts and practices.

It explores whether constructionism is a suitable pedagogic approach for introducing

new curricula (a new computing curriculum becomes statutory in September 2014),

given that the constructionist imperatives of teacher as co-learner and learning by

doing are likely to become practical necessities for those teachers who have little

experience of programming or of teaching textual programming languages. In such a

climate the importance of pupils themselves learning how to learn is brought to the fore

and so this study is also concerned with whether extended, open-ended projects and

learner-directed and collaborative working patterns are successful strategies in

contemporary contexts.

Research design and methodology

 61

Chapter 4 Research design and methodology

4.1 Introduction

This chapter outlines the research design and discusses the methods that were

selected to collect and analyse the data. It additionally describes how the research

design and methods chosen are appropriate to the research questions and purpose.

The rationale for selecting a qualitative approach is presented. Within this broader

framing, the use of case study as the overarching design is justified. The data

collection methods are described and issues regarding the validity and reliability of the

data are considered. The data analysis strategy used and the ethical procedures

followed are also outlined.

4.2 Qualitative research

The purpose of the research is to explore pupils’ perceptions about the process and

outcomes of their learning during the game authoring activity, and following on from

this, to gain an appreciation of what they learned, what they valued and what difficulties

they encountered. The research strives for depth of understanding in these areas, and

it is therefore a qualitative enquiry. A qualitative approach was selected as the most

appropriate means of addressing the particular research questions posed in this study,

since the research activity was classroom-based and the particular unit of work pupils

followed was essentially creative and ongoing. The research design was therefore

concerned to capture aspects of the experience of Year 9 pupils as they learned to

create computer games for the first time. However, whilst the study has taken a

qualitative focus, some quantitative data are presented as indicators of extent of certain

findings within the group.

4.2.1 Qualitative research and computing education

In recent years qualitative research methods have become more common in computing

education research (Kinnunen and Simon, 2012) and such approaches have much to

offer in the field (Berglund et al., 2006). However, since quantitative approaches have

predominated in research into the teaching and learning of programming (Sheard et al.,

2009) there is a need for more ‘pedagogically anchored qualitative research’ which

Research design and methodology

 62

makes a practical contribution, based on established theoretical frameworks, in how to

teach and learn aspects of computing (Berglund et al., 2006; Sheard et al., 2009). This

is particularly important in terms of the current situation in the UK, where teachers are

preparing themselves to deliver a new Computing programme of study from September

2014 and discussions of the pedagogy of programming and computing are beginning to

surface in online forums and blogs (e.g. CAS, 2008a; Guzdial, 2009; ScratchEd, 2009;

TES, 2013). The current study adopts a qualitative approach and takes as its

theoretical frame the learning theory of constructionism (see Chapter 3), applying it to

computer game authoring as a context for learning basic programming concepts. In so

doing it contributes to the field of qualitative research in secondary computing

education.

4.3 Rationale for selecting case study

A case study is a detailed description and analysis of a bounded system (the case)

(Merriam, 2009: 40) and investigates an area of interest within its real-life context (Yin,

2009: 18), collecting its data from multiple sources of information (Creswell, 2007: 73).

It allows the researcher to conduct an “intensive, holistic description and analysis of a

single instance” (Merriam, 1998: 21). Case study was selected since it allows the study

of an evolving situation, that is, the introduction of a unit of work in game authoring in

the Key Stage 3 ICT curriculum. The case is ‘intrinsically interesting’ to the researcher

and is being studied to achieve as full an understanding of the phenomenon (game

authoring) as possible (Merriam, 2009: 42). It is therefore an exploratory case study.

In this research, the case is a group of Year 9 pupils who completed a unit of work in

computer game authoring over an eight week (16 x 50 minute lessons) period. The unit

of analysis is both the group and the unit of work, which constitute a bounded system

(Merriam, 2009: 41). A single case design was chosen on the basis that the class

selected is a ‘typical’ case of a wider population of Year 9 pupils. Lessons learned from

typical cases are assumed to be informative about the experiences of the average

[child/class] (Yin, 2009: 48).

Within the case study, several methods of data collection were selected to strengthen

the internal validity of the data: pupil paired learning conversations; constructed

computer games and other pupil documents; group interviews and artefact-based pair

interviews. According to Yin (Yin, 2009: 11), this ability to deal with a variety of

Research design and methodology

 63

evidence is one of the method’s strengths.

Cases studies are useful in presenting information about areas of education where little

research has been conducted (Merriam, 1998; Gerring, 2007), because they can

provide a base or a starting point for further investigation. In the current study one

group of Year 9 pupils learned about game authoring using a particular piece of

software, which has its own pedagogy, and thus makes a context- and tool-bound

contribution to the field. Its findings may be usefully extended by further studies which

investigate other tools, other populations or other theoretical frameworks. As outlined in

Chapter 2, few contemporary studies of computer game authoring in the UK secondary

ICT curriculum exist, so the present case study offers insights, experiences, and

perspectives which build up the field’s knowledge base and may help to structure future

research (Merriam, 2009: 51). In this regard, the case study method can “suggest to

the reader what to do or what not to do in a similar situation” (Olson in Merriam, 1998:

30) and this can be fruitful when considering new practices, such as the introduction of

a new unit of work, area of learning or a new approach, as in the case reported here.

Key constructionist research (Harel, 1991; Papert, 1993; Kafai, 1995) also incorporates

case study within its design, focussing on the use of particular learning environments

(software) and implementations of game authoring and programming curricula, as in

the current study. Case study is also commonly used in broader computing education

research when specific courses or tools are presented (Berglund et al., 2006).

4.3.1 Limitations of case studies

But the particular features of case study which provide the rationale for its selection

also present limitations (Merriam, 2009: 51). “Case studies can oversimplify or

exaggerate a situation” (Guba and Lincoln in Merriam, 1998: 42) or claim to present the

‘whole picture’, whereas in fact they are only a part of it. Case studies are also limited

by the sensitivity and integrity of the researcher. Ethics too can be compromised in

case studies, where, “an unethical case writer could so select from available data that

anything could be illustrated” (Guba and Lincoln in Merriam, 1998).

The case study method is otherwise criticised for lacking reliability, validity and

generalisability, but these are not the chief concern of qualitative research (Merriam,

1998). Rather, the focus is on understanding the particular case (Evers and Wu, 2007:

201) and since a case study does not represent a ‘sample’, it does not need to be

generalisable to wider populations.

Research design and methodology

 64

To strengthen the reliability of a case study in the face of such criticisms, Yin

recommends the development of a case study database (Yin, 2009: 45) to store data

and procedures followed, so that the research could be replicated. In terms of the

current study, a database of pupil voice recordings and interview data, transcripts,

interview schedules, and the coding system used at the analysis stage was created

and stored in NVivo 8 (QSR International, 2008). Additionally, documented research

procedures, data collection guidelines and a scheme of work were produced, which

serve to strengthen the reliability of the research.

4.4 Research design

4.4.1 Pilot study

A pilot study was completed with one group of Year 9 pupils (n=23) in the autumn term

(2009) preceding the main study, during which the research instruments were tested

and the scheme of work was trialled. Pupils worked in pairs to create computer games

using Game Maker. Pupils’ journal entries were transcribed and coded. From field

notes recorded throughout the pilot study, the following issues emerged; these were

addressed in the main study by making the changes indicated in italics:

 Pupils had problems creating a coherent original narrative for a game. Greater

emphasis was placed on the narrative aspects of game authoring in the scheme

of work.

 Although pupils were excited by the idea that they are being recorded as they

worked, there was an initial self-consciousness in using the voice recorders.

This ‘inhibiting’ effect is commonly observed in classroom based research,

where pupils are being observed or recorded (Edwards and Westgate, 1994). It

was likely that as pupils became accustomed to recording their experiences in

this way they would find it less intrusive. With regard to the main study, to

minimise the effects of this self-consciousness, data collected in the early

sessions was not included in the analysis.

 Unspoken thoughts, feelings and impressions could not be captured by the

digital recordings, so pupils were asked to refer to these in a journal, set as a

homework task. The disadvantage of this method was that these journal entries

were removed from the immediate instance and so may not offer a reliable

Research design and methodology

 65

record. Pupils were resistant to using a journal to record their work in progress

and entries were mainly descriptive rather than reflective or analytical. For the

main study, pupils were asked to make their journal entries on the same day

that they had their ICT lessons, so that they would be able to remember their

experiences more accurately. Prompts were given for what to write in the

journals and these asked for information that did not rely solely on memory, but

instead gave pupils an opportunity to express their opinions, experiences, and

the difficulties they encountered.

 During the pilot, it became apparent that the cognitive load (Sweller, 1994) of

learning new concepts, new software, new vocabulary and new activities (game

authoring) was a challenge for many pupils. For the main study more resources

were provided to support pupils in the game authoring process, and the scheme

of work was modified to deliver targeted sessions relating to those concepts

that pupils found difficult in the pilot study.

4.4.2 Selecting a sample

A purposive non-probability sample (a non-random group selected for a specific

purpose - to trial the game authoring activity) on the basis of their typicality (of year 9

pupils), was selected, “in the full knowledge that it does not represent the wider

population; it simply represents itself” or instances of itself in a similar population

(Cohen et al., 2007: 113). A purposive non-probability sample is often used in small

scale, case study research (ibid.), since it is not the intention of such studies to

generalise findings to a wider population.

The criteria for selecting the pupils in this case study were that:

i) They should reflect the spread of ability in a typical mixed ability Year 9 group.

ii) There should be an equal mix in terms of gender.

iii) They should be timetabled 2 x 50 minute lessons of ICT per week.

In Creswell’s terms, the sample was achieved by selecting an ‘accessible’, ‘ordinary’,

‘typical’ case (Creswell, 2007). Purposive sampling was achieved within the case in

terms of which pupils were selected as members of the interview groups, and for the

paired interviews. Three boys and three girls were selected for each group interview,

and of these, two were selected from each of the higher, average and lower ability

ranges. For the paired interviews, four boys and three girls were selected to represent

Research design and methodology

 66

a similar ability spread. Seventeen of the twenty-two pupils in the class were

interviewed either as part of a pair or a group. Pupil voice recordings, authored games

and documents were not sampled and all units produced were included in the analysis.

4.4.3 Participants

The participants were 22 Year 9 pupils (12 boys; 10 girls; 13-14 years old). In planning

and developing their games they worked in self-selected pairs, apart from two pupils

(one boy and one girl) who worked alone, by choice. One pair was mixed gender; the

other 9 pairs were the same gender. Pupil journal entries and storyboards were

completed on an individual basis.

The research was conducted in a high achieving school in South East England. Ten of

the twenty-two pupils in the group achieved ‘above average’ values in their average

Cognitive Abilities Test (CAT) scores; 7/22 of pupils achieved a CAT score of 120 or

higher in one or more CAT measures, which suggests that the group was of above

average ability with respect to national profiles. Ability was added as an attribute to

each case (pupil) in NVivo, using Jesson band level, the performance indicator used by

the research school (see OFSTED, 2008) as shown in Figure 8.

Figure 8: Pupils’ Jesson band ability level

4.4.4 The scheme of work

This was the first time pupils had made a computer game as part of formal ICT

lessons. Previous learning in visual programming was delivered in Years 7-9 using

Flowol 3 (Bowker, 2005) and used a flow chart paradigm to introduce pupils to

0

1

2

3

4

5

6

low below
average

average above
average

high

Jesson band

P
u

p
il

s

Boys

Girls

Research design and methodology

 67

programming concepts including inputs, outputs, loops, decisions, sub-routines and

delays.

In constructionist learning activities, children work on extended projects, learning by

doing and finding for themselves the specific knowledge they need (Papert, 1993: 139),

supported by teacher guidance and appropriate resources. Accordingly, the scheme of

work spanned 16, 50-minute lessons and was structured to provide a frame and focus

for each lesson, a mix of teacher-led, independent and pair work, a range of video,

print and computer-based resources, and an integration of written, oral and computer-

based activities (see Appendix 7). Homework was set once per week and asked pupils

to write about their work in progress and to describe any problems or difficulties they

experienced.

4.4.5 Working in pairs

Pupils were invited to work in self-selected pairs to plan and construct their computer

games, as part of creating a collaborative, constructionist learning environment. In this

respect, working in pairs can promote learner autonomy, since pupils are able to use

the interactions with their partner and the software as potential sources of support,

reducing their reliance on the teacher. Although a scheme of work provided a

framework for the activity, pupil pairs were able to negotiate their own priorities on a

lesson-by-lesson basis. In addition, pupils expressed a preference for working in pairs

and had not been given a formal opportunity to work in this way on an extended project

before.

Pair work as a teaching strategy brought several benefits. It allowed partners to share

ideas and complete tasks collaboratively, an important characteristic of constructionist

learning theory (see Chapter 3). Working in pairs may also have promoted and

sustained pupil engagement, important for the completion of such a novel, complex,

open-ended, activity. In their working conversations pairs were able to construct

understandings between themselves and provided a source of intellectual and

motivational support for each other (Vygotsky, 1978). Moreover, peer explanations may

be better matched to pupils’ existing understandings (Lewis, 2011) than other

resources. On a practical level, pupils may feel more involved and be more actively

engaged when working in pairs, rather than larger groupings. They are also more likely

to succeed in cognitive tasks when they work in pairs (Kutnick et al., 2005: 47). This

aspect of the research design also enabled the researcher to collect voice data of

pupils’ working talk as they co-constructed their games.

Research design and methodology

 68

4.5 Data collection

Data were collected over an 8 week period. Several methods were used to capture

multiple sources of data, to strengthen its internal validity.

4.5.1 Data set

The data set for this study consists of:

i) Ten transcripts of digital voice recordings of pupil pairs’ working conversations (4

hours, 28 minutes).

ii) Two transcripts of group interviews. At the end of the project, semi-structured

interviews were recorded with two groups of 6 pupils (3 boys; 3 girls), where they

talked about their game authoring experience with each other (2 x 43 minutes).

iii) Three transcripts of artefact-based paired interviews, in which pupils’ games were

loaded and used as the focus (1 x 39 minutes, 1 x 33 minutes, 1 x 53 minutes).

iv) Twelve authored games.

v) Eighty-five pupil documents. Pupils documented their reflections on aspects of their

work in an ongoing written journal and completed planning documents (storyboard,

game design document, game interactions).

vii) Observation notes were recorded throughout the field work.

These multiple sources of evidence allowed for aspects of pupils’ experience of the

game authoring activity to be articulated from different angles. Borrowing Yin’s diagram

(Yin, 2009: 117), Figure 9 below illustrates the sources of evidence used to collect data

in the current research.

Figure 9: Convergence of multiple sources of evidence

Research design and methodology

 69

The following section considers the strengths, assumptions and problems present in

interviewing as a data collection method generally and of interviewing pupils in

particular.

4.5.2 Interviews

Interview is an important source of information for case studies (Merriam, 2009; Yin,

2009) and was selected as a method of data collection since the research was

concerned with exploring pupils’ experiences and perceptions of the game authoring

activity, and interview allowed pupils to express themselves in their own terms in this

regard. The ‘shared, negotiated’ nature of interviews (Cohen et al., 2007: 151) allows

for data to be constructed between researcher and pupils and was a useful tool in this

classroom-based research.

Interview schedule

A semi-structured interview schedule was designed to achieve a measure of

consistency between interviews (see Appendix 3). The schedule included a mix of

more and less structured questions since these can be used flexibly, i.e. wording and

question order can be varied (Merriam, 2009), whilst allowing for comparison between

respondents and making data collection more systematic and comprehensive (Cohen

et al., 2007). This format was selected to enable the researcher to be responsive to the

groups and to individuals’ responses, and to probe for deeper answers whilst

maintaining an informal structure.

Questions included introductory questions to ease pupils into the interview, followed by

key questions, framed around the research questions and open questions to enable

respondents to talk about their experiences and understandings. Pupils were assured

that there were no right or wrong answers and that all contributions were valued.

Similar questions were asked in both the group and artefact-based pair interviews,

however there were some changes in wording, and in the follow-up questions to the

answers obtained.

The schedule included a mix of ‘experience’ and ‘opinion’ questions (Patton, 2002 in

Merriam, 2009: 96) and “hypothetical, devil’s advocate, and interpretive questions”

(Strauss et al., 1981 in Merriam, 2009: 97). These different question types were

selected to encourage pupils to share aspects of their experiences of the game

authoring activity, although it is acknowledged that pupils’ answers do not provide

evidence of their experience, but only an account or representation of an experience

Research design and methodology

 70

(Silverman, 2011: 181).

Interview sample

One of the strengths of the interview sample was that 17/22 pupils were represented in

either the group or the artefact-based pair interviews. Group interviews were conducted

with two groups of six pupils (3 boys; 3 girls) to ensure that both genders were equally

represented. Pupils were also selected to achieve a balance in terms of ability. Groups

consisted of two pairs (mm/ff) and two individuals (m/f). Working pairs chosen for the

artefact-based interviews similarly represented the gender and ability mix of the class.

Paired interviews were same sex (2 x boy pairs; 1 x girl trio), since 9/10 pairs elected to

work with a partner of the same gender. One pair interview included a third pupil, to

give one of the two pupils who worked alone the opportunity to contribute to the spoken

data collected.

Group interviews

The group interview was selected as a data collection method since it promotes

interaction and allows discussions to develop, increasing the possibility of a wide range

of responses. Additionally, pupils may feel more comfortable being interviewed in a

group and can support, prompt, influence, agree or disagree with each other leading to

a more complete record (Cohen et al., 2007). The interviews were conducted in the

same room in which pupils had their ICT lessons, during the teacher/researcher’s non-

contact time; pupils were withdrawn from other lessons to take part in the interviews.

The interviews were recorded digitally and each spanned 43 minutes.

The data collected were socially constructed within the interaction of the group

(Merriam, 2009) but will have been constrained to some extent by the presence of the

teacher/researcher and the digital voice recorders. Although the interviews were

informal, the teacher/researcher managed the transitions from one question to the next

and encouraged all pupils to participate. Within each question pupils directed their own

dialogue and the transition from one turn to another was managed cooperatively by

pupils themselves.

Artefact-based paired interviews

Artefact-based interviews are useful to gain an understanding of pupils’ experiences of

creating digital media and give some account of the concepts they have used and the

process they followed, as well as the product generated (Brennan and Resnick, 2012).

They can also be useful insofar as they create a natural context for exploring ideas,

Research design and methodology

 71

artefacts can trigger ideas that pupils might not articulate without them and they allow

the interviewer to use pupils’ natural language anchored by the specifics in the

artefacts (Henderson et al., 2007).

Artefact-based interviews were conducted with three pairs towards the end of the

project. In these interviews, pupils were asked to load their constructed games and to

refer to them as appropriate. This added context, focus and immediacy to the questions

and responses which occurred, whilst also reducing problems with retrospective bias

and memory accuracy which may have weakened the reliability of the group interview

responses. Using the games within the interviews was supportive to pupils because it

gave them a visual point of reference for their responses and something tangible to talk

about.

Limitations of the method are that it is time consuming - and although four games were

discussed (three pair and one individual) this only represents 1/3 of the games. Even

though the presence of the artefact may have reduced problems with memory

accuracy, because the games were created over time and the interviews were held at

the end of the unit of work, pupils’ ability to remember details remains an issue.

Validity and reliability of interview data

The main concern with interview data is the extent to which the questions asked collect

reliable and valid information. The interview questions were based on the research

questions, to increase the likelihood that pupils’ responses would yield data relevant to

the enquiry. To minimise the potential for misunderstanding what respondents said, or

respondents not understanding what was being asked, the researcher checked her

interpretations with pupils by asking follow-up questions or by probing to achieve

greater clarification. She also endeavoured to phrase questions clearly and simply and

to maintain an informal, conversational and naturalistic tone throughout the interview.

However, in this classroom-based research, the validity and reliability of the interview

data is challenged by the ‘asymmetries of power’ (Cohen et al., 2007: 152) between

interviewer and interviewees, which in this case existed on several levels: the

researcher was the data collector, an adult, and the teacher. Whilst a power differential

is acknowledged, the researcher aimed to reduce its effects in the following ways: in

the group interviews the presence of five other pupils may have made the interviews

less intimidating (Cohen et al., 2007: 374); the power differential may also have been

reduced because the researcher had been the interviewees’ ICT teacher for almost

Research design and methodology

 72

three terms, so there was a pre-existing, positive working relationship between both

parties. Some commentators (e.g. Gosling, 2007) suggest that less of a power

differential now exists between pupils and teachers because of the rise of so called

‘student-centred’ approaches. Indeed, the constructionist philosophy on which the

study was based was conceived to empower young people, not only in terms of their

relationship with technology, but also as learners. In this regard relations in the

classroom are more negotiated and collaborative. The researcher sought to create the

same feeling in the interviews by making it clear in the interview preamble that there

were no right or wrong answers and that pupils were not expected to answer questions

directly to the interviewer, but could use the questions as prompts for a discussion

between themselves. Interviews were conducted in the group’s ‘normal’ ICT classroom,

although some pupils had been withdrawn from other lessons to be interviewed, so the

event was ‘unusual’ in that respect and may have affected their responses. At the

same time the interviewees themselves had power, in so far as they could choose to

contribute or not, pay more or less attention to the questions asked and answer more

or less sincerely (Cohen et al., 2007). In practice, pupils seemed to value being

interviewed and wanted to share their views with the researcher and with each other.

A power differential may also have existed in terms of how much both parties knew

about the interview topic. Certainly among the pupils themselves there were different

levels of ‘expertise’ and those who felt that they were less ‘knowledgeable’ than others

in the group may have been less forthcoming in answering some questions. To remedy

this, the researcher endeavoured to draw all pupils into the conversation and to ask a

mix of knowledge, opinion and experience questions (Merriam, 2009: 96). As a

teacher, the researcher had more experience of using the software, and knew more

about the process of game authoring it involved, but in other respects was a ‘co-

learner’ and did not have the same experience of playing computer games as the

pupils. Additionally, as part of an exploratory case study the questions were designed

to investigate pupils’ opinions, perceptions and experiences, so in this respect the

teacher/researcher was not more knowledgeable than the pupils.

Tensions may also have existed in terms of the relationships between pupils in the

interview groups and this may have impacted on the responses received. Some pupils

may have felt intimidated by others in the group, or by certain questions, others may

not have wanted to disagree with friends or recognised ‘experts’. Some pupils may

have given what they perceived to be socially desirable responses or answers they

thought the interviewer as teacher might want to hear (Cohen et al., 2007). Some

Research design and methodology

 73

questions involved asking pupils what aspects of game authoring they found difficult, a

potentially sensitive issue, in so far as some pupils may not have felt comfortable

acknowledging that they found aspects of the activity difficult, since to do so may be to

admit a perceived lack of understanding or ‘intelligence’.

Another concern with the reliability of the interview data is that it was subject to pupils’

memory accuracy. Since the interviews were conducted at the end of the game

authoring activity, some of the questions asked may have been difficult for pupils to

answer because they may have referred to items which pupils could not remember

accurately. Retrospective bias may also have reduced the reliability of interview

responses.

The interview was also time limited and this will have had an impact on the amount of

data collected. However, it was important to limit the duration of the interviews in terms

of pupils’ stamina for answering questions in an interview situation; the optimum time

was about 45 minutes - and ‘interviewee fatigue’ (Cohen et al., 2007: 349) may have

affected the reliability of the data collected towards the end of the interviews.

Finally, the interview data collected were ‘uneven’ in terms of who contributed. Some

pupils talked more than others - this may have been because they had more to say or

because they were more confident about expressing their views in a comparatively

formal setting. The ‘unspoken’ views of other pupils is ‘lost’ data in terms of the

interview transcripts - but these pupils’ experiences of the game authoring process also

find expression in the journal entries they wrote, the games they created and the digital

voice recordings they contributed to.

Given all these factors, it is acknowledged that the data collected in the interviews is an

incomplete record of what pupils thought, knew or experienced, but in so far as the

interview data was triangulated with other forms of data, its validity lies in the extent to

which emerging themes are corroborated by those.

4.5.3 Digital voice recordings

The purpose of asking pupils to record their working conversations was to enable the

researcher to gather data about work in progress. Allowing pupils to manage the

recording of their talk enabled them to decide what they considered to be important and

to convey this in their own terms. To support pupils in ‘knowing what to say’ if they ‘got

stuck for words’, a prompt sheet (see Appendix 4) was distributed which listed topics

Research design and methodology

 74

they could talk about until they felt confident enough to use their own ideas. Although

this prompt sheet may have directed pupil talk in the early stages of the data collection,

pupils later discarded the sheets as they became more accustomed to talking about

their work and more immersed in creating their games.

Although some pupils may have found the presence of the voice recorders intrusive or

inhibiting (Edwards and Westgate, 1994), it was envisaged that this inhibition would

decrease as pupils became habituated to using them. Thus several lessons were

recorded at the beginning of the research project as ‘practise runs’, but these data

were not included in the analysis. Nevertheless, some pupils may have talked

differently because they knew they were being recorded and there may have been

elements of ‘playing to the gallery’. In addition there were some other unanticipated

disadvantages of asking pupils to record their talk and these are considered in section

4.7 below.

4.5.4 Authored games

Twelve games were analysed to enable the researcher to identify the areas of learning

evidenced in them. Using games as data gave the researcher information about what

pupils achieved, as well as what they found difficult and where they had made errors.

The analysis of the games involved scrutinising both the underlying static programming

code and its output in dynamic game format (the games were run, played and

evaluated). Yet the games do not represent a complete picture of what pupils learned,

and may not accurately reflect pupils’ understanding of the concepts involved, only

what the pupils managed to do in the time available. Nevertheless, they provide

information about what kinds of learning opportunities are afforded by programming a

computer game (Denner et al., 2012: 242).

Using authored games as a source of data is increasingly common (see for example,

Kafai, 1995; Robertson and Good, 2004; Pelletier et al., 2010; Baytak et al., 2011;

Brennan and Resnick, 2012; Denner et al., 2012) and may be construed as an

unobtrusive method of collecting data (Creswell, 2014) but has the following

disadvantages:

 It is time-consuming, and relies on the researcher having in-depth knowledge of

the software used to create the games.

Research design and methodology

 75

 The games the pupils made will have been constrained by the affordances of

the software and the scheme of work followed.

 The games may give some record of programming concepts used - but do not

capture the thinking involved or convey the level of understanding reached.

 Content analysis is product-oriented, and reveals little about the process of

developing projects, or the learning of something over time or the practices that

might have been employed (Brennan and Resnick, 2012).

 As a relatively new data collection method the analysis of games authored by

pupils is not widely covered in research methods literature.

4.5.5 Pupil documents

As sources of data, documents are relatively stable, less likely to be influenced by the

researcher and more objective than other sources of data (Merriam, 2009: 155) and as

outcomes of normal classroom activity the documents are less affected by the research

process. They are, however, produced in a particular context (the classroom) and that

will have some bearing on their content.

Pupil documents were of two types: planning documents created during class (initial

game ideas, a storyboard, a design document, and outlines of the game interactions)

and journal entries completed for homework (see Appendix 7). These documents

represent pupils’ responses to tasks, designed by the teacher, and these tasks will

have both enabled and constrained the data that is collected in them.

Although pupils were asked to make journal entries on the same day of their ICT

lesson, so that they would be able to remember their experiences more accurately, this

was not possible to oversee and the reliability of these data may have been reduced by

memory accuracy. Pupil documents were not sampled, yet they do not constitute a

complete record, since some pupils did not complete all tasks, and there was also

variability in the quality of the responses made. Nevertheless the documents yielded

useful data about pupils’ understandings of those elements of the game authoring

process covered by them and their responses to the resources they used and the

process they followed. The planning documents and authored games provide a

concrete example of pupils’ work which is supplemented by what they say about it in

the interview and voice recording data.

Research design and methodology

 76

4.5.6 Observation notes

Observation allowed the researcher to record behaviour as it happened (Merriam,

2009: 117) in the natural setting of the classroom. The researcher, as a participant

observer (Merriam, 2009: 118) made ongoing, unstructured, descriptive field notes

during the lessons, to record key lesson events, emerging problems (such as pupil

absence), observations regarding pupils’ responses to tasks (e.g. pupils’ attitudes

towards the planning stages) and comments and reflections regarding lesson activities

and the salient features which arose (e.g. difficulties pupils experienced). In this

respect it is a responsive method (Cohen et al., 2007). Observations were often

derived from interactions with pupils in the context of normal teaching activities (e.g.

explaining, demonstrating, answering questions, troubleshooting) and as such were

non-intrusive. However, the reliability of these data is reduced due to its selectivity,

which derives from the situation (Cohen et al., 2007: 398), as well as the fact that notes

written up after the lesson were subject to memory accuracy. However, despite these

limitations, the field notes further triangulate emerging findings.

4.6 Data analysis

The data analysis process in general was inductive and sought to establish categories

and themes in the data (Saldana, 2011). These categories were then applied across

the different data types. Interview and voice recording transcripts were analysed first,

followed by pupil journals and planning documents; computer games were analysed

last.

4.6.1 Use of NVivo 8 for data analysis

The data were transcribed and analysed using NVivo 8. For the purposes of this

research, NVivo was selected because it can store and support the analysis of a range

of multimedia data, such as that collected in this study (audio, text, graphic). It also

enabled the collation of the data into a single file (pupil voice recordings and interviews

(audio and transcripts), pupil documents, research notes, the coding system used and

the analysis of the games). According to Yin, the production of such a ‘database’

strengthens the reliability of the data, since it can be used to replicate the study (Yin,

2009: 119). Using qualitative data analysis software can make qualitative analysis

“more accurate, more reliable and more transparent” (Gibbs, 2002: 11) and can also

contribute to a more rigorous analysis (Silverman, 2013). For example NVivo’s queries

function will find every coded instance of a concept, ensuring a more complete set of

Research design and methodology

 77

data (Bazeley, 2007). The following sections illustrate how NVivo was useful for

assisting the data analysis in this study.

Transcription

Audio files of the data collected in pupils’ working conversations and pair and group

interviews were imported into NVivo, and transcribed individually by the researcher.

This increased the validity of the transcript since there was no remove between the

researcher, the data and the transcription. It also enabled early knowledge building of

the data (Bazeley, 2007: 44). As a transcription tool NVivo enabled greater accuracy

because it was possible to change the speed of the playback to make unclear words

easier to interpret. This assisted with the transcription of several pupil working

conversations.

In total 8 hours of audio data were transcribed (61,093 words):

Group interviews - 1 hour 26 minutes (15,445 words)

Pair interviews - 2 hours 5 minutes (21,136 words)

Pair working conversations - 4 hours 28 minutes (24,512 words).

The transcripts were made immediately after the interview events, though there was a

delay between some digital voice recordings and their complete transcription. The

transcript was made with regard to ethical practice (Downs, 2010) and represents as

near a verbatim record of what was said as was possible. The researcher included in

the transcript pauses, mood indicators (such as laughter, emphasis, frustration) and

interruptions. However, the chief concern was to capture the content of what pupils

were saying.

Data coding

Using the research questions and the conceptual framework as a starting point, a priori

codes were identified (see Appendix 5). Other ‘open’ and ‘in vivo’ codes were identified

during analysis of the data to honour participants’ voices (Saldana, 2011: 48).

Initial ‘descriptive’ codes were assigned to the transcripts of pupil voice recordings,

interviews and pupil journal entries using NVivo’s ‘free nodes’. These codes were then

thematically grouped into ‘tree nodes’ to capture a more fine-grained analysis. For

example a free node of ‘difficulties’, was later reorganised to include the sub-categories

‘design difficulties’, ‘narrative difficulties’, ‘programming difficulties’. Subsequently,

Research design and methodology

 78

NVivo was used to generate a coding summary report used for the purposes of fine-

coding specific difficulties within the main category ‘programming difficulties’.

Each pupil was identified as a separate ‘case’, and gender and ability attributes were

assigned. Ability was broadly defined in terms of pupils’ Jesson band, based on the

Data Enabler toolkit analysis (OFSTED, 2008) used by the research school. All

transcribed data were coded to each case.

Following playtesting and analysis of the computer games, game analysis documents

were coded for programming and design difficulties, using a further sub-set of codes

(see Appendix 5).

Querying the data

NVivo’s query tools supported the analysis of the data because they allowed the

researcher to:

 Find all utterances made by an individual (case), for example to summarise

what pupils had to say to inform the game analysis document created for

each pair (coding query).

 Find all data coded at a particular node (coding query). Data coded at a

particular node was collated to provide a framework for each of the findings

chapters.

 Find all utterances which contain a particular word (text search query), for

example, all utterances which contained the word or variants of ‘enjoy’, to

inform the findings relating to affect.

 Find the number of times a particular word is used (word frequency query),

for example the word ‘fun’.

 Illustrate the results of a query in chart format (for example, see Figure 33).

 Run matrix queries, cross-tabulating gender and ability attributes with other

code items. For example, ability was cross-tabulated with data that had

been coded at the nodes for ‘design difficulties’, ‘programming difficulties’

and ‘narrative difficulties’. The results of this matrix query, in Figure 10,

show that pupils of high ability made more comments relating to these items

than those of average or low ability.

Research design and methodology

 79

Figure 10: Results of a matrix query

The same feature was used to explore the data for other queries, for example, the

relationship between gender and references to difficulties (twice as many boys as girls

reported programming difficulties). This was a useful feature of the data analysis

software and was used to inform the findings reported in Chapter 8.

4.6.2 Analysis of authored games

The analysis of the authored games necessarily differed from the analysis of the

interview transcript and other documents, in so far as coding is not as important for the

initial analysis of visual materials as interpretation and analytic memo writing (Saldana,

2011: 82); the written record which grew out of the initial game analysis was

subsequently coded.

A framework for the analysis of pupil authored games was constructed with reference

to i) existing frameworks for the analysis of commercially produced computer games

(Konzack, 2002; Aarseth, 2003; Juul, 2003; Consalvo and Dutton, 2006), ii)

frameworks for analysing computer games authored by children (Harel and Papert,

1991b; Kafai, 1996; Kafai, 1998; Kafai, 2006b; Games, 2008b; Denner et al., 2012;

Kane et al., 2012) and iii) documents defining generic computer programming concepts

appropriate for Key Stage 3 and Key Stage 4 mainstream education contexts (e.g.

OCR, 2011; Seehorn et al., 2011; CAS, 2012a; Edexcel, 2012b; NAACE, 2012; Saeli et

al., 2012).

The analysis is in two parts. Part 1 (descriptive) deconstructs the authored games and

identifies i) game design concepts evidenced in the games and ii) programming

concepts used to construct the games. Part 2 (evaluative) applies a framework for a

more holistic analysis of what pupils achieved in their authored games, and evaluates

the learning they represent, as complete units of work. This framework was compiled

with reference to relevant learning taxonomies (Biggs, 1979; Biggs and Collis, 1982;

Hawkins and Hedberg, 1986; Fuller et al., 2007; Thomas and Martin, 2008; Thompson

et al., 2008; Meerbaum-Salant et al., 2010).

Research design and methodology

 80

Together these two analyses illustrate the analytic framework adopted and give a

summative, holistic picture of what pupils achieved. The purpose here is not to assess

learning outcomes in terms of normal student achievement measures, specifically, the

National Curriculum levels of attainment (the attainment target for Key Stage 3 ICT was

disapplied in 2012) - but to evaluate the overall activity specific learning evidenced in

the authored games and in so doing, to address the research questions, ‘How does

computer game authoring using Game Maker support the learning of basic

programming concepts?’ and ‘What difficulties do pupils have with game authoring

(game design and game programming)?’

Part 1 i) Game design concepts evidenced in the authored games

In the first level of analysis games were thoroughly playtested and evaluated according

to the criteria in Table 1 below, generated before the analysis.

Game design concepts Definition

Usability
Game instructions, common control options (e.g. arrow keys),
feedback, interface design, (design theme, animation), levels linked
thematically/sequentially, more than one room/level

Functionality
Does the game work? Response to user input, interactions,
gameplay

Graphics Sprites, backgrounds, splash/title screen, animation, customisation

Scoring
Score, health, lives, high score table, rewards/penalties, win/lose
states

Rules Related to the program code, determines what the player can do

Narrative Setting, story, character design, genre, non-player characters

Game design
The overall structural coherence of the game, object inventory,
levels, obstacles, challenge

Cultural referents The game’s target group, its representations and cultural references

Sound The use of background sound, sound effects or sound as feedback

Game goal
The purpose for playing the game (e.g. to free a captured
character)

Table 1: Concepts used to frame the analysis of game design features

Research design and methodology

 81

ii) Programming concepts evidenced in the authored games

The game analysis also measured programming concepts evidenced in the games,

and in addition, the use of some mathematical concepts important for game

programming (see Table 2 below). An initial analysis identified components of the

game (sprites, objects, levels etc.) and counted and categorised actions and events

used. The presence of the programming concepts below was then tabulated for each

pair. The games were playtested again and a printout of the game information

(program code) was annotated, to identify which elements of the code functioned as

intended and what errors were made.

Programming concepts Definition

Program interaction Input/output, event driven. Are events used as input data?

Functions (actions) Are actions used to create outputs in the game?

Sequence Are events and actions sequenced in a sensible order?

Conditional statements Are test/check actions used to test conditions?

Loops Is the step or alarm event/repeat action used to create a loop?

Variables Are variables (e.g. score, lives) used to store data in the game?

Logical operators Are logical operators (AND, OR, NOT) used?

Boolean logic Is Boolean logic (true, false) used?

Relational operators (=, <, >) Are these operators used in expressions?

Mathematical operators (+, /, *, -) Are these operators used in expressions?

Coordinates Are coordinates used to specify screen position (x, y) of objects?

Angles Are angles used to specify direction of movement of objects?

Negative number Is negative number used (e.g. to define speed, position, score)?

Randomness Is randomness used (e.g. to define position or number)?

Relative/absolute value Is relative/absolute value applied to define score or position?

Table 2: Concepts used to frame the analysis of programming constructs

Research design and methodology

 82

Part 2 Learning outcomes of authored games

After deconstructing the authored games to identify learning in terms of game design

and programming concepts evidenced (a descriptive analysis), a more holistic, second

level analysis was undertaken, to evaluate pupils’ games as complete artefacts. This

analysis looks at the overall structure and coherence of the game (i.e. the sum being

greater than the parts) and is evaluative. It indicates the overall achievement evidenced

by the game as a whole.

In order to systematically evaluate the qualitative achievement of pupils’ authored

games as part of the analysis, the two areas of learning highlighted in this study - game

design and programming - were considered using the SOLO taxonomy (Structure of

Learning Outcomes) (Biggs and Collis, 1982). The taxonomy describes 5 levels of

response:

i) Pre-structural - the response has no logical relationship with the task,

showing lack of understanding or inappropriate response.

ii) Uni-structural - the response demonstrates some limited understanding but

may include minimal relevant responses or content.

iii) Multi-structural - responses are relevant but there may be no relationship

between them or little internal coherence within the response.

iv) Relational - responses are related and appropriate and may contribute to a

more coherent whole.

v) Extended abstract - the response is entirely appropriate and exceeds

expectations.

This hierarchy of learning outcomes is applied to particular responses to a learning

situation as “a means of classifying learning outcomes in terms of their [structural]

complexity, enabling us to assess students’ work in terms of its quality not of how many

bits of this and of that they got right” (Biggs, 2003). Since this approach resonates with

constructionist perspectives on assessment, which seek to evaluate learning outcomes

qualitatively and holistically (for example, see Bruckman et al., 2000; Brennan and

Resnick, 2012) and to “[measure] what kids can do with knowledge, not how many right

answers they can give to questions” (Papert, 2001), it was adopted as an appropriate

framework for evaluating pupils’ games.

The SOLO taxonomy is also suitable for the current study because it is increasingly

used to evaluate learning outcomes in computer science education (see Hawkins and

Research design and methodology

 83

Hedberg, 1986; Lister et al., 2006; Fuller et al., 2007; Thompson, 2007; Sheard et al.,

2008; Braband and Dahl, 2009; Meerbaum-Salant et al., 2010). Researchers suggest

that a computer-science specific taxonomy is needed, because computing is a practical

subject in which a key learning objective is the ability to develop computer programs,

yet “the hierarchy of learning outcomes in computer science is not well captured by

existing generic taxonomies” (Fuller et al., 2007: 153).

Accordingly, the researcher created an adaptation of the SOLO taxonomy (see Table

3), based on generic and programming-specific rubrics (Thompson, 2007; Whiteman,

2008), and oriented to evaluate the software-specific programming constructs,

alongside the game design concepts, evidenced in the games pupils authored. This

table was constructed after the final playtesting had been completed.

SOLO level Score Game design Programming

Pre-structural

no discernible
functionality,
no user
interaction,
graphics only

1/2 no meaningful response -
the game is not playable

 no understanding shown
 game assets (sprites,

objects) may exist but are
not organised or
developed

 irrelevant information
 few, if any, interactions -

the game is more a
graphic or an animation

 only one level exists
 poorly executed graphics
 no score mechanic

 no understanding of
programming concepts

 limited use of events
 few actions implemented
 events and actions are not

combined effectively
 no logical sequence
 programming of simple

instructions contains many
errors

 game functions minimally
 little evidence that concepts

learned in tutorials have
been applied to the game

Uni-structural

some
functionality,
some
interaction,
lacking
development

3/4 one aspect of the game is
attempted e.g. the player
character moves in one
direction in response to
user input

 game assets (sprites,
objects, sound) may exist
but are not further
developed

 there are few game
interactions

 graphics may be poorly
executed or inconsistent
but are usable

 no functioning score
mechanic

 progression through levels
is not possible

 a second level may exist
but is incomplete

 limited understanding of
programming concepts

 events and actions are
combined but these may
contain errors

 the game partially works
with significant obvious
problems

 some of the concepts
learned in the tutorials have
been applied to the game

 no use of conditionals
 no use of variables
 no use of loops

Research design and methodology

 84

Multi-structural

understanding
evident, more
functionality, a
playable game,
incomplete

5/6 several aspects of the
game are attempted e.g.
player character and
reward/penalty objects
may exist but not all
function correctly

 game components are
treated independently -
connections are not made
between them

 some elements function
correctly

 a score mechanic is
attempted but may not
function correctly

 some customisation of
graphics - e.g. sprite
change when player
character changes
direction

 the game includes several
objects

 the game includes more
confident use of events and
actions, some of which work

 the game works with some
problems

 several concepts learned in
the tutorials have been
applied to the game

 conditional statements are
used, perhaps only partially
correctly

 loop constructs are used,
perhaps only partially
correctly

 variables are used, perhaps
only partially correctly

Relational

all aspects
cohere to form a
playable game
but some
integration
lacking

7/8 an adequate response to
the task

 a playable game
 several elements of the

game are integrated into a
coherent whole

 the player can progress
through levels

 most elements of the
game function correctly

 graphics are more
consistent and reasonably
well executed

 some customisation of
graphics e.g. appearance
change, animation

 a range of events and
actions is used to control
objects and operations in
the game

 the game works with no
significant problems

 programming concepts
learned in tutorials are
applied to the game

 conditional statements are
used correctly

 variables are used correctly
 loop constructs are used

effectively

Extended
abstract

a fully
operational
game, coherent
visually and
functionally

9/10 a complete, playable game
with sufficient interactions
to make it engaging

 all elements function
correctly (sound, score,
objects)

 the player can progress
through levels and there is
a clear win/lose state

 graphics are consistent
and fit for purpose

 overall the game is a
coherent whole

 experimentation with new
ideas

 use of programming
concepts not explicitly
covered in tutorials

 use of execute code action

Table 3: SOLO taxonomy adapted to evaluate game design and programming concepts

The design and programming concepts in Tables 1 and 2 were reduced to 8 features

(usability, functionality, scoring, game play, sound, game design, programming,

graphics), and these aspects of the games were then evaluated using the SOLO levels

Research design and methodology

 85

in Table 3. Each level of SOLO response was divided into 2 sub-levels, to give greater

accuracy in evaluation (Chan et al., 2002). A qualitative ‘score’ corresponding to each

SOLO level was given for each feature and an overall total was calculated for each

game.

This evaluation was then represented as a matrix for each pair (see Figure 11 below),

based on Thomas and Martin’s model (Thomas and Martin, 2008) - an assessment

matrix to evaluate hypermedia artefacts using SOLO levels on the vertical axis and key

components being evaluated on the horizontal axis.

Figure 11: Matrix showing the SOLO levels applied to game features evaluated

These matrices show the achievement for each component of the game, the relative

strengths of each game, and when viewed together, the qualitative variation between

games (see Appendix 1).

Summary

This section has described the method used to analyse the authored games:

1. Games were playtested. An initial analysis was made, identifying components

of the game and counting events and actions used.

2. Games were playtested a second time. Detailed notes were made about the

functionality of the game. A written log of the programming code pupils used in

their games was scrutinised. Programming constructs evidenced (see Table 2)

were recorded in tabular format for each pair. The programming and design

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Unistructural 4
 3
Pre-structural 2
 1

 SOLO level

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

e p
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Research design and methodology

 86

difficulties they encountered/errors they made were coded in NVivo (see

Appendix 5).

3. Games were playtested a third time to evaluate the game design elements

evidenced - this analysis was recorded in tabular format using the concepts in

Table 1.

4. The transcript of voice data and interview contributions for each pair was

reviewed. Salient details were added to the analysis.

5. Design and planning documents were analysed for each pair. A separate

analysis of these documents was completed (see section 4.6.3 below).

6. The games were evaluated holistically using a rubric based on the SOLO

taxonomy (see Table 3). Levels of achievement for each component were

illustrated using matrices.

7. A written description of each game was produced, taking into account all of the

above (see Appendix 1).

This analysis forms the basis of the findings in Chapters 6, 7 and 8.

4.6.3 Analysis of pupil documentation

Eighty-five pupil documents were produced (plans, storyboards, journals). Journal

entries were coded using the same codes as for the transcripts of interviews and digital

voice recordings (see Appendix 5). Storyboards and work booklet data (initial ideas,

design documents, game interactions plans) were analysed using a different method,

since here data were presented in graphic or tabular format. A written commentary

was made for these in which common themes were identified. These are reported in

Chapter 6.

4.6.4 Analysis of observation notes

Observation notes for both pilot and main study were coded using the same codes

used for the analysis of pupil voice recordings and interviews (see Appendix 5).

4.7 Validity and reliability of the data

4.7.1 Problems with data collection

During the data collection period there was a problem with attendance. Since pupils

were working on their games in pairs, when a member of the pair was absent no voice

recording could be collected. Absence also created gaps in the planning and journal

Research design and methodology

 87

data. Absences were mainly due to illness, but there were also other unexpected

absences due to uncalendared educational visits or events. Twenty-three individual

absences were recorded during the thirteen sessions. No pair completed the project

without absence.

In addition to absence, there were several issues which had an effect on the reliability

of the data collected during lessons:

 The continuity of the project was interrupted by a half-term holiday which meant

that there was a week-long interval between pupils completing the video

tutorials and beginning their own game. This may have had an impact on some

pupils’ ability to remember the skills they had learned. Later on, a calendared

‘Activities Week’ also affected the continuity of the project, although by this

stage pupils had gained greater familiarity with the software, and the concepts

and processes of programming. Such interruptions (in addition to absence) may

also have had an impact on some pupils’ ability to work independently.

 Journals - some pupils did not complete all entries: 40/84 possible entries were

made.

 Pupil planning documentation - some pupils did not complete all elements:

45/60 documents were completed.

 Digital voice recordings - the data did not capture a complete record of all

pupils’ working conversations; the data recorded by pairs varied in amount

considerably - range 0.5 minutes to 58 minutes, as shown in Table 4 below.

The two pupils who worked as individuals did not produce recordings.

 Saving voice recordings correctly to the network - some pupils saved more

sound files than others.

No. of mins <10 11-20 21-30 31-40 41-50 51-60

No. of pairs 3 1 2 1 1 2

Table 4: Digital voice recordings of pupil working conversations

Although there was an expectation that pupils would record their working talk, some

pupils were less concerned to do this and more interested in making their games.

There was a feeling that ‘we’ve recorded loads already so we don’t need to record any

more’. Additionally, an unforeseen outcome of this method of collecting data was that

Research design and methodology

 88

pupils ‘sanitised’ or ‘prepared’ their talk for recording - and were disinclined to record

the normal ‘messy’ speech of their working conversations.

Despite these gaps in the audio and written data and in the levels of completeness of

the authored games, 17/22 pupils were represented in either the pair or group

interviews; 12 games (10 pairs and two individual) represented a complete record of all

the games made; 85 pupil documents were also analysed.

The validity of the interview data may also have been compromised because the

researcher was not able to return the transcript to the pupils to verify if it was an

accurate record of what they said, since the interviews had been transcribed during the

summer holiday after the data was collected and the researcher no longer taught the

group. Logistically it would have been impractical to invite pupils to review the transcript

given the interval between the fieldwork and the new school term.

4.8 Ethics

The ethics protocol for the field study period was approved by the supervising

university’s Research Ethics Committee. The teacher/researcher addressed the ethical

issues arising from the power differential between herself and the pupils as described

in section 4.5.2 above. A risk assessment considered the social welfare and the health

and safety of participants. The research interest was declared to the Headteacher of

the research school and permission was granted for the field work to be conducted with

pupils and for the collection and storage of data on school computing equipment and

the network.

The research interest was declared to pupils orally and in writing at the start and orally

throughout the data collection period. Pupils were asked to give written consent for

their work to be included in the research study. An information booklet was prepared to

make pupils aware of the research intentions and purposes, and pupils were asked to

sign to confirm that they agreed with a set of statements relating to the collection and

uses of the data gathered. A letter for parents conveyed similar information, and asked

parents to give their written consent to their child’s work being used as part of the

research study and to confirm their agreement with the same statements (see

Appendix 2).

Pupils and their parents were assured of the confidentiality and security of the data

Research design and methodology

 89

gathered and informed about the uses to which the data would be put. Pupils were

made aware that they could withdraw from the research activity at any stage, in which

case their data would not be used, although there was an expectation that they would

complete the project tasks, since this was part of ‘normal’ classroom activity.

Data protection

Pupil data were stored securely on the research school network and analysed on the

researcher’s personal computer. No third party had access to the data. Access to the

data on the school network and the researcher’s personal computer was password

protected. Data were deleted from the school network after they had been collected.

Pupils’ identities and the identity of the research school were anonymised in the thesis.

4.9 Summary

This chapter has described and evaluated the research methods selected (case study)

and the instruments used to collect the data (interviews, voice recordings, documents,

authored games). A description of the data analysis methods used is given and the

ethical issues surrounding the research have also been considered.

Chapters 5-9 following present the findings and analysis of the study. Chapter 5

describes and analyses pupils’ perceptions of the process they followed in constructing

their games. Chapter 6 investigates the areas of learning and the difficulties they

encountered in terms of game design. Chapters 7 and 8 examine the programming

concepts pupils used and consider the difficulties they experienced with these. Chapter

9 records particular values of the game authoring activity, beyond the learning of

curriculum content, identified in the interview transcripts and observation notes. A

discussion of the key findings and implications of the study is presented in Chapter 10.

Making games – the process

 91

Chapter 5 Making games – the process

5.1 Introduction

This chapter documents pupils’ perceptions of the process they followed as they made

a computer game. The activity had been organised with regard to the principles of

constructionist learning theory, and pupils’ responses to this approach shed light on the

extent to which constructionist practices are suitable for the different activities involved

in game authoring. The findings reported here refer to the ‘eight big ideas of

constructionism’ outlined in Chapter 3.

Data were gathered from digital recordings of pupils’ working conversations, pair and

group interviews and journal entries and coded for references relating to the working

processes and practices followed.

5.1.1 A constructionist designed activity

Pupils worked with a partner to design and make a computer game. In the early stages

of the unit of work, pupils researched and planned their ideas, and followed structured

video tutorials to learn how to use the software. Once underway with making their own

games they entered an exploratory learning phase, where they gained greater

familiarity with the software and the process of making games through learning by

doing and experimentation, key components of constructionist learning theory.

5.2 Resources

In a constructionist learning environment design activities play a central role (Kafai,

2006a) and different media and activities are combined (Kafai, 1995). In this research,

multimodal materials were selected to appeal to a range of learning preferences:

 The software made available to create the game enables (inter)active

learning and functions as an ‘object to think with’ (Papert, 1980b: 11).

 Resources to support the activity included a pupil work booklet, which

provided materials to support lesson activities, rubrics for planning the

storyline for and the rules of the game, a test plan, and a glossary of

events, actions and useful software commands.

Making games – the process

 92

 Sample games illustrated the possibilities of the software and gave

pupils access to the code used.

 Text based tutorials exemplified how to create different genres of

games.

 Online video tutorials introduced pupils to the basics of the software,

and of the game-making process as they were shown, step by step, how

to create three, increasingly complex games.

While most pupils found elements of the resources useful, there was a feeling that they

were either limited or constricting in some way, and this is significant - the provision of

suitable support resources is of key concern when pupils are working independently on

individual extended projects, since it emerges from the literature that game authoring is

not well suited to linear delivery (see Willett, 2005; Robertson and Howells, 2008).

5.2.1 ‘Just in time’ learning

The notion of ‘just in time learning’ (Riel, 1998) is important here. Observation notes

record that pupils wanted sources of support which would provide solutions to their

individual problems at the point of need and guidance for how to implement common

game mechanics, rather than the linear game tutorials made available:

AE: [It would be useful] if there was, like, a sheet which had, like, all the [events

and actions] and each thing told you what it did and an example of what you

could use it for.

‘Just in time’ support was also needed because it was difficult to maintain continuity

during the game making activity, which was delivered over an 8 week period, due to

timetabling patterns, pupil absence and other school imperatives, such as half-term

holidays and an activities week. Some pupils found it difficult to remember the content

of the tutorials they had followed, since there was an interval between the tutorials and

the start of making their own games. Others found it difficult to transfer what they had

learned in the video tutorials to their own game or did not transfer their prior learning in

graphics to the game context.

Efforts to access ‘just in time’ support via the Game Maker website or online tutorials

and manuals were thwarted by the research school’s internet filter:

Making games – the process

 93

JC: We really needed the … Yoyo Games website. Because you [had] to, like,

create the sprites yourself. It’s quite hard to find all the sprites you need for the

game without it.

Other websites provided definitions or specific tutorials, but did not provide the sort of

particular help that pupils needed for their individual projects and many were not written

in a pupil-friendly style.

Having access to ‘just in time’ resources was also important because some pupils

resisted following the semi-structured scheme of work offered. Pupils wanted to ‘learn

by doing’ and make their games. Once begun, the process of creating their games

became ‘immersive’, to the extent that some pupils viewed any whole class instruction

as an unwelcome interruption. The scheme of work sought to guide pupils through the

systems development design process, and introduced focal activities for each lesson -

but pupils were reluctant to interrupt the flow of their computer-based, practical work to

attend to these. These factors in combination make access to ‘just in time’ learning

resources important.

5.2.2 Learner control

The pupils in this study expressed a preference for materials which gave them freedom

and control over their learning, even when these were not highly visual or interactive.

For example, MD preferred to use textual resources rather than the video tutorials,

because he felt he had more control over text:

MD: [The video tutorial] goes at a set pace, whereas text you can just stop … I

liked the text based [tutorials] because they had pictures to show you … what

the game should have been like. They had a lot of text and it went into a lot of

detail and it told you exactly what you needed to do, but it also left you to be a

bit more creative with what you wanted to put in.

Textual tutorials enabled this pupil to be more creative, because they allowed him to

apply the learning to his own particular situation, whereas the video tutorials only

showed the techniques needed to make the particular game featured in the tutorial,

which was perceived to be constricting:

Making games – the process

 94

MD: It told you only how to make that game, whereas in the text based ones

you could sort of use what’s in the tutorials to help you make your own one

more easily.

However, others did not use the text-based materials:

AC: We had the booklets here and they were just a bit of a distraction I think.

JB: I looked in the book, but from the book to the [video] tutorials, I prefer the

computer ones ‘cos … I [learn] by trial and error and listening and watching,

and I don’t tend to take in much when I’m reading as well as I do when I’m

listening.

SA: I remember having the books, but me and R. just used the [video] tutorials.

Others criticised the video tutorials because they did not support pupils in their

individual endeavours:

AC: We only learn the basics of all the controls, we didn’t really learn how to do

more advanced things.

GW: It helps you with the first few bits then afterwards you get really stuck.

KW: They didn’t teach you how to get onto the next level so I didn’t know how to

do that.

MD: I didn’t really like the tutorials ... They were a bit patronising I think and

they were very slow to get to the point … I think most people did find the video

ones a bit boring because every time you finished a tutorial it then spent about

5 minutes recapping on the previous one, which was a bit tedious.

Whilst there were several complaints about the audio which accompanied the video

tutorials, others liked this mode:

MH: I like the idea of listening to that lady talk about ... that was easier ‘cos you

could go through the steps while she was talking.

Making games – the process

 95

LW: You could pause the tutorial as well, when you needed to, so that you

could complete yours step by step at the same time … you could go at your

own pace, like you could rewind and whatever.

JB: [The video tutorials] make learning more fun and easier to do. The online

lessons are better than books.

Some pupils perceived the video tutorials to be useful because they could see the

processes they needed to follow:

KW: It’s just a different way of … teaching you, ‘cos … if you’re, like, visual then

it’s more helpful for you ‘cos you can see the different things in front of you, also

you’re more independent.

SA: If there was a choice between textbook and watching a video tutorial I

would pick the video because they’re easier to, I mean when you visualise it, it’s

easier to put it together yourself.

MD: You can just … change between windows, so you can see the tutorial

while you are making the game.

JBr: [The video tutorials were useful] if there was something more advanced

that … you actually needed to see, rather than just like read.

Pupils’ comments about the affordances and constraints (Kennewell et al., 2007) of the

resources available to them underline the need to provide a range of multimodal

resources to appeal to different learner preferences. Such resources should enable

pupils to find solutions to common problems, give examples of when particular events

and actions can be used, and model the code for common game functionalities;

however, none of the available resources provided this sort of targeted, modular

support.

But their responses also highlight the need for some pupils to develop a different

approach to learning. Whilst they valued the freedom of working in a constructionist

learning environment (learning by doing/making, working in pairs, choosing their own

tasks and deciding which resources to use) that way of working brings its own

demands and challenges pupils to be more proactive in their approach than some are

Making games – the process

 96

accustomed to. This finding leads in to the next section, which considers the extent to

which the game authoring activity provided an opportunity for pupils to ‘learn to learn’.

5.3 Learning to learn

One of the tenets of constructionism is that working on projects over an extended

period of time enables pupils to ‘learn to learn’ because they come to view learning as

a process, where different styles of working or approaches to tasks are equally valid,

where errors are inevitable, and important sources for learning, and where the real

work consists of ‘tinkering’, making refinements and frequent ‘debugging’ (Papert,

1999a). The findings described in this section show how the game authoring activity

gave pupils the opportunity to learn to learn - from each other, by doing, by trial and

error, by interacting with their games in progress, and for some, by using the software

itself.

5.3.1 Objects to think with

Game Maker supports self-directed learning in terms of its accessible drag and drop

interface, graphical icons, help menu, visual feedback and the availability of its inbuilt

sample games, resources and online community. But pupils were not accustomed to

making independent use of this ‘web’ of supporting resources. Using the software and

surrounding resources as a source of support was a new way of working and they

needed guidance and prompting to adopt this approach. Whilst they needed ‘just in

time’ resources so that they could access “knowledge in use” (Papert, 1993: 63) they

also needed the wherewithal to make good use of them.

Visual programming environments such as Game Maker are referred to as ‘objects to

think with’ (Papert, 1980b: 11) or ‘mindtools’ (Jonassen, 1996; Meijers, 2012), and, it is

argued, using such software engages pupils in higher order thinking and encourages

them to reflect on their learning because it enables pupils to externalise their ideas and

thus makes their thinking more visible to them (Papert, 1980b: 11). However, in this

study, the extent to which pupils used the software in this way was variable. While the

software was a ‘learning space’ (Zorn, 2008), and an ‘object to think with’ for some

pupils (AEMD, ACJC), for others it did not have the same appeal.

Indeed, most pupils did not make use of the sources of support within the software,

such as the Help menu, and did not explore the other menu items or features available.

Whilst some pupils learned how to do new things by experimenting with interface

Making games – the process

 97

options (AEMD used the debug mode to help them isolate errors, for example), others

did not. There was a reluctance to read textual information provided in the software and

pupils did not read or respond to error messages or textual hints (KW, CB). This

suggests that the pupils in this study were not used to working with software in this way

and had not yet developed skills in seeking out solutions to problems independently

within the software, or lacked the confidence to do so because they were using new

software.

Although most pupils did not actively explore the software, part of the process of

making their games was led by a ‘create by reacting’ approach (Victor, 2012), where

pupils reacted to the functions and components available in the software. For example,

one pair (AEMD) explored the ‘global game settings’ menu item and by doing so

learned how to customise the loading graphic, game icon and screen size of their

game. This way of working typifies constructionist approaches and for some became

the dominant way of working as they interacted with their games under construction,

trying things out or solving problems.

Game Maker provides some support for this type of approach. Graphical icons give

visual clues to the behaviour of an action and textual hints which appear on mouse

rollover give further support (see Figure 12).

Figure 12: Graphical icons showing textual hint

However, not all pupils found the iconic representation of actions intuitive:

CB: I didn’t know what any of them did or how to use them, so I didn’t know how

they could help me improve our game … the symbols in each box aren’t very

clear so it’s quite hard to find each different action needed.

Making games – the process

 98

Textual hints appear if an icon is hovered over, but these were not always perceived as

useful:

CB: I didn’t know what it meant.

For some pupils, this ‘not knowing’ did not lead to them trying to find a solution

independently. Their readiness to ‘learn to learn’ was not always evident. Perhaps for

them the abstract programming environment was difficult to explore because it offered

too many options.

5.3.2 Learner-directed activity

The pupils in this study relished the relative freedom they were given to direct their own

activity and were, to varying degrees, successful in managing their learning for the

duration of the project. Their enthusiasm for learning by doing meant that once

underway with their projects, some pupils were resistant to teacher intervention and

although they continued to use the teacher as a troubleshooter and resource, they

preferred working practices which did not rely on teacher input:

GW: I liked it that you … could come in and start getting on straight away and

you taught yourself rather than watching.

JG: We learned for ourselves, although we had to go onto that web site, the

tutorials, and learn by ourselves, but we normally do it as a big class.

 MH: We had more freedom learning from a video tutorial … I think it would be

good to use these again because they make us more independent so we don’t

always need a teacher.

GW: It’s better not learning off the whiteboard, ‘cos I have a really low

concentration and I just sort of switch off when it’s being explained on the

whiteboard.

JC: With our normal things we do in ICT it’s just ‘Do this, do that’, and yet in this

one you actually get a chance to sort of find out for yourself and do it yourself.

OW: The tutorials are good because when your teacher explains the lesson,

afterwards if you are stuck or unsure what to do you have to wait until they

Making games – the process

 99

come over and explain it to you. With the tutorials when you are stuck you can

just flick back in the video and see where you went wrong without disturbing

your teacher. This also helps us to be independent while working on computers.

This reference to independence is significant and seems to be related to an increased

sense of self-esteem, confidence and self-efficacy, which arise out of self-directed

learning, attributes which have been widely reported in the literature in constructionist

practice generally and in authoring computer games in particular (e.g. Harel, 1991;

Kafai, 1995; Sanford and Madill, 2007a; DEECD, 2010; Li, 2010).

Learning to learn involved not only selecting resources but also organising and

sequencing their work. For most pupils this meant that what they did in each lesson

was determined by what they had done in the previous lesson and the issues which

arose as they developed their games:

JC: Well you don’t really tend to look ahead to it. You just sort of, when you get

there you look at what you still want to do and you keep clicking on the [play]

button to view your game and see how it’s developing.

KW: Well I just looked at what I had and then I realised what I needed to do and

I just did it … When you started it was a bit like ‘Oh what am I doing now,’ but

then once you got used to working out what you had to do it was fine.

AE: Right at the beginning of the lesson we just, like, allocated tasks for each

other and then just got on with them.

MD: Well, we just sort of went through in a logical order.

AE: We just sort of thought of a plan at the beginning. I will make level 1 and M.

will do level 2 and then…

MD: Yeah ... we’ll see who gets finished first to do level 3.

The software itself supported some pupils in managing their work. For them, the

resource explorer (see Figure 13) functioned as a visual reminder of the components

needed in a game and the order in which tasks should be completed:

Making games – the process

 100

Figure 13: Game Maker’s resource explorer

JG: We just looked as we were going, step by step. We would obviously get our

sprites and objects and then we made our backgrounds. We went step by step

for what you actually have to do.

JB: ‘Cos the files ... we went down the files that are there and then the room

and we started ...

Others were led by the narrative of their game:

JD: Well it’s pretty obvious at the beginning, ‘cos you need to make a

background don’t you, to have a game, so we started off with that, so we just

started off just making all the sprites work, put them into objects and making the

main character, he has to work first and what the main character does. We did

that, and then just like the obvious ones and then the little things come next.

The data here indicates that in organising their own work some pupils preferred to be

“guided by the work as it proceeds” (Papert, 1991b: 6), a way of working which

according to constructionist theory is as valid as more formal structured approaches,

even though it may not have been efficient:

MD: I suppose we probably could have made a bit more effective use of our

time. We did sort of spend a bit too long on the fun things …

AE: We spent a bit too long making the sprites and making them look good and

animated.

But while some pupils enjoyed the fact that the activity was not teacher-led, others

were not so enamoured of having to direct their own learning:

Making games – the process

 101

CB: I didn’t know what to do lesson to lesson. I didn’t know how I could take my

game to the next level, like keep on improving it.

MH: A. said that it’s always fun and challenging but I dunno. It was fun when we

knew what we were doing, but I got really annoyed when we were just sat

around thinking ‘Oh what do we do now?’ and it wasn’t as fun.

5.3.3 Styles of learning

Papert refers to two styles of learning: ‘top down’ (planners) and ‘bottom up’

(bricoleurs) (Turkle and Papert, 1990: 136). Pupils in this study used both. Some pupils

favoured a ‘bricolage’ approach (Papert, 1980b: 173) and resisted attempts to direct

their learning. Others were more methodical, and tended to have more success both

with the process and outcomes of their learning:

MD: I think we had quite a clear view about what we were going to do each

time, ‘cos we knew exactly how we wanted our game from the beginning, so if

you know that … you know what you want to do every lesson.

This contrasted with others’ experience:

CB: I think if you don’t know what you want then it’s much harder to get it. ‘Cos

we weren’t very specific on exactly how we wanted it to be and you said that

you knew how you wanted it to work and what you wanted it to look like and

stuff. That was like the difference between us. We changed our minds as we

went along. Yeah we weren’t specific enough.

SA: Yeah, that would have probably been our problem, ‘cos me and R. weren’t

very clear from the beginning what we wanted our game to be like ... we just

sort of put it together as we went along.

Here pupils make specific mention of how their lack of clarity at the design stage, in

terms of how they wanted the game to work and what they wanted it to look like,

caused them problems with the implementation of their games. For these pupils, being

guided by the work as it proceeds was not so successful. Others pondered whether

more project milestones would have been useful:

Making games – the process

 102

MH: I think it would have been good if ... at the beginning you know where …

we did that [Gantt chart] for how many lessons it would take to plan and then

design. I think we should have done that … and then I think that would be good

to have like a guide, but then on the other hand I think it was good that we could

work at our own pace.

For the pupils in this study, taking control of their own intellectual activity in an

extended project was a new experience and whilst they were able to direct their own

learning in some aspects of the game authoring activity, in others a more structured

approach may have been more supportive. These findings suggest that bricolage is not

an effective way of working for some pupils and some tasks. This gives support to

other studies which have found similar difficulties with self-led learning (e.g. Bruckman

et al., 2000; Reynolds et al., 2010).

5.3.4 Pupil journals

In order to encourage reflection on their experience of making a computer game, pupils

were asked to keep a written journal as a weekly homework task (see Appendix 7).

The data collected here suggests that pupils found it difficult to reflect on their learning

in this way, and in keeping with their preferences for learning by doing, some thought

that the time would have been better spent if practical tasks to do with game creation

had been set:

MD: We could have done homeworks which actually included working on the

game.

JB: It was like ... like with the question ones, it was … ‘What did you find difficult

about it?’ And I was like, ‘I found this difficult’ and then ‘What problems did you

have?’ ‘Oh I had problems moving the horse and I didn’t sort it out in the end’

and then it was like ‘Oh so how do you sort it out?’ And it was like, ‘Um, we

haven’t managed to yet’.

This disinclination to write about the game-making process is echoed in other studies

(e.g. Kafai, 1995; Sanford and Madill, 2007a). In practice the journals were ignored by

some pupils; they wanted to make their games, not write about them. Entries were

descriptive rather than reflective, and this suggests that more structure needed to be

given for this task. A greater focus on program annotation may have been a more

suitable site for reflection.

Making games – the process

 103

Nevertheless, journal entries made demonstrate that some pupils were ‘learning to

learn’ in so far as they write about adopting a range of practices in their work, some of

their own devising:

LW: To decide the rules, events and how you get points we made a table with

two columns. We then listed the ways that the [characters] could lose lives and

gain lives so that we could do a near enough balance, making the game

successful and not easy but not impossible, giving both objects a chance.

MH: C. and I took great time deciding on our game ideas. We planned and

thought it through, and even when we thought we had a good story line, we

decided to re-think and make it more suitable for year six pupils. We drew out a

thought bubble, whilst speaking into the voice recorder and suggesting our

ideas. We then chose the best ideas for each ‘element’ of the game ... To

decide on the rules of the game we looked at and played on some examples on

the internet to see how they worked and the sort of rules that applied to them.

LW: G. and I came up with our game, Squeek, by researching other games that

are highly rated. This gave us an idea on what kind of games people liked

playing. We found out that animal games were firm favourites and mazes. To

help us with this we thought about the kind of games we liked when we were of

that age and asked others to share with us data on what they enjoyed playing to

help us with our game aim and story line.

GS: I decided on the rules of my game by playing other games … I have looked

for ideas on the sample games, such as the Pac-Man game and the car game.

These helped me out a lot and gave me ideas on how to do improve my game.

These examples show that, given the freedom to direct their own learning, some pupils

made use of strategies to help them organise their work (tabulating ideas, using

thought bubbles, playing other games, consulting others). In terms of learning to learn,

the extended nature of the project gave these pupils an opportunity to explore their own

ideas for learning and to develop individual strategies over time.

Making games – the process

 104

5.3.5 Learning by doing

A key principle of constructionism is that people learn best by doing (Papert, 1991b)

and the findings reported here show that most pupils in this study preferred this way of

working. Some pupils expressed frustration when they were asked to stop practical

activity to plan or to attend to a teacher demonstration:

 AC: You can just do all this in Game Maker!

JC: [We should] focus more on making the game, rather than other things like

the booklet.

OW: I like doing the practical side of things and I prefer it to listening to our

teacher instructing us, because that restricts the time on computer and if we are

on the computer right from the start then it helps us improve our practical skills

on the computer even more.

Learning by doing also seems to have a positive effect on engagement for some pupils:

JB: It’s just another way of learning to make it a bit more fun, rather than normal

reading out of a book, so it gives us a chance to try and do it.

KW: It gives you more independence and you get to choose what you’re going

to do and be more creative.

JBr: I liked the game making ‘cos I don’t tend to like reading the instructions, I

like to experiment with it and with the tutorials I sort of listened a bit and then

when I went on [Game Maker] I was just exploring with it so I found a lot more

things without like needing the tutorials, so ...

JC: You get to use your memory more doing it yourself as well, rather than just

copying something.

JG: It makes you think more than the plain work that everybody does, like,

simple Microsoft work. This one makes you think really hard about what you’re

doing.

Making games – the process

 105

This preference for computer-based practical learning accords with constructionist

learning theory and gives support to other studies using different software - where

students preferred to have as much hands-on computer time as possible when creating

games (see Sanford and Madill, 2007a; Werner et al., 2009; Smith and Sullivan, 2012).

However, those studies found it necessary to provide guided challenges to frame

practical activity to focus pupils’ learning on the skills required to build their games. The

key finding here is that while most pupils in this study preferred to learn by doing, and

were less inclined to listen to teacher instruction or demonstrations, guidance needs to

be embedded in the practical work they do if important concepts are not to be missed.

This highlights a need to provide more contextual support in open-ended projects so

that a balance is achieved between enabling pupils to learn by doing and ensuring that

they follow a path which covers the learning objectives of the unit of work. This finding

is supported by several research projects which aim to address this need either within

the software, or by strengthening collaboration within and beyond the classroom (e.g.

Good et al., 2010; Frydenberg, 2013; Ahmadi and Jazayeri, 2014).

5.3.6 Freedom to get things wrong

Another of the key ideas of constructionism is that, as part of learning to learn, pupils

need to be given the freedom to get things wrong and learn to view errors as a source

of information (Papert, 1999a). The pupils in this research encountered many problems

(see Chapters 6 and 8) but as in other studies of making games (e.g. Li, 2010), the

problems they encountered did not seem to deter them. The most common approach

for solving problems was through trial and error:

SW: OK, at the moment we’re trying to do it so on our start screen, [when] we

press the start button, it goes straight through to the game. So we don’t actually

know how to do that right now so we are going to do it with trial and error.

AW: So T.’s just editing ... the crate because it had a green background instead

of transparent and we’re not sure how to fix it, so T.’s just trying anyway he can.

Papert does not advocate ‘trial and error’ learning - and refers to it as ‘slow and

primitive’ (Papert, 1980b: 113). He suggests that more can be learned if pupils begin to

analyse their thinking, and develop strategies for ‘debugging’ program errors. The data

shows evidence that some pupils did begin to think analytically, or adopted strategies

for solving errors, built on their current understanding:

Making games – the process

 106

AE: The debug mode was useful because then you could see ... it came up with

an error and put it in an error log.

KW: Well I just used common sense, so if [the problem] was something to do

with the score, I would just go onto the [actions] and look around for something

that might help and I would test it.

JB: Right, okay. We’ve just managed to make the screen scroll. Hang on,

how’re we going to get it to go the other way? Oh I think we need to do minus ...

minus 6, let’s try that.

TB: Well there was another game that was an example which we could look at

and that gave us an idea of what it was, but then we just sort of tried different

combinations and tested them to see if they worked or not.

AE: We’ve made an animation for the intro but when we insert it into Game

Maker it changes the frame rates, so we are trying to get around this problem

by changing the animation length … I set the frames to 140. I wonder if that will

work … Well it sort of works, it’s better than before isn’t it?

MD: Yes but I think we can still change it a bit more to improve it.

AE: Maybe I should try a different number of frames.

MD: No I don’t think that would work, ‘cos we need the difference between the

flashing of the logo ... to be different.

AE: I know. If we just insert lots of extra frames that are the same, it will look as

if one of the frames is longer.

Whilst a trial and error approach was sometimes successful in solving problems

observation notes suggest that it was not efficient and sometimes led to frustration. The

data here support Papert’s assertion that pupils need to be taught to view errors as

sources of information and to develop a more strategic approach to solving errors. For

most of the pupils in this study that would involve learning how to respond to error

messages and making greater use of the sources of support provided in the software

(e.g. using the Help menu), as well as checking and testing the programs they created

more systematically.

Whilst ‘out-of-school’ approaches to learning through trial and error and repetition are

reported to be successful with children’s use of computer technologies in the home

Making games – the process

 107

(Downes, 1999) data from the current study suggest that when making games in a

school setting, such approaches are successful only to a limited extent. Research

initiatives such as the Flip project (Good, 2011), where software has been developed to

provide contextual support as needed, offers a promising solution to this problem.

Using collaborative learning tools, blogs and social media and encouraging peer

learning are also useful strategies (see Frydenberg, 2013; Ahmadi and Jazayeri, 2014)

to support problem-solving in open-ended projects such as these.

5.3.7 Working in pairs

Collaboration is an important feature of constructionist learning environments (see

Kafai and Harel, 1991; Harel and Papert, 1991b). In this study, the process of game

making was shaped by the collaboration between pairs. Although pupils will have

worked with others previously, it was not common in the research school for them to

co-create interactive digital artefacts. Pupils generally enjoyed working in pairs and

found it enabling:

JB: I liked the way we could work together … because most people find it easier

to work with a partner.

CB: ‘Cos you get to put together your knowledge … because if you don’t know

how to do something … they show you how to do it. And also you have more

ideas because you’re not the only one thinking of ideas and their ideas help.

SA: I think it’s much better than working on your own because if you feel stuck

you can just ask your partner and they might know or ... and also it’s easier.

GW: If you’re working in, like, a pair, you don’t have to go and ask the teacher’s

help; if you’re stuck it’s ok.

Pupils here seem to value working with others because of the ‘unobtrusive’ support it

offers (Harel and Papert, 1991b: 42). Working in pairs was also perceived to be useful

because partners provided useful critical feedback:

AE: It was good because we had more ideas and we could, like, combine them

both to get a better ... project.

Making games – the process

 108

AC: When you are creating your game and thinking up ideas for it, if you think

up an idea and you think it’s quite good, your other partner will say this is what’s

bad about it and this is what you need to change and this is what’s good about

it. Which is a bit different. You know, if you’re on your own you’d probably

create a worser game.

MD: Yeah, we could see what wasn’t going to work and what was going to work

and if you’ve got a second opinion about something then it helps a lot.

AE: Yeah ‘cos you can have constructive criticism.

MD: Yeah and generally it’s good to have a second opinion about something

that you’re making. Someone else can see the faults in what you’re doing or

think up new things.

Pupils also valued the flexibility of being able to work with others and to pursue their

own ideas and tasks within the shared enterprise. So while it was important to work

with others in terms of planning and problem solving, pupils also wanted to be able to

complete tasks individually according to their interests. This was particularly the case

with creating graphics, or when pairs decided to work on separate levels in order to

progress the game. The ‘optional’ collaboration seen here is an important feature of

constructionist learning cultures (see Kafai, 1995: 294).

Although pupils liked working in pairs, it also created some problems:

JD: Yeah, if you have an idea and you think it’s really good and then your

partner has another idea and you can’t decide what idea to ... Say you’re

thinking of a story line and your partner doesn’t like your idea and you want

your idea, then you’ll probably have an argument.

JC: We did have a few arguments.

JG: As I am making my game with J. there has been lots of argument,

disagreements and problems. Some of the problems me and J. have had are

not agreeing on the game name, agreeing on the characters. To solve all of

those problems we had to keep thinking of different ideas until we both agreed

on it.

Making games – the process

 109

TB: We had to come up with a sort of realistic storyline which would keep the

audience interested and it was hard because we both had different opinions on

what that was so ...

MH: We have encountered a few problems along the way, such as deciding

what our final, approved story-line was going to be. After many discussions and

negotiations, we have finally decided on a suitable story-line.

Learning to manage these differences of opinion is, in constructionist contexts, part of

learning to learn with others. The above comments illustrate that pupils had to learn to

negotiate and reach agreement, particularly with the early project tasks of planning and

initial ideas development.

5.3.8 Learning from others

Whilst most pupils learned with and from their partners, some also learned from others

in a wider sense when they reused code from sample games. Several pairs (AEMD,

AWTB, JBLA) made use of elements of code in sample game files or tutorials to help

them understand and apply new programming constructs in their own games:

TB: Now we’ve got an idea on how to do it, we’ll copy the ‘up’ button [code from

a sample platform game] and see if that works for our character and if it does

that’ll be a brilliant breakthrough because then we’ll know how to do a lot of the

rest of it.

One pair (JBLA) used a script they located on the Game Maker Community forum.

Pupils also used peers as a resource. For example, AEMD correctly implemented the

code for making an object reappear once it had travelled off the screen and this was

reused by other pairs (OWSW, JBJG). As in related studies (Good and Robertson,

2006a; Gross et al., 2010; Smith and Sullivan, 2012), there was a ‘brushfire’ effect,

where pupils reused code created by others and in so doing taught each other new

programming constructs. In this way pupils learned from ‘more knowledgeable others’

(Vygotsky, 1978) as they began to develop their own community of practice (Wenger,

1999).

JB: On our game, ‘cos our background was grass and sky, we had loads of

trouble trying to get [the horse] to stop at the grass and stop at the end instead

of going off screen, so we, like, we ended up getting some help from A. and M.

Making games – the process

 110

TB: Yeah because when you click ... on our instruction button it should come up

with text but we don’t know how to tell it to do that so we’re just trying to work out

how. Or I’ll ask M.

CB: [I would] just look at what other people had done so far and find out, like,

what was missing from ours which we could have added to.

This ‘collaboration through the air’ (Kafai and Harel, 1991) is a positive feature of

constructionist learning environments, where pupils are immersed in a shared learning

activity and have more freedom to interact with others and others’ ideas. Because by

their very nature, games exist to be played, the authored games were shared with

others, in a way that perhaps outcomes of conventional ICT projects (for example, a

database) are not. Observing and providing feedback on each other’s games gave rise

to new understanding and ideas and encouraged pupils to add similar features to their

own games. This observing others, imitation, peer teaching and knowledge exchange

illustrate how collaboration in the classroom was heightened by the game authoring

activity and the constructionist approach.

5.3.9 Taking time

One of the central tenets of constructionism is that learning by making takes time

(Papert, 1991b) and that giving pupils time to complete projects is necessary if they are

to become personally involved in their learning. Pupils in this study were given 16

hours to make their games, although none of the pairs completed their game in that

period. Nevertheless, working on an extended project had a positive impact on the way

some pupils in this study approached their learning:

AC: It makes you concentrate more ‘cos you’re always doing something, and in

other IT work we just come in and sit down and we listen to the teacher and

they explain stuff on the whiteboard and then we go off and do something on

the computers. But when we are creating a game we come in and sit down and

we get on with our game straight away.

In fact, pupils seemed to value being able to work on an extended project and some

would have liked more time:

Making games – the process

 111

MH: I just think we should have had longer to do it as well … and then we could

have spent the last few lessons looking at people’s finished games and done

more evaluating as well. I think that would have been good.

KW: Yeah I think we need longer to finish off our games but I think we should

have spent less time planning, because we should have spent two lessons

planning and then got on with it.

CB: I think we didn’t have enough time to do the, like, section of game making

because, well yeah, we haven’t finished our games. And it would have been

better to learn more about it and how to do it before we actually started making

them.

MH: I think we should have made … you know that piggy one we did? I think we

should have done something like that in an earlier year, like, before, so that

when it came to this year we could get on with more advanced stuff, because a

lot of us had no idea at all how to do it, so we spent quite a lot of time learning

the basics.

There was a feeling that lack of time was a limiting factor:

MH: I think we had our expectations too high, then we realised that we didn’t

have that long to do it so we had to make it simpler.

MD: I don’t think anybody finished as to what they really wanted their games to

be like. ‘Cos we got ours working sort of, but there are still quite a few bugs in it.

SA: Yeah I think if we’d had longer we could have made our game better.

AC: It’s just that you’ve got so many ideas and you’ve got to incorporate them in

these 16 lessons, it just doesn’t really work.

Constructionist learning theory asserts the importance of giving pupils time to learn

partly because it acknowledges that it takes time to create digital artefacts. This has

implications for mainstream settings where common allocations for Key Stage 3 ICT

lessons are 1 hour a week (38 hours over an academic year). The fact that pupils did

not complete their games suggests that game authoring activities need to be carefully

Making games – the process

 112

structured and curriculum designers need to consider what constitutes achievable

outcomes in limited timescales.

In terms of the pedagogy of game authoring, the data here suggest that skills need to

be developed incrementally over the three years of Key Stage 3, and this finding is

echoed in similar research in out-of-school settings (see Willett, 2007). If making

games is an important context for learning in ICT it needs to be revisited in Years 7, 8

and 9 and software skills have to be taught formally if particular applications are to

become creative tools for young people (Willett, 2007: 173). In fact Willett questions

whether it is possible for young people to create games because in her research,

significant time was taken up with learning software and producing graphics - rather

than producing a playable game - to the extent that final projects were hampered by

the complicated nature of the software; these findings resonate with experiences in the

current research.

5.4 Summary

Just as young people play computer games without direct instruction or reading

manuals, this also seems to be the preferred approach for some when making their

own computer games.

The extended time frame of the game authoring activity gave pupils an opportunity to

engage with a range of strategies for learning, which included exploring the software,

using sample games, trial and error, learning from partners, peers and the teacher,

using the Help menu, following video and print tutorials, accessing the internet, testing

and debugging. This finding is echoed in other studies where pupils used a range of

strategies to develop the skills they needed (e.g. Baytak et al., 2008; Cheng, 2009).

Whilst pupils valued the constructionist approach in terms of being able to manage

their own learning, work in pairs and learn by doing, this way of working was not always

efficient. These findings suggest that pupils’ enthusiasm for learning by doing has to be

balanced by direct, interactive teaching to ensure that skills and features of the

software are introduced (see Willett, 2007; Robertson and Howells, 2008) and key

programming concepts and game mechanics are modelled. In particular, pupils need

access to ‘just in time’ learning resources, in a range of formats to support them in their

individual endeavours.

Making games – the outcomes

 113

Chapter 6 Making games – the outcomes

6.1 Introduction

Whilst the previous chapter reported on the process that pupils followed, this chapter

looks at the areas of learning that pupils encountered when creating their games, which

included creating a game narrative, designing the visual appearance of the game and

designing the game play. Chapter 7 extends these findings by discussing what pupils

learned about programming concepts and practices.

It is apparent in the following analysis, that the relationship between the design

documents themselves and the game pupils went on to make was not well understood

and more emphasis needed to be given to carefully completing planning and design

documentation and making more use of it throughout the game-making process.

6.2 Creating a narrative

The first activity in the scheme of work was to play and then deconstruct sample games

made in Game Maker. The purpose of this was to introduce the idea of a game as a

constructed system, with identifiable components (theme, characters, objects, settings,

goals, sounds, mechanics) and to generate ideas for their own game.

The next task was for pupils to construct a narrative. Game narratives differ from

traditional narratives, because interactivity, scoring, game goals and playability also

have to be considered. In practice some pupils did not manage to incorporate all these

features into their game stories, although they were able to devise scenarios for their

games.

6.2.1 Representations

Game narratives generally reflected pupils’ interests (horse riding, snowboarding,

dodgeball, the supernatural). Where game characters are human, the archetypes of

hero/villain (Propp, 1968) and their functions are apparent:

MD: A girl’s father is captured and she goes to rescue her father.

Making games – the outcomes

 114

CB: Our idea is that the main character would be a girl … and she is being

chased by the evil woman and she has to run away from her and she sends her

evil pigs out to try and (laughs) stop her.

MH: I think that she should be running back to her house or something, or

safety, do you reckon?

MB: In our story … we got a last man … on earth who has to defend the castle

from these zombies that were people that took these pills that should have

made them immune from cancer but actually turned them into zombies yeah,

and then they, like, attack it!

Two of the twelve games feature female characters (girl, princess, witch). Most (5/6) of

the boys’ games feature male characters (boy, policeman, ghost). Two of the five girls’

games include non-human male player characters (Patrick the fish, Starman), and 3/5

girl pairs created games involving animals (cat, mouse, horse, fish), where none of the

boys did this. Popular Japanese computer games (Nintendo’s ‘The Legend of Zelda’

game, Pokémon) are also referenced in three boys’ games.

Because the target audience for the games they created was 10-11 year olds, most of

the game scenarios were fairly benign and challenging the values represented in them

was for the majority not required. But two pairs were asked to modify their storylines to

avoid negative representations of certain groups, or depictions of gratuitous violence.

For example, one pair (ACJC) had devised a ‘burger kid game’, in which ‘a fat boy [is]

trying to gobble up the burgers. There will be vegetables in random places that he has

to avoid.’ This pair felt that their initial ideas were compromised by having to take

account of the target audience and the need to consider the representations in their

game:

AC: First of all we tried to create a game with a fat boy who has to dodge

vegetables and just eat burgers. However, we found out that this would offend

larger people so we decided to change our game choice. Then we found out

that we had to make the game suitable for a specific age group, that being 7-11

year olds.

Making games – the outcomes

 115

In another game, pupils were encouraged to avoid violence. In JDMB’s initial ideas

‘The last man on earth has to defend a castle from zombies. [The player character]

uses weapons that are upgraded every level.’

MB: At first we [wanted] to shoot the zombies and kill them but then we found

out there was to be no guns or death. So we changed it to throwing a stick or a

rock.

JD: Instead of guns we threw stones. The zombies wouldn’t die, they would just

be unconscious.

Although this pair modified their game to be less violent, they were reluctant to do so

and in the transcript of their voice recordings they express disdain for having to replace

guns with stones, bricks and bottles. They had designed a game which involved the

player character opening fire as soon as the game was launched, and were frustrated

that they could not pursue their initial ideas:

JD: He was just going to start with a gun.

CJ: We don’t want guns.

JD: Why not? Lasers?

CJ: We talked about this before and I said no violence.

JD: You said no killing humans. We’re not killing humans. We are killing

zombies.

CJ: Well try and make it something other than guns.

JD: Ok, right, shall we have him throwing bricks?

JD: Or throwing sticks?

MB: Throwing sticks at zombies?!

JD: (Sarcastically) Yeah, that will knock him out any day!

These examples illustrate that, in creating a narrative for their games, some pupils had

to come to terms with the need to reflect on the content, values and representations of

the games they created. In doing so, they were introduced to the notion that such

factors merit consideration - in the example above a pupil acknowledges that his initial

ideas ‘would offend larger people’ - and this is an important step in young people

becoming critical participants in new media culture (Peppler and Kafai, 2007b).

Making games – the outcomes

 116

6.2.2 Initial narrative ideas

In general, developing a game storyline raised some unexpected problems. Eight out of

twelve pairs referred to difficulties with creating a coherent and convincing game

narrative, and incorporating a plausible goal within that narrative:

KW: You’ve gotta think why things are there and specifically why they’re there

and having actually a story that isn’t completely impossible, that’s believable.

AC: It was quite difficult to think up [a storyline], especially in pairs, because

you’ve got to have something that’s different, that’s new, you gotta have a

different name and you gotta have something that would appeal to the right age

group that you’re targeting.

MH: I think a lot of people found it hard when you said just to come up with a

storyline and then people were coming up with storylines but then they weren’t

suitable for games.

JG: Finding a good story for a game … was a massive problem for us because

we just couldn’t find a good enough storyline. We talked and jotted notes down

until finally we thought of one.

As in other studies (e.g. Forster, 2006), pupils’ difficulties with narrative were evident in

the conflicting metaphors and the arbitrary, discordant game characters, storylines and

objects they used. Often, their internal mental conception of the game was more

sophisticated than the actual realisation of it. Nevertheless, some pairs outlined their

initial ideas clearly, chose achievable game mechanics and were able to recreate these

in the games they made:

OWSW: You are a man on a pair of skis and you have to ski down the mountain

to reach the bottom. On your travels you encounter objects that get in your way

e.g. rocks and trees. To gain points there will be big blue snowflakes that when

you ski into them gives you 10 points. There will be a gold snowflake that

appears occasionally, this will be worth 20 points. To make them harder to

catch they will move. The aim of the game is to get a certain amount of points

before you reach the bottom of the mountain to proceed to the next levels.

There are 5 levels in total, each with its own different background. As the levels

Making games – the outcomes

 117

increase the speed in which you travel will increase and more obstacles will

appear. You will ‘wipe out’ if you crash into an obstacle. You have 3 lives, if you

use all those lives up it will be game over and the game will be restarted and

you get a final score. In the end you aim to get a high score.

In KW’s ‘Shipwreck Escape’ maze game the player controls ‘Patrick, a fish that got

trapped in a ship wreck. [The player] will have to guide Patrick through all the levels

avoiding obstacles and collecting pearls. To complete the game s/he must complete all

five levels. To complete each level you must collect all the diamonds and pearls and

reach the door to progress to the next level. Each level there will be a series of

obstacles such as sharks, seaweed, crabs and boulders. At the beginning of the game

s/he starts with three lives; when you collide with an obstacle s/he will lose a life. When

all the lives are lost the [game is over].’ Because these pupils chose a simple scenario

and outlined the main game mechanics they were able to translate those ideas into a

playable game.

However, for others this was not the case. Initial ideas were not developed in sufficient

detail and did not outline a narrative or identify a specific player character and it is

significant that these pupils did not succeed in making a game:

SARC: In our game we will attempt to aim it towards younger children. The age

group will range from 4-6 as we think our game will suit this age group. Our

game will be based in a maze, where there are several characters that you can

choose to be. You, as the character you chose, will have to make your way

through the complicated maze (where there are several complications including

water which you can fall in to) to the end. When you get to the end of the maze,

there is a pot of money that gives you extra points. Our game is called ‘Money

Maze’.

This pair later refers to problems they had with their game stemming from not knowing

what they wanted to achieve:

SA: Me and R. weren’t very clear from the beginning what we wanted our game

to be like ... we just sort of put it together as we went along.

Their strategy of ‘putting it together as they went along’ was not successful for them.

Because they did not have a clear narrative to frame their game, developing the game

Making games – the outcomes

 118

play was harder for them to visualise and achieve. This finding contrasts with Papert’s

view that being guided by the work as it proceeds, rather than staying with a pre-

established plan, is a successful strategy (Papert, 1991b: 6).

Other initial ideas were planned in some detail, but pupils did not have the

programming skills to realise their game stories:

LWGW: We are going to try to make a cat and mouse chase. It will be set in a

kitchen, where the mouse will be trying to get away from the hungry cat.

Cheese will be scattered around. The mouse gets points when it eats the

cheese and after eating five pieces of cheese the pace will speed up; this is a

new level. On the other hand the cat gets points if it manages to catch the

mouse and therefore the cat’s speed will also increase. If the cat catches

you/the mouse three times you have lost and your score will appear on the

screen.

JBJG: In our game we will have a horse as our main character. The horse will

have to fight its way through a forest full of nasty things which she has to avoid,

either by jumping over or dodging left or right. In the game it will get harder

throughout. Such as level one will be easy with not many things to jump or

dodge, then as the game progresses there will be even more things. The things

the horse will dodge will be things such as falling branches, animals, logs,

hedges and a wolf running towards it. In the game there are also good things

for the horse to collect such as apples, carrots and sugar lumps.

In both cases, only some ideas are reflected in the game finally implemented. For

these pupils it was necessary to simplify their initial ideas to match their programming

skills:

JB: Our … horse … was meant to dodge things and jump over things but we

couldn’t get the horse to jump properly, so it doesn’t jump, it just dodges the

logs.

This was a common problem for pupils in this study - their initial ideas were too

ambitious and they were not able to create what they perceived to be interesting game

play or sufficient challenge within their games, since to do so required a level of

Making games – the outcomes

 119

programming knowledge that they did not possess. This finding is supported in the

literature where earlier studies, using different software, found that few students

realised the complexities of authoring a computer game or had the programming skills

to achieve their initial game designs (Kafai, 1996: 85). This suggests the need to

carefully structure introductory game making courses and to give more focus to

planning an achievable storyline and the game interactions which arise out of it before

implementation begins.

Some pairs struggled with selecting a narratively convincing enemy object for their

player character to flee:

MH: We had trouble deciding on the avoiding object - the object that the

character has to avoid otherwise they face the consequence of losing a life. We

chose to do a pig at first, but didn’t feel this was appropriate so have settled on

the idea of spiders.

Others were concerned that the back story for their game was not believable:

AE: Kokoro lives with her father, Takeshi, who is a mad scientist. One day

Kokoro hears her father shout, ‘Eureka!’ She goes downstairs to the basement,

and her father is holding a genetically modified rabbit. He tells her it is

programmed to protect her. She decides to call it Saburo. Suddenly a hole is

blown in the roof and Saburo runs away. Some ‘ninjas’ come in. They do not

see Kokoro. They say they want the GM rabbit, but Takeshi refuses to tell them

where it is. They kidnap him. Kokoro decides that it will be her mission to

rescue her father, with Saburo.

This pair later modified their ideas to make the story more narratively convincing to

them:

AE: In the initial plan, the father had created a genetically modified rabbit, which

the evil scientists tried to capture. However, we later decided to change this so

that he was an archaeologist and had an ancient and valuable scroll, as this

was more realistic.

Although this pair simplified their initial ideas, their narrative planning is detailed and

specific and this seems to have had a positive impact on the game they finally

Making games – the outcomes

 120

implemented, which is the most developed and functional of the group. A strong

narrative provided a good basis on which to build their game.

CBMH’s initial ideas were also changed in the final implementation:

Our game will be called ‘The Great Escape’. The idea is that the main character

will be a girl, represented as a pencil drawing/stick man. Her adventure begins

at her house, where she gets a letter saying that her friend has been captured

by the evil [witch]. Her aim in the game is to rescue her friend. To get her friend

she will have to overcome different stages of difficulty, whilst facing evil pigs on

every level.

These initial ideas were changed in the storyboard to ‘a princess being chased by an

evil witch who is keen to take away her beauty and lock her up. You must escape from

the castle at once and find safety.’ Yet in the game later developed there is no castle

or witch; the player character negotiates platforms, avoiding spiders and collecting

coins. In departing from their initial ideas, the game narrative suffered - there is no

discernible, involving goal for the game.

AWTB’s initial ideas featured ‘an Australian policeman who has to chase a robber

through the rundown places in a city. This robber has escaped from jail and has a life

sentence. On the way you have to jump over crates and slopes to go up and down. On

some slopes there will be oil to help you move faster.’ Establishing a storyline and

agreeing on the main player character was a problem for these pupils, who later

changed their initial ideas from a maze game to a platform game - which they found

difficult to program. Because they did not have a strong narrative, deciding on game

mechanics was also problematic. In the final implementation of the game, the narrative

identifiers of policeman, robber, crates, oil and cityscape are not realised. The game

implemented tells no story and has no goals, because the pupils did not have the

graphics or programming skills to reproduce their narrative ideas.

Other pupils (GS, JBLA) used characters from commercial games to help them shape

their narratives. GS refers to the ‘Pokémon Ranger: Shadows of Almia’ (Nintendo,

2008) computer game and features two Pokémon characters in his initial ideas.

However, narrative details are vague - the player controls a ‘small person’ who has to

defeat ‘various enemies and collect items to enhance power and speed. There are five

rooms filled with different enemies.’ The lack of a strong storyline may explain why this

Making games – the outcomes

 121

pupil did not manage to develop the functionality of his game beyond creating the title

screen and programming the directional movement of his player character. Because

his initial game story lacked narrative detail, the interactions and game play which arise

out of that were harder for him to visualise and implement.

JBLA recreated a ‘Legend of Zelda’ (Nintendo, 2004) game and used its protagonist,

Link, as their player character, but their final game has only a weak connection to their

initial ideas, which centre on ‘a man who is driven underground by germ warfare. He is

warned beforehand by a mysterious man hiding in the shadows, but it turns out that the

man is evil. Then your character is driven underground to a strange vault, which seems

safe until strange mutants start attacking. He can’t escape because the vault door is

locked shut behind him, so he has to go on an underground adventure searching for a

way out.’

The data reported here, which show that pupils had difficulty in creating a satisfying

narrative, contrast with the results of previous research, which suggest that creating

computer games aids narrative development (e.g. Robertson and Good, 2004;

Carbonaro et al., 2005; Robertson and Good, 2006). In these studies the software

used, NeverWinter Nights, provides characters, objects and terrains and involves

branching dialogue. These supporting structures are not available in Game Maker,

where gameplay is characterised by action, not dialogue. Whilst ready-made game

assets can constrain the games pupils are able to make, it seems that some pupils

needed the sort of narrative support that these offer.

The data also show that given free choice some pupils may choose unsuitable

scenarios, others may choose ideas that are too ambitious or find it hard to create a

convincing game story. In order to avoid these potential areas of difficulty, a better

model may be to provide game narrative outlines, perhaps based on a social or

environmental issue, a model promoted by organisations such as ‘Games for Change’

(Games for Change, 2013), and ‘Apps for Good’ (Apps for Good, 2013). Previous

constructionist research supported the development of game narratives by asking

children to make games to teach younger pupils about fractions (Harel, 1991; Kafai,

1995) or science topics (Baytak and Land, 2011b), and current Key Stage 4

examination specifications offering game-making tasks also use curriculum subjects as

a starting point. Although pupils in this research valued being given the freedom to

choose their game genre and storyline, they found it difficult to create a game narrative

and more support needed to be given in this area. This finding echoes previous studies

Making games – the outcomes

 122

using different software, where pupils also experienced difficulties in creating game

narratives (e.g. Parsons and Haden, 2007; Baytak and Land, 2011b).

The data suggest that those who did not establish a clear narrative for their games at

the start (AWTB, GS, SARC), or did not follow their initial ideas had more problems in

creating a successful game. Since the narrative frames the object interactions and

gameplay, without a clear narrative it was difficult for these pupils to envision what

outputs they wanted in their game and then to implement them.

6.2.3 Game design document

The next stage of the design process asked pupils to complete a game design

document. Ten of the twelve pairs attempted this task but analysis indicates that

responses were lacking in detail, generalised, or incomplete. For example, when pupils

reference the use of sound in their game, they do so only partially: CBMH refer to the

background sound for their game as, ‘Music’; JDMB mention ‘Bangs and moaning’; KW

writes, ‘loss of life - bad sound’; JBLA refer to ‘gun noise, health damage noise,

explosion, gain health noise’. In general, pupils did not list all the sounds in their game,

e.g. they omitted feedback sounds or sound effects. ACJC, AWTB, GS did not

complete this section of the game design document.

Pupils likewise did not give a complete account of the gameplay. JDMB’s player

character ‘Starts on walkway, object in hand ready to throw at zombies moving towards

you’. There is no mention of rewards/penalties or win/lose states. In describing the

levels in their game, some pupils did not give a clear overview of level design or

progression across levels. JBJG state ‘3 levels get harder each time’ but there are no

details of how the challenge increases. JBLA refer to one level ‘but it is really big with

different areas.’ CBMH, ACJC, AWTB, GS did not complete this section.

These omissions suggest that pupils found visualising the detail in their games difficult

or were reluctant to have to plan the game on paper, preferring to implement it directly

in the software. Indeed, computer-based activities took precedence over the written

planning documents and a significant amount of time was taken up at this stage in

locating or creating and editing graphics for their game. Nevertheless, in missing out

important details at the planning stage, pupils encountered problems later.

This section has summarised observations arising from an analysis of the design

documents which pupils produced at the beginning of the project. The next section

Making games – the outcomes

 123

looks at the areas of learning pupils engaged with as they began to design the visual

appearance of their games.

6.3 Designing the visual appearance of the game

6.3.1 Storyboard

As part of designing the visual appearance of their games pupils were asked to

represent their game as a storyboard (see Appendix 8). Seven of the twelve pairs

completed this task. Interestingly, there were several significant omissions in terms of

graphical information in the storyboards pupils submitted and these are detailed below.

KW represented her game across six coloured frames, illustrating the rooms, and her

player character but omitting the game collectables. The storyboard has only a weak

connection with her initial ideas and the appearance of the maze game she later made.

AWTB’s storyboard lacks an image or title on the title screen and represents the game

as a series of black and white mazes. It has only a weak connection to the final

platform game implemented. The storyboard indicates lives/score and timer mechanics

and game challenge, but does not convey a strong visual sense of what the game

should look like. In particular, there is no representation of the player character or other

game objects. It is significant that in their final game, the title screen is an abstract swirl

of colour and does not relate to the game narrative; other game graphics (backgrounds

and sprites) do not reflect their initial ideas and are not developed (the background is

grey, the player character is an arbitrary shape). For these pupils the absence of

graphical information suggests that they were not able to visualise their game and this

is carried through into the final implementation.

SW’s storyboard illustrates the title screen and represents the flow of the game in six

frames. She labels the player character and other game objects and includes the

lives/score and ‘game over’ screen. She also labels elements of game play (‘Character

collides with snowflake to gain points’). Her partner, OW presents a black and white

drawing of the player character, title screen, main game screen and ‘game over’ screen

and labels game objects, score and level. These stronger details enabled the pair to

create a more successful game. Because they were able to visualise what they wanted

their game to look like, it was easier for them to recreate their ideas.

Making games – the outcomes

 124

LWGW’s title screen includes the title and menu buttons but lacks any images. It

seems that these pupils interpreted the instruction to include a title screen literally,

giving only a title - and this was the same for 5/7 storyboards completed. The

storyboard illustrates and labels the player character and other game objects and hints

at the background, but this only has a weak connection to the maze game they finally

implemented.

MH’s black and white storyboard depicts a title screen which lacks a background and

navigation buttons. The player character is indicated, along with another character,

which does not appear in the game later implemented. A back story screen and three

levels illustrate the platforms and game objects; lives/score/level information is also

shown. The ‘game over’ screen depicts a high score table and labels the condition for

the high score table to display (‘if you lose all your lives’). Level progression is labelled

and a key to the game objects and keyboard symbols (left, right, up, down arrows and

space bar) is given. Her partner, CB indicates a black and white title screen with title

text and ‘Click to start game’, but there are no graphics. A menu screen displays four

buttons but gives no other visual information. The game room is shown and includes

level/health bar, player character and other game objects. A ‘how to play’ screen gives

game instructions; a ‘high score table screen’ references the score mechanic but there

is no button to navigate away from the screen. A ‘game over’ screen includes text but

gives no other visual information and no exit button.

In ACJC’s black and white storyboard, a ‘game start’ screen displays the start button

and controls and includes game instructions but lacks a title or graphics. The level 1

screen shows player character and obstacle object but no reward object, or score/lives

mechanic. A net is depicted but no other background features are shown. The level 2

screen adds an image of the reward object. A high score table, menu and credits are

indicated but no other visual information for these screens is given.

AEMD’s storyboard displays four levels but their final game only makes use of designs

for levels 2 and 3. No title screen or instructions are referred to, although these were

later implemented. Level 1 indicates the player character and other game objects, but

there is no reference to score/health/lives mechanics beyond bonus points. Labels hint

at the storyline but no details of game play or colour information are given. Levels 2

and 3 show the player character and obstacles and one feature of the background is

depicted (clouds). Levels 3 and 4 label some elements of gameplay (‘level restarts if

player runs out of fuel’, ‘jump on henchmen to destroy them’).

Making games – the outcomes

 125

In summary, the storyboards omit some key features of the games, notably colour,

player character, obstacle and reward objects, score, background graphics, title screen

and interaction buttons. This is surprising given that the games pupils play are

generally graphic rich and visually appealing. It seems that at this stage in the design

process pupils had difficulty in visualising the game in its entirety and in representing its

separate components graphically. It may be that pupils struggled to represent

interactive media and moving imagery in two-dimensional paper format. These findings

suggest that pupils found it difficult to create abstractions of their games, such as the

storyboard and the design document, and found concrete production in the software

more accessible and appealing. Moreover, pupils did not make much use of these

planning documents to support them in making their games and more emphasis

needed to be given to the purpose of planning documents in the game authoring

process.

6.3.2 Graphics

Once they had completed the planning tasks, the next stage was to produce the

graphics for their game. Most pupils used Fireworks (Macromedia, 2004) to create or

edit their game graphics, while others used ready-made graphics, sourced either from

the internet or from Game Maker’s sprite library. Creating game graphics (sprites,

backgrounds, title screens) was a new area of learning for these pupils and presented

them with many challenges, not least of which was locating suitable items:

JD: It was quite hard looking for sprites, like, um, if you typed in something [in

the web browser search bar] it might not always come up, ‘cos of the [LEA] ban.

KW: One of my first problems was I was trying to get a bad sprite, like

something to be the bad guy, but I couldn’t find one on the internet and then

when I found one it wouldn’t import and I couldn’t use the resources that were

already in Game Maker for some reason.

JB: At first we were gonna have the screen scrolling downwards, and then the

only [animated] horse we could find was going ... [horizontally].

One pair thought that the software should have given more support for graphics:

Making games – the outcomes

 126

AC: I think the graphics could do with a bit of improvement. ‘Cos basically it’s

your sprites, all your stuff, you don’t have like, the rooms don’t have anything,

it’s all yours.

This pupil articulates the demands of having to create from a blank canvas. Although

pupils had access to a limited range of backgrounds and sprites within the software,

these were not suitable for their individual storylines. They needed access to a greater

range of ready-made graphic resources, such as those provided by other software

used to create games, e.g. Scratch, or in online tutorials (e.g. Aardman/Nominet Trust,

2014). Creating and editing graphics dominated the early sessions and this was

exacerbated by the fact that pupils’ had limited exposure to graphics software and

lacked image editing skills. While it was important to give pupils the opportunity to

create their own game graphics, because they enjoyed doing so, in practice it was time

consuming to create satisfying graphics and the outcomes were often disappointing -

7/12 games included poorly executed or very simple sprites (see Appendix 1).

Pupils also encountered difficulties with creating successful background images, which

were not well drawn in 5/12 games; others found it hard to visualise their backgrounds:

TB: Also [a problem is] making good scenery that will keep them interested. A

lot of good scenery, it’s quite hard to keep thinking of new ideas for scenery.

OW: We were going to have a different image as the background on each level

but then it became too hard as you can’t really have different images of a snowy

background!

Overall, pupils spent too long locating, creating or modifying graphics, which meant that

there was less time for programming the game action. This finding is echoed in other

studies, where the process of making game graphics became the overwhelming focus,

pupils spent more time on interface design than program logic, and combining images

from different software complicated the production process (Kafai et al., 1997;

Shackleton et al., 1997; Lin et al., 2005; Parsons and Haden, 2007; Willett, 2007;

Northcott and Miliszewska, 2008; Baytak et al., 2011; Smith and Sullivan, 2012) and

was conceptually and practically challenging for those with little prior experience

(Macklin and Sharp, 2012).

Making games – the outcomes

 127

Notwithstanding these problems, creating graphics for their games introduced pupils to

many new concepts and skills and some expressed satisfaction with this component of

their work:

MD: I liked making sprites, that was fun using Fireworks. It was useful and

deciding on the sizes we needed for them and stuff like that.

CB: I like the graphics in our game.

Modifying graphics they had created themselves was sometimes problematic. Five out

of twelve pairs experienced problems in resizing their sprites appropriately and 3/12

games included oversized images (JBJG, JDMB, SARC):

AE: We had to make [the sprites] quite small and so we had to learn how to

make them so that you could recognise what it was, but only using 16 by 16

pixels, which was quite hard.

SA: Well we made our sprites too big and we had to change the size of them,

which was a bit annoying.

MD: I had already made these characters and they were 32 by 32 and [then] I

had to shrink them but it just degraded the quality loads.

The notion that the canvas size must be the same as the image size of a sprite was not

intuitive:

JC: We had a bit of difficulty … with getting the pictures you created on

Fireworks to fit into the [grid] and you got an awful lot of wasted space on your

sprite so you got like … in Fireworks you created this little sprite and then you’d

have loads of white background.

In some games (JDMB, SARC, JBJG) where sprites had a large surrounding canvas,

this prevented the object from being correctly placed in the room and made collision

detection inaccurate. Sourcing images from the internet introduced further problems:

AC: We had a bit of trouble because we incorporated a Mars bar in our game

and we found a picture of them on a website but it had a shadow underneath it,

Making games – the outcomes

 128

so when we came to creating the sprite, when we put it into the room it had this

black outline underneath and on the background it had white edges.

Pupils had to learn to make sprite backgrounds transparent. One third of pairs (ACJC,

AWTB, GS, JBJG) found this difficult to achieve or included graphics with non-

transparent backgrounds (GS, JBJG).

Beyond these specific skills, pupils also learned about the visual conventions of two-

dimensional computer games (e.g. vertically or horizontally scrolling backgrounds,

points of view, animation) and they used visual skills when they made aesthetic

decisions about colour, texture, size/scale, composition and perspective. The 2D

games that pupils created were predominantly graphical; text was used only in title

screens, messages and game instructions. In this respect making a game was different

from previous units of work, which, while they may share a visual dimension, normally

include significant textual or numerical content.

In designing the visual appearance of their games pupils also developed greater

understanding of how to conceptualise ‘screen space’. Although pupils in this study

had previously created screen-based systems, such as web sites, multimedia

presentations, or animations, creating a 2D computer game involved learning to view

screen space in a different way. The screen in a game context is a Cartesian plane, a

space mapped by coordinates and measured in pixels and they had to learn how to

define and manage the position of objects located within this space.

They learned that to control the ‘layering’ of elements on the screen a value for ‘depth’

must be specified, to determine whether an object lies in front of or behind other

objects. Two of the twelve pairs used this feature to control the layering of objects in

their games (JBLA AEMD). However, in four games (JBJG, JBLA, LWGW, AEMD)

depth was not correctly configured for some objects, which affected their display.

Although the development of graphics skills is important in its own right, the findings of

this study suggest the need to carefully consider the place of graphics instruction within

game authoring activities. Time allocated to sourcing, creating or editing graphics

needs to be limited, and the choice of software used needs to be carefully considered.

In this study, the graphics editing software selected had a learning curve of its own and

gave little support to novice users. This problem of using professional standard

Making games – the outcomes

 129

software is also described in other research related to digital media production (see

Willett, 2007).

To reduce the time spent on learning graphics skills it may be preferable to use the

image editor in Game Maker to create bitmap graphics, using more straightforward

‘pixel art’ techniques, or to make greater use of ready-made sprites. This allows more

focus to be given to the programming task and removes the need to learn additional

software skills. Alternatively, if such software is to become a creative tool for pupils,

skills need to be developed incrementally over time with increased exposure to the

software and practised over the key stage (Willett, 2007; Robertson, 2012).

6.4 Designing the game play

Even though the games the pupils made were not sophisticated, the design of

meaningful game play involved complex thinking - pupils had to consider the

relationship between player action and system outcome and to make outcomes clear to

the player in the form of visual and/or audio feedback. As players of games pupils take

this for granted; when making their own games they had to think about these dynamics

explicitly, perhaps for the first time. This section illustrates some of the elements they

had to consider when designing the game play.

6.4.1 Animation

Five of the twelve games included one or more animated graphics (AEMD, JBLA,

JBJG, LWGW, JDMB) either sourced from the internet or created by themselves.

Pupils felt a sense of achievement when they managed to include this feature:

JBr: I’ve learned that you can make games more advanced than I thought you

could, like the idea of being able to use more than one sprite as an object so

you can get the effect of moving.

MD: [The animation] was fun. I hadn’t really done something like that before. I

didn’t know you could use Fireworks for animation.

JB: Yeah, I’m glad that I managed to get the horse to move.

One pupil (AE) produced an animated splash screen for his game, in which a light bulb

flickers to illuminate the title (see Figure 14). He learned to control the animation speed

Making games – the outcomes

 130

and duration by defining the number of frames required and the number of frames per

second.

Figure 14: AE’s animated splash screen

Pupils learned how to import animated graphics they had created in Fireworks or

located on the internet into Game Maker, though this was not without problems:

AE: We’ve made an animation for the intro but when we insert it into Game

Maker it changes the frame rates so we are trying to get around this problem by

changing the animation length.

JB: We had a problem with the horse. When we first got it, it moved really fast

and then we managed to slow the horse down.

In three games (JBLA, LWGW, JBJG) an animated character played too fast. Pupils

learned that the rate at which the animation plays depends on the room speed setting.

In another game (AEMD) pupils had to make sure that an explosion animation travelled

downwards at a convincing speed so that it appeared to follow the graphic of a car.

Other difficulties occurred in specifying the correct position of an animation (JBLA) and

sequencing animations so that one animation ran its course and then disappeared

before another animation played.

In 3/12 games (AEMD, JBLA and GS) multiple sprites were used to modify an object’s

appearance when it changed direction, and this feature was particularly noticeable

when it was lacking, as in KW’s and LWGW’s games where a fish appears to swim

backwards and a mouse reverses.

Seven of the twelve games did not include animated sprites, yet it is not difficult to

Making games – the outcomes

 131

achieve simple animation or to change a sprite’s appearance when it changes

direction. These are core game functionalities which pupils need to be taught, if their

game graphics are to be successful.

6.4.2 Usability

Although the importance of considering audience was explicit in the National

Curriculum framework for ICT in operation until 2012, that audience was generic,

implied, possibly not authentic and normally invoked to ensure the appropriate use of

font style, colour, image, sound and similar features. In contrast, the audience for a

game interacts directly with the end product and this leads pupils to consider features

beyond presentation, such as user experience:

AE: You are having to think about lots of different things that could happen.

MD: [It] makes you think. [It] makes you more aware of how people think.

AE: Yeah and you have to imagine all the things that people might …

MD: You’re the player …

AE: Yeah [you have to] imagine you’re the player.

MD: I like the high score table. That’s a good thing to have because it makes

[the game] more competitive.

AE: Also the variety of different levels makes it more interesting for the player,

because rather than just playing one thing, they won’t get bored.

Computer game authoring gave pupils an authentic opportunity to design for usability

and this is evidenced in their games when they created title screens, wrote game

instructions, made use of common control options (e.g. arrow keys for directional

movement), gave the player feedback (score, sound, text), and made choices in terms

of interface design (theme, character appearance, animation, level design). The journal

extract below illustrates design decisions made by one pair (AEMD) to enhance the

usability of their game:

At first we couldn’t decide whether to make the spacebar start the game from the

title screen, or make a mouse click on a button to start it instead. We decided that

as all of the controls in our game use the keyboard, we would stick to this

throughout the game. We had seen several other games which used a key press

to start the game too.

Making games – the outcomes

 132

We decided that in level 2, the scrolling car would only go left and right and not up

and down like in level 1. The player just has to dodge the obstacles in the game,

and we thought that adding another direction for the car to travel in would confuse

our audience.

We will also add another room to our game which will congratulate the player on

completing the game. It will display a ‘Well done’ message. The player can then

exit the game using the Esc key, or play again by pressing the F12 key. They can

also enter their name if they have achieved a high score.

As the game is quite long, we think that we should have quite a good reward when

the game is complete. As well as a ‘Well done’ message, we could also display a

short video/animation. We considered changing the global game settings so that

the player cannot exit the game or log off until they have completed the game.

However, this would annoy and anger most players so we probably will not do this.

Other aspects of usability are concerned with how the game ‘communicates’ with the

player. For example, AEMD customised their game by designing a graphic to display in

the title bar, as well as creating graphics to indicate the loading of the game and to

display the player’s lives, health and score status (see Figures 15, 16 and 17).

Figure 15: Title bar game icon

Figure 16: Loading graphic

Figure 17: Score, health and lives status bar

Making games – the outcomes

 133

Pupils also showed awareness of designing for usability when they created interaction

buttons with rollover effects (GS) or designed screens which included user options

beyond starting the game (GS, AEMD, KW, OWSW), as illustrated in Figure 18.

Figure 18: Title screens offering user options

Further aspects of designing for usability are evident in the 3/12 games which include

instructions and the two games which include a high score table (see Figure 19).

Figure 19: OWSW’s instructions screen and KW’s high score table

Three games used messages to communicate with the player (see Figure 20). JBLA

used messages to instruct the player how to start the game, and within the game, to

Making games – the outcomes

 134

add dialogue (‘Help me!’, ‘Ha ha you fool, I’m free!’), to advise the player of a game

state (a door is locked), and to invite the player to interact with the game (‘If you touch

me you get a wish’). ACJC made use of messages to advise the player that they had

lost all their lives, and to congratulate the player on winning the game (‘You are the

ultimate dodgeball champion! Well done dude!’). AEMD included messages to support

the narrative of the game and to inform the player that they had completed a level or

finished the game (‘Well done! You have successfully flown to Tokyo and completed

level 1!’).

Figure 20: Use of messages

In incorporating these elements, pupils show a developing awareness of aspects of

usability as an important feature of digital media production.

6.4.3 Interactivity

For the pupils in this study, designing and creating the interactivity in their games was a

new experience. Although they had previously created interactive elements such as

clickable buttons in web sites, presentations, spreadsheet systems, and database

forms, they had no prior learning of creating the sort of event-driven interactivity

involved in a computer game. In a game, every input has an output - something

happens - and this has to be designed and implemented. Pupils grappled with the

complexity of creating the multiple interactions in their games:

AE: You have to think of, like, all the possible things that could happen … and

all the, like, rules. Like, with the Flowol thingy, only one thing can happen, or,

say you have an input … or only two things, but with [Game Maker] the player

can move anywhere on the screen so … you are having to think about lots of

different things that could happen.

JG: I liked it but I think it made you think too much … so, like, when you had to

have one object do that, and then you had to think, oh wait, but that one has to

do that and the other one ... and it’s just a bit confusing. Like, thinking when the

Making games – the outcomes

 135

horse had to, like, touch the log and then the log has to disappear, but the

horse has to stay there and then you have to let the horse touch the apple …

JB: And make the apple disappear.

JG: Yeah and then make them reappear and it’s just really confusing … But it’s

fun to make, just … all muddled up.

Pupils refer here to the demands of creating an open system, as compared to the

closed control systems they had previously created when engaged in programming

activities, which had pre-defined purposes and finite inputs and outputs. Whilst this

progression in complexity is important for learning, the data here suggest that some

pupils needed more support, perhaps in the form of templates or partially completed

games which they could modify, so that they are guided in how to create the common

interactions and mechanics in games, before they construct their own.

The ‘confusion’ referred to may also be due to the working approach taken by those

pupils. Their preferred style was ‘bottom up’ bricolage, rather than ‘top down’,

systematic and planned (Turkle and Papert, 1990). The data here suggest that, in

terms of creating the game interactions, pupils needed to produce more detailed,

precise and systematic plans, before they began to build their games. Creating the

interactivity in a game requires pupils to decompose the game action into multiple

separate units and this introduces them to the idea that programs are ‘modular’, but

pupils needed more guidance to adopt these approaches, which did not come naturally

to most:

AC: We naturally wouldn’t have thought of that. If you asked us to create a

game we would probably just say, arrow keys move forward, if you get this add

10 points, not ‘where does the thing that you collide with go?’, not ‘if you release

the key will it carry on moving?’ or stuff like that.

Envisioning and creating interactivity was a new way of thinking for pupils, and they

recognised that this set the work apart from other types of work they had encountered.

This was an important area of learning for them because they saw that they could

make things happen and understand the basic principles involved, and this dispels the

notion that only professional developers can create software (Papert, 1993; Noss et al.,

2012).

Making games – the outcomes

 136

6.4.4 Sound

Although all pupils referred to background sound and/or sound effects in their planning

documents, few managed to implement this feature successfully. Five of the twelve

pairs made some attempt to include sound in their games; of these, three managed to

do so effectively. One of the five games made by girls included a sound file in its

resources although it was not implemented. Four of the six games made by boys

included some attempt to implement sound.

Some of the problems pupils encountered were due to simple errors. For example,

ACJC loaded a sound file and included a play sound action in the create event of their

player character, however they selected the wrong sound file so this did not function. In

another case (JBLA), a sound file does not play as intended since it is programmed to

play in the create event of a collectable object, so plays once when instances of the

object appear on the screen, rather than each time the object is collected.

Others did not have time to implement sound across all levels. AEMD added

background sound to the splash screen, title screen and level 1 of their game but not in

level 2. Some sound effects are implemented in levels 1 and 3, but others are

noticeably absent. For example, when the player’s plane fires missiles, no sound

accompanies this action, yet other interactions on this level are accompanied by

distinctive sound playback. GS loaded three sound files in his game but only one sound

plays.

Controlling the playback of sound to synchronise with the game was also problematic -

in one game a sound file loops even though looping is set to ‘false’, or sound continues

to play after the level has ended. In another example, (JBLA) background sound plays

on game start but is followed by an extended pause before the sound file restarts.

In fact, programming a sound to play in Game Maker is straightforward - and the

reason that pupils did not implement sound effectively appeared to be because they did

not have time or because this aspect of game design was not perceived to be as

important as developing the graphics and game play.

6.4.5 Timing

Another factor that pupils had to consider when designing the game play is that games

have a temporal dimension. Constructing a computer game involved making things

happen at certain intervals in the time frame of the game, introducing delays in the

Making games – the outcomes

 137

game play, or determining the moment in time and the frequency that a particular

action should occur. They learned that units of time in Game Maker are measured in

frames, steps and milliseconds.

Pupils learned that a step is a short period of time - 1/30th of a second - and that a step

event can be used to control the frequency of actions which recur throughout the game.

For example, AEMD used this event to control the timing of the firing of bullets:

AE: First we need to test ... whether they’ve already fired a bullet in the last 15

steps.

These pupils also learned to manage timing by using the alarm event, which allows

things to happen from time to time in a game. The alarm event was used successfully

to control the timing of their splash screen, so that it appeared for a duration of 4

seconds and then transitioned to the game start screen; it was also used to control the

interval at which missiles could be fired, (every 15 steps, rather than continuously). The

sleep action was used in the same game to pause the game action after an explosion

animation had run its course, signifying that the player’s plane had been hit, and to

delay the appearance of the winning message after the game had been won.

The use of these timing events and actions in their games shows awareness that, in

terms of game design, timing can be controlled to enhance the game play experience.

6.4.6 Challenge

In designing the game play, pupils also had to think about how to create the right level

of challenge and this was not always easy to achieve:

LW: We struggled on thinking how the game could get harder; we thought

maybe [increase] speed or amount of cats. In the end we decided to increase

the number of cats.

GW: Problems we had with our design were that it was possibly too simple for

older audiences.

JG: Deciding on the game rules was very hard because we had to keep it easy,

but not too easy and hard, but not too hard.

Making games – the outcomes

 138

In games which featured more than one level (ACJC, AEMD), challenge did not

significantly vary between levels. Generally, attempts to create challenge were

characterised by making enemy/obstacle objects move with increasing speed, or by

increasing their number. Sometimes challenge was set too high, as in AEMD’s level 1,

where enemy bullets fire too fast, too often, or ACJC’s level 2 ‘Dodgeball’ game, where

too many balls fall too fast and not enough rewards are generated. In games which

included one level, challenge was minimal - for example, KW’s maze game features no

obstacles and no mechanism to pass to level 2; in some games (GS, SARC), there are

so few interactions possible that challenge is non-existent.

In many games, the planned challenge could not be realised because the programming

of the game was incorrect or incomplete. For example in AWTB’s platform game the

challenge of manoeuvring the player character to the highest level is compromised by

the fact that its jumping mechanic is not well implemented. LWGW had planned

increasing challenge in their 3 level maze game, but this could not be realised because

the programming of their game objects was not sufficiently functional and there was no

mechanism to progress through the levels. JBJG’s game lacks challenge because

obstacles and rewards are not fully implemented, so there are limited interactions and

no mechanism for scoring points. The challenge in JBLA’s game is compromised

because the score mechanic is not correctly implemented.

It becomes clear that a wide range of complex design tasks are involved in creating a

computer game (narrative, graphics, animation, usability, interactivity, sound, timing,

challenge) and it is not surprising that pupils encountered problems, since they had no

prior learning of many of these areas. A key theme in this section is that across

several areas (narrative, planning the visual appearance of the game, designing the

game play) pupils found it difficult to visualise or conceptualise their games in the level

of detail required for the planning tasks they completed to be useful to them. Pupils

found it difficult working with a ‘blank canvas’ and needed more support than the

examples provided. This has implications for the pedagogy of game authoring at this

level. Whilst the findings in this section show that pupils gained an awareness of the

main areas involved in game design and some experience in developing aspects of

these, it seems that such an open-ended task was too demanding in terms of the range

of skills pupils needed to learn in the time available. To reduce these demands

introductory game authoring courses should provide ready-made game assets

(sounds, graphics, backgrounds) and narrative outlines, so that pupils can focus on

Making games – the outcomes

 139

learning how to program the game interactions rather than directing too much attention

to the game storyline and aesthetics.

6.5 Talking like game designers

As they made their games, pupils began to adopt a game designer discourse. They

enjoyed using new words for the new concepts they encountered and applying known

words in a new context - and some (AEMD, ACJC, OWSW, KW, JBLA) became quite

fluent in this language.

In common with other studies (e.g. Games, 2010), as pupils began to appropriate the

language of game design, they increased their understanding of how games are

constructed and developed ‘production-oriented’ technology-associated literacies

(Salen, 2007). Using Game Maker’s actions introduced them to the mechanics of game

design (actions: move, jump, create/destroy instance, play sound, next room, set

lives/score/health; events: collision, key press/release; step, alarm, mouse). They

learned about game components (sprite, object, instance, action, room) and also

began to use more abstract words to describe states, behaviours and interactions of

objects (solid, visible, collision) and to refer to programming concepts (event, input,

output, repeat, test/check variable).

This language learning is important because once they became even a little fluent in it

they became able to ‘speak’ things they would not have been able to articulate

previously. The data here support Papert’s observation that children can appropriate

terminology and concepts designed to articulate the process when they want to make

the computer do things, and in so doing they become more articulate in developing

formal systems (Papert, 1980c: 162).

Some pupils expressed a feeling that learning to use this language enabled them to

participate in conversations with others more knowledgeable than themselves:

CB: I had no idea about sprites and objects and rooms.

MH: Yes, now I feel I could talk to someone really …

SA: I feel I could talk to somebody who knew more about it, like J. or A. for

example.

Making games – the outcomes

 140

In their journals, some pupils displayed a developing ability to articulate the process of

making a game in Game Maker:

MD: Another event needs to be created for the movement of the car. There is a

key press event which can be assigned to many different keys. For example,

the ‘up’ arrow. Then you need an action. Normally you would just set a

movement action which would make the car travel forward, but in this game

there is no wall to stop the car, so we need to use variables. A variable

constantly asks a question and when it is true, allows an action to be

performed. For the left key press event we place a variable, ‘If x is larger than

40’. Then we can tell the car to move relative to -4 on the x axis (this moves the

car left).

All the enemy cars use the same actions and events, except the scrolling speed

is slower to give the effect that they are also moving, but slower than the

[player] car. The jump to given position function is set to x = random

(room_width) and y = -50. This means that the cars appear in random positions

above the screen. This eliminates the look of repetition that games can

sometimes have.

I needed to apply actions and events to give the illusion that the car was

moving. To do this I simply made a create event and told the object to start

moving down at a speed of 5. Then, to make the [white lines in the middle of the

road] carry on scrolling constantly I created a variable which said, ‘If y is larger

than room height’, then I told it to jump to a given position which was x 300 and

y -48.

In this extract, the pupil refers to using a conditional statement to test a variable (the x

coordinate of an object), although he uses the word ‘variable’ for ‘condition’. His use of

language reflects his emerging understanding of how to construct game programs.

6.6 Use of software

In the course of the game making activity, pupils used two programs they had not

encountered before - Game Maker 7 and Fireworks 2004 MX. The ICT curriculum has

been criticised for only teaching skills in the use of office productivity software (see

Making games – the outcomes

 141

Furber, 2012; Gove, 2012b), but in this project, pupils increased their technological

fluency and learned to use new software for new purposes.

Using Game Maker developed pupils’ digital literacy in so far as its interface and

operational features differed from the software commonly used (see Figure 21). Game

Maker is not a ‘WYSIWYG’ (‘what you see is what you get’) environment i.e. its display

does not precisely represent the appearance of the game. As an integrated

development environment (IDE) it includes a programming environment, an image

editor and a compiler. The game functionality is constructed in the programming

environment, and is then compiled by the software at runtime, at which point the game

is rendered in its visible playable format. Pupils were continuously switching between

the abstract programming and concrete execution environments and this was a new

experience for them:

LW: I have learnt a considerable amount in this project. Game Maker 7 was

some new software and completely different to others that I had used before so

I had no knowledge of the software. Also I had only used Fireworks once. I

found both Game Maker and Fireworks difficult as they have more to offer

which makes it more complicated and it is laid out differently.

Figure 21: Game Maker’s sprite, object and room properties boxes

Some pupils (AEMD, JBJG, JBLA, JDMB, LWGW) made use of the sprite editor,

another component of the IDE. In these respects pupils were working ‘at one remove’

Making games – the outcomes

 142

from their game. This is different from working with a word processing or desktop

publishing document, a spreadsheet or a graphics program, where there is no need for

the compilation step.

The process of creating a game in Game Maker is also different from the types of

activity involved in using office productivity software. Pupils create sprites and

background graphics and load them into the game. Game objects are then created

and assigned a sprite to give them a visual appearance. Each object is programmed

with events and actions which determine how it functions within the game. Actions are

set by dragging icons into the actions panel and properties, settings and parameters

are applied to them. Rooms are created, which constitute the levels in the game,

assigned a background appearance and configured to determine their size and

whether they scroll or not, for example. Objects are placed within the room. The game

can then be run and the game action viewed on screen.

This way of working emphasises the ‘constructedness’ of a game and encourages

pupils to view digital media as modular systems. It prioritises functionality rather than

presentation as the dominant outcome of their work. It also introduces the idea that the

game’s visual appearance is separate from the underlying program behaviour.

6.7 Summary

This chapter has considered the areas of learning which pupils encountered in terms of

game design (constructing the narrative, visual appearance and usability of the game)

and has shed light on some of the difficulties they encountered. Pupils’ achievement in

these areas as they are evidenced in the games they created was evaluated using an

adaptation of the SOLO taxonomy (see Chapter 4) and is summarised in Appendix 1.

In terms of developing a pedagogy of game authoring, which identifies what concepts

pupils find difficult, the misconceptions they may hold and how to address this (Mishra

and Koehler, 2006: 1027) it emerges from the findings here that planning of the game

narrative, visual appearance and interactions is an important part of the process and

while pupils may resist planning tasks, preferring to learn by making their games, it is

not productive for them to do so. In particular there is a need to focus on tasks which

support pupils’ understanding of game programs as modular constructs, composed of

separate entities (see sections 7.2.3 and 8.3.2). Additionally, pupils need to learn to be

Making games – the outcomes

 143

systematic and encouraged to visualise and represent the significant graphical and

functional detail in a game, before they begin to implement it.

The next chapter considers what pupils learned about programming concepts and

practices as they made their games.

Learning to program with Game Maker

 145

Chapter 7 Learning to program with Game Maker

7.1 Introduction

This chapter documents the programming concepts and practices evidenced in the

data collected, drawn from pupils’ authored games, planning documents and

interviews, and considers to what extent using Game Maker’s visual environment

supports pupils in learning basic programming concepts. Throughout the chapter,

examples of programming code are identified with pupils’ initials and presented in a

textual format which corresponds to the code created by pupils using graphical

symbols (see Figure 23). A discussion of the difficulties encountered follows in Chapter

8.

In this domain specific study the term ‘programming’ is defined as “the act of

assembling a set of symbols representing computational actions … [to] express

intentions to the computer” (Kelleher and Pausch, 2005: 83-84).	 In learning to program,

pupils are introduced to three key processes - sequence, selection and repetition. 	

Programming in Game Maker requires pupils to create sequences of events (inputs)

and actions (outputs), which define the performance of elements in the game. This

chapter considers the learning that pupils achieved with this approach, using a symbol-

based, drag and drop environment. I suggest that making computer games is a suitable

pedagogical model for learning basic programming concepts, since domain-specific

programming, (in this case, computer game authoring), is more accessible for novice

programmers (Smith, 2000) and can make learning about programming more concrete

and motivating.

The pupils in this study had some prior exposure to basic programming when they

used software to construct flowcharts to control on-screen simulations of systems, such

as a theme park water ride and a Ferris wheel. This introduced the concepts of

input/output, loops, decisions, sub-routines and variables. They used these constructs

to control closed systems which featured a finite number of inputs and outputs. The

game authoring activity developed their understanding of programming, since a game

is a more open system and involves defining a wider range of inputs and outputs and

their parameters.

Learning to program with Game Maker

 146

7.2 Learning to program

Transcripts of pupils’ voice recordings, written documents and interviews were coded

for references to programming concepts (see Appendix 5). The program code pupils

used to construct their games was categorised and analysed according to the

programming concepts listed in Chapter 4 (see Table 2).

Figure 22 below illustrates how Game Maker’s visual environment represents some of

these programming concepts.

Figure 22: Programming constructs in Game Maker

7.2.1 Sequence

The concept of sequence is important in designing and writing computer programs

(CAS, 2012a). Creating a game in Game Maker involves selecting events and actions

for an object and putting them in a logical order, since they are executed sequentially

from the top, downwards. Pupils learned that the sequence in which they order events

and actions has an effect on the order in which events and actions occur in the game:

TB: You have to think about … the input and the output all the time ... which

order the programs go in, where they should go, what they should be on ...

In this respect using Game Maker supports the development of algorithmic thinking,

whereby pupils learn to define specific instructions for carrying out a process, in a

visual format. The visual algorithm can also be viewed in textual format (see Figure

23).

Actions
(functions)

Repetition

Inheritance

Code
commenting

Variables

View
pseudocode

Selection True/false

Write scripts

Objects

Events

Sequence

Learning to program with Game Maker

 147

Figure 23: Game Maker’s visual and textual information (ACJC)

Pupils learned about the importance of sequence when, for example, errors in the

sequence in which events were ordered meant that the game did not function as

intended (JDMB) and when the sequence in which rooms were ordered in the

resources tree affected which room was displayed first when the game was run

(ACJC).

7.2.2 Events

In Game Maker, all program interaction is achieved by selecting events (user inputs

such as a key press, or non-user inputs, such as a collision between two objects).

When an input occurs, an output follows. In learning to use these events, pupils were

introduced to the idea of event-driven programming and to the key patterns of

interaction in a game program (see Figure 24). Pupils quickly became used to selecting

and referring to events.

Figure 24: The event selector

Pupils found it easier to understand those events which are user-activated (i.e.

keyboard/mouse events), than those which are not (i.e. step and alarm events). Figure

26 shows the number of games which featured each type of event.

Collision Event with object obj_ball1:

If lives are equal to 0
 Display message: Bad Luck!
 Show the highscore table
 Background: <undefined>
 Show the border
 New color: 255, other color: 33023
 Font: "Eras Demi ITC",10,0,1,0,0,0
 Restart the game
Set the number of lives relative to -1

Learning to program with Game Maker

 148

Figure 25: Number of events used in each game

The average number of different event types used in each game was 5, although, as

Figure 25 shows, the total number of events used in a game was greater (average total

number of events used = 23). The most frequently used event was the create event

(see Figure 26), commonly used to set an object in motion when the game is run, or to

set variables (such as score or lives) for it.

The collision event is the next most frequently used event - appearing in 10/12 games.

This is not surprising, since much of the game play in the games authored is achieved

by objects ‘colliding’ with each other on screen, and collisions are a core functionality of

many adventure/arcade games, such as those created in this study. In playing games,

pupils will have been used to the idea that when one object ‘collides’ with another,

something will happen. In their own games, collision events were used as a

mechanism to achieve a range of effects: to make objects disappear, to collect items

and gain points, to decrease lives or score. Pupils learned that non-user events (such

as collisions or alarms) function as game inputs, as well as user inputs, such as a

mouse click or a key press. This expanded understanding of inputs was important

learning.

Since the mouse and keyboard are common forms of input device and the arrow keys

and space bar are commonly used when playing computer games, the use of these

events was straightforward for most pupils.

Total number of events used

0

10

20

30

40

50

60

70

80

90

AEM
D

JB
LA GS

ACJC

OW
SW KW

JD
M

B

LW
GW

JB
JG

CBM
H

AW
TB

SARC

Game

N
u

m
b

er
 o

f
ev

en
ts

Learning to program with Game Maker

 149

Figure 26: Type of events used in the games

The mouse event was used in 9/12 games, usually to click a menu button, or to

navigate between screens. GS used the mouse event 16 times to enable the user to

select ‘start’ and ‘end game’ buttons, and to access the ‘help’ and ‘title’ screens. He

also used the mouse event to create a rollover effect for his buttons. All mouse events

were used correctly.

Keyboard events were used in 7/12 of the games, typically to control the movement of

the player character using the arrow keys. However, some pupils who used keyboard

events (JDMB, SARC) had less success in controlling the stop/start movement of their

player characters, since they did not implement an event to control the stopping of

movement.

Key press and key release events were used in 5/12 games to control the movement of

an object; key release events were used in 4/12 games to control the stopping of

movement. KW successfully used the key press/key release events to control the

start/stop movement of the player character using the arrow keys. The key press event

was also used to create an instance of an object when the space bar was pressed, to

give the appearance that the player character had thrown a stone or a missile had

been fired (JDMB, AEMD).

The correct use of these events suggests that pupils understood the idea of simple,

event-driven programming involving the concrete use of the mouse or keyboard as

Event type

0

2

4

6

8

10

12

Cre
at

e

Collis
ion

M
ou

se

Key
boa

rd
Ste

p

Key
 P

re
ss

Oth
er

Key
 R

elea
se

Destr
oy

Alar
m

Dra
w

Event

N
o

 o
f

g
am

es

Learning to program with Game Maker

 150

inputs. Other events and non-user inputs such as the alarm event and the step event,

are more abstract and these were used less frequently.

The alarm event is used to make things happen from time to time, without user input -

for example, an object could periodically change its direction of motion. This event was

used in two out of twelve games. AEMD learned to use the alarm event by following a

tutorial and applied it to their game effectively five times. For example, they used it to

set an interval between bullets firing:

AE: We’re going to add in an alarm so the player can’t just hold down the space

bar and shoot loads and loads of bullets, so we will set the alarm to 15 and

once the alarm has counted down it will let you shoot another bullet.

The step event is used to execute actions continuously and occurs once every step

(frame) of the game (30 times per second). This event was used in 5/12 games, most

often to check values relating to object position. For example, OWSW used the step

event to make objects on a scrolling background reappear at random positions on the

screen when they had disappeared from view:

Obj_rocks
Step event:
If y is larger than room_height

 Jump to position (random(room_width), -120)

The step event was also used to repeat an action (JDMB, AEMD), such as destroying

instances of objects once they have disappeared from view or creating objects

intermittently, for example (AEMD):

Obj_enemy
Step event:
If y is larger than room_height+32

 Destroy the instance
 With a chance of 1 out of 180 perform the next action

 Create instance of object obj_s_enemybullet at relative position (0, 16).

AWTB used the step event to continually check whether the player character in their

platform game is in the air, in which case, gravity should pull it down:

Obj_Character
Step event:
If relative position (0,1) is collision free for only solid objects
 Set the gravity to 0.5 in direction 270

Learning to program with Game Maker

 151

Else
 Set the gravity to 0 in direction 270

JBLA used the step event to execute a script to govern the movement of the player

character:

Obj_player character
Step event:
Execute script script_shrane_mod4 with arguments (0,0,0,0,0).

Such use of the alarm and step events introduced pupils to the programming concept

of repetition, and illustrated alternative mechanisms for controlling this pattern. Pupils

learned that within the game loop, certain events occur continuously or repeat if certain

conditions are met or game states are reached.

The draw event was used in one game (AEMD) to display the score, health bar and

lives graphics on the screen, using coordinates to define their location:

Obj_controller_life
Draw event:
At position (0,404) draw image 1 of sprite spr_s_bottom
At position (180,440) draw the value of score with caption
Draw the health bar with size (12,449,138,459) with back color none and bar color
green to red
Draw the lives at (16,420) with sprite spr_life

The other event incorporates thirteen events and was used in 4/12 games (KW, AEMD,

ACJC, JBLA). Use of these events introduces the idea that game inputs are not only

achieved by user input but also by game states (i.e. when there are no more lives,

when a level is completed, when an animation ends).

AEMD used the other event correctly five times: the outside room event to destroy

instances of bullets once they have disappeared from view; the no more lives event to

launch the high score table once all lives are lost; the no more health event to reset the

health value and to make the player character disappear once health is depleted; the

animation end event to make an animation disappear after it has run its course, and to

pause the game before the screen is redrawn and a new player character reappears:

Obj_explosion
Other event: Animation End:
Destroy the instance
Sleep 1000 milliseconds; redrawing the screen; true
Create instance of object playerplane at relative position (0,0)

Learning to program with Game Maker

 152

Set the number of lives relative to -1

ACJC used the other event twice: the game start event to start the game if the left

mouse button is clicked, however, this event was used incorrectly - the game start

event does not start the game, but defines what other actions will happen when the

game starts; the room end event to add 20 to the score achieved at the end of a level.

JBLA used the other event correctly twice - the game start event to set the player

character’s health value at the start of the game; the animation end event to make an

animation disappear after it had run its course.

In so far as all pupils used events in their games, they learned about the concept of

event-driven programming. They also learned that outputs can be controlled by user

input, or by non-user inputs and game states. Whilst many events were correctly used,

pupils also encountered problems with using events and these are discussed in

Chapter 8.

7.2.3 Objects

In addition to learning about event-driven programming, using Game Maker introduces

pupils to the concept of object-oriented programming (Overmars, 2004; Chamillard,

2006), a paradigm which sees program elements organised as objects, each of which

holds its own behaviours and properties.

Pupils learned that in Game Maker, objects, rather than sprites (the visual appearance

assigned to objects) hold programmed behaviour. This was a concept that pupils did

not at first find intuitive - but which they grasped as they became more accustomed to

using the software and the process of program generation it affords. Pupils did not

initially understand that a sprite is simply an image, or why there had to be a sprite and

an object.

MD: There are some things that aren’t really sort of logical in the first place, but

you can understand them after a while … like having a sprite and then an

object. I dunno, the sprites don’t seem to do much on their own.

This idea that the visual appearance of a computer game is separate from the

underlying program behaviour was new learning for pupils - but is a key concept in

understanding how most computer-based systems are put together. This is important

learning because children need to know about and experience the underlying

Learning to program with Game Maker

 153

‘constructedness’ of digital media (Schelhowe, 2007). As users of technology pupils do

not need to consider how systems are constructed or how they work. As creators of

digital media, they learn what goes on ‘behind the scenes’ and this enhances their

understanding of the technologies that surround them:

SA: Yeah, ‘cos when you play a game you just take it for granted, really, as

something that just ... works. I didn’t even know you could make a game. I’ve

never had any experience of that ever.

In particular they learned that for the user to be able to interact with objects, they had to

be created as separate entities. This was not immediately obvious to some:

TB: I didn’t realise you had to have rooms for the game to be made and have all

the sprites and objects and have them all separately. Lots of different parts of it,

that you have to build up layers to the game.

LW: I should have used a blank canvas as my game background and then

made black squares [for the maze walls] as a solid object and then placed them

on my background so that the cat and mouse could not go in this place or off

the screen. Instead I [drew the maze] in the background, which meant there

were no barriers on where the cat and mouse could not go.

In the second extract, the pupil learned that to create a maze, the maze ‘walls’ have to

be created as separate objects, and placed in the room ‘on top’ of the background

graphic if they are to function as a barrier - the game background is no more than a

graphic loaded into a game room to give it an appropriate visual appearance.

Those pupils who followed the print tutorials available learned about the concept of a

‘controller object’, which further enhanced their understanding of the nature of objects

and their role in game design. The controller object has no visible appearance, and

plays a ‘global’ role in the game. In contrast to other game objects, it has no role in the

narrative of the game, but is used to manage game settings. For example, a controller

object might be used to set variables, such as score and lives at the start of a game.

Three of the games included a controller object. AEMD used this feature to set the

score, lives and health at the start of the game, to show the high score table when all

player character lives are lost and to display the life, health and score at the bottom of

the screen. JBLA and ACJC used their player character to perform some of the

Learning to program with Game Maker

 154

functions of a controller object - to play sound, to specify the appearance and location

of the player character, to set the health, number of lives and score at the start of the

game. In using a controller object, pupils learned that some elements (e.g. background

sound, score, lives, room speed) are separate from the narrative interaction of the main

game objects, and can be controlled separately.

7.2.4 Actions

Specifying the actions which objects should perform is the central programming task of

creating a game in Game Maker. In using actions, pupils learned to construct their

game program in individual steps and began to understand the use of functions in a

computer program. They also learned about the common actions in computer games,

for example, ‘move in a direction at a specified speed’, ‘if the score is equal to 100, go

to the next room/level’, ‘increase the score by 1’, ‘make an object disappear or

reappear elsewhere on the screen’.

Some actions were easier to understand than others. For example, the move and go to

next room actions are straightforward and were used frequently without error. More

abstract actions such as test expression and set alarm are more difficult and were used

less frequently. However, the actions used in pupils’ games do not necessarily reflect

those that are easy to understand, for example, 8/12 games did not include the action

‘play sound’, even though this is not a difficult action to understand or use. Neither

does the use of a particular action necessarily mean it is understood or used

appropriately.

Of the 92 actions available, the average number of different actions used in each game

was 11. Fifty-three of the 92 actions were used across all games. The most successful

game contained 169 actions and used 34 of the 92 different actions available.

The most commonly used actions were those which define object movement (move

fixed (11 games), jump to a position (6 games), jump to a random position (5 games).

Other commonly used actions were related to object destruction (7 games) or

movement between levels (9 games). Test or set score and lives actions were used in

8 and 5 games respectively.

Learning to program with Game Maker

 155

Figure 27: The control actions

Much of the learning conversation captured in the digital voice data is devoted to

discussing which actions to apply - Figure 27 illustrates the graphical icons used to

represent the control actions - and in solving problems arising from action selection, as

illustrated in the following examples:

SW: OK, first object is the snowboarder, the event is a collision with the rock

and the action is that the crash sound is played and you lose a life and an

animation of the snowboarder rolling off the snowboard.

JB: Collision with the horse. Main 2, destroy. Self. Negative. All we need to do

... It needs to add points. How do we do this? Control? Score. We need to ...

add life … draw life … test life … set life?

MD: OK A., when you press the space bar we need somehow to shoot the

bullet, so I suppose you create an instance of the bullet object.

Most of the actions used are pre-programmed. However, the execute script and

execute code actions can be used to introduce pupils to writing functions themselves

using Game Maker’s textual programming language, GML. One pupil (JBr) used the

execute script and execute code actions, sourcing a script from the Game Maker

Community forum (Overmars, 2003). While he may not have understood all the code

in the six page script he reused, he will have been able to understand some of it by

reading the comments in green which accompanied the code (see Figure 28).

Learning to program with Game Maker

 156

// Determine the motion speed based on the action:
// N = walk_rate or run_rate px/sec
// R = room_speed steps/sec
//
// <spd> pixels <N> pixels 1 second
// ------------ = ---------- * ---------
// step second <R> steps
//
// spd = N / R

if action == "walk" {
spd = 100 / room_speed; // 100 pixels per second
}
else if action == "run" {
spd = 150 / room_speed; // 150 pixels per second

}

Figure 28: Example of code comments

In using scripts created by third parties pupils began to see that code can be written in

separate ‘chunks’ and this supported their understanding of modularity and code reuse.

Using others’ scripts also enhanced pupils’ understanding of how particular effects can

be achieved, such as in the example above, which governs the speed of movement of

the player character.

Reusing others’ code is accepted practice in the field of end-user programming

(Kurland et al., 1987), but this approach was only used by one pair in this study. This

was partly because the research school’s internet policy restricted access to game-

related sites and forums, but also because the Game Maker Community forum is not

aimed at an educational audience and is neither accessible nor appealing to Key Stage

3 pupils. Another factor is that the pupils in this study were not accustomed to making

independent use of online sources of support to find information at the point of need,

and needed to be encouraged to seek out ‘just in time’ learning resources, as reported

in Chapter 5. But importantly, such resources need to be designed for young people.

Moreover, there was little support for using the execute script and execute code actions

in the commercial tutorials and resources provided. The execute code action is referred

to only once in one of the textbooks made available in this study (Waller, 2009) and the

other resources used (Giles et al., 2008; Jones and Wilson, 2008; Reeves, 2008) do

not draw out the program’s potential for teaching basic programming concepts, or

introduce pupils to writing scripts in textual code.

Learning to program with Game Maker

 157

However, with the advent of the new computing curriculum in September 2014, more

structured use of the execute code and execute script actions would be a useful

addition to Key Stage 3 units of work using Game Maker.

Parameters and arguments

In Game Maker, once an action is selected, parameters or arguments need to be set

for it. Some pupils found this the most challenging aspect of creating a game:

AW: When you drag [an action] across it comes up with an option about all the

different settings that you can add to it and that’s what’s hard, because you’ve

got to work out which settings it needs.

The idea that behaviours, such as speed and direction, have to be defined for an object

in order for it to move was also new. In Game Maker these behaviours are defined as

properties of an object, and involve pupils making decisions and having to think

logically about the effects of those decisions:

AW: What I mean is, when you drag [an action] over you’ve got to actually

properly say what you want it to do … you drag the [action] across that you

want, but it’s actually putting the text into that box to say ‘Actually, I want it to do

this’, because otherwise it’s just pointless.

Setting the parameters for actions introduced more abstract concepts, such as whether

a value is relative or absolute, for example. The concept of relative value was most

often encountered in this study when pupils wanted to program a score mechanic for

their games. They learned to set the score relative to its current value, rather than to an

absolute value, and this was new thinking for some:

GW: Do we want it relative?

LW: Don’t know what that means!

Yet it was not difficult for them to grasp, and they used the term appropriately in their

working conversations:

MD: Set the health bar relative to minus 5 for enemy colliding with enemy bullet.

OW: We could do relative 5, relative 10? Like, it goes up by 10 each time,

relative.

Learning to program with Game Maker

 158

In nine of the twelve games relative values were applied to a variable, to add or

subtract from the score (6 games), to subtract lives (4 games) or to decrease health (2

games). Relative value was also used to specify object position in five games (AWTB,

JBJG, JDMB, OWSW, AEMD) and in setting the speed in one game (LWGW), where it

was used in error.

Pupils learned that arguments need to be defined in many actions, for example to

specify the direction or speed of a move action, or the position of an object. Much of

their working conversation was concerned with what values to use in the passing of

parameters and arguments and some pupils found this aspect challenging:

TB: All the controls are quite complicated, the amount of different things that

you have to put in … programming the sprites and the objects, it can be quite

complex. And you have to know what it’s talking about otherwise you can get it

wrong and it may not work.

JB: I used to [wonder why] computer games used to take so long to come out,

and now I know it’s ‘cos … every little bit in there needs to have, like, loads of

complicated things just to do that.

Pupils learned that arguments can also include expressions, which may also use

relational and mathematical operators. Relational operators (<, >, =) were used in 6/12

games, often to test the value of a score, lives or x/y coordinates. Mathematical

operators (+, -, /, *) were used in one game (AEMD) to test the coordinates of an object

and to set the speed of an object.

Using actions taught pupils how many factors have to be considered when creating a

game program and the importance of precise, logical thinking in setting arguments and

parameters. It also developed their understanding of the structural patterns used in

programs, such as conditional statements, loops, and variables. However, to support

the learning of these concepts the terms themselves need to be emphasised and their

use modelled in teacher-led interventions. Pupils need also to be encouraged to view

the textual information for actions, since this gives them some exposure to how

parameters and arguments are used in textual programming languages.

Selecting actions and setting arguments and parameters for them was a new practice

for pupils and the problems they encountered here are discussed in Chapter 8.

Learning to program with Game Maker

 159

7.2.5 Conditional statements

The conditional statement (If/If…else) is a key programming concept which defines the

selection of actions in a program if a particular condition is met (Fincher, 2006).

Conditional statements are achieved in Game Maker by selecting one of the test or

check actions which test or check a game state and then trigger one or more actions if

the condition is evaluated as true (see Figure 29).

Figure 29: A conditional statement (AWTB)

Pupils learned that computer games are full of conditional logic which defines how the

game play unfolds (‘if the left arrow key is pressed, move the character left’, ‘if the

player character collides with an object, increase the score by 10’). All pupils in the

study used conditional statements in planning their game interactions using an ‘If …

then’ construct, as shown in Table 5. Observation notes and planning documentation

suggest that this concept was straightforward for all the pupils in this study since all

pupils completed these tasks with some success.

Computer games are a good vehicle for teaching the use of conditional statements in a

motivating context (Adams and Webster, 2012) and Game Maker gives good support

to the learning of this concept (Chamillard, 2006). Fifty-four conditional statements in

total were used in 6/12 games. Eleven of the possible sixteen conditional statements

were used across all the games. The most common conditional statement used in the

games was the test variable action, which was used in 4/12 games; test lives and test

score actions were also used in 3 and 2 games respectively.

Learning to program with Game Maker

 160

If

Event (input) Then Action (output)

If Game starts then

Enemies start moving down
screen
Background music starts
Clouds 1,2,3 appear
Player’s plane appears

If
Player collides with enemy
plane

then

Destroy instance of enemy
plane
Set health bar relative to -10
Play sound ‘explosion’
Create instance of object
‘explosion 1’

If
Player collides with enemy
bullet

then

Set health bar relative to -5
Play sound ‘explosion small’
Create instance of object
‘explosion 2’

Table 5: Planning the game interactions using conditional statements

The test variable action was most often used to check the position of an object on the

screen (OWSW, AEMD, AWTB) to see if it had passed beyond the boundary of the

room, in which case, it would reappear at another location, to remain visible, as in this

example (OWSW):

Obj_tree
Step event:
If y > room_height
 Move to position (random(room_width), -65).

This action was also used to constrain the movement of an object (JBJG), as in the

following example where a horse can move up and down within a grassed area, but not

beyond it:

Obj_horse
Keyboard event for <Up> key:
If y > 224
 Move relative to position (0, -4)

Keyboard event for <Down> key:
If y < 390
 Move relative to position (0, 4)

While 6/12 games included at least one conditional statement, only one pupil refers to

them in the transcript. In this example he describes the use of a conditional statement

to test the value of a variable:

Learning to program with Game Maker

 161

MD: A variable constantly asks a question and when it is true, allows an action

to be performed. For the left key press event we [test] a variable – ‘If x is larger

than 40’. Then we can tell the car to move relative to -4 on the x axis (this

moves the car left).

However, some pupils found it difficult to implement a conditional statement, (see

Chapter 8), which suggests that the construct needs to be modelled and the term

introduced explicitly, so that all pupils can understand and apply this structure in their

games.

7.2.6 Loops

Another concept which pupils encountered is that some processes within a program

need to be repeated. This is achieved using a ‘loop’ construct when there is a

requirement for an action to repeat, or for a state to be continually checked in a

program (Fincher, 2006). Pupils used the following mechanisms to create a loop-like

structure in their games.

Game Maker operates a continuous loop during game execution and by using the step

event, pupils can specify what actions they want to occur in each step of the loop

(Chamillard, 2006). Six pairs in this study used the step event for this purpose. For

example, OWSW used the step event to make an object reappear after it had

disappeared from view. In this case, the step event checks the position of the object

every second and relocates it every time it disappears beyond the visible area of the

screen:

Obj_snowboarder
Step event:
If y is larger than room_height
 Move to position (random(room_width), -65)

Another method for repeating an action is to use a conditional statement which allows

code to be executed repeatedly based on a Boolean condition (true or false) (Kuruvada

et al., 2010a). Six pairs used this method to achieve a loop construct.

In this example (AEMD), if the player character object (an aeroplane) exists, an enemy

plane should fire bullets at it, throughout the game, but if no plane exists, the bullets

should fire straight ahead:

Learning to program with Game Maker

 162

Obj_enemy bullet
Create event:
If number of objects obj_playerplane is larger than 0
 Start moving in the direction of position
(obj_playerplane.x, obj_playerplane.y) with speed 8
Else
 Set the vertical speed to 8

Using these mechanisms, pupils learned about the concept of repetition and how it can

be useful in a game program.

7.2.7 Variables

A variable is a named reference for storing a value in a program (Fincher, 2006). The

use of variables is important in computer games, since the player’s score, a character’s

health, an object’s speed, direction and position have to be defined and stored in the

game for it to give meaningful game play, and thus game making is a good context in

which to teach the use of variables.

In Game Maker, several commonly used local variables (x, y, speed, direction, gravity)

and global variables (score, lives, health) are inbuilt - they do not have to be declared

as is normally the case in textual programming languages. Although this makes their

use straightforward, it ‘hides’ the underlying concept. All pupils used at least one in-

built variable, however, they may not have been aware that this was what they were

doing because they only encountered the term ‘variable’ if they wished to test a value,

as in the following examples:

MD: For the left key press event we [test] a variable ‘If x is larger than 40’. Then

we can tell the car to move relative to -4 on the x axis (this moves the car left).

OWSW: To make our new levels we are going [to test] a variable stating ‘if the

score is greater than 100 then switch to [level] two’.

It was not difficult for pupils to understand that certain values such as score and lives

need to be stored in games, but they needed to be encouraged to refer to these as

variables. The idea that variables can be created is a more abstract concept and only

one pair (AEMD) attempted to do this:

MD: OK, so you create a variable from the control menu, then you have to click

the ‘test variable’, ‘can shoot 1’ and then you have to create a block, and then

Learning to program with Game Maker

 163

[test] another variable, ‘if score is larger than 400’ … points … create an

instance of ... [the bullet object].

These pupils used variables with increasing confidence, and were able to do so

because they worked through a tutorial. They used nine different variables in their

game (lives, health, score, vspeed, speed, x/y), tested variables (room height/width)

and created one. Their growing understanding of the role of variables is illustrated in

the extract below, where MD identifies a need for an easily accessible list of variable

names, so that he knows how to refer to the variables he wishes to use:

MD: I did have a bit of a problem with ... ‘cos you know ... there are variables

and there are, like, rules that you can use, like ‘room_width’ is like ... a variable

that is constantly changing isn’t it? It can change, but there’s nowhere in Game

Maker that you can find [the names of] all of these. A. … just randomly typed in

‘lives’ and it just happened to be one. It could have been ‘life’, it could have

been ‘player lives’ or whatever, but it just happened to be correct and there’s

nowhere you can find them out and I tried going onto the help files and it did list

a few but it didn’t list them very well.

This pair also referred to the use of variables in their planning documents:

 If the player collides with a fuel can, set variable ‘fuel’ relative to +10.

 We will need to test whether the player has collected all of the keys. If

variable ‘collectkeys’ is equal to 4, then go to next room.

Whilst all pairs used variables in their games (see Figure 30 and Table 6), only two

pairs referred to them as variables in the data. Not all variables were set or tested

correctly (see Chapter 8 for a discussion of the difficulties pupils had with this). This

suggests that teacher intervention is required to introduce the concept of variables,

draw out the way the software handles these and refer to the in-built variables

commonly used in games, since it is unlikely that the concept will be used or

understood correctly without instruction.

Learning to program with Game Maker

 164

Figure 30: Number of different variables used in each game

Variable Games used

Depth 2

Gravity 2

Health 2

Lives 5

Room height/width 2

Score 7

Speed 12

x/y 4

Create variable 1

Table 6: Type and frequency of variables used

7.2.8 Use of mathematical concepts

As well as learning about the programming concepts described above, pupils also

learned that some mathematical concepts are important in game programs and that

these are often used in setting the parameters, arguments and expressions of an

action. This section describes the mathematical concepts they used.

0
1
2

3
4
5
6
7

8
9

10

AEM
D

AW
TB

JB
LA

OW
SW

JB
JG

ACJC

CBM
H

KW
JD

M
B GS

LW
GW

SARC

Game

N
u

m
b

er
 o

f
va

ri
ab

le
s

Learning to program with Game Maker

 165

Coordinates

The pupils in this study will have used coordinates in other subjects, but using

coordinates to define the position of moving on-screen objects was a new application of

that knowledge. Pupils learned to conceptualise the room, rather than the screen, as

the game space. That game space is mapped by coordinates, measured in pixels (a

standard room is 640 x 480) and knowing why that was important in terms of game

programming was new learning for them. They learned that an object’s position is

defined by x and y coordinates (see Figure 31). They learned how to use these

coordinates to prevent objects from disappearing from view and to make objects

reappear, once they had travelled off the screen (if the x coordinate is greater than 640

or less than 0, or if the y coordinate is greater than 480 or less than 0, the object will

not be visible within the game space).

They also learned that positions outside the room are valid locations; objects still exist

and function outside the room. This learning is evidenced when pupils relocate objects

to beyond the viewable screen area to make the reappearance of an object in a

scrolling game more realistic, for example.

Figure 31: Coordinates in Game Maker

Several of Game Maker’s actions involve the use of coordinates to specify the x and y

position of objects in the game space. Coordinates were used in 9/12 games to define

object position, to indicate the screen location of the health or lives graphics, to check if

a location is empty, or to move an object to a particular position, as in the following

examples:

Learning to program with Game Maker

 166

To specify the position an object should move to (OWSW):

Obj_player character
Collision event with obj_tree:
Set the number of lives relative to -1
Move to position (320, 48)

To specify the location on screen of the lives and score graphics (AEMD):

Obj_controller
Draw event:
Draw the lives at (16,420) with sprite spr_life
At position (180, 440) draw the value of score with caption

Developing screen-based media where spatial boundaries have to be mapped and

object position needs to be specified using coordinates was new learning for pupils.

Angles

Another mathematical concept that pupils met in a new context was the use of angles

to specify direction of movement. In Game Maker angles range from 0-360 degrees as

normal, but an angle of 0 refers to a direction to the right, 90 refers to a direction

vertically upwards; 180 refers to a direction to the left and 270 points vertically

downwards, as shown in Figure 32.

Figure 32: Angles in Game Maker (Habgood et al., 2010: 9)

For most of the time the use of angles to control direction is hidden behind Game

Maker’s move in directions action, where pupils set direction of movement by selecting

directional arrows. But in other cases angles need to be specified. Angles were used to

define direction in 4 games, such as in the following example (AWTB) where an angle

of 270 is used to determine a downwards movement:

Learning to program with Game Maker

 167

Obj_player character
Step event:
If relative position (0,1) is collision free for only solid objects
 Set the gravity to 0.5 in direction 270

Negative number

Negative number was used in 8/12 games for several purposes: in 3 games to refer to

direction of movement, where a negative value equates to a move down (-y) or to the

left (-x); in 3 games to define object position and in 5 games to decrease the value for

score, health or lives variables. Negative number was also used to specify the depth (2

games) and the vertical speed (2 games) of an object:

Obj_snowboarder
Keyboard event for <Left> key:
If x is larger than 30
 Move relative to position (-4, 0).

Collision event with obj_tree:
Set the number of lives relative to -1

Obj_tree
Create event for obj_tree:
Set the vertical speed to -4

Step event:
If y is larger than room_height
 Move to position (random(room_width), -65)

Randomness

Pupils will have met the concept of randomness in mathematics, but in making a game

they learned that randomness and probability can be usefully applied to enhance game

play, by lessening predictability in a game. The idea that random behaviour can be

programmed was novel to pupils.

Three pairs used random values to control the reappearance of objects on screen once

they had disappeared from view (JBJG, OWSW, AEMD). They learned to set the x

coordinate of the object so that it reappeared at random positions across the room

width, to achieve a less predictable pattern of objects:

MD: The jump to given position function is set to x = random (room_width) and

y = -50 … [so] that the cars appear in random positions above the screen. This

eliminates the look of repetition that games can sometimes have.

Learning to program with Game Maker

 168

Randomness was used to define object position in 5 games, for example, when an

object was set to jump to a random position, following a collision event. One pair

(AEMD) used the test chance action to randomise the creation of an enemy bullet, so

that this could not be predicted by the player.

Boolean logic

Pupils also learned that Boolean logic is used to define certain object properties, using

true/false values. In 9/12 games true/false values were used to define an object as

‘solid’. This property is commonly set as ‘true’ for non-moving objects and ‘false’ for

moving objects. In four games true/false values were used to define whether a sound

should loop or not. In one game a ‘true’ value was selected to redraw the screen after a

pause in the game. ‘True’ values were also used in two games to define an object as

persistent. In all the games ‘true’ values were used to define an object as visible. In two

games (JBLA, AEMD) this property was set to ‘false’ to make an object invisible (e.g. a

controller object). The idea that such properties have to be specified was a new way of

thinking for pupils and strengthened their understanding of the precision and detail

required in constructing computer programs.

Boolean logic is also implied in the use of conditionals where a condition is evaluated

as either ‘true’ or ‘false’. This binary construct is a common feature of multiple

computing processes and becoming aware of its various applications developed pupils’

ability to think computationally.

7.2.9 Program organisation

In creating a game, pupils were not only introduced to programming concepts, but also

to programming practices relating to program organisation.

Naming conventions

In Game Maker, prefixes such as spr_<name>, obj_<name>, back_<name> are used

to name and identify different types of game components. The resources used in the

study introduced pupils to Game Maker’s naming conventions and 7/12 pairs used

these effectively some of the time. One pupil (KW) used the component type as a suffix

instead of a prefix on some occasions. Eleven of the twelve games contain at least one

unnamed sprite or object. One pair did not correctly name any of the sprites they used.

Some pupils included hyphens in the resource names (spr_enemy-s; obj_enemy-s),

which made them invalid. Pupils did not initially understand the need for correctly

naming their game components or realise that this helps when managing game assets,

Learning to program with Game Maker

 169

when referring to objects in the game program and when reading/checking program

code.

Code commenting

Some pupils learned about the practice of code commenting, which involves adding

comments to program sections, to clarify what the section does. One pair (AWTB)

added a comment action to their game to remind themselves what the code meant:

Obj_player character
Step event:
COMMENT: Check whether in the air
If relative position (0,1) is collision free for Only solid objects
 Set the gravity to 0.5 in direction 270
Else
 Set the gravity to 0 in direction 270
COMMENT: Limit the vertical [sic] speed
If vspeed is larger than 12
 Set variable vspeed to 12

Another pair (JBLA) reused code which contained comments to clarify it:

// The direction the sprite faces (down, left, up, right)
direction_faced = "down";

// The current action (none, walk, run)
action = "none";

The use of code commenting was not included in the scheme of work, but pupils would

have benefitted from learning about this programming practice, both in terms of reading

others’ comments to help them understand code, as in the example here, or in writing

comments to document their understanding of the code they produced themselves.

Adding code comments encourages pupils to read and check their code more closely

and gives them useful practice in understanding and explaining their programs, an

important part of learning to program (CAS, 2012a).

File formats

In constructing a game, pupils learned that there are two versions of a game file - an

editable .gmk file and a non-editable .gmd file. Finished games can be saved as

executable files which run independently of the Game Maker software. They learned to

export graphic and sound files in suitable formats so that they could be imported into

Game Maker, and that to save a file in a native, editable file format (e.g. .png, .mix) is

different to exporting a file in its final, non-editable format (e.g. .gif, .wav). They learned

that when a digital file is completed and no further editing is required it is ‘exported’ into

Learning to program with Game Maker

 170

a non-proprietary, non-editable format, which is smaller in file size. This is important in

the creation of computer games because file size affects the run-time efficiency of the

game program, and this became a problem for one pair (AEMD) whose game featured

3 levels, multiple assets and took two minutes to load. Such learning enhanced their

understanding of important digital literacy concepts in how digital media are created.

7.3 Computational thinking

In creating their games pupils learned about the basic programming concepts

described above, but also encountered more general computational thinking concepts

in context, and these are referred to throughout Chapters 6-9. Computational thinking

emerges as an important element of the Key Stage 3 Computing curriculum (CAS,

2012a; DfE, 2013c) and is widely referred to as a 21st century skill of benefit to all

(Wing, 2006; Wing, 2008; Perković et al., 2010; Repenning et al., 2010; Barr et al.,

2011; Brennan et al., 2011; Denner and Werner, 2011; Google, 2011; Kane et al.,

2012).

The term has received renewed attention since Wing’s widely referenced article

appeared in 2006 (Wing, 2006), and the computer science education community has

since embraced its tenets and promoted its inclusion in emerging computer science

curricula (Howland et al., 2009) and beyond (Perković et al., 2010), but it was Seymour

Papert’s work which first introduced the concept (Papert, 1970; Papert, 1980b) and

later the term itself (Papert, 1996b). Papert’s theory of constructionism developed

alongside the introduction of computers in schools. For him, computers could alter and

possibly improve the way people learn and think (Papert, 1980b: 208) and in this

context ‘computational thinking’ refers to the type of thinking that is involved when

working with computer systems, although a current definition of the term is the subject

of some debate (Selby, 2013).

The context of computer game authoring has been identified as one way of introducing

computational thinking to young learners (Kuruvada et al., 2010b; Repenning et al.,

2010; Denner and Werner, 2011; Denner et al., 2012; Kane et al., 2012) and the

following section illustrates that in creating their games, pupils are beginning to think

computationally, as they use the language and practices of programming.

Learning to program with Game Maker

 171

Pupils’ understanding of programming languages was expanded as they learned that

Game Maker’s drag and drop action icons can be used to create programs and provide

an alternative notation to those they had already met. Their understanding of the

applications of programming was also expanded as they saw that programs are used

to control virtual, as well as real-world systems:

MD: We haven’t done Game Maker before, we haven’t done programming, well

we’ve done Flowol, I s’pose that’s a bit similar, but it’s a bit more advanced than

Flowol I suppose. I don’t know, well in Flowol you do, you don’t really make a

game, you make systems that control ...

They also learned that there is an overlap with some of the programming concepts

encountered in Flowol and Game Maker (input/output, sequence, loops, variables), and

a difference in emphasis of some elements. Whereas the concept of loops and the use

of the term itself is explicit in Flowol (where the idea of a feedback loop is important to

the control of the systems presented in the software), in Game Maker, their use is more

implicit, achieved in the selection of the repeat action, the step event, conditional

execution, and the game loop as a whole. In Game Maker, the concepts of events,

actions, user-interaction and collision detection are more strongly supported, because

these are the programming constructs important for a computer game. For the pupils in

this study, new ways of thinking were seeded via the understanding that different

programming languages (and paradigms) share common ground, that different

programming languages are suited to certain types of program, and that certain

programming constructs are more important in some types of programs, than others.

Problem solving

In the context of ICT education, the practical tasks which pupils complete are

commonly referred to as ‘problems’. In this study the problem was to design a

computer game for a particular audience and the activities pupils engaged in (e.g.

devising game narratives, planning the game interactions, drawing storyboards,

constructing the visual program) were all part of designing a solution to that overall

problem. Within those separate activities pupils also had to solve actual problems as

they arose. Chapters 6 and 8 give a detailed account of the generic and particular

problems pupils in this study encountered in designing and programming their

computer games. However, in relation to the focus of this chapter, the data indicate

that the two key processes pupils needed to learn in terms of developing problem-

solving skills were i) to decompose problems into smaller sub-problems and ii) to adopt

Learning to program with Game Maker

 172

more systematic approaches to solving problems so that their responses were strategic

and precise rather than generalised and haphazard. These findings are consistent with

observations relating to the difficulties young people have with learning to program

reported in the literature (see section 2.9).

Modelling

Modelling is the process of developing a representation of a real world system, or

situation, which captures those aspects that are important for a particular purpose,

while omitting everything else (CAS, 2012a).This aspect of computational thinking is

evidenced in the data when pupils represented their games as a storyboard (see

Chapter 6) and planned object interactions to ‘model’ their games (see Chapter 8). The

findings in those chapters indicate that this process of abstraction was challenging for

pupils because they did not ‘see’ the detail required, even at the level of modelling.

Pupils were also engaged in modelling when they used Game Maker’s visual

programming environment to construct their games. The graphical action icons

represent the events and actions they perform and these actions together constitute a

visual model of the game and its underlying program code. The games they created

are themselves ‘models’ of the real world.

Modularity

In programming their games, pupils were introduced to the idea that their game was a

modular system, consisting of separate, interacting components (e.g. sprites, objects,

rooms, backgrounds, sounds). They learned also that the game program as a whole

was made up of, and could be broken down (decomposed) into separate ‘sub-

programs’, each of which controlled a particular aspect of a particular entity. Just as the

appearance of the game on screen was made up of separate layers, they learned that

the graphics they created were composed of individual pixels. Learning to think of a

computer game as a modular construct was new to pupils:

TB: Well I didn’t realise you had to have rooms for the game to be made and

have all the sprites and objects and have them all separately. Lots of different

parts of it, that you have to build up layers to the game … I didn’t realise that

you had to add an event and add actions to the event. I thought you would have

just sort of one event and then just add lots and lots and lots of actions to that

one event. I didn’t realise you’d have lots of events with lots of actions.

Learning to program with Game Maker

 173

Developing an awareness of the modular construction of digital media was important

learning for pupils because they had not encountered this aspect of computation

before.

Abstraction

Pupils in this study engaged in three levels of abstraction (Cutts et al., 2012) as they

transitioned between their original ideas, written in English, a more technical phrasing

of these ideas (pseudocode) in their plans, and the final transition into graphical code.

Pupils engaged in abstraction when they represented game action as a set of events

and actions represented by graphical symbols. They learned about the abstract set of

actions and their concrete instantiations in terms of common game design concepts

(score, sound, lives), interactions (collide, bounce, jump to random position) and

programming constructs (repetition, selection, variables).

Testing/debugging

As they created their games, pupils were continually testing them to see if the events

and actions they applied to objects produced the desired outcome. Some pupils

checked their code and identified obvious errors. However, observation notes record

that generally, pupils were not systematic when trying to correct errors (see Chapter 8).

Only one pair (AEMD) ran their game in debug mode to isolate errors. In another

example, KW did not read an error message beyond the first line and so was unable to

identify the error and solve the problem.

Pupils needed to learn to read Game Maker’s error messages, which identify the

reason for the error, the object where the error occurred, the event where the error

occurred and the number of the action which caused the error, as shown in the

following example (KW):

FATAL ERROR in
action number 1
of Mouse Event for Left Button
for object instructions_obj:

COMPILATION ERROR in code action
Error in code at line 2:
Move Patrick around using the arrow direction buttons on the keyboard at position 2:
Assignment operator expected.

Constructionist learning theory asserts that pupils need to be given the freedom to get

things wrong (Papert, 1999a), since on a practical level, programming is a continual

process of debugging - but Papert also argued that pupils need to learn to approach

Learning to program with Game Maker

 174

errors as a source of information, rather than as a problem and this is borne out by the

data here. The pupils in this study needed to be taught more explicitly how to read and

respond to error messages as part of ‘learning to learn’, an important principle of

constructionist theory (Papert, 1999a).

Systems thinking

Systems thinking at its simplest, involves understanding that computer-based systems

have some sort of input, involve some sort of data processing and produce some sort

of output (CAS, 2012a). The pupils in this research had been introduced to these

concepts in Units 8.5, and 9.1, of the Key Stage 3 National Strategy for ICT sample

teaching material (DfES, 2003a, 2003b) when they learned how sensors provide input

data in computer-controlled systems, such as a green house or a theme park ride.

Authoring a game consolidated and extended this learning in that it gave a more

concrete, tangible example of system inputs, in terms of the events (keyboard or

mouse clicks or other in-game inputs) which control game objects, and the concomitant

outputs (actions). Pupils understood the concepts of input and output in this new

context and 1/3 pairs used the terms explicitly in their talk:

MD: The output would be destroying the enemy plane then set the health bar to

minus 10, play explosion sound and…oh yeah, show the explosion gif.

LW: The output will be that the cheese will disappear.

Because this was the first time that pupils had authored a computer game, they did not

have a well-developed mental model of how such a system is constructed:

AC: We naturally wouldn’t have thought of [events and actions]. If you asked us

to create a game we would probably just say arrow keys move forward, if you

get this add 10 points, not ‘Where does the thing that you collide with go?’, not

‘If you release the key will it carry on moving?’ or stuff like that.

However, as they made their games their understanding of a game as a constructed

system grew, as illustrated by the following extract from a pupil journal:

MD: To create a room you click on the room icon ... For our game we needed

three rooms, one for the scrolling shooter level, one for the car level and one for

the platform level. The dimensions for the rooms can be adjusted, but they need

Learning to program with Game Maker

 175

to be kept consistent throughout, otherwise the room may get wider or longer

when you change level. It is important to know the dimension of the room so

that you can set barriers and make sure the player doesn’t travel off the screen.

In the second level, the player takes control of a car. The aim is to avoid the

other cars which you are overtaking. If you crash into a car however, you and

the other are destroyed. This is achieved by adding a collision event with the

enemy car to the player’s car object, then adding destroy actions and setting

them to destroy the player’s car and the enemy car.

Another event needs to be created for the movement of the car. Then you need

an action. Normally you would just set a movement action which would make

the car travel forward, but in this game there is no wall to stop the car, so we

need to use variables. A variable constantly asks a question and when it is true,

allows an action to be performed. For the left key press event we place a

variable ‘If x is larger than 40’. Then we can tell the car to move relative to -4 on

the x axis (this moves the car left).

This extract reflects confident use of the language/discourse of Game Maker and the

emergent use of specific computational thinking practices and programming constructs

- all aspects of systems thinking.

This section has shown how the process of making a game with Game Maker

introduces pupils to computational thinking (see also Dalal et al., 2009; Howland et al.,

2009; Kuruvada et al., 2010b), however, while visual languages are more effective in

supporting understanding of basic programming concepts than textual languages

(Zagami, 2008; Koh et al., 2010; Stolee and Fristoe, 2011), they may also hinder the

development of computational thinking either because they obscure the underlying

computation taking place (Schelhowe, 2007; Howland et al., 2009), or because the

connection between visual programming languages and ‘real programming’ is not clear

to novices (Parsons and Haden, 2007), or because the language limits exposure to

some programming concepts (Murnane and McDougall, 2006), as was the case in the

current study.

Learning to program with Game Maker

 176

7.4 Summary

This section has discussed the programming concepts which pupils encountered as

they created a game in Game Maker. Table 7 below summarises the number of games

which made use of these and indicates that computer game authoring can be used with

some success to introduce certain basic programming concepts.

Programming concept
No. of
games

Comment

Program interaction
(input/output, event driven)

12
All games contained events as triggers for
game action (range = 5-84; mode = 11-20).

Functions (actions) 12
All games contained functions (actions)
(range = 5-170; mode = 11-30).

Sequence 12 All games involved sequencing actions.

Variables 12
All games included at least one variable
(speed, score, lives, health, position x/y,
gravity).

Boolean logic (true, false) 9
True/false values were used in nine games to
loop sound or to set objects as solid.

Coordinates 9 Used to define object location in nine games.

Relative/absolute value 9
Used in nine games to add or subtract values
from score, health or lives variables; to set
speed and specify position.

Negative number 8
Used to refer to direction, position or to set
the value for variables (e.g. score, lives,
depth, speed) in eight games.

Conditional statements 6
Half of all games included at least one
conditional statement.

Loops 6
Five games included a step event as a
looping structure. In one game the alarm
event was also used to repeat an action.

Relational operators
(<, >, =)

6 Used in expressions in six games.

Randomness 5
Used to define object position or random
creation of an object in five games.

Angles 4
Used to define direction of movement in four
games.

Logical operators
(AND, OR, NOT)

1 NOT appears in one game.

Mathematical operators
(+, -, /, *)

1 Used in expressions in one game.

Table 7: Programming concepts evidenced in authored games

Learning to program with Game Maker

 177

The data suggest that while making a game in Game Maker can introduce pupils to

basic programming concepts and practices, certain programming concepts, such as

conditionals, loops, and variables need to be explicitly introduced and modelled if they

are to be learned effectively. When engaged in projects where pupils are programming

almost without knowing it, it is important that teachers draw out the knowledge that

pupils have acquired (Good, 2011). The learning resources made available to pupils

gave step-by-step instruction and referred to programming concepts, such as variables

and IF statements in passing (see Waller, 2009), but those concepts were not

explained in detail, suggesting that there is a need for more emphasis to be put on

drawing out the underlying programming concepts in such resources.

Furthermore, whilst Game Maker’s drag and drop environment expresses some

programming concepts effectively (e.g. conditions), with others this is not the case (e.g.

arrays and lists, data types). If these concepts are to be introduced to pupils they would

need to be taught the correct implementation in GML, Game Maker’s textual

programming language.

These findings give support to related research surrounding the use of other visual

programming languages to teach basic programming concepts (e.g. Lavonen et al.,

2003; Meerbaum-Salant et al., 2011; Denner et al., 2012). In these studies, concepts

were only learned when students were explicitly taught the concepts while they created

projects that used the concepts (Meerbaum-Salant et al., 2011: 168). Other studies

found that while some concepts may be learned without instruction, others need a

formal introduction if they are to be used effectively (Maloney et al., 2008; Schelhowe,

2010), since, in creating a computer game, pupils learn basic programming concepts

without necessarily being aware that they are using those concepts (Kuruvada et al.,

2010a; Good, 2011). In particular, computer game authoring does not deliver the more

complex concepts well without additional teacher input (Denner et al., 2012).

As with the current research, some studies found great variation in the extent to which

pupils used programming constructs when making computer games (Bruckman et al.,

2000; Maloney et al., 2008; Denner et al., 2012), and note that some pupils used only

modest amounts of programming concepts. Other studies conclude that the games

produced only illustrated an understanding of the targeted computer science concepts

(Chamillard, 2006; Carbonaro et al., 2010). This suggests that schemes of work need

to specify what programming concepts pupils should use in their games, to ensure that

a range of concepts (from easy to hard) are included.

Learning to program with Game Maker

 178

The scheme of work used in this study was structured following constructionist

principles (see Chapter 3) and this chapter has detailed the programming concepts and

practices which pupils used in the games they made using this approach. The data

suggests that while some concepts can be learned using a ‘learning by doing’

approach, others need more direct instruction if they are to be understood and applied

by all pupils. This finding extends and updates previous research which found that

constructionist practices which favour ‘bottom-up programming’, ‘bricolage’, and

‘exploratory’ learning (Turkle and Papert, 1990) were less effective than more

instructionist forms of computer programming education (Ben-Ari, 2001; Meerbaum-

Salant et al., 2010). While some studies support the idea that ‘bricolage’ is a valid way

to learn programming concepts for some learners (McDougall and Boyle, 2004; Stiller,

2009), others suggest that exploratory learning does not lead all pupils to an

understanding of the structure and operation of a programming language or lead them

to develop skills such as problem decomposition, planning or systematic testing and

debugging; it can also lead to inefficient or frustrating programming experiences

(Kurland et al., 1987).

Findings from the current study suggest that the level of programming knowledge

pupils acquired is, in Pea and Kurland’s terms (Pea and Kurland, 1984), Level ii - code

generator. At this level, pupils can write simple programs following examples, read and

understand someone else’s program and detect and correct some ‘bugs’. But there is

less evidence of program planning or understanding of how to make programs more

efficient. Most children can learn to write programs at this level their research found.

Whilst their research implies that this level of programming knowledge is not sufficient,

my own findings suggest that making a computer game introduces pupils to some key

programming concepts and develops their ability to think computationally. In terms of

the time scale available, perhaps that is enough. Educational goals for programming

need to be realistic and achievable, given that most pupils at Key Stage 3 receive 36

hours per year to cover a wide range of topics in addition to programming, and bearing

in mind the fact that many practicing ICT teachers need further training to feel confident

in delivering this aspect of the new Computing programme of study (Nesta, 2014).

The next chapter extends the findings of this chapter by discussing the difficulties that

pupils had with programming their games.

Problems with programming

 179

Chapter 8 Problems with programming

8.1 Introduction

This chapter describes the programming difficulties identified in pupils’ voice

recordings, planning documents, interviews and journal entries. An analysis of the

programming errors made in the games authored is also presented. Together, these

analyses address the research question ‘What difficulties do pupils have with game

programming?’

Learning to program is considered to be difficult for students of all ages (Jenkins, 2002;

Robins et al., 2003; Dagdilelis et al., 2004; Parsons and Haden, 2007; Hernandez et

al., 2010; Saeli et al., 2011; Brennan, 2013b) and many programming environments

and languages have been developed in an attempt to make it more accessible to

beginners (see Kelleher and Pausch, 2005; Murnane, 2010; Saeli et al., 2011).

Difficulties may arise in understanding how a computer system works, how to write the

program (syntax, notation), how to use data structures (loops, conditionals) and

because non-motivating contexts are often used to teach programming concepts (Good

et al., 2007) or inappropriate teaching resources and methods are used (Teague, 2014;

Maguire et al., 2014). Particularly troublesome for novice programmers is that they

have to learn to communicate with a computer in a precise and unambiguous way

(CAS, 2012a), and may lack problem-solving skills (Govender et al., 2014).

Although Game Maker was designed to enable users to create computer games

without the need to learn a textual programming language, users nevertheless have to

learn to ‘program’ their games using its visual paradigm. Thus difficulties can arise in

programming any component of a computer game e.g. sprite, object, event, action,

room. The difficulties identified in this section fall into three broad categories: i)

programming concepts that are difficult to grasp, because pupils do not understand

how computing processes are produced generally, and of how computer games are

constructed in particular (conceptual difficulties); ii) difficulties that pupils experience

because they do not know how to use the software (operational difficulties); iii) a lack of

precise, logical thinking and a reluctance to check/test their program statements

(computational thinking difficulties).

Problems with programming

 180

To identify the difficulties pupils encountered, the object information for their games

was scrutinised and errors in syntax were identified and categorised. Games were

playtested and a detailed commentary of functionality was made and then analysed.

References to difficulties in programming were also coded in the transcripts of pupil

voice data and interviews, and in the planning and other documents they produced.

It is of interest that boys reported they had difficulties in programming twice as

frequently as girls. This is probably due to the fact that some boys were more ambitious

in the functionality they designed into their games, so encountered more problems in

programming it. Also of interest is the finding that those of above average or high ability

referred to difficulties in programming 4 times more frequently than those of average or

below average ability. Those of lower ability referred to programming difficulties less

frequently possibly because they did not attempt to go beyond the basic level of

complexity of the tutorials they had followed.

Figure 33 shows the coverage of comments in the transcript referring to programming

difficulties, coded by ability and gender.

Figure 33: Programming difficulties coded by ability and gender

Problems with programming

 181

8.2 Program design

In general, there was a lack of program design which led to poor programming

decisions. In particular, designing the algorithm for each object and planning the

interactions between objects was not approached systematically, and was often

superficial or incomplete. Although pupils had planned their games, they did not always

use these plans later when they came to implement their game. In practice, much of

their programming was achieved by ‘bottom up’ tinkering (Turkle and Papert, 1990) and

for some, their enthusiasm to begin making their game meant that they were reluctant

to spend time on planning tasks. This has implications for the pedagogy of game

authoring. Whereas the ‘learning by doing’ approach promoted by the constructionist

framework of this study may be effective for learning the software and making a basic

game, a more structured approach is required for the program design stage. Pupils

need to carefully consider the objects that make up the program, the actions the

objects perform,	 the events which trigger those actions and the interaction between

objects. In addition, more attention needs to be given to developing algorithms for the

common processes which pupils require when programming games, before they

implement the drag and drop code.

Analysis of the planning documents indicates that pupils found it difficult to

conceptualise their games as a whole, and to decompose them into constituent parts.

In particular they were not used to being precise and systematic in their thinking,

because they had little prior experience of designing programs and were not used to

thinking computationally.

This finding gives support to related research (Meerbaum-Salant et al., 2011), which

observed that when faced with a programming task in Scratch, using an exploratory

learning model, students did not approach it by thinking on the algorithmic level -

instead they selected items that seemed to be appropriate for solving the task and then

combined them into a script. Earlier research in programming in Logo and Basic

(Kurland et al., 1987) also found that pupils using discovery learning approaches did

not structure solutions, decompose problems or develop efficient algorithms.

Although pupils completed some of the planning tasks, this was not always done in

sufficient detail or systematically. As a result they were less useful to pupils at the

implementation stage. Some pupils forgot to use their plans:

AE: Our game is quite complicated, and so it has quite a lot of actions and

Problems with programming

 182

events. It took us quite a while to work out what the rules would be for our

game. As we started to create the game, we discovered that we had forgotten

some of the rules [in our plan]. However, this is not a problem, because it is

easier to think of what the rules need to be as we go along.

This pupil’s claim that it is easier to think of the rules for his game as he ‘goes along’,

exemplifies pupils’ preferred approach to developing their games, but while they

preferred concrete, ‘bricoleur’ styles of working (Turkle and Papert, 1990), in practice

they needed to plan events and actions for the objects in their games more

systematically so that they had some sort of structure on which to build.

8.2.1 Language

In their planning documents, most pupils did not use the terminology they had

encountered in the tutorials or the Game Maker program to help them define their

interactions and this reduced the precision of their plans and made the planning

document less useful to them. For example, KW, CBMH and JBJG do not use Game

Maker’s term ‘collision event’ but use words such as ‘collect’, ‘touch’ and ‘hit’. Because

they did not use the terms available in the software, selecting the correct event was

less obvious to them when they began to build their games.

The same was true when pupils referred to actions (see Table 8). Although the

example given to pupils had modelled the use of imperatives to define actions (since

this is how they appear in Game Maker) some pupils did not make use of this construct

and as a result their plans were less supportive to them. JBJG refer to their player

character ‘running’ instead of using the action names for movement (‘move’ or ‘jump’);

their horse ‘disappears’ when the correct term is ‘destroy instance of horse’; the player

character ‘gains’ points, when the action required is to ‘set score relative to +10’.

Object Event (input) Action (output)

GS
Ghost

Left click with mouse.
Ghost fades away when
certain amount of points
reached.

GS
Ball of darkness

Left click held.
When left clicked and held, if
Shadow hits ball -1 life.

Problems with programming

 183

If Event (input) Then Action (output)

JDMB
If

Left mouse is clicked then
The object is thrown and if it
hits a monster a scream
sound is made.

JBJG
If

When you get points to the
end of the level

then You move to the next one.

AWTB
If

You press left

then You go left.

Table 8: Use of language in pupils’ planning documents

Others found using the language more straightforward. Four pairs (AEMD, ACJC, KW,

OWSW) used the correct terminology to refer to their events and actions, as shown in

Table 9, and this not only added precision to their plans, but will also have been more

supportive to them when it came to constructing the game code.

If Event (input) Then Action (output)

OWSW
If

Player collides with blue
snowflake

then Score sound plays.

AEMD
If

Player collides with enemy
bullet

then

Set health bar relative to -5.
Play sound ‘Explosion small’.
Create instance of object
‘explosion 2’.

AEMD
If

Right arrow key pressed then
Player moves right at speed
3.

Table 9: Use of correct terminology in pupils' planning documents

Most of the ‘errors’ in their plans for the game interactions arise from a lack of

systematic thinking. Some viewed the game plan as a description of ‘what happens

if…’ and were not able to define the game in terms of its interactions - to specify user or

game inputs (events) and the associated outputs (actions), even though this planning

document was intended to be a scaffold for that.

These findings suggest that, although pupils may be reluctant to do so, more time

needs to be spent on the design of the game interactions since this is the precursor to

programming them. There is a need also to encourage pupils to use the language of

Game Maker in the planning stages. It is likely that if more pupils had used the event

Problems with programming

 184

and action names available in the software at the planning stage, they would have later

managed to ‘code’ their games more efficiently and effectively.

8.3 Programming concepts

Once they had completed their planning documents pupils began to implement their

games and this brought them into contact with several basic programming concepts

and practices. The following section presents the problems they encountered with

these.

8.3.1 Sequence

One of the key concepts in learning to program is that commands need to be written in

a logical sequence. Sometimes this caused errors for pupils. In the following example,

ACJC set the actions for the control of the lives mechanic but did not sequence these

logically:

Obj_Player character
Collision event with object obj_ball1:
If lives are equal to 0
 Display message: Bad Luck! Better Luck Next Time!
 Show the highscore table
 Restart the game
Set the number of lives relative to -1

The correct sequence would have been to use the set lives action to subtract a life from

the current value before checking whether all lives have been lost. Similarly, JBLA

made an error in the sequence of commands which managed the health mechanic:

Obj_Player character
Collision event with object Evil Dude:
Set the health relative to -7

Other event: Game Start:
Set the health to 100

In this case the health value does not decrease as intended because the game start

event to set the health is listed after the collision event. Sequence was also a problem

where the messages spoken by JBLA’s ‘Evil Dude’ character appear on screen before

the appearance of the character itself and when ACJC’s title screen does not display

because the rooms comprising the game levels are placed in the wrong order in the

resources tree.

Problems with programming

 185

Such errors occur partly because the concept of sequence is less visually explicit in

Game Maker than in other programs, such as Scratch or Flowol. Although there is an

order in which the software will execute code, this is not apparent to the user - there is

no visual representation of the run-time progress of the program, unless the game is

run in debug mode. Therefore, pupils need to be encouraged to think carefully about

sequence and to check it as a source of error in their programs.

8.3.2 Objects

In their planning document pupils were asked to detail the objects in their game and to

list the events and actions for them. Eleven of the twelve pairs made some attempt to

complete this section, following the example given in Table 10.

Object Event (input) Action (output)

Clown’s head Mouse event - left click.

Set score +10 points.
Play sound ‘Hit’.
Head jumps to a random
position.

Clown’s head Collision event with wall.
Head bounces in a random
direction.
Play sound ‘Bounce’.

Table 10: Example initial planning document

This task introduced pupils to the need to decompose their game into its separate

objects and interactions. At this stage most pupils’ responses were characterised by a

lack of completeness. In general, they did not complete the table for all objects, or all

levels. Only 1/12 pairs included the events and actions needed for the button objects

on their title screen. The events they refer to are mainly collisions; create, keyboard

and mouse events are rarely featured. They do not list all actions for each object and

specific details, such as the speed of movement, are not given.

In the games, a number of errors were made with objects. Some pupils did not have a

secure understanding of the concept of ‘objects’ itself. For example, pupils were asked

to create a title screen, which included one or more interaction buttons to start the

game or to launch game instructions. Some pairs found this problematic because they

did not understand that a ‘start’ button is an object which needs to be created and

programmed in the same way as other game objects. Whilst they understood that

game characters and other game items are objects, the idea that game navigation is

Problems with programming

 186

achieved by the use of objects (buttons) which require an input and an output was less

intuitive.

Other problems arose because pupils did not have a clear understanding that in a

game program all elements exist as separate entities. In the following example, a pupil

has drawn the button graphics as part of the title screen background, instead of

creating them as separate objects and so could not program them to respond to user

input:

TB: We’ve created the title page ... but we’ve just found out that we have to do

the ‘start’ button and the ‘introduction’ button and the ‘exit’ button separately, so

we’ve deleted the buttons and we’re putting the background in separately to the

‘start’ button.

The same problem occurred for LWGW, who in creating a maze game, had drawn the

maze as part of their background graphic, rather than constructing the maze out of

separate wall objects.

Keeping objects in view

Within the game itself, pupils encountered several problems with objects. Keeping the

player character and other objects in view on the screen was problematic for 9/12

pairs. Objects disappeared from view often because pupils had given the object a

speed, which meant that the object continually moved at that speed, eventually

disappearing from the screen. This was surprising for most pupils, who assumed that

the edge of the screen was itself a boundary. They learned that object motion and

position has to be controlled, either by using the correct key press/key release events

to start and stop movement, by using or checking its coordinates, or by creating a solid

boundary around the edge of the room.

For some pupils, controlling the movement of their player characters was difficult to

achieve. In 3 games (LWGW, CBMH, JDMB) player characters move correctly when

the arrow keys are pressed, but do not stop moving when the keys are released. It was

not at first apparent to some pupils that just as setting an object in motion has to be

programmed, so too does the stopping of movement:

JC: We’ve got a problem at the moment that if we press an arrow key the

person keeps on moving.

Problems with programming

 187

JB: We had loads of trouble trying to get it to … stop at the end instead of going

off screen.

In general terms, they did not understand that when writing programs, instructions have

to be precise and unambiguous.

In four other games, the player characters are controlled effectively using the arrow

keys, and in the course of play remain in view, but JBJG’s horse disappears from the

screen to the right/left if the right/left buttons are held down and JBLA’s character

disappears on the right, left and top of the screen. The movement of GS’s, and ACJC’s

player characters is controlled effectively by the arrow keys, but they can travel off the

screen in all directions, and return to view only if the opposite directional arrow key is

pressed. In such cases, pupils needed to keep the character in view by comparing its

vertical and horizontal coordinates with the room height/width so that movement

stopped when these values were reached. This mechanism is not difficult to

understand, but pupils needed instruction to implement it. OWSW and AEMD used this

method to keep their player characters on screen and learned to do so by following a

tutorial.

AWTB partially solved the problem of their player character travelling off the screen, by

creating a ‘wall’ around 3 sides of the room, but their character disappears from the top

of the screen when he jumps because there are no interactions set between it and the

wall objects to prevent it from doing so.

Controlling object (dis)appearance

Since several games included a scrolling background, a commonly occurring problem

was that objects disappeared from view and did not reappear as intended (see Figure

34). Five of the twelve pairs had problems with this.

Figure 34: Objects disappearing from the screen

Problems with programming

 188

The collectable items (apples) in JBJG’s horizontally scrolling game disappear once

‘eaten’ by their player character (a horse), but there is no mechanism to make other

instances of apples reappear. After 5 seconds of game play no apples are visible, so

the player cannot accumulate further points. Likewise, obstacles (logs) disappear from

view after several seconds of gameplay and the horse is left running in an empty forest.

In OWSW’s game, objects disappear from the vertically scrolling screen after 7

seconds of game play, and there is nothing more for their player character to collect or

avoid:

OW: Our latest problem is that the objects don’t reappear when they go out the

screen so we will create an action and event that says ‘if object is larger than

room width, reappear at random position inside the room’.

Only 1/5 pairs (AEMD) managed to solve this problem, and to do so they used a

conditional statement, in a step event (loop) as follows:

Step event:
If y is larger than room_height
 Jump to position (random(room_width), -120)

This code compares the object’s x and y coordinates with the room width/height and

relocates it within those dimensions once it has disappeared from view (i.e. when the y

coordinate is greater than the height of the room the object will disappear from the

bottom of the screen and then reappear from the top of the screen at a random position

along the width of the room). Another pair (OWSW) attempted to use this solution, but

did not implement it correctly.

The difficulties here arose because pupils were not used to thinking of the screen as a

space mapped by coordinates, in which object position is defined by x and y values.

They learned that to keep objects within this space they either needed to program

objects to remain within the room’s coordinates or provide some sort of boundary.

However, such learning is unlikely to occur without instruction. This is important for the

pedagogy of game authoring - there are certain core game functionalities which pupils

need to know how to program, if they are to achieve a playable game, and these need

to be introduced at the point of need.

Objects also disappeared from view due to other programming errors. For example,

AEMD programmed all cars of the same colour to be destroyed when their player

Problems with programming

 189

character collided with a single instance of that colour car:

Obj_Player character
Collision event with pink car:
Destroy the instance
For all pink cars: destroy the instance

After several seconds of game play, there are no more ‘enemy’ cars on the screen, the

player car travels along an empty street - and there is no way to end the level and

progress to level 3.

Objects also disappeared from view because pupils did not yet understand the way in

which Game Maker ‘layers’ objects on screen. JBLA’s player character becomes

‘hidden’ underneath sections of a garden; JBJG’s and JDMB’s player character

disappears behind other game objects. These errors occurred because pupils had not

specified a value to define the ‘depth’ of these objects.

Sometimes, objects are intended to disappear, and not to reappear, such as when an

object is ‘collected’, as in LWGW’s game - where a mouse must ‘eat’ a finite number of

cheese objects to gain points. LWGW correctly selected the collision event between

the mouse and the cheese objects, but because they had created 7 separate cheese

objects (instead of placing multiple instances of one cheese object in the room) they

became muddled about which objects to reference in the collision events they created

to make the cheese disappear. Thus multiple instances of cheese disappear at the

same time, or cheese does not disappear at all.

Other pairs create objects and correctly set events and actions for them, but then do

not place instances of the object in the game room, so they cannot function as intended

(JBJG, SARC).

Controlling object movement

The most commonly occurring problems referred to in the data relate to controlling

object movement.

Following the cursor

Some problems occurred because pupils simply did not know how to achieve certain

effects and the tutorials and other resources did not cover these aspects. For example,

two pairs (LWGW, JDMB) initially intended the movement of one of their game objects

to be controlled by following the cursor:

Problems with programming

 190

GW: We couldn’t have our computerised cat chasing our mouse, we had to

have it on random. Well originally we wanted it to be, like, following the [cursor]

… but that was too complicated.

JD: If we can’t customise the brick to be thrown wherever the [cursor] is, maybe

we can just have it thrown directly in front and it just keeps going as far as we

want it until it hits the monster.

This mechanism is easily achieved by using a step event and adding either a jump to

position or move towards action, and then attaching the mouse_x and mouse_y

variables to the x and y coordinates of the object. However, pupils needed to be shown

how to implement this behaviour; schemes of work need to include support for common

functions in games, such as this.

Setting the object speed

Several errors occurred in setting the correct value for the speed of a moving object.

Three pairs did not realise that in addition to applying the move action they had to

specify a speed in order for an object to move. In CBMH’s game, spiders are intended

to move towards the player character, but no speed is set for that action, so no

movement can occur. Similarly, LWGW do not set a value for the upward movement of

their player character.

Others applied a value for speed when it was not required. ACJC used the key release

event and move fixed action to stop the movement of their player character, but set a

speed of 3 instead of 0. AEMD used the keyboard event to specify that the player

character should not move when no key is being pressed, but set the speed to 8

instead of 0.

Obj_Player character
Keyboard event for <No Key> key:
If object is aligned with grid with cells of 24 by 24 pixels
 Start moving in directions 000010000 with speed set to 8

Pupils learned that to create the effect of scrolling movement a speed has to be set for

the game room and that this has to be set in relation to the speed of the objects in the

room:

MD: I … noticed that when the player presses the down arrow, the player

travels down the screen at the same speed as the scrolling background. This

Problems with programming

 191

gives the impression that the game has stopped. To rectify this, we would have

to either increase the speed of the scrolling background, or decrease the speed

of the plane.

Those who created maze games (KW, AEMD) learned that object speed has to be set

to a value which is a factor of the grid size in order for correct motion to be achieved.

Jumping

Other pupils (AWTB, JBJG) who wanted to include a ‘jump’ action for their objects

found this problematic, because they did not at first understand that they had to refer to

the x and y coordinates of an object to manage vertical and horizontal movement:

AW: We have had problems with making the character jump in the air and

coming back down, so he is only in the air for a short amount of time instead of

an unlimited time.

JB: We couldn’t get the horse to jump properly ... ‘cos our horse on the

background was going higher than the grass and into the sky so it looked a bit

weird, but we managed to get it to do ‘if x and y equal so and so, stop’.

They solved the problem by simplifying the horse’s movement to approximate the

action of jumping over a log; now that their horse could move up and down, they had to

constrain this movement so that the horse would only be able to move within the

grassed area of the game world:

Obj_Horse
Keyboard event for <Up> key:
If y is larger than 224
 Move relative to position (0,-4)

Keyboard event for <Down> key:
If y is smaller than 390
 Move relative to position (0,4)

Random movement

Three pairs (LWGW, CBMH, SARC) had problems with achieving random movement

for their ‘enemy’ objects. Although the objects move in random directions they

disappear from the screen after several seconds and there is no mechanism to return

them to view.

Problems with programming

 192

In CBMH’s game some instances of the spider object move in random directions;

others remain stationary:

Obj_Spider
Create event:
Start moving in directions 111111111 with speed set to 1

This error arose because in selecting the directional arrows in the move action to

achieve random movement, they had also selected the ‘stop’ option. LWGW made the

same mistake with their animated cat object.

JDMB’s monsters remain in their starting position because no events or actions have

been assigned to set them in motion. In the example below, the first move action (move

to a random position) is intended to reposition the object to a random location on the

screen, but cannot function because it is included in a destroy event. The second

movement action is intended to send the monster back to its starting position when it

has been hit by a stone, but because the monsters don’t move, this action can never

execute:

Obj_Monster
Destroy event:
Move to a random position with hor snap 0 and vert snap 0

Collision event with object stone:
Destroy the instance
Move relative to position (0, 0)

These errors in controlling object movement largely arise because pupils have not yet

learned that computers are deterministic and perform actions and processes only if

they are explicitly and precisely told to do so. In other cases errors occur because

pupils have not planned the interactions or checked the logic of their code.

8.3.3 Events

Planning events

Pupils were asked to plan the events and actions for their game objects in an initial

design document. At this stage pupils were not systematic and did not detail all the

events for all their game objects. The majority of pupils did not define what should

happen when their player character first appears on the screen. Some pupils did not

detail which events would trigger object movement. Most pupils only detailed the

collisions in the game. Two pairs (LWGW, JDMB) struggled to understand what an

event was at this stage, as is evident in the examples given in Table 11.

Problems with programming

 193

Object Event (input) Action (output)

LWGW
Cheese

Stationary. Is able to be
eaten and give points.

The cheese will disappear.

JDMB
Man/woman

Stands on first level with
bottle in hand.

Walks around castle wall.

JDMB
Man/woman

Hiding behind pillars.

Peer outside pillar and
through object.

JDMB
Zombies

Diagonal movement.

When mouse clicks zombies
collapse and are knocked
out. Sound (scream). Score
goes up every zombie.

Table 11: Misunderstanding events

Errors also occurred because there was some confusion between the meaning of the

words ‘event’ and ‘action’, since in everyday usage, both can be used to refer to

something happening - whereas in Game Maker, the word ‘event’ refers to a game

input and ‘action’ refers to a game output. Figure 35 (an extract from AEMD’s planning

document) illustrates the confusion of terms.

Figure 35: Confusing events and actions

A similar error is made when a pupil refers to an ‘event’ as an ‘action’ and vice versa in

their working conversation:

OW: When we make the start button graphic, which will be an object, we’ll do

an action that says ‘If button ... if object is clicked’, event ‘jump to room 0’ and

the game will start, yeah?

Problems with programming

 194

These errors highlight the need to focus on keywords, such as ‘event’ and ‘action’, as

an important element of learning to program in Game Maker.

Pupils sometimes describe events and actions for more than one object at a time, or

generalise events, instead of listing each object and event separately (see Table 12).

Object Event (input) Action (output)

JBJG
Apples and
carrots

Disappear when touch horse.
Add more points; appear
randomly.

JBJG
Horse

Use arrow keys to move. Move left, right, up, down.

Table 12: Generalising events and actions

Later in the design process pupils were asked to outline the interactions in the game in

more detail, in a ‘Rules of the Game’ table. By this stage pupils had begun to separate

the inputs and outputs for their player character and showed a better understanding of

individual events and actions. At this stage also, they introduce non-user inputs for

actions in the game (such as collisions, object locations, lives or score status), as

shown in Table 13.

If Event (input) Then Action (output)

KW
If

Lose all lives then Message ‘Game Over’.

OWSW
If

Score > 100 then
Next level commences.
Screen scrolls faster.

Table 13: Use of non-user events

Nevertheless, analysis of these documents shows that pupils were still not able to

conceptualise the game in the level of detail required and this is identified in the

literature as one of the difficulties pupils have with programming (see section 2.9).

Pupils do not define all events in their games, for example JBLA only include events for

the movement of their player character; events for other game objects are omitted.

SARC do not specify any events or actions for the movement of their player character.

Lack of precision in describing events and actions is also common. The examples

given in Table 14 illustrate that pupils do not conceptualise game play as it is

Problems with programming

 195

constructed because they do not have a clear mental model (Norman, 1983) of how a

computer game is made. Several pupils still misunderstand what an event is or list

general rules for the game as events; sometimes events and actions are confused or

not separated.

If Event (input) Then Action (output)

SARC
If

Starman goes up a level then
The enemies become harder
to defeat.

AWTB
If

You’re in the air then
Presses left/right they move
in the air left/right.

CBMH
If

Arrow keys or space pressed then Girl moves or jumps.

JBJG
If

Horse eats then Munch sound.

Table 14: Lack of precision in referring to events and actions

Programming events

Whilst all pupils used events in their games with some success, some pupils found the

concept of an event itself hard to grasp initially:

JD: What are they doing on the event, what’s the event?

MB: What is the event? What does that even mean?

JD: What are they doing there?

JD: Miss? Miss we dunno what to do for the zombies on the event.

MB: We know what action is but I don’t understand the event.

Some of the difficulties pupils encountered with events arose because they assumed

that the word ‘event’ had the same meaning in a programming context as it has in

everyday usage. In the transcript LW says ‘Ok, so the cheese is destroyed, so that’s

the event’ - illustrating that she understood an ‘event’ as ‘something which happens in

the game’, rather than as a trigger to make something happen (an input). MB refers to

the action of his player character hiding behind a pillar as an event:

MB: So for the next bit we have the man, and he … his … the event is him

hiding behind … him hiding behind the pillars.

This misunderstanding of the specialist meaning in computing of everyday terms is

identified in the literature as one of the difficulties of learning to program (see section

Problems with programming

 196

2.9). Confusion about events is also evident in cases where pupils discuss what events

to assign to static objects which do not need events.

Whilst some pupils found the general concept of ‘event’ hard to understand, particular

events caused others the following problems:

Collision event

One of the key interactions in the games pupils created is when two objects collide.

Ten games made use of the collision event, although it was not always obvious to

pupils which of the two objects should contain the collision event. At other times,

collision events were added to both objects in the collision, which resulted in conflicting

program code:

Obj_Control_link
Collision event with door3:
Move to position (90, 50)
Go to room room3 with transition effect Create from the top

Obj_Door 3
Collision event with object Control_link:
Move to position (90, 50)
Go to room room3 with transition effect Blend

Collisions also created problems when pupils (OWSW, CBMH) had set a parameter for

moving objects as solid. If a collision is set up with a moving solid object, the collision

checking routines of Game Maker fail and objects get ‘stuck’, as in the following

example:

OW: When the snowboarder crashed into a rock or tree, the tree or rock didn’t

disappear and went down the screen joined to our character.

Game Maker’s collision detection also caused problems for two pairs because its

default setting only registers a collision when there is a visible overlap between two

sprites:

AE: Well with the cars, for some reason, at first when you crashed into them

they only, like, registered you had crashed when you got into the middle of the

car, rather than when you actually hit it.

In JDMB’s game the same problem occurred when the large surrounding canvas of two

objects makes collision detection between them inaccurate.

Problems with programming

 197

Game start event

The game start/game end events also caused confusion. ACJC misunderstood the

game start event, which determines what actions should occur when the game starts,

and confused it with a command for the game to start:

Obj_Player character
Other event: Game Start:
If left mouse button is pressed

Their intention was for the game to start when the left mouse button is pressed but

there was no need for this event since they have used a start button on the title screen

to start the game.

KW used the game end event to test the score, as the mechanism for advancing from

level 1 to level 2 of her game. But since actions in the game end event only occur when

the game has ended this cannot function as intended. This pupil confused the game

end event with the room end event (end of the level):

KW: I put ‘game ends, if the score is larger than 500 go to next room’, but it

doesn’t seem to work. You just carry on collecting ... until you’ve collected

everything and then you just sit there and nothing happens.

Such errors occurred because pupils had not had sufficient practise in using these

events and had not followed tutorials or received instruction in how some of the events

function.

Duplicating events

Errors also occurred when pupils duplicated events, or assigned more than one

function to a key. JDMB had problems controlling their missile objects because they

duplicated keyboard events for the space bar - they used the space bar 4 times and

referenced it in 3 different objects. The same pair also duplicated keyboard events for

the left and right arrow keys in their player character and brick objects. This had the

unintended effect of moving the brick and player objects together when those keys

were pressed. They also duplicated instructions for the creation of a stone object and

its upwards movement by putting similar code for this action in both the player

character and stone objects:

Obj_Man
Key Press event for <Space> key:
Create instance of object stone at relative position (0,0)

Problems with programming

 198

 Obj_Stone
Key release event for <Space> key:
Create instance of object stone at relative position (0,0)

Create event:
Set the vertical speed to -3

Keyboard event for <Space> key:
Start moving in directions 000000010 with speed set to 2

As well as generating unnecessary code, such duplications introduced conflicts in the

program and explain why the missiles do not behave as intended. In terms of program

design, it would have improved the coherence of the gameplay if this pair had reused

the same code for each of their three missiles, but at this stage in their learning they

did not recognise that code segments can be reused to improve program efficiency.

These errors arose because pupils did not plan their game interactions systematically.

Since they were programming ‘on the fly’ duplications and conflicting code were more

likely to occur.

8.3.4 Actions

Planning actions

In their planning documents several pupils did not detail all the actions for an object -

for example they forgot to add actions to play a sound when points are gained or to

destroy an instance once it had been collected. Sometimes several actions were

conflated, as shown in Table 15.

Object Event (input) Action (output)

SARC
Starman

Click space bar.
Space bar makes Starman
jump onto platforms to collect
coins to give him points.

Table 15: Conflating actions

At other times, no actions were specified or actions were indicated, but not in sufficient

detail; only 1/12 pairs specified the speed that an object should move; of those who

added a score action some forgot to specify the value of the score.

These data illustrate that at this stage some pupils did not understand the need to

decompose the gameplay into separate functions and to give precise instructions. This

Problems with programming

 199

inability to plan their programs in detail and to break their programs down into sub-

programs is identified in the literature as one of the areas of difficulty that pupils

encounter while learning to program (see section 2.9).

Implementing actions

Another source of difficulty for pupils was in selecting appropriate actions to achieve

the object behaviour they intended. In Game Maker, each action symbol depicts a

graphical representation of its functionality; a textual description appears on rollover.

Despite this support, some pupils did not understand what action the symbol

performed. Although they had been provided with a glossary of all the actions they did

not make good use of this information:

CB: I didn’t know what any of [the actions] did or how to use them so I didn’t

know how they could help me improve our game.

CJ: But if you hover over them they tell you what they do.

CB: I didn’t know what it meant.

The number of different actions was also a source of confusion for some:

TB: All the controls are quite complicated, the amount of different things that

you have to put in.

CB: We have not finished doing all our actions and events yet because at first

we found this very confusing.

GW: I don’t like it when you have to do the actions … And the events - that’s

really confusing.

Particular problems that pupils encountered with actions are indicated in the following

examples.

Conflicting actions

Errors occurred when pupils had programmed conflicting actions, and this was the

case in 6/12 games. In this example (ACJC) the first action instructs the ball to move

downwards, but the second action instructs the ball to move to a random position:

Problems with programming

 200

Obj_ball
Create event:
Start moving in directions 010000000 with speed set to 2
Move to a random position with hor snap 0 and vert snap 608.

OWSW and JBJG make similar errors.

In another example LWGW give conflicting instructions in the ‘down’ key press event

for their mouse object, where, in addition to the actions to move down, instructions are

also given for it to move left, right and upwards:

Obj_Mouse
Key press event for <Down> key:
Start moving in directions 000100000 with speed set relative to 3
Start moving in directions 000000010 with speed set relative to 3
Start moving in directions 000001000 with speed set relative to 3
Start moving in directions 010000000 with speed set relative to 3

JDMB duplicate the destroy instance action for their monster object by putting it in both

stone and monster objects:

Obj_Monster
Collision event with object stone:
Destroy the instance
Move relative to position (0,0).

Obj_Stone
Collision event with object monster:
Destroy the instance
Jump to the start position

Conflicts also arose when actions were duplicated in separate events for the same

object, such as in this example (AWTB), where neither the event nor the action are

necessary, since downward motion for the player character is effected by gravity, which

they have specified in a previous event:

Obj_Player character
Keyboard event for <Down> key:
If relative position (0,3) is collision free for only solid objects
 Move relative to position (0,3).

LWGW give conflicting instructions for the movement of their cat object. In the first

event an action instructs the cat to move randomly in all directions, including stop; in

the second event an action instructs the cat to move randomly in all directions when it

collides with a cheese object:

Obj_Cat
Create event:

Problems with programming

 201

Start moving in directions 111111111 with speed set to 4
Bounce not precisely against solid objects

Collision event with object obj_cheese1:
Start moving in directions 111101111 with speed set to 4

Other pupils select the wrong action. SARC’s player character does not move because

although they have set keyboard events for the arrow keys, no actions for movement

are added:

Obj_Player character
Keyboard event for <Left> key:
Set the sprite to spr_starman with subimage 0 and speed 1

Keyboard event for <Up> key:
Set the sprite to spr_starman with subimage 0 and speed 1

Keyboard event for <Right> key:
Set the sprite to spr_starman with subimage 0 and speed 1

Keyboard event for <Down> key:
Set the sprite to spr_starman with subimage 0 and speed 1

The change sprite action used here simply changes the sprite and has been selected in

error; because this action refers to speed, they thought it was a move action. It is clear

from their code that they have not planned the game interactions and have not been

able to apply what they have learned in the video tutorials to their own game.

8.3.5 Setting values/parameters/arguments

In their planning documents it was common for pupils to omit details of the parameters

and arguments associated with actions. For example, several pairs omit to set speed

for movement (KW, JDMB, JBLA, JBJG, AWTB, ACJC, CBMH) or do not specify

direction (OWSW).

In the games themselves, some pupils did not select the correct values to achieve their

intentions. For example, level 2 of AEMD’s game presents a bird’s eye view of cars

driving along a street. The player’s car has to overtake other cars and avoid collisions.

However, because they have not applied the correct values for the yspeed/direction

setting of the non-player cars, these appear to be moving backwards.

In CBMH’s game, they select a set gravity action for their spider object but then do not

add a value for it, so no gravity effect is observed:

Obj_spider
Create event:

Problems with programming

 202

For all girl: start moving in the direction of position (0,0) with speed 0
Set the gravity to 0 in direction 0

OWSW attempted to use a conditional statement to control the appearance of their tree

object - the structure is correct for these but the arguments are not. The intention is that

when a tree disappears from the bottom of the screen in their vertically scrolling game,

it should reappear from the top of the screen, but this does not function correctly

because they selected the wrong value for the y coordinate - forgetting that y0 is

located at the top of the screen:

Obj_tree
Create event:
Set the vertical speed to -4

Step event:
If y is larger than room_height
 Move to position (random(room_width),-65)

Self/other

Errors also occurred in the setting of certain parameters, such as whether an action

following a collision event should apply to the object itself, or another object (JBJG,

JDMB, LWGW). In this example pupils apply the destroy instance action to the wrong

object in a collision event and create a collision between an object and itself:

Obj_log
Collision event with object obj_log:
At position (1,0) draw the number of lives with caption Lives:
Destroy the instance (self)
Move to a random position with hor snap 0 and vert snap 320

In the same game, an apple should disappear when a horse ‘eats’ it, but since the

destroy instance action has been applied to the wrong object, the horse disappears:

JB: Oh my gosh! No, we don’t want the horse to disappear! No, it needs to

delete itself! Oh blimey.

JDMB and LWGW also have problems in selecting the correct parameters to ensure

that objects disappear as intended following a collision event.

Such examples show that when pupils do not plan object interactions before they

implement their games, or where they do not check the logic of their code,

Problems with programming

 203

unnecessary errors occur. However, other problems may arise due to pupils’ lack of

familiarity with game programming concepts.

Solidity

In Game Maker, some objects need to be defined as ‘solid’, particularly if they are non-

moving objects. Generally, moving objects should not be solid. This caused confusion

because intuitively, pupils thought that all objects in a game would be solid.

Errors occurred in 6/12 games, when pupils selected the wrong value for this

parameter. ACJC, CBMH and SARC made moving objects solid, when this was not

required. In AWTB’s game, the player character drops through the bottom of the

screen, because the wall object used as a barrier was not defined as ‘solid’. ACJC,

LWGW, AEMD, and JBJG also failed to make some objects solid, when this was

required.

Relative and absolute value

As noted in Chapter 7, pupils need to understand the concept of relative and absolute

value in order to be able to manage variables effectively (e.g. the increase or decrease

of their score, object position, speed). Errors were made with this aspect in 5 games.

Some pairs did not make a value relative, when they needed to, for example CBMH’s,

JBJG’s and OWSW’s score did not increase relative to the current score, so it

remained at an absolute value. Others made a value relative when this was not

required: ACJC set the score relative to 0 at the start of the game; LWGW set the

speed of their player character relative to 3, which had the effect of increasing the

speed relative to the previous speed, making the object move increasingly quickly,

which was not their intention.

Other errors occurred because pupils were encountering concepts for the first time and

needed direct instruction to understand and implement the concept, as indicated in the

following section.

8.3.6 Conditional statements

In Game Maker, conditional statements are achieved by selecting a test or check

action and were commonly used in pupils’ games to check if the score had reached a

certain value or to check the position of objects on the screen. Although 6 of the 12

games included a conditional statement, the same number did not, which suggests that

some pupils found this construct difficult to understand or to implement:

Problems with programming

 204

JB: We found [using the test variable action] hard. We did try to do that on ours

but it wasn’t working so I had to take it out.

MH: If she loses all three lives then they...

CB: So, block … Oh no, wait. We need to do the ‘IF ...’ um ... what shall we

write?

MH: I don’t know how to do it. I think you need to go over to the … I don’t know.

CB: Me neither.

 MH: Let’s pause it and ask Miss.

Three games (ACJC, JBJG, OWSW) contain errors in the use of one or more

conditional statements, commonly because no action is specified if the condition is met,

as in the following example (JBJG):

Obj_Horse
Create event:
Draw the lives at (20,10) with sprite spr_horse
If lives are equal to 50

KW created a button in her title screen to show the high score table, but did not add a

test variable action in the game to launch the high score table after a certain condition

has been met (e.g. if all lives are lost). KW also used a conditional statement to test the

score, but put this action in the game end event so it did not function correctly.

It is likely that the six pairs who did not use a conditional statement found the construct

too difficult to implement without instruction.

8.3.7 Loops

As indicated in Chapter 7, some pupils made use of a loop construct to repeat an

action or to continually check a game state, although not without difficulty. JDMB used

the step event to repeatedly create new instances of their monster object, however, this

caused the game to freeze because 30 monsters were created every second, which

consumed too much computer memory.

JBJG attempted to use the alarm event, to repeat an action, but without success:

Obj_Player character
Alarm event for alarm 0:
Start moving in directions 000010000 with speed set to 0.

Problems with programming

 205

Here, the alarm event is incomplete - the alarm 0 has not previously been set, so there

is no time interval to count down before the alarm event’s actions execute.

Looping mechanisms such as this are not intuitive and pupils needed direct instruction

from teacher, tutorials or peers to use them successfully.

8.3.8 Variables

Most pupils in this study made use of Game Maker’s inbuilt variables to manage score,

health and lives data. The following section describes specific problems which pupils

encountered with these.

Score

Six pairs attempted to include some kind of scoring system, but most had problems

with some aspect of it:

JBr: Yeah my score stopped going up after a while. I think it was to do with

going in and out of buildings and stuff.

AE: We had problems with our score as well because on level 1, say you get

500 points, we found that when you go into level 2 it reset your score to 0 for

some reason.

Those pairs who had implemented more than one level (ACJC, AEMD, JBLA)

commonly had problems with managing the score across the different levels:

AC: We’ve had a bit of bother with the levels … because every time … when we

completed the first level the first level worked brilliantly, which was a big thing,

but then after we got to the next level, ‘cos we had an action saying ‘if score is

larger than 299 advance to the next level’, whenever we got a Mars bar to give

us some points it advances us to the next level straight away, which we didn’t

want it to do, we wanted it to [be added] to the score.

Because they had assigned the test score actions to the player character, which

appears in levels 1, 2 and 3, the score thresholds for level 1 also take effect in level 2,

as illustrated in the code below:

Obj_Player character
Collision event with object obj_mars1:

Problems with programming

 206

If score is equal to 280
 Display message: Congratulations! Advance to the next level!
 Go to next room with transition effect Blend
If score is equal to 580
 Display message: Congratulations! Advance to the next level!
 Go to next room with transition effect Blend
If score is equal to 980
 Display message: You are the Ultimate Dodgeball Champion! Well done dude!
 Show the highscore table
 End the game

Others had problems with programming the score to increase or decrease correctly.

For example, in CBMH’s game the score had not been set to decrease relative to its

current value when points were lost, so the score remains at an absolute value of -10;

JBJG’s score does not increase relative to its previous value. JDMB set the score

variable at the start of their game but there is no additional code to increase or

decrease the score. In KW’s game, the score mechanic functions correctly on increase

but there is no mechanism to lose points. OWSW program the score to decrease

correctly, but it does not increase in relative increments, even though in the voice data,

OW shows he understands the need for this.

Sometimes score mechanisms were attempted but incomplete. In JBLA’s game there

are no collectable items and no interactions to generate a score in the first two rooms

of the game. The score mechanic only activates when the player character enters room

3, but does not function correctly because the code for increasing the score is placed in

the create event of the collectable item instead of in a collision event between the

player character and the collectable items. In JBJG’s game, the score increments

correctly when a carrot object is collected, but since no instances of this object have

been placed in the room, the score associated with it cannot function and nor is it

displayed on the screen. Level progression is achieved in KW’s game by attaining a

certain score, but since the test score action is placed in the wrong event (game end),

this condition can’t be met and the player cannot progress to level 2. A high score table

is partially implemented, but no condition has been set to make it appear.

Five games do not include a score mechanic (LWGW, SARC, AWTB, CBMH, GS),

which suggests that some pairs found this aspect of game authoring difficult, less

important than other game features, or they did not have time to implement it.

Some of the errors which pupils encountered with the score mechanic, such as

remembering to make the score increase and decrease relative to the current value,

could have been corrected if they had checked their program code. Other errors arose

Problems with programming

 207

because pupils had not learned how to manage score effectively across levels,

suggesting that this needs to be modelled by the teacher or a tutorial. It is unlikely,

without direct instruction, that pupils will understand how score is stored as a variable

in a game.

Lives

Four pairs attempted to add a variable to store lives data in their games, but 3/4 of

them had problems with displaying the lives status:

JC: Me and A. couldn’t get the lives to appear on the screen for some reason.

JB: We were trying to get the lives up on the screen and they weren’t coming up

at all.

Pupils expected lives status to appear on the screen when they used the set lives

action, in the same way that the score is automatically displayed in the game window

when a set score action is used. Pupils did not realise that to display lives on the

screen as text or a graphic, they had to use a draw event and a draw lives action.

ACJC set lives, but did not add a draw event and draw lives action, so the lives status

does not display; JBJG and OWSW did not set a value for lives at the start of their

game, but used an incomplete test lives action instead, so the lives mechanic does not

function correctly. JBJG included a draw lives action but did not assign it to a draw

event, so their lives graphic does not display on the screen. Since only 1/12 pairs

managed to correctly display a lives graphic, (and they followed a tutorial) this suggests

the need for more formal instruction in the use of the lives mechanic. Similarly, of the

two pairs who attempted to include a ‘health’ status bar (AEMD, JBLA), only one

managed to display this on screen.

Adding /losing lives

Further problems were encountered in the mechanisms pupils used to add or lose

lives. In JBJG’s game lives are awarded when the player character, a horse, eats an

apple. A set lives action is correctly placed in a collision event between the two objects,

but because there is no code to display lives, the lives status is not visible on screen. It

was also difficult for the horse to ‘reach’ some of the apples, which appear randomly in

the room, and once eaten they do not reappear, so after five seconds of game play the

apples disappear and there is no mechanism for increasing the lives value.

Problems with programming

 208

KW had similar problems: lives are set at the start of her game but no code is given to

display the lives on screen and no mechanism to lose lives is implemented. In level 2 of

AEMD’s game, the lives correctly decrease when the player character collides with the

non-player character, but since the lives caption has not been implemented, the lives

status does not display on the screen.

Pupils did not attempt to program a lives mechanic in seven games (LWGW, AWTB,

CBMH, GS, JBLA, JDMB, SARC). The data here suggest that pupils are unlikely to

learn how to implement score, lives and health variables by experimentation and

exploration alone. While Game Maker’s ‘Help’ menu and two of the tutorials made

available do include some information about variables, pupils were generally unwilling

to read text tutorials or to follow more than one video tutorial. This meant that they did

not access some of the information they needed regarding the use of these variables.

8.3.9 Miscellaneous errors

Many of the errors observed arose because pupils did not plan their game interactions

systematically or check the logic of the code they later implemented.

In AEMD’s game, the win state in level 3 occurs when all instances of an object

(obj_key) are collected, but does not function as intended, because the two separate

segments of code which refer to this object cancel each other out:

Obj_Key
Collision event with object obj_player:
Play sound snd_key; looping: false
Change the instance into object obj_key--x, not performing events

Obj_Controller key
Step event:
If number of objects obj_key is equal to 0
 For all obj_door: destroy the instance

The code in the step event ‘destroys’ (opens) the doors if all the keys are collected (i.e.

if the number of keys = 0). But in the collision event, when a key is collected, it is

programmed to change to an invisible key object. In effect, the key object being

counted in the step event no longer exists because it has been changed into another

object - there are no original keys for the condition to count. When all keys are

collected the win state is not triggered because the controller key object was not placed

in the room.

Problems with programming

 209

Sometimes simple errors occur because code is incomplete. LWGW programmed their

cheese objects to disappear when the mouse object collides with cheeses1, 2 and 3 -

but instances of other cheese objects placed in the room (i.e. cheeses 4, 5, 6) do not

disappear, because no code has been written for a collision event with them.

Another code section instructs cheese objects to stop moving after they have been

destroyed. Clearly this cannot have been what they intended. It is not appropriate to

select a move action for a stationary object and no events or actions are required for

these cheese objects since a destroy instance action for the cheese has already been

set in the mouse object (so that the cheese disappears when the mouse ‘eats’ it).

In JBLA’s game an error is made when a collision event between the player character

and another object is set for an object which they have placed in the credits screen (i.e.

outside of the game room itself), so the main player character cannot ‘collide’ with this

object and the resulting action cannot occur as intended.

Since reading and understanding code is an important part of learning to program

(CAS, 2012a), pupils need to be encouraged to view the textual information for their

objects, and check for obvious errors such as these.

8.4 Summary

This chapter has summarised the difficulties which pupils referred to in the voice data

and interview transcripts, and the errors identified in their planning documents and in

the code of their authored games. In documenting these problems, it becomes clear

that game programming is conceptually and practically challenging for pupils, not least

because the activity introduces such a wide range of concepts and practices. Learning

which programming constructs are required to create particular effects is the most

difficult aspect (Cheng, 2009; Macklin and Sharp, 2012) and the findings presented in

this chapter suggest that this knowledge and understanding cannot be acquired

efficiently by all pupils without some form of instruction, delivered either by tutorials

(video and/or print) or teacher intervention (modelling, structured activities).

It is also important to note that the problems pupils encountered were, to some extent,

related to the amount of time pupils had been involved in the project (16 hours).

Although the time given to the game authoring activity was greater than for other

Problems with programming

 210

projects they had completed, they were only at the beginning stage of learning to

program.

Learning how to use the software well enough to create a satisfying game, and learning

how to implement key game mechanics adds to the complexity, yet pupils were

reluctant to follow more than one video tutorial and resisted reading printed guides or

watching teacher demonstrations which would have helped them to program their

games more effectively.

In their eagerness to begin making their games, some pupils did not plan their game

interactions effectively and this caused problems at the implementation stage. For

some pupils, using a ‘bottom up’ approach, or working without a plan, was not a

successful strategy. Although pupils express a preference for working directly in the

software and learning by doing (see Chapter 5), these findings suggest that accuracy

and efficiency are compromised when they do so.

Because they were programming ‘on the fly’, rather than systematically, their thinking

was sometimes muddled and resulted in avoidable errors. They also did not approach

debugging systematically and failed to check their code for obvious errors, suggesting

that these practices need to be more strongly modelled and integrated into schemes of

work.

These practices of reading and checking code, program planning, and adopting more

systematic approaches to dealing with errors are identified in the literature as important

for learning to program (see section 2.9). In fact Perkins et al. (1986) suggest that

encouraging better learning practices such as these is central - and this echoes one of

the ‘eight big ideas of constructionism’ - children need to learn how to learn (Papert,

1999a).

Critics of constructionist approaches to teaching programming claim that these are not

well aligned to the domain (Ben-Ari, 2001; Meerbaum-Salant et al., 2011) and suggest

that exploratory learning needs to be supplemented by planning and formal methods.

Others observe that constructionist approaches may not be well suited to the early

stages of learning to program for some learners (Guzdial, 2009) and that while some

elements of programming can be learned with minimal teacher input, for more complex

programming constructs teacher intervention is required (Murnane, 2010; Denner et al.,

Problems with programming

 211

2012). The findings presented in this chapter support this position and the implications

of this are discussed in Chapter 10.

Affective values of authoring computer games

 213

Chapter 9 Affective values of authoring computer
games

9.1 Introduction

This chapter considers the value of computer game authoring in the affective domain,

an important consideration in constructionist learning theory (Papert, 1986; Kafai and

Resnick, 1996b). As noted in Chapter 2, authoring computer games is widely found to

be motivating (see section 2.4) and to give rise to positive attitudes to learning. At the

same time Papert identifies ‘hard fun’ as one of the 8 ‘big ideas’ of constructionism (see

Chapter 3), and argues that children are more likely to enjoy what they do when the

activities they engage in are challenging. This chapter presents pupils’ perceptions of

the affective values of the game authoring activity, as evidenced in their digital voice

recordings, journal entries, and interview data. These findings add further support to

previous studies of children making computer games, but extend and update them by

focusing on a different context - the use of Game Maker in the UK secondary ICT

curriculum.

9.2 Enjoyment and engagement

The unit of work was an implementation of a constructionist learning activity,

characterised by its collaborative work pattern, extended time frame and personally

and culturally meaningful outcomes. Pupils in this study frequently expressed feelings

of having enjoyed making a computer game - and this finding is widely supported in the

literature (see Kafai, 2001; Kafai, 2006b; Robertson and Howells, 2008; Cheng, 2009;

Carbonaro et al., 2010; Li, 2010; Baytak et al., 2011). That they enjoyed the activity is

evident in the enthusiasm shown by some pupils:

AC: When we are creating a game we come in and sit down and we get on with

our game straight away.

GS: I can’t wait until I have finished my game!

MH: C. and I both look forward to start to actually make the game and cannot

wait to see what it will look like when it is finished.

Affective values of authoring computer games

 214

This section considers factors which gave rise to enjoyment and engagement, beyond

the collaborative, constructionist working pattern, which is discussed in Chapter 5.

9.2.1 Fun

Notions of ‘play’ and ‘fun’ are brought to the fore in this type of activity and this is a

probable factor in pupils’ enjoyment of it. Much of the work pupils were engaged in

involved playing their games and of course they were creating their games for others to

play. The word ‘fun’ appeared in a third of pupils’ journal entries, a fifth of the digital

voice recordings and in all of the group and pair interviews. Just over half of the pupils

(12/22) used the word at least once to describe some aspect of their experience of

making a computer game (7/12 boys; 5/10 girls).

The activity itself was perceived by some to be more ‘fun’ than other types of work they

had encountered:

MH: I think … it’s fun as well, like when you say we’re gonna make a game,

everyone suddenly goes ‘Oooh’ … rather than spreadsheets – it’s funner [sic].

AE: ‘Cos some things like spreadsheets are challenging but some people don’t

seem to think they’re fun, but with a game most people think they are fun.

JD: And you can, like, make a story, not do like a boring spreadsheet, you’re

just making a story up, so it’s fun for you too.

AW: It’s a good project and it’s fun to make, ‘cos you’re creating a game which

you can then play, so it’s learning new skills which are fun.

MD: Yeah [the animation] was fun. I hadn’t really done something like that

before.

Other references to fun were made in general comments about the activity:

AE: It was challenging but also fun at the same time.

GS: Although my game is kind of hard to make ... I find it much fun too.

JB: It was fun. I wish we had had more time so we could finish it though.

Affective values of authoring computer games

 215

 KW: Yeah I found it fun.

JG: It’s fun to make, just ... all muddled up.

This finding is consistent with other studies, where students used the word ‘fun’ to

describe the experience of creating games (e.g. Li, 2010; Navarrete and Minnigerode,

2013; Yang and Chang, 2013).

One aspect of the activity which may have contributed to pupils’ experience of fun was

that the mode of learning they were engaged in was playful and experimental.

Exploratory learning is one of the cornerstones of constructionist philosophy, and most

pupils in this study enjoyed this approach. In programming their games, they tried

things out to see what would happen and these actions were provisional. As such

making a game was a supportive learning activity. Pupils had an almost immediate

visual feedback of what worked and what didn’t work on screen and could attempt to

solve problems by refining parts of their programs step by step. Thus they came to

view errors as problems to solve:

OW: When we made our snowboarder move, first of all he went out of the

screen so we had to make an action to keep him inside the screen. Then we

also had a problem when the snowboarder crashed into a rock or tree, the tree

or rock didn’t disappear and went down the screen joined to our character. So

we made our character jump to a given position on the screen when he collided

with an object. Our latest problem is that the objects don’t reappear when they

go out the screen so we will create an action and event that says ‘if object is

larger than room height, reappear at random position inside the room’.

Papert argues that this ‘natural’, ‘Piagetian’ learning should be given more status in

schools (Papert, 1980b) and ‘playful pedagogy’ also has more recent support (e.g.

Morgan and Kennewell, 2005; Kennewell and Morgan, 2006). Additionally, learning that

‘getting things wrong’ is part of the process of programming changes pupils’ attitudes to

making mistakes. Having the ‘freedom to get things wrong’ is an important feature of

constructionist learning theory (Papert, 1999a) and this different approach may have

been a contributory factor in some pupils’ enjoyment of the game authoring activity.

Affective values of authoring computer games

 216

9.2.2 ‘Hard fun’

Whilst most pupils agreed that the game making experience was fun, they also

acknowledged that it was a difficult project (see Chapters 6 and 8 for a discussion of

difficulties pupils encountered). It was ‘hard fun’6 (Papert, 1996a). The data show that

the project gave pupils an appreciation of the complexities of creating a computer

game:

AE: I learned how hard it was to create a game. It was especially hard to think

of the rules and to work out how to apply them using the events and actions.

[But] I really enjoyed the game making project and I learnt a lot.

AW: We’ve learned how to make and program a game and that it’s not actually

simple to do, it takes quite a while ‘cos you need to plan the game and what you

want to happen in it.

MH: When you think of making a game you think it’s going to be really simple

and really easy, but it’s not, because [there are lots of] different topics which

you have to cover.

JB: It’s harder than you think, ‘cos you sit there and you’re playing a game and

you’re saying ‘this game is really easy to play so it must have been easy to

make’, but then when you come to actually make the game yourself you find out

how hard it is.

MH: Yes that was what I was worried about with our game, it was really hard to

make, but I reckon that it would be really, really easy to play.

Some pupils found the game making activity more difficult than other tasks they had

completed earlier in the year:

JB: It makes you think more than the plain work that everybody does … like

simple Microsoft work …This one makes you think really hard about what you’re

doing.

6 Papert coined this phrase to defend the challenging nature of computer-based constructionist
activities, arguing that, “fun and enjoying doesn’t mean ‘easy’” (Papert, 1999a).

Affective values of authoring computer games

 217

AW: It’s harder than the other work and it’s something we that haven’t done yet

or used so it’s a new skill that we’ve learned.

JG: I liked it, but I think it made you think too much.

This experience of game making being a difficult task, while also fun, is supported in

the literature (e.g. Kafai, 1996; Li, 2010). Papert’s view that children prefer challenging

activities as long as they are also interesting (Papert, 1998b), and personally and

culturally relevant (Papert, 2002) is corroborated by these findings.

Giving pupils challenging tasks which stretch them yields positive affective gains too. In

the current study, several pupils expressed pride in their achievements, because they

recognised that they had found some success with a difficult task:

CB: It wasn’t easy, but I thought it would be a lot harder, like impossible and it

wasn’t. Yeah, although the games are quite basic they are good.

MD: I knew we could make a game but I didn’t think we could make one as

sophisticated as we have made.

JB: It was hard in its own way to get it to, like, do things and it was a good

achievement.

Others seemed to value the challenge inherent in the activity, which arose out of

having to integrate different skills and simultaneously consider different aspects of the

game authoring process:

MD: I think when you’re making a game you have to tie in everything you’ve

learned, ‘cos you have to include graphics, you have to include what the

player’s going to think when they’re playing it and you have to sort of

communicate with the player and you have to think about ... you have to do a bit

of maths and stuff. It uses a lot of different skills.

These findings extend those of other studies using different software (Alice, Scratch)

which also document pupils’ sense of achievement in creating a computer game which

they acknowledge to be a difficult task (see Ferdig and Boyer, 2007; Werner et al.,

2009; Li, 2010; McInerney, 2010; Navarrete and Minnegerode, 2013).

Affective values of authoring computer games

 218

For some pupils, engaging in difficult tasks over an extended timescale fostered

perseverance and commitment, as well as other positive learning behaviours, such as

those promoted in guidance for developing effective learners (DfES, 2004) and the

personal, learning and thinking skills framework (QCA, 2007a):

MH: C. and I took great time deciding on our game ideas. We planned and

thought it through, and even when we thought we had a good story line, we

decided to re-think and make it more suitable for Year 6 pupils.

JB: Yeah we couldn’t get the horse to jump. We tried for, like, a whole lesson to

do that.

LW: My game was successful in that I achieved the basics of my game that I

was determined to do, although I did not completely finish and had many

problems that I could not fix in the time I had.

Even though some pupils experienced many problems, they did not give up but worked

hard to find solutions. Because the problems were directly linked to games, and

therefore authentic, there was a purpose in trying to overcome them, even if that meant

simplifying or modifying an idea:

TB: We’re considering, instead of [scrolling horizontally], [scrolling vertically]

and then having a finish at the top because it’s a lot easier to make, a lot, lot

easier and we’d be done probably by the end of this lesson maybe.

LW: We had trouble with our background and sprite sizing which slowed us

down. We got round this by making the background larger by going back into

[Fireworks] and making the channels larger and the actual cupboards smaller.

Then we exported the background to Game Maker 7 and placed in

backgrounds.

Developing learners’ perseverance is one of the positive outcomes of this project - and

this persistence and commitment to making their games is a consistent finding in

related research using different software (Kafai, 1996; Howland et al., 1997; Robertson

and Howells, 2008; Cheng, 2009; Li, 2010) and, it is suggested, develops in this

context because pupils have been given projects with sufficient duration to enable such

learning skills to grow (see Harel, 1991; Kafai, 1995).

Affective values of authoring computer games

 219

9.2.3 Interaction with the software

Another factor which contributed to some pupils’ engagement was the interaction with

the software itself and they described their use of Game Maker and the video tutorials

as fun:

CB: I had never used software like this before so it was a fun, new experience.

MH: I enjoyed using the Game Maker software as well as I had never used it

before and it was good fun to try it out.

The fact that the software was new to them seems also to be a contributory factor to

their enjoyment of it - not only did it give them a different experience, but it contributed

to their sense of competence when they were able to use their prior learning of other

software to help them manipulate new interfaces.

For some pupils, engagement with the software seems also to be due to the

imaginative purposes which it was used for. Because pupils were using the software as

an expressive medium to create a game they enjoyed using it. This contrasts with the

comments they made about working with spreadsheets, for example:

GW: [A game is] like a good end product … like I am interested in, rather than

like a spreadsheet.

MD: With a spreadsheet you’re sort of working to a ... you know exactly what ...

you make a spreadsheet because you’d have a goal in the first place, like

you’re making a spreadsheet ‘cos you want to solve a problem, whereas with a

game you’re making something just to entertain, so it’s completely open ended.

This ‘open-endedness’ was valued by some pupils and they associated it with being

given freedom, which they also valued. Open-ended tasks also added challenge:

MD: In Game Maker you have more freedom to challenge yourself, ‘cos if

you’re doing a database, you only need to do what the database is designed to

do, someone just tells you what they want it to do and you make it, whereas

with a game you can make a game as complex as you like.

Affective values of authoring computer games

 220

AW: In Flowol, all you have to do on there is just make a circuit which you can

sort out, which is just a circuit, it’s a loop back that you send around, but with

Game Maker you create that circuit, but you need to make a whole lot more to

actually make it work.

The relationship that is set up between the pupil and the software also seems to lead to

engagement, arising out of what Zorn refers to as a “continuous interaction of actorship

on the part of the designer and the technology as actant” (Zorn, 2009: 361). The

software was responsive and this gave pupils the feeling that they had some agency.

Making something work was rewarding. Moreover, these interactions led to

engagement because they took many forms - pupils worked on a variety of activities:

creating an animated splash screen, adding a high score table, creating animated

graphics, programming objects, experimenting with the actions and associated

parameters, and testing their games.

9.2.4 Creativity

Indeed, several pupils valued the creative aspect of the game-making task and

particularly enjoyed being given what they regarded as creative freedom:

AE: You can be quite creative ‘cos there’s loads of stuff you can do with Game

Maker. You can make any game.

KW: It gives you more independence and you get to choose what you’re going

to do and be more creative.

TB: And you can be more creative with this. You can do what ... yeah you have

your own choice and opinion on what to do, ‘cos with Flowol you have to do

what it asks you to do, otherwise it won’t work at all. You have options of

making what you like in Game Maker … And you can be so creative with it ...

it’s brilliant!

JBr: It expands your creativity ‘cos you need to think about things more, like

ideas and stuff, and you are working harder than you’d usually do, if you want to

get stuff done.

AC: I said earlier that you think that a game would be quite simple to make but

actually the creative mind behind it is quite vast.

Affective values of authoring computer games

 221

Although the games pupils made were quite derivative, they still felt as if they were

being expressive and original - in that their game was different to anyone else's in the

class, and a new mode of creative expression for them.

Some pupils valued the game authoring activity because it was a different activity for

them and they agreed that making a real product which others could play set this type

of work apart from other projects they had done in ICT and elsewhere in the curriculum.

In fact, having created a ‘proper’ product was valued because it increased the status of

their work in their own eyes:

MD: I like the intro screen … it’s really cool. I think it makes the game look really

good, makes us look professional.

They had made something that “can be shown, discussed, examined, probed and

admired” (Papert, 1993: 142) and they seemed to value this:

MH: You’re saying it’s like English, Maths and everything, but I dunno. It’s kind

of a completely different, like, topic for your brain as well, cos it’s not something

you do normally … Just everything about the topic was new to me.

CB: In, like, Year 7 and Year 8 and Year 9, before we did game-making, we did

stuff on spreadsheets several times, yeah we did similar sort of stuff but then

game-making was, like, completely nothing like we’d ever done.

SA: When I thought of ICT before the game-making topic I always thought of

spreadsheets and things like that.

This idea of difference is also conveyed by some pupils, who felt that the games they

created were individual and unique, and this echoes their comments about how they

like to be able to work as individuals and not as a whole class:

JB: Not everyone was doing exactly the same work. Well we were doing the

same, but different sometimes.

CB: Yeah, like if you had a class’s, like 30 pupils’ presentations they’d all be like

quite similar, but then if you had 30 people’s games they would all be

completely different.

Affective values of authoring computer games

 222

AC: I think Game Maker allows you more freedom because in our last topic

about the ‘Grease’ thing, it was sort of set, we had to do this, we had to do this,

we had to do this. There was a bit of freedom in the differences in prices and

blah, blah, whereas with Game Maker, everybody is doing something different,

there’s a totally different storyline for everyone.

These comments suggest that pupils value activities where they can express

themselves as individuals, in a creative task - so that the outcome is personally

meaningful to them, not just an individual response to a uniform task. In this way the

game-making task was perceived by some to give them more creative freedom. These

findings validate constructionist theory in its assertion that learners are more likely to

become intellectually engaged when they are working on personally meaningful

projects (Kafai and Resnick, 1996b: 2).

9.3 Preparation for work

Whilst a significant number of the pupils in this study referred to game making as ‘fun’,

almost one third (7/22) of pupils saw value in the game authoring activity because of its

relevance to the games industry and as a preparation for possible future careers:

SA: It was a good experience if we ever want to do something similar in later

life.

MD: Well I think it can be useful. Well I mean games are a very large market

aren’t they? There are so many games so to know about games is useful ‘cos it

could be a future thing … if you want to be a game authorer [sic].

TB: There’s such a wide industry in games at the moment, with all children

playing games all the time, that ... it’s quite useful to know how to make them

and how it works.

AW: It teaches you important skills that you need for programming and if you

wanted, it gives you an idea of what the job would be like, so yes it is important

to learn.

Affective values of authoring computer games

 223

AC: Well if you want to pursue IT as a career then you can always create

games and Game Maker is just like a leverage.

TB: And it’s not only [relevant] to game making as well, it can teach you about

sorts of programming for other things as well maybe, so it can be used for more

than just game making.

MH: Yeah I think it makes you realise that there’s more to a computing career

as well than just designing spreadsheets and stuff.

Although the game authoring activity had not been introduced to prepare pupils for the

world of work, it is certainly of value that some pupils saw a purpose in and an

application for their learning in terms of their futures. In the same vein, those who were

involved in the recent drive to replace ICT with Computing widely refer to the needs of

industry in their rationale (see Livingstone and Hope, 2011; Schmidt, 2011; Furber,

2012; Gove, 2012a). In this respect, the game authoring activity holds value since it

presaged later exhortations to use video games in schools to draw greater numbers of

young people into STEM and computer science (Livingstone and Hope, 2011: 82). It

also belies criticisms that “the way in which ICT is taught in schools is failing to inspire

young people about the creative potential of ICT and the range of IT-related careers

open to them” (Gove, 2012a: n. pag.).

9.4 Different relationship with technology

From the researcher’s perspective there is also value in authoring computer games in

so far as it sets up a different relationship between pupils and technology, as illustrated

in the following exchanges:

AC: Before we didn’t know how to make a game and now we have got some

idea of [how] a program ... will help us.

LW: When you play games now you see [it in a different way].

JD: You think about it how it’s created and that.

SA: Yeah ‘cos when you play a game you just take it for granted, really, as

something that just ...

MD: Yeah ... works.

Affective values of authoring computer games

 224

These comments are important because they show that such activities have the

potential to make learners reflect on their own relationship with technology (Zorn, 2009:

341). In creating a game, the relationship between pupils and technology changes from

being a consumer, to being a producer - and the educational, social and cultural

significance of this is reported widely in the literature (Papert, 1993; Howland et al.,

1997; Kafai, 2001; Turkle, 2003; Good and Robertson, 2004; Habgood, 2006; Kafai,

2006b; Pelletier, 2007; Hayes and Games, 2008; Robertson and Howells, 2008;

Williamson, 2009; Games, 2010; Harel Caperton, 2010; Robertson, 2012).

Although the practice of ‘designing’ systems (presentations, websites, information

systems, for example) was implicit in the programme of study for ICT in operation up

until 2012 (QCA, 2007b), for some, their identification as producers was more strongly

felt when making a computer game than in other units of work, and this may also

account for why they valued the activity:

MH: I just like the whole idea that we actually managed to make something that

people can play.

JG: Yeah, because at the end of it you can play your game and you think ‘Oh

I’ve made this’, when the other [project] was a bit like, ‘I’ve just made that’ and

you can’t really play it and make it do things ... with this you can.

Their enthusiasm for the games they created gives support to the constructionist idea

that pupils become more engaged in their learning when they create things which have

personal meaning for them.

What is also important here is that pupils developed ‘construction-oriented’ relations

with technology and came to understand that it is not only professional developers who

can have agency over technology (Papert, 1993). They learned that game authoring is

not something that others do - but something that they themselves can do, and this is

certainly of value in terms of “identity formation and the construction of the literate self”

(Jewitt, 2008: 46):

JB: Um, yeah, I feel [it’s] more of an achievement ‘cos we have our proper

finished, like, product ... it’s not just a piece of paper, it’s like more, and it’s ... I

feel really happy with it that we’ve managed to do something like that.

Affective values of authoring computer games

 225

MH: I thought it took professionals and professional software [to make a

computer game].

Creating a computer game also changes the way young people relate to technology in

that it gives them a context in which to learn ‘about and with technology’ (Kafai et al.,

1997: 122) and this makes them more aware of the possibilities and constraints of

technology. This conviction that children need to understand more about the

technologies that pervade their world is strongly articulated in constructionist literature

(see Papert, 1993) and has been reasserted recently (see Furber, 2012; Noss et al.,

2012) by those who argued for the return of computer science in schools. The key idea

here is that children should not just be passive consumers of opaque and mysterious

technology (Furber, 2012) with no understanding of how or why the systems they use

work (Noss et al., 2012). In making their games, some pupils in this study began to

build such an understanding:

SA: I didn’t even know you could make a game. I’ve never had any experience

of that ever.

CB: I will probably think about it when I play on games in the future. I’ll think,

like, ‘I wonder how hard it will be to make something like that’ or ‘I did

something like that’.

JB: I used to think computer games, why [did] they used to take so long to

come out and now I know it’s ‘cos every single room needs to be modified and,

like, every little bit in there needs to have, like, loads of complicated things just

to do that.

Relationships with technology also changed because in using Game Maker’s visual

programming environment, pupils experienced a direct form of interaction with the

computer (Cutts et al., 2011) and this is of value because it gave them a “[visceral]

understanding of what a computer is and how one can interact with it” (Cutts et al.,

2011: 137). Computer processes became somewhat demystified and pupils began to

see that computers do precisely what they are told to do and no more, and conversely,

have to be told precisely what to do in great detail. This was important learning.

Affective values of authoring computer games

 226

9.5 New identities

All pupils adopted new roles as ‘game makers’, the significance of which has been

explained above in terms of pupils’ relationships with technology. But some pupils also

developed new identities within the classroom. For example, three pupils (AE, MD, JBr)

found themselves to be relative ‘experts’ in making games and this new-found

expertise altered how other pupils viewed and responded to them. Their status in the

group is likely to have been strengthened, since expertise in this context was

recognised and valued by others in the class, who respected the boys’ domain

knowledge. These pupils, who were normally reticent in their contributions and

interactions with others, now felt able to take on a more prominent role in the

classroom. Two very able boys (AE, MD) in particular were approached frequently for

help and this is likely to have had a positive impact on their self-esteem. Less socially

confident boys like AE, MD and JBr were more able to speak to others because they

had a reason and requests to do so. This finding is consistent with the outcomes of

other studies using different software (see DEECD, 2010; Fowler and Cusack, 2011;

Passey, 2012), where teachers reported that students who were generally quiet in

class blossomed and adopted more prominent classroom roles when making computer

games.

Making a computer game contributed to a new sense of identity for those who

struggled with the activity too, in that it gave such pupils a sense of competence, a

sense of belonging to a community of practice in which they could operate, at least on

some level:

SA: I feel now I could talk to somebody who knew more about it, like J. or A. for

example.

The literature on situated learning (Lave and Wenger, 1991) and social learning in

communities of practice is relevant here (Wenger, 1999). The idea of ‘situatedness’ is

important to constructionism, in terms of promoting the development of learning

communities and collaboration within them, but also in the sense that what children

learn when engaged in constructionist activities is situated in ‘computational

microworlds’ (Harel and Papert, 1991b) i.e. the programming environments which are

used. The idea here is that working with computers enables pupils to “bring together in

their thinking mutually supportive internal microworlds” (Harel and Papert, 1991b: 27).

In terms of the current study, this means that pupils’ new identities as producers of

Affective values of authoring computer games

 227

computer games, and as learners, are situated in their interactions with the software,

as well as in the surrounding classroom.

9.5.1 New identities as learners

New identities were also formed because pupils were able to bring into the classroom

their out of school experiences with playing games and this may have given them a

sense that they had something to contribute, that they knew something about this

subject - and quite possibly more than their teacher. Thus a different relationship was

set up between them and their work, because the work was to make something they

had some knowledge about. All pupils in the current study had played computer games

and accordingly, had some personal identification with and some expertise to bring to

bear on the learning activity, which is perhaps less the case with other school-based IT

tasks (such as creating spreadsheets or using databases):

MH: I think it was good ‘cos people play games in their spare time but you don’t

go home and make spreadsheets ... well I don’t. It’s something that people can

relate to in everyday life as well, which is good.

Field notes for the pilot and main research record that some pupils (JBr, AEMD)

became increasingly confident and more vocal when they were making games

because they could express their interest and expertise in playing games at home, in

the classroom setting. Those who used games they played at home as references for

the games they made perhaps felt ‘on home ground’ (GS, JBLA):

GS: I got most of my ideas from Pokémon Ranger Shadows of Almia. I can’t

wait until I have finished my game because I know if I put enough effort into it, I

can make an equally good game as I do on RPG Maker [at home].

These findings illustrate the importance of harnessing and validating pupils’ out of

school learning as reported in the literature (e.g. Hague and Williamson, 2009; Madill

and Sanford, 2009; Grant, 2010; Beavis, 2013) and authoring computer games

emerges as an important context for this.

A different relationship was set up between them and their work also in the sense that

they had created something of cultural significance, which had meaning for them.

Some pupils particularly valued the fact that the outcome of their work was tangible,

playable, and relevant:

Affective values of authoring computer games

 228

JB: I feel like [it’s] more of an achievement, ‘cos we have our proper finished,

like, product ... it’s not just a piece of paper, it’s like more.

AC: If you write an essay then basically the end product is a grade and you get

your essay back, but with this you also get a grade but you get your game

completed.

MH: I just like the whole idea that we actually managed to make something that

people can play.

JG: Yeah, because at the end of it you can play your game and you think ‘Oh

I’ve made this’, when the other [work] … you can’t really play it and make it do

things.

These findings give support to other studies (Sanford and Madill, 2007a; Cheng, 2009;

Brennan, 2013a), where game making is similarly seen to validate young people’s

experience and their recreational lives.

9.6 Summary

In current UK debates about the ICT/Computing curriculum, there is a need to find a

suitable metric for assessing the value of computer-based activities, since they do not

all share equivalence (Stager, 2008). In terms of constructionist philosophy, activities

such as authoring a computer game, which promote ‘transformational’ use of

technology (ibid.) and which allow learners to encounter ‘powerful ideas’ (Papert,

1980b) are preferred.

This chapter has considered the value of authoring computer games from pupils’ and

the researcher’s perspectives, and suggests that there is merit in the activity, which

goes beyond the learning of curriculum content. This includes improved attitudes to

and enjoyment of learning, as well as issues of identity formation and changing

relationships with technology. The next chapter discusses the implications of the

findings in Chapters 5-9 and concludes this study.

Discussion and conclusions

 229

Chapter 10 Discussion and conclusions

10.1 Introduction

This study has explored the introduction of a unit of work in computer game authoring

as part of the formal UK ICT curriculum for Year 9 pupils. In so doing it seeks to

achieve an understanding of how authoring games using Game Maker supports the

learning of basic game design and programming concepts and practices, what

difficulties pupils encountered and whether the learning theory of constructionism

provides a suitable approach for such activities.

Principal drivers for the research are a recognition of the importance of giving pupils

opportunities to become producers as well as consumers of digital media (see Papert,

1993; Luckin et al., 2012; Nesta, 2012; Beckett, 2013; Sefton-Green, 2013) and the

need to develop accessible introductory schemes of work to implement aspects of the

Key Stage 3 programme of study (QCA, 2007b; DfE, 2013c).

The following section discusses the conclusions drawn from Chapters 5-9 and frames

them in terms of the research questions they refer to.

10.2 Making games – the process

Chapter 5 addressed the research question ‘What are pupils’ perceptions of the

process they followed during a constructionist designed game authoring activity?’ The

scheme of work had been organised following constructionist learning theory and

pupils’ responses to this approach provide insights into the practicalities of this mode of

learning. Whilst other studies cited in the literature review draw on constructionism as

their rationale for selecting game authoring as a context for learning (e.g. Baytak and

Land, 2010; Vos et al., 2011; Denner et al., 2012), this study considers the

constructionist process they followed, an area less focused on elsewhere.

The following sections consider the findings from Chapter 5 in light of the 8 big ideas

outlined in Chapter 3, which constitute the theoretical framework of this research.

Discussion and conclusions

 230

10.2.1 Learning by doing – big idea no.1

Whilst other studies promote learning by doing in the context of making computer

games, they also acknowledge problems with this approach (e.g. DEECD, 2010;

Baytak and Land, 2011; Doran et al., 2012; Bermingham, 2013; Ke, 2014). The current

study extends these findings by offering useful insights into some of the drawbacks of

this way of working. In particular, it reports that attempts to deliver elements of the unit

of work in a semi-structured format were resisted by pupils, who preferred to work in an

iterative, problem-driven way. Once underway, they sidelined planning tasks and were

reluctant to follow teacher-led interventions. They wanted to make their games and ‘do

the learning’ in Game Maker. This gives a clear indication that pupils enjoyed the

constructionist imperative of ‘learning by doing’ (Papert, 1999a). However, in practice,

this enthusiasm for active learning meant that important stages in the design process

were avoided or not fully completed, which led to problems with the later

implementation of some games.

Secondly, although constructionism promotes exploratory learning, where ‘tinkering’

and ‘bricolage’ are validated as alternative ways of working (Papert, 1980b; Turkle and

Papert, 1990), there was a mixed response to this approach from the pupils in this

study: some favoured this approach, while others found it less supportive (CB, KW).

Some pupils (AEMD) were ‘planners’ and took a methodical approach to their work,

others (SARC) were ‘bricoleurs’, less structured in their approach, and it is of

significance that their games were less successful. Although pupils claimed to prefer

the freedom of exploratory learning, sometimes it led to frustration and inefficient

working practices.

Thirdly, part of the process of ‘learning by doing’ was led by the interaction between

pupils and the software itself - a ‘create by reacting’ response (Zorn, 2009; Victor,

2012). Whilst pupils expressed a preference for learning by interacting with the game

under construction, as well as reacting to the components in the software, in practice,

they did so only to a limited extent. Some pupils did not actively explore the software or

appear to learn much from it. Neither did this ‘create by reacting’ process bring them

into contact with explicit programming concepts which may be required in a formal

introduction to programming. They needed teacher intervention in addition. This finding

adds to our understanding of computing education in that, although Zorn and Victor

champion the affordances of software in the learning process, the current study notes

Discussion and conclusions

 231

that for some pupils this ‘create by reacting’ response was limited and suggests that

pupils need more guidance to use the software in this way.

10.2.2 Technology focused tasks – big idea no. 2

Constructionist theory promotes the use of technology to generate meaningful products

which have cultural value to pupils and asserts that more effective learning is likely to

occur when this is the case (Kafai and Resnick, 1996b). The key idea is that pupils

should be producers as well as consumers of digital media. Whilst much of the

literature cited in Chapter 2 supports this notion, in practice there were some problems,

although less is written about the difficulties which arise in such projects.

The presence of the computer and the enthusiasm for hands-on learning meant that

some pupils did not make use of the range of resources available to them. Accordingly,

they did not learn some useful game design and programming concepts which would

have made their games more successful or would have enabled them to avoid

problems or correct errors more easily. Whilst pupils found the freedom of the

constructionist approach motivating, it was not an efficient way to learn how to use the

software for all pupils because some did not make use of the supporting resources

available or apply what they had learned in the video tutorials to create their own

games. This finding supports related work (e.g. Robertson and Howells, 2008), which

recommends a balance between giving children time to explore and work

independently with the software on their own terms, and direct, interactive teaching to

ensure that essential skills and features are introduced in a timely fashion.

Although some preferred using the software itself to learn how to make a game, the

version used in the research (Game Maker 7) lacked tutorials within the software and

provided little contextual support. Moreover, its graphical interface does not foreground

the learning of basic programming concepts explicitly. Pupils learned about ‘objects’,

‘events’ and ‘actions’, encountered programming terms or concepts within the software

(variable, parent, persistent) but there was little explanation of how these relate to

programming, either in the software or in the teaching resources available for it, and

this suggests a need to supplement exploratory approaches with guided interventions.

10.2.3 Hard fun – big idea no. 3

Whilst pupils agreed that the game making project was fun, they also acknowledged

that it was more difficult than previous units of work. Yet in the face of problems they

displayed perseverance and determination; if they could not solve their problems

Discussion and conclusions

 232

outright, they learned to modify or simplify their ideas. They felt a real sense of

achievement because they recognised that they had found some success with a

difficult task. This validates Papert’s claim that pupils enjoy work that challenges them.

10.2.4 Learning to learn – big idea no. 4

The game authoring activity gave pupils some opportunity to ‘learn how to learn’, a

core feature of constructionist learning theory (Papert, 1999a). Making a game showed

them that learning in this context is a process of ‘cultivation’ (Papert, 1993: 104), which

takes place over time, where errors are inevitable and important sources for learning,

where ‘tinkering’, making refinements and debugging are common practices. It also

showed them that they can learn in different ways (from each other, by doing, by trial

and error, by reusing others’ code and ideas, by using a range of resources and

teaching material, by using the software itself, by researching other games). Whilst

similar findings are shared by other studies (e.g. Baytak, 2009), the current research

extends those findings to the secondary phase.

In the interview data reported in Chapter 5 pupils expressed a preference for materials

and working practices which gave them some freedom and control over their learning

and which did not rely on teacher input, because when they were able to work

independently it gave them a greater sense of self-efficacy (see section 5.3.2). They

valued the fact that they had been given choice about what type of game they made,

although this choice created practical problems in terms of resource provision and the

level and breadth of teacher expertise required. They enjoyed working in pairs,

because they could solve problems together and learn from each other. Having a

partner provided a source of feedback and reduced their reliance on the teacher, which

they valued.

However, although they enjoyed directing their own working practices and being

independent, they did not always balance the requirements of the project - some pupils

spent more time on the aesthetics of their game than programming it and this has

implications for the pedagogy of game authoring, if it is to be used as a context for

learning about programming concepts. This finding is supported by other studies cited

in Chapter 2 (e.g. Baytak and Land, 2011b).

A key finding of the research is that pupils prefer ‘just in time’ support - that is,

resources which they can access at the point of need, as they create their games.

Discussion and conclusions

 233

Pupils’ preference for ‘just in time’ learning (Riel, 1998) is consonant with

constructionist philosophy, which asserts that children do best by finding for

themselves the specific knowledge they need - indeed “the kind of knowledge children

most need is the knowledge that will help them get more knowledge” (Papert, 1993:

139). But for the children in this study, that was not a straightforward process. Although

they liked being given the freedom to choose their own project tasks and expressed a

preference for being able to work independently, in order to do that effectively they

needed to i) know how to and ii) be prepared to find the particular information they

needed for their individual purposes. In fact, most pupils did not make good use of the

resources made available and were particularly reluctant to use printed learning

material. Although they were more positive about the video tutorials, there was a

feeling that these were limited in the support they gave and there was a frustration with

being ‘tied’ by these. Pupils preferred to use the teacher as a troubleshooter, as and

when needed, and their peers as other forms of ‘just in time’ support.

When pupils have higher levels of control over their learning and are working

independently, at their own pace and from different starting points, and where they are

pursuing open-ended tasks, as was the case in the current research, linear patterns of

delivery and whole class teaching are less effective and make access to ‘just in time

learning’ resources important. However, providing access to quality, comprehensive,

‘just in time’ resources aimed at secondary level is a challenge, and providing

individualised teaching material significantly so (Fiege, 2011; Herrig, 2013). In the

current study, it was difficult for pupils to locate ‘just in time’ learning resources

matched to their level of understanding and preferred formats. An ideal resource would

be organised around the core game functionalities required by novice game makers of

this age and the programming constructs required to achieve these, and provide visual

solutions to and explanations of frequently occurring generic problems or common

misunderstandings. Additionally, in open-ended projects of this sort, pupils need to be

encouraged to find solutions to problems independently - by accessing a range of

physical and online resources, and making greater use of forums or collaborative tools

and social media for exchanging their own solutions within the classroom. Whilst all

pupils worked independently to some degree, some relied on support from partners,

peers and the teacher and did not seek out solutions from other sources, particularly

eschewing textual materials. Developing more fully-featured collaborative learning

environments, which fuse physical and online resources in a ‘sandbox’ arena (see for

example Frydenberg, 2013) may offer a more enabling approach.

Discussion and conclusions

 234

10.2.5 Taking time – big idea no. 5

Constructionism asserts the importance of giving pupils time to learn (Papert, 1991b).

While the pupils in this research valued being able to work on an extended project,

most games were not completed in the 16 hours available. This is an important

consideration for the new Computing curriculum (DfE, 2013c), which covers digital

literacy, information technology and computer science (including programming).

Extended activities such as game making need to be tightly focused if they are to fit

alongside new curriculum content and within the 36 hours per year allocated to the

subject at Key Stage 3. In this respect it is important to consider what can realistically

be achieved, since it is difficult to complete a fully featured game in the time available,

if all stages in the design process are followed.

The extended time allocation was an important feature of the design of the activity,

since on a practical level it takes time to learn how to program well enough to create a

complex digital artefact, but also because, following constructionist theory, it gave

pupils the “time to think, …to get a new idea and try it and drop it or persist, time to talk,

to see other people's work and their reaction to yours” (Papert, 1991b: 4). The

extended time scale enabled pupils to develop commitment and persistence for

learning, and this is identified in the literature as a significant positive outcome of

similar projects (see for example Kafai, 1996; Robertson and Howells, 2008; Harel

Caperton, 2010). It also gave them experience in dealing with time constraints and

modifying expectations, an important part of learning to learn (Kafai, 1996). Yet in

terms of the unfinished outcomes achieved by the pupils in this study, the

constructionist model was not efficient - and this finding gives support to previous

studies which observe that the emergent practices encouraged by constructionist

approaches may be ineffective and projects may have a lower probability of success

than with more traditional didactic approaches (Hay and Barab, 2001; Ackermann,

2004; Kirschner et al., 2006). It may be that constructionist routes are unsuitable for

current time allocations at Key Stage 3.

As a consequence of this, the current research identifies the need to give pupils time to

learn how to use and understand the capabilities of the software before they create

their own game and the importance of taking time to plan the game interactions before

creating the game itself. But in these areas there needs to be a balance between

exploratory approaches and more guided teacher support. Pupils need to be given

regular project milestones to help them manage their work over time; task requirements

Discussion and conclusions

 235

need to be made very clear and aspects of game authoring which are not core to the

learning focus of the scheme of work need to be time limited - so for example, graphics

and game narratives need either to be provided ready-made, or much more strongly

scaffolded, so that more time is made available for the programming of the game and

the understanding of programming concepts. The need to more tightly structure game

authoring tasks is also identified in the literature (e.g. DEECD, 2010; Doran et al.,

2012; Smith and Sullivan, 2012).

10.2.6 Freedom to get things wrong – big idea no. 6

Whilst constructionism asserts the importance of giving children the freedom to get

things wrong (as part of the learning process), they need to learn to analyse their

thinking, and develop strategies for ‘debugging’ the errors they make (Papert, 1999a).

The findings of this study support that position. Pupils were not adept at analysing their

thinking or the problems which they encountered; neither did most of them take a

systematic or strategic approach to their work. Some did not view errors as “a source of

information” (Papert, 1993: 184) and needed teacher guidance to develop more

strategic approaches to identifying and solving them rather than relying on ‘trial and

error’, and this finding is echoed in the literature relating to programming education

reviewed in section 2.9 (e.g. Perkins et al., 1986). Indeed, systematic approaches,

such as planning, learning to ‘read’ code and identifying errors, were initially resisted by

pupils.

Nevertheless, the game authoring activity gave pupils some awareness of the need for

systematic thinking and a real context in which to exercise it. They came to realise the

need to take a more strategic approach to their work when they acknowledged that

they had not made good use of their plans, that they did not have a clear idea of what

they wanted their game to be like, that they had not managed to solve many of their

problems. These issues stem from poor program design and lack of checking their

code, areas identified in the literature (see section 2.9) as major sources of difficulty for

novice programmers which need to be the focus of programming instruction, as much

as the learning of language features (Robins et al., 2003).

10.2.7 Teacher as co-learner – big idea no. 7

Papert’s vision for constructionist learning environments incorporated the idea that

teachers should be co-learners, role models of what it is to be a good learner, showing

pupils that it takes time to learn, that errors are part of the process, that learning is

sometimes difficult and that we can use a range of strategies to help us. This pragmatic

Discussion and conclusions

 236

approach was necessary in the 1980s when the use of computers in education was in

its infancy and introducing programming activities was a new venture for many

teachers. It is also relevant to the situation ICT teachers find themselves in today as

they prepare to deliver the new Computing curriculum.

Yet while the idea of the teacher as co-learner may be compelling and is to some

degree inevitable when new subjects are introduced, in practice it does impact on what

is learned. In terms of the current research, whilst the teacher’s knowledge of computer

game authoring was more developed than the pupils’ (intermediate as opposed to

beginner), it is certainly the case that had it been more advanced still, she would have

been able to troubleshoot more effectively.

In other respects, pupils in this study enjoyed the fact that they had more control over

their own learning and could work with others. Chapter 5 recorded that some pupils

preferred working practices which did not rely on teacher input and favoured learning

by doing and being guided by their work as it proceeded. In other words, they enjoyed

the constructionist vision of a more distributed and negotiated instruction (Kafai, 2006a)

which allowed them to work collaboratively to solve authentic problems.

10.2.8 Using computers to learn – big idea no. 8

Constructionism asserts the importance of pupils learning to use computers and using

computers to learn. This was achieved in the sense that pupils i) used software and ii)

created software. One of the factors contributing to their enjoyment of the unit of work

was the interaction with the software itself. They enjoyed using Game Maker because

they were using new software as an expressive medium and perceived that it enabled

them to be creative, which they valued. The novelty of the software may also have

contributed to their enjoyment, in that it developed their sense of competence when

they were able to make use of their prior knowledge to help them manipulate new

software.

In using a range of software pupils became more practised at using multiple programs

simultaneously. They also became accustomed to alternating between areas of Game

Maker’s integrated development environment (the programming view, the game view,

the image editor). Using an IDE was a new experience and broadened their

perceptions of what software is and how it functions. As reported in Chapter 2, in

creating games with new software tools, young people learn to view games as

designed systems and become more systems literate - an important 21st century skill

Discussion and conclusions

 237

(Zimmerman, 2009). They also develop practical skills involved in digital media

production (graphics, programming) and are thus more able to participate in and

contribute to media culture (Pelletier, 2005). Such activities stand in marked contrast to

those promoted in the previous programme of study (DfES, 2002a) and go some way

to dispelling criticisms of the erstwhile ICT curriculum and its reported over-reliance on

the use of office productivity software (see Livingstone and Hope, 2011; Furber, 2012).

Another aspect which contributed to their enjoyment of the activity was that they

developed ‘construction-oriented’ relations with technology (Zorn, 2009; Schelhowe,

2010). They became creators, not just consumers of software:

CB: When I play on games in the future, I’ll think, ‘I did something like that’.

SA: I didn’t even know you could make a game. I’ve never had any experience

of that, ever.

LW: When you play games now you see like …

JC: You see it in a different way.

JD: You think about how it’s created and that.

This new relationship with technology arises out of the participatory culture and the

democratisation of creativity which new technologies have enabled and illustrates the

importance of giving young people the opportunity to be producers of digital media, an

argument widely supported in the literature (Kafai, 1995; Robertson and Good, 2004;

Habgood, 2006; Buckingham and Burn, 2007a; Salen, 2007; Hague and Williamson,

2009; Harel Caperton, 2010; Li, 2010).

Finally, some pupils valued the game authoring activity in terms of its relevance to the

games industry and saw value in the project as a preparation for possible future

careers. This finding is important in light of concerns that the needs of industry were

not well served by the previous ICT curriculum, which, according to some

commentators, focused solely on basic digital literacy and office skills (see Livingstone

and Hope, 2011; Furber, 2012).

This section has discussed the game making process in terms of the eight big ideas of

constructionism, which set out a rationale for what Papert considered to be the ‘proper’

use of computers in education. That is, computers should be used as a means to

Discussion and conclusions

 238

access powerful ideas and complete challenging projects, pertinent to the digital world

we live in, and to create personally meaningful artefacts. In the course of this

purposeful, practical, computer-based activity pupils encounter new ways of learning

and working, which arise out of being given time to appropriate their work (cognitively

and affectively), having the freedom to explore ideas in their own preferred styles and

recognising that getting things wrong is part of the learning process. This new way of

working generates new ways of thinking and new relationships with technology. This

section has illustrated how pupils’ perceptions of the process they followed largely

validate the constructionist position.

10.3 Making games – the outcomes

Chapter 6 addressed the research question ‘What are pupils’ perceptions of the

outcomes of the game authoring activity?’ It records that pupils found game making a

motivating context for learning in a range of areas although they grappled with the

challenges of creating satisfying outcomes in terms of graphics and playability and

experienced difficulties with creating a convincing game narrative.

10.3.1 Difficulties with game design

The scheme of work followed a generic systems development life cycle, and as part of

the design stage, pupils created a design document, a storyboard, and planned the

game interactions. Some pupils expressed impatience with these tasks and did not fully

complete them because they wanted to begin making their games straight away in the

software. This made the subsequent implementation of their games more difficult. The

findings of this study suggest that conceptualisation is important to successful

implementation, since those who planned their games more thoroughly at the start, in

terms of the storyline, visual appearance and game interactions, made better games, in

so far as the graphics were more effectively presented and the gameplay was more

functional and coherent. Although constructionism promotes epistemological pluralism

(Turkle and Papert, 1990), in which ‘bottom up’ approaches are valued, the findings of

the current study suggest that without planning, both game design and programming

are compromised.

The analysis of the planning documents identified several areas where pupils needed

further support. For example, pupils were asked to outline the visual appearance of

their game in a storyboard, yet significant omissions in graphical information were

made in these. Player characters and other game objects were not always clearly

Discussion and conclusions

 239

represented and the storyboards did not give a strong visual sense of what the games

should look like.

Significant details, such as the use of sound and game controls were also omitted in

some of the design documents; game play, level progression and win/lose states were

not described by all. These omissions indicate that pupils found it difficult to visualise

these aspects in the detail required, because they were not accustomed to designing

digital media, or because computer-based activities were preferred to paper-based

planning tasks. Future implementations would more strongly model planning and

design activities, and intersperse these with practical work, so that a stronger

connection is made between the design documents and the games themselves.

Those pupils who did not fully complete the planning documents and those who had

departed from them did not have a clear idea of what they wanted to achieve and found

their games more difficult to implement. In terms of constructionist learning theory this

illustrates that ‘bottom up’ modes of working are not always enabling; while Papert

suggests that those who are guided by their work as it proceeds can do as well as

those who follow a pre-established plan (Papert, 1991b: 6), the findings of this study do

not support this view. Whilst some pupils preferred learning by doing, and resisted

planning, this approach was not entirely successful in terms of the outcomes they

produced.

These findings offer insights into the areas of game design which pupils found difficult

to manage and so inform future implementations of game authoring curricula.

10.3.2 Narrative

Although pupils valued being able to choose the genre and storyline for their own

game, in practice this created difficulties. Their initial ideas had to be simplified since

they did not have the curriculum time or the level of programming skill required to

complete the sophisticated games they at first conceived. Initial ideas were not always

clearly articulated or adhered to and this created problems at the implementation stage.

Pupils who did not develop a clear narrative for their games found it more difficult to

visualise and implement the game play and interactions.

Pupils had difficulty with creating a coherent, believable narrative, which was suitable

for the target audience and found generating specific details, such as the rewards,

obstacles or enemies for their game, or how the game should progress from one level

Discussion and conclusions

 240

to the next, challenging. It seems that the construction of a game narrative was a

complex task for pupils and added an unexpected layer of difficulty to the activity, a

finding not reported elsewhere. This contrasts with studies cited in Chapter 2 which

suggest that making computer games develops pupils’ narrative abilities (see

Robertson and Good, 2004, 2005, 2006; Burn, 2007).

Since the focus of game authoring in the ICT curriculum is not on narrative

development, the findings of this research suggest that for future implementations of

game authoring schemes of work, pupils should develop prototype games where the

emphasis is on developing game mechanics and object interactions (and the

programming required to achieve that), rather than on the storyline or graphics. Other

solutions are to use generic game formats, such as Break Out or Pacman or to provide

pupils with partially complete, ready-made games or templates which they can then

modify and personalise. Alternatively, to reduce the need to devise a narrative from

scratch, game narrative outlines could be given, based on a social/environmental

issue, a model promoted by ‘serious games’ organisations (Apps for Good, 2013;

Games for Change, 2013), and online game-making courses (e.g. Macklin, 2010), or

curriculum subjects could be used to frame pupils’ game ideas, which is the context

given for creating games in several studies cited in Chapter 2 (for example, Harel,

1991; Kafai, 1995; Baytak and Land, 2011b) and in current examination specifications

(OCR, 2009a; AQA, 2012b).

10.3.3 Graphics

One of the main outcomes of the game authoring activity was that pupils learned to

create and edit graphics using Fireworks (Macromedia, 2004) and developed skills and

understanding in concepts important in this area. However, findings suggest that

although it may be important to give pupils an opportunity to create their own game

graphics because they enjoyed doing so, in practice it was a time-consuming task.

Pupils used a mix of graphics sourced from the internet and those they created

themselves, with varying levels of success (see Appendix 1). Pupils acknowledged that

they spent too much time on the graphics, which meant that there was less time to

program the game action, a finding also widely reported in the literature (see Kafai et

al., 1997; Shackleton et al., 1997; Lin et al., 2005; Parsons and Haden, 2007; Willett,

2007; Northcott and Miliszewska, 2008; Baytak et al., 2011; Macklin and Sharp, 2012).

The professional graphics software used had a steep learning curve, and an unfamiliar

interface, so even basic tasks such as resizing graphics or creating transparent

Discussion and conclusions

 241

backgrounds were new areas of learning for pupils. This has implications for schemes

of work. Since the creation of graphics is an important part of creating digital media,

this area of learning needs to be incorporated into the new Computing curriculum, so

that skills are systematically developed across the Key Stage. This finding gives

support to related research into the practicalities of digital media production (see

Willett, 2007), which similarly notes that graphics software requires significant formal

instruction in order to become a creative tool for young people. At the very least, pupils

need more practise in using basic drawing tools and developing image editing skills in

each of Years 7, 8 and 9, supplemented by targeted lessons on how to create the sorts

of graphics used in two dimensional computer games and other screen-based media -

titles, interaction buttons, backgrounds, and sprites (static and animated). In the

absence of this, schemes of work should direct pupils to make use of Game Maker’s

image editing tool to create ‘pixel art’ graphics or use ready-made sprites, or

‘placeholder’ sprites, to reduce the complexity and duration of graphics tasks.

10.3.4 Usability

Authoring a game gave pupils an authentic reason to design for usability. Usability in

the previous Key Stage 3 ICT programme of study (QCA, 2007b) referred to meeting

the needs of an audience and ensuring fitness for purpose. Usability in the context of

creating a computer game was extended to notions of functionality and player

experience. Pupils showed an awareness of the need to use conventional game

controls and to provide user options, such as game exit/restart. They learned about

other aspects of usability, such as the importance of title screens, game instructions,

and game navigation to enhance player experience. These aspects of usability are

identified in the literature as important areas of design which need to be considered

when evaluating the learning opportunities afforded by computer game authoring and

when analysing the games pupils make (see Reynolds et al., 2010; Denner et al.,

2012; Wilson et al., 2012).

10.3.5 Interactivity

Envisioning and creating interactivity was a new area of learning for pupils and it was

this distinctive quality of computer games which set the activity apart from other ICT

projects. Previous experience of designing interactivity consisted largely of creating

clickable buttons (e.g. for web site navigation). In the game-making activity pupils’

involvement with interactivity became deeper since they had to think about how to

transpose their game narratives into dynamic representations and deal with the

complexity of creating multiple interactions between game objects. Pupils found this

Discussion and conclusions

 242

challenging. Its difficulty partly arises because creating interactivity usually requires

some form of programming. The following section summarises the programming

concepts which pupils encountered as they endeavoured to build the interactivity

needed to make a playable game.

10.4 Learning to program

Chapter 8 addressed the research question ‘What difficulties do pupils have with game

programming?’ and records that although Game Maker was designed to enable users

to create computer games without the need to learn a ‘difficult’ textual programming

language, the children in this study still found some aspects challenging. Programming

errors most frequently occurred due to a lack of precise, logical thinking and a lack of

testing/checking. Pupils were not used to thinking algorithmically, decomposing

problems, or reading and evaluating their code.

10.4.1 Program design

Before they began to make their games, pupils were asked to plan the game

interactions by listing objects and specifying the events and actions assigned to them.

Some pupils did not complete this task effectively because they were unaccustomed to

decomposing programs into their constituent parts, and were not practised in applying

precise, logical, systematic thinking when planning the interactions in their game. They

were also reluctant to spend time on planning tasks because they wanted to begin

making their games. Yet the findings of this study indicate that without planning, both

game design and programming are compromised. This finding is supported in the

literature, which identifies program design and planning as a key component of learning

to program (see section 2.9).

Their initial plans were characterised by incompleteness (not all objects in the game

were listed, not all events or resulting actions were visualised or described). Pupils

sometimes conflated events and actions, did not break down object behaviour into

separate events, or assigned multiple actions to one event, instead of to separate,

distinct events. This ‘merging’ of separate processes is found to be a common source

of error in novice programmers (see Spohrer and Soloway, 1989) according to the

literature (see section 2.9).

Later in the planning process, pupils began to separate events and actions, and

introduced a wider range of inputs into their plans (for example, they included non-user

inputs such as conditional statements, as well as user-controlled inputs, such as a key

Discussion and conclusions

 243

press). This suggests that they were beginning to ‘think computationally’, and that an

understanding of the need for decomposition and precision in program design was

beginning to emerge.

However, most pupils appear to need support with being specific and precise at the

planning stage, in listing the objects, events and actions themselves and in using the

correct terminology to refer to them. This study suggests that more emphasis needs to

be placed on program design, so that pupils effectively plan the game interactions,

before they build their game. This aspect of learning does not receive much attention in

the studies cited in the literature review (but see Doran et al., 2012), although some

research acknowledges children’s reluctance to engage in or make use of planning

work and their preference for focusing on aspects which give immediate feedback and

satisfaction, such as graphics and animation (see Howland et al., 2013).

10.4.2 Learning programming concepts

Chapter 7 addressed the research question ‘How does game authoring using Game

Maker support the learning of basic programming concepts and practices?’ and

showed that using the software introduced pupils to several basic programming

concepts and gave them an understanding of the precision and detail required in

constructing game programs.

Chapter 7 records that Game Maker gives good support for the understanding of event-

driven programming, since users have to select events to initiate object inter(actions).

Whilst pupils were used to the idea that the keyboard and mouse are input devices, in

making a game program they learned that inputs can be controlled by non-user events,

such as collisions, conditions and other game states. Some problems occurred with the

use of events because some pupils did not understand the domain specific meaning of

‘event’ and sometimes confused events with actions, chose the wrong event,

duplicated events in more than one object, or used conflicting events.

Using Game Maker also introduced pupils to the concept of object-oriented

programming - they learned that a game is made up of objects, which are programmed

entities. However, while they found it straightforward to view the player character and

other game resources as objects, some found it more difficult to understand that

interface controls, such as ‘start’ buttons, were also programmable objects. Some

pupils did not initially understand that all game components are separate entities and

that game objects should not be drawn as part of the background or that the visual

Discussion and conclusions

 244

appearance of the game (sprites, backgrounds) is separate from its underlying

functionality.

All pupils used actions in their games and in so doing gained practice in sequencing

instructions. Using actions also taught pupils that mathematical concepts (e.g.

coordinates, negative and positive number, angles, probability) are important for game

programming, since they are often required to set parameters and arguments for them.

Errors sometimes occurred when pupils duplicated or used conflicting or incomplete

actions, or had difficulty in setting the correct parameters or arguments to achieve

required behaviours.

Pupils also learned about the programming concepts of selection and iteration. Six

pairs used conditional statements and some form of ‘loop’ construct successfully in

their games. However, others found these constructs difficult to implement, suggesting

that they need to be formally taught and that aspects of games which make use of

these constructs need to be clearly modelled if they are to be successfully used by all.

All pupils used variables (for example, ‘score’ and ‘speed’) but since many of these are

inbuilt and therefore ‘hidden’, pupils may have used them without understanding. Most

pupils did not use the term ‘variable’ to refer to these features and only one pair

created a variable after following a tutorial. These findings suggest that the concept of

variables and the role they play in computer games needs to be explicitly taught when

using Game Maker.

The findings in Chapter 7 suggest that using Game Maker’s drag and drop environment

to introduce basic programming concepts such as conditionals, loops and variables, is

only partially successful. Pupils are unlikely to learn these concepts without direct

instruction or modelling and without the appropriate programming terms being

emphasised. Project briefs need to specify key programming concepts required for a

game. For example: a score must be set to introduce the use of variables; a score must

be tested to illustrate the use of a conditional statement; an action must be repeated to

show the application of a loop in a game program, and so on. These constructs need

to be clearly demonstrated in Game Maker before pupils can implement them.

The need for direct instruction is significant. The theory of constructionism, which

underpins this study, suggests that ‘learning by doing’, constructing one’s own

understanding by constructing a computational artefact, and exploratory learning are

Discussion and conclusions

 245

valid ways of working. However the findings in this study suggest that such approaches

may not be appropriate for learning programming concepts and this idea is supported

in several studies cited in Chapter 2 which also suggest that some programming

concepts need to be formally introduced if they are to be used effectively (see Kelleher

and Pausch, 2007; Maloney et al., 2008; Kuruvada et al., 2010b; Schelhowe, 2010;

Denner et al., 2012). The findings of the current research also support research which

makes a similar claim for other programming environments (see Ben-Ari, 2001; Beynon

and Roe, 2004; Beynon and Harfield, 2010; Meerbaum-Salant et al., 2011), and which

suggests that constructionist approaches are inefficient when it comes to learning

about programming concepts and are not well suited to the early stages of learning to

program (Guzdial, 2009). While some studies support the idea that bricolage is a valid

way to learn programming concepts for some learners (McDougall and Boyle, 2004;

Stiller, 2009), the findings of the current research suggest that this is not likely to be an

effective way to maximize the learning of core programming concepts for the majority

of pupils. This contrasts with the findings of earlier research of children making games

and learning programming in Logo (see Harel, 1991; Kafai, 1995).

10.4.3 The language of programming

In their initial planning documents, most pupils did not appropriate the language of

Game Maker, or the terms they had come across in the video tutorials, which made

their plans less supportive to them later in the implementation phase. Some pupils

misinterpreted the context specific meaning of words like ‘event’, ‘action’ and ‘room’.

For example, they understood the word ‘event’ to mean ‘something which happens’ in

the narrative of the game, rather than as an input. This misunderstanding of natural

language terms in programming contexts is identified in the literature as a common

source of error in novice programmers (du Boulay, 1986; Pea, 1986). However, 4/12

pairs used correct terminology in their plans; these pupils also produced the most

complete games.

These findings underline the importance of using correct terminology to refer to

programming concepts when using visual languages such as Game Maker, especially

where those terms are hidden by the software. For example, Game Maker’s step

events or alarm events hide the program iterations/loops which they generate;

test/check actions hide that they are conditional statements; common variables are

score, room width/height, x/y position, speed and these are set by default for all objects

- but the word ‘variable’ is not used to refer to them. These terms need to be drawn out

by the teacher and emphasised in learning resources.

Discussion and conclusions

 246

Even though some programming terms are not made explicit in Game Maker, making a

computer game introduced pupils to some aspects of the language of game design

(collision, sprite, room, challenge, goal), programming (objects, events, variables) and

also more abstract words to describe states, behaviours and interactions (solid,

visible). Some pupils enjoyed using this domain-specific language and became

increasingly fluent in it. New words gave them access to new concepts and pupils

began to use these words as their understanding of computational concepts emerged,

such as one pair who confidently discussed their use of variables. This exposure to the

discourse of game design enhanced their digital, media and systems literacies,

identified in the literature as important 21st century skills (see Games, 2008b;

Zimmerman, 2009; Harel Caperton, 2010).

However, not all pupils found this ‘new language’ easy to embrace. For some the

specialised language was a barrier and they avoided using actions whose referents

they did not understand, for example, and did not make use of error message text or

action definition text to further their learning.

This suggests that the ‘language of programming’ needs to be made more explicit in

schemes of work using Game Maker. Key words in programming need to be brought

into use early on. Pupils should be encouraged to use technical terms in their design

documents and throughout. Teachers need to articulate the programming knowledge

that pupils have acquired, almost without knowing it (Good, 2011), by drawing attention

to the language of Game Maker’s event selector and action icons, particularly the core

programming constructs of conditions, variables and loops. To do so gives pupils an

insight into some of the building blocks of computer programs and key areas of game

design, and demystifies the language used. As pupils begin to use the vocabulary and

language of programming, so they begin to think computationally (Grover, 2011) and

realise that use of precise language is important for learning to program (Fletcher and

Lu, 2009; National Research Council, 2009).

10.4.4 Code reading/program comprehension

Whilst Game Maker provides a concrete, visual representation of programming

constructs, the findings of this study suggest that some additional theoretical input is

necessary to ensure that pupils have understood the underlying concepts. This can be

achieved by encouraging pupils to read the textual information which corresponds to

the graphical code they produce and to annotate the programming constructs they use.

In so doing, pupils practise using programming terms and interpreting the pseudocode

Discussion and conclusions

 247

equivalent to the visual action icons they select. Pupils need also to be encouraged to

add comments to their code to articulate their understanding of it. These practices

encourage them to develop/check the logic of their games and take them one step

closer to expressing code in a textual format. Such recommendations are missing from

the literature cited in Chapter 2 surrounding the use of Game Maker (e.g. Baytak and

Land 2010; Doran et al., 2012), none of which considers the use of Game Maker’s

textual object information or code commenting as part of programming pedagogy.

To support the development of their own games, whilst emphasising programming

concepts, schemes of work need to incorporate a range of scaffolded activities - for

example, provide code walkthroughs for common game mechanics, similar to Scratch

cards (Rusk, 2009), introduce code reading/code debugging exercises, and code

writing tasks, where pupils work with partially completed programs to correct errors or

extend functionality. This would ensure that pupils’ preferences for practical work are

met at the same time as introducing programming concepts and providing targeted

support for making their games. While such approaches have been successfully used

in studies related to the use of Game Maker cited in Chapter 2, (e.g. Guimaraes and

Murray, 2008; Hernandez et al., 2010), none of the currently available tutorials or

textbooks aimed at the education market focus on this aspect - they guide pupils to

make a game - but do not focus sufficiently on the underlying programming concepts.

For example, a recently added ‘Learn’ section on the Game Maker website (YoYo

Games, 2014) provides video tutorials for how to make 3 games, but the underlying

programming concepts are not drawn out, as is required for the new programme of

study for Key Stage 3 Computing, nor are these aimed at a Key Stage 3 audience.

10.4.5 Computational thinking

The findings suggest that in creating a game using Game Maker, some pupils began to

think computationally, a core feature of the new Computing curriculum (DfE, 2013c;

Kemp, 2014) and an important 21st century skill (Wing, 2006; Wing, 2008; Perković et

al., 2010; Repenning et al., 2010; Barr et al., 2011; Brennan et al., 2011; Denner and

Werner, 2011; Google, 2011; Kane et al., 2012). In particular they became aware of the

need to decompose a game into its constituent parts (sprites, objects, sounds, rooms,

backgrounds), and to decompose game play into separate sequences.

In using a new programming paradigm, some pupils were able to make links between

their prior learning in Flowol 3 (Bowker, 2005), and their learning in Game Maker. They

saw that the two programming languages shared common ground, even though the

Discussion and conclusions

 248

visual representation of programs was different and they were designed for different

purposes (to control simulations of physical systems; to create computer games). Thus,

their understanding of what constitutes a computer program was somewhat expanded.

In using Game Maker, pupils learned that computers are deterministic - they do only

what they are programmed to do. They came to understand this when they discovered

that they needed not only to program an object to move, for example, but also to stop it

moving, and that they had to set a speed, as well as define a direction, for movement

to occur. This gave them some awareness of the level of precision required in writing

programs, identified in the literature as one of the areas of difficulty in learning to

program (see section 2.9). In a similar vein, pupils were surprised when game objects

disappeared from view and did not stop at the edge of the screen. They did not initially

understand that the boundaries of the computer screen are not recognised by game

objects. At this stage in their learning they had not developed an effective mental

model of how the game space is defined by coordinates and that these, not the

physical computer screen, set the dimensions of the playable space. Building effective

mental models of the programs they create is identified in the literature as an area of

difficulty in learning to program (see section 2.9) and an area which, the findings

suggest, requires more attention in game authoring schemes of work.

Nevertheless, in creating their games, pupils were introduced to some important

computational thinking concepts and gained some awareness of how digital media are

constructed. These areas of learning are important in constructionist projects, because

using technology as ‘building material’ brings pupils into contact with ideas important in

a digital world, and ‘knowing about digital technology is as important as reading and

writing’ (Papert, 1999a: n. pag.).

10.5 Affective values of authoring computer games

Chapter 9 addressed the research question ‘What affective value is there in authoring

computer games?’ and reported perceived values in the affective domain (motivation,

enjoyment, confidence) and in learning and thinking skills, such as perseverance, and

independence, which were observed during the game-making activity. Constructionism

sees an important role for affect in learning, arguing that pupils are more likely to

become intellectually engaged when they are working on personally meaningful

activities. This positive relationship with learning is as important as what is learned

Discussion and conclusions

 249

(Kafai and Resnick, 1996b: 2), and is more likely to occur when pupils are encouraged

to develop and value their own ways of working (Turkle and Papert, 1990: 135). This

section discusses perceived values in the game authoring activity, beyond

achievement in the cognitive domain.

One of the positive outcomes of the activity was that pupils enjoyed making a computer

game. Pupils valued the games they produced because they had created something of

contemporary, cultural and social significance, which had personal meaning for them.

Importantly, they experienced a different relationship with the outcomes of their

learning, because in making a game for others to play they saw a real purpose in their

work. This sense of achievement is echoed in the literature cited in Chapter 2 relating

to the motivational affordances of game authoring, and pupils’ satisfaction with creating

an authentic product is a validation of constructionism’s defining proposition (see

Papert, 1986).

Pupils enjoyed the activity also because notions of ‘play’ and ‘fun’ were uppermost - a

game is created for others to play and enjoy. This contrasts with the more serious,

functional purposes of other systems pupils had previously developed (control systems,

booking systems). The word ‘fun’ was frequently used in the transcript to describe

some aspect of the game-making activity.

Pupils enjoyed the activity because the mode of learning was playful. ‘Work’ became a

process of experimenting, creating and playing. If mistakes were made they could be

corrected on the fly. In this respect, the ‘fun’ they refer to is an outcome of the

affordances of the software and the collaborative working pattern, features of

constructionist learning environments.

Making a computer game was also a new mode of creative expression for them. It was

the first time they had created a game and also the first time they had made ‘software’.

They enjoyed the variety of activities involved (creating the visual appearance of the

game, locating sounds, programming objects, developing scoring systems). This

creative aspect of game authoring is identified in the literature as one reason why

pupils find it enjoyable. The fact that the games created are also playable makes it a

unique form of creativity (Buckingham and Burn, 2007b).

Their enjoyment of the activity also led to greater levels of engagement, which was

evident in pupil time on task. Most pupils seemed immersed in their work:

Discussion and conclusions

 250

AC: When we are creating a game we come in and sit down and we get on with

our [work] straight away.

This finding is validated in the literature, which widely reports that young people find

game authoring motivating and that this in turn leads to positive attitudes to learning

(see Howland et al., 1997; Chamillard, 2006; Kafai, 2006a; Denner, 2007; Sanford and

Madill, 2007b; Repenning and Ioannidou, 2008; Cheng, 2009; Jung and Park, 2009; Li,

2010; Fowler and Cusack, 2011).

Some pupils gained in confidence because their out-of-school interest in computer

games was able to find expression in the classroom. They felt that they had some

expertise to bring to bear on the learning activity. In this respect game authoring

bridges their use of technology out of school with that in school (see Buckingham et al.,

2003). Others became ‘experts’ with Game Maker and were consulted by their peers

for the first time, and this is likely to have increased their self-esteem. These findings

give support to several studies cited in the Chapter 2 which report positive effects in

terms of attitudinal improvements to learning and gains in confidence, particularly for

those lacking in engagement (for example, see Robertson and Howells, 2008; Baytak

and Land, 2010; DEECD, 2010; Li, 2010; Fowler and Cusack, 2011; Passey, 2012).

The positive attitudes relating to game authoring reported in this section are clearly of

value, and belie recent characterisations of ICT curricula as offputting, demotivating

and dull (see Peyton Jones, 2010; Furber, 2012; Gove, 2012b).

10.6 Implications of the research

By the end of the 16 hour activity, only 3/12 games (AEMD, ACJC, JBLA) were

‘finished’, in so far as they functioned without significant problems and enabled the

player to achieve a score and progress through one or more levels. This has

implications for the place of game authoring in the Key Stage 3 ICT/Computing

curriculum, typically delivered in one hour a week in each of Years 7-9, and suggests

that the model used here, where pupils designed and programmed a game from

scratch and created the game graphics themselves, may not be the most suitable

approach. Decisions have to be made about the learning focus of game authoring

projects (i.e. programming or graphics, but not both together), so that they can be

Discussion and conclusions

 251

completed within the time available, and so that not too many competing demands are

made on learners.

Leading on from this, there are implications for curriculum planning. Schools may have

to embrace alternative models of curriculum delivery if they wish to promote extended

design and programming activities such as game authoring. Willett (2007) questions

the feasibility of young people creating computer games at all, since to do so demands

high levels of skills in a range of areas and extended time scales, yet may produce

limited outcomes. Out of school clubs or intensive, week-long enrichment activities may

offer more suitable sites for learning, or it may be necessary to dedicate more time to

game-making activities, as suggested in online programmes such as Globaloria (Harel

Caperton et al., 2010) and Gamestar Mechanic (E-Line Media, 2013).

The research also has implications for the assessment of such activities. There was

wide variation in the quality of the games, and within the games, between the levels

achieved in the different components (graphics, sound, programming, game play).

Some games had little functionality and were more akin to animations; others had 2 or

3 playable levels. For the purposes of this study, to evaluate the learning evidenced in

the games, eight assessment criteria were given a ‘score’ (aligned with the five levels

of the SOLO taxonomy (Biggs and Collis, 1982)) and a total was calculated (see

Chapter 4). To indicate the range in achievement and to illustrate that all games

evidenced some learning, Figure 36 below charts the overall ‘score’ attained by each

pair.

Figure 36: Evaluative score for games

Evaluation of games

0

10

20

30

40

50

60

70

80

AEM
D

ACJC
JB

LA KW

OW
SW

JB
JG

CBM
H GS

JD
M

B

LW
GW

AW
RB

SARC

S
co

re

Discussion and conclusions

 252

However, the procedure used to evaluate pupils’ games in this study would be

impossible to replicate in mainstream classroom contexts and this raises the question

of how extended programming projects such as these should be assessed.

The wide range in outcomes further suggests that constructionist approaches are not

suitable for all learners, especially those who need more guidance and structure. While

most pupils in this study had an above average ability profile (see section 4.4.3), they

did not all display independent learning behaviours or make use of the sources of

support made available to them, and this may account for the variation in the games

produced. Those who made better games tended to be more able pupils (6/9 were of

high or above average ability), but their success seemed to have as much to do with

their willingness to learn independently as to do with their cognitive ability. This

variability in pupils’ readiness to learn independently may also reflect the extent to

which they had or had not encountered similar project-based activities in other areas of

the curriculum.

Constructionist approaches may also not be well-suited to some elements of game

authoring. Some aspects of learning, such as the development of graphics software

skills, or the learning of programming concepts need, at this level, to be formally taught

if they are to be successfully used by all - for these areas of learning, learning by doing

and experimentation alone appear not to be sufficient. Pupils also need to be guided to

complete tasks which are not immediately popular, such as planning the game program

and object interactions.

The learning evidenced in the games of course only partially indicates whether or not

the game authoring activity was worthwhile. Other positive outcomes are to do with

improved attitudes to learning and affective gains and the collaborative working

practices which grew out of the activity. These have been discussed in Chapters 5, 6,

and 9 and together appear to offer a persuasive argument to include such curricula in

mainstream UK ICT/Computing settings, despite the challenges of doing so.

In spite of these implications, this study has shown that in making a game pupils

learned to use some basic programming constructs and began to think

computationally, although this could be further developed by:

i) Spending less time on graphics at the expense of developing the game

program.

Discussion and conclusions

 253

ii) Putting more emphasis on the language and practices of programming (use

of the discourse of programming, program design, precise logical thinking,

systematic program checking/testing).

iii) Enabling pupils’ preferred way of working ‘learning by doing’ by providing

age-appropriate, ‘just in time’ resources in a range for formats which they

can access at the point of need to help them solve their individual problems

and to support understanding of the underlying programming concepts.

iv) Encouraging greater use of online collaboration and communication tools.

These recommendations are based on lessons learned from the study, drawn from the

data in Chapters 5-8. The next section builds on these to consider the broader

contributions of the research.

10.7 Contributions of the research

i) This study has explored whether constructionism is a suitable approach for learning

how to make a computer game, involving the domains of design and visual

programming. The findings suggest that as an approach to learning, constructionism

appears to have yielded positive effects in terms of affect; the collaborative learning

environment which developed in the classroom and the high levels of motivation and

engagement reported by pupils are positive outcomes of the activity and give support

to the constructionist learning theory which frames it. But the findings also suggest that

more structured interventions are needed with regard to learning basic programming

concepts, and core game mechanics (see section 10.4 above) to ensure that key game

functionalities and underlying programming constructs are demonstrated and

understood.

The findings give support to previous research using different programming

environments, which suggests that constructionist approaches are not well aligned to

learning programming (Beynon and Harfield, 2010) since the syntax and semantics of

programming languages are non-negotiable (Beynon, 2009: 73). Bricolage is also

criticised because it leads to “endless debugging” and is therefore neither an effective

methodology nor an effective epistemology for programming unless it is supplemented

with planning and formal methods (Ben-Ari, 2001: 66). Other studies express cautious

support for constructionist approaches by suggesting that bricolage is a valid way to

Discussion and conclusions

 254

learn programming concepts for some learners (McDougall and Boyle, 2004; Stiller,

2009), and the findings of the current study bear this out.

ii) This research makes an original contribution to the field of computer science

education, since little research in this area has been targeted at secondary level (Begel

and Klopfer, 2004). Moreover, there are few studies which look at the learning of

computing concepts through game authoring within a classroom setting (Wilson et al.,

2012) or what kind of knowledge students have learned from creating games using

visual programming languages (Koh et al., 2010).

Chapter 2 notes that Game Maker is widely used at secondary level in UK schools, as

evidenced in the textbooks and examination specifications which refer to it. However,

few studies focus on how Game Maker is used to teach game authoring in the UK

secondary ICT curriculum (Hayes and Games, 2008; Daly, 2009) or what may have

been achieved in terms of learning basic programming concepts and computational

thinking for pupils in Key Stage 3 (Denner et al., 2012). This study adds to the

knowledge base surrounding the use of Game Maker in the secondary UK

IT/Computing curriculum in these respects. Its unique contribution is that it presents a

detailed account of the programming concepts which pupils encounter and the

difficulties they have with these. In particular it highlights the need to use the language

of programming right from the start and to place more emphasis on program design

and planning.

Few recent studies focus on the errors pupils make with visual programming tools.

While Doran et al. (2012) suggest promoting a strategic approach to error handling by

including ‘guided errors’ in their programme, they do not identify the errors pupils

actually make. The current study usefully extends the findings of studies cited in

Chapter 2 which identify the programming constructs pupils use or do not use (e.g.

Denner et al., 2012), and the areas of difficulty they have with game programming

using different software (e.g. Good et al., 2010).

The analysis of the planning documents identified several areas where pupils needed

further support and this adds to our understanding of game authoring pedagogy; other

studies in game authoring do not investigate the elements which pupils either include

or omit from their design documents.

Discussion and conclusions

 255

iii) In focusing on the use of Game Maker, this study adds to the body of research

which considers the impacts of particular tools on the learning of basic programming

(for example, Pea, 1983; Pea and Kurland, 1984; Kurland et al., 1987; Mendelsohn et

al., 1990; Meerbaum-Salant et al., 2011; Stolee and Fristoe, 2011; Adams and

Webster, 2012; Werner et al., 2012a).

iv) The research also pays attention to a growing area of interest in the current UK

secondary ICT/Computing curriculum - the pedagogy of computer game authoring and

programming. It describes the introduction of a particular unit of work in game

authoring, which provides an interesting picture of pupils’ perceptions of the activity, the

areas of learning they encountered and the difficulties they experienced. As a result of

these insights the study makes practical suggestions for how to improve the delivery of

units of work which use Game Maker to teach basic programming concepts and

practices at Key Stage 3. It therefore extends the knowledge field in studies of game

making, which are predominantly situated in the primary phase (see Chapter 2) and

makes a useful contribution to the pedagogic content knowledge (Mishra and Koehler,

2006) of game making and programming, which is currently under researched (Saeli et

al., 2011). In particular, this research focuses on making games as part of the

ICT/Computing curriculum, and this extends the reach of much of the literature cited in

Chapter 2, which is concerned with authoring computer games to enhance learning in

other subjects.

v) Whilst much of the literature cited in Chapter 2 supports the notion of pupils

becoming producers of digital media, less attention is paid to the difficulties which arise

in such projects. This study identifies some problems which arose in practice and

makes suggestions for how to avoid these.

vi) The scheme of work followed in the research and the findings which arise out of its

implementation make a useful contribution to current debates about the pedagogy of

programming, especially taking into account the training needs of teachers of ICT who

do not have a computing background, but who now have to teach Computing (DfE,

2013c). This research illustrates how introducing basic programming concepts using

Game Maker may be a viable approach for teachers and pupils who have little prior

knowledge of the field and makes recommendations for how to bring those concepts to

the fore to achieve a balance between the aesthetic and functional aspects of computer

game authoring.

Discussion and conclusions

 256

vii) The research also generates a framework for the assessment of computer games

made by pupils and targeted at the Key Stage 3 level, based on the SOLO taxonomy

(Biggs and Collis, 1982). Table 3 presents researcher-developed criteria for the

assessment of computer games made in Game Maker, incorporating the domains of

game design and programming. Such alternative approaches to assessment are

particularly useful at the current time given that the attainment target for ICT has been

disapplied and schools are expected to select their own assessment methods (DfE,

2013a).

viii) Importantly, the research focuses on mainstream school settings, in contrast to

much of the literature cited in Chapter 2 which is situated in out-of-school contexts. As

a corollary of this, it considers the possibilities for creating games within limited

timescales within the ‘everyday’ curriculum, in contrast to the work of others which

spans much longer intervals or is conducted as intensive research projects (see Harel,

1991; Kafai, 1995; Harel Caperton et al., 2010).

ix) Finally, the research provides a methodology for analysing computer games as data

(see Chapter 4), an area which is not widely covered in research methods literature.

The methodology for analysing the learning in programming evidenced in the games

involved using Game Maker’s object information to determine which aspects of code

were correct or incorrect, alongside focused game play sessions to record functionality

and playability. The analysis developed rubrics for the evaluation of computer games

as i) designed and ii) programmed artefacts (see Table 1 and Table 2) and developed

criteria for the assessment of computer games incorporating these two domains (see

Table 3).

10.8 Limits of the research

Despite the contributions made by the research, it also has its limitations:

 The research was conducted with one pilot group (n=23) and one main study

group (n=22) in a high-achieving school in an affluent area of South East

England. Its findings may not be replicable in different settings.

 Although the group was mixed ability, 10/22 pupils achieved ‘above average’

values in their average CAT scores; 7 pupils achieved a CAT score of 120 or

Discussion and conclusions

 257

higher in one or more CAT measures, which suggests that the group was of

above average ability. Its findings may not be replicable in different populations.

 The study represents one implementation of a scheme of work for computer

game authoring, using Game Maker. It is acknowledged that the particular

scheme of work, the game authoring software, and resources made available to

the pupils in this study will have delimited their learning of programming

concepts. Its findings may not be replicable using other software.

 The small scale of the study limits the reliability and the validity of the findings in

so far as additional findings may emerge in larger populations. Its findings are

best evaluated as one amongst other case studies of game authoring projects

which investigate different tools and settings (see for example, Kafai, 1996;

Lavonen et al., 2003; Willett, 2007; Robertson and Howells, 2008; Zorn, 2008;

Games, 2010; Hernandez et al., 2010; Baytak and Land, 2011b; Kafai and

Peppler, 2012; Macklin and Sharp, 2012; Minnigerode and Reynolds, 2013).

While these are limitations they do not negate the insights into the pedagogy of

computer game authoring gained by conducting this research (see section 10.7). The

local, small-scale, particular features of the present study hold value, since

“phenomena are … present in the smallest particulars of practices and institutions”

(Maclure, 2006: 230) and can make a useful contribution to the field, or prompt further

research of a larger scale.

10.9 Future work

The findings of the research set the groundwork for further investigation in the following

areas:

1. The development of a framework for computer game authoring for Key Stage 3

which foregrounds the learning of programming concepts using Game Maker. The

development of age-appropriate physical and online resources to support this, matched

to pupils’ preferred formats and focused on: how to implement key functionalities of

games; clear explication of programming constructs used to achieve these; access to

sample code in visual format and greater use of online tools to support collaboration

and peer-learning. As an extension to this, the development of a unit of work which

Discussion and conclusions

 258

shows pupils how to make a game in Game Maker’s textual programming language,

GML. Currently available resources do not take this approach and provide limited

support for the theoretical understanding of programming constructs (for example, see

Yoyo Games, 2014). Further research would evaluate such pedagogy.

2. Research into how to assess pupils’ understanding of the programs they create

when authoring games, and their achievement in other aspects of game design is a

fruitful topic for further investigation, particularly in light of the disapplication of the

attainment target in 2013 (DfE, 2013a).

For the purposes of analysing and evaluating the games pupils made in the present

study, a modified version of the SOLO taxonomy (Biggs and Collis, 1982) was

devised, to incorporate elements of programming, game design and functionality (see

Table 3). Detailed analyses of the games yielded quantitative data about programming

constructs used (see Table 2) and descriptive accounts of game design attributes

evaluated elements of game design (see Table 1). Pupils’ SOLO levels for each

component were mapped to give an overall picture of the level at which they

responded to each component. However, such a detailed assessment would be very

time-intensive for teachers in mainstream settings.

Artefact-based interviews were recorded with 7 pupils and this gives a good opportunity

to assess understanding of concepts used, but is demanding of time. Such models are

evaluated in Brennan and Resnick’s survey of frameworks suitable for the assessment

of interactive media (Brennan and Resnick, 2012), which presents several scenarios

for assessment which would be useful to explore in classroom settings and with

different software tools.

Other research into how to assess programming and computational thinking offers

assessments where pupils are asked to modify, extend or correct errors in a program

(Werner et al., 2012b) or involves peer instruction (Simon and Cutts, 2012), which

helps pupils to articulate their (mis)understandings and can give a better account of

understanding of computing concepts than looking at the final outcome alone.

Assessment frameworks to support the new Computing programme of study have

been developed (e.g. Dorling and Walker, 2014) but are arguably less useful when

assessing extended projects such as computer games, and ignore the design process

Discussion and conclusions

 259

and the development of learning/thinking skills which are an important feature of

constructionist learning activities.

10.10 Concluding remarks

This thesis has explored the introduction of a unit of work in which Year 9 pupils

created a computer game for the first time as part of the Key Stage 3 ICT curriculum.

In considering pupils’ perceptions of the process of their learning and the games they

made, this research makes a useful contribution to discussions surrounding the

pedagogy of computer game authoring in mainstream school settings.

The findings show how, as they made their games, pupils learned some basic game

design and programming concepts, developed their ability to think computationally and

gained an awareness of the ‘constructedness’ of digital media, becoming producers of

software for the first time.

And importantly, they valued doing so:

JG: It makes you think more than the plain work that everybody does … this

makes you think really hard about what you are doing. At the end of it you can

play your game, and you think, ‘Oh, I’ve made this!’

JB: I feel [it’s] … more of an achievement, ‘cos we have our proper, finished

product … it’s not just a piece of paper, it’s, like, more. I feel really happy with it,

that we’ve managed to do something like that!

For any educator those are precious words, because they articulate pupils’ pride in

their achievements and their identification as creators and thinkers. They are also a

striking testament to the importance of Seymour Papert’s vision for the proper use of

computers in education.

References

 261

References

AARDMAN & NOMINET TRUST 2014. ‘Shaun the Sheep Game Academy’ [Online].
Available: http://shaunsgameacademy.co.uk [Accessed 23/08/14].

AARSETH, E. 2003. ‘Playing research: methodological approaches to game analysis.’
In: MILES, A. (ed.) Proceedings of the 5th International Digital Arts and Culture
Conference. Melbourne, 19-23 May. Melbourne, Australia: RMIT University. 1-7.

ABC ONLINE 2004. ‘Seymour Papert: Sunday Profile’. ABC Local Radio Sunday
Profile [Online]. Available: http://www.abc.net.au/sundayprofile/stories/s1144341.htm
[Accessed 14/01/14].

ACKERMANN, E. 2004. ‘Constructing knowledge and transforming the world.’ In:
TOKORO, M. & STEELS, L. (eds.) A learning zone of one's own: sharing
representations and flow in collaborative learning environments. Washington, USA:
IOS Press.

ADAMS, J. & WEBSTER, A. 2012. ‘What do students learn about programming from
game, music video and storytelling projects?’ In: SMITH KING, L., MUSICANT, D.,
CAMP, T. & TYMANN, P. (eds.) Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education. Raleigh, USA, 29 February-3 March. New York, USA:
ACM. 643-648.

ADIPRANATA, Y. & ADIPRANATA, R. 2010. ‘Teaching object oriented programming
course using cooperative learning method based on game design and visual object
oriented environment.’ In: MAHADEVAN, V. & TOMAR, G. (eds.) Proceedings of the
2nd International Conference on Education Technology and Computer, Vol. 2.
Shanghai, China, 22-24 June. Los Alamitos, USA: IEEE. 355-359.

ADOBE 2007. Adobe Flash Professional. [Computer program]. Adobe Systems.

AHMADI, N. & JAZAYERI, M. 2014. ‘Analysing the learning process in online
educational game design: a case study.’ Proceedings of the 23rd Australasian Software
Engineering Conference. Milson’s Point, Australia, 7-10 April. Los Alamitos, USA:
IEEE. 84-93.

AMMA 2011. ‘Scratch or Game Maker?’ [Online]. AmmA Centre. Available:
http://ammacentre.org/blog/?p=383 [Accessed 06/10/12].

APPS FOR GOOD 2013. Apps for Good [Online]. Available:
http://www.appsforgood.org/ [Accessed 23/07/13].

AQA 2005. Information & Communication Technology A: higher tier paper. AQA.

AQA 2012a. GCSE Computer Science specification. AQA.

AQA 2012b. GCSE ICT specification. AQA.

AQA 2012c. GCSE in Computer Science component 1: practical programming.
Specimen candidate booklet: scenario 2 - computer gaming application. AQA.

References

 262

AQA 2012d. ‘KS3/4 Computing: let’s make a game of it - Game Maker.’ [Online].
Available: http://www.aqa.org.uk/professional-development/course-
details?meta_E=SCSCGCSEKS34ComputingLetsmakeagameofITGamemaker
[Accessed 06/10/12].

BALDWIN, L. & KULJIS, J. 2000. ‘Visualisation techniques for learning and teaching
programming.’ Journal of Computing and Information Technology, 8 (4), 285-291.

BANAJI, S. & BURN, A. 2007. ‘Creativity through a rhetorical lens: implications for
schooling, literacy and media education.’ Literacy, 41 (2), 62-70.

BARNES, T., POWELL, E., CHAFFIN, A. & LIPFORD, H. 2008. ‘Game2Learn:
improving the motivation of CS1 students.’ In: FOSTER, J., NORDLINGER, J. &
YOUNG, M. (eds.) Proceedings of the 3rd International Conference on Game
Development in Computer Science Education. Miami, USA, 28 February-3 March. New
York, USA: ACM. 1-5.

BARR, D., HARRISON, J. & CONERY, L. 2011. ‘Computational thinking: a digital age
skill for everyone.’ Learning and Leading with Technology. Mar/Apr 2011, 21-23. ISTE.

BAYTAK, A. 2009. ‘An investigation of the artifacts, outcomes and processes of
constructing computer games about environmental science in a fifth grade science
classroom.’ PhD thesis, Pennsylvania State University, USA.

BAYTAK, A. & LAND, S. 2010. ‘A case study of educational game design by kids and
for kids.’ Procedia - Social and Behavioral Sciences, 2 (2), 5242-5246.

BAYTAK, A. & LAND, S. 2011a. ‘Advancing elementary school girls’ programming
through game design.’ International Journal of Gender, Science and Technology, 3 (1).
[Online]. Available:
http://genderandset.open.ac.uk/index.php/genderandset/article/viewArticle/88.

BAYTAK, A. & LAND, S. 2011b. ‘An investigation of the artifacts and process of
constructing computer games about environmental science in a fifth grade classroom.’
Educational Technology Research and Development, 59 (6), 765-782.

BAYTAK, A., LAND, S. & SMITH, B. 2011. ‘Children as educational computer game
designers: an exploratory study.’ The Turkish Online Journal of Educational
Technology, 10 (4), 84-92.

BAYTAK, A., LAND, S., SMITH, B. & PARK, S. 2008. ‘An exploratory study of kids as
educational game designers.’ In: SIMONSON, M. (ed.) Proceedings of the 31st Annual
Convention of the Association for Educational Communications and Technology.
Orlando, USA, 6-9 November. Bloomington, USA: AECT Publications. 39-47.

BAZELEY, P. 2007. Qualitative data analysis with NVivo. London: Sage Publications
Ltd.

BCS 2012. Draft programme of study for ICT. BCS.

BEAVIS, C. 2013. ‘Multiliteracies in the wild: learning from computer games.’ In:
MERCHANT, G., GILLEN, J., MARSH, J. & DAVIES, J. (eds.) Virtual literacies -
interactive spaces for children and young people. New York, USA: Routledge. 57-74.

References

 263

BEAVIS, C. & O'MARA, J. 2010. ‘Computer games - pushing at the boundaries of
literacy.’ Australian Journal of Language and Literacy, 33 (1), 65-76.

BEAVIS, C., O'MARA, J. & MCNEICE, L. (eds.) 2012. Digital games: literacy in action.
Kent Town, Australia: Wakefield Press.

BECKETT, H. 2013. ‘Green light for our inner geeks.’ Times Educational Supplement,
STEM. 15/03/2013 TSL Education Ltd.

BECTA 2006. Computer games in education project report. Becta.

BEGEL, A. & KLOPFER, E. 2004. ‘StarLogo TNG: an introduction to game
development.’ [Online]. Available: http://research.microsoft.com/en-
us/um/people/abegel/papers/starlogo-tng.pdf [Accessed 16/03/14].

BEN-ARI, M. 2001. ‘Constructivism in computer science education.’ Journal of
Computers in Mathematics and Science Teaching, 20 (1), 45-73.

BERGLUND, A., DANIELS, M. & PEARS, A. 2006. ‘Qualitative research projects in
computing education research: an overview.’ In: YOUNG, A. & TOLHURST, D. (eds.)
Proceedings of the 7th Australasian Conference on Computing Education. Hobart,
Australia, 16-19 January. Darlinghurst, Australia: ACS. 25-33.

BERMINGHAM, S., CHARLIER, N., DAGNINO, F., DUGGAN, J., EARP, J., KIILI, K.,
LUTS, E., VAN DER STOCK, L., & WHITTON, N. 2013. ‘Approaches to collaborative
game making for fostering 21st century skills.’ In: ESCUDEIRO, P. & VAZ DE
CARVALHO, C. (eds.) Proceedings of the 7th European Conference on Games-Based
Learning. Porto, Portugal, 3-4 October. Reading: ACPI. 45-52.

BEYNON, M. 2009. ‘Constructivist computer science education reconstructed.’
Innovation in Teaching and Learning in Information and Computer Sciences, 8 (2), 73-
90.

BEYNON, M. & HARFIELD, A. 2010. ‘Constructionism through construal by computer.’
Paper presented at Constructionism 2010. Paris, France, 16-21 August.

BEYNON, M. & ROE, C. 2004. ‘Computer support for constructionism in context.’ In:
LOOI, C., SUTINEN, E., SAMPSON, D., AEDO, I., UDEN, L. & KAHKONEN, E. (eds.)
Proceedings of the International Conference on Advanced Learning Technologies.
Joensuu, Finland, 30 August-1 September. Los Alamitos, USA: IEEE. 216-220.

BIGGS, J. 1979. ‘Individual differences in study processes and the quality of learning
outcomes.’ Higher Education, 8 (4), 381-394.

BIGGS, J. 2003. SOLO taxonomy [Online]. Available:
http://www.johnbiggs.com.au/academic/solo-taxonomy/ [Accessed 04/08/13].

BIGGS, J. & COLLIS, K. 1982. Evaluating the quality of learning - the SOLO taxonomy.
New York, USA: Academic Press.

BOBER, M. 2010. Games-based experiences for learning. Futurelab.

BOWKER, A. 1998. Flowol 2. [Computer program]. Keep I.T. Easy.

BOWKER, A. 2005. Flowol 3. [Computer program]. Keep I.T. Easy.

References

 264

BRABAND, C. & DAHL, B. 2009. ‘Analyzing CS competencies using the SOLO
taxonomy.’ Proceedings of the Conference on Innovation and Technology in Computer
Science Education. Paris, France, 6-9 July. New York, USA: ACM. 1-1.

BRAGGE, J. & STORGARDS, J. 2007. ‘Profiling academic research on digital games
using text mining tools.’ Proceedings of the 3rd International Conference of the Digital
Games Research Association. Tokyo, Japan, 24-28 September. DiGRA. 714-729.

BRAY, O. 2011. Playful learning: computer games in education. Microsoft Education.

BRENNAN, K. 2013a. ‘Learning computing through creating and connecting.’
Computer, 46 (9), 52-59.

BRENNAN, K. 2013b. ‘Best of both worlds: issues of structure and agency in
computational creation, in and out of school.’ PhD thesis, Massachusetts Institute of
Technology, USA.

BRENNAN, K., CHUNG, M. & HAWSON, J. 2011. Creative computing - a design-
based introduction to computational thinking. MIT Media Lab, USA.

BRENNAN, K. & RESNICK, M. 2012. ‘Using artifact-based interviews to study the
development of computational thinking in interactive media design.’ Paper presented at
the American Educational Research Association Conference. Vancouver, Canada, 13-
17 April.

BRENNAN, K. & RESNICK, M. 2013. ‘Imagining, creating, playing, sharing, reflecting:
how online community supports young people as designers of interactive media.’ In:
LAVIGNE, N. & MOUZA, C. (eds.) Emerging technologies for the classroom: a learning
sciences perspective. New York, USA: Springer. 253-268.

BRUCKMAN, A., EDWARDS, E., ELLIOTT, J., JENSEN, C. 2000. ‘Uneven
achievement in a constructionist learning environment.’ In: FISHMAN, B. &
O'CONNOR-DIVELBISS, S. (eds.) Proceedings of the 4th International Conference of
the Learning Sciences. Ann Arbor, USA, 14-17 June. Mahwah, USA: Lawrence
Erlbaum Associates. 157-163.

BRYANT, L., DOWNES, S., TWIST, J., PRENSKY, M., FACER, K., DUMBLETON, T.
& LEY, D. 2007. Emerging technologies for learning (Volume 2). Becta.

BUCKINGHAM, D. 2003. Media education: literacy, learning and contemporary culture.
Cambridge: Polity Press.

BUCKINGHAM, D. & BURN, A. 2007a. ‘Game literacy in theory and practice.’ Journal
of Educational Multimedia and Hypermedia, 16 (3), 323-349.

BUCKINGHAM, D. & BURN, A. 2007b. ‘Making games: game design and media
literacy.’ English, Drama, Media, 8. NATE.

BUCKINGHAM, D., SEFTON-GREEN, J. & WILLETT, R. 2003. Shared spaces:
informal learning and digital cultures. Institute of Education, University of London.

BULFIN, S., HENDERSON, M. & JOHNSON, N. 2013. ‘Examining the use of theory
within educational technology and media research.’ Learning, Media and Technology,
38 (3), 337-344.

References

 265

BURN, A. 2007. ‘‘Writing’ computer games: game literacy and new-old narratives.’
Educational Studies in Language and Literature, 7 (4), 45-67.

BURTOFT, M., GARVEY, P., HENDERSON, E., KELLY, K. & LOCKHART, T. 2008.
Year 7 Smart Skills Builder ICT. Cambridge: Smart Learning Ltd.

CARBONARO, M., CUTUMISU, M., DUFF, H., GILLIS, S., ONUCZKO, C., SIEGEL, J.,
SCHAEFFER, J., SCHUMACHER, A., SZAFRON, D. & WAUGH, K. 2008. ‘Interactive
story authoring: a viable form of creative expression for the classroom.’ Computers &
Education, 51 (2), 687–707.

CARBONARO, M., CUTUMISU, M., MCNAUGHTON, M., ONUCZKO, C., ROY, T.,
SCHAEFFER, J., SZAFRON, D., GILLIS, S. & KRATCHMER, S. 2005. ‘Interactive
story writing in the classroom: using computer games.’ Proceedings of the Digital
Games Research Association International Conference. Vancouver, Canada, 16-20
June. DiGRA. 323-338.

CARBONARO, M., SZAFRON, D., CUTUMISU, M. & SCHAEFFER, J. 2010.
‘Computer-game construction: a gender-neutral attractor to Computing Science.’
Computers & Education, 55 (3), 1098-1111.

CAS 2008a. Computing at School [Online]. Available:
http://www.computingatschool.org.uk/ [Accessed 02/11/09].

CAS 2008b. Rationale for a GCSE in Computing. CAS.

CAS 2012a. Computer Science: a curriculum for schools. CAS.

CAS 2012b. A curriculum framework for Computer Science and Information
Technology. CAS.

CAS 2014. Switched On. Autumn issue 2014. CAS.

CAVALLO, D., PAPERT, S. & STAGER, G. 2004. ‘Climbing to understanding: lessons
from an experimental learning environment for adjudicated youth.’ In: KAFAI, Y.,
SANDOVAL, W., ENYEDY, N., NIXON, A. & HERRERA, F. (eds.) Proceedings of the
6th International Conference of the Learning Sciences. Santa Monica, USA, 22-26
June. Mahwah, USA: Lawrence Erlbaum Associates. 113-120.

CHAFFIN, A., DORAN, K., HICKS, D. & BARNES, T. 2009. ‘Experimental evaluation of
teaching recursion in a video game.’ In: SPENCER, S., DAVIDSON, D., FULLERTON,
T. & SCHRIER, K. (eds.) Proceedings of the SIGGRAPH Symposium on Video Games.
New Orleans, USA, 3-7 August. New York, USA: ACM. 79-86.

CHAMILLARD, A. 2006. ‘Introductory game creation: no programming required.’ In:
BALDWIN, D., TYMANN, P., HALLER, S. & RUSSELL, I. (eds.) Proceedings of the
SIGSCE Technical Symposium on Computer Science Education. Houston, USA, 1-5
March. New York, USA: ACM. 515-519.

CHAN, C., TSUI, M., CHAN, M. & HONG, J. 2002. ‘Applying the Structure of Observed
Learning Outcomes (SOLO) taxonomy on students' learning outcomes: an empirical
study.’ Assessment and Evaluation in Higher Education, 27 (6), 511-527.

References

 266

CHENG, G. 2009. ‘Using game making pedagogy to facilitate student learning of
interactive multimedia.’ Australasian Journal of Educational Technology, 25 (2), 204-
220.

CLAYPOOL, K. & CLAYPOOL, M. 2005. ‘Teaching software engineering through game
design.’ In: CUNHA, J., FLEISCHMAN, W., PROULX, V. & LOURENÇO, J. (eds.)
Proceedings of the 10th Annual Conference on Innovation and Technology in Computer
Science Education. Caparica, Portugal, 26-29 June. New York, USA: ACM. 123-127.

COHEN, L., MANION, L. & MORRISON, K. 2007. Research methods in education. 6th
edition. Abingdon: Routledge.

CONNOLLY, T., BOYLE, E., MACARTHUR, E., HAINEY, T. & BOYLE, J. 2012. ‘A
systematic literature review of empirical evidence on computer games and serious
games.’ Computers & Education, 59 (2), 661-686.

CONSALVO, M. & DUTTON, N. 2006. ‘Game analysis: developing a methodological
toolkit for the qualitative study of games.’ Game Studies, 6 (1). [Online]. Available:
http://gamestudies.org/0601/articles/consalvo_dutton [Accessed 16/01/15].

COOPER, S., DANN, W. & PAUSCH, R. 1999. Alice 2. [Computer program]. Carnegie
Mellon University, USA.

COY, S. 2013. ‘Kodu Game Lab - a few lessons learned.’ Crossroads, 19 (4), 44-47.
ACM.

CRESWELL, J. W. 2007. Qualitative inquiry and research design: choosing among five
approaches. 2nd edition. Thousand Oaks, USA: Sage.

CRESWELL, J. W. 2014. Research design: qualitative, quantitative and mixed methods
approaches. Thousand Oaks, USA: Sage.

CUTTS, Q., ESPER, S., FECHO, M., FOSTER, S. & SIMON, B. 2012. ‘The abstraction
transition taxonomy: developing desired learning outcomes through the lens of situated
cognition.’ In: CLEAR, A., SANDERS, K. & SIMON, B. (eds.) Proceedings of the
International Workshop on Computing Education Research. Auckland, New Zealand,
10-12 September. New York, USA: ACM. 63-70.

CUTTS, Q., ESPER, S. & SIMON, B. 2011. ‘Computing as the 4th 'R': a general
education approach to computing education.’ In: SANDERS, K., CASPERSEN, M. &
CLEAR, A. (eds.) Proceedings of the International Computing Education Research
Conference. Providence, USA, 8-9 August. New York, USA: ACM. 133-138.

DAGDILELIS, V., SATRATZEMI, M. & EVANGELIDIS, G. 2004. ‘Introducing secondary
education students to algorithms and programming.’ Education and Information
Technologies, 9 (2), 159-173.

DALAL, N., DALAL, P., KAK, S., ANTONENKO, P. & STANSBERRY, S. 2009. ‘Rapid
digital game creation for broadening participation in computing and fostering crucial
thinking skills.’ International Journal of Social and Humanistic Computing, 1 (2), 123-
137.

DALAL, N., KAK, S. & SOHONI, S. 2012. ‘Rapid digital game creation for learning
object-oriented concepts.’ In: COHEN, E. & BOYD, E. (eds.) Proceedings of Informing

References

 267

Science & IT Education Conference. Montreal, Canada, 22-27 June. Santa Rosa, USA:
Informing Science Institute. 237-247.

DALY, T. 2009. ‘Using introductory programming tools to teach programming concepts:
a literature review.’ The Journal for Computing Teachers. Autumn issue. 1-6. ISTE.

DAVIS, R., KAFAI, Y., VASUDEVAN, V. & EUNKYOUNG, L. 2013. ‘The Education
Arcade: crafting, remixing, and playing with controllers for Scratch games.’ In:
HOURCADE, J., SAWHNEY, N. & REARDON, E. (eds.) Proceedings of the 12th
International Conference on Interaction Design and Children. New York, USA, 24-27
June. New York, USA: ACM. 439-442.

DCSF 2008a. The framework for secondary ICT. DCSF.

DCSF 2008b. ICT subject leader development materials Summer 2008: handout 4.5
ICT unit plan 3 template - sequencing. DCSF.

DE FREITAS, S. 2006. Learning in immersive worlds: a review of game-based
learning. JISC.

DEECD 2010. ‘The impact of web 2.0 technologies in the classroom - KnowledgeBank:
Next Generation research report Kodu excerpt.’ Melbourne, Australia: DEECD.

DENNER, J. 2007. ‘The Girls Creating Games program: an innovative approach to
integrating technology into middle school.’ Meridian Middle School Computer
Technologies Journal, 10 (1).

DENNER, J. & WERNER, L. 2011. ‘Measuring computational thinking in middle school
using game programming.’ Paper presented at the American Educational Research
Association Conference, New Orleans, USA, 8-12 April.

DENNER, J., WERNER, L., BEAN, S. & CAMPE, S. 2005. ‘The Girls Creating Games
program: strategies for engaging middle school girls in information technology.’
Frontiers: A Journal of Women’s Studies, 26 (1), 90-98.

DENNER, J., WERNER, L. & ORTIZ, E. 2012. ‘Computer games created by middle
school girls: can they be used to measure understanding of computer science
concepts?’ Computers & Education, 58 (1), 240–249.

DFE 1995. Information Technology in the National Curriculum. HMSO.

DFE 2013a. Assessing without levels [Online]. Available:
http://www.education.gov.uk/schools/teachingandlearning/curriculum/nationalcurriculu
m2014/a00225864/assessing-without-levels [Accessed 29/07/13].

DFE 2013b. Consultation on the order for replacing the subject of ICT with Computing:
government response. DfE.

DFE 2013c. The National Curriculum in England: Computing - programmes of study -
Key Stages 3 and 4. DfE.

DFE 2013d. The National Curriculum in England: framework document for consultation.
DfE.

References

 268

DFEE 1999. The National Curriculum handbook for secondary teachers in England.
DfEE.

DFES 2002a. Key Stage 3 National Strategy framework for teaching ICT capability:
Years 7, 8 and 9. DfES.

DFES 2002b. Key Stage 3 National Strategy sample teaching unit 7.6. DfES.

DFES 2003a. Key Stage 3 National Strategy for ICT: progression into and through
Year 9 - case studies. DfES.

DFES 2003b. Key Stage 3 National Strategy ICT sample teaching unit 8.5. DfES.

DFES 2003c. Key Stage 3 National Strategy ICT Year 9 case studies: unit 9.1. DfES.

DFES 2004. Pedagogy and practice: teaching and learning in secondary schools. Unit
17: developing effective learners. DfES.

DILLON, T. 2004. Adventure games for learning and storytelling. Futurelab.

DISESSA, A. 1997. ‘Twenty reasons why you should use Boxer (instead of Logo).’ In:
TURCSÁNYI-SZABÓ, M. (ed.) Proceedings of the 6th European Logo Conference.
Budapest, 20-23 August. Budapest, Hungary: John von Neumann Computer Society &
Eötvös Loránd University. 7-27.

DORAN, K., BOYCE, A., FINKELSTEIN, S. & BARNES, T. 2012. ‘Outreach for
improved student performance: a game design and development curriculum.’
Proceedings of the 17th Annual Conference on Innovation and Technology in Computer
Science Education. Haifa, Israel, 3-5 July. New York, USA: ACM. 209-214.

DORLING, M. & WALKER, M. 2014. Computing progression pathways. CAS.

DOWNS, Y. 2010. ‘Transcription tales or let love’s labour not be lost.’ International
Journal of Research and Method in Education, 33 (1). 101-112.

DOWNES, T. 1999. ‘Playing with computing technologies in the home.’ Education and
Information Technologies, 4 (1), 65-79.

DOYLE, S. 2004. ICT framework solutions Year 7: student book. Cheltenham: Nelson
Thornes.

DU BOULAY, B. 1986. ‘Some difficulties of learning to program.’ Journal of Educational
Computing Research, 2 (1), 57-73.

E-LINE MEDIA 2013. Gamestar Mechanic [Online]. Available:
www.gamestarmechanic.com [Accessed 20/04/13].

EDEXCEL 2006. D202 Multimedia summative project brief - Crack the Code. Edexcel.

EDEXCEL 2009. D205 Games authoring summative project brief - Disaster Strikes!
Edexcel.

EDEXCEL 2012a. Certificate in Digital Applications specification. Pearson Education
Ltd.

References

 269

EDEXCEL 2012b. GCSE Computer Science specification. Edexcel.

EDEXCEL 2012c. GCSE in ICT specification. Edexcel.

EDWARDS, A. & WESTGATE, D. 1994. Investigating classroom talk. 2nd edition.
London: The Falmer Press.

EGENFELDT-NIELSEN, S. 2006. ‘Overview of research on the educational use of
video games.’ Digital Kompetanse, 1 (3), 184-213.

ELSPA 2006. Unlimited learning: computer and video games in the learning landscape.
ELSPA.

ENTERBRAIN 2005. RPG Maker XP. [Computer program]. Degica.

EOW, Y., WAN ALI, W., MAHMUD, R. & BAKI, R. 2010. ‘Computer games
development and the appreciative learning approach in enhancing students’ creative
perception.’ Computers & Education, 54 (1), 146-161.

ESPER, S., FOSTER, S. & GRISWOLD, W. 2013. ‘On the nature of fires and how to
spark them when you’re not there.’ In: CAMP, T., TYMANN, P., DOUGHERTY, J. &
NAGEL, K. (eds.) Proceedings of the SIGCSE Technical Symposium on Computer
Science Education. Denver, USA, 6-9 March. New York, USA: ACM. 305-310.

EVERS, C. & WU, E. 2007. ‘On generalising from single case studies: epistemological
reflections.’ In: BRIDGES, D. & SMITH, R. (eds.) Philosophy, methodology and
educational research. Malden: Blackwell. 199-213.

FACER, K., ULICSAK, M. & SANDFORD, R. 2007. ‘Can computer games go to
school?’ In: BRYANT, L., DOWNES, S., TWIST, J., PRENSKY, M., FACER, K.,
DUMBLETON, T. & LEY, D. Emerging technologies for learning (Volume 2). Becta. 47-
63.

FELICIA, P. (ed.) 2011. Handbook of research on improving learning and motivation
through educational games: multidisciplinary approaches. Hershey, USA: Information
Science Reference.

FELICIA, P. (ed.) 2013. Developments in current game-based learning design and
deployment. Hershey, USA: IGI Global.

FERDIG, R. & BOYER, J. 2007. ‘Can game development impact academic
achievement?’ THE Journal [Online]. Available:
http://thejournal.com/articles/2007/10/25/can-game-development-impact-academic-
achievement.aspx [Accessed 05/08/13].

FIEGE, M. 2011. ‘Teaching programming concepts by building games.’ MSc
dissertation, Delft University of Technology, Netherlands.

FINCHER, S. 2006. Studying programming. Basingstoke: Palgrave Macmillan.

FLETCHER, G. & LU, J. 2009. ‘Human computing skills: rethinking the K-12
experience.’ Communications of the ACM, 52 (2), 23-25.

FLUCK, A. & MEIJERS, M. 2006. ‘Game making for students and teachers from
isolated areas’ [Online]. Available:

References

 270

http://www.une.edu.au/simerr/pages/projects/79gamemaking.php. [Accessed
05/08/13].

FONSECA, C., KOZBERG, G., TEMPEL, M., SOPRUNOV, S., YAKOVLEVA, E.,
REGGINI, H., RICHARDSON, J., ALMEIDA, M. & CAVALLO, D. 1999. Logo
philosophy and implementation. LCSI.

FORSTER, T. 2006. ‘Other worlds and game creation.’ [Online]. Available:
http://tonyforster.blogspot.co.uk/search?q=Other+worlds+and+game+creation.
[Accessed 05/0814].

FOWLER, A. & CUSACK, B. 2011. ‘Enhancing introductory programming with Kodu
Game Lab: an exploratory study.’ In: MANN, S. & VERHAART, M. (eds.)
Proceedings of the 2nd Annual Conference of Computing and Information Technology
Education and Research in New Zealand. Rotorua, 5-8 July. Hamilton, New Zealand:
CITRENZ. 69-79.

FRANZ, G. & PAPERT, S. 1988. ‘Computer as material: messing about with time.’
Teachers' College Record, 89 (3), 408-17.

FRISTOE, T., DENNER, J., MACLAURIN, M., MATEAS, M. & WARDRIP-FRUIN, N.
2011. ‘Say it with systems: expanding Kodu's expressive power through gender-
inclusive mechanics.’ Proceedings of the 6th International Conference on Foundations
of Digital Games. Bordeaux, France, 28 June-1 July. New York, USA: ACM. 227-234.

FROMME, J. & UNGER, A. (eds.) 2012. Computer games and new media cultures: a
handbook of digital games studies. Dordrecht, Netherlands: Springer.

FRYDENBERG, M. 2013. ‘Creating a collaborative learning community in the CIS
Sandbox.’ Interactive Technology and Smart Education, 10 (1), 49-62.

FULLER, U., JOHNSON, G., AHONIEMI, T., CUKIERMAN, D., HERNAN-LOSADA, I.,
JACKOVA, J., LAHTINEN, E., LEWIS, T., THOMPSON, D., RIEDESEL, C. &
THOMPSON, E. 2007. ‘Developing a computer science-specific learning taxonomy.’
Proceedings of the 12th Annual Conference on Innovation and Technology in Computer
Science Education. Dundee, Scotland, 23-27 June. New York, USA: ACM. 152-170.

FURBER, S. 2012. Shut down or restart - the way forward for computing in UK schools.
The Royal Society.

FURLONGER, C. & HAYWOOD, S. 2004. Teaching the National ICT Strategy at Key
Stage 3: a practical guide. London: David Fulton.

GAMBLE, P. 2009. ‘Game Maker in schools.’ Game Maker Technology Magazine.
Issue 16, 9-11.

GAMES FOR CHANGE 2013. ‘Games for Change’ [Online]. Available:
http://www.gamesforchange.org/ [Accessed 23/07/13].

GAMES, I. A. 2008a. ‘Gamestar Mechanic: reflections on the design and research of a
game about game design.’ [Online]. Available:
http://meaningfulplay.msu.edu/proceedings2008/mp2008_paper_79.pdf [Accessed
12/12/14].

References

 271

GAMES, I. A. 2008b. ‘Three dialogs: a framework for the analysis and assessment of
twenty-first-century literacy practices, and its use in the context of game design within
Gamestar Mechanic.’ E-learning & Digital Media, 5 (4), 396-417.

GAMES, I. A. 2010. ‘Gamestar Mechanic: learning a designer mindset through
communicational competence with the language of games.’ Learning, Media and
Technology, 35 (1), 31-52.

GEE, J. P. 2003a. ‘What video games have to teach us about learning and literacy.’
Computers in Entertainment, 1 (1), 1-4.

GEE, J. P. 2003b. What video games have to teach us about learning and literacy.
Basingstoke: Palgrave Macmillan.

GERRING, J. 2007. Case study research: principles and practice. Cambridge:
Cambridge University Press.

GIBBS, G. 2002. Qualitative data analysis: explorations with NVivo. Maidenhead:
Oxford University Press.

GILES, J., BEARD, S. & STREET, S. 2008. ICT 4 life. Harlow: Pearson Education Ltd.

GOOD, J. 2011. ‘Learners at the wheel: novice programming environments come of
age.’ International Journal of People-Oriented Programming, 1 (1), 1-24.

GOOD, J., HOWLAND, K. & NICHOLSON, K. 2010. ‘Young people’s descriptions of
computational rules in role-play games: an empirical study.’ In: HUNDHAUSEN, C.,
PIETRIGA, E., DIAZ, P. & ROSSON, M. (eds.) Proceedings of the IEEE Symposium on
Visual Languages and Human Centric Computing. Madrid, Spain, 21-25 September.
Los Alamitos, USA: IEEE. 67-74.

GOOD, J. & ROBERTSON, J. 2004. ‘Computer games authored by children - a multi-
perspective evaluation.’ Proceedings of the Conference on Interaction Design and
Children. Baltimore, USA, 1-3 June. New York, USA: ACM. 123-124.

GOOD, J. & ROBERTSON, J. 2006a. ‘A framework for learner-centred design with
children.’ International Journal of Artificial Intelligence in Education, 16 (4), 381-413.

GOOD, J. & ROBERTSON, J. 2006b. ‘Learning and motivational affordances in
narrative-based game authoring.’ In: BRNA, P. (ed.) Proceedings of the 4th
International Conference for Narrative and Interactive Learning Environments.
Edinburgh, Scotland, 8-11 August. Edinburgh: NILE. 37-51.

GOOD, J., ROMERO, P., DU BOULAY, B., ROBERTSON, J., REID, H. & HOWLAND,
K. 2007. ‘Authoring as acting: exploring embodied interaction in game authoring
environments for children: Full research report.’ Swindon: ESRC.

GOOGLE 2011. ‘Exploring computational thinking’ [Online]. Available:
http://www.google.com/edu/computational-thinking/index.html [Accessed 22/09/12].

GOSLING, D. 2007. ‘Micro-power relations between teachers and students using five
perspectives on teaching in higher education.’ [Online]. Available:
http://www.davidgosling.net/userfiles/micro%20power%20relations%20isl%202007.pdf
Accessed [10/08/14].

References

 272

GOVE, M. 2012a. Written ministerial statement by Michael Gove on Information and
Communication Technology (ICT). [Online]. Available:
https://www.gov.uk/government/speeches/written-ministerial-statement-by-michael-
gove-on-information-and-communication-technology-ict [Accessed 13/12/14].

GOVE, M. 2012b. Michael Gove speech at the BETT show 2012. [Online]. Available:
https://www.gov.uk/government/speeches/michael-gove-speech-at-the-bett-show-2012
[Accessed 13/12/14].

GOVENDER, I., GOVENDER, D., HAVENGA, M., MENTZ, E., BREED, B., DIGNUM,
F. & DIGNUM, V. 2014. ‘Increasing self-efficacy in learning to program: exploring the
benefits of explicit instruction for problem solving.’ The Journal for Transdisciplinary
Research in Southern Africa, 10 (1), 187-200.

GRANT, L. 2010. Developing the home-school relationship using digital technologies.
Futurelab.

GROSS, P., HERSTAND, M., HODGES, J. & KELLEHER, C. 2010. ‘A code reuse
interface for non-programmer middle school students.’ In: RICH, C., YANG, Q.,
CAVAZZA, M. & ZHOU, M. (eds.) Proceedings of the International Conference on
Intelligent User Interfaces. Hong Kong, 7-10 February. New York, USA: ACM. 219-228.

GROVER, S. 2011. ‘Robotics and engineering for middle and high school students to
develop computational thinking.’ Paper presented at the Annual Meeting of the
American Educational Research Association, New Orleans, USA, 7-11 April.

GUIMARAES, M. & MURRAY, M. 2008. ‘An exploratory overview of teaching computer
game development.’ Journal of Computing Sciences in Colleges, 24 (1), 144-149.

GUZDIAL, M. 2009. ‘Question everything: how we teach intro CS is wrong.’
Computing Education Blog [Online]. Available:
http://computinged.wordpress.com/2009/10/02/question-everything-how-we-teach-
intro-cs-is-wrong/ [Accessed 07/0714].

HABGOOD, J. 2006. ‘Compulsory game development for everyone.’ [Online].
Available:
http://www.gamasutra.com/view/news/101319/Education_Feature_Compulsory_Game
_Development.php. [Accessed 05/08/14].

HABGOOD, J., NIELSEN, N. & RIJKS, M. 2010. The game maker's companion. New
York, USA: Apress.

HABGOOD, J. 2013. Game Maker: Studio [PowerPoint presentation]. Windows 8 and
Windows Phone 8 Game Development in Education event. Birmingham City University,
England, 26 March. Available: http://www.hiddenlevel.com [Accessed 15/02/15].

HADJERROUIT, S. 2008. ‘Using a learner-centred approach to teach ICT in secondary
schools: an exploratory study.’ Issues in Informing Science and Information
Technology, 5, 233-259.

HAGUE, C. & WILLIAMSON, B. 2009. Digital participation, digital literacy, and school
subjects. Futurelab.

References

 273

HAMMOND, M. 2004. ‘The peculiarities of teaching Information and Communication
Technology as a subject: a study of trainee and new ICT teachers in secondary
schools.’ Technology, Pedagogy and Education, 13 (1), 29-42.

HAMMOND, M., YOUNIE, S., WOOLLARD, J., CARTWRIGHT, V. & BENZIE, D. 2009.
What does our past involvement with computers in education tell us? A view from the
research community. Coventry: Warwick University Press.

HAREL, I. 1991. Children designers: interdisciplinary constructions for learning and
knowing mathematics in a computer-rich school. Norwood, USA: Ablex.

HAREL, I. & PAPERT, S. (eds.) 1991a. Constructionism: research reports and essays
1985-1990. Norwood, USA: Ablex.

HAREL, I. & PAPERT, S. 1991b. ‘Software design as a learning environment.’ In:
HAREL, I. & PAPERT, S. (eds.) Constructionism. Norwood, USA: Ablex. 41-84.

HAREL CAPERTON, I. 2010. ‘Toward a theory of game media literacy: playing and
building as reading and writing.’ International Journal of Gaming and Computer-
Mediated Simulations, 2 (1), 1-16.

HAREL CAPERTON, I., SULLIVAN, S., OLIVER, A., LOWENSTEIN, D., BATTJER, M.,
ROSENFELT, R., LA PORTA, A., MINNIGERODE, L. & REYNOLDS, R. 2006.
Globaloria World Wide Workshop. [Online]. Available: http://www.globaloria.org/
[Accessed 19/07/13].

HARTEVELD, C., SMITH, G., CARMICHAEL, G., GEE, E. & STEWART-GARDINER,
C. 2014. ‘A design-focused analysis of games teaching computer science.’ Paper
presented at the Games, Learning and Society Conference. University of Wisconsin-
Madison, USA, 11-13 June.

HAWKINS, W. & HEDBERG, J. 1986. ‘Evaluating Logo: use of the SOLO taxonomy.’
Australian Journal of Educational Technology, 2 (2), 103-109.

HAY, K. & BARAB, S. 2001. ‘Constructivism in practice: a comparison and contrast of
apprenticeship and constructionist learning environments.’ The Journal of the Learning
Sciences, 10 (3), 281-322.

HAYES, E. & GAMES, I. 2008. ‘Making computer games and design thinking.’ Games
and Culture, 3 (3-4), 309-332.

HENDERSON, C., YERUSHALMI, E., KUO, V., HELLER, K. & HELLER, P. 2007.
‘Physics faculty beliefs and values about the teaching and learning of problem solving.
II. Procedures for measurement and analysis.’ Physical Review Special Topics:
Physics Education Research, 3 (2), 020110-1 – 020110-12.

HERNANDEZ, C., SILVA, L., SEGURA, R., SCHIMIGUEL, J., LEDON, M., BEZERRA,
L. & SILVEIRA, I. 2010. ‘Teaching programming principles through a game engine.’
CLEI Electronic Journal, 13 (2), 1-8.

HERRIG, B. 2013. ‘Get your head in the game: digital game-based learning with Game
Maker.’ In: BAEK, Y. & WHITTON, N. (eds.) Cases on digital game-based learning:
methods, models and strategies. Hershey, USA: IGI Global. 228-239.

References

 274

HOGANSON, K. 2010. ‘Teaching programming concepts with Game Maker.’ Journal of
Computing Sciences in Colleges, 26 (2), 181-188.

HOWLAND, J., LAFFEY, J. & ESPINOSA, L. 1997. ‘A computing experience to
motivate children to complex performances.’ Journal of Computing in Childhood
Education, 8 (4), 291-311.

HOWLAND, K., GOOD, J. & DU BOULAY, B. 2008. ‘A game creation tool which
supports the development of writing skills: interface design considerations.’
Proceedings of the 5th International Conference on Narrative and Interactive Learning
Environments. Edinburgh, Scotland, 5-8 August. Edinburgh: NILE. 23-29.

HOWLAND, K., GOOD, J., & DU BOULAY, B. 2013. ‘Narrative Threads: a tool to
support young people in creating their own narrative-based computer games.’ In: PAN,
Z., CHEOK, A., MULLER, W., IURGEL, I., PETTA, P., URBAN, B. (eds.) Transactions
on edutainment X: lecture notes on computer science Vol. 7775. Heidelberg, Germany:
Springer. 122-145.

HOWLAND, K., GOOD, J. & NICHOLSON, K. 2009. ‘Language-based support for
computational thinking.’ In: DELINE, R., MINAS, M. & ERWIG, M. (eds.) Proceedings
of the IEEE Symposium on Visual Languages and Human-Centric Computing.
Corvallis, USA, 20-24 September. Piscataway, USA: IEEE. 147-150.

HOWLAND, K., GOOD, J. & ROBERTSON, J. 2006. ‘Script Cards: a visual
programming language for games authoring by young people.’ In: GRUNDY, J. &
HOWSE, J. (eds.) Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing. Brighton, England, 4-8 September. Los Alamitos, USA:
IEEE. 181-186.

HWANG, G., HUNG, C. & CHEN, N. 2014. ‘Improving learning achievements,
motivations and problem-solving skills through a peer assessment-based game
development approach.’ Educational Technology Research and Development, 62 (2),
129-145.

HWANG, G. & WU, P. 2012. Advancements and trends in digital game-based learning
research: a review of publications in selected journals from 2001 to 2010. British
Journal of Educational Technology, 43 (1), E6-E10.

ICAA 2001. GCSE Information and Communication Technology specification (G43).
ICAA.

IMMERSIVE EDUCATION 2007. MissionMaker. [Computer program]. Immersive
Education.

JENKINS, T. 2002. ‘On the difficulty of learning to program.’ [Online]. Available:
http://www.psy.gla.ac.uk/~steve/localed/jenkins.html [Accessed 16/01/15].

JEWITT, C. 2008. The visual in learning and creativity: a review of the literature. Arts
Council England.

JONASSEN, D. 1996. Computers in the classroom: mindtools for critical thinking.
Columbus, USA: Merrill/Prentice Hall.

JONES, D. & WILSON, D. 2008. Pixel8 Game Maker tutorials. teach-ict.com Ltd.

References

 275

JUNG, J. & PARK, H. 2009. ‘Learning by doing via game making.’ In: GIBSON, D. &
BAEK, Y. (eds.) Digital simulations for improving education: learning though artificial
teaching environments. Hershey, USA: Information Science Reference. 394-406.

JUUL, J. 2003. ‘The game, the player, the world: looking for a heart of gameness.’ In:
COPIER, M. & RAESSENS, J. (eds.) Proceedings of Level Up: Digital Games
Research Conference. Utrecht, Netherlands, 4-6 November. Utrecht: Utrecht
University. 30-45.

KAFAI, Y. 1995. Minds in play: computer game design as a context for children’s
learning. Hillsdale, USA: Lawrence Erlbaum Associates.

KAFAI, Y. 1996. ‘Learning design by making games: children's development of design
strategies in the creation of a complex computational artifact.’ In: KAFAI, Y. &
RESNICK, M. (eds.) Constructionism in practice: designing, thinking and learning in a
digital world. Mahwah, USA: Lawrence Erlbaum Associates. 71-96.

KAFAI, Y. 1998. ‘Video game designs by girls and boys: variability and consistency of
gender differences.’ In: CASSELL, J. & JENKINS, H. (eds.) From Barbie to Mortal
Kombat: gender and computer games. Cambridge, USA: MIT Press. 90-117.

KAFAI, Y. 2001. ‘The educational potential of electronic games: from games-to-teach
to games-to-learn.’ Paper presented at Playing by the Rules: The Cultural Policy
Challenges of Video Games Conference. University of Chicago, USA, 26-27 October.

KAFAI, Y. 2006a. ‘Constructionism.’ In: SAWYER, R. (ed.) The Cambridge handbook
of the learning sciences. New York, USA: Cambridge University Press. 35-46.

KAFAI, Y. 2006b. ‘Playing and making games for learning: instructionist and
constructionist perspectives for game studies.’ Games and Culture, 1 (1), 36-40.

KAFAI, Y. & BURKE, Q. 2014. ‘Mindstorms 2: children, programming, and
computational participation.’ [Online]. Available:
http://constructionism2014.ifs.tuwien.ac.at/papers/2.6_3-8530.pdf [Accessed 15/02/15].

KAFAI, Y., BURKE, W. & FIELDS, D. 2009a. ‘What videogame making can teach us
about access and ethics in participatory culture.’ [Online]. Available:
http://www.digra.org/wp-content/uploads/digital-library/09287.14579.pdf [Accessed
16/01/15].

KAFAI, Y., CHING, C. & MARSHALL, S. 1997. ‘Children as designers of educational
multimedia software.’ Computers & Education, 29 (2-3), 117-126.

KAFAI, Y. & HAREL, I. 1991. ‘Learning through design and teaching: exploring social
and collaborative aspects of constructionism.’ In: HAREL, I. & PAPERT, S. (eds.)
Constructionism. Norwood, USA: Ablex. 85-106.

KAFAI, Y. & PEPPLER, K. 2011. ‘Youth, technology and DIY: developing participatory
competencies in creative media production.’ Review of Research in Education, 35 (1),
89-119.

KAFAI, Y. & PEPPLER, K. 2012. ‘Developing gaming fluencies with Scratch: realising
game design as an artistic process.’ In: STEINKUEHLER, C., SQUIRE, K. & BARAB,
S. (eds.) Games, learning and society. New York, USA: Cambridge University Press.
355-380.

References

 276

KAFAI, Y., PEPPLER, K. & CHAPMAN, R. (eds.) 2009b. The Computer Clubhouse:
constructionism and creativity in youth communities. New York, USA: Teachers
College Press.

KAFAI, Y. & RESNICK, M. (eds.) 1996a. Constructionism in practice: designing,
thinking and learning in a digital world. Mahwah, USA: Lawrence Erlbaum Associates.

KAFAI, Y. & RESNICK, M. 1996b. ‘Introduction.’ In: KAFAI, Y. & RESNICK, M. (eds.)
Constructionism in practice: designing, thinking and learning in a digital world.
Mahwah, USA: Lawrence Erlbaum Associates.

KANE, L., ANTON, G., BERGER, W., SHAPIRO, B. & SQUIRE, K. 2012. ‘Studio K: a
game design curriculum for computational thinking.’ [Online]. Available:
http://learning.wrexham.gov.uk/pluginfile.php/4024/mod_resource/content/0/Kodu_Curr
iculumDoc.pdf [Accessed 16/01/15].

KAZIMOGLU, C., KIERNAN, M., BACON, L. & MACKINNON, L. 2012. ‘A serious game
for developing computational thinking and learning introductory computer
programming.’ Procedia - Social & Behavioural Sciences, 47, 1991-1999.

KE, F. 2009. ‘A qualitative meta-analysis of computer games as learning tools.’ In:
FERDIG, R. (ed.) Handbook of research on effective electronic gaming in education.
Hershey, USA: IGI Global. 1-32.

KE, F. 2014. ‘An implementation of design-based learning through creating educational
computer games: a case study on mathematics learning during design and computing.’
Computers & Education, 73, 26-39.

KELLEHER, C. & PAUSCH, R. 2005. ‘Lowering the barriers to programming: a
taxonomy of programming enivironments and languages for novice programmers.’
ACM Computing Surveys, 37 (2), 83-137.

KELLEHER, C. & PAUSCH, R. 2007. ‘Using storytelling to motivate programming.’
Communications of the ACM, 50 (7), 58-64.

KEMP, P. 2014. Computing in the National Curriculum: a guide for secondary teachers.
CAS.

KENNEWELL, S. & MORGAN, A. 2006. ‘Factors influencing learning through play in
ICT settings.’ Computers and Education, 46 (3), 265-279.

KENNEWELL, S., TANNER, H., JONES, S. & BEAUCHAMP, G. 2007. ‘Analysing the
use of interactive technology to implement interactive teaching.’ Journal of Computer
Assisted Learning, 24 (1), 61-73.

KHAN ACADEMY 2012. ‘Computer programming’ [Online]. Available:
https://www.khanacademy.org/cs [Accessed 02/02/14].

KINNUNEN, P. & SIMON, B. 2012. ‘Phenomenography and grounded theory as
research methods in the computing education research field.’ Computer Science
Education, 22 (2), 199-218.

KIRK, O. 2006. ‘Study of a game engine for the Nintendo Game Boy Advance.’
Department of Computer Science, University of Copenhagen. [Online]. Available:
http://image.diku.dk/projects/media/kirk.06.pdf [Accessed 16/01/15].

References

 277

KIRRIEMUIR, J. & MCFARLANE, A. 2004. Literature review in games and learning.
Futurelab.

KIRSCHNER, P., SWELLER, J. & CLARK, R. 2006. ‘Why minimal guidance during
instruction does not work: an analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching.’ Educational Psychologist, 41
(2), 75-86.

KLOPFER, E., OSTERWEIL, S. & SALEN, K. 2009. Moving learning games forward:
obstacles, opportunities and openness. Cambridge, USA: The Education Arcade, MIT.

KOH, K., BASAWAPATNA, A., BENNETT, V. & REPENNING, A. 2010. ‘Towards the
automatic recognition of computational thinking for adaptive visual language learning.’
In: HUNDHAUSEN, C., PIETRIGA, E., DÍAZ, P. & ROSSON, M. (eds.) Proceedings of
the IEEE Symposium on Visual Languages and Human-Centric Computing. Madrid,
Spain, 21-25 September. Los Alamitos, USA: IEEE. 59-66.

KONZACK, L. 2002. ‘Computer game criticism: a method for computer game analysis.’
In: MAYRA, F. (ed.) Proceedings of the Computer Games and Digital Cultures
Conference. Tampere, Finland, 6-8 June. Tampere: Tampere University Press. 89-100.

KUATO 2013. Hakitzu. Kuato Studios. [Online]. Available: http://www.kuatostudios.com
[Accessed 13/09/14].

KURLAND, M., CLEMENT, C., MAWBY, R. & PEA, R. 1987. ‘Mapping the cognitive
demands of learning to program.’ In: PERKINS, D., LOCHEAD, J. & BISHOP, J. (eds.)
Thinking: progress in research and teaching. Hillsdale, USA: Lawrence Erlbaum. 333-
358.

KURUVADA, P., ASAMOAH, A., DALAL, N. & KAK, S. 2010a. ‘Learning computational
thinking from rapid digital game creation.’ Proceedings of the 2nd Annual Conference on
Theoretical and Applied Computer Science. Stillwater, USA, 5 November. Stillwater:
Oklahoma State University. 31-36.

KURUVADA, P., ASAMOAH, A., DALAL, N. & KAK, S. 2010b. ‘The use of rapid game
creation to learn computational thinking.’ [Online]. Available:
http://arxiv.org/ftp/arxiv/papers/1011/1011.4093.pdf [Accessed 16/01/15].

KUTNICK, P., SEBBA, J., BLATCHFORD, P., GALTON, M. & THORP, J. 2005. The
effects of pupil grouping: literature review. Research report RR688. Nottingham: DFES
Publications.

LARSEN MCCLARTY, K., ORR, A., FREY, P., DOLAN, R., VASSILEVA, V. & MCVAY,
A. 2012. A literature review of gaming in education. Pearson.

LAHTINEN, E., ALA-MUTKA, K. & JARVINEN, H. 2005. ‘A study of the difficulties of
novice programmers.’ In: CUNHA, J., FLEISCHMAN, W., PROULX, V. & LOURENCO,
J. (eds.) Proceedings of the 10th Conference on Innovation and Technology in
Computer Science Education. Caparica, Portugal, 26-29 June. New York, USA: ACM.
14-18.

LAVE, J. & WENGER, E. 1991. Situated learning: legitimate peripheral participation.
Cambridge: Cambridge University Press.

References

 278

LAVONEN, J., MEISALO, V., LATTU, M. & SUTINEN, E. 2003. ‘Concretising the
programming task: a case study in a secondary school.’ Computers & Education, 40
(2), 115-135.

LAWSON, M. 2010. ‘An investigation into the process of teacher assessment of ICT
capability in a sample of schools in the North West of England.’ EdD thesis, University
of Huddersfield, England.

LEAFLINE 2003. Digit Strategy: Unit 7.6 Ghost Train. Leafline.

LTS 2009. Curriculum for excellence. Technologies: experiences and outcomes.
Learning and Teaching Scotland.

LTS 2010. Games-based learning [Online]. Available:
http://www.ltscotland.org.uk/ictineducation/gamesbasedlearning/index.asp [Accessed
03/04/10].

LEWIS C. 2011. ‘Is pair programming more effective than other forms of collaboration
for young students?’ Computer Science Education, 21 (2), 105-134.

LI, Q. 2010. ‘Digital game building: learning in a participatory culture.’ Educational
Research, 52 (4), 427-443.

LIFELONG KINDERGARTEN GROUP 2013. Scratch website [Online]. Available:
http://scratch.mit.edu/ [Accessed 11/05/13].

LIM, E. & BINTI MD SABRI, M. 2013. ‘Learning history through computer game
authoring.’ Proceedings of the 8th International Conference on Computer Science &
Education. Colombo, Sri Lanka, 26-28 April. Los Alamitos, USA: IEEE. 746-750.

LIN, J., YEN, L., YANG, M. & CHEN, C. 2005. ‘Teaching computer programming in
elementary schools: a pilot study.’ Paper presented at the National Educational
Computing Conference. Philadelphia, USA, 27-30 June.

LISTER, R., SIMON, B., THOMPSON, E., WHALLEY, J. & PRASAD, C. 2006. ‘Not
seeing the forest for the trees: novice programmers and the SOLO taxonomy.’ In:
DAVOLI, R., GOLDWEBER, M. & SALOMONI, P. (eds.) Proceedings of the
Conference on Innovation and Technology in Computer Science Education. Bologna,
Italy, 26-28 June. New York, USA: ACM. 118-122.

LIU, C., CHENG, Y. & HUANG, C. 2011. ‘The effect of simulation games on the
learning of computational problem solving.’ Computers & Education, 57 (3), 1907-1918.

LIVINGSTONE, I. & HOPE, A. 2011. Next Gen: transforming the UK into the world’s
leading talent hub for the video games and visual effects industries. Nesta.

LOVELESS, A. & WEGERIF, R. 2004. ‘Unlocking creativity with ICT.’ In: FISHER, R. &
WILLIAMS, M. (eds.) Unlocking creativity: teaching across the curriculum. Abingdon:
David Fulton Publishers. 92-102.

LUCKIN, R. 2010. Re-designing learning contexts: technology-rich, learner-centred
ecologies. Abingdon: Routledge.

LUCKIN, R., BLIGH, B., MANCHES, A., AINSWORTH, S., CROOK, C. & NOSS, R.
2012. Decoding learning: the proof, promise and potential of digital education. Nesta.

References

 279

MACKLIN, C. 2010. Activate! [Online]. Available: http://www.activategames.org/
[Accessed 19/07/13].

MACKLIN, C. & SHARP, J. 2012. ‘‘Freakin’ hard’: game design and issue literacy.’ In:
STEINKUEHLER, C., SQUIRE, K. & BARAB, S. (eds.) Games, learning and society.
New York, USA: Cambridge University Press. 381-402.

MACLURE, M. 2006. ‘‘A demented form of the familiar’: postmodernism and
educational research.’ Journal of Philosophy of Education, 40 (2), 223-239.

MACROMEDIA 2004. Macromedia Fireworks MX 2004. [Computer program].
Macromedia.

MADILL, L. & SANFORD, K. 2009. ‘Video-game creation as a learning experience for
teachers and students.’ In: FERDIG, R. (ed.) Handbook of research on effective
electronic gaming in education. Hershey, USA: Information Science Reference. 1257-
1272.

MAGUIRE, P., MAGUIRE, R., HYLAND, P. & MARSHALL, P. 2014. ‘Enhancing
collaborative learning using pair programming: who benefits?’ All Ireland Journal of
Teaching and Learning in Higher Education, 6 (2), 1411-14125.

MALONEY, J., PEPPLER, K., KAFAI, Y., RESNICK, M. & RUSK, N. 2008.
‘Programming by choice: urban youth learning programming with Scratch.’ In:
DOUGHERTY, J., RODGER, S., FITZGERALD, S. & GUZDIAL, M. (eds.) Proceedings
of the 39th SIGCSE Technical Symposium on Computer Science Education. Portland,
USA,12-15 March. New York, USA: ACM. 367-371.

MCDOUGALL, A. & BOYLE, M. 2004. ‘Student strategies for learning computer
programming: implications for pedagogy in informatics.’ Education and Information
Technologies, 9 (2), 109-116.

MCINERNEY, C. 2010. ‘Having fun with computer programming and games: teacher
and student experiences.’ In: HROMKOVIC, J., KRALOVIC, R. & VAHRENHOLD, J.
(eds.) Proceedings of the 4th International Conference on Informatics in Secondary
Schools. Zurich, Switzerland, 13-15 January. Berlin, Germany: Springer. 136-142.

MEERBAUM-SALANT, O., ARMONI, M. & BEN-ARI, M. 2010. ‘Learning computer
science concepts with Scratch.’ In: CASPERSEN, M., CLANCY, M. & SANDERS, K.
(eds.) Proceedings of the International Computing Education Research Conference.
Aarhus, Denmark, 9-10 August. New York, USA: ACM. 69-76.

MEERBAUM-SALANT, O., ARMONI, M. & BEN-ARI, M. 2011. ‘Habits of programming
in Scratch.’ In: RÖßLING, G., NAPS, T. & SPANNAGEL, C. (eds.) Proceedings of the
Conference on Innovation and Technology in Computer Science Education. Darmstadt,
Germany, 27-29 June. New York, USA: ACM. 168-172.

MEIJERS, M. 2012. ICT Mindtools [Online]. Available: http://ictmindtools.net/
[Accessed 28/04/12].

MENDELSOHN, P., GREEN, T. & BRNA, P. 1990. ‘Programming languages in
education.’ In: HOC, J., GREEN, T., SAMURÇAY, R. & GILMORE, D. (eds.)
Psychology of programming. London: Academic Press Ltd. 175-200.

References

 280

MERCHANT, G., GILLEN, J., MARSH, J. & DAVIES, J. (eds.) 2013. Virtual literacies:
interactive spaces for children and young people. New York, USA: Routledge.

MERRIAM, S. 1998. Qualitative research and case study applications in education. 2nd
edition. San Fransisco, USA: Jossey-Bass.

MERRIAM, S. 2009. Qualitative research: a guide to design and implementation. San
Fransisco, USA: Jossey-Bass.

MICROSOFT RESEARCH 2009. Kodu. [Computer program]. Microsoft Research.

MILLWOOD, R. 2009. A short history off-line. Becta.

MINNIGERODE, L. & REYNOLDS, R. 2013. ‘Don’t give up: a case study on girls and
video game design.’ Learning Landscapes, 6 (2), 283-302.

MISHRA, P. & KOEHLER, M. 2006. ‘Technological pedagogical content knowledge: a
framework for teacher knowledge.’ Teachers’ College Record, 108 (6), 1017-1054.

MITCHELL, A. & SAVILL-SMITH, C. 2004. The use of computer and video games for
learning: a review of the literature. Learning and Skills Development Agency.

MOLINS-RUANO, P., SEVILLA, C., SANTINI, S., HAYA, P., RODRIGUEZ, P. &
SACHA, G. 2014. ‘Designing videogames to improve students’ motivation.’ Computers
in Human Behaviour, 31, 571-579.

MORGAN, A. & KENNEWELL, S. 2005. ‘The role of play in the pedagogy of ICT.’
Education and Information Technologies, 10 (3), 177-188.

MOZILLA 2013a. Maker Party [Online]. Available: https://webmaker.org/en-US/party
[Accessed 29/09/13].

MOZILLA 2013b. OpenBadges [Online]. Available: http://openbadges.org/ [Accessed
03/02/14].

MOZILLA 2013c. Webmaker [Online]. Mozilla. Available: https://webmaker.org/
[Accessed 27/08/13].

MURATET, M., TORGUET, P., VIALLET, F. & JESSEL, J. 2011. ‘Experimental
feedback on Prog&Play: a serious game for programming practice.’ Computer
Graphics Forum, 30 (1), 61-73.

MURNANE, J. 2010. Programming languages for beginners. Saarbrücken, Germany:
Lamber Academic Publishing.

MURNANE, J. & MCDOUGALL, A. 2006. ‘Bad computer science in beginners
programming courses: ‘considered harmful’? A case study of the Tufts graphical
programming language.’ In: WATSON, D. & BENZIE, D. (eds.) Proceedings of the IFIP
Joint Conference - Imagining the Future for ICT and Education. Alesund, Norway, 26-
30 June. Alesund: Alesund University College. 1-12.

NAACE 2012. Draft Naace curriculum framework: Information and Communication
Technology (ICT) Key Stage 3. NAACE.

References

 281

NATIONAL RESEARCH COUNCIL 2009. Report of a workshop on the scope and
nature of computational thinking. National Research Council.

NATVIG, L. & LINE, S. 2004. ‘Age of Computers: game-based teaching of computer
fundamentals.’ In: BOYLE, R., CLARK, M. & KUMAR, A. (eds.) Proceedings of the
Conference on Innovation and Technology in Computer Science Education. Leeds,
England, 28-30 June. New York, USA: ACM. 107-111.

NAVARRETE, C. & MINNIGERODE, L. 2013. ‘Exploring 21st century learning: game
design and creation, the students’ experience.’ [Online]. Available:
http://www.worldwideworkshop.org/pdfs/Globaloria_UTAustinResearch_Sept2013.pdf
[Accessed 09/08/14].

NELSON, M. 2001. Robocode. [Computer game]. SourceForge.

NESTA 2012. Digital Makers programme [Online]. Available:
http://www.nesta.org.uk/areas_of_work/public_services_lab/digital_education/assets/fe
atures/digital_makers [Accessed 22/11/12].

NESTA, NOMINET TRUST & MOZILLA 2013. Make things do stuff [Online]. Available:
http://makethingsdostuff.co.uk/ [Accessed 30/09/13].

NESTA 2014. ‘How can teachers prepare for the new computing curriculum?’ [Online].
Available: http://www.nesta.org.uk/blog/how-can-teachers-prepare-new-computing-
curriculum [Accessed 29/07/14].

NORMAN, D. 1983. ‘Some observations on mental models.’ In: GENTNER, D. &
STEVENS, A. (eds.) Mental models. Hillsdale, USA: Lawrence Erlbaum Associates. 7-
14.

NORTHCOTT, B. & MILISZEWSKA, I. 2008. ‘Facilitating creativity in vocational
computer game development courses: the role of technology and pedagogy.’ In:
USKOV, V. (ed.) Proceedings of the 11th International Conference on Computers and
Advanced Technology in Education. Crete, Greece, 29 September-1 October. Calgary,
Canada: Acta Press. 402-407.

NOSS, R., COX, R., LAURILLARD, D., LUCKIN, R., PLOWMAN, L., SCANLON, E. &
SHARPLES, M. 2012. System upgrade: realising the vision for UK education. London
Knowledge Lab.

O'MARA, J. & RICHARDS, J. 2012. ‘A blank slate: using Game Maker to create
computer games.’ In: BEAVIS, C., O'MARA, J. & MCNEICE, L. (eds.) Digital games:
literacy in action. Kent Town, Australia: Wakefield Press. 57-64.

O'NEIL, H., WAINESS, R. & BAKER, E. 2005. ‘Classification of learning outcomes:
evidence from the computer games literature.’ The Curriculum Journal, 16 (4), 455 –
474.

OCR 2006. GCSE ICT Paper 1 (Foundation Tier). OCR.

OCR 2009a. GCSE ICT Unit B065: Coding a solution - specimen controlled
assessment material. OCR.

OCR 2009b. GCSE ICT specification. OCR.

References

 282

OCR 2010. GCSE in Computing specification. OCR.

OCR 2011. GCSE in Computing specification. 2nd edition. OCR.

OCR 2012a. Cambridge National Certificate in ICT Unit R008: Introduction to computer
programming - model assignment assessment material. OCR.

OCR 2012b. OCR GCSE ICT Unit B064: Creative use of ICT - controlled assessment
task - candidate style answers. OCR.

OCR 2013. Unit B064 Creative use of ICT - unit recording sheet. OCR.

OFCOM 2013. Children and parents: media use and attitudes report. Ofcom.

OFSTED 2008. Using data, improving schools. OFSTED.

OFSTED 2009. The importance of ICT: Information and Communication Technology in
primary and secondary schools, 2005-2008. OFSTED.

OFSTED 2011. ICT in schools 2008-11. OFSTED.

OSTROVSKY, I. 2009. Robozzle. [Computer game]. Available:
http://www.robozzle.com [Accessed 08/02/15].

OVERMARS, M. 2003. Game Maker Community forum [Online]. Available:
http://gmc.yoyogames.com/ [Accessed 14/07/12].

OVERMARS, M. 2004. ‘Teaching computer science through game design.’ Computer,
37 (4), 81-83.

OVERMARS, M. 2015. Email to Claire Johnson, 22 February.

OWSTON, R., WIDEMAN, H., RONDA, N. & BROWN, C. 2009. ‘Computer game
development as a literacy activity.’ Computers & Education, 53 (2), 977-989.

PAPASTERGIOU, M. 2009. ‘Digital game-based learning in high school Computer
Science education: impact on educational effectiveness and student motivation.’
Computers & Education, 52 (1), 1-12.

PAPERT, S. 1970. ‘Teaching children thinking.’ In: SCHEEPMAKER, B. & ZINN, K.
(eds.) Proceedings of the IFIP World Congress on Computers and Education.
Amsterdam, 24-28 August. Groningen, Netherlands: Wolters Noordhoff. 73-78.

PAPERT, S. 1980a. ‘Computer-based microworlds as incubators for powerful ideas.’
In: TAYLOR, R. (ed.) The computer in the school: tutor, tool, tutee. New York, USA:
Teachers College Press. 203-210.

PAPERT, S. 1980b. Mindstorms - children, computers, and powerful ideas. New York,
USA: Basic Books.

PAPERT, S. 1980c. ‘Teaching children thinking.’ In: TAYLOR, R. (ed.) The computer in
the school: tutor, tool, tutee. New York, USA: Teachers College Press. 161-176.

PAPERT, S. 1980s. ‘Constructionism vs instructionism.’ [Online]. Available:
http://www.papert.org/articles/const_inst/const_inst1.html [Accessed 26/09/11].

References

 283

PAPERT, S. 1984. ‘Computer as mudpie.’ Classroom Computer Learning, 4 (6), 36-38.

PAPERT, S. 1986. ‘Constructionism: a new opportunity for elementary science
education.’ Proposal to the National Science Foundation. MIT Media Lab.

PAPERT, S. 1990a. ‘A critique of technocentrism in thinking about the school of the
future.’ Epistemology and Learning memo no. 2. MIT Media Lab.

PAPERT, S. 1990b. ‘Introduction.’ In: HAREL, I. (ed.) Constructionist learning: a fifith
anniversary collection of papers reflecting research reports, projects in progress, and
essays by the Epistemology & Learning Group. MIT Media Lab. 7-15.

PAPERT, S. 1991a. ‘Forward.’ In: HAREL, I. Children designers: interdisciplinary
constructions for learning and knowing mathematics in a computer-rich school.
Norwood, USA: Ablex Publishing Corporation. xi-xiii.

PAPERT, S. 1991b. ‘Situating constructionism.’ In: HAREL, I. & PAPERT, S. (eds.)
Constructionism. Norwood, USA: Ablex Publishing Corporation. 1-11.

PAPERT, S. 1993. The children's machine: rethinking school in the age of the
computer. New York, USA: Basic Books.

PAPERT, S. 1994. ‘Keynote speech.’ Technology & Learning Conference. Dallas,
USA, 28 October. National School Boards Association.

PAPERT, S. 1996a. The connected family: bridging the digital generation gap.
Marietta, USA: Longstreet Press.

PAPERT, S. 1996b. ‘An exploration in the space of mathematics educations.’
International Journal of Computers for Mathematical Learning, 1 (1), 95-123.

PAPERT, S. 1997. ‘Educational computing: how are we doing?’ Technological
Horizons in Education, 24 (11), 78-80.

PAPERT, S. 1998a. ‘Child power: keys to the new learning of the digital century.’ Colin
Cherry memorial lecture on communication. Imperial College, London, 2 June.

PAPERT, S. 1998b. ‘Does easy do it? Children, games, and learning.’ Game
Developer, 5 (6), 87-88.

PAPERT, S. 1999a. ‘Eight big ideas behind the Constructionist Learning Lab.’ [Online].
Available: http://stager.org/articles/8bigideas.pdf [Accessed 16/01/15].

PAPERT, S. 1999b. ‘Introduction: What is Logo and who needs it?’ In: FONSECA, C.,
KOZBERG, G., TEMPEL, M., SOPRUNOV, S., YAKOVLEVA, E., REGGINI, H.,
RICHARDSON, J., ALMEIDA, M. & CAVALLO, D. (eds.) Logo implementation and
philosophy. LCSI. iv-xvi.

PAPERT, S. 2001. ‘Project-based learning.’ [Online]. Available:
http://www.edutopia.org/seymour-papert-project-based-learning#graph4. [Accessed
11/08/14].

PAPERT, S. 2002. ‘How to make writing ‘hard fun’.’ Bangor Daily News, 24/06/2002.

PAPERT, S., BOBROW, D. & FEURZEIG, W. 1967. Logo. [Computer program]. MIT.

References

 284

PAPERT, S. & SOLOMON, C. 1971. Twenty things to do with a computer: Logo memo
no. 3. MIT ArtificiaI Intelligence Laboratory.

PARSONS, D. & HADEN, P. 2007. ‘Programming osmosis: knowledge transfer from
imperative to visual programming environments.’ In: MANN, S. & BRIDGEMAN, N.
(eds.) Proceedings of the 20th Annual Conference of the National Advisory Committee
on Computing Qualifications. Nelson, New Zealand, 8-11 July. Hamilton, New Zealand:
NACCQ. 209-215.

PASSEY, D. 2012. Independent evaluation of the Little Big Planet 2 project in
Wolverhampton’s local education partnership schools: outcomes and impacts - final
report. Lancaster: Lancaster University.

PAYTON, S. & HAGUE, C. 2010. Digital literacy professional development resource.
Futurelab.

PEA, R. 1983. ‘Logo programming and problem solving.’ Proceedings of the AERA
Symposium - Chameleon in the Classroom: Developing Roles for Computers.
Montreal, Canada, 11-15 April. New York, USA: Bank Street College of Education. 25-
33.

PEA, R. & KURLAND, M. 1984. ‘On the cognitive effects of learning computer
programming.’ New Ideas in Psychology, 2 (2), 137-168.

PEA, R. 1986. ‘Language-independent conceptual “bugs” in novice programming.’
Journal of Educational Computing Research, 2 (1) 25-36.

PELLETIER, C. 2005. ‘Studying games in school: a framework for media education.’
[Online]. Available: http://www.digra.org/wp-content/uploads/digital-
library/06278.32248.pdf [Accessed 16/01/15].

PELLETIER, C. 2007. Making Games: developing games authoring software for
educational and creative use: full research report. ESRC end of award report RES-328-
25-0001. Swindon: ESRC.

PELLETIER, C., BURN, A. & BUCKINGHAM, D. 2010. ‘Game design as textual
poaching: media literacy, creativity and game-making.’ E-Learning and Digital Media, 7
(1), 90-107.

PEPPLER, K. & KAFAI, Y. 2005. ‘Creative coding: programming for personal
expression.’ [Online]. Available: http://download.scratch.mit.edu/CreativeCoding.pdf
[Accessed 16/01/15].

PEPPLER, K. & KAFAI, Y. 2007a. ‘What video game making can teach us about
literacy and learning: alternative pathways into participatory culture.’ In: AKIRA, B. (ed.)
Proceedings of the 3rd International Conference of the Digital Games Research
Association. Tokyo, Japan, 24-28 September. Tokyo: University of Tokyo. 369-376.

PEPPLER, K. & KAFAI, Y. 2007b. ‘From SuperGoo to Scratch: exploring creative
digital media production in informal learning.’ Learning, Media and Technology, 32 (2),
149-166.

PEPPLER, K. & KAFAI, Y. 2010. ‘Gaming fluencies: pathways into a participatory
culture in a community design studio.’ International Journal of Learning and Media, 1
(4), 1-14.

References

 285

PERKINS, D., HANCOCK, C., HOBBS, R. MARTIN, F. & SIMMONS, R. 1986.
‘Conditions of learning in novice programmers.’ In: SOLOWAY, E. & SPOHRER, J.
(eds.) 1989. Studying the novice programmer. Hillsdale, USA: Lawrence Erlbaum
Associates. 261-279.

PERKOVIĆ, L., SETTLE, A., HWANG, S. & JONES, J. 2010. ‘A framework for
computational thinking across the curriculum.’ In: AYFER, R., IMPAGLIAZZO, J. &
LAXER, C. (eds.) Proceedings of the 15th Annual Conference on Innovation and
Technology in Computer Science Education. Ankara, Turkey, 28-30 June. New York,
USA: ACM. 123-127.

PEROTTA, C., FEATHERSTONE, G., ASTON, H. & HOUGHTON, E. 2013. Game-
based learning: latest evidence and future directions. NFER.

PEYTON JONES, S. 2010. Computing at school: the state of the nation. CAS.

PEYTON JONES, S., HERBERT, A., BISHOP, C., BOND, K., LANGFIELD, S. &
HUMPHREYS, S. 2007. Computing at school - white paper. CAS.

PIAGET, J. 1972. The principles of genetic epistemology. London: Routledge & Kegan
Paul.

PIAGET, J. 1973. To understand is to invent: the future of education. New York, USA:
Viking Press.

PIAGET, J. & INHELDER, B. 1969. The psychology of the child. London: Routledge &
Kegan Paul.

PIVEC, M. (ed.) 2009. Proceedings of the 3rd European Conference on Games Based
Learning. Graz, Austria, 12-13 October. Reading: Academic Publishing Limited.

PIVEC, M. & PIVEC, P. 2008. ‘Games in schools: executive summary.’ [Online].
Available: http://www.paulpivec.com/Games_in_Schools.pdf [Accessed 16/01/15].

PRENSKY, M. 2001. Digital game-based learning. New York, USA: McGraw-Hill.

PRENSKY, M. 2002. ‘What kids learn that’s positive from playing games.’ [Online].
Available: http://www.marcprensky.com/writing/Prensky%20-
%20What%20Kids%20Learn%20Thats%20POSITIVE%20From%20Playing%20Video
%20Games.pdf [Accessed 16/01/15].

PRENSKY, M. 2008. ‘Students as designers and creators of educational computer
games: who else?’ British Journal of Educational Technology, 39 (6), 1004-1019.

PRITCHARD, A. & WOOLLARD, J. 2010. Psychology for the classroom: constructivism
and social learning. Abingdon: Routledge.

PROPP, V. 1968. Morphology of the folktale. 2nd edition. Austin, USA: University of
Texas Press.

QCA 2000. ICT at Key Stage 3: scheme of work units 1-15. QCA.

QCA 2007a. A framework for personal learning and thinking skills. QCA.

QCA 2007b. ICT: programme of study for Key Stage 3. QCA.

References

 286

QCA 2009. Cross curriculum dimensions: a planning guide for schools. QCA.

QCA/NAA 2008. ICT Key Stage 3: sequencing instructions task support. QCA.

QCA/RM 2003. Key Stage 3 ICT test. QCA.

QSR INTERNATIONAL 2008. NVivo 8. [Computer program]. QSR International Pty
Ltd.

REEVES, B. 2008. ICT Interact for KS3: pupil’s book 3. London: Hodder Education.

REPENNING, A. & IOANNIDOU, A. 2008. ‘Broadening participation through scalable
game design.’ In: DOUGHERTY, J., RODGER, S., FITZGERALD, S. & GUZDIAL, M.
(eds.) Proceedings of the 39th SIGCSE Technical Symposium on Computer Science
Education. Portland, USA, 12-15 March. New York, USA: ACM. 305-309.

REPENNING, A., WEBB, D. & IOANNIDOU, A. 2010. ‘Scalable game design and the
development of a checklist for getting computational thinking into public schools.’ In:
LEWANDOWSKI, G., WOLFMAN, S., CORTINA, T. & LOWENFELD WALKER, E.
(eds.) Proceedings of the 41st SIGCSE Technical Symposium on Computer Science
Education. Milwaukee, USA, 10-13 March. New York, USA: ACM. 265-269.

RESNICK, M., FLANAGAN, M., KELLEHER, C., MACLAURIN, M., OHSHIMA, Y.,
PERLIN, K. & TORRES, R. 2009a. ‘Growing up programming: democratising the
creation of dynamic, interactive media.’ Proceedings of the Conference on Computer
Human Interaction: Extended Abstracts on Human Factors in Computing Systems.
Boston, USA, 4-9 April. New York, USA: ACM. 3293-3296.

RESNICK, M., MALONEY, J., MONROY-HERNANDEZ, A., RUSK, N., EASTMOND,
E., BRENNAN, K., MILLNER, A., ROSENBAUM, E., SILVER, J., SILVERMAN, B. &
KAFAI, Y. 2009b. ‘Scratch: programming for all.’ Communications of the ACM, 52 (11),
60-67.

RESNICK, M., MALONEY, J., RUSK, N., EASTMOND, E., MILLNER, A., SILVER, J.,
ROSENBAUM, E., BRENNAN, K. & MONROY-HERNÁNDEZ, A. 2003. Scratch.
[Computer program]. MIT Media Lab, Lifelong Kindergarten Group.

REYNOLDS, R., SCIALDONE, M. & CAPERTON, I. 2010. ‘Evidence of high school
students’ development of contemporary learning abilities in a game design program in
rural West Virginia: Globaloria student case study series, pilot year 2.’ [Online].
Available:
http://www.worldwideworkshop.org/pdfs/Globaloria_Year2_RTC_CaseStudyReport_2_
16.pdf [Accessed 16/01/15].

RIEBER, L. 2005. ‘Mulitimedia learning in games, simulations and microworlds.’ In:
MAYER, R. (ed.) The Cambridge handbook of multimedia learning. New York, USA:
Cambridge University Press. 549-568.

RIEL, M. 1998. ‘Education in the 21st Century: Just-in-time learning or learning
communities.’ Paper presented at the 4th Annual Conference of the ECSSR:
Challenges of the Next Millennium - Education & Development of Human Resources.
Abu Dhabi, UAE, 24-26 May.

References

 287

ROBERTSON, D. 2009. ‘The Games in School community of practice.’ [Online].
Available: http://games.eun.org/2009/06/the_games_in_school_community_1.html.
[Accessed 06/08/14].

ROBERTSON, J. 2004. ‘An analysis of the narrative features of computer games
authored by children.’ In: BRNA, P. (ed.) Proceedings of the International Conference
for Narrative and Interactive Learning Environments. Edinburgh, Scotland, 6-9 August.
Edinburgh: AACE. 33-41.

ROBERTSON, J. 2012. ‘Making games in the classroom: benefits and gender
concerns.’ Computers & Education, 59 (2), 385-398.

ROBERTSON, J. 2013. ‘The influence of a game-making project on male and female
learners’ attitudes to computing.’ Computer Science Education, 23 (1), 58-83.

ROBERTSON, J. & GOOD, J. 2004. ‘Children's narrative development through
computer game authoring.’ TechTrends, 49 (5), 43-59.

ROBERTSON, J. & GOOD, J. 2005. ‘Story creation in virtual game worlds.’
Communications of the ACM, 48 (1), 61-65.

ROBERTSON, J. & GOOD, J. 2006. ‘Supporting the development of interactive
storytelling skills in teenagers.’ In: PAN, Z., AYLETT, R., DIENER, H., JIN, X., GÖBEL,
S. & LI, L. (eds.) Technologies for e-learning and Digital Entertainment: Lecture Notes
in Computer Science, Vol. 3942. Berlin, Germany: Springer. 348-357.

ROBERTSON, J. & HOWELLS, C. 2008. ‘Computer game design: opportunities for
successful learning.’ Computers & Education, 50 (2), 559-578.

ROBERTSON, J. & NICHOLSON, K. 2007. ‘Adventure Author: a learning environment
to support creative design.’ In: SKOV, M. (ed.) Proceedings of the 6th International
Conference on Interaction Design and Children. Aalborg, Denmark, 6-8 June. New
York, USA: ACM. 37-44.

ROBINS, A., ROUNTREE, J. & ROUNTREE, N. 2003. ‘Learning and teaching
programming: a review and discussion.’ Computer Science Education, 13 (2), 137-172.

RODRÍGUEZ, F., KERBY, N. & BOYER, K. 2013. ‘Informing the design of a game-
based learning environment for Computer Science: a pilot study on engagement and
collaborative dialogue.’ In: WALKER, E. & LOOI, C. (eds.) Proceedings of the
Workshops at the 16th International Conference on Artificial Intelligence in Education.
Vol. 9. Memphis, USA, 9-13 July. CEUR-WS.org. 30-39.

RUSK, N. 2009. Scratch cards. [Online]. Available: http://scratch.mit.edu/help/cards/
[Accessed 16/01/15].

RYLANDS, T. 2007. More on Myst [Online]. Available:
http://www.timrylands.com/more-on-myst/ [Accessed 01/09/13].

SAELI, M., PERRENET, J., JOCHEMS, W. & ZWANEVELD, B. 2011. ‘Teaching
programming in secondary school: a pedagogical content knowledge perspective.’
Informatics in Education, 10 (1), 73-88.

References

 288

SAELI, M., PERRENET, J., JOCHEMS, W. & ZWANEVELD, B. 2012. ‘Programming:
teachers and pedagogical content knowledge in the Netherlands.’ Informatics in
Education, 11 (1), 81-114.

SAINES, G., ERICKSON, S. & WINTER, N. 2013. CodeCombat [Online]. Available:
http://codecombat.com/ [Accessed 28/08/14].

SALDANA, J. 2011. The coding manual for qualitative researchers. London: Sage
Publications Ltd.

SALEN, K. 2007. ‘Gaming literacies: a game design study in action.’ Journal of
Educational Multimedia and Hypermedia, 16 (3), 301-22.

SALEN, K., TORRES, R., WOLOZIN, L., RUFO-TEPPER, R. & SHAPIRO, A. 2011.
Quest to Learn: developing the school for digital kids. Cambridge, USA: The MIT
Press.

SANDFORD, R., ULICSAK, M., FACER, K. & RUDD, T. 2006. Teaching with games:
using commercial off-the-shelf computer games in formal education. Futurelab.

SANDFORD, R. & WILLIAMSON, B. 2005. Games and learning. Futurelab.

SANFORD, K. & MADILL, L. 2007a. ‘Recognising new literacies: teachers and
students negotiating the creation of video games in school.’ Proceedings of the Digital
Games Research Association Conference. Tokyo, Japan, 24-28 September. DiGRA.
583-589.

SANFORD, K. & MADILL, L. 2007b. ‘Understanding the power of new literacies
through video game play and design.’ Canadian Journal of Education, 30 (2), 432-455.

SARGENT, R., RESNICK, M., MARTIN, F. & SILVERMAN, B. 1996. ‘Building and
learning with programmable bricks.’ In: KAFAI, Y. & RESNICK, M. (eds.)
Constructionism in practice: designing, thinking and learning in a digital world.
Mahwah, USA: Lawrence Erlbaum Associates. 161-173.

SCAA 1995. Key Stage 3 Information Technology - the new requirements. SCAA.

SCHELHOWE, H. 2007. Technologie, imagination und lernen: grundlagen für
bildungsprozesse mit digitalen medien. Münster, Germany: Waxmann.

SCHELHOWE, H. 2010. ‘Using construction kits: just learning how to program a
computer - or is there more educational benefit?’ Paper presented at the Digital Media
and Learning Conference, La Jolla, USA, 18-20 February.

SCHMIDT, E. 2011. ‘Television and the internet: shared opportunity.’ James
MacTaggart memorial lecture. [Online]. Available:
www.geitf.co.uk/sites/default/files/geitf/GEITF_MacTaggart_2011_Eric_Schmidt.pdf
[Accessed 16/01/15].

SCHMITZ, B., CZAUDERNA, A., KLEMKE, R. & SPECHT, M. 2011. ‘Game based
learning for computer science education.’ In: VAN DER VEER, G., SLOEP, P. & VAN
EEKELEN, M. (eds). Proceedings of the Computer Science Education Research
Conference. Heerlen, Netherlands, 7-8 April. Heerlen: Open Universiteit. 81-86.

References

 289

SCOTT, J. 2011. Starting from Scratch - an introduction to computing science. The
Royal Society of Edinburgh.

SCRATCHED 2009. ScratchEd [Online]. Available: http://scratched.gse.harvard.edu/
Accessed [07/09/2014]

SEEHORN, D., CAREY, S., FUSCHETTO, B., LEE, I., MOIX, D., O'GRADY-CUNNIFF,
D., BOUCHER OWENS, B., STEPHENSON, C. & VERNO, A. 2011. CSTA K-12
Computer Science standards. ACM.

SEFTON-GREEN, J. 2013. Mapping digital makers: a review exploring everyday
creativity, learning lives and the digital. Nominet Trust.

SELBY, C. 2013. ‘Computational thinking: the developing definition.’ Paper presented
at the Conference on Innovation and Technology in Computer Science Education.
Canterbury, England, 1-3 July.

SHACKLETON, P., O'CONNOR, M. & TATNALL, A. 1997. ‘Visual programming
environments in information systems curricula.’ In: SUTTON, D. (ed.) Proceedings of
the Australasian Conference on Information Systems. Adelaide, Australia, 29
September-2 October. Adelaide: University of South Australia. 1-12.

SHAW, E., BOEHM, Z., PENWALA, H. & KIM, J. 2012. ‘GameMath! Embedding
secondary mathematics into a game making curriculum.’ Proceedings of the American
Society of Engineering Education Conference. San Antonio, USA, 10-13 June.
Washington, USA: ASEE. 5045-5057.

SHEARD, J., CARBONE, A., LISTER, R., SIMON, B., THOMPSON, E. & WHALLEY, J.
2008. ‘Going SOLO to assess novice programmers.’ In: AMILLO, J., LAXER, C.,
MENASALVAS RUIZ, E. & YOUNG, A. (eds.) Proceedings of the Conference on
Innovation and Technology in Computer Science Education. Madrid, Spain, 30 June-2
July. New York, USA: ACM. 209-213.

SHEARD, J., SIMON, S., HAMILTON, M. & LONNBERG, J. 2009. ‘Analysis of
research into the teaching and learning of programming.’ In: CLANCY, M.,
CASPERSEN, M. & LISTER, R. (eds.) Proceedings of the International Computing
Education Research Workshop. Berkeley, USA, 10-11 August. New York, USA: ACM.
93-104.

SILVERMAN, D. 2011. Interpeting qualitative data: a guide to the principles of
qualitative research. 4th edition. London: Sage.

SILVERMAN, D. 2013. Doing qualitative research. 4th edition. Los Angeles, USA:
Sage.

SIMON, B. & CUTTS, Q. 2012. ‘Peer instruction: a teaching method to foster deep
understanding.’ Communications of the ACM, 55 (2), 27-29.

SMITH, D. 2000. ‘Building personal tools by programming.’ Communications of the
ACM, 43 (8), 92-95.

SMITH, G. & GRANT, B. 2000. ‘From players to programmers: a computer game
design class for middle-school children.’ Journal of Educational Technology Systems,
28 (3), 263-275.

References

 290

SMITH, G. & SULLIVAN, A. 2012. ‘The five year evolution of a game programming
course.’ In: SMITH KING, L., MUSICANT, D., CAMP, T. & TYMANN, P. (eds.)
Proceedings of the 43rd Technical Symposium on Computer Science Education.
Raleigh, USA, 29 February-3 March. New York, USA: ACM. 87-92.

SOLOWAY, E. & SPOHRER, J. (eds.) 1989. Studying the novice programmer.
Hillsdale, USA: Lawrence Erlbaum Associates.

SPOHRER, J. & SOLOWAY, E. 1989. ‘Novice mistakes: are the folk wisdoms correct?’
In: SOLOWAY, E. & SPOHRER, J. (eds.) Studying the novice programmer. Hillsdale,
USA: Lawrence Erlbaum Associates. 401-416.

STAHL, G., KOSCHMANN, T. & SUTHERS, D. 2006. ‘Computer-supported
collaborative learning.’ In SAWYER, R. (ed.) The Cambridge handbook of the learning
sciences. New York, USA: Cambridge University Press. 409-425.

SQUIRE, K. 2004. Replaying history: learning world history through playing Civilization
III. PhD thesis, University of Indiana, USA.

SQUIRE, K. 2005. ‘Changing the game: what happens when video games enter the
classroom?’ [Online]. Available: http://www.editlib.org/p/107270/ [Accessed 16/01/15].

STAGER, G. 2007. An investigation of constructionism in the Maine Youth Center. PhD
thesis, University of Melbourne, Australia.

STAGER, G. 2008. ‘A new paradigm for evaluating the learning potential of an ed tech
activity.’ Proceedings of the Australian Computers in Education Conference. Canberra,
Australia, 29 September-2 October. Lesmurdie, Australia: ACCE. 467-479.

STEWART-GARDINER, C., CARMICHAEL, G., LATHAM, J., LOZANO, N. &
GREENE, J. 2013. ‘Influencing middle school girls to study computer science through
educational computer games.’ Journal of Computing Sciences in Colleges, 28 (6), 90-
97.

STEVENSON, D. 1997. Information and Communications Technology in UK schools:
an independent inquiry. Independent ICT in Schools Commission.

STILLER, E. 2009. ‘Teaching programming using bricolage.’ Journal of Computing
Sciences in Colleges, 24 (6), 35-42.

STOKES, K. 2014. ‘Who are the UK’s young digital makers?’ [Online] Available:
http://www.nesta.org.uk/blog/who-are-uk%E2%80%99s-young-digital-makers.
[Accessed 23/06/14].

STOLEE, K. & FRISTOE, T. 2011. ‘Expressing computer science concepts through
Kodu Game Lab.’ In: CORTINA, T., LOWENFELD WALKER, E., SMITH KING, L. &
MUSICANT, D. (eds.) Proceedings of the 42nd Technical Symposium on Computer
Science Education. Dallas, USA, 9-12 March. New York, USA: ACM. 99-104.

SWACHA, J., SKRZYSZEWSKI, A. & SYSLO, W. 2010. ‘Computer game design
classes: the students’ and professionals’ perspectives.’ Informatics in Education, 9 (2),
249-60.

SWELLER, J. 1994. ‘Cognitive load theory, learning difficulty, and instructional design.’
Learning and Instruction, 4 (4), 295-312.

References

 291

TEAGUE, D. 2014. ‘Neo-Piagetian theory and the novice programmer.’ In: DU
BOULAY, B. & GOOD, J. (eds.) Proceedings of the 25th Psychology of Programming
Annual Conference. Brighton, England, 25-27 June. Brighton: University of Sussex.
203-206.

TES 2014. ICT and Computing forum [Online]. Available:
http://community.tes.co.uk/tes_ict_and_computing/f/22.aspx [Accessed 07/09/14].

TESK, P. & FRISTOE, T. 2010. ‘‘Let the players play!’ & other earnest remarks about
videogame authorship.’ In: GOMEZ, K., LYONS, L. & RADINSKY, J. (eds.)
Proceedings of the 9th International Conference of the Learning Sciences. Chicago, 29
June-2 July. Chicago, USA: ISLS. 166-173.

TESLER, L., SMITH, D. & CYPHER, A. 1997. Stagecast Creator. [Computer program].
Stagecast.

THE LEAD PROJECT 2012. Super Scratch programming adventure. San Fransisco,
USA: No Starch Press.

THOMAS, P. & MARTIN, E. 2008. ‘Using a phenomenographic approach in evaluating
hypermedia stories.’ Computers & Education, 50 (2), 613-626.

THOMPSON, E. 2007. ‘Holistic assessment criteria - applying SOLO to programming
projects.’ In: MANN, S. & SIMON (eds.) Proceedings of the 9th Australasian Computing
Education Conference. Victoria, Australia, 30 January-2 February. Darlinghurst,
Australia: Australian Computer Society. 155-162.

THOMPSON, E., LUXTON-REILLY, A., WHALLEY, J., HU, M. & ROBBINS, P. 2008.
‘Bloom's taxonomy for computer science assessment.’ In: HAMILTON, S. &
HAMILTON, M. (eds.) Proceedings of the 10th Australasian Computing Education
Conference. Wollongong, Australia, 22-25 January. Darlinghurst, Australia: Australian
Computer Society. 155-161.

TIONG, K. & YONG, S. 2008. ‘Learning through computer game design: possible
success (or failure) factors.’ In: CHAN, T., BISWAS, G., CHEN, F., CHEN, S., CHOU,
C., JACOBSON M., KINSHUK, R. et al. (eds.) Proceedings of the 16th International
Conference on Computers in Education. Tapei, Taiwan, 27-31 October. Jhongli City,
Taiwan: Asia-Pacific Society for Computers in Education. 947- 951.

TOBIAS, S. & FLETCHER, J. (eds.) 2011. Computer games and instruction. Charlotte,
USA: Information Age Publishing Inc.

TUCKER, A. 2006. A model curriculum for K-12 computer science: final report of the
ACM K-12 task force curriculum committee. 2nd edition. CSTA.

TURKLE, S. 2003. ‘From powerful ideas to PowerPoint.’ Convergence: The Journal of
Research into New Media Technologies, 9 (2), 19-25.

TURKLE, S. & PAPERT, S. 1990. ‘Epistemological pluralism: styles and voices within
the computer culture.’ Signs,16 (1), 128-157.

ULICSAK, M. & WILLIAMSON, B. 2010. Computer games and learning. Futurelab.

VICTOR, B. 2012. ‘Learnable programming.’ [Online]. Available:
http://worrydream.com/LearnableProgramming/ [Accessed 29/09/12].

References

 292

VOS, N., VAN DER MEIJDEN, H. & DENESSEN, E. 2011. ‘Effects of constructing
versus playing an educational game on student motivation and deep learning strategy
use.’ Computers & Education, 56 (1), 127-137.

VYGOTSKY, L. 1978. Mind in society: the development of higher psychological
processes. Cambridge, USA: Harvard University Press.

WALLER, D. 2009. Basic projects: Game Maker. Oxford: Payne-Gallway.

WEBB, M. 2002. Pedagogical reasoning: issues and solutions for the teaching and
learning of ICT in secondary schools. Education and Information Technologies, 7 (3),
237-255.

WEBB, M. & COX, M. 2007. Learning ICT inside the black box. London: NFER Nelson.

WEGERIF, R. & DAWES, L. 2004. Thinking and learning with ICT. London: Routledge
Falmer.

WENGER, E. 1999. Communities of practice: learning, meaning, and identity.
Cambridge: Cambridge University Press.

WERNER, L., CAMPE, S. & DENNER, J. 2012a. ‘Children learning computer science
concepts via Alice game-programming.’ In: SMITH KING, L., MUSICANT, D., CAMP, T.
& TYMANN, P. (eds.) Proceedings of the 43rd Technical Symposium on Computer
Science Education. Raleigh, USA, 29 February-3 March. New York, USA: ACM. 427-
432.

WERNER, L., DENNER, J., BLIESNER, M. & REX, P. 2009. ‘Can middle-schoolers
use Storytelling Alice to make games? Results of a pilot study.’ In: WHITEHEAD, J. &
YOUNG, M. (eds.) Proceedings of the 4th International Conference on the Foundations
of Digital Games. Florida, USA, 26-30 April. New York, USA: ACM. 207-214.

WERNER, L., DENNER, J. & CAMPE, S. 2012b. ‘The fairy performance assessment:
measuring computational thinking in middle school.’ In: SMITH KING, L., MUSICANT,
D., CAMP, T. & TYMANN, P. (eds.) Proceedings of the 43rd Technical Symposium on
Computer Science Education. Raleigh, USA, 29 February-3 March. New York, USA:
ACM. 215-220.

WHITEHEAD, J. 2008. ‘Introduction to game design in the large classroom.’ In:
YOUNG, M. (ed.) Proceedings of the 3rd International Conference on Game
Development in Computer Science Education. Miami, USA, 28 February-3 March. New
York, USA: ACM. 61-65.

WHITEMAN, M. 2008. ‘SOLO Taxonomy.’ [Online]. Available:
http://www.slideshare.net/mikeict/solo-taxonomy-484849 [Accessed 18/01/13].

WILLETT, R. 2005. ‘New models of learning for new media: observations of young
people learning digital design.’ In: BACHMAIR, B., DIEPOLD, P. & DE WITT, C. (eds.)
Jahrbuch medienpädagogik, 4. Wiesbaden, Germany: VS Verlag für
Sozialwissenschaften. 127-144.

WILLETT, R. 2007. ‘Technology, pedagogy and digital production: a case study of
children learning new media skills.’ Learning, Media and Technology, 32 (2), 167-181.

References

 293

WILLIAMSON, B. 2009. Computer games, schools and young people: a report for
educators on using games for learning. Futurelab.

WILSON, A., HAINEY, T. & CONNOLLY, T. 2012. ‘Evaluation of computer games
developed by primary school children to gauge understanding of programming
concepts.’ In FELICIA, P. (ed.) Proceedings of the 6th European Conference on Games
Based Learning. Cork, Ireland, 4-5 October. Reading: Academic Publishing
International Ltd. 549-558.

WING, J. 2006. ‘Computational thinking.’ Communications of the ACM, 49 (3), 33-35.

WING, J. 2008. ‘Computational thinking and thinking about computing.’ [Online].
Available: http://rsta.royalsocietypublishing.org/content/366/1881/3717 [Accessed
10/01/15].

WJEC 2012. GCSE Computer Science specification. WJEC.

WOOLLARD, J. (ed.) 2009. Computer programming in Key Stage 3. CAS.

YANG, Y. & CHANG, C. 2013. ‘Empowering students through digital game authorship:
enhancing concentration, critical thinking and academic achievement.’ Computers &
Education, 68, 334-344.

YAROSLAVSKI, D. 2008. Lightbot. [Computer game]. Armor Games.

YATIM, M. & MASUCH, M. 2007. ‘Gatelock - a game authoring tool for children.’ In:
SKOV, M. (ed.) Proceedings of the 6th International Conference on Interaction Design
and Children. Aalborg, Denmark, 6-8 June. New York, USA: ACM. 173-174.

YEH, K. 2009. ‘Using an educational computer game as a motivational tool for
supplemental instruction delivery for novice programmers in learning computer
programming.’ In: GIBSON, I., WEBER, R., MCFERRIN, K., CARLSEN, R. & WILLIS,
D. (eds.) Proceedings of the Society for Information Technology & Teacher Education
International Conference. Charleston, USA, 2-6 March. Chesapeake, USA: AACE.
1611-1616.

YIN, R. 2009. Case study research: design and methods. Thousand Oaks, USA: Sage.

YOYO GAMES 2007. Game Maker 7. [Computer program]. YoYo Games Ltd.

YOYO GAMES 2014. ‘Learn how to use Game Maker: Studio’ [Online]. Available:
http://yoyogames.com/learn [Accessed 10/05/14].

ZAGAMI, J. 2008. ‘Which programming language makes it easier for students to learn
to program?’ Paper presented at the Australian Council for Computers in Education
Conference, Canberra, Australia, 29 September-2 October.

ZIMMERMAN, E. 2009. ‘Gaming literacy: game design as a model for literacy in the
twenty-first century.’ In: PERRON, B. & WOLF, M. (eds.) The video game theory reader
2. New York, USA: Routledge. 23-31.

ZORN, I. 2008. ‘Active construction of digital media as socio-technical construction of a
learning space.’ In: LUCA, J. (ed.) Proceedings of the World Conference on
Educational Multimedia, Hypermedia and Telecommunications. Vienna, Austria, 30
June. Chesapeake, USA: AACE. 4534-4543.

References

 294

ZORN, I. 2009. ‘Educational construction of information technology as engagement
with the course of the world.’ In: BAMMÉ, A., GETZINGER, G. & WIESER, B. (eds.)
Yearbook 2008 of the Institute for Advanced Studies on Science, Technology and
Society. Munich, Germany: Profil. 341-366.

 295

Appendices

Appendix 1: Analysis of pupil authored games

 297

Appendix 1: Analysis of pupil authored games

In this appendix the games pupils created are described to give an overall picture of
what was achieved in terms of the game design and programming concepts evidenced
in them and to provide a summary of the main difficulties encountered. These
evaluations are then represented as matrices which show the relative strengths of each
game, and the qualitative variation between games, using the SOLO taxonomy levels
described in Chapter 4 (see Table 3).

AEMD
KS2 SAT average 5.67/5.66; CAT average 119; Jesson band high/high.

Intro screen, title screen, and 3 levels of ‘Kokoro’.

Appendix 1: Analysis of pupil authored games

 298

This game ranks 1st out of 12 with a score of 58/80. It is the most fully-featured game
of the group and the only game to contain 3 levels where the gameplay on each level is
different. These boys worked confidently and independently and made use of sample
games and printed tutorials. They were very engaged in the activity and worked on
elements of the games at home and shared items via email.

Code organisation and documentation
This pair completed 11/12 planning documents and planned their game in great detail.
Most game assets are correctly named and stored in folders to effectively manage
game resources.

Problems
The main problems in their game are to do with ‘incompleteness’. Although score,
health and lives are fully implemented in level 1, they are absent from the other two
levels. There is no background sound in levels 2 and 3 and no discernible way to
progress from level 2 to 3. In level 2, some vertically scrolling cars appear to lie on top
of each other, because they were programmed to return to view randomly across the
width of the screen; in level 3 doors do not function as barriers to the player character
as intended and when all reward objects are collected the win state does not correctly
implement. On this level also the movement of the player character is not accurate.

Game storyline
In Kokoro, Takeshi (an archaeologist who possesses an ancient and valuable scroll) is
captured by adversaries. His daughter, Kokoro, negotiates three game levels to release
him.

Usability
These boys enjoyed customising their game and added features such as an animated
intro screen, a loading bar, a game icon and a title screen. No instructions to play the
game are given, but options to escape, save and load the game are implemented.
Common controls are used (arrow keys for directional movement; space bar to fire
missiles and to start the game). Messages are used to communicate with the player
when a level has been completed. The pair created animated sprites for level 1; on
level 3 sprites change direction left, right, up and down to make object movement
realistic.

Functionality
The game features a splash screen, a title screen and 3 levels. A progress graphic
displays while the game loads and a customised game icon appears in the title bar. An
animated intro screen displays the game credits; the title screen appears. User options
on the title screen function correctly. Level 1 is fully functional; the player controls the
movement of the player plane by using the arrow keys and can fire missiles at enemy
planes which explode and disappear when hit. Enemy bullets are fired in the direction
of the player’s plane; health and lives are lost when it is hit. On level 2, the player
controls a car left, right, forwards and backwards using the arrow keys, to avoid
colliding with oncoming cars. If there is a collision, an explosion animation plays, the
player’s car disappears and all instances of the other car are destroyed (in error).
Scrolling backgrounds function correctly on levels 1 and 2. On level 3 the player moves
a character around a maze, collecting keys to gain points. When the keys are collected
they disappear; if the player character collides with an enemy object they reappear and
she is returned to the start. This level is incomplete and the win state does not
implement.

Appendix 1: Analysis of pupil authored games

 299

Scoring
Score, health, and lives mechanics are functional and displayed as on-screen graphics
on level 1, but not in levels 2 or 3. A high score table displays when all lives are lost on
level 1. A win/lose state is implemented for level 1.

Gameplay
The player can progress from level 1 to 2, but not beyond. The goal of the game is to
free a captured character on level 3. On level 1 the player controls an aeroplane which
flies over an ocean, firing missiles at enemy planes and avoiding enemy fire. The
player has 3 minutes to gain points without losing lives/health. On level 2 the player
controls a car as it drives across town and avoids oncoming vehicles. On level 3 the
player controls Kokoro as she negotiates a maze to free her father from captivity,
although the win state on this level cannot be reached due to programming errors.
Game challenge is set too high in level 1 and level 3 and too low in level 2.

Sound
Background sound accompanies the intro screen and level 1. Sound effects indicate
missiles have been fired or the player has been hit on level 1 and objects have been
collected on level 3.

Game design
Level 1 and level 2 are vertically scrolling shooters - ‘top down’ view; level 3 is a maze.
The player character object differs on each level (plane, car, girl), as do the non-player
characters (planes, cars, henchmen). Collectable objects feature on level 3. Obstacles
are present in all levels (enemy planes, cars, bullets, henchmen). There is a narrative
underlying the game which supports coherence, although settings for each level differ
(sea, road, maze). A Japanese theme is apparent in the game’s title, title screen
graphics and background sound. The player character is a girl, but she only appears in
level 3 – in levels one and two she is ‘implied’.

Programming
This pair understood and applied the concept of event-driven programming and used
84 events (step, alarm, collision, create, outside room, animation end, keyboard, no
more lives, no more health, draw) and 170 actions to create the game play. Thirty-one
conditional statements were used to test variables: check sound, test instance count,
test chance, check grid. Six alarm events and 15 step events were used to create
loops in the game. Nine different variables were used to store data in the game (lives,
health, score, vspeed, speed, x/y); variables were tested (room height/width); one
variable was created. The logical operator NOT and relational operators <, >, /, = were
used in expressions. Boolean logic (true/false) is implied in conditionals and used to
play looping sound, to redraw the screen and to define objects as solid. Coordinates
were used to indicate position, to draw lives and to draw health. Negative number was
used to define health, lives and coordinates. Randomness was used to define object
position. Relative values were used to define health, score, lives, position.

Graphics
This pair created an animated splash screen and animated sprites, loading bar, title
screen and game icon to customise their game. Some graphics were sourced from
Game Maker resources. Others were created in Game Maker’s sprite editor and
Fireworks.

Appendix 1: Analysis of pupil authored games

 300

The matrix below maps the SOLO score achieved for each component:

Extended 10

 9

Relational 8

 7

Multistructural 6

 5

Unistructural 4

 3

Pre-structural 2

 1

U
sab

ility

F
u

n
ctio

n
ality

S
co

rin
g

G
am

e p
lay

S
o

u
n

d

O
verall d

esig
n

P
ro

g
ram

m
in

g

G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 301

ACJC
KS2 SAT average 5.49/5.03; CAT average 122/121; Jesson band high/above average.

Title screen and 3 levels of ‘Ultimate Dodgeball’

This game ranks 2nd out of 12 with an overall score of 49/80. These boys were very
engaged in the game authoring activity and worked independently throughout, although
they were frustrated that they had to change their initial game ideas to avoid negative
representations of certain groups.

Problems
They also expressed frustration with the lack of advanced tuition in the video tutorials.
They had some difficulty establishing a storyline for their game, with controlling the
movement of the player character and with displaying lives on the screen. They also
encountered problems with their scoring system and advancing through levels. Much of
their learning talk involves finding, creating and editing graphics. In fact, this pair found
sourcing, creating, and editing graphics frustrating and time consuming and thought
that more graphics should be made available in the software; they preferred to spend
their time on creating the game play.

Code organisation and documentation
Most game assets are named correctly and there are few extraneous items. 2/3rds of
the planning documents were completed. Absence and the need to merge games
caused some problems.

Game storyline
In Ultimate Dodgeball, a boy must avoid dodgeballs in a dodgeball arena and collect
Mars bars to gain points.

Appendix 1: Analysis of pupil authored games

 302

Usability
A title screen adds realism to the game but there are no game instructions. Common
control keys are used; score and lives are displayed on screen as text. Messages and
a high score table give feedback to the player. Player progression is achieved over
three levels.

Functionality
The game functions adequately as a playable game and is reasonably complete,
although there are limited interactions. The player character moves as intended and
score and lives function correctly. Movement between levels is achieved by gaining a
certain number of points; messages congratulate the player if a level is completed and
commiserate when all lives are lost; a high score table ranks scores.

Scoring
The score works correctly - starting at 0 and increasing to a set amount for each level.
Lives display on screen and decrease correctly, although sometimes register as -1.
The high score table displays correctly. Win state: if 980 points are collected on level 3,
the player is congratulated and the high score table appears.

Gameplay
The player starts with 3 lives and uses the arrow keys to control the player character,
who gains points by catching Mars bars and avoiding dodgeballs. Catching Mars bars
adds 20 points to the player’s score; colliding with a dodgeball loses a player life. The
purpose of the game is to gain as many points as possible and advance through the
levels until the final level is reached and the high score table displays. Progression
through the levels is achieved by scoring a certain number of points on each level.
Level play is differentiated by increasingly fewer Mars bars to catch and obstacles
(balls) falling at increased speed. Challenge doesn’t significantly vary between levels
and there are limited interactions between the player and the game, and within the
game itself.

Sound
No background sound plays, because the wrong sound file was selected in the play
sound action used in the create event of the player character. No sound effects are
implemented.

Game design
‘Ultimate Dodgeball’ is an action game set in a notional dodgeball arena. The game
features a player character (boy, cartoon character), reward object (Mars bar) and
obstacle (balls). The game is structured coherently overall in so far as it functions as a
playable game over 3 levels. Gameplay is the same on each level and features the
same player character and reward/obstacle objects.

Programming
These pupils understood the concept of events and used them effectively as inputs.
Twenty-four events and 50 actions are used to create the game play. This pair used a
wider range of actions than any other pair. Conditional statements were correctly
implemented to test lives and score. Variables are used to store data in the game.
Understanding of Boolean logic is implied in the use of conditional statements and also
used to set object properties to ‘solid’ and ‘looping sound’ to ‘true’. Several
mathematical concepts were also used as necessary (relational operators (=),
coordinates to specify position, negative number, randomness and relative value).

Appendix 1: Analysis of pupil authored games

 303

Graphics
Game graphics were sourced from the internet and modified using Fireworks. The
game backgrounds are rudimentary, and where the game space could have been a
representation of a dodgeball arena, instead, wall sprites sourced from Game Maker
resources were used as the background in level 1. No backgrounds were loaded for
levels 2 and 3; wall objects bound the playable space on each level and change colour
to differentiate the levels. The title screen was created in Fireworks, as was the ‘Start’
button. Its title incorporates a dodgeball as the letter ‘o’ of ‘dodgeball’ and features a
logo for dodgeball.com (a defunct mobile social networking service). The graphics are
a mix of photos, vector graphics, line drawings and there is no unifying theme or colour
scheme, but these pupils used professional graphics editing software effectively to
resize and modify images to suit their purpose.

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multi-structural 6
 5
Uni-structural 4
 3
Pre-structural 2
 1

 SOLO level

U
sab

ility

F
u

n
ctio

n
ality

S
co

rin
g

G
am

e p
lay

S
o

u
n

d

O
verall d

esig
n

P
ro

g
ram

m
in

g

G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 304

JBLA
KS2 SAT average 4.67/4.51; CAT average 98/94; Jesson band average/average

JBLA Title screen, level 1, outside view

This game ranks 3rd out of 12 with an overall score of 40/80.

Code organisation and documentation
This pair partially completed only 3/12 of the planning documents and departed from
their initial ideas. Naming of sprites, objects and rooms is not efficient.

Problems
The main problem for this pair was in implementing the score, which does not function
correctly because the score is set in error in the create event of the collectable items
and increases to 730 as soon as the player character enters the outside view. The
player character travels off the screen to the right and left, and at the top, and
disappears behind other objects in the outside view. A black screen displays for 3
seconds when the player character enters the outside view and there are some
problems with the timing and sequence of animations and messages.

Game storyline
In Derajeki a boy explores a house and must avoid setting an ‘evil dude’ free. To gain
points he must exit the house into an outside view where he collects rupees. This pair
tried to recreate a Legend of Zelda (Nintendo) game and feature the series’
protagonist, Link, as their player character.

Usability
A title screen displays a message to tell the player how to start the game but there are
no other game instructions. Credits are written but not implemented. Messages are
used to display instructions and to communicate with the player (Click the sword; It’s
locked; Help me; Please help; If you touch me you get a wish; Ha ha you fool, I’m

Appendix 1: Analysis of pupil authored games

 305

free!). The animated player character is controlled using the arrow keys and changes
appearance on direction change. A script sourced from the internet is used to achieve
realistic ‘running’ movement. Three other animated sprites are used (explosion, rupees,
evil dude). Backgrounds are also sourced from the internet. Levels are linked
thematically (5 room interiors and one outside view).

Functionality
On game start a title screen appears. The player clicks a graphic of a sword to move to
level 1. The player character can move between rooms in Link’s house and along a
path in the outside view. Rupees disappear when collected but no score is added. The
game is not implemented sufficiently to have a clear goal.

Scoring
The score is set in the create event of the collectable items (blue and red rupees)
rather than in a collision event between Link and the rupee object, so does not function
as intended, and no points are gained for collecting rupees. There is no high score
table or win state.

Gameplay
On the title screen a message displays - ‘Click the sword :)’. The first game room
appears and music plays, looping (although there is a gap between loops). The player
controls Link as he explores different rooms (room 1, a bedroom, has one door which
leads to room 2, a kitchen. Here, there are 3 doors - one which leads back to the
bedroom, another which leads to a furnace room and a third which leads outside). The
player can move around in and out of rooms and along a pathway in the outside view.
When the player character enters the outside view the game room enlarges and Link
can explore the terrain and collect rupees to gain points. Game play is interrupted
when Link inadvertently disappears behind part of the background graphic. If he re-
enters the cottage he is returned to the kitchen. If he enters a second building he is
faced with 2 doors. One doesn’t open. The other generates a message saying ‘It’s
locked’. A staircase leads to another room upstairs. Here, a message appears - ‘Help
me’ and ‘If you touch me you get a wish’. If the player clicks on this message there is
an explosion and an animated ‘evil dude’ figure appears. When the player clicks this
creature, a message displays - ‘Ha ha you fool, now I am free’, and returns Link to the
start of the game.

Sound
Background music plays on game start. A 60 second pause follows before the music
restarts. A ‘chime’ sound plays when the outside view is entered, instead of when
instances of rupees are collected, as intended.

Game design
This adventure game is presented in ‘top down’ view and incorporates two locations:
inside a cottage, and outside. The player controls an animated character as he
explores his environment. The game view follows the movement of the player
character.

Programming
This pair understood the concept of event-driven programming and used 45 events
(create, step, end step, collision, mouse, game start, animation end) and 81 actions to
create the game play. 31/45 events were collisions. They used one conditional
statement to check ‘if next room exists’. One step event was used to execute the player
character’s movement script in a continuous loop. Variables were used to store data in
the game - to set speed, set variable (image speed), set variable (depth), set health,
set score. Boolean logic was used to define whether a sound file should loop and to

Appendix 1: Analysis of pupil authored games

 306

define an object as solid. Coordinates were used to indicate position. Negative number
was used to define depth, and health. Relative value was applied to health and score.
This pair sourced a GML script online and interpreted code comments correctly to
implement the script. They also learned how to insert a script action in Game Maker.

Graphics
Their game backgrounds use a mix of graphics from ‘The Legend of Zelda: Minish Cap’
(Nintendo) sourced online, and others they created themselves. Their title ‘Derajeki’
and the title screen are not linked thematically with other game graphics, either visually
or narratively, although a sword features in the Minish Cap backstory. The animated
player character was sourced online. There is some unevenness in the ‘look and feel’
of the graphics, and between the inside and outside view.

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Uni-structural 4
 3
Pre-structural 2
 1

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

ep
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 307

KW
KS2 SAT average 4.76; CAT average 99; Jesson band average.

KW title screen, level 1, level 2

This girl chose to work alone. Her game ranks 4th equal with a score of 34/80. She
worked independently, but thought the project was ‘kind of a long process’.

Code organisation and documentation
KW completed 7/12 planning documents. She named 12/17 sprites/objects using
spr/obj as a suffix instead of a prefix. Background and rooms have no prefix. There is 1
redundant room and 1 unnamed object (start button).

Problems
The main problem for this pupil was level progression. The test score action was
applied to the wrong event so did not function. There is no challenge in the game
because no enemy characters were implemented and there is no win/lose state. She
had difficulty in locating a suitable enemy character sprite (shark) and in importing
graphic resources.

Game storyline
In Shipwreck Escape (a maze game), Patrick the fish has to negotiate a maze of rocks
and collect pearls, coins and treasure chests to gain points, while avoiding crabs.

Usability
Game instructions were attempted but incorrectly implemented as an execute code
action which caused a fatal error message to appear - neither game nor instructions
can be accessed. Arrow keys are used for directional movement. The score displays
on screen. There is no animation and the player character does not change sprite on
direction change. There are two thematically linked levels but no mechanism to pass to
level 2.

Appendix 1: Analysis of pupil authored games

 308

Functionality
The title screen offers user options to start the game and to view a high score table.
The player character moves correctly in all directions on key press and stops on key
release. The score implements correctly when reward objects are collected.

Scoring
The score mechanic functions correctly on increase but there is no mechanism to lose
points. Lives are set but not correctly implemented to display on screen. No
mechanism to lose lives is implemented. The scoring mechanism to progress to level 2
does not function. A high score table is partially implemented but the condition to
display the high score table is incomplete.

Gameplay
The player controls a fish as he swims through a maze. The goal is to collect items of
treasure to gain points and to reach a high score. Items disappear when they are
collected. There is limited game play and challenge because the enemy
character/obstacles were not implemented so there is no mechanism for losing lives or
points. There is no level progression due to a programming error in the score
mechanic. The level 2 maze seems easier to solve than level 1. Level 2 is incomplete
(more enemies were planned for level 2 but not implemented).

Sound
No sound implemented.

Game design
The design theme is an underwater shipwreck. The object inventory is consistent with
the theme: fish, shipwreck, treasure, (pearls, gold coins, and treasure chests). The
game is structurally coherent. The same objects and interactions are used in both
levels.

Programming
The game evidences that KW understood the concept of event-driven programming -
she correctly used 17 events as input data (create, collision, key press/release) and 24
actions to create the game play. She used a conditional statement to test the score, but
put this action in the game end event so it did not function correctly. Variables were
used to store data in the game (set score, set lives); test score and speed were
partially correctly implemented. Boolean logic is implied in the conditional statement
and was used to define the maze wall object as solid. A relational operator (>) was
used in the test score action. Relative value was used to increase score.

Graphics
This pupil created the player character (a crudely drawn fish) and the interaction
buttons in Fireworks. Other sprites and backgrounds were sourced online or from
Game Maker resources. She customised the high score table with a background image
and red text.

Appendix 1: Analysis of pupil authored games

 309

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Unistructural 4
 3
Pre-structural 2
 1

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

e p
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 310

OWSW
KS2 SAT average 5.5/N/A; CAT average 117/111; Jesson band high/above average.

OWSW Title screen, instructions, level 1

This game ranks 4th equal with a score of 34/80.

Code organisation and documentation
This pair completed 10/12 planning documents.
17/18 game assets are correctly named.

Problems
The main problems for this mixed gender pair lay in keeping objects in view on the
screen in this vertically scrolling game. The collectable items and obstacles do not
reappear when they have disappeared from view. Initially, when the player character
collided with obstacles they became attached to it instead of disappearing, however
this problem was later resolved. The score does not increase relative to the current
value. The lives variable is not implemented correctly and does not display on screen.

Game storyline
In Snow Mountain, a snowboarder travels down a mountain, avoiding trees and rocks
and collecting blue and yellow snowflakes to gain 10 and 20 points respectively. The
player character loses lives and points if he collides with rocks or trees.

Usability
The title screen offers user options to start the game or to view the game instructions.
Left and right arrow keys are used to control player character movement. The game is
incomplete in so far as there is only one level, so there is limited gameplay/challenge
and no level progression.

Appendix 1: Analysis of pupil authored games

 311

Functionality
The title screen buttons function correctly to start the game and to launch the game
instructions. The game has some functionality. The player controls character
movement using left and right arrow keys; movement stops when keys are released.
There is partial score functionality. The background scrolls, but the obstacles and
collectables do not reappear when they have scrolled off screen, so no interactions are
possible after 10 seconds of game play.

Scoring
The score variable partially functions but does not increase relative to the current
value, although it does decrease relatively. The score displays intermittently on screen.
The life variable is incorrectly set at the start of the game and does not display on
screen. No win/lose state is implemented.

Gameplay
The player controls the left/right movement of a snowboarder as he travels down a
mountain to collect snowflakes for points. These items disappear when they are
collected and a score action implements. The player loses points and lives if he collides
with rocks and trees. The game room speed is set too fast and too few collectable
items are placed in the room to enable the player to accumulate many points.

Sound
No sound implemented.

Game design
The game is structurally coherent - objects relate to the theme. Title screen and
instructions screen are thematically linked to the main game and maintain the same
colour scheme.

In their planning documents the intention was for the game to advance through 3 levels
every successive 100 points gained; each level scrolls faster and more obstacles
appear; the game ends after 1.5 minutes. If 3 lives are lost a high score table, a ‘game
over’ message and a replay button should appear, but these features were not
implemented.

Programming
This pair understood the concept of event-driven programming and used mouse,
keyboard, step, collision and create events as input data. They used 18 events and 31
actions to create the game play. They attempted to use 5 conditional statements - the
structure is correct for these but the arguments are not. A loop-like structure was
attempted by using a step event to repeat an action - again the structure is correct but
the arguments are not. Variables were used to store data for lives, score and speed,
but errors in implementation mean that score and lives do not work correctly. Boolean
logic was used to define objects as solid and implied in the use of conditionals.
Relational operators were used in expressions (<, >, -) and coordinates were used to
specify position. Negative number was used for lives, score, position and vspeed.
Random values were used to indicate position and relative values were used for lives,
position and score. This pair used an above average range of programming concepts
in their game, although they were only partially correctly implemented.

Graphics
This pair used a mix of graphics they created themselves (tree, snowflakes, game
background, interaction buttons, title) and others sourced online (title screen
background, snowboarder, rock). There is no animation and the player character does

Appendix 1: Analysis of pupil authored games

 312

not change appearance on direction change. The title screen and instructions screens
offer an attractive design but the interaction buttons are inconsistent.

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Unistructural 4
 3
Pre-structural 2
 1

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

e p
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 313

JBJG
KS2 SAT average 4.92/4.5; CAT average 101; Jesson band above average/average

JBJG title screen, level 1, level 2

This game ranks 5th with a score of 33/80.

Code organisation and documentation
9/12 planning documents were completed. 12/19 game resources were correctly
named. There is one redundant object and one redundant sprite.

Problems
The main problem for this pair is that they did not manage to display score or lives
information on the screen. These variables were partially implemented (the score
increases when carrots are collected but no carrots are placed in the room so the score
cannot be seen; score and lives are not correctly set at the start of game; lives increase
by 10 if the horse eats an apple - viewed in debug mode). They also had problems in
making the collectable and obstacle items reappear after they had scrolled off screen;
after several seconds of gameplay no further game interactions are possible. Initially
they had problems in getting the player character, a horse, to move. Their intention was
for the horse to jump but they did not manage to implement this. They had to simplify
their ideas so that the horse’s movement could be controlled by the arrow keys.

Game storyline
In Shadey’s Adventure, a horse gallops through a forest at night, jumping over logs and
gaining points and lives by eating carrots and apples.

Usability
The title screen offers a start button, but there are no game instructions. The player
uses arrow keys to control the directional movement of an animated horse. Interface

Appendix 1: Analysis of pupil authored games

 314

design is consistent - the title screen links with the game levels but level 2 is not
implemented. No score or lives status is visible.

Functionality
The game has some functionality - the player character can be moved in all directions
and apples disappear when the horse eats them. Some apples do not appear in the
correct position for the horse to be able to reach them, so limited interactions are
possible. There is no functioning score mechanic. A lives mechanic is partially
implemented but does not display on screen.

Scoring
The score mechanic is assigned to a carrot object, which is not placed in the game
room so no score can be achieved or displayed. The score is not set to increase
relative to the current value so remains at an absolute value.

Gameplay
The player can start the game and use the arrow keys to guide Shadey the horse
through a forest. He can jump over logs and ‘eat’ apples. There are limited game
interactions (collision with apple/increase lives) and no penalties. There is no
mechanism to progress from level 1 to level 2. Level 2 is incomplete so there is no
win/lose state. There is no challenge because obstacles and rewards are not fully
implemented.

Sound
No sound implemented.

Game design
This horizontally scrolling game consists of a title screen and one level. There is one
animated sprite. Game objects are thematically linked. The game is structurally
coherent but level 2 is not implemented.

Programming
This pair showed some understanding of event-driven programming and used 12
events (mouse, keyboard, create and collision) and 19 actions to create the gameplay.
They attempted to achieve a loop construct by using an alarm event but this was
incomplete. They also tried to use variables to store data in the game (lives, score,
speed, x/y) but these were only partially implemented so do not function as intended.
2/3 conditional statements were implemented correctly; the other (test lives) is
incomplete. The set score action is incorrect - the score does not increase relative to
the current value. The draw lives action is incorrect since it is not placed in a draw
event; the set lives action is correct but lives do not accurately increment because the
associated objects are not positioned correctly in the game room. Relational operators
(>, <) are used in expressions. Coordinates are used to control the position of the
horse and to indicate the screen location of the lives status. Negative number is used
to define direction of movement and room speed. Relative value is applied to lives, and
to the position of the horse.

Graphics
This pair used a mix of graphics they created themselves in Fireworks (apples, game
background, title, start button, trees, logs) and others sourced online (animated horse,
carrot). The background and trees are fairly well executed but the apple and carrot
graphics do not have a transparent background as required.

Appendix 1: Analysis of pupil authored games

 315

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Unistructural 4
 3
Pre-structural 2
 1

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

e p
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 316

CBMH
KS2 SAT average 5.33/5.42; CAT average 113/106; Jesson band high

CBMH title screen, level 1

This game ranks 6th with a score of 28/80.

Code organisation and documentation
8/12 planning documents were completed. 5/6 sprites are named without a spr_ prefix;
prefixes are correctly used for 3/4 backgrounds and 1/2 rooms; a background graphic
is loaded in error as a sprite; 1 sound file is loaded but there is no data in the file;
duplicate castle backgrounds are loaded but not implemented.

Problems
This pair had problems with deciding on their game storyline and selecting an ‘enemy’
character. They did not have a clear vision for the game. The enemy objects (spiders)
disappear after 10 seconds of game play. The player character travels off screen,
although can be returned to view. The score displays intermittently. The game was
intended to be a platform game but no jumping mechanic was implemented for the
player character, whose movement is controlled by the arrow keys.

Game storyline
In The Great Escape, a princess is being chased by an evil witch through a castle,
collecting coins and avoiding spiders.

Usability
The title screen offers a start button but there are no game instructions. Common
control keys are used for directional movement of the player character. The score
increases correctly when coins are collected, but disappears from view if the player
character collides with a spider. There is no animation.

Functionality
The start button functions correctly. The player can control the movement of the player
character using the arrow keys and can score points. Coins disappear when collected.
When the player character collides with a spider, both objects stop moving but no other
actions are implemented for this event.

Scoring
Points are scored when coins are collected; the score increases relative to its current
value. Points are lost when the player character collides with a spider, but not relative
to the current value. Lives are lost when the player character collides with a spider but
the lives status does not display on screen.

Appendix 1: Analysis of pupil authored games

 317

Gameplay
The player can move the main character and collect coins to gain points. The player
loses a life if s/he collides with a spider. There are limited interactions in this single
level game and there is no win/lose state or level progression.

Sound
No sound implemented.

Game design
The coherence of this game suffers because the girls changed their ideas and did not
manage to implement all aspects of their initial design.

Programming
This pair showed some understanding of event-driven programming and applied 8
events (create, collision, key press) and 12 actions to create the game play. They
attempted to use a conditional statement but did not manage to implement it correctly.
Variables are used to store data in the game (set score, speed and gravity) but are not
always fully developed or correctly implemented. No values are entered for coordinates
and angles in the two actions which require them. Negative number is applied to
decrease score. Relative value is applied correctly to increase, but not to decrease the
score.

Graphics
This pair created the graphics used in their game using Fireworks (girl, spider, coin,
platform, door, start button, title), but these are very simply executed. The girl’s head is
transparent so cannot be seen when she passes in front of the black ‘platforms’. The
dimensions of the player character are too small.

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Unistructural 4
 3
Pre-structural 2
 1

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

e p
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 318

GS
KS2 SAT average; CAT average; Jesson band - no data available

GS Title screen, level 1, level 2

GS title screen, help screen, level 1

This pupil worked alone. His game ranks 7th with a score of 27/80.

Code organisation and documentation
This boy completed 3/12 planning documents. Game assets are not correctly named
with prefixes. There is one unnamed object. Several sprites, sounds, backgrounds and
objects, are loaded into the game resources but are not implemented in the game.

Problems
The main problem in this game is that there are limited interactions. The game is not
‘playable’. This pupil spent much of his time locating graphics and sound files and
creating a title screen and interaction buttons with rollover effects.

Game storyline
Ghost Buster is set in a forest and features a player character and a ghost, but it is
difficult to discern a storyline from the pupil’s planning documents. The player character
has to ‘defeat various enemies and collect items to enhance power and speed’ and
must defeat a boss character ‘who attacks with a Ball of Darkness’.

Usability
The title screen features a title, credits and three buttons (New Game, Help, Cancel).
The buttons change appearance on rollover. Brief game instructions are given although
the instructions for the Escape button are not correct (the Escape button is intended to
return the user to the main menu but actually quits the game). Arrow keys are used to
control the directional movement of the player character. Interface design is consistent
across title screen and level 1. The player character changes appearance on direction
change (left and right). One level offers limited user interaction.

Appendix 1: Analysis of pupil authored games

 319

Functionality
When the game is run, music plays and the title screen appears. All interaction buttons
on the title screen work correctly. The ‘New game’ button launches level 1, where the
player can achieve effective movement of the player character with the arrow keys.

Scoring
No score implemented.

Gameplay
The player can navigate between the title and help screens, launch or exit the game
and control the directional movement of the player character. No other interactions are
implemented. No score mechanic is implemented. There is no gameplay.

Sound
Looping background sound plays on game start. Three sound files are loaded in the
game resources but only one is programmed to play.

Game design
The game is incomplete and consists of a title screen, a help screen and one level.
All screens are narratively/visually coherent but only one object is implemented.

Programming
The game evidences that this boy understood and applied the concept of event-driven
programming, although most events control game navigation. Key press and release
events are correctly used as input data to control object movement. Twenty-five events
and 28 actions are used to create user interaction. No conditional statements are used
and there is limited use of variables - a speed variable is set to initiate and to stop
movement. Boolean logic is applied to loop the playback of the sound file.

Graphics
This pupil created the interaction buttons and title in Fireworks. Other graphics (ghost
and background images) were sourced online. The buttons are of consistent design
and change appearance on rollover, although the button canvas is not transparent.
Some sprites and objects created are not implemented.

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Unistructural 4
 3
Pre-structural 2
 1

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

e p
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 320

JDMB
KS2 SAT average 4.86/5.05; CAT average 100/114; Jesson band above average

JDMB title screen, level 1, level 2, level 3

This game ranks 8th with a score of 26/80.

Code organisation and documentation
4/12 planning documents were completed. Sprites are unnamed. Objects are named
without a prefix. 1 background is duplicated.

Problems
These boys found it frustrating that they had to modify their initial game ideas to avoid
depictions of violence. They found it difficult to translate their ideas into game action.
The main problem within the game is the control of the player character’s movement.
He moves left and right but does not stop on key release and travels off the screen. On
level 2, the movement of the player character is tied to the movement of the brick
object, in error.

Game storyline
In Zombie Nation, the last man on earth must defend a castle from zombie attack and
must destroy these enemies by using different weapons on each level.

Usability
The title screen is incomplete and consists of a background and a start button. There
are no game instructions. Left and right arrow keys are used to control player character
movement and the space bar is used for firing missiles. Three levels are linked
thematically but level 3 is not functional. The game features one animated sprite.
Another animated sprite is loaded in the game resources but is not implemented in the
game.

Appendix 1: Analysis of pupil authored games

 321

Functionality
There is limited functionality. The start button launches the game. The player can move
the main character left and right using the arrow keys, although the character does not
stop moving on key release and travels off the screen; he can be returned to view if the
arrow keys are pressed. The player can launch an animated stone using the space bar.
If the stone hits a monster, the monster disappears but no score is implemented. The
monsters do not move and do not reappear once destroyed. On level 2 the player can
move the main character left and right as before and launch stones, but no monsters
are implemented.

Scoring
The score is set at the start of the game but is not further implemented, so points are
neither gained nor lost and no score is displayed on screen.

Gameplay
The player can control the movement of the main character and can throw stones at
monsters, which disappear when they are hit. There is no win/lose state or level
progression.

Sound
No sound implemented

Game design
The game backgrounds are visually coherent. Background images, weapons and
enemy objects differ on each level.

Programming
The game evidences that the boys understood the concept of event-driven
programming - they correctly use some events as input data. Sixteen events and 18
actions are used to create the gameplay. There is no use of conditional statements.
The step event is used to create monsters at intervals, repeatedly. They showed some
awareness of the need to use a variable to store score data, but did not implement the
scoring mechanism fully. They also set object speed variables. Although they included
actions which required the setting of coordinates, values were not set for these. They
applied negative number in setting the vertical speed of the stone object to specify an
upwards movement.

Graphics
This pair used a mix of graphics they created themselves and those they sourced
online (player character, ghosts). Their own graphics (brick, bottle, start button) are
oversized and not well executed. Background images used in the game levels are
effective.

Appendix 1: Analysis of pupil authored games

 322

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Unistructural 4
 3
Pre-structural 2
 1

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

ep
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 323

LWGW
KS2 SAT average 4.99/5.26; CAT average 95/102; Jesson band above average/high

LWGW title screen, level 1, level 2

This game ranks 9th with a score of 25/80.

Code organisation and documentation
9/12 planning documents were completed. 12/16 sprites, 10/14 objects and 3/4
backgrounds are named correctly. Rooms are incorrectly named and 2 room names
are duplicated. 1/1 sound is unnamed. The ‘start’ button sprite is loaded twice, and
unnamed once. The title screen is loaded as a sprite, twice, as well as a background.
One background is loaded as an object. There are some redundant items.

Problems
The main problem in this game is that there is no mechanism to progress from one
level to the next. It is difficult for the player to control the movement of the player
character (a mouse) - there is no event to stop its movement so it eventually travels off
screen. The value for the mouse’s speed is set to relative, which means that it moves
increasingly quickly and becomes impossible to control. When the down arrow key is
pressed the mouse drops out of view. The enemy object (a cat) is set to move in
random directions and eventually disappears from view. Although this game is intended
to be a maze game, the maze walls are drawn as part of the background graphic and
not created as solid objects so they do not function as a boundary. Because these girls
did not name sprites and objects correctly it was difficult for them to reference these
correctly in events and actions, which caused problems in the game (e.g. the wrong
sprite was loaded or the wrong object is defined in collision events).

Game storyline
In Squeak, a mouse runs through a kitchen, eating cheese to gain points and avoiding
cats. If caught by a cat, the mouse loses a life.

Appendix 1: Analysis of pupil authored games

 324

Usability
The title screen offers a ‘start’ button but there are no game instructions. Arrow keys
are used to control the directional movement of the player character. There is no score
mechanic. There is one animated sprite, but the player character does not change
appearance on direction change. No mechanism for progressing through the 3 levels is
implemented.

Functionality
There is limited functionality. The ‘start’ button launches the game. The player has
some control of the main character using the arrow keys but there is no mechanism to
stop movement. There are limited interactions between the mouse and the cheese
objects, only some of which disappear when ‘eaten’. The enemy objects (cats) move
randomly but there are no interactions between these cats and other objects.

Scoring
No score implemented.

Gameplay
The player has limited control over the player character and no control over any other
objects apart from the ‘start’ button on the title screen. The player character can eat
cheese (some of which disappears). There is no score, no penalties and no win/lose
state. No mechanism for progressing through the levels is implemented so there is no
challenge in the game.

Sound
One sound is loaded in the game resources but not implemented.

Game design
Although designed as a maze game, the game does not function as such. The game is
coherent narratively and visually, but there is little variation in level design or object
inventory across the 3 levels.

Programming
These girls use some events correctly (create, collision, key press, mouse) but others
are misunderstood. Fifteen events and 23 actions are used to create the gameplay. No
conditional statements or loops are used. Variables are not used to store data in the
game. There is no use of logical operators, Boolean logic, relational operators,
coordinates or negative number. Randomness is used to define the cat’s movement.
Relative value is used in error to set the player character’s speed.

Graphics
These graphics in this game (an animated cat, mouse, cheese, background, start
button) are poorly executed. The image on the title screen was sourced online.

Appendix 1: Analysis of pupil authored games

 325

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Unistructural 4
 3
Pre-structural 2
 1

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

ep
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 326

AWTB
KS2 SAT average 4.22/5.34; CAT score average 97/113; Jesson band below
average/high

AWTB level 1

This game ranks 10th with a score of 24/80.

Code organisation and documentation
7/12 planning documents were partially completed. 1/12 sprites is named correctly; one
is unnamed; 0/9 objects are named correctly with obj_ prefix; one object is unnamed.

Problems
The main problem with this game is that there are limited game interactions. Designed
as a platform game, the player character’s jumping mechanic is not well implemented;
the object disappears from the bottom of the screen when it falls from the lower
platforms and cannot be returned to view. Although the background scrolls, the
scrolling movement is not apparent because there are no background graphics. No
score or lives mechanics are implemented.

Game storyline
Don’t Stop Running is a vertically scrolling platform game. In their original ideas the
story involved an escaped robber being chased by a policeman through an Australian
cityscape but this narrative is not discernible in the game implemented.

Usability
No title screen is implemented. ‘Start’, ‘instructions’ and ‘exit’ buttons are created but
not implemented. There are no game instructions. Common control options are used to
control the movement of the player character (arrow keys, space bar to jump) on one
level. There is no user feedback.

Functionality
There is limited functionality - the player can make a character jump and move left and
right to land on platforms. But the jumping mechanic is not consistent - when the space
bar is pressed the character jumps erratically. No score or lives mechanics are
implemented. There are no penalty/reward objects to interact with.

Scoring
No score implemented.

Appendix 1: Analysis of pupil authored games

 327

Gameplay
The player can make the main character jump and land on platforms - the goal is to get
the character to jump to the highest platform without falling out of the bottom of the
room and this provides some challenge. There are no other interactions possible.

Sound
No sound implemented.

Game design
The game is not sufficiently developed to have structural coherence. There is one level
but the game has no visual appeal. Some objects are not implemented.

Programming
This pair showed some understanding of event-driven programming and used 6 events
and 40 actions to create the game play. They used 9 conditional statements to check
position, to check collision and to test variable (x,y). One step event is used to check
whether the player character is ‘in the air’ and to limit its vertical speed. Variables are
used to set vertical speed, set speed, set gravity, set variable (x,y), test variable
(vspeed). Boolean logic is used to define objects as solid. A relational operator (>) is
used to test speed. Coordinates are used to check position. Angles are used to define
gravity and direction. Negative number and relative value are used to define position.

Graphics
The graphics in this game are poorly executed. Title, title screen background, start, and
exit buttons, and crate objects were created but not implemented.

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Unistructural 4
 3
Pre-structural 2
 1

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

e p
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Appendix 1: Analysis of pupil authored games

 328

SARC
KS2 SAT average 4.7/5.37; CAT score average 100/114; Jesson average/high

SARC level 1

This game ranks 11th with a score of 14/80.

Code organisation and documentation
6/12 planning documents were completed. 2/4 sprites and the background are correctly
named. The room is unnamed.

Problems
The main problem in this game is that there is no user interaction. The player character
is not implemented, so no interactions in the game are possible. Because these girls
did not establish a clear storyline for their game and did not make use of their plans it
was difficult for them to translate their ideas into game action.

Game storyline
Starman fights enemies as he moves through a castle to collect gold coins and gain
points.

Usability
There is no title screen, no user options and no game instructions. Common control
options (arrow keys) are used to control the movement of the player character but
these are not implemented correctly. The game consists of one level.

Functionality
No interactions are implemented. On game start, 9 instances of the enemy object move
randomly and disappear from the screen after 10 seconds of game play. The player
character is not placed in the game room so is not visible on the screen.

Scoring
No score implemented.

Gameplay
There is no user interaction and no game play.

Sound
No sound implemented.

Appendix 1: Analysis of pupil authored games

 329

Game design
There is no structure to the game. The characters have no discernible association with
the setting of the castle.

Programming
These girls understood the concept of event-driven programming and used keyboard
events with the intention of controlling directional movement of the player character, but
no movement actions were added. The create event is used to set the random
movement of enemy objects. Five events and 5 actions are used to create the
gameplay. No conditional statements are used. There is limited use of variables -
speed is set correctly for the enemy object, but used without understanding in the
change sprite action.

Graphics
The graphics in this game are not well executed.

The matrix below maps the SOLO score achieved for each component:

Extended 10
 9
Relational 8
 7
Multistructural 6
 5
Unistructural 4
 3
Pre-structural 2
 1

 U
sab

ility

 F
u

n
ctio

n
ality

 S
co

rin
g

 G
am

e p
lay

 S
o

u
n

d

 O
verall d

esig
n

 P
ro

g
ram

m
in

g

 G
rap

h
ics

Appendix 2a: Pupil information booklet

 330

Appendix 2a: Pupil information booklet

Year 9

ICT

Computer Game
Authoring

Pupil Information

Appendix 2a: Pupil information booklet

 331

Year 9 ICT Computer Game Authoring Unit

Pupil Information Sheet

The computer game industry is one of the fastest growing sectors of the
economy and some games have become blockbuster entertainment. Most
of you will have played computer games - but very few of you have ever
created a computer game…until now!

This year a Game Authoring unit will be included in Year 9 ICT lessons, to
give you an opportunity to learn about and to design a computer game for
the first time, so that you don’t just play games, but get a chance to make
them! The unit is part of the National Curriculum for ICT at Key Stage 3.

It is important that you have some experience of computer game
authoring at Key Stage 3 because increasingly, examination boards are
developing specifications aimed at Key Stage 4 and beyond, which include
game authoring units - so next year, you may be able to study Computer
Game Authoring as one of your options, if you choose to do ICT.

Year 9 Research Project

I have recently been trialling game authoring software with Years 7 and 9,
to see which is the best program to use. Now I would like to research what
Year 9 pupils themselves think of computer game authoring.

I would like us to begin this project in the spring or summer term. You will
research, plan and design a computer game with a partner.

What you will learn

You will learn about game narrative development, logical thinking, graphics,
programming, sequencing instructions, music making/editing and how to
test your game. You will use a range of software during the project (Game
Maker, Macromedia Fireworks, Audacity, Microsoft Word, Internet Explorer,
Dance E-Jay).

Appendix 2a: Pupil information booklet

 332

What I will be researching

I would like to conduct my research with your ICT class as part of a study
that I am completing at the University of Southampton. I am interested in
finding out about the benefits of computer game authoring, both as a
creative and an intellectual activity.

As part of my research, I would like to record you talking as you work in
pairs to plan, design, build, test and evaluate your computer game, during
your normal ICT lessons. I will also be asking you to complete a journal
about your learning experiences for homework. I will interview some pupils
in a group and/or in pairs.

The work you complete during the project will be analysed and I may
publish my findings in various ways (i.e. at conferences, in journal articles,
and on the internet).

What do you have to do?

You have to complete all the tasks in the Game Authoring Unit, as part of
your ICT lessons. I will mark your work and give you a National Curriculum
level, as normal. The only difference is that I will be using your work to help
me find out about how you learn to create a computer game. You do not
have to put your name on anything, so all your work will be anonymous. All
of your work will be stored securely on the school network and analysed on
my personal computer at home. If you are happy for me to use your work,
anonymously, as part of this research project, talk to your parents/carers
about it and, with their agreement, sign the form on the next page. You can
change your mind even after you have signed the form.

If you do not want your work to be included in my research, you will not be
at a disadvantage – you will follow the same scheme of work and be given
the same opportunities to create a computer game as those who do take
part in the study.

Thank you very much if you are able to support my research by completing
the form overleaf.

Ms Johnson, Subject Leader, ICT.

Appendix 2a: Pupil information booklet

 333

Year 9 Game Authoring Project

Please circle ‘Yes’ if you agree that your work can be used in the research.
Circle ‘No’ if you do not want your work used. If you tick ‘Yes’ to any of the
statements this does not guarantee that your work will be used or that you
will be interviewed.

Please return the form in the envelope provided.

Your name: ______________________________ Tutor: ______________

I understand that if my work is used, it will be anonymous Yes No
(no-one will know it is my work).

I agree that my work can be used as part of the research project. Yes No

I agree that my digital voice recordings can be used as part Yes No
of the project.

I agree that my journal can be used as part of the project. Yes No

I agree that my computer game can be used as part of the project. Yes No

I agree to being interviewed as part of a group of six pupils. Yes No

I agree to being interviewed in a pair. Yes No

I agree to my work being shared with other people i.e. in reports, Yes No
conference papers, journals and on the internet.

My parent(s)/carer(s) agree that my work can be used in the Yes No
project.

Signed: _______________________________________

(Pupil)

Appendix 2b: Parent information and consent form

 334

Appendix 2b: Parent information and consent form

Dear Parent

Re: Year 9 ICT Research Project in Computer Game Authoring.

The computer game industry is one of the fastest growing sectors of the economy and
some games have become blockbuster entertainment. Most pupils have played
computer games – but very few have ever created a computer game…until now!

This year, a Game Authoring unit will be introduced into the Year 9 ICT curriculum, to
give pupils an opportunity to design a computer game, so that they are not just
consumers, but also producers of this medium. This is part of the National Curriculum
for ICT at Key Stage 3 and follows the learning objectives of the revised programme of
study. A range of software will be used during the project (Game Maker, Macromedia
Fireworks, Microsoft Word, Microsoft Internet Explorer, Audacity, Dance E-Jay).

Computer game authoring is an important addition to the Key Stage 3 ICT curriculum
because it gives pupils a creative, real world scenario in which to develop their skills in
computer programming, graphics, logical thinking, narrative development and so on. It
is important to deliver this unit of work at Key Stage 3 because increasingly,
examination boards are developing specifications aimed at Key Stage 4 and beyond,
which include computer game authoring units.

I have recently been trialling game authoring software with Years 7 and 9, to see which
offers the most successful learning outcomes for all pupils. Now I would like to conduct
some formal research with Year 9 pupils, to find out what they think of computer game
authoring.

I would like to conduct this research with your son/daughter’s ICT class as part of a
case study that I am undertaking, to be supervised by the University of Southampton’s
School of Education. In this study I will investigate the value to pupils of computer
game authoring, both as a creative and an intellectual activity.

As part of this research, I would like to record pupils’ talk as they work in pairs to plan,
design, build, test and evaluate their computer game, during their ICT lessons. I will
also ask pupils to complete a journal of their learning experiences for homework. I will
interview some pupils as part of a group, and in pairs.

Material generated by pupils during the project will be analysed and research findings
will be published in various formats and may be shared with third parties (i.e. at
conferences, in journal articles and on the internet).

All pupils participating in the study will be able to withdraw their data at any time and
their anonymity will be preserved throughout. All data will be stored securely on the
school network and analysed on my personal computer at home.

If you are willing to give your consent for me to use your child’s work, anonymously, as
part of this research project, please complete and return the form below.

If you do not wish your child’s work to be included in the research, they will not be at a
disadvantage – they will follow the same scheme of work and be given the same
opportunities to create a computer game as those who do take part in the study.

Appendix 2b: Parent information and consent form

 335

Thank you very much if you and your child are able to support this research by giving
your consent on the form below.

Please do not hesitate to contact me if you would like to know more.

Yours sincerely

Claire Johnson
Subject Leader, ICT

Year 9 Computer Game Authoring Research Project

Please read the statements below and tick the boxes as appropriate. NB This does not
guarantee that your child’s work will be used or that they will be interviewed as part of
the study.

Please return in the envelope provided.

Name of pupil: ________________________________ Tutor: ___________

Yes No
I understand that my child’s anonymity will be preserved in all items below.
I give my consent to my child’s work being used as part of the research.
I agree to my child’s digital voice recordings being used as part of the study.
I agree to my child’s journals being used as part of the study.
I agree to my child’s computer game being used as part of the study.
I agree to my child being interviewed as part of a group of six pupils.
I agree to my child being interviewed as a pair.
I agree to my child’s work being shared with third parties
(i.e. in reports, conference papers, journals and on the internet).

Signed: _______________________________________

(Parent/Guardian)

Appendix 3a: Interview schedule – group interviews

 336

Appendix 3a: Interview schedule – group interviews

Introduce the interview, its purposes and how the data will be used. Assure
confidentiality. Explain that pupils don’t have to answer questions directly to you - they
can discuss their responses with each other. Display Game Maker on the whiteboard.
Explain that you are interested in what they think about the game making process -
there are no right or wrong answers etc.

1. Tell me about your experience of game making so far?

2. What did you think about using the video tutorials to learn the software skills?

3. How else would you have liked to learn about how to use Game Maker (e.g.
textbooks, Moodle course, me showing you on the board, working through
paper based tutorials on your own, other)?

4. You have been working on your games in pairs. How has working with a partner

helped you to learn about making a computer game? Were there any problems
with working in a pair?

5. What about the Game Maker software?

6. When you learn something new, sometimes it’s a bit hard to begin with. Tell me

about any difficulties you had. This may be to do with the software or it may be
to do with the game authoring process.

7. This is the first time you have ever made a computer game as part of your

school work. How did you decide or know what you needed to do?

8. You have been making your game for several lessons now. What do you think
you have learned so far?

9. Creating a game which involves the player interacting with characters and

objects on the screen is probably a new thing for you. What do you think it
teaches you that is different from what you learn in other ICT projects?

10. The real work in this project is in making things happen on screen and making

sure that everything works as it should. Can you think of one time when you
were having problems with something? What was it and how did you solve the
problem?

11. What do you think is most successful about your game, even if it isn’t finished

yet? Have you managed to do anything you are particularly pleased with?

12. What things are hard to understand when making a game? What sorts of things
are you getting stuck on?

13. I have been asking you to record yourselves as you make your game. How

have you found this?

14. When you make a game you are creating an interactive system, where you
have to make things happen to create good game play. You also have to make
it look attractive and it has to be intuitive for the player to play. This is a bit

Appendix 3a: Interview schedule – group interviews

 337

different to making a leaflet or designing a logo or creating a spreadsheet or a
presentation. What do you like about this kind of work?

15. Anything you don’t like about it?

16. How do you think making a game makes you think differently, compared with

the other things you have done in ICT?

17. How does making a game challenge you or stretch you or make you think?

18. Some people might say that making games is not a serious topic and it doesn’t
teach you anything. What do you think about this?

19. One of the things you have learned which is new to you is the vocabulary of

game authoring, - words like ‘sprite’, ‘event’, ‘action’, ‘object’, ‘relative’, etc. Can
you think of anything else new that you have learned in this project?

20. This project took up 16 lessons. What do you think about the time scale? Too,

long/short?

21. If you were to do a game making project again, can you think of any
improvements or changes you would make to the way things were done?

22. If you had to tell a friend about this project, what would you say?

Appendix 3b: Interview schedule – paired interviews

 338

Appendix 3b: Interview schedule – paired interviews

Introduce the interview, its purposes and how the data will be used. Assure
confidentiality. Explain that you are interested in what they think about the game
making process and hope to learn more about their thinking/learning as they created
their game. Assure pupils that there are no right or wrong answers. Load games.

1. Tell me about your game.

2. How has working as a pair helped you to learn about making a computer
game?

3. How did you decide as a pair what needed to be done each lesson?

4. How did you work out what objects, events and actions you would include in

your game?

5. Tell me about any difficulties you had:

a. With the game making process
b. With Game Maker

6. What do you think you have learned in this project?

7. What do you think it teaches you that is different from what you have learned in

other ICT projects?

8. What do you think game making helps you to learn?

9. Can you think of a time when you were having problems with something? What
was it and how did you solve the problem?

10. Making a game is different from other ICT tasks. What do you like about this

kind of work?

11. Anything you don’t like about it?

12. How does game making make you think differently, compared with the other
things you are used to doing in ICT?

13. How does game making challenge you or stretch you or make you think?

14. Does it teach you any new skills that you haven’t used so far?

15. What things are hard to understand with making a game?

16. If you had to evaluate your game and say what is successful and what needs

improvement, what would you say?

Appendix 4: Prompt sheet for digital voice recordings

 339

Appendix 4: Prompt sheet for digital voice recordings

Recording your work in progress.

‘What do I say?’ you may ask when you hit the record button! You haven’t done this
before so it may seem a little strange at first. Sometimes it can be hard to think of what
to say when you know you are being recorded! Try not to worry about this - as long as
you are talking about the work you are doing that will be just fine!

I want to find out how you go about making a computer game - so whatever you have
to say is interesting to me - as long as it is to do with your work! There are no right or
wrong answers - and as you get more used to recording yourselves, it will be less of a
problem for you.

Here are some ideas to prompt you if you get stuck for words!

Talk about the objects in your game and how you decide what events and actions to
give them.

Talk about the settings you select for the actions you decide to use.

Talk about any problems or difficulties you are having.

Talk about what is going well and what you are pleased with.

Appendix 5: Data coding

 340

Appendix 5: Data coding

Free nodes (initial codes) used to code the transcript of the digital voice recordings,
group and pair interviews and pupil documents.

Category Code Description

Gender M/F Assign gender as an attribute in NVivo
Ability Low

Below average
Average
Above average
High

Assign Jesson level as an attribute in NVivo

Research
questions

Process RQ 1a) References to pupils’ perceptions about the
process of their learning

Outcome RQ 1b) References to pupils’ perceptions about the
outcomes of their learning

Programming RQ 2) Use of computer programming constructs and
terminology e.g. ‘variable’, ‘IF statement’, sequence

Design difficulties RQ 3a) References to difficulties pupils have with
game design

Programming
difficulties

RQ 3b) References to difficulties pupils have with
game programming

Value RQ 4) References to affective values of making
computer games

Conceptual
Framework
8 big ideas of
constructionism
concepts

Doing Learning by doing
Making Technology as building material
Learning Learning to learn
Freedom Freedom to get things wrong
Time Taking time
Teacher Teacher as co-learner
Hard fun ‘Hard fun’
Computers Using computers to learn in a digital world

Game Maker
language

GM Use of words specific to game design concepts in
Game Maker e.g. ‘sprite’, ‘object’, ‘relative’, ‘solid’,
‘room height’

Game design Design References to design concepts e.g. challenge, sound
Representations Cultural references and representations
Narrative References to narrative, characters, storyline

Use of software Software References to the use of software
Mode of learning Mode References to mode of learning e.g. trial and error,

tutorials, learning from others, working in pairs etc.
Mathematical
concepts

Maths References to mathematics concepts e.g. use of
coordinates, randomness, gravity

Graphics concepts Graphics References to graphics concepts e.g. transparency,
size, animation etc.

Experience of the
activity

Experience References to their experience of game authoring
e.g. freedom, creativity, fun

Attitudes Attitudes References to attitudes to learning, engagement,
persistence, independence, commitment, etc.

Evaluation Evaluation Comments which evaluate their games

Appendix 5: Data coding

 341

Free nodes used to code the programming difficulties evidenced in the analysis of
authored games.

Category Code Description

Programming
difficulties

Actions Errors relating to the use of actions

Angles Errors relating to the use of angles

Background
Errors or problems relating to the game background
e.g. scrolling

Conditionals
Errors in the use of conditional statements
(test/check actions).

Conflicting actions Use of conflicting actions

Conflicting events Use of conflicting events

Coordinates Errors in the use of coordinates

Duplicate Duplicating events/actions

Logic Errors which occur due to ‘illogical’ thinking

Events Errors relating to the use of events

Incomplete Errors which arise because a construct is incomplete

Levels Errors relating to levels in the game

Lives Errors relating to the lives mechanic

Objects Errors relating to objects

Misc Miscellaneous errors/problems

Movement Errors or problems to do with object motion

Negative number Errors relating to the use of negative number

Random Errors relating to the use of ‘randomness’

Redundant Use of redundant (i.e. unnecessary) code

Relative Errors in applying the ‘relative’ parameter

Score Errors or problems with the score mechanic

Screen boundary Errors relating to objects travelling off screen

Self/other
Errors or problems with selecting self/other e.g. in
collision events

Sequence
Errors or problems relating to the sequencing of
events/actions

Solid Errors in applying the ‘solid’ parameter

Sound Errors relating to the playback of sound

Speed Errors relating to object speed

Values
Errors relating to the assignment of values in an
action or expression (e.g. value for speed,
coordinates)

Variables Errors relating to the use of variables

Appendix 6: The Game Maker interface

 342

Appendix 6: The Game Maker interface

A
ction blocks are selected

from
 libraries to define w

hat
happens for each event.

E
vents are assigned to

objects. H
ere, a collision

event is created betw
een

the goal object and the
bear object. If these tw

o
objects collide, the
selected actions w

ill run
in the gam

e.

G
am

e assets are
loaded and visible in
the resources tree.

O
bjects are created and

have their states defined.

Appendix 7: Outline scheme of work

 343

Appendix 7: Outline scheme of work

Learning objectives Lesson activities

Lesson 1
Identify the main
components of a
computer game.

Recognise the
potential of the Game
Maker software.

Starter
Introduction to the project.

Main
Play and evaluate sample games (maze, platform, shooter, action
etc.). Identify and evaluate key components of a game/elements of
game play (worksheet).

Plenary
Discuss with your partner what ideas you have for your own game.

Lesson 2
Develop skills in the
Game Maker software.

Review the range of
computer game
genres.

Starter
Teacher demo: intro to Pixel 8 video tutorials, how to load the game
resources etc.

Main
Complete the ‘Catch the Piggie’ video tutorial.

Plenary
Complete the ‘Genres’ worksheet.

Homework
Some people say that the best way of learning is by doing. Write
about your experience of using the video tutorials. What are your
impressions so far of the Game Maker software? Any other
comments?

Lesson 3
Further develop Game
Maker skills.

Understand the
importance of
developing a game
storyline.

Starter
Complete ‘The Game Maker interface’ worksheet.

Main
Complete the ‘Maze Game’ video tutorial.

Plenary
Read the ‘Game Storyline’ example sheet.
Select a preferred genre (maze, platform, shooter, action, breakout)
and discuss with your partner your initial ideas for a game, using the
project brief sheet.

Homework
Develop your initial ideas for a game storyline and characters by
creating a storyboard of the main action/rooms in your game,
including title and end game screens.

Appendix 7: Outline scheme of work

 344

Lesson 4
Identify the main
objects, events and
actions in your game.

Starter
In your pairs agree the final storyline for your game. Complete the
‘Initial Design’ sheet.

Main
Complete the ‘Space Shooter’ video tutorial.

Plenary
View the ‘How is a computer game made?’ video.

Lesson 5
Review Game Maker
terminology.

Understand the
importance of a game
design document.

Develop success
criteria for a game.

Starter
Complete the ‘Game Maker Terminology’ worksheet.

Main
View the ‘Game Design’ presentation.
Read the design document for ‘Catch the Clown’.
Complete a design document for your own game.

Plenary
What makes a good game? Develop 10 success criteria.

Homework
Now you have devised a storyline for your game and have written a
design document for it. Write about how you decided on your game
ideas. Did you have any problems with this? Any other comments?

Lesson 6
Review the ready-
made sprite assets in
Game Maker.

Learn to use the Game
Maker image editor to
edit/animate sprites.

Starter
Teacher demo: the Game Maker sprites library.

Main
Create or locate graphic objects (sprites, backgrounds, other game
objects) for your game. Use Fireworks or the image editor in Game
Maker.

Plenary
Teacher demo: animated sprites/changing a sprite’s image.

Lesson 7
Review available
events and actions in
Game Maker.

Practise ‘reading’ and
modifying Game Maker
‘code’.

Starter
Learn to read Game Maker ‘code’ - complete the ‘Game Maker
Programming’ sheet.

Main
Modify the code in a Game Maker sample game. Show another pair
the modifications you have made.

Plenary
Develop a ‘systems development life cycle’ for a game - see
p100-1 ICT 4 Life.

Appendix 7: Outline scheme of work

 345

Lesson 8
Understand events.

Understand actions.

Identify the rules for
your game.

Starter
View the ‘Events and Actions’ presentation.

Main
Teacher demo: events and actions in Game Maker sample games.
Read the ‘Rules of the Game’ example sheet.
Complete the ‘Rules of the Game’ worksheet for your game.

Plenary
Teacher demo: the ‘Show object information’ item in the Game
Maker ‘Edit’ menu.

Homework
Deciding on the rules for your game is very important - you have to
decide on how the player interacts with objects in the game and
control what else happens in the game. It’s what makes a game fun
to play! Tell me about how you did this.

Lesson 9
Understand the use of
rooms/levels.

Starter
Teacher demo: multiple rooms/levels in a sample game.

Main
Create one or more rooms for your game. Begin to add objects to
your game and specify their events and actions.

Plenary
Teacher demo: moving from one room/level to the next.

Homework
You have learned how to create rooms/levels for your game. Write
about how you did this. Describe any problems or difficulties you had
with this. Any other comments?

Lesson 10
Understand the use of
the test variable action
in Game Maker.

Starter
Write the instructions for a computer version of ‘Noughts and
Crosses’ using the ‘If…then’ construction. (ICT Interact Year 8 p19).

Main
Teacher demo: test variable action - If…then.
Develop your game.

Plenary
Explain how you have used or how you could use a test variable
action in your game.

Appendix 7: Outline scheme of work

 346

Lesson 11
Understand step
events.

Develop game
mechanics.

Starter
Review the game mechanics of Game Maker sample games.

Main
Teacher demo: step events. Add a step event in your game.
Develop your game. Focus on the mechanics of your game (score,
lives/health, collisions, scrolling).

Plenary
Explain how you have made use of one game mechanic in your
game to improve game play.

Homework
You have been learning how to control what happens in your game
by adding events and actions to objects. Write about the events and
actions you have used in your game. Describe any problems or
difficulties you had with this. Any other comments?

Lesson 12
Consider the use of
sound in a game.

Starter
Teacher demo: the use of sound in Game Maker sample games.

Main
Consider the use of sound in your game. Locate/create sound effects
and background sounds for your game. Develop your game.

Plenary
Invite another pair to evaluate the sound you have used in your
game.

Homework
Sound is an important element of any game. Tell me about what
sounds you chose to use. What effect were you trying to create by
using these sounds? How did you create/locate your sounds? Did
you have any problems with this? Any other comments?

Lesson 13
Understand the role of
textual information in a
game.

Starter
Teacher demo: title/end game/instructions screens in Game Maker
sample games.

Main
Develop the title/end game screens for your game. Create these in
Fireworks.
Develop the ‘game information’ and ‘instructions’ for your game.
Add a message action to a suitable event.

Plenary
Invite another pair to test and evaluate your title screen and game
instructions.

Appendix 7: Outline scheme of work

 347

Lesson 14
Understand the
importance of testing
your game.

Starter
View the ‘Testing your game’ presentation.

Main
Develop a test plan for your game and test it.
Develop your game, making amendments as necessary.

Plenary
Test another pair’s game and suggest one improvement.

Lesson 15
Create an .exe version
of your game.

Starter
Teacher demo: how to create an .exe version of your game.

Main
Implement final changes to your game.
Create an executable version of it for others to play on any PC.
Upload your game to the Game Maker website?

Plenary
Demonstrate your game to another pair and invite them to evaluate
it.

Homework
Begin to evaluate your game. Assess what is effective and what
needs improvement.

Lesson 16
Evaluate your game
using established
success criteria.

Starter
Review your success criteria for a good game (Lesson 5).

Main
Complete your game evaluation. Use the project evaluation
worksheet or record a spoken evaluation.

Plenary -

Homework
If you had to tell someone about what you have learned during the
project, what would you say?

Appendix 8: Pupils’ storyboards

 348

Appendix 8: Pupils’ storyboards

This appendix supplements section 6.3.1 above, which describes the features included
in and missing from pupils’ storyboards, completed for homework as part of the
planning for their computer games.

ACJC’s storyboard

AEMD’s storyboard

Appendix 8: Pupils’ storyboards

 349

AWTB’s storyboard

CB’s storyboard

Appendix 8: Pupils’ storyboards

 350

KW’s storyboard

LWGW’s title screen

Appendix 8: Pupils’ storyboards

 351

LWGW’s storyboard

MH’s storyboard

Appendix 8: Pupils’ storyboards

 352

OW’s storyboard

SW’s storyboard

