
Real-Time Rendering and Simulation of Trees and Snow

Daniel Reynolds

A thesis submitted for the degree of

Doctor of Philosophy

at the University of East Anglia

September 2014

Real-Time Rendering and Simulation of Trees and Snow

Daniel Reynolds

c© This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with the author and that use of

any information derived there from must be in accordance with current UK

Copyright Law. In addition, any quotation or extract must include full attribution.

Abstract

As virtual environments get increasingly more realistic, demand grows for elements

found in the natural world to be simulated within virtual environments at increas-

ingly higher quality. Natural systems such as trees and snow pose consistently dif-

ficult problems due to their complexity and dynamic nature. While methods used

to generate both virtual trees and snow covered environments are progressing, many

limitations exist which require improvement. This thesis develops techniques and

advancements in the generation of trees suitable for real-time dynamic applications

and the simulation of snowfall accumulation on dynamic scenes in real-time.

Tree models created by an industry used package are exported and the structure

extracted in order to procedurally regenerate the geometric mesh, addressing the lim-

itations of the application’s standard output. The structure, once extracted, is used

to fully generate a high quality skeleton for the tree, individually representing each

section in every branch to give the greatest achievable level of freedom of deformation

and animation. Around the generated skeleton, a new geometric mesh is wrapped

using a single, continuous surface resulting in the removal of intersection based render

artefacts. Surface smoothing and enhanced detail is added to the model dynamically

using the GPU enhanced tessellation engine.

A real-time snow accumulation system is developed to generate snow cover on a

dynamic, animated scene. Occlusion techniques are used to project snow accumu-

lating faces and map exposed areas to applied accumulation maps in the form of

dynamic textures. Accumulation maps are fixed to applied surfaces, allowing moving

objects to maintain accumulated snow cover. Mesh generation is performed dynam-

ically during the rendering pass using surface offsetting and tessellation to enhance

required detail.

i

Acknowledgements

I would like to thank my supervisory team first and foremost. Prof. Andy Day, whose

advice and encouragement has been crucial in conducting my research and forging

my academic career. Dr. Stephen Laycock, whose technical expertise and enthusiasm

has helped me from several tight corners. Their combined experience and guidance

enabled me to produce a piece of work I can take pride in, and inspired me to continue

a career in academia. I would also like to thank my examiners, Dr. Kurt Debattista

and Dr. Barry Theobald for their insight, effort and assistance in improving my work.

I would like to thank my parents, Amanda and Colin Reynolds, for their support

and encouragement which has spanned many more years than this Ph.D. And also my

girlfriend Clare, whose unending patience and encouragement has made this process

possible to complete.

ii

Publications

Several parts of this thesis have been published at the following venues:

• Daniel T. Reynolds, Stephen D. Laycock, Andy M. Day, “Remodelling of Botan-

ical Trees for Real-Time Simulation”, Theory and Practice of Computer Graph-

ics, Eurographics Association, pages 1-8, 2011

• Daniel T. Reynolds, Stephen D. Laycock, Andy M. Day, “Real-Time Accu-

mulation of Occlusion-Based Snow”, The Visual Computer, Springer Berlin

Heidelberg, pages 1-12, 2014

iii

Table of Contents

Abstract i

Acknowledgements ii

Publications iii

1 Introduction 1

1.1 Motivations . 1

1.2 Thesis Outline . 4

2 Background 5

2.1 Modelling and Rendering of Trees . 5

2.1.1 Procedural Tree Modelling . 5

2.1.2 Tree Rendering . 18

2.1.3 Tree Simulation . 23

2.1.4 Summary . 28

2.2 Simulating and Rendering of Snow 32

2.2.1 Snow Rendering . 32

2.2.2 Snow Accumulation . 35

2.2.3 Environmental Simulation . 47

2.2.4 Summary . 50

3 Remodelling of Botanical Trees for Real-Time Simulation 54

3.1 Related Work . 55

3.2 Generation of the Skeleton . 60

3.3 Creation of the Polygonal Mesh . 62

3.3.1 Adaptations for Differing Species 66

3.4 GPU Enhancements . 67

3.5 Results . 73

3.6 Integration into Industry Tools . 76

3.6.1 Model Integration . 81

3.6.2 Performance . 86

iv

v

3.7 Conclusion . 88

4 Real-Time Accumulation of Occlusion-Based Snow 90

4.1 Related Work . 92

4.1.1 Rendering . 92

4.1.2 Accumulation . 92

4.2 Real-Time Accumulation . 95

4.2.1 Snow Cover Generation . 95

4.2.2 Dynamically Adding Detail 104

4.3 Implementation . 112

4.3.1 Accumulation Mapping . 115

4.3.2 Dynamic Detail . 115

4.3.3 Texture Resolution . 116

4.4 Results . 117

4.4.1 Snow Accumulation on Remodelled Trees 129

4.5 Conclusion . 134

4.5.1 Future Work . 135

5 Conclusion 136

5.1 Discussion . 136

5.2 Future Work . 140

A Dynamic Tree Tessellation Shaders 142

A.1 Tessellation Control Shader - GLSL 142

A.2 Tessellation Evaluation Shader - GLSL 145

B Tree Remodelling Comparison 150

Bibliography 157

List of Tables

2.1 Summary of current techniques covered in Chapter 2.1 and their ap-

plication of identified key requirements. Work is listed in the order it

appears within the chapter. 31

2.2 Summary of current techniques covered in Chapter 2.2 and their ap-

plication of identified key requirements. Work is listed in the order it

appears within the chapter. 53

3.1 Rendering frame rates of a remodelled, tessellated tree from various

camera distances. Distances are shown in metres relative to tree height,

taken as the mean height for an adult Japanese Maple. 73

3.2 Table showing performance of Unity3D engine tree rendering with vary-

ing viewer distance and tree models. Results are in FPS, distances are

shown in metres relative to tree height, taken as the mean height for

an adult tree. 87

4.1 Data output from the occlusion render, required to map a texel within

the image to the corresponding accumulation texture visible at that

point. 99

4.2 Experimental frame-rates achieved with varying scenes and polygon

counts. Results are in FPS, polygon counts are given for both the base

model and the final tessellated render. 117

vi

List of Figures

2.1 Stages of tree creation using user-friendly generation package (images

from [LD99]). 6

2.2 Procedurally generated and fully modelled trees. 10

2.3 The snowflake curve (images from [PLH+90]). 13

2.4 The development over time of a wall plant (image from [PLH88]). . . 14

2.5 Using graphical user interaction to allow control of tree generation. . 17

2.6 Rendering result of trees (images from [WWDY06]). 19

2.7 (images from [DRF06]). 25

2.8 The effects of different modes of a modal wind representation on a tree

structure (images from [DRBR09]). 29

2.9 An example of the occlusion based technique put forward by Foldes

and Benes, images from [FB07]. 39

2.10 An example of generated snow bridging, images from [FG11]. 44

2.11 An example of generated snow covering a pine tree, images from [FG11]. 45

2.12 An example of the fracture of a modelled snow sculpture using an MPM

method, images from [SSC+13]. 46

2.13 Images from [MGG+10]. 51

3.1 A young Japanese Maple tree, generated using Xfrog. 56

3.2 Example of skeleton generation from an Xfrog tree. 59

3.3 Procedural recreation of the tree’s mesh around the skeleton. 64

3.4 Example of varying dynamic levels of detail using the tessellation engine. 70

3.5 Example of varying dynamic levels of detail, relatively scaled. 71

vii

viii

3.6 Added detail and mesh smoothing applied to a high polygon represen-

tation at close range. Shown in wireframe for clarity (above) and full

colour with wireframe (below). 74

3.7 System diagram showing the process of tree remodelling technique,

describing the computations performed on the CPU and the GPU. . . 75

3.8 Comparison of branch junctions in the original model and the newly

generated model. 77

3.9 Fully tessellated tree showing curvature and shape being a function of

skeletal influence. 78

3.10 Black Pine generated and rendered using the proposed system. 79

3.11 Colorado Spruce generated and rendered using the proposed system. . 79

3.12 Horse Chestnut generated and rendered using the proposed system. . 80

3.13 Weeping Willow generated and rendered using the proposed system. . 80

3.14 Colorado Spruce model in the Unity3D engine, Full view. 81

3.15 Colorado Spruce model in the Unity3D engine, close up view. 82

3.16 Japanese Maple model in the Unity3D engine. 82

3.17 Japanese Maple model in the Unity3D engine. 83

3.18 Horse Chestnut model in the Unity3D engine, without leaves. 84

3.19 Japanese Maple model in the Unity3D engine, tessellated without leaves. 86

3.20 Japanese Maple model in the Unity3D engine, tessellated with leaves. 87

4.1 Occlusion render, highlighting surfaces directly visible from above (in

red). 96

4.2 Snow occlusion, shown by the dark area of grass behind the model,

projected at a sideways angle due to the inclusion of uni-directional

wind forces. 97

4.3 Example of snow stability on a curved, rotating object. 105

4.4 Random noise projected onto the scene from above to denote snowfall. 107

4.5 Comparison of scene with and without blur filter. 109

4.6 Per-pixel lighting giving a high level of detail using procedurally gen-

erated normal maps. 110

ix

4.7 Comparison of “Stanford Bunny” model with and without dynamic

tessellation. 113

4.8 Snow height rendered as offset tessellation, forming peaks. 113

4.9 System diagram showing the process of snow accumulation and access

of stored data buffers throughout the workflow. 114

4.10 Accumulation of snow on varied scenes. 118

4.11 Accumulation of snow on varied scenes. 119

4.12 Rendering of the test scene at differing resolution of accumulation and

occlusion maps. 120

4.13 The frame-rates (FPS) with varying accumulation and occlusion map

resolution. 121

4.14 Accumulation of snow on the ground beneath a moving cart, showing

areas of grass gradually revealed to the snowfall. 123

4.15 Screenshots of snow accumulation falling at a 80◦ angle due to wind

forces. 126

4.16 Screenshots of snow accumulation falling at an 89◦ angle due to wind

forces. 127

4.17 Close-up view of snow accumulation on a primitively modelled Ash. . 129

4.18 Snow accumulation on remodelled trees. 131

4.19 Screenshot showing unbroken snow cover across the branch junction of

remodelled trees. 132

4.20 Screenshots to show the snow build-up on the thin branchs of remod-

elled trees. 133

B.1 Comparison of original Xfrog tree models and remodelled geometry

around the same generated structure. 151

B.2 Comparison of original Xfrog tree models and remodelled geometry

around the same generated structure. 152

B.3 Comparison of original Xfrog tree models and remodelled geometry

around the same generated structure. 153

B.4 Comparison of original Xfrog tree models and remodelled geometry

around the same generated structure. 154

x

B.5 Comparison of original Xfrog tree models and remodelled geometry

around the same generated structure. 155

B.6 Comparison of original Xfrog tree models and remodelled geometry

around the same generated structure. 156

Chapter 1

Introduction

1.1 Motivations

Virtual environments have always been an important part of modern graphics ap-

plications and as hardware capabilities are improving, the expectation of realism in

applications is getting higher and higher.

One area which has been particularly problematic in real-time simulation is the

rendering of realistic natural environments and environmental effects. Simulating

natural structures such as trees are difficult, due mainly to the sheer complexity of the

elements. In addition to the difficulties in rendering highly complex natural scenes,

the generation of the models used in a procedural and realistic way is an entirely

separate area of research, focusing on creating virtual geometry which adheres to the

underlying botanical structure whilst allowing enough randomisation to populate an

area with multiple instances which avoid repetition. Trees are an important natural

element to any outdoor scene, adding believability to an environment if implemented

well and introducing unrealistic distractions if created poorly. Trees are an integral

part of a variety of 3D applications from planning and architectural visualisation

to the extremely demanding field of video games and often applications, especially

games, require an environment to be believable, fully interactive and rendered at

appropriate high speeds to achieve real time. Real time frame rates, accepted as

1

2

25 FPS (frames per second) for pre-recorded video and largely considered to be an

ideal 60 FPS for interactive environments, pose difficult limitations and demands on

rendering techniques to produce high quality results efficiently enough to reach the

desired low computing time. While static trees are a difficult issue in virtual graphics,

dynamic vegetation simulating the effects of weather and environment is substantially

more complex. To achieve realism in a natural virtual scene, the elements within

must reflect the environment to avoid looking out of place and distracting from the

immersion of the area, as such trees must have the ability to move with wind flow,

be disrupted by heavy rain fall and accumulate snow as the scene requires. While

popular tools exist for the easy procedural creation of plants and trees, limitations

in the produced models make them inappropriate for high quality simulation forcing

bespoke solutions to be re-engineered for each individual application. The realistic

modelling and rendering of branching structures is crucial for tree rendering, integral

to virtual environment simulations such as video games, film, planning and design

visualisations and virtual reality. In addition to the modelling of trees, branching

structures are used in mathematical simulations such as fractal geometry and L-

Systems as well as medical simulations visualising vein and capillary structures which

are used in virtual training applications and demanding high quality in addition to

real-time visualisation. The main challenges of producing a high quality tree rendering

system which are not sufficiently solved by current techniques are the modelling of

branching structures as continuous surfaces to remove visual artefacts at areas of

high detail. These integrate skeletal structure to allow deformation and animation

and level of detail rendering implementations to allow real time rendering without

sacrificing visual quality.

In addition to the insufficiency of procedural tree models, research is unfinished

3

in the areas of weather simulations capable of realistically producing a fully interac-

tive, dynamic environment effecting the vegetation included. The main area being

focussed on is snow accumulation as it has the largest visual effect on a scene, not

only changing an object’s appearance but also its shape and size by introducing new

surfaces. One of the most noticeable effects of natural snowfall is the occlusion of

surfaces, allowing areas to be sheltered from accumulating cover. This effect has

been widely achieved by current rendering techniques similar to those used in the

process of projecting shadows. The main difficulty in implementing snow build-up is

the storage of accumulation on a surface. Implementations which allow snow cover

to be accumulated are most often implemented in a manner which limits their use

to completely static, un-movable scenes and techniques which cannot be achieved at

a speed allowing real-time simulation. Real-time implementations of snow simula-

tions conversely are unable to store accumulation and as such, are also limited to

static scenes in which animation would lead to unrealistic discontinuity of the simu-

lation. Significant challenges of a real-time snow simulation also include computation

of the stability of snow and the support of the surfaces beneath cover and the real-

istic rendering of snow surfaces in real time using level of detail approaches. These

are challenges which are not met by current snow simulation techniques and are re-

quired for any real-time snow simulation usable with a dynamic scene. As well as

the simulation of snow cover, an implementation of surface-based accumulation can

have several applications including the accumulation of mass on a supporting sur-

face, saturation of liquid in a rain simulation or energy transfer from direct lighting

for example. This can be applied to many environmental simulations which require

real-time visualisation such as video games, film or virtual reality solutions.

This thesis aims to determine whether advancements in rendering technology and

non-traditional applications of the programmable rendering pipeline can be used to

4

improve upon the current methods of visualising natural environments. To that end, a

system of modelling, simulating and rendering realistic trees in real-time environments

under the influence of snowfall is proposed using current rendering hardware and the

programmable rendering pipeline. To achieve this, a technique of remodelling tree

structures based on a given hierarchy is developed to address the main challenges of

continuous geometry, sufficient skeletal structure and level of detail visualisation. In

addition to this, a simulation of real time snow accumulation is proposes to record

snow fall on supporting surfaces using the programmable rendering pipeline which

allows persistent snow cover on a dynamic scene, snow stability and real-time level of

detail rendering.

1.2 Thesis Outline

This thesis proposes techniques and advancements in procedural tree generation and

rendering for real-time applications in addition to efficient and effective weather sim-

ulation techniques and the modelling of their effect on real-time trees. Chapter 2

details a background of related work and relevant solutions and techniques influenc-

ing the field and its progression. A new technique for the remodelling of trees suitable

for real-time, high quality simulation based on the output of industry recognised pro-

cedural generation tools is proposed in Chapter 3. Chapter 4 proposes a novel method

for modelling and accumulating snowfall on a dynamic scene with occlusion, allow-

ing snow to be accumulated onto complex objects while allowing free movement and

animation of the scene. Conclusions and future work are discussed in Chapter 5.

Chapter 2

Background

2.1 Modelling and Rendering of Trees

Botanical trees are highly complex organisms made up of a hierarchical structure

of smaller elements in differing stages of development from multiple levels of fully

developed branches to countless smaller shoots and buds progressing into complicated

flowers and thousands of individual leaves. Modelling the geometry of a tree manually,

keeping enough variation between trees to allow more than one to be used in the same

simulation and making the structure botanically accurate enough for the vegetation

to be realistic is an unreasonable task. This has led to the in-depth research carried

out in the area of algorithmically generating botanical geometry, for which several

techniques have been developed as surveyed by Sen and Day, [SD05], and explored in

detail within the current section of this review.

2.1.1 Procedural Tree Modelling

Although plant structures are typically too complex to manually model in a reason-

able way, there are cases where a single plant or tree is a main point of focus in a

given simulation and more control over its form is required than can be given by

purely procedural modelling techniques. To this end, work has been done producing

solutions which take a semi-procedural approach to vegetation modelling in that a

5

6

Figure 2.1: Stages of tree creation using user-friendly generation package (images
from [LD99]).

structured rule-set it used to generate the hierarchy of elements, within a user-friendly

environment for manual creation. One such system is put forward by Deussen and

Lintermann, [LD98], where a hierarchy of user controlled structures is used to gen-

erate a complex tree model. The system functions by giving the user a selection

of useful elements such as branching shapes and leaf nodes, and allowing them to

be consecutively stacked to form the basis of a botanical model. To each element

modifiers are available to be set as well, governing the shape produced and the distri-

bution of child elements, which with the addition of available world constraints such

as gravity and light allow for simple generation of high quality single models. The

system was substantially improved by Lintermann and Deussen, [LD99], by adding

much more control over the individual elements. The addition of graphical tools

to manually adjust the shape of each substructure and user-friendly tools to allow

free-form deformation of the model provide the ability to create highly realistic sim-

ulations as shown in Figure 2.1. Although this solution shows techniques which can

provide the easy manipulation of tools to generate singular virtual trees, the process

is still far too time consuming and manually operated to give a reasonable solution to

virtual environments where several trees, or perhaps an entire forest are required. To

achieve larger scale simulations, procedures are required which are more automatic

and require less user input.

7

A manual solution which aims to be more useful to artists using virtual trees is

put forward by Prusinkiewicz et al., [PMKL01]. Rather than beginning with the

lowest level elements and working outward, the proposal provides an interface which

can be used to start with the overall form of a tree and work backwards. This makes

the manual process easier to control and faster to produce usable results taking the

assumption that the more important points from an artistic perspective are the overall

posture and distribution of tree parts, rather than the lower level details. The system

uses an L-System procedure, a technique which will be explored within the next

section of this review, to generate the structure from the imposed appearance of the

plant, allowing a highly detailed tree structure to be created and manually edited if

required. This gives artists a tool to have greater control of the visually important

aspects of the desired vegetation without requiring as much manual input at a lower

level. One drawback of the proposal is that the input interface is somewhat removed

from the artistic notion of the tree, providing a method of controlling the growth

using curves and functions instead of geometry. Although this reverse technique is

more efficient, focussing input more onto the important aspects, larger scenes still

require much more automation and procedural methods of generation.

The techniques of procedurally modelling the geometry of a tree can understand-

ably be split into two areas, modelling the structure and form of a tree and modelling

the actual geometry created around that structure. Given the pre-generated structure

of a maple tree, Bloomenthal, [Blo85], details a method of generating high quality ge-

ometry to provide a visually realistic rendering of the tree. A method is shown which

maps a three-dimensional circle of points at intervals around the line of a given tree

branch, which are then used as the basis to create the polygonal mesh of the limb. At

points where limbs join, complex procedures are required and implemented to join the

meshes forming a ramiform at the junctions without intersecting or overlapping. The

8

proposal models individual leaves as a simplification using only a few polygons which

are then texture mapped to give the appearance of much higher detail, a technique

which is also used on the barked areas of the plant with bump and normal mapping

to give a rough, contoured look. The complications of procedurally modelling limb

junctions is also tackled specifically by Lluch et al., [LVM04], where a pre-calculated

structure using an L-System approach is taken as a skeleton upon which to generate

the geometry in a single polygonal mesh. The idea of the research is to join different

sections of the tree together using only one mesh without gaps. By using one contin-

uous mesh, this ensures that there is no untidy overlapping or undefined intersections

between primitives making up the tree. The proposal performs this by identifying

the intersection points of elements and grafting the polygons together with a higher

resolution triangle mesh, ensuring complete continuity.

Expanding on the previous examples, Weber and Penn, [WP95], detail a devel-

oped solution to automate the structure and geometry generation using a simple

randomised approach. The main idea behind the approach is considering a tree as

multiple recursive levels of branches terminated by one level of leaves and each ele-

ment within a non-terminating level generates a collection of child elements created

at randomly seeded points. The position of child branches can be restrained to gen-

erate tree models replicating a particular species and the system also allows branches

to split into two of the same level instead of spawning the new branch as a child.

Geometry is created using a standard primitive pattern and the thickness of all child

branches is calculated as a function of the parent radius, with the exception of the

main trunk, which is relative to the trees overall height. The simple approach is able

to produce realistic models, as shown in Figure 2.2(a), however, the over simplifica-

tion leads to complications when incorporating functions such as pruning. As the

structure is randomly generated, an envelope cannot be made to influence the growth

9

and has to be used to trim any over-shooting branches and recalculate the children

based on the new length, the drawback of which is that multiple passes are then re-

quired to modify the generation until no overlapping of the envelope is encountered.

Kang et al., [KDRB+03], enhance a similar randomly based procedure by using a

database of elements to greatly speed up the process of generating multiple trees.

Each element of the tree, each branch, is treated as its own individual structure, and

in addition to the main branch, each child element is a separate substructure. When

a new substructure is created it is committed to a database of structures to be reused

in future creation. When a database is available, each structure is then generated by

stochastically sampling the database to produce a new random variation. Once the

database grows in size, many different permutations are available to create a wide

variety of tree forms whilst keeping within the set restrictions of the required tree

species. Figure 2.2(b) shows a diagram of how the system is used to create a larger

structure of smaller substructures and an example of a realistic model which can be

produced using this method.

Pirk et al. propose a technique for the procedural modification of already gen-

erated trees given differing environmental conditions, [PSK+12]. The technique put

forward takes a previously generated tree using common tree modelling software, as-

suming that the tree was grown in clear open space and recomputes the structure to

simulate its shape if it were grown in proximity to an obstacle such as a solid wall.

To produce this result, the input tree model is first analysed and reconstructed as a

skeletal graph. By assessing the age and growth of the tree, the grown rate and age

of individual branches can be estimated. Using the age of the branch, the system

assesses the structure and light conditions for all stages of the growth, estimating the

behaviour of the branch across its life. By assessing a branch’s growth behaviour, the

10

(a) Weeping willow branch structure with and without pruning and fully generated model
with leaves (images from [WP95]).

(b) Stochastic instance sampling and fully generated
cherry tree (images from [KDRB+03]).

Figure 2.2: Procedurally generated and fully modelled trees.

11

influence of tropisms and light conditions on the growth of the branch can be esti-

mated. Using these behavioural estimates, the proposed system can then remodel the

tree in different scenes, modelling how the light distribution or proximity to obstacles

would effect the final structure of the tree. The branching structure is transformed

by its new environment, only transforming effected limbs making the process faster

than Open L-Systems. Once a new branching structure is generated, it can be ren-

dered in real time by creating the fine details such as twigs and leaves during render,

using the GPU. While the proposed system demonstrates a solution to creating and

altering tree models to fit around new scenes by interacting with obstacles and light

conditions, it is limited to modelling light and tropisms and unable to model other

influencing factors such as wind or varying nutrition. The system does not simulate

the growth of new branches in differing conditions, it is limited to modelling the

transformations necessary to branches already present in the skeletal structure of the

input model. While the solution provides a simulated and procedural approach to

adapting tree models to varied environments, it is limited to solitary tree models and

still requires substantial user interaction in the form of inputting correct parameters

for the growth simulation.

The other end of the spectrum within this area of research focusses solely on defin-

ing the structure of vegetation in a procedural manner without extensive consideration

for the geometry to render it, a part of the research field which the remainder of this

section will mainly be reviewing. The majority of investigations in this area approach

defining the structure as a purely mathematical problem although biological aspects

which govern how a plant grows must be considered for a truly accurate simulation.

Several techniques of simulating branching are reviewed by Bell, [Bel86], with partic-

ular attention to the behaviour in modular organisms. Borchert and Honda, [BH84],

detail a simulation of branching focussing largely on the number of branches created

12

in a given structure. The technique deals with symmetric and asymmetric branching

and how development within a structure can be limited. In a different strategy to

predicting the form of a plant at a given developmental point, Sims, [Sim91], looks at

simulating the full growth by creating a system of artificial evolution. The solution

can be used to generate not only three dimensional simulations of plant growth but

also several types of image and texture information sets useful in many areas of com-

puter graphics. The proposal uses genetic algorithms to simulate the development

over time and gives the user a limited amount of control at a high level. Aside for

individual unique approaches to tree generation as previously mentioned, there are

three main areas of interest which constitute the majority of procedural vegetation

research which are cellular automata, fractal geometry and widely considered the

most appropriate simulation method, L-Systems.

L-Systems

L-Systems, or Lindenmayer Systems, were first put forward as a possible plant simu-

lation method by Lindenmayer, [Lin68]. The original theory focused on the develop-

ment of modules within a simulated structure and did not consider the geometry of a

plant, as a development of Chomsky Grammars, [Cho56], which is a system of rewrit-

ing strings using a developed set of rules known as the productions rules. The main

difference is that Chomsky Grammars work by applying the rules to each “word” in

the string sequentially, whereas L-Systems are created to rewrite all of the strings in

parallel. This makes it a better system of simulating the growth of organisms as each

part of the system grows simultaneously in nature. Given the fractal nature of plants,

such that often a branch of a tree may have the same structure of branching child

limbs as its parent branch. Chomsky Grammars make a suitable simulation by the

technique that a simple structure is built up by rewriting individual sections mak-

ing them recursively more complex. A simple example of this technique performed

13

Figure 2.3: The snowflake curve (images from [PLH+90]).

graphically would be the snowflake curve, shown in Figure 2.3.

In order to generate effective graphical representations of branching structures

in three-dimensions, the original L-System theory had to be expanded giving rise

to several new variations. Prominent methods used in simulation include the most

simple variety, DOL-Systems (deterministic context-free L-Systems), along with OL-

Systems (context-free L-Systems) and parametric L-Systems. To generate a three-

dimensional structure from these systems, turtle graphics can be used to interpret

parts of the rewritten string as geometrical information. Much of this process and

many examples of it are detailed by Prusinkiewicz and Lindenmayer, [PLH+90], and

Prusinkiewicz, [Pru86], creating the structure of a plant around which geometry can

be formed. The applications of plant modelling using L-Systems developed since the

release of [PLH+90] are surveyed in depth by Prusinkiewicz et al., [PHHM97], with

particular attention to the development of extensions of the L-System formalisation

as well as new biological uses for the rewriting mechanism. Another survey of more

recent developments is carried out by Prusinkiewicz, [Pru04], and several particular

applications, relevant to the modelling of trees, will be discussed in the remainder of

this section.

A method of describing and simulating plants using L-Systems is put forward by

14

Figure 2.4: The development over time of a wall plant (image from [PLH88]).

Bell et al., [BRS79], which defines a plant by generating the accumulation and loss of

individual elements over time such as individual buds and stems. The method strictly

follows the botanically accurate function of plant sections rather than focussing on

the aesthetic appearance of realism, although each element is also positioned in three-

dimensions allowing a geometric representation to be generated along with the de-

scription of its development. Another approach which models the development of a

plant over time in order to produce a realistic result, instead of generating an al-

ready aged plant by simply simulating its form, is considered by Prusinkiewicz et al.,

[PLH88]. L-Systems are used to map the development and growth of the organism

and its botanical organs individually, incorporating the time relationship between

parts in addition to their spatial positioning allowing several stages of development

to be occurring at any one time, such as newly formed buds as well as flowers, as

shown in Figure 2.4. One of the main issues arising from using L-Systems to simu-

late a continuous process in this way is that the formalisation is discrete, a constant

simulation over time cannot be achieved, instead time-steps must be used to sample

the development at set intervals.

Contrary to modelling plant structure with an emphasis on botanical accuracy,

Costa and Landry, [DCL05], propose a technique to use L-Systems in conjunction

15

with genetic algorithms to generate structures which focus on geometric and visual

accuracy. The paper details the method of using two-dimensional images as a ref-

erence to programmatically generate the growth model (L-System grammar) for any

given species of plant or tree. A large selection of growth models are first produced by

a deterministic generation algorithm and simulated to produce an extensive database

of images for each resulting plant, from which each image is assessed algorithmically

and evaluated using an appropriate fitness function. The growth models are suffi-

ciently detailed, allowing for different methods of branching to occur throughout the

tree structure and combine a formal definition of the plant as an L-System string as

well as representing the organisms geometrically as a collection of specific shapes with

an overall form. The fitness function is used to genetically evolve the algorithms to

create a growth model which produces trees as similar as possible to the original input

images. In tests evaluated on the procedure, the solution was found to always produce

a model sufficiently similar to the original to be considered an appropriate simulation,

however the simplistic grammars generated do not take into account several factors

of the desired species such as the compactness or number of segments.

Although many examples show the power of L-Systems to procedurally model

trees with great accuracy, they don’t allow the artist much control over the form of

the individual plants as can be said for proposals discussed in the previous section.

User defined form is addressed to an extent by Prusinkiewicz et al., [PJM94], which

proposes a method of allowing L-Systems to generate all plant structure but conform-

ing to a geometrical envelope to simulate pruning the vegetation. This is based on

the developed concept of environment sensitive L-Systems, a variation of parametric

L-Systems where the parameters used are unknown at run-time, but calculated as

needed using the position and surroundings of the turtle for example, in the case of

turtle representation. Unlike simply clipping the branches of formed trees geometry

16

where intersected with its envelope, the system uses the clipping information to effect

the further growth of the plant in an attempt to accurately model a plants response

to pruning, which can be used to develop accurate simulations of reasonably com-

plex environments as shown in Figure 2.5(a). Although an intuitive way to limit the

growth of vegetation, Ijiri et al., [IOI06], detail a solution to allow the user, with-

out knowledge of L-System procedure, to dictate the manner in which a tree grows

at a low level. Once an L-System procedure for creating the vegetation growth has

been detailed, which doesn’t necessarily need to be created by the artist, a free-form

stroke, can be drawn in three-dimensional space. The stroke is represented by a 3D

poly-line and this dictates the overall growth pattern of the tree by using the specified

axis as the central trunk around which the branches form, as shown in Figure 2.5(b).

This gives the user a unique control over the growth of any particular plant, whilst

keeping all the generation automatic to limit the required manual input to only the

most important visual aspects.

Open L-Systems are used by Huang et al., [HJT+13], to procedurally generate

bunches of grapes with a similar branching structure to trees. The proposed technique

utilises Open L-Systems to simulate interactions within a bunch as the structure

grows. Huang et al. have created formal rules governing the growth pattern of most

types of grape bunch which accepts user input of shape using a polyhedron with 8

faces to define a required ideal shape. Once user input is taken, the proposal generates

the parameters for an Open L-System which simulates branch interaction using the

weight and volume of berries to pull the branching structure down while avoiding

self-collision. While the process generates structures which fill all standard shapes

of user input, simulating environmental interactions as well as grape thinning, the

solution does not take into account factors such as sunlight or nutrition to simulate

growth patterns.

17

(a) Plant response to user defined ge-
ometric pruning envelope (image from
[PJM94]).

(b) Tree growth along user imputed axis (image from [IOI06]).

Figure 2.5: Using graphical user interaction to allow control of tree generation.

Although L-Systems have proven to be very successful in modelling static trees

at distinct points throughout their development, the discrete nature of the procedure

creates difficulties when attempting to animate a continuous process such as the

growth of a plant. Prusinkiewicz et al., [PHM93], attempt to extend the L-System

model to create dL-Systems in an effort to separate the discrete intervals required by

the L-Systems from the growth model of the organism. Differential equations are used

to model a continuous growth pattern, such as the growth of a limb, as opposed to

sampling the growth at finite points, extending the standard L-System model to dL-

Systems as a combination of continuous and discrete modelling. The benefit of this

extension is that with a continuous time model, smooth animations can be produced

at any speed required allowing for a wide range of applications. With the advantages

of the approach, there are still many drawbacks of the proposal in the published state,

18

with dL-Systems unable to comprehend differential-algebraic equations and no built-

in differential equation solver in the proposal, meaning that modelling cannot be done

directly in terms of dL-Systems. There is no implementation of stochastic rules as with

basic L-Systems and the solution produces somewhat unrealistic models with only

the growth model implemented, not allowing for wilting or decay. As the individual

elements are not environmentally-sensitive or aware of the development of surrounding

limbs, there are cases of limbs geometrically intersecting each other. Noser et al.,

[NTT92], propose a system where L-Systems are used to animate the movement of a

plant at a discrete time in its growth, so that the tree itself is generated in the usual

manner and without introducing further growth, the structure’s interaction with the

environment is animated in the form of gravity and oscillating wind functions. Wind

is the only elemental interaction so far considered and the approach does not simulate

the effect of rain or snow for example, the animation itself is calculated using timed

parametric context-free L-Systems (parametric tOL-Systems).

2.1.2 Tree Rendering

Although substantial research has been done on the generation and modelling of trees

for virtual scenes, the rendering of tree models poses particular problems in real-time

due to the complexity and detail of vegetation. Wang et al. proposed a method

of realistic leaf rendering which focusses on the visual quality of global illumination

effects on leaves, [WWDY06]. Leaf appearance in the model is described by a series

of bidirectional reflectance distribution functions (BRDFs) and bidirectional trans-

mittance distribution functions (BTDFs). The functions are obtained by examining

the rough surface scattering and sub-surface scattering which gives leaves their visual

appearance under global lighting conditions. Data from real leaf values are used to fit

the model and create the BRDFs and BTDFs. The leaves themselves are modelled as

19

Figure 2.6: Rendering result of trees (images from [WWDY06]).

slabs with a rough surface and rendered using a two-pass algorithm which is derived

from the Precomputed Radiance Transfer (PRT) approach. The model performs by

assuming that the interior of a leaf does not need to be modelled in order to predict

the appearance of lighting. During the first pass of the render, the indirect light-

ing component is computed along with environment lights using PRT. Once that is

performed, the second pass uses the precomputed light visibility to calculate direct

sunlight effecting the leafs appearance. The model, unlike PRT, is able to capture

high frequency lighting effects such as soft shadows. LOD (Level of Detail) models

are used for each leaf to speed up the rendering process and the BRDF and BTDF

pairs are stored as RGBA textures for quick inclusion using the GPU. The system is

capable of rendering leaves using environment maps or point lights as well as direct

sunlight illumination and performs at frame-rates of 10 FPS when rendering a tree of

over 500,000 vertices. While the model produces visually realistic results, as shown in

Figure 2.6, it performs on only broad-leaf species and ignores small leaf details such

as hairs.

Level of Detail Rendering

While the method put forward by Wang et al. produces visually realistic results,

a frame-rate of 10 FPS while rendering a single tree is too slow for most real-time

20

applications. To deal with the natural complexity of models and rendering speeds

necessary for interactive software, Level of Detail rendering is a commonly used tech-

nique. Level of Detail rendering works by substituting the full detail scene with

simplified geometry when the detail is unnecessary due to viewer distance or occlu-

sion. Gumbau et al. use a multiresolution scheme to produce camera dependant LOD

tree rendering [GCRR11].Their method, which is designed for fast parallelisation on

the GPU works by determining which areas of a tree are less visible dependant on

camera position and renders those with simpler geometry. The technique consists of

a pre-processing stage and a render stage, During the pre-process the mesh is divided

spatially into oriented bounding boxes for easy grouping and visibility for each box is

computed for a range of camera angles. Once the visibility for each cell has been cal-

culated, the leaves within each cell are stochastically sorted. During the render, the

visibility for each cell is determined using the camera position and the pre-computed

visibility values, determining the LOD. Once the LOD is determined, a list of the

sorted leaves within the cell is generated for rendering. The size and colour of the

remaining geometry is then altered to preserve the general visual appearance of the

model given that only a selection of the leaves are rendered. This LOD management

system allows for the rendering of complex meshes at real-time frame-rates and is

designed to be parallelisable using the GPU and CUDA to avoid costly data transfer

between devices.

In the majority of cases, LOD rendering is based on simplifying complex geometry

for faster rendering times without reducing the visual quality of the result, requiring

that the model is only simplified when its visibility is impaired due to distance from

viewer or occlusion. The previously described technique relies on selectively rendering

only a portion of faces making up the whole model, while Livny et al. propose an LOD

rendering technique which represents the tree canopy as textured planes, or “lobes”

21

which are used to reduce the complexity of tree models, [LPC+11]. The proposed

solution takes a tree model as input and decodes the geometric information into a

lobe representation for storage. The lobe representation comprises of branch and

skeleton structure stored as spline curves stored with details required to regenerate

the width of the limbs and lobes, which are groupings of areas of canopy which

can be represented as single textures planes. This representation allows for compact

storage and fast transmission of tree models by reproducing the detail of the tree

at render. When the tree models are rendered, the splines denoting tree limbs are

smoothed and tessellated dynamically, giving them three dimensional structure and

textured surfaces. Tree foliage is synthesised by applying texture patches to the

lobe geometry. Lobes are rendered as a collection of textures samples drawn from a

species dependant library, allowing for the addition and removal of texture ‘patches’

to increase or decrease the LOD representation. Batches of leaf textures are arranged

to fit the lobe geometry, allowing the tree canopy to be fully synthesised during

render. This technique is used with tree data from laser-scanned models and has the

advantage of fictionally synthesising foliage, making up for common gaps in scanned

data. The technique does however rely heavily on the classification of trees and

pre-generation of a library of species information and texture patches.

An example of the use of tree LOD models is put forward by Bao et al., [BLZD12],

proposing a method of progressive client rendering of forest scenes. The proposal ex-

tracts LOD models from tree meshes using a new framework by representing leaf

groups as textured quads, extracting the leaf model by defining a leaf vein quadratic

interpolation function and using a leaf phyllotaxy based LOD model. The technique is

used for rendering large forests on networked client applications, requiring that mod-

els be compressed as much as possible for transmission. The system first downloads

a scene management file on the client application, followed by tree models ordered by

22

LOD, lowest first. Once the simplest LOD representation has been downloaded, ren-

dering can begin on the client with higher resolution models replacing lower resolution

models in the scene once they have been downloaded. Rendering is performed using

multiple render passes, with the first render pass of the scene being used to determine

required LOD representations and the second to render the tree models, instancing

the LOD models and culling the unnecessary models entirely on the GPU. A LOD

system is also used to generate shadow maps within the scene. LOD representations

are essential in this type of application to allow for easy transmission of files across a

network and allowing real-time rendering rates. The system achieves up to 33.9 FPS

when rendering a scene of 7446 trees with over 1.5 million polygons within the view

frustum.

One of the most useful recent advances in GPU capabilities is native dynamic

tessellation, as used by Livny to render tree branches and detail. A new series of

programmable shaders allow tessellation of a mesh and the addition of new geometry

on the GPU during render, allowing view-dependant LOD rendering to be performed

easily. The process of implementing dynamic tessellation using OpenGL 4.0 and

above is detailed by Shreiner et al., [SSKLK13], and by Tatarchuk et al. for DirectX

implementations, [TBB10]. The process of implementation within a LOD system

requires the input of an over-simplified mesh which is dynamically detailed by the

render pipeline, rather than beginning with a detailed mesh and simplifying it for

lower LOD representations. Using OpenGL, the system adds two new shaders, the

Tessellation Control shader and the Tessellation Evaluation shader. The Tessellation

Control shader, processed directly after the Vertex shader, is used to determine the

level of tessellation required by giving the user access to the data of all vertices within

a given face. This data can be assessed and tessellation levels are provided individually

for the subdivision of each edge and a level for the internal subdivision of the face.

23

Once Tessellation Control has been processed, the Tessellation Evaluation shader is

processed on each new vertex individually and grants access to the vertex data and

the vertex’s position within the face, during this stage the final vertex position is

specified incorporating any desired displacement or transformation. Using the same

simplified vertex data, a mesh can be passed to the Fragment shader for rendering

with much greater complexity and substantial added geometry, allowing greater detail

to be rendered view-dependently.

2.1.3 Tree Simulation

Wind Simulation

Whilst many techniques have been used to enable the high quality rendering of com-

plex objects such as trees in real-time, to achieve the required realism in virtual

simulations a technique of animating the vegetation is required as natural objects,

such as trees are very rarely seen in a completely static state. The most noticeable

natural movement of plants is their interaction with wind and airflow, which is the

main focus of dynamically animating geometric representations and is an incredibly

complex and complicated field of research. This section will cover current research

in simulating trees interaction with the natural environment including the two major

schools of study in the area: data-driven and full simulation.

The premise of the data-driven techniques is that the animation of elements is

controlled using recorded, real-world data such as images or motion tracking. A

popular form of this is video motion capture which has been applied to vegetation with

varying degrees of success. Long et al., [LRBJ09], demonstrate the results of using

traditional motion capture techniques to animate a small plant by placing around

100 reflective markers on the surface of the plants leaves and optically tracking their

movement with a camera. The area taken by leaves and branches is calculated using

24

inverse volume rendering and all optical markers are grouped using a structure which

replicates the hierarchy of the tree. Using the motion tracked by the camera, a system

is developed to map the same motion to a virtual model of a similar plant, however the

technique had serious limitations. Due to the manual input needed placing reflective

markers and recording the outcome, the approach is not feasible for larger scale

applications and allows for no variation in the results which could map more than one

plant realistically without further capture. Another inherent drawback with optical

motion capture is that movement is only detected in two dimensions, leaving the

need to estimate any movement parallel to the camera view unless more than one

camera is used. The need for manual input required in placing reflective markers

is addressed by Diener et al., [DRF06], by using a film sequence of a plant moving

in wind against a solid background in addition to film of the background alone and

detecting the leaves from the film by comparing the individual pixels of each sequence

and removing those deemed to be not showing the plant. Each leaf is detected and

grouped with its surrounding leaves according to the branch hierarchy by using the

movement and velocities of each leaf calculated by comparing consecutive frames of

the video as shown in Figure 2.7(a). The branch structure can be defined from the

groupings using the leaves as terminal nodes, allowing movement to be propagated

down the hierarchy once it is recorded in the leaves. A degree of estimation is used

to project the leaf nodes from their 2D recording into a 3D space, however once

this is done the 3D information is automatically applied to all intermediate nodes

in the structure as in Figure 2.7(b). The final step in the approach is to use the

information as a virtual skeleton which can then be scaled to fit the model of a virtual

tree and mapped to influence the position of relevant geometry, a process known as

skinning and demonstrated in Figure 2.7(c). While this approach eliminates the need

to manually place reflective materials, it is still unusable in an uncontrolled, outdoor

25

(a) Clustering of terminal nodes to represent underlying struc-
ture.

(b) Tree skeleton generated from
detected terminal nodes in video
capture.

(c) Virtual model (right) being controlled by a skeleton mapped to
video movement (left).

Figure 2.7: (images from [DRF06]).

environment given its dependence on a constant background. Many of the other

drawbacks still apply in that the information and motion recorded is only accurate

in two dimensions and there is no facility to alter the direction or amplitude of the

wind applied after the data has been recorded.

The main limitation of data-driven techniques for directly animating scenes is

that without some manner of simulation, the forces and subjects cannot be altered

or controlled dynamically without the addition of further data for the new scenario.

Given that there would have to be a compromise between the two techniques, much

research is carried out on simulating the process entirely using our knowledge of

physics and mechanics to produce an approximation of the real effect. Much research

in the field of biology is enhancing our knowledge of the behaviour and characteristics

of plants in addition to data collections such as by Mayhead, [May73], which is directly

26

relevant to producing realistic simulations.

Weber proposed a system of simulating tree behaviour and deformation under

wind and other external forces using a highly parallelized solution, [Web08]. The

proposed technique models branch movement by dividing the simulation’s dimen-

sions and solving them separately in parallel. The system is modelled as a pair of 1

dimensional simulations in 2 dimensional space and by framing the axes of motion

within the system, the axes are solvable separately. The technique is able to simulate

force interactions in real time due to the parallelisation of the computations, allow-

ing planar collision to be solved in two separate parts while kinematic calculations

can be parallelised to a degree using the GPU. Hu et al. proposes a technique for

modelling the movement of trees in wind using curved beam analysis, [HCH12]. The

solution assesses individual branches and models three separate shapes of the branch

under force, these shapes are blended between using a driven harmonic oscillator giv-

ing the vibrating motion of a branch under the influence of wind. The system can

generate a motion similar to a Lissajous-curve vibration, incorporating natural oscil-

lation frequencies and damping ratios, approximating forced vibration of the limbs.

To enable real-time simulation the technique assumes that branches are isolated and

that vibrations in the local coordinate system do not affect neighbouring limbs. The

simulation is tested using wind force derived from a 3d 1
fβ

noise and can produce

simulations running at between 10 and 45 FPS without using pre-computation or

GPU enhancements to calculation.

Some incredibly impressive results have been achieved by Habel et al., [HKW09],

by using two-dimensional motion textures as a basis for tree movement. A large

part of their technique is to calculate the force application by using the dynamics

of a tapered beam, which more represents the form of actual branches than the

assumption of a uniform beam which has been commonly used in the past. The

27

computation of the winds effect on the limbs is simplified by the assumption that

adjoining branches do not influence each other as due to their size, the resonant

frequencies of parent and child branches are completely different and much of the

visual effect can be maintained by overlooking this transferral of force. Using recorded

data, noise functions are generated which mimic the forces of the wind and these

can be transformed into 2D motion textures, by giving all vertices an index into

the texture, all animation and deformation can be performed on the vertex shader

making the process highly parallelised. The motion textures are created one for

each hierarchy of branches, as opposed for each branch and once the terminal nodes

(leaves) have been animated, the motion can be propagated back down to the trunk.

Although strong wind needs to show the effects of a visible direction, it was noted

that due to the turbulence created by a tree, mild winds create an oscillation in

the branches without a discernible direction. The benefits of this approach over

motion capture is that all wind parameters can be altered dynamically and by using

the vertex shader, the computational cost is minimal compared to the shading and

rendering of the tree itself whilst providing a more realistic simulation than previous

efforts by correctly accounting for the dynamics of tapering branches. Adversely, the

transferral of forces between branches to model the full inertia present is implemented

by Diener et al., [DRBR09]. In this solution a modal representation of the wind is

used to break up the effect of the forces according to the frequencies and by assuming

that the wind load across the whole tree is constant, the force simulation can be

pre-computed independent of the complexity of the tree, although consistency is only

adhered to for each tree and forces applied to separate trees are capable of variation.

By removing time sensitive factors from the calculations it is possible to pre-compute

a large amount of the interaction with simplifications made using the observation

that low frequency modes effect the whole tree in the most visible manner whilst high

28

frequency oscillations only animate the smallest branches as shown in Figure 2.8.

By removing the highest frequency modes of the wind forces much of the visual

effect is retained allowing for effective level of detail control, however the animation

remaining resembles less of the complexity of the natural effect it is visualising. With

both of the discussed methods, strong winds as physically simulated have the adverse

effect of stretching the branches unnaturally, which must then be corrected in a post-

simulation step before rendering can be done. The results of the solution show that the

controllable levels of detail in the wind function allows for efficient simulation of trees

at any given distance from the viewer and the parallelization of node computation,

which is independent, enables the animation of over 4000 trees at a minimum of

3FPS. The simulation does not take into account leaf drag due to its complexity as a

mathematical problem, leaving the leaves to rigidly follow their parent branches. This

is a disadvantage to the implementation and the unavoidable limitation of assuming

that the wind load is constant across a while tree is that wind attenuation is not

considered. This gives the unrealistic result of branches at the back of the tree,

shielded from wind are applied the same force.

2.1.4 Summary

For the purposes of the development of real-time tree rendering solutions, within this

thesis the requirements of an ideal tree model and rendering system are summarised

in this section. An ideal tree model should have a full hierarchical structure reflecting

the branching structure of natural trees and be modelled with continuous geometry to

allow smooth, unbroken surfaces in areas of detail. The fine elements of a tree such

as small branches should be modelled individually without the use of billboarding

techniques to allow close and detailed viewing without visual artefacts. The model

29

Figure 2.8: The effects of different modes of a modal wind representation on a tree
structure (images from [DRBR09]).

30

should be deformable in some manner, allowing interaction with a dynamic envi-

ronment through animation or simulation. The focus of this thesis is on real-time

techniques, giving the requirement of interactive rendering speeds and a level of de-

tail rendering approach to allow scalability within a scene. These requirements are

summarised in Table 2.1.4, with the current techniques covered in this chapter which

produce three-dimensional tree models or rendering systems.

31

H
ie

ra
rc

h
ic

al
S
tr

u
ct

u
re

C
on

ti
n
u
ou

s
G

eo
m

et
ry

M
o
d
el

le
d

F
in

e
E

le
m

en
ts

L
ev

el
O

f
D

et
ai

l
R

en
d
er

in
g

R
ea

l-
T

im
e

F
ra

m
e-

ra
te

s

D
ef

or
m

ab
le

M
o
d
el

Lintermann and Deussen (1999), [LD99] X X
Prusinkiewicz et al. (2001), [PMKL01] X X
Bloomenthal (1985), [Blo85] X X X
Lluch et al. (2004), [LVM04] X X X
Weber and Penn (1995), [WP95] X X X
Kang et al. (2003), [KDRB+03] X X
Pirk et al. (2012), [PSK+12] X X

L-Systems
Prusinkiewicz et al. (1988), [PLH88] X X
Prusinkiewicz et al. (1994), [PJM94] X X
Ijiri et al. (2006), [IOI06] X X
Huang et al. (2013), [HJT+13] X X
Prusinkiewicz et al. (1993), [PHM93] X X
Noser et al. (1992), [NTT92] X X X

Tree Rendering
Wang et al. (2006), [WWDY06] X X X X
Gumbau et al. (2011), [GCRR11] X X X
Livny et al. (2011), [LPC+11] X X X
Bao et al. (2012), [BLZD12] X X X

Tree Simulation
Long et al. (2009), [LRBJ09] X X X
Diener et al. (2006), [DRF06] X X X
Weber (2008), [Web08] X X X
Hu et al. (2012), [HCH12] X X X X
Habel et al. (2009), [HKW09] X X X X
Diener et al. (2009), [DRBR09] X X X X

Table 2.1: Summary of current techniques covered in Chapter 2.1 and their applica-
tion of identified key requirements. Work is listed in the order it appears within the
chapter.

32

2.2 Simulating and Rendering of Snow

Arguably one of the most visually striking and inspiring environmental conditions

seen in natural scenes is one of heavy snow. Snow cover has the ability to turn a

scene into a sweeping white landscape, drastically altering the form and behaviour of

all structures beneath it. Thick, heavy snow accumulating on trees not only alters the

vegetation’s appearance, covering it in a complex surface of ice, but the weight of the

build-up and connective forces exerted on separate elements joined by a shared snow

surface completely alters the movement and behaviour of all branches and leaves.

While several techniques for the accumulation of virtual snow have used static trees

as an example for detailing the effectiveness of algorithms, little work has explored

the simulation of vegetation or dynamic objects directly influenced in their behaviour

or movement by the accumulated snow. This section outlines the current techniques

and research for the rendering and simulation of snow cover on a virtual scene, as an

essential pre-requisite to the effective simulation of snow covered trees and vegetation.

2.2.1 Snow Rendering

When dealing with the rendering and simulation of snow accumulation within a scene,

the most fundamental aspect of the implementation is the rendering of the snow

itself. In 1997 an early technique put forward for the rendering process of a snow

surface by Nishita et. al. was a solution using metaballs, [NIDN97]. Rather than

being represented as triangular geometry, the metaball technique describes a surface

as a series of volumes with a density distribution, called isosurfaces. Rendering is

carried out using ray tracing and casting rays from the view position into a metaball

to determine the colour of the light received. Snow is layered onto each surface

manually from a top down perspective, with the centre of each metaball lying on the

surface and layered with more than one level of metaball if necessary. To achieve

33

a smooth surface appearance, metaballs are placed closely packed together, while

a sparser placement creates a rougher snow cover. To render the metaball surface,

snow space is divided into voxels for rays to be cast through, calculating energy and

viewable colour. The sample space is prepared by collecting voxels which contribute

to the current voxel. Scattered light calculations are made more efficient by using the

sample space as a reference pattern. Each metaball contains within it sub-balls and

prisms as well, to simulate snow crystals and give more realistic specular highlights

and mirroring. However, while an early and effective solution to the snow rendering

problem, the result of the technique is vastly less realistic and effective than more

modern methods. Another significant drawback is the computation time of ray tracing

rendering algorithms with a scene being rendered to an image 500 pixels wide, at time

of the implementation’s publication, taking 28 minutes to complete a rendering pass.

Yanyun et al. proposed a multi-mapping technique for the rendering of static snow

covered scenes, [YSHW03]. The proposal divides the scene into components of a snow

covered landscape and complex static objects, in this case, trees. To efficiently display

the complex trees, ray casting is used to generate volumetric texture representations

of the geometric models. Snow is then added to the volumetric model from above and

covers the upward facing surfaces to give a densely snow covered tree. The landscape

component of the scene is extruded to create snowy blocks covering the surface, each

block being filled with an amount of snow determined by the probability of snow

landing on the given point and the stability of the structure beneath the snow cover.

The probability of snow landing on any given surface is determined by casting a

ray from surface points upwards to determine occlusion. The snow cover in each

block is stored in a displacement map applied to the bounding box. Once the scene

had been pre-processed to apply all snow cover, it is rendered using ray tracing

techniques. A simple shading model is applied when a ray intersects with a snowy

34

ground block defined by its stored displacement map and when rendering complex

tree volumes the density of voxels are treated as scattering pixels. The rendering

process is compared to rendering the scene as a polygonal representation and although

very slow, over 33 minutes to render the scene once at 1488x918 resolution, the

multi-mapping technique shows much more efficiency than polygonal rendering which

took over 67 minutes in the implementation. Using a ray tracing technique with

volumetric textures and displacement maps ensures a lower sampling where voxels are

much denser, allowing for inherent level of detail representation and reduced sampling

complexity on elements further from the camera, increasing the rendering efficiency

dramatically. However, while only suitable for off-line rendering scenes given the high

rendering time, the technique also required the scene to be completely static as any

alterations or movements in the complex trees stored in volumetric textures would

require recalculation of the pre-processing stages.

While several solutions have been explored for the rending of blanket snow cover on

an object or scene, Langer et al. proposes an image based technique for the rendering

of falling snow more effective than particle systems alone, [LZK04]. The solution

uses a small number of particles combined with an image based spectral synthesis

to generate the textural effect of dense, heavy snow. Snowfall is analysed in its

effect on the final image and determined that while all snowflakes may be falling

at a constant rate, in image space the flakes closer to the camera will move faster

as well as appearing larger. To adjust for the differing rates of fall caused by the

perspective, a number of motion planes are initialised bound to a set of frequencies

to generate the appearance of movement. Within the simulation it is assumed that

all snow falls at a constant 3D velocity. Using the set of motion planes to give a

depth of varying motions, the solution uses spectral synthesis to generate a time

varying opacity function. The opacity function can be used to create a moving snow

35

layer which can be overlaid on a image to give an animation of snow with the effect

of considerable depth. For use in three-dimensional scenes the snow layer can be

mapped to a plane rendered close to the camera with the best visual results achieved

by using a combination of the opacity function and finite particles. By combining

the two approaches, the particle system gives distinct individual snowflakes and the

spectral synthesis gives the textural effect of dense falling snow. While the solution

was developed for the overlaying on top of static 2D images or video, it has been

adapted to work with 3D polygonal scenes with a moving camera. By keeping a low

particle count and adding the opacity function, the visual effect is much more realistic

than simply increasing the number of particles and while increasing the particle count

greatly slowed rendering of the scene, the adding of the spectral synthesis technique to

the 3D polygonal scene made no discernible difference to the rendering time achieved.

The method is effective as well as flexible, being able to be extended to include rain,

motion blur and a movable camera however the solution is still unable to achieve what

would be determined as real-time frame-rates, reaching only 4-5 fps while rendering

a static image at 512x512 resolution. In addition to the slow rendering time, the

solution in its published state allowed for only a fixed rate of depth across the whole

image, not accounting for any occlusion or differing depths as may be encountered in

a dynamic 3D scene.

2.2.2 Snow Accumulation

Occlusion Based Accumulation

One of the major influences on the reality of any given snowy scene is occlusion.

Snow should not settle and lay on a surface which is blocked by another surface

above. Modern shadow rendering techniques tackle occlusion by rendering a scene

first from the direction of a light source, and using the depth of all surfaces visible to

36

determine whether a surface rendered from the camera’s view should be illuminated.

Several snow techniques use a similar basis by projecting the areas to be covered with

snow from above.

In 2004 Ohlsson and Seipel [OS04] proposed a technique to use deferred rendering,

shadow mapping techniques to accumulate snow onto a complex scene. By rendering

the scene initially from the point of view of the sky, occlusion is computed and the

height of each point within the scene which is viewable from above is stored in a

depth map. The depth information of each surface is then used to determine whether

the face will receive snow cover. To smooth the edges of snow occlusion adding to the

realism of the scene, several projections are taken from above at slightly different offset

angles and the result is averaged. To smooth out artefacts caused by averaging several

depth maps, the resultant snow accumulation is combined with a perlin noise stored

in a three dimensional texture and the result saved to an alpha texture for rendering.

The amount of snow received on a face is calculated using its visibility from the

sky and the angle of the face, with greater amounts of snow accumulating on more

horizontal surfaces. Once the scene has been rendered in its first pass to calculate the

build-up, it is rendered again and the snow is visualised, using a noise texture bump

map to improve realism. The main advantage of this solution is that the technique,

using projection rendering, makes the snow calculation completely independent of

the complexity of the scene and number of objects contained. However, there are

several drawbacks to the implementation, with interactive speeds being achieved but

not with high enough frame-rates to be considered real-time at this level, performing

at 11 frames per second when rendering a 16,000 polygon scene at 900x900 resolution.

Rendering the snow surface as an offset surface from the original object does not close

the edges of the created displacement properly and leaves artefacts where snow can

be seen to be floating above the surface it lies on. As snow calculation is performed

37

per pixel in the rendered vertical projection, the size of an accumulating surface is not

taken into account allowing very small faces such as thin twigs to build up unnatural

levels of snow. Finally, although the technique is considered to be interactive and

dynamic scenes can be calculated, the snow is recalculated between frames causing

the effect that if a snow covered surface were to move under the cover of another

object, any accumulated snow would be lost upon recalculation.

Tokoi proposed a similar method of snow accumulation, [Tok06]. As a pre-

processing step, all upward facing surfaces in the scene are classified as snow coverage

areas and, grouped in such a way that within each group there were no horizontally

overlapping areas, i.e. no overlaps within a group when viewed from above. Each

group then forms a snow coverage map, used to accumulate the snowfall. As with

Ohlsson and Seipel, shadow mapping techniques are used to project the surfaces vis-

ible from above, using multiple projections from offset angles to simulate falloff and

flake flutter. Once snow has been accumulated, each site is checked for the stability of

the snow deposited. If any given snow site has accumulated more than the maximum

amount of snow, the extra is deposited to a neighbouring cell and if the difference be-

tween two adjacent sites exceeds the angle of repose, snow is shifted to the lowest site.

If snow is shifted off an edge, the excess is deposited on the highest snow site below

the current surface. Once all stability tests have been completed, the snow surface

is converted into a polygonal mesh for rendering. This snow accumulation technique

has the benefit of being independent of the complexity of the scene, making it a good

approach for complicated areas, however, it does have some significant drawbacks.

Given the current implementation, it is very difficult to divide single objects within

a scene into multiple snow coverage groups, making the system unable to process self

occluding surfaces as groups must be non-overlapping. While processing time is not

dependant on the polygon count of a scene, it does increase with larger numbers of

38

target groups and as groupings must not overlap, complex scenes can require a very

high number of groups. Given the resolution of snow maps, fine small details such

as individual leaves have difficulty defining a snow profile and, although the perfor-

mance of the solution is technically interactive, a very low frame-rate of 3.38 fps is

achieved at 300x300 rendering resolution, making the technique a substantial amount

less efficient than real-time.

Foldes and Benes, [FB07], present a technique for rendering snowy large scenes

from a great distance by using ambient occlusion and direct occlusion to determine

snow-melt. Ambient occlusion is calculated on the large scene e.g. a mountain, to

determine where snow would accumulate. If the ambient occlusion is too high it is

deemed that snow would not penetrate to the area. Direct occlusion is calculated

using projected rendering passes to determine which areas of snow would receive

enough direct illumination to melt over the course of a day. Sunlight is averaged over

the course of a full day, using the lights trajectory to determine melting. Once snow

cover and snow-melt has been approximated, the scene can be rendered with realistic

and high quality snow-cover as shown in Figure 2.9. The most expensive calculation

in the technique is the computation of ambient occlusion which can be pre-computed

as a pre-process. Low detail scenes can be rendered using the technique in a few

seconds although several minutes are required for high detail models. The solution

provides a very high quality result although rendering is not done in real-time and the

scene cannot be dynamic without requiring a full re-computation of the snow cover.

Geometry Based Accumulation

In the previous section, proposals were discussed which used rendering techniques to

determine snow cover based on scene occlusion. There are several approaches to the

problem which rely more on assessing the surrounding geometry creating the scene

to determine snow accumulation. Fearing suggests an approach which uses particle

39

(a) Empty scene with no snow. (b) Scene with snow accumulation gen-
erated using ambient occlusion only.

(c) Scene with snow accumulation gen-
erated using ambient occlusion and di-
rect sunlight.

Figure 2.9: An example of the occlusion based technique put forward by Foldes and
Benes, images from [FB07].

40

projection to calculate snow height for a given point, [Fea00]. Tackling the issue in

the opposite manner than would be expected, rather than projecting from above to

ascertain which surfaces would be hit by falling snow, Fearing proposes a method

of projecting particles upwards from the faces to determine which are occluded and

which eventually reach the sky. All snow supporting surfaces, surfaces which run

horizontally enough to allow accumulation, are first divided up into launch sites.

Each launch site emits a series of particles upwards and these particles are tested for

collision with the surrounding scene. If no collisions occur and the particle reaches

the sky-plane, a snow contribution is made to the launch site. This is performed so

that each local surface has control of its contribution to the scene and can dynam-

ically add or remove launch sites as needed. Adjacent launch sites which share the

same snow accumulation can be merged into one and sites which differ radically can

introduce more sites in-between them to refine the snow boundaries. Sites can be

ordered by importance allowing greater focal points to spend more time processing

and factoring in sites which have not had the chance to emit particles as the ordered

list of sites is processed until a pre-defined limit of time is reached for each iteration

of snow accumulation. Rather than calculating the result in one pass for rendering,

the approach is gradual and the resulting scene is refined as the simulation continues.

Particles are emitted upwards in a series of randomly offset vectors to simulate flake-

flutter, a technique which can easily be combined with an overall direction vector to

simulate wind force in a snow flake’s travel. The sky plane is separated into a series

of buckets and, when a particle reaches the sky, bucketing and filtering is performed

to ensure that a small area of sky does not input too much snow onto the scene.

After snow accumulation is calculated, stability tests are performed on each site by

comparing its neighbours to calculate the angle between them, if the angle is greater

than the pre-defined angle of repose, snow is shifted to a lower site or avalanched over

41

a surface edge if necessary. Once snow cover has been computed, launch sites are

split into edge groups and Delaunay triangulation is used to convert the snow into a

polygonal surface for rendering. Procedural noise textures and bump maps are used

for snow dusting and to give a more realistic visual effect to the solid snow surfaces.

The implementation proposed produces a very effective result with several advan-

tages, allowing each local area to define its resolution allowing calculation of the most

visually important sections at a much higher detail and realism. Simulation of flake

flutter and wind travel are inbuilt into the solution as well as the ability to consider

obstacles and blocking surfaces during edge transit of an avalanche. There are, how-

ever, limitations with the proposed method where objects that overlap themselves in

the Z-axis causing great difficulty in obstacle calculations, often needing them to be

split into more launch sites than necessary, sometimes as much as one per polygon.

Stalagmite artefacts are caused by the over concentration of avalanched snow in the

implementation and all snow accumulation is based on a static scene, not allowing

the objects to be dynamic or animated in any way.

Haglund et. al. propose a simple method for rendering basic snow accumula-

tion using a particle system, [HAH02]. Each surface is mapped to a two dimensional

texture which stores the snow height at any given point. When a particle which is

emitted from above collides with a surface, the height of snow cover at the corre-

sponding pixel in the texture map is incremented. At surface boundaries a maximum

snow height is used to limit shading artefacts at edges when rendered. For very light

snow cover, an alpha blended texture is mapped onto the surface to give the visual

effect of snow, whereas a new surface is generated from the stored accumulation where

snow is thick enough. Using the regular grid of heights obtained from the texture,

a new low resolution surface is procedurally generated using random triangulation

patterns to minimise a noticeable repeating pattern of artefacts created by shading.

42

The solution proposes a simple and easy to implement method of accumulating snow

cover on a scene, however, the results are very primitive and do not share the realism

or accuracy of other methods mentioned in this survey.

Festenberg and Gumhold put forward a snow technique using height span maps

of a scene, [FG09]. For the purposes of simulation, the technique focusses solely on

the geometric properties of the scene to determine snow accumulation, and not as-

pects such as temperature, wetness or roughness. A height span map is created of

the entire scene and depth peeling is performed to compute the height transitions

of all points in the map, providing a representation of vertical occlusion. To ease

the process of depth peeling, the scene is procedurally altered to add back facing

polygons to all front facing surfaces which do not have any. Snow patches on each

surface are grouped by picking a random starting point on each surface and flood

filling the map until all connecting points are grouped. For each point in a group,

outer and inner edge distances are also calculated. Starting from the highest point in

the map, the maximum snowfall required by the scene is introduced and if the given

point cannot support the maximum amount of snow, excess is shifted to neighbouring

lower patches and avalanched onto lower surfaces if necessary. Once the span map

has been completely traversed to assign snow cover to all points, the snow surface

is triangulated for rendering. The process uses depth peeling to build a scene en-

compassing vertical occlusion, allowing for a desired amount of snow to be visualised

in one pass rather than building up an accumulation over time, one major disad-

vantage of this is that the changing shape of a surface due to snow accumulation is

not considered. The creation of an entire snow scene is computed in approximately

1.5 seconds allowing reasonably complex animations to be rendered off-line, but not

achieving interactive or real-time speeds. Due to the depth peeling and height span

map allowing the computation of snow cover from the highest point downwards in one

43

pass, snow stability does not need to be further calculated, increasing the techniques

efficiency. One significant disadvantage to the implementation as presented is with

finely detailed objects where a surface may only be able to contain a single row of

snow patches, producing unwanted artefacts as shape cannot be computed from the

limited cover.

Festenberg and Gumhold also put forward a method of snow cover generation

based on a physical model of granular deposition, [FG11]. As with [FG09], a height

span map is created of the scene with each pixel representing a possible snow site and

depth peeling is used to generate a representation of the entire scene encompassing

vertical occlusion with each site sorted by height. Each pixel of the snow map is then

put through a discretized kernel, assessing the surrounding sites and determining

snow cover using a diffusion equation for snow with strong adhesion and analysing

upwards for visibility and downwards for surface support. As gaps smaller than the

maximum possible bridge length are found within a kernels range, new snow sites

are generated within the gaps producing a bridged surface, calculating its position

and form using the distances to supporting edges, as shown in Figure 2.10. The

accumulated data is then converted into a triangle mesh for rendering, adding an

offset vector at surface boundaries to achieve overhangs. To increase realism, an

alpha masked texture created by assessing real snow boundaries is applied to the

edges of the generated surface, providing a high detail effect without adding to the

complexity of rendered geometry. A marching technique is utilised to propagate edge

texture coordinates across the mesh using a priority queue of vertices until coordinates

have been assigned around the entire boundary reaching to one texture unit high.

The solution put forward in this paper has the capabilities to generating high detail

snow cover on a complex scene to any desired accumulation in one step, also giving

the possibility of generating snow accumulation animation although, recalculating

44

Figure 2.10: An example of generated snow bridging, images from [FG11].

the scene from scratch for every pass. While the results are much more realistic

and visually convincing than those achieved in [FG09], as shown in Figure 2.11, the

computation time required is much greater, with 95% of the time being the processing

of each snow site using the kernel and the implementation taking an average of one

minute per frame. Another serious disadvantage of the technique is that, like the

majority of snow cover simulations, it is limited to static scenes as animation of

the scene would not take into account snow accumulating on surfaces which were

previously un-occluded due to a change in geometry.

In 2013, Stomakhin et. al. described a snow simulation technique using a Ma-

terial Point Method (MPM) to model realistic snow interactions with a complex,

animated scene, [SSC+13]. MPM uses material points (particles) to track snow po-

sition, velocity and mass using a Cartesian grid. Particles are first rasterized to a

grid where densities, volumes and forces are calculated and grid velocities are up-

dated. The Cartesian grid allows self collision of the snow to be calculated. Once

45

Figure 2.11: An example of generated snow covering a pine tree, images from [FG11].

46

Figure 2.12: An example of the fracture of a modelled snow sculpture using an MPM
method, images from [SSC+13].

self collision is performed, the linear system is solved and the particle velocities are

updated. Particle collisions with the scene are calculated and finally particle posi-

tions are computed. Snow bodies are meshed to a geometric surface for rendering

allowing the MPM system to only track unmeshed particles, which are rasterized to

the simulation grid for render. The system allows for a user-controlled snow model

with adjustable elastic properties and snow behaviour. The system provides an effec-

tive and realistic rendered result allowing user controlled snow behaviour. The MPM

method is shown to give good results simulating stiffness, plasticity and fracturing

of snow-based sculpted objects as shown in Figure 2.12. The system also interacts

dynamically with an animated scene and complex animated characters. While the

simulation is largely procedural, many parameters need to be tuned by hand, requir-

ing substantial user control to produce the required results. Interaction with air is

also not implemented in the system, which would be necessary for the simulation of

powdered snow in situations such as avalanche simulation. The MPM method is an

offline system, not capable of simulating interactions within real-time applications,

scenes tested within the paper show a range between 2.1 minutes and 25.8 minutes

per time-step, requiring a substantial amount of computing time to produce lengthy

and complex simulation.

47

2.2.3 Environmental Simulation

While one of the most noticeable visual factors of snow accumulation is the occlusion

of objects within a scene, the environmental state of the area plays a large part in

where snow will land and if it will settle and build up or melt. Several studies have

been made on the simulation of environmental factors such as wind or surface heat

and how such aspects effect the generation of a realistic snow covered scene.

Muraoka and Chiba, [MC00], proposed a snowfall simulation which incorporated

snowfall, snow cover and also the effect of snow-melt on the rendered scene. Wind

forces are calculated, having an effect on snowflake movement, by combining vortex

fields to generate a field of air currents. The currents are comprised of both simple

currents (laminar flows) and turbulent flows of differing size to create a full air flow

system. A particle system is used to simulate the individual snowflakes, which move

through the scene acted on by both gravity and wind forces. The scene is discretized

into a voxel field upon collision between a static object and a snowflake, the adhesive

force is computed to determine whether the flake will stick to the surface. Once snow

cover is generated, snow-melt is incorporated, calculated on the surface and under-

side of all snow accumulations. To perform the snow-melt calculations, all polygonal

objects which are included in the scene are converted to voxel representations and

included in the grid. Determined by an object’s attributes, initial temperature is set

in all voxels of the simulation and ambient temperature caused by scattering light

into a bounding sphere, with temperature caused by direct sunlight incorporated only

into the effected areas. For each voxel, heat exchange is calculated for its six neigh-

bouring voxels and temperature increase by ambient and direct sunlight. After all

heat transfers are computed, each voxel is inspected to determine any necessary state

changes, such as from snow to air, with water being lost in the implementation. The

radiation calculations are repeated multiple times with a changing sun position. To

48

render the scene once all simulation is completed, 3D textures are used for individual

snowflakes whereas snow cover is rendered using a combination of a polygonal defini-

tion for its surface and a 3D noise texture for the rendering of the internal structure.

The proposal produces a solution for the effective simulation of very complex nat-

ural phenomena, however the snow cover produced takes a largely simplified form

which is visually unrealistic and the technique of decomposing the scene into a voxel

representation allows for only static, unchanging areas to be simulated.

Feldman and O’Brien, [FB02], demonstrate an implementation of snow accumu-

lation due to wind force. To achieve this, a given scene is discretized into a uniform

grid and wind flow fields are calculated throughout the scene relative to any obstacles

causing a change in air flow patterns. Once wind fields have been completely calcu-

lated for the scene, snow is introduced at a boundary and convected along the fields

until resting on a snow site, stored using a height map. Periodically the wind fields

are recalculated to allow for the changes in the scene caused by accumulating snow

formations. The amount of snow deposited on each site is compared to neighbour-

ing sites to ensure that the angle of repose is not exceeded and any excess snow is

avalanched back into the scene to be deposited again by the wind fields. The stabilisa-

tion repeats until all snow sites are completely stable and the entire process continues

until a pre-set desired amount of snow has been deposited throughout the scene. Once

the snow cover had been computed, the height field is rendered as a catmull clark

subdivision surface. Using flow fields, the approach allows realistic wind based snow

accumulation to be created and simulated, allowing for new effects in winter scenes,

however, the process is very slow and computing a single scene using Matlab can take

several hours limiting the procedure’s use to off-line rendering applications only.

Wang et. al. uses the Boltzmann equation to create a three dimensional mind

49

model in order to simulate snow accumulation by airflow, [WWXP06]. As a pre-

processing step, the scene is divided into a regular discrete grid to allow the wind

model to be sampled at each grid node. According to a probability function, snow

is introduced to the model procedurally across the upper and left boundary, and

its motion is modelled through the wind field, ignoring snowflake collision which is

deemed to be infrequent enough to be negligible. Each snow supporting surface is

mapped to an accumulation texture, upon which a snowflake counter is recorded using

alpha values and when enough snowflakes have settled on any given site, its height

is increased. The rate of snow erosion is computed as a function of wind speed,

snow concentration, saturation concentration and efficiency of travel. This solution

provides a very visually effective result giving realistic snow build-up around obstacles

which create a vortex in the wind model. Rendering the implementation at a 600x400

resolution gave a real-time application achieving 26 frames per second on very low

powered computing hardware.

Maréchal et al. [MGG+10], detail an implementation of an environmental model

for winter scenes which incorporates air and dew point temperatures, precipitations,

day and night cycles, cloud cover and heat transfer between materials. A thermal vol-

ume simulation is used to calculate conductive, convective and radiative heat transfers

through a scene. Simulation of phase changes are also included allowing the modelling

of both freezing and melting processes. Once simulation is complete the solution gen-

erates polygonal models of snow and ice layers throughout the defined area. The first

step of readying the scene for simulation is to generate a voxel representation of the

terrain using a coarse voxel grid, a finite volume technique is used to calculate heat

transfers through elements in the grid. In the first stages of the simulation, a weather

model is used to calculate the precise parameters for the environment at any given

stage and snowfall and accumulation is simulated throughout the scene. Once the

50

weather effects have been computed, heat transfer between each voxel and its neigh-

bouring voxels is calculated and all state changes computed for materials defined by

voxels. Phase changes also have an effect on neighbouring voxels, for example, melt-

ing snow will introduce water to soil blocks below it, altering their thermal attributes.

Each voxel contains identifiers for its contained material, attributes, temperature and

energy which is assessed by the simulation loop. Although the simulation takes into

account a variety of heat flows, solar energy and radiative transfers with air are discov-

ered to have the most noticeable effect on the scene. Once simulation has completed,

the voxel representation is used to generate three polygonal meshes for rendering,

one for water, ice and snow. The snow mesh is generated as a height field used to

displace underlying surfaces where as a general water/ice mesh is generated before

decomposing it into its relative parts. Smooth transitions between meshes whilst ren-

dering are achieved using texture blending. A visual representation of the proposed

process is shown in Figure 2.13. The solution provides a very realistic and effective

approximation of complex natural phenomena, generating very high quality off-line

rendered results for static scenes.

2.2.4 Summary

To develop an effective snow simulation technique, the requirements of an ideal tech-

nique are set, based on the important factors of current work. To allow a snow system

to be used in a dynamic environment, it must have persistent accumulation which

remains accurate in respect to the occlusion of the scene. Snow stability must be

computed to allow a dynamic scene to alter the snow cover through movement. To

achieve visual realism, surface offset must be incorporated to allow snow build-up to

generate new surfaces throughout the scene and fine details of snow cover must be

51

(a) Voxel representation of scene. (b) Heat transfer simulation.

(c) Simulated scene rendered as geon-
metry with ice and snow.

Figure 2.13: Images from [MGG+10].

52

incorporated to give a realistic effect when viewed at close range, such as surface tes-

sellation or per-pixel lighting using normal mapping techniques. To allow interaction

with the scene, real-time frame-rates are required as well. These requirements and

the applications of them in current techniques are summarised in Table 2.2.4.

53

P
er

si
st

en
t

A
cc

u
m

u
la

ti
on

S
ce

n
e

O
cc

lu
si

on

S
n
ow

S
ta

b
il
it

y

S
u
rf

ac
e

O
ff

se
t

R
ea

l-
T

im
e

F
ra

m
e-

ra
te

s

F
in

e
D

et
ai

l

Nishita et. al. (1997), [NIDN97] X X
Yanyun et al. (2003), [YSHW03] X X
Langer et al. (2004), [LZK04] X X

Occlusion Based Accumulation
Ohlsson and Seipel (2004), [OS04] X X X X
Tokoi (2006), [Tok06] X X X X
Foldes and Benes (2007), [FB07] X X

Geometry Based Accumulation
Fearing (2000), [Fea00] X X X X X
Haglund et. al. (2002), [HAH02] X X X
Festenberg and Gumhold (2009), [FG09] X X X X X
Festenberg and Gumhold (2011), [FG11] X X X X X
Stomakhin et. al. (2013), [SSC+13] X X X X

Environmental Simulation
Muraoka and Chiba (2000), [MC00] X X X X
Feldman and O’Brien (2002), [FB02] X X X X X
Wang et. al. (2006), [WWXP06] X X X X
Maréchal et al. (2010), [MGG+10] X X X

Table 2.2: Summary of current techniques covered in Chapter 2.2 and their applica-
tion of identified key requirements. Work is listed in the order it appears within the
chapter.

Chapter 3

Remodelling of Botanical Trees for
Real-Time Simulation

This chapter describes a technique to model detailed, high quality tree models using

pre-existing branching structures. The physical geometry is regenerated using the

created structure to produce a virtual tree suitable for high quality, real-time simu-

lation and rendering. Many tree modelling solutions currently available create highly

realistic tree structures, however, the geometry exportable is often unsuitable for very

high quality visualisations and important structural information such as a usable tree

skeleton often over simplified, making it difficult to create or control tree movement.

In addition to inadequate skeletal information, many procedurally generated trees

have the disadvantage of being composed from multiple, distinct surfaces rather than

one continuous mesh, resulting in crudely shaped junctions between branches and

unrealistic artefacts. The techniques described in this chapter derive a full, high

resolution skeleton from an existing branching structure, organised appropriately to

describe the inherent hierarchy of the tree. New geometry is generated around the

skeleton as a single, continuous polygonal mesh introducing higher quality modelling

of branch joins and incorporating full bone weighting of the mesh, giving a system

able to be animated in a similar way to applications of character skinning. The model

is optimised for cutting edge rendering techniques utilising recent advancements in

54

55

graphics hardware, most prominently the tessellation engine which is used to both

add considerable detail procedurally and remove unnecessary complexity providing ef-

ficient, dynamic level of detail representation. Automatic bone weighting is employed

to transform the mesh and add further detail, as described fully in this chapter.

3.1 Related Work

As discussed in more detail in Section 2.1, manually modelling complex trees can

be unfeasible for most applications, and as such, substantial work has been done to

procedurally generate realistic tree structures and geometry. One system of modelling

a trees branching structure is Xfrog, put forward by Lintermann and Deussen, [LD98].

Xfrog uses a hierarchy of user controlled structures employed to generate a complex

tree model by giving the user a selection of useful elements such as branching shapes

and leaf nodes, and allowing them to be consecutively stacked to form the basis of

a botanical model. Modifiers governing the shape produced and the distribution of

child elements in addition to world constraints such as gravity and light allow for

simple generation of high quality single models. Deussen and Lintermann improved

the system by adding much more control over the individual elements, [LD99]. One

major advantage of Xfrog over its competitors is that it models every individual

element including each leaf in a simple manner without using a technique known as

billboarding where several elements will be grouped together into one image which

is used to texture a plane as a simplified representation. By avoiding billboarding

and creating every element, the produced trees can be used with highly detailed

simulation techniques such as those put forward by Ota et al., [OTF+04]. While

the proposal can be used to create excellent tree structures which appear to be very

realistic, as shown in Figure 3.1(a) and Figure 3.1(b), there are two major drawbacks

to the geometry which is generated. One large limitation is that only the mesh

56

(a) Generated Xfrog Japanese Maple
model with leaves.

(b) Generated Xfrog Japanese Maple
model without leaves.

(c) Artefacts caused by modelling branch joins as a non-continuous mesh.

Figure 3.1: A young Japanese Maple tree, generated using Xfrog.

57

of the tree itself is accessible when exported for inclusion outside of the software.

Without access to the structural skeleton of the tree and how this relates to the

physical geometry, it becomes impossible to use the model in any sort of dynamic

scene. With enhancements in the quality of graphical applications, the expected

realism in simulations often requires animation of elements in accordance with weather

conditions and physical interaction. The lack of structure to properly simulate this

movement is one of the major issues tackled in the work put forward in this thesis.

The second drawback to the approach of the software, is that models are created using

a separate, unconnected mesh to represent each branch. The effect of this approach

is that if the root of a child branch does not have a width matching that of its parent

at point of connection, unrealistic artefacts are caused as shown in Figure 3.1(c). At

close range, this inaccuracy and over-simplification of the branch junctions becomes

very noticeable, and drastically reduces the visual quality once independent branch

motion is introduced. The software provides an effective and easy to use tool to

create the form and structure of a virtual tree. However, the geometry produced is

inappropriate for animated scenes where the trees may become the visual focus, such

as in recent simulations performed by Habel et al. [HKW09].

The techniques of procedurally modelling the geometry of a tree can understand-

ably be split into two areas, modelling the structure and form of a tree and modelling

the actual geometry created around that structure. Given the pre-generated structure

of a maple tree, Bloomenthal details a method of generating high quality geometry to

provide a visually realistic rendering of the tree, [Blo85]. A method is shown which

maps a three-dimensional circle of points at intervals around the line of a given tree

branch, which are then used as the basis to create the polygonal mesh of the limb.

At points where limbs join, complex procedures are required and implemented to join

the meshes forming a ramiform at the junctions without intersecting or overlapping.

58

Although the geometry created by this proposal is of a very high visual quality and

is very realistic, it is inappropriate for use in real-time or animated applications. The

costly computation of smooth mesh curves at branch junctions is performed as a pre-

process to rendering and is too inefficient to compute in real-time. This disadvantage

makes the model completely static as any change in the shape of the tree, especially

where a child branch connects to its parent limb, would require re-calculation of the

mesh. In addition to this problem, the technique creates tree structures of a very

high complexity which may be appropriate if the tree itself is the main focal point

of the scene, but makes it infeasible if groups of trees or alternative points of focus

are required without drastically reducing the mesh resolution. The complications

of procedurally modelling limb junctions is also tackled specifically by Lluch et al.,

[LVM04], where a pre-calculated structure using an L-System approach is taken as

a skeleton upon which to generate the geometry in a single polygonal mesh. The

idea of the research is to join different sections of the tree together using only one

continuous mesh. The proposal performs this by identifying the intersection points of

elements and grafting the polygons together with a higher resolution triangle mesh,

ensuring complete continuity. While the approach rectifies the issues of unconnected

surfaces whilst maintaining the form of an original input tree, it shares the same

limitations as the previous proposal in that the models produced are created using

a very high number of polygons making it ineffective in many real-time simulations.

The remodelling of branch connections is based upon a static tree. Should motion

and animation be introduced to the tree structure, connected limb junctions would

need to be recalculated and the geometry regenerated, making the proposal infeasible

for dynamic scenes.

59

(a) An exported Xfrog branch represen-
tation in full.

(b) As 3.2(a), showing only the first two
branch levels for clarity.

(c) The skeleton extracted from an Xfrog representation, shown in blue.

Figure 3.2: Example of skeleton generation from an Xfrog tree.

60

3.2 Generation of the Skeleton

The techniques described in this chapter will be applied using branching structures

exported from the tree modelling software Xfrog, but are not limited to a single

tool. The Xfrog program is chosen due to both its high usability and ability to

decide how branches of a generated structure are represented. The technique will be

demonstrated using a stock tree model packaged with the software depicting a Young

Japanese Maple with the choice of primitive representing the branches being the only

customisation required before exporting the model using Wavefront OBJ format. The

primitive selection process available in Xfrog simplifies the bone extraction task, by

choosing a square representation, each branch of the tree is created using square

cross-sections positioned at the point of segmentation along each branch length. This

creates an array of small planes forming the line of the limb as shown in Figure 3.2(a)

and Figure 3.2(b), both in full and only showing the first two levels of branching for

clarity. By giving a name to each level of the structure within Xfrog, the exported

geometry is grouped within the resulting OBJ by individual branch, each labelled

with a sequential number pre-fixed with the name given to that level of branch.

This grouping and naming convention is then used in the processing of the data

to separate the polygons representing each branch and group the collections by the

level they belong to. A polyline of bones making up the branch is then generated

by connecting the midpoint of each square to the midpoint of the next. Already

knowing which level of the structure an individual branch belongs to, the distance

between the root of the branch skeleton and the points of the next lowest level can be

checked to find the closest point and, as such, the parent branch and point along that

branch which the current limb connects to. Using this information, the collection of

branches is re-ordered and combined into one hierarchy of elements, storing this main

trunk which contains a list of child branches. In turn each possesses a list of child

61

branches until the entire tree is defined. Using this approach, not only is the skeletal

information present for bone weighting and animation, but the inherent hierarchy of

the tree is fully captured giving an important and useful simulation aid. In terms of

basic animation purposes it provides an efficient system to use during the real-time

generation of stacked transformations across the structure. For physical simulation

the network of branch connections is readily available for the calculation of force

transferral among other interactions present between parent and child branch.

As one of the aims of the project is to implement a system of adding detail

dynamically based on the visibility of a section of tree, it is important that the base

geometry be as simple as possible. To this end, further simplification can be made to

the skeleton itself. As curvature and smoothing of a limb can be added dynamically,

described in Section 3.4, the level of segmentation and number of bones in a branch

imported directly is largely unnecessary. By reducing the number of bones present,

the number of polygons in the final mesh is significantly lowered and to achieve this,

all branches of the lowest level of the hierarchy are left as they are to maintain the

uneven crookedness which is desired. All branches of higher levels are redefined by

their root points plus the roots of all child limbs. As a result of this procedure,

all segmentation and curvature of a branch between the roots of its child branches

is removed to be added dynamically, connecting the child roots with single straight

bones, as shown in Figure 3.2(c). The overshooting of parent branches past the root

of their last child branch, which occurs in the original model, is also removed as

upon inspection of real vegetation patterns, the tendency of natural branches is to

terminate at the beginning of a smaller branch shoot or fork into smaller branches

rather than continuing on. This process gives a much less complex base structure to

be used as the lowest level of detail, with smooth curve detail occurring in real-time

as a result of tessellation of the final mesh in combination with bone weighting.

62

3.3 Creation of the Polygonal Mesh

To solve the problem of branch roots not connecting to their parent branches to form

a continuous mesh, rather than editing the existing model to form elegant joins as

detailed in [LVM04], the geometry of the tree was completely regenerated around the

extracted skeleton. This process allows a tree structure to be created specifically at a

low level of detail base which can be easily tessellated to create the desired complexity.

Vertices are created using the position of the skeleton points and a function to describe

the width of a branch at any given point. This can be the original width of the

exported Xfrog tree, or optionally a more realistic curve to add to the general form

of the tree. In the case of the example shown in this chapter, the width of a branch

is calculated to simulate the curve of 1
x

for 1 ≤ x ≥ 4 with the starting width at the

root being the width of the parent branch at that point, as shown in Equation 3.3.1,

Bw =
1/(3 ∗Bl ∗ Lb + 1)− 0.25

0.75
∗Rw (3.3.1)

where Bw is the branch width, Bl is the branch length, Lb is the length along the

branch and Rw is the root width. The curve of 1
x

is chosen due to the rapid flare

it gives to the root of the branch. In reality, branch widths can be seen to be more

linear in shape, however the curve of 1
x

gives a more linear appearance as the value

of x increases. The effect of using this curve is that a sudden widening is introduced

at the root of the branch as it merges with its parent limb. As the square sides of

the parent limb are expanded during tessellation at render, rounding the surface, the

curved base of the child branch incorporates this rounding in its structure giving a

smoother transition.

The procedure to wrap the tree in geometry starts at the root of a branch and

iterates down the length creating vertices around each bone joint and is then called

recursively on each of the current branch’s child shoots. At the lowest level of detail,

63

the tree is comprised of four sided branches throughout to give a very low polygon

count but also to facilitate clean simple joins. To generate a ring of four vertices

around each bone joint, first the tangent of the joint between the two connecting

bones is found at the joint and used to align the new points. As a more efficient way

of calculating the four corners, the closest of the three global axes to the tangent is

calculated and the line is projected into two dimensions down both of the remaining

axes. By finding the lines perpendicular to the projected tangent, the two remaining

local axes around the tangent are found. To generate the four vertices the calculated

local axes are made into vectors with a length of half the branch width at that point

and added to the bone joint position in all four combinations of the two vectors and

their inverse. Once these are calculated they are joined with the points around the

previous bone joint by a ring of triangular faces and the algorithm proceeds along the

limb to the next segmentation. In the situation where a child limb joins the current

section of geometry, two rings of points are created parallel to each other separated

by the width of the branch, forming a knuckle on the linear extrusion and giving the

child element a simple, clean join. The side of the branch closest to the direction its

sub-branch shoots from is left unconnected by faces forming a hole in the mesh, the

four vertices surrounding the gap being passed to the algorithm wrapping the child

branch to be used as the initial ring of points, as shown in Figure 3.3(a). There are

several advantages to modelling a tree in the form of a continuous mesh such as this,

the most evident being the vastly improved visual quality. Branch joints appear to

be more natural and consistent whilst removing problematic and unrealistic artefacts

which occur at the junction of two unconnected surfaces. In addition to the aesthetic

improvements, representing connections as a consistent surface allows for the proper

simulation of force transferral between the elements and the effect applied force and

movement has on the junction itself.

64

(a) Generation of a new model around the calculated skeleton.

(b) Visual representation of a single bone’s influence on the geometry.

Figure 3.3: Procedural recreation of the tree’s mesh around the skeleton.

65

One of the common problems encountered when ‘skinning’ polygonal meshes (ap-

plying a weighting to each vertex to calculate how much influence a given bone has

on the point), is the miss-classification of bone weighting due to complex structures

of elements being very close to each other and often closer to an incorrect bone than

the desired one. Skinning a mesh is a very complex problem, however, as the geome-

try has been generated entirely relative to the skeleton, it is implicitly known which

elements should influence any given section. When wrapping a ring of new vertices

around a bone joint, they are each given an influence from the two connected bones

of 0.5, with the exception of branch end points which only have influence from one

bone at 1.0. As the geometry is modelled as one continuous mesh, where one branch

joins another the vertices are shared allowing the influence from both limbs to be

accumulated at the points and scaled down to total 1.0 as an additional process after

all weighting has been assigned. Once all weighting per vertex has been calculated,

an algorithm iterates through the mesh to calculate all bone influences on a per face

basis. By examining each face and compiling a list of all skeletal elements that affect

any of the three points included, a comprehensive list of all the bone weights for any

given face can be generated. In the case where a bone influences some points of a

triangle and not others it is assigned a weighting of 0.0 to the uninfluenced vertices,

resulting in a constant gradient of influence across the face of the triangle. With tra-

ditional ‘skinning’ techniques it is usually necessary to generate the polygonal mesh

in the desired form separately from the skeleton, which is then applied to the model

using bone weighting. Depending on the form and complexity of the model it is often

impossible to procedurally assign bone influence using a simple algorithm without

misclassification of vertices due to distance or shape being closer to the range of a

nearby but incorrect bone. As the generated tree is created to directly replicate the

66

previously developed skeleton and during formation of the individual points, the rel-

evant bones are instantly accessible, vertex grouping can be performed during the

process ensuring complete accuracy as demonstrated in Figure 3.3(b). In addition to

allowing the mesh to be properly deformed by skeletal animation, the bone weight-

ing assigned provides a blending definition which can be used to refine the geometry

itself, as described below.

3.3.1 Adaptations for Differing Species

While the technique works well for the Japanese Maple tree which is used to demon-

strate the results, adaptations must be made to the mesh generation to make the

solution more robust and accurate when dealing with different species. The proce-

dure of skeletal extraction and mesh generation performs equally well regardless of

tree species, however the main difference which must be addressed is the width of

child branches relative to their parent limb. For broad-leaf, deciduous trees such as

maple, oak, and many other examples, a realistic form is created by tapering child

branches from the width of their parents, however for many evergreen species such

as pine, child limbs are much thinner and straighter from their root. To model this

difference, at time of generation the equation used to determine branch width (1
x

for

1 ≤ x ≥ 4 as discussed in Section 3.3) is modified by increasing the upper bounds.

This makes the initial heavy taper of the branch appear much sharper and earlier

along the limbs length, merging with the circumference of the parent limb and giv-

ing a much straighter branch rather than giving a more gradual taper to the root.

This alteration is indicated at the beginning of structure extraction and only needs

to be made to the form of the first level of child branches, being the only level which

typically exhibits such a drastic difference in limb width.

67

3.4 GPU Enhancements

The implementation of the tree rendering after processing the data is created using

OpenGL 4.1 on an NVIDIA GeForce GTX 460. One of the major advancements

of graphics developments in recent times is the introduction of the programmable

rendering pipeline, allowing developers to control how vertex and face calculation is

performed at the rendering stage. However, the most important and newest break-

through the implementation makes great use of is the tessellation engine included in

OpenGL 4.0 and above. Tessellation works by taking an input face in the form of

a simple triangle and subdividing it into multiple faces before adjusting the position

of newly created vertices according to a displacement map or function. As this is

performed within the rendering pipeline, no new data needs to be copied across to

the GPU per frame allowing for an efficient method of incorporating dynamic level of

detail representations without changing the initial low polygon mesh or introducing

impostors such as billboards. The engine includes two new shaders into the render-

ing procedure, the tessellation control shader which is executed on every face of the

initial model and determines the level of subdivision to be performed, and the tes-

sellation evaluation shader which executes on every vertex of the newly subdivided

mesh to calculate appropriate point positions. Starting with the simplified, low poly-

gon model created by wrapping the skeleton, extra detail is added by tessellating the

surface based on several factors and smoothing the resulting mesh using bone weight-

ing. These factors are considered to determine the correct complexity depending on

how much of the mesh can be seen. The main factor is the distance of the tree from

the viewer and a linear progression is used to increase the level of subdivision as the

viewer approaches the model. The implementation allows for customisation of how

effective the mesh refining is by allowing the user to set the maximum desired level

of tessellation and the distance from the tree at which tessellation should begin. In

68

addition to distance, this is combined with the area of the face being processed, with

a larger face needing higher levels of subdivision due to its greater visibility, as shown

in Equation 3.4.1,

Tl = (1− 1

Mtd

∗ Fd) ∗ (
1

Mfa

∗ Fa) ∗Mtl (3.4.1)

where Tl is the tessellation level, Mtl is the maximum tessellation level, Fd is the

face distance, Mtd is the maximum tessellation distance, Fa is the face area and

Mfa is the maximum face area. Triangle area and other static per face attributes of

the base, low polygon mesh are calculated as a preprocessing stage to avoid costly

computation at render time. In addition to triangle area, the rendering pipeline

includes back face culling, where any triangles facing away from the camera and as

such, unseen, are removed from processing to save costly calculations being performed

where unnecessary. The final factor contributing to the calculation is what level of

branch the triangle belongs to, allowing further detail to be added only to the areas of

the tree which have the highest visual impact such as the trunk or larger limbs. This

dynamic range of tessellation which is calculated on a per face basis gives a smooth

transition between representations, avoiding the issue of ‘popping’ occurring when

switching the rendered object with one of a different level of detail by recalculating

the mesh gradually.

An additional enhancement that can be made using the tessellation control shader

is the dynamic culling of faces. By setting a tessellation level of 0.0 the face is

removed for the rendering set and travels no further through the pipeline, allowing

individual triangles to be turned off when unnecessary. There are two ways in which

the implementation utilises this ability to increase rendering efficiency, the first being

to remove small branches at such a distance where their rendering is unnecessary

for the visual appearance of the tree. Given that the level of each branch face is

already known along with its distance from the viewer, the face can be compared to

69

the customisable range of detail and the triangle removed if it is too far away. This is

demonstrated in Figure 3.4, which shows four different level of detail representations.

The effect of this procedure is that at key distances the highest visible level of branches

will be completely removed from rendering, happening per face to give a smooth

gradual transition between representations which is not casually noticed with the

inclusion of rendering leaves. The effect of the level of detail is shown with relative

scaling in Figure 3.5(a) without leaves and in Figure 3.5(b) with leaves, as it would

appear within application. As with the modern programmable rendering pipeline

individual faces can be removed altogether. Per face view frustum culling is also

introduced to increase efficiency in a way that was previously not possible when

rendering a static mesh in one pass. GLSL code used for the tessellation shaders

is included in Appendix A. This shows the procedure for calculating the level of

tessellation to be applied to an individual face, Appendix A.1, and the calculation of

the positions for the newly created vertices using bone weighting, Appendix A.2.

One of the most costly procedures during rendering is the copying of data from

memory onto the graphics hardware, making it vital that as much as possible is

transferred as a pre-processing step and remains unchanged. To enable as much data

to be pre-processed as possible, the implementation compiles the information into a

continuous array and loads it onto the GPU memory in the form of a texture. This

allows the tessellation shaders to look up the relevant information required at render

time using their own inbuilt ID as an index. There are two major collections of data

being generated prior to rendering, the first being per face information accessed from

the tessellation control shader. This includes the area of each face, the level of branch

it belongs to and a list of all skeleton bones having influence on the face along with

their weighting at each individual vertex. The list of bones included serves as an

index into the second collection of data which is information pertaining to the bones

70

Figure 3.4: Example of varying dynamic levels of detail using the tessellation engine.

themselves such as their length, their position along the branch they belong to, the

branch’s minimum and maximum width and the endpoints defining the individual

bone. These data are used within the tessellation evaluation shader to generate the

appropriate position of all new vertices and saves recomputing costly calculations

which would severely impede rendering speed.

Shaping and adding detail to the branches is performed on the mesh after sub-

division to create an accurate form for any given level of detail. Face information is

accessible using vertex attributes for all three points of the triangle, with newly gener-

ated vertices being defined by their barycentric coordinates within the face. For each

bone having influence on the face the closest point on the bone to a newly generated

vertex is found, the vector between these points giving an offset direction to ensure

all new points are positioned uniformly around the skeletal structure. By using bone

information such as the position of the bone along the branch and the size of the limb,

71

(a) Scaled level of detail representations without leaves.

(b) Scaled level of detail representations without leaves.

Figure 3.5: Example of varying dynamic levels of detail, relatively scaled.

72

the same branch width calculation as used for the generation of the initial mesh is

used, as shown in Equation 3.3.1. This ensures a perfectly consistent rounding of the

new limb model when the vertex is offset to this width along the previously calculated

vector. This new position is calculated relative to each necessary bone and the final

position is averaged across all calculated ones in accordance to the bone’s weighting

at the particular point, as shown in Equation 3.4.2,

~Vp =

Nb∑
i=0

~Ri ∗Wi (3.4.2)

where ~Vp is the final vertex position, Nb is the number of bones, ~R is the vertex

position relative to the bone and W is the bone weight. This merging provides not

only a smooth realistic rounding of each limb, but a continuous, gradual, connection

at branch junctions and a steady curvature along the length of the branch. Using

the weights pre-calculated at each original vertex and barycentric coordinates of the

new points, bone weighting is linearly interpolated across the surface of a triangle.

However, the fall-off rate for weighting which is present at one side of a triangle can

be altered. In the case of branch junctions, a more gradual interpolation is used for

the influences of bones belonging to a lower level of branch, causing the large branches

and trunk to have a greater effect on the form of the connections than the smaller

limbs diverging. Other than shaping the form of the tree, the main advantage of

dynamic tessellation is to add finer details when required which this approach allows

quite easily. A displacement map in the form of a single channel texture is included to

introduce variety in the mesh surface, which when accessed using texture coordinates

calculated at the stage of initial geometry production, gives a displacement value

which is simply added to the vertex offset distance from the bone. Multiple levels

of displacement can be combined into one texture allowing the physical modelling of

large detail elements such as knots and splits in the wood along with fine detail such

as the unevenness of the bark without introducing further computational cost. With

73

Viewer Distance (m) Frame Rate (FPS) Polygon Count
Mean Std. Dev.

10 279.70 0.46 195353
20 527.40 0.58 26782
40 696.80 0.51 6776
60 791.00 1.34 1624
80 791.25 0.70 1624

Table 3.1: Rendering frame rates of a remodelled, tessellated tree from various camera
distances. Distances are shown in metres relative to tree height, taken as the mean
height for an adult Japanese Maple.

tessellation being variable, at great distances the displacement mapping has no effect

on the form of the mesh. However, if the viewer moves very close to the tree, a wide

range of complex distortions of the surface is modelled in high detail, providing much

greater realism than other techniques used to only simulate the effect such as parallax

mapping and parallax occlusion. The culmination of these techniques to provide a

highly realistic tree model is shown in Figure 3.6.

Figure 3.7 shows a system diagram of the remodelling technique described in this

chapter. This shows the workflow in addition to defining tasks which are done on the

CPU as a pre-process and tasks on the GPU which are used for rendering.

3.5 Results

Table 3.1 shows approximate frame rates achieved when rendering the generated tree

model at different levels of detail. When compared to that which was achieved render-

ing the static model obtained directly from the Xfrog software, approximately 1660

fps consistently, the static model is displayed dramatically faster than the virtual tree

produced using the technique put forward in this chapter, however, rendering time

alone is not a fair comparison between the two. The proposed tree is calculating con-

siderably more at time of render. Displaying the tree using the techniques described is

74

Figure 3.6: Added detail and mesh smoothing applied to a high polygon represen-
tation at close range. Shown in wireframe for clarity (above) and full colour with
wireframe (below).

75

Figure 3.7: System diagram showing the process of tree remodelling technique, de-
scribing the computations performed on the CPU and the GPU.

76

inherently including full bone weighting of the mesh and skeletal deformation at every

frame, which is necessary for a dynamic, movable scene element. As the limitations of

the static mesh were not ones of efficiency, but rather of missing structural informa-

tion and poor visual quality, comparison must be qualitative rather than quantitative.

Although the results do show that the dynamic level of detail approach used without

the introduction of impostors does greatly improve rendering times and shows that

the implementation can be effective for non-static scenes where the virtual trees are

not necessarily the constant visual focus.

One of the major drawbacks of the Xfrog model is visual artefacts introduced by

disconnected branch geometry and Figure 3.8 compares the original branch connec-

tions formed with remodelled geometry as described, demonstrating that generating

a continuous mesh around the structure removes the unrealistic effects caused by

separated surfaces and increases visual quality. Additional examples are included in

Appendix B. As newly tessellated points are procedurally positioned as a function of

skeletal influence, Figure 3.9 shows that the automatically generated bone weighting,

calculated at mesh creation, provides an effective solution without manual interfer-

ence. This is demonstrated by introducing smooth blending between branch segments

without artefacts as well as gradual curvature along limbs and across joins.

While the stock Japanese Maple has been used as an example to detail the proce-

dure and results, the system is robust enough to give the same high standard of model

with a variety of tree species exported from Xfrog in the same manner, as shown in

Figures 3.10-3.13.

3.6 Integration into Industry Tools

During the creation of end-user applications such as simulations and games, many

developers will use external graphics engines to render and simulate environments.

77

(a) Artefacts apparent in the original static mesh, highlighted in red.

(b) Generated model shown without connection artefacts.

Figure 3.8: Comparison of branch junctions in the original model and the newly
generated model.

78

Figure 3.9: Fully tessellated tree showing curvature and shape being a function of
skeletal influence.

79

Figure 3.10: Black Pine generated and rendered using the proposed system.

Figure 3.11: Colorado Spruce generated and rendered using the proposed system.

80

Figure 3.12: Horse Chestnut generated and rendered using the proposed system.

Figure 3.13: Weeping Willow generated and rendered using the proposed system.

81

Figure 3.14: Colorado Spruce model in the Unity3D engine, Full view.

These graphics or game engines often include highly optimised rendering pipelines

and physics engines capable of performing complex simulations without manual de-

velopment of anything other than the applications unique processes. There are a

variety of industry used game engines employed by developers around the world in-

cluding examples such as Unity3D (Bladeslinger, Ghost of a Tale, Deus Ex: The Fall),

Unreal Engine (Bioshock, Mass Effect, Gears of War), CryEngine (Crysis, Far Cry,

Ryse: Son of Rome), RAGE Engine (GTA IV, Red Dead Redemption, L.A. Noire).

To demonstrate the flexibility of the technique described in Chapter 3 and its im-

plementation and simulation uses, this chapter focuses on integrating the remodelled

trees into Unity and rendering them using their industry recognised graphics engine.

3.6.1 Model Integration

The importing of trees generated by this technique into Unity was an incredibly simple

task. A short script was written to read the files output by the procedural generation

82

Figure 3.15: Colorado Spruce model in the Unity3D engine, close up view.

Figure 3.16: Japanese Maple model in the Unity3D engine.

83

Figure 3.17: Japanese Maple model in the Unity3D engine.

84

Figure 3.18: Horse Chestnut model in the Unity3D engine, without leaves.

85

stage and translate this vertex information into Unity’s own mesh data structure.

Once this was complete, the base model of untessellated trees is available for rendering

within the Unity engine with all the previously described benefits of a model created

using a single connected mesh. The process shows that with a simple step, which could

easily be packaged into a user friendly plugin for Unity, the procedurally modelled

trees are available to simply insert into industry used tools. Once imported, the trees

can be rendered using any graphical effects expected from a commercial engine such as

shadow mapping and dynamic lighting effects, bump mapping and ambient occlusion.

Trees modelled using the technique described in this chapter are shown as rendered

using the high quality Unity engine in Figures 3.14, 3.15, 3.16, 3.17 and 3.18.

One of the key aspects of the technique is dynamically added detail to compensate

for the simple base model. In the original rendering engine and with Unity, this is

performed using dynamic tessellation. Figure 3.19 and Figure 3.20 show a close-up

view of the tessellated model in Unity. The built in Unity tessellation shader supports

both uniform levels of tessellation and levels based on the projected size of triangles,

performing the size calculations described in Section 3.4 and previously computed

manually. To achieve a similar result as gained from the manual pipeline, all that

must be added to the Unity tessellation shader is level of detail rendering based on

the branches level in the tree hierarchy, adding more detail to the larger branches

and trunk while reducing detail or discarding the smaller branches based on camera

distance. This is done by importing the level of each branch from the original output

and finding the lowest level branch that has weighting influence on any given vertex.

This branch level is used to compute a tessellation modifier within the shader, which

the tessellation level is multiplied by. The final tessellation level is computed using

this modifier as shown in Equation 3.6.1,

TL = TLp ∗
(

1−
(

BL

TBL

))
(3.6.1)

86

Figure 3.19: Japanese Maple model in the Unity3D engine, tessellated without leaves.

where TL is the tessellation level, TLp is the previous tessellation level (as calculated

by the standard unity shader), BL is the branch level of the vertex (with 0 being the

trunk and higher values assigned to levels of branch hierarchy branching from the

trunk) and TBL is the total number of branch levels within the tree.

3.6.2 Performance

Table 3.2 shows the results of framerate tests using a variety of generated trees at

set viewer distance intervals. The results are taken for tree models which are both

tessellated and rendered using the standard rendering pipeline without tessellation.

The results show a considerable improvement using a commercial graphics engine

over the test engine, showing that performance is high enough for the tree models

to be used within high quality interactive applications. The results recorded for

trees undergoing dynamic tessellation show a substantial improvement in framerate

between the viewer distances of 20 and 40 metres, bringing the performance to a

87

Figure 3.20: Japanese Maple model in the Unity3D engine, tessellated with leaves.

Viewer Distance Frame Rate (FPS)
(m) Japanese Maple Horse Chestnut Colorado Spruce

Tessellated Tessellated Tessellated
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

10 601.10 1.18 467.70 2.03 533.15 1.42
20 665.20 1.21 507.95 4.99 644.10 2.14
40 992.80 2.29 945.45 6.25 947.50 2.06
60 992.60 1.98 933.30 11.39 946.85 2.01
80 991.95 1.96 945.50 6.35 947.20 2.16

Japanese Maple Horse Chestnut Colorado Spruce
Untessellated Untessellated Untessellated

10 1011.05 2.80 956.35 6.75 997.40 3.22
20 1020.50 1.50 986.85 7.20 1009.40 2.99
40 1021.50 1.88 989.20 7.49 1010.55 2.44
60 1051.65 1.74 990.45 6.97 1010.30 2.03
80 1020.95 3.04 990.60 7.17 1009.90 2.74

Table 3.2: Table showing performance of Unity3D engine tree rendering with varying
viewer distance and tree models. Results are in FPS, distances are shown in metres
relative to tree height, taken as the mean height for an adult tree.

88

similar level as the untessellated models. This shows that the dynamic tessellation is

adding considerable detail to the model at close range, but detail is being removed

as distance increases and the need for fine detail is lessened. It should also be noted

that the Unity3D implementation contains further rendering techniques not included

in the test engine such as shadow mapping for example, resulting in a more visually

realistic output.

3.7 Conclusion

There are software packages available such as Xfrog, which provide an intuitive, highly

interactive tool for the generation of virtual plants which require more artistic manip-

ulation than purely procedural methods can allow. However the resulting geometry

can be inappropriate for high quality rendering and lack vital structures for the an-

imation and control of movement. This chapter presents a technique for extracting

key data from exported trees to generate a modifiable skeletal structure and remodel

the physical geometry around the structure to allow high quality visualisation and

dynamic refinement using recent GPU techniques. New geometry is created to cor-

rect inaccuracies caused by unconnected surfaces and to allow consistent modelling

of limbs and branch connections when motion and deformation is applied. By mod-

elling the tree in a simplified form around the bone system, dynamic recalculation of

the base mesh based on skeletal motion can be performed at a much lower computa-

tional cost. High resolution modelling of complex sections such as limb connections

is performed in real-time using the tessellation engine and bone weighting is incorpo-

rated in the smoothing of the mesh and generation of new geometry in addition to

its conventional use of the transformation of existing vertices.

The proposed procedure allows developers to create vegetation using an existing,

industry accepted tool and to reformat its output. This allows inclusion in dynamic,

89

animated scenes and simulation for which it was not suitable, without any further

manual interaction. The procedure uses novel techniques to base the geometry solely

on the extracted skeleton, creating a simple, but highly refinable continuous mesh with

automatic bone weighting avoiding many common limitations of procedural surface

skinning. The resulting mesh, while able to be included with additional features in

a purpose built application, can also be simply imported and used in commercial,

industry standard graphics engines such as Unity3d for use in real-time, interactive

applications.

Chapter 4

Real-Time Accumulation of
Occlusion-Based Snow

Chapter 3 details a technique for remodelling tree models suitable for high quality

simulation in normal conditions. One of the main elements that can drastically change

the appearance and behaviour of a tree is weather conditions. This chapter deals with

the effect of accumulating snow on complex structures such as trees as unlike many

weather conditions, snow can have a lasting, persistent visual and behavioural effect

as the addition is cumulative opposed to the momentary effects of wind and rain.

The effect of snow cover on outdoor scenes is both very visually striking and im-

portant for any system that simulates natural environments. Depending on context,

winter scenery can be of vital importance to any number of virtual scene applica-

tions from academic simulation to video-game implementations. Snowfall and the

simulation of snow accumulation poses many distinct complex problems to the ren-

dering of natural areas, not only changing the surface properties of materials as rain

would, but altering the form drastically by adding thick layers of complex snow cover

to any non-occluded surface which can support it. In addition to visual build-up,

snow considerably alters the behaviour and movement of structures under its influ-

ence. Considerable weight is accumulated on snow supporting surfaces and bridging

of snow cover between two separate objects introduces new connective forces between

90

91

them. Natural complex structures such as trees and vegetation are heavily influenced

in environments of snowfall and effective simulation of such scenes can have striking

effects.

While much work has been carried out in the field of snow simulation and visuali-

sation, as detailed in Section 4.1, there are serious limitations to the approaches cur-

rently used. One of the most noticeable effects of natural snowfall is the occlusion of

surfaces, allowing areas to be sheltered from accumulating cover. This effect has been

widely achieved by both geometric analysis of the surrounding area, and occlusion-

based rendering techniques similar to those used in the process of projecting shadows.

The main difficulty in implementing snow build-up is the storage of accumulation on

a surface, due to the expensive process of mapping build-up between data structures

and the copying of data between the CPU and GPU. Implementations which allow

snow cover to be accumulated are most often implemented in a manner which lim-

its their use to completely static, un-movable scenes and techniques which cannot

be achieved at a speed allowing real-time simulation. Real-time implementations of

snow simulations conversely are unable to store accumulation and as such, are also

limited to static scenes in which animation would lead to unrealistic discontinuity of

the simulation.

The novel contributions presented in this chapter are: 1) the mapping of occlusion

to dynamic accumulation maps without transfer of data from the GPU, allowing the

task to be performed in real-time; 2) The use of the new technique to implement

a simulation of occlusion-based snow cover accumulation in real-time. Section 4.1

details the related published work forming the current techniques used in graphical

snow visualisation. The technique proposed in this chapter is explained in Section 4.2

with Section 4.2.1 detailing the accumulation of snow on a dynamic scene and Sec-

tion 4.2.2 covering the addition of detail providing a visually realistic environment.

92

The results of the implementation are discussed in Section 4.4. Section 4.5 contains

the conclusions of the proposal and areas of future work.

4.1 Related Work

4.1.1 Rendering

As discussed in greater detail in Section 2.2, the rendering of snow itself is integral

to the simulation of snowy scenes. An early technique put forward for the rendering

process of a snow surface by Nishita et al. was a solution using metaballs, [NIDN97]

whereas Yanyun et al. proposed a multi-mapping technique for the rendering of static

snow covered scenes, [YSHW03]. While several solutions have been explored for the

rendering of blanket snow cover, Langer et al. proposes an image based technique

for the rendering of falling snow, [LZK04]. Impressive work has been performed on

the simulation of ice crystal development allowing a realistic level of detail to be

used on the scale of individual snowflakes. Kim and Lin, [KL03], and Kim et al.,

[KHL04], propose high quality methods of simulating the structure of ice formation

across surfaces.

4.1.2 Accumulation

Occlusion-Based Accumulation

Occlusion is a major influence on the visual plausibility of a snowy scene. Snow

should not accumulate on a surface which is blocked by another object. Shadow

mapping techniques deal with occlusion by rendering a scene first from the direction

of a light source, and using the depth of all surfaces visible to determine whether a

surface should be rendered in shadow. Several snow techniques use a similar basis by

projecting the areas to be covered with snow from the direction of fall.

Ohlsson and Seipel, [OS04], detail a technique to use deferred rendering, shadow

93

mapping techniques to accumulate snow onto a complex scene. The scene is first

rendered from above, following the direction of snowfall, and the height of all un-

occluded points is stored in a depth map. While the technique is capable of producing

results at an interactive speed using a dynamic scene, the snow is recalculated between

frames causing the effect that if a snow covered surface were to move under the cover

of another object, any accumulated snow would be lost.

A similar method is proposed by Tokoi, [Tok06]. All upward facing surfaces are

classified as snow coverage areas during a pre-processing stage and grouped into sets

where no surfaces horizontally overlap. Shadow mapping techniques are then used to

compute all surfaces which are not occluded and visible from the sky, using multiple

projections to smooth the boundaries, simulating falloff and flake flutter. A stability

test is performed on the surfaces as a final stage before rendering. Fine details of

the scene cause difficulty in defining a snow profile due to the resolution of the snow

maps. While the solution is capable of interactive frame rates at 3.38fps achieved

at a rendering resolution of 300x300, the proposal is considerably too slow for real-

time application. Foldes and Benes, [FB07], present a technique for rendering snowy

large scenes from a great distance by using ambient occlusion and direct occlusion

to determine snow-melt. The solution provides a very high quality result although

rendering is not done in real-time and the scene cannot be dynamic without requiring

a full re-computation of the snow cover.

Geometry Based Accumulation

There are multiple techniques which focus on assessing the surrounding geometry

to determine snow accumulation. A technique proposed by Fearing calculates snow

accumulation for any given point using particle projection, [Fea00]. The method

projects particles upwards from defined snow sites across each surface, recording which

particles reach the sky without collision. The technique is, however, limited by the

94

requirement of a completely static scene with snow not being able to be accumulated

on dynamic or animated objects. Another particle system approach is proposed by

Haglund et al., however despite being simple and easy to implement, the results are

very primitive and do not share the realism or accuracy of other methods, [HAH02].

Festenberg and Gumhold propose an accumulation technique using height span maps

of a scene, [FG09]. Starting from the highest point in the map, the maximum snowfall

required by the scene is introduced and shifted to neighbouring lower patches or

avalanched onto lower surfaces if necessary. Festenberg and Gumhold also put forward

a method of snow cover generation based on a physical model of granular deposition,

[FG11]. The results are much more realistic and convincing than those achieved in

[FG09], however the computation speed is much slower, requiring an average of one

minute per frame. Similarly to the majority of snow accumulation simulations, the

technique requires static scenes as animation of the scene would not take into account

snow accumulating on surfaces which were previously un-occluded due to a change in

geometry.

Unlike the majority of occlusion-based methods explored, which render the scene’s

geometry using a height-map to differentiate snow covered surfaces, the proposals in

this section use height-maps to triangulate new mesh geometry denoting the surface

of snow cover. By leaving the snow cover as a height-map and applying it to the

existing geometry at render-time, the occlusion-based proposals achieve a much higher

simulation rate approaching real-time and also make it possible to incorporate further

effects of snow and scene interactions, such as the disturbance of laying snow cover

proposed by Sumner et al., [SOH99].

95

4.2 Real-Time Accumulation

The technique proposed in this chapter uses traditional GPU based shadow mapping

approaches to determine occlusion within the scene. The environment is rendered

from the direction of snowfall to compute which faces are accessible and will accumu-

late snow. Each object within the scene is mapped to a 2D texture which is used to

store snow heights at any given point and a new approach is used for mapping from

our occlusion render to the appropriate areas of accumulation maps. This allows

the animation of scene objects during real-time simulation which was previously not

addressed by occlusion rendering based techniques able to achieve real-time results.

Snow stability on a surface is considered in the accumulation and random noise is

used in addition to Gaussian blurring of the height-maps to achieve a visually re-

alistic result. Once snow has been accumulated, normal maps for the new surfaces

are computed and dynamic tessellation is used where necessary to add a high level

of detail to the produced result. This technique focusses on the simulation of snow

accumulation on surfaces within a dynamic scene in real-time, physical simulation of

settled snow is not addressed.

4.2.1 Snow Cover Generation

Render-Based Occlusion

The initial stage of accumulating snow is determining which surfaces are visible from

the direction of snowfall and un-occluded, and therefore able to accept snow cover. A

technique traditionally used during real-time shadow mapping of scenes is to render

the environment from the position of the light source, allowing the rendering pro-

cess to test the faces based on depth and produce a fully occluded picture. This

technique has been used in snow simulation to great success, [OS04] [Tok06] [FB07],

incrementing a global value of snow height and determining at render time whether a

96

Figure 4.1: Occlusion render, highlighting surfaces directly visible from above (in
red).

point should be covered by snow, as shown in Figure 4.1. With the inability to store

this information in surface bound accumulation data structures, this causes the snow

occlusion to be recalculated at every frame. Given this limitation, should a dynamic

scene be required with animated occluding surfaces, the areas behind the surfaces

which were unable to accumulate snow would move with the occluding objects, cre-

ating an unacceptable and unusable visual effect. In order to make this usable with a

dynamic scene, snowfall must be mapped from the occlusion render to surface bound

accumulation maps in real-time.

To store snow accumulation, 2D buffers are mapped to the surface of each object

in the scene, unwrapped so that no two faces overlap and any given point in the buffer

97

Figure 4.2: Snow occlusion, shown by the dark area of grass behind the model,
projected at a sideways angle due to the inclusion of uni-directional wind forces.

98

corresponds to only one point on the surface. The generation of these unique UV co-

ordinates is not a trivial problem, however it has been solved and used in processes

such as generating object light maps and texture atlases as shown by Lévy et al.,

[LPRM02]. This unwrapping can be performed as a pre-processing technique on the

object in the scene and as such has little impact on the real-time process. Binding

the accumulation buffers to the objects allow the surfaces to be moved and animated,

moving the accumulation maps with them. Texture resolution is determined at com-

pile time to the necessary level of detail, with a higher map resolution giving a greater

level of detail in accumulated snow. By altering the direction of the occlusion render,

a differing snowfall direction can be introduced at no extra computational cost to

incorporate the effects of a varying, uni-directional wind force if required, as shown

in Figure 4.2. In addition to altering the direction of occlusion render to incorporate

strong wind forces, a random offset of a small amount is introduced at each frame

to simulate the behaviour of “flake flutter”, where a snowflake will move throughout

the air in a non straight path potentially landing in a range of snow sites. Instead

of outputting colour information as would be done in a normal render pass, or depth

information as would be used in shadow mapping or currently used snow occlusion

techniques, the render outputs all the information necessary to map the visible area to

its corresponding accumulation buffer. In order to update the accumulation map, the

information required consists of a unique ID to identify which map is being referenced,

and the texture co-ordinates of the surface at the visible point to determine where

within the accumulation buffer snow needs to be added. In addition, the minimum

and maximum texture co-ordinates contained within the rendered texel are output,

which allows calculation of the texture density. Texture density is variable through-

out a scene due to differing accumulation map resolutions and object orientation,

storing the density at each point allows for equal snow distribution across the scene,

99

Channel Texture 1 Texture 2
Red Unique Texture ID Min U Co-ord

Green Noise Min V Co-ord
Blue Accumulation Amount Max U Co-ord

Alpha - Max V Co-ord

Table 4.1: Data output from the occlusion render, required to map a texel within the
image to the corresponding accumulation texture visible at that point.

independent of individual objects. Two output textures are used to store the range

of texture coordinates covered by the pixel, the unique identifier of the accumulation

texture visible and a noise value which will be explained in Section 4.2.2. Table 4.1

shows the output of this data.

Accumulation Mapping

The main new technique proposed in this chapter is the mapping of accumulation to

surface bound buffers. Each texel in the occlusion texture represents a square area

within one of the accumulation maps which could be at any arbitrary position and

of any size. GPU based parallel processing platforms such as OpenCL or CUDA

make the iteration through large sets of data substantially faster, but there are still

substantial overheads involved. The arbitrary nature of referenced areas, maps and

the number of maps make the task non-trivial by any GPU based method and the

technique described here focuses on exploring a render-based approach. To enable the

accumulation to be feasible, the standard render pipeline must be used to update an

arbitrary area within one of multiple textures for each texel of the occlusion render.

In order to perform the mapping, a render pass is performed containing a single

quad for each pixel in the occlusion render. While this is a large rendering task,

only simple transformations need to be performed for each, no matrix calculations

or shading calculations are involved and it is possible to perform this once per frame

without jeopardising the real-time requirements. A geometry shader is written for the

100

necessary transformation with each quad having pre-determined texture co-ordinates

indexing a separate texel within the occlusion outputs. Both occlusion textures, as

detailed in Table 4.1, are bound as texture inputs and the geometry shader looks

up the data stored in the texel corresponding to the current quad. The points of

each quad which are initially set to arbitrary values are transformed by the geometry

shader to result in a quad covering the referenced area of the accumulation map as

projected onto screen-space co-ordinates (ranging from -1 to 1 along both axes). If no

snow supporting surface is visible at the given point, for example along boundaries

around the edge of the scene, the quad is discarded entirely and not sent through the

rest of the render pipeline. This stage is detailed using pseudo code in Algorithm 1

with all necessary shader inputs and outputs at each stage.

Multiple render targets are used to bind all relevant accumulation textures as

output of the pipeline. Once each quad has been transformed by the geometry shader,

the fragment shader compares all of the render targets with the unique identifier of

the desired accumulation map which is stored in the occlusion pass. Once the correct

accumulation map has been discovered the area is shaded by the fragment shader with

the level of snow to be added to the point. The added level of snow is determined by

Equation 4.2.1,

s =


rn∗(~m·~y)

(o2−o0)∗(o3−o1) , if ~m · ~y ≥ 0

0, otherwise
(4.2.1)

where s is the amount of snow stored in the texels determined by the occlusion map,

rn is the random noise value, ~m is the normalised surface normal, ~y is the unit vector

along the positive y axis and o is the column vector produced by the second output of

the occlusion render, containing texture co-ordinate mapping as defined in Table 4.1.

The result of this pass is a collection of textures with the same surface mapping

of each accumulation buffer, each storing the areas of snow accumulation for the

101

Algorithm 1 Accumulation mapping shader pseudo code.

. Vertex Shader
in: position, texcoord
out: position, texcoord
function VertexShader

out:position ← in:position;
out texcoord ← in:texcoord;

end function

. Geometry Shader
in: position[3], texcoord[3]
out: accumulation, texID
uniform: occlusion render1, occlusion render2
function GeometryShader

tex1 ← occlusion render1(in:texcoord[0]);
tex2 ← occlusion render2(in:texcoord[0]);
vec2 halfsize ← (vec2(tex2[2],tex2[3]) - vec2(tex2[0],tex2[1])) * 0.5f;
vec2 midpoint ← vec2(tex2[0], tex2[1]) + halfsize;
for i = 0; i < 3 do

glPosition[i] ← midpoint + in:position[i] * halfsize;
i++;

end for
out:accumulation ← (tex1[1] * tex1[2]) / ((halfsize[x] * halfsize[y]) * 4);
out:texID ← tex1[0];

end function

. Fragment Shader
in: accumulation, texID
out: accumulation
uniform: accumulation buffer[]
function FragmentShader

accumulation buffer[in:texID] ← in:accumulation;
end function

102

current frame with full scene occlusion. While using the technique of multiple render

targets does not introduce significant performance overheads above that of binding

a texture, as the multiple textures are only used for output, an issue occurs when

reaching the maximum number of render targets available on the GPU. Once the

target maximum is reached either texture atlasing or multiple render passes must be

performed. Additional objects can be included by performing the mapping pass on

a new set of render targets or combining many object’s accumulation buffers into a

larger texture atlas, performing accumulation on several objects per render target.

This method is developed over the standard shadow mapping technique for several

advantages. With shadow mapping, once occlusion has been rendered the depth

of each un-occluded fragment is stored in the render, allowing each surface to be

rendered finally, testing the depth at each point to determine whether it is in shadow.

The persistent accumulation of snow would require that this technique renders each

surface in an additional pass to update the values in each accumulation buffer. By

mapping directly from the occlusion render to the buffers rather than the other way

around, the addition of multiple objects in the scene requires only an additional

render target to this mapping and not an entire separate render pass. By mapping

only the snow accumulating pixels in the occlusion render, the number of mappings

to be processed are purely dependent on the resolution of the render output and

completely independent of scene complexity, allowing for greater scalability.

Snow Stability

When developing techniques for use with real-time simulation, the requirement of low

computation times often forces the focus of simulation towards visual realism rather

than physical realism. The stability of complex surfaces of binding intricate materials

is beyond the scope of this chapter. However snow stability must be considered in

order to produce an implementation with visual believability. Due to the changing

103

nature of snow’s tension, with dry fine snow behaving almost like moist sand, and wet

snow clinging like a solid structure, the angle of repose which would usually be used

to calculate stability is incredibly variable. Tall layers of snow cover with overhangs

and bridging between gaps in the supporting surfaces show that snow in the real

world can support an edge angle of more than 90 degrees given the right conditions

as noted by Doumani, [Dou67]. While steep inclines around the borders of snow

cover can be allowed without adversely effecting the visual realism of the simulation,

to allow the scene to be fully dynamic a system must be in place to ensure that the

rotation and orientation of objects effects the amount of snow they accumulate and

that snow is lost when a surface is rotated beyond vertical. In order to do this, during

the updating of the accumulation map, as the current frame’s snowfall is being added

to the persistent snow cover, the surface’s orientation is included in the computation.

As an object’s accumulation map is being processed, its points and texture co-

ordinates are included to give access of geometrical data for each point corresponding

to the position of the map. This process is detailed in Equation 4.2.2,

sr =

a− (a− (~n · ~y) ∗ u) ∗ f, if (a− (~n · ~y) ∗ u) ≥ 0

a, otherwise
(4.2.2)

where sr is the amount of snow retained per texel, a is the current accumulation in

the texel, u is the maximum height of snow supportable in metres, f is the preset

snow falloff rate such that 1 ≥ f ≥ 0, ~n is the fragment’s unit vector normal and ~y is

the unit vector along the positive y axis. Texture co-ordinate density is also used to

determine accumulation by ensuring that if a surface in the world scene has a higher

texture resolution or greater density due to it being at a steep angle when viewed from

above, less snow is introduced per point to allow individual snow sites to deposit equal

amounts of snow throughout the scene. During the individual passes of each buffer

detailed in Section 4.2.2 to allow dynamic detail, each surface is assessed to determine

104

whether rotation has caused the surface to point downwards, and in such cases the

deposited snow is removed. Removing snow is done over the course of several frames

by subtracting in increments, giving the effect of snow sticking to the surface slightly

in areas of high build-up. In the current stage of the work, avalanched snow is simply

removed from the scene as the technique focuses mainly on the previously unsolved

problem of persistent global accumulation, however this snow would be re-introduced

to the scene to accumulate on lower surfaces in a more general implementation of

snow simulation. As the range of maximum supporting angles is dependent on varying

properties of the snow such as moisture content and temperature, the range of stable

angles and rate of falloff is configurable at runtime to allow a more defined simulation.

Snow stability is demonstrated in Figure 4.3, showing a basketball accumulating snow

and then gradually losing it from the underside when rotated.

4.2.2 Dynamically Adding Detail

Noise, Blurring and Normal Mapping

Implementation of the technique described in Section 4.2.1 would create a scene with

even snow cover accumulating uniformly on all un-occluded surfaces. In the real

world, snowfall is not a uniform modifier but falls randomly collecting on surfaces as

the combination of uncountable single snowflakes. To achieve the visual effect of the

randomness of snow, a simple noise texture is introduced at the occlusion stage of

the process. This uniform noise texture is mapped across the viewable area to span

the texture produced by the occlusion render pass and sampled at each pixel, the

noise value (a floating point number between 0 and 1) is stored in the output data

as shown in Figure 4.1 and displayed on the scene in Figure 4.4. The noise texture

is generated once at runtime by filling a texture buffer with normally distributed

random values to a given density and then reused every frame with an offset into the

105

(a) Snow accumulating on a rotating round object.

(b) Snow being removed when the surfaces rotate, resulting in snow falling from surfaces
due to gravity.

Figure 4.3: Example of snow stability on a curved, rotating object.

106

texture coordinates generated randomly each frame to give a non uniform variation

in snow placement. The density of the noise can be used to alter the global amount

of snow introduced into the scene each frame, allowing the accumulation rate to be

customised and to give a regular simulation which is independent of frame-rates. By

introducing the random noise during the occlusion stage, a uniform projection of the

noise is applied throughout the scene. Applying noise to individual surfaces within

the scene would lead to issues in mapping the effects evenly with differing sizes and

texture densities throughout the environment. The noise value stored is used during

the mapping of each pixel of the occlusion render to the accumulation maps, adding

a level of optimization as pixels which contain a zero noise value (a considerable

number of them) can be discarded entirely and not mapped to their corresponding

height buffers.

By accumulating snow using a projected 2D grid as created by the occlusion ren-

der, hard and defined edges occur around the boundaries of deposited snow made more

noticeable by the addition of random noise. In real world scenarios, deposited snow

forms a smooth, un-angled surface over its supporting structure. Individual deposits

of snow will dome and gradually join the surface beneath without stiff boundaries.

Once snow has been accumulated onto a surface, smoothing must be performed across

the generated height-map. One possible approach is to consider snow stability be-

tween sample sites with a maximum angle (angle of repose) between them, however

with a possible angle of repose of greater than 90 degrees given the right condition,

snow site stability would not produce a realistic smoothing in all situations. To

smooth the surface of the snow cover, a Gaussian blur is performed on the accumu-

lated height-maps. This gives a smooth edge and gradual change to levels of snow

approximating the curved falloff which occurs when a collection of snow settles onto a

supporting surface. Figure 4.5 shows the effect of blurring the snow height, comparing

107

Figure 4.4: Random noise projected onto the scene from above to denote snowfall.

108

a scene with and without the blur pass.

While blanket snow cover can appear to be smooth and uniform at first glance,

the uneven accumulation and random variation causes a noisy and disturbed surface.

Given that the snow accumulation is stored as a single value height-map, the buffer

can be sent through a render pipeline similar to the method used in blurring to

generate a normal map from the data. The normal map shader calculates a new

normal using Equation 4.2.3,

~cx = ~dy = ~vx, ~cy = ~dx = ~vy

~cz = ax+1,y − ax,y ~dz = ax,y+1 − ax,y−1

~nn =
~c

||~c||
×

~d

||~d||

(4.2.3)

where ~nn is the new normal vector, a is the object’s accumulation buffer, ~v is a

two-dimensional vector determining the measure of normal variation and ~c and ~d are

three dimensional vectors defined in Equation 4.2.3. By generating high detail normal

maps, per pixel lighting can be used to create very fine detail on smooth snow cover

without the need for any additional geometry, as shown in Figure 4.6. This procedure

allows the production of views of a higher visual quality by re-texturing the original

object mesh without introducing any new procedurally generated surfaces, allowing

for efficient, real-time rendering.

Dynamic Tessellation

A common technique in the generation of snow is the procedural generation of a new

mesh to visualize the accumulation. Snow accumulation must be performed in world-

space, i.e. snow must accumulate on surfaces, even if they are hidden from view as

with a dynamic scene, areas which are obscured from the rendering position may come

into view with camera or scene movement. While accumulation must be performed

109

(a) Generated snow cover shown without blur filter.

(b) Generated snow cover shown with blur filter.

Figure 4.5: Comparison of scene with and without blur filter.

110

Figure 4.6: Per-pixel lighting giving a high level of detail using procedurally generated
normal maps.

111

across the whole scene, generation and visualization of the snow surface need only

be done in areas which are directly visible, allowing for screen-space optimization.

Procedurally generating a snow surface which can be altered with each frame is a

computationally expensive task which would not be possible to achieve effectively in

real-time. As stated in the previous section, a vast amount of detail can be added to

continuous snow cover with the inclusion of procedural normal map generation, this

can be applied directly to the geometry of the base scene.

For areas where added geometric detail is required to produce a realistic result,

dynamic tessellation of the surface is performed. While further detail across the

surface of non snow supporting geometry is not required, geometric snow detail can

be added view-dependently as part of the final rendering. By performing this view-

dependently, unnecessary geometry in areas unseen or providing little visual benefit

can be avoided. Around the edges of snow cover where the underlying surface can be

seen is the area most noticeable in changing shape and the main area which requires

more detailed geometric remodelling. All surfaces are displaced when rendering by the

snow levels stored in the height-map, however tessellation provides needed definition

along boundaries.

The main attribute used in determining tessellation level is the amount of snow

the face can support. Horizontal, upward facing triangles can support the most

snow and as such, require higher detail. In addition to the snow levels, the relative

orientation and size of the supporting face on screen is used as the smaller a polygon

becomes when viewed, the less visible detail is required when added using subdivision.

112

Tessellation levels are calculated using Equation 4.2.4,

sp =

~n · ~y, if ~n · ~y ≥ 0

0, otherwise

tf = sp ∗m ∗
|| (~pos1 − ~pos0) × (~pos2 − ~pos0) ||

2 ∗ s

(4.2.4)

where tf is the final tessellation factor, m is the maximum desired tessellation level, ~n

is the unit vector normal to the face, ~pos0, ~pos1 and ~pos2 are the face’s vertex positions

in screen space, s is the screen area in normalised device co-ordinates, ~y is the unit

vector along the positive y axis and sp is a scalar defined in Equation 4.2.4. The

tessellated mesh is then offset by the values stored in the height-map to geometrically

show rising levels in snow accumulation in addition to the visually striking colour

and material difference. The visual result of tessellating the surfaces is shown in

wire-frame in Figure 4.7. This example is over tessellated to illustrate the result of

the technique due to the geometric complexity of the base model. The maximum

levels of tessellation can be controlled dynamically by applying the tessellation rate

based on a minimum viewable triangle size, or as a constant limitation allowing for

finer subdivision on already complex and detailed models. Figure 4.8 shows a clear

offset of the tessellated surface, forming natural peaks in the snow cover over the

“Stanford Bunny” test model.

4.3 Implementation

The implementation of the technique described in this chapter and the access and

the reading from and writing to accumulation buffers at multiple points throughout

the workflow is described in Figure 4.9.

113

(a) Snow cover un-tessellated, wire-frame ren-
der.

(b) Snow cover tessellated, wire-frame render.

Figure 4.7: Comparison of “Stanford Bunny” model with and without dynamic tes-
sellation.

Figure 4.8: Snow height rendered as offset tessellation, forming peaks.

114

Figure 4.9: System diagram showing the process of snow accumulation and access of
stored data buffers throughout the workflow.

115

4.3.1 Accumulation Mapping

The technique was implemented using the C++, OpenGL and GLSL languages to

make use of modern graphics programming features allowing for the possibility of

real-time application. Frame Buffer Objects (FBOs) were used extensively to allow

rendering tasks to be outputted to a generated texture for analysis and computation

at later stages of the rendering path. By using FBO render textures, the imple-

mentation performs the accumulation using multiple render passes to accumulate all

data required for the final scene render. Multiple render targets are used with the

FBOs when mapping occlusion to accumulation maps, allowing multiple accumula-

tion buffers to be updated in a single pass. Rather than altering vertex data at

run time, rendered quads during the accumulation mapping are transformed using a

programmable geometry shader which is computed on all rendered faces after vertex

calculation. This allows bespoke mappings to be done during the render stage using

only a single texture query per triangle as opposed to with each vertex.

4.3.2 Dynamic Detail

The random noise used to denote snowfall patterns is generated per pixel, assigning

each with a uniformly distributed random value between 0 and 1. This gives a random

distribution of snow accumulation and allows density variation to be performed at

runtime by altering a threshold value determining whether snow is present at each

pixel. By lowering the threshold value, a larger number of randomly distributed pixels

in the occlusion render contribute snow to the scene with each frame.

Once snow has been accumulated by a surface, a Gaussian blur is applied to

each texture to simulate the effect of smooth snow height transitions. The blur is

performed with two separate passes, first horizontally using Equation 4.3.1 and then

116

vertically using Equation 4.3.2,

p(x,y) =
5∑
i=0

a(x+oi,y) ∗ wi (4.3.1)

b(x,y) =
5∑
i=0

p(x,y+oi) ∗ wi (4.3.2)

where p is the result of pass 1, b is the final resulting accumulation in a single texel, a

is the two-dimensional accumulation buffer, o is the set of offsets defined as {-3.2307,

-1.3846, 0.0, 1.3846, 3.2307} and w is the set of weights defined as {0.0702, 0.3162,

0.2270, 0.3162, 0.0702}. By splitting the blur procedure into two passes, the same

effect is produced as doing it in one but only requiring 10 texture samples per pixel

as opposed to 25 for a 5x5 blur.

Rendering of a height-map can be performed in several different ways. While such

techniques as ray-tracing and standard tessellation are usable, the implementation

uses a dynamic tessellation using the GLSL Tessellation Shader for a more flexible

and faster approach when dealing with a constantly changing surface. The required

tessellation level is calculated as described in Section 4.2.2 and performed using the

Tessellation Control Shader. Once new geometry has been generated at the required

complexity, surface vertices are offset from their original position by the Tessellation

Evaluation Shader to geometrically simulate the height increase in addition to the

texture application to produce snow.

4.3.3 Texture Resolution

When working with a pixel based application such as the snow accumulation buffers,

texture resolution is vital to producing a usable but effective solution. Each accu-

mulation map is bound using a unique mapping found as a pre-processing step, the

implementation uses a constant texture resolution. Resolution is variable between

occlusion render and accumulation maps, and also between individual maps but is

117

Scene Frame Rates (FPS) Polygon Count
Mean Std. Dev. Final Base

Maple 112.15 0.36 18,742 6,834
Suzanne 108.60 0.49 21,086 3,938
Bunny 108.05 0.22 16,960 4,970
Ash 106.05 0.22 64,740 42,918
Basketball 105.10 0.54 24,152 1,106
Garden 103.02 2.67 347,454 4,594

Table 4.2: Experimental frame-rates achieved with varying scenes and polygon counts.
Results are in FPS, polygon counts are given for both the base model and the final
tessellated render.

not varied at runtime. While using a technique of overlaid maps of varying detail such

as with cascading shadow maps is possible, Section 4.4 details the experimentation

of different constant resolutions and the effects they have on both computation time

and visual result.

4.4 Results

Figure 4.12(a) shows the “Garden Bench” test scene used in development as it shows

the effects of large, uniform areas of occlusion as well as finer detail such as the

thin gaps between bench panels. The final results show that occlusion accumulation

performs well as expected, the effect is a realistic, visually striking winter scene.

Procedural normal mapping as shown in Figure 4.6 gives fine detail to the surface

which enhances realism and the overall visual quality.

Table 4.2 shows benchmark tests using scenes of differing complexity. As the num-

ber of polygons in each scene is increased, the rendering speed of the technique varies

only slightly which can be accounted for by the standard rendering of more com-

plex models. These tests show the performance of snow accumulation to be largely

independent of scene complexity and are each rendered using 1024x1024 resolution oc-

clusion and accumulation maps. Figure 4.13 shows the details of how rendering time

118

(a) “Stanford Bunny” test model.

(b) “Suzanne” Blender Foundation test model.

Figure 4.10: Accumulation of snow on varied scenes.

119

(a) Norwegian Spruce.

(b) European Mountain Ash.

Figure 4.11: Accumulation of snow on varied scenes.

120

(a) “Garden Bench” test scene accumulating persistent snow cover, with 1024x1024 resolu-
tion occlusion and accumulation buffers.

(b) Test scene with 512x512 resolution occlu-
sion and accumulation buffers.

(c) Test scene with 256x256 resolution occlu-
sion and accumulation buffers.

Figure 4.12: Rendering of the test scene at differing resolution of accumulation and
occlusion maps.

121

1024x1024

512x512

256x256

1024x1024

512x512

256x256

0

100

200

300

400

500

600

700

800

Acc. Map Size

Occ. Map Size

F
P

S

Figure 4.13: The frame-rates (FPS) with varying accumulation and occlusion map
resolution.

122

differs with map resolution. Both the occlusion map and accumulation maps are var-

ied using the “Stanford Bunny” scene and the plotted results clearly show the effects

of each variation. Lowering the resolution of the accumulation maps has a substantial

effect of frame-rates whereas lowering the resolution of the occlusion map has more

of an effect the lower the other map’s quality is. This suggests that the performance

of the technique is more dependent on accumulation map procedures such as the blur

and stability calculations than the occlusion projection stages. The visual difference

between map resolution in the simulation is shown in Figures 4.12(a), 4.12(b) and

4.12(c). The similarity between Figures 4.12(a) and 4.12(b) show that buffer resolu-

tion can be reduced to some degree with minimal visual difference, losing only finer

detail. Figure 4.12(c) shows that the higher the reduction in resolution, the more fine

detail is lost which can be seen evidently around the edges of snow accumulation.

Reduction of buffer resolution is an option when memory requirements are too high

for the end system, whether using a texture atlasing technique to minimise render-

ing calls as discussed in Section 4.2.1 or storing separate buffers for each object, the

technique adds the equivalent of two textures per object for accumulation buffers

and computed normal maps. Given this usage, video memory requirement increases

linearly with the number of objects in a scene as buffers can only be used by multiple

objects if they are guaranteed to be influenced by the same amount of snow, i.e. not

occluded, static objects. The only additional memory overheads of the technique are

two textures for the occlusion render and a single VBO used for quad rendering as

described in Section 4.2.1.

All tests were performed on an Intel i7 PC with an nVidia GTX 580 GPU. A

particle system showing falling snowflakes is shown in Figure 4.10, Figure 4.11 as an

indicator of snowfall and visual aid to snow direction, however does not form part

of the described technique which focusses on snow accumulation. While the highest

123

Figure 4.14: Accumulation of snow on the ground beneath a moving cart, showing
areas of grass gradually revealed to the snowfall.

124

detail simulation performed well at real-time rates, substantial speed increases are

seen when lowering the resolution of the buffers, due to limiting the work performed

by the accumulation mapping. As shown in Figures 4.12(b) and 4.12(c), lowering the

resolution of the buffers produces a similarly realistic accumulation of snow across

blanket areas, however fine detail is simplified and lost under the bench. The main

contribution of this solution is the ability to accumulate snow on a moving scene which

was previously not possible in real-time. Due to the problem not being addressed in

previous work, it is difficult to compare results with standard techniques. The closest

example evaluated of real-time high quality snow accumulation is that of Ohlsson and

Seipel, [OS04]. In 2004 they described a technique which achieved snow accumulation

with a frame rate of 11 FPS when rendering to an output resolution of 900x900.

Advancing hardware capabilities would suggest that higher frame-rates are achievable

with a new technique but the key difference is the continuity of snow accumulation

on a dynamic scene which was not approached. In previous real-time techniques,

moving an object throughout a scene would compromise snow cover by recalculating

and losing previous occlusions. More realistically behaving simulations used adjacent

geometry to assess snow accumulation such as work done by Festenberg and Gumhold,

[FG11], however these techniques were not possible in real-time situations and as such

have differing applications which cannot be compared as equals. Figure 4.14 shows

the effect of gradual build-up on the ground under a moving cart as may be seen

in real-time applications such as video games. The gaps between wooden planks in

the cart’s base show how build-up varies between areas un-occluded at all times and

surrounding areas which are gradually revealed to the open sky.

In simulations of extreme wind, the angle of snow fall approaches horizontal caus-

ing occlusion to be projected in a different axis and glancing contact between snow

volumes and horizontal supporting surfaces. Figure 4.15 shows tests of “Stanford

125

Bunny” and monkey head with angle of snowfall of 80◦ from vertical. Areas of ground

occluded by the object are projected behind and snow cover builds up on the front

of the object. The images show substantial build up along the top edge of the object

where occlusion begins giving an overhang supported adequately by the horizontal

surface. Due to the gradual falloff rate of snow on unstable surfaces, cover is being

accumulated on the front of the object faster than it can fall off causing a solid snow

surface encompassing the front side of the object. This effect is optional, as the falloff

rate used by stability calculations is customisable according to the requirements of

the simulation. Figure 4.16 shows snow accumulation projected at an 89◦ angle on a

similar scene. With an extreme angle of fall and high wind forces, the effect on the

ground given by the accumulation and normal mapping is streaked heavily in the di-

rection of travel. This gives the visual effect of high wind forming the surface of snow

cover. At an extreme angle, an artefact is introduced by accumulation immediately

behind the occluding object. This is caused by the resolution of the occlusion render

and it’s mapping to the accumulation maps of the surfaces. At such an angle, a larger

area of the accumulation map is covered by each pixel of the occlusion render, while

occluded surfaces are only calculated at the centre of the pixel. This causes snow sites

to span the entire area covered by the occlusion render pixel regardless of occlusion

occurring elsewhere in the area. In situations where large surfaces are projected at a

very high angle of snowfall, this issue can be limited by increasing the resolution of

the occlusion render where required.

One of the key limitations of the technique is aliasing issues in the generated snow

cover caused by buffer resolution. As shown in Figure 4.12, the quality of snow surface

generation is limited by the resolution of accumulation maps and the resolution of the

occlusion render. Smaller textures used to store these elements lead to less detailed

generation and a grid-like appearance to generated surfaces. In addition to rendering

126

Figure 4.15: Screenshots of snow accumulation falling at a 80◦ angle due to wind
forces.

127

Figure 4.16: Screenshots of snow accumulation falling at an 89◦ angle due to wind
forces.

128

speed, increased texture resolution imposes a memory requirement which may limit

the techniques application in some situations. During instances where the projected

occlusion render and the accumulation buffer are vastly different resolutions, such as

when projecting snow onto a surface at an extreme angle or onto a small, complex

object, the density of texels in the accumulation buffer as projected onto the texels

of the occlusion render can differ greatly. This difference in texel density can cause

aliasing artefacts in the projected snow cover and lead to unrealistic surfaces. The

aliasing effect in the sampling of accumulation buffers is improved considerably by

the inclusion of blur filtering, as shown in Figure 4.5, however in extreme cases due

to a surface’s size or angle, artefacts can still be present. Another limitation caused

by aliasing during projection is the inclusion of extremely fine detail. Very small

objects or those with very narrow surfaces relative to the rest of the scene can cause

difficulty being detected and sampled properly by the occlusion render. Traditional

anti-aliasing techniques such as super sampling or stochastic sampling could be em-

ployed to improve the performance of the technique in applications where thin, fine

details cause such an issue. Due to limitations on graphics hardware and the memory

requirements of large texture based maps, it becomes increasingly difficult to store

accumulation maps and the occlusion render as a scene increases greatly in size, forc-

ing a much higher resolution to create the same detail in snow cover relative to scene

size. To address this issue, a system of accumulation map and occlusion render tiling

can be implemented, separating the scene into distinct areas to be processed inde-

pendently, without compromising the dynamic capabilities of the scene. The memory

requirements of the surface-bound accumulation maps cause further issues with the

scaling of scene complexity as with each object introduced, a separate accumulation

map and normal map must be stored to allow snow to be accumulated on the sur-

faces of the object. As multiple render targets are used for the accumulation mapping

129

Figure 4.17: Close-up view of snow accumulation on a primitively modelled Ash.

process, graphics hardware limits the number of maps which can be accumulated to

simultaneously to the maximum number of render targets. Should the number of ac-

cumulation maps surpass the maximum number of render targets, the mapping stage

must be divided into multiple passes to process all supporting surfaces. The memory

requirements and multiple mapping pass requirements of more complex scenes can

be limited by texture atlasing, a technique of mapping multiple surfaces of multiple

objects to a single unique texture, reducing the required number of textures to display

all surfaces.

4.4.1 Snow Accumulation on Remodelled Trees

Figure 4.17 shows the technique applied to a primitively modelled European Mountain

Ash tree. The tree, modelled using the Xfrog software package, is comprised of many

130

pieces of distinct geometry intersecting each other rather than a continuous mesh,

with leaves displayed as billboarded images. This discontinuity of surfaces causes

an unavoidable disjoint in map coordinates. The sudden change in texture mapping

causes the accumulation technique to produce hard lined edges which accentuate the

discrepancies. With the connection of normal, continuously meshed objects such as

those in Chapter 3, the effects are less noticeable, but artefacts become quite visible

in models which feature many intersecting surfaces in close proximity. This limitation

of the described technique can be removed by the use of models featuring continuous,

solid surfaces.

Figure 4.18 shows dynamic snow build-up on remodelled Japanese Maple and

Horse Chestnut trees developed in Chapter 3. By modelling the complex structures

as a continuous mesh, the unwrapping of the texture coordinates is not limited to

geometric boundaries between elements and textures can be mapped across junctions

and joints without segmentation. By mapping an unbroken accumulation buffer across

a complex area of the model, this allows smooth and unbroken snow cover across the

section without the artefacts caused by seams in the texture mapping. Figure 4.19

shows the result of consistent snow accumulation over branch junctions in both the

Japanese Maple and horse Chestnut models. When compared to the results of a

primitively modelled tree as shown in Figure 4.11 and Figure 4.17, it clearly shows

the limitations of accumulation on disjointed geometry and how it can be improved

substantially by modelling with continuous surfaces.

Another limitation is that image based techniques are dictated by image resolution

and, while larger solid objects perform well, occlusion sampling can miss tiny details

such as thin, alpha blended leaves as shown in Figure 4.11(a), causing dynamic scenes

of this fine detail to require a higher than normal occlusion map resolution. However,

Figure 4.20 shows the result of detailed snow build-up on geometrically thin branches

131

(a) Snow accumulation on a remodelled Japanese Maple.

(b) Snow accumulation on a remodelled Horse Chestnut.

Figure 4.18: Snow accumulation on remodelled trees.

132

(a) Snow accumulation on a Horse Chestnut branch junction.

(b) Snow accumulation on a Japanese Maple branch junctions.

Figure 4.19: Screenshot showing unbroken snow cover across the branch junction of
remodelled trees.

133

(a) Screenshot to show snow build-up on the thin branch of a remodelled
Japanese Maple.

(b) Screenshot to show snow build-up on the thin branch of a remodelled
Horse Chestnut.

Figure 4.20: Screenshots to show the snow build-up on the thin branchs of remodelled
trees.

134

with accumulation maps of only a few texels wide, showing that the limitation is

encountered only with extremely fine detail. This limitation can be dealt with using

higher resolution for both occlusion and accumulation maps should the application

require it.

4.5 Conclusion

Section 4.4 shows that using a high quality simulation of 1024x1024 buffers gives both

a visually realistic result and a processing speed usable in real-time applications. Pro-

cessing speed is increased by reducing buffer resolution at the cost of removing fine

detail. There is no inherent limitation to the use of multiple occlusion renders and

a system of differing density textures where required similar to the approach of cas-

caded shadow mapping would produce high quality simulation around areas of great

detail while maintaining the high speed of lower detail maps where usable without

reducing the quality. By basing snow accumulation solely on occlusion renders and

mapping height buffers directly to object surfaces, scenes can be dynamically ani-

mated in any way without any additional computational cost to the snow simulation.

Current techniques for simulating snow accumulation share the similar limitations

of either not being achievable in real-time due to the computational cost of copying

data across hardware devices, or unable to support persistent accumulation of snow

making the approach unusable in dynamic scenes. The mapping of occlusion data

to accumulation maps without the transfer from GPU, as described in Section 4.2.1,

allows the updating of persistent accumulation buffers based on scene occlusion with-

out this computationally expensive limitation. This new technique is the first to allow

the simulation to be carried out on a dynamic scene of fully animatable objects, while

maintaining persistent and realistic accumulation in real-time.

135

4.5.1 Future Work

The proposed solution allows the real-time accumulation of snow on dynamic scenes,

while the build-up of snow has a striking visual effect, large amounts of snow also

exert a substantial force on the surface supporting them. The ideal next stage of

this research is the realistic modelling of snow movement throughout the scene in

response to a moving environment and a method of surface feedback previously un-

investigated to allow accumulating snow to inflict weight on physically simulated sup-

porting structures. By utilising similar methods of mapping accumulation to texture-

bound buffers, it is planned to explore the possibility of simulating the reaction of

soft-body and rigid-body surfaces to the weight of the constantly accumulating snow.

In addition to the effect snow has on its surrounding scenery, the improvement of snow

travel within the simulation would increase realism as currently only uni-directional

wind forces can be incorporated and not turbulent flows.

Chapter 5

Conclusion

5.1 Discussion

Chapter 3 details a technique for remodelling botanical trees to give a higher quality

result in real-time applications. One of the main limitations found with current tree

modelling techniques is the combination of multiple mesh surfaces with disjointed

junctions between them, for example, branches created using a separate mesh uncon-

nected to the parent branch. This approach causes unwanted artefacts and errors

which become noticeable when viewing from a close distance or animating the struc-

ture causing movement at the joint. The technique described in Chapter 3 addresses

this issue by remodelling the trees generated by an industry used tool to create the

entire branching structure from a single, continuous mesh. This technique results in

clean, joined branch junctions which deform effectively and are more appropriate for

use in any dynamic scene which require animation of the structure. This is possible

due to the high resolution skeleton and rigging produced by the procedural method.

The decision to work with a single continuous mesh came from analysis of natural

trees and the surfaces they create; it was concluded that to effectively mimic the nat-

ural structure, the mesh should be based on the structure’s natural state as much as

possible. Single continuous meshes are optimum for simulating continuous real-world

surfaces and as a tree’s surface is largely unbroken, a continuous mesh would be the

136

137

best approximation. In basing the model’s underlying structure on the real equivalent

as well as its shape, a model is produced which is not only realistic in form, but can be

smoothed, deformed and reshaped without the introduction of unrealistic artefacts.

The technique described in Chapter 3 began with extracting structure informa-

tion and generating a complete skeleton before producing an element of the 3D model

itself. This ensured that branching joints were based on the movable sections of the

tree and any deformations were clean and without artefact. A common method in

procedural tree modelling is to begin with a structure but to model around the hier-

archy disjointedly, only focussing on individual branches at a time. This issue creates

more problems than the previously discussed separation of meshes at junctions. A full

structure enforces the natural hierarchy and branching of a tree, allowing elements to

effect all others sharing a connection. The technique described in this thesis models

every branch with distinct knuckle sections at the point of child growth allowing the

natural point of torsion and force transferral to be deformed without distortion to

the shape. This encourages modelling which adheres to the natural shape of a branch

allowing both forks and changes in limb direction without unrealistic stretching of the

faces and compression of the points around a curve. Considering these key points, it

can be concluded that when procedurally modelling complex natural structures, using

trees as a specific example, more appropriate results can be produced by adhering

to the natural structure at every point of the process. Rather than basing a model

purely on the visual aspect of what is being mimicked, assessment of the underlying

structure, both its hierarchy and the structure of its surface, can produce a model

which avoids many common artefacts and inaccuracies as well as allowing a more

robust model with the capability of being used in a wider variety of applications.

Chapter 4 details a method of persistent snow accumulation on a dynamic scene.

One of the main limitations of current snow accumulation techniques is that they

138

are unsuitable for dynamic scenes as occlusion-based snow does not accumulate per-

sistently. In a real-world scenario, if an occluding object were to move, the area

occluded would lack snow until it built up due to new accumulation, where as the

newly occluded area would receive no more snowfall but retain its current level of

accumulation. The technique described in Chapter 4 is the first to allow persis-

tent accumulation with dynamic occluders in real-time. One of the key aspects of a

weather condition such as snowfall is that the effects are cumulative over a period of

time, rather than momentary. While simulating a cumulative effect, fidelity of the

scene over time must be considered and incorporated. Scene changes occur in a wide

variety of ways including a change in snowfall direction due to variable wind without

any direct movement of occluding surfaces. If a snow simulation does not incorporate

persistent accumulation, any dynamic scene elements would produce unrealistic and

unwanted visual effects which reduce the quality of the application.

Optimising procedures for GPU parallelisation has been a popular topic for years

as the number of independent cores in GPUs have risen to numbers unreachable by

any CPU. Much focus is being put on systems such as CUDA or OpenCL which

open the GPU to non graphical, parallel tasks and, while these approaches are fast

and efficient for parallel tasks, they require an additional development stage incor-

porating a separate environment with its own computational overheads. Chapter 4

shows that parallel computation tasks which do not implicitly involve rendering can

be performed using the rendering pipeline using innovative shader techniques. The

benefit of using the rendering pipeline for geometric tasks is that all geometric data

which may influence the calculations is already accessible without extra steps taken

to share data, and organised by the pipeline to perform per-vertex or per-face calcu-

lations inherently. It can be concluded that while much focus is placed on alternative

GPU parallelisation environments, there are still novel approaches and uses available

139

within in the programmable render pipeline.

The technique detailed in Chapter 4 is used to update separate accumulation maps

for each object in the scene with snow height at given points. While it performs this

task as required, it opens many possibilities for the techniques use with other tasks.

The re-mapping within the render pipeline can be used to update any simulation

which accumulates values over any given surface. The values stored in the accumu-

lation map are used as a height-map for snow rendering, whereas they could also be

used, for example, as saturation within a rainfall simulation. By mapping skeletal

bone structures to texels within the map, a simulation can use this technique to calcu-

late cumulative forces within a simulation, transferring variable wind forces which act

differently in different areas of the projection, or the added weight on a structure due

to mass accumulation. This could be achieved by using one of the vacant channels

in the accumulation map textures to store a permanent bone id which corresponds

to the weighting of the mapped face. It can be concluded from this that while the

technique detailed performs adequately in the simulation of snowfall accumulation,

its applications are not limited to this solution and can be applied to a number of

simulations.

From both Chapter 3 and Chapter 4, it can be concluded that dynamic tessella-

tion can play a large part in the simplification of graphics problems. Tree branches

and junctions were modelled in a primitive manner in Section 3.3, consisting of four-

sided tubes joined at a cube shaped junction to ensure correct mesh construction. It

is possible to model high quality structures using over-simplified shapes by adding

geometric detail during render, allowing the tessellation engine to subdivide necessary

surfaces and smooth all transitions. In Section 4.2.2, generating a separate mesh to

model snowfall is unnecessary as the scene’s own geometry is altered by dynamically

140

tessellating the surfaces to the required complexity and offsetting its height at ren-

der, allowing for real-time simulation by removing the need to generate world-space

geometry as part of the simulation. While screen-space tessellation can be used to

add high levels of geometric detail only when needed, improving the visual quality

of simulations, inclusion of this practice in the design of solutions allows research

problems to be over-simplified in their geometric requirements without reducing the

quality and usability of the output.

5.2 Future Work

Given the opportunity to continue the research further than the scope of this thesis,

there are several aspects of the work which could provide interesting research. One of

the key elements of Chapter 3 is inclusion and generation of a high quality skeleton

within tree models. This is used to form the mesh of the tree and animate the

branches, however the skeleton is of very high resolution and too complex for many

applications. A system of reducing the complexity of the skeleton programmatically

and dynamically at run time would allow finely detailed animation using a dynamic

level of detail approach. A dynamic approach would allow the application to use the

full detail of the skeleton when needed but reduce the overheads not using the entire

structure. This could be performed by clamping bones to their parents and removing

any simulation of them individually or offsetting the mesh by the transforms of larger

parent bones rather then the particular bone the model was generated around.

Chapter 4 uses accumulation maps to store the height of accumulated snow in

individual texels, future enhancements of this technique could use the accumulated

snow height as a measure of mass for the snow stored at each point, enabling simula-

tion of forces created by the weight of snow cover. By applying the additional force to

141

physically modelled surfaces at the point of accumulation an effective physical simu-

lation of surface feedback could be achieved. Reducing the resolution of accumulation

maps and mapping larger areas of the surface to single texels would be sufficient to

simulate the accumulated weight as the force would exert as a combined force from

many areas of snow. When applied to the trees created in Chapter 3, each face in the

tree mesh contains information about its weighting to the bones of the tree skeleton,

allowing feedback from the surface bound maps having access to both the amount of

accumulated snow and its position, as well as the skeletal influences. This can be used

to apply the accumulated snow weight as a force to the underlying bone structure,

simulating the behaviour of the tree under the additional weight of snowfall.

In addition to modelling snowfall, the techniques described in Chapter 4 could be

amended to simulate other accumulating material and natural elements such as sand

or water. The technique currently simulates the behaviour of material which bonds

to itself, forming a single surface, which could be expanded to simulate more granular

material by adjusting and changing the stability calculations detailed in Section 4.2.1.

By making the created structure considerably more unstable, an effective simulation

of drier materials such as sand accumulation could be achieved in a similar manner.

While the rendering of this system uses the accumulation maps as a height-map in

order to render snow offset, other uses could include moisture or saturation in a water

simulation. During rainfall, the water will run off uneven surfaces as well as largely

accumulating in the form of soaking into permeable materials. This changes their

appearance greatly and could be modelled effectively using the system put forward

by accumulating moisture at any given site in the same way snow height is currently

stored. The rendering of the simulation would use the information to darken wet-

ter areas to give the effect of moisture and introduce sharp specular highlighting in

addition to increasing the weight of surfaces for simulation.

Appendix A

Dynamic Tree Tessellation Shaders

A.1 Tessellation Control Shader - GLSL

#version 410

layout(vertices = 3) out;

in vec3 vPosition[];

in vec2 vTexCoord[];

in vec3 vNormal[];

in vec3 vTangent[];

in vec3 vBitangent[];

in vec4 vBoneWeights[];

in vec4 vBoneIndex[];

out vec2 tcTexCoord[];

out vec3 tcPosition[];

out vec3 tcNormal[];

out vec3 tcTangent[];

out vec3 tcBitangent[];

out vec4 tcBoneWeights[];

out vec4 tcBoneIndex[];

patch out int numberOfBones;

patch out int bones[5];

patch out vec3 boneweights[5];

patch out float tcTessLev;

uniform sampler2D WeightingTexture;

uniform float WeightingTextureWidth;

uniform mat4 ModelViewMatrix;

uniform float MaxLevels;

uniform vec3 FrustumPoints[6];

142

143

uniform vec3 FrustumNormals[6];

const float maxTessDistance = 20.0;

const int maxTessLevel = 5;

#define ID gl_InvocationID

void main()

{

//Transferring data to the Tessellation Evaluation Shader

tcPosition[ID] = vPosition[ID];

tcTexCoord[ID] = vTexCoord[ID];

tcNormal[ID] = vNormal[ID];

tcTangent[ID] = vTangent[ID];

tcBitangent[ID] = vBitangent[ID];

tcBoneWeights[ID] = vBoneWeights[ID];

tcBoneIndex[ID] = vBoneIndex[ID];

int viewed = 0;

//Performing View Frustrum Culling

if(ID == 0)

{

for(int j = 0; j < 3 && viewed == 0; j++)

{

vec3 point, norm;

int frusttest = 1;

for(int i = 0; i < 6 && frusttest > 0; i++)

{

point = vec3(FrustumPoints[i].x,

FrustumPoints[i].y, FrustumPoints[i].z);

norm = vec3(FrustumNormals[i].x,

FrustumNormals[i].y, FrustumNormals[i].z);

vec3 test = normalize(vPosition[j] - point);

if(dot(test, norm) < 0)

{

frusttest = 0;

}

}

viewed = frusttest;

}

144

}

//Calculating Tessellation Level

if(ID == 0)

{

int texelindex = gl_PrimitiveID * 6;

ivec2 index;

index.y = texelindex / int(WeightingTextureWidth);

index.x = texelindex - (index.y *

int(WeightingTextureWidth));

vec4 facedata = texelFetch(WeightingTexture, index, 0);

float tess = length(vec3((ModelViewMatrix *

vec4(vPosition[ID], 1.0))));

float tessLevel = 0.0;

if((facedata[2] <= 1.0 || tess < (maxTessDistance*MaxLevels)

* ((MaxLevels-facedata[2]) / MaxLevels)) && (viewed > 0))

{

tess = ((1.0/maxTessDistance)*tess);

tess = clamp(tess, 0.0, 1.0);

tess = 1.0-tess;

tessLevel = 1.0 + ((maxTessLevel-1) * tess);

tessLevel = tessLevel *

((MaxLevels-facedata[2])/MaxLevels);

}

gl_TessLevelInner[0] = tessLevel;

gl_TessLevelOuter[0] = tessLevel;

gl_TessLevelOuter[1] = tessLevel;

gl_TessLevelOuter[2] = tessLevel;

tcTessLev = tessLevel;

//Determining how many bones effect the face

//Transferring their IDs and weightings to the Tessellation

Evaluation Shader

if(tessLevel > 0)

{

numberOfBones = int(facedata[0]);

for(int i = 0; (i < 5) && (i < numberOfBones); i++)

{

texelindex++;

145

index.y = texelindex /

int(WeightingTextureWidth);

index.x = texelindex - (index.y *

int(WeightingTextureWidth));

vec4 weightdata =

texelFetch(WeightingTexture, index, 0);

bones[i] = int(weightdata[0]);

boneweights[i] = vec3(weightdata[1],

weightdata[2], weightdata[3]);

}

}

}

}

A.2 Tessellation Evaluation Shader - GLSL

#version 410 core

layout(triangles, equal_spacing, ccw) in;

in vec2 tcTexCoord[];

in vec3 tcNormal[];

in vec3 tcPosition[];

in vec3 tcTangent[];

in vec3 tcBitangent[];

in vec4 tcBoneWeights[];

in vec4 tcBoneIndex[];

out vec2 teTexCoord;

out vec3 tePositionEye;

out vec3 teNormal;

out vec3 teLightPos;

out vec3 tePositionEyeUniform;

out float teTessLev;

uniform mat4 ModelViewMatrix;

uniform mat4 ProjectionMatrix;

uniform mat3 NormalMatrix;

uniform mat4 ViewMatrix;

uniform vec4 light_direction;

uniform sampler2D DisplacementMap;

uniform sampler2D BoneTexture;

146

uniform sampler2D WeightingTexture;

uniform float BoneTextureWidth;

uniform float WeightingTextureWidth;

uniform float MaxLevels;

patch in int numberOfBones;

patch in int bones[5];

patch in vec3 boneweights[5];

patch in float tcTessLev;

//Function to determine the closes point on a line segment to an arbitrary

point

vec3 closestPoint(vec3 p0, vec3 p1, vec3 p)

{

vec3 closest;

vec3 d = p1-p0;

if(d.x == 0.0 && d.y == 0.0 && d.z == 0.0)

{

closest = p0;

} else {

float t = (((p.x-p0.x) * d.x) + ((p.y-p0.y) * d.y) +

((p.z-p0.z) * d.z)) / ((d.x*d.x) + (d.y*d.y) +

(d.z*d.z));

closest = p0+(d*t);

}

return closest;

}

void main()

{

//Interpolating point data to the newly created vertex

teTessLev = tcTessLev;

teTexCoord = (gl_TessCoord.x * tcTexCoord[0] + gl_TessCoord.y *

tcTexCoord[1] + gl_TessCoord.z * tcTexCoord[2]);

vec3 norm;

norm = (tcNormal[0] * gl_TessCoord.x) + (tcNormal[1] *

gl_TessCoord.y) + (tcNormal[2] * gl_TessCoord.z);

norm = normalize(NormalMatrix*norm);

teNormal = norm;

vec3 pos;

pos = (gl_TessCoord.x * tcPosition[0] + gl_TessCoord.y *

tcPosition[1] + gl_TessCoord.z * tcPosition[2]);

147

//Reading bone weighting data from texture and interpolating bone

weighting from original vertices using a weighted mean

int texelindex = gl_PrimitiveID * 6;

ivec2 index;

index.y = texelindex / int(WeightingTextureWidth);

index.x = texelindex - (index.y * int(WeightingTextureWidth));

vec4 facedata = texelFetch(WeightingTexture, index, 0);

float weights[5];

float total = 0.0;

for(int i = 0; i < numberOfBones; i++)

{

weights[i] = clamp((boneweights[i][0] * gl_TessCoord[0]) +

(boneweights[i][1] * gl_TessCoord[1]) +

(boneweights[i][2] * gl_TessCoord[2]),0.0,1.0);

total += weights[i];

}

float weightmod = 1.0 / total;

vec3 newpos = vec3(0.0);

vec3 newskeletonpoint = vec3(0.0);

//For all influencing bones, calculating new position relative to

that bone, and averaging positions by their bone weighting

for(int i = 0; i < numberOfBones; i++)

{

ivec2 index1, index2, index3;

index1.y = bones[i] / int(BoneTextureWidth);

index1.x = bones[i] - (index1.y * int(BoneTextureWidth));

index2.y = (bones[i]+1) / int(BoneTextureWidth);

index2.x = (bones[i]+1) - (index2.y * int(BoneTextureWidth));

index3.y = (bones[i]+2) / int(BoneTextureWidth);

index3.x = (bones[i]+2) - (index3.y * int(BoneTextureWidth));

vec4 bonedata, p0, p1;

bonedata = texelFetch(BoneTexture, index1, 0);

p0 = texelFetch(BoneTexture, index2, 0);

p1 = texelFetch(BoneTexture, index3, 0);

vec3 closest = closestPoint(p0.xyz, p1.xyz, pos);

148

vec3 offsetvec = pos-closest;

offsetvec = normalize(offsetvec);

float radius;

float L, W, a, b, x;

L = bonedata[2];

W = bonedata[1]*0.5;

a = p1[3];

b = 5;

x = bonedata[3] + distance(closest, p0.xyz);

x = x - W;

L = L - W;

radius = (a*W) / (((x * (b - a)) / L) + a);

radius = clamp(radius,0.0,W);

newpos = newpos + ((closest + (radius *

offsetvec))*(weights[i]*weightmod));

newskeletonpoint = newskeletonpoint * (weights[i]*weightmod);

}

pos = newpos;

gl_Position = ProjectionMatrix * ModelViewMatrix * vec4(pos, 1.0);

vec4 PositionEye = (ModelViewMatrix * vec4(pos, 1.0));

tePositionEyeUniform = PositionEye.xyz;

//Constructing TBN matrix using new data (for normal mapping)

vec3 n, t, b;

n = (gl_TessCoord.x * tcNormal[0] + gl_TessCoord.y * tcNormal[1] +

gl_TessCoord.z * tcNormal[2]);

t = (gl_TessCoord.x * tcTangent[0] + gl_TessCoord.y * tcTangent[1]

+ gl_TessCoord.z * tcTangent[2]);

b = (gl_TessCoord.x * tcBitangent[0] + gl_TessCoord.y *

tcBitangent[1] + gl_TessCoord.z * tcBitangent[2]);

n = normalize(NormalMatrix*n);

t = normalize(NormalMatrix*t);

b = normalize(NormalMatrix*b);

149

mat3 tbnMatrix = mat3(t.x, b.x, n.x,

t.y, b.y, n.y,

t.z, b.z, n.z);

//Transferring data to Fragment Shader

tePositionEye = PositionEye.xyz / PositionEye.w;

vec3 L = normalize(light_direction.xyz-tePositionEye);

tePositionEye=-tePositionEye;

tePositionEye = tbnMatrix*tePositionEye;

teLightPos = tbnMatrix*L;

}

Appendix B

Tree Remodelling Comparison

150

151

(a) The original static mesh.

(b) The remodelled mesh.

Figure B.1: Comparison of original Xfrog tree models and remodelled geometry
around the same generated structure.

152

(a) The original static mesh.

(b) The remodelled mesh.

Figure B.2: Comparison of original Xfrog tree models and remodelled geometry
around the same generated structure.

153

(a) The original static mesh with connection artefacts highlighted in red.

(b) The remodelled mesh.

Figure B.3: Comparison of original Xfrog tree models and remodelled geometry
around the same generated structure.

154

(a) The original static mesh with connection artefacts highlighted in red.

(b) The remodelled mesh.

Figure B.4: Comparison of original Xfrog tree models and remodelled geometry
around the same generated structure.

155

(a) The original static mesh.

(b) The remodelled mesh.

Figure B.5: Comparison of original Xfrog tree models and remodelled geometry
around the same generated structure.

156

(a) The original static mesh with connection artefacts highlighted in red.

(b) The remodelled mesh.

Figure B.6: Comparison of original Xfrog tree models and remodelled geometry
around the same generated structure.

Bibliography

[Bel86] A D Bell. The Simulation of Branching Patters in Modular Organisms.

Philosophical Transactions of the Royal Society B: Biological Sciences,

313(1159):143–159, August 1986.

[BH84] R Borchert and H Honda. Control of development in the bifurcating

branch system of Tabebuia rosea: a computer simulation. Botanical

Gazette, pages 184–195, 1984.

[Blo85] J Bloomenthal. Modeling the mighty maple. Proceedings of the 12th

annual conference on Computer graphics and interactive techniques -

SIGGRAPH ’85, pages 305–311, 1985.

[BLZD12] G Bao, H Li, X Zhang, and W Dong. Large-scale forest rendering: Real-

time, realistic, and progressive. Computers & Graphics, 36(3):140–151,

May 2012.

[BRS79] A D Bell, D Roberts, and A Smith. Branching patterns: the simula-

tion of plant architecture. Journal of theoretical biology, 81(2):351–75,

November 1979.

[Cho56] N Chomsky. Three models for the description of language. Information

Theory, IRE Transactions on, 2(3):113–124, 1956.

[DCL05] L E Da Costa and J Landry. Generating grammatical plant models

with genetic algorithms. In Adaptive and Natural Computing Algorithms,

pages 230–234, 2005.

157

158

[Dou67] G A Doumani. Surface structures in snow. Physics of Snow and Ice:

proceedings, 1(2):1119–1136, 1967.

[DRBR09] J Diener, M Rodriguez, L Baboud, and L Reveret. Wind projection basis

for real-time animation of trees. Computer Graphics Forum, 28(2):533–

540, April 2009.

[DRF06] J Diener, L Reveret, and E Fiume. Hierarchical retargetting of 2D mo-

tion fields to the animation of 3D plant models. Proceedings of the

2006 ACM SIGGRAPH/Eurographics symposium on Computer anima-

tion, pages 187–195, 2006.

[FB02] B E Feldman and J F O Brien. Modeling the accumulation of wind-

driven snow. In ACM SIGGRAPH 2002 conference abstracts and appli-

cations, pages 218–218. ACM, 2002.

[FB07] D Foldes and B Beneš. Occlusion-based snow accumulation simulation.

Reality Interactions and Physical Simulation, 2007.

[Fea00] P Fearing. Computer modelling of fallen snow. Proceedings of the 27th

annual conference on Computer graphics and interactive techniques -

SIGGRAPH ’00, pages 37–46, 2000.

[FG09] N Festenberg and S Gumhold. A Geometric Algorithm for Snow Dis-

tribution in Virtual Scenes. In Eurographics Workshop on Natural Phe-

nomena, pages 15–25. The Eurographics Association, 2009.

[FG11] N V Festenberg and S Gumhold. Diffusion-Based Snow Cover Genera-

tion. Computer Graphics Forum, 30(6):1837–1849, September 2011.

[GCRR11] J Gumbau, M Chover, I Remolar, and C Rebollo. View-dependent prun-

ing for real-time rendering of trees. Computers & Graphics, 35(2):364–

374, April 2011.

159

[HAH02] H Haglund, M Andersson, and A Hast. Snow Accumulation in Real-

Time. In Proceedings of SIGRAD, pages 11–15, 2002.

[HCH12] S Hu, N Chiba, and D He. Realistic animation of interactive trees. The

Visual Computer, 28(6-8):859–868, April 2012.

[HJT+13] C Huang, W Jheng, W Tai, C Chang, and D Way. Procedural grape

bunch modeling. Computers & Graphics, 37(4):225–237, June 2013.

[HKW09] R Habel, A Kusternig, and M Wimmer. Physically Guided Animation

of Trees. Computer Graphics Forum, 28(2):523–532, April 2009.

[IOI06] T Ijiri, S Owada, and T Igarashi. The sketch l-system: Global control

of tree modeling using free-form strokes. Smart Graphics, 1, 2006.

[KDRB+03] MZ Kang, P De Reffye, J Barczi, B G Hu, and F Houllier. Stochastic 3D

tree simulation using substructure instancing. In Plant Growth Modeling

and Applications, pages 154–168, 2003.

[KHL04] T Kim, M Henson, and M C Lin. A hybrid algorithm for modeling ice

formation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics

symposium on Computer animation - SCA ’04, page 305, New York,

New York, USA, August 2004. ACM Press.

[KL03] T Kim and M C Lin. Visual Simulation of Ice Crystal Growth. In

Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on

Computer animation, pages 86–97, 2003.

[LD98] B Lintermann and O Deussen. A Modelling Method and User Interface

for Creating Plants. Computer Graphics Forum, 17(1):73–82, March

1998.

[LD99] B Lintermann and O Deussen. Interactive modeling of plants. Computer

Graphics and Applications, IEEE, 19(1):56–65, 1999.

160

[Lin68] A Lindemayer. Mathematical models for cellular interaction in develop-

ment I and II. Journal of Theoretical Biology, 1968.

[LPC+11] Y Livny, S Pirk, Z Cheng, F Yan, O Deussen, D Cohen-Or, and B Chen.

Texture-lobes for tree modelling. In ACM SIGGRAPH 2011 Papers,

SIGGRAPH ’11, pages 53:1–53:10, 2011.

[LPRM02] B Lévy, S Petitjean, N Ray, and J Maillot. Least squares conformal maps

for automatic texture atlas generation. ACM Transactions on Graphics,

3:362–371, 2002.

[LRBJ09] J Long, C Reimschussel, O Britton, and M Jones. Motion capture for

natural tree animation. In SIGGRAPH 2009: Talks, SIGGRAPH ’09,

pages 77:1–77:1, 2009.

[LVM04] J Lluch, R Vivó, and C Monserrat. Modelling tree structures using a

single polygonal mesh. Graphical Models, 66(2):89–101, March 2004.

[LZK04] MS Langer, L Zhang, and AW Klein. A spectral-particle hybrid method

for rendering falling snow. Rendering techniques, 4:217–226, 2004.

[May73] G J Mayhead. Some drag coefficients for British forest trees derived

from wind tunnel studies. Agricultural Meteorology, 12:123–130, 1973.

[MC00] K Muraoka and N Chiba. Visual simulation of snowfall, snow cover and

snowmelt. In Proceedings Seventh International Conference on Parallel

and Distributed Systems: Workshops, number 4, pages 187–194. IEEE

Comput. Soc, 2000.

[MGG+10] N Maréchal, E Guérin, E Galin, S Mérillou, and N Mérillou. Heat

Transfer Simulation for Modeling Realistic Winter Sceneries. Computer

Graphics Forum, 29(2):449–458, June 2010.

[NIDN97] T Nishita, H Iwasaki, Y Dobashi, and E Nakamae. A Modeling and

Rendering Method for Snow by Using Metaballs. Computer Graphics

Forum, 16(3):C357–C364, September 1997.

161

[NTT92] H Noser, D Thalmann, and R Turner. Animation based on the Inter-

action of L-systems with Vector Force Fields. Proc. Computer Graphics

International, 1992.

[OS04] P Ohlsson and S Seipel. Real-time Rendering of Accumulated Snow. In

Sigrad Conference, pages 25–32, 2004.

[OTF+04] S Ota, M Tamura, T Fujimoto, K Muraoka, and N Chiba. A hybrid

method for real-time animation of trees swaying in wind fields. The

Visual Computer, 20(10):613–623, November 2004.

[PHHM97] P Prusinkiewicz, M Hammel, J Hanan, and R Měch. Visual models of

plant development. In Handbook of formal languages, pages 535–597.

Springer, 1997.

[PHM93] P Prusinkiewicz, M S Hammel, and E Mjolsness. Animation of Plant

Development. In Proceedings of the 20th annual conference on Computer

graphics and interactive techniques, volume 93, pages 351–360. ACM,

1993.

[PJM94] P Prusinkiewicz, M James, and R Měch. Synthetic Topiary. In Proceed-

ings of the 21st annual conference on Computer graphics and interactive

techniques, volume 94, pages 351–358. ACM, 1994.

[PLH88] P Prusinkiewicz, A Lindenmayer, and J Hanan. Development models of

herbaceous plants for computer imagery purposes. In ACM SIGGRAPH

Computer Graphics, pages 141–150, 1988.

[PLH+90] P Prusinkiewicz, A Lindenmayer, J S Hanan, F D Fracchia, D R Fowler,

M J M de Boer, and L Mercer. The algorithmic beauty of plants.

Springer-Verlag New York, 2 edition, 1990.

[PMKL01] P Prusinkiewicz, L Mündermann, R Karwowski, and B Lane. The use

of positional information in the modeling of plants. In Proceedings of the

162

28th annual conference on Computer graphics and interactive techniques,

volume 2001, pages 289–300. ACM, 2001.

[Pru86] P Prusinkiewicz. Graphical applications of L-systems. Proceedings of

graphics interface, pages 247–253, 1986.

[Pru04] P Prusinkiewicz. Modeling plant growth and development. Current

Opinion in Plant Biology, 7(1):79–83, February 2004.

[PSK+12] Sn Pirk, O Stava, J Kratt, M A M Said, B Neubert, R Měch, B Benes,

and O Deussen. Plastic trees. ACM Transactions on Graphics, 31(4):1–

10, July 2012.

[SD05] S I Sen and A M Day. Modelling trees and their interaction with the

environment: A survey. Computers & Graphics, 29(5):805–817, October

2005.

[Sim91] K Sims. Artificial Evolution for Computer Graphics. Computer Graph-

ics, 25(4), 1991.

[SOH99] R W Sumner, J F O’Brien, and J K Hodgins. Animating Sand, Mud,

and Snow. Computer Graphics Forum, 18(1):17–26, March 1999.

[SSC+13] A Stomakhin, C Schroeder, L Chai, J Teran, and A Selle. A material

point method for snow simulation. ACM Transactions on Graphics,

32(4):1, July 2013.

[SSKLK13] D Shreiner, G Sellers, J M Kessenich, and B M Licea-Kane. OpenGL

programming guide: The Official guide to learning OpenGL, version 4.3.

2013.

[TBB10] N Tatarchuk, J Barczak, and B Bilodeau. Programming for Real-Time

Tessellation on GPU. AMD whitepaper, 5(3), 2010.

163

[Tok06] K Tokoi. A Shadow Buffer Technique for Simulating Snow-Covered

Shapes. International Conference on Computer Graphics, Imaging and

Visualisation (CGIV’06), pages 310–316, 2006.

[Web08] J P Weber. Fast Simulation of Realistic Trees. IEEE Computer Graphics

and Applications, 28(3):67–75, May 2008.

[WP95] J Weber and J Penn. Creation and rendering of realistic trees. Proceed-

ings of the 22nd annual conference on Computer Graphics and Interac-

tive Techniques, pages 119–128, 1995.

[WWDY06] L Wang, W Wang, J Dorsey, and X Yang. Real-time rendering of plant

leaves. ACM SIGGRAPH 2006, pages 712–719, 2006.

[WWXP06] C Wang, Z Wang, T Xia, and Q Peng. Real-time snowing simulation.

The Visual Computer, 22(5):315–323, April 2006.

[YSHW03] C Yanyun, H Sun, L Hui, and E Wu. Modelling and rendering of snowy

natural scenery using multi-mapping techniques. The Journal of Visu-

alization and Computer Animation, 14(1):21–30, February 2003.

