
Time Series Classification through
Transformation and Ensembles

Jason Andrew Lines

A Thesis Submitted for the
Degree of Doctor of Philosophy

University of East Anglia
School of Computing Sciences

February 2015

c©This copy of the thesis has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with the author and that use of any
information derived there from must be in accordance with current UK Copyright Law.
In addition, any quotation or extract must include full attribution.

Abstract

The problem of time series classification (TSC), where we consider any real-valued or-
dered data a time series, offers a specific challenge. Unlike traditional classification
problems, the ordering of attributes is often crucial for identifying discriminatory fea-
tures between classes. TSC problems arise across a diverse range of domains, and this
variety has meant that no single approach outperforms all others.

The general consensus is that the benchmark for TSC is nearest neighbour (NN)
classifiers using Euclidean distance or Dynamic Time Warping (DTW). Though concep-
tually simple, many have reported that NN classifiers are very difficult to beat and new
work is often compared to NN classifiers. The majority of approaches have focused on
classification in the time domain, typically proposing alternative elastic similarity mea-
sures for NN classification. Other work has investigated more specialised approaches,
such as building support vector machines on variable intervals and creating tree-based
ensembles with summary measures.

We wish to answer a specific research question: given a new TSC problem without
any prior, specialised knowledge, what is the best way to approach the problem? Our
thesis is that the best methodology is to first transform data into alternative represen-
tations where discriminatory features are more easily detected, and then build ensemble
classifiers on each representation. In support of our thesis, we propose an elastic ensemble
classifier that we believe is the first ever to significantly outperform DTW on the widely-
used UCR datasets. Next, we propose the shapelet-transform, a new data transformation
that allows complex classifiers to be coupled with shapelets, which outperforms the orig-
inal algorithm and is competitive with DTW. Finally, we combine these two works with
with heterogeneous ensembles built on autocorrelation and spectral-transformed data to
propose a collective of transformation-based ensembles (COTE). The results of COTE
are, we believe, the best ever published on the UCR datasets.

i

Acknowledgements

First and foremost I would like to thank my supervisor, Dr. Anthony Bagnall, and my
family. Without Tony’s invaluable advice and guidance, and the continued support and
encouragement from my parents and close family, the work in this thesis would not have
been possible.

I would like to thank my examiners, Prof. Niall Adams and Dr. Beatriz de la Iglesia,
for their patience and insight while examining this thesis. I would also like to thank
Tony’s other PhD students during my study, Jon and Luke, and my second supervisor,
Dr. Richard Harvey. Additional thanks go to my peers at UEA, particularly those
who I shared a lab with for four years (and everyone in the graphics lab since I spent
as much time in there too!). I’d also like to thank all of the staff and students in the
School of Computing Sciences at UEA who have supported me throughout my studies.
Special mentions go to Felix and Dom for being a constant source of entertainment and
distraction, Ollie for providing the cake and enough surreal moments to last a lifetime,
Luke for his 80’s pop-rock outbursts, and everyone from CMP and ITCS that played
football on Thursdays.

Finally, I’d like to thank some important people outside of university. Thank you
to Shane Migliore and everyone at Apple for helping make Austin my home for four
months at the end of my PhD. As well as new friends, I’d like to thank those who have
always been there for me. In particular, thank you to Bedford, Beth, Danny, David,
Emma, Faires, James, Jim, and Sarah. Without you, I would have gone crazy a long
time ago. Also, thank you to Freddie and Ollie (my dogs) for not eating my thesis, and
a special thank you to my mother for painstakingly helping me with the final round of
proofreading!

In loving memory of Kenneth Thomas Deare.

ii

Contents

Acknowledgements ii

List of Publications v

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 3
1.3 Thesis Organisation . 6

2 Technical Background and Related Work 7
2.1 Time Series Classification . 7
2.2 Comparing Classifiers . 9
2.3 Nearest Neighbour Classification in the Time Domain 11

2.3.1 k -Nearest Neighbour (k -NN) Classifiers 12
2.3.2 Euclidean Distance . 12
2.3.3 Dynamic Time Warping . 13
2.3.4 Derivative Dynamic Time Warping 16
2.3.5 Weighted Dynamic Time Warping 17
2.3.6 Longest Common Subsequence Distance 17
2.3.7 Edit Distance with Real Penalty 19
2.3.8 Time-Warp Edit Distance . 20
2.3.9 Move-Split-Merge . 20

2.4 Standard Classification Algorithms . 22
2.4.1 Näıve Bayes . 23
2.4.2 C4.5 Decision Tree . 23
2.4.3 Support Vector Machine . 24
2.4.4 Random Forest . 25
2.4.5 Rotation Forest . 26

2.5 Ensemble Classifiers . 26
2.5.1 Bagging . 27
2.5.2 Boosting . 27
2.5.3 Other Ensembles in the TSC Literature 28
2.5.4 A Simple Heterogeneous Ensemble 28

iii

2.5.5 Heterogeneous Ensembles in the Time Domain 30
2.6 Time Series Transformations . 31

2.6.1 Summary Statistics and Feature Extraction 31
2.6.2 Compression/Approximation-based Transforms 33
2.6.3 Transformation into Alternative Data Spaces 35

3 Data 37
3.1 UCR Time Series Data Repository . 37
3.2 Electricity Consumption Problems . 38

3.2.1 Visual Energy Trail (VET) Data 39
3.2.2 Household Energy Study (HES) Data 41

3.3 Hand Outline Datasets . 42
3.3.1 Data Preparation . 42

3.4 MPEG-7 Problems . 45
3.5 Caenorhabditis elegans . 46

4 Time Series Similarity with Alternative Representations 49
4.1 Global Similarity in Shape: Power Spectrum 50

4.1.1 Motivational Example: Electrical Devices 51
4.2 Local Similarity in Shape: Shapelets . 51

4.2.1 Shapelet Extraction . 53
4.2.2 Assessing Shapelet Candidates . 54
4.2.3 Shapelet Similarity . 54
4.2.4 Shapelet Quality Measures . 54
4.2.5 Example: MPEG7 Data . 57

4.3 Similarity in Change: Autocorrelation Transform 57

5 Time Domain Classification: Current Benchmarks and a New State-
of-the-art 62
5.1 Datasets . 64
5.2 Nearest Neighbour Classification: Hard to beat, or a misconception? . . . 64

5.2.1 Experimental Procedure . 65
5.2.2 Results . 66

5.3 Configuring Distance Measures with Nearest Neighbour Classifiers 67
5.3.1 Setting the Number of Neighbours 68
5.3.2 Parameterising Distance Measures 70
5.3.3 Concluding Remarks . 71

5.4 Comparison of Elastic Distance Measures 72
5.4.1 Elastic Measure Experimental Design 72
5.4.2 Classification Results . 73
5.4.3 A Priori Detection of the Best Measure 75
5.4.4 Timing Comparison . 78

5.5 Combining Elastic Measures: The Elastic Ensemble 78
5.5.1 Measure Divergence . 80

iv

5.5.2 Ensemble Design . 80
5.5.3 Elastic Ensemble Results . 82
5.5.4 Elastic Ensemble vs. Other Approaches 84

5.6 Conclusions . 87

6 Shapelet Domain Classification: The Shapelet Transform 89
6.1 Introduction . 89
6.2 Datasets . 91
6.3 The Shapelet Transform . 92

6.3.1 Extracting the k Best Shapelets 92
6.3.2 Data Transformation . 94
6.3.3 Setting k in the Shapelet Transform 95
6.3.4 Setting Shapelet Length Parameters 96

6.4 Alternative Shapelet Quality Measures . 97
6.5 Experimental Design . 101
6.6 Results . 101

6.6.1 Embedded Shapelets vs. Transformed Shapelets 101
6.6.2 Using F-stat with the Shapelet Transform 103
6.6.3 Alternative Classifiers with Shapelet-transformed Data 105
6.6.4 Shapelet Selection . 107
6.6.5 Exploratory Data Analysis . 107
6.6.6 Comparison to Alternative Approaches 110

6.7 Conclusions . 112

7 The Collective of Transformation-based Ensembles 114
7.1 Datasets . 115
7.2 Transformation-based Ensembles . 116

7.2.1 Heterogeneous Ensemble . 116
7.2.2 Time Domain Classification with the Elastic Ensemble 118

7.3 Results Using a Single Ensemble: Flat-COTE 118
7.4 Case Study: Classifying Caenorhabditis elegans 121
7.5 Comparison to Other Approaches . 122
7.6 Alternative Ensemble Designs . 127

7.6.1 Best Internal Ensemble . 127
7.6.2 Weighted Internal Ensembles . 129
7.6.3 Subset of Internal Ensembles . 131

7.7 Conclusion . 132

8 Conclusions and Future Work 134
8.1 Discussion of Contributions . 135
8.2 Future Work and Extensions . 136

Bibliography 138

v

List of Publications

As First Author

• Jason Lines, Anthony Bagnall, Patrick Caiger-Smith, and Simon Anderson.
Classification of household devices by electricity usage profiles. In Intelligent Data
Engineering and Automated Learning-IDEAL 2011, pages 403–412. Springer Berlin
Heidelberg, 2011.

• Jason Lines, Luke M Davis, Jon Hills, and Anthony Bagnall. A shapelet transform
for time series classification. In Proceedings of the 18th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 289–297.
ACM, 2012.

• Jason Lines and Anthony Bagnall. Alternative quality measures for time series
shapelets. In Intelligent Data Engineering and Automated Learning-IDEAL 2012,
pages 475–483. Springer Berlin Heidelberg, 2012.

• Jason Lines and Anthony Bagnall. Ensembles of elastic distance measures for time
series classification. In Proceedings of the 14th SIAM International Conference on
Data Mining (SDM), pages 524–532. 2014.

• Jason Lines and Anthony Bagnall. Time series classification with ensembles of
elastic distance measures. Data Mining and Knowledge Discovery, pages 1–28,
2014.

As Co-author

• Anthony Bagnall, Luke M Davis, Jon Hills, and Jason Lines. Transformation
based ensembles for time series classification. In Proceedings of the 12th SIAM
International Conference on Data Mining (SDM), pages 307–318. SIAM, 2012.

• Luke M Davis, Barry-John Theobald, Jason Lines, Andoni Toms, and Anthony
Bagnall. On the segmentation and classification of hand radiographs. International
Journal of Neural Systems, 22(05), 2012.

• Jon Hills, Jason Lines, Edgaras Baranauskas, James Mapp, and Anthony Bag-
nall. Classification of time series by shapelet transformation. Data Mining and
Knowledge Discovery, 28(4):851–881, 2014.

vi

Chapter 1

Introduction

Time series data, which we consider as any real-valued ordered data, arise across many

domains. These include, but are not limited to: econometrics, medicine, weather, motion

capture, image processing, computational biology, signal processing, and pattern recog-

nition. The problem of time series classification (TSC) is a specialisation of the more

general classification problem; the objective of classification is, given a new test instance

of data, can the category, or class, of this observation be determined from characteristics

that have been extracted from a set of previously observed training data with known

class labels?

To an extent, all classification problems rely on identifying explanatory features

within the data, then using a measure of similarity to quantify the relationships between

them to inform the decision process. TSC offers a specific challenge, as the ordering

of the data may be crucial in discriminating between class values. For example, the

data may have an embedded structure, such as autocorrelation, or trends. To this end,

traditional classification approaches may not be best suited to TSC problems. This

has prompted many different approaches for solving TSC problems to be proposed in

the literature [9, 58, 20, 49, 107, 80, 106, 50, 55]. These range from the most generic

end of the spectrum (using standard classification algorithms on time series data and

ignoring the dependency between attributes), to the most specialised (creating bespoke

problem-specific solutions). There are also many other solutions in between, such as

using support vector machines built on variable intervals [93], or tree-based ensembles

built on summary measures [34].

However, it has been observed many times in the literature that, in general, a nearest

neighbour classifier using a measure of time series similarity is very difficult to beat. This

is noted succinctly by Batista et al. [10], who state that ‘there is a plethora of classifica-

1

CHAPTER 1. INTRODUCTION 2

tion algorithms that can be applied to time series; however, all of the current empirical

evidence suggests that simple nearest neighbour classification is very difficult to beat ’. One

of the simplest approaches for solving TSC problems is to to use a one-nearest neighbour

(1-NN) classifier with Euclidean distance. However, the widely-accepted benchmark in

TSC currently is to use a 1-NN classifier coupled with Dynamic Time Warping (DTW)

with a warping window set through cross-validation (CV) [21, 47, 34].

1.1 Motivation

Given a new TSC problem to solve, the optimal solution will most likely be achieved by

creating a custom, bespoke solution that is tailor-made to the problem at hand. However,

this approach is typically very time and resource consuming, and will likely result in a

solution that is very difficult (or impossible) to generalise to other problems. The no free

lunch theorem [105] applies to many fields, and TSC is not immune; there is no single

solution that is optimal for all problems. As already discussed, the literature argues

that, in general, nearest neighbour classification is very difficult to beat, and DTW with

a 1-NN classifier is considered the current gold-standard for TSC. With this in mind,

when presented with a new TSC problem the sensible approach would be to build a NN

classifier with DTW. However, we believe this approach is näıve.

Firstly, there are many different types of similarity that can be observed between

time series data. For example, series could change at similar points in time (time-

based similarity), or they could have similar underlying curves or trends (global shape-

based similarity). Also, the series could be similar in the ways that they change due to

their internal structures, such as the autocorrelation of the series and how the values

of subsequent readings are influenced by previous readings (change-based similarity).

Additionally, the presence of localised common subsequences could be indicative of class

membership. An approach using 1-NN and DTW would be well suited to measuring

time-based similarity, but may struggle to identify the best discriminatory features in

the other three cases. It would therefore be desirable if we could determine a priori

which type of similarity should be used for a new problem.

Secondly, even if using a simple 1-NN approach, there are many alternative similarity

measures that have been proposed in the literature that could be used in place of DTW.

Many are claimed to be at least as effective as DTW, and in some cases it is stated that

the alternatives are more effective. However, evaluation methods are inconsistent and are

sometimes based on simple head-to-head results and anecdotal evidence. It is currently

unclear whether any alternatives are truly more effective than DTW, but it is clear that

CHAPTER 1. INTRODUCTION 3

various alternatives capture similarity differently to DTW (for example, edit distance-

based approaches [25, 26, 79]). It would be desirable to know in advance whether DTW

is the most appropriate measure to use with a 1-NN classifier for a given problem, or

even if it is possible to combine the output of multiple measures to make a more diverse

and informed decision. This leads to the research question that has influenced the work

throughout this thesis: given a new TSC problem with no prior, specialised knowledge,

what is the best way to approach classification?

In [3], it was shown that a simple way to gain improvement in TSC problems is to

transform data into alternative domains where where discriminatory features are more

easily detected. We use this as a starting point; our thesis is that the best way to ap-

proach a TSC problem without any prior specialised knowledge is to first transform data

into alternative representations where discriminatory features are more easily detected.

This would potentially allow algorithms to not only measure similarity between series in

the time domain, but also consider similarity in change, global-shape, and local-shape.

Then, we believe that through using transparent ensemble schemes, we can build en-

semble classifiers in each of these domains to form constituent ensembles in a diverse

collective of transformation-based ensembles. Many algorithms embed data transforma-

tion within classification algorithms. We believe that by transforming data independently

of classifiers, and by utilising simple ensemble voting schemes, we can produce a very ac-

curate and transparent classifier that can outperform the benchmark set by DTW 1-NN,

and provide a framework that can easily be extended in future work to add additional

classification algorithms and data representations.

1.2 Contributions

In pursuit of providing support for our thesis, numerous experiments were carried out

and novel algorithms were proposed. The main contributions of this thesis are as follows:

• Time series classification in the time domain. An extensive study was carried

out using 75 datasets to evaluate whether DTW with warping set through cross-

validation (DTWCV) is still the benchmark for TSC. Initially this investigation

focused on whether DTW was hard to beat through a comparative study between

various standard classification algorithms and 1-NN classifiers implemented using

Euclidean distance and DTW with a full window. After establishing that none of

these classifiers significantly outperformed DTW, an investigation was carried out

to determine the best configuration for DTW with NN classifiers, including whether

CHAPTER 1. INTRODUCTION 4

the neighbourhood size of the NN classifier or window width of the DTW measure

should be set through cross-validation. After answering these questions and rec-

ommending that DTW be implemented with a warping window set through cross-

validation and one nearest neighbour, we carried out a comparison of DTWCV to

alternative elastic similarity measures that have been proposed in the literature,

including approaches such as Weighted DTW [58], Move-Split-Merge [101], and

Time Warp Edit Distance [79]. Over the 75 datasets tested, we found that no

alternative significantly outperformed DTWCV, concluding that DTWCV with 1-

NN was still the benchmark in TSC. However, through investigating the alternative

elastic measures, we demonstrated that while the measures did not produce sig-

nificantly different accuracies, they did produce significantly different predictions.

This motivated an investigation into using simple ensemble schemes to build an

ensemble classifier with each of the elastic measures. The resulting classifier, the

elastic ensemble (EE), is significantly more accurate than DTWCV over the 75

datasets. Additionally, the EE is significantly more accurate than DTW on the 46

UCR datasets that are widely throughout the TSC literature for evaluating new

algorithms. This result is noteworthy, as we believe this is the first time a classifier

has ever outperformed DTWCV on the UCR TSC problems. This work is reported

in Chapter 5 and was published in [75, 76].

• A novel shapelet transform. As outlined in our thesis, we believe that the best

approach for TSC is to evaluate similarity in additional domains to the time do-

main. One area of time series similarity that is currently under represented in the

literature is similarity in local-shape. A recent approach, time series shapelets [107],

was proposed to match series according to common local patterns through extract-

ing discriminatory subsequences to build a decision tree classifier. This approach

was designed to produce intuitive results, but restricts shapelets by embedding

them within a classifier. We use this as a starting point to create a new time

series transformation that mitigates the limitations of a shapelet decision tree ap-

proach by extracting the top k shapelets from a dataset in a single pass through

using a novel caching algorithm. The extracted shapelets are used to transform

series into a new k -dimensional representation, where each feature is the distance

between a shapelet and the input series. The result of this transform is that the

new representation can be applied to any standard classification algorithm, facil-

itating classification based on local shape-based similarity. We demonstrate that

using the shapelet transform with popular classification algorithms such as support

CHAPTER 1. INTRODUCTION 5

vector machines and random forest significantly outperforms the original shapelet

tree-based approach, and we also provide information to show that classification

accuracy can be greatly improved for problems that are not well-suited to the time

domain when compared against DTWCV. We also extend our work to consider

alternative measures of shapelet quality that are more suited to the transformation

approach, and demonstrate that they are significantly faster for shapelet extraction

than the information gain measure used in the original approach. Finally, we pro-

duce a case study using a popular UCR dataset to mirror the case study provided in

the original shapelet work to demonstrate that our shapelet transform retains the

intuition provided by the original approach, and may also allow for greater insight

to be gained. This work is described in Chapter 6 and was published in [78, 74, 52].

• COTE: The collective of transformation-based ensembles for time series

classification. This work builds upon the conclusion in [3] that the simplest way

to improve accuracy for TSC problems is to transform data into alternative do-

mains where discriminatory features are more easily detected. This is extended by

creating a collective of ensemble classifiers built in four domains: time, local shape,

global shape, and change. We use the elastic ensemble proposed in Chapter 5 for

time domain classification, and we create a simple heterogeneous ensemble to ap-

ply to transformed data in the remaining three domains. For representing local

shape-based similarity, we transform series using the shapelet transform that we

propose in Chapter 6. For global shape-based similarity we transform data us-

ing the power spectrum, and for change, we use autocorrelation-based transforms.

Through extensive experimentation on 72 datasets, including all of the 46 UCR

datasets, we demonstrate that the simple collective formed by including all clas-

sifiers in one ensemble is significantly more accurate than any other previously

published TSC algorithm, including the EE. We call this classifier the collective

of transformation-based ensembles (COTE), and the results provided by COTE

provide strong support for our thesis. Finally, after proposing and testing the ini-

tial configuration for COTE, we propose alternative versions using weighting and

selection schemes in pursuit of adding extra insight to results without reducing

accuracy. This work is described in Chapter 7, and the results of the COTE are,

we believe, the best ever published on the UCR datasets.

CHAPTER 1. INTRODUCTION 6

1.3 Thesis Organisation

The remainder of this thesis is organised as follows. In Chapter 2, a thorough review of

the TSC literature is carried out, including specific emphasis on nearest neighbour clas-

sification in the time domain with DTW and other alternative elastic distance measures.

In Chapter 3 we introduce the datasets that are used throughout this thesis, including

new problems that we have provided and shared with the TSC community for the first

time. Chapter 4 discusses transformation approaches for time series to allow for simi-

larity to be assessed in alternative domains, while Chapter 5 focuses specifically on the

time domain and culminates in the proposal of the EE. Chapter 6 moves away from time

domain similarity to propose a novel transform to capture similarity in local-shape: the

shapelet transform. The findings in Chapter 5 and 6 are then combined in Chapter 7

where the COTE is proposed and tested, demonstrating that forming a collective of

ensemble classifiers built on different time series representations can significantly outper-

form DTWCV, and any other classifier that we know of, across our test set of 72 datasets

and the UCR data. Finally, in Chapter 8, we conclude this thesis by summarising the

contributions of this work and discussing possible future direction.

Chapter 2

Technical Background and

Related Work

This chapter introduces the relevant background materials for this thesis. We motivate

and introduce the problem of time series classification (TSC), and present a review of

the leading solutions that have been proposed in the literature. Specifically, we focus

on the common benchmark technique of using simple nearest neighbour (NN) classifiers

with Euclidean distance Dynamic Time Warping (DTW) to solve the problem in the

time domain, and explore potential alternative elastic measures that can be combined

with NN classifiers. Following this, we investigate more complex solutions that have been

introduced in the literature, including approaches built on transforming data into other

domains and combining decisions of multiple classifiers.

2.1 Time Series Classification

Many problems exist in the time series data mining literature, including classification,

clustering, indexing, and querying. In this thesis, we focus solely on the problem of time

series classification (TSC). We define a time series as a sequence of data that is typically

recorded in temporal order at fixed time intervals. For the problem of TSC, we use a set

of n time series

T = {T1, T2, ..., Tn} (2.1)

where each series consists of m real-valued ordered observations

Ti =< ti,1, ti,2, ..., ti,m > (2.2)

7

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 8

and a class value ci. Given T , the TSC problem is to find a function that maps from the

space of possible time series to the space of possible class values. For simplicity, in our

definition we assume that all series of T are the same length.

A key feature that distinguishes TSC problems from general classification problems

is that the features within the data that discriminate between class values are often

embedded within the inter-relationship structure of the data. In generic classification

problems, attributes of the data are often independent; in TSC problems, the ordering

and structure of the data often play a crucial role in uncovering features that define class

relationships.

The nature of TSC problems means that the representation of the data is a crucial

part of any TSC algorithm, and all TSC approaches rely to an extent on measures of

similarity between data. There are three broad categories of TSC similarity that appear

in the literature:

• Similarity in time can be observed when series from a class are observations

of an underlying common curve in the time dimension. When there is no noise

in the observation, correlation-based measures or the Euclidean distance can be

used to effectively measure similarity between series. When there is noise in the

time dimension or slight phase-shift, elastic distance measures can be used. Dy-

namic time warping (DTW) is by far the most popular of such measures in the

literature [62, 91, 35, 61, 64, 90, 49].

• Similarity in shape is when class membership is characterised by a common shape

in the data that is phase-independent. This can cover two such scenarios: firstly,

if the common shape involves the whole series, but the shape is shifted between

instances of the same class, transforming the data into the frequency domain can

uncover discriminating features [22, 57]. Secondly, if the common shape is local

and embedded within instances of the same class, subsequence techniques such as

shapelets [107, 108, 80, 89] can measure shape-based similarity accurately without

being affected by noise throughout the rest of the series.

• Similarity in change is where the discriminatory features of a dataset are em-

bedded within the autocorrelation structure of the data. This type of similarity is

the least covered in the literature, but can be employed for TSC by transforming

series into the change domain through the use of autocorrelation-based transforms,

or by applying autoregressive moving average models (ARMA) to the data and

judging similarity on model parameters [27, 4, 5].

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 9

In this chapter we survey and review the TSC literature across each of these types of

similarity. Similarity in time is by far the most represented of the three in the TSC liter-

ature, and this is reflected by the extensive discussion of nearest neighbour classification

with alternative elastic similarity measures in Section 2.3. A discussion of popular TSC

algorithms follows in Section 2.4, including approaches that involve transforming data

into other domains to uncover similarity. In Section 2.5, the process of combining multi-

ple algorithms to form ensemble classifiers is discussed and motivated with an example of

a heterogeneous ensemble in the time domain. Before exploring specific TSC algorithms

however, we must introduce a methodology for consistently comparing classifiers across

many datasets.

2.2 Comparing Classifiers

In order to test the thesis outlined in Chapter 1, it is necessary to objectively compare

classification algorithms over many datasets. In the literature it is common to base

support for new algorithms on anecdotal evidence or simple win/loss statistics. We wish

to be more thorough in our analysis during this thesis, and adopt the procedure outlined

in [33] to test for statistical significance between classifiers. The approach is based on

a two-stage rank-sum test using the non-parametric equivalent to analysis of variance

(ANOVA).

The first stage of the approach tests the null hypothesis that there is no significant

difference between the average ranks of k classifiers on n datasets, against the alternative

hypothesis that at least one classifier’s mean rank is different. Given M , the k by n

matrix of classification accuracies where mi,j is the accuracy of the ith classifier on the

jth dataset,

M =


m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
...

. . .
...

mk,1 mk,2 · · · mk,n

 (2.3)

the first step is to calculate the corresponding n by k matrix R, where ri,j is the rank

of the ith classifier on the jth problem, and the ranks of classifiers with equal error are

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 10

averaged:

R =


r1,1 r1,2 · · · r1,n

r2,1 r2,2 · · · r2,n

...
...

. . .
...

rk,1 rk,2 · · · rk,n

 (2.4)

From R the average rank of classifier j is calculated as r̄j =
∑n

i=1 ri,j
n . To test the

hypothesis, the Friedman statistic Q,

Q =
12n

k(k + 1)
·

 k∑
j=1

r̄j
2 − k(k + 1)2

4

 (2.5)

can be approximated using a Chi-squared distribution with (k − 1) degrees of freedom

to test the null hypothesis that there is no difference between the mean ranks of the

classifiers. However in [33], Demšar notes that this calculation is often conservative, and

proposes using the following statistic:

F =
(n− 1)Q

n(k − 1)−Q
, (2.6)

that, under the null hypothesis, follows an F distribution with (k − 1) and (k − 1)(n −
1) degrees of freedom. If the result of this calculation is that we can reject the null

hypothesis, resulting in at least one classifier having a significantly different average

rank, the second stage of the approach proposed by Demšar involves performing post-hoc

pair-wise Nemenyi tests to observe where differences occur. The test states that the

average ranks of two classifiers are significantly different if they differ by at least the

critical difference, calculated as:

CD = qa

√
k(k + 1)

6n
, (2.7)

where qa is based on the studentised range, where the difference between the largest and

smallest values in the sample is measured in units of standard deviation. By comparing

all classifiers in this way, Demšar proposes that a critical difference diagram can be cre-

ated to effectively summarise the results. This is formed by creating a diagram where

the average ranks for each classifier are labelled on a numerical range, and classifiers

that are not significantly different from one another are organised into cliques. A clique

is represented by a solid black line, and allows for simple interpretation of results by

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 11

observing whether classifiers are within a common clique. If two classifiers do not belong

to at least one common clique, the average ranks of the classifiers are significantly differ-

ent. A motivational example of a critical difference diagram is presented in Figure 2.1.

We use critical difference diagrams throughout this thesis to compare results of multiple

classifiers over multiple datasets.

CD

5 4 3 2 1

1.7083 Classifier A
2.3125 Classifier B
2.9583 Classifier C

3.3958Classifier D

4.625Classifier E

Figure 2.1: An example of a critical difference diagram with five fictional classifiers.
The critical difference in this diagram is 1.1228; The average ranks of Classifier A and
Classifier B do not differ by more than the critical difference, so the ranks are not
significantly different. However, Classifier A and Classifier C are not within the same
clique, so it is demonstrated that they are significantly different.

2.3 Nearest Neighbour Classification in the Time Domain

Numerous algorithms and approaches have been proposed in the literature for solving

TSC problems. However, as eluded to in Chapter 1, currently there has been no conclu-

sive evidence reported to suggest that any technique is significantly more accurate than

using a simple nearest neighbour (NN) classifier for TSC. This is reinforced by Batista

et al. in [9], who state that ‘there is a plethora of classification algorithms that can be

applied to time series; however, all of the current empirical evidence suggests that simple

nearest neighbor classification is very difficult to beat ’. The sentiment of this statement

is echoed in various other work throughout the literature, with the general consensus

that NN classifiers combined with either Euclidean distance or Dynamic Time Warping

are the current benchmark for TSC [21, 47, 34].

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 12

2.3.1 k-Nearest Neighbour (k-NN) Classifiers

The k -NN classifier is one of the oldest, simplest, and most commonly used classification

algorithms that is fundamental to many TSC approaches, particularly approaches in

the time domain (for example, [60, 92, 106, 79, 9, 21, 47, 101]). The classifier was first

documented in [39] and is intuitively very simple to implement for TSC problems. Given

a set of labelled training time series T and a query series q with an unknown class value,

the objective is to find the k most similar series to q in T , where 1 ≤ k ≤ n. The

predicted class value c∗ for q is selected as the modal value of the k nearest neighbours.

The value for k is often set as an odd number to reduce the chance of ties, but in cases

where there is no majority, ties are split randomly.

A fundamental part of the k-NN algorithm is how similarity is measured between q

and the instances in T . This topic has arguably generated the most interest in the liter-

ature, typically combining measures with one nearest neighbour classifiers (1-NN). Early

work used Euclidean distance and other Lp-norms for assessing similarity until dynamic

time warping (DTW) was first applied to time series data [12]. DTW has been held as the

benchmark in TSC ever since. Given a single TSC problem, the best absolute accuracy

is likely to ultimately be provided by a bespoke, one-of-a-kind solution that is tailored to

a specific problem. For TSC in general however, to the best of our knowledge, there is no

documented evidence of any algorithm outperforming DTW with 1-NN. Therefore much

of the work that initially followed the introduction of DTW focused primarily on how to

speed-up the similarity measure, and later research investigated how placing limitations

on the amount of warping allowed in the DTW search could lead to improved accuracy.

Recent research has focused on extensions to the original DTW approach (for example,

using derivatives [63] and weightings [58]), while numerous alternative elastic measures

have also been proposed (such as edit distance-based and hybrid measures [79, 101]).

2.3.2 Euclidean Distance

The Euclidean distance is one of the simplest similarity measures available for comparing

time series. Given two series a =< a1, a2, ..., am > and b =< b1, b2, ..., bm >, the

Euclidean distance dEuclid(a, b) is given as the square root of the sum of squares of the

differences between attributes in each series:

dEuclid(a, b) =

√√√√ m∑
i=1

(ai − bi)2. (2.8)

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 13

A common speed-up of the calculation is to to omit the square root. However, since

the Euclidean distance requires no parametrisation, there is little that can be done to the

measure specifically to improve performance or speed since originally introduced in early

work such as [29]. Researchers have used related approaches, such as the Minkowski

distance [2] or Mahalanobis distance [22], but Euclidean distance has remained the most

popular of these measures. Therefore research has often focused on speeding up ap-

plications that involve the use of the distance measure instead. A common theme in

the literature has been to devise a novel approach towards representing time series data,

then using Euclidean distance on representations of the data with a lower dimensionality.

For example, [1] uses a Fourier transformation to create representations with fewer at-

tributes, accelerating distance calculations between series using the Euclidean distance.

In [23], a similar approach is applied using wavelets, and in [59] the authors use a multi-

resolution approach with wavelets to calculate similarity between series using Euclidean

distance. Such approaches have lead to a spate of approximation methods appearing

in the literature, with basis in topics such as spectral approaches, wavelets, piece-wise

approximations, and symbolic representations (see Section 2.6.2 for more details).

2.3.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is commonly used as a measure of similarity between

series in the time domain. DTW is popular in the literature as unlike the Euclidean

distance, the measure has elastic properties that allow it to mitigate against distortions

in the time axis [90].

Given two time series a and b that we wish to compare, let M(a,b) be the m ×m
point-wise distance matrix between a and b, where Mi,j = (ai − bj)2. A warping path

P =< (e1, f1), (e2, f2), . . . , (es, fs) > (2.9)

is a set of points (i.e. pairs of indexes) that define a traversal of M . So, for example, the

Euclidean distance dE(a,b) =
∑m

i=1(ai − bi)2 is the path along the diagonal of M .

A valid warping path must satisfy the conditions (e1, f1) = (1, 1) and (es, fs) =

(m,m) and that 0 ≤ ei+1 − ei ≤ 1 and 0 ≤ fi+1 − fi ≤ 1 for all i < m.

The DTW distance between series is the path through M that minimizes the total

distance, subject to constraints on the amount of warping allowed. Let pi = Maei ,bfi
be

the distance between elements at position ei of a and at position fi of b for the ith pair

of points in a proposed warping path P . The distance for any path P is

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 14

Shape-Based Similarity

• There are three sub-types of shape-based similarity:

� Strict time dependence and weak time dependence:

Euclidean Distance

(strict time

dependence)

DTW Distance

(weak

time dependence)dependence) time dependence)

Figure 2.2: An example to demonstrate the elastic properties of DTW. The first two
time series have identical values but are out of phase, so the Euclidean distance between
them is large as the peaks and troughs do not align. The elasticity of DTW mitigates
this however and finds that the first two series are the most similar.

DP (a,b) =
s∑

i=1

pi. (2.10)

If P is the space of all possible paths, the DTW path P ∗ is the path that has the minimum

distance, i.e.

P ∗ = min
P∈P

(DP (a,b)), (2.11)

and hence the DTW distance between series is

DP∗(a,b) =

k∑
i=1

pi. (2.12)

The optimal path P ∗ can be found exactly through dynamic programming, but this

can be a time consuming operation. Therefore numerous speed-ups have been proposed

to place a restriction on the amount of possible warping that is allowed. The most

commonly used approach is to use the Sakoe-Chiba band [95] that was originally proposed

in the speech processing literature. This restriction is equivalent to putting a maximum

allowable distance between any pairs of indexes in a proposed path. If the warping

window, r, is the proportion of warping allowed, then the optimal path is constrained so

that

|ei − fi| ≤ r ·m ∀(ei, fi) ∈ P ∗. (2.13)

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 15

A popular alternative to the Sakoe-Chiba band is Itakura’s Parallelogram [56], which also

originated in speech research. The parallelogram approach imposes a similar restriction

on warping, but instead favours smaller warpings at the beginning and end of P∗ while

allowing more freedom mid-path.

0 5 10 15 20 25 30

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

-1
.5

-1
-0

.5
0

0.
5

1

Figure 2.3: An example of unconstrained DTW with two series from the GunPoint
dataset [65]. DTW mitigates the misalignment of the series by matching the peaks and
troughs of the data.

One of the first mainstream applications of DTW to time series data mining was re-

ported in [62]. For TSC specifically, an early use of DTW was documented in [92].

The authors investigate the potential of DTW by first noting the improved perfor-

mance over Euclidean distance with NN classifiers, but note the extra computational

effort involved. This motivated an investigation that resulted in the introduction of the

R-K band for DTW, a constraint for DTW that can be generalised to a warping of any

arbitrary shape and size to accelerate computation and improve accuracy of DTW-based

classification. They report results on three datasets to demonstrate the accelerated per-

formance without detriment to classification decisions.

A further speed-up technique is proposed in [106], which involves reducing training

set sizes to reduce the quantity of calculations, rather than improving the calculation

itself. The authors initially claim that NN classification is very difficult to beat, and

support this claim by providing an interesting comparison with other published methods

to demonstrate where NN classifiers with DTW outperform more complex alternatives.

However, it should be noted that while this provides interesting information, the results

may include selection bias since they are optimistic cases selected to motivate their

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 16

approach. However, using this information they advocate using NN classifiers for TSC,

and propose a speed-up for DTW that is based on numerosity reduction. They use

an initial experiment to observe a relationship between dataset size and DTW warping

constraints, where they observe that small warpings are favourable when many training

instances are available. They configure their approach to initially limit warping in very

large dataset, and then gradually increase the allowed warping as they remove instances

from a dataset. They demonstrate that their approach is faster than using the standard

implementation of DTW while still providing comparable results.

In [35], the authors carry out one of the largest investigations of NN classifiers with

alternative similarity measures and representations. They include 8 time series repre-

sentations and 9 similarity measures. Of note, these measures include the Euclidean dis-

tance, DTW, and edit distance-based measures including longest common subsequence

(LCSS), edit distance on real sequence, and edit distance with real penalty (these sim-

ilarity measures are discussed further in Section 2.3.6 and Section 2.3.7). Firstly, they

note that as the quantity of training data increases, the accuracy of DTW and the edit

distance-based measures converges with the Euclidean distance. This aligns with the

original observation of [106], who favoured small warpings (since allowing no warping

provides no elasticity, hence is equivalent to Euclidean distance) with large quantities

of training data when investigating constraints with DTW. However, while they note

that this observation is true for problems with abundant training data, elastic measures

often outperform Euclidean distance when training data is limited. Their second key

observation is that constraining measures such as DTW and LCSS reduces computation

cost while giving equivalent or better classification accuracy. Thirdly, they do not find

any conclusive evidence to suggest that any of the measures that they test outperform

DTW. In fact, DTW outperforms some of the more recently proposed measures. Finally,

they note that if a similarity measures does not provide adequate classification accuracy,

the introduction of further training data often leads to improved accuracy. If such data

is not available, they suggest that it may be beneficial to explore additional similarity

measures that were not used in their work.

2.3.4 Derivative Dynamic Time Warping

Keogh and Pazzani [63] proposed a modification of DTW called Derivative Dynamic Time

Warping (DDTW) that first transforms the series into a series of first order differences.

The motivation for DDTW was to introduce a measure that avoids singularities, where

a single point on one series may map onto a large subsection of another time series and

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 17

create pathological results. Given a series a = {a1, a2, . . . , am}, the difference series is

a′ = {a′1, a′2, . . . , a′m−1} where a′i is defined as the average of the slopes between ai−1 and

ai, and ai and ai+1, i.e.

a′i =
(ai − ai−1) + (ai+1 − ai−1)/2

2
, (2.14)

for 1 < i < m. DDTW is designed to mitigate against noise in the series that can

adversely affect DTW, and has also been used in conjunction with standard DTW to

simultaneously calculate similarity between series [46].

2.3.5 Weighted Dynamic Time Warping

A weighted form of DTW (WDTW) was proposed by Jeong et al. [58]. WDTW adds

a multiplicative weight penalty based on the warping distance between points in the

warping path. It favours reduced warping, and is a smooth alternative to the cut-off

point approach of using a warping window. When creating the distance matrix M , a

weight penalty w|i−j| for a warping distance of |i− j| is applied, so that

Mi,j = w|i−j|(ai − bj)2. (2.15)

A logistic weight function is proposed in [58], so that a warping of a places imposes a

weighting of

w(a) =
wmax

1 + e−g·(a−m/2)
, (2.16)

where wmax is an upper bound on the weight (set to 1), m is the series length and g is a

parameter that controls the penalty level for large warpings. The larger g is, the greater

the penalty for warping.

2.3.6 Longest Common Subsequence Distance

The Longest Common Subsequence (LCSS) distance is based on the solution to the

longest common subsequence problem in pattern matching [53]. The typical problem is

to find the longest subsequence that is common to two discrete series based on the edit

distance. An example using strings is shown in Figure 2.5.

This approach can be extended to consider real-valued time series by using a distance

threshold ε, which defines the maximum difference between a pair of values that is allowed

for them to be considered a match. LCSS finds the optimal alignment between two series

by inserting gaps to find the greatest number of matching pairs.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 18

(a) (b)

Figure 2.4: Example distance matrices for the two GunPoint series from Figure 2.3 with
warping paths for a 50% warping window with DTW (a) and WDTW with a penalty
value of 0.1 (b). The dark areas in (a) depict the limits of the warping window where
the path may not pass, whereas in (b) the dark areas represent areas that are highly
weighted. It can be seen that the gradient of the weighting function encourages the path
to avoid highly weighted areas in (b), but it does not strictly prevent traversal of those
areas as a warping window does.

ABCADACDAB

BCDADBCACB

ABCADA--CDA-B

-BC-DADBC-ACB

ABCADACDAB

BCDADBCACB

ABCADA--CDA-B

-BC-DADBC-ACB

(a) (b)

Figure 2.5: An example of the LCSS problem. The example in (a) shows a pairwise
matching of the two strings, while (b) demonstrates an alignment that allows shifting
within the strings to allow for more matches to be made. The example in (a) is analogous
with the LCSS distance with no elasticity, whereas (b) represents the LCSS distance with
full elasticity. This can be controlled using a parameter akin to the warping window in
DTW.

.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 19

The LCSS between two series a and b can be found using Algorithm 1, and the LCSS

distance between a and b is

dLCSS(a,b) = 1− LCSS(a,b)

m
. (2.17)

Algorithm 1 LCSS (a,b)

1: Let L be an (m+ 1)× (m+ 1) matrix initialised to zero.
2: for i← m to 1 do
3: for j ← m to 1 do
4: Li,j ← Li+1,j+1

5: if ai = bj then
6: Li,j ← Li,j + 1
7: else if Li,j+1 > Li,j then
8: Li,j ← Li,j+1

9: else if Li+1,j > Li,j then
10: Li,j ← Li+1,j

11: return L1,1

2.3.7 Edit Distance with Real Penalty

Other edit distance-based similarity measures have also been proposed. One such ap-

proach is edit distance on real sequences (EDR) [25]. Like LCSS, EDR uses a distance

threshold to define when two elements of a series match, but also includes a constant

penalty that is applied for non-matching elements and where gaps are inserted to create

optimal alignments. However EDR does not satisfy the triangular inequality, as equality

is relaxed by assuming elements are equal when the distance between them is less than

or equal to ε. This was revised in [26], where edit distance with real penalty (ERP) was

introduced. The motivation for ERP is that it is a metric as it satisfies the triangular in-

equality by using ‘real penalty’, which uses the distance between elements when there is

no gap and a constant value g for when gaps occur. The ERP distance between element

i of series a and element j of series b is

ERP (ai, bj) =


|ai − bj | if |ai − bj | ≤ ε
|ai − g| if bj is a gap

|bj − g| if ai is a gap,

(2.18)

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 20

and the full ERP distance between series a of length m and series b of length n is given

recursively as

dERP (a, b) =



∑n
i=1 |bi − g| if m = 0∑m
i=1 |ai − g| if n = 0

min{dERP (Tail(a), Tail(b)}+ ERP (a1, b1), otherwise

dERP (Tail(a), b) + ERP (a1, gap),

dERP (a, Tail(b)) + ERP (gap, b1)},

(2.19)

where Tail(a) = {a2, a3, ..., am}.

2.3.8 Time-Warp Edit Distance

Introduced by Marteau [79], Time Warp Edit (TWE) distance is an elastic distance

measure that, unlike DTW and LCSS, is also a metric. It encompasses characteristics

from both LCSS and DTW as it allows warping in the time axis and combines the edit

distance with Lp-norms. The warping, called stiffness, is controlled by a parameter

ν. Unlike a warping window that constrains a DTW search, stiffness enforces a multi-

plicative penalty on the distance between matched points. Setting ν = 0 results in no

stiffness, or null stiffness, giving a distance measure equivalent to a full DTW search.

Setting ν =∞ gives Euclidean distance. TWED redefines the insert, remove and match

operations used in edit distance, in favour of delete a, delete b and match. The delete a

operation occurs when an element is removed from the first series to match the second,

and delete b occurs when an element of the second series is removed to match the first.

An Lp-norm distance calculation is used when matches are found, and a constant penalty

value λ is applied when sequences do not match. The formal definition TWED can be

found in [79], and a dynamic programming implementation is given in Algorithm 2.

2.3.9 Move-Split-Merge

Move-Split-Merge (MSM) was introduced in [101]. The authors motivate the introduc-

tion of MSM as it satisfies a number of desirable traits that they set out to incorporate

into a single similarity measure: it is robust to temporal misalignments; it is translation

invariant; it has a competitive quadratic run-time with DTW; and it is a metric. MSM

is conceptually similar to other edit distance-based approaches, where similarity is cal-

culated by using a set of operations to transform a given series into a target series. Each

operation has an associated cost, and three operations are defined for MSM: move, split,

and merge. Move is synonymous with a substitute operation, where one value is replaced

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 21

Algorithm 2 TWE Distance(a,b, λ, ν)

1: Let D be an m+ 1× n+ 1 matrix initialised to zero.
2: D(1, 1) = 0
3: D(2, 1) = a1

2

4: D(1, 2) = b1
2

5: for i← 3 to m+ 2 do
6: D(i, 1) = D(i− 1, 1) + (ai−2 − ai−1)2

7: for j ← 3 to n+ 2 do
8: D(1, i) = D(1, j − 1) + (bj−2 − bj−1)2

9: for i← 2 to m+ 2 do
10: for j ← 2 to n+ 2 do
11: if i > 1 and j > 1 then
12: dist1 = D(i− 1, j − 1) + ν × |i− j| × 2 + (ai−1 − bj−1)2 + (ai−2 − bj−2)2

13: else
14: dist1 = D(i− 1, j − 1) + ν × |i− j|+ (ai−1 − bj−1)2

15: if i > 1 then
16: dist2 = D(i− 1, j) + (ai−1 − ai−2)2 + λ+ ν
17: else
18: dist2 = D(i− 1, j) + ai−1

2 + λ
19: if j > 1 then
20: dist3 = D(i, j − 1) + (bj−1 − bj−2)2 + λ+ ν
21: else
22: dist3 = D(i, j − 1) + bj−1

2 + λ
23: D(i, j) =min(dist1, dist2, dist3)
24: return D(m+ 1, n+ 1)

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 22

by another. Split and merge differ from other approaches, as they attempt to add con-

text to insertions and deletions. Stefan et al. state that cost of inserting and deleting

values should depend on the value itself and adjacent values, rather than treating all

insertions and deletions equally (for example, as in ERP). Therefore, the split operation

is introduced to insert an identical copy of a value immediately after itself, and the merge

operation is used to delete a value if it directly follows an identical value. The formal

definition of MSM can be found in [101], and a dynamic programming implementation

is given in Algorithm 3 using the cost function

C(ai, ai−1, bj) =

{
c if ai−1 ≤ ai ≤ bj or ai−1 ≥ ai ≥ bj
c+min(|ai − ai−1|, |ai − bj |) otherwise.

(2.20)

Algorithm 3 MSM Distance(a,b)

1: Let D be an m× n matrix initialised to zero.
2: D(1, 1) = |a1 − b1|
3: for i← 2 to m do
4: D(i, 1) = D(i− 1, 1) + C(ai, ai−1, b1)
5: for i← 2 to n do
6: D(1, i) = D(1, i− 1) + C(bi, a1, b+ i− 1)
7: for i← 2 to m do
8: for j ← 2 to n do
9: D(i, j) =min(D(i− 1, j − 1) + |ai − bj |,

D(i− 1, j) + C(ai, ai−1, yj),
D(i, j − 1) + C(yj , xi, xi−1))

10: return D(m,n)

2.4 Standard Classification Algorithms

While the most popular approach toward solving TSC problems is to use NN classifiers,

it is also possible to apply generic classification algorithms directly to time series data.

If we simply ignore that the structure and ordering of attributes is often an important

feature of TSC problems, we can consider the attributes as independent readings and

pose them as a standard classification problem. Though it may seem unintuitive to

discard this information, it allows us to leverage from the wealth of algorithms proposed

in the general classification literature. Furthermore, we can potentially transform time

series to extract features (See Section 2.6 for more details), which would result in data

that could be applied to general classification algorithms. In this section we describe

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 23

numerous classifiers that are used at various stages throughout this thesis.

2.4.1 Näıve Bayes

Näıve Bayes is a simple classification algorithm that assumes strong independence be-

tween attributes, hence the ‘näıve’ moniker. Though this may be overly simplistic for

some problems, especially for time series where attributes are by definition strongly

dependent, Näıve Bayes has been proven to be a fast and effective classifier in many

problem domains, especially in text analysis [100] and spam filtering [97].

The implementation of Näıve Bayes classifiers is based on Bayes Theorem. Given a

dataset of time series T with n series of length m, and the set of possible class values

C, we must calculate the probability distribution for each attribute and class value,

p(Ti|ck), and the probability of each class arising, p(ck). Given a query series a =<

a1, 12, ..., am > with an unknown class, the class c∗ is assigned by the classifier using

the maximum a posteriori decision rule, which selects the class value with the highest

estimated probability given the observed attributes. This is calculated as:

c∗ = max
ck∈C

p(ck)

m∏
i=1

p(ai|ck) (2.21)

This approach can be extended to consider dependencies between attributes. One

of the key principles of a Näıve Bayes classifier is that attributes are assumed to be

independent; by forming a directed graph between dependent attributes, probabilities

for attributes represented at child nodes can be influenced by the outcome of parent

attributes. This is known as a Bayesian Network.

2.4.2 C4.5 Decision Tree

The C4.5 (also known as J48) decision tree classifier was first introduced in [86] and

is arguably the most popular decision tree implementation in the classification liter-

ature [66, 42, 24, 44, 87]. The C4.5 algorithm uses a greedy top-down approach for

recursively building decision tree classifiers. The algorithm begins by observing whether

the data consist of a single class; if this is true, the algorithm has met the stopping

condition and a leaf node is created. If not, all attributes are evaluated to identify the

most informative for splitting the data, and the data are partitioned according to the

selected attribute. This process is then repeated on each subsequent data partition until

every leaf node in the tree contains a single class value. A final step is then invoked to

prune the tree by using the training data to observe whether removing nodes can lead

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 24

to increased performance in an attempt to avoid over-fitting.

A fundamental operation in building the decision tree is identifying the best attribute

for partitioning data. The C4.5 algorithm uses the gain ratio for this purpose. Given a

set of training time series T , each with m attributes A = {A1, A2, ..., Am}, the gain ratio

for the kth attribute Ak is calculated as:

GainRatio(T,Ak) =
InfoGain(T,Ak)

H(T)
, (2.22)

The calculation of the gain ratio requires two further equations: entropy and information

gain. Entropy was introduced in [98] to measure the uncertainty of a random variable

X that can take the values Xv = x1, x2, ..., xna, and is defined as:

H(X) = −
n∑

i=1

p(xi) log2 p(xi). (2.23)

Information gain is the expected reduction in entropy due to splitting on a given criteria.

The information gain for attribute Ak is defined as:

InfoGain(T,Ak) = H(T)−
∑

v∈V alues(Ak)

|Tv|
|T |

H(Tv), (2.24)

where V alues(Ak) is the set of all values that attribute Ak can take on, and |Tv| is the

cardinality of the set of readings in T that take on value v for attribute Ak. Using these

definitions, the best attribute to split on A∗ according to gain ratio can be found as:

A∗ = max
Ak∈A

GainRatio(T,Ak) (2.25)

The data is partitioned according to A∗, and the process is continued on each partition

until a full tree is constructed.

2.4.3 Support Vector Machine

Support Vector Machines (SVM) were introduced in [28] and have been used exten-

sively in the literature [84], with many applications with time series data for financial

forecasting [83, 82, 103]. The simplest example of an SVM expects a problem to be

linearly separable. For an example with a simple dataset T with two possible class labels

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 25

C = {1,−1}, the objective is to build the classifier f(T) such that:

f(T) =

{
c∗ = +1 if ≥ 0

c∗ = −1 if < 0.
(2.26)

where f(T) takes the form of:

f(T) = w · T + b. (2.27)

In this equation w is a weight vector normal to f(T) and b is the bias that refers to

the offset of f(T) along w. The objective of the SVM classifier is to find the optimal

hyperplane f(T) to separate the classes in T . A simple method is to iteratively update w

until all training instances are correctly classified (or it is found that it is not possible).

More complex techniques include those that seek to find the maximum margin between

classes, or use regularisation parameters for soft margins to avoid over-fitting through

allowing a degree of misclassification during training. It is also common that problems

are not linearly separable, so often non-linear kernel functions are used to transform data

into a space where the problem is linearly separable. This is reflected in our experiments

throughout this work, as linear SVM classifiers are often implemented alongside quadratic

SVM classifiers.

2.4.4 Random Forest

Random forest [16] is an ensemble classification approach that uses many constituent

decision tree classifiers. The goal of the random forest algorithm is to inject diversity

into predictions through training constituent trees with random attribute subsets.

The forest contains k trees, where each tree is trained by initially being assigned a

random subset S of the training data T . At each node in the tree, a random subset of

b attributes is selected, and the best attribute in the sample is selected for partitioning

the data. The procedure for building the constituent trees is highly related to how C4.5

classifiers are formed, with the main distinctions being the random attribute sampling

rather than using the full data, and the measure of splitting quality; the random forest

algorithm uses the GINI index as an alternative to information gain (previously intro-

duced by the same author in [17]). The final classification prediction for a test instance

is the modal prediction across all trees.

A key part of forming the classifier is to ensure that constituent trees are not highly-

correlated; the greater the inter-tree dependence within the forest, the greater the error

rate will be as diversity will be reduced. Therefore setting b is an important part of the

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 26

training phase of the algorithm, as lower values reduce the inter-dependence of trees,

but also potentially lowers the performance of individual trees, so the optimal value for

b should be found during training.

2.4.5 Rotation Forest

The rotation forest algorithm [94] is similar to random forest as it is also a tree-based

ensemble approach. The classifier is created by dividing the training data into k subsets,

where each is transformed using principal component analysis (PCA). PCA transforms

the set of attributes in the data into an alternative set of uncorrelated variables, and

the resulting principal components are used to train k C4.5 decision tree classifiers. The

final prediction for a test instance is obtained in the same manner as the random forest

classifier, where the majority class value from the constituent classifier predictions is

selected as the output prediction.

2.5 Ensemble Classifiers

An ensemble of classifiers is a set of base classifiers, where individual decisions are com-

bined to classify new examples through combining predictions into a single output. A

key aim when building an ensemble classifier is to introduce new elements into the clas-

sification model to inject diversity. We have already considered two ensemble classifiers

during the discussion of standard classifiers in Section 2.4: Random Forest and Rotation

Forest.

Typical techniques for building ensemble classifiers include: creating a heterogeneous

ensemble of different classification approaches; modifying the data used to train each

constituent classifier, such as by resampling the data or replicating instances; select-

ing different sets of attributes to train each classifier on; and modifying each classifier

internally by reweighting training data.

Two ensembling approaches in particular have been adopted frequently in the litera-

ture: bootstrap aggregation, or bagging, and boosting. In this section we introduce these

approaches and discuss ensemble classifiers that have been used in the TSC literature.

We then go on to define a simple heterogeneous ensemble that we use later in this thesis,

formed using the standard classification algorithms in Section 2.4 as constituents, and

demonstrate an example of building the ensemble in the time domain.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 27

2.5.1 Bagging

Bootstrap aggregation, or bagging, is an ensembling approach that is designed to increase

the stability in predictions by training constituent classifiers with different subsets of the

training data, such as in the Random Forest and Rotation Forest algorithms that were

introduced in Section 2.4. However, bagging specifically uses bootstrap samples [37],

where samples from a dataset are drawn randomly with replacement. This effectively

means that a single instance may appear in the training data for multiple constituents.

The typical approach for building an ensemble classifier E with bagging is outlined in [15]

and summarised in Algorithm 4, where C is the set of constituent classifiers, T is the

training data, and b is the size of each training sample. Once the constituent classifiers

are trained, the prediction for a test instance is produced by taking the majority class

decision across all constituents.

Algorithm 4 Bagging(C, T, b)

1: E = ∅;
2: for all classifiers Ck in C do
3: Tk = bootstrapSample(T, b);
4: Ck.buildClassifier(Tk);
5: E = E ∪ Ck;
6: return E;

2.5.2 Boosting

The key concept of boosting is to take a classifier that is considered a weak-learner and

improve it through resampling the training data to weight against misclassified training

instances in previous iterations. A weak-learner can be considered as any classifier that

is a relatively poor solution to a problem, but is more accurate than random guessing.

The first polynomial-time implementation of boosting was documented in [96], and the

work in [40] extended this implementation to make the runtime more feasible. The most

influential implementation of boosting was provided when the authors of the previous

two works combined to create an adaptive boosting algorithm, or AdaBoost [41].

The general boosting algorithm uses an iterative training approach to assign weights

to training instances. Given a classifier, the first training iteration will consider each

instance with an equal weight, and a weighted accuracy is calculated. After the first

iteration, the examples that are misclassified are given a greater weight, while those

that were correctly classified are given a lower weight. In classifiers where weighting is

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 28

not possible, this can occur through replication of instances where a greater weight is

desired. Then a new base classifier is trained using these updated weights with the goal of

producing the lowest weighted accuracy. By reweighting training instances, subsequent

classifiers are forced to focus on instances that were originally misclassified, creating a

diverse pool of base classifiers. An ensemble can be formed using the base classifiers, and

a test instances is classified according to the majority vote of the constituents.

2.5.3 Other Ensembles in the TSC Literature

Bagging and boosting are both popular approaches in the classification literature for

building ensemble classifiers. However, novel ensembling approaches have also been

proposed for TSC. For example, in [21], an ensemble algorithm is proposed using a

regression model to create a fusion approach to combine classifiers built using various

similarity measures. Support for this approach is provided through an experimental

comparison over 35 datasets against DTW and SVM classifiers, suggesting that similarity

in various problems can be better assessed using a fusion of measures, rather than only

considering DTW.

In [34], the authors propose a tree-based ensemble classifier. The time series forest

(TSF) uses an approach similar to random forest, as constituent trees are built through

randomly selecting samples from the data using simple summary statistics, such as mean,

slope, and variance. However, rather than using information gain or the GINI index

to assess splitting criteria, TSF evaluates potential splits using a novel measure that

combines entropy with a distance measure. The TSF approach is compared to DTW

with 1-NN and the standard random forest algorithm over 45 datasets, and the results

suggest that this approach significantly outperforms random forest.

2.5.4 A Simple Heterogeneous Ensemble

A key aim when building an ensemble classifier is to introduce new elements into the

classification model to inject diversity. There are many approaches to this aim that

have been documented in the literature, but one of the simplest techniques is to form a

heterogeneous ensemble of different classification algorithms. A key aim in our work is to

keep our methodology simple and transparent. Therefore we choose to use this approach

for ensembling throughout our work, as not only does it allow us to create a diverse

ensemble classifier, but the approach for building the ensemble is very transparent and

conceptually simple.

The heterogeneous ensemble is formed by creating a pool of distinct classifiers where

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 29

there is no dependency between classifiers; for a given problem, each classifier is built in

isolation and produces an individual prediction for a test instance. The ensemble uses

a voting scheme to combine the predictions of each constituent classifier to output a

final classification prediction. A pseudo-code implementation of a simple heterogeneous

ensemble is defined in Algorithm 5, where T represents the training data, C is the set

of classifiers in the ensemble, and q is the test series to be classified.

Algorithm 5 HeterogeneousEnsemble(C, T, q)

1: predictions = ∅;
2: for all classifiers Ck in C do
3: Ck.buildClassifier(T);
4: predictionsk = Ck.classify(q);
5: return votingScheme.decide(predictions);

There are two main components of the heterogeneous ensemble that must be deter-

mined: the base set of classifiers, and the mechanism for combining individual predictions

into a single output.

The Classifiers

The heterogeneous ensembles that we form throughout this thesis are composed of the

standard classification algorithms surveyed in Section 2.4. These include: 1-NN, Näıve

Bayes, Bayesian Network, C4.5 Decision Tree, Random Forest, Rotation Forest, Support

Vector Machine with a linear kernel, and Support Vector Machine with a quadratic

kernel. Each classifier is created using the default Weka [48] implementation.

Ensemble Voting Schemes

To maintain the transparency of the ensemble classifier we define, we initially propose

three simple voting schemes for combining individual classifier predictions. The first

scheme, Equal, places an equal vote on all constituent classifiers. After each classifier

has made a prediction for a test series, the majority decision is selected as the prediction,

and any ties are split randomly. The second voting scheme is Best. This approach is

the opposite to Equal as only a single classifier is used for the final prediction and all

other constituents are ignored. The Best constituent is determined as the classifier with

the highest accuracy after carrying out a leave-one-out-cross-validation experiment on

the training data, and ties are split randomly. The third strategy is Proportional. This

approach combines characteristics of the previous approaches; all classifiers are used

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 30

when making the final prediction, but the votes are weighted proportionally for each

classifier according to training accuracy. For example, if a classifier achieved 69% on the

training data, it would have 0.69 of a vote in the final classification decision.

2.5.5 Heterogeneous Ensembles in the Time Domain

Using the specification that has been outlined in this section, we can create an example of

a heterogeneous ensemble in the time domain. As previously discussed in Section 2.3, the

current benchmark in TSC research is considered to be a 1-NN classifier using dynamic

time warping with the warping window set through cross-validation (DTWCV). This

gives us an opportunity to demonstrate a number of the key concepts introduced so

far in this chapter; to motivate the use of ensembles in our work, we implement the

standard classifiers discussed in Section 2.4 to form three heterogeneous ensembles in

the time domain, using the three voting strategies that we outlined. We report test

classification accuracies of the ensembles against DTWCV on the UCR datasets [65] (a

commonly-used set of 46 TSC problems, which we outline in detail later in Section 3.1) in

Table 2.1. To test for significance between these results, we can use a critical difference

diagram as outlined in 2.2. The critical difference diagram summarising the data in

Table 2.1 is shown in Figure 2.6.

CD

4 3 2 1

2.2222 DTWCV
2.3222 Time

Prop
2.3889Time

Best

3.0667Time
Equal

Figure 2.6: A critical difference diagram to compare DTWCV with three simple hetero-
geneous ensembles in the time domain.

.

The results demonstrate the Proportional and Best voting schemes for the heteroge-

neous ensemble are both significantly better than using the Equal weighting approach.

However, though not significantly different, none of the results with the heterogeneous

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 31

ensemble in the time domain significantly outperform the benchmark of DTWCV. While

this lends support to using ensembles for TSC, it does not advocate replacing DTWCV

as the benchmark. This raises the question of whether there is an alternative ensem-

bling approach for TSC in the time domain, such as investigating alternative elastic

distance measures within an ensemble. This is investigated in the following section, and

heterogeneous ensembles in other domains are investigated later in Chapter 7.

2.6 Time Series Transformations

An alternative approach to carrying out classification in the time domain is to consider

alternative domains where discriminatory features may be more easily detected. Time

series transformation algorithms process series to create alternative data representations.

Most commonly in time series data mining (TSDM), the goal of such representations is to

reduce time complexity when matching series, while minimising the loss of discriminating

features. Such techniques are most commonly found in querying and indexing problems

where transformations are applied to time series data to create a lower-dimension rep-

resentation of the original data that can be used to approximate the Euclidean distance

between series [35]. Such approaches can be extended to TSC to also accelerate run-time

for very long series, and can also help mitigate noise in data. We provide a brief overview

of time series transformation approaches that have been used in the literature that belong

to two broad classes of transform: summary statistic transforms and compression-based

transforms.

2.6.1 Summary Statistics and Feature Extraction

One of the simplest approaches for transforming time series is to extract summary fea-

tures from the data, and then use the extracted features to train classifiers. We tested this

approach in a case study published in [77] where the objective was to classify household

electrical devices according to consumption readings recorded over 15 minute intervals.

We considered daily and weekly data, resulting in instances of 96 and 672 in length re-

spectively with 78,869 daily and and 9,215 weekly cases. Due to the very large volume

of data, classification using a set of standard classifiers was very slow. To attempt to

accelerate classification, we extracted 12 summary features from each series, including

statistical summaries such as mean and standard deviation, and specialised summary

information such as the first on time for a device, and the proportion of the day where

the device was active (see Section 3.2.1 for more information on the data). This simple

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 32

Table 2.1: The results of the heterogeneous ensemble built in the time domain, used to
create the critical difference diagram in Figure 2.6

Dataset DTWCV TimeBest TimeEqual TimeProp

Adiac 61.13% 75.45% 70.33% 71.36%
Beef 66.67% 93.33% 80.00% 86.67%
Car 76.67% 81.67% 73.33% 80.00%
CBF 99.44% 90.22% 90.00% 90.56%

ChlorineConcentration 62.50% 81.41% 72.42% 72.89%
CinC ECG torso 92.90% 83.99% 78.33% 80.72%

Coffee 100% 100% 100% 100%
Cricket X 75.38% 61.79% 57.44% 58.97%
Cricket Y 79.49% 72.31% 71.28% 71.03%
Cricket Z 82.31% 64.62% 63.85% 65.64%

DiatomSizeReduction 92.48% 95.10% 94.44% 95.10%
ECGFiveDays 80.02% 89.31% 88.73% 88.50%

FaceAll 80.77% 72.84% 76.21% 75.80%
FaceFour 89.77% 89.77% 89.77% 89.77%

FacesUCR 90.93% 78.05% 80.83% 80.98%
fiftywords 76.48% 63.08% 68.79% 69.45%

fish 83.43% 85.14% 83.43% 85.14%
GunPoint 91.33% 92.67% 89.33% 90.67%
Haptics 40.58% 44.81% 44.48% 45.78%

InlineSkate 38.55% 30.91% 33.82% 35.45%
ItalyPowerDemand 96.11% 96.89% 97.18% 97.18%

Lightning2 86.89% 72.13% 80.33% 78.69%
Lightning7 71.23% 71.23% 75.34% 73.97%
MALLAT 91.00% 91.00% 91.13% 90.96%

MedicalImages 73.95% 68.95% 72.89% 74.87%
MoteStrain 86.58% 90.42% 89.70% 90.26%

NonInvasiveFatalECG Thorax2 86.77% 92.72% 91.60% 92.16%
OliveOil 86.67% 93.33% 90.00% 86.67%
OSULeaf 59.92% 54.13% 53.31% 57.02%

Plane 100% 97.14% 98.10% 98.10%
SonyAIBORobotSurface 69.88% 69.88% 75.04% 75.21%

SonyAIBORobotSurfaceII 85.73% 80.80% 80.27% 80.48%
StarLightCurves 90.30% 96.56% 93.55% 94.90%

SwedishLeaf 84.64% 86.08% 90.08% 90.24%
Symbols 93.07% 90.45% 90.05% 89.65%

SyntheticControl 98.33% 96.00% 96.33% 96.33%
Trace 99.00% 83.00% 81.00% 82.00%

TwoLeadECG 85.07% 84.64% 77.17% 79.89%
TwoPatterns 99.85% 90.68% 89.60% 91.73%

UWaveGestureLibrary X 75.85% 75.01% 74.96% 75.85%
UWaveGestureLibrary Y 68.65% 68.70% 68.09% 68.65%
UWaveGestureLibrary Z 69.77% 70.49% 68.48% 69.77%

wafer 99.59% 99.38% 99.48% 99.51%
WordSynonyms 73.98% 61.76% 57.68% 59.25%

yoga 84.27% 80.77% 79.70% 81.53%

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 33

transformation approach reduced the length of daily cases by a factor of 8 and weekly

cases by a factor of 56. We used this data to demonstrate that the performance of clas-

sifiers trained with the raw and transformed data did not provide significantly different

results, while the classifiers built using transformed data were much faster.

Summary statistics have been used to great effect in other TSC work. For example,

in [31], hand X-rays are classified by first being transformed into time series data, and

then a simple summary filter is applied to extract features about the image that are used

for classification. Also, the time series forest [34] algorithm introduced in Section 2.5 used

statistics such as the mean, slope, and variance to build a tree-based ensemble classifier

that significantly outperformed random forest. In [43], the authors propose a feature-

extraction approach that is beneficial for very large data, extracting approximately 9,000

distinct features from data, including simple summary statistics, correlations and entropy

calculations, with the aim of dimensionality reduction to avoid costly operations involved

in computing distances between full series.

In addition to summary statistics, more complex features have also been extracted

for TSC. For example, in [45] a technique is proposed to extract patterns from four

TSC problems deriving features from series through resampling and interpolating data.

They use this approach to search for local patterns within time series to build decision

tree classifiers. This work is related to a recently proposed approach called time series

shapelets [107]. A shapelet is a time series subsequence extracted from a dataset that is

able to discriminates between classes based on local shape-based similarity. The authors

define an algorithm to recursively extract the best shapelets from a dataset to create a

decision tree classifier. Their motivation for using a tree-based approach is to highlight

the intuitive nature of shapelets, while filling a niche in TSC literature for matching

series according to local shape-based similarity. They demonstrate that their approach

is effective for problems where time-domain approaches are not well suited, and demon-

strate the explanatory power of shapelets through a number of case study examples.

Shapelets are discussed further in Section 4.2.

2.6.2 Compression/Approximation-based Transforms

There are various compression-based transforms that have been applied to time series

data to approximate similarity between series. One of the first applications of such an

approach was in [38], where the authors used the Discrete Fourier Transform (DFT).

DFT allows an input signal of finite length to be decomposed into a linear combination

of sine and cosine waves, retaining only a subset of the resulting coefficients. This in

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 34

essence allows the time series data to be represented in the frequency domain, and the

authors use the resulting coefficients to propose an approach for fast indexing of time

series. The result of this transformation is primarily to reduce dimensionality of the data

while attempting to retain the discriminatory information within the data. DFT and the

related Fast Fourier Transform (FFT) have been used frequently in the TSDM literature

in the application areas of classification, indexing, and querying.

A related approach is the Discrete Wavelet Transformation (DWT). Rather than

using a combination of sinusoids to reconstruct time series, DWT uses wavelets in the

transformation process. One of the first applications of DWT in TSDM was [23], where

they created an indexing solution for time series by reducing dimensionality with DFT

and Haar wavelets. Haar wavelets are popular due to the simple nature of the approach;

DWT with Haar wavelets produces a transformed series by creating a lower-resolution

version through averaging consecutive values, while retaining detail coefficients for re-

constructing the original series [110].

In a similar vein to DFT and DWT, Singular Value Decomposition (SVD) has been

applied to time series to reduce the dimensionality of time series for faster querying.

In [67], this is achieved through representing series as linear combinations of eigenwaves

that extracted from the raw data, and the dimensionality of the data is reduced through

storing only a subset of the resulting principal components. They store only the most

important components when transforming data, creating lossy representations that retain

the majority of the explanatory power.

Piecewise Aggregate Approximation (PAA) is a compression-based transform that

was first introduced in [60] that has many similarities to DWT with Haar wavelets.

PAA is designed to be interpretable and conceptually simple by representing series as

a combination of equal-length segments. The segments are computed by combining c

successive readings and recording the average, where c is the compression value of the

transform. Therefore if the resampling rate is a power of two, the PAA of a series is

equivalent to the Haar DWT representation, as noted in [7]. A PAA-based approach for

TSC is used in [45] where the authors propose a technique for extracting patterns from

datasets on four TSC problems. The authors investigate using naive features derived

from simply resampling and interpolating the data, and then build on this by searching

for local patterns that appear within the approximated series to build decision tree

classifiers. PAA has also been extended to Adaptive Piecewise Constant Approximation

(APCA), where series are transformed using segments of varying lengths, rather than

concatenating segments of equal length. The motivation for this adaptation of the PAA

approach is to avoid removing maxima and minima in the compressed representation, as

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 35

the flexibility of using segments of variable length allows these to be incorporated in the

transformed series.

A recently proposed representation related to PAA and APCA is Symbolic Aggregate

Approximation (SAX) [71]. The transform is designed to leverage from the field of

text mining, where many indexing and querying techniques have been highly developed

for discrete data. The authors note that this idea is not novel itself, with previous

methods existing to transform time series data into discrete series, SAX is the first

symbolic representation that allows for dimensionality reduction, lower bounding, and

transformation of streamed data. SAX represents time series as a string of characters

from an alphabet α. The SAX transformation is achieved by firstly transforming data

using PAA, and then using a set of breakpoints calculated from a Gaussian curve to

assign characters from α to each piecewise segment. They then define a simple distance

measure between SAX-transformed series that is based on the Euclidean distance, and

demonstrate that the representation can be used in nearest neighbour and decision tree

classifiers to accelerate performance without detriment to accuracy. The most prominent

use of SAX in the TSC literature is in [72] where the authors propose a bag-of-patterns

approach. This technique transforms series using SAX, and then passes a sliding window

approach to extract words from the transformed series. A classifier is then built using

frequency occurrences of words within series as features.

2.6.3 Transformation into Alternative Data Spaces

The majority of TSDM research using transformation approaches, such as DFT and

DWT, use transformed series for faster approximation of the Euclidean distance be-

tween series in the time domain. Subsequently, the majority of research has focused on

indexing and querying applications, rather than classification, and TSC research using

alternative data representations has been minimal. Where transformation is used in the

TSC literature, it is often embedded within the classifier (such as in [72]).

However, [3] proposes transforming time series into alternative data spaces to uncover

similarity in other domains, rather than simply approximating Euclidean distance in the

time domain. This is a key motivation for the thesis outlined in Chapter 1; we wish to

search for shape-based and change-based similarity to uncover discriminatory features

in datasets that are not suited to the time domain, and create a mechanism to decide

which representation is best suited to a problem. We use the Power Spectrum (PS)

to search for global shape-based similarity, shapelets for measuring local shape-based

similarity, and the Autocorrelation Function (ACF) for assessing change-based similarity

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 36

between series. We discuss each of these approaches in detail in Chapter 4 and provide

motivational examples using new datasets that were introduced into the literature as

part of this thesis.

Chapter 3

Data

The aim of this work is to provide evidence in support of our thesis that the best way to

approach TSC problems without prior knowledge is to first transform data into alterna-

tive representations, then build classifiers on the transformed data where discriminatory

features may be more easily detected. To test this it is essential to have a wide and

varied pool of problems to evaluate our proposed solutions with. Throughout this thesis,

we evaluate our algorithms with the largest and most diverse collection of TSC prob-

lems ever assembled. Though the datasets used in each chapter vary slightly due to the

availability of problems at the time of development, the final algorithm that we propose

is evaluated on 72 datasets. To ensure that there is no selection bias in our problems,

a large proportion of these datasets are made up of the 46 UCR time series datasets, a

widely-used repository of problems that allow us to directly compare our results to other

work. We also collect problems from other domains and introduce numerous datasets

into the TSC literature. Such datasets include problems derived from household elec-

tricity consumption data, image outline problems taken from the MPEG 7 data, bone

outline data derived from X-rays, and biology problems taken from motion capture of

Caenorhabditis elegans. This chapter contains an overview of the nature of the datasets

that we use, their origins, and explanations of how they were formed.

3.1 UCR Time Series Data Repository

The University of California: Riverside (UCR) time series data repository [65] is a pub-

licly available store of TSC problems. First arising in 2003, the UCR repository has

grown to include 46 problems, each split into training and testing sets. The procedure

of explicitly splitting data into training and test sets is important to note, as this is a

37

CHAPTER 3. DATA 38

Table 3.1: The 46 UCR datasets, divided into categories of problem type to aid inter-
pretation.

Human Sensor Problems
CinC ECG torso ECGFiveDays NonInvasiveFatalECG Thorax1

NonInvasiveFatalECG Thorax2 TwoLeadECG
Image Outline Problems

Adiac DiatomSizeReduction FaceAll
FaceFour FacesUCR fiftywords

fish MedicalImages OSULeaf
SwedishLeaf Symbols WordSynonyms

yoga
Motion Problems

Cricket X Cricket Y Cricket Z
GunPoint Haptics InlineSkate

UWaveGestureLibrary X UWaveGestureLibrary Y UWaveGestureLibrary Z
Sensor Problems

Beef Car ChlorineConcentration
Coffee ItalyPowerDemand Lightning2

Lightning7 MoteStrain OliveOil
Plane SonyAIBORobotSurface SonyAIBORobotSurfaceII

StarLightCurves wafer
Simulated Problems

CBF MALLAT SyntheticControl
Trace TwoPatterns

trend that is present in much of the TSC literature. Therefore to ensure our results

remain consistent, our experiments are carried out by training classifiers exclusively on

training data and reporting results on the test data only. When introducing our own

TSC problems, we also adopt this convention and divide data into explicit training and

test sets.

The full list of the 46 UCR datasets is presented in Table 3.1. The datasets are

split by problem type; this informal grouping helps aid interpretation of the types of

data that form the UCR repository, and allows us to make a more informed analysis of

results. However, this is for information only and does not affect how we apply classifiers

to problems of different types.

3.2 Electricity Consumption Problems

The first problems that we introduce are derived from electricity consumption data.

Specifically, the datasets that we present are based on household device consumption

and arise from two different sources. The first datasets were recorded during a prototype

study by Green Energy Options (GEO), a company who specialise in creating smart

energy metering devices. The second data source is a study commissioned by the gov-

ernment of the United Kingdom to measure many aspects within residential households,

CHAPTER 3. DATA 39

including individual device consumption.

3.2.1 Visual Energy Trail (VET) Data

The Visual Energy Trial (VET) consisted of measuring power consumption for a variety

of user-labelled devices within 187 households across the United Kingdom. To create the

TSC problem, we extracted consumption data from the ten most commonly observed de-

vices. These included: immersion heater, washing machine, fridge, freezer, fridge/freezer,

oven/cooker, computer, television, and dishwasher. All monitoring devices sampled data

in 25 minute intervals, from which we derived two classification problems. The first

consisted of readings over a 24 hour period (96 attributes), and the second increased the

observation window to a full week (672 attributes). After data cleansing and validation,

the daily problem had 78,869 cases and the weekly problem had 9,215 cases. To better

motivate the problem, Table 3.2 demonstrates numerous summary statistics recorded

over the daily dataset.

Table 3.2: Summary statistics for the daily data set. Each data is averaged over all cases
of the given class. For example, the minimum power usage in any one 15 minute period
for a computer is 26.35 Wh when we average across all computers, assuming any power
is being used at all. First usage represents the average attribute index where non-zero
consumption is first observed in a day, and % on reflects the average proportion of the
day that the device shows non-zero consumption.

Computer Dish Freezer Fridge Fridge/ Immersion Kettle Oven/ TV Washing
Washer Freezer Heater Cooker Machine

Summary statistics for power usage when a device is in use (Wh)
min 26.35 276.01 17.61 12.34 19.07 151.07 61.44 252.05 29.65 274.96
max 39.79 457.92 37.34 27.07 45.42 245.49 113.98 423.94 45.24 375.88
mean 33.13 365.13 27.14 20.10 28.91 201.80 84.94 328.79 39.36 324.14

std dev 6.42 102.69 8.11 4.55 7.28 75.65 27.10 114.63 11.67 81.13
skewness 0.07 0.03 -0.22 -0.55 0.45 0.11 0.17 0.26 -1.08 0.03
kurtosis 2.62 -1.44 1.35 0.64 5.05 0.53 -0.94 -0.73 3.42 -1.04

Summary stats of device usage tendencies
% on 40 4 47 39 45 20 5 6 25 3

first usage 33.73 51.57 1.69 1.83 5.87 28.88 32.34 61.15 45.09 45.78
Summary stats of the number of time steps a device is on for

num runs 3.03 2.13 23.18 17.91 14.27 6.55 4.55 1.94 2.71 1.70
run min 28.00 1.61 5.99 2.30 5.86 3.58 1.02 2.45 8.04 1.32
run max 33.68 2.17 9.60 5.90 13.17 7.99 1.27 3.36 16.80 1.59
run mean 30.54 1.88 6.97 3.55 8.73 5.43 1.07 2.84 11.82 1.44

The VET classification problems have several confounding factors that will make

classification difficult. Firstly, the fact that measurements are summed over 15 minutes

makes it harder to detect devices that peak over a short period. For example, a kettle

will consume a large amount of power whilst on, but will only be on for two or three

minutes; when summed over 15 minutes it will be harder to distinguish from a device

CHAPTER 3. DATA 40

such as a dishwasher or washing machine, as these appliances consume lower power but

will be on for the whole period. Secondly, there will be seasonal variation within the

data, especially for devices such as immersion heaters. Thirdly, we would also expect it

to be hard to distinguish between similar devices such as a fridge and a fridge/freezer

and finally, we would expect considerable variation between different devices of the same

class.

The objective of these problems is to identify the class of a device for a new user

without any previous labelled consumption. Therefore we design the train/test split of

the data to best avoid introducing bias into classification results. We believe that it

will be much easier to identify a device for a single household, rather than across all

households, so keep data from a specific household exclusive to either the training data,

or the testing data. We originally introduced this problem in [77], and concluded that

it was very difficult to distinguish devices that were of a very similar nature over 15

minute intervals. For example, refrigerators, freezers, and fridge/freezers all appeared

very similar in the data, as did computers and televisions. Therefore in the final problems

that we use in that work, we group those devices into two new classes: cold and screen.

Figure 3.1 demonstrates example series from each of the classes.Typical Device Usage

Figure 3.1: Example series taken from the VET data. The series shown are randomly
selected cases from each class, sampled at 15 minute intervals over a single day.

CHAPTER 3. DATA 41

3.2.2 Household Energy Study (HES) Data

The second set of household device classification problems that we introduce in this

thesis are derived from data recorded as part of government sponsored study [104]. The

intention was to collect behavioural data about how consumers use electricity within the

home to help reduce the UK’s carbon footprint. The aim is to reduce CO2 emissions

80% by 2050, and it is clear that reductions in household consumption will be crucial

to meet this goal. Much recent attention has been placed on how to reduce consumer

consumption without a perceived reduction to quality of life, and one attempt to do

this by the UK government is to install smart meters with real-time displays into every

household. At a cost of £11.1bn, the project aims to alert consumers of their current

consumption with the primary objective to show consumers their real-time spending,

with the hope that this insight will cause them to reduce unnecessary consumption to

save money. However, this project will also create vast streams of data from the 30

million households that will be monitored, so it is imperative that further information is

extracted from the data to support other projects, such as creating smart energy grids

and managing the creation of renewable energy.

We provide five new classification problems that focus on domestic appliance classi-

fication from electricity consumption. The datasets that we introduce support the goal

of promoting further understanding of domestic electricity consumption by classifying

appliances according to their electricity usage profiles. The data contains readings from

251 households, sampled in two-minute intervals over a month. When designing the

classification problems we took our previous work in creating the VET classification

problems (Section 3.2.1) into account, influencing the creation of these datasets in two

regards. Firstly, we found that if consumption data from a specific device in a given

household were included in both the training and testing data, bias was introduced into

classification results as decisions were made by matching the specific device, rather than

classifying the class of the devices. Secondly, we noted it was difficult to differentiate

between devices with similar purposes and behavioural patterns. We use this previous

insight to create two distinct types of problem: problems with similar usage patterns

(Refrigeration, Computers, Screen) and problems with dissimilar usage patterns (Small

Kitchen and Large Kitchen). The aim is that problems with dissimilar usage patterns

should be well suited to time-domain classification, whilst those with similar consump-

tion patterns should be much harder. The five problems we form are summarised in

Table 3.3. These datasets were introduced into the literature in [75].

CHAPTER 3. DATA 42

Table 3.3: The five new TSC problems with class values

Problem Class Labels
Small Kitchen Kettle, Microwave, Toaster
Large Kitchen Dishwasher, Tumble Dryer, Washing Machine
Refrigeration Fridge/Freezer, Refrigerator, Upright Freezer
Computers Desktop, Laptop

Screen CRT TV, LCD TV, Computer Monitor

3.3 Hand Outline Datasets

We provide numerous classification problems derived from hand X-rays, where the data

was originally obtained from [85]. The data consists of X-rays of the hands of juve-

nile participants, with association information about the age of the subject. The data

contains many challenging aspects for analysis; all were recorded as part of routine med-

ical care as it would be unethical to subject participants to unnecessary radiation from

the imaging procedure, so no effort is made to ensure that the images are consistent.

They were each initially recorded simply for use with that participant, so often contain

inconsistent lighting, differing hand posing, visible markers within the images, and so

on. Therefore the process of extracting information was non-trivial, and formed a large

component on a project to create a system for automated bone age assessment [30].

The objectives of this project lead to various datasets being produced, from which we

derived 18 classification problems that we have used at various stages throughout this

work. The first iteration of 8 datasets consisted on classifying bone age of participants

from observing the outlines of 8 different phalanges in the hand. These datasets later

evolved to create 10 more diverse problems, which were composed of problems determin-

ing whether image outlines were correct, the bone age of participants, and the estimation

of the Tanner-Whitehouse score. Below we briefly explain the processing techniques that

were used to create the classification problems from the original data, and provide an

overview of the datasets that we have used in this thesis.

3.3.1 Data Preparation

The first stage in creating the TSC problems was to convert the 2-dimensional X-ray

images into 1-dimensional time series. The outlines were automatically applied to over

1,300 images using the algorithm described in [32], and the results of the process were

manually labelled by three human evaluators to judge whether the outlines were correct

or incorrect. After this stage, 1,045 cases remained with outlines that were deemed to

be accurate.

The next stage in the process was to isolate the individual bones from the outlines

CHAPTER 3. DATA 43

that are important in the assessment of bone age. The bones that were extracted were

the phalanges of the thumb, middle finger, and little finger. There are 3 phalanges in the

little and middle fingers (distil, middle, and proximal) and two in the thumb (which does

not contain the middle phalanx). For each correctly outlined X-ray, these were extracted

by using the algorithm described in [31] to identify the tips and webs of the hand. From

these positions, the axes of the thumb, middle, and little fingers were calculated by

finding the mid-point between adjacent webs in the hand. In the cases of the thumb and

little finger, where there is only one adjacent web for each, the axes were approximated

by extending the line from the previous finger and calculating where this intersects the

hand outline. Once provided with these axes, region-of-interest boxes were calculated

for each of the eight bones as shown in Figure 3.2.

Figure 3.2: A hand X-ray with the eight bones boxed: proximal (purple, bottom), middle
(green, middle), and distal (blue, top) phalanges. Note, the thumb does not have a middle
phalange.

CHAPTER 3. DATA 44

Each box was warped into a rectangular-shaped mesh (500 × 150 pixels) using a

piecewise affine warp to create a new image for each of the 8 bones. Each image was

converted into 1-d series, creating 1045 instances of data for each of the 8 bone types. A

common method for converting an image into a 1-d series is to calculate a histogram of the

image [81]. However, this approach doesn’t incorporate any location information from

the original image. To preserve this contextual information, the images were converted

to 1-d series by resizing them to 30 × 9 pixels, each represented as a vector of length

270. This approach retains location information in the data while converting the images

into 1-d series that can be posed as TSC problems.

The data generated throughout the various processing stages were used to form many

TSC problems, which were created in two distinct iterations:

Phalanges

The first generation of the data provided 8 TSC problems, one for each of the ex-

tracted phalanges (DP Little, DP Middle, DP Thumb; MP Little, MP Middle; PP Little,

PP Middle, PP Thumb). Each problem contained a total of 1,045 cases, which were split

into 200 training instances 845 test instances. The problem was to classify the age group

of subjects into classes of either 0-6, 7-12, or 13-19 years old.

Outlines, Age, Tanner-Whitehouse

The second generation of data that we used mirrored the objectives of [30] much more

closely. 10 problems were created in total, where the first 3 were to classify whether ex-

tracted phalanx outlines were correct for the three different types (DistPhalanxOutline,

MidPhalanxOutline, ProxPhalanxOutline). The next three datasets were amalgamations

of those used in the first generation datasets, where the problems were combined to

create one dataset for each phalanx type with concatenated readings across the three

digits for each subject, rather than an individual problem for each digit/phalanx com-

bination (DistPhalanxAge, MidPhalanxAge, ProxPhalanxAge). Additionally, since these

three problems are all aligned by subject, a problem was also created by concatenating the

outlines of all 8 phalanges for each subject (Phalanges). Finally, the last three datasets

represent the final aims in [30]. The main objective of the project was to automate

the process of bone age assessment, where common practice involves an expert manually

scoring X-rays of a subject to estimate the Tanner-Whitehouse score [102]. Therefore the

final three problems take each of the phalanges and poses the problem of classifying cases

by Tanner-Whitehouse score (DistPhalanxTW, MidPhalanxTW, ProxPhalanxTW).

CHAPTER 3. DATA 45

3.4 MPEG-7 Problems

The MPEG-7 CE Shape-1 Part B [13] database is a freely available collection of binary

images that were collated for testing MPEG-7 contour/image and skeleton-based de-

scriptors [69]. The data contains 1,200 images in total, with 20 instances of 60 distinct

classes. The classes vary in complexity and shape, with many classes of a similar nature

to one another, or with discriminatory features embedded internally within the limits of

the image.

We have created two problems using pairs of related classes: Beetle/Fly and

Bird/Chicken. These problems were designed to be suitably challenging by including

images that are not rotationally aligned and are of a visually similar nature, while still

allowing for simple processing to transform into 1-d series. This is due to the make-up

of the four classes that we consider; rather than containing intricate internal details or

patterns, these classes consist of solid shapes. To demonstrate this, example series from

the classes of the two problems are shown in Figure 3.3.

(a) (b)

Figure 3.3: Example images from the (A) Beetle/Fly and (B) Bird/Chicken TSC prob-
lems extracted from the MPEG-7 data.

Due to the nature of classes that we select, the process that we use to transform the

images into TSC problems does not need to consider the internal details of the images

(unlike the data previously described in Section 3.3). This simplification of the problem

enables us to obtain 2-d landmark data of the image outlines by using a simple thresh-

olding technique (such as that described in [81]). Once the outlines are identified, we

resampled the coordinates for each image outline to a consistent length of 512 readings.

The 2-d landmarks were then converted into 1-d series by calculating the distance be-

tween each point and the center of the image. An overview of this process is presented

in Figure 3.4. Once all of the series were transformed using this approach, the two TSC

CHAPTER 3. DATA 46

problems Bird/Chicken and Beetle/Fly were formed by assigning half of the series to

training data, and half to testing data.

(A) (B)

(C)

Figure 3.4: An overview of the data preparation for the MPEG-7 TSC problems. (A)
shows an original image, and (B) represents the outline after a simple thresholding
approach has been applied. The 1-d time series (C) is created by resampling the outline
to 512 readings, and calculating the Euclidean distance from the centre of the image to
each point.

3.5 Caenorhabditis elegans

Caenorhabditis elegans is a type of roundworm that is commonly used as a model organ-

ism in the study of genetics. The movement of these worms is known to be a useful indi-

cator in the understanding of behavioural genetics. Brown et al. [18] describe a system

for recording the motion of worms on an agar plate and measuring a range of human-

CHAPTER 3. DATA 47

defined features [109], and it has been demonstrated that the shapes that Caenorhabditis

elegans adopt during movement on an agar plate can be represented by a combination

of four base-shapes, which are called eigenworms.

Once the outline of a worm is extracted, each frame of its motion can be described

by four scalars that represent the amplitudes along each dimension when the shape is

projected onto the set of four eigenworms (as shown in 3.5, originally taken from [18]).

The resulting data that we use contains 257 cases of worm motion, consisting of five

types of worm. The first is a control group (N2 reference strain, 109 cases), and four

mutant types: goa-1 (44 cases), unc-1 (35 cases), unc-38 (45 cases), and unc-63 (25

cases). The data are down-sampled to second-long intervals, resulting in instances with

900 observations.

Figure 3.5: An figure originally taken from [18] to demonstrate how the datasets were
created. A worm on an agar plate (A) is shown, alongside the four representative eigen-
worms (B). Example series generated from the motion data are shown in (C)

We use this data to pose two classification problems. The objective of the first

problem is to classify individual worms as arising from either the control group, or being

a mutant type. The four mutant types are combined into a single class, resulting in a

CHAPTER 3. DATA 48

binary classification problem Worms2. The second TSC problem that we create is a

specialisation of the first; the objective is to classify worms as part of either the control

group, or a specific mutant strain. This problem contains 5 class values, including the

N2 control strain and each of the five mutant types, and is called Worms5. As per the

UCR repository [65] and the other datasets that we propose in this thesis, the data are

split into training and testing partitions. We do this by randomly assigning 70% of the

data to the training set and the remaining 30% to the test set. It should be noted that

the instances are consistent between Worms2 and Worms5, so data that appear in the

training data for one problem will also be in the training data for the second problem.

Chapter 4

Time Series Similarity with

Alternative Representations

Chapter 2 introduced the background for this thesis, highlighting numerous methods for

transforming time series. Such approaches included representing time series with lower

dimensionality, such as piecewise approximations and wavelet approaches, and also spec-

tral approaches that have been used to represent data in the frequency domain for faster

approximation of the Euclidean distance. However, the typical role of transformations in

time series data mining has predominately been to increase the efficiency of algorithms

by speeding up calculations, often for querying and indexing applications, rather than

searching for similarity in transformed spaces other than the time domain. A key com-

ponent of our thesis stated in Chapter 1 is that through transforming TSC problems into

other domains, discriminatory features can be discovered more easily.

In this section we explore three types of similarity that we wish to incorporate in our

work:

• Similarity in global-shape;

• Similarity in local-shape;

• Similarity in change.

We outline the techniques that we utilise in pursuit of representing data for exploring

these three types of similarity, and include motivational examples of each using selected

datasets described in Chapter 3.

49

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 50

4.1 Global Similarity in Shape: Power Spectrum

For searching for discriminatory features in global-shape, we use the power spectrum (PS)

to represent time series in the frequency domain. The PS for a series T =< t1, t2, ..., tm >

is calculated by first transforming T using the discrete Fourier transform (DFT), which

represents the data as a linear combination of sines and cosines to describe how much

information is stored in the series at different frequencies. The transformed series T is

represented as:

f(T) =
m∑
i=1

ai cos(2πwix) + bi × sin(2πwix), (4.1)

with amplitudes a and b, and phase w. The transformed series TF is typically then

expressed as a series of pairs for each frequency,

TF =< (a1, b1), (a2, b2), ..., (am, bm) > . (4.2)

In previous TSDM work, DFT is often computed using the Fast Fourier Transform

(FFT) to approximate the similarity between series in the time domain with a lower

dimensionality. This is achieved by truncating the data and calculating the Euclidean

distance between Fourier-transformed series. However, we wish to use the transform to

represent series in the frequency domain. To observe similarity in the global shape of the

series, we are interested in whether a sinusoid is present, regardless of phase. Therefore

we use the PS to describe the power at each frequency, where the periodogram of the

series is formed by squaring and adding the Fourier coefficients. We calculate the PS of

the series T as:

TP =< p1, p2, ..., pm > (4.3)

where

pi =
√
a2
i + b2i . (4.4)

We can simplify the resulting periodogram in two ways. Firstly, when working with zero-

normalised data, the first Fourier coefficient will always be 0 since the mean of the series

is 0. Therefore we can remove the first term without losing any information from the

transformed data. Secondly, since DFT is periodic, the second half of the periodogram

will be reflected, and we can discard the last half of the data. This gives us the final

series:

TP =< p2, p2, ..., pm/2 > (4.5)

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 51

4.1.1 Motivational Example: Electrical Devices

An example of transforming three series from the Electrical Devices problem introduced

in Section 3.2 is presented in Figure 4.1. The figure contains examples from three classes

in the time domain: kettle (A), refrigerator (B), and television (C), and the corresponding

PS-transformed series in (D), (E), and (F). The time domain example of the kettle

shows two occasions of consumption at approximately 06:30 and 17:30. These readings

are typical for a kettle, with very high consumption appearing in small bursts early in

the morning and during the evening, likely corresponding to breakfast and dinner for

the user. Due to the absence of consumption throughout the rest of the day, there

are no frequencies in (D) that contain a relatively large amount of information. In

contrast however, the time domain data of the refrigerator in (B) is very periodic, with

a repeating motif of consistent consumption throughout the day. This is reflected in the

PS in (E), where the information is contained across a small group of frequencies, with

one in particular containing the majority of the information. The series of television

consumption in (C) provides an example between these two extremes, with two bursts

of consumption during the day in the raw data. The transformed series is shown in (F),

where the power is more evenly distributed across a small group of frequencies.

4.2 Local Similarity in Shape: Shapelets

The previous section introduced an approach for transforming time series into the fre-

quency domain for uncovering global similarity in shape. However, shape-based similarity

is not always global. For example, consider an electrocardiogram (ECG) heartbeat for

a patient where a single beat arrhythmia is indicative of a heart condition. If this were

captured as a time series and compared to a series of normal ECG behaviour, it would be

very difficult to detect a difference due to the presence of many regular heartbeats. The

discriminatory feature in this case would be described by the presence of a small local

shape within the series indicating an irregular beat, which would likely be missed in the

frequency and time domains as the structure and global shape of the data would still be

very similar. We consider extracting time series shapelets for detecting local shape-based

similarity between series.

Shapelets are a time series data mining primitive that can be used to determine

similarity based on small common shapes occurring at any point in a series [107]. As

introduced in Section 2.6.2, the process for shapelet extraction is embedded within a

decision tree classifier. While the original work does not describe a data transformation

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 52

(A) (D)

(B) (E)

(C) (F)

0

20

40

60

80

100

120

140

0
0
:0
0

0
1
:0
0

0
2
:0
0

0
3
:0
0

0
4
:0
0

0
5
:0
0

0
6
:0
0

0
7
:0
0

0
8
:0
0

0
9
:0
0

1
0
:0
0

1
1
:0
0

1
2
:0
0

1
3
:0
0

1
4
:0
0

1
5
:0
0

1
6
:0
0

1
7
:0
0

1
8
:0
0

1
9
:0
0

2
0
:0
0

2
1
:0
0

2
2
:0
0

2
3
:0
0

k
W
h

0

20

40

60

80

100

120

140

0
0
:0
0

0
1
:0
0

0
2
:0
0

0
3
:0
0

0
4
:0
0

0
5
:0
0

0
6
:0
0

0
7
:0
0

0
8
:0
0

0
9
:0
0

1
0
:0
0

1
1
:0
0

1
2
:0
0

1
3
:0
0

1
4
:0
0

1
5
:0
0

1
6
:0
0

1
7
:0
0

1
8
:0
0

1
9
:0
0

2
0
:0
0

2
1
:0
0

2
2
:0
0

2
3
:0
0

k
W
h

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 6 11 16 21 26 31 36 41 46

P
o
w
e
r

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 6 11 16 21 26 31 36 41 46

P
o
w
e
r

0

20

40

60

80

100

120

140

0
0
:0
0

0
1
:0
0

0
2
:0
0

0
3
:0
0

0
4
:0
0

0
5
:0
0

0
6
:0
0

0
7
:0
0

0
8
:0
0

0
9
:0
0

1
0
:0
0

1
1
:0
0

1
2
:0
0

1
3
:0
0

1
4
:0
0

1
5
:0
0

1
6
:0
0

1
7
:0
0

1
8
:0
0

1
9
:0
0

2
0
:0
0

2
1
:0
0

2
2
:0
0

2
3
:0
0

k
W
h

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 6 11 16 21 26 31 36 41 46

P
o
w
e
r

Figure 4.1: Examples series to demonstrate transforming time series from the Electi-
calDevices dataset into the power spectrum. (A), (B), and (C) show examples of a
kettle, refrigerator and television in the time domain, and (D), (E), and (F) show the
transformed versions of these series respectively.

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 53

using shapelets, we believe that we can use the best shapelets from a dataset to transform

series into a representation that encompasses local similarity in shape. In this section

we introduce the core components of the shapelet extraction process; finding a shapelet

requires generating a set of candidates, defining a distance measure between a shapelet

and each time series, and defining a measure of the discriminatory power of a shapelet.

These tasks are described in this section, providing adequate technical background for a

shapelet transform that we propose in Chapter 6.

4.2.1 Shapelet Extraction

Given a time series Ti of length m, a candidate shapelet is a subsequence S of length

l ≤ m that is a contiguous sequence of points from Ti. Therefore any series of length

m contains m − l + 1 distinct subsequences of length l. The set of all subsequences of

length l for Ti can be denoted as Wi,l. For a set of time series T of length n, the set of

all subsequences of length l can be denoted as:

Wl = {W1,l,W2,l, ...,Wn,l}. (4.6)

The set of all candidate shapelets for all series in T can then be denoted as:

W = {Wmin,Wmin+1, ...,Wmax}, (4.7)

where min ≥ 3 and max ≤ m represent the minimum and maximum shapelet lengths

respectively. It should be observed that W is very large, consisting of O(nm2).

The generic shapelet extraction algorithm that was originally proposed in [107] is

defined in Algorithm 6 (Section 4.2.1).

Algorithm 6 ShapeletSelection (T , min,max)

1: best = 0;
2: bestShapelet = ∅;
3: W = generateCandidates(T,min,max);
4: for l = min to max do
5: for all subsequence S in Wl do
6: DS = findDistances(S, T);
7: quality = assessCandidate(S,DS);
8: if quality > best then
9: best = quality;

10: bestShapelet = S;
11: return bestShapelet;

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 54

4.2.2 Assessing Shapelet Candidates

Two key components in the shapelet extraction algorithm outlined in Algorithm 6 are

the findDistances and assessCandidates functions. The first operation creates an ordered

set of distances DS between a candidate shapelet S and a set of training data T . This

is then used in assessCandidates, where the quality of S is determined for T by judging

how well the shapelet splits the training data. To carry out these tasks, two operations

must be defined: firstly, how to measure the similarity between S and the training data

T to calculate DS , and secondly, how to use DS to calculate the quality of S.

4.2.3 Shapelet Similarity

We denote the Euclidean distance between two subsequences S and R of length l as

dist(S,R) =
l∑

i=1

(si − ri)2. (4.8)

The distance between a subsequence S of length l and time series Ti is the minimum

distance between S and all normalised subsequences of Ti of length l, i.e.

di,S = min
R∈Wi,l

dist(S,R). (4.9)

We generate all distances between a candidate shapelet S and all series in T to generate

a list of n distances,

DS =< d1,S , d2,S , . . . , dn,s > . (4.10)

Note that since di,S is a minima, [107] propose speeding up the calculation of di,S with

an early abandon.

4.2.4 Shapelet Quality Measures

The original shapelet algorithm in [107] uses information gain to establish the quality

of a shapelet for splitting a dataset. This measure lends itself well to the decision

tree classifier that the authors embed shapelets within, as previously seen with C4.5

decision trees in Section 2.4. However, we believe that alternative measures can be

used in place of information gain which may be more appropriate in future non-tree

based implementations of shapelets. Below we discuss the information gain measure

used in [107], and also introduce three alternative quality measures: the F-statistic from

analysis of variance, Kruskal-Wallis, and Mood’s Median.

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 55

Information Gain

Information gain [98] (IG) is a non-symmetrical measure of the difference between two

probability distributions. The shapelet finding algorithm in [107] uses IG as the quality

measure to assess candidate shapelets. DS is sorted and the information gain at each

possible split point sp is assessed for S, where a valid split point is the average between

any two consecutive distances inDS . For each possible sp, IG is calculated by partitioning

all elements of DS < sp into AS , and all other elements into BS . The information gain

at sp is calculated as

IG(DS , sp) = H(DS)− |AS |
|DS |

H(AS) +
|BS |
|DS |

H(BS), (4.11)

where |AS | is the cardinality of the set AS , and H(AS) is the entropy of AS . Entropy is

calculated by

H(DS) = −
∑

c∈classes{DS}

pc log2 pc. (4.12)

The IG infoS of S is calculated as

infoS = max
sp∈DS

IG(DS , sp). (4.13)

Analysis of Variance F-statistic

The F-statistic (F-stat) in analysis of variance (ANOVA) is used to test the difference be-

tween means from a set of C samples, using the null hypothesis that there is no difference

between each of the population means. We believe that F-stat will discriminate between

shapelets well since the statistic is based on the ratio of variability between groups to

the variability within the groups. High values of the test statistic would indicate that

the between-group variability is high, but within-group variability is low. This is ideal

for shapelet candidates, as a high F-stat would indicate that the shapelet discriminates

between classes well (high between-class variability), but matches well within the class

that the shapelet is extracted from (low within-class variability).

Given the set of distances DS for dataset T and shapelet S, the F-stat is calculated by

first separating the distances by class value, such that DS,i contains the distances between

S and all members of T with the class value i. Once these groups are established, the

F-stat is calculated as:

F =

∑
i(D̄S,i − D̄S)2/(k − 1)∑k

i=1

∑
dj∈DS,i

(dj − D̄S , i)2/(|DS | − k)
(4.14)

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 56

where C is the number of classes in T , |DS | is the cardinality of DS , D̄S is the overall

population mean, and D̄S,i is the mean of the distances to series of class i. Typically

ANOVA is used to evaluate whether there is a significant difference between samples by

comparing the calculated F-stat to a critical difference value. However in this context, a

critical difference value is not necessary, and the F-stat alone can be used as a relative

measure of quality between candidate shapelets.

Kruskal-Wallis

Kruskal-Wallis [68] (KW) is a non-parametric test to observe whether data originates

from a single distribution. The calculated statistic represents the squared-weighted dif-

ference between ranks within a class and the global mean rank. For use with shapelets,

KW is calculated for S as

KWS =
12

|DS | · (|DS |+ 1)

k∑
i=1

R2
i

ni
− 3(|DS |+ 1), (4.15)

where |DS | is the cardinality of DS , k is the number of classes in DS , Ri is the sum of

ranks for class i and ni is the number of instances of class i in DS . Note that in order

to calculate ranks, DS must be sorted as it was with IG. However, we believe that KW

will be more efficient for shapelet finding than IG because the statistic only needs to be

calculated once, rather than for each possible split point in DS .

Mood’s Median

Mood’s Median [19] (MM) is a non-parametric test to determine whether the medians

of two samples originate from the same distribution. Unlike IG and KW, MM does not

require DS to be sorted, so therefore should be faster. Only the median is required for

calculating MM, which can be found in O(n) time using quickselect [54]. The median

is used to create a contingency table from DS , where the counts of each class above

and below the median are recorded. The MM statistic is obtained by calculating the

Chi-Squared statistic of the table

χ2 =
c∑

j=1

r∑
i=1

(oij − eij)2

eij
, (4.16)

where r and c are the rows and columns of the contingency table and oij and eij are the

observed and expected values of row r, column c respectively.

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 57

4.2.5 Example: MPEG7 Data

Though the authors of the original shapelet work in [107] embedded extraction within

their classification algorithm, we wish to use shapelets as a way to consider local shape-

based similarity between series. To demonstrate how shapelets can achieve this we

create an example from the MPEG-7 datasets introduced in Section 3.4. Specifically,

we extract the best shapelet from the Bird/Chicken problem, which is equivalent to

creating a shapelet decision tree with a forced depth of 1. The shapelet is demonstrated

in Figure 4.2. The best shapelet is taken from an instance of the Bird class, where the

subsequence corresponds to the back of the bird. It is intuitive to see how this shapelet

discriminates between the class values from observing the example data. The instances

that correspond to the Bird class each have a smooth back, whereas those in the Chicken

class all have a large, raised tail. Therefore distance calculations between the shapelet

shown in Figure 4.2 and Bird instances will yield a small difference, while the distance

between the shapelet and cases of the Chicken class will result in large distances since

there is no location in those outlines that is a good match.

Figure 4.2: An example of the best shapelet extracted from the bird/chicken problem.
(A) shows sample data from the problem, and (B) demonstrates the shapelet that was
identified as the best candidate for diferentiating the classes within the training data.

4.3 Similarity in Change: Autocorrelation Transform

The final time series transformation that we consider is based on the autocorrelation

of time series. We can quantify the autocorrelation of series within a dataset using the

autocorrelation function (ACF). The ACF of a series measures the interdependence of

attributes, where a positive autocorrelation suggests a form of persistence in the data,

while negative autocorrelation suggests high volatility in the data. For example, if a series

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 58

has many consecutive readings above the series mean, or many consecutive reading below

the mean, this can be seen as persistence within the data as new readings appear to stay

in the same state as previous readings. Conversely, if readings above the mean tend to

be followed immediately by readings below the mean, this would suggest high volatility

within the data and a negative autocorrelation.

An effective way to analyse characteristics of the autocorrelation of a series is to create

the correlogram of the series by transforming with the ACF. The correleogram contains

the sample autocorrelation coefficients, which measure the correlation between observa-

tions at various time lags. As an example, consider the series T =< t1, t2, . . . , tm >. The

first coefficient r1 in the ACF will be at lag 1. Therefore the coefficient is calculated as

the correlation between the first m− 1 readings in T and the last m− 1 readings in T ,

and the result will be within the range of [−1, 1]. This is calculated as:

r1 =

m−1∑
i=1

(ti − t̄(1))(ti+1 − t̄(2))(
m−1∑
i=1

(ti − t̄(1))2

)1/2(m∑
i=2

(ti − t̄(2))2

)1/2
(4.17)

where t̄(1) is the mean of the first m − 1 observations and t̄(2) is the mean of the final

m− 1 readings. However, this calculation can be simplified by approximation when m is

reasonably large. The difference between the subsequence means t̄(1) and t̄(2) is relaxed,

and the mean of the whole sample is used instead. Furthermore the summations from

1 to m − 1 and 2 to m can be removed to use a single iteration from 1 to m in the

denominator. Therefore we can now approximate r1 as:

r1 =

m−1∑
i=1

(ti − t̄)(ti+1 − t̄)
m∑
i=1

(ti − t̄)2

. (4.18)

We can then generalise this for any lag value k where k < m:

rk =

m−k∑
i=1

(ti − t̄)(ti+k − t̄)
m∑
i=1

(ti − t̄)2

. (4.19)

One final simplification can be made to the calculation of rk due to the nature of the

data that we use. It is common in TSC to work with series that have been preprocessed

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 59

using various normalisation techniques, most notably zero mean and unit variance nor-

malisation. When we implement the ACF transform, we use both of these normalisation

approaches on the data before calculating the correlogram of series. As a consequence,

we can simplify the calculation of rk to:

rk =
m−k∑
i=1

(ti · ti−k). (4.20)

Using this calculation, ACF can be used to transform an input series T into an output

sequence of the autocorrelation at l different lag values:

R = {r2, r2, ..., rl} (4.21)

However, ACF is only one method for quantifying the autocorrelation of a series. A

further possibility is the partial autocorrelation function (PACF). The PACF of a series

describes autocorrelation with linear dependence between attributes removed. For ex-

ample, if we consider three adjacent attributes in a time series, a, b, and c; if b is highly

correlated with a and c is highly correlated with b, c is linearly dependant on a, and

any correlation with b may be a residual effect of this relationship. Therefore the PACF

measures autocorrelation with this dependence removed. The PACF can be found from

the ACF through a series of linear equations.

Given the first p terms of the calculated ACF, there exists a set of parameters Λp =

(λ1, λ2, . . . , λp) that satisfy Rp = ΛpΦp, where Φp is the Toeplitz matrix of the p ACF

values:

Φp =



1 r1 r2 r3 · · · rp−1

r1 1 r1 r2 · · · rp−2

r2 r1 1 r1 · · · rp−3

r3 r2 r1 1 · · · rp−4

...
...

...
...

. . .
...

rp−1 rp−2 rp−3 rp−4 · · · 1


. (4.22)

By rearranging the previous equation, the set of parameters for the first p terms is be

found as Λp = Φ−1
p Rp. For all values of p, using series length as m and the maximum

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 60

lag as l, we have:

Λ =


Λ1

Λ2

...

Λm−l

 =



λ1,1

λ2,1 λ2,2

λ3,1 λ3,2 λ3,3

...
...

...
. . .

λm−l,1 λm−l,2 λm−l,3 · · · λm−l,m−l


(4.23)

The PACF is given as the diagonal through the matrix, P =< λ1,1, λ2,2, . . . , λm−l,m−l >.

This can be found through solving m − l systems of linear equations. However, Φ is

a Toeplitz matrix, since the diagonals within the matrix are constant. This property

can be exploited for faster processing by using the Durbin-Levinson algorithm [70, 36],

which has a time complexity of O(n2). In the same manner as we described for the

ACF terms, the resulting PACF terms can also be used to represent a time series in the

autocorrelation domain.

In both cases with ACF and PACF, we need to set the maximum lag l. By defini-

tion, the higher the lag is in the derived terms, the greater the variability. Therefore

placing a large restriction on lag will retain only the most explanatory terms. In our

implementations of ACF and PACF, we restrict l to either m/4 or 100, depending on

which value is largest. To demonstrate the application of ACF and PACF to time series

data, we include an example in Figure 4.3 using the two class Caenorhabditis elegans

problem that was introduced in Section 3.5.

The first column in Figure 4.3 depicts the ACF (A) and PACF (C) for the control

group in the data. The ACF demonstrates a strong positive trend in the relationship

between attributes at different lag values, while observing the PACF shows that with

linear dependence removed, there is a strong relationship with a lag of 1. The example

taken from the mutant strain has a very different ACF (B), with an initially strong

positive correlation that inverts to a negative correlation. Observing the PACF shows

that there is a strong positive relationship with lag at 1, but subsequently there is a

strong negative relationship with a lag of 2. This would suggest that the movement of

the mutant instance is much more erratic than that of the control group worm.

We believe that transforming time series with ACF and PACF will allow classification

algorithms to detect change-based discriminatory features between class values. How-

ever, this is not an approach that is adopted widely in the literature. The most common

approach of using autocorrelation-based approaches with time series data is to fit au-

toregressive (AR) models to series. This is typically carried out with a different purpose

CHAPTER 4. SIMILARITY WITH ALTERNATIVE REPRESENTATIONS 61

0.5

0.75

1

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

-0.25

0

0.25

0.5

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

-1

-0.75

-0.5

-0.25

0

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

-1

-0.75

-0.5

-0.25

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

(A) Control ACF (B) Mutant ACF

-1

-0.75

0.5

0.75

1

-1

-0.75

0.5

0.75

1

-0.25

0

0.25

0.5

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

-0.25

0

0.25

0.5

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

-1

-0.75

-0.5

-0.25

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

-1

-0.75

-0.5

-0.25
1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

(D) Mutant PACF(C) Control PACF

-1
-1

Figure 4.3: Examples of the ACF and PACF transforms on the Worms2 problem.

in mind to TSC however, with the predominant aim of forecasting future values [14].

In cases where AR models have been applied in TSC, the process typically involves ex-

tracting parameters after fitting models, and using a distance measure to calculate the

similarity between the parameters (for example, with the Euclidean distance [27]).

Chapter 5

Time Domain Classification:

Current Benchmarks and a New

State-of-the-art

Contributing Publications

• Jason Lines and Anthony Bagnall. Ensembles of elastic distance measures for time

series classification. In Proceedings of the 14th SIAM International Conference on

Data Mining (SDM), pages 524–532. 2014.

• Jason Lines and Anthony Bagnall. Time series classification with ensembles of

elastic distance measures. Data Mining and Knowledge Discovery, pages 1–28,

2014.

• Anthony Bagnall and Jason Lines. Technical report: An experimental evaluation

of nearest neighbour time series classification. CoRR, abs/1406.4757, 2014.

The majority of research in TSC has focused on classification in the time domain.

The general consensus among researches is that the current benchmark for TSC is to use

nearest neighbour classifiers (NN) with similarity between series evaluated using either

the Euclidean distance of Dynamic Time Warping (DTW) with a warping window set

through cross-validation. With this in mind, the objectives of this chapter are two-fold.

Firstly, we aim to extensively evaluate the utility of using NN classifiers for TSC. A

preliminary study is carried out to test the claim that “simple nearest neighbor classifi-

cation is exceptionally difficult to beat” by comparing NN classifiers to various standard

62

CHAPTER 5. TIME DOMAIN CLASSIFICATION 63

classification algorithms (Section 5.2). We then carry out experiments to address several

aspects of applying DTW to TSC problems, such as whether setting warping window

or neighbourhood sizes significantly affects error rates (Section 5.3). Once the optimal

configuration for DTW is established, an extensive evaluation is carried out to compare

the classification performance of NN classifiers using DTW against alternative similarity

measures (Section 5.4). We consider a total of 11 distinct NN approaches, with the goal

to determine whether DTW is in fact the gold standard for TSC with NN classifiers,

or if there are any alternative elastic measures that should be considered as the new

benchmark. 2:30

The second aim of the chapter is informed by the first. If NN classification with

DTW is still the leading candidate for TSC, or if there is no other dominant approach,

we want to test if it is possible to combine the decisions of multiple measures into a single

classifier that is significantly more accurate than any of the individual components. We

investigate this in Section 5.5 through using simple ensemble schemes to create a new

classifier: the Elastic Ensemble (EE).

The contributions of this chapter are summarised as follows:

• We demonstrate that NN classifiers with DTW are not outperformed by any al-

ternative classification approach (Section 5.2). This reinforces the view that DTW

is hard to beat. However, Euclidean distance with NN classifiers was beaten by a

subset of the alternative approaches. Euclidean NN is often used as a benchmark to

justify new algorithms; these findings suggest that Euclidean NN should no longer

be used as such, and DTW should be the only configuration of NN classifiers that

is used for comparison.

• Setting the warping window for DTW 1-NN through cross-validation on training

data (DTWCV) is shown to significantly improve the classifier (as first recognized

in [90]). We also show that setting the number of neighbours in the NN classifier

for TSC may be beneficial (Section 5.3.1), but the support for this is not as strong

as setting measure parameters (Section 5.3.2). The results lead to the recom-

mendation that setting measure parameters through CV should take priority over

setting neighbourhood sizes, as it may be intractable to search for both parameters

on large problems. We therefore advocate the best configuration for approaching

TSC problems with DTW is to use a 1-NN classifier, and to set the DTW warping

window through cross-validation (DTWCV).

• None of the elastic measures that we assess are significantly more accurate than

CHAPTER 5. TIME DOMAIN CLASSIFICATION 64

DTW (Section 5.4). These results demonstrate that there is no dominant approach

for TSC, and the popular approach of DTWCV can still be considered the bench-

mark approach for TSC.

• Combining the elastic measures using simple ensemble schemes produces a classi-

fier that is significantly more accurate than any of the constituent parts over the

full set of 75 datasets and the UCR datasets (Section 5.5.3). Investigation showed

that while the overall accuracies of the classifiers were not significantly different,

the individual predictions made by each were significantly different (Section 5.5.1).

To counter any suggestions of bias, the experiments are repeated using the set of

46 widely-used UCR datasets, and the EE remained significantly more accurate

than any competing algorithm. Comparisons to recent work in the literature (Sec-

tion 5.5.4) lead us to believe that these are the best TSC results ever published,

and the EE is the first classifier to significantly outperform DTWCV on the UCR

datasets.

5.1 Datasets

To keep results consistent and interpretable, each experiment in this chapter is carried

out using the same set of 75 datasets. The names of these are shown in Table 5.1.

For more information on specific datasets, please refer to Chapter 3. It is worth reit-

erating that all datasets are split into training and testing sets, where any parameter

optimisation is carried out on the training data only. It is convention to split datasets

in this fashion in the TSC literature, and some datasets have been split in a certain

manner to avoid introducing bias into the classification problems (for example, the elec-

tricity device datasets described in Section 3.2). Additionally, the widely used UCR data

repository [65] also organises data in this way, so it is desirable to run experiments using

train/test splits to make comparisons possible with other work on the UCR datasets.

5.2 Nearest Neighbour Classification: Hard to beat, or a

misconception?

The first aim of this chapter is to test the widely-believed claim that NN classifiers are

difficult to beat. We design an experiment to test this by comparing NN classifiers using

Euclidean distance and DTW against other standard classification algorithms.

CHAPTER 5. TIME DOMAIN CLASSIFICATION 65

Table 5.1: The 75 datasets used in this chapter, split by problem type. See Chapter 3
for more information on specific datasets.

Image Outline Classification
DistPhalanxAge DistPhalanxOutline DistPhalanxTW FaceAll
MidPhalanxAge MidPhalanxOutline MidPhalanxTW FaceFour
ProxPhalanxAge ProxPhalanxOutline ProxPhalanxTW WordSynonyms

OSULeaf Phalanges yoga ShapesAll
SwedishLeaf MedicalImages Symbols Adiac
ArrowHead BeetleFly BirdChicken DiatomSize
FacesUCR fiftywords fish Herring

Motion Classification
CricketX CricketY CricketZ GunPoint
UWaveX UWaveY UWaveZ UWaveAll
Haptics InlineSkate ToeSeg1 ToeSeg2

Sensor Reading Classification
Beef Car Chlorine CinCECG

Coffee Computers FordA FordB
ItalyPower LargeKitchen Lightning2 Lightning7

StarLightCurves Trace TwoLeadECG wafer
RefrigerationDevices MoteStrain Earthquakes ECGFiveDays

ElectricDevices SonyRobot1 SonyRobot2 OliveOil
Plane Screen SmallKitchen ECGThorax1

ECGThorax2
Simulated Classification Problems

ARSim CBF SyntheticControl ShapeletSim
TwoPatterns MALLAT

5.2.1 Experimental Procedure

Two NN classifiers (Euclidean and DTW) and seven standard classifiers are used in this

preliminary study. To ensure the simplicity of this prototype experiment, no effort is

made to optimise the algorithms; the NN algorithms each use 1-nearest neighbour (1-NN)

and parameter-free implementations of the distance measures (i.e. DTW is implemented

with a full warping window), while the standard classifiers are implemented with default

Weka parameters. The full list of the classifiers used are as follows:

1. 1-NN with Euclidean Distance (NNEuclid)

2. 1-NN with DTW and full warping window (NNDTW)

3. Näıve Bayes (NäıveBayes)

4. Bayesian Network (BayesNet)

5. C4.5 Decision Tree (C45)

6. Random Forest (RandFor)

CHAPTER 5. TIME DOMAIN CLASSIFICATION 66

7. Rotation Forest (RotFor)

8. Support Vector Machine with linear kernel (SVML)

9. Support Vector Machine with quadratic kernel (SVMQ)

The null hypothesis is that there is no difference between the average accuracies of the

NN classifiers and the standard classifiers. If this is not disproved, it will demonstrate the

effectiveness of simple NN classifiers for TSC. However, if any of the standard classifiers

are found to be significantly more accurate than the NN classifiers, the null hypothesis

can be rejected and the claim that NN classification is hard to beat must be false.

5.2.2 Results

The results of the 9 classifiers over the 75 datasets are summarised in the critical difference

diagram in Figure 5.1. The full results can be found on the supporting website for this

thesis [73].

CD

9 8 7 6 5 4 3 2 1

3.0195
RotFor

3.5519
SVMQ

3.9545
NNDTW

4.7143
RandFor

4.8506
NNEucid

4.9026
SVML

6.3117
BayesNet

6.5714
NaiveBayes

7.1234
C45

Figure 5.1: A critical difference diagram to compare the test classification performance
of NN classifiers with other standard classification algorithms.

.

The CD diagram in Figure 5.1 shows the average rank of each classifier over the 75

datasets. The classifiers are organised into cliques, depicted by solid black lines, where

there is no significant difference between classifiers. The diagram shows that the top

three ranked classifiers are RotFor, SVMQ and NNDTW respectively. Crucially, these

CHAPTER 5. TIME DOMAIN CLASSIFICATION 67

three classifiers are within the same clique, demonstrating that no classifier significantly

outperformed NNDTW. This result is critical as it means the null hypothesis cannot be

rejected and confirms that NN classification is hard to beat. It is important to note how-

ever that NNEuclid was not within the top clique, and the average rank was significantly

different to the rotation forest. This has important implications for TSC research as NN

classification with Euclidean distance and Dynamic Time Warping are often discussed

in the same standing; these results show that NNEuclid was outperformed by a classifier

using default Weka parameters. Therefore this suggests that using the Euclidean dis-

tance with NN should no longer be considered a benchmark in TSC, and work should

be compared against DTW.

5.3 Configuring Distance Measures with Nearest Neigh-

bour Classifiers

The preliminary study justified the use of NN classifiers with DTW for TSC. However,

this investigation did not address the best solution for implementing NN classifiers with

similarity measures. Two obvious questions arise:

1. Is it beneficial to set the number of neighbours for NN classifiers on TSC problems?

2. Should distance measures be parameterised when used with NN classifiers for TSC?

i.e. should DTW be implemented with an unconstrained search, or does setting

the warping window affect accuracy significantly?

This section addresses these two questions and makes recommendations on the opti-

mal solution for TSC with NN classifiers. This is investigated through using Euclidean

Distance and DTW with all of the 75 datasets listed in Section 5.1. Various DTW-based

measures are also included for comparison, including derivative and weighted variants of

DTW. Seven measures are used in total: Euclidean Distance (ED), DTW with a full win-

dow (DTWR1), DTW with window set through CV (DTWRn), Derivative DTW with

full window (DDTWR1), Derivative DTW with window set through CV (DDTWRn),

Weighted DTW with weights set through CV (WDTW), and Weighted Derivative DTW

(WDDTW) with weights set through CV.

A common method for improving the accuracy of NN classifiers is to set the number

of neighbours k through cross-validation on the training data. This process adds an

overhead in the complexity of the algorithm as the distance matrix of the training data

must be calculated in order to find k. This overhead is increased dramatically when also

CHAPTER 5. TIME DOMAIN CLASSIFICATION 68

cross-validating for other parameters (such as window sizes for DTW) as each parameter

option will likely create different distance matrices. In this investigation, each classifier

is given 100 model selections for each parameter; k is set from 1 to 100, and the warping

window size/weights start at 1% and increase to 100% in increments of 1%. The number

of training experiments required to set parameters for each of the measures is summarised

in Table 5.2.

Table 5.2: The distance measures used in the investigation of setting k for NN classifiers
with associated training costs. For example, DTWRn requires that k (100 options) and
the window size r (100 options) are both set. Using different window widths will create
different distance matrices, so must be recalculated for each combination of k and r
(100× 100 = 10, 000 training experiments for each dataset).

Distance Measure k Options
Parameter
Options

Training Experiments
per Dataset

ED 100 1 100
DTWR1 100 1 100
DTWRn 100 100 10,000

DDTWR1 100 1 10,000
DDTWRn 100 100 10,000
WDTW 100 100 10,000

WDDTW 100 100 10,000

Clearly there is a large overhead for setting both k and measure parameters through

CV; setting both would require 100 × 100 distinct training experiments for a single

dataset, resulting in 750,000 training experiments for all 75 datasets. Obviously in

cases such as this, the overhead could only be justified if the classifier is significantly

improved by setting both parameters. The goal of this section is to clarify this by inves-

tigating whether setting k and measure parameters through cross-validation significantly

improves accuracy of NN classifiers.

5.3.1 Setting the Number of Neighbours

The first series of experiments is designed to investigate the effect of setting the number

of neighbours k in NN classifiers for TSC. 7 variants of the Euclidean distance and DTW

were used with NN classifiers (as detailed in Section 5.3). Each classifier had 100 model

selections for measure parameters (where applicable) and 100 options for k. For a given

dataset, each measure used leave-one-out cross-validation (LOOCV) experiments on the

training data to identify the best parameter and k combination, where the best was

selected as the combination that resulted in the highest training accuracy. The results

CHAPTER 5. TIME DOMAIN CLASSIFICATION 69

of a direct comparison between 1-NN and k -NN implementations of the 7 classifiers are

listed in Table 5.3. Win/tie/loss counts are recorded, along with P values from a two-

tailed t-test and Wilcoxon rank-sign test to test for significant differences between using

1-NN and k -NN. These results were originally recorded for the technical report in [6].

Table 5.3: Win/tie/loss counts for using classifiers with 1-NN vs. k -NN. The table also
includes p values calculated from performing t-tests and Wilcoxon Signed-Rank tests on
the results.

Classifier
Mean kNN

Improvement
1-NN
Better

Tie
kNN

Better
P Value
(T-Test)

P Value
(Rank-Sign)

ED 0.165% 11 48 18 0.359 0.175
DTWR1 0.281% 11 38 28 0.245 0.036
DTWRn 1.265% 18 37 22 0.000 0.380

DDTWR1 0.733% 8 36 33 0.036 0.004
DDTWRn 0.174% 12 42 23 0.320 0.104
WDTW 6.668% 16 36 25 0.000 0.199

WDDTW 0.799% 12 38 27 0.006 0.010

The t-test in Table 5.3 shows that no significant difference is detected for ED, DTWR1

and DDTWRn at the p ≤ 0.05 level when using 1-NN against k -NN. Of the other results,

WDTW has by far the highest average improvement in accuracy when considering k

neighbours. On closer inspection, it was found that there were abnormally large differ-

ences on the MiddlePhalanxOutlineAgeGroup and MiddlePhalanxTW datasets of ap-

proximately 15% and 11% respectively. These datasets are derived from the same data,

so it is likely that there is an underlying relationship that WDTW could not detect with

only one neighbour. To identify whether these results skewed the analysis, Wilcoxon

signed-rank tests were also carried out as a the non-parametric alternative. The result

of this showed that the improvement in WDTW was no longer significant with this test,

and DDTW was the algorithm that showed the most significant improvement. However,

there is no unanimous result or compelling evidence to suggest that both k and measure

parameters should be set, especially in light of the orders of magnitude extra training

that is involved in cross-setting two parameters. This potentially leaves a choice; if we

only have the resources to set measure parameters or set k, which should we favour?

The next experiments investigates the claim in [90] that states setting window sizes for

DTW significantly improves classification accuracy.

CHAPTER 5. TIME DOMAIN CLASSIFICATION 70

5.3.2 Parameterising Distance Measures

The results from Section 5.3.1 can be reused to formulate a new test. The previous

experiment investigated the difference between 1-NN and k -NN implementations of the

distance measures. In this experiment, we wish to compare parameterised and non-

parameterised measures. Since WDTW must have a weight set in the processing of the

algorithm, we focus specifically on full DTW vs. DTW with warping set through cross-

validation, and compare results between the two using 1-NN implementations. Reusing

the results of DTWR1 and DTWRn, the graph in Figure 5.2 summarises the difference

in test accuracy between the two implementations across the datasets.

16

12

14

s

8

10

12

of
 D
at
as
et
s

4

6

8

N
um

be
r o

0

2

4

0

Test Accuracy Difference (Rounded to nearset %) when using a Warping Window

Figure 5.2: A histogram to summarise the differences between using full-windowed DTW
against setting the warping window through cross-validation. Positive results (blue)
indicate datasets where better performance was obtained using windowed DTW, and
negative results (red) indicate where the full-window performed better.

The results demonstrate a significant advantage in test performance when using a

window set through cross-validation compared to using the full window. The full window

wins on 19 datasets, but the parametrised version wins on 41 datasets. This result is

significant according to a t-test and Wilcoxon-signed rank test. Comparing WDTW

to DTW with a full warping window exhibited very similar results, as did repeating

the comparison using the derivative equivalents of DTW and WDTW. The support for

setting parameters is much stronger than setting k, as all classifiers were significantly

CHAPTER 5. TIME DOMAIN CLASSIFICATION 71

improved through setting measure parameters.

5.3.3 Concluding Remarks

The objectives of this section were to answer two questions:

1. Is it beneficial to set the number of neighbours for NN classifiers on TSC problems?

2. Should distance measures be parameterised when used with NN classifiers for TSC?

The first question was answered in Section 5.3.1. The evidence suggested that setting

k tended to improve classifiers, but the improvement was not always significant.This casts

doubt over the merits of cross-validating for k due to the very large complexity overheads

introduced for measures that require parameters. What was evident however is that over

the 75 datasets tested, no 1-NN classifier significantly outperformed the equivalent k -

NN classifier with the same distance measure. Therefore cross-validating for k appears

likely to improve classifiers, and there is no evidence to suggest doing so would decrease

classification accuracy. Therefore the recommendation would be to set k if it is possible,

but doing so would not necessarily lead to better results.

The second question was answered in Section 5.3.2. The support for the answer

of this question was unambiguous; each of the DTW-based measures that were tested

were significantly more accurate when parameters were set though cross-validation, as

opposed to using the non-parametrised equivalents. This was detected by both t-tests and

Wilcoxon-signed rank tests, providing a stronger argument than that of the investigation

into setting k. There is evidence to support that setting both of these values improves

classifiers, but the training overhead created by searching for both is very large and

may become intractable for large problems. We could potentially speed-up searching

for k using approaches such as gradient descent or other heuristic searching algorithms,

but it should be noted that this is equally possible for finding measure parameters.

Therefore our overall recommendation for training NN classifiers on TSC problems would

be to prioritise setting similarity measure parameters over setting k, since the results

are definitive for setting the former, while the support is not as strong for the latter.

Therefore our recommendation is that setting similarity measure parameters should be

prioritised over setting k when building classifiers for TSC problems. This conclusion

influences the remaining experiments in this chapter; all subsequent NN classifiers are

implemented with k = 1 and similarity measure parameters are set through CV on the

training data (where applicable).

CHAPTER 5. TIME DOMAIN CLASSIFICATION 72

5.4 Comparison of Elastic Distance Measures

The previous work in this chapter has focused on demonstrating the effectiveness of NN

classifiers for TSC problems. Section 5.2 demonstrated the potency of the classifiers built

with DTW when compared to other leading classification techniques, while Section 5.3

discussed the best configuration for initialising NN classifiers for TSC problems. With

this evidence to support NN approaches and guidance of how to configure them with

DTW, an obvious question arises: is DTW the best similarity measure for NN classifiers,

or are the alternatives that are better for TSC?

Several alternative distance measures for comparing time series have recently been

proposed and evaluated on TSC problems. These include variants of DTW, such as

weighted and derivative DTW (as previously seen in this chapter), and edit distance-

based measures, including Longest Common Subsequence distance (LCSS), Edit Distance

with Real Penalty (ERP), Time Warp Edit Distance (TWE), and Move-Split-Merge

(MSM) (see Section 2.3). These measures can be considered to be elastic, as they can

compensate for potential localised misalignment in the time domain.

The objective of this section is to extend the work in [35] by evaluating various elastic

distance measures for TSC to determine whether any alternative measures outperform

DTW. This is achieved through using the insight learned from Section 5.2 and Section 5.3

to build 1-NN classifiers with various elastic similarity measures. The names of the

classifiers and the abbreviations used throughout this section are listed in Table 5.4.

5.4.1 Elastic Measure Experimental Design

All datasets are split into training and test sets and classifiers are only exposed to the

training data when being built. All measures are implemented with 1-NN classifiers, and

all parameter optimisation is carried out on the training data only (i.e. no validation

on the test data). As with the experiments in Section 5.3, each measure is given 100

model selections in cases where parameters must be set; ED, DTW, and DDTW do not

require parameter setting; DTWCV, DDTWCV, WDTW, and WDDTW require cross-

validation to find window sizes between 1% and 100% in steps of 1%; LCSS requires two

parameters, which are derived from the parameters used in [35] to create 100 distinct

options; ERP requires two parameters, which are also derived from the parameters used

in [35] to create 100 distinct options; TWE requires two parameters, which are resampled

into 100 options from the suggested values in [79]; and MSM requires a single parameter,

where the range of values is created by resampling 10 suggested parameters from the

source code in [101] to obtain 100 values. The full list of parameter options are omitted

CHAPTER 5. TIME DOMAIN CLASSIFICATION 73

Table 5.4: A list of the classifiers used for the elastic measure comparison experiments
with associated abbreviations. Each is implemented with a 1-NN classifier, and all pa-
rameter setting is performed through LOOCV experiments on the training data only
(see Section 2.3 for specific details on each measure).

Classifier Abbreviation
Parameters
Required

Euclidean Distance ED -
DTW, full window DTW -
DTW, CV Window DTWCV warping window

Weighted DTW WDTW weighting factor
Derivative DTW, full window DDTW -
Derivative DTW, CV window DDTWCV warping window

Weighted Derivative DTW WDDTW weighting factor
Longest Common Subsequence LCSS band size, similarity threshold

Edit Distance with Real Penalty ERP band size, similarity threshold
Time Warp Edit Distance TWE stiffness, operation cost
Move-Split-Merge Distance MSM operation cost

for brevity, but can be found on the website accompanying this thesis [73].

5.4.2 Classification Results

The classification results of the elastic 1-NN classifiers on the test data are summarised

by the critical difference diagram in Figure 5.3 (the full results available on the website

accompanying this thesis [73]). The diagram shows that there is no classifier that signif-

icantly outperforms all others. There are four cliques, where the top clique contains all

but ED, DDTW and DTW. This is an interesting finding, since these are the only mea-

sures that did not have any parameter optimisation. This reinforces our earlier findings

when investigating whether to set measure parameters in Section 5.3 where we demon-

strated that setting parameters significantly improved the measures. The overall result

of this experiment demonstrates that there is no significant difference between any of the

parametrised elastic measures over these datasets, and importantly, none of the alterna-

tives outperform DTWCV. Two main conclusions can be drawn from this result; firstly,

the conclusion of Section 5.2 has been reinforced as Euclidean distance was beaten by

all of the parameterised elastic measures, while DTWCV was not outperformed by any.

Therefore DTW with a warping window set through cross-validation is a good bench-

mark, but the Euclidean distance does not offer competitive performance. Secondly,

setting warping windows through cross-validation improves DTW-based algorithms, as

CHAPTER 5. TIME DOMAIN CLASSIFICATION 74

CD

11 10 9 8 7 6 5 4 3 2 1

4.8467 WDTW
4.8467 MSM
5.1933 DTWCV
5.4533 ERP

5.54 LCSS
5.6667 TWE

5.9WDDTW

6.26DDTWCV

6.7DTW

7.7133DDTW

7.88ED

Figure 5.3: The average ranks for eleven 1-NN classifiers on the 75 data sets. The critical
difference for α = 5% is 1.6129.

first observed by [90] and concluded in Section 5.3. It should be noted that while the

datasets used in these experiments were not collected with any domain or agenda in

mind, there is bias in the type of problems that are considered due to the abundance of

certain problem types. Much of the work in the TSC literature is evaluated using the

UCR datasets [65] however, allowing the opportunity to compare approaches that are

evaluated on this large set of common problems. Therefore to ensure that our conclusion

remains consistent with the literature as a whole, the critical difference diagram from

Figure 5.3 is recalculated in Figure 5.4 using only the UCR datasets. The conclusions

remain consistent and valid.

These results do not lend any weight to one elastic measure over another, suggesting

that the standard practice of using DTWCV is still a worthy benchmark. It is by far

the most widely adopted measure, and no alternative has been proven to be significantly

more accurate over these experiments. This leads to an obvious question: if there is

nothing to choose between the measures in terms of classification accuracy, is there any

other reason to use one measure over another, or should researchers continue to use

DTW?

CHAPTER 5. TIME DOMAIN CLASSIFICATION 75

CD

11 10 9 8 7 6 5 4 3 2 1

4.3298 MSM
4.383 WDTW

4.6915 TWE
5.2128 DTWCV
5.4468 ERP
6.117 LCSS

6.1383WDDTW

6.617DTW

6.7447DDTWCV

7.8085ED

8.5106DDTW

Figure 5.4: The average ranks for eleven 1-NN classifiers on the 46 UCR datasets only.
The results demonstrate a very similar pattern to those in the critical difference diagram
of Figure 5.3 for the full 75 datasets. Critically, these results still demonstrate that no
elastic measure significantly outperforms DTWCV.

5.4.3 A Priori Detection of the Best Measure

The evidence suggests there is no dominant elastic measure that outperforms DTWCV

in terms of overall classification accuracy. However, if it were possible to detect which

measure would be best for a given dataset in advance, this issue would become irrelevant.

The optimal classifier could always be identified, removing the need for finding a single

approach to use. Using a critical difference diagram to demonstrate the effect of always

selecting the best classifier would not be useful, since the classifier should always simply

have a rank of 1. To demonstrate this effect, the average classification accuracies for

the eleven elastic classifiers on the 75 datasets are reported in Table 5.5, with an added

column to show the difference of each average accuracy to the theoretical classifier that

would be achieved from finding the best classifier on each dataset.

The TOP classifier is for information only as the procedure for selecting results obvi-

ously introduces bias because accuracy is simply selected from the best classifier on the

test data. To create a fair classifier, the best classifier would need to be determined a pri-

ori. Therefore the best classifier for test classification must be predicted from the training

data only. Since the measures have parameters set through cross-validation on the train-

CHAPTER 5. TIME DOMAIN CLASSIFICATION 76

Table 5.5: The average test accuracies of each elastic classifier over the 75 datasets, with
an added entry for the theoretical best classifier (TOP) that would be achieved by always
selecting the best classifier on each of the 75 problems.

Classifier Average Accuracy Difference to TOP

ED 75.75% 9.67%
DTW 79.13% 6.29%

DTWCV 81.44% 3.98%
WDTW 82.09% 3.33%
DDTW 71.97% 13.45%

DDTWCV 76.73% 8.69%
WDDTW 77.19% 8.23%

LCSS 79.50% 5.93%
MSM 82.43% 2.99%
TWE 82.15% 3.27%
ERP 81.08% 4.35%
TOP 85.42% -

ing data, training accuracies are available for all classifiers. This data can be used to

select a classifier on the basis of it performing better than all alternatives on a given

dataset, so if training accuracy is a perfect indicator of test classification performance,

the best classifier will always be found. This is investigated using Texas Sharpshooter

plots, as introduced by [8]. These graphs show the ratio of training accuracy versus test

accuracy for a classifier on all datasets by using DTWCV as a benchmark. The desired

outcome is that there should be a strong correlation within the ratios, consisting of many

true positives and true negatives; in other words, if the training accuracy of a classifier

indicates that it is better than DTWCV, the test accuracy should be proportionally su-

perior (and vice versa). Texas Sharpshooter plots for the four highest ranked classifiers

in Section 5.4 are compared to DTWCV in Figure 5.5.

The number of datasets with results consisting of true positives or true negatives for

LCSS, WDTW, TWE, and MSM are 38, 31, 35, and 49 respectively. This means using

training accuracy to predict whether the classifier will outperform DTWCV on the test

data is no better than randomly guessing for three of the four classifiers on these 75

datasets! If there is a difference between the classifiers, there is too much bias and/or

variance in the training accuracies to detect it. The conclusion is that while training

accuracy is a good indication of test classification, it is not sufficient for discriminating

between classifiers on these problems.

CHAPTER 5. TIME DOMAIN CLASSIFICATION 77

0.9

1

1.1

1.2

1.3

1.4

1.5

A
ct

u
a

l
A

cc
u

ra
cy

 G
a

in

False Negative True Positive

0.5

0.6

0.7

0.8

0.9

0.5 0.7 0.9 1.1 1.3 1.5

A
ct

u
a

l
A

cc
u

ra
cy

 G
a

in

Expected Accuracy Gain

True Negative False Positive

0.9

1

1.1

1.2

1.3

1.4

1.5

A
ct

u
a

l
A

cc
u

ra
cy

 G
a

in

False Negative True Positive

0.5

0.6

0.7

0.8

0.9

0.5 0.7 0.9 1.1 1.3 1.5

A
ct

u
a

l
A

cc
u

ra
cy

 G
a

in

Expected Accuracy Gain

True Negative False Positive

(a) (b)

0.9

1

1.1

1.2

1.3

1.4

1.5

A
ct

u
a

l
A

cc
u

ra
cy

 G
a

in

False Negative True Positive

0.5

0.6

0.7

0.8

0.5 0.7 0.9 1.1 1.3 1.5

A
ct

u
a

l
A

cc
u

ra
cy

 G
a

in

Expected Accuracy Gain

False PositiveTrue Negative
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.5 0.7 0.9 1.1 1.3 1.5

A
ct

u
a

l
A

cc
u

ra
cy

 G
a

in

Expected Accuracy Gain

False Positive

False Negative

True Negative

True Positive

(c) (d)

Figure 5.5: Texas sharpshooter plots of DTWCV vs. (a) LCSS (b) WDTW (c) TWE
and (d) MSM. The points on the plots represents results for each of the 75 datasets,
where expected accuracy gain is calculated as the ratio of the each measure vs. DTWCV
on the training data, and the actual accuracy gain is calculated as the ratio between the
measures and DTWCV on the test data. If training CV accuracies of the measures offer
a good a priori indication of test performance, we would expect there to be few false
results. However, there is no clear trend of true positives or true negatives with any of
the four classifiers, so simply relying on the training CV accuracies to determine which
measure will be most effective in advance is not a reliable strategy.

CHAPTER 5. TIME DOMAIN CLASSIFICATION 78

5.4.4 Timing Comparison

Classification accuracy is not the only criteria that is used to compare algorithms. The

time complexity of new algorithms can be critical to performance under certain con-

ditions, therefore it is reasonable to also consider the time complexity of each elastic

measure when considering alternatives to DTW. Since the NN approach is consistent to

the implementation of each measure, this will be omitted from this discussion.

Of the measures used in the experiments of Section 5.4, ED has the lowest time

complexity. This is no surprise since the similarity of two series with ED is measured

by simply performing a point-wise comparison, thus has O(n) time complexity for series

of length n. However, the results in Section 5.4 demonstrated that ED was significantly

less accurate than the parameterised elastic measures, so ED is not a viable candidate

to replace DTW. The remaining algorithms each have a basic time complexity of O(n2),

but this calculation is slightly confounded when parameter options are introduced. For

example, using a warping window with DTW reduces the complexity to O(nr), where r

is the amount of warping allowed.

In general, since they share the same time complexity there is little to choose from

when comparing the runtime of the different measures. A simple timing experiment was

carried out to demonstrate this. For each dataset, the measures were used to calculate

the distance between two series. This was repeated 10 times for each of the 100 model

selections available to each measure, and the overall median time was taken for each

measure/dataset combination. The result of this is shown in Figure 5.6. It is clear that

ED is much faster than the competitors, and it is interesting to note that TWE does not

scale as well as the other elastic measures. This may be caused by the parameters that

are considered, which could cause the algorithm to have a wider average search space

than the other measures. However, since the underlying complexities of the measures

are still O(n2), there is still no conclusive evidence to support one elastic measure over

the alternatives.

5.5 Combining Elastic Measures: The Elastic Ensemble

Three main conclusions have been drawn in this chapter. Firstly, the belief that DTW

with NN classifiers is hard to beat has been supported through experimental comparison

to other classification approaches (Section 5.2). Secondly, the question of how best to

parametrise NN classifiers for TSC was answered by demonstrating that setting mea-

sure parameters through CV leads to significantly more accurate classifiers (Section 5.3).

CHAPTER 5. TIME DOMAIN CLASSIFICATION 79

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 t

o
 c

a
lc

u
la

te
 d

is
ta

n
ce

 b
e

tw
e

e
n

 t
w

o
 s

e
ri

e
s

(s
e

co
n

d
s)

Instance length

TWE

MSM

DDTWCV

DTWCV

WDTW

WDDTW

DDTW

DTW

ERP

LCSS

ED

Figure 5.6: A graph to demonstrate the difference in calculation times between each of
the elastic measures.

Thirdly, it was shown that while there are numerous alternative elastic similarity mea-

sures for time series, none that were tested significantly outperformed DTW with a

warping window, nor do any of the viable alternatives provide other advantages such as

being able to detect the best method a priori or having better runtimes (Section 5.4).

With the goal to find the best approach towards time domain classification for TSC,

these conclusions present one final question. As there is no evidence to suggest using an

alternative measure in place of DTW, should the alternative measures be disregarded,

or is there a way to combine them to create an algorithm that improves upon DTW?

We investigate this by firstly evaluating the measures to determine whether they pro-

duce different predictions. While the classification results indicated that there was no

significant difference between the top elastic measures, it is still possible that they pro-

duce significantly different predictions. If this is the case, a number of simple ensemble

strategies can be investigated to combine predictions of the individual measures.

Through proportional weighting of elastic measures according to training accuracies,

a novel ensemble classifier is created: the Elastic Ensemble (EE). The EE is shown

to be significantly more accurate than any of the individual elastic measures, including

DTWCV, over the full set of 75 datasets. Furthermore, this result is repeated on the UCR

problems, producing what is believed to be the first set of results that are significantly

more accurate than DTW on the UCR data.

CHAPTER 5. TIME DOMAIN CLASSIFICATION 80

5.5.1 Measure Divergence

A key component of any ensemble scheme is diversity; if the constituents do not produce

significantly different predictions, the overall output of an ensemble will likely be no

better than the individual parts. However, if the classifiers are approximately equal in

accuracy but divergent in predictions, it may be possible to reduce variance and produce

a classifier that is more accurate overall.

A pairwise McNemar’s test was used between each classifier to test the null hypothesis

that the underlying models are the same across the 75 datasets. Using the 5% level,

Table 5.6 shows the number of datasets where the instance predictions were detected to

be significantly different between classifiers.

Table 5.6: The number of datasets where the individual classifiers were measured to be
significantly different from one other for the top 6 ranked classifiers.

DTWCV WDTW LCSS TWE ERP MSM
DTWCV 0 1 30 22 14 23
WDTW 1 0 26 21 12 22
LCSS 30 26 0 24 23 18
TWE 22 21 24 0 19 17
ERP 14 12 23 19 0 20
MSM 23 22 18 17 20 0

There is only a single dataset where WDTW is significantly different to DTWCV,

which perhaps is to be expected as they are different solutions to constraining the same

underlying algorithm. However, the DTW-based approaches are both significantly dif-

ferent to LCSS, TWE, and MSM on over 20 datasets each. A similar pattern is repeated

between the other classifiers too. Clearly, while the overall accuracies of the classifiers

were not significantly different, there is clear diversity in predictions on many datasets.

This outcome motivates the potential for combining predictions to create a superior

classifier.

5.5.2 Ensemble Design

An ensemble of classifiers is a set of base classifiers, where individual decisions are com-

bined to classify new examples (see Section 2.5 for more discussion). The ensemble

classifier that we propose is intentionally intuitive and simple to implement, and does

not employ any data pre-processing. The ensemble consists of the 12 elastic classifiers

from Section 5.4, hence we name it the Elastic Ensemble (EE). For a given dataset, the

only information used to inform a prediction by the EE is the individual training accu-

racies of the constituent classifiers, which are recorded as a by-product of the parameter

CHAPTER 5. TIME DOMAIN CLASSIFICATION 81

optimisation process outlined in Section 5.3. Constituents that do not require optimisa-

tion (e.g. ED, DTW, DDTW) require a single LOOCV experiment on the training data

to produce a representative accuracy. Furthermore, all ties are split randomly. Using

this outline, the EE was defined and tested with four simple ensemble strategies: Equal,

Best, Proportional, and Significant.

Equal

Equal is the simplest ensemble strategy available for the EE; it disregards all training

information, and simply gives each classifier an equal vote. The votes are summed to

find the majority class value, and ties are split randomly.

Best

Best is the polar opposite of Equal, placing complete faith in the training results by

picking only the best classifier across training for test classification. This is effectively

the same strategy as discussed in Section 5.4.3, which stated that if training accuracies

are a good identifier of test accuracy with low bias and variance, the best classifier for a

dataset should be detectable in advance.

Proportional

Proportional is highly informed by the training accuracies. All classifiers are included in

the ensemble, but votes are weighted proportionally according to training performance.

For example, if a classifier reported 69% accuracy in training, it would be given 0.69 of a

vote in the ensemble. This scheme is applied to all constituents, and votes are combined

to pick the decision with the highest weighting.

Significant

Significant is a combination of the Best and Proportional schemes. The best classifier on

the training data is identified, and McNemar’s test is performed between the best and

all other constituents. Under the null hypothesis that there is no significant difference

between the classifiers, any classifier where the null is rejected is given a vote of 0 (effec-

tively removing it from the ensemble). Any classifier that is not removed, has a weight

set according to the Proportional scheme. The aim of this scheme is to remove classifiers

in situations where they are clearly inferior. For example, ED would not be expected to

CHAPTER 5. TIME DOMAIN CLASSIFICATION 82

perform well on an image outline classification problem where data is not rotationally

aligned, so including the measure within the EE could potentially skew the voting.

5.5.3 Elastic Ensemble Results

The results of the EE on the 75 datasets are summarised in the critical difference diagram

in Figure 5.7. The full table of results can be found on the website accompanying this

thesis [73].

CD

10 9 8 7 6 5 4 3 2 1

2.9933 PROP
3.12 EQUAL

4.0133 SIGNIF
4.8533 BEST

6.16 MSM6.4533WDTW

6.6533LCSS

6.8867DTWCV

6.8933ERP

6.9733TWE

Figure 5.7: The average ranks for the six highest ranked individual classifiers and four
ensemble techniques across the 75 datasets. It should be noted that the lower-ranked
classifiers (ED, DTW, DDTW, DDTWCV, WDDT) have been removed for clarity, but
are still included in the ranking calculations.

The three ensemble techniques Equal, Significant and Proportional, are significantly

better than all of the individual classifiers. Best does not significantly outperform MSM

however. This reinforces the conclusions of Section 5.4.3 and reiterates the danger of

placing too much emphasis on training cross-validation measures. While better than any

single measure, the attempted use of an inclusion threshold in Significant did not provide

any improvement on the Proportional weighting. To further underpin the performance

of the EE a scatter plot is shown in Figure 5.8 to demonstrate the results of the best

ensemble scheme (the Proportional ensemble) against DTWCV, where each point reflects

the results on a single dataset.

CHAPTER 5. TIME DOMAIN CLASSIFICATION 83

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100

P
ro

p
o

rt
io

n
a

l
E

n
se

m
b

le
 A

cc
u

ra
cy

DTWCV Accuracy

Ensemble better here

Figure 5.8: A scatter plot to show the representative performance of the Proportional EE
vs. DTWCV over the full set of 75 test datasets. Plots created for the other measures,
such as LCSS, TWE, and MSM, show a very similar result.

In addition to superior performance on the 75 datasets, EE is significantly better

than all individual approaches on the UCR datasets too. We believe that this is the first

time a classifier has significantly outperformed DTWCV on the UCR data. To counter

any accusations of implementation bias, a final critical difference diagram is presented

in Figure 5.9. This diagram depicts the results of the EE (Proportional) on the original

19 UCR datasets that were used when proposing MSM and TWE in [101] and [79]

respectively (both originally used 20 datasets but the ECG 200 dataset was found to be

flawed in [7], making it trivial to get perfect accuracy. Therefore this dataset has been

removed from the analysis as discussed in Section 3). The results reported for TWE and

MSM are taken directly from the work that introduced them, while the results for ERP

and LCSS have been taken from the experiments in Section 5.4. Firstly, the author’s own

results show no critical difference between DTWCV and WDTW, TWE or MSM. This is

despite the fact that the results reported for WDTW include allowing the algorithm half

the test data for model selection (an advantage they did not give to DTWCV). Secondly,

the ensemble results are significantly better.

CHAPTER 5. TIME DOMAIN CLASSIFICATION 84

CD

6 5 4 3 2 1

1.8947
PROP

3.5
TWE

3.6316
ERP

3.7105
WDTW

4
LCSS

4.2632
MSM

Figure 5.9: Ranks of five classifiers and the EE on the original 19 UCR data sets (omitting
ECG).

5.5.4 Elastic Ensemble vs. Other Approaches

There are currently 47 UCR data sets available, and the majority of recent TSC research

has included evaluation on at least a subset of these datasets. While it is not possible

to compare all algorithms over all datasets, it is possible to compare the EE to other

approaches on the common datasets. Of the 47 UCR datasets, 2 are not in the general

release (car and plane) and ECG200 is removed from our experiments as previously

discussed. Therefore, the greatest number of results that we can compare against is 44

when assuming that results are published for all datasets. For the following analysis, we

test the difference between pairs of algorithms using a Wilcoxon signed rank test with α

set to 1%. Additionally, a full list of the results is presented in Table 5.7 and Table 5.8,

and is also available from the supporting website [73].

• Time Series Forests (TSF) [34] were evaluated on all 44 UCR data sets. The

ensemble is better on 29, worse on 15. The difference is significant.

• The time series based on a bag-of-features representation (TSBF) described in [11]

is evaluated on 44 UCR data sets. The ensemble outperforms TSBF on 27 data

sets and is worse on 17. The difference is significant.

• An adjustment to Euclidean distance that compensates for the complexity of the

series [9] (CID) was evaluated on 42 UCR data sets. The elastic ensemble was

more accurate on 35 of these. The difference is significant.

• The Bag of Patterns (BoP) approach [72] is evaluated on 19 UCR data. The

ensemble has significantly lower error than BoP, winning on 15, tieing on 2, and

CHAPTER 5. TIME DOMAIN CLASSIFICATION 85

Table 5.7: The full results of the state of the art in TSC on the UCR datasets (part
one of two). The results are split into two parts for readability; part one includes
results for Euclidean Distance (ED), DTW with window set through CV (DTWCV),
Time Series Forests (TSF) [34], Time Series Bag of Features (TSBF) [11], Complexity-
Invariant Distance (CID) [9], and the Proportional Elastic Ensemble (PROP). Dashes
indicate where results were not available. The results are reported as error rates and
continued in Table 5.8, and the best result on each dataset across both tables is shown
in bold.

Dataset ED DTWCV TSF TSBF CID PROP
Adiac 0.389 0.391 0.261 0.245 0.379 0.353

Beef 0.467 0.467 0.3 0.287 0.467 0.367
Car 0.267 0.233 - - - 0.167

CBF 0.148 0.004 0.039 0.009 0.001 0.002
ChlorineConcentration 0.35 0.35 0.26 0.336 0.351 0.36

CinC ECG torso 0.103 0.07 0.069 0.262 0.054 0.062
Coffee 0.25 0.179 0.071 0.004 0.179 0

Cricket X 0.426 0.236 0.287 0.278 0.249 0.203
Cricket Y 0.356 0.197 0.2 0.259 0.197 0.156
Cricket Z 0.38 0.18 0.239 0.263 0.205 0.156

DiatomSizeRed. 0.065 0.065 0.101 0.126 0.065 0.059
ECGFiveDays 0.203 0.203 0.07 0.183 0.218 0.178

FaceAll 0.286 0.192 0.231 0.234 0.144 0.152
FaceFour 0.216 0.114 0.034 0.051 0.125 0.091

FacesUCR 0.231 0.088 0.109 0.09 0.102 0.063
fiftywords 0.369 0.242 0.277 0.209 0.226 0.18

fish 0.217 0.16 0.154 0.08 0.154 0.034
GunPoint 0.087 0.087 0.047 0.011 0.073 0.007

Haptics 0.63 0.588 0.565 0.488 0.571 0.584
InlineSkate 0.658 0.613 0.675 0.603 0.586 0.567

ItalyPowerDemand 0.045 0.045 0.033 0.096 0.044 0.039
Lightning2 0.246 0.131 0.18 0.257 0.131 0.115
Lightning7 0.425 0.288 0.263 0.262 0.26 0.233
MALLAT 0.086 0.086 0.072 0.037 0.075 0.05

MedicalImages 0.316 0.253 0.232 0.269 0.258 0.245
MoteStrain 0.121 0.134 0.118 0.135 0.205 0.114

NonInvasive.Thorax1 0.171 0.185 0.103 0.138 - 0.178
NonInvasive.Thorax2 0.12 0.129 0.094 0.13 - 0.112

OliveOil 0.133 0.167 0.1 0.09 0.167 0.133
OSULeaf 0.483 0.384 0.426 0.329 0.372 0.194

Plane 0.038 0 - - - 0
SonyAIBORobot. 0.141 0.141 0.235 0.175 0.185 0.293

SonyAIBORobot.II 0.305 0.305 0.177 0.196 0.123 0.124
StarLightCurves 0.151 0.095 0.036 0.022 0.066 0.079

SwedishLeaf 0.213 0.157 0.109 0.075 0.117 0.085
Symbols 0.1 0.062 0.121 0.034 0.059 0.049

SyntheticControl 0.12 0.017 0.023 0.008 0.027 0.01
Trace 0.24 0.01 0 0.02 0.01 0.01

TwoLeadECG 0.253 0.132 0.112 0.046 0.138 0.067
TwoPatterns 0.09 0.0015 0.053 0.001 0.004 0

UWaveGesture. X 0.261 0.227 0.213 0.164 0.211 0.199
UWaveGesture. Y 0.338 0.301 0.288 0.249 0.278 0.283
UWaveGesture Z 0.35 0.322 0.267 0.217 0.293 0.29

wafer 0.005 0.005 0.047 0.004 0.006 0.003
WordSynonyms 0.382 0.252 0.381 0.302 0.243 0.226

yoga 0.17 0.155 0.157 0.149 0.156 0.121

CHAPTER 5. TIME DOMAIN CLASSIFICATION 86

Table 5.8: The full results of the state of the art in TSC on the UCR datasets (part two
of two). The results are reported as error rates and split into two parts for readability.
The first part is shown in Table 5.7, and part two includes results for Bag of Patterns
(BoP) [72], Logical Shapelets (LS) and Fast Shapelets (FS) [107, 88], Fusion Methods
for TSC (FUSION) [20], and the Transformation-Based Ensemble for TSC (TE) [3].
The results of the Proportional Elastic Ensemble (PROP) are repeated for comparison.
Dashes indicate where results were not available, and the best result on each dataset
across both tables is shown in bold.

Dataset BoP LS FS FUSION TE PROP
Adiac 0.432 0.414 0.514 0.352 0.358 0.353

Beef 0.433 0.433 0.447 - 0.4 0.367
Car - - - 0.283 - 0.167

CBF 0.013 0.114 0.053 - 0.171 0.002
ChlorineConcentration 0.036 0.382 0.417 0.473 - 0.36

CinC ECG torso - 0.301 0.174 0.043 - 0.062
Coffee - 0.036 0.068 - 0.214 0

Cricket X - - - - - 0.203
Cricket Y - - - - - 0.156
Cricket Z - - - - - 0.156

DiatomSizeRed. - 0.199 0.117 - - 0.059
ECGFiveDays - 0.006 0.004 - - 0.178

FaceAll 0.219 0.341 0.411 - 0.281 0.152
FaceFour 0.023 0.511 0.09 0.116 0.148 0.091

FacesUCR - 0.338 0.328 0.077 - 0.063
fiftywords 0.466 - - 0.224 0.352 0.18

fish 0.074 0.223 0.197 - 0.194 0.034
GunPoint 0.093 0.107 0.061 - 0.053 0.007

Haptics - - - 0.587 - 0.584
InlineSkate - - - 0.462 - 0.567

ItalyPowerDemand - 0.064 0.095 - - 0.039
Lightning2 0.164 0.574 0.295 0.206 0.23 0.115
Lightning7 0.466 0.452 0.403 0.251 0.301 0.233
MALLAT - 0.344 0.033 0.1 - 0.05

MedicalImages - 0.413 0.433 0.234 - 0.245
MoteStrain - 0.168 0.217 0.07 - 0.114

NonInvasive.Thorax1 - - - - - 0.178
NonInvasive.Thorax2 - - - - - 0.112

OliveOil 0.133 0.167 0.213 - 0.167 0.133
OSULeaf 0.256 0.314 0.359 0.228 0.417 0.194

Plane - - - - - 0
SonyAIBORobot. - 0.14 0.314 - - 0.293

SonyAIBORobot.II - 0.154 0.215 - - 0.124
StarLightCurves - - - 0.15 - 0.079

SwedishLeaf 0.198 0.187 0.269 0.115 0.157 0.085
Symbols - 0.357 0.068 - - 0.049

SyntheticControl 0.037 0.53 0.081 - 0.083 0.01
Trace 0 0 0.002 - 0.2 0.01

TwoLeadECG - 0.144 0.09 - - 0.067
TwoPatterns 0.129 0.461 0.113 - 0.165 0

UWaveGesture. X - - - - - 0.199
UWaveGesture. Y - - - - - 0.283
UWaveGesture Z - - - - - 0.29

wafer 0.003 0.001 0.004 - 0.002 0.003
WordSynonyms - - - 0.214 - 0.226

yoga 0.17 0.26 0.249 0.401 0.163 0.121

CHAPTER 5. TIME DOMAIN CLASSIFICATION 87

losing on 2 (FaceFour and Trace). The main support for the BoP algorithm is that

it is much faster than DTW, but these results indicate that the speed-up comes at

the detriment of accuracy. The difference is significant.

• Fast shapelets (FS) and logical shapelets (LS) [107, 88] were evaluated on 33 UCR

datasets. However, one result is ambiguous; it reported as Cricket, when there are

actually 3 Cricket problems. Therefore the comparison is made over 31 datasets,

and the proportional ensemble is more accurate than both shapelet tree algorithms

on 26 of the 31 data sets, losing on 5. The difference is significant.

• The fusion technique (FUSION) proposed in [20] was evaluated on 20 UCR data

sets. The elastic ensemble was more accurate on 14 of these, losing on 6. The

result is significant.

• The elastic ensemble is also significantly better than the previous ensemble (TE)

described [3], winning on 21 out of 25 common data sets. The difference is signif-

icant.

• Finally, an interval-based SVM classifier from [93] is evaluated on four UCR data

sets (CBF, Two Patterns, Trace, and GunPoint). The results are not included in

Table 5.7 or Table 5.8 due to lack of data, but the ensemble performed better on

three of these simple problems. The fourth dataset, Trace, was only very slightly

less accurate.

The results of the comparison of the EE to other work are very promising. Of the

seven approaches with a representable number of published results, the EE significantly

outperformed all seven on the UCR datasets that results were available for.

5.6 Conclusions

This chapter focused on time domain classification, which is the area of research in TSC

that has generated most interest in the literature. We have addressed many aspects of

TSC in the time domain throughout this chapter, ranging from reaffirming the com-

monly held benchmark in TSC, to proposing a new state-of-the-art classifier through

information observed by running millions of individual experiments. A summary of the

main contributions in this chapter are as follows:

• We demonstrated that NN classifiers with DTW are not outperformed by alterna-

tive classification approaches (Section 5.2), supporting the belief that NN classifiers

CHAPTER 5. TIME DOMAIN CLASSIFICATION 88

are hard to beat.

• We showed that setting the warping window for DTW 1-NN through cross-validation

on training data (DTWCV) significantly improves the classifier (as first recognized

in [90]). We also show that setting the number of neighbours in the NN classi-

fier for TSC may be beneficial (Section 5.3.1), but the support for this is not as

strong as setting measure parameters (Section 5.3.2). We recommend that setting

measure parameters through CV should take priority over setting neighbourhood

sizes, as it may be intractable to search for both parameters on large problems. We

advocate the best configuration for approaching TSC problems with DTW is to use

a 1-NN classifier, and to set the DTW warping window through cross-validation

(DTWCV).

• No elastic measure that we tested was significantly more accurate than DTW when

combined with a 1-NN classifier (Section 5.4), suggesting that DTW is still a worthy

benchmark in TSC research.

• Combining the elastic measures using simple ensemble schemes produces a classifier

that is significantly more accurate than any of the constituent parts over the full set

of 75 datasets and the UCR datasets (Section 5.5.3). While the accuracies of the

individual measures were not significantly different, the individual predictions made

by each were significantly different (Section 5.5.1). To counter any suggestions of

bias introduced through our selection of datasets, we repeated this experiment

using the UCR datasets only, and the EE remained significantly more accurate

than DTW with 1-NN. Comparisons to recent work in the literature (Section 5.5.4)

lead us to believe that these are the best TSC results ever published, and the EE

is the first classifier to significantly outperform DTWCV on the UCR datasets.

Chapter 6

Shapelet Domain Classification:

The Shapelet Transform

Contributing Publications

• Jason Lines, Luke M Davis, Jon Hills, and Anthony Bagnall. A shapelet transform

for time series classification. In Proceedings of the 18th ACM SIGKDD interna-

tional conference on Knowledge Discovery and Data Mining, pages 289–297. ACM,

2012.

• Jason Lines and Anthony Bagnall. Alternative quality measures for time series

shapelets. In Intelligent Data Engineering and Automated Learning-IDEAL 2012,

pages 475–483. Springer Berlin Heidelberg, 2012.

• Jon Hills, Jason Lines, Edgaras Baranauskas, James Mapp, and Anthony Bag-

nall. Classification of time series by shapelet transformation. Data Mining and

Knowledge Discovery, 28(4):851–881, 2014.

6.1 Introduction

The majority of TSC research has focused on similarity between series in the time-

domain, typically building 1-NN classifiers with alternative distance measures (Chap-

ter 5). Despite the evidence in favour of 1-NN approaches, various alternatives have

been proposed (see Chapter 2 for a summary). Often these approaches are defined to

allow the inclusion of more complex classifiers, such as decision trees or support vec-

tor machines, or to incorporate data transformations to evaluate time series similarity

89

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 90

in other data domains, such as similarity in change (Section 4.3) or global shape (Sec-

tion 4.1).

A recent approach proposed transforming data to assess a previously under rep-

resented class of similarity: local shape-based similarity. Time Series Shapelets were

proposed in [107] as subsequences from a dataset that are representative of class mem-

bership (for a full description, see Section 4.2). The original research proposed recursively

extracting shapelets from a dataset to create simple decision tree classifiers. The best

shapelet is extracted using information gain to assess the quality of candidates, and the

data is partitioned according to a distance threshold. This process is repeated recursively

until a full decision tree classifier is defined.

The key benefit of using shapelets for TSC is that they allow for phase-independent

shape-based similarity to be detected between series, a type of similarity that is often very

difficult (or impossible) to detect with algorithms that consider whole series. In addition,

numerous secondary benefits are also provided by this approach, such as relatively fast

classification times due to the compact nature of shapelets, and results achieved using

shapelets being directly interpretable. This is because shapelets are subsequences from

the actual data, so explanatory insight can be gained from observing how shapelets

discriminate between series of different classes.

The aim of [107] was to use shapelets to create a classifier that was highly inter-

pretable. This goal justified the selection of a decision tree implementation, which al-

lows for clear explanatory analysis of the decision process. However, in general decision

tree classifiers are often outperformed by other approaches and are typically more time

consuming to build due to the recursive nature of the algorithm. This is further com-

pounded in the case of shapelets, as the extraction process (described in Section 4.2) is

relatively time consuming. The subroutine must be called many times, and each time

shapelet quality must be evaluated using information gain. The original authors use

information gain as it is interpretable and lends itself well to a decision tree approach,

but they highlight that it is a bottle-neck in the running time of shapelet extraction. To

counter this, they propose a novel entropy early abandon. However, this procedure is not

defined for problems with more than two classes and does not generalise well to multi-

class problems. In the worst of cases, the early abandon can actually have a negative

impact on the speed of shapelet extraction.

In this chapter, we propose a novel algorithm to transform time series data into the

shapelet domain. The key goal is to disassociate shapelet discovery from the classifica-

tion process by removing the dependency on the decision tree implementation. By doing

so, shapelet-transformed data can be combined with other classification algorithms to

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 91

maintain the interpretability provided by shapelets, while increasing classification ac-

curacy and reducing training time. Furthermore we address the multi-class problem of

shapelet discovery with IG by assessing an alternative quality measure, leading to a fur-

ther study to investigate two additional alternative measures. The findings from these

investigations culminates in the shapelet transform. The transformation we propose han-

dles shapelets in three distinct stages. Firstly, the algorithm conducts a single scan of

the data to extract the best k shapelets. Note that whilst k is a parameter to set, it is

simply a cut-off value for the maximum number of shapelets to store and has no effect

on the quality of the individual shapelets that are extracted. Secondly, we introduce a

simple cross-validation approach for automatically setting shapelet length parameters for

use in the transform, and investigate a similar method for automatically setting k too.

Finally, a new transformed data set is created where each attribute represents a shapelet,

and the value of each attribute is the distance from the shapelet to the original series.

The key motivation for transforming the data in this way is that we can disassociate

shapelet finding from building a classifier, allowing the transformed data set to be used

in conjunction with any classifier. To summarise, the contributions in this chapter are

as follows:

1. We introduce a novel caching algorithm to store the k best shapelets from a dataset

in a single pass.

2. We propose and evaluate alternative shapelet quality measures for simpler multi-

class implementation. These include using the F-stat from Analysis of Variance

(ANOVA), Mood’s Median, and Kruskal-Wallis.

3. We provide a parameter-free method for automatically setting parameters to ex-

tract significant shapelets from a dataset.

4. We evaluate shapelet-transformed data with various classification algorithms, and

compare results against the original tree-based shapelet algorithm. We demon-

strate that for the datasets we test with, using shapelet-transformed data with

non-tree-based classifiers significantly outperforms the original tree-based shapelet

algorithm.

6.2 Datasets

For the development stage of the shapelet transform, we selected 18 data sets from the

UCR time series repository (see Section 3.1) and introduced 8 new datasets consisting of

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 92

hand outlines for classifying bone age (as introduced in Section 3.3). We selected these

particular data sets because they have relatively few cases; even with optimisation, the

shapelet algorithm is time consuming. Additional speed-ups and new datasets have been

incorporated in the work of [52] where a refined shapelet transform is proposed, and the

results are presented at the end of this chapter using over 70 datasets. However, these

enhancements are not the contribution of this chapter. Therefore we report the majority

of results using the original set of problems that were used for developing the transform,

which we also used in the original publication of the algorithm in [78]. The datasets are

listed in Table 6.1.

Table 6.1: The datasets that are used throughout the experiments with the shapelet
transform.

Datasets
Adiac Beef ChlorineConcentration Coffee

DiatomSizeReduction ECGFiveDays ElectricDevices FaceFour
GunPoint ItalyPowerDemand Lighting7 MedicalImages

MoteStrain SonyAIBORobotSurface Symbols SyntheticControl
Trace TwoLeadECG DP Little DP Middle

DP Thumb MP Little MP Middle PP Little
PP Middle PP Thumb

6.3 The Shapelet Transform

The following section outlines the shapelet transform that we propose. In Section 6.3.1

we introduce the algorithm for extracting shapelets from a dataset in a single iteration.

In Section 6.3.2 we define the approach for transforming data using extracted shapelets.

Then we focus on techniques for estimating the parameters required by the transform.

In Section 6.3.3 we discuss setting the limit for the number of shapelets we store, k, and

in Section 6.3.4 we introduce a simple cross-validation approach for estimating minimum

and maximum shapelet length parameters.

6.3.1 Extracting the k Best Shapelets

The goal of the shapelet transform is to remove the dependency on the decision tree

structure for shapelets by uncoupling shapelet discovery from the classifier. Therefore

it becomes possible to search for shapelets in one stage only, removing the requirement

to repeatedly find shapelets. The algorithm that we define for searching for shapelets

within a dataset over a single pass is shown in Algorithm 7.

The algorithm begins by processing data in a very similar manner to the original

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 93

Algorithm 7 ShapeletCachedSelection(T, min, max, k)

1: kShapelets = ∅;
2: for all time series Ti in T do
3: shapelets = ∅;
4: for l = min to max do
5: Wi,l = generateCandidates(Ti, l);
6: for all subsequence S in Wi,l do
7: DS = findDistances(S,T);
8: quality = assessCandidate(S,DS);
9: shapelets.add(S, quality);

10: sortByQuality(shapelets);
11: removeSelfSimilar(shapelets);
12: kShapelets = merge(k, kShapelets, shapelets);
13: return kShapelets;

shapelet selection algorithm (Algorithm 6). For each series, all subsequences with lengths

within the range of min and max are processed. However, rather than processing all

candidates and only storing the best, the caching algorithm stores all candidates for the

current series with an associated measure of quality (line 9). It should be noted that

the original shapelet extraction algorithm used IG to assess shapelet quality. Unlike

the shapelet decision tree however, the shapelet transform does not require an explicit

split point to extract shapelets. Therefore many alternative measures can be considered

for assessing shapelet quality, which is investigated in detail in Section 6.4. However

for simplicity when defining the algorithm, the measure of similarity can simply be

considered as IG to mirror the original algorithm.

Once all candidates for the series have been assessed, they are sorted in order of

quality and self-similar shapelets are removed. We define two shapelets as being self-

similar if they are taken from the same series and have overlapping indices. Once we

have the set of non self-similar shapelets for a series, we merge these with the current

best shapelets and retain the top k, and continue to iterate through the data until all

series have been processed.

We store shapelets separately and merge later, rather than keeping the best k on-

the-fly, to ensure that the best shapelets remain once self-similar candidates are pruned.

For example, if we have a set of the best k shapelets at a given point in the algorithm,

the next candidate that is processed could potentially overlap with one or more existing

shapelets in the store. If this current shapelet is deemed to be better, all overlapping

self-similar candidates must be removed from the store. A problem would then arise if

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 94

this new shapelet is improved upon later by a candidate that is deemed to be self-similar.

This would force the recently added shapelet to be removed, and the previously removed

shapelets would potentially become valid once more. However, as each subsequence is

only processed once, it would be impossible to retrieve the previously removed candidates

at this point even if they ultimately should be in the set of the best k shapelets. Therefore

to avoid this problem, we initially extract all possible shapelets from a series, sort them

by their quality and then remove those that are self similar in order. This gives priority

to the best shapelets and ensures that no candidates are prematurely removed. We can

then safely merge these with the existing k best shapelets before moving on to processes

the next series.

6.3.2 Data Transformation

One of the main motivations of the proposed transformation is to allow shapelets to

be used with a diverse range of classification algorithms. Rather than restricting them

to classification through decision tree structures, our algorithm uses shapelets to trans-

form instances of data into a number of features that can then be treated as a generic

classification problem. The transformation process is defined in Algorithm 8.

Algorithm 8 ShapeletTransform(Shapelets S, Dataset D)

1: output = ∅;
2: for all time series ts in D do
3: transformed = ∅;
4: for all shapelets s in S do
5: dist = subsequenceDist(ts, s);
6: transformed.add(dist);
7: output.add(transformed);
8: return output;

The transformation process is carried out using the subsequence distance calculation

described in Section 4.2. Firstly, a set of k shapelets, S, is generated from the training

data T , as seen in the previous section. For each instance of data Ti, the subsequence

distance is computed between Ti and Sj , where j = 1, 2, . . . , k. The resulting k distances

are used to form a new instance of transformed data, where each attribute corresponds

to the distance from each shapelet to the original time series. When using data split into

training and test partitions, the shapelet extraction is carried out on only the training

data to avoid bias; these shapelets are then used to transform each instance of the

training and test data to create transformed data sets, which can then be used with any

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 95

traditional classification algorithm.

6.3.3 Setting k in the Shapelet Transform

The number of shapelets used in the transform is controlled through the use of the pa-

rameter k. While it should be noted that this is simply an upper bound on the number

of shapelets that are used to transform data, the value of k can potentially have a large

influence on classification results. Using too few shapelets would not provide enough

information to make informed classification decisions, whilst using too many could over-

fit classifiers trained with the transformed data and dilute the influence of important

shapelets. In the experiments with the shapelet transform, we use two strategies for

selecting the number of shapelets to use in the filter for a given set of data; firstly, as

a benchmark we use n
2 shapelets in the filter, where n is the number of attributes in

a single series of the data. The second approach automatically selects the number of

shapelets to use based on the results of a 5-fold cross-validation experiment.

This is performed by initially partitioning the training data into five equal parts. For

each fold, we use the data as a testing set and combine the four other folds to form a

set of training data. We then pass the training data into our filtering algorithm and

produce p shapelets. These shapelets are used to create p different sets of transformed

training data, where the first set is the original training data transformed by one shapelet,

the second is transformed by two, and so on until the final set consists of p transformed

features. This same procedure is applied to the testing fold, creating p sets of transformed

test data. Given the class of the classifier that we wish to use the final shapelet with,

we train a range of new classifiers using the p sets of transformed training data and

classify the appropriate transformed test fold. Therefore, for each of the five folds we

obtain p classification accuracies, each corresponding to the number of shapelets used to

transform the data.

The value of p with the best overall accuracy across all five folds of the data is selected

as the value of k for the number of shapelets that are used in the final filter. In cases

where multiple values obtain the best results, we evaluated three strategies for selecting

a single value from the set of best values: pick the smallest, median or largest value. We

found that picking the largest marginally outperformed using the median value, whilst

both approaches performed better than selecting the smallest value. Therefore for this

approach, we always split ties using the largest value of p with the highest cross-validation

accuracy.

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 96

6.3.4 Setting Shapelet Length Parameters

The original shapelet extraction algorithm in [107] required two length parameters to be

set: min and max. The shapelet algorithm that we defined in Algorithm 7 also requires

these two parameters. These values define the range of possible shapelet lengths, making

the algorithm more efficient by reducing the search space. However, setting the parame-

ters incorrectly can be detrimental to the outcome of the shapelet transformation if they

prevent the most informative subsequences from being considered. To accommodate

running the shapelet filter on a range of data sets without any specialised knowledge of

the data, we define a simple algorithm for estimating the min and max parameters.

Algorithm 9 EstimateMinAndMax(T)

1: shapelets = ∅;
2: length = T1.length;
3: for i = 1 to 10 do
4: randomiseOrder(T);
5: T ′ = [T1, T2, ..., T10];
6: currentShapelets = ShapeletCachedSelection(T ′, 1, length, 10);
7: shapelets.add(currentShapelets);
8: orderByLength(shapelets);
9: min = shapelets25.length;

10: max = shapelets75.length;
11: return min, max;

The procedure outlined in Algorithm 9 takes 10 random series from the dataset T

and uses Algorithm 7 to find the 10 best shapelets within this small subset of data. The

search parameters here are set from 1 to m, where m is the length of a whole series in T .

Effectively this means that no constraint is placed on the length of possible shapelets.

This is repeated 10 times in total, producing a set of 100 shapelets. The shapelets are

sorted in order of length, and the lengths of the 25th and 75th shapelets are extracted and

returned as min and max respectively. Note that this will not necessarily result in the

optimal solution for parameter finding. However, it was important that we could adopt

an automatic approach to approximate min and max parameters across a number of

datasets to allow us to compare our filter fairly against the original tree implementation

of shapelets, as the topic of shapelet length estimation was not covered in the original

work of [107]. Therefore we use this approach to approximate min and max for each data

set and build all shapelet trees and filters using these values throughout the experiments.

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 97

6.4 Alternative Shapelet Quality Measures

The original shapelet tree approach in [107] used information gain (IG) to assess the

quality of shapelet candidates (see Section 4.2). The motivation for using this measure

was two-fold. Firstly, IG is suitable for identifying how to produce a partition of the data,

which is necessary when recursively dividing data to create a tree structure. Secondly, the

authors proposed an optimistic early abandon technique for IG to make the measure more

efficient by early pruning of poor candidates. However when implementing the shapelet

transform, we considered alternative quality measures for shapelet discrimination for the

following reasons:

1. The goal for the shapelet transform is to generate a set of shapelets from an entire

data set, rather than specifically identifying how well a candidate splits the data. If

we have the list of distances DS , our goal is not to find the best way of partitioning

DS . Instead, we address the issue of how different are the lists D1
S , D

2
S , . . . , D

c
S ,

where Dj
S contains all the distances from the candidate to time series of class j.

2. The upper bounding technique for information gain relies on identifying the ideal

partition of a number of unevaluated distances. As previously discussed, the utility

of this approach degrades with multi-class problems as a simple binary split is

impossible with more than two class values. In the most pessimistic case, all

possible optimistic combinations of unevaluated distances must be considered. It

is not hard to motivate how this may quickly become untenable, especially in the

most extreme cases (for example, the Adiac dataset from Chapter 3 contains 37

distinct class values).

We believe that there are several alternative measures that we could adopt in place

of IG for assessing the difference in distributions between class distances. The simplest

approach would be to use the F-statistic from ANOVA (F-stat), and we also consider

Kruskal-Wallis (KW) and Mood’s Median (MM) as alternative quality measures (See

Section 4.2 for more details). To test the utility of these alternative quality measures,

we use IG, F-stat, KW and MM to create four shapelet tree classifiers according to the

original implementation of [107]. We implement these measures within the context of

shapelet trees, rather than the shapelet transform, to focus specifically on the effect of

using alternative measures for judging shapelet quality without other implementation

issues affecting the results. The test accuracies of using these classifiers are presented

in Table 6.2. The KW implementation of the shapelet tree has the lowest average rank.

However, the IG tree only records the best accuracy on 3 datasets, while F-stat and MM

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 98

win outright on 11 and 7 datasets respectively. A critical difference diagram is shown in

Figure 6.1 to assess whether there is any significant difference between these classifiers.

Table 6.2: Test accuracies for variants of the shapelet-tree classifier, using informa-
tion gain (IG), Kruskal-Wallis (KW), F-stat and Mood’s Median (MM) as measures of
shapelet quality.

Dataset IG KW F-stat MM

Adiac 29.92% 26.60% 15.60% 27.11%
Beef 50.00% 33.33% 56.67% 30.00%

ChlorineConcentration 58.80% 51.95% 53.52% 52.11%
Coffee 96.43% 85.71% 100% 85.71%

DiatomSizeReduction 72.22% 62.11% 76.47% 44.77%
DP Little 65.44% 68.00% 60.31% 71.00%

DP Middle 70.53% 69.33% 61.86% 73.67%
DP Thumb 58.11% 72.00% 55.97% 70.33%

ECGFiveDays 77.47% 87.22% 99.00% 92.80%
ElectricDevices 45.10% 44.16% 50.41% 53.17%

FaceFour 84.09% 44.32% 75.00% 40.91%
GunPoint 89.33% 94.00% 95.33% 92.00%

ItalyPowerDemand 89.21% 90.96% 93.10% 91.06%
Lighting7 49.32% 47.95% 41.10% 27.40%

MedicalImages 48.82% 47.11% 50.79% 48.95%
MoteStrain 82.51% 83.95% 83.95% 83.95%
MP Little 66.39% 69.67% 57.83% 70.33%

MP Middle 71.01% 75.00% 60.93% 72.00%
PP Little 59.64% 72.00% 58.60% 67.33%

PP Middle 61.42% 68.33% 58.14% 69.67%
PP Thumb 60.83% 71.33% 59.07% 73.00%

SonyAIBORobotSurface 84.53% 72.71% 95.34% 74.87%
Symbols 77.99% 55.68% 80.10% 57.39%

SyntheticControl 94.33% 90.00% 95.67% 85.67%
Trace 98.00% 94.00% 98.00% 100%

TwoLeadECG 85.07% 76.38% 97.01% 85.34%

Average Rank 2.5577 2.7885 2.3269 2.3269

There is no significant difference detected between the test accuracies of the four

shapelet trees. However, accuracy is not the only method for evaluating these approaches.

We have previously noted that IG is a time consuming calculation, even using the entropy

early abandon introduced in [107]. While we consider test accuracy to be the most im-

portant evaluation criteria of a classification algorithm, some problem domains demand

fast approaches for real-time scenarios, making the runtime of a classifier important too.

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 99

CD

4 3 2 1

2.3269 F−stat
2.3269 MM2.5577IG

2.7885KW

Figure 6.1: Critical difference diagram of the test accuracies from the four shapelet tree
classifiers using alternative quality measures

With this in mind we conduct a timing experiment to compare the four measures, with

the caveat that the IG early abandon is not implemented. We acknowledge that this may

be due to an issue with our implementation, but justify our approach since we could ap-

ply the same early abandon used for IG to the other similarity measures. To create a

direct comparison between the measures, our experiments compare the time taken by

each measure to extract the best shapelet only from each dataset, rather than the time

taken to build the complete tree. We believe that this is the fairest approach, since

the measures will likely build trees of varying depths and this would influence the build

times of the classifiers. We are interested in comparing similarity measures for shapelets

for general use, such as being used in the shapelet transform, rather than focusing only

on the shapelet transform. The timing results for finding the best shapelet with each

measure are shown in Table 6.3

The timing results uncover a number of interesting facts. F-stat is clearly the fastest

quality measure, winning on more datasets than the other three measures combined.

F-stat is fastest for 19 of the problems, while IG is not fastest on any. In fact, IG is

the slowest measure on all but 3 of the problems. Informally this result appears to be

significant. To investigate this further, a critical difference diagram is shown in Figure 6.2

to test whether the timing ranks of the classifiers are significantly different.

The results demonstrate that using any of the three alternative quality measures for

shapelet discovery is significantly faster than using IG. F-stat clearly has the lowest rank

of the four and is also significantly faster than KW, but is still within the same clique as

MM. Considering the results of these two preliminary studies using tree classification and

timing experiments, there is good evidence to support considering alternative measures

of shapelet quality in place of IG. The first result showed that no alternative measure

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 100

Table 6.3: Timing results for finding the best shapelet in each dataset using information
gain (IG), Kruskal-Wallis (KW), F-stat and Mood’s Median (MM)

Dataset IG KW F-stat MM

Adiac 17758.48 4974.5 4509.91 4752.63
Beef 1284.46 1253.17 1251.21 1228.51

ChlorineConcentration 26233.51 16699.23 15681.39 16572.67
Coffee 261.27 264.75 258.15 263.82

DiatomSizeReduction 55.35 54.61 53.91 54.36
DP Little 97508.12 80556.13 78005.7 82052.11

DP Middle 106382.47 94081.04 91208.52 91664.8
DP Thumb 149567.07 125334.92 123766.49 124508.41

ECGFiveDays 151.64 150.9 149.1 155.43
FaceFour 4695.97 4621.97 4556.41 4648.45
GunPoint 592 569.51 569.42 580.76

ItalyPowerDemand 3.18 1.56 1.75 1.46
Lighting7 15497.07 15157.93 14912.74 14940.2

MedicalImages 15703.95 8148.76 7742.97 8111.36
MoteStrain 11.55 11.02 10.76 11

MP Little 108518.67 89849.25 88071.5 89634.65
MP Middle 156750.2 135852.37 134731.54 134756.02

PP Little 97987.27 79285.08 79993.31 80514.6
PP Middle 68730.32 59579.27 57815.02 58389.16
PP Thumb 110204.43 91183.51 91401.49 91202.87

SonyAIBORobotSurface 7.8 6.79 6.73 6.79
Symbols 8992.15 8941.21 8901.28 8922.01

SyntheticControl 2280.82 1029.95 984.36 974.27
Trace 54829.06 55155.36 54128.53 54205.65

TwoLeadECG 3.61 3.15 3.12 3.11

Average Rank 3.84 2.7 1.32 2.14

CD

4 3 2 1

1.32 F−stat
2.14 MM2.7KW

3.84IG

Figure 6.2: Critical difference diagram of the timings to find the best shapelet with the
four alternative shapelet quality measures

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 101

produced a significantly worse classifier than IG, while the second result demonstrated

all alternatives are faster for shapelet extraction than IG. We revisit alternative quality

measures when implementing the shapelet transform in Section 6.5 to investigate whether

these findings translate to our new approach.

6.5 Experimental Design

We have proposed several changes to the way shapelets can be used for classification and

present a range of experiments to test these changes. For each, we use a simple train/test

split and all reported results are testing accuracy. To ensure no bias is introduced

into result, all shapelet selection, model selection, and classifier construction is done

exclusively on the training set, and the test set is only used by the final trained classifier

to report classification accuracy. All algorithms and experiments were implemented in

Java within the Weka framework, and the shapelet transform is implemented as a Weka

batch filter to allow easy integration into existing classification code.

6.6 Results

The experiments described in this section are designed to answer the following questions:

1. Does separating shapelet extraction from the classification model have a significant

effect on accuracy? (Section 6.6.1)

2. Does the use of alternative shapelet quality measures affect accuracy or provide

faster extraction? (Section 6.6.2)

3. Can shapelet-transformed data be combined with more complex classifiers to sig-

nificantly outperform the original tree-based approach? (Section 6.6.3)

4. Is the method for automatically setting k in the transform robust, or is it advan-

tageous to use a fixed constant for k? (Section 6.6.4)

5. How does the shapelet transform perform with the heterogeneous ensemble classi-

fier defined in Section 2.5, and how does performance compare to DTW and the

elastic ensemble over the extensive set of datasets used in Chapter 5? (Section 6.6.6)

6.6.1 Embedded Shapelets vs. Transformed Shapelets

Our first objective is to establish that separating shapelets from the classifier does not

reduce classification accuracy. We implemented a shapelet decision tree classifier as

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 102

described in [107], and compared results to a C4.5 decision tree trained and tested

on shapelet transformed data (using information gain as the quality measure and n
2

shapelets). Table 6.4 shows the results for the 26 data sets used.

Table 6.4: Shapelet tree classification vs. C4.5 classification with n
2 shapelet filtered

features

Data
Shapelet

Tree
C4.5

Adiac 29.92% 24.30%
Beef 50.00% 60.00%

ChlorineConcentration 58.80% 56.48%
Coffee 96.43% 85.71%

DiatomSizeReduction 72.22% 75.16%
ECGFiveDays 77.47% 96.17%
ElectricDevices 54.90% 53.45%

FaceFour 84.09% 76.14%
GunPoint 89.33% 90.67%

ItalyPowerDemand 89.21% 90.96%
Lighting7 49.32% 53.42%

MedicalImages 48.82% 44.87%
MoteStrain 82.51% 84.42%

SonyAIBORobotSurface 84.53% 84.53%
Symbols 77.99% 47.14%

SyntheticControl 94.33% 90.33%
Trace 98.00% 98.00%

TwoLeadECG 85.07% 85.25%
DP Little 65.44% 65.92%

DP Middle 70.53% 71.24%
DP Thumb 58.11% 57.99%
MP Little 66.39% 63.43%

MP Middle 71.01% 73.25%
PP Little 59.64% 57.40%

PP Middle 61.42% 62.49%
PP Thumb 60.83% 59.53%

The shapelet tree was best on 13 datasets, C4.5 with transformed data on 12, and

they were tied on one. There is no significant difference detected by a paired t-test

or a Wilcoxon signed rank test. Therefore this experiment provides no evidence that

performing shapelet extraction prior to constructing the decision tree makes the classifier

less accurate. This is a crucial result as it motivates further study to investigate using

shapelet-transformed data with alternative classification approaches.

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 103

6.6.2 Using F-stat with the Shapelet Transform

The results in Section 6.6.1 have shown separating shapelet extraction from the classifi-

cation algorithm does not affect the accuracy of classifiers built. Therefore the shapelet

transform is clearly worthy of further study with classifiers other than the C4.5. How-

ever, the results of investigating alternative measures of shapelet quality in Section 6.4

raise one final question about the implementation of the transform: should we use IG, or

should we consider alternative measures of shapelet quality? To investigate this question,

we create a shapelet transform using the most promising alternative measure from the

results in Section 6.4: F-stat.

We earlier demonstrated that using F-stat in the tree approach was significantly faster

than IG and provided test classification results that were not significantly different from

the IG approach. Therefore we form a simple experiment to investigate whether this

result holds when using the shapelet transform. We reuse the results of the C4.5 classifier

with shapelet transformed data using IG from Section 6.6.1 and compare against a C4.5

classifier trained on data that was transformed by shapelets extracted with F-stat. The

results are reported in Table 6.5.

The results show that over the 26 datasets, the IG transform wins on 11 datasets,

F-stat on 12, and they tie on 3. There is no significant difference between the ranks

of the two classifiers. Therefore we can conclude that there is good potential for using

F-stat, and possibly other alternative measures, in place of IG. We have already demon-

strated that F-stat is significantly faster for shapelet extraction than IG, and have now

demonstrated that there is no significant difference in classification performance of C4.5

classifiers trained using shapelets extracted with either measure of quality.

However, for the duration of this chapter we continue to use IG in the shapelet

transform. We justify this decision because qualitatively at least, we feel that IG may

produce more discriminatory shapelets. Through the added information of an explicit

split point, shapelets extracted with IG are likely to relate to how a single class differs

from the population, providing extra insight into the classification decision that F-stat

will likely not provide. Furthermore the main aim of the experiments is to discover

whether we can significantly improve classification accuracy with shapelets by separating

the extraction process from the classifier. By using an alternative quality measure, we

may risk clouding any conclusions that we draw from results on shapelet transformed

data. Therefore by continuing to use the IG implementation of the shapelet transform, we

can fairly and directly compare our results to the original tree-based approach towards

shapelets, attributing and gains in classification accuracy to the shapelet transform,

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 104

Table 6.5: The accuracies of C4.5 decision tree classifiers built on shapelet-transformed
data using information gain (IG) and F-stat as shapelet quality measures. Positive
values in the difference column indicate better performance with IG, and negative values
represent better performance by F-stat.

Dataset IG F-Stat Difference

Adiac 24.30% 16.88% 7.42%
Beef 60.00% 63.33% -3.33%

ChlorineConcentration 56.48% 53.75% 2.73%
Coffee 85.71% 85.71% 0.00%

DiatomSizeReduction 75.16% 73.20% 1.96%
ECGFiveDays 96.17% 98.14% -1.97%
ElectricDevices 53.45% 50.41% 3.04%

FaceFour 76.14% 62.50% 13.64%
GunPoint 90.67% 93.33% -2.66%

ItalyPowerDemand 90.96% 90.96% 0.00%
Lighting7 53.43% 53.43% 0.00%

MedicalImages 44.87% 41.58% 3.29%
MoteStrain 84.43% 86.82% -2.39%

SonyAIBORobotSurface 84.53% 94.51% -9.98%
Symbols 47.14% 52.86% -5.72%

SyntheticControl 90.33% 79.67% 10.66%
Trace 98.00% 97.00% 1.00%

TwoLeadECG 85.25% 93.68% -8.43%
DP Little 65.92% 67.69% -1.77%

DP Middle 71.24% 70.41% 0.83%
DP Thumb 57.99% 59.88% -1.89%
MP Little 63.43% 63.20% 0.23%

MP Middle 73.25% 66.04% 7.21%
PP Little 57.40% 58.34% -0.94%

PP Middle 62.49% 65.44% -2.95%
PP Thumb 59.53% 65.44% -5.91%

Average 69.55% 69.39% 0.16%

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 105

rather than the measure of shapelet quality that we use.

6.6.3 Alternative Classifiers with Shapelet-transformed Data

The main motivation of the shapelet transform is to uncouple shapelet extraction from

the classifier in order to investigate whether using more complex, non-tree-based classi-

fiers can significantly improve classification accuracy. To test this, the set of 26 datasets

were transformed using the shapelet filter, with k = n
2 and shapelet lengths estimated

using the simple cross-validation procedure from Section 6.3.4. Seven standard classifica-

tion algorithms were implemented with default Weka parameters in this experiment along

with the original shapelet tree algorithm: C4.5, 1-NN, Näıve Bayes, Bayesian Network,

Random Forest, Rotation Forest, and linear Support Vector Machine (See Section 2.4

for more details). The test accuracies for these classifiers are shown in Table 6.6.

The linear SVM is the best performing classifier with an average rank of 2.87, and

is the best overall classifier on 10 out of the 26 problems. Informally, it is clear that

the average rank of the SVM with shapelet-transformed data is much lower than the

shapelet tree. Figure 6.3 shows a critical difference diagram of the results in Table 6.6.

Figure 6.3: Critical difference plot for eight shapelet-based classifiers derived from the
results in Table 6.6

There is a clear division in performance between the majority of the simpler classi-

fiers (shapelet tree, C4.5, and Näıve Bayes) and the more complex classifiers. Rotation

forest, Random Forest, Bayesian Networks and SVM are all within a higher clique than

the shapelet tree, demonstrating that the ranks of these classifiers are significantly bet-

ter than the shapelet tree. While there may be a trade-off between interpretability and

accuracy with this approach (for example, it is easier to understand the decision process

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 106

Table 6.6: Testing accuracy and ranks of 8 classifiers constructed on the shapelet trans-
form with n/2 shapelets. The table is broken into two parts for readability, but rank
calculations are valid across both tables.

Data Shapelet Tree C4.5 1-NN Näıve Bayes
Adiac 29.92% (3) 24.30% (7) 25.32% (5) 28.13% (4)
Beef 50.00% (8) 60.00% (6.5) 83.33% (3) 73.33% (4)

ChlorineConcen. 58.80% (2) 56.48% (6) 56.93% (5) 45.96% (8)
Coffee 96.43% (4.5) 85.71% (8) 100.00% (1.3) 92.86% (6)

DiatomSizeRed. 72.22% (8) 75.16% (7) 93.46% (1) 78.76% (6)
ECGFiveDays 77.47% (8) 96.17% (6) 98.37% (4) 96.40% (5)
ElectricDevices 54.90% (2) 53.45% (4) 24.25% (7) 25.37% (5)

FaceFour 84.09% (7) 76.14% (8) 100.00% (1.5) 97.73% (4.5)
GunPoint 89.33% (8) 90.67% (7) 98.00% (4) 92.00% (6)

ItalyPowerDemand 89.21% (8) 90.96% (7) 92.13% (4.5) 92.52% (2)
Lighting7 49.32% (7.5) 53.42% (6) 49.32% (7.5) 57.53% (5)

MedicalImages 48.82% (4) 44.87% (6) 45.66% (5) 17.37% (8)
MoteStrain 82.51% (8) 84.42% (7) 90.34% (1) 88.82% (3)

SonyAIBORobot. 84.53% (6) 84.53% (5) 84.03% (7) 79.03% (8)
Symbols 77.99% (6) 47.14% (8) 85.63% (2) 77.99% (7)

SyntheticControl 94.33% (1) 90.33% (4) 93.00% (2) 78.00% (7)
Trace 98.00% (5) 98.00% (5) 98.00% (5) 98.00% (5)

TwoLeadECG 85.07% (8) 85.25% (7) 99.47% (1) 99.12% (3)
DP Little 65.44% (8) 65.92% (7) 72.78% (6) 73.49% (3)

DP Middle 70.53% (8) 71.24% (7) 73.73% (6) 73.96% (5)
DP Thumb 58.11% (7) 57.99% (8) 60.71% (6) 62.96% (5)
MP Little 66.39% (7) 63.43% (8) 68.52% (6) 68.76% (5)

MP Middle 71.01% (7) 73.25% (4) 70.89% (8) 71.95% (5)
PP Little 59.64% (7) 57.40% (8) 67.22% (5) 69.23% (4)

PP Middle 61.42% (8) 62.49% (7) 68.52% (6) 69.82% (5)
PP Thumb 60.83% (7) 59.53% (8) 67.69% (6) 69.35% (4)

AverageRank 6.27 6.60 4.48 5.10

Data BayesianNet RandForest RotForest SVM (linear)
Adiac 25.06% (6) 30.43% (2) 30.69% (1) 23.79% (8)
Beef 90.00% (1) 60.00% (6.5) 70.00% (5) 86.67% (2)

ChlorineConcen. 57.08% (4) 57.58% (3) 63.52% (1) 56.15% (7)
Coffee 96.43% (4.5) 100.00% (1.3) 89.29% (7) 100.00% (1.3)

DiatomSizeRed. 90.20% (3) 80.39% (5) 83.01% (4) 92.16% (2)
ECGFiveDays 99.54% (1) 93.26% (7) 98.61% (3) 98.95% (2)
ElectricDevices 53.63% (3) 55.98% (1) 24.25% (7) 24.25% (7)

FaceFour 100.00% (1.5) 87.50% (6) 98.86% (3) 97.73% (4.5)
GunPoint 99.33% (2) 96.00% (5) 98.67% (3) 100.00% (1)

ItalyPowerDemand 92.42% (3) 93.00% (1) 92.03% (6) 92.13% (4.5)
Lighting7 65.75% (2.5) 64.38% (4) 65.75% (2.5) 69.86% (1)

MedicalImages 28.16% (7) 50.79% (3) 51.45% (2) 52.50% (1)
MoteStrain 89.06% (2) 84.58% (6) 86.98% (5) 88.66% (4)

SonyAIBORobot. 89.68% (1) 85.19% (4) 89.02% (2) 86.69% (3)
Symbols 92.26% (1) 84.62% (3.5) 84.42% (5) 84.62% (3.5)

SyntheticControl 76.67% (8) 89.00% (5) 92.00% (3) 87.33% (6)
Trace 100.00% (1) 98.00% (5) 98.00% (5) 98.00% (5)

TwoLeadECG 98.77% (4) 96.14% (6) 97.98% (5) 99.30% (2)
DP Little 72.90% (5) 73.02% (4) 74.67% (2) 75.15% (1)

DP Middle 74.67% (4) 75.50% (3) 76.80% (2) 79.64% (1)
DP Thumb 63.91% (4) 64.14% (3) 67.10% (2) 69.82% (1)
MP Little 69.47% (4) 71.36% (3) 75.15% (1) 75.03% (2)

MP Middle 71.12% (6) 75.15% (2) 74.67% (3) 76.92% (1)
PP Little 70.06% (2) 66.63% (6) 69.82% (3) 72.07% (1)

PP Middle 71.36% (3) 70.53% (4) 75.38% (2) 75.86% (1)
PP Thumb 69.47% (3) 67.81% (5) 72.78% (2) 75.50% (1)

Average Rank 3.33 4.04 3.33 2.87

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 107

of a tree compared to a SVM), the main conclusion is that by separating the shapelet

discovery from the classifier, there is greater potential for accurate solutions while still

retaining the insight provided from discovered shapelets. Interestingly, while not sig-

nificantly outperforming the original shapelet tree, nearest neighbour classification once

again demonstrates strong performance for TSC as 1-NN also falls into the top clique.

6.6.4 Shapelet Selection

The results in Section 6.6.3 for the alternative classifiers with shapelet-transformed data

were achieved by setting k = n
2 when extracting shapelets. We proposed an alternative

method for setting k in Section 6.3.3 through cross-validation, which if used could make

the transform effectively parameter-free when coupled with the length parameter esti-

mation described in Section 6.3.4. To determine whether this approach is robust, we

calculated the number of shapelets to use for each dataset and repeated the classification

experiments from Table 6.6 using the alternative classifiers. The results are reported in

Table 6.7.

The results show that using an automatically selected number of shapelets set through

cross-validation improves the average classification accuracy of 7 out of the 8 classifiers.

In all cases, the classifiers achieve equal or better results on over half of the data sets,

with the Random Forest classifier improving the most overall.

6.6.5 Exploratory Data Analysis

The results in Section 6.6.3 show that using shapelets to transform data can provide

promising classification results. However, one of the strengths of using shapelets is that

they allow a level of interpretation that other approaches do not. The original work on

shapelets in [107] demonstrated this with examples where they document the decision

trees that are built for datasets with the associated shapelets.

One of the key motivations behind the transform is to produce accurate and reliable

decisions that are interpretable. To demonstrate that the transform retains the inter-

pretability of the original shapelet algorithm, the GunPoint data is used as an example.

The GunPoint data contains readings from an actor carrying out the motion of drawing

a gun, and the classification problem is to determine whether or not they were holding

a prop or just miming the action (the Gun/NoGun problem). In [107], the authors

identified that the most important shapelet for classification was when the actor lowered

their arm; if they had no gun, a phenomenon called overshoot occurred and caused a dip

in the motion data. This is shown using the original figure from [107] in Figure 6.4.

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 108

Table 6.7: Relative accuracies of the classifiers when trained with an automatically
selected number of shapelets through cross-validation vs. using n/2 shapelets (as in
Table 6.6)

Data C4.5 1-NN NäıveBayes BayesNet RandForest RotForest SVM (linear)
Adiac 2.30% 0.00% 3.58% 5.37% 4.86% 7.16% 7.42%
Beef -10.00% -13.33% 0.00% -6.67% 20.00% 0.00% -3.33%

ChlorineConcentration -1.09% -2.63% 4.32% 0.36% 0.05% 0.83% 0.03%
Coffee 0.00% 0.00% 3.57% 0.00% 0.00% 3.57% 0.00%

DiatomSizeReduction 0.00% -0.65% -21.24% -2.94% 1.96% -1.63% 1.96%
ECGFiveDays 0.00% -1.63% 1.74% 0.00% 5.92% 0.46% -0.46%
ElectricDevices 0.00% 0.00% 0.00% 1.01% 0.37% 0.00% 0.00%

FaceFour 0.00% 0.00% 2.27% 0.00% 6.82% -9.09% 1.14%
GunPoint 0.00% 0.00% 0.67% 0.00% 2.00% 0.00% 0.00%

ItalyPowerDemand 0.00% 3.89% -3.89% 0.10% 0.68% 2.92% 3.21%
Lighting7 0.00% -2.74% 2.74% 9.59% -4.11% 2.74% 1.37%

MedicalImages 0.00% 3.03% 33.16% 23.29% -0.79% 0.00% 3.16%
MoteStrain 0.00% -0.08% 0.48% -3.83% 1.12% 0.00% 0.56%

SonyAIBORobotSurface 0.00% 0.17% 0.00% 0.00% -0.50% 0.00% 0.00%
Symbols 2.41% -2.21% -4.32% 1.31% -2.71% 0.70% -8.74%

SyntheticControl -1.67% 0.67% 0.33% 0.33% -2.00% 0.00% 3.33%
Trace 0.00% 0.00% 0.00% -2.00% 0.00% 2.00% 0.00%

TwoLeadECG 0.00% 0.00% -0.44% 0.70% -3.16% -1.76% 0.26%
DP Little -1.54% 1.54% 2.25% 2.37% -2.49% 0.59% 1.42%

DP Middle 1.07% -1.89% -1.07% -0.83% 1.42% 0.83% -0.12%
DP Thumb 4.26% 0.36% -0.95% -1.42% 0.83% 0.59% 0.95%
MP Little 1.18% 0.12% 1.89% 0.59% 0.36% -1.54% -1.78%

MP Middle 1.42% 1.30% -0.12% 0.47% 0.36% 3.43% -0.12%
PP Little 8.17% 0.83% 0.95% 0.59% 0.95% -2.84% -1.66%

PP Middle 1.30% 1.18% 1.42% 1.42% 3.79% -0.24% -2.37%
PP Thumb 1.18% 0.71% 1.30% 0.36% -0.36% -3.43% 0.36%

Average Improvement 0.35% -0.44% 1.10% 1.16% 1.36% 0.20% 0.25%
Data Sets Improved 9 11 15 15 16 12 13

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 109

          
          
      


      
 
         

          
         



         


          
       
          



           


      
        
        
         

        
         
         








 
      
        










          

        


      





           





 


        
     


       

          
          


    










 



















    















 





Figure 6.4: An illustration of the Gun/NoGun problem taken from [107]. The shapelet
that they extract is highlighted at the end of the series.

Best

2nd Best

3rd Best

4th Best

5th Best

Best

2nd Best

3rd Best

4th Best

5th Best

Ye et al.

Shapelet

Figure 6.5: An illustration of the five best shapelets extracted by the shapelet transform.
The graph to the right shows how closely matched they are when place on top of one
another.

The tree originally built for the GunPoint data contains a single shapelet that cor-

responds to the arm being lowered back into position at the end of the series. To

demonstrate that the shapelet filter retains this level of interpretability while extracting

important information from the data, the transform was configured for the GunPoint

data using the length parameters specified in the original paper to allow for a fair com-

parison between the two methods. The top five shapelets that were extracted by the

shapelet transform are shown in Figure 6.5 along side the shapelet from Figure 6.4.

The top 5 shapelets are all closely matched with the original shapelet, reinforcing the

claim that the shapelet transform produces interpretable results. Furthermore, if the top

10 shapelets are extracted, even further insight can be achieved. Figure 6.6 shows that

the top ten shapelets extracted through the transformation process form two distinct

clusters; the shapelets to the left correspond to the moments where the arm is lifted,

and are also instances where there is a gun present in the actor’s hand. It is intuitive

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 110

that these shapelets are important, since if the presence/absence of the gun when being

returned to the holster is important, it should also be important when being removed

from the holster. This is new insight that is not captured by the original shapelet tree

algorithm.

Figure 6.6: The 10 best shapelets for the Gun/NoGun problem extracted by the shapelet
transform. The shapelets form two distinct clusters, the first where the arm is raised,
and the second when the arm is lowered.

6.6.6 Comparison to Alternative Approaches

We have shown that through using the shapelet transform, classification with shapelets

can be significantly improved by disassociating shapelet discovery from the classification

algorithm to allow more complex and non-tree-based approaches to be used. However,

these experiments do not offer any comparison of the shapelet transform to alternative

TSC approaches. For example, while we would not expect a shapelet-based approach to

outperform benchmarks such as 1-NN DTW across all TSC problems, we would expect

the shapelet transform to provide better classification performance on problems where

discriminatory features are embedded within local shapes. Additionally, since we in-

troduced the shapelet transform into the literature in [78], two variants of the original

shapelet approach have been proposed: logical shapelets [80] and fast shapelets [88]. Log-

ical shapelets consider conjunctions and disjunctions of shapelets when constructing the

tree-based classifier rather than single shapelets, and the fast shapelets variant provides

an approach analogous to the original shapelet implementation, though implemented

with various speed-up techniques to accelerate shapelet extraction.

To reaffirm the effectiveness of the shapelet transform, we present updated results

from experiments carried out in [52] to compare the shapelet transform to alternative

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 111

approaches. Firstly, in light of the new shapelet-based approaches, we wish to report

an updated comparison between the shapelet transform and the new approaches. The

experimental support for logical and fast shapelets [80, 88] is provided through the use

of 29 common UCR datasets. To create a fair comparison, we extended our original

experiments in [52] to consider the same 29 datasets. Additionally, these datasets form

a subset of the problems used in Chapter 5 when proposing the elastic ensemble (EE).

This allows the opportunity to compare the transform and two new shapelet approaches

to the EE and 1-NN DTW with warping set through cross-validation (DTWCV) too.

The results of the shapelet transform using a linear SVM against these alternatives are

reported in the critical difference diagram in Figure 6.7. The results demonstrate that

CD

5 4 3 2 1

1.7241
Ensemble

2.3276
Transform

3.2241
DTW

3.7931
Fast

3.931
Logical

Figure 6.7: The average ranks for three shapelet algorithms, DTWCV and Elastic En-
semble on 29 UCR datasets. The critical difference for α = 5% is 1.1137.

while the shapelet transform does not significantly outperform DTWCV, it is significantly

more accurate than both logical and fast shapelets over the 29 datasets. This result

suggests that the best current technique for using shapelets (in terms of accuracy at least)

is to use them to transform data, rather than embedding shapelets within a decision tree

classifier.

Additionally, the shapelet transform is not significantly outperformed by EE over

these problems, lending further support to the use of the transform for TSC. However,

comparing the shapelet transform to the EE over 29 datasets is restrictive when consid-

ering that we have previously provided results with the EE over 75 datasets in Chapter 5.

Furthermore the shapelet transform used in this comparison only considered results us-

ing a linear SVM with shapelet-transformed data. Rather than limiting the transform to

a single classification algorithm, we could use the heterogeneous ensemble that was de-

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 112

fined in the time domain in Section 2.5, using shapelet-transformed data rather than the

raw time series. Using additional results with the shapelet transform that were recorded

in [51], we can compare a heterogeneous shapelet ensemble to the EE over 71 datasets

(shapelet ensemble results were not available for 4 datasets). The resulting critical dif-

ference diagram, including DTW and Euclidean distance 1-NN as benchmarks, is shown

in Figure 6.8.

CD

4 3 2 1

1.5845
EE

2.2465
Shapelet Ensemble

2.7042
DTWCV 1NN

3.4648
Euclidean 1NN

Figure 6.8: A critical difference diagram to compare a heterogeneous ensemble built with
shapelet-transformed data to the EE, DTW 1-NN and Euclidean 1-NN over 71 datasets.
The results show

The results show that over a larger and more diverse set of data, the EE is significantly

better than the shapelet ensemble. However, the shapelet ensemble is not significantly

outperformed by DTW and has a lower rank overall. This reaffirms the mantra of DTW

being ‘hard to beat ’, but also underlines the effectiveness of the shapelet transform for

TSC. As concluded previously in Chapter 5, Euclidean 1-NN is not a good benchmark

for TSC algorithms to be judged against, as it is easily outperformed by all alternatives

in this comparison.

6.7 Conclusions

The work in this chapter has proposed a shapelet transform for TSC that extracts the k

best shapelets from a dataset in a single pass. We implement this transform using a novel

caching algorithm to store shapelets, and apply a simple, parameter-free cross-validation

approach for extracting the most significant shapelets. A total of 26 datasets are used

CHAPTER 6. SHAPELET DOMAIN CLASSIFICATION 113

to demonstrate the effectiveness of the transform, and after an analysis of alternative

shapelet quality measures that can be implemented within the transform, it is shown

that a C4.5 decision tree classifier trained with shapelet-transformed data is competitive

with an implementation of the original shapelet decision tree from [107]. Leading on

from this, it is demonstrated that the transformed data can be applied to non-tree based

classifiers to achieve significantly improved classification performance over the original

shapelet tree, while still maintaining the interpretability offered by the shapelets. We

demonstrate this through an in-depth case study of the GunPoint dataset, providing

exploratory analysis of the extracted shapelets to demonstrate that the output is not

only consistent with the original shapelet tree, but also offers even further insight into

the problem. Finally, we produce an analysis of two extensions of the shapelet tree

approach, and conclude that using shapelets to transform data is currently the best way

to use shapelets by demonstrating that doing so leads to significantly better accuracy

than any of the shapelet tree implementations, and when combined with a heterogeneous

ensemble, the resulting shapelet ensemble offers competitive performance to DTW over

a very large set of varied datasets.

Chapter 7

The Collective of

Transformation-based Ensembles

In Chapter 5 an elastic ensemble (EE) was proposed for solving classification problems

in the time-domain by combining the predictions of 1-NN classifiers built with various

elastic distance measures. The results of the EE were, to the best of our knowledge,

the first ever to outperform DTW 1-NN on the UCR datasets. However, we have pre-

viously argued in Chapter 4 that not all discriminatory features are detectable in the

time domain. Similarity between series may be more easily detected in other domains,

such as similarity in the frequency domain (Section 4.1) and similarity in change (Sec-

tion 4.3). Additionally, Chapter 6 proposed a new time series transformation technique

for uncovering local shape-based similarity: the shapelet transform. By transforming

series into the shapelet domain, it was shown that complex classifiers could be applied to

the transformed data to take advantage of the local shape-based similarity that can be

detected with shapelets, while not being restrained by the limitations of using a decision

tree classifier.

The goal of this chapter is to create a new classification algorithm that combines

each of these four types of similarity into a single output. This is done through creating

ensemble classifiers in the time, frequency, change, and shapelet domains, and combining

them to form a collective of transformation-based ensembles (COTE). The EE proposed

in Chapter 5 is used for classification in the time domain, and heterogeneous ensembles of

various classification algorithms are formed for the remaining three domains (as defined

in Section 2.5). Using 72 datasets, including the full set of 46 widely-used UCR datasets,

the COTE is used to test the hypothesis that constructing a collective of ensemble

classifiers built on different data representations improves mean classification accuracy

114

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 115

compared against classifiers built on single data representation. The contributions of

this chapter are as follows:

1. Our primary contribution is to demonstrate that the simple collective formed by

including all classifiers in one ensemble is significantly more accurate than any

single constituent part, and is significantly more accurate than all published TSC

algorithms evaluated on the train/test splits of UCR datasets that we know of.

In addition to the 46 UCR datasets, we use a further 26 datasets in our evalua-

tion, including a case study of the Caenorhabditis elegans problem introduced in

Section 3.5.

2. Our secondary contribution is to investigate alternative hierarchical ensemble struc-

tures. The strategy of placing all classifiers in a single ensemble gives very accurate

classifiers, but offers little exploratory insight into a particular problem. We inves-

tigate alternative hierarchical collective structures that use weighting schemes and

selection schemes between ensembles on different transforms. We demonstrate that

although most approaches give significantly worse accuracy than the flat approach

of a single ensemble, a collective of transform-based ensembles where inclusion is

determined by a Mann-Whitney rank sign test is not significantly worse.

The remainder of this Chapter is structured as follows. Firstly, the four individual

transformation based ensembles are outlined and motivated through simple train/test

experiments. The two novel classification approaches introduced in this thesis, the EE

and shapelet transform, are analysed and motivated with a comparison to the current

state-of-the-art in TSC. Following the establishment of the four ensembles, a simple flat

ensemble strategy is defined and tested, leading on to an investigation into more intuitive

and complex ensembling approaches. Finally a thorough comparison of the COTE to

the leading TSC approaches from the literature is carried out to demonstrate that the

Flat-COTE is the new benchmark for TSC on the UCR datasets.

7.1 Datasets

In Chapter 5 and Chapter 6 we originally used 75 datasets. However, the hand clas-

sification problems outlined were restructured as described in 3.3 to form the second

generation hand-outline problems. For example, DP Little, DP Middle, and DP Thumb

were concatenated and replaced by DistPhalanxOutline by the author of the original

project that generated these problems [30]. Therefore the datasets were updated to re-

flect the most recently available data for this problem domain. Additionally, the results

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 116

Table 7.1: Datasets grouped by problem type

Image Outline Classification
DistPhalanxAge DistPhalanxOutline DistPhalanxTW FaceAll FaceFour WordSynonyms
MidPhalanxAge MidPhalanxOutline MidPhalanxTW OSULeaf Phalanges yoga
ProxPhalanxAge ProxPhalanxOutline ProxPhalanxTW Herring SwedishLeaf MedicalImages

Symbols Adiac ArrowHead BeetleFly BirdChicken DiatomSize
FacesUCR fiftywords fish

Motion Classification
CricketX CricketY CricketZ UWaveX UWaveY UWaveZ
GunPoint Haptics InlineSkate ToeSeg1 ToeSeg2 MutantWorms2

MutantWorms5
Sensor Reading Classification

Beef Car Chlorine Coffee Computers SmallKitchen
FordA FordB ItalyPower LargeKitchen Lightning2 Lightning7

StarLightCurves Trace wafer RefrigerationDevices MoteStrain Earthquakes
ElectricDevices SonyRobot1 SonyRobot2 OliveOil Plane Screen

Human Sensor Reading Classification
TwoLeadECG ECGFiveDays ECGThorax1 ECGThorax2

Simulated Classification Problems
MALLAT CBF SyntheticControl TwoPatterns

of two datasets with the shapelet transform were not available at the time of analysis.

Therefore, due to the slight changes in available data, we list the full set of problems

used in this chapter in Table 7.1. There are 72 datasets in total, and where comparisons

are made to the earlier work of the EE and shapelet transform, we do so using the new

set of 72 datasets to ensure that results are directly comparable. Additionally, it should

be noted that this set of data still contains the full set of 46 UCR datasets [65], enabling

results to be compared to other algorithms in the literature.

7.2 Transformation-based Ensembles

The COTE is formed by combining transformation-based ensembles built on four distinct

data spaces. We use two specific types of ensemble for this; for the shapelet, change,

and frequency domains we use a heterogeneous ensemble, as originally described in Sec-

tion 2.5.4. For the time domain we use the elastic ensemble (EE) defined in Chapter 5.

The specification of the heterogeneous ensemble is briefly revisited below for clarity,

along with justification of using the EE in place of it for the time domain.

7.2.1 Heterogeneous Ensemble

To build heterogeneous ensembles in the shapelet, change, and frequency domains, we

must first transform data into the correct representations. We do this using the ap-

proaches described in Chapter 4 and Chapter 6. For the frequency domain, we transform

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 117

data using the power spectrum as outlined in Section 4.1. For the change domain, we

transform data using the three autocorrelation-based approaches that were discussed in

Section 4.3, and concatenate ACF, PACF, and AR model terms to create output series.

We choose to use all of the three possible approaches to keep the implementation as sim-

ple as possible. We could discriminate between the three possible transforms and select

only one, but by providing terms for each of the three approaches, we provide classifiers

with as much explanatory data in the change domain as possible. The intuition behind

this is to keep the transform clear, and allow the classification algorithms to establish

the best discriminatory features from all of the features that are available.

As outlined in Section 2.5, the classifiers that we include in the heterogeneous en-

semble are the WEKA [48] implementations of:

• k Nearest Neighbour (where k is set through cross validation);

• Näıve Bayes;

• Bayesian Network;

• C4.5 decision tree [86];

• Support Vector Machine [28] with linear kernel;

• Support Vector Machine with quadratic kernel;

• Random Forest [16] (with 100 trees);

• Rotation Forest [94] (with 10 trees);

The ensemble is formed by adding the individual classifiers to a pool to form a demo-

cratic voting system. As discussed in Section 2.5, there are many ensembling schemes

that can be used for weighting votes within the ensemble; in this instance, we choose to

assign weights proportionally to cross-validation accuracy on the training data. We select

the proportional scheme as it was the approach that performed best when developing the

EE in Section 5.5.2, and including all four ensemble schemes that we originally consid-

ered in four data domains would make the implementation of the transformation-based

ensemble more complex and less intuitive.

The set of classifiers used in the heterogeneous ensemble were chosen to balance both

simple and complex classifiers, but the selection is fairly arbitrary and other classification

algorithms could also be considered. Furthermore, no attempt to optimise parameter

settings are made for these these classifiers through cross validation (with the exception

of finding k for the k -NN classifier, which is done internally via Weka when the classifier

is built). We chose to do this to reduce the complexity of the algorithm and to keep

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 118

the focus of this research on the importance of transformation in TSC. Nevertheless, a

wider range of more sophisticated classifiers may improve performance and is worthy of

further investigation.

7.2.2 Time Domain Classification with the Elastic Ensemble

It is intuitive to use the EE in place of the heterogeneous approach for the time domain

since it was developed for that data space in particular, and the results in Section 5.5

demonstrated that the EE was significantly more accurate than DTW and other leading

competition over a large range of data. To further justify this decision however, a simple

experiment was carried out using the EE and a time domain heterogeneous ensemble on

the datasets used in this chapter. Each were trained using the training data only, and the

results of the test data accuracies are shown in scatter plot in Figure 7.1. To summarise,

of the 72 datasets in use, the EE won on 46, lost on 23, and tied on 3. The difference

in the average ranks of the classifiers was significant. After achieving these results, we

also considered using the EE for the three remaining data domains. However, the results

were less conclusive for change, frequency, and shapelet-transformed data, possibly due

to the elastic measures originally being designed for use in the time domain, rather than

transformed data spaces. We note that there is potential to investigate the EE for these

domains further in the future, but for the work with COTE we restrict use of the EE

to the time domain only and continue to use the heterogeneous ensemble in the other

domains.

7.3 Results Using a Single Ensemble: Flat-COTE

The first configuration of the COTE that we propose is the simplest to implement; it

is a logical extension of the EE in that it is simply a single ensemble consisting of all

constituent classifiers from the EE in the time domain, combined with the constituents

of the heterogeneous ensembles from the change, frequency, and shapelet domains (33

classifiers in total). We call this classifier the flat-COTE and it is implemented with a

proportional voting scheme. While simple to comprehend, the implementation of the flat-

COTE comes at a trade-off for interpretability, as it would be desirable to have a meta-

ensemble that selects the correct constituent ensemble to use a priori when processing a

dataset. Such a process would highlight where similarity can be best assessed for a given

dataset. However, the justification for the flat-COTE is that if similarity exists in only

one of the time, change, frequency, or shapelet domains, the proportional weighting of

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 119

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Elastic Ensemble better here

Time-domain heterogeneous

ensemble better here

Figure 7.1: Test accuracy of the Elastic Ensemble defined in Chapter 5 and a heteroge-
neous ensemble built in the time domain over 72 problems.

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 120

the votes in that domain should overpower the remaining classifiers in the flat-COTE.

In contrast, if similarity is detectable in multiple domains, the decision process should

be informed by a more diverse set of representations than in the EE, potentially leading

to better classification results for problems where similarity between series is not easily

detected in the time domain. The test classification performance of the flat-COTE is

compared to each of the four individual ensembles, and standard benchmarks in the

form of Euclidean 1-NN and DTW 1-NN with warping set through cross-validation, in

the critical difference diagram presented in Figure 7.2.

CD

7 6 5 4 3 2 1

1.6736
Flat−COTE

2.9514
EE

3.6042
Shapelet

4.3472
DTW

4.8958
PS

5.2083
Change

5.3194
ED

Figure 7.2: Critical difference diagram for collective (flat-COTE) and the individual en-
sembles for the change domain (Change), the power spectrum (PS), shapelet transform
(Shapelet) and the time domain elastic ensemble (EE). Single classifiers 1-Nearest neigh-
bour with Euclidean distance (ED) and dynamic time warping distance with warping
window set through cross validation (DTW) are included for contrast.

The results in Chapter 5 demonstrated that the EE significantly outperformed the

commonly-held benchmark of DTW 1-NN and various other elastic measures. Despite

this finding, the results summarised in Figure 7.2 show that the flat-COTE is significantly

more accurate than the EE over the 72 datasets. The information provided by the

three transform ensembles within the flat-COTE therefore must discover discriminatory

features that are hard (or perhaps impossible) to detect in the time domain.

These very positive results lead to two immediate questions. Firstly, how does the per-

formance of the flat-COTE compare to other leading TSC approaches from the literature?

Secondly, is it possible to improve the flat-COTE by selecting which transformation-based

ensembles to include/exclude into the ensemble for a given problem? These two ques-

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 121

tions are answered throughout the remainder of this chapter following a case study to

investigate how the flat-COTE performs on a problem that is not well suited to the time

domain.

7.4 Case Study: Classifying Caenorhabditis elegans

The results of the flat-COTE have demonstrated that the new classifier is significantly

more accurate than the EE over the 72 datasets. Since the EE is believed to be the first

classifier to significantly outperform DTW 1-NN on the UCR datasets, it is interesting to

explore how the flat-COTE has improved upon the EE. Specifically, as with the majority

of research in TSC, the EE focuses on time domain similarity between series. However

many problems exist where the search for similarity between data would be much better

suited to other domains. In this case study, we explore two such datasets that are derived

from the Caenorhabditis elegans introduced in Chapter 3 to explore how the flat-COTE

improves upon the EE on problems that are not suited to the time domain. The test

error rates of the flat-COTE and the four individual transformation-based ensembles on

the two derived datasets (Worms2 and Worms5) are shown in Table 7.2.

Table 7.2: Test classification errors for the two-class and five-class worm problems with
five different ensembles.

Dataset Flat-COTE EE Shapelet PS Change

Worms5 0.25 0.38 0.30 0.26 0.19
Worms2 0.18 0.38 0.23 0.19 0.14

As expected, we observe that the time domain classifier is the worst of all for the worm

datasets. This is unsurprising given the nature of the data, but underlines the merits of

investigating similarity in domains other than time. Though flat-COTE outperforms the

EE, it should be noted that it is less accurate than the best approach overall (Change

domain). This emphasises that it is desirable to be able to determine the best transform

a priori, so unsuitable representations (i.e. the time domain in this case) can be omitted

from the ensemble to avoid adding noise to the predictions. The shapelet ensemble is

less accurate than the power spectrum and change ensembles, but shapelets offer the

added bonus of greater explanatory power. To emphasise this, Figure 7.3 shows the best

shapelets for Worms2, the two-class problem (wild-type and mutant).

The best wild-type shapelet represents highly regular movement where the worm

cyclically adopts the eigenworm1 shape. The mutant shapelet is much more erratic,

with short localised variation from the regular pattern, which likely explains why the

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 122

1 51 101 151 201 251 301

Time (seconds)

1 11 21 31 41 51 61 71 81 91

Time (seconds)

Figure 7.3: The best shapelets for wild-type (left) and mutant worms (right) for the two
class problem.

Change transform is the best approach for this problem. The low order ACF terms for

the non-mutants will be highly significant since the movement from one time step is

highly correlated with the previous step, whereas this correlation will be much weaker

for the mutant type. Further insight can be gleaned from observing the best shapelets

extracted on the Worms5 dataset, as shown in Figure 7.4. We see the same localised

variance with the mutants as with the two class problem, but there is also some variability

in the degree of deviation from the eigenworm between mutants. This preliminary study

has demonstrated that time series classification could provide a useful way of automating

what is currently a very labour intensive process, and that the COTE approach gives

very promising results and insights that the EE could not offer.

7.5 Comparison to Other Approaches

In the style of the comparison between the EE and other approaches in Section 5.5.4,

we compare the flat-COTE to other recent work in TSC through pair-wise comparisons.

This is achieved though testing for significant results by using the binomial test (BT) and

Wilcoxon signed-rank test. However, unlike the original comparisons in Section 5.5.4,

we also provide a further layer of analysis by comparing many of the recent approaches

in a single critical difference diagram. We have not implemented the majority of these

alternative approaches, hence this critical difference diagram is built predominantly using

published results from the original work. This approach obviously limits the number of

datasets that we can consider in the comparison as we have no control over which datasets

are used. In spite of this however, by removing one approach with few common datasets

from the critical difference diagram, we can compare the approaches over a set of 37

common datasets (out of a possible 46 UCR problems). The pair-wise comparisons of

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 123

1 51 101 151 201 251 301 351

Wild Type

1 51 101 151

Mutant Type goa-1

1 51 101

Mutant Type unc-1

1 51 101 151 201

Mutant Type unc-38

1 51 101

Mutant Type unc-63

Figure 7.4: The best shapelets for the five class problem. It is interesting to note the
regular pattern in the best shapelet for the wild type class, while the patterns exuded in
the best shapelets for the mutant types appear to be much more erratic.

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 124

the flat-COTE to alternatives from the literature are as follows, and the critical difference

diagram is shown in Figure 7.5

1. The Time Series Bag-of-Features (TSBF) classifier [11] is evaluated on 44 UCR

datasets. In comparison to the best version of TSBF (TSBF Rand), flat-Cote wins

on 37 datasets and loses on 7. Flat-COTE is significantly better at the 1% level.

The p-values are 2.65× 10−6 (BT) and 8.86× 10−6 (WSR).

2. Two versions of Time Series Forest (TSF) [34], TSF entrance and TSF entropy,

are assessed on 44 UCR datasets. In comparison to TSF entrance (the best version

of TSF), flat-Cote wins on 35 datasets and loses on 9. Flat-COTE is significantly

better at the 1% level. The p-values are 5.3× 10−5 (BT) and 1.65× 10−5 (WSR).

3. The complexity invariant distance (CID) [9] is evaluated on 42 UCR datasets (the

two Fetal ECG datasets are missing). Flat-COTE is more accurate on 41 and

worse on 1. Flat-COTE is significantly better at the 1% level. The p-values are

9.78× 10−12 (BT) and 1.12× 10−8 (WSR).

4. The recurrence patterns compression distance (RPCD) [99] reports test accuracy

on 37 datasets (omitting simulated problem sets from the UCR data and the two

fetal ECG datasets). Flat-Cote wins on 32 datasets, ties on 1, and loses on 4.

Flat-COTE is significantly better at the 1% level. The p-values are 9.71 × 10−7

(BT) and 2.3× 10−6 (WSR).

5. The Bag-of-Patterns (BOP) approach [72] is evaluated on 19 UCR datasets. Flat-

COTE is better on 16 of these, ties on 1, and is worse on 2. Flat-COTE is signifi-

cantly better at the 1% level. The p-values are 0.0007 (BT) and 0.002 (WSR).

6. Time Warp Edit (TWE) distance [79] with optimised parameters is evaluated on

19 UCR datasets. Flat-COTE is better on 16 of these, ties on 1, and is worse on

2. Flat-COTE is significantly better at the 1% level on these 19 datasets. The

p values are 0.0007 (BT) and 0.002 (WSR). It is also significantly better on all

72 datasets (using the results of the internal TWE classifier within the EE of the

flat-COTE).

7. The Move-Split-Merge distance metric (MSM) [101] is evaluated on 19 UCR datasets.

Flat-COTE is better on 16 of these, ties on 1, and is worse on 2. Flat-COTE is

significantly better at the 1% level. The p values 0.0007 (BT) and 0.002 (WSR). It

is also significantly better on all 72 datasets (using the results of the internal MSM

classifier within the EE of the flat-COTE).

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 125

8. DTW has been used as the standard benchmark algorithm for UCR datasets in

the vast majority of TSC research. For the 46 UCR problems flat-COTE is better

on 40 of these, ties on 3, and is worse on 3. Over all 72 datasets, flat-COTE is

better on 63, worse on 6 and draws on 3.

9. Euclidean distance is also still often used to support new TSC algorithms. Flat-

COTE is better on 44 of these, ties on 1, and is worse on 1. Over all 72 datasets,

flat-COTE is better on 69, ties on 1 and is very marginally worse on 2.

CD

9 8 7 6 5 4 3 2 1

2.0135
COTE

4.473
TSBF

4.5135
TWE

4.973
MSM

5.0541
CID

5.0946
TSF

5.5676
DTW

5.6622
RPCD

7.6486
ED

Figure 7.5: Critical difference diagram for flat-COTE and the other TSC algorithms on
37 UCR datasets that are common across each paper. BoP is omitted due to only having
results for 19 datasets available, and the results for TWE and MSM were taken from [75]
as the original work of [79] and [101] also only report results on 19 datasets.

The results of the pair-wise comparisons between flat-COTE and the other approaches

provides evidence to support the use of flat-COTE, demonstrating that it is significantly

more accurate than each of the alternatives we test against. This is reinforced in the

critical difference diagram in Figure 7.5, which demonstrates that the flat-COTE has a

significantly lower average rank across the 37 common datasets than any other algorithm

that we test against. To the best of our knowledge, these are the best results ever

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 126

published on the UCR data. However, even with this in mind, when proposing new data

mining algorithms it is also important to address limitations as well as strengths. There

are numerous metrics that can be used for assessing the performance of new algorithms

for TSC, and while we believe that accuracy is the most important for classification, it

is also relevant to consider the time complexities of new approaches.

Due to flat-COTE being an ensemble of approaches, informally it is clear that it will

be more time consuming than a simple nearest neighbour algorithm (such as DTWCV).

Since flat-COTE is a combination of distinct processes that can run in parallel, the time

complexity of the classifier will be equal to that of the most time consuming part: the

shapelet transform. As discussed by [52], the shapelet search is enumerative. For a set

of n series of length m, there are n(m− l+1) possible shapelets of length l in each series.

To assess a candidate shapelet, each must be compared to every series in the dataset

with O(m) distance calls, each requiring O(l) point-wise calculations. This gives the time

complexity for assessing a single shapelet as O(nml), resulting in O(n2m4) complexity

for processing all shapelets in an entire dataset. To address this, much research into

shapelets has focused on speeding up the shapelet discovery process, and such speed-ups

could also be employed within flat-COTE. For example, the original shapelet work [107]

proposed a simple early abandon during shapelet discovery. [88] propose online normal-

isation of subsequences to speed up discovery, and reorder candidate shapelets using

summary statistics to enhance the potential for early abandonment. [74] propose alter-

native measures of shapelet quality to speed up shapelet discrimination for multi-class

problems. [80] pre-calculate statistics between series based on cumulative sums and cross

products to accelerate shapelet discovery by trading off space complexity in favour of

better time complexity. However, we maintain our belief that the most important cri-

teria for assessing new TSC algorithms is classification accuracy. Therefore we do not

significantly alter the shapelet transform approach of [52] by implementing such speed-

ups to ensure that the main contributions of this work are not clouded. Our main focus

is to produce a classifier that significantly outperforms other TSC algorithms on the

UCR datasets, and the results achieved in the section demonstrate that this has been

successful. This leads us to our final question; now that we have an effective classifier, is

it possible to improve the flat-COTE by implementing a scheme to automatically select

the best, or a subset, of transformation-based ensembles that are most appropriate for a

classification problem?

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 127

7.6 Alternative Ensemble Designs

The flat-COTE has been shown to produce very good results. In the initial comparison

between the flat-COTE and EE in Section 5.5, we demonstrated that adding classifiers

from the three additional transform domains (change, frequency and shapelet) to clas-

sifiers in the time domain produced a significantly better ensemble classifier than using

only the time domain ensemble (i.e. the EE). However, the structure of the flat-COTE

does not provide information into why the decision process is improved through adding

the new classifiers. One way that this level of intuition could be provided is if we were

to form a collection of independent ensembles in each transform domain, and then use a

decision process to select (or weight) particular ensembles in the final collective ensem-

ble. The result of this decision process alone would provide extra information into the

transforms, highlighting the transformation domains where similarity is best detected

for a dataset. To investigate this process, we propose three simple approaches that could

be adopted within alternative COTE classifiers:

1. Predict the best outright transform to use during training, and omit the remaining

three ensembles from the test classifier.

2. Weight each transformation-based ensemble to create a second layer of proportional

voting.

3. Select a subset of transforms to use for a dataset by predicting the best, and then

pruning any transforms that are significantly outperformed on the training data.

7.6.1 Best Internal Ensemble

The most intuitive of the strategies that we propose is to simply identify the best transfor-

mation space for a problem on the training data, and then use the appropriate ensemble

in the testing phase. To motivate this strategy, Table 7.3 shows the distribution of the

best transform across the 72 datasets judged solely on test accuracy

Table 7.3: Frequency of test set wins by transform

Transform Number of datasets

Elastic Ensemble 34
Shapelets 22

Power Spectrum 9
Change 7

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 128

The data in Table 7.3 is retrospective, recorded from simply observing the test clas-

sification results using all four ensembles and then picking the best transform space after

the fact. The goal of this COTE strategy is to predict this information in advance,

with the hope that if this can be done accurately, the strategy can improve upon the

flat-COTE by only using the classifiers that are deemed relevant to the problem in hand.

However, surprisingly, this is not the case even if we could predict the best ensemble in

advance with 100% accuracy we cannot outperform flat-COTE. The scatter plot of test

accuracies in Figure 7.6 shows the flat-COTE versus a hypothetical oracle-COTE over

the 72 datasets, where the accuracy is always provided from the single best constituent

ensemble within the COTE.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9 1

Flat-COTE better here

Oracle-COTE better here

Figure 7.6: Test accuracy of oracle-COTE vs flat-COTE over 72 problems. Oracle-COTE
wins on 27 datasets, flat-COTE wins on 36, and they tie on 9.

Even when predicting the best transform with 100% accuracy, the oracle-COTE is

not significantly better than flat-COTE. Oracle-COTE wins on 27 dataset, flat-COTE

on 36 and they tie on 9. This shows that there is clearly little to choose between the

two ensembling schemes, even when assuming the most optimistic case for the oracle-

COTE. This suggests that the power of the flat-COTE for TSC is achieved by considering

features from multiple transform domains concurrently. However, despite this, it is still

worth considering which ensemble performs best in a single domain since it proves greater

explanatory power.

The most obvious information that we have available for attempting to identify the

best transform in advance is the training cross-validation results. However, we found

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 129

that using the simple decision rule of picking the ensemble with the highest average

training accuracy among constituent classifiers only identified the best transform for the

test data correctly 55% of the time. We repeated this experiment with other summary

statistics, such as median and max, but these faired no better. All of the strategies that

we tested for picking the best transform on training accuracies resulted in a classifier

that was significantly less accurate than the flat-COTE.

An alternative strategy that we also trialled was considering problem types in the

context of a transfer learning problem. For example, if shapelets offer the best trans-

formation domain for detecting similarity for one image outline problem, it would seem

intuitive that shapelets would provide the best solution for another image outline prob-

lem. To quantify whether there appears to be such a relationship between datasets and

transform domains, Table 7.4 shows the proportion of each dataset type won by the

different transforms. The numbers are small so we cannot infer too much, but it appears

that (perhaps as expected) motion problems are best solved in the time domain, while

the shapelet transform domain provides good results for human sensor problems.

Table 7.4: Percentages to show where each transform space produced the lowest error
rates, broken down by problem type.

Dataset Type EE Shapelets PS Change

Human Sensor 20% 80% 0% 0%
Image 46% 21% 18% 14%
Motion 73% 27% 0% 0%
Sensor 35% 39% 17% 9%

We found that problem type alone was not enough to accurately predict the correct

transform space, so created a meta-classification problem over the 72 datasets to predict

best transform by embedding problem type into a set of other training features, such as

component classifier ranks, accuracies, and dataset characteristics. Unfortunately this

did not fair much better than using training cross-validation accuracies alone; the meta-

classification approach lead to predicting the best transform correctly only 60% of the

time. This again lead to a classifier that was significantly less accurate than flat-COTE.

It appears as if there is simply too much noise in the training accuracies to accurately

estimate the best transform.

7.6.2 Weighted Internal Ensembles

The results of the theoretical oracle-COTE against the flat-COTE provided an interest-

ing finding; though not significant, over the 72 datasets, using an optimistically-biased

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 130

classifier that always selected the best transform space did not improve upon the rank

of simply using the flat-COTE. This suggests that the enhanced classification perfor-

mance of the flat-COTE over the EE that was demonstrated in Section 7.3 is not though

only finding similarity in a more appropriate data space, but it is actually achieved by

finding similarity in multiple domains simultaneously. Clearly the approach of selecting

the single-best transform ensemble did not improve the flat-COTE, so the next logical

step is to include all ensembles, but employ a hierarchical approach to weight the votes

of the ensembles to favour those that indicate they will perform well from the training

cross-validation accuracies.

However, a significant drawback of this approach is that it requires a further level

of cross validation. For the shapelet transform and EE in particular, this introduces

a potentially unacceptable time overhead. For the shapelet transform, we would have

to perform shapelet discovery independently on each fold. For the EE, we would have

to estimate the parameters for each distance measure independently on each fold. This

approach is not a practical solution, so we could alternatively weight according to various

summary statistics of the constituent classifiers within each ensemble. We investigated

weighting according to mean, median, and mean weighted by variance, but all attempts at

hierarchical weighting resulted in a COTE classifier that was significantly worse than the

flat-COTE over the 72 problems. This is summarised in the critical difference diagram

in Figure 7.7.

CD

4 3 2 1

1.2986
Flat

2.2014
Mean

3.1319
Median

3.3681
MeanVar

Figure 7.7: Flat-COTE against alternative hierarchical weighted collectives. The flat
scheme is significantly more accurate than weighting the ensemble according to any of
the simple summary statistics that were tried.

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 131

7.6.3 Subset of Internal Ensembles

In pursuit of a more informative configuration for the COTE than the flat structure,

thus far we have found that selecting a single transform discards useful information,

while weighting is difficult due to the nature of finding unbiased estimate of transform

accuracy for the EE and shapelet transform. Regardless, there are clearly classification

problems that certain transforms will be inappropriate for, likely reducing classification

accuracy by injecting noise into the overall decision process. For example, the case study

in Section 7.4 demonstrated that the change transform was the best ensemble for the

Caenorhabditis elegans problems, while the EE and shapelet ensemble were relatively

poor on this problem. In this example, the change ensemble outperformed flat-COTE,

so it would be desirable to omit the EE and shapelet ensembles in this case as it would

likely lead to improved test accuracy. Therefore, it is desirable to develop a configuration

of the COTE that includes a mechanism for selecting a subset of transforms to use

for a dataset based on within-transform classifier variation, with the aim to avoid any

disruption caused by the presence of unsuitable classifiers.

We attempt to implement this approach for the COTE by posing the question of

whether or not to include a transform as a hypothesis test (in a similar vein to the Sig-

nificant weighting scheme for the EE that we explored in Section 5.5.2). We initially

identify the best transform on the training data, and then evaluate the remaining con-

stituent ensembles to estimate their accuracy on a given dataset. If there is compelling

evidence that a constituent will perform significantly worse than the best ensemble, it

is pruned from the collective. We implement this scheme by using a two sample Mann-

Whitney rank sum test (at the 1% level), where the samples consist of the training

accuracies of the constituent classifiers for each ensemble. As a consequence, the re-

sulting ensemble (which we call Mann-COTE) can possibly include either 1, 2, 3, or

4 transforms in the final classifier. Over the 72 datasets, there is no significant differ-

ence between Mann-COTE and flat-COTE, with Mann-COTE winning on 25 datasets,

flat-COTE best on 23, and they tie on 24 (in half of these cases, the tie is due to no

ensemble being pruned from Mann-COTE). To further scrutinise the procedure of the

Mann-COTE, Table 7.5 lists these results, cross-referenced by the number of transforms

selected by Mann-COTE. The results demonstrates that there is no apparent bias in the

number of transforms selected by Mann-COTE, though most often two transforms are

selected from the set of four. The results of the Mann-COTE provide an alternative

configuration using the collective that retains the accuracy of flat-COTE, while adding

greater exploratory power to the results and adds the mechanism for removing unsuitable

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 132

data representations. While the latter does not significantly improve the COTE at this

stage, we would expect it to be very useful for further work by allowing additional con-

stituent classifiers to be added (or perhaps even further transformation-based ensembles)

without fear of overwhelming the decision process.

Table 7.5: Frequency of test set wins for Mann-COTE vs. flat-COTE, according to the
number of transforms selected for a given dataset by Mann-COTE.

Flat Wins Tie Mann Wins Total

One transform 9 3 7 19
Two transforms 12 4 13 29

Three transforms 2 5 5 12
Four transforms 0 12 0 12

Total 23 24 25 72

7.7 Conclusion

In this chapter, we have proposed an ensemble scheme for TSC that is based on con-

structing classifiers with different data representations, and have shown that this ap-

proach is significantly better than all competing algorithms that we have found. The

standard baseline algorithms used in TSC research are 1-NN with Euclidean distance

and/or Dynamic Time Warping, and we have conclusively shown that COTE signifi-

cantly outperforms both. We believe that these results represent a new state-of-the-art

that new TSC algorithms should be compared against in terms of accuracy, though ac-

knowledge that accuracy is not the only criteria for assessing a classification algorithm.

All implementations of the COTE, including flat-COTE, involve many time consuming

transformations and cross-validation experiments for parameter setting. However, we

also note that the flat-COTE and Mann-COTE are by no means the final evolution of

research into forming collectives of transformation-based ensembles. Initially, we could

improve the approach through investigating the following:

1. Alternative transforms could be assimilated into the collective if they are found to

add diversity. This includes those based on, but not limited to, frequency counts,

interval statistics, and complexity measures.

2. We could improve the existing transforms. For example, fields such as speech pro-

cessing typically use a spectral window rather than transforming whole series. This

CHAPTER 7. COLLECTIVE OF TRANSFORMATION-BASED ENSEMBLES 133

could be investigated to offer the possibility of detecting localised discriminatory

frequency features for problems with very long series.

3. Our choice of classifiers in the heterogeneous ensemble is fairly arbitrary; only the

EE has had a specific emphasis placed on the constituent classifiers. The inclusion

of more complex classifiers, the exclusion of weaker classifiers, and the setting of

parameters through cross-validation for the heterogeneous ensemble would likely

significantly improve the COTE further.

Chapter 8

Conclusions and Future Work

The work in this thesis initially investigated the current benchmark approaches in the

field of time series classification (TSC). Using the insight gained from this investigation,

a number of novel algorithms were proposed to contribute to the TSC literature, cul-

minating in the proposal of a final classifier that we believe is the first to outperform

Dynamic Time Warping on the widely-used UCR time series repository datasets [65].

The aim of this research was to answer the question outlined in Chapter 1: with no

prior specialised knowledge about a time series classification task, what is the best way to

approach the problem? The majority of research into TSC has considered similarity be-

tween series in the time domain, typically coupling elastic distance measures with nearest

neighbour (NN) classifiers [58, 79, 8]. However, no such approach has been demonstrated

to significantly outperform a 1-NN classifiers with Dynamic Time Warping with a warp-

ing window set through cross-validation (DTWCV). This has lead to DTWCV being

considered the benchmark for TSC that new algorithms are judged against, with many

reiterating that DTWCV with a 1-NN classifier is difficult to beat [9, 21, 47, 34].

Our thesis, built upon the foundations of the work in [3], is that the best way to ap-

proach a TSC problem with no prior specialised knowledge is to first transform data into

alternative representations where discriminatory features may be more easily detected,

and then use these representations to train classification models in multiple domains.

We consider the time, frequency, change, and shapelet domains. We believe that the

best procedure for building classifiers in these domains is to create an ensemble clas-

sifier with each representation, and use these ensembles as constituents in collective of

transformation-based ensembles.

134

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 135

8.1 Discussion of Contributions

For classification in the time domain, we proposed a new ensemble classifier: the elas-

tic ensemble (EE). In Chapter 5, we evaluated the common belief that DTWCV is the

benchmark in TSC, empirically demonstrating that it is not outperformed by standard

classification approaches such as random forest and support vector machines, nor by

recently-proposed elastic similarity measures when coupled with 1-NN classifiers. How-

ever, while there was no significant difference between the results of the elastic measures,

we detected that there was a significant difference in the decisions that they produced.

Using this information, we created the EE by combining alternative elastic measures with

1-NN classifiers and tested various weighting schemes, where a proportional weighting

scheme produced the most promising results. We then demonstrated that the EE is, to

the best of our knowledge, the first time domain classifier to significantly outperform

DTWCV over the UCR datasets.

For classification in the shapelet domain, we introduced a novel transformation

method using time series shapelets. The original research with shapelets demonstrated

good potential with intuitive results, but the implementation limited shapelets to a

decision tree approach. We described an algorithm to separate shapelet discovery from

the classification algorithm, subsequently introducing the shapelet transform. Firstly, we

demonstrated that transforming TSC problems with the shapelet transform and training

a decision tree classifier did not produce significantly different results to using the orig-

inal shapelet tree approach. Secondly, we showed that using shapelet-transformed data

with more complex, non-tree-based classifiers lead to significantly better test accuracy

than using the shapelet tree. Thirdly, through the use of a case study we demonstrated

that the shapelet transform retains the desirable property of intuitive results provided by

the original tree-based implementation. Finally, after comparing the shapelet transform

to two updated versions of the shapelet tree on an extended set of problems, we demon-

strated that training classifiers with shapelet-transformed data still provided significantly

better test classification, and provided competitive performance when compared to the

EE.

Our final contribution is to use these two lines of study to form a final classifier,

COTE: the collective of transformation-based ensembles. COTE is formed by building

ensemble classifiers in the four domains that we have considered. In the time domain,

we use the EE. In the shapelet domain, we transform data using the shapelet transform

and use the resulting data to train a heterogeneous ensemble formed of standard classi-

fication approaches. In the change and frequency domains, we use autocorrelation and

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 136

spectral transforms respectively to transform data, and also build heterogeneous ensem-

bles in each domain. Using the insight gained when developing the EE, we implement the

COTE initially using a flat structure and a proportional weighting scheme. The results

achieved from the flat-COTE are very promising; not only does the flat-COTE signifi-

cantly outperform DTWCV on the UCR data, but it also significantly outperforms the

EE too. This result provides strong evidence to support our thesis; by forming the EE

in the time domain we were able to significantly outperform the benchmark of DTWCV,

and by extending this approach to transform data into alternative representations where

discriminatory features may be more easily detected before then building COTE, we

were able to significantly improve upon the EE further. Finally, to provide more intu-

itive results with COTE, we proposed a version of the collective that judges inclusion of

constituents on tests of significance. We demonstrated that this version, Mann-COTE,

did not provide significantly different results to flat-COTE, while offering more insight

into the construction of the classifier.

In conclusion, through extensive experimentation and introduction of new algorithms

in the TSC literature, we have produced strong evidence to support our original thesis.

Through transforming TSC into alternative domains and building a collective of ensemble

classifiers, we have proposed a classifier that is significantly more accurate than any other

TSC algorithm that we can find in the literature.

8.2 Future Work and Extensions

The COTE classifier provided very positive test classification results. However, we be-

lieve that this performance can be increased further still. One of the key design principles

that we have built into COTE is the transparency of the approach. For the four domains

that we build classifiers on, each transformation-based ensemble is a modular component

where we have ensured that data transformations remain separate from classification

models, and all ensembling schemes are transparent. Though COTE is an effective TSC

algorithm, these design decisions mean that it is also an easily-extendible framework.

For example, due to the modular nature of the transformation-based ensembles within

COTE, it is simple to include additional ensembles built in other domains. Also, clas-

sifiers within the constituent ensembles can easily be added, exchanged, or removed.

Therefore, if we find evidence that a classification algorithm could improve the collec-

tive, we can potentially assimilate any TSC algorithm into COTE. This could be both

at the ensemble level, or as a constituent classifier within an ensemble. In this regard,

the potential options for extending COTE are virtually limitless.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 137

In terms of the COTE algorithm that we have proposed in this work however, there

are at least two key areas where further research could improve the classifier: time com-

plexity and classifier optimisation. Throughout our work, we have maintained that the

best way to evaluate new TSC algorithms is by comparing test accuracy to other ap-

proaches. We stand by this statement, but acknowledge accuracy is not the only criteria

we could use to assess a new classifier. The runtime of an algorithm may be critical under

certain conditions, such as if real-time decisions are required. When proposing COTE,

we have not made a significant effort to ensure that the implementation is optimally

efficient. For example, in the time domain, we could explore using lower-dimensionality

representations of raw data for the EE to observe whether we can achieve the same

level of accuracy with less processing. In the shapelet domain, we could investigate an

early abandon with quality measure calculations, and research techniques for reducing

the number of shapelets that we use for transforming data. For example, if we clustered

very similar shapelets together and only retained the best of the matched shapelets, trans-

formed data would have a lower dimensionality without losing discriminatory power. In

the change domain, we could investigate whether it is necessary to use ACF, PACF and

AR terms, or if using a single autocorrelation-based approach would be sufficient. This

would potentially reduce transformed data by up to 66% if we only used one of the three

approaches.

A final area where we could focus further research effort is the heterogeneous ensemble

that we use in the shapelet, change, and spectral domains. We created the ensemble with

a number of leading classification approaches to ensure that it contained strong, diverse

constituents. However, the selection process was not as refined as when proposing the

elastic ensemble. Therefore we could extend the heterogeneous ensemble to add further

algorithms, or investigate whether all constituents contribute to the ensemble and remove

any classifiers that potentially have a detrimental effect on performance or runtime. This

would not be a simple investigation however, as the heterogeneous ensemble is used in

three domains and constituent classifiers may be effective in a subset of the domains.

Therefore it may be beneficial to define a separate heterogeneous ensemble for each

domain. Additionally, in the EE, we perform cross-validation on the training data to

parameterise the elastic distance measures. In the heterogeneous ensemble, we currently

use the default Weka [48] parameters when building the classifiers. It is possible that

setting parameters such as the number of trees in a random forest, or number of iterations

in the rotation forest,could lead to significantly better performance in the heterogeneous

ensemble, and COTE as a whole.

Bibliography

[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence

databases. Lecture Notes in Computer Science, 730:69–84, 1993.

[2] J. Aßfalg, H.P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz. Simi-

larity search on time series based on threshold queries. In Advances in Database

Technology-EDBT 2006, pages 276–294. Springer, 2006.

[3] A. Bagnall, L. M. Davis, J. Hills, and J. Lines. Transformation based ensembles for

time series classification. In Proceedings of the 12th SIAM International Conference

on Data Mining (SDM), pages 307–318. SIAM, 2012.

[4] A. Bagnall and G. Janacek. Clustering time series from arma models with clipped

data. In Proceedings of the 10th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 49–58. ACM, 2004.

[5] A. Bagnall and G. Janacek. A run length transformation for discriminating between

auto regressive time series. Journal of Classification, 31(2):154–178, 2014.

[6] A. Bagnall and J. Lines. An experimental evaluation of nearest neighbour time

series classification. arXiv preprint arXiv:1406.4757, 2014.

[7] A. Bagnall, I. Whittley, G. Janacek, K. Kemsley, M. Studley, and L. Bull. A

comparison of DWT/PAA and DFT for time series classification. In Proceedings of

the 2006 International Conference on Data Mining (DMIN), pages 403–409, 2006.

[8] G. Batista, E. Keogh, O. Tataw, and V. de Souza. CID: an efficient complexity-

invariant distance for time series. Data Mining and Knowledge Discovery,

28(3):634–669, 2014.

[9] G. Batista, X. Wang, and E. Keogh. A complexity-invariant distance measure for

time series. In Proceedings of the 11th SIAM International Conference on Data

Mining (SDM), pages 699–710. SIAM, 2011.

138

BIBLIOGRAPHY 139

[10] G. Batista, X. Wang, and E. Keogh. A complexity-invariant distance measure for

time series. In Proceedings of the 11th SIAM International Conference on Data

Mining (SDM), pages 699–710. SIAM, 2011.

[11] M. Baydogan, G. Runger, and E. Tuv. A bag-of-features framework to classify

time series. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

35(11):2796–2802, 2013.

[12] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time

series. In KDD-94: AAAI Workshop on Knowledge Discovery in Databases, pages

359–370, 1994.

[13] M. Bober. Mpeg-7 visual shape descriptors. Circuits and Systems for Video Tech-

nology, IEEE Transactions on, 11(6):716–719, 2001.

[14] G. Box, G. Jenkins, and G. Reinsel. Time series analysis: forecasting and control.

John Wiley & Sons, 2013.

[15] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[16] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[17] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Re-

gression Trees. CRC press, 1984.

[18] A. Brown, E. Yemini, L. Grundy, T. Jucikas, and W. Schafer. A dictionary of

behavioral motifs reveals clusters of genes affecting caenorhabditis elegans loco-

motion. Proceedings of the National Academy of Sciences of the United States of

America (PNAS), 10(2):791–796, 2013.

[19] G. Brown and A. Mood. On median tests for linear hypotheses. In Proceedings of

the Second Berkeley Symposium on Mathematical Statistics and Probability. The

Regents of the University of California, 1951.

[20] K. Buza. Fusion Methods for Time-Series Classification. PhD thesis, University

of Hildesheim, Germany, 2011.

[21] K. Buza, A. Nanopoulos, and L. Schmidt-Thieme. Fusion of similarity measures for

time series classification. In Hybrid Artificial Intelligent Systems, pages 253–261.

Springer, 2011.

BIBLIOGRAPHY 140

[22] J Caiado, N. Crato, and D. Peña. A periodogram-based metric for time series

classification. Computational Statistics & Data Analysis, 50(10):2668–2684, 2006.

[23] K.P. Chan and A.W.C Fu. Efficient time series matching by wavelets. In Proceed-

ings of the 15th International Conference on Data Engineering, pages 126–133.

IEEE, 1999.

[24] N. Chawla. C4.5 and imbalanced data sets: investigating the effect of sampling

method, probabilistic estimate, and decision tree structure. In Proceedings of the

ICML 03 Workshop on Class Imbalances, volume 3, 2003.

[25] L. Chen and R. Ng. On the marriage of Lp-norms and edit distance. In Proceedings

of the 30th International Conference on Very Large Databases, pages 792–803.

VLDB, 2004.

[26] L. Chen, M. Özsu, and V. Oria. Robust and fast similarity search for moving object

trajectories. In Proceedings of the 2005 ACM SIGMOD International Conference

on Management of Data, pages 491–502. ACM, 2005.

[27] M. Corduas and D. Piccolo. Time series clustering and classification by the au-

toregressive metric. Computational Statistics & Data Analysis, 52(4):1860–1872,

2008.

[28] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–

297, 1995.

[29] G. Das, D. Gunopulos, and H. Mannila. Finding similar time series. In Principles

of Data Mining and Knowledge Discovery, pages 88–100. Springer, 1997.

[30] L. M. Davis. Predictive Modelling of Bone Ageing. PhD thesis, University of East

Anglia, United Kingdom, 2013.

[31] L. M. Davis, B.J. Theobald, J. Lines, A. Toms, and A. Bagnall. On the seg-

mentation and classification of hand radiographs. International Journal of Neural

Systems, 22(05), 2012.

[32] L. M. Davis, B.J. Theobald, A. Toms, and A. Bagnall. On the extraction and

classification of hand outlines. In Intelligent Data Engineering and Automated

Learning-IDEAL 2011, pages 92–99. Springer, 2011.

[33] J Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal

of Machine Learning Research, 7:1–30, 2006.

BIBLIOGRAPHY 141

[34] H. Deng, G. Runger, E. Tuv, and M. Vladimir. A time series forest for classification

and feature extraction. Information Sciences, 239, 2013.

[35] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying

and mining of time series data: Experimental comparison of representations and

distance measures. In Proceedings of the 34th International Conference on Very

Large Databases. VLDB, 2008.

[36] J. Durbin. The fitting of time-series models. Revue de l’Institut International de

Statistique, pages 233–244, 1960.

[37] B. Efron and R. J. Tibshirani. An introduction to the bootstrap, volume 57. CRC

press, 1994.

[38] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching

in time-series databases, volume 23. ACM, 1994.

[39] E. Fix and J. L. Hodges Jr. Discriminatory analysis-nonparametric discrimination:

small sample performance. Technical report, DTIC Document, 1952.

[40] Y. Freund. Boosting a weak learning algorithm by majority. Information and

Computation, 121(2):256–285, 1995.

[41] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-

ing and an application to boosting. In Computational learning theory, pages 23–37.

Springer, 1995.

[42] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In

Proceedings of the 13th Internaltional Conference on Machine Learning (ICML),

volume 96, pages 148–156, 1996.

[43] B. Fulcher and N. Jones. Highly comparative feature-based time-series classifica-

tion. arXiv preprint arXiv:1401.3531, 2014.

[44] E. Gabrilovich and S. Markovitch. Text categorization with many redundant fea-

tures: Using aggressive feature selection to make SVMs competitive with C4.5. In

Proceedings of the 21st Internaltional Conference on Machine Learning (ICML).

[45] P. Geurts. Pattern extraction for time series classification. In Principles of Data

Mining and Knowledge Discovery, pages 115–127. Springer, 2001.

BIBLIOGRAPHY 142

[46] T. Górecki and M. Luczak. Using derivatives in time series classification. Data

Mining and Knowledge Discovery, 26(2):310–331, 2013.

[47] J. Grabocka, A. Nanopoulos, and L. Schmidt-Thieme. Invariant time-series clas-

sification. In Machine Learning and Knowledge Discovery in Databases, pages

725–740. Springer, 2012.

[48] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The

WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter,

11(1):10–18, 2009.

[49] B. Hartmann and N. Link. Gesture recognition with inertial sensors and opti-

mized DTW prototypes. In Systems Man and Cybernetics (SMC), 2010 IEEE

International Conference on, pages 2102–2109. IEEE, 2010.

[50] Q. He, Z. Dong, F. Zhuang, T. Shang, and Z. Shi. Fast time series classification

based on infrequent shapelets. In Machine Learning and Applications (ICMLA),

2012 11th International Conference on, volume 1, pages 215–219. IEEE, 2012.

[51] J. Hills. Mining Time-series Data using Discriminative Subsequences. PhD thesis,

University of East Anglia, Norwich, 2015.

[52] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classification of

time series by shapelet transformation. Data Mining and Knowledge Discovery,

28(4):851–881, 2014.

[53] D. Hirschberg. Algorithms for the longest common subsequence problem. Journal

of the ACM (JACM), 24(4):664–675, 1977.

[54] C. A. R. Hoare. Algorithm 65: find. Communications of the ACM, 4(7):321–322,

1961.

[55] B. Hu, Y. Chen, and E. Keogh. Time series classification under more realistic

assumptions. Proceedings of the 13th SIAM International Conference on Data

Mining (SDM), pages 578–586, 2013.

[56] F. Itakura. Minimum prediction residual principle applied to speech recognition.

Acoustics, Speech and Signal Processing, IEEE Transactions on, 23(1):67–72, 1975.

[57] G. Janacek, A. Bagnall, and M. Powell. A likelihood ratio distance measure for the

similarity between the Fourier transform of time series. In Advances in Knowledge

Discovery and Data Mining, pages 737–743. Springer, 2005.

BIBLIOGRAPHY 143

[58] Y. Jeong, M. Jeong, and O. Omitaomu. Weighted dynamic time warping for time

series classification. Pattern Recognition, 44:2231–2240, 2011.

[59] T. Kahveci and A. Singh. Variable length queries for time series data. In Data

Engineering, 2001. Proceedings. 17th International Conference on, pages 273–282.

IEEE, 2001.

[60] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction

for fast similarity search in large time series databases. Knowledge and Information

Systems, 3(3):263–286, 2001.

[61] E. Keogh and S. Kasetty. On the need for time series data mining benchmarks:

a survey and empirical demonstration. Data Mining and Knowledge Discovery,

7(4):349–371, 2003.

[62] E. Keogh and M. Pazzani. Scaling up dynamic time warping for datamining ap-

plications. In Proceedings of the 6th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 285–289. ACM, 2000.

[63] E. Keogh and M. Pazzani. Derivative dynamic time warping. In Proceedings of

the 1st SIAM International Conference on Data Mining (SDM), pages 5–7. SIAM,

2001.

[64] E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping.

Knowledge and Information Systems, 7(3):358–386, 2005.

[65] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, and C. Ratanama-

hatana. The UCR time series classification/clustering homepage.

http://www.cs.ucr.edu/ eamonn/time series data/, 2011.

[66] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and

model selection. In IJCAI, volume 14, pages 1137–1145, 1995.

[67] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries

in large datasets of time sequences. ACM SIGMOD Record, 26(2):289–300, 1997.

[68] W. Kruskal and W. Wallis. Use of ranks in one-criterion variance analysis. Journal

of the American Statistical Association, 47(260):583–621, 1952.

[69] L.J. Latecki, R. Lakamper, and T. Eckhardt. Shape descriptors for non-rigid shapes

with a single closed contour. In Computer Vision and Pattern Recognition, 2000.

Proceedings. IEEE Conference on, volume 1, pages 424–429. IEEE, 2000.

BIBLIOGRAPHY 144

[70] N. Levinson. The wiener RMS error criterion in filter design and prediction, ap-

pendix b of wiener, n.(1949). Extrapolation, Interpolation, and Smoothing of Sta-

tionary Time Series, 1949.

[71] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time

series, with implications for streaming algorithms. In Proceedings of the 8th ACM

SIGMOD workshop on Research Ossues in Data Mining and Knowledge Discovery,

pages 2–11. ACM, 2003.

[72] J. Lin, R. Khade, and Y. Li. Rotation-invariant similarity in time series using bag-

of-patterns representation. Journal of Intelligent Information Systems, 39(2):287–

315, 2012.

[73] J. Lines. Supporting resources and results for this thesis.

https://sites.google.com/site/jasonlinesphdthesis/, 2014.

[74] J. Lines and A. Bagnall. Alternative quality measures for time series shapelets.

In Intelligent Data Engineering and Automated Learning-IDEAL 2012, pages 475–

483. Springer Berlin Heidelberg, 2012.

[75] J. Lines and A. Bagnall. Ensembles of elastic distance measures for time series

classification. In Proceedings of the 14th SIAM International Conference on Data

Mining (SDM), pages 524–532. SIAM, 2014.

[76] J. Lines and A. Bagnall. Time series classification with ensembles of elastic distance

measures. Data Mining and Knowledge Discovery, pages 1–28, 2014.

[77] J. Lines, A. Bagnall, P. Caiger-Smith, and S. Anderson. Classification of household

devices by electricity usage profiles. In Intelligent Data Engineering and Automated

Learning-IDEAL 2011, pages 403–412. Springer Berlin Heidelberg, 2011.

[78] J. Lines, L. M. Davis, J. Hills, and A. Bagnall. A shapelet transform for time series

classification. In Proceedings of the 18th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 289–297. ACM, 2012.

[79] P.F. Marteau. Time warp edit distance with stiffness adjustment for time se-

ries matching. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

31(2):306–318, 2009.

[80] A. Mueen, E. Keogh, and N. Young. Logical-shapelets: an expressive primitive for

time series classification. In Proceedings of the 17th ACM SIGKDD International

BIBLIOGRAPHY 145

Conference on Knowledge Discovery and Data Mining, pages 1154–1162. ACM,

2011.

[81] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and M. B. Westover. Exact discovery of

time series motifs. In Proceedings of the 9th SIAM International Conference on

Data Mining (SDM), pages 473–484. SIAM, 2009.

[82] S. Mukherjee, E. Osuna, and F. Girosi. Nonlinear prediction of chaotic time series

using support vector machines. In Neural Networks for Signal Processing [1997]

VII. Proceedings of the 1997 IEEE Workshop, pages 511–520. IEEE, 1997.

[83] K.R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vap-

nik. Predicting time series with support vector machines. In Artificial Neural

NetworksICANN’97, pages 999–1004. Springer, 1997.

[84] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support

vector machines. In Neural Networks for Signal Processing [1997] VII. Proceedings

of the 1997 IEEE Workshop, pages 276–285. IEEE, 1997.

[85] Image Processing and University of Southern California Informatics Lab. The

digital hand atlas database system. http://www.ipilab.org/BAAweb//, 2007.

[86] J. R. Quinlan. C4.5: programs for machine learning, volume 1. Morgan kaufmann,

1993.

[87] J. R. Quinlan. Improved use of continuous attributes in C4.5. arXiv preprint

cs/9603103, 1996.

[88] T. R. and E. Keogh. Fast-shapelets: A fast algorithm for discovering robust time

series shapelets. In Proceedings of the 13th SIAM International Conference on

Data Mining (SDM). SIAM, 2013.

[89] T. Rakthanmanon and E. Keogh. Fast shapelets: A scalable algorithm for discover-

ing time series shapelets. In Proceedings of the 13th SIAM International Conference

on Data Mining (SDM). SIAM, 2013.

[90] C. Ratanamahatana and E. Keogh. Three myths about dynamic time warping

data mining. In Proceedings of the 5th SIAM International Conference on Data

Mining (SDM), pages 506–510. SIAM, 2005.

BIBLIOGRAPHY 146

[91] C. A. Ratanamahatana and E. Keogh. Everything you know about dynamic time

warping is wrong. In Third Workshop on Mining Temporal and Sequential Data,

pages 22–25, 2004.

[92] C. A. Ratanamahatana and E. Keogh. Making time-series classification more ac-

curate using learned constraints. In Proceedings of the 4th SIAM International

Conference on Data Mining (SDM), pages 11–22. SIAM, 2004.

[93] J. Rodriguez and C. Alonso. Support vector machines of interval-based features

for time series classification. Knowledge-Based Systems, 18:171–178, 2005.

[94] J.J. Rodriguez, L.I. Kuncheva, and C.J. Alonso. Rotation forest: A new classifier

ensemble method. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 28(10):1619–1630, 2006.

[95] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken

word recognition. Acoustics, Speech and Signal Processing, IEEE Transactions on,

26(1):43–49, 1978.

[96] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227,

1990.

[97] K.M. Schneider. A comparison of event models for Naive Bayes anti-spam e-

mail filtering. In Proceedings of the tenth conference on European chapter of the

Association for Computational Linguistics-Volume 1, pages 307–314. Association

for Computational Linguistics, 2003.

[98] C. E. Shannon. A mathematical theory of communication. The Bell System Tech-

nichal Journal, 27:379–423, 623–656, 1948.

[99] D. Silva, V. de Souza, and G. Batista. Time series classification using compres-

sion distance of recurrence plots. In Proceedings of the 13th IEEE International

Conference on Data Mining (ICDM), pages 687–696. IEEE, 2013.

[100] J. Slapin and S.O. Proksch. A scaling model for estimating time-series party posi-

tions from texts. American Journal of Political Science, 52(3):705–722, 2008.

[101] A. Stefan, V. Athitsos, and G. Das. The move-split-merge metric for time series.

25(6):1425–1438, 2012.

BIBLIOGRAPHY 147

[102] J. Tanner, R. Whitehouse, M. Healy, H. Goldstein, and N. Cameron. Assessment

of skeletal maturity and prediction of adult height (TW3) method. In Academic

Press, 2001.

[103] F. Tay and L. Cao. Application of support vector machines in financial time series

forecasting. Omega, 29(4):309–317, 2001.

[104] Energy Saving Trust. Powering the Nation. Department for Environment, Food

and Rural Affairs (DEFRA), 2012.

[105] D. Wolpert and W. Macready. No free lunch theorems for optimization. Evolu-

tionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[106] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana. Fast time series

classification using numerosity reduction. In Proceedings of the 23rd International

Conference on Machine Learning (ICML), pages 1033–1040. ACM, 2006.

[107] L. Ye and E. Keogh. Time series shapelets: A new primitive for data mining.

In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 947–956, 2009.

[108] L. Ye and E. Keogh. Time series shapelets: a novel technique that allows accurate,

interpretable and fast classification. Data Mining and Knowledge Discovery, 22(1-

2):149–182, 2011.

[109] E. Yemini, T. Jucikas, L. Grundy, A. Brown, and W. Schafer. A database of

caenorhabditis elegans behavioral phenotypes. Nature Methods, 10:877–879, 2013.

[110] B.K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary Lp norms. In

Proceedings of the 26th International Conference on Very Large Databases. VLDB,

2000.

	Acknowledgements
	List of Publications
	Introduction
	Motivation
	Contributions
	Thesis Organisation

	Technical Background and Related Work
	Time Series Classification
	Comparing Classifiers
	Nearest Neighbour Classification in the Time Domain
	k-Nearest Neighbour (k-NN) Classifiers
	Euclidean Distance
	Dynamic Time Warping
	Derivative Dynamic Time Warping
	Weighted Dynamic Time Warping
	Longest Common Subsequence Distance
	Edit Distance with Real Penalty
	Time-Warp Edit Distance
	Move-Split-Merge

	Standard Classification Algorithms
	Naïve Bayes
	C4.5 Decision Tree
	Support Vector Machine
	Random Forest
	Rotation Forest

	Ensemble Classifiers
	Bagging
	Boosting
	Other Ensembles in the TSC Literature
	A Simple Heterogeneous Ensemble
	Heterogeneous Ensembles in the Time Domain

	Time Series Transformations
	Summary Statistics and Feature Extraction
	Compression/Approximation-based Transforms
	Transformation into Alternative Data Spaces

	Data
	UCR Time Series Data Repository
	Electricity Consumption Problems
	Visual Energy Trail (VET) Data
	Household Energy Study (HES) Data

	Hand Outline Datasets
	Data Preparation

	MPEG-7 Problems
	Caenorhabditis elegans

	Time Series Similarity with Alternative Representations
	Global Similarity in Shape: Power Spectrum
	Motivational Example: Electrical Devices

	Local Similarity in Shape: Shapelets
	Shapelet Extraction
	Assessing Shapelet Candidates
	Shapelet Similarity
	Shapelet Quality Measures
	Example: MPEG7 Data

	Similarity in Change: Autocorrelation Transform

	Time Domain Classification: Current Benchmarks and a New State-of-the-art
	Datasets
	Nearest Neighbour Classification: Hard to beat, or a misconception?
	Experimental Procedure
	Results

	Configuring Distance Measures with Nearest Neighbour Classifiers
	Setting the Number of Neighbours
	Parameterising Distance Measures
	Concluding Remarks

	Comparison of Elastic Distance Measures
	Elastic Measure Experimental Design
	Classification Results
	A Priori Detection of the Best Measure
	Timing Comparison

	Combining Elastic Measures: The Elastic Ensemble
	Measure Divergence
	Ensemble Design
	Elastic Ensemble Results
	Elastic Ensemble vs. Other Approaches

	Conclusions

	Shapelet Domain Classification: The Shapelet Transform
	Introduction
	Datasets
	The Shapelet Transform
	Extracting the k Best Shapelets
	Data Transformation
	Setting k in the Shapelet Transform
	Setting Shapelet Length Parameters

	Alternative Shapelet Quality Measures
	Experimental Design
	Results
	Embedded Shapelets vs. Transformed Shapelets
	Using F-stat with the Shapelet Transform
	Alternative Classifiers with Shapelet-transformed Data
	Shapelet Selection
	Exploratory Data Analysis
	Comparison to Alternative Approaches

	Conclusions

	The Collective of Transformation-based Ensembles
	Datasets
	Transformation-based Ensembles
	Heterogeneous Ensemble
	Time Domain Classification with the Elastic Ensemble

	Results Using a Single Ensemble: Flat-COTE
	Case Study: Classifying Caenorhabditis elegans
	Comparison to Other Approaches
	Alternative Ensemble Designs
	Best Internal Ensemble
	Weighted Internal Ensembles
	Subset of Internal Ensembles

	Conclusion

	Conclusions and Future Work
	Discussion of Contributions
	Future Work and Extensions

	Bibliography

