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Abstract 

The aim of this study was to evaluate the pyrolytic characteristics of blends made up of 

coking coals and several plastics by determining the evolution pattern of selected 

evolving products during their co-pyrolysis. For this purpose, simultaneous 

thermogravimetric–mass spectrometric analyses (TG-MS) of the blends were performed 

by thermal treatment up to 1000 ºC in a helium atmosphere under dynamic conditions at 

a heating rate of 25 ºC/min. The plastics used for blending with coal at an addition rate 

of 5 wt% were: five thermoplastics commonly found in municipal wastes (LDPE, 

HDPE, PP, PS and PET) and two mixtures with different compositions. Different 

characteristic ion fragments from selected families of evolving products during the co-

pyrolysis process such as hydrogen, aliphatic hydrocarbons with one to four carbon 

atoms, aromatic hydrocarbons and carbon dioxide were monitored together with their 

thermogravimetric parameters (temperature, mass) at different times. Hydrogen 

evolution profiles have similar shapes and the maximum evolution temperature was not 

greatly affected by the addition of plastic wastes. In contrast, the evolution patterns of 

aliphatic hydrocarbons (alkanes and alkenes) were characterized by a low temperature of 

evolution and a high relative proportion of these components. The delay in the 

decomposition of the plastics together with the changes in the composition of volatiles 

promoted interactions between the components and had negative effects on coal fluidity. 
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1. Introduction 

 Currently, the co-pyrolysis of single or mixed plastics with fossil fuels (coal and 

petroleum) are being investigated in order to recover chemicals, to partially replace 

fossil fuels in well-established industrial conversion processes of fossil fuels and to 
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contribute to the protection of the environment. Among the different routes based on co-

pyrolysis, the co-processing of coking coals with plastics from municipal wastes for 

metallurgical coke production has been implemented at industrial scale [1,2]. The 

composition of the plastic waste added has been shown to be a critical factor in 

controlling the effect on the coal thermoplastic properties, coking pressure generation 

during coking and the structure and properties of metallurgical coke [3-5]. In accordance 

with the different structure and thermal behaviour of the plastics contained in municipal 

wastes, opposite effects have been observed: polyolefins which cause a slight decrease 

in fluid coal properties [6-10], improve or maintain coke strength and reactivity and 

increase the wall pressure generated during coking up to extremely high values. 

Aromatic polymers such PET and PS, however, which are the strongest modifiers of 

coal fluidity, cause a deterioration in coke reactivity towards CO2, and help to balance 

the wall pressure [3-5]. 

 The aim of this study is to gain additional information about the interactions 

between coal and plastics in order to explain the different effects on the fluidity of the 

coal and the generation of the wall pressure during coking. For this purpose, TG-MS 

was employed to obtain information on the different events which take place during co-

pyrolysis and the chemical composition of the evolved gases. 

 

2. Experimental section 

 An industrial coal blend, PA, was used to prepare mixtures with several plastics at 

an addition rate of 5 wt%. The mixed plastic waste Wa was composed of 73 wt% high-

density polyethylene (HDPE), 20 wt% polypropylene (PP), 5 wt% polyethylene 

terephthalate (PET) and 2 wt% cellulose and the mixture Wb was a more heterogeneous 

waste containing the six thermoplastics: PP, 39.2 %; PET, 18.8 %; PS, 16.6 %; HDPE, 

0.7 %; LDPE, 5.4 %; PVC, 1.2 % and 6.9 % of non-identified plastics. Both plastic 

wastes were provided by the Spanish recycling company Abornasa. 

 The powdered mixtures (7 g, < 0.212 mm size) were subjected to 

thermogravimetric-mass spectrometric analysis (TG-MS) in a simultaneous TA 

Instrument SDT2960 analyzer coupled to a quadrupole mass spectrometer (Balzers, 

Thermostar GSD-300T) by a fused silica transfer line heated at 200 ºC. About 7 mg of 

the mixtures was heated from room temperature up to 1000 °C at a heating rate of 25 °C 

min-1 using a helium flow rate of 100 ml/min to sweep out the volatile products. The 
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evolution of the temperature of the evolved gaseous products and the intensity of the 

selected ion fragments were monitored together with the thermogravimetric parameters 

(temperature, mass) at different times. 

 

3. Results and Discussion 

 The DTG curves of the plastic wastes, the coal blend PA and their mixtures at an 

addition rate of 5 wt% of the plastics are shown in Figures 1 and 2. The temperature of 

maximum decomposition of plastics varies in the following order: PS < PET < PP < 

LDPE < HDPE (Figure 1). The position of the DTGmax of the two plastic mixtures, Wa 

and Wb, are slightly lower than what might be expected from their composition. In the 

case of Wa (73 wt% HDPE, 20 wt% PP and 5 wt% PET), the Tmax value is located 

between PP (475 ºC) and PET (449 ºC) whereas Wb presents a similar value to that of 

PET and PS (442 ºC), which make up about 35 wt% of the waste.  
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Figure 1. DTG curves of plastic wastes studied. 

 

 The DTG profile of the coal blend shows a main peak at about 505 ºC, which is 

also shown in blends containing the three polyolefins (HDPE, LDPE and PP). Under the 

pyrolysis conditions applied, polyolefins have the narrowest decomposition temperature 

ranges with a Tmax inside the thermal degradation of the macromolecular network of 

the coal, whereas the degradation of PS and PET takes place close to the early stages of 

coal decomposition (Figure 2). An examination of the DTG profiles of the blends shows 

that blends with HDPE, LDPE and PP show a single peak at a temperature slightly lower 

than that of the coal blend PA (495-499 vs. 505 ºC).  However, when PS and PET are 

added to coal, these blends present a bimodal evolution of volatiles, with the first peak 
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being attributed to plastic decomposition and the high-temperature peak to coal 

devolatilization. When comparing the profiles of the blend and the corresponding 

plastic, a shift in the evolution of volatiles from the plastic in the blend towards a higher 

temperature can be clearly observed. This suggests that some degree of physical and 

chemical interaction may occur during the co-pyrolysis of plastics with coal. PET is the 

exception to the general tendency (Figure 2).  
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Figure 2. DTG profiles of the coal blend PA, the plastics and their mixtures at an 

addition rate of 5 wt%. 

 

 When plastic decomposition via radical chain reactions occurs close to the 

decomposition of the macromolecular network of the coal, there is greater opportunity 

for the small size species from coal decomposition which are responsible for the 
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development and maintenance of fluidity to volatilize and then to be stabilized by 

hydrogen transfer or cross-linking reactions. As a consequence of this, the fluidity 

decreases drastically. PS and PET are good examples of strong modifiers of coal thermal 

behaviour [7-11]. Then decrease the fluidity of the coal and give rise to more disordered 

carbon structures in the semicokes [7,8]. However, if the degradation products of the 

plastics are produced close to the range of maximum evolution of volatiles from the 

coal, when the maximum amount of gas and tar is produced and solidification sets in, the 

decomposition products from plastic will be trapped in the co-pyrolysis system and, 

then, incorporated into the semicoke [5,7,8]. This behaviour is exhibited by the 

polyolefins which overlap over a wide interval as the coal volatiles evolve.  

 The interactions between the coal and plastics are also influenced by the 

chemical composition of the volatiles. By means of TG-MS analysis, it is possible to 

obtain information about the more volatile species evolved during co-pyrolysis. The ion 

fragment signals presented in Table 1 represent different families of compounds which 

were monitored during the co-pyrolysis. 

 

Table 1. Ion fragments monitored by TG-MS analysis. 

m/z Assignment 

2 H2
+ 

15 CH3
+ 

29, 43, 57 Alkane series: C2H5
+, C3H7

+, C4H9
+…CnH2n+1

+ 

27, 41, 55 Alkene series: C2H3
+, C3H5

+, C4H7
+ … CnH2n-1

+ 

77, 78, 91 Aromatic series: C6H5
+, C6H6

+, C7H7
+ 

44 CO2
+ 

 

 Above 450 ºC, the most abundant hydrocarbon during the pyrolysis of the coal 

blend and its mixtures with plastics was methane which was accompanied by the release 

of other aliphatic and aromatic hydrocarbons. Paraffinic and olefinic fragments always 

evolve in the temperature range of 495 to 550 ºC, the temperature increasing as the 

number of carbon atoms increases. In most of the blends containing plastics the 

maximum temperature of hydrocarbons occurs at a lower temperature than the coal 

blend PA. Hydrogen was detected in more intensity in the last stages of thermal 

decomposition of the blends and coming mainly from the condensation of the aromatic 
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structures at a high temperature (782-790 ºC).  

 When the compositions of the light pyrolysis products from the coal blend and its 

mixtures with plastics are compared, some  relevant features of the co-pyrolysis of the 

blends made up of coal and plastics, (which were derived from the normalized areas of 

the corresponding peaks to that of hydrogen), are shown to be related to: (i) a higher 

proportion of hydrogen; (ii) a higher amount of aliphatic compounds from C2 to C4 in 

the form of both alkanes and alkenes; (iii) a higher relative proportion of  alkenes versus 

alkanes, with the exception of the PA5PS blend (Figure 3). 
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Figure 3. Variation of hydrocarbons evolved during the pyrolysis of the coal blend PA 

and its mixtures with the different plastic wastes. 

 

 As a consequence of the polymer structure, blends made up of PS and PET 

behave in a different way to polyolefins and they increase the amount of aromatic 

hydrocarbons. As expected, the addition of oxygen-containing polymers such as PET 

increases the CO2 content in the gas, which is released at low temperatures of 

approximately 465 and 635 ºC. Although it is difficult to attribute the origin of the two 

peaks of CO2, the low-temperature peak could be linked to functional groups in the PET 

polymeric chain, whereas the second peak may be assigned to a cross-linking reaction 

during the formation of tar and coke. 
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4. Conclusions 

A delay in the evolution of volatile species from the plastics was observed when they are 

blended with coal. Depending on the thermal stability of the plastics, the shift of the 

evolution of volatiles from the plastic towards higher temperatures and the increase in 

overlapping between the components may explain the degree of reduction in fluidity 

caused by plastics. In general, the relative proportion and the temperature of emission of 

light gases such as hydrogen, methane, aliphatic hydrocarbons with up to four carbon 

atoms (including paraffin and olefin pairs), aromatic hydrocarbons and carbon dioxide 

was consistent with the functional groups of the plastic added to the coal. The thermal 

events during co-pyrolysis and the chemical families of compounds in the gas are in 

agreement with the modification of the coal fluidity, the degree of ordering of the carbon 

structure of the semicokes and the evolution of gas pressure during the coking process. 
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