Time Series Classification through
Transformation and Ensembles

Jason Andrew Lines

A Thesis Submitted for the
Degree of Doctor of Philosophy

IFFER™

University of East Anglia
School of Computing Sciences

February 2015

(©This copy of the thesis has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with the author and that use of any
information derived there from must be in accordance with current UK Copyright Law.
In addition, any quotation or extract must include full attribution.



Abstract

The problem of time series classification (TSC), where we consider any real-valued or-
dered data a time series, offers a specific challenge. Unlike traditional classification
problems, the ordering of attributes is often crucial for identifying discriminatory fea-
tures between classes. TSC problems arise across a diverse range of domains, and this
variety has meant that no single approach outperforms all others.

The general consensus is that the benchmark for TSC is nearest neighbour (NN)
classifiers using Euclidean distance or Dynamic Time Warping (DTW). Though concep-
tually simple, many have reported that NN classifiers are very difficult to beat and new
work is often compared to NN classifiers. The majority of approaches have focused on
classification in the time domain, typically proposing alternative elastic similarity mea-
sures for NN classification. Other work has investigated more specialised approaches,
such as building support vector machines on variable intervals and creating tree-based
ensembles with summary measures.

We wish to answer a specific research question: given a new TSC problem without
any prior, specialised knowledge, what is the best way to approach the problem? Our
thesis is that the best methodology is to first transform data into alternative represen-
tations where discriminatory features are more easily detected, and then build ensemble
classifiers on each representation. In support of our thesis, we propose an elastic ensemble
classifier that we believe is the first ever to significantly outperform DTW on the widely-
used UCR datasets. Next, we propose the shapelet-transform, a new data transformation
that allows complex classifiers to be coupled with shapelets, which outperforms the orig-
inal algorithm and is competitive with DTW. Finally, we combine these two works with
with heterogeneous ensembles built on autocorrelation and spectral-transformed data to
propose a collective of transformation-based ensembles (COTE). The results of COTE
are, we believe, the best ever published on the UCR datasets.



Acknowledgements

First and foremost I would like to thank my supervisor, Dr. Anthony Bagnall, and my
family. Without Tony’s invaluable advice and guidance, and the continued support and
encouragement from my parents and close family, the work in this thesis would not have
been possible.

I would like to thank my examiners, Prof. Niall Adams and Dr. Beatriz de la Iglesia,
for their patience and insight while examining this thesis. I would also like to thank
Tony’s other PhD students during my study, Jon and Luke, and my second supervisor,
Dr. Richard Harvey. Additional thanks go to my peers at UEA, particularly those
who I shared a lab with for four years (and everyone in the graphics lab since I spent
as much time in there too!). I'd also like to thank all of the staff and students in the
School of Computing Sciences at UEA who have supported me throughout my studies.
Special mentions go to Felix and Dom for being a constant source of entertainment and
distraction, Ollie for providing the cake and enough surreal moments to last a lifetime,
Luke for his 80’s pop-rock outbursts, and everyone from CMP and ITCS that played
football on Thursdays.

Finally, I'd like to thank some important people outside of university. Thank you
to Shane Migliore and everyone at Apple for helping make Austin my home for four
months at the end of my PhD. As well as new friends, I'd like to thank those who have
always been there for me. In particular, thank you to Bedford, Beth, Danny, David,
Emma, Faires, James, Jim, and Sarah. Without you, I would have gone crazy a long
time ago. Also, thank you to Freddie and Ollie (my dogs) for not eating my thesis, and
a special thank you to my mother for painstakingly helping me with the final round of
proofreading!

In loving memory of Kenneth Thomas Deare.

i



Contents

Acknowledgements ii
List of Publications v
1 Introduction 1
1.1 Motivation . . . . . . . . e e 2
1.2 Contributions . . . . . . . . .. 3
1.3 Thesis Organisation . . . . . . .. .. ... 6

2 Technical Background and Related Work 7
2.1 Time Series Classification . . . . . . . . .. ... ... ... ... ..... 7
2.2 Comparing Classifiers . . . . . . . . . ..o 9
2.3 Nearest Neighbour Classification in the Time Domain . . . . ... .. .. 11
2.3.1 k-Nearest Neighbour (k-NN) Classifiers . . . . ... ... .. ... 12

2.3.2 Euclidean Distance . . . . . . .. .. ... .. L oo 12

2.3.3 Dynamic Time Warping . . . . . . . . . . .. .. .. ... ..... 13

2.3.4 Derivative Dynamic Time Warping . . . . . . . ... ... ... .. 16

2.3.5  Weighted Dynamic Time Warping . . ... ... ... ... .... 17

2.3.6 Longest Common Subsequence Distance . . . . . . ... ... ... 17

2.3.7 Edit Distance with Real Penalty . . . . .. ... ... ... .... 19

2.3.8 Time-Warp Edit Distance . . . . . . .. ... ... ... ... ... 20

2.3.9 Move-Split-Merge . . . . . . . ..o 20

2.4 Standard Classification Algorithms . . . . . . . .. ... ... ... .... 22
24.1 Nalve Bayes . . . . . . . . . .. 23

2.4.2 C4.5 Decision Tree . . . . . . .. .. o 23

2.4.3 Support Vector Machine . . . . . .. ... ... . 0oL 24

244 Random Forest . . . . . . ... ... ... Lo 25

2.4.5 Rotation Forest . . . . . . . . .. ... oo 26

2.5 Ensemble Classifiers . . . . . . . . . . . ... ... 26
2.5.1 Bagging . . . . . ... 27

252 Boosting. . . . .. .. 27

2.5.3 Other Ensembles in the TSC Literature . . . . .. ... ... ... 28

2.5.4 A Simple Heterogeneous Ensemble . . . . . . ... ... ... ... 28

iii



2.5.5 Heterogeneous Ensembles in the Time Domain . . . . ... .. ..
2.6 Time Series Transformations . . . . . . . . ... ... ... ... .....
2.6.1 Summary Statistics and Feature Extraction . . . . .. ... .. ..
2.6.2 Compression/Approximation-based Transforms . . . . . . ... ..
2.6.3 Transformation into Alternative Data Spaces . . . .. ... . ...

Data

3.1 UCR Time Series Data Repository . . . . .. ... ... .. ... ... ..

3.2 Electricity Consumption Problems . . . . . .. .. ... ... ... ....
3.2.1 Visual Energy Trail (VET) Data . . . .. ... ... ... .....
3.2.2 Household Energy Study (HES) Data . . .. ............

3.3 Hand Outline Datasets . . . . . . . . . .. .. ...
3.3.1 Data Preparation . . . . . ... ... o oo

3.4 MPEG-7 Problems . . . . . .. .. .. ...

3.5 Caenorhabditis elegans . . . . . . . . . ... oo

Time Series Similarity with Alternative Representations

4.1 Global Similarity in Shape: Power Spectrum . . . .. .. ... ... ...
4.1.1 Motivational Example: Electrical Devices . . . .. ... ... ...

4.2 Local Similarity in Shape: Shapelets . . . . .. ... ... ... ......
4.2.1 Shapelet Extraction . . . .. .. .. ... .. 000,
4.2.2  Assessing Shapelet Candidates . . . . . ... ... ... ... ...
4.2.3 Shapelet Similarity . . . . .. ... o o
4.2.4 Shapelet Quality Measures . . . . . .. ... ... ... ......
4.2.5 Example: MPEG7 Data . . . . .. ... ... .. ... .......

4.3 Similarity in Change: Autocorrelation Transform . . . . . ... ... ...

Time Domain Classification: Current Benchmarks and a New State-
of-the-art
5.1 Datasets . . . . . ...
5.2 Nearest Neighbour Classification: Hard to beat, or a misconception? . . .
5.2.1 Experimental Procedure . . . . . . . .. ... ... L.
5.2.2 Results . . . . . .
5.3 Configuring Distance Measures with Nearest Neighbour Classifiers
5.3.1 Setting the Number of Neighbours . . . . . . ... ... ... ...
5.3.2 Parameterising Distance Measures . . . . . ... ... ... ....
5.3.3 Concluding Remarks . . . . ... ... ... ... .. ........
5.4 Comparison of Elastic Distance Measures . . . . . .. ... .. ... ...
5.4.1 Elastic Measure Experimental Design . . . . ... ... ... ...
5.4.2 Classification Results . . . . .. . ... ... ... ... .......
5.4.3 A Priori Detection of the Best Measure . . . ... ... ......
5.4.4 Timing Comparison . . . . . . . .. . ... .. ..
5.5 Combining Elastic Measures: The Elastic Ensemble . . . . .. .. .. ..
5.5.1 Measure Divergence . . . . . .. .. ... .. ... .

v



5.6

5.5.2 Emnsemble Design . . . . . .. .. ... Lo
5.5.3 Elastic Ensemble Results . . . . . ... ... ... ... ......
5.5.4 Elastic Ensemble vs. Other Approaches . . . ... ... ... ...
Conclusions . . . . . . . . . . e

6 Shapelet Domain Classification: The Shapelet Transform

6.1
6.2
6.3

6.4
6.5
6.6

6.7

7 The
7.1
7.2

7.3
7.4
7.5
7.6

7.7

Introduction . . . . . . . . ..
Datasets . . . . . . . .
The Shapelet Transform . . . . . . . .. .. ... ... ... ... .....
6.3.1 Extracting the £ Best Shapelets . . . . ... ... ... ......
6.3.2 Data Transformation . . . . . . . ... ... ... ... .......
6.3.3 Setting k in the Shapelet Transform . . .. .. .. ... ... ...
6.3.4 Setting Shapelet Length Parameters . . . . ... .. ... ... ..
Alternative Shapelet Quality Measures . . . . . . . ... ... ... ....
Experimental Design . . . . . . . .. ...
Results. . . . . . . . . . e
6.6.1 Embedded Shapelets vs. Transformed Shapelets . . . . . ... ..
6.6.2 Using F-stat with the Shapelet Transform . . . . . .. ... .. ..
6.6.3 Alternative Classifiers with Shapelet-transformed Data . . . . . . .
6.6.4 Shapelet Selection . . . . . .. . ... ... .. .. ... ...
6.6.5 Exploratory Data Analysis . . . . . ... ... ... ... .....
6.6.6 Comparison to Alternative Approaches. . . . . . . . ... .. ...
Conclusions . . . . . . . . . . o

Collective of Transformation-based Ensembles

Datasets . . . . . . .
Transformation-based Ensembles . . . . . . . ... ... .. ... .....
7.2.1 Heterogeneous Ensemble . . . . . . .. ...
7.2.2 Time Domain Classification with the Elastic Ensemble . . . . . . .
Results Using a Single Ensemble: Flat-COTE . . . . .. ... ... .. ..
Case Study: Classifying Caenorhabditis elegans . . . . . . . .. ... ...
Comparison to Other Approaches . . . . . . . . . ... .. ... .. ....
Alternative Ensemble Designs . . . . . . .. . ... o o oL
7.6.1 Best Internal Ensemble . . . . . ... ... ... ... ... ....
7.6.2 Weighted Internal Ensembles . . . . . ... ... ... .......
7.6.3 Subset of Internal Ensembles . . . . . ... ... ... .......
Conclusion . . . . . . . . . e

8 Conclusions and Future Work

8.1 Discussion of Contributions . . . . . . . . . . . . ... .
8.2 Future Work and Extensions . . . . . . . . . . . .. ... ... ... ..
Bibliography

89
89
91
92
92
94
95
96
97
101
101
101
103
105
107
107
110
112

114
115
116
116
118
118
121
122
127
127
129
131
132

134
135
136

138



List of Publications

As First Author

Jason Lines, Anthony Bagnall, Patrick Caiger-Smith, and Simon Anderson.
Classification of household devices by electricity usage profiles. In Intelligent Data
Engineering and Automated Learning-IDEAL 2011, pages 403—412. Springer Berlin
Heidelberg, 2011.

Jason Lines, Luke M Davis, Jon Hills, and Anthony Bagnall. A shapelet transform
for time series classification. In Proceedings of the 18th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 289-297.
ACM, 2012.

Jason Lines and Anthony Bagnall. Alternative quality measures for time series
shapelets. In Intelligent Data Engineering and Automated Learning-IDEAL 2012,
pages 475-483. Springer Berlin Heidelberg, 2012.

Jason Lines and Anthony Bagnall. Ensembles of elastic distance measures for time
series classification. In Proceedings of the 14th SIAM International Conference on
Data Mining (SDM), pages 524-532. 2014.

Jason Lines and Anthony Bagnall. Time series classification with ensembles of
elastic distance measures. Data Mining and Knowledge Discovery, pages 1-28,
2014.

As Co-author

Anthony Bagnall, Luke M Davis, Jon Hills, and Jason Lines. Transformation
based ensembles for time series classification. In Proceedings of the 12th SIAM
International Conference on Data Mining (SDM), pages 307-318. SIAM, 2012.

Luke M Davis, Barry-John Theobald, Jason Lines, Andoni Toms, and Anthony
Bagnall. On the segmentation and classification of hand radiographs. International
Journal of Neural Systems, 22(05), 2012.

Jon Hills, Jason Lines, Edgaras Baranauskas, James Mapp, and Anthony Bag-
nall. Classification of time series by shapelet transformation. Data Mining and
Knowledge Discovery, 28(4):851-881, 2014.

vi



Chapter 1

Introduction

Time series data, which we consider as any real-valued ordered data, arise across many
domains. These include, but are not limited to: econometrics, medicine, weather, motion
capture, image processing, computational biology, signal processing, and pattern recog-
nition. The problem of time series classification (TSC) is a specialisation of the more
general classification problem; the objective of classification is, given a new test instance
of data, can the category, or class, of this observation be determined from characteristics
that have been extracted from a set of previously observed training data with known
class labels?

To an extent, all classification problems rely on identifying explanatory features
within the data, then using a measure of similarity to quantify the relationships between
them to inform the decision process. TSC offers a specific challenge, as the ordering
of the data may be crucial in discriminating between class values. For example, the
data may have an embedded structure, such as autocorrelation, or trends. To this end,
traditional classification approaches may not be best suited to TSC problems. This
has prompted many different approaches for solving TSC problems to be proposed in
the literature [9, 58, 20, 49, 107, 80, 106, 50, 55]. These range from the most generic
end of the spectrum (using standard classification algorithms on time series data and
ignoring the dependency between attributes), to the most specialised (creating bespoke
problem-specific solutions). There are also many other solutions in between, such as
using support vector machines built on variable intervals [93], or tree-based ensembles
built on summary measures [34].

However, it has been observed many times in the literature that, in general, a nearest
neighbour classifier using a measure of time series similarity is very difficult to beat. This

is noted succinctly by Batista et al. [10], who state that ‘there is a plethora of classifica-



CHAPTER 1. INTRODUCTION 2

tion algorithms that can be applied to time series; however, all of the current empirical
evidence suggests that simple nearest neighbour classification is very difficult to beat’. One
of the simplest approaches for solving TSC problems is to to use a one-nearest neighbour
(1I-NN) classifier with Euclidean distance. However, the widely-accepted benchmark in
TSC currently is to use a 1-NN classifier coupled with Dynamic Time Warping (DTW)
with a warping window set through cross-validation (CV) [21, 47, 34].

1.1 Motivation

Given a new TSC problem to solve, the optimal solution will most likely be achieved by
creating a custom, bespoke solution that is tailor-made to the problem at hand. However,
this approach is typically very time and resource consuming, and will likely result in a
solution that is very difficult (or impossible) to generalise to other problems. The no free
lunch theorem [105] applies to many fields, and TSC is not immune; there is no single
solution that is optimal for all problems. As already discussed, the literature argues
that, in general, nearest neighbour classification is very difficult to beat, and DTW with
a 1-NN classifier is considered the current gold-standard for TSC. With this in mind,
when presented with a new T'SC problem the sensible approach would be to build a NN
classifier with DTW. However, we believe this approach is naive.

Firstly, there are many different types of similarity that can be observed between
time series data. For example, series could change at similar points in time (time-
based similarity), or they could have similar underlying curves or trends (global shape-
based similarity). Also, the series could be similar in the ways that they change due to
their internal structures, such as the autocorrelation of the series and how the values
of subsequent readings are influenced by previous readings (change-based similarity).
Additionally, the presence of localised common subsequences could be indicative of class
membership. An approach using 1-NN and DTW would be well suited to measuring
time-based similarity, but may struggle to identify the best discriminatory features in
the other three cases. It would therefore be desirable if we could determine a priori
which type of similarity should be used for a new problem.

Secondly, even if using a simple 1-NN approach, there are many alternative similarity
measures that have been proposed in the literature that could be used in place of DT'W.
Many are claimed to be at least as effective as DTW, and in some cases it is stated that
the alternatives are more effective. However, evaluation methods are inconsistent and are
sometimes based on simple head-to-head results and anecdotal evidence. It is currently

unclear whether any alternatives are truly more effective than DTW, but it is clear that



CHAPTER 1. INTRODUCTION 3

various alternatives capture similarity differently to DTW (for example, edit distance-
based approaches [25, 26, 79]). It would be desirable to know in advance whether DTW
is the most appropriate measure to use with a 1-NN classifier for a given problem, or
even if it is possible to combine the output of multiple measures to make a more diverse
and informed decision. This leads to the research question that has influenced the work
throughout this thesis: given a new TSC problem with no prior, specialised knowledge,
what is the best way to approach classification?

In [3], it was shown that a simple way to gain improvement in TSC problems is to
transform data into alternative domains where where discriminatory features are more
easily detected. We use this as a starting point; our thesis is that the best way to ap-
proach a TSC problem without any prior specialised knowledge is to first transform data
into alternative representations where discriminatory features are more easily detected.
This would potentially allow algorithms to not only measure similarity between series in
the time domain, but also consider similarity in change, global-shape, and local-shape.
Then, we believe that through using transparent ensemble schemes, we can build en-
semble classifiers in each of these domains to form constituent ensembles in a diverse
collective of transformation-based ensembles. Many algorithms embed data transforma-
tion within classification algorithms. We believe that by transforming data independently
of classifiers, and by utilising simple ensemble voting schemes, we can produce a very ac-
curate and transparent classifier that can outperform the benchmark set by DTW 1-NN|
and provide a framework that can easily be extended in future work to add additional

classification algorithms and data representations.

1.2 Contributions

In pursuit of providing support for our thesis, numerous experiments were carried out

and novel algorithms were proposed. The main contributions of this thesis are as follows:

e Time series classification in the time domain. An extensive study was carried
out using 75 datasets to evaluate whether DTW with warping set through cross-
validation (DTWCYV) is still the benchmark for TSC. Initially this investigation
focused on whether DTW was hard to beat through a comparative study between
various standard classification algorithms and 1-NN classifiers implemented using
Euclidean distance and DTW with a full window. After establishing that none of
these classifiers significantly outperformed DTW, an investigation was carried out

to determine the best configuration for DTW with NN classifiers, including whether



CHAPTER 1. INTRODUCTION 4

the neighbourhood size of the NN classifier or window width of the DTW measure
should be set through cross-validation. After answering these questions and rec-
ommending that DTW be implemented with a warping window set through cross-
validation and one nearest neighbour, we carried out a comparison of DTWCYV to
alternative elastic similarity measures that have been proposed in the literature,
including approaches such as Weighted DTW [58], Move-Split-Merge [101], and
Time Warp Edit Distance [79]. Over the 75 datasets tested, we found that no
alternative significantly outperformed DTWCYV, concluding that DTWCV with 1-
NN was still the benchmark in TSC. However, through investigating the alternative
elastic measures, we demonstrated that while the measures did not produce sig-
nificantly different accuracies, they did produce significantly different predictions.
This motivated an investigation into using simple ensemble schemes to build an
ensemble classifier with each of the elastic measures. The resulting classifier, the
elastic ensemble (EE), is significantly more accurate than DTWCV over the 75
datasets. Additionally, the EE is significantly more accurate than DTW on the 46
UCR datasets that are widely throughout the TSC literature for evaluating new
algorithms. This result is noteworthy, as we believe this is the first time a classifier
has ever outperformed DTWCV on the UCR TSC problems. This work is reported
in Chapter 5 and was published in [75, 76].

e A novel shapelet transform. As outlined in our thesis, we believe that the best
approach for TSC is to evaluate similarity in additional domains to the time do-
main. One area of time series similarity that is currently under represented in the
literature is similarity in local-shape. A recent approach, time series shapelets [107],
was proposed to match series according to common local patterns through extract-
ing discriminatory subsequences to build a decision tree classifier. This approach
was designed to produce intuitive results, but restricts shapelets by embedding
them within a classifier. We use this as a starting point to create a new time
series transformation that mitigates the limitations of a shapelet decision tree ap-
proach by extracting the top k£ shapelets from a dataset in a single pass through
using a novel caching algorithm. The extracted shapelets are used to transform
series into a new k-dimensional representation, where each feature is the distance
between a shapelet and the input series. The result of this transform is that the
new representation can be applied to any standard classification algorithm, facil-
itating classification based on local shape-based similarity. We demonstrate that

using the shapelet transform with popular classification algorithms such as support



CHAPTER 1. INTRODUCTION 5

vector machines and random forest significantly outperforms the original shapelet
tree-based approach, and we also provide information to show that classification
accuracy can be greatly improved for problems that are not well-suited to the time
domain when compared against DTWCV. We also extend our work to consider
alternative measures of shapelet quality that are more suited to the transformation
approach, and demonstrate that they are significantly faster for shapelet extraction
than the information gain measure used in the original approach. Finally, we pro-
duce a case study using a popular UCR dataset to mirror the case study provided in
the original shapelet work to demonstrate that our shapelet transform retains the
intuition provided by the original approach, and may also allow for greater insight
to be gained. This work is described in Chapter 6 and was published in [78, 74, 52].

e COTE: The collective of transformation-based ensembles for time series
classification. This work builds upon the conclusion in [3] that the simplest way
to improve accuracy for TSC problems is to transform data into alternative do-
mains where discriminatory features are more easily detected. This is extended by
creating a collective of ensemble classifiers built in four domains: time, local shape,
global shape, and change. We use the elastic ensemble proposed in Chapter 5 for
time domain classification, and we create a simple heterogeneous ensemble to ap-
ply to transformed data in the remaining three domains. For representing local
shape-based similarity, we transform series using the shapelet transform that we
propose in Chapter 6. For global shape-based similarity we transform data us-
ing the power spectrum, and for change, we use autocorrelation-based transforms.
Through extensive experimentation on 72 datasets, including all of the 46 UCR
datasets, we demonstrate that the simple collective formed by including all clas-
sifiers in one ensemble is significantly more accurate than any other previously
published TSC algorithm, including the EE. We call this classifier the collective
of transformation-based ensembles (COTE), and the results provided by COTE
provide strong support for our thesis. Finally, after proposing and testing the ini-
tial configuration for COTE, we propose alternative versions using weighting and
selection schemes in pursuit of adding extra insight to results without reducing
accuracy. This work is described in Chapter 7, and the results of the COTE are,
we believe, the best ever published on the UCR datasets.



CHAPTER 1. INTRODUCTION 6

1.3 Thesis Organisation

The remainder of this thesis is organised as follows. In Chapter 2, a thorough review of
the TSC literature is carried out, including specific emphasis on nearest neighbour clas-
sification in the time domain with DTW and other alternative elastic distance measures.
In Chapter 3 we introduce the datasets that are used throughout this thesis, including
new problems that we have provided and shared with the TSC community for the first
time. Chapter 4 discusses transformation approaches for time series to allow for simi-
larity to be assessed in alternative domains, while Chapter 5 focuses specifically on the
time domain and culminates in the proposal of the EE. Chapter 6 moves away from time
domain similarity to propose a novel transform to capture similarity in local-shape: the
shapelet transform. The findings in Chapter 5 and 6 are then combined in Chapter 7
where the COTE is proposed and tested, demonstrating that forming a collective of
ensemble classifiers built on different time series representations can significantly outper-
form DTWCYV, and any other classifier that we know of, across our test set of 72 datasets
and the UCR data. Finally, in Chapter 8, we conclude this thesis by summarising the

contributions of this work and discussing possible future direction.



Chapter 2

Technical Background and
Related Work

This chapter introduces the relevant background materials for this thesis. We motivate
and introduce the problem of time series classification (TSC), and present a review of
the leading solutions that have been proposed in the literature. Specifically, we focus
on the common benchmark technique of using simple nearest neighbour (NN) classifiers
with Euclidean distance Dynamic Time Warping (DTW) to solve the problem in the
time domain, and explore potential alternative elastic measures that can be combined
with NN classifiers. Following this, we investigate more complex solutions that have been
introduced in the literature, including approaches built on transforming data into other

domains and combining decisions of multiple classifiers.

2.1 Time Series Classification

Many problems exist in the time series data mining literature, including classification,
clustering, indexing, and querying. In this thesis, we focus solely on the problem of time
series classification (TSC). We define a time series as a sequence of data that is typically
recorded in temporal order at fixed time intervals. For the problem of TSC, we use a set

of n time series

T ={T\,Ty,..., Ty} (2.1)

where each series consists of m real-valued ordered observations

T, =< ti71,ti72, ...,ti7m > (2.2)



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 8

and a class value ¢;. Given T', the TSC problem is to find a function that maps from the
space of possible time series to the space of possible class values. For simplicity, in our
definition we assume that all series of T are the same length.

A key feature that distinguishes TSC problems from general classification problems
is that the features within the data that discriminate between class values are often
embedded within the inter-relationship structure of the data. In generic classification
problems, attributes of the data are often independent; in TSC problems, the ordering
and structure of the data often play a crucial role in uncovering features that define class
relationships.

The nature of TSC problems means that the representation of the data is a crucial
part of any TSC algorithm, and all TSC approaches rely to an extent on measures of
similarity between data. There are three broad categories of TSC similarity that appear

in the literature:

e Similarity in time can be observed when series from a class are observations
of an underlying common curve in the time dimension. When there is no noise
in the observation, correlation-based measures or the Euclidean distance can be
used to effectively measure similarity between series. When there is noise in the
time dimension or slight phase-shift, elastic distance measures can be used. Dy-
namic time warping (DTW) is by far the most popular of such measures in the
literature [62, 91, 35, 61, 64, 90, 49].

e Similarity in shape is when class membership is characterised by a common shape
in the data that is phase-independent. This can cover two such scenarios: firstly,
if the common shape involves the whole series, but the shape is shifted between
instances of the same class, transforming the data into the frequency domain can
uncover discriminating features [22, 57|. Secondly, if the common shape is local
and embedded within instances of the same class, subsequence techniques such as
shapelets [107, 108, 80, 89] can measure shape-based similarity accurately without

being affected by noise throughout the rest of the series.

e Similarity in change is where the discriminatory features of a dataset are em-
bedded within the autocorrelation structure of the data. This type of similarity is
the least covered in the literature, but can be employed for TSC by transforming
series into the change domain through the use of autocorrelation-based transforms,
or by applying autoregressive moving average models (ARMA) to the data and

judging similarity on model parameters [27, 4, 5].



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 9

In this chapter we survey and review the TSC literature across each of these types of
similarity. Similarity in time is by far the most represented of the three in the TSC liter-
ature, and this is reflected by the extensive discussion of nearest neighbour classification
with alternative elastic similarity measures in Section 2.3. A discussion of popular TSC
algorithms follows in Section 2.4, including approaches that involve transforming data
into other domains to uncover similarity. In Section 2.5, the process of combining multi-
ple algorithms to form ensemble classifiers is discussed and motivated with an example of
a heterogeneous ensemble in the time domain. Before exploring specific TSC algorithms
however, we must introduce a methodology for consistently comparing classifiers across

many datasets.

2.2 Comparing Classifiers

In order to test the thesis outlined in Chapter 1, it is necessary to objectively compare
classification algorithms over many datasets. In the literature it is common to base
support for new algorithms on anecdotal evidence or simple win/loss statistics. We wish
to be more thorough in our analysis during this thesis, and adopt the procedure outlined
in [33] to test for statistical significance between classifiers. The approach is based on
a two-stage rank-sum test using the non-parametric equivalent to analysis of variance
(ANOVA).

The first stage of the approach tests the null hypothesis that there is no significant
difference between the average ranks of k classifiers on n datasets, against the alternative
hypothesis that at least one classifier’s mean rank is different. Given M, the k by n
matrix of classification accuracies where m; ; is the accuracy of the ith classifier on the
4t dataset,

mi1 Mi2 -+ Min
ma1 Ma2 -+ Man

M= | (2.3)
mgi1 Mg2 - Min

the first step is to calculate the corresponding n by k matrix R, where 7; ; is the rank

of the i classifier on the j** problem, and the ranks of classifiers with equal error are



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 10

averaged:
r,%1 T2 ot Tin
21 T22 ' T2n
R=\| (2.4)
el Tk2 c Tkn
From R the average rank of classifier j is calculated as 7; = # To test the

hypothesis, the Friedman statistic @,

~12n b, k(k+1)?
Q‘kw+n'g;7_ 1 (25)

can be approximated using a Chi-squared distribution with (k — 1) degrees of freedom
to test the null hypothesis that there is no difference between the mean ranks of the
classifiers. However in [33], Demsar notes that this calculation is often conservative, and

proposes using the following statistic:

(n—-1)@Q
nk—1)—-Q’

that, under the null hypothesis, follows an F distribution with (k — 1) and (k — 1)(n —

1) degrees of freedom. If the result of this calculation is that we can reject the null

F= (2.6)

hypothesis, resulting in at least one classifier having a significantly different average
rank, the second stage of the approach proposed by Demsar involves performing post-hoc
pair-wise Nemenyi tests to observe where differences occur. The test states that the
average ranks of two classifiers are significantly different if they differ by at least the

critical difference, calculated as:

k(k + 1)

CD = :
4a on

(2.7)

where ¢, is based on the studentised range, where the difference between the largest and
smallest values in the sample is measured in units of standard deviation. By comparing
all classifiers in this way, DemsSar proposes that a critical difference diagram can be cre-
ated to effectively summarise the results. This is formed by creating a diagram where
the average ranks for each classifier are labelled on a numerical range, and classifiers
that are not significantly different from one another are organised into cliques. A clique

is represented by a solid black line, and allows for simple interpretation of results by



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 11

observing whether classifiers are within a common clique. If two classifiers do not belong
to at least one common clique, the average ranks of the classifiers are significantly differ-
ent. A motivational example of a critical difference diagram is presented in Figure 2.1.
We use critical difference diagrams throughout this thesis to compare results of multiple

classifiers over multiple datasets.

CD
5 4 3 2 1
e r 1 1 . 1
Classifier E 4625 Classifier A
Classifier D 3-3958 2.3125 (C|assifier B

29583 (Classifier C

Figure 2.1: An example of a critical difference diagram with five fictional classifiers.
The critical difference in this diagram is 1.1228; The average ranks of Classifier A and
Classifier B do not differ by more than the critical difference, so the ranks are not
significantly different. However, Classifier A and Classifier C are not within the same
clique, so it is demonstrated that they are significantly different.

2.3 Nearest Neighbour Classification in the Time Domain

Numerous algorithms and approaches have been proposed in the literature for solving
TSC problems. However, as eluded to in Chapter 1, currently there has been no conclu-
sive evidence reported to suggest that any technique is significantly more accurate than
using a simple nearest neighbour (NN) classifier for TSC. This is reinforced by Batista
et al. in [9], who state that ‘there is a plethora of classification algorithms that can be
applied to time series; however, all of the current empirical evidence suggests that simple
nearest neighbor classification is very difficult to beat’. The sentiment of this statement
is echoed in various other work throughout the literature, with the general consensus
that NN classifiers combined with either Euclidean distance or Dynamic Time Warping
are the current benchmark for TSC [21, 47, 34].



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 12

2.3.1 k-Nearest Neighbour (k-NN) Classifiers

The k-NN classifier is one of the oldest, simplest, and most commonly used classification
algorithms that is fundamental to many TSC approaches, particularly approaches in
the time domain (for example, [60, 92, 106, 79, 9, 21, 47, 101]). The classifier was first
documented in [39] and is intuitively very simple to implement for TSC problems. Given
a set of labelled training time series 1" and a query series ¢ with an unknown class value,
the objective is to find the k& most similar series to ¢ in T, where 1 < k < n. The
predicted class value ¢* for ¢ is selected as the modal value of the k nearest neighbours.
The value for k is often set as an odd number to reduce the chance of ties, but in cases
where there is no majority, ties are split randomly.

A fundamental part of the k-NN algorithm is how similarity is measured between ¢
and the instances in T'. This topic has arguably generated the most interest in the liter-
ature, typically combining measures with one nearest neighbour classifiers (1-NN). Early
work used Euclidean distance and other L,-norms for assessing similarity until dynamic
time warping (DTW) was first applied to time series data [12]. DT'W has been held as the
benchmark in TSC ever since. Given a single TSC problem, the best absolute accuracy
is likely to ultimately be provided by a bespoke, one-of-a-kind solution that is tailored to
a specific problem. For TSC in general however, to the best of our knowledge, there is no
documented evidence of any algorithm outperforming DTW with 1-NN. Therefore much
of the work that initially followed the introduction of DTW focused primarily on how to
speed-up the similarity measure, and later research investigated how placing limitations
on the amount of warping allowed in the DTW search could lead to improved accuracy.
Recent research has focused on extensions to the original DTW approach (for example,
using derivatives [63] and weightings [58]), while numerous alternative elastic measures

have also been proposed (such as edit distance-based and hybrid measures [79, 101]).

2.3.2 Euclidean Distance

The Euclidean distance is one of the simplest similarity measures available for comparing
time series. Given two series a =< aq,as,...,a,, > and b =< by,bs,...,b,, >, the
Euclidean distance dgyeia(a,b) is given as the square root of the sum of squares of the

differences between attributes in each series:

dEuclid(a, b) =




CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 13

A common speed-up of the calculation is to to omit the square root. However, since
the Euclidean distance requires no parametrisation, there is little that can be done to the
measure specifically to improve performance or speed since originally introduced in early
work such as [29]. Researchers have used related approaches, such as the Minkowski
distance [2] or Mahalanobis distance [22], but Euclidean distance has remained the most
popular of these measures. Therefore research has often focused on speeding up ap-
plications that involve the use of the distance measure instead. A common theme in
the literature has been to devise a novel approach towards representing time series data,
then using Euclidean distance on representations of the data with a lower dimensionality.
For example, [1] uses a Fourier transformation to create representations with fewer at-
tributes, accelerating distance calculations between series using the Euclidean distance.
In [23], a similar approach is applied using wavelets, and in [59] the authors use a multi-
resolution approach with wavelets to calculate similarity between series using Euclidean
distance. Such approaches have lead to a spate of approximation methods appearing
in the literature, with basis in topics such as spectral approaches, wavelets, piece-wise

approximations, and symbolic representations (see Section 2.6.2 for more details).

2.3.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is commonly used as a measure of similarity between
series in the time domain. DTW is popular in the literature as unlike the Euclidean
distance, the measure has elastic properties that allow it to mitigate against distortions
in the time axis [90].

Given two time series a and b that we wish to compare, let M (a,b) be the m x m

point-wise distance matrix between a and b, where M; ; = (a; — b;j)?. A warping path

P =< (e1, f1),(e2, fa), ..., (s, fs) > (2.9)

is a set of points (i.e. pairs of indexes) that define a traversal of M. So, for example, the
Euclidean distance dg(a,b) = >_I" (a; — b;)? is the path along the diagonal of M.

A valid warping path must satisfy the conditions (e1, f1) = (1,1) and (es, fs) =
(m,m) and that 0 < e;41 —e; <land 0< fiy1 — f; <1 forall i <m.

The DTW distance between series is the path through M that minimizes the total
distance, subject to constraints on the amount of warping allowed. Let p; = Mae“b B be
the distance between elements at position e; of a and at position f; of b for the " pair

of points in a proposed warping path P. The distance for any path P is



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 14

Euclidean Distance DTW Distance

(strict time (weak
dependence)/v\\/\/\\//\A time dependence)

Figure 2.2: An example to demonstrate the elastic properties of DTW. The first two
time series have identical values but are out of phase, so the Euclidean distance between
them is large as the peaks and troughs do not align. The elasticity of DTW mitigates
this however and finds that the first two series are the most similar.

Dp(a,b) = p;. (2.10)
=1

If P is the space of all possible paths, the DTW path P* is the path that has the minimum
distance, i.e.
P* = min(D b 2.11
min(Dp(a, b)), (2.11)

and hence the DTW distance between series is
k
Dp.(a,b) = p;. (2.12)
i=1

The optimal path P* can be found exactly through dynamic programming, but this
can be a time consuming operation. Therefore numerous speed-ups have been proposed
to place a restriction on the amount of possible warping that is allowed. The most
commonly used approach is to use the Sakoe-Chiba band [95] that was originally proposed
in the speech processing literature. This restriction is equivalent to putting a maximum
allowable distance between any pairs of indexes in a proposed path. If the warping
window, 7, is the proportion of warping allowed, then the optimal path is constrained so
that

lei — fil <r-m Y(e;, fi) € P*. (2.13)



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 15

A popular alternative to the Sakoe-Chiba band is Itakura’s Parallelogram [56], which also
originated in speech research. The parallelogram approach imposes a similar restriction
on warping, but instead favours smaller warpings at the beginning and end of Px while

allowing more freedom mid-path.

/ \/‘\_’_

Figure 2.3: An example of unconstrained DTW with two series from the GunPoint
dataset [65]. DTW mitigates the misalignment of the series by matching the peaks and
troughs of the data.

One of the first mainstream applications of DTW to time series data mining was re-
ported in [62]. For TSC specifically, an early use of DTW was documented in [92].
The authors investigate the potential of DTW by first noting the improved perfor-
mance over Euclidean distance with NN classifiers, but note the extra computational
effort involved. This motivated an investigation that resulted in the introduction of the
R-K band for DTW, a constraint for DTW that can be generalised to a warping of any
arbitrary shape and size to accelerate computation and improve accuracy of DTW-based
classification. They report results on three datasets to demonstrate the accelerated per-
formance without detriment to classification decisions.

A further speed-up technique is proposed in [106], which involves reducing training
set sizes to reduce the quantity of calculations, rather than improving the calculation
itself. The authors initially claim that NN classification is very difficult to beat, and
support this claim by providing an interesting comparison with other published methods
to demonstrate where NN classifiers with DTW outperform more complex alternatives.
However, it should be noted that while this provides interesting information, the results

may include selection bias since they are optimistic cases selected to motivate their



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 16

approach. However, using this information they advocate using NN classifiers for TSC,
and propose a speed-up for DTW that is based on numerosity reduction. They use
an initial experiment to observe a relationship between dataset size and DTW warping
constraints, where they observe that small warpings are favourable when many training
instances are available. They configure their approach to initially limit warping in very
large dataset, and then gradually increase the allowed warping as they remove instances
from a dataset. They demonstrate that their approach is faster than using the standard
implementation of DTW while still providing comparable results.

In [35], the authors carry out one of the largest investigations of NN classifiers with
alternative similarity measures and representations. They include 8 time series repre-
sentations and 9 similarity measures. Of note, these measures include the Euclidean dis-
tance, DTW, and edit distance-based measures including longest common subsequence
(LCSS), edit distance on real sequence, and edit distance with real penalty (these sim-
ilarity measures are discussed further in Section 2.3.6 and Section 2.3.7). Firstly, they
note that as the quantity of training data increases, the accuracy of DTW and the edit
distance-based measures converges with the Euclidean distance. This aligns with the
original observation of [106], who favoured small warpings (since allowing no warping
provides no elasticity, hence is equivalent to Euclidean distance) with large quantities
of training data when investigating constraints with DTW. However, while they note
that this observation is true for problems with abundant training data, elastic measures
often outperform Euclidean distance when training data is limited. Their second key
observation is that constraining measures such as DTW and LCSS reduces computation
cost while giving equivalent or better classification accuracy. Thirdly, they do not find
any conclusive evidence to suggest that any of the measures that they test outperform
DTW. In fact, DTW outperforms some of the more recently proposed measures. Finally,
they note that if a similarity measures does not provide adequate classification accuracy,
the introduction of further training data often leads to improved accuracy. If such data
is not available, they suggest that it may be beneficial to explore additional similarity

measures that were not used in their work.

2.3.4 Derivative Dynamic Time Warping

Keogh and Pazzani [63] proposed a modification of DTW called Derivative Dynamic Time
Warping (DDTW) that first transforms the series into a series of first order differences.
The motivation for DDTW was to introduce a measure that avoids singularities, where

a single point on one series may map onto a large subsection of another time series and



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 17

create pathological results. Given a series a = {a,a2,...,an}, the difference series is
a'={d},d,,...,al, 4} where a} is defined as the average of the slopes between a;_; and
a;, and a; and a;41, i.e.

, (@i —ai—1) + (aip1 —ai—1)/2

a, = 5 : (2.14)

for 1 < i < m. DDTW is designed to mitigate against noise in the series that can

adversely affect DTW, and has also been used in conjunction with standard DTW to

simultaneously calculate similarity between series [46].

2.3.5 Weighted Dynamic Time Warping

A weighted form of DTW (WDTW) was proposed by Jeong et al. [58]. WDTW adds
a multiplicative weight penalty based on the warping distance between points in the
warping path. It favours reduced warping, and is a smooth alternative to the cut-off
point approach of using a warping window. When creating the distance matrix M, a

weight penalty wy;_; for a warping distance of |i — j| is applied, so that

M@j = w|i,j|(az~ - bj)z. (2.15)

A logistic weight function is proposed in [58], so that a warping of a places imposes a

weighting of

wmaa}

where wy,q; i an upper bound on the weight (set to 1), m is the series length and g is a

parameter that controls the penalty level for large warpings. The larger g is, the greater

the penalty for warping.

2.3.6 Longest Common Subsequence Distance

The Longest Common Subsequence (LCSS) distance is based on the solution to the
longest common subsequence problem in pattern matching [53]. The typical problem is
to find the longest subsequence that is common to two discrete series based on the edit
distance. An example using strings is shown in Figure 2.5.

This approach can be extended to consider real-valued time series by using a distance
threshold €, which defines the maximum difference between a pair of values that is allowed
for them to be considered a match. LCSS finds the optimal alignment between two series

by inserting gaps to find the greatest number of matching pairs.



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 18

Figure 2.4: Example distance matrices for the two GunPoint series from Figure 2.3 with
warping paths for a 50% warping window with DTW (a) and WDTW with a penalty
value of 0.1 (b). The dark areas in (a) depict the limits of the warping window where
the path may not pass, whereas in (b) the dark areas represent areas that are highly
weighted. It can be seen that the gradient of the weighting function encourages the path
to avoid highly weighted areas in (b), but it does not strictly prevent traversal of those
areas as a warping window does.

ABCwAiDAi ABCADA- - CDA-
5D B AC _ii_iiDBi_ici
(a) (b)

Figure 2.5: An example of the LCSS problem. The example in (a) shows a pairwise
matching of the two strings, while (b) demonstrates an alignment that allows shifting
within the strings to allow for more matches to be made. The example in (a) is analogous
with the LCSS distance with no elasticity, whereas (b) represents the LCSS distance with
full elasticity. This can be controlled using a parameter akin to the warping window in
DTW.



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 19

The LCSS between two series a and b can be found using Algorithm 1, and the LCSS

distance between a and b is

LCSS(a,b
dress(a,b) =1~ m(a)- (2.17)

Algorithm 1 LCSS (a,b)

1: Let L be an (m + 1) x (m + 1) matrix initialised to zero.
2: for i <~ mto 1 do
3:  for j < mto1ldo
Lij < Lit1+1
if a; = bj then
Lij < Lij+1
else if Li,j+1 > Li7j then
Lij < Lijv1
else if Lz‘-l—l,j > Li’j then
10: Li,j — Li+1,j
11: return Lq

2.3.7 Edit Distance with Real Penalty

Other edit distance-based similarity measures have also been proposed. One such ap-
proach is edit distance on real sequences (EDR) [25]. Like LCSS, EDR uses a distance
threshold to define when two elements of a series match, but also includes a constant
penalty that is applied for non-matching elements and where gaps are inserted to create
optimal alignments. However EDR does not satisfy the triangular inequality, as equality
is relaxed by assuming elements are equal when the distance between them is less than
or equal to e. This was revised in [26], where edit distance with real penalty (ERP) was
introduced. The motivation for ERP is that it is a metric as it satisfies the triangular in-
equality by using ‘real penalty’, which uses the distance between elements when there is
no gap and a constant value g for when gaps occur. The ERP distance between element

1 of series a and element j of series b is

la; —bj| if |a; — bj| <€
ERP(ai,bj) =1 |a; —g| if b;is a gap (2.18)
|b; —g|  if a; is a gap,



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 20

and the full ERP distance between series a of length m and series b of length n is given

recursively as

oy |bi — gl ifm=0
>oimy lai — gl ifn=0
degrp(a,b) = ¢ min{dgrp(Tail(a), Tail(b)} + ERP(a1,by), otherwise  (2.19)

dE'RP(Tail(a)7 b) + ERP(al7 gap)?
dgrp(a,Tail(b)) + ERP(gap,b1)},

where Tail(a) = {az,as, ...,am}.

2.3.8 Time-Warp Edit Distance

Introduced by Marteau [79], Time Warp Edit (TWE) distance is an elastic distance
measure that, unlike DTW and LCSS, is also a metric. It encompasses characteristics
from both LCSS and DTW as it allows warping in the time axis and combines the edit
distance with Lp-norms. The warping, called stiffness, is controlled by a parameter
v. Unlike a warping window that constrains a DTW search, stiffness enforces a multi-
plicative penalty on the distance between matched points. Setting v = 0 results in no
stiffness, or null stiffness, giving a distance measure equivalent to a full DTW search.
Setting v = oo gives Euclidean distance. TWED redefines the insert, remove and match
operations used in edit distance, in favour of delete_a, delete_b and match. The delete_a
operation occurs when an element is removed from the first series to match the second,
and delete_b occurs when an element of the second series is removed to match the first.
An Lp-norm distance calculation is used when matches are found, and a constant penalty
value A is applied when sequences do not match. The formal definition TWED can be

found in [79], and a dynamic programming implementation is given in Algorithm 2.

2.3.9 Move-Split-Merge

Move-Split-Merge (MSM) was introduced in [101]. The authors motivate the introduc-
tion of MSM as it satisfies a number of desirable traits that they set out to incorporate
into a single similarity measure: it is robust to temporal misalignments; it is translation
invariant; it has a competitive quadratic run-time with DTW; and it is a metric. MSM
is conceptually similar to other edit distance-based approaches, where similarity is cal-
culated by using a set of operations to transform a given series into a target series. Each
operation has an associated cost, and three operations are defined for MSM: move, split,

and merge. Move is synonymous with a substitute operation, where one value is replaced



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK

21

Algorithm 2 TWE Distance(a, b, A, v)

1: Let D be an m + 1 x n + 1 matrix initialised to zero.
2: D(l, 1) =0

3: D(Z, 1) = a12

4: D(1,2) = b?

5: for i < 3 tom+2 do

6: D(i, 1) = D(Z -1, 1) + (CLZ‘_Q - ai_1)2

7: for j «+ 3 ton+2do

80 D(l,i)=D(1,j—1)+ (bj_g — bj_1)2

9: for i < 2tom+ 2 do

10: for j+2ton+2do

11: if i >1and 5 > 1 then

12: distl = D(’L —-1,5— 1) + v X ‘Z — ]‘ X 2+ (ai_l — bj_1)2 -+ (ai_g — bj_2)2
13: else

14: distl = D(i — 1,7 — 1) + v x |i — j| + (ai—1 — bj—1)?
15: if ¢ > 1 then

16: dist2 = D(i — 1,§) 4+ (ai_1 — a;_2)> + A+ v
17: else

18: dist2 = D(’L — 1,j) + a1;12 + A

19: if 7 > 1 then

20: dist3 = D(Z,] — 1) + (bjfl — bj72)2 +A4+v
21: else

22: dist3 = D(Z,j — 1) + bj712 +A

23: D(i, j) =min(distl,dist2, dist3)

24: return D(m+1,n+1)




CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 22

by another. Split and merge differ from other approaches, as they attempt to add con-
text to insertions and deletions. Stefan et al. state that cost of inserting and deleting
values should depend on the value itself and adjacent values, rather than treating all
insertions and deletions equally (for example, as in ERP). Therefore, the split operation
is introduced to insert an identical copy of a value immediately after itself, and the merge
operation is used to delete a value if it directly follows an identical value. The formal
definition of MSM can be found in [101], and a dynamic programming implementation

is given in Algorithm 3 using the cost function

c if ;1 < a; < bj or a;_—1 > a; > bj (2 20)
c+ min(la; — a;—1|, |a; — b;|) otherwise. '

C(a;, ai—1,bj) = {

Algorithm 3 MSM Distance(a, b)

Let D be an m x n matrix initialised to zero.
D(l, 1) = ]al — bly
for i < 2 to m do
D(i, 1) = D(Z -1, 1) + C(CLZ‘, a;—1, bl)
for i + 2 ton do
D(l,i) =D(1,i— 1) + C’(bi,al,b 41— 1)
for i + 2 to m do
for j < 2 ton do
D(i, j) =min(D(i — 1,5 — 1) + |a; — b,
D(Z - 17]) + C(aiyai—layj>7
D(i,j — 1) + C(y;, zi, zi-1))
10: return D(m,n)

2.4 Standard Classification Algorithms

While the most popular approach toward solving TSC problems is to use NN classifiers,
it is also possible to apply generic classification algorithms directly to time series data.
If we simply ignore that the structure and ordering of attributes is often an important
feature of TSC problems, we can consider the attributes as independent readings and
pose them as a standard classification problem. Though it may seem unintuitive to
discard this information, it allows us to leverage from the wealth of algorithms proposed
in the general classification literature. Furthermore, we can potentially transform time
series to extract features (See Section 2.6 for more details), which would result in data

that could be applied to general classification algorithms. In this section we describe



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 23

numerous classifiers that are used at various stages throughout this thesis.

2.4.1 Naive Bayes

Naive Bayes is a simple classification algorithm that assumes strong independence be-
tween attributes, hence the ‘naive’ moniker. Though this may be overly simplistic for
some problems, especially for time series where attributes are by definition strongly
dependent, Naive Bayes has been proven to be a fast and effective classifier in many
problem domains, especially in text analysis [100] and spam filtering [97].

The implementation of Naive Bayes classifiers is based on Bayes Theorem. Given a
dataset of time series T' with n series of length m, and the set of possible class values
C, we must calculate the probability distribution for each attribute and class value,
p(Ti|cr), and the probability of each class arising, p(ck). Given a query series a =<
ai, la,...,ap, > with an unknown class, the class ¢* is assigned by the classifier using
the maximum a posteriori decision rule, which selects the class value with the highest

estimated probability given the observed attributes. This is calculated as:

m

o = ?,?gé p(ck) Hp(ai‘ck) (2.21)

i=1
This approach can be extended to consider dependencies between attributes. One
of the key principles of a Naive Bayes classifier is that attributes are assumed to be
independent; by forming a directed graph between dependent attributes, probabilities
for attributes represented at child nodes can be influenced by the outcome of parent

attributes. This is known as a Bayesian Network.

2.4.2 (C4.5 Decision Tree

The C4.5 (also known as J48) decision tree classifier was first introduced in [86] and
is arguably the most popular decision tree implementation in the classification liter-
ature [66, 42, 24, 44, 87]. The C4.5 algorithm uses a greedy top-down approach for
recursively building decision tree classifiers. The algorithm begins by observing whether
the data consist of a single class; if this is true, the algorithm has met the stopping
condition and a leaf node is created. If not, all attributes are evaluated to identify the
most informative for splitting the data, and the data are partitioned according to the
selected attribute. This process is then repeated on each subsequent data partition until
every leaf node in the tree contains a single class value. A final step is then invoked to

prune the tree by using the training data to observe whether removing nodes can lead



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 24

to increased performance in an attempt to avoid over-fitting.

A fundamental operation in building the decision tree is identifying the best attribute
for partitioning data. The C4.5 algorithm uses the gain ratio for this purpose. Given a
set of training time series T', each with m attributes A = {A;1, Ao, ..., Aj, }, the gain ratio
for the k' attribute Ay is calculated as:

InfoGain(T, Ax)
H(T) ’

GainRatio(T, Ay) = (2.22)

The calculation of the gain ratio requires two further equations: entropy and information
gain. Entropy was introduced in [98] to measure the uncertainty of a random variable

X that can take the values X, = x1, x9, ..., T,a, and is defined as:

H(X) =~ p(x)logy pl:). (2.23)
i=1

Information gain is the expected reduction in entropy due to splitting on a given criteria.

The information gain for attribute Ay is defined as:

T,
InfoGain(T,Ay) = H(T) — ) |13 |H(Tv), (2.24)
veValues(Ag) | |
where Values(Ay) is the set of all values that attribute Ay can take on, and |T5] is the
cardinality of the set of readings in 1" that take on value v for attribute Ap. Using these

definitions, the best attribute to split on A* according to gain ratio can be found as:

A* = max GainRatio(T, A) (2.25)
ApeA
The data is partitioned according to A*, and the process is continued on each partition

until a full tree is constructed.

2.4.3 Support Vector Machine

Support Vector Machines (SVM) were introduced in [28] and have been used exten-
sively in the literature [84], with many applications with time series data for financial
forecasting [83, 82, 103]. The simplest example of an SVM expects a problem to be

linearly separable. For an example with a simple dataset T with two possible class labels



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 25

C = {1, —1}, the objective is to build the classifier f(T") such that:

cF=+1 if >0
T) = - 2.26
f( ) { cF=-1 if <0. ( )

where f(T') takes the form of:
f(TM)=w-T+0b. (2.27)

In this equation w is a weight vector normal to f(7') and b is the bias that refers to
the offset of f(7') along w. The objective of the SVM classifier is to find the optimal
hyperplane f(T') to separate the classes in T'. A simple method is to iteratively update w
until all training instances are correctly classified (or it is found that it is not possible).
More complex techniques include those that seek to find the maximum margin between
classes, or use regularisation parameters for soft margins to avoid over-fitting through
allowing a degree of misclassification during training. It is also common that problems
are not linearly separable, so often non-linear kernel functions are used to transform data
into a space where the problem is linearly separable. This is reflected in our experiments
throughout this work, as linear SVM classifiers are often implemented alongside quadratic
SVM classifiers.

2.4.4 Random Forest

Random forest [16] is an ensemble classification approach that uses many constituent
decision tree classifiers. The goal of the random forest algorithm is to inject diversity
into predictions through training constituent trees with random attribute subsets.

The forest contains k trees, where each tree is trained by initially being assigned a
random subset S of the training data 7. At each node in the tree, a random subset of
b attributes is selected, and the best attribute in the sample is selected for partitioning
the data. The procedure for building the constituent trees is highly related to how C4.5
classifiers are formed, with the main distinctions being the random attribute sampling
rather than using the full data, and the measure of splitting quality; the random forest
algorithm uses the GINI index as an alternative to information gain (previously intro-
duced by the same author in [17]). The final classification prediction for a test instance
is the modal prediction across all trees.

A key part of forming the classifier is to ensure that constituent trees are not highly-
correlated; the greater the inter-tree dependence within the forest, the greater the error

rate will be as diversity will be reduced. Therefore setting b is an important part of the



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 26

training phase of the algorithm, as lower values reduce the inter-dependence of trees,
but also potentially lowers the performance of individual trees, so the optimal value for

b should be found during training.

2.4.5 Rotation Forest

The rotation forest algorithm [94] is similar to random forest as it is also a tree-based
ensemble approach. The classifier is created by dividing the training data into k subsets,
where each is transformed using principal component analysis (PCA). PCA transforms
the set of attributes in the data into an alternative set of uncorrelated variables, and
the resulting principal components are used to train k£ C4.5 decision tree classifiers. The
final prediction for a test instance is obtained in the same manner as the random forest
classifier, where the majority class value from the constituent classifier predictions is

selected as the output prediction.

2.5 Ensemble Classifiers

An ensemble of classifiers is a set of base classifiers, where individual decisions are com-
bined to classify new examples through combining predictions into a single output. A
key aim when building an ensemble classifier is to introduce new elements into the clas-
sification model to inject diversity. We have already considered two ensemble classifiers
during the discussion of standard classifiers in Section 2.4: Random Forest and Rotation
Forest.

Typical techniques for building ensemble classifiers include: creating a heterogeneous
ensemble of different classification approaches; modifying the data used to train each
constituent classifier, such as by resampling the data or replicating instances; select-
ing different sets of attributes to train each classifier on; and modifying each classifier
internally by reweighting training data.

Two ensembling approaches in particular have been adopted frequently in the litera-
ture: bootstrap aggregation, or bagging, and boosting. In this section we introduce these
approaches and discuss ensemble classifiers that have been used in the TSC literature.
We then go on to define a simple heterogeneous ensemble that we use later in this thesis,
formed using the standard classification algorithms in Section 2.4 as constituents, and

demonstrate an example of building the ensemble in the time domain.



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 27

2.5.1 Bagging

Bootstrap aggregation, or bagging, is an ensembling approach that is designed to increase
the stability in predictions by training constituent classifiers with different subsets of the
training data, such as in the Random Forest and Rotation Forest algorithms that were
introduced in Section 2.4. However, bagging specifically uses bootstrap samples [37],
where samples from a dataset are drawn randomly with replacement. This effectively
means that a single instance may appear in the training data for multiple constituents.
The typical approach for building an ensemble classifier E with bagging is outlined in [15]
and summarised in Algorithm 4, where C is the set of constituent classifiers, T" is the
training data, and b is the size of each training sample. Once the constituent classifiers
are trained, the prediction for a test instance is produced by taking the majority class

decision across all constituents.

Algorithm 4 Bagging(C, T, b)

1. B = @;
2: for all classifiers C;, in C do
3: Ty = bootstrapSample(T,b);
4:  Cpy.buildClassifier(Ty);
5
6

E=FEUCy;
: return FE;

2.5.2 Boosting

The key concept of boosting is to take a classifier that is considered a weak-learner and
improve it through resampling the training data to weight against misclassified training
instances in previous iterations. A weak-learner can be considered as any classifier that
is a relatively poor solution to a problem, but is more accurate than random guessing.
The first polynomial-time implementation of boosting was documented in [96], and the
work in [40] extended this implementation to make the runtime more feasible. The most
influential implementation of boosting was provided when the authors of the previous
two works combined to create an adaptive boosting algorithm, or AdaBoost [41].

The general boosting algorithm uses an iterative training approach to assign weights
to training instances. Given a classifier, the first training iteration will consider each
instance with an equal weight, and a weighted accuracy is calculated. After the first
iteration, the examples that are misclassified are given a greater weight, while those

that were correctly classified are given a lower weight. In classifiers where weighting is



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 28

not possible, this can occur through replication of instances where a greater weight is
desired. Then a new base classifier is trained using these updated weights with the goal of
producing the lowest weighted accuracy. By reweighting training instances, subsequent
classifiers are forced to focus on instances that were originally misclassified, creating a
diverse pool of base classifiers. An ensemble can be formed using the base classifiers, and

a test instances is classified according to the majority vote of the constituents.

2.5.3 Other Ensembles in the TSC Literature

Bagging and boosting are both popular approaches in the classification literature for
building ensemble classifiers. However, novel ensembling approaches have also been
proposed for TSC. For example, in [21], an ensemble algorithm is proposed using a
regression model to create a fusion approach to combine classifiers built using various
similarity measures. Support for this approach is provided through an experimental
comparison over 35 datasets against DT'W and SVM classifiers, suggesting that similarity
in various problems can be better assessed using a fusion of measures, rather than only
considering DTW.

In [34], the authors propose a tree-based ensemble classifier. The time series forest
(TSF) uses an approach similar to random forest, as constituent trees are built through
randomly selecting samples from the data using simple summary statistics, such as mean,
slope, and variance. However, rather than using information gain or the GINI index
to assess splitting criteria, TSF evaluates potential splits using a novel measure that
combines entropy with a distance measure. The TSF approach is compared to DTW
with 1-NN and the standard random forest algorithm over 45 datasets, and the results

suggest that this approach significantly outperforms random forest.

2.5.4 A Simple Heterogeneous Ensemble

A key aim when building an ensemble classifier is to introduce new elements into the
classification model to inject diversity. There are many approaches to this aim that
have been documented in the literature, but one of the simplest techniques is to form a
heterogeneous ensemble of different classification algorithms. A key aim in our work is to
keep our methodology simple and transparent. Therefore we choose to use this approach
for ensembling throughout our work, as not only does it allow us to create a diverse
ensemble classifier, but the approach for building the ensemble is very transparent and
conceptually simple.

The heterogeneous ensemble is formed by creating a pool of distinct classifiers where



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 29

there is no dependency between classifiers; for a given problem, each classifier is built in
isolation and produces an individual prediction for a test instance. The ensemble uses
a voting scheme to combine the predictions of each constituent classifier to output a
final classification prediction. A pseudo-code implementation of a simple heterogeneous
ensemble is defined in Algorithm 5, where T represents the training data, C is the set

of classifiers in the ensemble, and ¢ is the test series to be classified.

Algorithm 5 HeterogeneousEnsemble(C, T, q)

. predictions = ();

. for all classifiers C; in C do
Cy.buildClassifier(T);
predictionsy, = Cy.classify(q);

return wvotingScheme.decide(predictions);

A > e

There are two main components of the heterogeneous ensemble that must be deter-
mined: the base set of classifiers, and the mechanism for combining individual predictions

into a single output.

The Classifiers

The heterogeneous ensembles that we form throughout this thesis are composed of the
standard classification algorithms surveyed in Section 2.4. These include: 1-NN, Naive
Bayes, Bayesian Network, C4.5 Decision Tree, Random Forest, Rotation Forest, Support
Vector Machine with a linear kernel, and Support Vector Machine with a quadratic

kernel. Each classifier is created using the default Weka [48] implementation.

Ensemble Voting Schemes

To maintain the transparency of the ensemble classifier we define, we initially propose
three simple voting schemes for combining individual classifier predictions. The first
scheme, FEqual, places an equal vote on all constituent classifiers. After each classifier
has made a prediction for a test series, the majority decision is selected as the prediction,
and any ties are split randomly. The second voting scheme is Best. This approach is
the opposite to Equal as only a single classifier is used for the final prediction and all
other constituents are ignored. The Best constituent is determined as the classifier with
the highest accuracy after carrying out a leave-one-out-cross-validation experiment on
the training data, and ties are split randomly. The third strategy is Proportional. This

approach combines characteristics of the previous approaches; all classifiers are used



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 30

when making the final prediction, but the votes are weighted proportionally for each
classifier according to training accuracy. For example, if a classifier achieved 69% on the

training data, it would have 0.69 of a vote in the final classification decision.

2.5.5 Heterogeneous Ensembles in the Time Domain

Using the specification that has been outlined in this section, we can create an example of
a heterogeneous ensemble in the time domain. As previously discussed in Section 2.3, the
current benchmark in T'SC research is considered to be a 1-NN classifier using dynamic
time warping with the warping window set through cross-validation (DTWCYV). This
gives us an opportunity to demonstrate a number of the key concepts introduced so
far in this chapter; to motivate the use of ensembles in our work, we implement the
standard classifiers discussed in Section 2.4 to form three heterogeneous ensembles in
the time domain, using the three voting strategies that we outlined. We report test
classification accuracies of the ensembles against DTWCV on the UCR datasets [65] (a
commonly-used set of 46 TSC problems, which we outline in detail later in Section 3.1) in
Table 2.1. To test for significance between these results, we can use a critical difference
diagram as outlined in 2.2. The critical difference diagram summarising the data in

Table 2.1 is shown in Figure 2.6.

CD
—
4 3 2 1
| ! ] ! ] ! ]
Time 2.3889 2.3222 Time
Best Prop

Figure 2.6: A critical difference diagram to compare DTWCYV with three simple hetero-
geneous ensembles in the time domain.

The results demonstrate the Proportional and Best voting schemes for the heteroge-
neous ensemble are both significantly better than using the Fqual weighting approach.

However, though not significantly different, none of the results with the heterogeneous



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 31

ensemble in the time domain significantly outperform the benchmark of DTWCV. While
this lends support to using ensembles for TSC, it does not advocate replacing DTWCV
as the benchmark. This raises the question of whether there is an alternative ensem-
bling approach for TSC in the time domain, such as investigating alternative elastic
distance measures within an ensemble. This is investigated in the following section, and

heterogeneous ensembles in other domains are investigated later in Chapter 7.

2.6 Time Series Transformations

An alternative approach to carrying out classification in the time domain is to consider
alternative domains where discriminatory features may be more easily detected. Time
series transformation algorithms process series to create alternative data representations.
Most commonly in time series data mining (TSDM), the goal of such representations is to
reduce time complexity when matching series, while minimising the loss of discriminating
features. Such techniques are most commonly found in querying and indexing problems
where transformations are applied to time series data to create a lower-dimension rep-
resentation of the original data that can be used to approximate the Euclidean distance
between series [35]. Such approaches can be extended to TSC to also accelerate run-time
for very long series, and can also help mitigate noise in data. We provide a brief overview
of time series transformation approaches that have been used in the literature that belong
to two broad classes of transform: summary statistic transforms and compression-based

transforms.

2.6.1 Summary Statistics and Feature Extraction

One of the simplest approaches for transforming time series is to extract summary fea-
tures from the data, and then use the extracted features to train classifiers. We tested this
approach in a case study published in [77] where the objective was to classify household
electrical devices according to consumption readings recorded over 15 minute intervals.
We considered daily and weekly data, resulting in instances of 96 and 672 in length re-
spectively with 78,869 daily and and 9,215 weekly cases. Due to the very large volume
of data, classification using a set of standard classifiers was very slow. To attempt to
accelerate classification, we extracted 12 summary features from each series, including
statistical summaries such as mean and standard deviation, and specialised summary
information such as the first on time for a device, and the proportion of the day where

the device was active (see Section 3.2.1 for more information on the data). This simple



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 32

Table 2.1: The results of the heterogeneous ensemble built in the time domain, used to
create the critical difference diagram in Figure 2.6

Dataset DTWCV  Timepest Timegquat  Timeprop
Adiac 61.13% 75.45% 70.33% 71.36%
Beef 66.67% 93.33% 80.00% 86.67%
Car 76.67% 81.67% 73.33% 80.00%
CBF 99.44% 90.22% 90.00% 90.56%
ChlorineConcentration 62.50% 81.41% 72.42% 72.89%
CinC_ECG_torso 92.90% 83.99% 78.33% 80.72%

Coffee 100% 100% 100% 100%

Cricket_X 75.38% 61.79% 57.44% 58.97%
Cricket Y 79.49% 72.31% 71.28% 71.03%
Cricket_Z 82.31% 64.62% 63.85% 65.64%
DiatomSizeReduction 92.48% 95.10% 94.44% 95.10%
ECGFiveDays 80.02% 89.31% 88.73% 88.50%
FaceAll 80.77% 72.84% 76.21% 75.80%
FaceFour 89.77% 89.77% 89.77% 89.77%
FacesUCR 90.93% 78.05% 80.83% 80.98%
fiftywords 76.48% 63.08% 68.79% 69.45%
fish 83.43% 85.14% 83.43% 85.14%
GunPoint 91.33% 92.67% 89.33% 90.67%
Haptics 40.58% 44.81% 44.48% 45.78%
InlineSkate 38.55% 30.91% 33.82% 35.45%
ItalyPowerDemand 96.11% 96.89% 97.18% 97.18%
Lightning2 86.89% 72.13% 80.33% 78.69%
Lightning7 71.23% 71.23% 75.34% 73.97%
MALLAT 91.00% 91.00% 91.13% 90.96%
Medicallmages 73.95% 68.95% 72.89% 74.87%
MoteStrain 86.58% 90.42% 89.70% 90.26%
NonlInvasiveFatalECG_Thorax2 86.77% 92.72% 91.60% 92.16%
OliveOil 86.67% 93.33% 90.00% 86.67%
OSULeaf 59.92% 54.13% 53.31% 57.02%
Plane 100% 97.14% 98.10% 98.10%
Sony AIBORobotSurface 69.88% 69.88% 75.04% 75.21%
Sony AIBORobotSurfacell 85.73% 80.80% 80.27% 80.48%
StarLightCurves 90.30% 96.56% 93.55% 94.90%
SwedishLeaf 84.64% 86.08% 90.08% 90.24%
Symbols 93.07% 90.45% 90.05% 89.65%
SyntheticControl 98.33% 96.00% 96.33% 96.33%
Trace 99.00% 83.00% 81.00% 82.00%
TwoLead ECG 85.07% 84.64% 77.17% 79.89%
TwoPatterns 99.85% 90.68% 89.60% 91.73%
UWaveGestureLibrary X 75.85% 75.01% 74.96% 75.85%
UWaveGestureLibrary Y 68.65% 68.70% 68.09% 68.65%
UWaveGestureLibrary_Z 69.77% 70.49% 68.48% 69.77%
wafer 99.59% 99.38% 99.48% 99.51%
WordSynonyms 73.98% 61.76% 57.68% 59.25%
yoga 84.27%  80.77% 79.70% 81.53%




CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 33

transformation approach reduced the length of daily cases by a factor of 8 and weekly
cases by a factor of 56. We used this data to demonstrate that the performance of clas-
sifiers trained with the raw and transformed data did not provide significantly different
results, while the classifiers built using transformed data were much faster.

Summary statistics have been used to great effect in other TSC work. For example,
in [31], hand X-rays are classified by first being transformed into time series data, and
then a simple summary filter is applied to extract features about the image that are used
for classification. Also, the time series forest [34] algorithm introduced in Section 2.5 used
statistics such as the mean, slope, and variance to build a tree-based ensemble classifier
that significantly outperformed random forest. In [43], the authors propose a feature-
extraction approach that is beneficial for very large data, extracting approximately 9,000
distinct features from data, including simple summary statistics, correlations and entropy
calculations, with the aim of dimensionality reduction to avoid costly operations involved
in computing distances between full series.

In addition to summary statistics, more complex features have also been extracted
for TSC. For example, in [45] a technique is proposed to extract patterns from four
TSC problems deriving features from series through resampling and interpolating data.
They use this approach to search for local patterns within time series to build decision
tree classifiers. This work is related to a recently proposed approach called time series
shapelets [107]. A shapelet is a time series subsequence extracted from a dataset that is
able to discriminates between classes based on local shape-based similarity. The authors
define an algorithm to recursively extract the best shapelets from a dataset to create a
decision tree classifier. Their motivation for using a tree-based approach is to highlight
the intuitive nature of shapelets, while filling a niche in TSC literature for matching
series according to local shape-based similarity. They demonstrate that their approach
is effective for problems where time-domain approaches are not well suited, and demon-
strate the explanatory power of shapelets through a number of case study examples.

Shapelets are discussed further in Section 4.2.

2.6.2 Compression/Approximation-based Transforms

There are various compression-based transforms that have been applied to time series
data to approximate similarity between series. One of the first applications of such an
approach was in [38], where the authors used the Discrete Fourier Transform (DFT).
DFT allows an input signal of finite length to be decomposed into a linear combination

of sine and cosine waves, retaining only a subset of the resulting coefficients. This in



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 34

essence allows the time series data to be represented in the frequency domain, and the
authors use the resulting coefficients to propose an approach for fast indexing of time
series. The result of this transformation is primarily to reduce dimensionality of the data
while attempting to retain the discriminatory information within the data. DFT and the
related Fast Fourier Transform (FFT) have been used frequently in the TSDM literature
in the application areas of classification, indexing, and querying.

A related approach is the Discrete Wavelet Transformation (DWT). Rather than
using a combination of sinusoids to reconstruct time series, DWT uses wavelets in the
transformation process. One of the first applications of DWT in TSDM was [23], where
they created an indexing solution for time series by reducing dimensionality with DFT
and Haar wavelets. Haar wavelets are popular due to the simple nature of the approach;
DWT with Haar wavelets produces a transformed series by creating a lower-resolution
version through averaging consecutive values, while retaining detail coefficients for re-
constructing the original series [110].

In a similar vein to DFT and DWT, Singular Value Decomposition (SVD) has been
applied to time series to reduce the dimensionality of time series for faster querying.
In [67], this is achieved through representing series as linear combinations of eigenwaves
that extracted from the raw data, and the dimensionality of the data is reduced through
storing only a subset of the resulting principal components. They store only the most
important components when transforming data, creating lossy representations that retain
the majority of the explanatory power.

Piecewise Aggregate Approximation (PAA) is a compression-based transform that
was first introduced in [60] that has many similarities to DWT with Haar wavelets.
PAA is designed to be interpretable and conceptually simple by representing series as
a combination of equal-length segments. The segments are computed by combining ¢
successive readings and recording the average, where c is the compression value of the
transform. Therefore if the resampling rate is a power of two, the PAA of a series is
equivalent to the Haar DW'T representation, as noted in [7]. A PAA-based approach for
TSC is used in [45] where the authors propose a technique for extracting patterns from
datasets on four TSC problems. The authors investigate using naive features derived
from simply resampling and interpolating the data, and then build on this by searching
for local patterns that appear within the approximated series to build decision tree
classifiers. PAA has also been extended to Adaptive Piecewise Constant Approximation
(APCA), where series are transformed using segments of varying lengths, rather than
concatenating segments of equal length. The motivation for this adaptation of the PAA

approach is to avoid removing maxima and minima in the compressed representation, as



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 35

the flexibility of using segments of variable length allows these to be incorporated in the
transformed series.

A recently proposed representation related to PAA and APCA is Symbolic Aggregate
Approximation (SAX) [71]. The transform is designed to leverage from the field of
text mining, where many indexing and querying techniques have been highly developed
for discrete data. The authors note that this idea is not novel itself, with previous
methods existing to transform time series data into discrete series, SAX is the first
symbolic representation that allows for dimensionality reduction, lower bounding, and
transformation of streamed data. SAX represents time series as a string of characters
from an alphabet a. The SAX transformation is achieved by firstly transforming data
using PAA, and then using a set of breakpoints calculated from a Gaussian curve to
assign characters from « to each piecewise segment. They then define a simple distance
measure between SAX-transformed series that is based on the Euclidean distance, and
demonstrate that the representation can be used in nearest neighbour and decision tree
classifiers to accelerate performance without detriment to accuracy. The most prominent
use of SAX in the TSC literature is in [72] where the authors propose a bag-of-patterns
approach. This technique transforms series using SAX, and then passes a sliding window
approach to extract words from the transformed series. A classifier is then built using

frequency occurrences of words within series as features.

2.6.3 Transformation into Alternative Data Spaces

The majority of TSDM research using transformation approaches, such as DFT and
DWT, use transformed series for faster approximation of the Euclidean distance be-
tween series in the time domain. Subsequently, the majority of research has focused on
indexing and querying applications, rather than classification, and TSC research using
alternative data representations has been minimal. Where transformation is used in the
TSC literature, it is often embedded within the classifier (such as in [72]).

However, [3] proposes transforming time series into alternative data spaces to uncover
similarity in other domains, rather than simply approximating Euclidean distance in the
time domain. This is a key motivation for the thesis outlined in Chapter 1; we wish to
search for shape-based and change-based similarity to uncover discriminatory features
in datasets that are not suited to the time domain, and create a mechanism to decide
which representation is best suited to a problem. We use the Power Spectrum (PS)
to search for global shape-based similarity, shapelets for measuring local shape-based

similarity, and the Autocorrelation Function (ACF) for assessing change-based similarity



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 36

between series. We discuss each of these approaches in detail in Chapter 4 and provide

motivational examples using new datasets that were introduced into the literature as

part of this thesis.



Chapter 3

Data

The aim of this work is to pr