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Abstract

This thesis looks at some of the modern approaches towards the solution of Dio-
phantine equations, and utilizes them to display the nonexistence of perfect powers
occurring in certain types of sequences. In particular we look at the denominator
divisibility sequences (Bn) formed by Mordell elliptic curves ED : y2 = x3 +D. For
the curve-point pair (E−2, P ), where E−2 : y2 = x3− 2, and P = (3, 5) is a nontor-
sion point, we prove that no term Bn is a perfect 5th power, and we give the explicit
bound p ≤ 137 for any term in the associated elliptic denominator sequence to be
a perfect power Bn = Zp

n for 1 < n < 113762879. We then look at obtaining upper
bounds on p for the seventy-two rank 1 Mordell curves in the range |D| < 200 to
possess a pth perfect power. This is done by consideration of the finite number of
rational and irrational newforms corresponding to an also finite number of levels
of these newforms: in thirty cases we give a bound via examination of both the
rational and irrational cases, and for the remaining forty-two cases our bound is
merely for the rational case due to computational limitations.
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Chapter 1

Introduction

A divisibility sequence is a sequence (W (n))n∈Z of integers with the property that
W (m) | W (n) if m | n. The most famous example of a divisibility sequence is the
Fibonacci sequence. These linear recurrence sequences were studied extensively by
Lucas. The modular approach of Sir Andrew Wiles [47, 41] in his celebrated proof
of Fermat’s Last Theorem was utilized by Bugeaud, Mignotte, and Siksek [8] to
show that the only perfect powers in the Fibonacci sequence are 0, 1, 8, and 144.

There are also divisibility sequences satisfying a nonlinear recurrence relation.
These are the elliptic divisibility sequences (EDSs) and the recurrence relation
comes from the recursion formula for elliptic division polynomials associated with
an elliptic curve.

In recent years, as a consequence of this intimate relation between EDSs and
elliptic curves, this form of nonlinear recurrence sequence has been found to be
more amenable to investigation and has had numerous application in fields such
as logic and cryptography.

This thesis shall revisit the modular approach of Wiles for solving Diophantine
equations related to EDSs using a technique inspired by that found in [8]. If we
label a point on an elliptic curve P =

(
AP

B2
P
, CP

B3
P

)
, we find in many cases EDSs

occur naturally as the denominator BP , up to sign. This relationship was studied
extensively in a remarkable monograph of Ward [45]: he showed that every non-
singular EDS has an associated elliptic curve. Much of the theory of Lucas’ linear
recurrence sequences carries over to the EDSs, and we find if the EDS has an asso-
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ciated singular cubic curve then the singular EDS is described by Lucas’ functions.
Just over fifty years later Shipsey [32] used properties of EDSs over finite fields
to study the elliptic curve discrete logarithm problem (ECDLP). She produced an
elegant repeated doubling style algorithm to calculate high order terms in loga-
rithmic time. Swart [39] gave a comprehensive overview of congruences for EDSs,
while expanding on Ward’s equations defining the elliptic curve related to an EDS.
One of the noticeable leaps forward in our understanding of EDSs is found in the
work of Stange [37] in her construction of so called elliptic net polynomials. These
are an extension of the rank 1 division polynomials and have an associated elliptic
net. It is seen that EDSs are in fact rank 1 elliptic nets.

A brief breakdown of the thesis is as follows:
In Chapter 2 we introduce some necessary elliptic curve theory needed for our

later work.
In Chapter 3 we discuss the polynomials related to multiples of points on an

elliptic curve.
In Chapter 4 we discuss elliptic divisibility sequences which obey the same

recurrence relation as the division polynomials, and show how these EDSs are
related to elliptic curves as a consequence. We investigate them over finite fields
Fp, where p is a prime, and find the sequences are ≡ 0 (mod p) at regular intervals
which we call the rank of the sequence r(p). The sequence is also periodic modulo
p, with period some multiple of the rank.

In Chapter 5 the machinery of the modularity of elliptic curves is given in the
form of a ‘black box’. We list the important theorems used in later work, and
introduce the concept of rational and irrational newforms and how they are linked
to elliptic curves. The technique of Ribet’s [30] of level lowering the conductor of
elliptic Frey curves attached to Diophantine equations is shown, as well as how it
can be used in eliminating newforms to show the nonexistence of any purported
solution to a Diophantine equation. The correspondence between elliptic curves
defined over Q and how they ‘arise’ from either rational or irrational newforms is
shown and is central to the theory expanded on in the sequel as to the existence
of pth powers, where p is some (prime) exponent in the Diophantine equation.

In Chapter 6 we look at the structure of the elliptic denominator and ask when
does the equation BP = Zf have a solution, where Z ∈ Z>0 and f ∈ Z>1. It turns
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out the question we end up asking using the ‘modular method’ is when are there
solutions to the equation

BP = Zp for p = 11, or p ≥ 17, where p is prime.

For the Mordell elliptic curve y2 = x3 − 2 we resolve the case of fifth powers
occurring in Theorem 6.3.1, with an application of elementary techniques alongside
the advanced Chabauty’s method. Our result is ultimately gained through use of
the computer algebra system magma [42].

We then investigate the general Mordell curve ED : y2 = x3 + D, where D is
a nonzero integer, and the associated denominator divisibilty sequence (BnP )n∈Z,
with the aim of finding which denominators occur as pth powers for p a prime. To
do so we assume the elliptic denominator of [n]P is a pth power for some prime p:

Bn = Zp
n.

Then letting the nth multiple of a nontorsion point P ∈ ED(Q) be written as

[n]P =
(
An

Z2p
n

,
Cn

Z3p
n

)
, An, Cn, Zn ∈ Z, gcd(An, Zn) = gcd(Cn, Zn) = 1,

we obtain the Diophantine equation

C2
n − A3

n = DZ6p
n , (1.0.1)

which has associated to it the Frey curve

EB,n : Y 2 = X3 − 3AnX + 2Cn. (1.0.2)

In Chapter 7 we give an algorithm for bounding the exponent p in the case
that the Frey curves (1.0.2) constructed in Chapter 6, Subsection 6.4.1 arise from
rational newforms. This algorithm is based on the Chinese Remainder Theorem
and uses a sieve process to gain contradictions through congruences, allowing for
the elimination of newforms, and in so doing to any purported solution to the
Diopantine equation (1.0.1).
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In Chapter 8 we investigate rank 1 Mordell curves ED : y2 = x3 + D, where
|D| < 200, D 6= 0. We remove the problem of integral points Q ∈ ED(Q), where
Q is a power integral point for all primes p, since BQ = 1p for all p. This allows
us to (hopefully) eliminate all newforms and gain a upper bound for p.

Finally, in Chapter 9, we end with a look to future work on the existence of
power integral points on curves of rank greater than 1 by utilizing the methods in
this thesis for higher dimension elliptic nets.



Chapter 2

Algebraic Curves

2.1 Affine Varieties

Let K be a field and K̄ an algebraic closure of the ground field K.

2.1.1 Affine n-Space

Definition 2.1.1. Affine n-space (over K) is the set of n-tuples

An = An(K̄) = {(a1, . . . , an) : ai ∈ K̄}.

The set of K-rational points of An is the set

An(K) = {(a1, . . . , an) ∈ An : ai ∈ K}.

If K is a perfect field, then the set of K-rational points of An is precisely the
set of points which are fixed by the Galois group Gal(K̄/K)

An(K) = {(a1, . . . , an) ∈ An : σ(ai) = ai for all σ ∈ Gal(K̄/K)}.

Assume x1, . . . , xn are independent variables over K then a polynomial

f ∈ K[x1, . . . , xn]



2. Algebraic Curves 6

can be viewed as a K-valued function f : An → K on An by evaluating f at the
points in An

f : (a1, . . . , an) 7→ f(a1, . . . , an) ∈ K.

Thus K[x1, . . . , xn] is the ring of K-valued functions on An, denoted by K[An] and
called the coordinate ring of An.
Example 2.1.2. Let K = R, n = 3. Then the coordinate ring of Euclidean 3-space
R3 is denoted by R[A3] and is the ring of polynomials in three variables, R[x, y, z]
with respect to x, y, z the coordinate functions on R3.

For each fixed subset S of functions in the coordinate ring K[An] there is a
subset of affine space Z(S) which is the set of points in An where all the functions
in S are simultaneously zero:

Z(S) = {(a1, . . . , an) ∈ An : f(a1, . . . , an) = 0 for all f ∈ S}.

Definition 2.1.3. A subset V of An is an affine algebraic set if V = Z(S) for
some S ⊆ K[An]. Then V is called the locus of S in An.

Definition 2.1.4. A nonempty subset Y of a topological space that cannot be
decomposed into two proper subsets Y1 and Y2 each of which is closed in Y is called
irreducible.

Definition 2.1.5. An affine algebraic variety is an irreducible affine algebraic
subset of An. It is called a curve if n = 2 and the variety is defined by a single
bivariate polynomial.

Definition 2.1.6. Let C(K) be an affine algebraic curve with equation f(x, y) = 0.
We note a polynomial g(x, y) is the zero function on C if and only if it is a multiple
of f . This leads us to define the ring of regular functions of C to be

K[C] = K[x, y]/〈f(x, y)〉.

Its field of fractions K(C) is called the field of rational functions of C.

Example 2.1.7. Consider the affine plane curve C : y2 = x3 + ax + b defined over
a field K. Its function field is the field K(x, y), generated by the transcendental
elements satisfying the algebraic relation.
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Definition 2.1.8. Projective n-space Pn (over K) is the set of lines through the
origin in An+1

Pn = Pn(K̄) = {(a0, . . . , an) ∈ An+1 : some ai 6= 0}/ ∼,

where we define the equivalence relation ∼ by

(x0, . . . , xn) ∼ (y0, . . . , yn)⇐⇒ (x0, . . . , xn) = λ(y0, . . . , yn) for some λ ∈ K̄∗.

A point P = (x0 : . . . : xn) ∈ Pn thus represents the equivalence class of the
(n+ 1)-tuple (x0, . . . , xn), and the xi’s are homogeneous or projective coordinates
for P . The set of K-rational points of Pn is the set of lines through the origin in
An+1 defined over K

Pn(K) = {(a0 : . . . : an) : (a0, . . . , an) ∈ An+1(K) is nonzero}.

Definition 2.1.9. A projective variety is an irreducible algebraic set in Pn with
the induced topology, that is, the simultaneous solution set of a set of homogeneous
polynomials in K[x0, . . . , xn].

Definition 2.1.10. An algebraic curve is a projective variety of dimension one.

Example 2.1.11. The affine plane curve of Example 2.1.7 has the defining polyno-
mial f(x, y) = y2 − x3 − ax − b in two variables. This can be completed into the
projective algebraic curve of equation F (x, y, z) = y2z−x3−axz2−bz3. The zeros
of this homogeneous polynomial in three variables describes the plane projective
curve C ′ : y2z = x3 + axz2 + bz3.

2.1.2 Genus

Curves are classified by a nonnegative integer known as the genus g. Every curve
of genus 0 defined over C is birationally equivalent to the line. Curves of genus 0
defined over Q are birationally equivalent to the line or a conic. Hence the theory
of curves of genus 0 is fully understood. The next Theorem gives the formula for
the genus of a nonsingular curve C.
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Theorem 2.1.12. Let a curve C be given by the zero set of some homogeneous
irreducible polynomial f(X, Y, Z) ∈ K̄[X, Y, Z], where the degeree of f is some
integer d ≥ 1. If C is nonsingular the genus is given by

(d− 2)(d− 1)
2 .

Proof. See [21, Ch. 8.3].

Example 2.1.13. Lines are curves of degree 1 having equations of the form

aX + bY + cZ = 0.

Conics are curves of degree 2 having equations of the form

aX2 + bXY + cY 2 + dXZ + eY Z + fZ2 = 0.

Cubics are curves of degree 3 having equations of the form

aX3 + bX2Y + cXY 2 + dY 3 + eX2Z + fXY Z + gY 2Z +hXZ2 + iY Z2 + jZ3 = 0.

By the genus formula lines and conics have genus 0, and smooth cubics have genus
1.

2.2 Divisors

We begin with some definitions, and fix some notation.

Definition 2.2.1. Let C be an algebraic curve and P a point on C. Let MP be
the ideal of K̄[C] given by

MP = {f ∈ K̄[C] : f(P ) = 0}.

Note that MP is a maximal ideal, since there is an isomorphism

K̄[C]/MP −→ K̄ given by f 7−→ f(P ).
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Definition 2.2.2. Let C be an algebraic curve and P a point on C. Let the local
ring of C at P , denoted K̄[C]P , be the localization of K̄[C] at MP . We have,

K̄[C]P = {F ∈ K̄[C]P : F = f/g for some f, g ∈ K̄[C] with g(P ) 6= 0}.

Definition 2.2.3. Let C be a curve and P ∈ C a nonsingular (or smooth) point.
The (normalised) valuation on K̄[C]P is given by

ordP : K̄[C]P −→ {0, 1, 2, . . . } ∪ {∞},

ordP (f) = sup{d ∈ Z : f ∈Md
P}.

Definition 2.2.4. The divisor group of a curve C, denoted Div(C), is the free
abelian group generated by the points of C. Thus a divisor is a formal sum

D =
∑
P∈C

nP (P ), nP ∈ Z

and nP = 0 for all but finitely many P ∈ C. The degree of D is

deg(D) =
∑
P∈C

nP .

If we assume C is smooth, and let f ∈ K̄(C)∗ then we can associate to f the
divisor div(f) given by

div(f) =
∑
P∈C

ordP (f)(P ).

2.3 Elliptic Curves

2.3.1 Weierstrass Cubic

An elliptic curve is a nonsingular projective algebraic curve of genus 1 with a
specified basepoint. Elliptic curves can be written as the locus of cubic equations
in the projective plane P2 having one point (the basepoint) on the line at infinity;
after scaling X and Y we have the projective Weierstrass equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (2.3.1)
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where a1, . . . , a6 ∈ K̄. To find the point at infinity set Z = 0 in (2.3.1) to find
0 = X3 and so X = 0, with Y being any nonzero number in K. Hence O = (0 :
Y : 0) = (0 : 1 : 0) is the only K̄-rational point on the line at infinity Z = 0.
Moreover O is a nonsingular point of inflection, with the tangent line being the
line at infinity.

Since the behavior at (0 : 1 : 0) is well understood, for ease of notation we
shall let x = X/Z and y = Y/Z to give the nonhomogeneous affine form of the
Weierstrass equation for an elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.3.2)

although we must always remember the extra point at infinity. If the coefficients
a1, . . . , a6 ∈ K, then E is said to be defined over K, written E/K.

We now define some standard notation needed when simplifying (2.3.2).

If char(K̄) 6= 2 we can complete the square in (2.3.2) by setting

η = y + a1

2 x+ a3

2 (2.3.3)

to give
η2 = x3 + b2

4 x
2 + b4

2 x+ b6

4 , (2.3.4)

where the auxiliary quantities b2, b4, and b6 are given by

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6.

(2.3.5)

Moreover if the ground field has char(K̄) 6= 2, 3 we can complete the cube in
(2.3.4) by setting

ξ = x+ b2

12 , (2.3.6)

then
η2 = ξ3 − c4

48ξ −
c6

864 ,
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with the invariants c4 and c6 given by

c4 = b2
2 − 24b4,

c6 = −b3
2 + 36b2b4 − 216b6.

(2.3.7)

If char(K̄) 6= 2 we now set η = 1
2y in (2.3.4) to obtain the Weierstrass equation

E : y2 = 4x3 + b2x
2 + 2b4x+ b6, (2.3.8)

with b2, b4, b6 as in (2.3.5).
Let us also define the quantities

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

j = c3
4/∆,

provided ∆ 6= 0. These satisfy the relations

4b8 = b2b6 − b2
4 and 1728∆ = c3

4 − c2
6.

Definition 2.3.1. The quantity ∆ is the discriminant of the Weierstrass equation,
and j is the j-invariant of the elliptic curve.

If further char(K̄) 6= 2, 3, every elliptic curve over K can be written in the
canonical form

E : y2 = x3 − 27c4x− 54c6, (2.3.9)

on replacing (x, y) in (2.3.8) with
(
x−3b2

36 , y
108

)
, thereby eliminating the x2 term,

with c4, c6 as in (2.3.7).
Now even when working with a field of characteristic 0 we should like to reduce

our equation modulo p for various primes, including the primes 2 and 3 for which
our equation is more complicated to deal with. However if we make the assumption
that we are working in a field K of characteristic not equal to 2 or 3 then we may
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assume our elliptic curve has a Weierstrass equation of the form

E : y2 = x3 + ax+ b.

This is known as the short Weierstrass form and has the associated quantities

∆ = −16(4a3 + 27b2), j = −1728(4a)3

∆ .

Proposition 2.3.2. A curve given by a Weierstrass equation is classified as fol-
lows:

(a) It is nonsingular if and only if ∆ 6= 0.

(b) It has a node if and only if ∆ = 0 and c4 6= 0.

(c) It has a cusp if and only if ∆ = c4 = 0.

Proof. See [35, Ch. III, Prop. 1.4].

We have defined the elliptic curve in terms of a Weierstrass equation, but what
of the uniqueness of this expression? It will be seen in Proposition 2.3.9 that for
a given elliptic curve E, assuming the line at infinity, i.e., the line Z = 0 in P2,
intersects E only at (0 : 1 : 0), then the only change of variables fixing (0 : 1 : 0)
and giving a Weierstrass form for the equation of E is

x = u2x′ + r,

y = u3y′ + su2x′ + t,

with u, r, s, t ∈ K̄, u 6= 0. The coefficients ai transform as

ua′1 = a1 + 2s,

u2a′2 = a2 − sa1 + 3r − s2,

u3a′3 = a3 + ra1 + 2t,

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st,

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.

(2.3.10)
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The auxiliary quantities bi transform as

u2b′2 = b2 + 12r,

u4b′4 = b4 + rb2 + 6r2,

u6b′6 = b6 + 2rb4 + r2b2 + 4r3,

u8b′8 = b8 + 3rb6 + 3r2b4 + 3r4.

(2.3.11)

The quantities c4, c6, ∆, and j transform as

u4c′4 = c4, u6c′6 = c6, u12∆′ = ∆, j′ = j. (2.3.12)

For the short Weierstrass form it follows the only permissable change of vari-
ables is

x = u2x′, y = u3y′,

with u ∈ K̄∗; and then

u4a′ = a, u6b′ = b, u12∆′ = ∆.

In fact, after tedious calculation, the next Proposition holds.

Proposition 2.3.3. Two elliptic curves are isomorphic (over K̄) if and only if
they have the same j-invariant.

Proof. See [35, Ch. III, Prop. 1.4].

This explains (2.3.12): the j-invariant is an invariant of the isomorphism class
of the curve, and does not depend on the particular Weierstrass equation chosen.
It is also true that for every j ∈ K there exists an E over K̄ with jE = j.

Remark 2.3.4. By Proposition 2.3.3 two elliptic curves E and E ′ are isomorphic
over a fixed algebraic closure of K if and only if they have the same j-invariant.
Two elliptic curves with the same j-invariant are called twists, and although iso-
morphic over K̄ they may not necessarily be so over K.

The next Section shows that curves that are isomorphic are also isomorphic as
abstract groups.
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2.3.2 The Group Law

As discussed in [35, Ch. III, Prop. 2.2], there is a binary operation + on an elliptic
curve E that makes E into an abelian group. We take the point at infinity to be
the identity of the group. The set of points E(K) forms a subgroup of E. We give
the relevant propositions, equations, and algorithms describing this group law.

Proposition 2.3.5. Let E be an elliptic curve given by a Weierstrass equation,
and let P , Q ∈ E, and L be the line joining them (this will be a tangent line if
P = Q) and R be the third point of intersection of L with E. Let L′ be the vertical
line joining R and O. Then P +Q is the third point of intersection that L′ makes
with E. These compositions have the following properties:

(a) If a line L intersects E at three (not necessarily distinct) points P , Q, and R,
then

(P +Q) +R = O.

(b) P +O = P for all P ∈ E.

(c) P +Q = Q+ P for all P , Q ∈ E.

(d) For each P ∈ E there exists a point −P such that

P + (−P ) = O.

(e) Let P , Q, R ∈ E. Then

(P +Q) +R = P + (Q+R).

(f) If E is defined over a field K the set of points

E(K) = {(x, y) ∈ K2 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}

forms a subgroup of E.

Proof. See [35, Ch. III, Prop. 2.2].
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Remark 2.3.6. The only real difficulty in proving the set of points in E forms an
abelian group is the property of associativity.

Definition 2.3.7. We define the multiplication-by-m map [m] : E → E by

[m]P =



P + · · ·+ P︸ ︷︷ ︸
(m terms)

for m > 0,

−P · · · − P︸ ︷︷ ︸
(m terms)

for m < 0,

O for m = 0.

We sometimes denote [m]P by just mP .

2.3.3 Group Law Algorithm

We now derive explicit formulas for the group operations on E. Let

F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6.

If we let P0 = (x0, y0) ∈ E, then to find −P0 we look at the line through P0 and
O:

L : x− x0 = 0.

Now consider the quadratic

F (x0, y) = y2 + (a1x0 + a3)y − (x3
0 + a2x

2
0 + a4x0 + a6),

which will have two roots y0 and y′0 and factor as

F (x0, y) = c(y − y0)(y − y′0),

and comparing coefficients of y2 and y we see c = 1 and y′0 = −y0 − a1x0 − a3.
Hence

− P0 = (x0,−y0 − a1x0 − a3). (2.3.13)

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on E. If x1 = x2 and y2 =
−y1−a1x1−a3 then we have just shown P1 +P2 = O. So assume otherwise. Then
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if P1 6= P2 there exists a chord through P1 and P2, or if P1 = P2 a tangent line, of
the form

L : y = λx+ ν.

Looking at the cubic equation F (x, λx+ ν) = 0, which has three roots x1, x2, x3,
we have that P3 = (x3, y3) is the third point of intersection with L such that

P1 + P2 + P3 = O;

now our cubic can be written

F (x, λx+ ν) = c(x− x1)(x− x2)(x− x3)

and comparing coefficients of x3 and x2 we see c = 1 and the sum of roots is

x1 + x2 + x3 = λ2 + a1λ− a2.

Therefore P3 = (λ2 + a1λ− a2 − x1 − x2, λx3 + ν). Now consider the negation of
P3: P1 +P2 = −P3, which we label as −P3 = (x′3, y′3). We find after using (2.3.13)
that

x′3 = λ2 + a1λ− a2 − x1 − x2,

y′3 = −(λ+ a1)x3 − ν − a3,
(2.3.14)

where λ and ν are given by

λ =


y2 − y1

x2 − x1
if x1 6= x2,

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if x1 = x2,

(2.3.15)

ν =


y1x2 − y2x1

x2 − x1
if x1 6= x2,

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3
if x1 = x2.

(2.3.16)

From this we can deduce: The addition formula for points P1 = (x1, y1), P2 =
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(x2, y2), with P1 6= ±P2 is

x(P1 + P2) =
(
y2 − y1

x2 − x1

)2
+ a1

(
y2 − y1

x2 − x1

)
− a2 − x1 − x2. (2.3.17)

The duplication formula for P = (x, y) is

x([2]P ) = x4 − b4x
2 − 2b6x− b8

4x3 + b2x2 + 2b4x+ b6
. (2.3.18)

Example 2.3.8. Let E be the elliptic curve given by

E : y2 = x3 − 36.

Given P = (−3, 9) on E what is 2P? By (2.3.14) the gradient of the tangent to
P is given by λ = (3 · (−3)2 − 36)/2 · 9 = −1/2. Hence

x3 = λ2 − x1 − x2 =
(
−1

2

)2
− (−3)− (−3) = 25

4 ,

y3 = −1
2 ·

25
4 + 9−

(
−1

2

)
(−3) = −35

8 .

So 2P =
(

25
4 ,−

35
8

)
.

The next Proposition shows that every elliptic curve can be written as a plane
cubic, and conversely, every smooth Weierstrass plane cubic curve is an elliptic
curve. It also shows how an elliptic curve E has essentially a unique Weierstrass
equation, up to a change of variables.

Proposition 2.3.9. Let E/K be an elliptic curve.

(a) There exist functions x, y ∈ K(E) such that the map

φ : E −→ P2, φ = (x : y : 1),

gives an isomorphism from E/K onto a curve with Weierstrass equation

C : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with a1, . . . , a6 ∈ K; and such that φ(O) = (0 : 1 : 0). (The functions x, y



2. Algebraic Curves 18

are called Weierstrass coordinate functions on E.)

(b) A Weierstrass equation for E is unique up to a linear change of variables
T (r, s, t, u) given by

X = u2X ′ + r, Y = u3Y ′ + su2X ′ + t (2.3.19)

with u, r, s, t ∈ K, u 6= 0.

(c) Conversely, any smooth cubic curve given by a Weierstrass equation as in (a)
is an elliptic curve defined over K with basepoint O = (0 : 1 : 0).

Proof. See [35, Ch. III, Prop. 3.1].

Corollary 2.3.10. Let E/K be an elliptic curve with Weierstrass coordinate func-
tions x and y. Then

K(E) = K(x, y) and [K(E) : K(x)] = 2.

Proof. See [35, Ch. III, Cor. 3.1.1].

Remark 2.3.11. We call such a transformation in Proposition 2.3.9 (b) an admiss-
able change of variables as given in (2.3.19). An admissable change of variables is
termed unihomothetic if u = 1.

2.4 Singular Weierstrass Equations

2.4.1 Singular Points

If a cubic curve f(x, y) has discriminant ∆ 6= 0, then this curve is nonsingular and
describes an elliptic curve. If however f(x, y) has discriminant ∆ = 0 then it is
singular and contains a singular point Q = (xS, yS) where the partial derivatives
∂f
∂x

and ∂f
∂y

both vanish at Q. Hence for a point to be singular on a cubic curve
given by f(x, y) = y2 + a1xy + a3y − x3 − a2x

2 − a4x − a6 = 0 it must vanish at
both its partial differentials with respect to x and y respectively:
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∂f

∂x
(xS, yS) = a1yS − 3x2

S − 2a2xS − a4 = 0,
∂f

∂y
(xS, yS) = 2yS + a1xS + a3 = 0.

(2.4.1)

In particular, if f(x, y) = y2− g(x) then (xS, yS) is singular if and only if xS is
a double or triple root of g.

Since a cubic can only have one double or triple root, f may only have one
singular point. Suppose that a given Weierstrass equation has discriminant ∆ = 0,
then Proposition 2.3.2 tells us that it has a singular point. In fact if we discard
the singular point the set of nonsingular points form an abelian group. We note a
singular cubic curve will then have genus 0.

Definition 2.4.1. Let E be a (possibly singular) curve given by a Weierstrass
equation. We denote the nonsingular part of E by Ens, that is the nonsingular
points of E. If E is defined over a field K we denote the set of nonsingular points
of E(K) by Ens(K).

Let E be a singular curve defined over a field K, i.e., E is given by a singular
Weierstrass equation. Let the singular point be Q = (xS, yS) ∈ E(K). After the
change of variables x→ x′ + xS, y → y′ + yS, we can assume that the Weierstrass
equation for E is

E : y2 + a1xy − a2x
2 − x3 = 0; a1, a2 ∈ K, (2.4.2)

with singular point Q = (0, 0).
Let

y2 + a1xy − a2x
2 = (y − α1x)(y − α2x),

where α1, α2 are in K or in a quadratic extension of K. Then Q is a node if
α1 6= α2, and a cusp if α1 = α2.

The next result states that Ens(K) form a group, and determines the structure
of this group.

Theorem 2.4.2. Let E/K be a singular cubic curve with singular point Q = (0, 0).
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(a) If Q is a cusp, then there is one tangent line at Q. Then the map γ : Ens(K)→
K+ defined by

γ : O 7→ 0, γ : (x, y) 7→ x/(y − α1x)

is a group isomorphism.

(b) If Q is a node with α1, α2 ∈ K, then the map µ1 : Ens(K)→ K∗ defined by

µ1 : O 7→ 1, µ1 : (x, y) 7→ (y − α2x)/(y − α1x)

is a group isomorphism. In this case the slopes of the tangent lines to the
node are in K and we say E has split multiplicative reduction.

(c) If Q is a node with α1, α2 6∈ K, then K1 = K(α1, α2) is a quadratic extension
of K. We have by part (b): Ens(K) ⊂ Ens(K1) ∼= K∗1 . Let L = {t ∈ K∗1 :
NK1/K(t) = 1} be the subgroup of K∗1 consisting of elements of norm 1. Then
the map µ2 : Ens(K)→ L defined by

µ2 : O 7→ 1, µ2 : (x, y) 7→ (y − α2x)/(y − α1x)

is a group isomorphism. In this case the slopes of the tangent lines to the
node are not in K, but in K1, and we say E has nonsplit multiplicative
reduction.

Proof. See [5, Thm. 8.1].

2.5 Torsion Points

Definition 2.5.1. Let E/K be an elliptic curve and let P 6= O be a point in
E(K). The duplication formula (2.3.18) can then generate a sequence of points
where [k]P = (xk, yk) is the kth multiple of P , for some k ∈ Z. If [n]P = O for
some n ∈ Z, then we say P is a torsion point of order n. If there is no such n then
we say P has infinite order and is a nontorsion point.
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If we include the point at infinity this then imbues the set of torsion points
with a group structure, with O acting as the identity.

Definition 2.5.2. The m-torsion subgroup of E, denoted by E[m], is the set of
points of order dividing m in E,

E[m] = {P ∈ E : [m]P = O}.

The torsion subgroup of E, denoted by Etors, is the set of points of finite order,

Etors =
⋃
m≥1

E[m].

For E/K we have E(K)tors denotes the torsion points in E(K).

Theorem 2.5.3 (Lutz–Nagell). Let E be an elliptic curve defined over Q given
by the nonhomogeneous affine form of the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, . . . , a6 ∈ Z.

(a) If a1 = 0 and if P = (x(P ), y(P )) ∈ E(Q)tors, then x(P ), y(P ) ∈ Z.

(b) For any a1, if P = (x(P ), y(P )) ∈ E(Q)tors, then 4x(P ), 8y(P ) ∈ Z.

(c) If a1 = a3 = a2 = 0, so that E is given by

y2 = x3 + ax+ b, (2.5.1)

and if P = (x(P ), y(P )) ∈ E(Q)tors, then either y(P ) = 0 (and P has order
2) or else y(P ) 6= 0 and y(P )2 | d, where d = −4a3−27b2 is the discriminant
of the cubic polynomial (2.5.1).

The Lutz–Nagell Theorem 2.5.3 can be used to explicitly compute the torsion
subgroup of curves defined over Q. To find it put the curve in the form of (2.5.1)
with a, b ∈ Z, and consider y ∈ Z such that y2 | ∆, then check if (x, y) is an
integer solution of (2.5.1). Since there can only be finitely many such solutions
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then we gain a bound on |E(Q)tors|, say equal to n. Now for each integer solution
(x, y), on raising it to powers up to the bound we may effectively check if it is a
torsion point.

Example 2.5.4. Consider the point P = (2, 3) on the elliptic curve E : y2 = x3 + 1.
We have that [2]P = (0, 1), [3]P = (−1, 0), [4]P = (0,−1), [5]P = (2,−3), and
[6]P = O. Hence P is a torsion point of order 6 on E. Thus P has order 6, [2]P
has order 3, [3]P has order 2, [4]P has order 3, [5]P has order 6, and [6]P has order
1. Geometrically we note [5]P is the reflection of P in the x-axis, as is [4]P of [2]P ,
and so these points are inverse to each other: [5]P + P = O and [4]P + [2]P = O.

Example 2.5.5. Let E be the elliptic curve given by

E : y2 = x3 − 36x

= x(x+ 6)(x− 6).

By the factorisation and part (c) of Theorem 2.5.3 we immediately see the points
of order 2 on E are given by P1 = (0, 0), P2 = (−6, 0), P3 = (6, 0). Using the
addition formula we find P1 +P2 = (6, 0), P1 +P3 = (−6, 0), P2 +P3 = (0, 0), and
that [2]Pi = O for i = 1, 2, 3. We have {O,P1, P2, P3} is the full 2-torsion group
and is isomorphic to the Klein-4 group.

E(Q)[2] ∼= Z/2× Z/2.

In 1978 Mazur gave the following Theorem categorizing the type of possible
torsion groups.

Theorem 2.5.6 (Mazur [26]). The only possible torsion groups for elliptic curves
over Q are the cyclic groups of order 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 and Z/2×Z/2n
for n = 1, 2, 3, 4.

Example 2.5.7. The largest group Z/2× Z/8 occurs for the curve:

E : y2 + xy = x3 − 1070x+ 7812,

a.k.a. Y 2 = X(X − 64)(4X − 175).
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2.6 Integral and Rational Points on Curves

Throughout this Section K will denote a number field. We are primarily con-
cerned with the case when K = Q, but it is best to highlight the results in their
full generality with K a number field, although we shall avoid the technicalities
involved and rely on references to cover the assured complexities of the results. An
important result of Siegel’s was his 1929 proof that for a smooth algebraic curve
C/K of genus g at least one, there are only finitely many points P ∈ C(K) that
have their coordinates in the ring of integers R of the number field K.

In fact he proved more than this using the idea of S-integers. For our purposes
we shall only need the concept of S-integers in the field Q.

Definition 2.6.1. Let K = Q, and let S = {p1, . . . , pn} be a finite set of rational
primes. The rational integers a/b, a, b ∈ Z, where gcd(a, b) = 1 and the prime
divisors of b (possibly empty) belong to the set S form the so called S-integers ZS.
Clearly ZS is a subring of Q, and has Z∗S as the group of multiplicatively invertible
elements of ZS, the so called S-units. These S-units will be ±1 and any rational
numbers having a prime factorisation with all prime elements coming from S. We
may specialise to one prime p, in which case a p-integer means {p}-integer.

Siegel proved his Theorem on the finiteness of S-integers in the more sophis-
ticated setting of number fields K. Here we give a brief explanation: let S be a
finite set of nonequivalent normalised valuations of K containing the set S∞ of
all Archimedean va1uations. A nonzero element a ∈ K is called S-integral, re-
spectively an S-unit, if for every valuation v 6∈ S we have v(a) ≤ 1, respectively
v(a) = 1; for further details see [27, Chap. 3, Subsec. 3.3].

Theorem 2.6.2 (Siegel). Let f(x) ∈ K[x] be a polynomial of degree d ≥ 3 with
distinct roots in K̄. Let R be the ring of integers of K. Then the equation

y2 = f(x)

has only finitely many solutions in S-integers x, y ∈ RS.

Proof. See [35, Ch. IX, Thm. 4.3].



2. Algebraic Curves 24

Corollary 2.6.3. Let C/K be a smooth curve of genus g ≥ 1 and let f be a
nonconstant function in the function field K(C). Then there are only finitely
many points P ∈ C(K) such that f(P ) ∈ RS.

Proof. See [35, Ch. IX, Cor. 4.3.1].

If we take the coordinate functions x(P ) and y(P ), Siegel’s Theorem implies
that a curve of genus ≥ 1 has only finitely many integral points.

Example 2.6.4. An elliptic curve defined overQ can have only finitely many integral
points.

We now look at rational points on a curve, and how a finite set of these generate
the whole set.

Theorem 2.6.5 (Mordell–Weil). Let E be an elliptic curve defined over a number
field K. Then E(K) is a finitely generated abelian group.

Proof. See [35, Ch. VIII, Thm. 6.7].

Remark 2.6.6. Mordell proved this first for elliptic curves. Later Weil showed the
same holds for higher dimensional abelian varieties.

The next Theorem superseded Siegel’s, and was originally conjectured by Mordell
in 1922 for the specific case of the field Q. The eventual proof, extended to any
number field K, by Faltings in 1983 was one of the triumphs of twentieth century
mathematics.

Theorem 2.6.7 (Faltings [20]). Let C be a curve defined over a number field K.
If C has a genus g > 1, then there are only finitely many K-rational points.

By the Mordell–Weil Theorem E(Q) is a finitely generated abelian group, and
as such it can be written as the direct sum of its torsion subgroup E(Q)tors and a
torsion free subgroup Zr

E(Q) ∼= E(Q)tors ⊕ Zr,

where E(Q)tors is finite, and r is a nonnegative integer called the rank.

Remark 2.6.8. The group E(K) is finite if and only if the rank is zero.
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2.7 Isogenies

For an elliptic curve E/K we have seen that the group of points E(K) form a
finitely generated abelian group. The next definition concerns the maps between
the group structures formed by elliptic curves.

Definition 2.7.1. An isogeny is a morphism of algebraic groups that is surjective
and has a finite kernel.

Let E and E ′ be two elliptic curves defined over a field K. An isogeny φ

between them is a surjective morphism φ : E → E ′ which preserves basepoints
(i.e., φ maps the identity point on E to that on E ′). If the kernel is cyclic then
the isogeny is termed cyclic, otherwise it is termed noncyclic.

Any nonsingular rational map between elliptic curves that maps the basepoint
from one to the other is a homomorphism, and thus an isogeny.

Definition 2.7.2. We define the degree d of φ to be the degree of the extension
K(E)/φ∗K(E ′),

deg(φ) := [K(E) : φ∗K(E ′)],

where φ∗ : K(E ′) → K(E) is the associated injection of function fields. We
say the isogeny is separable (inseparable, purely inseparable), if the extension
K(E)/φ∗K(E ′) is also.

If two curves have an isogeny φ of degree d between them, then we say φ is a
d-isogeny, and the curves are d-isogenous. The degree is essentially the degree of
the rational functions involved.

An equivalent definition of degree is that it is equal to the order, d say, of the
finite kernel of an isogeny φ, which is then again termed a d-isogeny.

Definition 2.7.3. Given an isogeny φ : E → E ′ of elliptic curves of degree d, the
dual isogeny is an isogeny φ̂ : E ′ → E of the same degree such that φ ◦ φ̂ = [d].
Here [d] denotes the multiplication-by-d isogeny P 7→ [d]P which has degree d2.

We summarize the main properties of the dual isogeny:

(a) deg(φ̂) = deg(φ) = d.
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(b) φ̂ ◦ φ = [d]E, φ ◦ φ̂ = [d]E′ .

(c) φ̂ ◦ ψ = ψ̂ ◦ φ̂.

(d) φ̂+ ψ = φ̂+ ψ̂.

(e) [̂d] = [d].

(f) ˆ̂
φ = φ.

Vélu [44] has shown how to find an isogeny φ : E → E ′ via explicit fomulæ,
given the kernel of the isogeny. In his formula he makes use of coordinates of
a point P = (x1, y1) of order d on the curve and its multiples [k]P = (xk, yk),
1 < k < d.

Theorem 2.7.4 (Vélu [44]). Let E/K be an elliptic curve given by a Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let F be a subgroup of E(K) of finite order p, where p is a prime, which we want
to be the kernel of the isogeny. Now since if P ∈ F then −P ∈ F also, we may
partition the set of points in F\F2 ∪ {O} as two sets R, −R, say, where F2 is the
set of points of order 2 in F . Put S = F2 ∪R and for each T = (xT , yT ) ∈ S set

gxT = 3x2
T + 2a2xT + a4 − a1yT ,

gyT = −2yT − a1xT − a3,

uT = 4x3
T + b2x

2
T + 2b4xT + b6,

vT =

g
x
T if T ∈ F2,

6x2
T + b2xT + b4 if T 6∈ F2,

v =
∑
T∈S

vT ,

w =
∑
T∈S

(uT + xTvT ).
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Given the above quantities there exists an elliptic curve

E ′ : y′2 + a1x
′y′ + a3y

′ = x′3 + a2x
′2 + (a4 − 5v)x′ + (a6 − b2v − 7w)

with an isogeny φ : E → E ′ given by

x′ = x+
∑
T∈S

(
vT

x− xT
+ uT

(x− xT )2

)
,

y′ = y −
∑
T∈S

(
uT

2y + a1x+ a3

(x− xT )3 + vT
a1(x− xT ) + y − yT

(x− xT )2 + a1xT − gxTg
y
T

(x− xT )2

)

which has kernel F .

Example 2.7.5. Consider the elliptic curves E ′ and E defined over Q given by

E ′ : y′2 = x′3 + 54,

and
E : y2 = x3 − 2.

We have the the nontorsion points P ′ = (3, 9) on E ′, and P = (3, 5) on E; hence
the group of rational points for each curve is given by E ′(Q) = 〈(3, 9)〉, and
E(Q) = 〈(3, 5)〉 respectively.

The 3rd division polynomials (see Chapter 3) evaluated at P ′ and P factor as

Ψ3(P ′) = Ψ3(P ) = 3x4 + 648x = 3x(x+ 6)(x2 − 6x+ 36),

which indicate there exists a 3-isogeny between E ′ and E, which we see from
Cremona’s tables [13]. For isogenies of prime degree p we can use Vélu’s formulæ
to explicitly find the points mapped under an isogeny.

By Vélu the rational map in the x′-coordinate is

x′ 7→ X = x′ + 216
x′2

.

Substituting x′ = 3 into the map gives 3 7→ 3 + 216
32 = 33, and this gives the curve
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y2 = x3 − 2 · 36. On making the change of variables x = X
32 and y = Y

33 we have

x′ 7→ x = x′

32 + 216
32x′2

= x′

9 + 24
x′2
.

We do similar for the rational map for y′ to give the rational map

(x′, y′) 7→
(
x3 + 216

x2 ,
x3y − 432y

x3

)

which is the desired 3-isogeny mapping the generator P ′ to P .

2.8 Minimal Weierstrass Equations

In this Section we use the following notation:
K a local field, complete with respect to a discrete valuation v;
R = {x ∈ K : v(x) ≥ 0}, the ring of integers of K.
Let E/K be an elliptic curve with Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.8.1)

Since the map (x, y) 7→ (u−2x, u−3y) takes each ai to uiai, for suitable choice
of u we can find a Weierstrass equation with all coefficients ai ∈ R. Then the
discriminant ∆ satisfies v(∆) ≥ 0; and since v is discrete we can look for an
equation with v(∆) as small as possible.

Definition 2.8.1. Let E/K be an elliptic curve. If v(∆) is minimized subject to
the condition that all the ai ∈ R then the Weierstrass equation (2.8.1) is termed a
minimal Weierstrass equation for E at v, and v(∆) is termed the valuation of the
minimal discriminant of E at v.

Let E be an elliptic curve defined over Q. If all the ai ∈ Z in (2.3.2) then E
is said to be integral or defined over Z. By applying the change of coordinates
T (0, 0, 0, u) from part (b) of Proposition 2.3.9 for some suitable u, any Weierstrass
model can be transformed to an integral model; all invariants, except possibly j,
are then integral. If |∆| is minimal the model is called a global minimal model
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for E. The discriminant ∆min for a global minimal model is termed the minimal
discriminant and is uniquely determined by E. Every E/Q has a minimal model,
which is not unique, with isomorphisms between minimal models having u = ±1,
and r, s, t ∈ Z.

To look at it another way any global minimal model for E/Q is a minimal
Weierstrass equation for E at p, for any prime p (where we have the embedding
Q ↪→ Qp, p 7→ p). Then for any finite place p of Q we can obtain a generalized
Weierstrass equation, integral at p, with a discriminant of minimal p-adic valua-
tion. Since Q has class number 1 we can glue together these local equations to
obtain a global integral generalized Weierstrass equation with (unique) discrimi-
nant ∆min having minimal p-adic valuation at all primes p.

2.9 Reduction of the Weierstrass Equation Mod-
ulo p

In this Section our elliptic curves will be defined over Q.

In order to understand the rational points on an elliptic curve E/Q, we con-
sider it reduced modulo a prime number p. At certain primes the reduced curve
becomes singular and so fails to be an elliptic curve. This occurs exactly when the
characteristic is a prime factor of the discriminant ∆min of a minimal model of E.

Fix a prime p. Let Ẽ denote the reduction of the Weierstrass equation modulo
p.

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6.

Hence we obtain a reduction map

E(Q) −→ Ẽ(Fp)

P 7→ P̃
(2.9.1)

The nonsingular points of Ẽ(Fp) form a group, denoted Ẽns(Fp). We define two
subsets of E(Q):
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E0(Q) = {P ∈ E(Q) : P̃ ∈ Ẽns(Fp)},

E1(Q) = {P ∈ E(Q) : P̃ = Õ}.
(2.9.2)

So E0(Q) is the set of points of nonsingular reduction, and E1(Q) is the kernel of
the reduction map.

If we reduce an elliptic curve defined over Q modulo a prime p that doesn’t
divide the minimal discriminant we obtain an elliptic curve defined over a finite
field E/Fp ∼= Ẽ. In this case E has good reduction at p with E remaining an
elliptic curve for the good primes that do not divide the discriminant.

However if p | ∆min(E), then E has bad reduction at p. At these bad primes, Ẽ
is singular and so fails to be an elliptic curve. Removing the singular point again
gives a set of nonsingular points which form an abelian group.

With the notation above we have

Theorem 2.9.1. There is a short exact sequence of abelian groups

0→ E1(Q)→ E0(Q)→ Ẽns(Fp)→ 0. (2.9.3)

Proof. See [35, Ch. VII, Prop. 2.1].

Thus the group E0(Q)/E1(Q) is isomorphic to the finite group of nonsingular
points modulo p.

2.9.1 The Group E/E0

We see that the group E0(Q) consists of those points of E(Q) which do not reduce
to a singuar point of Ẽns(Fp). In particular it is made of two pieces: the part
Ẽns(Fp), and the formal group E1(Q). Importantly the quotient E(Q)/E0(Q) is
finite.

Theorem 2.9.2. Let E/Q be an elliptic curve. If Ẽ has split multiplicative re-
duction then E(Q)/E0(Q) is cyclic of order v(∆) = −v(j). Otherwise the quotient
group E(Q)/E0(Q) is finite, of order at most 4.

Corollary 2.9.3. The subgroup E0(Q) has finite index in E(Q).
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2.9.2 The Conductor of an Elliptic Curve

Definition 2.9.4. The conductor NE of E/Q is defined to be

NE :=
∏
p

pfp

where the product is over all primes and the exponent fp is defined below.

fp =


0 if E has good reduction at p,

1 if E has multiplicative reduction at p,

2 + δp if E has additive reduction at p.

Here δp depends on wild ramification in the action of the inertia group at p of
Gal(Q̄/Q) on the Tate module Tp(E). It can be calculated by Tate’s algorithm
(Section 2.10). The conductor divides the minimal discriminant, and its prime
divisors coincide with those of the minimal discriminant. The conductor encodes
the type of reduction at p.

Remark 2.9.5. We call curves stable if E has good reduction, semistable if E has
multiplicative reduction, and unstable if E has additive reduction at a prime p.

2.10 Tate’s Algorithm

Let E/K be an elliptic curve given by the nonhomogeneous affine form of the
Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, . . . , a6 ∈ R, where R is the ring of integers of a number field K. Tate’s
algorithm is an eleven step process which on its completion, which might happen
after a finite number of repetitions, we obtain the Weierstrass equation in minimal
form. It allows us to compute the valuation of the minimal discriminant vp(∆min),
and fp(E/K) the exponent of the conductor of E/K for each prime p dividing
∆min.
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The algorithm can be found in [35, Ch. IV. Sec. 9], where it is presented close
to Tate’s original exposition in [40], and can be consulted for extra details.

2.11 Elliptic Curves over Finite Fields

In Section 2.9 we looked at the reduction of an elliptic curve modulo a prime p.
With this in hand we can extend Theorem 2.5.3.

Theorem 2.11.1 (Lutz–Nagell). If p is an odd prime such that p - ∆, then the
restriction to E(Q)tors of the reduction homomorphism rp : E(Q) → Ẽ(Z/pZ) is
one-one. This remains valid for p = 2 if 2 - ∆ and a1 = 0.

2.11.1 Counting Points over a Finite Field

If E/Fq is an elliptic curve defined over a finite field, where q is a power of a prime
p, then the set of rational points is

E(Fq) = {(x, y) ∈ E(Fq) : x, y ∈ Fq} ∪ {O}.

The number of points in E(Fq) is finite.
For the group of points E(Fq), q odd, a cubic x3 + ax2 + bx + c is a square

around half the time for x ∈ {0, 1, . . . , q − 1} giving two values ±y, and one if
y = 0, adding the “point at infinity” we should expect to have around q+ 1 points
on the curve over a finite field. The difference between these two values can be
made exact.

Definition 2.11.2. The trace of Frobenius, aq(E), of an elliptic curve E is defined
by

aq(E) = q + 1− |E(Fq)|. (2.11.1)

In fact aq(E) turns out to be the trace of the q-power Frobenius map considered
as a linear transformation of the Tate module of E.

Theorem 2.11.3 (Hasse). If E is an elliptic curve defined over the finite field Fq
then the number of rational points |E(Fq)| satisfies

|E(Fq)| = q + 1− aq(E), with |aq(E)| ≤ 2√q.
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Proof. See [35, Ch. V, Thm. 1.1].

The next result is mainly due to Deuring, and gives the possible values that
E(Fq) can take.

Theorem 2.11.4. Let Fq be a finite field with cardinality q = pn, and let t ∈ Z
be such that |t| ≤ 2q1/2. There exists an elliptic curve E defined over Fq such that
|E(Fq)| = q + 1− t if and only if one of the following conditions is satisfied:

(a) p - t

(b) n is even and t = ±2q1/2.

(c) n is even, p 6≡ 1 (mod 3), and t = ±q1/2.

(d) n is even, p 6≡ 1 (mod 4), and t = 0.

(e) n is odd, p = 2 or 3, and t = ±p(n+1)/2.

(f) n is odd and t = 0.

Proof. See [12, Thm. 7.3.12].

Theorem 2.11.5. Let Fq be a finite field with cardinality q = pn. The group E(Fq)
is the product of at most two cyclic groups, and if we write E(Fq) ∼= (Z/d1Z) ×
(Z/d2Z) with d2 | d1, then d2 | q − 1.

Proof. See [5, Thm. 7.10].

Example 2.11.6. Consider the set of points of the elliptic curve E : y2 = x3−2 over
the finite field F5. We can easily find all points (x, y) with x, y ∈ {0,±1,±2} by
solving

y2 ≡ x3 − 2 (mod 5).

For this we need to find when x3−2 is a quadratic residue modulo 5, these residues
being 0, 1, and 4. We find the six points to be

{(1,±2), (2,±1), (3, 0), O}
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where O is the “point at infinity”. These points form a cyclic group of order 6.

E(F5) ∼= Z/6Z.

2.11.2 The Singular Situation for Finite Fields

For finite fields we have the analogue of Theorem 2.4.2:

Theorem 2.11.7. If an elliptic curve becomes singular over a finite field Fq with
singular point Q then we have

(a) If Q is a cusp, then Ens(Fq) ∼= F+
q of order q.

(b) If Q is a node with tangents whose slopes are rational over Fq (split multi-
plicative reduction), then Ens(Fq) ∼= F∗q of order q − 1.

(c) If Q is a node with tangents whose slopes are quadratic over Fq (nonsplit
multiplicative reduction), then Ens(Fq) is isomorphic to the subgroup of order
q + 1 in F∗q2 (a cyclic group of order q2 − 1).

Corollary 2.11.8. If an elliptic curve E has bad reduction at a prime p, so p |
∆(E), the trace at q = pm for m ≥ 1 is given by

(a) if the reduction is additive aq(Ens) = 0;

(b) if the reduction is split multiplicative aq(Ens) = 1;

(c) if the reduction is nonsplit multiplicative aq(Ens) = −1.

Proof. For primes of singular reduction the trace of Frobenius is given by aq(Ens) =
q − |Ens(Fq)|, where we subtract 1 for the singular point in the trace formula
(2.11.1), and so using this formula together with Theorem 2.11.7 the three cases
are clear.

2.12 Quadratic Twists

Definition 2.12.1. Let K be a field with char(K) 6= 2. Let E/K be an elliptic
curve of the form:

E : y2 = x3 + a2x
2 + a4x+ a6.
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Given d ∈ K∗ the quadratic twist of E by d is the curve E(d), defined by:

E(d) : dy2 = x3 + a2x
2 + a4x+ a6. (2.12.1)

To convert E(d) to an ordinary Weierstrass form, multiply (2.12.1) through by d3

and set Y = d2y, X = xd, then (2.12.1) becomes

E(d) : d4
(
Y

d2

)2
= d3

(
X

d

)3
+ a2d

3
(
X

d

)2
+ a4d

3
(
X

d

)
+ a6d

3,

or equivalently
E(d) : Y 2 = X3 + a2dX

2 + a4d
2X + a6d

3.

These two elliptic curves E and E(d) are not isomorphic over K, but over the
quadratic field extension K(

√
d).

If char(K) = 2, then given d ∈ K such that x2 + x + d is an irreducible poly-
nomial over K, a curve E/K given in long Weierstrass form (2.3.2) has quadratic
twist given by

E(d) : y2 + a1xy + a3y = x3 + (a2 + a2
1d)x2 + a4x+ a6 + a2

3d.

Now E is not isomorphic to E(d) over K, but over the field extension K[x]/(x2 +
x+ d).

2.12.1 Quadratic Twists over Finite Fields

If we take our field to be a finite field Fq with an odd number q of elements and d
a nonsquare in F∗q, then for each x ∈ Fq there exists a y ∈ Fq such that the point
P = (x, y) belongs to one of E or E(d). There are always two such values y, so
that

|E(Fq)|+ |E(d)(Fq)| = 2q + 2.

In particular we get aq(E) = −aq(E(d)). Thus we get:

Theorem 2.12.2. Let E/Fp with Weierstrass equation of the form y2 = f(x), for
some cubic f , p an odd prime, d ∈ F∗p. Let E(d) be the quadratic twist of E by d.
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Then
ap(E(d)) =

(
d

p

)
ap(E) (2.12.2)

where
(
d
p

)
is the Legendre symbol.

Proof. See [12, Prop. 7.3.16].

Example 2.12.3. In Subsection 7.2.1 we study the elliptic curve

E : Y 2 = X3 − 3UX + 2V.

We find we have to consider the twist of E by
√
−1, which is

E(−1) : Y 2 = X3 − 3UX − 2V.

If (X0, Y0) is a point on E, then (−X0, iY0) (where i =
√
−1) is seen to be a point

on E(−1) since

(iY0)2 = −Y 2
0 = −(X3

0 − 3UnX0 + 2Vn) = (−X0)3 − 3Un(−X0)− 2Vn.

This shows E and E(−1) are isomorphic over Q(
√
−1), but not over Q.

2.13 Elliptic Curves over C

The aim of this Section will be to illustrate some of the elliptic functions utilized
in the sequel. The Weierstrass ℘-function can be used in the parametric equations
of elliptic curves. It can be thought of as the fundamental elliptic function having
periods ω1, ω2 and a double pole at the origin with residue 0. The Weierstrass
ζ-function and the Weierstrass σ-function are also introduced, with the latter
function being shown later to be closely associated with some of the polynomial
expressions concerned with evaluating points on elliptic curves.

Although we study all these functions under the label of elliptic functions it
should be noted that only the Weierstrass ℘(z; Λ)-function and its derivative are
elliptic functions, because only these functions are doubly periodic. The other
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Weierstrass functions ζ(z; Λ) and σ(z; Λ) are not elliptic functions because they
are only quasi-periodic functions with respect to z.

2.13.1 Complex Tori

Definition 2.13.1. A lattice in C is a set

Λ = 〈ω1, ω2〉 = Zω1 ⊕ Zω2,

with {ω1, ω2} a basis for C over R. The lattice Λ can be equivalently expressed
via a homothetic transformation as a normalised lattice Λτ ,

Λτ = 〈1, τ〉 = 1
ω1

Λ = Z⊕ Zτ where τ = ω2

ω1
, =

(
ω2

ω1

)
> 0,

where the imaginary part of the ratio of periods may be taken to be positive by
exchanging the roles of ω1, ω2 if necessary.

From henceforth we shall assume all our lattices are normalised by putting
ω1 = 1 and ω2 = τ .

Definition 2.13.2. Let Λτ = {mτ + n : m,n ∈ Z} be the lattice generated by 1
and τ . A fundamental parallelogram for the lattice Λτ is a set of the form

D = {t1 + t2τ : 0 ≤ t1, t2 < 1}.

Definition 2.13.3. A complex torus is a qoutient of the complex plane by a lattice
Λ,

C/Λ = {z + Λ : z ∈ C}.

2.13.2 Elliptic Functions

Definition 2.13.4. An elliptic function f , with respect to the lattice Λ, is a
meromorphic function f : C −→ C, which is doubly periodic with respect to Λ:

f(z + ω) = f(z) for all z ∈ C, ω ∈ Λ.
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The set of all such functions is denoted by C(Λ). It is clear C(Λ) is a field.

Definition 2.13.5. The Eisenstein series of weight 2k associated to a lattice Λ is
defined to be

G2k(Λ) =
∑

ω∈Λ\{0}

1
ω2k

and is absolutely convergent for all k > 1 [35, Ch. VI, Thm. 3.1(a)]. We also
define

G2k(τ) = G2k(Λτ ) =
∑

m,n∈Z
(m,n) 6=(0,0)

1
(mτ + n)2k .

Definition 2.13.6. The Weierstrass ℘-function (relative to Λ) is defined by

℘(z; Λ) = 1
z2 +

∑
ω∈Λ\{0}

(
1

(z − ω)2 −
1
ω2

)
, z ∈ C, z 6∈ Λ. (2.13.1)

We see ℘(z; Λ) is a meromorphic doubly periodic function with a pole of order
2 at each period (with none other), and converges absolutely and uniformly in any
bounded closed domain containing none of the lattice points [35, Ch. VI, Thm.
3.1(b)]. It is thus an (even) elliptic function [35, Ch. VI, Thm. 3.1(c)]. If the
lattice has been fixed we shall write ℘(z; Λ) = ℘(z) for concision. The derivative
of the ℘-function is

℘′(z) = −2
∑
ω∈Λ

1
(z − ω)3 (2.13.2)

and so ℘′(z) has a pole of order 3 at each period.

Proposition 2.13.7. For 0 < |z| < min06=ω∈Λ(|ω|) the Laurent series expansion
for ℘(z) is

℘(z) = 1
z2 +

∞∑
k=1

(2k + 1)G2k+2z
2k, (2.13.3)

and the Laurent series expansion for ℘′(z) is

℘′(z) = − 2
z3 +

∞∑
k=1

2k(2k + 1)G2k+2z
2k−1. (2.13.4)
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Proof. When |z| < |ω|,

1
(z − ω)2 −

1
ω2 = 1

ω2

(
1

(1− (z/ω))2 − 1
)

= 1
ω2

( ∞∑
k=1

(k + 1) z
k

ωk

)
.

Therefore
℘(z) = 1

z2 +
∑
ω 6=0

∞∑
k=1

zk

ωk+2 ,

where we sum over ω first, and then over k. The series expansion for ℘′(z) follows
similarly.

Theorem 2.13.8. The set of doubly periodic functions for Λ is an algebraic func-
tion field C(Λ) = C(℘(z), ℘′(z)).

Proof. See [46, Thm. 9.3 (5)].

Theorem 2.13.8 shows every elliptic function is a rational combination of ℘ and
℘′.

2.13.3 Parametrizing Elliptic Curves

Theorem 2.13.9. The ℘-function satisfies the nonlinear differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 (2.13.5)

where g2, g3 are the elliptic invariants of the ℘-function, and are defined by the
Eisenstein series

g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).

Proof. By Proposition 2.13.7 if we cube the relations for ℘(z), and square the
Laurent series expansions for ℘′(z), found in (2.13.3) and (2.13.4) respectively, we
can show that

f(z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6,
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is identically zero. See [46, Thm. 9.8].

Theorem 2.13.9 shows that the points (℘(z), ℘′(z)) lie on the curve y2 = 4x3−
g2x− g3. Hence the differential equation (2.13.5) can be used to show that C/Λ is
always complex analytically isomorphic to an elliptic curve.

Proposition 2.13.10. Let g2 = g2(Λ) and g3 = g3(Λ) be the quantities associated
to a lattice Λ ⊂ C. The polynomial f(x) = 4x2− g2x− g3 has distinct roots, so its
discriminant ∆(Λ) = g3

2 − 27g2
3 is nonzero.

Proof. See [46, Prop. 9.9].

The nonvanishing of the discriminant in Proposition 2.13.10 implies the next
Theorem that shows how the ℘-function can be used to parametrize elliptic curve
equations.

Proposition 2.13.11. Let Λ be a lattice and let E/C be the elliptic curve

E : y2 = 4x3 − ax− b. (2.13.6)

Then the map

θ : C/Λ −→ E(C) ⊂ P2(C)

z 7−→ (℘(z) : ℘′(z) : 1)

0 7−→ O

is a complex analytic isomorphism of complex Lie groups.

Proof. See [35, Ch. VI, Prop. 3.6].

In fact we can show every elliptic curve over C corresponds to a torus.

Proposition 2.13.12. Let E/C be the elliptic curve defined by y2 = 4x3−ax− b.
Then there exists a lattice Λ such that g2(Λ) = a and g3(Λ) = b. Then there is an
isomorphism of groups C/Λ ∼= E(C).

Proof. See [46, Ch. 9, Thm. 9.19].
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By normalizing we have assumed Λ = ΛE = Z + Zτ with =(τ) > 0. The value
of τ is determined modulo the action of SL2(Z) on the complex upper half plane
H and is the period of E.

Proposition 2.13.11 shows the map z 7→ (℘(z) : ℘′(z) : 1) takes nonlattice
points of C to points (x, y) ∈ C2 satisfying the nonsingular equation (2.13.6).

Remark 2.13.13. If we divide the coefficients of the Weierstrass form (2.13.6) by 4
and set y to 1

2y, A = −g2
4 , and B = −g3

4 , we gain the form

E : y2 = x3 + Ax+B.

Hence we have the Weierstrass ℘-function and its derivative map C/Λ to E via
(x, y) = (℘(z), 1

2℘
′(z)).

Definition 2.13.14. The Weierstrass ζ-function (relative to Λ) is defined

ζ(z) = ζ(z; Λ) = 1
z

+
∑

ω∈Λ\{0}

( 1
z − ω

+ 1
ω

+ z

ω2

)
, z ∈ C, z 6∈ Λ. (2.13.7)

Proposition 2.13.15. The Weierstrass ζ-function relative to the lattice Λ satis-
fies:

(a) For all z ∈ C, d
dz
ζ(z) = −℘(z).

(b) ζ(−z) = −ζ(z).

(c) For all ω ∈ Λ and all z ∈ C,

ζ(z + ω) = ζ(z) + η(ω),

where the number η(ω) is independent of z. The map

η : Λ −→ C

is called the quasi-period map associated to Λ.

Proof. For (a), the series (2.13.7) converges absolutely and uniformly, and so dif-
ferentiating it term by term gives the series for −℘ which is convergent. For (b),



2. Algebraic Curves 42

we note replacing ω by −ω does not change ζ(z). Evaluating at −z gives −ζ(z).
For (c)

d

dz
ζ(z + ω) = −℘(z + ω) = −℘(z) = d

dz
ζ(z).

Integrating, we find the quantity

η(ω) = ζ(z + ω)− ζ(z)

is independent of z.

Definition 2.13.16. The Weierstrass σ-function (relative to Λ) is obtained by
integrating ℘ twice and exponentiating to give the product

σ(z) = σ(z; Λ) = z
∏
w∈Λ
w 6=0

(
1− z

w

)
e(z/w)+ 1

2 (z/w)2
. (2.13.8)

This function is holomorphic on C. It has simple zeros at each z ∈ Λ and no other
zeros [35, Ch. VI, Thm. 3.3(a)].

The Weierstrass σ-function is not periodic with respect to Λ, but has a quasi-
periodicity which we now describe: Let η : Λ→ C be the quasi-period map for Λ,
and define λ : Λ→ {±1} by

λ(ω) =

1 if ω ∈ 2Λ,

−1 if ω 6∈ 2Λ.

The Weierstrass σ-function satisfies the following transformation formula:

σ(z + ω; Λ) = λ(ω)eη(ω)(z+ ω
2 )σ(z; Λ) for all z ∈ C and ω ∈ Λ. (2.13.9)

Definition 2.13.17. Fix a lattice Λ ⊂ C corresponding to an elliptic curve E.
For v = (v1, . . . , vr) ∈ Zr, define a function Ψv on Cr in variables z = (z1, . . . , zr)
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as follows:

Ψv(z; Λ) =

(−1)
∑

1≤i≤j≤r
vivj+1 σ(v1z1 + · · ·+ vrzr; Λ)(∏r

i=1 σ(zi; Λ)2v2
i−
∑r

j=1 vivj
)(∏

1≤i<j≤r σ(zi + zj; Λ)vivj

) ,
(2.13.10)

where for v = 0 we set Ψv ≡ 0.

In particular we outline the first two cases of Definition 2.13.17 as these will
be of particular interest to us in the sequel.

Example 2.13.18. For each m ∈ Z we have a function on C in the variable z:

Ψm(z; Λ) = (−1)m+1 σ(mz; Λ)
σ(z; Λ)m2 . (2.13.11)

For each (m,n) ∈ Z2 we have a function on C2 in the variables z and w:

Ψm,n(z, w; Λ) = (−1)(m+n)2+1 σ(mz + nw; Λ)
σ(z; Λ)m2−mnσ(z + w; Λ)mnσ(w; Λ)n2−mn . (2.13.12)

Lemma 2.13.19. Let u and v be complex variables. Then we have the relation

℘(u)− ℘(v) = −σ(u+ v)σ(u− v)
σ(u)2σ(v)2 . (2.13.13)

Fix a lattice Λ ⊂ C corresponding to an elliptic curve E. Let vectors u =
(u1, . . . , ur), v = (v1, . . . , vr) ∈ Zr. Then for the vector z of r complex variables
z = (z1, . . . , zr) ∈ Cr we have

℘(u · z)− ℘(v · z) = −Ψu+v(z)Ψu−v(z)
Ψu(z)2Ψv(z)2 . (2.13.14)

Proof. Equation (2.13.13) is a standard result; see [34, Cor. 5.6 (a)]. Equation
(2.13.14) follows from (2.13.13) by calculation using (2.13.10) to give

Ψu+v(z)Ψu−v(z)
Ψu(z)2Ψv(z)2 = σ((u + v) · z)σ((u− v) · z)

σ(u · z)2σ(v · z)2 .
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2.13.4 Torsion Points in C

Which points in E(C) have [n]P = O? Using the ℘-function we have ℘(nz) =
n℘(z) = 0 if and only if nz ∈ Λ. Hence we need z ∈ 1

n
Λ. Since 1

n
Λ/Λ ∼= (Z/nZ)2

we get: There is an isomorphism of abstract groups

E(C)[n] ∼= Z/nZ× Z/nZ.



Chapter 3

The Division Polynomials

Throughout we let K be a field of characteristic 0.

3.1 General Theory

Let K be a field and E/K an elliptic curve given by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (3.1.1)

Let P = (x, y) ∈ E(K). Look at the sequence of points [n]P = (xn, yn) for
n ∈ Z, [n]P 6= O. By the addition law on E/K, two points P1, P2 on E have
P1 +P2 described by rational functions of the coordinates of P1 and P2. It follows
[n]P can be expressed in terms of rational functions in x, y and the coefficients of
the Weierstrass equation (3.1.1).

One way we can investigate the group of n-torsion points E[n], for nonzero n,
is to introduce a function Ψn which has zeros exactly at the points in E[n]\{O}
with one pole at O. Let f(x, y) = y2 + a1xy + a3y − x3 − a2x

2 − a4x − a6 = 0
be the defining equation for E, and let K(E) be the field of fractions of K[E] =
K[x, y]/〈y2 + a1xy + a3y − x3 − a2x

2 − a4x− a6〉.

Proposition 3.1.1. Consider an elliptic curve defined over a field K with Weier-
strass model f(x, y) = 0, where

f(x, y) := y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6; ai ∈ K. (3.1.2)
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The division polynomials are the unique polynomials in the quotient field K[x, y]/〈f(x, y)〉
which satisfy the following nonlinear recursion:

Ψ0 = 0,

Ψ1 = 1,

Ψ2 = 2y + a1x+ a3,

Ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

Ψ4 = Ψ2

(
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ (b4b8 − b2

6)
)
,

where the bi are as usual,

Ψm+nΨm−nΨ2
r = Ψm+rΨm−rΨ2

n −Ψn+rΨn−rΨ2
m for all m > n > r. (3.1.3)

Furthermore they are given inductively by the duplication formulas

Ψ2n+1 = Ψn+2Ψ3
n −Ψn−1Ψ3

n+1 for n ≥ 2, (3.1.4a)

Ψ2Ψ2n = Ψn

(
Ψn+2Ψ2

n−1 −Ψn−2Ψ2
n+1

)
for n ≥ 3, (3.1.4b)

Proof. For a proof of the general recursion (3.1.3) and the fact that this together
with the fixed values Ψ0, Ψ1, Ψ2, Ψ3, Ψ4, determines the division polynomials
uniquely see [18, Prop. 3.52, 3.53], and also [1, Ch. 4.4.5.(a)], [35, Ch. III, Ex.
3.7]. For some of the classical elliptic function theory underpinning these results
see [9, Ch. III.4, Ch. IV.3].

Proposition 3.1.2. Let E/K be an elliptic curve given by Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

For n ∈ Z6=0, the nth division polynomial Ψn is the unique rational function Ψn ∈
K(E) having divisor

div(Ψn) =
∑

P∈E[n]
(P )− n2(O), (3.1.5)

with leading coefficient n. Set Ψ0 = 0 by convention.

Proof. See [18, Prop. 3.57].
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With Proposition 3.1.2 in hand we have

Theorem 3.1.3. The division polynomials satisfy

Ψ−n = −Ψn. (3.1.6)

Proof. This is clear from Proposition 3.1.2 and the fact that if P is any torsion
point then so is its inverse −P , i.e., E[n] = E[−n].

Remark 3.1.4. Let P = (x, y) be a point on an elliptic curve. Concerning notation
we shall write either of Ψn(P ) or Ψn(x, y) for the nth division polynomial evaluated
at the point P .

Theorem 3.1.5. Let x(P ) denote the x-coordinate of a point P = (x(P ), y(P ))
on an elliptic curve E/K. Then the division polynomials satisfy

Ψ2
n(x, y) = n2 ∏

P∈E(K)[n]\{O}

(
x− x(P )

)
= n2xn

2−1 + · · · ∈ Z[x]

a primitive integral polynomial vanishing at the x-coordinates of torsion points on
the curve of order dividing n.

Proof. We have that div(x − x(P )) = (P ) + (−P ) − 2(O) since the only zeros of
x− x(P ) are P and −P . Then by (3.1.5)

div(Ψ2
n) =

∑
P∈E[n]

2(P )− 2n2(O),

while

div
n2 ∏

P∈E[n]\{O}
(x− x(P ))

 =
∑

P∈E[n]\{O}
div (x− x(P ))

=
∑

P∈E[n]\{O}

(
(P ) + (−P )

)
+ 2(O)

=
∑

P∈E[n]
2(P )− 2n2(O),

(3.1.7)

where we can do the last step since E[n] = −E[n]. Hence the divisors of two
rational functions agree. Moreover the leading coefficient is n2 in both rational
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functions so they must be the same. The power of x follows as there are n2 − 1
torsion points in E[n]\{O}.

Proposition 3.1.6. For n odd, Ψn ∈ K[x] (where we identify K[x] with its image
in K(E)), while for n even, Ψn ∈ (2y + a1x+ a3)K[x].

Proof. If n is odd E[n] contains no point of order 2 and we can write E[n] = S ∪
−S∪{O} for some set S where−S = {−P : P ∈ S}. Then Ψn = n

∑
P∈S(x−x(P ))

by the same argument as in Theorem 3.1.5.
For the case n even, E[2] ⊆ E[n]. Decompose E[n] = S ∪−S ∪E[2] such that,

as char(K) 6= 2, Ψn = n
2 Ψ2

∑
P∈S(x − x(P )). Now there are three nonzero points

of order 2 which sum to O since by (3.1.5) there is a rational function with divisor
(E[2]) − 4(O), namely the line 2y + a1x + a3, since a point (x, y) is a 2-torsion
point if and only if 2y + a1x+ a3 = 0.

Corollary 3.1.7. For m and n having the same parity then ΨmΨn ∈ K[x].

Proof. If m and n are odd the result follows by Proposition 3.1.6. If they are even
then we need merely note Ψ2

2 = (2y+a1x+a3)2 = 4x3+b2x
2+2b4x+b6 ∈ K[x].

The next Lemma proves the division polynomials in characteristic zero have
coefficients in Z.

Lemma 3.1.8. The division polynomials Ψn satisfy

Ψn ∈

Z[a1, a2, a3, a4, a6, x] if n is odd,

Ψ2Z[a1, a2, a3, a4, a6, x] if n is even.
(3.1.8)

Proof. Because of the antisymmetric property (3.1.6) we need only prove for the
case n ≥ 0. The Lemma is true for 0 ≤ n ≤ 4 by Proposition 3.1.1. Assume by
induction that the Lemma is true for 1 ≤ k ≤ n− 1. We subdivide into two cases:

If n is odd, say n = 2k + 1 with k ≥ 2, then by the formula (3.1.4a) we have

Ψ2k+1 = Ψk+2Ψ3
k −Ψk−1Ψ3

k+1 for k ≥ 2. (3.1.9)

We note that 2k + 1 > k + 2 and so by examination of the suffixes on the
RHS of (3.1.9) we have if k is even, then by induction Ψ4

2 divides the Ψk+2Ψ3
k
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term, where Ψ2
2 = (4x3 + b2x

2 + 2b4x + b6)2, and so Ψk+2Ψ3
k is a polynomial in

Z[a1, a2, a3, a4, a6, x], for the Ψk−1Ψ3
k+1 term we note both suffixes are odd, so,

by induction, Ψk−1Ψ3
k+1 is a polynomial in Z[a1, a2, a3, a4, a6, x]. Hence Ψ2k+1 ∈

Z[a1, a2, a3, a4, a6, x] if k is even. If k is odd the same reasoning applies. Thus for
n odd we have Ψn ∈ Z[a1, a2, a3, a4, a6, x].

If n = 2k with k ≥ 3, then 2k > k + 2. Equation (3.1.4b) gives

Ψ2k = Ψk

Ψ2
(Ψk+2Ψ2

k−1 −Ψk−2Ψ2
k+1) for k ≥ 3. (3.1.10)

Now Ψk−2, Ψk−1, Ψk, Ψk+1, Ψk+2 are polynomials satisfying the conditions of
the inductive hypothesis since all suffixes are less than 2k. If k is odd then
Ψ2

2 divides (Ψk+2Ψ2
k−1 − Ψk−2Ψ2

k+1), while if k is even Ψ2 divides Ψk, Ψk+2, and
Ψk−2 and so Ψ2

2 divides Ψk(Ψk+2Ψ2
k−1 −Ψk−2Ψ2

k+1). Hence Ψ2k is a polynomial in
Ψ2Z[a1, a2, a3, a4, a6, x] as required.

Let f(x, y) = y2 +a1xy+a3y−x3−a2x
2−a4x−a6 = 0 be the defining equation

of an elliptic curve E. Since the division polynomials will be evaluated at points on
an elliptic curve, we compute them modulo f(x, y). Thus in particular the degree
of y in Ψn never exceeds 1 (since we can replace y2 by x3+a2x

2+a4x+a6−a1xy−a3y

whenever it occurs).
By Lemma 3.1.8 the division polynomials in characteristic zero have integer

coefficients, and we are thus allowed to reduce them modulo a prime p. Therefore
all equations found in characteristic zero still hold in positive characteristic p, since
by Lemma 3.1.8 they are equations in the quotient field of the integral domain
Z[a1, a2, a3, a4, a6, x, y]/〈f(x, y)〉 – providing no denominator is zero after reducing
modulo p.

Lemma 3.1.9. For the division polynomials defined in a field of arbitrary char-
acteristic we have Ψn 6= 0 for n 6= 0.

Proof. See [18, Lem. 3.56].

Proposition 3.1.10.

Ψn(x, y) =

nx
(n2−1)/2 + g(x) if n is odd,

(2y + a1x+ a3)
(
n
2x

(n2−4)/2 + h(x)
)

if n is even.
(3.1.11)
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where g, h ∈ Z[a1, a2, a3, a4, a6, x] and deg(g) < (n2 − 1)/2, deg(h) < (n2 − 4)/2.

Proof. We prove by induction. The result (3.1.11) is true for Ψ1, Ψ2, Ψ3, Ψ4.
Assume (3.1.11) holds for all integers m such that 0 ≤ m ≤ n− 1 with n− 1 ≥ 4.
Let n = 2k + 1 with k even, then the leading term of Ψk+2Ψ3

k is

(k + 2)k3
(
(2y + a1x+ a3)/2

)4
x

(k+2)2−4
2 + 3k2−12

2 .

Now the leading coefficient of (2y + a1x+ a3)4 is 16x6 and so this becomes

(k + 2)k3x
(2k+1)2−1

2 .

Similarly the leading term of Ψk−1Ψ3
k+1 is

(k − 1)(k + 1)3x
(2k+1)2−1

2 .

Using the formula Ψ2k+1 = Ψk+2Ψ3
k −Ψ3

k+1Ψk−1 we have on subtraction

(k + 2)k3x
(2k+1)2−1

2 − (k − 1)(k + 1)3x
(2k+1)2−1

2

the leading term for Ψ2k+1 to be (2k + 1)x((2k+1)2−1)/2 as required. Hence the
polynomials Ψn, with n odd, are of degree (n2 − 1)/2 with leading coefficient
n, and coefficients in the ring Z[a1, a2, a3, a4, a6]. The other cases are treated
similarly.

Theorem 3.1.11. Let E/K be an elliptic curve with Weierstrass equation

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0; ai ∈ K.

There exist polynomials Φn, and Ωn in the quotient field K[x, y]/〈f(x, y)〉 defined
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by

Φn = xΨ2
n −Ψn−1Ψn+1, for all n ∈ Z, (3.1.12)

Φ−n = Φn, (3.1.13)

Ωn = 1
2Ψ2

(
Ψ2
n−1Ψn+2 −Ψn−2Ψ2

n+1 −Ψ2Ψn(a1Φn + a3Ψ2
n)
)
, (3.1.14)

Ω−n = Ωn + (a1Φn + a3Ψ2
n)Ψn for n 6= 0, (3.1.15)

such that, for all nonsingular points P = (x, y) ∈ E(K̄)

[n]P =
(

Φn(x, y)
Ψ2
n(x, y) ,

Ωn(x, y)
Ψ3
n(x, y)

)
if [n]P 6= O. (3.1.16)

Proof. See [31, Thm. 2.26] for the polynomial recursions, and [6, Lem. III.5] for
the proof of (3.1.16).

Proposition 3.1.12. The division polynomials Φn and Ωn satisfy

Φn ∈ Z[a1, a2, a3, a4, a6, x] for all n, (3.1.17)

Ωn ∈

Ψ2Z[a1, a2, a3, a4, a6, x] if n is odd,

Z[a1, a2, a3, a4, a6, x] if n is even.
(3.1.18)

Proof. If n is odd, then Ψn+1 and Ψn−1 are in Ψ2Z[a1, a2, a3, a4, a6, x] so their
product is in Z[a1, a2, a3, a4, a6, x]. Therefore Φn ∈ Z[a1, a2, a3, a4, a6, x]. If n is
even the proof is similar.

The results for Ωn follow from Lemma 3.1.8.

Proposition 3.1.13. The polynomials Φn and Ψ2
n are polynomials in the variable

x alone with coefficients in the ring Z[a1, a2, a3, a4, a6]. In particular they are of
the form

Φn(x) = xn
2 + (lower degree terms),

Ψ2
n(x) = n2xn

2−1 + (lower degree terms).
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Proof. The result for Ψ2
n follows immediately from Theorem 3.1.5. For Φn we

compare the degrees and leading terms in Φn = xΨ2
n−Ψn−1Ψn+1 in similar manner

to Proposition 3.1.10.

3.1.1 The Representation of Division Polynomials by El-
liptic Functions

The next Proposition is [35, Ch. VI, Ex. 6.15].

Proposition 3.1.14. Let E/C be an elliptic curve and let Ψn be the division
polynomial defined in Proposition 3.1.1. Let Λ be some fixed complex lattice such
that E ∼= C/Λ and z a complex variable. Considered as a function on C/Λ, Ψn(z)
is given by

Ψn(z; Λ) = (−1)n+1 σ(nz; Λ)
σ(z; Λ)n2 . (3.1.19)

Proof. By Proposition 2.13.11 we have the isomorphic mapping

θ : C/Λ→ E ′(C), z 7→ (℘(z) : ℘′(z) : 1)

where E ′ is of the form
E ′ : y2 = 4x3 − g2x− g3. (3.1.20)

This isomorphism between points zP ∈ C/Λ and the points P ∈ E ′(C), where
x(P ) = ℘(zP ), y(P ) = ℘′(zP ) with respect to the elliptic curve (3.1.20), can be
used to describe the division polynomials Ψn(x(P ), y(P )) = Ψn(℘(zP ), ℘′(zP )) in
the usual way. Hence, with respect to the lattice Λ, we may calculate the complex
function Ψn(zP ) as being identical to the division polynomial Ψn(℘(zP ), ℘′(zP )).
This shows, after making the identification Ψn(zP ) = Ψn(℘(zP ), ℘′(zP )), that
Ψn(zP ) is in the field of elliptic functions, being a rational function in C(℘, ℘′).

Now let E/C be the curve given in long Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (3.1.21)

and define a change of variables, as described in (2.3.3) and (2.3.6), to give the
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mapping

ξ : E ′(C) −→ E(C)

(℘(z), ℘′(z)) 7−→
(
℘(z)− b2

12 ,
℘′(z)

2 − a1

2

(
℘(z)− b2

12

)
− a3

2

)
.

Therefore under the map ξ ◦ θ we see C/Λ is isomorphic to E(C), and so E ′(C) ∼=
E(C). Due to this isomorphism we have the function Ψn(z) given by

Ψn(z) = Ψn

(
℘(z)− b2

12 ,
℘′(z)

2 − a1

2

(
℘(z)− b2

12

)
− a3

2

)
.

Let Λ be some fixed lattice, and let us define

Υn(z; Λ) := σ(nz; Λ)
σ(z; Λ)n2 ,

then Υn(z) is an elliptic function, which we now prove by showing the function
on the right hand side is meromorphic with period lattice Λ. Let ω ∈ Λ. From
(2.13.9) it follows that

σ(n(z + ω))
σ(z + ω)n2 = λ(nω)eη(nω)(nz+ nω

2 )σ(nz)
λ(ω)n2eη(ω)(z+ ω

2 )n2
σ(z)n2

= λ(ω)neη(ω)(z+ ω
2 )n2

σ(nz)
λ(ω)n2eη(ω)(z+ ω

2 )n2
σ(z)n2

= σ(nz)
σ(z)n2 .

By the isomorphic mapping described we have (C/Λ)[n] ∼= E[n]. Now Ψn

vanishes exactly at each nonzero u ∈ (C/Λ)[n]. There are n2 − 1 nonzero torsion
points of E ′(C)[n], and so n2 − 1 such points u. Since Ψn(z) has exactly one pole
of order n2 − 1 at z = 0, the order of vanishing at each nonzero torsion point is
one, reflecting the fact that each of the n2− 1 nonzero roots is distinct, and so all
the zeros are simple.

It is clear from (2.13.8) that the function Υn(z) also has a pole of order n2− 1
at z = 0 and simple zeros at 1

n
Λ\Λ.
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Hence Ψn(z) and Υn(z) have the same divisor and so are proportional functions.
Multiplying by zn2−1 to take account of the poles at z = 0 we can therefore write

zn
2−1Ψn(z) = czn

2−1Υn(z), (3.1.22)

which is analytic at z = 0.

Plugging the definition of the Weierstrass σ-function in Equation (2.13.8) into
the RHS of (3.1.22) gives

zn
2−1Υn(z) = zn

2−1 σ(nz)
σ(z)n2 = zn

2−1 ·
nz
∏
w∈Λ
w 6=0

(
1− nz

w

)
e(nz/w)+ 1

2 (nz/w)2

zn2 ∏
w∈Λ
w 6=0

(
1− z

w

)n2

e(z/w)n2+ 1
2 (z/w)2n2

= n
∏
w∈Λ
w 6=0

(
1− nz

w

)
(
1− z

w

)n2 e
nz
w

(1−n)

which tends to n as z → 0.

By letting x = ℘(z), y = 1
2℘
′(z) in Lemma 3.1.10, we find for the LHS of

(3.1.22) that

zn
2−1Ψn(z) =

nz
n2−1℘(z)(n2−1)/2 + · · · if n is odd,

nzn
2−1 1

2℘
′(z)℘(z)(n2−4)/2 + · · · if n is even.

By the Laurent expansions (2.13.3) and (2.13.3) we see ℘(z) = 1
z2 + · · · has a pole

of order 2 at 0 and ℘′(z) = −2
z3 + · · · has a pole of order 3 at 0. Plugging these in

gives

zn
2−1Ψn(z) =

n+ · · · if n is odd,

−n+ · · · if n is even.

Hence on taking the limit

lim
z→0

zn
2−1Ψn(z) = (−1)n+1n.

Hence the constant c in (3.1.22) is (−1)n+1, and so substituting in for Υn(z) we
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have
Ψn(z) = (−1)n+1 σ(nz)

σ(z)n2

as required.

We also have the identities

Proposition 3.1.15.

Ψmn(z) = Ψm(z)n2Ψn(mz),

Φmn(z) = Ψm(z)2n2Φn(mz), (3.1.23)

Ωmn(z) = Ψm(z)3n2Ωn(mz),

for all integers m, n.

Proof. Consider Ψmn(z), where z is understood to be a complex variable. Using
the properties of the Weierstrass σ-function we have

Ψmn(z) = σ(mnz)
σ(z)m2n2 =

(
σ(mz)
σ(z)m2

)n2 (
σ(mnz)
σ(mz)n2

)
= Ψm(z)n2Ψn(mz).

The other two equations have similar proofs based upon the given proof for Ψmn

and then on subsequent use of the polynomial expressions for Φn and Ωn given in
Theorem 3.1.11.

Proposition 3.1.16. Let E/K be an elliptic curve, and ∆(E) 6= 0. We have
Φn(x) and Ψ2

n(x) are relatively prime polynomials in K[x].

Proof. See [46, Cor. 3.7].

Proposition 3.1.17. We have Ψn−1(x, y) and Ψn(x, y) are relatively prime poly-
nomials in K[x, y] for all n ≥ 1.

Proof. See [46].

Corollary 3.1.18. We have gcd(Ψn−1Ψn+1(x),Ψ2
n(x)) = 1.
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We saw in Subsection 2.13.4 that E(C)[n] ∼= Z/nZ × Z/nZ, and so E(C)[n]
has n2 elements. The roots of Ψn are the nonzero points of order n on E. It
follows from Theorem 3.1.11 that P = (x, y) 6= O is an n-torsion point if and only
if Ψn(x, y) = 0. For any given x ∈ C there are at most two points (x, y) ∈ E(C).
Now the point O is the identity and so is 1-torsion, and the distinct roots of the
Weierstrass equation of an elliptic curve are 2-torsion, with 2(xr, 0) = 0 where
xr denotes each of the three distinct roots. For order n > 2 we have that if
n(x, y) = 0, so will n(x,−y) = 0, so we have two torsion points for each respective
x if n > 2. By Proposition 3.1.13 we know if n is odd then Ψn(x) has at most
(n2 − 1)/2 distinct roots.

Similarly, if n is even, Ψn(x, y)/(2y+ a1x+ a3) has at most (n2− 4)/2 distinct
roots, and the polynomial

(
Ψn(x, y)/(2y + a1x + a3)

)2
corresponds to all points

for which [n]P = 0 except the four in the 2-torsion subgroup E(C)[2] of order 1 or
2. Hence the roots of Ψn(x, y) are distinct. In other words each root of Ψn(x, y)
gives rise to exactly two n-torsion points having order greater than 2.

3.2 From Polynomial to Sequence

The division polynomials form a divisibility sequence, that is they satisfy the prop-
erty Ψm | Ψn whenever m | n. In fact more can be said in that they form a strong
divisibility sequence with the property gcd(Ψm,Ψn) = Ψgcd(m,n) [45, Thm. 6.4].

Theorem 3.2.1. Let E/Q be an elliptic curve and p be a prime such that the ai
are p-integers. Then for all P = (xP , yP ) ∈ E(Q) which are nonsingular modulo p
we have

Ψn(xP , yP ) ≡ 0 (mod p) if and only if [n]P̃ = Õ

on the reduced curve; here [n]P̃ denotes the reduction of [n]P modulo p.

Proof. See [39, Thm. 3.10.5].

For two birationally equivalent elliptic curves E/K and E ′/K, the birational
map is a group homomorphism. Hence for two points P ∈ E(K), and P ′ ∈ E ′(K),
we have P ∈ E[n] if and only if P ′ ∈ E ′[n] for all n ∈ Z>0.
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Theorem 3.2.2 (Swart [39, Thm. 3.10.7]). Let E/K be an elliptic curve over a
field K. Let E ′ be the elliptic curve obtained from E by an admissible change of
variables (2.3.19)

x = u2x′ + r, y = u3y′ + u2sx′ + t.

Then
Ψ′n(x′, y′) = un

2−1Ψn(x, y) for all n ∈ Z. (3.2.1)

By the nice form of the Ψn given in Proposition 3.1.10 we can turn any rational
division polynomial sequence into an integral one by choosing the right equivalence
of forms given in (3.2.1), clearing the denominators.

Theorem 3.2.3 (Swart [39, Thm. 3.10.8]). Let E/K be a singular cubic curve.
The point P = (x0, y0) is singular if and only if Ψ3(x0, y0) = Ψ4(x0, y0) = 0. Then
Ψn(x0, y0) = 0 for all |n| > 1.

Proof. Let E ′ be birationally equivalent to E with P ′ = (0, 0) a point on E ′. Then
by (2.4.1) P ′ is singular if and only if a′3 = a′4 = 0. From the division polynomials
evaluated at P ′ = (0, 0) we have

Ψ′2(0, 0) = a′3, Ψ′3(0, 0) = b′8, Ψ′4(0, 0) = (b′4b′8 − b′26 )Ψ′2(0, 0),

where b′4 = a′1a
′
3+2a′4, b′6 = a′23 and b′8 = −a′1a′3a′4+a′2a′23 −a′24 . So a′3 = a′4 = 0 if and

only if Ψ′3(0, 0) = Ψ′4(0, 0) = 0, from which Ψ′2(0, 0) = 0 also. A brief induction
shows Ψ′n(0, 0) = 0 for all n ∈ Z. Since Ψn(x0, y0) = Ψ′n(0, 0) by Theorem 3.2.2 the
result follows, with E being singular at P = (x0, y0) if and only if Ψn(x0, y0) = 0.
The singular point P is then the simultaneous root for all Ψn.

3.2.1 Valuations of the Division Polynomials

Let E/Q be an elliptic curve given by Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (3.2.2)
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By Theorem 3.1.11 the nth multiple of a point on an elliptic curve may be given
in terms of the division polynomials

[n]P =
(

Φn(x, y)
Ψ2
n(x, y) ,

Ωn(x, y)
Ψ3
n(x, y)

)
if [n]P 6= O. (3.2.3)

Ayad has shown that any cancellation occurring between the numerator and the
denominator of (3.2.3) happens exactly at the primes of singular reduction at P .
Throughout we shall write Ψn(P ) for the nth division polynomial evaluated at a
point P = (x1, y1).

Theorem 3.2.4 (Ayad [2, Thm. A]). Let E/Q be an elliptic curve defined by
(3.2.2) with all ai ∈ Z. Let P ∈ E(Q) be a point in E(Q) such that P 6≡ O

(mod p), for p a prime. Then the following conditions are equivalent:

(a) vp(Ψ2(P )) > 0 and vp(Ψ3(P )) > 0.

(b) For all integers n ≥ 2, vp(Ψn(P )) > 0.

(c) There exists an integer m0 ≥ 2 such that vp(Ψm0(P )) > 0 and vp(Ψm0+1(P ))

> 0.

(d) There exists an integer n0 ≥ 2 such that vp(Ψn0(P )) > 0 and vp(Φn0(P )) > 0.

(e) Reduction of P modulo p is singular.

Shipsey [32, Sec. 4.4] has shown that for the case K = Q no cancellation occurs
if P = (0, 0), a6 = 0, and gcd(a3, a4) = 1. See Subsection 4.7.1 for details.

Cheon and Hahn in [10] estimate valuations of division polynomials and com-
pute them explicitly at singular primes. The following result of theirs shows that
the common factors of Φn(P ) and Ψ2

n(P ) have valuations at p asymptotic to cn2

for some constant c, when P modulo p is singular, which is complementary to
Ayad’s result.

Theorem 3.2.5 (Cheon–Hahn [10, Thm. 4]). Given a nontorsion point in P ∈
E(Q)\E0(Q) with order r in the finite group E(Q)/E0(Q), set gn = gcd(Φn,Ψ2

n).
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Then for any integer m and k where 1 ≤ k < r, we have

vp(gn) =

vp(gr)m
2 if n = mr,

vp(gr)(2m)2 ± 2m
(
2vp

(
Ψk

Ψr−k

)
+ vp(gr)

)
+ 2vp(Ψk) if n = 2mr ± k.

(3.2.4)

We now give a Lemma that will be useful when studying any cancellation that
occurs between the division polynomials of multiples of points on an elliptic curve.
In particular it can be used to give bounds for any cancellation.

Lemma 3.2.6. Let P be a nontorsion point in E0(Q). If vp(x(P )) < 0, then

vp(x([n]P )) = vp(x(P )) + 2vp(n)

for all n ∈ Z>0.

Proof. See [10, Lem. 1].

Remark 3.2.7. Saying vp(x(P )) < 0 is equivalent to saying P ≡ O (mod p).



Chapter 4

Elliptic Divisibility and
Denominator Sequences

4.1 Elliptic Divisibility Sequences

Definition 4.1.1. Let K be a field. An elliptic divisibility sequence (EDS) over
K is a sequence (Wn)n≥1 defined by four initial terms W1, W2, W3, W4 ∈ K and
satisfying the quartic nonlinear recurrence

Wm+nWm−nW
2
1 = Wm+1Wm−1W

2
n −Wn+1Wn−1W

2
m for all m, n ∈ Z. (4.1.1)

An EDS is called nondegenerate if W1W2W3 6= 0.

We call [W1,W2,W3,W4] the seed of the sequence (Wn).
The nonlinear recurrence (4.1.1) is better visualised by using the duplication

formulas:

W2n+1W
3
1 = Wn+2W

3
n −Wn−1W

3
n+1 for all n ≥ 2, (4.1.2a)

W2nW2W
2
1 = Wn+2WnW

2
n−1 −WnWn−2W

2
n+1 for all n ≥ 3. (4.1.2b)

Theorem 4.1.2. A sequence (Wn)n≥1 of elements of K with W1W2W3 6= 0 is an
EDS if and only if both (4.1.2a) and (4.1.2b) hold.

Proof. Equation (4.1.2a) follows from (4.1.1) by replacing m by n + 1, and n by
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n. Equation (4.1.2b) follows from (4.1.1) by replacing m by n+ 1, and n by n− 1
in (4.1.1).

Conversely it is seen by induction on Equations (4.1.2a) and (4.1.2b), that
every subsequent positive indexed term is determined by the initial terms W1, W2,
W3, W4. Hence if two EDSs W and W ′ agree on W1, W2, W3, W4 they agree on all
terms, and so must be equal. For (4.1.1) to follow from (4.1.2a) and (4.1.2b) we
must apply an induction on m and n for each equation to show they are equivalent
to (4.1.1).

The next two theorems determine when an EDS arises from given initial values,
with the second giving a criteria for an EDS to be integral.

Theorem 4.1.3 (Ward [45]). Given three rational numbers W2, W3, and W4,
then there is an EDS with initial values W0 = 0, W1 = 1, W2, W3, and W4, unless
W2 = 0 and W4 6= 0. Moreover the solution is unique if W2 and W3 are not both
zero.

Theorem 4.1.4 (Ward [45]). Let (Wn) be an EDS with W0 = 0, and the first four
terms integers: W1 = 1, W2, and W3 not both zero and having W2 | W4. Then
(Wn) is an EDS, having all terms integers and the divisibility property of Wm | Wn

whenever m | n. Conversely given three integers W2, W3, and W4 with W2 | W4,
there exists an EDS (Wn) with initial terms W0 = 0, W1 = 1, W2, W3, and W4.

We explain what is meant by the uniqueness of an integer EDS satisfying the
conditions of Theorem 4.1.4: by setting n = 2 in (4.1.1) we obtain

W 2
1Wm+2Wm−2 = Wm+1Wm−1W

2
2 −W3W1W

2
m. (4.1.3)

Hence from given terms W0, W1, W2, W3, and W4, we calculate W5 by setting
m = 3 in (4.1.3) to get

W5 = W4W
3
2 −W1W

3
3

W 3
1

(4.1.4)

which since W1 = 1 has W5 an integer. In similar fashion we construct the entire
sequence. Therefore any integer EDS is uniquely defined by its first five terms.

The solutions to the recurrence in (4.1.1) satisfy a more general recursion re-
lation given by
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Theorem 4.1.5.

Wm+nWm−nW
2
t = Wm+tWm−tW

2
n −Wn+tWn−tW

2
m for all m, n, t ∈ Z. (4.1.5)

Proof. Using recurrence (4.1.1), we work out expressions for Wm+tWm−tW
2
nW

2
1

and Wn+tWn−tW
2
mW

2
1 .

Wm+tWm−tW
2
nW

2
1 = W 2

n

(
Wm+1Wm−1W

2
t −Wt+1Wt−1W

2
m

)
(4.1.6)

for all m,t ∈ Z.

Wn+tWn−tW
2
mW

2
1 = W 2

m

(
Wn+1Wn−1W

2
t −Wt+1Wt−1W

2
n

)
(4.1.7)

for all n,t ∈ Z. Now subtract (4.1.6) from (4.1.7) to give

W 2
1

(
Wm+tWm−tW

2
n−Wn+tWn−tW

2
m

)
= W 2

t

(
Wm+1Wm−1W

2
n −Wn+1Wn−1W

2
m

)
= Wm+nWm−nW

2
t W

2
1 for all m, n, t ∈ Z,

where we have used (4.1.1) for the term in parentheses.

Lemma 4.1.6 (Ward [45, Lem. 4.1]). Let (Wn) be an EDS with W1 = 1, W2W3 6=
0; if two consecutive terms are zero in (Wn), then Wn = 0 for all n ≥ 4.

Theorem 4.1.7. Let (Wn) be a nondegenerate EDS. Then, ifWm 6= 0, (Wmn/Wm)n≥1

is an EDS. In particular (Wn/W1) is an EDS.

Definition 4.1.8. By Theorem 4.1.7 if (Wn) is an EDS then so is (Wn/W1). We
shall term (Wn/W1) a normalised EDS.

The next Theorem shows the antisymmetric property of EDSs.

Theorem 4.1.9. Nondegenerate, normalised elliptic divisibility sequences (Wn)
have W0 = 0, W1 = 1, and W−n = −Wn for all n ∈ Z.

Proof. Set m = n = 0 in (4.1.1) to see that W0 = 0. Normalised by definition
has W1 = 1. Now setting n = 0 in (4.1.1) gives W 2

mW
2
1 = −W1W−1W

2
m for all

m ∈ Z, and so (unless all terms Wm = 0) W−1 = −W1. Finally setting m = 0
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in (4.1.1) gives WnW−nW
2
1 = W1W−1W

2
n = −W 2

nW
2
1 for all n ∈ Z, from which

Wn = −W−n.

Example 4.1.10. (a) The sequence of integers Z is an EDS.
(b) The sequence

(
n

3

)
=


0 if 3 | n,

1 if n ≡ 1 (mod 3),

−1 if n ≡ −1 (mod 3).

is an EDS, where ( ·
p
) is the Legendre symbol. (This example is due to Ward [45].)

Its first few terms are

1,−1, 0, 1,−1, 0, 1,−1, 0, 1,−1, 0, . . .

(c) The sequence starting W1 = 1, W2 = 3, W3 = −112, W4 = −49,

1, 3,−112,−49, 1403605,−1414564928
3 ,−1971963612493,

1738288005631793
9 , 929124848554454376272

3 , 314503959758917164126632455
27 , . . .

is an noninteger EDS, even though its seed is made up of integers, becauseW2 - W4.
(d) The sequence starting W1 = 1, W2 = 10, W3 = 171, W4 = −7660,

1, 10, 171,− 7660,−12660211,−22652313570,−58809175344521,

1735132266687114280, 357172782187144055262201,

115455343251682907198856192050, . . .

is an integer EDS, since the seed is made up of integers with W2 | W4.

We will come across Example 4.1.10 (d) again in Chapter 6, when we find its
terms are intimately linked with the denominators of multiples of the point (3, 5)
on the elliptic curve y2 = x3 − 2.

Definition 4.1.11. Given two EDSs (Wn) and (W ′
n), if there exists a rational

contant θ ∈ K∗ such that the sequence (W ′
n) is defined by

W ′
n = θn

2−1Wn for all n ∈ Z, (4.1.8)
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then (Wn) and (W ′
n) are said to be equivalent EDSs.

Theorem 4.1.12. Let (Wn) be an EDS, and let θ ∈ K∗. Then (θn2−1Wn) is also
an EDS.

Proof. Let Vn = θn
2−1Wn, then

Vm+nVm−nV
2

1 = θ(m+n)2−1Wm+nθ
(m−n)2−1Wm−nW

2
1

= θ2(m2+n2−1)
(
Wm+1Wm−1W

2
n −Wn+1Wn−1W

2
m

)
= θ(m+1)2−1Wm+1θ

(m−1)2−1Wm−1θ
2(n2−1)W 2

n

− θ(n+1)2−1Wn+1θ
(n−1)2−1Wn−1θ

2(m2−1)W 2
m

= Vm+1Vm−1V
2
n − Vn+1Vn−1V

2
m

and so (Vn) is an equivalent EDS to (Wn) as required.

4.2 Normalised EDSs and Elliptic Curves

The next Theorem due to Ward shows how EDSs arise from the values of division
polynomials of an elliptic curve. We will write Ψn(P ) for Ψn evaluated at the point
P = (x1, y1).

Theorem 4.2.1 (Ward [45, Thm. 12.1]). Let E/K be an elliptic curve given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (4.2.1)

and let P ∈ E(K) be a nonzero point. Then the sequence (Wn) defined by

Wn = Ψn(P ) for all n ≥ 1, (4.2.2)

where Ψn is the nth division polynomial for E, is a normalised EDS.

Proof. See Ward [45, Thm. 12.1].

We also have that given an integer EDS starting W1 = 1, W2W3 6= 0 and
W2 | W4, then there exists an elliptic curve E ∼= C/Λ (for some lattice Λ) and a
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complex constant z ∈ Λ such that

Wn = Ψn(z; Λ) = σ(nz; Λ)
σ(z; Λ)n2 ,

where σ(z; Λ) is the Weierstrass function associated to Λ.
Moreover, the modular invariants g2(Λ) and g3(Λ) associated to the lattice Λ,

and the Weierstrass functions ℘(z,Λ) and ℘′(z,Λ) evaluated at the point z on
the elliptic curve C/Λ are all in the field Q(W2,W3,W4). This shows that g2(Λ),
g3(Λ), ℘(z,Λ), and ℘′(z,Λ) are all defined over the same field as the terms of
the sequence (Wn). The rational expressions for g2(Λ), g3(Λ), ℘(z,Λ), ℘′(z,Λ) in
Q(W2,W3,W4) may be found in [45, Eqn. 13.6, 13.7, 13.5, 13.1] respectively.

Now when an EDS W is associated to a specific curve-point pair (E,P ) we
shall write W = WE,P for clarity.

4.3 Curves from Nets of Rank 1

We have already seen in Proposition 2.3.9 how the Weierstrass equation for an
elliptic curve E is unique up to an admissable change of variables as given in
(2.3.19). A unihomothetic change of variables is of the form

x′ = x+ r, y′ = y + sx+ t, (4.3.1)

with r, s, t ∈ K̄ and u = 1 in (2.3.19).
We can now give explicit formulæ to describe an elliptic curve arising from an

EDS of rank 1. These were originally due to Ward [45, Thm. 12.1], but we give
Swart’s more succinct version here.

Theorem 4.3.1 (Swart [39, Thm. 4.5.3]). Let (Wn)n≥1 be a normalised nonde-
generate EDS. Then there exists an elliptic curve with Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

such that W = WE,P with point P = (0, 0). It is unique up to a unihomothetic
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change of coordinates (4.3.1), with the ai being given by

a1 = W4 +W 5
2 − 2a4W2W3

W 2
2W3

,

a2 = W2W
2
3 + a4(W4 +W 5

2 )− a2
4W2W3

W 3
2W3

,

a3 = W2, a4 = 1, a6 = 0.

Proof. We have the division polynomials Ψ1, Ψ2, Ψ3, and Ψ4 are invariant under
the unihomethetic change of variables (4.3.1). Then a calculation checks WE,P

agrees with W at the first four terms and so WE,P = W . Conversely suppose
W = WE′,P ′ . After applying a unihomethetic transformation (4.3.1) taking P ′

to (0, 0), and a4 to 1, substitution of the division polynomials into the equations
above verifies that a′i = ai for all i.

Example 4.3.2. The simplest, unbounded, nonsingular EDS is given by the seed
[1, 1,−1, 1]. Its first few terms are

1, 1,−1, 1, 2,−1,−3,−5, 7,−4,−23, 29, 59, 129, . . .

It is associated to the point P = (0, 0) on elliptic curve E : y2 + y = x3 − x. It
is the ‘simplest’ EDS due to the fact that E has the smallest conductor, N = 37,
for elliptic curves over Q of positive rank.

4.4 Integrality

If E/Q has defining Weierstrass equation with integer coefficients, and P = (x1, y1)
is an integer point on E, then the ring R = Z[a1, a2, a3, a4, a6] is then just Z, and
Ψn(x1, y1) ∈ Z for all n.

Theorem 4.4.1. Let R be an integral domain with field of fractions K. Let W1,
W2, W3, and W4 in R be such that W1 divides each of W2, W3, and W4, and such
that W2 | W4. Then there is a unique EDS (Wn)n≥1 in K with Wi ∈ R for all i
having seed [W1,W2,W3,W4]. Moreover;
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(a) (Wn) is a divisibility sequence, in the sense that

m | n =⇒ Wm | Wn.

(b) If R is a principal ideal domain and gcd(W3,W4) = 1, then (Wn) satisfies the
stronger divisibility relation

gcd(Wm,Wn) = Wgcd(m,n) for all m, n ≥ 1.

Proof. We know there is a unique EDS in K with this seed. That Wi ∈ R for all i
is proved by induction, by in fact proving W2 | W2k and W1 | Wk simultaneously.

For (a) we proceed by induction. Assume that

Ws | Wt whenever s | t for s ≤ t < n.

This is true for n ≤ 5. Hence take n > 5, and let n = uv. Thus we need to show
Wu | Wuv, where we can take u ≥ 2, v ≥ 2. If v = 2k then n = 2uk and (4.1.2b)
gives

W2ukW2W
2
1 = Wuk

(
Wuk+2W

2
uk−1 −Wuk−2W

2
uk+1

)
Then W2 divides the term in the parenthesis. Also by hypothesis Wu | Wuk as
u < uk < n, so we have WuW2W

2
1 | W2ukW2W

2
1 from which Wu | Wuv.

If v is odd then u and uv are of the same parity. Setting m + n = uv and
m− n = u in (4.1.1), where m = 1

2u(v + 1), n = 1
2u(v − 1)

WuvWuW
2
1 = Wu(v+1)

2 +1
Wu(v+1)

2 −1
W 2

u(v−1)
2
−Wu(v−1)

2 +1
Wu(v−1)

2 −1
W 2

u(v+1)
2

.

By hypothesis W 2
u | W 2

u(v+1)/2 and W 2
u | W 2

u(v−1)/2. Hence W 2
uW

2
1 divides the RHS,

and so W 2
uW

2
1 | WuvWuW

2
1 from which Wu | Wuv as required.

For (b) we need the following result:

Theorem 4.4.2. Suppose R is a PID, (Wn) is an EDS in R and p in R is a prime
divisor of Wn. Then

vp(Wmn) = vp(Wn) + vp(m), (4.4.1)
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where vp(a) is the maximal integer t such that pt divides a, for a in R nonzero.

Proof. See [10, Lem. 1].

Proof of (b) Let d = gcd(m,n), and write m = ad, n = bd for some a, b ∈ Z. By
(4.4.1), for any prime p | Wd we have

vp(Wda) = vp(Wd) + vp(a) and vp(Wdb) = vp(Wd) + vp(b).

Since gcd(a, b) = 1, at least one of vp(a) or vp(b) is zero. Hence

vp(gcd(Wm,Wn)) = min{vp(Wda), vp(Wdb)}

= min{vp(Wd) + vp(a), vp(Wd) + vp(b)}

= vp(Wd)

= vp(Wgcd(m,n)).

Therefore if p | Wd then p | gcd(Wm,Wn) to the same order. On the other hand,
if a prime p divides both Wm and Wn then reducing modulo p the mth and nth

multiple of the point P , writing W = WE,P for some point P on the elliptic curve
E, gives [m]P ≡ [n]P ≡ O (mod p). But d = gcd(m,n), therefore [d]P ≡ O

(mod p) and so p | Wd.

Remark 4.4.3. We have defined an EDS (Wn) given by [W1,W2,W3,W4], to be
a sequence of terms in a field K which satisfy (4.1.1). Ward [45] defined things
slightly differently. Firstly Ward confined himself to the rationals Q, and the finite
fields Fp. If a sequence obeyed (4.1.1) but contained any nonintegral terms it was
termed an elliptic sequence. The only sequences of any arithmetical interest to him
were termed proper sequences, these being solutions to (4.1.1) with the following
conditions: W0 = 0, W1 = 1, W2W3 6= 0. For Ward an EDS was defined as follows:
Let (Wn) be a proper solution of (4.1.1). Then (Wn) is an elliptic divisibility
sequence if and only if W2, W3, W4 are integers and W2 | W4. Moreover he proves
that (Wn) is then uniquely determined by W2, W3, and W4.

So for Ward, and various authors after, the term EDS is reserved for proper
integral sequences with seed [1,W2,W3, cW2] with c ∈ Z. We do not make this



69 4.5. Periodicity of EDSs

distinction, and for us Ward’s elliptic sequences are now EDSs.

Corollary 4.4.4 (Swart [39, Corollary 4.5.4]). The EDS (Wn) having associated
elliptic curve E is an integer valued EDS if and only if E has integer values of a3,
b8, and b4b8.

Proof. (Wn) is an integer EDS if and only if W2, W3, and W4
W2

are integers. Since

W2 = a3, W3 = b8, and W4
W2

= (b4b8 − a4
3),

we thus require a3, b8, and b4b8 to be integers.

4.5 Periodicity of EDSs

This Chapter shall look at the periodicity of integer EDSs modulo primes. Ward
showed every prime occurs as a primitive divisor at some point in an integer EDS
(a prime p is a primitive divisor of Wn if p | Wn and p - W1W2 · · ·Wn−1).

4.5.1 Rank of Apparition

Definition 4.5.1. Let m be an integer. The rank of apparition (or rank) r(m)
of m in an integer EDS (Wn) is the smallest integer r(m) such that Wr(m) ≡ 0
(mod m).

When no confusion can arise we shall sometimes drop the parenthetic m and
refer to the rank of m simply as r.

The idea of the rank of an integer results in periodic behaviour which is of use
in studying properties of EDSs. The next result illustrates a degenerate condition
whereby an EDS does not have a rank.

Theorem 4.5.2 (Ward [45, Thm. 6.2]). Let (Wn) be an integer EDS. A neces-
sary and sufficient condition that a prime p has a rank of apparition r(p)elliptic
divisibility sequence!rank of apparition is that p - gcd(W3,W4).

The next result shows the periodic behaviour of the rank.
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Theorem 4.5.3 (Ward [45, Thm. 5.2]). Let (Wn) be an integer EDS and let r(p)
be its rank of apparition for prime p. Then

Wn ≡ 0 (mod p) if and only if n ≡ 0 (mod r(p)).

Using the Hasse bound from Theorem 2.11.3 on the number of points on an
elliptic curve over a finite field the next Theorem was independently proved by
Ayad and then Shipsey.

Theorem 4.5.4 (Ayad [3], Shipsey [32]). An integer EDS admits every prime p
as a divisor, with the rank r(p) obeying the following bound

r(p) ≤ p+ 1 + 2√p.

This means any integer EDS has 2 appearing as a factor by at least the fifth
term, 3 appearing as a factor by at least the seventh term, 5 appearing as a factor
by at least the tenth term, and so on. The periodicity inherent in EDSs is a
consequence of the periodicity of the Weierstrass σ-function.

Let us now consider the rank of primes p raised to integer powers s ≥ 1 and
label these ranks as r(ps).

Theorem 4.5.5 (Swart [39, Thm. 4.7.5]). Let p be a prime with r(p) ≥ 4 in an
nondegenerate integer EDS (Wn). Let pw ‖ Wr.

If p is odd, or p = 2 and w ≥ 2, then for s ∈ Z≥1, ps has rank given by

r(ps) =

r(p) if s ≤ w,

pr(ps−1) if s > w.

If p = 2 and w = 1 then for some v ≥ 2,

r(ps) =


r(p) if s = 1,

2r(p) if 2 ≤ s ≤ v,

2r(ps−1) if s > v.

For odd p and s ≥ k ≥ w, this means r(ps) = ps−kr(pk).
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4.5.2 Periodicity

We now investigate the periodic properties of integer EDSs modulo primes p. Ward
showed that an integer EDS (Wn) with rank of apparition r(p) ≥ 4 is periodic with
period πp(Wn) = rτ , where τ is an arithmetical function of p and (Wn) which can
be calculated (see Corollary 4.5.7), with τ | p− 1.

4.5.3 Ward’s Partial Periodicity

We have just encountered the rank of apparition of an integer EDS (Wn). Now
with this rank of apparition, r(p), we may propose the idea that Wr(p)+k ≡ Wk

(mod p), but this would be wrong. In fact the right expression is Wr(p)τ+k ≡ Wk

(mod p), where τ is an arithmetical function discovered by Ward to work out the
correct period of an EDS which turns out to be rτ , (see Corollary 4.5.7). Ward did
however find a fascinating symmetry formula describing the general case, which
gave the exact congruence relating Wlr(p)+k and Wk, which he termed the ‘partial
periodicity’ pattern with respect to the rank.

Theorem 4.5.6 (Ward [45, Thm. 9.2]). Let (Wn) be an integer EDS and let p > 3
be a prime, with rank of apparition r(p) > 3. Then there exist integers a, b that
satisfy the periodicity congruence

Wlr+k ≡ alkbl
2
Wk (mod p) for all l, k ∈ Z≥0. (4.5.1)

Moreover the integers a and b may be explicitly computed via the congruences

a ≡ Wr−2

W2Wr−1
(mod p), b ≡

W2W
2
r−1

Wr−2
(mod p). (4.5.2)

The following Corollary gives a method for computing τ and thus makes explicit
the relation between the rank of apparition, if greater than 3, of an odd prime and
the period of the sequence.

Corollary 4.5.7 (Ward [45, Thm. 11.1]). Let (Wn) be an integer EDS and p an
odd prime with rank of apparition r(p) greater than 3. Let ε and κ be the orders of
W2/Wr−2 and Wr−1 respectively modulo p. Then (Wn) is periodic modulo p with
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period πp(Wn) = rτ where
τ = 2α lcm(ε, κ), (4.5.3)

and

α =


1 if ε and κ are both odd,

−1 if ε and κ are both even and divisible by the same power of 2,

0 otherwise.
(4.5.4)

In his derivation of Corollary 4.5.7, Ward uses the invariants g2 and g3 of the
elliptic function representation of the EDS. To this end he derives polynomials
for g2 and g3 in terms of W2, W3, and W4 with integral coefficients divided by
powers of 2, 3, W2, and W3 (see [45, Eq. 13.6, 13.7]). Hence, with respect to
Corollary 4.5.7, the rank has to be greater than 3, and the primes 2 and 3 have to
be considered separately.

Ward checks all the eight a priori sequences modulo 2, distinguishing between
them by the posible residues of W2, W3, W4 modulo 2, and finds only six are
possible. He finds two of these sequences have r > 3 and τ = 1. However on using
(4.5.3) we arrive at an erroneous value of τ = 2. Hence the restriction to odd
primes is necessary.

Ward then checks the twenty-one possible sequences modulo 3 and explicitly
works out by hand the values of the rank and period by using the duplication
formulas (4.1.2a) and (4.1.2b) modulo 3; in the twelve cases where the rank is
greater than 3, Ward also lists ε, κ, and τ . His table in [45, Ch. III] shows
Corollary 4.5.7 to be true for p = 3.

The next result of Ward’s completely characterises integer EDSs modulo primes
with ranks of apparition 2 or 3.

Theorem 4.5.8 (Ward [45, Thm. 7.1]). If a prime p has rank of apparition 2 in
an integer EDS (Wn), and p - gcd(W3,W4) then

Wn ≡

0 (mod p) if n = 2k,

(−1) 1
2k(k−1)W

1
2k(k+1)

3 (mod p) if n = 2k + 1.
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If a prime p has rank of apparition 3 in an integer EDS (Wn), and p - gcd(W3,W4)
then

Wn ≡


0 (mod p) if n = 3k,

(−W2) 1
2k(k−1)W

1
2k(k+1)

4 (mod p) if n = 3k + 1,

−(−W2) 1
2k(k+1)(k+2)W

1
2k(k+1)

4 (mod p) if n = 3k + 2.

Corollary 4.5.9. Let E/Q be an elliptic curve and P ∈ E(Q) be a nonzero point.
The period of (Ψn(P ),Φn(P ),Ωn(P )) modulo a prime p is rτ .

Proof. By Theorem 4.2.1 we have the fact that the division polynomials for an
elliptic curve E/Q evaluated at a nonzero point P ∈ E(Q) form a normalised
EDS (Wn) defined by Wn = Ψn(P ) for n ≥ 1. Since the period of the sequence
(Wn) is rτ , so is the period for (Ψn(P )). Now by Theorem 3.1.11 we recall the
formulas Φn = xΨ2

n−Ψn−1Ψn+1, and Ωn = (4y)−1(Ψn+2Ψ2
n−1−Ψn−2Ψ2

n+1), and so
Φn(P ) = x(P )W 2

n−Wn−1Wn+1, and Ωn(P ) = (4y(P ))−1(Wn+2W
2
n−1−Wn−2W

2
n+1).

Hence Φn(P ), and Ωn(P ) are also periodic with period rτ .

Example 4.5.10. Take the the rank 1 elliptic curve E357d1 : y2 +y = x3 +x2−42x+
110 with generator point P = (0, 10), where 357d1 is its Cremona reference. It
has an associated EDS (W (357d1)n) = [1, 21,−1323,−1750329].

Over F2 the sequence has r(2) = 5, with period π2(W (357d1)n) = 5:

(W (357d1)n) ≡ [1, 1, 1, 1, 0] (mod 2).

Over F3 the sequence has r(3) = 2 since W2 = 21 = 3 · 7. Therefore we cannot
use Corollary 4.5.7 to work out τ since the rank has to be greater than 3. Also since
3 divides W3 = −3372 as well as W2, when looking modulo 3 these two consecutive
terms are zero, and so by Lemma 4.1.6 this means the sequence modulo 7 looks
like

(W (357d1)n) ≡ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . ] (mod 3)

with every term bar W1 equal to zero.
Over F5 the sequence has r(5) = 9, with period π5(W (357d1)n) = 18:

(W (357d1)n) ≡ [1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, 1, 2, 4, 3, 4, 4, 0] (mod 5).
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Over F7 the sequence has r(7) = 2, since W2 = 21 = 3 · 7. Therefore by the
exact reasoning for p = 3 above we have the sequence over F7 look like

(W (357d1)n) ≡ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . ] (mod 7)

with every term bar W1 equal to zero.
Over F11 the sequence has r(11) = 15, with period π11(W (357d1)n) = 150:

(W (357d1)n) ≡ [1, 10, 8, 2, 3, 8, 4, 3, 2, 3, 8, 7, 2, 3, 0, 7, 5, 5, 5, 8, 1, 2, 6, 5, 8, 1, 9,

4, 2, 0, 5, 8, 10, 7, 3, 7, 1, 1, 7, 3, 7, 10, 8, 5, 0, 2, 4, 9, 1, 8, 5, 6, 2, 1, 8, 5, 5, 5, 7, 0, 3,

2, 7, 8, 3, 2, 3, 4, 8, 3, 2, 8, 10, 1, 0, 10, 1, 3, 9, 8, 3, 7, 8, 9, 8, 3, 4, 9, 8, 0, 4, 6, 6, 6, 3,

10, 9, 5, 6, 3, 10, 2, 7, 9, 0, 6, 3, 1, 4, 8, 4, 10, 10, 4, 8, 4, 1, 3, 6, 0, 9, 7, 2, 10, 3, 6, 5,

9, 10, 3, 6, 6, 6, 4, 0, 8, 9, 4, 3, 8, 9, 8, 7, 3, 8, 9, 3, 1, 10, 0] (mod 11).

Over F13 the sequence has r(13) = 13, with period π13(W (357d1)n) = 26:

(W (357d1)n) ≡

[1, 8, 3, 4, 6, 8, 1, 9, 7, 11, 1, 8, 0, 5, 12, 2, 6, 4, 12, 5, 7, 9, 10, 5, 12, 0] (mod 13).

4.6 The Sign of an EDS

Definition 4.6.1. If (Wn) is an integer EDS, then so is ((−1)n−1Wn), termed the
inverse of the EDS (Wn).

Theorem 4.6.2 (Silverman & Stephens [36, Thm. 1]). Let (Wn) be an integer
EDS. Then after replacing (Wn) by ((−1)n−1Wn) if necessary, there exists an ir-
rational number β ∈ R such that

sign(Wn) = (−1)bnβc for all n. (4.6.1)

sign(Wn) =

(−1)bnβc+ n
2 if n is even,

(−1)n−1
2 if n is odd.

(4.6.2)

(Here btc denotes the greatest integer less than or equal to t.)
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4.7 Denominator Divisibility Sequences

Let E/Q be an elliptic curve given by a Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (4.7.1)

Let P ∈ E(Q) be a point on the elliptic curve that is not the identity, then P can
be expressed as

P = (x(P ), y(P )) =
(
AP
B2
P

,
CP
B3
P

)
(4.7.2)

with AP , BP , CP ∈ Z, gcd(AP , BP ) = gcd(CP , BP ) = 1, and BP ≥ 1. (Note that
by the extended Euclidean algorithm if a, b, c ∈ Z with gcd(a, b) = gcd(c, b) = 1,
there exist integers s, t, u, v ∈ Z such that as+ bt = cu+ bv = 1. Hence

1 = (as+ bt)(cu+ bv) = ac(su) + b(ctu+ btv + asv)

= acU + bV

where U = su and V = ctu + btv + asv. Hence the conditions gcd(AP , BP ) =
gcd(CP , BP ) = 1 are equivalent to the more concise gcd(APCP , BP ) = 1.)

Definition 4.7.1. Taking the multiples of a nontorsion point P ∈ E(Q), where
E is given by (4.7.1) and P is given by (4.7.2). The nth multiple of P is given by

[n]P =
(
AnP
B2
nP

,
CnP
B3
nP

)
(4.7.3)

with AnP , BnP , CnP ∈ Z, gcd(AnP , BnP ) = gcd(CnP , BnP ) = 1, and BnP ≥ 1. The
denominators of these points form a divisibility sequence (BnP ). We shall term
this a denominator divisibility sequence (DDS).

This thesis will be interested in the sequences (BnP ) that the elliptic denomi-
nators of multiples of points on elliptic curves make.

For brevity we shall tend to drop the subscript P from the definition given
in (4.7.3) and write our DDSs as just (Bn). As well, in a lot of cases, the (BnP )
form an integer EDS if each member of the sequence is given the correct sign in
accordance with that occuring in the recurrence (4.1.1).
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Therefore geometric construction via rational points on elliptic curves yields a
divisibility sequence (BnP ) of positive integers, whereas algebraic construction via
recursion (4.1.1) yields an elliptic divisibility sequence (Wn) of signed rationals.

We have seen that the nth multiple of a point can be described in terms of the
so called division polynomials

[n]P =
(

Φn(x, y)
Ψ2
n(x, y) ,

Ωn(x, y)
Ψ3
n(x, y)

)
if [n]P 6= O. (4.7.4)

Recall that Ayad in Theorem 3.2.4 has shown that any cancellation occurring
between the numerator and the denominator of (4.7.4) happens exactly at the
primes of singular reduction at P .

To investigate the relationship between the BnP and the Ψn(P ), we find on
comparing equations (4.7.3) and (4.7.4) that

vp(x([n]P )) = vp(AnP )− 2vp(BnP ) = vp(Φn(P ))− 2vp(Ψn(P )). (4.7.5)

Now if p - BP then vp(Φn(P )), and vp(Ψn(P )) ≥ 0. By Ayad’s Theorem 3.2.4
we see that if P reduces to a nonsingular point, and if P 6≡ O (mod p), which is
equivalent to p - BP , then vp(Φn(P ))vp(Ψn(P )) = 0. In which case by (4.7.5) if
vp(x([n]P )) ≥ 0, then since gcd(AnP , BnP ) = 1, we have vp(BnP ) = vp(Ψn(P )) = 0.
Similarly if vp(x([n]P )) < 0, then we have vp(BnP ) = vp(Ψn(P )) = −1

2vp(x([n]P )).
This implies the following proposition.

Proposition 4.7.2. Let E/Q be an elliptic curve such that all ai ∈ Z. Let P ∈
E(Q) be a nontorsion point such that P 6≡ O (mod p) for some prime p, and let
(BnP ) be the DDS associated to E and P . Then if P modulo p is nonsingular, we
have

vp(BnP ) = vp(Ψn(P )).

Note that, in general, we do not have BnP = |Ψn(x, y)| since the rational
number An/B2

n has An and Bn coprime, but we cannot be sure

gcd(Φn(P ),Ψ2
n(P )) = 1

as there may be some bounded cancellation when evaluated at a point P . If
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we drop the condition that P 6≡ O (mod p) from Proposition 4.7.2 we have the
stronger result for a scaled version of Ψn(P )

Ψ̂n(P ) = Bn2

P Ψn(P ).

Then if P modulo p is nonsingular for all primes p we have

BnP = |Ψ̂n(P )|.

Referring to (4.7.4) we find the scaled versions for Φn(P ), and Ωn(P ) to be

Φ̂n(P ) = B2n2

P Φn(P ), Ω̂n(P ) = B3n2

P Ωn(P ).

Then if P modulo p is nonsingular for all primes p we have

AnP = Φ̂n(P ), CnP = Ω̂n(P ).

(See [2]).
Ingram [23] has given a quantitative bound showing the extent of the cancel-

lation of this fraction. For the Lemma we shall fix some notation: Let r(P, p) be
the order of P in the finite group E(Qp)/E0(Qp). Now set

M(P ) = lcm r(P, p),

as p varies over all primes.

Lemma 4.7.3 (Ingram [23, Lem. 3]). Let E/Q be an elliptic curve, let P ∈ E(Q)
be a nontorsion point, and have Bn, Ψn, and M be as defined above. Then for
n ≥ 1,

logBn ≤ log |Ψn| ≤ logBn + n2M2 log |∆(E)|.

4.7.1 The Singular Situation

We now explain why a DDS is not necessarily an integer EDS by merely adding
in the right signs. The following example illustrates the singular example given by
Shipsey in [32], and how this fails to give us an integer EDS.
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After moving P → (0, 0) we have a Weierstrass equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x. (4.7.6)

Let
f(x, y) = x3 + a2x

2 + a4x− y2 − a1xy − a3y

with partial derivatives ∂f
∂x

= 3x2 + 2a2x − a1y + a4 and ∂f
∂y

= −2y − a1x − a3,
where at P = (0, 0)

∂f

∂x
(0, 0) = a4, and ∂f

∂y
(0, 0) = −a3.

Hence both derivatives vanish at the origin when reduced at those primes dividing
both a3 and a4. Hence it follows that if gcd(a3, a4) = 1 then P = (0, 0) has
everywhere nonsingular reduction, while if gcd(a3, a4) > 1 then P = (0, 0) is
singular modulo primes dividing gcd(a3, a4).

Example 4.7.4. In her thesis Shipsey shows P = (0, 0) on

E : y2 + 27y = x3 + 28x2 + 27x

is not associated to an integer EDS. We see P is singular modulo 3, since on letting

f(x, y) = x3 + 28x2 + 27x− y2 − 27y,

we have
∂f

∂x
(0, 0) = a4 = 33 and ∂f

∂y
(0, 0) = −a3 = 33.

However we note 3P = (−1,−27) is nonsingular modulo every prime since

∂f

∂x
(−1,−27) = −2 · 13 and ∂f

∂y
(−1,−27) = −33.

Hence 3P does have an associated integer EDS since the partial derivatives there
are coprime.

Example 4.7.5. The integer EDS U with seed [1, 10, 171,−7660] from Example
4.1.10 (d) has an associated elliptic curve-point pair: E : y2 = x3 − 2, P = (3, 5).



79 4.7. Denominator Divisibility Sequences

See Table 4.7.1 to see that BkP = |Uk| for 1 ≤ k ≤ 4, and so the EDSs (Un) and
the DDS (BnP ) are the same if we give the DDS the correct sign.

P =
(3

1 ,
5
1

)
BP = 1

[2]P =
(129

100 ,
−383
1000

)
B2P = 10

[3]P =
(164323

29241 ,
−66234835

5000211

)
B3P = 171

[4]P =
(2340922881

58675600 ,
113259286337279

449455096000

)
B4P = 7660

Table 4.7.1: DDS associated to Elliptic Curve E : y2 = x3−2 and Point P = (3, 5)

If we had used [2](3, 5) =
(

129
100 ,

−383
1000

)
to generate the EDS instead, we would

have a noninteger EDS, V say, having seed

[
1, −383

500 ,
−2265231357

100000000 , 43378306667177857
250000000000000

]
,

with the DDS seed [10, 7660, 22652313570, 1735132266687114280], i.e., the DDS
containg all the elliptic denominators of the even multiples of P .

We note V is equivalent to an integer EDS V ′ by V ′n = 20n2−1Vn to give the
seed for V ′ being [1,−6128,−579899227392, 5685681411480336072704].

Example 4.7.6. Recall the EDS (W (357d1)n) from Example 4.5.10 having the seed
[1, 21,−1323,−1750329]. It has the associated rank 1 elliptic curve E357d1 : y2+y =
x3 + x2 − 42x+ 110 with generator point P = (0, 10). We note that since P is an
integral point then P 6≡ O (mod p) for all primes p. However since W2 = 3 · 7,
and W3 = −33 · 72 we have by Theorem 3.2.4 that P reduces to a singular point
modulo primes 3 and 7. In Table 4.7.2 we see the valuations for the EDS and the
DDS are the same for all primes except p = 3, and p = 7. Hence r(3) = r(7) = 2,
for the EDS, but for the DDS we find these primes occur first at rs(3) = 14 and
rs(7) = 12, the s subscript indicating ‘singular’.
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EDS : 0 1 3 · 7 −33 · 72 −36 · 74

DDS : 1 1 1 1 1

EDS : −2 · 310 · 76 315 · 79 321 · 712 327 · 716 −334 · 5 · 720

DDS : 2 1 1 1 5

EDS : −22 · 342 · 725 −351 · 730 361 · 737 372 · 742 · 13 −385 · 749

DDS : 22 1 7 13 3

EDS : −2 · 396 · 756 · 11 −3109 · 764 · 37 3123 · 772 · 97 3138 · 5 · 781 · 17 3154 · 790 · 191
DDS : 2 · 11 37 97 5 · 7 191

EDS : −23 · 3171 · 7100 · 29 −3189 · 7110 · 349 −3207 · 7121 · 151 3226 · 7132 · 23 · 139 3246 · 7145 · 673
DDS : 23 · 29 349 151 23 · 139 7 · 673

Table 4.7.2: EDS (W (357d1)n) and associated DDS coming from Elliptic Curve
E357d1 : y2 + y = x3 + x2 − 42x+ 110 and Point P = (0, 10)



Chapter 5

Modularity of Elliptic Curves

5.1 Modular Machinery

The following treatment of the modular machinery needed is heavily borrowed
from Siksek [11, Ch. 15]. We now recall definitions and properties of modular
forms.

Definition 5.1.1. By a newform of level N we mean a cusp form of weight 2 with-
out character on Γ0(N), which belongs to the newspace and is normalised so that
c1 = 1 in the Fourier expansions around ∞, and is a simultaneous eigenfunction
for all the Hecke operators. Newforms have q-expansions given by

f(τ) = q +
∞∑
n=2

cnq
n, q = e2πiτ . (5.1.1)

We summarize some crucial facts about newforms:

• For each positive integer N , there are finitely many newforms of level N , as
determined by the modular symbols algorithm.

• If f is a newform with coefficients cn as in (5.1.1) and K = Q(c2, c3, . . . )
then K is a finite and totally real extension of Q, that is it is a totally real
number field.

• The cn are algebraic integers belonging to the ring of integers ZK of the
number field K. If K = Q then cn ∈ Z and the newforms are termed
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rational and correspond to elliptic curves. Otherwise they are irrational and
are associated to higher dimensional modular abelian varieties.

• Let L be the Galois closure of K, then if σ is an element of Gal(L/K) and f
any newform then σ(f) is also a newform termed a conjugate of f . We will
usually identify a newform up to Galois conjugacy.

• If ` is a prime then |c`| ≤ 2`1/2, and in fact this is true for the conjugates
of f and so |σ(c`)| ≤ 2`1/2. This is the Ramanujan conjecture, proven in
generality by Deligne.

It turns out it is much easier to deal with irrational newforms. The next Propo-
sition gives a recursive formula for the number of newforms of level N (no closed
form for the number of newforms up to conjugacy is known). The formula follows
from the dimension formula for the space of cuspidal modular forms on Γ0(N) of
weight k (k ≥ 2 even). The formula itself may be found in [25].

Proposition 5.1.2. We define five arithmetic functions Ai(N) for 1 ≤ i ≤ 5 by
asking that they be multiplicative, and that their values on prime powers pk be given
as follows:

(a) A1(p) = −1, A1(pk) = 0 for k ≥ 2.

(b) A2(p) = p− 1, A2(p2) = p2 − p− 1, A2(pk) = (p− 1)(pk−1 − pk−3) for k ≥ 3.

(c) For p odd, A3(p) =
(
−4
p

)
− 1, A3(p2) = −

(
−4
p

)
, A3(pk) = 0 when k ≥ 3, while

A3(2) = A3(22) = −1, A3(23) = 1, and A3(2k) = 0 for k ≥ 4.

(d) For p 6= 3, A4(p) =
(
−3
p

)
−1, A4(p2) = −

(
−3
p

)
, A4(pk) = 0 when k ≥ 3, while

A4(3) = A4(32) = −1, A4(33) = 1, and A4(3k) = 0 for k ≥ 4.

(e) A5(p2) = p − 2, A5(p2k) = pk−2(p − 1)2, for k ≥ 2, while A5(p2k−1) = 0 for
k ≥ 1.

The number of newforms of level N (counting conjugate ones as distinct) is equal
to

A1(N) + A2(N)
12 − A3(N)

4 − A4(N)
3 − A5(N)

2 .
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Corollary 5.1.3. There are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

Moreover, for all other levels there are newforms.

Proof. Follows from an immediate (computer-aided) computation from the propo-
sition.

Example 5.1.4. If N = 198 = 2 · 32 · 11 we compute A1(198) = 0; A2(198) = 50;
A3(198) = 2; A4(198) = −4; A5(198) = 0: the formula gives the number of
newforms as

0 + 50
12 −

2
4 −
−4
3 −

0
2 = 5.

Using Sage [38] we find all five newforms are rational, for which K = Q.

f1 = q − q2 + q4 − 2q5 − 4q7 − q8 + 2q10 + q11 − 6q13 + · · · ,

f2 = q + q2 + q4 + 2q7 + q8 + q11 − 4q13 + 2q14 + · · · ,

f3 = q + q2 + q4 + 2q7 + q8 − q11 + 2q13 + 2q14 + · · · ,

f4 = q − q2 + q4 + 2q7 − q8 + q11 + 2q13 − 2q14 + · · · ,

f5 = q − q2 + q4 + 4q5 − 2q7 − q8 − 4q10 − q11 + 4q13 + · · · .

If N = 594 = 2 · 33 · 11 we compute A1(594) = 0; A2(594) = 160; A3(594) = 0;
A4(594) = 4; A5(594) = 0: the formula gives the number of newforms as

0 + 160
12 −

0
4 −

4
3 −

0
2 = 12.

Using Sage we find there are eight newforms in the conjugacy class for which K =
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Q, while there are four newforms in the conjugacy class for which K = Q(
√

10).

f1 = q − q2 + q4 − 2q5 + q7 − q8 + 2q10 − q11 − · · · ,

f2 = q − q2 + q4 + q5 + 4q7 − q8 − q10 − q11 + · · · ,

f3 = q − q2 + q4 − 3q5 − 4q7 − q8 + 3q10 − q11 + · · · ,

f4 = q − q2 + q4 − 2q5 − q7 − q8 + 2q10 + q11 + · · · ,

f5 = q + q2 + q4 + 2q5 − q7 + q8 + 2q10 − q11 + · · · ,

f6 = q + q2 + q4 − q5 + 4q7 + q8 − q10 + q11 + · · · ,

f7 = q + q2 + q4 + 2q5 + q7 + q8 + 2q10 − q11 − · · · ,

f8 = q + q2 + q4 + 3q5 − 4q7 + q8 + 3q10 + q11 + · · · ,

f9 = q − q2 + q4 + 1
2 (1 + α) q5 + 2q7 − q8 − 1

2 (1 + α) q10 + q11 + · · · ,

f10 = σ(f9),

f11 = q + q2 + q4 + (β − 1)q5 + 2q7 + q8 + (β − 1)q10 − q11 + · · · ,

f12 = σ(f11),

where α = −3 + 2
√

10, β = 2 +
√

10, and σ is the nontrivial automorphism of
Q(
√

10). We note that up to Galois conjugacy we only have ten newforms to deal
with.

Definition 5.1.5. Let E be an elliptic curve defined over Q of conductor N . If
there exists a newform f of level N such that c`(f) = a`(E) for all primes `, we
say that E is modular .

For rational newforms the map f 7→ Ef , where Ef is an elliptic curve defined
over Q, is due to Eichler and Shimura.

Theorem 5.1.6 (Eichler–Shimura). Given a cuspidal newform f of weight 2 and
level N it is possible to construct an elliptic curve E of conductor N such that

c`(f) = `+ 1− |E(F`)|, ` - N.

Proof. See [16, Ch. 8].

The famed Taniyama–Shimura–Weil Conjecture, or the Modularity Conjecture,
was whether the map f 7→ Ef was surjective, that is to say that associated to any
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elliptic curve defined over Q is a newform. This was famously proved by Wiles
and Taylor–Wiles in [47, 41] for the semistable elliptic curve case and proven in
full generality by Breuil, Conrad, Diamond and Taylor in [7].

Theorem 5.1.7 (Modularity Theorem for Elliptic Curves). Let N ≥ 1 be an
integer. Every rational newform f of level N has an associated rational elliptic
curve Ef/Q with conductor equal to N such that for all primes ` - N we have
c`(f) = a`(Ef ), where c`(f) is the `th Fourier coefficient in the q-expansion of f
and a`(Ef ) = ` + 1 − |Ef (F`)|. For any given integer N ≥ 1, the association
f 7→ Ef is a bijection between rational newforms of level N and isogeny classes of
elliptic curves of conductor N .

Proof. See [7].

Looking back to Example 5.1.4 we find for the level N = 198, the rational new-
forms f1 to f5 correspond to the five isogeny classes of elliptic curves of conductor
198, and have been arranged so they correspond to elliptic curves in the respec-
tive order 198a1, 198b1, 198c1, 198d1, and 198e1 in the tables of Cremona [13].
Similarly for the eight rational newforms of level N = 594, they correspond to
the eight isogeny classes of elliptic curves of conductor 594. These eight rational
newforms have been arranged so they correspond to the elliptic curves in the re-
spective order 594a1, 594b1, 594c1, 594d1, 594e1, 594f1, 594g1, and 594h1 in the
tables of Cremona [13].

5.2 Ribet’s Level Lowering Theorem

Definition 5.2.1. Let E be a rational elliptic curve with ∆min the discriminant
for a minimal model of E, and N be the conductor of E. Suppose p is a prime,
and let

Np = N
/ ∏

q‖N
p|vq(∆min)

q. (5.2.1)
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5.2.1 Definition of “Arises From”

Definition 5.2.2. Let E/Q be an elliptic curve of conductor N . Now suppose
there is a newform of level N ′ not necessarily equal to N , with the Fourier coef-
ficients ci of its q-expansion generating the number field K = Q(c2, c3, . . . ). We
say the curve E arises modulo p from the newform f , and write E ∼p f , if there
is some prime ideal p of K above p such that for almost all primes `, we have
a`(E) ≡ c`(f) (mod p).

Proposition 5.2.3. Suppose E ∼p f . Then there is some prime ideal p in the
ring of integers ZK above p such that for all prime numbers ` we have:

c`(f) ≡

a`(E) (mod p) if ` - pNN ′,

±(`+ 1) (mod p) if ` - pN ′ and ` ‖ N.
(5.2.2)

Furthermore, if ZK = Z then

c`(f) ≡

a`(E) (mod p) if ` - NN ′,

±(`+ 1) (mod p) if ` - N ′ and ` ‖ N.
(5.2.3)

Proof. This comes from modularity. The strengthening in the case ZK = Z is due
to Kraus and Oesterlé [24]. For further details see [14], Chapter 2.

If f is a rational newform, then we know that f corresponds to some elliptic
curve F = Ef by the Modularity Theorem. Hence if E arises modulo p from f

then we shall also say that E arises modulo p from F , and write E ∼p F .
The strengthening of Proposition 5.2.3 in removing the dependency on the

prime p is beneficial in the sense that p shall later become the exponent in some
equation, and so to have conditions imposed on it would complicate matters. As
such the Proposition of Kraus and Oesterlé is the one we shall need.

Remark 5.2.4. The condition that ` - NN ′ says E and F both have good reduction
at `.

The condition that ` - N ′ and ` ‖ N says E has multiplicative reduction at `,
whilst F has good reduction at `.
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We now give a simplified form of Ribet’s Theorem which will be sufficient for
our needs.

Theorem 5.2.5 (Ribet’s Level Lowering Theorem [30]). Suppose E is a rational
elliptic curve in global minimal form and p ≥ 5 is a prime number. Assume there
does not exist a p-isogeny defined over Q from E to some other elliptic curve.
Let Np be defined as above. Then there exists a newform f of level Np such that
E ∼p f .

Let E/Q have ∆min = ∏
q|∆min q

δq and N = ∏
q|∆min q

fq . Suppose E is a Weil
curve having a modular parametrization of level N given via a normalised newform
f(τ) = q + ∑∞

n=2 cnq
n. Ribet’s Theorem then states that we can perform a level

descent modulo primes p dividing one of the exponents δq, as long as we have
fq = 1. Then let Np be as in (5.2.1). Then there exists a newform g of level Np

such that g(τ) = q +∑∞
n=2 dnq

n with integral coefficients having cn ≡ dn (mod p)
for 1 ≤ n < ∞. Equivalently by the Modularity Theorem there exists an elliptic
curve E ′ with conductor Np, with the coefficients of the L-series of E and E ′

congruent modulo p.
To apply Ribet’s Theorem we require the absence of any p-isogenies for the

elliptic curve E as explained in Theorem 5.2.5, that is there must be no subgroup
of E of order p that is stable under conjugation. We could do this by testing the
pth division polynomial for irreducibility, but this can be tricky. Mazur has shown
there are no p-isogenies with p > 163 and j-invariant nonintegral. We list some
useful theorems for determining the lack of isogenies.

Theorem 5.2.6 (Mazur [26], Diamond & Kramer [17], Dahmen [14]). Let E/Q
be an elliptic curve with j-invariant j and conductor N . Let p be a prime. Then
E does not have any p-isogeny if at least one of the following conditions holds.

(a) p ≥ 17 and j(E) 6∈ Z[1/2].

(b) p ≥ 11 and N is squarefree.

(c) p ≥ 5, N is squarefree, and |E(Q)[2]| = 4, meaning E(Q) has full 2-torsion.

(d) p ≥ 3 and v2(N) = 3, 5, or 7.
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(e) p = 11 or p ≥ 17 and the pair (p, j) has no corresponding entry in Table 5.2.1.

(f) E has a rational 2-torsion point, p ≥ 7 and

(p, j) 6= (7,−33 · 53), (7, 33 · 53 · 173).

p j

11 −215, −112, −11 · 1313

17 −17 · 3733/217, −172 · 1013/2
19 −215 · 33

37 −7 · 113, −7 · 1373 · 20833

43 −218 · 33 · 53

67 −215 · 33 · 53 · 113

163 −218 · 33 · 53 · 233 · 293

Table 5.2.1: Pairs (p, j) corresponding to rational isogenies

Proof. For (a), (b), (c) see [26]; for (d) see [17]; for (e), (f) see [14, Ch. 2, Thm.
22].

Remark 5.2.7. If E has no p-isogenies then Ribet’s theorem implies that E ∼p f
for some newform of level Np. Here we note that, as well as any rational newforms
of level Np, there may be irrational newforms at that level defined over number
fields of arbitrary degree, and these will also have to be taken into consideration
when considering the existence of solutions of Diophantine equtions in the sequel.
This is made precise in the following proposition.

Proposition 5.2.8. An elliptic curve defined over Q can arise from a newform
whose defining field K has arbitrarily large degree.

Proof. See [11, Prop. 15.2.9].
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5.2.2 A Bound for p

The next Proposition, taken from Cohen [11], will be of help when it comes to
bounding the prime exponent occurring in a Diophantine equation.

Proposition 5.2.9. Let E/Q be an elliptic curve defined over the rationals of
conductor N , and let t ∈ Z be a divisor of the order of the torsion group Etors(Q).
Let f be a newform of level N ′ with Fourier coefficients cn, which generate a totally
real field K, and let ` be a prime such that `2 - N and ` - N ′. Define

S` = {a ∈ Z : −2
√
` ≤ a ≤ 2

√
` and a ≡ `+ 1 (mod t)},

B′`(f) = NK/Q
(
(`+ 1)2 − c2

`

) ∏
a∈S`

NK/Q(a− c`), and

B`(f) =

`B
′
`(f) if f is irrational (K 6= Q),

B′`(f) if f is rational (K = Q).

Then if E ∼p f we have p | B`(f).

Proof. See [11, Prop. 15.4.1].

This proposition allows us to bound p if we can find an ` such that B`(f) 6= 0.
This is not always possible but is certain in the following cases:

Proposition 5.2.10. In each of the following cases there are infinitely many ` for
which B`(f) 6= 0:

(a) When f is irrational.

(b) When f is rational and t is a prime number or 4, for every elliptic curve F
isogenous to the elliptic curve corresponding to f we have t - |F (Q)|.

(c) If f is rational and t = 4, and if for every elliptic curve F isogenous to the
elliptic curve corresponding to f then F (Q) does not have full 2-torsion.

Proof. See [11, Prop. 15.4.2].

We note for (a) if f is irrational there exist infinitely many ` such that c` 6∈ Q,
which implies B`(f) 6= 0, at least for all those ` such that (`+ 1)2− c2

` 6= 0. Hence
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if p is a prime not dividing B′`(f) then E 6∼p f . In particular, if q is the largest
prime dividing B′`(f) then, for any p > q, E 6∼p f .

Our strategy for bounding the exponent p for irrational newforms is then:

(1) Find all irrational newforms of (lowered) level N ′.

(2) For each such f , find ` such that c` 6∈ Q (smallest such `).

(3) Compute B`(f) and find its largest prime divisor q.

Proposition 5.2.10 lends some justification to our work in the sequel; for it is seen
that for rational newforms we may end up in the situation that B`(f) = 0 for all `,
and so a bound will be impossible to procure in such a case using Proposition 5.2.9.
Our method however shall always enable one to find a bound, at least in theory,
i.e., if computationally feasible.

5.3 The Modular Approach

One of the twentieth centuries defining mathematical moments was the proof of
Fermat’s Last Theorem (FLT) by Sir AndrewWiles, with a little help from Richard
Taylor (see [47, 41]). Using Galois representations on the p-torsion of the Frey
elliptic curve associated with FLT, Ribet’s Level Lowering Theorem shows that
the Galois representation is of a level 2 newform of which there are none.

This contradiction forms the basis of the modular method. To a putative so-
lution of a Diophantine equation we associate an elliptic curve E, called a Frey
curve. The Frey curve E must satisfy the following conditions:

• The coefficients of (the Weierstrass equation for) E are dependent on the
solution of the Diophantine equation.

• The minimal discriminant ∆min of E has the form ∆min = C ·Dp where C is
some constant independent of the solution of the equation but intrinsic to the
equation itself, D is some value dependent on the solution of the equation,
and p is a fixed prime (independent of the solution).

• Primes dividing D have multiplicative reduction for E.
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Now apply Ribet’s theorem, for which we need to know E has no p-isogeny.

Example 5.3.1. Let p ≥ 5 be an odd prime, and a, b, c be coprime positive integers,
abc 6= 0, such that

ap + bp + cp = 0 (5.3.1)

is a nontrivial solution to FLT. The trick here is to associate to this purported
solution the elliptic Frey curve Eα,β,γ given by

Eα,β,γ : y2 = (x− α)(x− β)(x− γ)

and proceed to show it cannot exist.
To this end let

ap = α− β,

bp = β − γ,

cp = γ − α.

(5.3.2)

From the group of equations (5.3.2), we find on addition to derive the Fermat
Equation (5.3.1).

Now by a change of coordinates we can move one of the roots of the elliptic
curve equation to the origin. Do this for γ: then Eα,β,γ is the nonsingular algebraic
curve of genus 1 over Q, whose projective completion is a semistable elliptic Frey
curve over Q given by

Ea,b,c : y2 = x(x+ cp)(x− bp).

The elliptic discriminant for the Frey curve is

∆ = (abc)2p.

which is nonzero since the solution (5.3.1) is nontrivial. The minimal discriminant
for the Frey curve is

∆min = 1
28 (abc)2p,

which is an integer since one of a, b, c is even.
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The conductor N is the radical of abc.

N =
∏

` prime, `|abc
`

= rad(abc).

By Theorem 5.2.6 (c), since E(Q)[2] = {O, (0, 0), (0, bp), (0,−cp)} and p ≥ 5,
the curve E has no p-isogenies and we can apply Ribet’s Level Lowering Theorem.

5.3.1 The Tables of Papadopoulos

Let E be an elliptic curve over Q. In his paper Papadopoulos [28] provides tables
which give the exponent of the prime factors of the conductor of an elliptic curve
dealing with the cases for q a prime, q = 2, q = 3, and q ≥ 5, see Tables 5.3.1,
5.3.2, and 5.3.3 respectively.

Often the 3-tuple (vq(c4), vq(c6), vq(∆)) is enough to determine the powers of q
dividing the conductor. However we might end up in a situation where the same
3-tuple of valuations have different values of fq owing to the case of Tate we end up
in after applying Tate’s algorithm which is used to find a minimal model with the
outcome one of 11 cases. In his paper Papadopoulos distinguishes each possible
case to derive the correct value for fq dependent on which case of Tate we end
up in. Moreover the Kodaira symbol, which encodes the type of reduction of an
elliptic curve at q, is included in the tables.

For the prime 3 Papadopoulos uses the terminology: a curve satisfies the prop-
erty Pi, for i = 2 or 5, if there exists u ∈ Z such that u3−3c4u−2c6 ≡ 0 (mod 33+i).
This is satisfied if and only if there exists v ∈ Z such that v3+b2v

2+8b4v+16b6 ≡ 0
(mod 3i).

He gives the conditions: if v3(c4) ≥ 2, v3(c6) = 3 the condition P2 is:

c2
6,3 + 2 ≡ 3c4,2 (mod 9), where c4,2 = c4/32 and c6,3 = c6/33; (5.3.3)

whereas if v3(c4) ≥ 4, v3(c6) = 6 the condition P5 is:

c2
6,6 + 2 ≡ 3c4,4 (mod 9), where c4,4 = c4/34 and c6,6 = c6/36. (5.3.4)
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For the prime q = 2 the situation is more complicated and we have the following
Proposition which classifies the different cases of Tate’s algorithm.

Proposition 5.3.2 (Papadopoulos [28]). Let E be an elliptic curve in global
Weierstrass form. With reference to Table 5.3.1 corresponding to a case ≥ 3 in
Tate’s algorithm, there exists r, t ∈ Z such that

2 | a4 + r2, 2 | t2 + a4a2 − a6.

(a) If a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 ≡ 0 (mod 22) then we are in a case
of Tate’s algorithm ≥ 4; otherwise we are in case 3.

(b) If b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 ≡ 0 (mod 23) then we are in a case of Tate’s
algorithm ≥ 5; otherwise we are in case 4.

(c) If b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 6≡ 0 (mod 25) then we are in case 6 of Tate’s
algorithm.

(d) If b8 +3rb6 +3r2b4 +r3b2 +3r4 ≡ 0 (mod 25), then there exists t ∈ Z such that
a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 ≡ 0 (mod 23). Choose one t. We are
in case 6 if we have v2(a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1) = 3; otherwise
we are in a case of Tate’s algorithm ≥ 7.

(e) If b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 ≡ 0 (mod 25) and there exists s ∈ Z such that
a2 + 3r − sa1 − s2 ≡ 0 (mod 22), then we are in a case of Tate’s algorithm
≥ 8.

(f) If v2(b8 + 3rb6 + 3r2b4 + r3b2 + 3r4) ≥ 7 we are in a case of Tate’s algorithm
≥ 10.

(g) If v2(c4) ≥ 8 and v2(∆) ≤ 12, then there exists r ∈ Z such that v2(b8 + 3rb6 +
3r2b4 + r3b2 + 3r4) ≥ 8. E is a nonminimal equation if there exists u ∈ Z
such that v2(b6 + 2rb4 + r2b2 + 4r3 − u2) ≥ 8; otherwise we are in case 10 of
Tate’s algorithm.

(h) If v2(c4) ≤ 4, then there exists r ∈ Z such that v2(b8 + 3rb6 + 3r2b4 + r3b2 +
3r4) ≥ 8 and a t ∈ Z such that v2(a6 + ra4 + r2a2 + r3− ta3− t2− rta1) ≥ 5.
If v2(a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1) ≥ 6, then E is nonminimal.
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5.3.2 The Diophantine Equation Ayp +Bxq = Czr

Let A, B, C be nonzero and p, q, r ∈ Z≥2. Consider the ternary Diophantine
equation

Ayp +Bxq = Czr, gcd(x, y, z) = 1 (5.3.5)

We term the triple (p, q, r) the signature of the equation (5.3.5). Now let the
characteristic of the equation (5.3.5) be defined as

χ(p, q, r) := 1
p

+ 1
q

+ 1
r
− 1.

• For χ < 0, Darmon and Granville [15] have shown there are only finitely
many integer solutions.

• For χ = 0, the only possible sets for {p, q, r} are {3, 3, 3}, {2, 4, 4}, and
{2, 3, 6}.

• For χ > 0, {p, q, r} are {2, 2, k} with k ≥ 2, or {2, 3,m} with m = 3, 4, or 5.

These three cases are termed the hyperbolic case, the Euclidean case, and the
spherical case for χ < 0, χ = 0, and χ > 0 respectively.

5.3.3 The Diophantine Equation Ay2 + Bx3 = Czp and the
Frey Curve of Barros

In this Section we look at the particular form of the ternary Diophantine equation
from Subsection 5.3.2 with signature (2, 3, p). To be able to study this Diophantine
equation using the modular method we shall need a corresponding Frey curve which
is found in a result of Barros [4] which we shall require later for examining the
Diophantine equation y2 − x3 = Dz6p.

Theorem 5.3.3 (Barros [4, Thm. 5.1]). Let A, B, C, x, y, z be integers, such
that gcd(Ay,Bx,Cz) = 1. Let p be a prime number. Suppose also that

(a) A is squarefree;

(b) B is cubefree;
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(c) C is pth powerfree.

Finally we consider the equation

Ay2 +Bx3 = Czp. (5.3.6)

The Frey curve associated to (5.3.6) is

E : Y 2 = X3 + 3ABxX + 2A2By. (5.3.7)

(1) The minimal discriminant of E is

∆min =

−2633A3B2Czp if v2(Czp) < 6,

−2−633A3B2Czp if v2(Czp) ≥ 6.

(2) The conductor N of the curve E is given by

N = 2f23f3 rad2,3(AB)2 rad2,3(Cz),

where f2 is given in Table 5.3.4 and f3 is given in Table 5.3.5.

(3) Suppose that p = 11 or p ≥ 17 and the curve E does not correspond to one
of the equations:

11 · (±7)2 − 1 · 83 = 33 · 111, (±43)2 − 112 · 13 = 26 · 33 · 111,

(±4973)2 − 11 · 1313 = 2 · 33 · 111, 5 · (±14891)2 − 17 · 3733 = 26 · 33 · 217,

5 · 77172 − 172 · 1013 = 27 · 33 · 117, 19 · 3 · (±3)2 − 1 · 83 · 33 = 1 · 119,

5 · (±11 · 1433 · 11443)2 − 7(137 · 2083)3 = 26 · 33 · 137,

5 · (±47)2 − 7 · 113 = 26 · 33 · 137, 3 · 43 · (±32 · 7)− 1 · (24 · 5)3 = 143,

3 · 67 · (±3 · 7 · 31)2 − 1 · 23 · 5 · 11 = 167,

3 · 163 · (±3 · 7 · 11 · 19 · 127)2 − 1 · (24 · 5 · 23 · 29)3 = 1163,

Then E ∼p f for some newform f of level

Np = 2f23f3 rad2,3(AB)2 rad2,3(C),
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where f2 is given in Table 5.3.4 and f3 is given in Table 5.3.5.

The characteristic of equation (5.3.6) is given by

χ(2, 3, p) = 1
2 + 1

3 + 1
p
− 1 = 1

p
− 1

6 < 0.

Hence by Darmon and Granville (see Subsection 5.3.2) this shows there are only
finitely many integer solutions possible for equation (5.3.6) when p ≥ 7.

The associated quantities with (5.3.7) are

a1 = a2 = a3 = 0, a4 = 3ABx, a6 = 2A2By,

b2 = 0, b4 = 2 · 3ABx, b6 = 23A2By, b8 = −32A2B2x2,

c4 = −2432ABx, c6 = −2633A2By,

∆ = −2633A3B2(Ay2 +Bx3) = −2633A3B2Czp, j = 2633Bx3

Ay2 +Bx3 = 2633Bx3

Czp
.

With these quantities we can work out the valuations for the 3-tuple

(vq(c4), vq(c6), vq(∆))

for primes 2 and 3 specifically, and for q ≥ 5 in general, and check these against
Tables 5.3.1, 5.3.2, and 5.3.3, to give Tables 5.3.4, 5.3.5, and 5.3.6 for the exponents
fq for the conductor N of E as given by

N =
∏

q prime
qfq .
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Chapter 6

Power Integral Points

6.1 Perfect Powers and DDSs

In this Chapter we consider an elliptic curve E/Q in Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (6.1.1)

and let a point P ∈ E(Q) be represented as

P =
(
AP
B2
P

,
CP
B3
P

)
(6.1.2)

where AP , BP , and CP are integers with gcd(APCP , BP ) = 1.
We can ask the following questions about BP :

Question 1. Are there finitely many rational points P ∈ E(Q) with BP equal to
a perfect power?

Question 2. Are there finitely many rational points P ∈ E(Q) with BP equal to
a prime?

We shall be interested in solutions of the following equation.

BP = Zf Z ∈ Z>1, f ∈ Z>1. (6.1.3)
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Definition 6.1.1. Let E/Q be an elliptic curve given by a Weierstrass model
(6.1.1). If P ∈ E(Q) has its BP term equal to a perfect power then we shall call
that point a power integral point (PIP).

The next Theorem goes part way to settling the first question.

Theorem 6.1.2 (Everest, Reynolds, & Stevens [19]). Let E be an elliptic curve
in Weierstrass form over Q as in (4.7.1), and fix an integer f > 1. Then there
exist only finitely many points P as in (6.1.2) such that BP is an f th power.

Proof. See [19, Thm. 1].

The result of Theorem 6.1.2 is achieved by extending Theorem 2.6.2 of Siegel’s
on the finiteness of S-integer solutions for equations of the form y2 = f(x) of
degree d ≥ 3. As such it is a generalization of Theorem 2.6.2 for the field Q which
states that there are only finitely many integral points on an elliptic curve E/Q,
which is the case Z = 1 with f arbitrary in (6.1.2).

Siegel [33] proved there are only finitely many (nonzero) points on an elliptic
curve with BP = 1. By the result of Theorem 6.1.2 for fixed f > 1, there are only
finitely many (nonzero) P ∈ E(Q) with BP = Zf for some Z ∈ Z>1. Since 1 is a
perfect power we can imagine PIPs as a generalization of integral points.

However Question 1 above is far from resolved by Theorem 6.1.2, for since f is
arbitrary this leaves open the question of whether there are finitely many power
integral points on an elliptic curve.

If the answer to Question 1 was affirmative it would be natural to ask:

Question 3. Is there an effective procedure for determining all power integral
points?

Much work has been done to make Siegel’s Theorem effective and there are many
techniques which can find all of the integral points for large classes of elliptic
curves [22].

For our purposes it is enough to investigate whether the BP occur as a perfect
power Zp, for p some prime.

Reynolds has shown the following Theorem:
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Theorem 6.1.3 (Reynolds [29, Thm. 1.2]). Let (Bn) be a DDS generated by a
nontorsion point P ∈ E(Q). If 2 or 3 divide the first term of the DDS then there
can be at most a finite number of perfect powers in the sequence. Morever any
such power integral point having Bn = Zp for some integer Z and prime p has p
explicitly bounded by E and P .

Theorem 6.1.3 gives an answer to Question 1 when E has rank 1, no torsion
and 2 or 3 divides BP , for P a generator of E(Q).

6.2 PIPs on Mordell Curves

We now consider the case of BP occurring as pth power integral points on Mordell
curves, which are elliptic curves of the form

ED : y2 = x3 +D. (6.2.1)

We start with a finiteness Theorem of Reynolds.

Theorem 6.2.1 (Reynolds [29, Thm. 1.4]). Let ED : y2 = x3 + D, D ∈ Z 6=0, be
a Mordell curve possessing no integral points. Then in the associated DDS (Bn)
there exist at most finitely many perfect powers, with an explicit bound dependent
on ED and P .

Example 6.2.2. The rank 1 Mordell curve

E−2 : y2 = x3 − 2 (6.2.2)

has E−2(Q) ∼= Z with generator P = (3, 5) (alternatively the generator (3,−5)).
We note that the points (3, 5) and (3,−5) are power integral points as BP = 1, and
so cannot invoke the results of Reynolds in Theorem 6.2.1 on finiteness of power
integral points.

There is much conjecture as to whether these two points yield the only perfect
power values (BP = 1) in the DDS (BnP ).
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6.3 Fifth Powers on E−2 : y2 = x3 − 2

In this Section we give a result of the nonexistence of 5th power integral points on
the Mordell curve E−2 : y2 = x3 − 2 using the method of Chabauty.

By Example 6.2.2 we have E−2(Q) = 〈(3, 5)〉, and remarked that (3,±5) are
possibly the only PIPs on E−2 : y2 = x3 − 2. We have seen in Example 2.7.5 that
there exists an explicit 3-isogeny σ : E54 → E−2 between the elliptic curves

E54 : y′2 = x′3 + 54 (6.3.1)

and
E−2 : y2 = x3 − 2, (6.3.2)

with E54(Q) = 〈(3, 9)〉. Now, if P ′ ∈ E54(Q) maps to P ∈ E−2(Q) under this
3-isogeny, and x′(P ′) = AP ′

B2
P ′
, then

x(P ) = AP
B2
P

= A3
P ′ + (2 · 3B2

P ′)3

(3AP ′BP ′)2 . (6.3.3)

We shall use this 3-isogeny to examine the existence of 5th power integral points
occurring in the denominator of the image point. In Theorem 6.3.1 we employ
Chabauty’s method to find the set of rational points on a hyperelliptic curve,
which is then utilized in proving (3,±5) are the only 5th power integral points on
E−2.

We now examine case by case the possibilities for cancellation in (6.3.3).

Case 1. p 6= 2, 3

If p 6= 2 or 3 it is trivial to see that if p | AP ′BP ′ and p | A3
P ′ + (2 · 3B2

P ′)3 then
p | AP ′ and p | BP ′ , which is absurd as gcd(AP ′ , BP ′) = 1. So we limit ourselves
to the two cases p = 2 or p = 3.

Case 2. p = 2

If 2 | A3
P ′ + (2 · 3B2

P ′)3 we must have 2 | AP ′ so 2 - BP ′ . But then C2
P ′ ≡ 54 ≡ 6

(mod 8) which has no solution, and so there can be no cancellation by 2.
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Case 3. p = 3

If 3 | 3AP ′BP ′ and 3 | A3
P ′ + (2 · 3B2

P ′)3 then 3 | AP ′ . Conversely if 3 | AP ′ , then
32 | 3AP ′BP ′ , and 33 | A3

P ′ . Now as 33 | (2 · 3B2
P ′)3 it follows 33 | A3

P ′ + (2 · 3B2
P ′)3.

Hence cancellation occurs if and only if 3 | AP ′ .
We now consider the equation of the curve E54 to see if any higher power of 3 can

divide AP ′ . If v3(x′) > 1 then v3(x′3) > 3 and, since v3(54) = 3, the ultrametric
inequality implies v3(y′2) = 3, which is absurd. So any point on E54(Q) with
v3(x′) > 0 must have v3(x′) = 1.

Hence we only need consider the two cases when either 3 - AP ′ or 3 ‖ AP ′ ; in
the former case there is no cancellation in (6.3.3), and in the latter case there is
cancellation by 34.

We now consider the case for BP occurring as a 5th power.

Theorem 6.3.1 (Buck–Everest). The only points of the elliptic curve

E−2 : y2 = x3 − 2,

for which the denominator BP is a 5th power are (3, 5) and (3,−5).

Proof. By observation there are at least two points in E−2(Q) whose denominator
is a 5th power, the points (3, 5) and (3,−5). Let P ∈ E−2(Q) and let P ′ ∈ E54(Q)
be such that P ′ maps to P under the 3-isogeny σ. This is possible since σ(3, 9) =
(3, 5) so that σ : E54(Q) → E−2(Q) is surjective. There are two cases to consider
depending on the divisibility of AP ′ by 3.
Case (i) If 3 - AP ′ then no cancellation occurs in (6.3.3) and so AP ′ = 5th power
and 3BP ′ = 5th power, say AP ′ = s5, B2

P ′ = 1
3t

5.
Looking at the x-coordinate

x(P ′) = AP ′

B2
P ′

= 9
(
s

t

)5
.

This yields on substituting x = 9X5, y = Y in (6.3.1)

Y 2 = 36(X5)3 + 54,
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which becomes on letting 3X3 = x, Y = y, the hyperelliptic curve

C3 : y2 = 3x5 + 54. (6.3.4)

The hyperelliptic curve C3 doesn’t have any useful additional structure itself, but
we can embed it into the Jacobian variety of the curve, which we now explain.

Every nonsingular algebraic curve C of genus g ≥ 1 has an associated abelian
variety J of dimension g into which we can embed C by means of analytic maps.
The abelian variety J is known as the Jacobian variety of the curve. Moreover it
has an abelian group structure, and so we can think of the set J(Q) of rational
points on J as an abelian group via some (geometric) group law of composition. If
we can find the points on the Jacobian of a curve, this will tell us about the curve
that is the preimage of the points. Faltings’ Theorem states for a curve C of genus
g ≥ 2, the set of rational points, C(Q), on C is finite. Faltings’ proof is ineffective
as it provides no algorithm for determining these rational points. However if the
rank r of the Mordell–Weil group of J is less than the genus of C, we can use
Chabauty’s method to try finding the rational points. Chabauty is an effective
method for explicitly computing C(Q) provided r ≤ g − 1, it involves doing local
calculations at some prime where C has good reduction.

The Mordell–Weil Theorem tells us that J(Q) is finitely generated. When we
compute J(Q) it is actually the generators and relations we compute. So we try
to compute J(Q), then determine which points in J(Q) lie on C. Points on J are
represented as divisors on C. In magma at least one rational point on C must be
known, as this plays a role in the algorithm.

Hyperelliptic curves have genus 2 and degree n > 4 with n distinct roots.
For these curves magma requires a generator of the Mordell–Weil group of the
Jacobian, which must have rank 1 in this case.

Now for C3, magma computes the full set of rational points on the curve as
consisting solely of the point at infinity, and so we have no need of Chabauty in
this case, as this proves that no BP is a 5th power in this case. See Section 6.3.1
for the code.
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Case (ii) If 3 ‖ AP ′ then AP ′ = 3A′P ′ and

A3
P ′ + (2 · 3B2

P ′)3

(3AP ′BP ′)2 = 33A′3P ′ + (2 · 3B2
P ′)3

(32A′P ′BP ′)2 = A′3P ′ + 23B6
P ′

3(A′P ′BP ′)2 = AP
B2
P

.

Since 3(A′P ′BP ′)2 6= 5th power there must be further cancellation in the numerator.
Therefore 3 | A′P ′

3 + 8B6
P ′ .

This implies A′P ′ = 5th power and BP = 5th power with A′P ′ = s5 and B2
P ′ = t5,

say.
Looking at the x-coordinate

x(P ′) = AP ′

B2
P ′

= 3A′P ′
B2
P ′

= 3
(
s

t

)5
.

This yields on substituting x′ = 3X5, y′ = Y in (6.3.1),

Y 2 = 27X15 + 54,

which becomes on letting X3 = x, Y = y, the hyperelliptic curve

C4 : y2 = 27x5 + 54. (6.3.5)

Now for C4 magma tells us that J4(Q) has rank at most 1, so has genus strictly
less than the genus of C4 and we may use Chabauty’s method.

By magma the full set of rational points consists of (1 : −9 : 1), (1 : 9 : 1),
(1 : 0 : 0), and so the only points for which BP ′ is a 5th power are (3, 5) and
(3,−5).

The magma code needed for Theorem 6.3.1 is given in the next Subsection
along with relevant explanation.

6.3.1 Magma Code for Theorem 6.3.1

For the computations required in Theorem 6.3.1 we shall need the Chabauty func-
tion from magma:

Chabauty (P : ptC )
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For a curve C of genus 2 over Q, this returns the full set of rational points. The
algorithm involves Chabauty’s method combined with a Mordell–Weil sieve. The
argument P must be a rational point on the Jacobian of C, which is a generator
of the Mordell–Weil group.

The algorithm requires knowledge of one rational point on the curve. (In
particular, it cannot be used to show that a curve has no rational points!) Such a
point may be supplied as the optional argument ptC; otherwise, one is found by
searching.

We now give the code used in proving the Theorem 6.3.1.

magma code for obtaining the full set of rational points on the hyperelliptic curve
C3 : y2 = 3x5 + 54.

> R<x> := Po lynomia lR ing ( R a t i o n a l s ( ) ) ;
> C3 := H y p e r e l l i p t i c C u r v e (3 ∗ x^5 + 54) ;
> C3 ;
H y p e r e l l i p t i c Curve d e f i n e d by y^2 = 3∗x^5 + 54 ove r R a t i o n a l F i e l d

> ptsC3 := Po in t s (C3 : Bound := 1000) ;
> ptsC3 ;
{@ (1 : 0 : 0) @}

showing the only rational point on C3(Q) as (1 : 0 : 0), the point at infinity.

magma code for obtaining the full set of rational points on the hyperelliptic curve
C4 : y2 = 27x5 + 54.

We start by verifying the rank bound of J4(Q) is 1:

> R<x> := Po lynomia lR ing ( R a t i o n a l s ( ) ) ;
> C4 := H y p e r e l l i p t i c C u r v e (27 ∗ x^5 + 54) ;
> C4 ;
H y p e r e l l i p t i c Curve d e f i n e d by y^2 = 27∗ x^5 + 54 ove r R a t i o n a l

F i e l d
> J4 := Jacob ian (C4) ;
> RankBound ( J4 ) ;
1

Next we find some small points on C4 and map them to J4 (using the first point
to define the map C4 → J4):

> ptsC4 := Po in t s (C4 : Bound := 1000) ;
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> ptsC4 ;
{@ (1 : 0 : 0) , (1 : −9 : 1) , (1 : 9 : 1) @}
> ptsJ4 := [ ptsC4 [ i ] − ptsC4 [ 1 ] : i i n [ 2 , 3 ] ] ;
> pt sJ4 ;
[ ( x − 1 , −9, 1) , ( x − 1 , 9 , 1) ]

Now we pick a point, say [x− 1, 9, 1] on the Jacobian:

> PJ1 := J4 ! [ ptsC4 [ 3 ] , ptsC4 [ 1 ] ] ;
> PJ1 ;
( x − 1 , 9 , 1)

Now call the Chabauty function with that point to list all points on C4:

> a l l _ p t s := Chabauty ( PJ1 ) ;
> a l l _ p t s ;
{ (1 : −9 : 1) , (1 : 9 : 1) , (1 : 0 : 0) }

So by the Chabauty’s method these are the full set of points on C4(Q).

6.4 The Modular Method for Mordell Curves

The method of Chabauty that proved successful in resolving the issue of 5th powers
on the Mordell curve E−2 : y2 = x3 − 2 in Section 6.3 failed to deliver on square
powers. It is here we decided to implement the modular machinery of Chapter 5
to help in determining the existence of PIPs on Mordell curves. To start with we
shall need the right Frey curve to work with.

6.4.1 Constructing The Frey Curve

The aim of this Section is to construct the Frey curve corresponding to the equation
of the Mordell elliptic curve

ED : y2 = x3 +D, D ∈ Z, D 6= 0. (6.4.1)

This will allow us to use the modular method to tackle the existence of PIPs on
the curve.
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So let us assume the nth multiple of a nontorsion point P ∈ ED(Q) is a pth

power integral point for some prime p, where we write the nth multiple as

[n]P =
(
An

Z2p
n

,
Cn

Z3p
n

)
, An, Cn, Zn ∈ Z, gcd(An, Zn) = gcd(Cn, Zn) = 1,

and the elliptic denominator of [n]P as

Bn = Zp
n.

To use the modular method we must apply Barros’s Theorem 5.3.3 which consid-
ered the equation

Ay2 +Bx3 = Czp,

where now the integer coefficients become A = 1, B = −1, and C = D in the
Mordell equation (6.4.1).

We now investigate the Mordell curve by rewriting equation (6.4.1) as the
rational equation (

Cn

Z3p
n

)2
=
(
An

Z2p
n

)3
+D,

and then changing it to an equation over the integers

C2
n − A3

n = DZ6p
n , (6.4.2)

by multiplying the equation for ED by Z6p
n , where gcd(An, Cn, DZn) = 1, for which

we require D be 6th powerfree to be certain we have the last gcd condition. Here
we note that (6.4.2) does not correspond to any of the equations listed in condition
(3) of Theorem 5.3.3, and so we are free to use the Theorem when looking for Frey
curves arising modulo p from newforms, but note the inherent limitation for p
prime, that p = 11 or p ≥ 17. We also assume that for a prime p = 11 or p ≥ 17,
D is pth powerfree in accord with condition (c) of Theorem 5.3.3, since it is 6th

powerfree.

The signature of (6.4.2) is (2, 3, 6p), with the characteristic of the equation
given by

χ(2, 3, 6p) = 1
2 + 1

3 + 1
6p − 1 = 1− p

6p < 0. (6.4.3)
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By Darmon and Granville (see Subsection 5.3.2) this shows there are only finitely
many integer solutions possible for equation (6.4.2). Hence given any prime p ≥
2 there are only finitely many pth power integral points (i.e., another proof of
Theorem 6.1.2 for the specific case of Mordell curves).

The Frey curve associated to (6.4.2) is then

EB,n : Y 2 = X3 − 3AnX + 2Cn. (6.4.4)

The associated quantities with (6.4.4) are

a1 = a2 = a3 = 0, a4 = −3An, a6 = 2Cn,

b2 = 0, b4 = −2 · 3An, b6 = −23Cn, b8 = −32A2
n,

c4 = 2432An, c6 = 2633Cn, (6.4.5)

∆min = 2633(A3
n − C2

n) = −2633DZ6p
n , j = −2633A3

n

DZ6p
n

.

Now by Theorem 5.3.3 we have:

(1) The minimal discriminant of EB,n is

∆min =

−2633DZ6p
n if Zn is odd,

−2−633DZ6p
n if Zn is even.

(2) The conductor N of the curve EB,n is given by

N = 2f23f3 rad2,3(DZn),

where f2 and f3 are given in Tables 5.3.4 and 5.3.5 respectively.

(3) Suppose that p = 11 or p ≥ 17, then EB,n ∼p f for some newform f of level

Np = 2f23f3 rad2,3(D),

where f2 and f3 are given in Tables 5.3.4 and 5.3.5 respectively.
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To investigate the existence of power integral points on ED we must show, using
the Modularity Theorem and our Frey curve, that none of the rational newforms
of level Np are associated with any EB,n for n ≥ 1, with any necessary bound on
p. Any irrational newforms will have to be dealt with using Proposition 5.2.9.

We now look case by case at (6.4.2) in search of any nontrivial solutions, by
which we mean AnCnZn 6= 0.

6.4.2 Mordell Tables for the Exponents f2, and f3

This thesis is concerned with Mordell elliptic curves, and as such it will be beneficial
to construct tables exclusively for such curves, for the exponents f2, and f3.

To do so we first derive the following valuations for c2 and c3 for the primes
2 and 3 from the quantities (6.4.5) and the same for the valuations at 2 and 3 of
∆min, where for brevity we write simply ∆ for ∆min from now on unless otherwise
stated.

v2(c4) = 4 + v2(An),

v2(c6) = 6 + v2(Cn),

v2(∆) =

6 + v2(D) if Zn is odd,

−6 + v2(D) + 6pv2(Zn) if Zn is even,

v3(c4) = 2 + v3(An),

v3(c6) = 3 + v3(Cn),

v3(∆) = 3 + v3(D) + 6pv3(Zn).

With this done we now refer to the tables of Papadopolous (see Tables 5.3.1, and
5.3.2), to compute values for f2 and f3.

Since we wish to use Theorem 5.3.3, throughout we assume that the prime
exponent of Zn has p = 11 or p ≥ 17.

Exponent f2

We split up the case for f2 into whether Zn is even or odd.
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Case 1. Zn is even

Since we assume An, Cn, and Zn are pairwise coprime the equationDZ6p
n = C2

n−A3
n

has An and Cn both odd, as both cannot be even.

The congruences for the variables Cn and Zn are

C2
n ≡ 1 (mod 8), Z6p

n ≡ 0 (mod 8).

On looking at the equation C2
n−DZ6p

n = A3
n modulo 8 we have the congruence

An ≡ A3
n = C2

n ≡ 1 (mod 8).

We have v2(An) = 0, v2(Cn) = 0, v2(DZ6p
n ) = v2(D) + 6pv2(Zn) ≥ 6p, and so

(v2(c4), v2(c6), v2(∆)) = (4, 6,≥ 13). This gives two possible values for f2 according
to Table 5.3.4: f2 = 1 with Cn ≡ 1 (mod 4), or f2 = 4 with Cn ≡ 3 (mod 4).

Now by Table 5.3.4 we observe that when v2(DZp
n) > 1 with condition Cn ≡ 1

(mod 4), then f2 is less than when Cn ≡ 3 (mod 4). We note a consequence of
working with Mordell curves is that the negative of a nonzero point (An

B2
n
, Cn

B3
n
) is just

(An

B2
n
,−Cn

B3
n
). Hence the condition Cn ≡ 3 (mod 4) is equivalent to that of −Cn ≡ 1

(mod 4), in the sense that the negative of the point is also on the curve. As it is
in our interests to seek to limit the number of newforms in later work, we exploit
this symmetry and take Cn ≡ 1 (mod 4) in working out f2 from henceforth. As
such, the case of Cn ≡ 3 (mod 4) shall not be further considered.

Hence if Zn is even it is of no matter whether D is odd or even when working
out f2. If Zn is odd however we must split the cases into those of D being even or
odd.

Case 2.(i). Zn is odd, and D is even

If Zn is odd with D even then we have the congruences

C2
n ≡ 1 (mod 8), An ≡ 1−D (mod 8), Z6p

n ≡ 1 (mod 8).
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We also have v2(An) = 0, v2(Cn) = 0, v2(DZ6p
n ) = v2(D), and so

(v2(c4), v2(c6), v2(∆)) = (4, 6, 6 + v2(D)) = (4, 6,≥ 7).

This gives the possible values for f2 dependent ultimately on v2(D). This subdi-
vides into five cases, with the case of v2(D) ≥ 6 absent since we assume D is 6th

powerfree.

Case I. v2(D) = 1, (v2(c4), v2(c6), v2(∆)) = (4, 6, 7)

This gives f2 = 7.

Case II. v2(D) = 2, (v2(c4), v2(c6), v2(∆)) = (4, 6, 8)

For v2(D) = 2, Table 5.3.4 cites three cases having (v2(c4), v2(c6), v2(∆)) = (4, 6, 8),
each having a congruence condition AB(x − 2Ay) (mod 16), where for our case
A = 1, B = −1, x = An, y = Cn giving the conditions:

(a) 2Cn − An ≡ 5 (mod 16) giving f2 = 2.

(b) 2Cn − An ≡ 9 (mod 16) giving f2 = 3.

(c) 2Cn − An ≡ 1, 13 (mod 16) giving f2 = 4.

Moreover since v2(Cn) = 0, and An ≡ 1 − D (mod 8) we have the congruence
conditions:

(d) 2Cn − An ≡ D + 1 or D + 5 (mod 8).

For each of the congruences, in (a), (b), (c), and (d) we express 2Cn−An as a value
rather than a congruence. By doing this we obtain an expression for D, where we
note the situation D ≡ 0 (mod 8) cannot occur since it implies v2(D) > 2. The
eight cases for 2Cn − An can be expressed, with k, j ∈ Z, as:

(i) D + 1 + 8k = 5 + 16j ⇒ D = 8(2j − k) + 4 giving f2 = 2.

(ii) D + 5 + 8k = 5 + 16j ⇒ D = 8(2j − k) which cannot occur.

(ii) D + 1 + 8k = 9 + 16j ⇒ D = 8(2j − k + 1) which cannot occur.
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(iv) D + 5 + 8k = 9 + 16j ⇒ D = 8(2j − k) + 4 giving f2 = 3.

(v) D + 1 + 8k = 1 + 16j ⇒ D = 8(2j − k) which cannot occur.

(vi) D + 5 + 8k = 1 + 16j ⇒ D = 8(2j − k)− 4 giving f2 = 4.

(vii) D + 1 + 8k = 13 + 16j ⇒ D = 8(2j − k) + 12 giving f2 = 4.

(viii) D + 5 + 8k = 13 + 16j ⇒ D = 8(2j − k + 1) which cannot occur.

Case III. v2(D) = 3, (v2(c4), v2(c6), v2(∆)) = (4, 6, 9)

This gives f2 = 5.

Case IV. v2(D) = 4, (v2(c4), v2(c6), v2(∆)) = (4, 6, 10)

This gives f2 = 3.

Case V. v2(D) = 5, (v2(c4), v2(c6), v2(∆)) = (4, 6, 11)

This gives f2 = 3.

Case 2.(ii). Zn is odd, and D is odd

If Zn is odd with D odd then we have the congruence Z6p
n ≡ 1 (mod 8) with An

and Cn of different parities. The two cases are:

Case I. Cn is odd, and An is even

If Cn is odd and An is even we have

C2
n ≡ 1 (mod 8), A3

n = C2
n −DZ6p

n ≡ 1−D (mod 8).

Now A3
n ≡ 0 (mod 8), so D ≡ 1 (mod 8). We have v2(Cn) = 0, v2(An) ≥ 1,

v2(DZ6p
n ) = 0, and so (v2(c4), v2(c6), v2(∆)) = (4 + v2(An), 6, 6) = (≥ 5, 6, 6), from

which the tables give f2 = 6.



115 6.4. The Modular Method for Mordell Curves

Case II. Cn is even, and An is odd

If Cn is even we have the two cases C2
n ≡ 0 or 4 (mod 8). Now An is odd so we

subdivide the two cases:

(i) Cn ≡ 0 (mod 4) ⇒ An ≡ A3
n = C2

n −DZ6p
n ≡ −D (mod 8),

or

(ii) Cn ≡ 2 (mod 4) ⇒ An ≡ A3
n = C2

n −DZ6p
n ≡ 4−D (mod 8).

For the case Cn ≡ 0 (mod 4) we have v2(Cn) = t ≥ 2, v2(An) = 0, v2(DZ6p
n ) = 0,

and so (v2(c4), v2(c6), v2(∆)) = (4, 6 + t, 6). For the case Cn ≡ 2 (mod 4) we have
v2(Cn) = 1, v2(An) = 0, v2(DZ6p

n ) = 0, and so (v2(c4), v2(c6), v2(∆)) = (4, 7, 6).
Both of these cases are then subdivided into the two cases:

Case II.(i). Cn ≡ 0 (mod 4)

If Cn ≡ 0 (mod 4) then we have the two cases:

(1) If An ≡ 1 (mod 4), then D ≡ 3 (mod 4), and we have f2 = 6.

(2) If An ≡ 3 (mod 4), then D ≡ 1 (mod 4), and we have f2 = 5.

Case II.(ii). Cn ≡ 2 (mod 4)

If Cn ≡ 2 (mod 4) then we have the two cases:

(1) If An ≡ 1 (mod 4), then D ≡ 1 (mod 4), and we have f2 = 5.

(2) If An ≡ 3 (mod 4), then D ≡ 3 (mod 4), and we have f2 = 6.

So, in summary, if D ≡ 1 (mod 4) then f2 = 5, and if D ≡ 3 (mod 4) then
f2 = 6.

Exponent f3

Since we assume An, Cn, and Zn are pairwise coprime we look case by case at 3
dividing either of the variables An, Cn, Zn, or D.
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Case 1. 3 | An

If 3 | An, with v3(An) ≥ 1, we must have v3(Cn) = 0, and v3(DZ6p
n ) = 0. We then

have
(v3(c4), v3(c6), v3(∆)) = (≥ 3, 3, 3).

This gives f3 = 2 with Cn ≡ ±4 (mod 9), or f3 = 3 with Cn 6≡ ±4 (mod 9). For
the congruence on D we have C2

n ≡ DZ6p
n (mod 9), where Z6p

n ≡ 1 (mod 9) and so
D has to be a square modulo 9, these being 1, 4, 7 (mod 9); hence D ≡ 1 (mod 3).

Case 2. 3 | Cn

If 3 ‖ Cn, we have v3(Cn) = 1, v3(An) = 0, v3(DZ6p) = 0, and so

(v3(c4), v3(c6), v3(∆)) = (2, 4, 3).

This gives f3 = 3. If 3 | Cn, with v3(Cn) ≥ 2, then v3(An) = 0, v3(DZ6p
n ) = 0, and

so
(v3(c4), v3(c6), v3(∆)) = (2,≥ 5, 3),

which gives f3 = 2. We note if 3 | Cn then the congruences Z6p
n ≡ 1 (mod 9), and

A3
n ≡ ±1 (mod 9) imply that D ≡ ±1 (mod 9).

Case 3. 3 | Zn

If 3 | Zn, we have v3(An) = 0, v3(Cn) = 0, v3(DZ6p
n ) = v3(D) + 6pv3(Zn) ≥ 6p,

and so
(v3(c4), v3(c6), v3(∆)) = (2, 3,≥ 3 + 6p).

This gives f3 = 2. We note possible congruences are C2
n ≡ 1, 4, 7 (mod 9) and

A3
n ≡ ±1 (mod 9), but since C2

n ≡ A3
n (mod 9) we must have C2

n ≡ A3
n ≡ 1

(mod 3), hence An ≡ 1 (mod 3).
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Case 4. 3 - AnCnZn

If 3 does not divide either of An, Cn, or Zn we have to take account of 3 | D or
not. In such a case v3(An) = 0, v3(Cn) = 0, v3(DZ6p

n ) = v3(D), and so

(v3(c4), v3(c6), v3(∆)) = (2, 3, 3 + v3(D)).

This gives a possible subdivision into five cases according to v3(D). We note as
soon as v3(D) ≥ 1 we have An ≡ 1 (mod 3) since C2

n ≡ 1 (mod 3).

Case I. v3(D) = 0, (v3(c4), v3(c6), v3(∆)) = (2, 3, 3)

This gives f3 = 2 or 3 dependent on whether we end at case 4 or 3 of Tate’s
algorithm respectively. If A3

n ≡ 1 (mod 9) we have D ≡ C2
n − A3

n ≡ 0 (mod 3),
which cannot occur, and so A3

n ≡ −1 (mod 9) with D ≡ C2
n − A3

n ≡ 2 (mod 3).

Case II. v3(D) = 1, (v3(c4), v3(c6), v3(∆)) = (2, 3, 4)

This gives f3 = 4.

Case III. v3(D) = 2, (v3(c4), v3(c6), v3(∆)) = (2, 3, 5)

This gives f3 = 3.

Case IV. 3 ≤ v3(D) ≤ 5, (v3(c4), v3(c6), v3(∆)) = (2, 3,≥ 6)

This gives f3 = 2.
These results for f2 and f3 are collated in Tables 6.4.1 and 6.4.2 respectively.

We have omitted from the table the cases when Zn is even, in which case f2 = 1,
and when 3 | Zn, in which case f3 = 2. The tables also indicate, in general, a
decrease in f2 and f3 with higher valuations v2(D) and v3(D).

We note c4 = 2432An, c6 = 2633Cn, so in checking for condition P2 we have
v3(c4) ≥ 2 always, and v3(c6) = 3 whenever 3 - Cn. The condition P2 is:

c2
6,3 + 2 ≡ 3c4,2 (mod 9), where c4,2 = c4/32, and c6,3 = c6/33. (6.4.6)
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Proposition 6.4.1. Let the Diophantine equation associated to the Mordell curve
ED : y2 = x3 +D and point P =

(
An

B2
n
, Cn

B3
n

)
C2
n = A3

n +DB6
n. (6.4.7)

Then if D 6≡ 0, 1, 3, 6, 8 (mod 9) we have 3 - Cn. Moreover, if D 6≡ ±1 (mod 9)
then

A3
n ≡ −D (mod 9)⇐⇒ 3 - Cn.

Proof. By analysing (6.4.7) we find if 9 - D then at most one of An, Bn, Cn is
divisible by 3. If 3 - AnBn then A3

n ≡ ±1 (mod 9), and B6
n ≡ 1 (mod 9); so

C2
n ≡ D ± 1 (mod 9). Thus if D 6≡ ±1 (mod 9), then 3 - Cn. Now if D ≡ ±1

(mod 9) then 3 - AnBn.
For the case 3 | Cn, we see from the previous argument that if D ≡ ±1 (mod 9)

then 3 - AnBn. So A3
n +DB6

n ≡ A3
n ± 1 ≡ 0 (mod 9), then

A3
n ≡ −D (mod 9)⇐⇒ 3 - Cn.



Chapter 7

The Rational Newform Case

We have seen in Chapter 5 that an elliptic curve E defined over Q can arise from
an irrational newform or a rational newform. Hence a PIP on the curve E/Q may
correspond to a rational or irrational newform, dependent on the Frey curve it
arises from. In light of this the following definition seems desirable.

Definition 7.0.2. If a power integral point corresponds to a rational newform we
shall call this a rational PIP, and if it corresponds to a irrational newform we shall
call this an irrational PIP.

In this Chapter we give an algorithm for bounding the exponent p in the case
that the Frey curves constructed in Subsection 6.4.1 arise from rational newforms.

7.0.3 Periodicity

We want to follow the same kind of reasoning as was done with the resolution of
which are the perfect powers occurring in the Fibonacci and the Lucas sequences
by Bugeaud, Mignotte, and Siksek (see [8]). In the case of these sequences a suc-
cessful employment of classical and modular approaches was achieved by looking
at the periodicity of perfect powers modulo the number in question occurring in
the sequence. The inherent equations associated to the sequences had congruence
conditions put on the index n in the sequence. These equations were then asso-
ciated to Frey curves, followed by techniques of level lowering and elimination of
newforms. Finally the necessary bounds were put on the possible values for the
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prime exponents of the powers by using linear forms in logarithms, and generating
small sets of congruences modulo a large modulus. We wish to do the same with
the equation Bn = Zp

n.

7.0.4 The Frey Curve Modulo Primes

We have seen in (6.4.4) that the correct Frey curve for our problem is given by

EB,n : Y 2 = X3 − 3AnX + 2Cn.

Now if the 3-tuple (An, Cn, Bn) were periodic modulo a prime ` we would have the
Frey curves EB,n periodic as well. However the (Bn) sequences are not periodic
modulo a prime `, but we do know by Corollary 4.5.9 that for a point P ∈ ED(Q)
the division polynomials 3-tuple (Φn(P ),Ωn(P ),Ψn(P )) modulo a prime ` is peri-
odic with period rτ , where r is the rank of the prime `, and τ is the multiplier of
r which gives the period as given by Corollary 4.5.9.

So if we allow the nth multiple of a point to be written instead as

[n]P =
(
Un
W 2
n

,
Vn
W 2
n

)
, Un, Vn, Wn ∈ Z,

where Wn = Ψ̂n(P ), Un = Φ̂n(P ), Vn = Ω̂n(P ) are the scaled versions of the divi-
sion polynomials (see Proposition 4.7.2), then we can look instead at the associated
curve

EW,n : Y 2 = X3 − 3UnX + 2Vn, (7.0.1)

which has EW,n periodic modulo `, but is a twist of the Frey curve EB,n.

7.0.5 Mordell DDSs and Twists of the Frey Curve

The Mordell curves ED : y2 = x3 + D with nontorsion point P ∈ ED(Q) have
the associated EDSs (Wn) which gives us a curve EW,n defined over Q, for each
n ∈ Zn 6=0, given by (7.0.1).

An immediate question is what happens if the EDS value equals some integral
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multiple value of the denominator sequence, i.e., Wn = dnBn, for some dn ∈ Z.
Explicity how does this situation affect the trace at a prime `. The answer lies in
the fact that the curves EW,n are quadratic twists of the EB,n. Now if dn 6= ±1,
then dn is divisible only by primes of bad reduction of P .

Now we can compute the trace of Frobenius Frob` on EW,n (which are periodic
modulo `) and compare back to the trace Frob` on EB,n, which differ at most by a
sign because EW,n is a quadratic twist of EB,n. This is made precise for ` an odd
prime, if ` - dn, by Theorem 2.12.2; we have

a`(EW,n) =
(
dn
`

)
a`(EB,n). (7.0.2)

If all primes of bad reduction of P are quadratic residues modulo `, and ` ≡ 1
(mod 4) then we always get the positive sign and the traces are equal. Henceforth
we stick with the notation EB,n with the tacit understanding that we are in fact
using its quadratic twist EW,n.

7.1 Bounding the Exponent p

For the case of Mordell curves ED : y2 = x3 + D, the associated Frey curve EB,n
from (6.4.4) has a conductor given by NEB,n

= 2f23f3 rad2,3(DBn). If EB,n arises
modulo p from some newform f then we write EB,n ∼p f . After level lowering
we find the newform f has level Np = 2f23f3 rad2,3(D), where we associate to each
newform f of level Np the corresponding elliptic curve Ef of conductor Np by
modularity.

If we assume the Mordell curve contains a power integral point, which we
denote by Bn = Zp

n, then by Kraus and Oesterlé (5.2.3) we subdivide into two
cases dependent on whether a prime ` ≥ 5 has ` - rad2,3(DZn), corresponding to
good reduction on EB,n and on Ef at `, or ` ≥ 5 has ` | rad2,3(Zn), ` - rad2,3(D),
corresponding to multiplicative reduction on EB,n and good reduction on Ef at `.
Our choice of ` ≥ 5 is due to the fact that both 2 and 3 always divide NEB,n

and
Np, since we always have f2 ≥ 1 and f3 ≥ 2 by Tables 6.4.1, and 6.4.2.

Our method of attack will be to compare traces a`(EB,n) with coefficients c`(f)
until we have ruled out the possibility, if we can, of any rational newform f cor-
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responding modulo p to some Frey curve EB,n. However there is a price to pay
in doing this: if we use primes up to ` ≤ `r in comparing a`(EB,n) with c`(f)
in order to conclude that f does not correspond to EB,n, then we are assuming
p ≥ `r + 1 + 2

√
`r = (

√
`r + 1)2, and so we cannot immediately rule out any pth

powers having p less than (
√
`r + 1)2 in the rational newform case. The following

Proposition 7.1.1, Lemma 7.1.2, 7.1.3 codifies these statements.

Proposition 7.1.1. Let EB,n be the Frey curve

EB,n : Y 2 = X3 − 3AnX + 2Cn. (7.1.1)

Let `0 be a prime of good reduction for EB,n, and suppose f is a rational
newform having a level which equals the right conductor Np for prime p and index
n. If p ≥ 4

√
`0 then for the correspondence EB,n ∼p f we must have the equality

a`0(EB,n) = c`0(f), and if a`0(EB,n) 6= c`0(f) then EB,n 6∼p f . Moreover any
primes p < 4

√
`0 and dividing

(
a`0(EB,n) − c`0(f)

)
> 0 have the correspondence

EB,n ∼p f .
Let `1 be a prime of multiplicative reduction for EB,n, and suppose g is a rational

newform having a level which equals the right conductor Nq for prime q and index
n. If q ≥ (

√
`1 + 1)2 then EB,n 6∼q g. Moreover any primes q < (

√
`1 + 1)2 and

dividing
(
a`1(EB,n)(`1 + 1)− c`1(g)

)
> 0 have the correspondence EB,n ∼q g.

Proof. Let ` be a prime of good reduction for EB,n, so that by Proposition 5.2.3

a`(EB,n) ≡ c`(f) (mod p), ` - NEB,n
, ` - Np. (7.1.2)

The lower and upper bounds derived from Theorem 2.11.3 for the trace a`(EB,n)
are given by

− 2
√
` ≤ a`(EB,n) ≤ 2

√
`. (7.1.3)

Since the same bounds hold for the newform coefficient: |c`(f)| ≤ 2
√
`, we find

the difference between a`(EB,n) and c`(f) is bounded by

− 4
√
` ≤ a`(EB,n)− c`(f) ≤ 4

√
`. (7.1.4)

Therefore if we take p ≥ 4
√
` then the congruence in (7.1.2) taken modulo p is
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forced to become an equality. To see why let us assume p |
(
a`(En)− c`(f)

)
6= 0,

then by (7.1.4) this implies p divides an integer less than 4
√
`: a contradiction,

and so for (7.1.2) to hold with p ≥ 4
√
` we must have a`(EB,n) = c`(f) for f to

arise modulo p from EB,n. Moreover if p < 4
√
`, and p |

(
a`(EB,n) − c`(f)

)
> 0,

for some n, f , then EB,n ∼p f .
Now let ` be a prime of multiplicative reduction for EB,n, so that by Proposi-

tion 5.2.3

c`(f) ≡ a`(EB,n)(`+ 1) (mod p), ` ‖ NEB,n
, ` - Np. (7.1.5)

where a`(EB,n) = 1 or −1 in the case of split or nonsplit multiplicative reduction
respectively by Corollary 2.11.8. In similar fashion to the good reduction case we
find the difference between a`(EB,n)(`+ 1) and c`(f) is bounded by

− 2
√
`− (`+ 1) ≤ c`(f)− a`(EB,n)(`+ 1) ≤ 2

√
`+ (`+ 1). (7.1.6)

We note that unlike the good reduction case we can never force the congru-
ence (7.1.5) to become the equality c`(f) = a`(EB,n)(` + 1) because |c`(f)| ≤
2
√
` < `+ 1 for all primes `.
Hence by the inequality (7.1.6), if we take p ≥ `+ 1 + 2

√
` then we can be sure

EB,n 6∼p f . Moreover if p < `+ 1 + 2
√
`, and p |

(
a`(EB,n)(`+ 1)− c`(f)

)
> 0 for

some n, f , then EB,n ∼p f .

Finally we note in Proposition 7.1.1 the case of additive reduction, which has
a`(EB,n) = 0 by Corollary 2.11.8, can not occur if we wish to invoke Proposi-
tion 5.2.3.

Lemma’s 7.1.2, 7.1.3 explain how we use the bounds from Proposition 7.1.1.

Lemma 7.1.2. Let a prime ` ≥ 5 divide a term Bn. Then the reduction of the
Frey curve (7.1.1) modulo ` has a node, and we get multiplicative reduction (and
a`(EB,n) = ±1).

Proof. If a prime ` ≥ 5 divides Bn, then since An, Bn, and Cn are pairwise
coprime, by (6.4.5) we have ∆ = 2633(A3

n − C2
n) = −2633DB6

n ≡ 0 (mod `), and
c4 = 2432An 6≡ 0 (mod `). By Proposition 2.3.2 (b) we then have that ẼB,n
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(mod `) has a node, so we always get multiplicative reduction (and a`(EB,n) = ±1
by Corollary 2.11.8) at primes ` | Bn.

Note that we must have ` ≥ 5 in Lemma 7.1.2, since if ` = 2 or 3 then
∆ ≡ c4 ≡ 0 (mod `) with ẼB,n (mod `) then having a cusp (and a`(EB,n) = 0 by
Corollary 2.11.8), which cannot occur if we wish to invoke Proposition 5.2.3.

Lemma 7.1.3. Let P =
(
A1
B2

1
, C1
B3

1

)
be a nontorsion point on the Mordell curve

ED : y2 = x3+D. Let ` ≥ 5 not divide B1 and not be a prime of singular reduction.
Let r(`) ≥ 5 be the rank of apparition of a prime `, with r(`) dividing the index
n of a term in the sequence (Bn); then the Frey curve (7.1.1) has multiplicative
reduction at `.

Proof. Let (Ψn(P )) be the (fractional) EDS associated to the curve-point pair
(ED, P ), formed by the division polynomials evaluated at P . Now if (Ψn(P )) is
not an integer sequence, it is equivalent to a normalised one, say (Wn) having
Wn = θn

2−1Ψn(P ) for some rational constant θ.
Then we can use Theorems 4.5.3 and 4.5.2 which say for an integer EDS (Wn),

if ` - gcd(W2,W3) then

Wn ≡ 0 (mod `) if and only if n ≡ 0 (mod r(`)),

where r(`) is the rank of apparition for the prime ` in (Wn). Now (Wn) will differ
from the integer DDS in general, where for ` | B1 we have the point P ≡ O

(mod `), and any singular reduction coming from primes having v`(Ψ2(P )) > 0
and v`(Ψ3(P )) > 0 by 3.2.4. Away from these primes we have v`(Bn) = v`(Ψn(P ))
by Proposition 4.7.2.

Now suppose we are checking at a prime ` with rank of apparition r(`), and
that n ≡ 0 (mod r(`)). Then we have ` | Bn and Lemma 7.1.2 implies

a`(EB,n) = ±1 whenever n ≡ 0 (mod r(`)),

as required.

When comparing traces of the Frey curve (7.1.1) and the newform coefficient
for a particular newform f at a prime ` we now turn our attention to the bound
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on p we can obtain with respect to the Diophantine equation

C2
n − A3

n = DZ6p
n . (7.1.7)

If we assume we are in the same situation as Lemma 7.1.3 and are checking at
a prime `, with rank of apparition r(`), it was seen the condition n ≡ 0 (mod r(`))
implied multiplicative reduction:

a`(EB,n) = ±1 whenever n ≡ 0 (mod r(`)),

so by Proposition 5.2.3 we need to rule out the possibility that

c`(f) ≡ ±(`+ 1) (mod p).

We certainly will not have the equality c`(f) = ±(`+ 1) because |c`(f)| ≤ 2
√
` <

`+ 1.
Now when we compare the traces and coefficients when ruling out possibilities,

we actually look at the twist of EB,n

EW,n : Y 2 = X3 − 3UnX + 2Vn, (7.1.8)

which has EW,n periodic modulo `. Now due to the periodicity as outlined in
Corollary 4.5.9, we test all Frey curves EW,n up to n = r(`)τ . This means in the
multiplicative case we need to rule out any n ≡ 0 (mod r(`)).

We have seen in Proposition 7.1.1 that in the case of good reduction, we cannot
rule out any primes p < 4

√
`, and in the multiplicative case we cannot rule out

p < 2
√
`+ `+ 1. Now in order to rule out any n divisible by r(`) we are assuming

p ≥ 2
√
`+ `+ 1 > |c`(f)|+ `+ 1. We must therefore take this greater bound since

we always have multiplicative reduction occur for some Frey curve EW,n, whenever
r(`) | n for some prime ` | Bn.

Hence since we know we will get multiplicative reduction when the rank of
apparition divides the index n, this shows that the bound in this case is p >

`+ 1 + |c`(f)|, and we need to rule these out.

Lemma 7.1.4. Suppose q is a prime dividing B1, and ` > 3 is a prime number
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not dividing D and with rank of apparition q in the sequence (Bn). Then no term
Bn is a perfect pth power, for p > max{`+ 1 + 2

√
`, vq(B1) + 1, 17}.

Now assume ` is a prime with rank of apparition q with conditions: ` - Np, and
p0 > 2

√
`+ `+ 1. Then for all p ≥ p0, Bn is not a pth power, and equivalently B1

is not.

Proof. Suppose p > max{vq(B1) + 1, 17} and Bn is a perfect pth power. Then
vq(Bn) = vq(B1) + vq(n) is a multiple of p, and so is greater than vq(B1). Hence
vq(n) ≥ 1 and so q divides n, and ` divides Bn (since r(`) = q and n ≡ 0 (mod q)).
But then EB,n has multiplicative reduction at `, while ` does not divide Np (since
it does not divide 6D). Thus, by Proposition 7.1.1, we must have p < `+ 1 + 2

√
`,

as required.

Example 7.1.5. Take the rank 1 Mordell curve E130 : y2 = x3 + 130, having nontor-
sion point P = (399

169 ,
26287
2197 ). Hence B1 = 13; this means we cannot work explicitly

with the prime 13 in eliminating newforms since [13]P and all its multiples reduce
to the point at infinity. Now if we compute [13]P , B13 comes out as

B13 =132 · 2963 · 36979 · 19711537 · 164729839 · 115431264469

· 53214681173383 · 169253642653426839681382309771391982752801293

53741027162231575714384019007610066948230409681426647197430356

48115475049620599756620190345316334251576959802945622594101480

50384287874248636004829874275118350448920604427

where the last prime has 216 digits. We note v13(B13) = v13(B1) + v13(13) =
1 + 1 = 2. We also find the rank of apparition of the prime 2963 is 13, and that
2963 - 6 · 130 and so we can invoke Lemma 7.1.4. Hence EB,13 has multiplicative
reduction at 2963, and so Bn is not a pth power for any prime p > (

√
2963 + 1)2,

which has p0 = 3079. Then for all p ≥ p0, Bn is not a pth power.

The bound of p0 = 3079 from Example 7.1.5 is rather large, and in the next
Section we show an algorithm using a sieve based on the Chinese Remainder
Theorem to lower the bound found using this manner (we end up getting p0 = 113
in the rational PIP case).
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7.2 The Chinese Remainder Sieve

In this Section we implement what we call the Chinese Remainder Sieve (CRS)
which is an algorithm we have designed to work in Pari/GP [43] which makes use
of the Chinese Remainder Theorem (CRT) to compare the traces of the Frey curves
with the integral coefficients of newforms. Hence our algorithm can only be of use
in testing rational newforms, and for any irrational newforms we must use the
bound given in Proposition 5.2.9. The algorithm consists of various Pari/GP
routines which will be explained in Subsection 7.2.2. On implementing these
Pari/GP routines we can (hopefully) eliminate all rational newforms from oc-
curring and show no power integral points occur, but this comes with an inherent
bound due to the size of the final prime number used in eliminating the newforms,
call this final prime number `r. Then we always have our results with the restric-
tion: no perfect pth powers for p ≥ p0, where by Lemma 7.1.4 p0 is the next prime
greater than (

√
`r + 1)2. By Proposition 7.1.1 we see we can do slightly better

than this bound by noticing the only primes less than this bound p0 which need
to be ruled out are those primes p dividing some c`(f) − a`(EB,n) for primes ` of
good reduction, and those primes p dividing some c`(f) − a`(EB,n)(` + 1), in the
multiplicative case where a`(EB,n) = 1 or −1, and we test each n in range in both
cases. In each of these cases we can compute these primes explicitly.

Set out r primes `1 < `2 < · · · < `r, then work out the lcm of the periods: M =
lcm(M(`1),M(`2), . . . ,M(`r)) and use the Chinese Remainder Theorem on the r
sets of congruences associated to the sets Sf,`i , for 1 ≤ i ≤ r, to get congruence
conditions modulo M , where M is large, say M > 109. Then the hope is to show
the possibilities for Bn being a pth power integral point for such a large bound on
n are impossible, allowing for any controlled bound, whereby if we stop at `r we
have no pth PIPs for p ≥ (

√
`r + 1)2, which is necessary by Proposition 7.1.1.

Let P be a nontorsion point on the Mordell curve ED : y2 = x3 +D, with its nth

multiple given by [n]P = (An

B2
n
, Cn

B3
n
). The pair (ED, P ) gives a finite set of newforms

of levels Np, which we shall denote by FED,P , along with congruence conditions on
n.
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For f ∈ FED,P we should like to compute

{n : a`(EB,n) = c`(f)}.

If we know
(
dn

`

)
= 1, i.e., ` ≡ 1 (mod 4) and all primes of bad reduction are

quadratic residues modulo `, then this is

Sf,` = {n : a`(EW,n) = c`(f)};

otherwise it is contained in

Sf,` = {n : |a`(EW,n)| = |c`(f)|}.

The Sf,` are given by congruence conditions (i.e., unions of arithmetic progressions)
because the curve EW,n from (7.0.1) are periodic modulo `, so the trace will also
occur periodically modulo M(`), where M(`) is the period of the EDS (Wn) at
`. If we fix a newform f ∈ FED,P and compute the trace at ` for each curve
EW,n for n = 1 to M(`), this will give a finite list T` of possible traces. Now
after comparison with the newform’s coefficient c`(f), if it is in T`, note the index
n of the corresponding curve EW,n with the matching trace to obtain a set of
congruences:

Sf,` = {n : n ≡ n1, n2, . . . (mod M(`))}. (7.2.1)

It may be that Sf,` is empty, in which case we can discard f as a possibile newform
corresponding to a PIP.

Let L be a set of primes. Fix a newfrom f ; for each prime ` in L we obtain a
set Sf,` as in (7.2.1), and write Sf,L for the intersection of all such sets, so

Sf,L =
r⋂
i=1
Sf,`i = {n : n satisfies some simultaneous congruences}.

If ever Sf,L = ∅ then we can rule out f ; if not then we get congruence conditions
on n instead. If there is an L such that Sf,L is empty for all f in FED,P then we
are done, if not we still get strong congruence conditions on n.



7. The Rational Newform Case 130

It is in this manner that we shall proceed to build sets of congruences based on
matching traces with coefficients, and then compare these sets using the Chinese
Remainder Theorem.

7.2.1 The Modular Method Applied to E−2 : y2 = x3 − 2

We give here a worked example on the Mordell curve E−2 : y2 = x3−2 to illustrate
how to implement the results. This is a good curve to use as after level lowering
we end up with a level for which there are only rational newforms.

Our problem is to find where, in the DDS formed by the sequence of Bn coming
from E−2, we have Bn occurring as a pth power. Specifically, we want to solve the
equation

Bn = Zp
n for p prime p = 11, or p ≥ 17. (7.2.2)

It was essentially a Theorem of Fermat that the only Bn coming from E−2 and
equal to the perfect power 1 are B1 and B−1, since he showed the only integral
points on E−2 were (3,±5). (For a proof of this fact see [35, Ch. IX.7 Prop.
7.1(b)].)

So let us assume that on E−2 the nth multiple of the nontorsion point P = (3, 5),
given by [n]P = (An

B2
n
, Cn

B3
n
), with gcd(AnCn, Bn) = 1, is a power integral point with

Bn a pth power, say Bn = Zp, where p is a prime p = 11, or p ≥ 17.
The defining equation for E−2 has the associated Diophantine equation for this

PIP as
C2
n − A3

n = −2Z6p
n . (7.2.3)

Firstly as we have already noted, the point P = (3, 5) is a PIP itself as it
has BP = 1 (as does the other integral point on E−2, (3,−5)), which is a perfect
power raised to any integral exponent, so this already tells us some newforms can
never be ruled out using this method since they are associated to the PIPs (3±5).
Hence the best we can do is rule out all other newforms of the level in question
and get some lower bound on pth powers associated to Frey curves arising modulo
p from the newforms we know have to exist. Secondly there are no primes of bad
reduction for P on E−2, which tells us the only quadratic twists of the ensuing
Frey curve come from Q(

√
−1).
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Consider the Frey curve derived from Theorem 5.3.3,

EB,n : Y 2 = X3 − 3AnX + 2Cn. (7.2.4)

Now in accord with our discussion on periodicity in Section 7.0.3, we change our
nonperiodic Frey curve (7.2.4) to one that is:

EW,n : Y 2 = X3 − 3UnX + 2Vn. (7.2.5)

The conductor pertaining to the curve (7.2.5) is

N = 2f23f3 rad2,3(−2Z6p
n ) = 2f23f3 rad2,3(Zn).

The values for f2 and f3 can be read off from Tables 6.4.1, 6.4.2, where we note
in the case of f3 we have the condition of Papadopoulos, P2 satisfied from (5.3.3)
since c4 = 2432An, c6 = 2633Cn, whence v3(c4) ≥ 2, v3(c6) = 3, and so f3 = 2 in
all cases. We summarize the results for the conductor:

N =

2 · 32 rad2,3(Zn) if Zn is even and Cn ≡ 1 (mod 4),

27 · 32 rad2,3(Zn) if Zn is odd.
(7.2.6)

We know there are only finitely many integer solutions possible for Equa-
tion (7.2.3) as its charcteristic is less than zero by Subsection 5.3.2. To start with
we know that the point P = (3, 5) is on E−2 : y2 = x3 − 2. Hence (A1, C1, B1) =
(3, 5, 1) is a solution to (7.2.3) (as is (3,−5, 1)), so (7.2.5) gives us the curves

EW,+1 : Y 2 = X3 − 9X + 10, (7.2.7)

EW,−1 : Y 2 = X3 − 9X − 10. (7.2.8)

The curves (7.2.7) and (7.2.8) are the curves 1152a1 and 1152m1 in Cremona’s
tables respectively: as is seen the curves are twists coming from Q(

√
−1). The
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newform corresponding to EW,−1 is

f−1 = q + 2q5 − 2q7 − 4q11 − 2q13 − 4q17 − 4q19 − 8q23 − q25 + 6q29 + · · · ,

while the newform corresponding to EW,+1 is

f+1 = q + 2q5 + 2q7 + 4q11 − 2q13 − 4q17 + 4q19 + 8q23 − q25 + 6q29 − · · · .

On inspection these are: f−1 = f1 and f+1 = f11 from Table 7.2.1. As explained
in Subsection 7.0.5 these two curves have the same number of points modulo 5,
13, 17, 29, etc., but not modulo 7, 11, 19, 23, etc. This explains the sign changes
for the coefficients in the q-expansions for the newforms f+1 and f−1 at prime
exponents 6≡ 1 (mod 4).

Level lowering of the conductor given by (7.2.6) gives us

Np =

18 if n is even, and Cn ≡ 1 (mod 4),

1152 if n is odd.
(7.2.9)

Using the recursive formula given in Proposition 5.1.2 to compute the number
of newforms of a level Np we find

• No newforms of level 18.

• Twenty newforms of level 1152.

Remark 7.2.1. In fact the recursive formula gives forty newforms of level 1152,
but we find using Pari/GP that each newform in this conjugacy class has a
corresponding conjugate newform, and so up to conjugacy there are only twenty
newforms. This also shows us that there are no irrational newforms at level 1152
(or indeed at level 18).

The twenty newforms of level 1152 are given in Table 7.2.1. In fact we only need
be concerned with newforms f1 to f10 as newforms f11 to f20 are just quadratic
twists of the first ten by

√
−1 (Table 7.2.1 is ordered so fi is a quadratic twist of

fi+10 for 1 ≤ i ≤ 10).
Hence to investigate the existence of power integral points on E−2, other than

(3,±5), we look to rule out, using the Modularity Theorem and our Frey curve,
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f1 = q + 2q5 − 2q7 − 4q11 − 2q13 − 4q17 − 4q19 − 8q23 − q25 + 6q29 + · · ·
f2 = q − 2q5 + 2q7 − 4q11 + 2q13 − 4q17 − 4q19 + 8q23 − q25 − 6q29 − · · ·
f3 = q − 2q5 + 2q7 − 4q11 − 2q13 + 4q17 + 4q19 − 8q23 − q25 − 6q29 − · · ·
f4 = q + 2q7 + 4q11 + 6q13 − 6q17 − 4q23 − 5q25 − 4q29 + 10q31 + 2q37 + · · ·
f5 = q + 2q5 + 4q7 + 2q11 − 2q13 + 2q17 + 2q19 + 4q23 − q25 − 6q29 + · · ·
f6 = q − 2q5 + 4q7 − 2q11 + 2q13 + 2q17 − 2q19 + 4q23 − q25 + 6q29 − · · ·
f7 = q + 4q5 + 2q7 − 4q11 + 2q13 + 2q17 + 8q19 − 4q23 + 11q25 − 6q31 + · · ·
f8 = q − 4q5 − 2q7 − 4q11 − 2q13 + 2q17 + 8q19 + 4q23 + 11q25 + 6q31 − · · ·
f9 = q + 2q5 + 2q7 + 4q11 + 2q13 + 4q17 − 4q19 − 8q23 − q25 + 6q29 − · · ·
f10 = q + 2q7 − 4q11 − 6q13 − 6q17 − 4q23 − 5q25 + 4q29 + 10q31 − 2q37 + · · ·
f11 = q + 2q5 + 2q7 + 4q11 − 2q13 − 4q17 + 4q19 + 8q23 − q25 + 6q29 − · · ·
f12 = q − 2q5 − 2q7 + 4q11 + 2q13 − 4q17 + 4q19 − 8q23 − q25 − 6q29 + · · ·
f13 = q − 2q5 − 2q7 + 4q11 − 2q13 + 4q17 − 4q19 + 8q23 − q25 − 6q29 + · · ·
f14 = q − 2q7 − 4q11 + 6q13 − 6q17 + 4q23 − 5q25 − 4q29 − 10q31 + 2q37 + · · ·
f15 = q + 2q5 − 4q7 − 2q11 − 2q13 + 2q17 − 2q19 − 4q23 − q25 − 6q29 + · · ·
f16 = q − 2q5 − 4q7 + 2q11 + 2q13 + 2q17 + 2q19 − 4q23 − q25 + 6q29 + · · ·
f17 = q + 4q5 − 2q7 + 4q11 + 2q13 + 2q17 − 8q19 + 4q23 + 11q25 + 6q31 + · · ·
f18 = q − 4q5 + 2q7 + 4q11 − 2q13 + 2q17 − 8q19 − 4q23 + 11q25 − 6q31 − · · ·
f19 = q + 2q5 − 2q7 − 4q11 + 2q13 + 4q17 + 4q19 + 8q23 − q25 + 6q29 + · · ·
f20 = q − 2q7 + 4q11 − 6q13 − 6q17 + 4q23 − 5q25 + 4q29 − 10q31 − 2q37 + · · ·

Table 7.2.1: Newforms (up to Conjugacy) on Γ0(1152) of Weight 2 over Z

any of the nine newforms f2 to f10 of level 1152 attached to putative solutions of
our equation using periodicity, and thereby obtain congruence conditions imposed
on n as explained in Section 7.2. So we need to show these newforms are not
associated with any EW,n with n > 1, where we are free to take positive n. We
already have our first congruence condition on n, namely n ≡ 1 (mod 2) since we
ruled out the possibility of Wn being even, which is the same as the condition that
the index n be even. Hereafter we need only take the odd multiples of the point
(3, 5), that is we are only now concerned with EW,n having n odd.

The smallest prime we can start with is ` = 5, so now we take multiples of
(3, 5) and reduce the 3-tuple (Un, Vn,Wn) modulo 5; we find the period modulo 5
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to be M(5) = 8. The reduced Frey curves of odd index are all congruent modulo
8, and we have

ẼW,1 ∼= ẼW,3 ∼= ẼW,5 ∼= ẼW,7 : Y 2 ≡ X3 +X (mod 8).

Hence the traces at 5 will all be the same: a5(EW,1) = a5(EW,3) = a5(EW,5) =
a5(EW,7) = 2. This rules out any newforms that do not have 2 as a coefficient for
q5 in their Fourier expansions, leaving f1, f5, and f9 (and their twists f11, f15, and
f19) in Table 7.2.1 as possibilities. Hence from our initial set of ten newforms only
three remain with just our first value for the prime `. The congruence we have
is n ≡ ±1,±3 (mod 8) which is equivalent to n being odd as before. We present
this result as a set:

Sfr,{5} =

∅ if r 6= 1, 5, 9,

{n : n ≡ 1 (mod 2)} if r = 1, 5, 9.

The newform f1 cannot be discarded but we can continue in the same manner
using periodicity to try to rule out the other two newforms f5, and f9.

For ` = 7 we find, using Pari/GP, that M(7) = 42, with the possible traces
at ` = 7: a7(EW,n) ∈ {−2,−1}, which is equivalent to a7(EB,n) ∈ {±1,±2} due
to 7 ≡ 3 (mod 4). Now since f5 has 4, and f9 has 2 for the coefficient of q7 in
their respective expansions, we find we can rule out f5, but not f9 as it may be
associated to some Frey curve EB,n having 2 as its coefficient for q7 in its associated
newform expansion. Hence Sf5,7 = ∅, but Sf9,7 6= ∅. After cutting all equivalent
congruences modulo 42 to get a congruence modulo 7, this gives the sets

Sf1,7 = Sf9,7 = {n : n ≡ 1, 2, 3, 4, 5, 6 (mod 7)}.

Solving the sets of congruences in Sfr,{5}, and Sf1,7 simultaneously gives

Sfr,{5,7} =

∅ if r 6= 1, 9,

{n : n ≡ ±1,±3,±5 (mod 14)} if r = 1, 9.

For ` = 11 we find, using Pari/GP, that M(11) = 24, and the possible
traces at ` = 11: a11(EW,n) ∈ {−6,−2, 0, 1, 4}, which is equivalent to a11(EB,n) ∈
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{0,±1,±2,±4,±6}. The coefficient of q11 for f9 is 4 and so we cannot rule out f9

as a possibility. We now check the set of twenty-four traces of the reduced Frey
curve EW,n modulo 11 with respect to the order in which they appear to see where
±4 appears to get a congruence for n. We do not find −4, but we do find 4 at
index n = 1, 11, 13, and 23 to give the sets

Sf1,11 = Sf9,11 = {n : n ≡ ±1 (mod 12)}.

Solving the sets of congruences in Sfr,{5,7}, and Sf1,11 simultaneously gives

Sfr,{5,7,11} =

∅ if r 6= 1, 9,

{n : n ≡ ±1,±11,±13,±23,±25,±37 (mod 84)} if r = 1, 9.

For ` = 13 we find M(13) = 114. Since 13 ≡ 1 (mod 4) the coefficients of
q13 for the newform twists are the same. We find c13(f1) = −2, and c13(f9) = 2,
and so now check the set of 114 traces of the reduced Frey curve modulo 13 with
respect to the order in which they appear to find where ±2 appears. This gives
the two sets:

Sf1,13 = {n : n ≡ 1, 7, 9, 11, 13, 15, 23, 25, 27, 29, 31, 37 (mod 38)};

Sf9,13 = {n : n ≡ 4, 6, 8, 10, 12, 18, 20, 26, 28, 30, 32, 34 (mod 38)}.

Solving the sets of congruences in Sf1,{5,7,11}, and Sf1,13 simultaneously gives

Sfr,{5,7,11,13} =

∅ if r 6= 1,

{n : n ≡ ±1,±11,±13,±23, . . . (mod 1596)} if r = 1,

where n is congruent to 144 values.

So any pth power integral point [n]P with p ≥ (
√

13 + 1)2, i.e., p ≥ 23, by
Proposition 7.1.1, must come from the newforms f1 or f11.

For ` = 17 we find M(17) = 288. Since 17 ≡ 1 (mod 4) the coefficients of q17

for newforms and their twists are of the same sign; we have for the newform f1
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the set:
Sf1,17 = {n : n ≡ ±1,±5 (mod 18)}.

Solving the sets of congruences in Sf1,{5,7,11,13}, and Sf1,17 simultaneously gives

Sf1,{5,7,11,13,17} = {n : n ≡ 1, 13, 23, 37, 85, 107, 121, 143, 145, 167, 179,

181, 215, 229, 239, 251, . . . , 4703, 4751, 4765, 4775, 4787 (mod 4788)},

where n is congruent to a total of 288 values.
When checking for the absence of perfect pth powers in the DDS associated to

the elliptic curve E−2 : y2 = x3 − 2 in the manner above, if we check up to the
prime ` = 113 we find the smallest congruence with n > 1 to be

n0 ≡ 113762879 (mod 1314822960360),

where 13148229603602 factorsises as 23 · 33 · 5 · 72 · 13 · 17 · 19 · 61 · 97. (This
computation took 3h, 46min on a 2.5 GHz Intel Core i5 processor with 16 GB
1600 MHz DDR3 of RAM; for the timings of the other computations preceding
this one, which were significantly lower see Table 7.2.2.) This means if we look at
our Frey curve, with the exception of n = 1, no Frey curves EW,n are associated to
any pth PIP for 1 < n < 113762879; the first possible candidate being E113762879:

EW,113762879 : Y 2 = X3 − 3A113762879X + 2C113762879.

In general the best we can hope for is a congruence condition on the index n and
a bound on the exponent p. For the case above we have that there can be no pth

power integral point for any n such that 1 < n < 113762879 for p ≥ (
√

113 + 1)2,
i.e., p ≥ 137.

Continuing in the manner above using Pari/GP we arrive at the following
Theorem:

Theorem 7.2.2 (Buck). Let BE−2,P = (Bn) be the DDS associated to the elliptic
curve E−2 : y2 = x3− 2 and point P = (3, 5), and let (`end, p0, n0) be as in any row
of the Table 7.2.2 below. Then there does not exist an n with 1 < n < n0, such
that Bn is a perfect pth power, with p ≥ p0 with p0 the next prime ≥ (

√
`end + 1)2.
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The meaning of the Qopt column of Table 7.2.2 will be explained in Subsec-
tion 7.2.2. Theorem 7.2.2 just gives a bound on the nonexistence of pth perfect
powers for Bn in the range 1 < n < n0, for p ≥ p0 and so this process can be carried
on indefinitely getting higher bounds for n0, and p0 thus disqualifying more possi-
bilities for n and p. In Theorem 7.2.2 the values obtained in Table 7.2.2 indicate
the prime `end at which the value of the next smallest congruence increases.

`end p0 n0 Qopt Time
5 11 1 2 4 ms
7 17 3 2 · 7 10 ms
11 19 11 2 · 3 · 7 11 ms
17 29 13 2 · 3 · 7 · 19 47 ms
23 37 23 2 · 3 · 7 · 19 74 ms
29 41 121 2 · 3 · 5 · 7 · 19 131 ms
37 53 1079 2 · 3 · 5 · 7 · 19 299 ms
41 59 2519 2 · 3 · 5 · 7 · 19 318 ms
61 79 16631 2 · 3 · 5 · 7 · 19 · 61 666 ms
79 101 49391 2 · 3 · 5 · 7 · 19 · 61 · 97 26,323 ms
89 109 244441 2 · 3 · 5 · 7 · 19 · 61 · 97 32,701 ms
97 127 388079 2 · 3 · 5 · 7 · 13 · 19 · 61 · 97 9min, 45,177 ms
113 137 113762879 2 · 3 · 5 · 7 · 13 · 17 · 19 · 61 · 97 3h, 36min, 20,655 ms

Table 7.2.2: PIPs on Elliptic Curve E−2 : y2 = x3 − 2, and Point P = (3, 5) for
Np = 1152, with Optimal Qopt, and Timing for Qopt

7.2.2 Pari/GP Implementation

The process outlined in the example in Subsection 7.2.1 was automated by the
computer algebra system Pari/GP. For a rank 1 Mordell curve ED, having gen-
erator P , we start by initialising the curve

e = e l l i n i t ( [ 0 , 0 , 0 , 0 , D] , 1)
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` : 2 3 5 7 11 13
M(`) : 2 3 2 2 · 3 · 7 23 · 3 2 · 3 · 19

` : 17 19 23 29 31 37
M(`) : 25 · 32 3 24 · 11 2 · 5 · 7 22 · 3 · 5 · 7 32 · 72

` : 41 43 47 53 59 61
M(`) : 2 · 3 · 5 · 7 22 · 3 · 7 25 · 23 2 · 32 · 13 23 · 3 · 29 2 · 5 · 61

` : 67 71 73 79 83 89
M(`) : 2 · 3 · 7 · 11 22 · 3 · 5 · 7 33 3 · 13 · 97 22 · 7 · 41 24 · 3 · 5 · 11

` : 97 101 103 107 109 113
M(`) : 24 · 3 · 13 2 · 52 · 17 2 · 7 · 13 · 17 23 · 33 · 53 24 · 33 · 7 25 · 7 · 19

Table 7.2.3: Periods M(`) for EDS Modulo `, coming from Elliptic Curve
E−2 : y2 = x3 − 2 and Point P = (3, 5)

and generator point
p = [ a/b^2 , c/b ^3]

Then the Pari/GP routine ellinput generates a set of elliptic curves
Y = e l l i n p u t (Np)

of the right level Np; the set Y is a set of 3-vectors: for i in the range of the length
of Y, Y[i ][1] is the initialised curve; Y[i ][2] the set of congruence conditions; and
Y[i ][3] the value of the modulus. For each of these curves we then compute their
traces at a prime `, and our Pari/GP routine ellapfreyn generates a set of traces

X = e l l a p f r e y n ( e , p , l )

at that same prime ` for the Frey curves EW,n. For reasons explained in Section 7.1
we start at ` = 5 since 2 and 3 always divide both NEW,n

and Np; as well we
skip any primes dividing the elliptic denominator b, since these cannot be used
with edsrankofapp(e, p, l ). When we work out the rank of apparition of a prime
for a noninteger EDS derived from an elliptic curve-point pair, we need only be
concerned with avoiding primes dividing the elliptic denominator b. This follows
since we can normalise the fractional EDS (w(n)) to an equivalent integer EDS
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(w′(n)) by multiplying the first four terms thus to get an integer seed:

w′(i) = w(i)b(i2−1) for i = 1, . . . , 4.

The ranks of any primes not dividing b staying the same.
The distinction between when the traces at a prime ` of EB,n are equal in sign

or not to those of the twist EW,n is implemented in the code by the routine goodl
which performs the following check: If −1 is a square modulo ` and all primes of
bad reduction for the point P are squares modulo ` then we can check the actual
values of the trace; otherwise we only check their absolute values at the possible
loss of some efficiency. This gives us a set

U = good l ( e , p )

The values for a[n] are computed via the normalised recurrence for Φn in (3.1.12),
and the c[n] computed from the a[n] and the defining Mordell curve equation; both
are initially intmods. Finally when we compute the Frey trace we note the dis-
criminant of the Frey curve is ∆ = 2633(A3

n − C2
n); in the function ellapfreyn we

take the lifts, al [n], cl [n] of the intmods a[n], c[n] respectively, to give the trace as

e l l a p ( e l l i n i t ( [ 0 , 0 , 0 , −3∗( a l [ n ] − l ) , 2∗ c l [ n ] ] ) , l )

where we take (al [n] − l) to preclude the case of the lifts having

a l [ n ]^3 − c l [ n ]^2 = 0

We now use the Pari/GP routine clnewform to compare these traces at a prime
` of the curves EW,n with the traces of the actual elliptic curves of conductor equal
to the level Np, thereby generating a set of congruence conditions modulo some
divisor of the period M(`) for each curve of level Np. All the aforementioned
conditions are handled by the algorithm recursively calling the routine clnewform.
This is acheived by the routine

c l n e w f o r m a l l ( e , p , Y, Q, L , M, bd )

where L and M give lower and upper limits respectively for the range of primes to
use in clnewform. clnewformall sets up the computation by disregarding any primes `
with periodM(`) greater than the bound parameter bd. The value Q is used by the
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program as another bound, this time in the size of the modulus the congruences
are allowed to have. First it checks if gcd(Q,M(`)) = 1, and if so returns Y.

For each form there is in Y there is initially one defining congruence. To start
with clnewform is run at the first prime ` in range, and for each prime tested checks
it is not a factor of the denominator b, if so it skips that prime, if not it goes on
to compare the traces of sets of Frey curve traces in set X with those traces of
the elliptic curves attached to set Y by using the compare routine, which compares
the traces of the elliptic curves one-by-one with those of the Frey curves, and if
it finds a match at the jth Frey curve, say X[j ] = ellap(Y[i ][1], l ), where ellap is
the Pari/GP routine for computing the trace of an elliptic curve; it then stores
this result as Mod(j, m) in a Pari/GP vector, where m is the given modulus. Now,
dependent on whether −1 is a square modulo ` and all primes of bad reduction
are squares modulo ` we check the actual values of the traces to give the set of
intmods

W = compare ( [ X, M] , e l l a p (Y[ i ] [ 1 ] , l ) ) ;

otherwise we only check their absolute values to give the set of intmods
W = compare ( [ abs (X) , M] , abs ( e l l a p (Y[ i ] [ 1 ] , l ) ) .

These congruence conditions in W are then compared using the CRT with those
attached to the intmods Y[i ][2] in ellinput by the routine chinchin leading to the
form being either discarded, or having a solution set. This outputs a set of curves
containing hopefully fewer curves than we initially started with, and strengthened
conditions on the congruences. The output of clnewform will then act as input for
future comparison by the routine for a different prime. If after completion any
newforms remain they make up the output, along with any extra congruences
generated to the new modulus.

For example take the first two primes we test with in the example of Subsec-
tion 7.2.1: `1 = 5 and `2 = 7. This involved solving the two sets of congruences
Sf1,{5} = {n : n ≡ 1 (mod 2)}, and Sf1,7 = {n : n ≡ 1, 2, 3, 4, 5, 6 (mod 7)} simul-
taneously using a brute force approach in Pari/GP by writing out the congruences
as sets modulo the product 2 · 7 = 14 to give possible values for n as:

n ∈ {1,3,5, 7,9,11,13};
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n ∈ {1, 2,3, 4,5, 6, 8,9, 10,11, 12,13}.

The values for n in the intersection of these sets are shown in bold, and these
elements hence satisfy both congruences giving:

n ∈ {1, 3, 5, 9, 11, 13}

which can be expressed as the congruence in the example

Sf1,{5,7} = {n : n ≡ ±1,±3,±5 (mod 14)}.

In this way forms are discarded until at some prime `end, if possible, all forms are
discarded, which will then show no pth PIP is possible with p ≥ (

√
`end +1)2. To do

this by hand for each prime would be cumbersome, so clnewformall is an automated
version which takes a start and end point for our range of tested primes.

For large ` the algorithm will generate lots of congruences, which we seek to
limit by various utility sorting functions. As well we add in some extra parameters
to speed up computation at the compromise of losing data: when working out the
traces to compare, if the period is greater than some predefined bound then this
set of traces is skipped and we move on to the next prime. If we fail to lose all
newforms, then we can always refine our search later.

Another way we can control the process is to control the congruences, specif-
ically the modulus of the systems we output by a parameter we call the Q-part.
Because the traces at ` are modulo the period M(`), we can use knowledge of the
prime factors of the period by specifying which primes we wish to have contained
in our modulus; any period which does not contain these has that prime skipped
by clnewform. This has the benefit of not letting the modulus get too big, as we
can keep large factors out, and also means we can use just a few small primes to
quickly generate congruence sets we can do CRT with.

The Q-part acts as a control for setting which prime factors of the periodM(`)
in clnewform we choose to have as a factor of the modulus. Since we check up to
` = 113 in Theorem 7.2.2, we also check the prime factors of M(`) for each ` in
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the range ` = 2 to 113; these form the set

SM(`) = {2, 3, 5, 7, 11, 13, 19, 23, 29, 41, 53, 61, 97}.

Hence for our optimum value of Q we choose the product of these primes as they
will form the basis for the factors of the moduli when we run our program. This
is the Q-part used in Theorem 7.2.2 whose values are exhibited in Table 7.2.2.
However once the computation is run we see, with reference to Table 7.2.2, that
no Qopt uses primes 11, 23, 29, 41, and 53, which appear as prime factors for the
periods M(`) in Table 7.2.3 for ` = 23, 67, 89 for 11; for ` = 47 for 23; for ` = 59
for 29; for ` = 83 for 41; for ` = 107 for 53.

For example, if we changed the optimal value of Q in Theorem 7.2.2 to one of
primorial 19, i.e., Q = 2 ·3 ·5 ·7 ·11 ·13 ·17 ·19, we obtain the values in Table 7.2.4,
where the table indicates the prime `end at which the value of the next smallest
congruence increases in

c l n e w f o r m a l l ( e , p , [ y [ 1 ] ] , 2∗3∗5∗7∗11∗13∗17∗19 , 5 , l_end , 500000)

A quick examination of the differences between Table 7.2.2 and 7.2.4 shows the sep-
aration between the `end primes are the same up to `end = 41 with the nonoptimal
Q skipping `end = 61, 79, 89, 97 since the Qopt factors of 61 and 97 are no longer
present. We find the next jump at `end = 101 with n0 ≡ 52919 (mod 74070360)
where the modulo factorizes as 23 ·32 ·5·72 ·13·17·19; we also find `end = 113 giving
n0 ≡ 2010959 (mod 222211080) where the modulo factorizes as 23·33·5·72·13·17·19
and takes just 1,525 ms compared to our best value of n0 = 113762879 taking con-
siderably longer at 3h, 36min when the Q-part is optimal.

Example 7.2.3. Consider the rank 1 Mordell curve E66 : y2 = x3 + 66, with nontor-
sion point P = (1

4 ,
65
8 ) ∈ E66(Q). The conductor of E66 is N = 114048 and after

level lowering this becomes Np = 198, which has associated to it five rational new-
forms and no irrational ones. The Mordell curve E66 is also special in the sense
that it contains no integral points, and so we may keep discarding the rational
newforms until all are discarded, hypothetically, assuming there are no PIPs on
the curve. This will give a bound which depends on how we set up the computa-
tion. We compute the first few periods which we give in Table 7.2.5, noting that
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`end p0 n0

5 11 1
7 17 3

11 19 11
17 29 13
23 37 23
29 41 121
37 53 1079
41 59 2519
101 127 52919
113 137 2010959

Table 7.2.4: PIPs on Elliptic Curve E−2 : y2 = x3 − 2, and Point P = (3, 5) for
Np = 1152, with Q = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19

2 divides the numerator of the point and so we give this singular prime no period.

` : 2 3 5 7 11 13
M(`) : × 3 23 3 · 13 2 · 11 22

` : 17 19 23 29 31 37
M(`) : 25 · 32 2 · 33 · 7 24 · 3 · 11 2 · 5 · 7 22 · 32 · 5 22 · 32 · 7

Table 7.2.5: PeriodsM(`) for EDS Modulo `, coming from Elliptic Curve E66 : y2 =
x3 + 66 and Point P = (1

4 ,
65
8 )

We now set the range to run from `1 = 5 to `end, where `end is the finishing
prime in clnewformall after all five newforms get discarded, with various single prime
values of Q and note the time taken on a 2.5 GHz Intel Core i5 processor with
16 GB 1600 MHz DDR3 of RAM. We can then be sure there exist no pth powers
for the next prime p ≥ (

√
`end + 1)2: call this bound p0. The differences in the

times show how long it takes for the congruences to gain a contradiction with each
single Q prime being used for the modulus. Hence, as would be expected, the larger
prime modulii take longer to give a contradiction, with a larger prime bound. We
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shall return to this issue in Chapter 8 where we shall investigate Mordell curves
containing no integral points and proceed to give the best bound possible for a
range of curves, and in particular find E66 has p0 = 23, as predicted by our test
prime 2 in Table 7.2.6.

Q `end p0 Time
2 13 23 5 ms
3 37 53 46 ms
5 59 79 38 ms
7 37 53 22 ms

11 263 307 12,404 ms
13 97 127 566 ms
17 509 557 4min, 3,914 ms
19 367 409 42,099 ms
23 277 313 15,233 ms
29 349 389 1min, 5,415 ms
31 929 991 54min, 51,093 ms
37 443 487 2min, 10,671 ms

Table 7.2.6: Q-part and the Time to Finishing Prime `end on E66 : y2 = x3 + 66

We saw in the case of the Mordell curve E−2 that we quickly halved the number
of Frey curves we had to investigate by noting that n had to be odd. The function

e l l i n p u t (Np , Mod(0 , 1) )

is set by default to 0 (mod 1), but if we knew that n had to be odd, i.e., n ≡ 1
(mod 2), then we could initialise our set of forms as

e l l i n p u t (Np , Mod(1 , 2) )

Having some knowledge of the factorisation of the nontorsion point on the Mordell
curve can also be made use of. We note that, for some prime q, if q | B1 then
vq(Bn) = vq(B1) + vq(n). In particular if we have a perfect power Bn = Zp

n, with
p ≥ 11, p 6= 13, we get

vq(Zp
n) = vq(B1) + vq(n) ≥ p,
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so vq(n) ≥ p− vq(B1). Thus we start with a congruence of [Mod(0, qp−vq(B1))].



Chapter 8

Mordell Curves with No Integral
Points

In this Chapter we look to implement our method in cases where we can prove
there are no pth power points for p large enough. For this we need our Mordell
curves to contain no integral points.1

8.1 Mordell Curves

One of the drawbacks of our method is the problem of integral points, which
have B1 = 1, and so are power integral points for all primes p. Thus to test our
approach we need Mordell curves with no integral points. Since Mordell curves
have Weierstrass coefficient a1 = 0, we have by Theorem 2.5.3 (a) that any torsion
point P = (x(P ), y(P )), must have x(P ), y(P ) ∈ Z. Therefore Mordell curves
possessing no integral points are torsion free.

We note that we can not use Propositon 5.2.9 to obtain a bound for the rational
newform case. To see why, assume we have a prime ` such that `2 - N and ` - Np,
where N is the conductor of the Mordell curve, and Np is the lowered level of the
newforms. Now consider the set

S` = {a ∈ Z : −2
√
` ≤ a ≤ 2

√
` and a ≡ `+ 1 (mod t)}

1Extensive data for Mordell curves with |D| ≤ 10000 was communicated to the author by
Attila Pëtho, for which he is extremely grateful.
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of Propositon 5.2.9. Since a and c` both obey the Hasse bound: |a| ≤ 2
√
`, and

|c`| ≤ 2
√
`; when we form the product

∏
a∈S`

NK/Q(a− c`)

this will always be zero, since one of the values of a in S` will necessarily equal c`,
and so B′`(f) of the Proposition will always equal zero in this case, and so can not
be used to calculate a bound for p. This also means for the irrational newform
case we have to take t = 1 in the congruence a ≡ `+ 1 (mod t) since t divides the
order of the torsion group Etors(Q) which in this case is trivial.

We have seen in Theorem 6.2.1 that this restriction on Mordell curves having
no integral points assures that there exist at most finitely many perfect powers in
the associated DDS (Bn).

Example 8.1.1. The Mordell curve of smallest conductor (N = 52272 = 24 ·33 ·112)
and nonzero rank with no PIPs is

E11 : y2 = x3 + 11

as shown in [29, Prop. 1.5]. We shall use this example to show the implementation
of the method applied to Mordell curves possessing no integral points, as we are at
the advantage of also knowing it contains no PIPs. This curve has rank 1, trivial
torsion, and generator P = (−7

4 ,
19
8 ). The curve has DDS (Bn):

[2, 76,−103866,−1318861288].

The associated EDS is: [
1, 19

4 ,
−51933

256 ,
−164857661

8192

]
.

For each nth multiple of P we have as before the associated Diophantine equa-
tion

C2
n − A3

n = 11B6
n, (8.1.1)

where we may assume the nth multiple of P is a PIP, having Bn = Zp
n, and so
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(8.1.1) becomes
C2
n − A3

n = 11Z6p
n . (8.1.2)

To (8.1.2) we associate the Frey curve

EB,n : Y 2 = X3 − 3AnX + 2Cn.

We note Bn = Zp
n is always even since it is divisible by B1 = 2; this narrows our

search for newforms. For each n ∈ Z we have the following quantities for the Frey
curve:

(1) The minimal discriminant of EB,n is

∆min = −2−6 · 33 · 11 · Z6p
n as Zn is even.

(2) The conductor N of the curve EB,n is given by

N = 2f2 · 3f3 · rad2,3(11Zn),

where f2 and f3 can be looked up in Tables 6.4.1 and 6.4.2 respectively.

(3) Suppose that p = 11 or p ≥ 17, then EB,n ∼p f for some newform f of level

Np = 2f2 · 3f3 · 11, (8.1.3)

where f2 and f3 can be looked up in Tables 6.4.1 and 6.4.2 respectively.

For f2, as Zn is always even Table 6.4.1 gives f2 = 1. For f3 if we have
3 | Zn then f3 = 2. If not, then since 11 ≡ 2 (mod 9), Table 6.4.2 gives f3 = 2 or 3
dependent on whether we end at Tate’s case 4 or 3 respectively; in the terminology
of Papadopolous we have Tate’s case 4 occurring if P2 is satisfied, and Tate’s case
3 occurring if P2 is not satisfied, where P2 is the condition

c2
6

36 + 2 ≡ 3 · c4

32 (mod 9).

We find P2 is not satisfied and we end up with f3 = 3 if 3 - Zn.
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To summarise our results:

Np =

2 · 32 · 11 = 198 if 3 | Zn and Cn ≡ 1 (mod 4),

2 · 33 · 11 = 594 if 3 - Zn, Cn ≡ 1 (mod 4) and end at Tate’s case 3.
(8.1.4)

Using Q = 6 as our test product of primes we eliminate newforms of each level
Np using a Pari/GP program thus:

Case 1. By Example 5.1.4 there exist five rational newforms and no irrational
newforms of level Np = 198. With respect to Example 5.1.4 we lose newforms f1

and f5 at ` = 5, and lose the remaining three newforms at ` = 7: we conclude
Sf,{5,7} = ∅.

Case 2. By Example 5.1.4 we know there exist, up to conjugacy, ten newforms
of level Np = 594; eight are rational and two are irrational. With respect to
Example 5.1.4 we lose the rational newforms f1, f3, f4, and f8 at ` = 5, and lose
the remaining four newforms at ` = 7: we conclude Sf,{5,7} = ∅.

For the two irrational forms f9 and f11, since the conductor N of EB,n is
N = 2 · 33 · 11 rad2,3(Zn), and the level of the newform is Np = 2 · 33 · 11, if we
choose ` 6= 2, 3 or 11 then `2 - N and ` - Np so we can use Proposition 5.2.9 (with
t = 1) which states that if E ∼p f we have p | B`(f) for all such `. For f9 (and
its Galois conjugate σ(f9) = f10) the Fourier coefficients generate a number field
in α = −3 + 2

√
10 (respectively σ(α) = −3 − 2

√
10) with defining polynomial

x2 + 6x − 31. We find c5(f9) = −1 +
√

10 6∈ Q; so with S5 = {0,±1,±2,±3,±4}
we proceed to find B5(f9).

B5(f9) = 5NQ(α)/Q
(
(5 + 1)2 − c5(f9)2

) ∏
a∈S5

NQ(α)/Q(a− c5(f9))

= 5NQ(α)/Q
(
25 + 2

√
10
)
NQ(α)/Q(−c5) NQ(α)/Q(c2

5 − 12)

×NQ(α)/Q(c2
5 − 22) NQ(α)/Q(c2

5 − 32) NQ(α)/Q(c2
5 − 42)

= −511758000

= −24 · 39 · 53 · 13.
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We can not do the same for B7(f9) since c7(f9) = 2 ∈ Q, but we can For ` = 13:

B13(f9) = −21216189068351006507878276492992000000

= −212 · 325 · 56 · 135 · 372 · 43 · 53 · 67 · 712

Hence, since 2, 3, 5, and 13 divide B5(f9) and B13(f9), but 37, 43, 53, 67 and 71
divide B13(f9) and not B5(f9), we deduce that E ∼p f9 is not possible for p ≥ 17.

For f11 (and its Galois conjugate σ(f11) = f12) the Fourier coefficients generate
a number field in β = 2 +

√
10 (respectively σ(β) = 2 −

√
10) with defining

polynomial x2 − 4x − 6. We find c5(f11) = 1 +
√

10 6∈ Q and so as with f9 we
compute B5(f11):

B5(f11) = 5NQ(β)/Q
(
(5 + 1)2 − c5(f11)2

) ∏
a∈S5

NQ(β)/Q(a− c5(f11))

= 7676370000

= 24 · 310 · 54 · 13.

For ` = 13:

B13(f11) = −30390757314124414727501314976448000000

= −212 · 325 · 56 · 135 · 37 · 43 · 532 · 67 · 712

We see we are in analogous situation as for f9, and thus deduce that E ∼p f11 is
not possible for p ≥ 17.

We note B5(f11) and B5(f9) both have the same prime factors, with the largest
prime factor dividing them being 13. So for the irrational newforms we have, by
Proposition 5.2.9, that for any p > 13, EB,n 6∼p fk for k = 9, 11.

Hence, in accord with Reynolds, we find there can be no PIPs on E11 as no
rational newforms correlate to any elliptic curves pertaining to a solution, with
the caveat that any prime exponent p ≥ 7 + 1 + 2

√
7, which is p ≥ 17, or for

the case of irrational newforms we (also) have the bound p ≥ 17, and so we take
p0 = 17. Hence any possible prime exponents for a pth perfect power remaining by
this method are p = 2, 3, 5, 7, 11, or 13.
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8.1.1 Sage Code for Case 2 of Example 8.1.1

We give here the Sage code for working out the prime bound for the irrational
newforms of level 594 in Case 2 of Example 8.1.1.

To start with we need to know the q-expansions of the two irrational newforms
and where the first irrational coefficients occur:

N=[Newforms (594 ,2 , names='a ' ) [ k ] f o r k i n range (8 , 10 ) ]

q − q^2 + q^4 + ( a8 + 1) ∗q^5 + O( q^6)
q + q^2 + q^4 + ( a9 − 1) ∗q^5 + O( q^6)

We know that there are, up to isogeny, ten newforms in total, and this is why we
choose our range as range(8,10) since we only need the two irrational newforms (the
irrational newforms come after the rational ones in Sage, and Sage sorts its lists
starting with index 0, with range( i , j ) returning [ i , i+1, i+2, ..., j−1]: this explains
the ranges chosen in the program). By observation of the q-expnsions we find the
first irrational coefficients occur for c5(f9), and c5(f11).

Now that we know we need to work with the coefficients c5, we have to compute
B5(f) from Proposition 5.2.9 to get a bound for p in the irrational case. The fol-
lowing code computes the prime factorisation of B5(f) for each irrational newform
in turn and outputs the next greatest prime p0 for which E 6∼p0 f .

l =5
N=[Newforms (594 ,2 , names='a ' ) [ k ] f o r k i n range (8 , 10 ) ]
c=[N[ j ] . q_expans ion (6 ) [ 5 ] f o r j i n range (0 , 2 ) ]

f o r j i n range (0 , 2 ) :
A=[ i−c [ j ] f o r i i n range (1− l , l −1) ]
B= l i s t ( f a c t o r ( norm ( ( ( l +1)^2−c [ j ] ^2 ) ∗ prod (A) ) ) )
p=B[ l e n (B) −1 ] [0 ]
next_pr ime ( p )

Working step by step: we first set l=5, and then initialise the two irrational new-
forms, up to isogeny, of level 594, after which the coefficients c5 for each newform
are computed:

c=[N[ j ] . q_expans ion (6 ) [ 5 ] f o r j i n range (0 , 2 ) ]
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[ a8 + 1 , a9 − 1 ]

Now each of the (a− c`) factors in the product ∏a∈S`
NK/Q(a− c`) are computed:

A=[ i−c [ j ] f o r i i n range (1− l , l −1) ]

[−a8 − 5 , −a8 − 4 , −a8 − 3 , −a8 − 2 , −a8 − 1 , −a8 , −a8 + 1 , −a8 +
2 ]

[−a9 − 3 , −a9 − 2 , −a9 − 1 , −a9 , −a9 + 1 , −a9 + 2 , −a9 + 3 , −a9 +
4 ]

The next command forms the product ∏a∈S`
NK/Q(a−c`) of these factors as prod(A)

and then computes the norm, norm(((l+1)^2−c[j]^2)∗prod(A)), which is the norm of
B′5(f) from Proposition 5.2.9, which it outputs as a list of factors:

B= l i s t ( f a c t o r ( norm ( ( ( l +1)^2−c [ j ] ^2 ) ∗ prod (A) ) ) )

[ ( 2 , 4) , (3 , 9) , (5 , 2) , (13 , 1) ]
[ ( 2 , 4) , (3 , 10) , (5 , 3) , (13 , 1) ]

The last two lines of code pick out the last prime in the factor list, which is 13 in
both cases, and outputs the next prime:

p=B[ l e n (B) −1 ] [0 ]
next_pr ime ( p )

17 , 17

Thus giving the bound of p0 = 17.
This code can now easily be adapted for working with irrational newforms of

other levels.

Example 8.1.2. For the rank 1 curve E39 : y2 = x3 + 39, having trivial torsion, and
generator P = (217

4 ,
3197

8 ), we find f2 = 1 since 2 | B1, and so Bn is always even,
and v3(39) = 1 hence f3 = 4 if 3 - Bn:

Np =

2 · 32 · 13 = 234 if 3 | Zn and Cn ≡ 1 (mod 4),

2 · 34 · 13 = 2106 if 3 - Zn, Cn ≡ 1 (mod 4) and end at Tate’s case 3.
(8.1.5)
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Case 1. There exist five rational newforms, and no irrational newforms, of level
Np = 234 (see Table 8.1.1). We lose two newforms f2 and f5 at ` = 5; lose two
newforms f3 and f4 at ` = 7; lose the last newform f1 at ` = 11: Sf,{5,7,11} = ∅.

f1 = q − q2 + q4 − 2q5 − 2q7 − q8 + 2q10 − · · · ,
f2 = q − q2 + q4 + q5 + q7 − q8 − q10 + · · · ,
f3 = q + q2 + q4 − 2q5 + 4q7 + q8 − 2q10 + · · · ,
f4 = q + q2 + q4 + 2q5 − 2q7 + q8 + 2q10 + · · · ,
f5 = q + q2 + q4 + 3q5 − q7 + q8 + 3q10 − · · · .

Table 8.1.1: Newforms (up to Conjugacy) on Γ0(234) of Weight 2

Case 2. There exist twenty-two newforms of level Np = 2106; six are rational, and
sixteen irrational (see Table 8.1.2). For the rational case we lose the two newforms
f2 and f3 at ` = 5; we lose the remaining six newforms at ` = 7: we conclude
Sf,{5,7} = ∅.

For k = 7 to 22 the Fourier coefficients of fk generate a number field in αk with
defining polynomial as given in Table 8.1.3. We find we only need the q-expansion
up to O(q6), since 5 - N or Np, and in all cases we find c5 6∈ Q, and so can be sure
B5(f) 6= 0 for all newforms: thus we can use Proposition 5.2.9 (with t = 1) to find
a bound for p such that if p ≥ p0 then EB,n 6∼p f ; see Table 8.1.3 for the p0 for
each irrational newform as given by the Proposition 5.2.9.

Now to find our general bound we note that for the rational newform case for
level Np = 234 we have Sf,{5,7} = ∅, and for level Np = 2106, Sf,{5,7,11} = ∅.
Hence for the rational case we take the largest prime occurring in these sets and
use the bound from Proposition 7.1.1 to give p ≥ 11 + 1 + 2

√
11, i.e., p ≥ 19 in

the rational case. We now compare this with the prime bounds p0 calculated for
the irrational newforms, as tabulated in Table 8.1.3, and find the (much) larger
prime p0 = 239 for irrational newforms f20 and f22. We therefore choose this larger
prime as our bound and conclude there can be no PIPs on E39 with p ≥ 239, with
possible prime exponents for a pth perfect power having p necessarily less than 239.

Continuing in the manner above using Pari/GP we arrive at the following:
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f1 = q − q2 + q4 +O(q6),
f2 = q − q2 + q4 + 2q5 +O(q6),
f3 = q − q2 + q4 + 2q5 +O(q6),
f4 = q + q2 + q4 − 2q5 +O(q6),
f5 = q + q2 + q4 − 2q5 +O(q6),
f6 = q + q2 + q4 +O(q6),
f7 = q − q2 + q4 + (α7 + 1)q5 +O(q6),
f8 = q − q2 + q4 + (α8 + 1)q5 +O(q6),
f9 = q − q2 + q4 − (α9 + 1)q5 +O(q6),
f10 = q − q2 + q4 − 1

2(α10 + 1)q5 +O(q6),
f11 = q − q2 + q4 + 1

2(α11 + 1)q5 +O(q6),
f12 = q + q2 + q4 + 1

2(α12 − 1)q5 +O(q6),
f13 = q + q2 + q4 − 1

2(α13 − 1)q5 +O(q6),
f14 = q + q2 + q4 − 1

2(α14 − 1)q5 +O(q6),
f15 = q + q2 + q4 + (α15 − 1)q5 +O(q6),
f16 = q + q2 + q4 − (α16 − 1)q5 +O(q6),
f17 = q − q2 + q4 + (α17 + 1)q5 +O(q6),
f18 = q + q2 + q4 + (α18 − 1)q5 +O(q6),
f19 = q − q2 + q4 − (α19 + 1)q5 +O(q6),
f20 = q − q2 + q4 − 1

2(α20 + 1)q5 +O(q6),
f21 = q + q2 + q4 + 1

2(α21 − 1)q5 +O(q6),
f22 = q + q2 + q4 − (α22 − 1)q5 +O(q6).

Table 8.1.2: Newforms (up to Conjugacy) on Γ0(2106) of Weight 2

Theorem 8.1.3 (Buck). Let ED : y2 = x3 +D be a Mordell curve. Take

(D;P ;S, Np;# Rational; # Irrational; p0)

as in Table 8.1.4 and Table 8.1.5: P is a nontorsion point on ED; S is the set
of primes of bad reduction for the point; Np is the conductor of the Frey curves
after level lowering; # Rational is the number of rational newforms of level Np; #
Irrational is the number of irrational newforms of level Np. Then there does not
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Irrational Newform Defining polynomial of Number Field p0

f7 x2 + 6x+ 3 31
f8 x2 + 2x− 5 7
f9 x2 + 4x+ 1 29
f10 x2 + 6x− 3 29
f11 x2 − 2x− 11 29
f12 x2 + 2x− 11 29
f13 x2 − 6x− 3 29
f14 x2 − 6x− 3 29
f15 x2 − 2x− 5 7
f16 x2 + 2x− 5 31
f17 x3 + 5x2 − 4x− 29 71
f18 x3 − 5x2 − 4x+ 29 71
f19 x4 + 2x3 − 14x2 + 6x+ 9 89
f20 x4 − 66x2 + 72x+ 9 239
f21 x4 − 62x2 − 168x+ 37 89
f22 x4 − 2x3 − 15x2 + 7x+ 1 239

Table 8.1.3: Irrational Newforms of Level 2106 and their Number Fields

exist a BnP which is a perfect pth power with p ≥ p0, where we note for the best
possible bound of p ≥ 11, we exclude p = 13.

Since our program starts testing primes at ` = 5, for reasons explained in
Section 7.1, then if we get rid of all newforms at ` = 5, we have by Proposition 7.1.1
that our bound for the rational newform case is p ≥ (

√
5 + 1)2 ≈ 10.47, which has

p ≥ 11, which is then best possible (assuming any irrational newform bound had
p ≥ 11). With this understood we can invoke Theorem 5.3.3 which has p = 11 or
p ≥ 17 as conditions on p. Hence Theorem 8.1.3 can say nothing of pth powers
for p = 2, 3, 5, 7, or 13, for reasons wrapped up in Theorem 5.3.3, which in
turn inherits from Theorem 5.2.6 on the absence of p-isogenies whose condition (e)
disallows p = 2, 3, 5, 7, or 13.

In the case where we were unable to compute the irrational newforms due to
constraints of time, we were still able to give the bound for any rational PIPs
independently from any irrational case.
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Theorem 8.1.4 (Buck). Let ED : y2 = x3 +D be a Mordell curve. Take

(D;P ;S;Np;# Rational; p0)

as in Table 8.1.6 and Table 8.1.7: P is a nontorsion point on ED; S is the set of
primes of bad reduction for the point; Np is the conductor of the Frey curves after
level lowering; # Rational is the number of rational newforms of level Np. Then
there does not exist a BnP which is a perfect pth power with p ≥ p0 corresponding
to a rational newform, where we note for the best possible bound of p ≥ 11, we
exclude p = 13.
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Table 8.1.4: Rank 1 Mordell Curves E : y2 = x3 +D with no PIPs ≥ p0

D P ∈ E0 S {Np; # Rational; # Irrational} p0

11 (−7
4 ,

19
8 ) ∅ {2 · 32 · 11; 2; 0}; {2 · 33 · 11; 8; 2} 17

39 (217
4 ,

3197
8 ) ∅ {2 · 32 · 13; 5; 0}; {2 · 34 · 13; 6; 16} 239

46 (−7
4 ,

51
8 ) {3} {2 · 32 · 23; 4; 3}; {2 · 33 · 23; 16; 4} 71

47 (17
4 ,

89
8 ) ∅ {2 · 32 · 47; 7; 4}; {2 · 33 · 47; 6; 8} 293

58 (241
36 ,

4087
216 ) ∅ {2 · 32 · 29; 13; 0} 11

61 (−15
4 ,

23
8 ) ∅ {2 · 32 · 61; 12; 5}; {2 · 33 · 61; 12; 18} 3701

62 (1
4 ,

63
8 ) {3} {2 · 32 · 31; 8; 2}; {2 · 33 · 31; 10; 10} 193

66 (1
4 ,

65
8 ) ∅ {2 · 32 · 11; 5; 0} 23

67 (49
36 ,

1801
216 ) ∅ {2 · 32 · 67; 6; 9} 107

83 (2641
36 ,

135737
216 ) ∅ {2 · 32 · 83; 5; 9} 421

118 (9
4 ,

91
8 ) ∅ {2 · 32 · 59; 12; 4}; {2 · 33 · 59; 22; 16} 4201

139 (−1223
324 ,

53837
5832 ) ∅ {2 · 32 · 139; 11; 15} 14563

147 (1
4 ,

97
8 ) ∅ {2 · 32 · 7; 2; 0} 11

166 (−3207
1444 ,

683251
54872 ) ∅ {2 · 32 · 83; 5; 9}; {2 · 33 · 83; 0; 20} 51437

Continued on next page
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Table 8.1.4 – Continued from previous page

D P ∈ E0 S {Np; # Rational; # Irrational} p0

183 (−47
9 ,

172
27 ) ∅ {2 · 32 · 61; 12; 5}; {2 · 33 · 61; 12; 18} 3701
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Table 8.1.5: Rank 1 Mordell Curves E : y2 = x3 −D with no PIPs ≥ p0

D P ∈ E0 S {Np; # Rational; # Irrational} p0

43 (1177
36 ,

40355
216 ) ∅ {2 · 32 · 43; 9; 4} 31

57 (4873
36 ,

340165
216 ) ∅ {2 · 32 · 19; 7; 0} 11

58 (5393
484 ,

387655
10648 ) ∅ {2 · 32 · 29; 13; 0}; {2 · 33 · 29; 18; 6} 43

65 (32049
7396 ,

2573303
636056 ) ∅ {2 · 32 · 5 · 13; 14; 3}; {2 · 33 · 5 · 13; 23; 19} 331

66 (357361
7056 ,

213574985
592704 ) ∅ {2 · 32 · 11; 5; 0} 11

75 (91
9 ,

836
27 ) ∅ {2 · 32 · 5; 3; 0}; {25 · 32 · 5; 4; 0} 23

85 (1552601
27889 ,

1934117206
4657463 ) ∅ {2 · 32 · 7; 2; 0}; {22 · 32 · 7; 2; 0}; {23 · 32 · 7; 8; 0}; {24 · 32 · 7; 13; 1} 17

91 (25
4 ,

99
8 ) {3} {2 · 32 · 7 · 13; 20; 5}; {2 · 33 · 7 · 13; 28; 5} 19

101 (6342921
1073296 ,

11415613595
1111934656 ) ∅ {2 · 32 · 101; 13; 11}; {2 · 33 · 101; 16; 16} 3935389

120 (169
9 ,

2177
27 ) ∅ {2 · 32 · 5; 3; 0}; {25 · 32 · 5; 4; 0} 23

123 (3193
144 ,

179405
1728 ) ∅ {2 · 32 · 41; 10; 3} 19

129 (55380313
2039184 ,

410799717341
2911954752 ) ∅ {2 · 32 · 43; 9; 4} 31

131 (3409
144 ,

198055
1728 ) ∅ {2 · 32 · 131; 25; 9} 2549

166 (13433
676 ,

1540339
17576 ) ∅ {2 · 32 · 83; 5; 9}; {2 · 33 · 83; 0; 20} 51437

Continued on next page
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Table 8.1.5 – Continued from previous page

D P ∈ E0 S {Np; # Rational; # Irrational} p0

171 (10105
1764 ,

305299
74088 ) ∅ {2 · 32 · 19; 7; 0} 11

195 (5281
36 ,

383761
216 ) ∅ {2 · 32 · 5 · 13; 14; 3} 29
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Table 8.1.6: Rank 1 Mordell Curves E : y2 = x3 +D with no Rational PIPs ≥ p0

D P ∈ E0 S {Np; # Rational} p0

69 (−5
9 ,

224
27 ) ∅ {2 · 32 · 23; 4}; {25 · 32 · 23; 10} 17

74 (7
9 ,

233
27 ) ∅ {2 · 32 · 37; 7}; {27 · 32 · 37; 20} 17

77 (−61
25 ,

988
125) ∅ {2 · 32 · 7 · 11; 12}; {2 · 33 · 7 · 11; 28}; {25 · 32 · 7 · 11; 26}; {25 · 33 · 7 · 11; 32} 29

102 (763
529 ,

124675
12167 ) ∅ {2 · 32 · 17; 4}; {27 · 32 · 17; 16} 17

103 (13
9 ,

278
27 ) ∅ {2 · 32 · 103; 10}; {26 · 32 · 103; 44}; {2 · 33 · 103; 4}; {26 · 33 · 103; 23} 19

110 ( 59
121 ,

13967
1331 ) ∅ {2 · 32 · 5 · 11; 12}; {2 · 33 · 5 · 11; 29}; {27 · 32 · 5 · 11; 96}; {27 · 33 · 5 · 11; 102} 2521

111 (−215
121 ,

13664
1331 ) ∅ {2 · 32 · 37; 7}; {26 · 32 · 37; 66} 29

130 (399
169 ,

26287
2197 ) ∅ {2 · 32 · 5 · 13; 14}; {2 · 33 · 5 · 13; 23}; {27 · 32 · 5 · 13; 96}; {27 · 33 · 5 · 13; 72} 113

133 (39
25 ,

1462
125 ) ∅ {2 · 32 · 7 · 19; 15}; {2 · 33 · 7 · 19; 19}; {25 · 32 · 7 · 19; 44}; {25 · 33 · 7 · 19; 32} 29

146 (3215
361 ,

200249
6859 ) ∅ {2 · 32 · 73; 7}; {2 · 33 · 73; 6}; {27 · 32 · 73; 20}; {27 · 33 · 73; 0} 11

149 (− 7
16 ,

781
64 ) ∅ {2 · 32 · 149; 17}; {2 · 33 · 149; 2} 19

155 (−271
64 ,

4553
512 ) ∅ {2 · 32 · 5 · 31; 29}; {2 · 33 · 5 · 31; 20} 29

179 (−35
9 ,

296
27 ) ∅ {2 · 32 · 179; 9}; {26 · 32 · 179; 76} 17

182 (7219
81 ,

613439
729 ) ∅ {2 · 32 · 7 · 13; 20}; {27 · 32 · 7 · 13; 84} 29

Continued on next page
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Table 8.1.6 – Continued from previous page

D P ∈ E0 S {Np; # Rational; # Irrational} p0

191 (399
4 ,

26287
8 ) ∅ {2 · 32 · 191; 2}; {2 · 33 · 191; 0} 11
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Table 8.1.7: Rank 1 Mordell Curves E : y2 = x3 −D with no Rational PIPs ≥ p0

D P ∈ E0 S {Np; # Rational} p0

21 (37
9 ,

118
27 ) ∅ {2 · 32 · 7; 2}; {26 · 32 · 7; 40} 29

22 (71
25 ,

119
125) ∅ {2 · 32 · 11; 5}; {2 · 33 · 11; 10}; {27 · 32 · 11; 32}; {27 · 33 · 11; 32} 29

29 (3133
9 , 175364

27 ) ∅ {2 · 32 · 29; 13}; {26 · 32 · 29; 84} 19

30 (31
9 ,

89
27) ∅ {2 · 32 · 5; 3}; {27 · 32 · 5; 48} 29

38 (4447
441 ,

291005
9261 ) ∅ {2 · 32 · 19; 7}; {27 · 32 · 19; 32} 29

50 (211
9 ,

3059
27 ) ∅ {2 · 32 · 5; 3}; {27 · 32 · 5; 48} 29

51 (13175
9 , 50986

27 ) ∅ {2 · 32 · 17; 4}; {25 · 32 · 17; 18} 23

59 (6715
441 ,

545644
9261 ) ∅ {2 · 32 · 59; 12}; {25 · 32 · 59; 8} 19

84 (46
9 ,

190
27 ) {2} {22 · 34 · 7; 4}; {24 · 34 · 7; 24} 19

93 (1249
225 ,

29818
3375 ) ∅ {2 · 32 · 31; 6}; {26 · 32 · 31; 62} 29

94 (11614031
2181529 ,

24303384785
3222118333 ) ∅ {2 · 32 · 47; 8}; {2 · 33 · 47; 6}; {27 · 32 · 47; 12}; {27 · 33 · 47; 22} 29

102 (127
9 ,

1405
27 ) ∅ {2 · 32 · 17; 4}; {27 · 32 · 17; 16} 53

110 (41671
8649 ,

1091611
804357 ) ∅ {27 · 32 · 5 · 11; 70} 17

115 (2419
441 ,

65512
9261 ) ∅ {2 · 32 · 5 · 23; 19}; {25 · 32 · 5 · 23; 38} 29

Continued on next page
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Table 8.1.7 – Continued from previous page

D P ∈ E0 S {Np; # Rational} p0

130 (1811
289 ,

52931
4913 ) ∅ {2 · 32 · 5 · 13; 48}; {2 · 33 · 5 · 13; 24}; {27 · 32 · 5 · 13; 96}; {27 · 33 · 5 · 13; 72} 47

137 (141
25 ,

814
125) ∅ {2 · 32 · 137; 11}; {2 · 33 · 137; 8}; {26 · 32 · 137; 68}; {26 · 33 · 137; 56} 29

138 (427
81 ,

2125
729 ) ∅ {2 · 34 · 23; 7}; {27 · 32 · 23; 12} 17

140 (949
9 ,

29233
27 ) ∅ {2 · 32 · 5 · 7; 10}; {22 · 32 · 5 · 7; 10}; {23 · 32 · 5 · 7; 20}; {24 · 32 · 5 · 7; 42} 23

157 (374822317
4678569 ,

7255575252640
10119744747 ) ∅ {2 · 32 · 157; 10}; {26 · 32 · 157; 50} 23

163 (97
16 ,

495
64 ) {3} {2 · 32 · 163; 15}; {2 · 33 · 163; 16} 19

164 (333
49 ,

4199
343 ) ∅ {2 · 32 · 41; 9}; {22 · 32 · 41; 2}; {2 · 33 · 41; 4}; {23 · 32 · 41; 8};

{22 · 33 · 41; 6}; {24 · 32 · 41; 24}; {23 · 33 · 41; 11}; {24 · 33 · 41; 24} 29

165 (229
9 ,

3448
27 ) ∅ {2 · 32 · 5 · 11; 12}; {26 · 32 · 5 · 11; 112} 47

166 (13433
676 ,

1540339
17576 ) ∅ {2 · 32 · 83; 5}; {2 · 33 · 83; 0} 17

173 (189
25 ,

2012
125 ) ∅ {2 · 32 · 173; 7}; {2 · 33 · 173; 6}; {26 · 32 · 173; 42}; {26 · 33 · 173; 20} 23

179 (65
4 ,

513
8 ) {3} {2 · 32 · 179; 10}; {2 · 33 · 179; 10} 19

182 (14743
2601 ,

44225
132651) ∅ {2 · 32 · 7 · 13; 20}; {27 · 32 · 7 · 13; 84} 29

187 (5047
9 , 358550

27 ) ∅ {2 · 32 · 11 · 17; 17}; {25 · 32 · 11 · 17; 32} 23



Chapter 9

Final Remarks and a Look to
Further Work

To extend on the case of curves containing integral points, as for y2 = x3 − 2,
maybe it would be possible to use similar methods as contained in the work of [8]
to get an upper bound on n such that Bn is a perfect power, by the use of elliptic
logarithms, which is small enough to meet the lower bound we get. Despite other
attempts it is always possibile to continue looking at more cases modulo ` to get
stronger congruence conditions on n.

The method described in this thesis can only deal with prime exponents p = 11,
or p ≥ 17 in the rational newform case, along with any irrational newform case.
Maybe we could find some other complementary ad-hoc techniques to help in
eliminating cases of pth perfect powers, as we did with the method of Chabauty in
Section 6.3.

So far we only treat EDSs (or equivalently rank 1 curves with no torsion). It
would be interesting to try to adapt those methods to look at power integral points
on curves of higher rank. For this the idea would be to use a similar method as in
the rank 1 case outlined in the thesis, but this time initially for a 2-dimensional
array. The idea is similar to the rank 1 case: we associate a Frey curve to a rank
2 Mordell curve and compute the traces at a prime ` using a rank 2 version of
our Pari/GP program clnewform. This forms a matrix of traces of dimension
rP (`)× rQ(`), where rP (`), and rQ(`) are the rank of apparition at ` for the EDSs
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associated to the points P and Q respectively. For each prime we do this for
we obtain a rectangular array of Pari/GP ‘intmods’ for which we can use the
Chinese Remainder Theorem on, using a rank 2 matrix version of our vectorial
CRT program chinchin. Then after using the CRT on the arrays we should
disprove the existence of any PIPs from occurring after some prime bound p ≥ p0.

Partial work has been done on this problem for Mordell curves of rank 2 pos-
sessing no integral points, and we hope to see the first substantial results of these
endeavours soon.



Appendix A

Pari/GP Programs

Listing A.1: Introduction
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ Throughout an elliptic divisibility sequence shall be denoted as an

\\ eds and given in the form of the first four terms as a vector.

\\ By an eds being nondegerate we shall mean the first, second, and

\\ third terms are nonzero.

\\ Where formulae are referenced by name they are from the following

\\ sources - added here to avoid repetition:

\\ Morgan Ward:

\\ Memoir on Elliptic Divisibility Sequences, 1948.

\\ Rachel Shipsey:

\\ Elliptic Divisibility Sequences, University of London, 2000.

\\ Christine Swart:

\\ Elliptic Curves and Related Sequences, University of London, 2003.

\\ Katherine Stange:

\\ Elliptic Nets and Elliptic Curves, Brown University, 2008.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Listing A.2: Elliptic Curve Functions
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ The primes of bad reduction for an integral elliptic curve over Q

\\ e is an ellinit; returns a vector of primes dividing the

\\ discriminant (so these are bad reduction for this model but may not be

\\ bad for the underlying elliptic curve if this is not a minimal model)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

ellbadprimes(e) = return(factor(abs(e[12]))[ ,1]~);

}
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\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ pntbadprimes(e, p)

\\ e is an elliptic curve and p = [a/b^2, c/b^3] is a point on that

\\ curve. pntbadprimes(e, p) returns the primes of singular reduction

\\ that divide both wh2 = w2 * b^3 and wh3 = w3 * b^8.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

pntbadprimes(e, p) = local(b, w, whn, wh, wh2, wh3, v, S);

if(ellisoncurve(e, p) == 0, print("Point p is not on curve."); return(0));

b = round(sqrt(abs(denominator(p[1]))));

whn = vector(4);

wh = vector(4);

v = vector(2);

S = vector(0);

w = elltoeds(e, p);

for(i = 1, 4, wh[i] = w[i] * b^(i^2 - 1));

if(debug, print("Normalised Psihat Division Polynomials: " wh));

wh2 = factor(abs(wh[2]))~[1, ];

wh3 = factor(abs(wh[3]))~[1, ];

v = [wh2, wh3];

if(debug, print("Primes dividing wh2, wh3: " v));

for(i = 1, length(v[1]),

for(j = 1, length(v[2]),

if(v[1][i] == v[2][j], S = concat(S, v[1][i]))));

return(S);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ goodl(e, p)

\\ Takes as input an ellinit, e, and a point p on e.

\\ Program sets BP = 4 * product of primes of bad reduction P, for p on e.

\\ Then checks at index i from 1 through to

\\ (4 * product of bad primes P) - 1, whether i = 1 (mod 4), and if so

\\ tests if it is a square modulo P. Returns a 2-vector of squares modulo

\\ each bad prime P, and value of n.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

goodl(e, p) = local(P, y, n, m);

P = pntbadprimes(e, p);

y = [];

n = 4;

for(i = 1, length(P), n = n * P[i];

if(debug, print("mod " n)); );

for(i = 1, n - 1, m = 1;

if(Mod(i, 4) != Mod(1, 4), m = 0,

for(j = 1, length(P), if(kronecker(i, P[j]) != 1, m = 0)));

if(m == 1, y = concat(y, i)));
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return([y, n]);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ ellinput(N, mod)

\\ Returns a vector G of length(ellsearch(N)) of initialised elliptic

\\ curves of conductor N along with congruence conditions predetermined

\\ by M. Used by clnewform. M = [[1, 2,..., m - 1], m].

\\ If no value for mod is given it deferrs to an

\\ initialised value of 1.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

ellinput(N, mod = 1) = local(F, G);

F = ellsearch(N);

G = vector(0);

m = vector(0);

if(mod == 1,

for(i = 1, length(F),

G = concat(G, [[ellinit(F[i][2], 1), [0], 1]]));

return(G););

if(mod != 1,

for(i = 1, mod - 1, m = concat(m, i));

for(i = 1, length(F),

G = concat(G, [[ellinit(F[i][2], 1), m, mod]])));

return(G);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ ellgensearch(N)

\\ Lists the generators for all curves of conductor N.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

ellgensearch(N) = local(f, v);

f = ellsearch(N);

v = vector(0);

for(i = 1, length(f),

if(f[i][3]! = [], v = concat(v, f[i][3]), v = concat(v, [[0]])));

return(v);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ elljsearch(N)

\\ Lists the j-invariants for all curves of conductor N. If two curves

\\ having the same conductor have the same j value, they will just be

\\ quadratic twists of each other.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
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{

elljsearch(N) = local(f, v);

f = ellsearch(N);

v = vector(0);

for(i = 1, length(f), v = concat(v, (ellinit(f[i][1]).j)));

return(v);

}

Listing A.3: Functions Concerning EDSs & Related Seqences
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ elltoeds(e, p)

\\ Given as arguments an elliptic curve e, and a point p on e,

\\ outputs the first four terms of the elliptic curves associated

\\ elliptic sequence as a row vector.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

elltoeds(e, p) = local(a1, a2, a3, a4, a6, b2, b4, b6, b8, w);

if(ellisoncurve(e, p) == 0, print("Point p is not on curve.");

return(0));

a1 = e.a1; a2 = e.a2; a3 = e.a3; a4 = e.a4; a6 = e.a6;

\\ ai invariants of curve

b2 = e.b2; b4 = e.b4; b6 = e.b6; b8 = e.b8; \\ bi invariants of curve

w = vector(4);

w[1] = 1;

w[2] = 2 * p[2] + a1 * p[1] + a3;

w[3] = 3 * p[1]^4 + b2 * p[1]^3 + 3 * b4 * p[1]^2 + 3 * b6 * p[1] + b8;

w[4] = w[2] * (2 * p[1]^6 + b2 * p[1]^5 + 5 * b4 * p[1]^4

+ 10 * b6 * p[1]^3 + 10 * b8 * p[1]^2 + (b2 * b8 - b4 * b6)

* p[1] + b4 * b8 - b6^2);

return(w);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ elltodds(e, p, n)

\\ Returns a vector of the first n terms of the DDS associated to the

\\ points [n]p on an elliptic curve e.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

elltodds(e, p, n) = local(vec);

if(ellisoncurve(e, p) == 0, print("Point p is not on curve.");

return(0));

vec = vector(n);

for(i = 1, n,

vec[i] = round(sqrt(abs(denominator(ellpow(e, p, i)[1])))));
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return(vec);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ elltonormdds(e, p, n)

\\ Returns a vector of the first n terms of the normalised DDS

\\ associated to the points [n]p on an elliptic curve e.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

elltonormdds(e, p, n) = local(b1, vec);

if(ellisoncurve(e, p) == 0, print("Point p is not on curve.");

return(0));

b1 = round(sqrt(abs(denominator(p[1]))));

vec = vector(n);

for(i = 1, n,

vec[i] = round(sqrt(abs(denominator(ellpow(e, p, i)[1])))) / b1);

return(vec);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ edsrankofapp(e, p, l)

\\ Given an eds w and a prime l returns the index of the first zero

\\ modulo l. Modified from code of Stange's to incorporate a check up to

\\ the Hasse bound.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

edsrankofapp(e, p, l) = local(v, vp, X, Xbase, HB);

if(ellisoncurve(e, p) == 0, print("Point p is not on curve.");

return(0));

v = factor(denominator(p[1]));

\\ checks l not a prime factor of denominator of p[1]

vp = v[ , 1]~;

for(i = 1, length(vp),

if(l == vp[i], print("Prime divides denominator."); return(0), ));

w = elltoeds(e, p);

X = vector(5);

Xbase = vector(5);

HB = floor(2 * sqrt(l)) + l + 1;

if(isprime(l) != 1, print("Term not prime."); return(0); );

\\ 'X' stores at each round the most recent block of five terms

\\ Start with the terms of eds, plus the zeroth term,

\\ which is 0. Return index if a zero is found.

X[1] = 0;

for(i = 1, 4, X[i + 1] = w[i];

if(Mod(X[i + 1], l) == 0, return(i)));
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\\ 'Xbase' keeps a permanent record of these first five terms

\\ for use in the recurrence which checks up to the Hasse bound

Xbase = X;

for(i = 5, HB, X = edsblockincrement(X, Xbase);

if(Mod(X[5], l) == 0, return(i)));

return(0);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ edstau(e, p, l)

\\ Given an elliptic curve e, a point p on e, and a prime l returns the

\\ arithmetic period of the sequence.

\\ These use formulae due to M. Ward.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

edstau(e, p, l) = local(v, r, w, b, wn, ep, k, a, tau);

v = vector(5);

wn = vector(4);

r = edsrankofapp(e, p, l);

\\ Rank must be greater than 3

if(r <= 3,

if(debug, print("Rank of " l " is " r

". Rank must be greater than 3.")); return(0));

\\ l = 2 is not allowed explicitly and must be worked out for

\\ each of 2 possible cases

if(l == 2 && r == 4, return(1));

if(l == 2 && r == 5, return(1));

w = elltoeds(e, p);

if(debug, print("Normal EDS: " w));

b = round(sqrt(abs(denominator(p[1]))));

for(i = 1, 4, wn[i] = w[i] * b^(i^2 - 1));

if(debug, print("Normalised EDS: " wn));

ep = znorder(Mod(wn[2] / edsget(wn, r - 2), l));

k = znorder(Mod(edsget(wn, r - 1), l));

a = 0;

if(Mod(ep, 2) == 1 && Mod(k, 2) == 1, a = 1,

if(valuation(ep, 2) == valuation(k, 2), a = -1)); tau = 2^a * lcm(ep, k);

if(debug,

print1("Rank = " r ", Order W(2)/W(r-2) = " ep ", Order W(r-1) = "

k ", alpha = " a ", tau = " tau));

return(tau);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ edsperiod(e, p, l)
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\\ Given an elliptic curve e, a point p on e, edsperiod returns the

\\ rank, tau, and period of the sequence modulo a prime l.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

edsperiod(e, p, l) = local(r, tau, rt);

r = edsrankofapp(e, p, l);

if(r == 1, rt = 1; tau = 1);

if(r == 2, rt = edsperiodr(e, p, l); tau = rt / r);

if(r == 3, rt = edsperiodr(e, p, l); tau = rt / r);

if(r > 3, tau = edstau(e, p, l); rt = r * tau);

return([r, tau, rt]);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ edsperiodr(e, p, l)

\\ Returns the period of the sequence. Uses a linear method to calculate

\\ terms one after another until the period is found.

\\ 'Non-degerate' means the first, second, and third terms are non-zero.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

edsperiodr(e, p, l) = local(X, Xnew, Xbase, W);

X = vector(5);

Xnew = vector(5);

Xbase = vector(5);

W = elltoeds(e, p);

W = W * Mod(1, l);

\\ 'X' stores at each round the most recent block of five terms

\\ Start with the terms of eds, plus the zeroth term, which is 0.

X[1] = 0;

for(i = 1, 4, X[i + 1] = W[i]);

\\ 'Xbase' keeps a permanent record of these first five terms

\\ for use in the recurrence

Xbase = X;

\\ loop up to max of 10^8 searching for a zero

for(i = 1, 10^8, X = edsblockincrement(X, Xbase);

if(X == Xbase, return(i)));

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ edsperiodbndrt(e, p, bnd, rtbnd)

\\ Returns a vector of 2-vectors [l, [r(l), t(l), rt(l)]] for primes in

\\ the range l = 2 up to bnd, where r(l), t(l), rt(l) are the rank, tau,

\\ and arithmetic period of l respectively w.r.t the eds w. The function

\\ returns all vectors for which the arithmetic period rt(l) is < rtbnd.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{
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edsperiodbndrt(e, p, bnd, rtbnd) = local(epp, u);

epp = vector(0);

u = vector(0);

forprime(i = 1, bnd,

epp = concat(epp, [[i, edsperiod(e, p, i)]]));

for(j = 1, length(epp),

if(epp[j][2][3] < rtbnd,

u = concat(u,

[[prime(j), [epp[j][2][1], epp[j][2][2], epp[j][2][3]]]])));

return(u);

}

Listing A.4: Chinese Remainder Sieve Functions
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ chinchin(x, y)

\\ Input x = [x[1], x[2]], where x[1] is a vector of lifted intmods

\\ modulo m = x[2], and y is similar, with modulus n = y[2].

\\ gcdext(m, n) returns the vector [u, v, g] such that g is the

\\ gcd: mu + nv = gcd(m, n) = g (Bezout's identity).

\\ For those intmods in the same residue class modulo the gcd(m, n),

\\ i.e., if a = b (mod gcd(m, n)) then chinchin solves the

\\ system {z = a (mod m), z = b (mod n); which has as solution:

\\ z = (anv + bmu)/g (mod M), where M = lcm(m, n). (See proof below for

\\ an explanation.)

\\ chinchin first checks the sets of lifted intmods differ mod x[2], and

\\ if not returns the input. If they do differ chinchin then repeatedly

\\ works through each list of lifted intmods in x[1] and y[1] testing

\\ them to see if x[i] (Mod(G)) == y[j] (Mod(G)) (for index i in

\\ {1,..,length(x[1])}, and j in {1,..,length(y[1])}). If so the CRT

\\ can be used as explained above, and chinchin outputs the results as a

\\ sorted list of intmods modulo the lcm(m, n) = M.

\\ (Proof: mu + nv = g, so (mu + nv)/g = 1. Hence given the system

\\ {z = a (mod m), z = b (mod n); multiply by z to give

\\ (zmu + znv)/g = z. Now modulo m: (zmu + znv)/g = znv/g = z (mod m),

\\ and since z = a (mod m) we can replace z thus: anv/g = a (mod m).

\\ Similarly looking modulo n gives the result: bmu/g = b (mod n). Now

\\ if x is any solution we have x = z (mod m) and x = z (mod n) which

\\ implies m and n both divide x - z, and so M = lcm(m, n) divides

\\ x - z. This gives the general result as:

\\ z = (anv + bmu)/g (mod M)). q.e.d.)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

chinchin(x, y) = local(a, b, v, w, bez, g, M, crt, crts);

a = vector(0);

b = vector(0);

v = x[1];

w = y[1];

bez = gcdext(x[2], y[2]);
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g = bez[3];

if(debug, print("g is " g));

M = (x[2] * y[2]) / g; \\ lcm of x[2], y[2]

crt = vector(0);

if(debug, print("First check there is something to do."));

\\ if g = x[2] and the sets x[1] and y[1](mod x[2]) do not

\\ differ then return(y)

if(g == x[2],

if(setminus(Set(w * Mod(1, g)), Set(v)) == [], print("No!");

return(y)));

if(debug, print("Yes!"));

for(i = 1, length(v), a = v[i];

if(debug, print("The " i "th row of " length(v)));

for(j = 1, length(w), b = w[j];

if(Mod(a, g) == Mod(b, g),

crt = concat(crt, Mod(lift(a) + bez[1] * x[2] * (lift(b) - lift(a)) / g,

M)))));

if(debug, print(crt));

if(debug, print("Now time to sort."));

crts = vecsort(lift(crt));

return([crts * Mod(1, M), M]);

}

Listing A.5: Vector Comparison Functions
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ cutrep(x)

\\ Input vector x; cutrep strips any repetitions and outputs vector y.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

cutrep(x) = local(y, v, t);

y = vector(0);

t = 1;

for(i = 1, length(x), v = x[i]; t = 1;

for(j = 1, length(y),

if(y[j] == v, t = 0));

if(t == 1, y = concat(y, v)));

return(y);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ compare(x, c)

\\ Given a vector x = [v, m], where v = ellapfreyn(e, p, l) is a vector

\\ of integers, with m and c integers; m will in general be a modulus,

\\ and c a trace of an elliptic curve: c = ellap(Y[i][1], l).
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\\ compare(x, c) returns a 2-vector [w, m], where w is a concatenated

\\ (sorted) vector of lifts of the intmods Mod(i, m) when v[i] == c, and

\\ m = x[2].

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

compare(x, c) = local(w, v, m);

v = x[1];

m = x[2];

w = vector(0);

for(i = 1, length(v),

if(v[i] == c, w = concat(w, lift(Mod(i, m)))));

return([vecsort(w, , 8), m]);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ primeab(a, b)

\\ Given two integers a and b, primeab outputs the set of primes within

\\ the range [a, b].

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

primeab(a, b) = local(Q);

Q=vector(0);

for(i = a, b - 3,

Q = concat(Q, nextprime(i)));

return(vecsort(Q, , 8));

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ vecfactor(vec)

\\ Given a vector of n entries, returns the factorised entries.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

vecfactor(vec) = local(vf);

n = matsize(vec)[2];

vf = vector(n);

for(i = 1, n,

if(vec[i] == 1, vf[i] = [1, 1],

if(vec[i] == -1, vf[i] = [-1, 1], vf[i] = factor(vec[i]))));

return(vf);

}

Listing A.6: Newform Q-Series Coefficient Generation & Sieve Functions
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ ellapfreyn(e, p, l)

\\ Input an elliptic curve e, along with a point p on e, and l a prime.

\\ The function works out period = rt of the EDS w, along with the
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\\ coefficients An, and Cn modulo l of the rt amount of Frey curves:

\\ Y^2 = X^3 - 3 * An + 2 * Cn.

\\ The EDS is first taken term-by-term modulo l and screened for trivial

\\ cases, then generated for rt + 1 values. Then the intmods An are

\\ computed via the values of the EDS and the use of the division

\\ polynomial formula for Phin(p), and the scaling

\\ An(P) = Phin(P) * B1(P)^{2n^2}.

\\ The Cn are then computed using the defining equation of the Mordell

\\ curve: y^2 = x^3 + D, from the just computed An, along with the

\\ scaling: Psin(P) * B1(P)^{n^2}.

\\ Each of the Frey curves are then initialised in turn, and for each

\\ curve computes the trace at l and outputs these as a vector.

\\ When working out the trace, since the discriminant of the Frey curve

\\ is d = 2^6 * 3^3 * (An^3 - Cn^2), then we take the trace of

\\ Y^2 = X^3 - 3 * (An - l) + 2Cn,

\\ where it is understood An and Cn are taken modulo l as intmods,

\\ to force the curve to be nonsingular at l.

\\ Since the value Cn appears squared in the associated Diophantine

\\ equation, it is of no consequence if we take Cn = 1 (mod 4) when

\\ initiallising the Frey curve.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

ellapfreyn(e, p, l) = local(w, ep, D, r, rt, b1, W, a, b, c, ac, V, B);

w = elltoeds(e, p);

ep = edsperiod(e, p, l);

D = p[2]^2 - p[1]^3;

r = ep[1];

rt = ep[3];

b1 = Mod(round(sqrt(abs(denominator(p[1])))), l);

if(r == 1, \\ rank = 1 so all terms 0 mod l

W = vector(4) * Mod(0, l));

if(r == 2 && rt == 2, \\ rank = 2 so every second term 0 mod l

W = vector(4);

W[1] = Mod(w[1], l);

W[2] = Mod(w[2], l);

W[3] = Mod(w[3], l);

W[4] = Mod(w[4], l);

);

if(r == 2 && rt > 2, \\ rank = 2 so every second term 0 mod l;

W = vector(rt + 1); \\ set the first 4 terms then use recurrence

W[1] = Mod(w[1], l);

W[2] = Mod(w[2], l);

W[3] = Mod(w[3], l);

W[4] = Mod(w[4], l);

for(i = 5, rt + 1,

if(Mod(i, 2) == Mod(0, 2),

W[i] = Mod(0, l),

W[i] = - W[3] * W[1] * W[i - 2]^2 / W[i - 4])));
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if(r >= 3 && rt > 0, \\ w[1], w[2] mod l != 0 so

\\ can use edsgen directly.

W = edsgen(Mod(w, l), rt + 1));

a = vector(rt);

a[1] = Mod(numerator(p[1]), l);

for(i = 2, rt,

a[i] = (p[1] * W[i]^2 - W[i - 1] * W[i + 1]) * b1^(2 * i^2));

\\if(debug, print("An vector ", lift(a)));

c = vector(rt);

for(i = 1, rt,

c[i] = sqrt(a[i]^3 + D * (W[i] * b1^(i^2))^6));

ac = vector(0);

ac = lift([a, c]);

V = vector(rt);

for(i = 1, rt,

V[i] =

ellap(ellinit([0, 0, 0, -3 * (ac[1][i] - l), 2 * ac[2][i]]), l)

);

return(V);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ clnewform(e, p, Y, U, Q, l, bd)

\\ e and p are an elliptic curve-point pair,

\\ Y = ellinput(N, m), U = goodl(ellinit([0, 0, 0, 0, D], 1), p)

\\ Q = product of primes, l = prime, bd = bound.

\\ Returns a vector of indices modulo the period of the sequence for

\\ matching traces.

\\

\\ Program first checks l >= 5.

\\ Program then checks if l is a factor of the denominator of p[1], and

\\ if so skips this prime as we cannot use edsrankofapp in this case.

\\ clnewform uses the compare function to compare the traces at a prime

\\ l of the Frey curves, as given by ellapfreyn(e, p, l), with those of

\\ the set of elliptic curves of conductor N output by ellinput(N, m).

\\ Firstly it sets up the computation by disregarding any primes l with

\\ period M greater than the bound parameter bd.

\\

\\ The value Q is used by the program as another bound, this time in the

\\ size of the modulus the congruences are allowed to have. First it

\\ checks if gcd(Q, M) = 1, and if so returns Y.

\\

\\ If -1 is a square modulo l and all primes of bad reduction are

\\ squares modulo l then we can check the actual values of ellap with

\\ those traces of the Frey curves; otherwise we only check their

\\ absolute values.

\\

\\ The compare routine then outputs a 2-vector W of congruences W[1],
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\\ and a modulus W[2]. We now compute m = gcd(W[2], Q^20) and set this

\\ as the new modulus. W then has any repetitions removed by the cutrep

\\ routine, and is then sorted w.r.t order modulo m, and subsequently

\\ stripped of any equivalent congruences by the routine cutallmod to

\\ output the new W = [W[1], W[2]].

\\ Now the algorithm uses the Chinese Remainder Theorem (CRT) to compare

\\ the sets of congruences contained in W with those associated with

\\ each curve in Y; it does this with the chinchin function. If we are

\\ lucky the output of chinchin is empty and we have lost a curve

\\ (equivalently a newform by modularity!), but if not we invoke

\\ cutallmod on the remaining congruences, and then concat them into a

\\ new vector with the associated form and modulus.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

clnewform(e, p, Y, U, Q, l, bd)

= local(v, vp, D, ep, r, M, n, H, W, m, G, g, X, Z);

if(l == 2 || l == 3, return(Y), ); \\ checks l >= 5

v = factor(denominator(p[1]));

\\ checks l not a prime factor of denominator of p[1]

vp = v[ , 1]~;

for(i = 1, length(vp),

if(l == vp[i], return(Y), ));

b = elltoeds(e, p);

ep = edsperiod(e, p, l);

r = ep[1];

M = ep[3];

if(debug, print("Start testing for prime " l "; period is " M "

which factorizes as " factor(M)));

if(M > bd, if(debug, print("Period is larger than the bound " bd "

so skip this one."); return(Y)));

n = gcd(M, Q^20);

if(n == 1, if(debug, print("No Q-part.")); return(Y));

H = vector(0);

W = vector(0);

if(debug, print("Call ellapfreyn."));

X = ellapfreyn(e, p, l);

for(i = 1, length(Y),

if(debug, print("We are testing the " i "th form."));

if(debug, print("Call compare."));

\\ If -1 is a square mod l and all primes of bad

\\ reduction are squares mod l then we can check the

\\ actual values of ellap; otherwise only check

\\ their absolute values.

if(setsearch(U[1], lift(Mod(l, U[2]))) > 0,

if(debug, print("Test actual value."));

W = compare([X, M], ellap(Y[i][1], l)),

if(debug, print("Test absolute value."));
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W = compare([abs(X), M], abs(ellap(Y[i][1], l))));

if(debug, print("W is of length " length(W[1]) " and modulo " W[2]));

m = W[2];

n = gcd(m, Q^20);

m = n;

W = [vecsort(lift(cutrep(W[1] * Mod(1, m)))) * Mod(1, m), m];

if(debug, print("After vecsort, W is of length "

length(W[1]) " and modulo " W[2]));

W = cutallmod(W, 100); \\ strips any equivalent congruences

if(debug, print("After cutting, W is of length " length(W[1]) "

and modulo " W[2]));

m = W[2];

g = Y[i][3];

Z = chinchin(W, [Y[i][2], g]);

if(Z[1] != [], if(debug, print("Call cutallmod."));

G = cutallmod(Z, 100); if(debug, print("Call concat: too bad."));

H = concat(H, [[Y[i][1], G[1], G[2]]]),

if(debug, print("We have just lost the form " Y[i]));));

return(H);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ clnewformall(e, p, Y, Q, L, M, bd)

\\ e, p, Y, Q, bd are as in clnewform; see there for description.

\\ L and M give lower and upper limits resp. for range of primes to

\\ use in clnewform.

\\ For each form there in Y there is initially one defining congruence.

\\ Whenever clnewform is run at a prime l, after the algorithm completes

\\ if any forms remain they make up the output, along with all the extra

\\ congruences that are generated to the new modulus.

\\ This output has the same form as the 3-vector Y, and we now rerun

\\ clnewform on it at the next prime. Doing so we seek to elliminate all

\\ newforms if possible, or get increased strengthing of our congruences

\\ of the index n.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

clnewformall(e, p, Y, Q, L, M, bd) = local(D, U);

D = p[2]^2 - p[1]^3; \\ D = Mordell curve a6 invariant

U = goodl(ellinit([0, 0, 0, 0, D], 1), p);

forprime(l = L, M, Y = clnewform(e, p, Y, U, Q, l, bd);

if(Y == [], print("Finished at prime " l "."); return(Y););

if(debug, print("We are at prime " l " and there are " length(Y[1][2]) "

congruence possibilities."));

if(length(Y[1][2]) > 1,

if(debug, print("The minimum value is " Y[1][2][2] "

where the modulo factorizes as " factor(Y[1][3])))));

return(Y);

}
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\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ tracecl(e, p, Np, bnd)

\\ Input elliptic curve e, point p, level Np, lower bound 5, and upper

\\ bound bnd.

\\ tracecl tests for Frey curve traces = +/-1, indicating multiplicative

\\ reduction, then computes the difference

\\ a_l(E_{W,n}) * (l + 1) - c_l(f_i)

\\ for the multiplicative reduction case; otherwise computes the

\\ difference a_l(E_{W,n}) - c_l(f_i) in the good reduction case, and in

\\ both cases factors the results to show which primes p have E_{B,n}

\\ arise modulo p from the newform in question. The lower bound is

\\ hardcoded as 5, since this is the least prime we must check.

\\ This difference in the trace of Frey curve and newform coefficient is

\\ in accord with the theorem of Kraus and Oesterle and outputs primes

\\ we cannot deal with as explained in Proposition 8.5.1 of the thesis.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

tracecl(e, p, Np, bnd) = local(Y, X, PG, PM, P, pgm, L);

Y = ellinput(Np);

P = vector(0);

PG = vector(0);

PM = vector(0);

pgm = vector(0);

L = bnd;

\\ First test for Frey curve traces al(E{Wn}) = +/-1, indicating

\\ multiplicative reduction, then find the difference of the trace

\\ of the Frey curve and newform coefficient in accord with Kraus

\\ and Oesterle.

forprime(l = 5, L, X = vecsort(cutrep(ellapfreyn(e, p, l)));

if(debug, print1("Frey curve traces for " l ":" X));

for(i = 1, length(X),

for(j = 1, length(Y), if(X[i] == 1 || X[i] == -1,

PM = vecsort(concat(PM, abs(X[i] * (l + 1) - ellap(Y[j][1], l))), , 8),

PG = vecsort(concat(PG, abs(X[i] - ellap(Y[j][1], l))), , 8)))););

if(debug, print1("Multiplicative reduction case: " PM));

if(debug, print1("Good reduction case: " PG));

P = vecsort(concat(PM, PG), , 8);

\\if(debug, print("Difference: " P));

for(i = 1, length(P),

if(P[i] != 0, pgm = concat(pgm, factor(abs(P[i]))[ , 1]~)));

return(vecsort(pgm, , 8));

}

Listing A.7: Functions to Shrink the Dimension of Vectors of Intmods
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ cutmod(x, p)

\\ Checks if the gcd of the length l of vector v = x[1] and the modulus
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\\ m = x[2] is 0 mod p, and if so sets m and l to m/p, l/p resp. Then

\\ starts a loop to check whether intmods mod p, from v[1] to v[l] equal

\\ the l blocks of intmods mod p starting from v[1 + l] up to

\\ v[l + l * (p - 1)], (where l = l/p is the 'new' l). If so returns the

\\ vector of shortened intmods modulo the smaller modulus.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

cutmod(x, p) = local(v, m, y, l);

v = x[1];

m = x[2];

l = length(v);

while(Mod(gcd(m, l), p) == Mod(0, p),

m = m / p;

l = l / p;

y = vector(0);

for(i = 1, l,

for(j = 1, p - 1,

if(Mod(v[i], m) != Mod(v[i + l * j], m),

return([v, p * m])));

y = concat(y, Mod(v[i], m)));

v = y;

);

return([v, m]);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ cutallmod(x, n)

\\ cutallmod calls cutmod for each prime in range 1 to n.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

cutallmod(x, n) = forprime(i = 1, n, x = cutmod(x, i));

return(x);

}

Listing A.8: Functions to Calculate the Conductor
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ rad23(D)

\\ Given an integer D, returns the radical of D less any factors 2 and 3.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

rad23(D) = local(rad23, r23);

rad23 = [];

Df = factor(abs(D));

for(i = 1, length(Df[ , 1]~),

if(Df[, 1]~[i] != 2 && Df[ , 1]~[i] != 3,
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rad23 = concat(rad23, Df[ , 1]~[i])));

if(debug,

print("Radical{2, 3}("D") prime factors are " rad23));

r23 = 1;

for(i = 1, length(rad23), r23 = r23 * rad23[i]);

return(r23);

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ f2(p)

\\ Gives the exponent f2 of the factor 2 of the conductor, N, of an

\\ elliptic Frey curve associated to a Mordell curve E_D, and point p

\\ on E_D. First checks that v_2(D) < 6. Next checks if B1 is even, and

\\ if so sets f2 = 1. If not it then checks valuation v_2(D)

\\ against the tables along with any conditions on the initial point.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

f2(p) = local(D, a, b, c, f2);

D = p[2]^2 - p[1]^3;

if(valuation(D, 2) >= 6,

print("D has to be 6th power free."); return(0));

if(ellisoncurve(ellinit([0, 0, 0, 0, D]), p) == 0,

print("Point p is not on curve."); return(0));

f2 = [];

\\ Setup A1, B1, C1

a = numerator(p[1]);

b = round(sqrt(abs(denominator(p[1]))));

c = numerator(p[2]);

\\if(debug, print("[A, B, C] = " [a, b, c]));

\\ If b is even, then every multiple of p has Bn even;

\\ then since a, b, c are pairwise coprime, An, and Cn

\\ are both odd for all n, and it doesn't matter about

\\ the parity of D in this case, and f2 = 1 in all cases.

if(Mod(b, 2) == 0, f2 = [1]; return(f2));

\\ Set f2 = 1 to cover general case when Bn even.

f2 = [1];

if(valuation(D, 2) == 1, f2 = concat(f2, [7]));

if(valuation(D, 2) == 2, f2 = concat(f2, [2, 3, 4]));

if(valuation(D, 2) == 3, f2 = concat(f2, [5]));

if(valuation(D, 2) == 4, f2 = concat(f2, [3]));

if(valuation(D, 2) == 5, f2 = concat(f2, [3]));

if(Mod(D, 8) == 1 && Mod(a, 2) == 0, f2 = concat(f2, [6]));

if(Mod(D, 4) == 1 && Mod(c, 2) == 0, f2 = concat(f2, [5]));

if(Mod(D, 4) == 3, f2 = concat(f2, [6]));
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return(vecsort(f2, ,8));

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ f3(p)

\\ Gives the exponent f3 of the factor 3 of the conductor, N, of an

\\ elliptic Frey curve associated to a Mordell curve E_D, and point pnt

\\ on E_D. First checks that v_3(D) < 6. If 3 divides B_1, 3 divides

\\ B_n for all terms and so exits with f3 =2.

\\ If not 3 divides B_n at some point so set f2 = [2] for this

\\ possibility. Now checks valuation v_3(D)

\\ against the tables along with any conditions on the initial point.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

f3(p) = local(D, a, b, c, c4, c6, c42, c63, f3, P2);

D = p[2]^2 - p[1]^3;

if(valuation(D, 3) >= 6,

print("D has to be 6th power free."); return(0));

if(ellisoncurve(ellinit([0, 0, 0, 0, D]), p) == 0,

print("Point p is not on curve."); return(0));

f3 = [];

a = numerator(p[1]);

b = round(sqrt(abs(denominator(p[1]))));

c = numerator(p[2]);

\\ If 3 divides b, then every multiple of pnt has b

\\ divisible by 3, then since a, b, c are pairwise

\\ coprime, 3 never divides An, Cn.

if(Mod(b, 3) == 0, f3 = [2]; return(f3));

\\ Set f3 = 2 to cover general case when 3\mid Bn.

f3 = [2];

if(valuation(D, 3) == 1, f3 = concat(f3, [4]));

if(valuation(D, 3) == 2, f3 = concat(f3, [3]));

if(3 <= valuation(D, 3) <= 5, f3 = concat(f3, [2]));

\\ Test for Papadopolous's condition P2.

\\ Set P2 = 1 if P2 is satisfied, and P2 = 0 if not.

c4 = 2^4 * 3^2 * a;

c6 = 2^6 * 3^3 * c;

c42 = c4 / 3^2;

c63 = c6 / 3^3;

v3c4 = valuation(c4, 3);

v3c6 = valuation(c6, 3);

if(v3c4 >= 2 && v3c6 == 3 &&

Mod(c63^2 + 2 - 3 * c42, 9) == 0, P2 = 1, P2 = 0);

if(debug, print("P2 " P2));

if(Mod(D, 3) == 1 && Mod(a, 3) == 0 && P2 == 1,
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f3 = concat(f3, [2]), f3 = concat(f3, []));

if(Mod(D, 3) == 1 && Mod(a, 3) == 0 && P2 == 0,

f3 = concat(f3, [3]), f3 = concat(f3, []));

if((Mod(D, 9) == 1 || Mod(D, 9) == -1) && Mod(c, 3) == 0,

f3 = concat(f3, [2, 3]));

if(Mod(D, 3) == 2,

if(P2 == 1, f3 = concat(f3, [2]), f3 = concat(f3, [3])));

return(vecsort(f3, , 8));

}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ ellmordnp(p)

\\ Gives the conductor, Np, after level lowering of an elliptic curve e.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

{

ellmordnp(p) = local(D, np, f2D, f3D, r23);

D = p[2]^2 - p[1]^3;

np = vector(0);

f2D = f2(p);

f3D = f3(p);

r23 = rad23(D);

if(debug, print("f2D: " f2D));

if(debug, print("f3D: " f3D));

for(i = 1, length(f2D),

for(j = 1, length(f3D),

np = concat(np, 2^f2D[i] * 3^f3D[j] * r23)));

if(debug, print("Lowered level: " np));

return(vecsort(np, , 8));

}

Listing A.9: Functions to Calculate EDSs by K. Stange
edstools.gp

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ edsblockincrement(wb, w)

\\ Given an eds w in the form of a vector of five terms

\\ (0th through 4th terms) or four terms (1st through 4th), and a block

\\ of length five in that eds, it calculates the block shifted one to the

\\ right. The sequence must be non-degenerate.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ edsgen(ws, len)
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\\ Given an eds ws = [w1, w2, w3, w4] computes the first len terms.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ edsblockships(w, len)

\\ Given an eds w and an integer len, returns a vector of length 5

\\ containing the terms len - 5 up through len of the sequence.

\\ Uses Shipsey's double-and-add method to generate the final terms in

\\ O(log (len)) time. Very fast. Accepts negative len.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

These are available as Pari/GP scripts at:
http://math.colorado.edu/~kstange/scripts.html

The file edstools.gp gives a number of Pari/GP programs for the evaluation
of EDSs.

http://math.colorado.edu/~kstange/scripts.html


Notation

+, − addition and negation on an elliptic curve, 14
a1, . . . , a6 coefficients of a general Weierstrass equation,

10
a`(E) trace of Frobenius of E at a prime `, 32
An affine n space, 5
An(K) set of K rational points of An, 5
∼p arises modulo p, 86
b1, . . . , b8 quantities associated to a Weierstrass equa-

tion, 10
c4, c6 quantities associated to a Weierstrass equa-

tion, 11
c4,k, c6,k c4,k = c4/3k and c6,k = c6/3k, 92
χ(p, q, r) characteristic of a ternary Diophantine equa-

tion, 94
C(Λ) the field of elliptic functions for the lattice Λ,

39
c`(f) the `th Fourier coefficient of a newforms q-

expansion, 81
Γ0(N) congruence subgroup, 81
C(K) the set of K rational points on the algebraic

curve C/K, 6
(Bn) denominator divisibility sequence, 75
deg(D) degree of a divisor, 9
∆, ∆(E) elliptic discriminant, 11
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∆min minimal discriminant of an elliptic curve E,
29

Div(C) divisor group of a curve, 9
Ψn, Φn, Ωn nth division polynomials, 46
Ψ̂n, Φ̂n, Ω̂n nth scaled division polynomials, 77
div(f) divisor of the function f , 9
E1(K) kernel of reduction modulo a prime p, 30
Ens nonsingular part of a Weierstrass equation, 19
E0(K) set of points of E(K) with nonsingular reduc-

tion, 30
E(d) quadratic twist of elliptic curve E by d, 35
Ẽ reduction of the elliptic curve E modulo p, 29
Etors torsion subgroup of the elliptic curve E, 21
E[m] m-torsion subgroup of the elliptic curve E, 21
ED Mordell elliptic curve: Y 2 = X3 +D, 102
(Wn) elliptic divisibility sequence, 60
EB,n the Frey curve associated to an EDS, 110
EW,n the twist of the Frey curve EB,n, 121
E(K) group ofK-rational points on the elliptic curve

E/K, 14
∅ the empty set, 129
f2, f3 exponents of 2, and 3 in level lowered conduc-

tor Np, 96
FE,P the finite set of rational newforms of levels NE

corresponding to curve-point pair (E,P ), 128
Fp finite field of p elements, 30
f newform of weight 2 without character on

Γ0(N), 81
g2, g3 Eisenstein series 60G4 and 140G6, 39
G2k Eisenstein series of weight 2k, 38
Gal(L/K) the Galois group of L/K, 82
g genus of an algebraic curve, 7
j, jE j-invariant of an elliptic curve E, 11
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K(C) function field of algebraic curve C, 6
K(E) function field of elliptic curve E, 17
K a number field, 5
K̄ an algebraic closure of K, 5
Λ lattice: 〈ω1, ω2〉 ⊂ C, 37
Λτ normalised lattice: 〈1, τ〉 ⊂ C, 37(
a
p

)
Legendre symbol, 36

MP ideal associated to point P , 8
M(P ) lcmp∈P(r(P, p)), 77
M(`) period of eds modulo a prime `, 129
[m] multiplication-by-m map, 15
N , NE conductor of an elliptic curve, 31
Np level lowered conductor, 85
η(ω) quasiperiod associated to the period ω, 41
O the identity element of an elliptic curve, 10
O(1) a bounded function, 151
ω1, ω2 the periods of a rank 2 lattice, 36
π`(Wn) period of eds modulo a prime `, 71
Pn projective n space, 7
Pn(K) set of K rational points of Pn, 7
P̃ reduction of the point P modulo p, 29
q abbreviation for e2πiτ , 81
Qopt optimal Q-part, 137
rad radical of an integer, 92
r rank of elliptic curve, 24
r(`) rank of apparition of prime `, 69
rp reduction map at prime p, 32
R the ring of integers of a field K, 23
RS the ring of S-integers of a field K, 23
r(P, p) order of P in finite group E(Qp)/E0(Qp), 77
Sf,L intersection of sets Sf,`i , where `i ∈ L, 129
Sf,` set of congruence conditions for rational new-

form f modulo M(`), 128
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τ(`) τ -function evaluated at prime `, 71
T` finite list of possible traces at `, 129
vp(a) vauation of a at prime p, 58
x, y Weierstrass coordinate functions, 17
℘(z) Weierstrass ℘-function, 38
σ(z) Weierstrass σ-function, 42
ζ(z) Weierstrass ζ-function, 41
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g2, g3, 39
isogeny, 25, 89, 103
p-isogeny, 87
dual isogeny, 25
inseparable, 25
purely inseparable, 25

isomorphic, 13, 20
j-invariant, 11
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minimal Weierstrass equation, 28
modular elliptic curve, 84
Mordell curve, 121
quadratic twist, 13, 35, 122
rank, 24
reduction
additive reduction, 34
good reduction, 123
nonsplit multiplicative reduction,
34

split multiplicative reduction, 34
semistable, 31, 85
singular curve
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