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Abstract. Atmospheric concentrations of dichloromethane,

CH2Cl2, a regulated toxic air pollutant and minor contribu-

tor to stratospheric ozone depletion, were reported to have

peaked around 1990 and to be declining in the early part

of the 21st century. Recent observations suggest this trend

has reversed and that CH2Cl2 is once again increasing in

the atmosphere. Despite the importance of ongoing mon-

itoring and reporting of atmospheric CH2Cl2, no time se-

ries has been discussed in detail since 2006. The CARIBIC

project (Civil Aircraft for the Regular Investigation of the at-

mosphere Based on an Instrument Container) has analysed

the halocarbon content of whole-air samples collected at al-

titudes of between ∼ 10–12 km via a custom-built container

installed on commercial passenger aircraft since 1998, pro-

viding a long-term record of CH2Cl2 observations. In this

paper we present this unique CH2Cl2 time series, discussing

key flight routes which have been used at various times over

the past 15 years. Between 1998 and 2012 increases were

seen in all northern hemispheric regions and at different al-

titudes, ranging from ∼ 7–10 ppt in background air to ∼ 13–

15 ppt in regions with stronger emissions (equating to a 38–

69 % increase). Of particular interest is the rising impor-

tance of India as a source of atmospheric CH2Cl2: based

on CARIBIC data we provide regional emission estimates

for the Indian subcontinent and show that regional emis-

sions have increased from 3–14 Gg yr−1 (1998–2000) to 16–

25 Gg yr−1 (2008). Potential causes of the increasing atmo-

spheric burden of CH2Cl2 are discussed. One possible source

is the increased use of CH2Cl2 as a feedstock for the produc-

tion of HFC-32, a chemical used predominantly as a replace-

ment for ozone-depleting substances in a variety of applica-

tions including air conditioners and refrigeration.

1 Introduction

Dichloromethane, CH2Cl2, is a short-lived chlorocarbon of

mainly (up to 90 %, Montzka et al., 2011b) anthropogenic

origin. Its main applications include use in paint strippers,

degreasers and solvents; in foam production and blowing ap-

plications; as a chemical feedstock; and as an agricultural

fumigant (Montzka et al., 2011b). The contribution from nat-

ural sources (mainly biomass burning and an oceanic source)

is uncertain. Simmonds et al. (2006) obtained a good model

fit to their observations using a 10 % combined oceanic

and biomass burning source, although they showed that a

stronger terrestrial source could support natural emissions of

up to 30 %. However, recent field measurements of biomass

burning plumes have indicated that this source is likely to

be smaller than previously estimated (Simpson et al., 2011).

With an atmospheric lifetime of around 5 months (Montzka

et al., 2011b), CH2Cl2 displays significant atmospheric spa-

tial variations and temporal trends. Its seasonal cycle is

mainly due to reaction with the OH radical, with maxima
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in late winter/early spring and corresponding minima in late

summer or early autumn (Cox et al., 2003). There are no dis-

cernible seasonal variations in emissions or end uses (Gen-

tner et al., 2010; McCulloch and Midgley, 1996). Signifi-

cantly higher concentrations are observed in the Northern

Hemisphere (NH, Southern Hemisphere=SH) due to the

predominant industrial source. A NH : SH mole fraction ra-

tio of 2.7 has been reported for the lower troposphere (Sim-

monds et al., 2006).

Short-lived chlorocarbons, including CH2Cl2, contribute

to stratospheric chlorine and its cycling with stratospheric

ozone. Their current contribution is minor – Laube et

al. (2008) found that at 15.2 km (the level of zero radia-

tive heating) 1.4 % of chlorine from organic compounds

was from short-lived chlorocarbons, of which half was from

CH2Cl2. This level is important because air parcels at or

above this level point are likely to be transported to the strato-

sphere. However, current and projected decreases of longer-

lived anthropogenic chlorocarbons (such as CH3CCl3, CCl4,

halons and CFCs) could mean a greater relative importance

of shorter-lived chlorocarbons with respect to stratospheric

chlorine, especially if their atmospheric abundances were

to increase. Due to its predominantly anthropogenic source

CH2Cl2 is susceptible to changes in industrial emissions.

CH2Cl2 is also of concern as it is also a toxic air pollutant

and possible carcinogen and, as such, is regulated by national

and European Union Law, for example the Solvent Emissions

Directive, 1999/13/EC (E.C.S.A., 2007).

The earliest reported NH atmospheric measurements of

CH2Cl2 were made in the mid-1970s and observed concen-

trations of 35± 19 ppt (Cox et al., 1976). A range of global

measurements in the 1980s and 1990s (many of which will

be discussed further throughout this paper and are included

in Table 2, see also Simmonds et al. (2006) for an in-depth

discussion of many of the observations during this period)

showed a consistent picture of peaking concentrations, with

an average of ∼ 30–40 ppt around 1990, followed by a de-

cline linked to decreasing industrial use of CH2Cl2 (McCul-

loch et al., 1999). Measurements made between 1989 and

1996 at Alert, Canadian Arctic, observed a decline of around

−4 % (−1.8 ppt) per year (Gautrois et al., 2003). Long-term

measurements (1995–2004) at Mace Head, Ireland demon-

strated a decline in CH2Cl2 pollution events since measure-

ments began in 1995, although this decline had stabilised in

the later years of the data set (Simmonds et al., 2006). In

the SH, Advanced Global Atmospheric Gases Experiment

(AGAGE) atmospheric measurements began at Cape Grim

in 1998 and reported mean CH2Cl2 concentrations for 1998–

2000 of 8.9 (±0.2) ppt (Cox et al., 2003). These early mea-

surements were supported by firn records which indicated

that SH CH2Cl2 concentrations increased from 1–2 ppt at

the beginning of the record (pre-1940) to 9 ppt around 1990

(Trudinger et al., 2004). Due to the lack of industrial emis-

sions in the SH the rapid decline in atmospheric concentra-

tions seen in the NH was not observed in the AGAGE Cape

Grim time series (Simmonds et al., 2006).

In recent years increasing CH2Cl2 concentrations have

been observed in both the NH and SH. Montzka et al. (2011b)

reported an increase of around 8 % between 2007 and 2008,

based on updated AGAGE data from Simmonds et al. (2006).

There was no corresponding increase in CHCl3, 70 % of

which is believed to be of natural origin (Worton et al.,

2006). The increase was also noted in Montzka et al. (2011a,

see their Supplementary Information) whose time series of

CH2Cl2 between 1995 to 2009 shows increasing atmospheric

concentrations in recent years. CARIBIC (Civil Aircraft for

the Regular Investigation of the atmosphere Based on an In-

strument Container) CH2Cl2 measurements up to the end of

2012 provide the opportunity to investigate this increase from

a global time series perspective and may help improve our

understanding of the recent changes in atmospheric CH2Cl2.

2 Methods

2.1 The CARIBIC platform and whole-air samples

CARIBIC centres on a large air-freight container accommo-

dating a range of scientific equipment which is deployed

monthly aboard a commercial passenger aircraft depart-

ing from Germany for up to four consecutive long-haul

flights. Details of both CARIBIC phases can be found on

our website, caribic-atmospheric.com. CARIBIC phase 1

(CARIBIC1) operated between 1997 and 2002 aboard a Boe-

ing 767 departing for several global destinations from either

Düsseldorf or Munich airport. Whole-air samples were col-

lected using twelve 21 L stainless steel tanks pressurised to

17 bar. Details of CARIBIC1, including the range of other

measurements made, can be found in Brenninkmeijer et

al. (1999). Halocarbon data are available for 1998–2002.

Between 2003 and 2005 a new container was devel-

oped and this system was deployed aboard a Lufthansa Air-

bus 340–600 departing from Frankfurt Airport. CARIBIC

phase 2 (CARIBIC2) began in 2005 and, at the time of

writing, is still in operation. Samples are taken en route to

destinations across the globe with flights occurring approxi-

mately monthly. Two whole-air samplers consisting of four-

teen 2.7 L glass flasks collect 28 air samples for halocarbon,

non-methane hydrocarbon (NMHCs) and greenhouse gas

measurements at pre-determined intervals during the flight,

mainly within cruising altitudes of around 10–12 km. Filling

times are between 30–90 s, averaging 45 s or 10 km of the

flight path. Further air sampler information can be found in

Baker et al. (2010) and Schuck et al. (2009). The fully auto-

mated CARIBIC2 system contains a range of other sampling

equipment, including, but not limited to, equipment for the in

situ or post-flight analysis of ozone (O3), carbon monoxide

(CO), aerosols and water vapour. Further information can be

found in Brenninkmeijer et al. (2007).
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2.2 Halocarbon analysis

During both CARIBIC1 and CARIBIC2 air samples were

sent to the University of East Anglia (UEA, UK) for halo-

carbon analysis via gas chromatography mass spectrome-

try (GCMS). During CARIBIC1 subsamples were removed

from the main canisters into electropolished stainless steel

cans and sent to UEA. For CARIBIC2 the whole-air sam-

pling units were sent directly to UEA for analysis. During

CARIBIC1 two separate GCMS systems were used. The

first was an Agilent/HP 5890A GC coupled to a double-

focusing, tri-sector mass spectrometer (VG/Micromass Au-

tospec). Each 200 mL air sample was dried by passing

through magnesium perchlorate (MPC) before being trapped

in a previously evacuated stainless steel loop filled with

100 µm glass beads and immersed in liquid argon (−186 ◦C).

The bulk of the air passed into an evacuated stainless steel

flask where the pressure change, and hence sample vol-

ume, was measured with a capacitance manometer (Edwards

Barocel). The MPC trap was shown to have no effect on the

measured CH2Cl2 concentration. Halocarbons were sepa-

rated on a 60 m× 0.53 mm (1.5 µm film thickness) DB5 cap-

illary column (J&W), with helium carrier gas (2 mL min−1)

and a temperature program of −20 ◦C (2 min) rising to

220 ◦C, at a rate of 15 ◦C min−1. The mass spectrometer was

operated in selected ion mode (voltage switching) using elec-

tron ionisation (EI). Each air sample was analysed at least

twice, with a working standard analysed before and after

each sample pair to allow correction for small changes in in-

strument response.

The VG Autospec system was used from the start of analy-

sis at UEA in June 1998 until December 1999. In 1999 a new

instrument (“Entech”) was purchased by UEA and became

the main instrument for CARIBIC sample analysis. This sys-

tem consisted of an Agilent 6890 GC and 5973 quadrupole

MS. With this system pre-concentration was achieved using

a commercial, fully automated, three-stage pre-concentrator

(Entech Instruments, model 7100). This system was used

throughout the rest of CARIBIC1 and CARIBIC2. The En-

tech pre-concentrator employs multiple traps to remove wa-

ter (Trap 1), CO2 (Trap 2) and to cryo-focus the sample prior

to injection into the GC (Trap 3). Typically, between 800–

1000 mL of air are trapped at 100 mL min−1 onto a 1/8” (ex-

ternal diameter, OD) stainless steel trap (Trap 1) packed with

glass beads and held at −150 ◦C. The contents of Trap 1 are

then swept onto Trap 2, consisting of 1/8” OD stainless steel

packed with Tenax adsorbent and held at −40 ◦C. Trap 3

cryo-focuses the sample on a fused silica lined stainless steel

tube (1/32” OD). Until 2010 a DB-5 capillary column (J&W

Scientific, 105 m× 0.32 mm ID, 1.5 µm film thickness) was

used for separation. In 2010 the column was changed to an

Agilent GC-GasPro column (30 m× 0.32 mm). The tempera-

ture program used with the DB-5 column was 30 ◦C for 8 min

rising to 220 ◦C at a rate of 10 ◦C min−1. The temperature

program used with the GasPro column is −10 ◦C for 2 min

rising to 200 ◦C at a rate of 10 ◦C min −1. The MS is operated

in selected ion mode using EI at 70 eV. The system allows

for the unattended analysis of up to 16 samples, interspersed

with equal volume aliquots of a working standard analysed

at regular intervals. Each sample is normally analysed only

once and, as the response of the quadrupole analyser is more

stable than the Autospec, the working standard is analysed

less frequently.

To assist with the transition between the VG Autospec and

the Entech system parallel analysis was conducted for two

flights in July 2000. Agreement between the two systems was

excellent. Of the 24 samples analysed on both systems all but

five had a difference of less than ±1 ppt (corresponding to a

difference of < 3 % standard deviation, σ , or less than the pre-

cision of these instruments). For the five remaining samples

the difference was less than± 2 ppt. The CH2Cl2 samples

that were analysed on both systems were treated in the fol-

lowing manner. If the difference was less than± 1 ppt (3 %σ)

the values were averaged and the variation between the two

measurements incorporated into error bars plotted with these

values. Where the difference was greater than± 1 ppt the VG

Autospec value was selected based on the better precision of

this instrument with respect to CH2Cl2.

To provide additional support to the CARIBIC2 data set,

three flights, one a year between 2009 and 2011, were also

analysed on a highly sensitive Waters Autospec magnetic

sector GCMS. This system is the direct replacement of the

VG Autospec described above and, whilst a number of mi-

nor modifications have been made to the analytical proce-

dure (see Laube et al., 2010), the system is essentially the

same. Where the Entech and Autospec values agreed within

±1σ (based on replicate Autospec measurements) the values

were combined. As with CARIBIC1, these values all agreed

within±1 ppt. For the remaining samples the values from the

higher precision Autospec system have been used. The limit

of detection for all three analytical systems was 0.1 ppt or

better.

For CH2Cl2 the UEA calibration is tied to the 2003

GCMS gravimetric scale of the Global Monitoring Division

of the Earth System Research Laboratory of the National

Oceanic and Atmospheric Administration (NOAA-ESRL-

GMD) in Boulder, CO, USA. A number of calibrated, high-

pressure whole-air samples collected at Niwot Ridge (a re-

mote site near Boulder) were acquired between 1994 and

2009. These were used for the propagation of mixing ratios

to all CARIBIC measurements. Further details on this pro-

cedure can be found in the Supplement. The CH2Cl2 data

are reported on the latest (2003) NOAA-ESRL calibration

scale. NOAA do not provide an absolute accuracy on their

calibrated gas standards but, in a recent international com-

parison exercise (IHALACE), the mean of the CH2Cl2 cal-

ibration scales from the three independent calibration lab-

oratories was found to have a standard deviation of± 9 %

(Hall et al., 2014). In Sect. 3.1, CARIBIC data are compared

to the long-term CH2Cl2 record from Mace Head (53.3◦ N,
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9.9◦W, 42 m a.s.l.) measured by NOAA-ESRL-GMD. These

data are obtained from regularly collected flasks samples

analysed by GCMS. Sampling at Mace Head is done in a

manner to characterise only air that is arriving from the clean

air sector, specifically when wind direction is between 180

to 320◦ and the wind speed is greater than 4 m s−1. For

further information see Montzka et al. (2011a) and http:

//www.esrl.noaa.gov/gmd/hats/gases/CH2Cl2.html. A com-

parison between NOAA and UEA calibration scales is dis-

cussed in the Supplementary Information which provides a

comparison of data from Cape Grim, a ground-based site

sampled by both groups. Cape Grim samples analysed by

both groups compare well (65 % agree within the respective

1σ standard deviations), with no apparent offset or change

in the relationship between both groups’ results over time

(NOAA /UEA ratio of 1.02± 0.06). Throughout this paper

we refer to the dry air mole fraction of CH2Cl2 as “concen-

trations” to increase the accessibility and readability of this

paper.

The analytical precision during CARIBIC1 was 0.9 % for

the VG Autospec (based on repeat analysis of randomly se-

lected samples, 1998–2002) and 2.4 % for the Entech (based

on repeat analyses of the working standard, 1999–2002).

During CARIBIC2 the Entech system was managed by sev-

eral operators and the analytical precision was calculated for

each of these periods, again based on repeat analysis of ran-

domly selected samples or repeat analysis of the working

standards. Average precision was 3.42 % between May 2005

and September 2006, 4.0 % between October 2006 and Octo-

ber 2009, 5.5 % between November 2009 and October 2012

and 3.3 % in November and December 2012. Average preci-

sion for the Autospec system during CARIBIC2 was 0.48 %.

The final data set used in this study is from 1998–2002 and

2005–2012.

2.3 Ancillary measurements – CO, O3 and

back-trajectories

With a typical cruise altitude of 10–12 km CARIBIC inter-

cepts air of both tropospheric and stratospheric origin. Data

were labelled to indicate if they were of mainly tropospheric

or stratospheric origin based on a chemical definition of the

tropopause. O3 is measured in situ onboard the CARIBIC

platform (see Sprung and Zahn, 2010) and therefore pro-

vides a measure of upper troposphere/lower stratosphere

(UTLS) structure with a temporal and spatial resolution more

suited to the discrete whole-air samples than parameters de-

rived from meteorological analyses, such as potential vor-

ticity. Samples were classed as being predominantly strato-

spherically influenced if the integrated O3 mixing ratio for

that sampling period was above a seasonal threshold deter-

mined by Eq. (1), a method derived from CARIBIC data by

Zahn and Brenninkmeijer (2003), confirmed by Thouret et

al. (2006) and used as part of CARIBIC halocarbon analysis

by Wisher et al. (2014):

O
tropopause

3 (in ppbv)= 97+ 26sin[
2π (Day of Year− 30)

365

]
. (1)

A detailed discussion of O3 as a chemical marker for the

structure of the UTLS is provided by Zahn and Brenninkmei-

jer (2003) and Sprung and Zahn (2010). Briefly, the extrat-

ropical O3 chemical tropopause is observed around 100 ppbv

O3 and can be seen in changes in the relationship between

O3 and tropospheric tracers such as CO and acetone. Above

the chemical tropopause, a compact “mixing line” between

O3 and, for example, CO, denotes the mixing of tropo-

spheric and stratospheric air in the extratropical tropopause

layer (ExTL). The ExTL extends up to a maximum of 400–

500 ppbv O3, above which lies the lowermost stratosphere

(LMS). Figure 1 shows which samples were classed as be-

ing of predominantly tropospheric origin and which were

stratospheric. As tropospheric trends in CH2Cl2 form the fo-

cus of this investigation, stratospherically influenced samples

(which comprised between ∼ 6–40 % of samples, depending

on the region) were excluded from the bulk of the discussion

for each region. Vertical profiles incorporating stratospheric

samples are discussed in Sects. 3.4 and 3.5.

CARIBIC measurements of CO were used during the anal-

ysis of CH2Cl2 measured on flights to South Africa and In-

dia (Sects. 3.2 and 3.3 respectively). Details of CO mea-

surements can be found in Brenninkmeijer et al. (1999)

for CARIBIC1 and Scharffe et al. (2012) for CARIBIC2.

For comparison with the whole-air samples the CO val-

ues (produced every 2 s) were integrated over the sampling

period of each whole-air sample. Back-trajectory analyses

for CARIBIC flights are provided by the Royal Nether-

lands Meteorological Institute (KNMI) – further details

can be found at http://knmi.nl/samenw/campaign_support/

CARIBIC/ or in Scheele et al. (1996). The trajectory model

used European Centre for Medium range Weather Forecast-

ing (ECMWF) data at a 1◦× 1◦ resolution to calculate both

5-day back-trajectories at 3 min intervals along the flight

track and 8-day back-trajectories for the collection inter-

val of each whole-air sample. During the early CARIBIC

flights ECMWF “first guess” fields were used to calculate the

back-trajectories, changing to re-analysis data after Septem-

ber 2000.

3 Results and discussion

Between 1998 and 2012 CARIBIC flights covered a substan-

tial area of the global free troposphere (Fig. 1). However, for

the purpose of this investigation several regions were selected

and only the data from these flights will be discussed. These

regions and the rationale behind their selection are described

here. Firstly, a European region within a box spanning 40

to 55◦ N and −10 to 20◦ E (Frankfurt Airport= 50.03◦ N,

Atmos. Chem. Phys., 15, 1939–1958, 2015 www.atmos-chem-phys.net/15/1939/2015/
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Figure 1. CARIBIC whole-air samples analysed for CH2Cl2 between 1998–2002 and 2005–2012. The grey points show all the CH2Cl2
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European region described in Sect. 3 are marked by the black box, (2) flight routes to Africa, India and Central America are shown by

coloured samples, see inset legend, and (3) samples within the tropical region are delineated by the dashed lines. More details of the regions

used in this study can be found in Table 1.The identification of samples as tropospheric or stratospheric is described in Sect. 2.

8.57◦ E) was selected as it is the area with the greatest tem-

poral coverage. Secondly, routes to South Africa, India and

across the North and Central Atlantic were also chosen as

these routes were traversed by CARIBIC over multiple years,

allowing changes over time to be observed in these regions.

Finally, samples collected in the tropical region covering

25◦ S to 25◦ N were used to investigate the concentration of

CH2Cl2 in air masses with the potential to enter the tropi-

cal tropopause layer (TTL). Further details of these five case

studies can be found in Table 1 and they are highlighted in

Fig. 1. Throughout the paper mean values prefaced by± refer

to the 1σ standard error associated with that mean value.

3.1 Long-term time series of CH2Cl2 measured over

Europe

The CH2Cl2 time series of European CARIBIC and NOAA

Mace Head data can be seen in Fig. 2a. A fairly con-

sistent seasonal cycle is observed inter-annually in the

boundary layer air samples from Mace Head whereas the

CARIBIC data show greater variability. This variability in

the CARIBIC data is mainly because these samples repre-

sent a wide variety of air masses sampled over a large area

(Fig. 2c) compared to clean-sector air sampled at Mace Head

(Sect. 2.2). Analysis of back-trajectories indicates that air

sampled by CARIBIC over Europe originates from a large

NH geographical region, including industrial areas where

high emission “pollution” events may occur as well as con-

trasting regions where pristine tropospheric air masses are

sampled. In contrast, the Mace Head site commonly samples

clean sector air. Although a previous study involving data

collected by aircraft at an average altitude of 4 km (Miller

et al., 2012) observed seasonality in atmospheric concentra-

tions of CH2Cl2, we do not see a strong seasonal pattern at

10–12 km in our more sporadic data set. Further analysis, dis-

cussed in subsequent sections, will highlight the importance

of strong source regions (e.g. India and Southeast Asia) on

observed CH2Cl2 concentrations in the mid- and upper tro-

posphere.

The trend in European observations of CH2Cl2 is shown

in Fig. 2b. Error bars represent the 1σ variation associated

with the mean of all tropospheric samples taken within each

year (hereafter referred to as the annual tropospheric value).

As seen in Fig. 2a, only a small number of NOAA sam-

ples were collected in the first few years of the data set.

Due to this small sample size, biases, for example the in-

fluence of seasonality, could be introduced (see Table 3 for

seasonal distributions). This adds an additional, unquantified

uncertainty to these annual values. To account for this, data

from Mace Head can be compared to data collected at other

NOAA NH sites such as Barrow, Alaska. Data from Bar-

row show a very similar pattern to those from Mace Head

and support the trend seen at Mace Head (data not shown

but available from http://www.esrl.noaa.gov/gmd/hats/gases/

CH2Cl2.html and published in Montzka et al., 2011a). Deter-

mining trends for the first few years of the database is hard

due to the reduced data coverage. However, NOAA data cov-

ers the whole year from 2003 onward (Fig. 2a).

www.atmos-chem-phys.net/15/1939/2015/ Atmos. Chem. Phys., 15, 1939–1958, 2015

http://www.esrl.noaa.gov/gmd/hats/gases/CH2Cl2.html
http://www.esrl.noaa.gov/gmd/hats/gases/CH2Cl2.html


1944 E. C. Leedham Elvidge et al.: Increasing atmospheric concentrations of dichloromethane, CH2Cl2 1998–2012

Table 1. A summary of CARIBIC data used in this study.

Region Temporal data coverage Number of

tropospheric

(stratospheric∗)

samples

Annual Monthly

Europe Data collected 1998–2002 and 2005–2012

Min. coverage: n= 1 in 1999

Max. coverage: n= 16 in both 2009 and 2011

All months covered 123 (87)

Africa 2000, 2009–2011. Individual flights: Mainly NH winter 140 (21)

2000 May, Jul, Dec 32 (4)

2009 Mar, Oct 47 (8)

2010 Nov, Dec 22 (6)

2011 Jan, Feb, Mar 39 (3)

India Data collected 1998–2001, 2008, 2011 and 2012.

The summer monsoon (July, Aug and Sept) was sampled in

1998, 1999, 2000 and 2008. In other years samples were only

taken outside of the monsoon season.

295 (134)

Monsoon Jul, Aug, Sept 105 (38)

Non-monsoon Rest of year 190 (95)

North and

Central Atlantic

Data collected 2001–2002, 2007, 2009–2012 All months covered 282 (108)

Tropics All data within± 25◦ of equator. All years included. All months covered 539 (34)

∗ Stratospheric samples have been excluded from the analysis of most regions, see Sect. 2.
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Figure 2. a) European CH2Cl2 time series from June 1998 to December 2012. Where a sample was 1212 

analysed multiple times an error bar is given based on the variation between these measurements, 1213 

see Section 2. b) The mean value of all CH2Cl2 values taken within this region for each year 1214 

(‘annual tropospheric value’), shown separately for CARIBIC and NOAA Mace Head data, error 1215 

bars are 1σ. c) Geographical distribution of CARIBIC samples within the European region 40-1216 

55 °N and -10-20 °E. Frankfurt Airport (CARIBIC2 base) and the NOAA sampling site at Mace 1217 

Head are also shown. Samples are coloured by year.  1218 
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given based on the variation between these measurements, see Sect. 2. (b) The mean value of all CH2Cl2 values taken within this region for

each year (“annual tropospheric value”), shown separately for CARIBIC and NOAA Mace Head data, error bars are 1σ . (c) Geographical

distribution of CARIBIC samples within the European region 40–55◦ N and−10–20◦ E. Frankfurt Airport (CARIBIC2 base) and the NOAA

sampling site at Mace Head are also shown. Samples are coloured by year.

The NOAA Mace Head data show no trend between 2003

and 2006 (linear fit is displayed in Fig. 2b) with a steadily

increasing trend from 2006. Despite the 1σ annual error bars

being relatively large, due to the seasonal variation seen at

the Mace Head boundary layer site, a linear fit for the NOAA

data between 2006 and 2012 shows a strong positive correla-
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Table 2. CH2Cl2 descriptive statistics for regions included in this study and a comparison to data from the existing literature.

Study and Region Time perioda Valuesb/ ppt

This paper

Europe

CARIBIC data

Mace Head NOAA data

(a)c 1998–2002

(b) 2009–2012

Increase (a→b)

(a) 1998–2002

(b) 2003–2004

(c) 2009–2012

(d) 2011–2012

Increase (a→c)

Increase (a→d)

x̄ = 24.6,σ = 4.3, n= 21

x̄ = 38.6,σ8.4, n= 49

14

x̄ = 32.9,σ = 5.4, n= 28,

x̄ = 33.6,σ = 5.1, n= 48,

x̄ = 45.7,σ = 6.1, n= 88

x̄ = 47.0,σ = 6.5, n= 45

13

13.5

Africa

Above 30◦ N

Below 30◦ N

2000

2009–2011

2000

2009–2011

Increase

x̄ = 21.7,σ = 1.3, n= 3

x̄ = 34.2,σ = 7.6, n= 23,

x̄ = 15.8,σ = 3.1, n= 29

x̄ = 22.7,σ = 5.1, n= 85

7

India

Summer monsoon (Jul–Sept)

Non-monsoon months

1998–2000

2008

Increase

(a) 1998–2000

(b) 2008

(c) 2011–2012

Increase (a→b)

Increase (a→c)

x̄ = 21.5,σ = 3.8, n= 56

x̄ = 36.4,σ = 9.4, n= 50

15

x̄ = 20.1,σ = 4.9, n= 81

x̄ = 30.4,σ9.7, n= 62

33.4, σ = 15.6, n= 30

10

13

North and Central Atlantic 2000–2002

2009–2011

x̄ = 23.2,σ3.6, n= 89

x̄ = 32.0,σ7.8, n= 180

Other aircraft studies

TTL (Schauffler et al., 1993) 1991–1992 x̄ = 14.9,σ = 1.1, n= 12

Tropical Indian Ocean 1.2–12.5 km altitude (Scheeren et al., 2002) 1999 x̄ = 29, SD= 12, n= 71

ASM outflow, E. Mediterranean 6–13 km alt.

(Scheeren et al., 2003)

2001 x̄ = 23,σ = 3

Canada & Greenland, commonly 0.8–4.7 km but up to 12 km alt.

(Simpson et al., 2011)

2008 x̄ = 35.8± 2.9

Tropics (0± 25◦ ), 345–350 K θ band (HIPPO, Wofsy et al., 2012) 2009–2011 x̄ = 26.3, R = 15.87− 49.83,

n= 20

Ground-based

Atlantic cruise 45◦ N–30◦ S (Koppmann et al., 1993)

SH

NH

1989 x̄ = 18± 4

x̄ = 36± 6 ppt

Alert, Canada (Gautrois et al., 2003) 1989–1996 x̄ = 47.2± 2, x̃ = 45.8

r = 24.2− 71.6

Cape Grim, Tasmania (Cox et al., 2003) 1998–2000 x̄ = 8.9± 0.2

Chinese cities (Barletta et al., 2006)

Background

Urban

2001 x̄ = 28,σ = 4

x̄ = 226,σ = 232

a Time period should be viewed alongside Table 3 which shows the seasonal distribution of samples. b x̄ =mean, x̃ =median, σ = standard deviation, R = range and

n= number of samples. c See Sect. 3.1 for a description of the different time periods selected for Europe.

tion (see Fig. 2b, r2
= 0.97). The increase between the mean

of all values collected within the first 5 years (1998–2002)

and the final 4 years (2009–2012) of the NOAA data set

was from 32.9 ppt (σ = 5.4, sample size, n= 28) to 45.7 ppt

(σ = 6.1,n= 88), an increase of ∼ 13 ppt. A test of the ro-

bustness of the trend is to compare the change from 2003–

2004 (the first period with coverage across the entire year)

to 2011–2012. During this period CH2Cl2 increased from

35.6 ppt (σ = 5.1,n= 48) to 47.0 ppt (σ = 6.5,n= 45), an

increase of 13.5 ppt. CARIBIC data broadly mirror the in-

creasing trend between 2006–2012, bearing in mind the more

sporadic nature of the data set and the wider distribution of

air mass sources, discussed above. The increase between the

mean of all values collected between 1998–2002 and 2009–

2012 was also similar to that seen at Mace Head, increas-

ing from 24.6 ppt (σ = 4.3,n= 21) to 38.6 ppt (σ = 8.4,n=

49), an increase of 14 ppt.
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Whilst the overall trends are similar, mean annual val-

ues are higher at Mace Head (Fig. 2b). This is likely to be

because the NOAA samples were collected at a lower alti-

tude than the CARIBIC samples. Calibration scales between

NOAA and UEA compare well, as described in Sect. 2 and

in the Supplement. Vertical profiles of CH2Cl2 are discussed

in Sects. 3.4 and 3.5.

Flight-based measurements in the NH were made by

Simpson et al. (2011) (comparative data from the literature

is outlined in Table 2 for all regions). Although they flew

up to 12 km their flight altitudes were generally lower than

CARIBIC (0.8–4.7 km). They reported a 2008 summer aver-

age of 35.8± 2.9 ppt over Canada and Greenland. CARIBIC

mean values for the 3 summers around this time (2007, 2008

and 2009) were around 35, 27 and 37 ppt respectively, how-

ever as sample sizes were small (n= 6, 4 and 6 respectively)

we combined these three summer periods to obtain a mean

for summers 2007–2009 of 33.9± 2.2 ppt. Our value is sim-

ilar to that of Simpson et al. (2011), the higher values over

industrial Europe possibly offsetting some of the decrease we

would expect with altitude.

3.2 Flights to Africa – investigating biomass burning

emissions and NH : SH gradients

Flights to South Africa (Table 1) allow us to investigate the

NH : SH gradient in CH2Cl2, see Fig. 3a. A strong latitudi-

nal gradient is observed, in accordance with a strong indus-

trial NH source of CH2Cl2. The increase is largest over the

northern section of the flight route, which crosses Europe.

We have a limited data set (n= 3) for the section of the flight

route that crosses Europe (here defined as > 30◦ N to pro-

vide a clear delineation between samples taken over Africa

and those taken within our European box, see Fig. 1) and

so we do not wish to quantify an increase over time, but

from the limited data available it is similar to that seen for

our European box in Sect. 3.1. During the previous peak in

CH2Cl2 concentrations (around 1990, see Sect. 1) a differ-

ence of ∼ 18 ppt between NH and SH average concentra-

tions was observed in the Atlantic region by Koppmann et

al. (1993) (Table 2). Whilst our results do not provide full SH

coverage, and so cannot be used to estimate a NH : SH ratio,

they do show an increasing latitudinal variation indicative of

increasing NH industrial activity with respect to CH2Cl2.

Annual tropospheric values are shown in Fig. 3b, sepa-

rated into samples taken above and below 30◦ N. The 44 %

increase seen at latitudes < 30◦ N is smaller than that seen

over Europe, although still statistically significant (Mann-

Whitney test at p < 0.001). Further details of the concentra-

tions observed above and below 30◦ N are provided in Ta-

ble 2. Inferring year-on-year trends is difficult given the vary-

ing data coverage between years. However, the increase seen

between 2009 and 2011 (Fig. 3b), along with the European

data set (Fig. 2), suggest that concentrations continue to in-

crease into the 2010s.
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Figure 3. a) Latitudinal distributions of CH2Cl2 observed during flights to South Africa where 1221 

colour = year (see inset colour bar, colour scale is consistent with Figs. 2, 4 and 6). Where multiple 1222 

measurements of the same sample have been made 1σ error bars are given, see Section 2. b) Annual 1223 

tropospheric values (see Fig. 2) with 1σ error bars. These average values have been split into above 1224 

and below 30 °N. 1225 
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Figure 3. (a) Latitudinal distributions of CH2Cl2 observed during

flights to South Africa where colour= year (see inset colour bar,

colour scale is consistent with Figs. 2, 4 and 6). Where multiple

measurements of the same sample have been made 1σ error bars

are given, see Sect. 2. (b) Annual tropospheric values (see Fig. 2)

with 1σ error bars. These average values have been split into above

and below 30◦ N.

Despite the importance of biomass burning with respect to

atmospheric trace gas emissions over Africa (Roberts et al.,

2009) no correlation (r = 0.14,p > 0.05) was observed be-

tween CH2Cl2 and the common combustion tracer CO. En-

hancements of CO, which commonly peak near the equator

in CARIBIC data (Umezawa et al., 2014), are predominantly

from biomass burning sources. In contrast to the latitudi-

nal distribution of CO, CH2Cl2 decreased constantly from

north to south (Fig. 3). Observations of CH2Cl2 along the

CARIBIC flight track to South Africa appear to be dominated

by a strong NH source and subsequent decline towards lower

latitudes, with little impact from biomass burning. This ob-

servation fits with a recent study which saw no evidence for

CH2Cl2 emissions in boreal biomass burning plumes, sug-

gesting that previous calculations of CH2Cl2 emissions from

biomass burning (e.g. Rudolph et al., 1995) were overesti-

mates (Simpson et al., 2011). Whilst emissions from boreal

and tropical forest fires may differ, recent analysis of air sam-

ples collected during flights over biomass burning events in

the Brazilian rainforest also showed no significant fire emis-

sions of CH2Cl2 (A. Wisher, UEA, personal communication,

2014).
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3.3 Emissions of CH2Cl2 from India investigated

during the Indian monsoon

CARIBIC data collected during flights to India in 2008 have

previously been used to demonstrate the impact of the In-

dian/Asian Summer Monsoon (ASM) on UTLS trace gas

concentrations (Baker et al., 2011, 2012; Schuck et al.,

2010). As these studies reported elevated concentrations of

many trace gases linked to the persistent convection and an-

ticyclonic flow of the ASM, we have divided flights to In-

dia into “monsoon” (July–September, inclusive) and “non-

monsoon” (rest of year) for this study (Tables 1 and 2). Lati-

tudinal distributions of CH2Cl2 along routes to Indian desti-

nations are shown in Fig. 4, displayed with the oldest flights

at the top of the plot.

As the ASM was a particular focus of CARIBIC during

2008 we begin our discussion of Fig. 4 with these flights.

A pronounced difference in the CH2Cl2 distribution along

the latitudinal flight track can be seen between monsoon and

non-monsoon months. During the 2008 monsoon (Fig. 4d)

concentrations between ∼ 25–40◦ N are elevated compared

to non-monsoon months (Fig. 4c). During non-monsoon

months a relatively flat latitudinal distribution of CH2Cl2
is observed along the majority of the flight path with some

elevated concentrations at latitudes less than 20◦ N. Analy-

sis of back-trajectories indicates that these elevated samples

(Fig. 4c) probed air that had recently been at low altitude

over Southeast Asia. The pattern during the monsoon sea-

son is consistent with previous CARIBIC studies, referenced

above, which reported elevated concentrations of NMHCs,

methane and other compounds within ∼ 25–40◦ N due to in-

terception of air masses with influence from the continental

boundary layer.

The difference between monsoon and non-monsoon

months can also be observed in the earlier (CARIBIC1)

data, although the monsoonal elevation between ∼ 25 and

40◦ N (Fig. 4b) is superimposed on a north–south latitudinal

gradient more clearly seen outside of the monsoon season

(Fig. 4a). This north–south gradient is similar to that seen in

the data from flights to South Africa. An important feature

of Fig. 4 is the shift in the dominant latitudinal feature over

time. In the 1998–2001 period a north–south gradient, sug-

gesting low CH2Cl2 emissions from India, is clear. In con-

trast, very high concentrations at low latitudes are observed

in later flights conducted in 2008 and 2011–2012 (Fig. 4e).

High values at lower latitudes are in contrast with results for

Africa (Sect. 3.2) and to Central America (Sect. 3.4). These

results suggest a shifting latitudinal profile and an increase in

emissions within the Indian region. One 2011 flight in par-

ticular showed exceedingly high levels of CH2Cl2 (Fig. 4e).

Analysis of back-trajectories indicate that these air masses

originated from a low altitude over India and Southeast Asia.

This region is discussed further in Sect. 3.5.

Increases were calculated for the period between 1998–

2000 and 2008 and between 1998–2000 and 2011–2012.

These are provided in Table 2 for both monsoon and non-

monsoon months. However, as was illustrated in our discus-

sion of Fig. 4 (previous paragraph), during the non-monsoon

months we may sample air masses that originate from outside

the Indian region. During the monsoon months air masses

within the monsoon anticyclone are much more isolated

(full details provided below) and so the increases during

the monsoon period are more likely to represent changing

CH2Cl2 emissions from India and its neighbours. The in-

crease between the 1998–2000 and 2008 monsoon periods

was 15 ppt (69 %, further details in Table 2). Measurements

of air masses from the Indian and South Asian region were

made by Scheeren et al. (2002, 2003) during two campaigns

in 1999 and 2001. Their observations averaged 29 (σ = 12)

ppt in 1999 and 23 ppt (σ = 3) in 2001 (see Table 2). Their

2001 average, in particular, corresponds well to our early

measurements over India which averaged ∼ 20–22 ppt.

As the strong convection associated with the ASM quickly

elevates air masses from the Indian continental boundary

layer and then isolates them within the monsoon anticyclone,

UT mixing ratios over India during the monsoon are closely

coupled to boundary layer emissions (Baker et al., 2011,

2012; Rauthe-Schöch, et al., 2015; Schuck et al., 2010). This

makes the ASM an ideal case study for calculating emission

estimates using the CARIBIC data set. As the majority of

CH2Cl2 emissions are industrial we assume that emissions

do not change during the monsoon and so the increase in

UT concentrations seen during this period can be attributed

wholly to meteorological changes. This assumption is justi-

fied based on findings by Gentner et al. (2010) who showed

an absence of seasonality in CH2Cl2 emissions based on

measurements made in California and a study by McCulloch

and Midgley (1996) who also reported an absence of season-

ality based on their analysis of data on the global industrial

use of CH2Cl2. Previous analyses of meteorological parame-

ters during 2008 (Rauthe-Schöch, et al., 2015; Schuck et al.,

2010) have demonstrated that the monsoon anticyclone was

present in July–September. For emission estimates we take

all tropospheric samples where both CO and CH2Cl2 were

measured and which were collected < 40◦ N (for further ex-

planation and justification of this method see Baker et al.,

2011; Schuck et al., 2010) in July–September 2008, a total

of 35 samples.

Emission estimates are often calculated using ratios

whereby the compound of interest is compared to a com-

pound with which it correlates and for which emissions are

quantified, in this case CO. The emission estimate is based

on the slope of the linear correlation between the two trac-

ers using Eq. (2) (where ECH2Cl2 and ECO are the emission

estimates for CH2Cl2 and CO respectively):

ECH2Cl2 = ECO ×

(
1CH2Cl2

1CO

)
. (2)

The CH2Cl2 vs. CO correlation within the monsoon

(< 40◦ N, July–September 2008) can be seen in Fig. 5a. The
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Figure 4. Latitudinal distributions of CH2Cl2 observed during flights to India for non-monsoon 1232 

months on the left and monsoon months (July, August, September) on the right where colour = year 1233 

(see inset colour bar, colour scale is consistent with Figs. 2, 4 and 6. Where multiple measurements 1234 

of the same sample have been made 1σ error bars are given, see Section 2. 1235 
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Figure 4. Latitudinal distributions of CH2Cl2 observed during flights to India for non-monsoon months on the left and monsoon months

(July, August, September) on the right where colour= year (see inset colour bar; colour scale is consistent with Figs. 2, 4 and 6). Where

multiple measurements of the same sample have been made 1σ error bars are given, see Sect. 2.

correlation has a statistically significant (Pearson’s correla-

tion coefficient, p < 0.05) r value of 0.62. Correlations for

individual months are also shown in Fig. 5a. No statistical

difference (Fisher’s z test with a z-crit. value of 0.05) exists

between the slopes for individual months, allowing us to use

the slope of the correlation for the whole ASM period for our

emission estimate. Table 4 includes1CH2Cl2 /1 CO values

from this study as well as a range of published values from

a variety of sources. Lower ratios are seen for wildfire and

biomass burning plumes, with higher ratios (more similar to

the ones we observed) for urban (likely industrial) emissions.

Before discussing our emission estimates we provide de-

tails of the assumptions and potential errors associated with

this method and our treatment of these factors. Firstly, this

method assumes that the two compounds share a common,

dominant source and/or that emissions are co-located. Whilst

CH2Cl2 is of predominantly industrial origin (see Sect. 1)

with emissions likely to be dominated by areas of heavy an-

thropogenic influence (e.g. cities), CO has a more diffuse

source. It has a large combustion source which, in India, is

dominated by the burning of biofuels and biomass (Dick-

erson et al., 2002). Despite this, we believe that CO pro-

vides the best option for emission estimates in this region.

On the scale of a regional emission estimate, CO and CH2Cl2
sources are co-located: both show strong signatures from the

Indian subcontinent where it is known that air masses sam-

pled within the monsoon anticyclone have likely originated

from. CO emissions are also well quantified, and compar-

isons between CO and anthropogenic chlorocarbons, includ-

ing CH2Cl2, have also been conducted in several other stud-

ies including Gentner et al. (2010); Millet et al. (2009); Sim-

monds et al. (2006) and Palmer et al. (2003) (Table 4) Schuck

et al. (2010) discussed the use of SF6 as a tracer. However, its

extremely patchy distribution (strong point sources) results in

a poor correlation with CH2Cl2 and a poorer representation

of the Indian monsoon plume.

To further support the suitability of the CH2Cl2–CO ra-

tio for estimating CH2Cl2 emissions we describe two anal-

yses which demonstrate that the variability we observe is

due to recent emissions, as opposed to variations in trans-

port time or route prior to sampling. Firstly, we com-

pared the 1CH2Cl2 /1CO value from our sample set (n=
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Table 3. Seasonality of available CARIBIC data for regions included in this study.a Black squares show that samples were taken during that

month and the number refers to the number of samples.b

Periodc Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Europe, CARIBIC

1998–2001 3 6 2 4 1

2009–2012 7 3 12 20 24 5 4 13 9 8 5 1

Mace Head NOAA

1998–2001 1 1 1 1 3 4 1 3 1

2003–2004 4 4 4 4 4 4 4 3 5 3 5 4

2009–2012 6 9 6 8 10 8 7 7 7 5 8 7

Africa > 30◦ N

2000 1 1 1

2009–2011 3 3 8 4 4 2

Africa < 30◦ N

2000 9 9 11

2009–2011 10 10 31 18 6 10

Atlantic/Central America

2001–2002 11 20 17 9 11 10 11

2009–2011 26 31 19 13 20 21 18 8 10 19

a India is not included as focus is on summer monsoon and so seasonality throughout the whole year is not relevant. Tropical

region not included due to reduced seasonality in the tropics. Samples sizes for both these regions can be found in Tables 1 and 2.
b Samples are an average of two flask samples (NOAA) or at least two analyses of sample (UEA).
c Relates to any discrete time period mentioned in the text or Tables 1 and 2.

Table 4. A comparison of enhancement ratios from this study (air mass age corrected) and existing literature.

Source 1CH2Cl2/1CO / mol mol−1

India, summer monsoon period (this study)a

1998 1.0× 10−4 (±4.3× 10−5) r = 0.69

1999 1.6× 10−4 (±6.4× 10−5) r = 0.53

2000 2.5× 10−4 (±3.7× 10−5) r = 0.86

2008 4.0× 10−4 (8.7× 10−5) r = 0.62

Other studiesb

Biomass burning, Africa savanna, ground-based,19911 2.5× 10−5 (error= 26 %) r = 0.65

Wildfires, Cape Grim, ground-based, 1998-20042 < 1–6 × 10−7

Asian pollution outflow, Bay of Bengal, boundary layer flights, 19993 4.4× 10−5 (±4.7× 10−5) r = 0.39

Urban, California, ground-based, 20054 3.1× 10−4 (±3.0× 10−5) r = 0.58=0.66

Urban, USA, boundary layer flights, 20045 2.4× 10−4 (1.8× 10−4–2.9× 10−4) r = 0.56–0.83

Urban, Mexico, ground-based, 20065 1.9× 10−4 (1.1× 10−4–2.9× 10−4) r = 0.43–0.81

a CARIBIC fits are orthogonal distance regression fits using IGOR Pro software. b described by: emission source, location, sampling location, year of study 1

(Rudolph et al., 1995); 2 (Simmonds et al., 2006); 3 (Scheeren et al., 2002); 4 (Gentner et al., 2010); 5 (Millet et al., 2009).

35) to the 1CH2Cl2 /1CO value obtained from a smaller

data set based on the method used in Baker et al. (2011).

Baker et al., when performing emission estimates for the

same CARIBIC 2008 monsoon data set, minimised the in-

fluence of variability with respect to processing or other

transport effects by selecting a data set that included only

those samples whose back-trajectories indicated low-level

(pressure > 600 hPa) contact within the monsoon anticyclone

in the previous 5 days (n= 15). Comparing this subset

of samples to our full sample set gives a very similar
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Figure 5. Correlation plots of CH2Cl2 and integrated CO (see Section 2) for a) the 2008 summer 1240 

monsoon period (coloured by individual months) and b) the early years of the CARIBIC India 1241 

dataset (coloured by individual years). Further details in Table 4.  1242 
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Figure 5. Correlation plots of CH2Cl2 and integrated CO (see Sect. 2) for (a) the 2008 summer monsoon period (coloured by individual

months) and (b) the early years of the CARIBIC India data set (coloured by individual years). Further details in Table 4.

1CH2Cl2 /1CO and r value. The 1CH2Cl2 /1CO and r

values for our data set are shown in Table 4 and for the Baker

et al. (2011) subset the age-corrected slope was 4.9× 10−4

(±8.7× 10−5) and r = 0.67. The similarity between the two

values suggests that the correlation observed in our data set

(Fig. 5) is influenced by local emissions and not differences

in transport times or source regions. This is supported by a

second method in which we compared the CH2Cl2 vs. CO

correlation for the ASM samples with the correlation calcu-

lated for samples taken within the same 14–40◦ N latitudinal

band but along flight routes to Africa (Sect. 3.2) and across

the Atlantic (Sect. 3.4). The correlation for the Africa and

Atlantic flights are much weaker and do not show the same

dynamical range as the correlation for the India data. This

supports our assumption that samples taken during the ASM

provide a unique correlation that represents local emissions

due to the rapid convection and isolation that occurs within

the monsoon system.

Secondly, there are errors and assumptions associated with

the measured emission ratio. This includes the assumption

that the emission ratio measured by CARIBIC is similar

to that at the source, i.e. it has not been affected by dilu-

tion and/or photochemical/chemical loss processes. We be-

lieve this assumption to be valid with respect to dilution

based on analysis conducted by Baker et al. (2011) on the

same CARIBIC data set as used in this paper. Baker et

al. (2011) reported an i-butane / n-butane ratio in the ASM of

0.77± 0.07 pptv pptv−1, suggesting that the invariability of

this ratio provided evidence of minimal dilution. A broader

investigation of the ASM by Randel and Park (2006) using

back-trajectory models found that 70 % of parcels initialised

within the anticyclone were still there after 10 days.

Dilution is also considered in our discussion of the va-

lidity of our ratio with respect to the transport time be-

tween emission source and sampling (previous paragraph),

assuming that variations in transport time lead to varia-

tions in the degree of mixing, and in the bootstrapping er-

ror analysis of the 1CH2Cl2 /1CO regression line (subse-

quent paragraph). With respect to photochemical loss pro-

cesses we assume transport times from the boundary layer

to our sampling altitude of around 4 days based on Baker

et al. (2011). Within this time, CH2Cl2, with a lifetime of

around 5 months, does not experience large losses. How-

ever, the lifetime of CO (∼ 2 weeks in mid-latitude sum-

mer (Scharffe et al., 2012 referencing Warneck, 1988) is

short enough that concentration changes are likely to have

occurred during this time and so we age-correct our emis-

sion ratios with respect to CO using Eq. (3), a method used

by both Baker et al. (2011) and Scheeren et al. (2002). Here,

the emission ratio at time 0, ER0, is related to the emission

ratio at time t , ERt , by accounting for the change in time,

1t (4 days), the reaction rates, k, of CO and CH2Cl2 with

OH at 298 K and the average concentration of OH predicted

at 20◦ N and 500 hPa (estimated uncertainty of ±25 %).

Both kCO at 2.1× 10−13 cm3 molec−1 s−1 and 〈[OH]〉 at

2.48× 106 molec cm−3 are taken from Baker et al. (2011,

and refs. within) and kCH2Cl2 at 1.1× 10−13 cm3 molec−1 s−1

from Villenave et al. (1997). This procedure leads to a cor-

rection in our emission ratio for the 2008 monsoon season of
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around −8 %:

ER0 = ERte
(kCO−kCH2Cl2

)〈[OH]〉1t . (3)

Also associated with the emission ratio are errors arising dur-

ing the calculation of the 1CH2Cl2 /1CO slope. These er-

rors arise from two sources: (1) uncertainties in the analyt-

ical measurements of both CH2Cl2 and CO (see Sect. 2)

and (2) uncertainties associated with using a slope cal-

culated from a discrete set of samples to calculate a re-

gional emission estimate. The errors associated with (1) are

small compared to those associated with (2), see Sect. 2.2,

and so we use (2), calculated using a bootstrapping proce-

dure, to set bounds on our emission estimates. Using the

Wood (2003) bootstrapping procedure we resampled, with

replacement, our CH2Cl2 and CO data sets 10 000 times,

each time calculating1CH2Cl2 /1CO. The output from the

resampling procedure provides a probability distribution for

the slope of CH2Cl2 /CO, allowing us to understand how

dependent 1CH2Cl2 /1CO may be on the sampled data

and allowing us to provide an idea of the potential variation

in 1CH2Cl2 /1CO. The bootstrapping procedure has been

used to calculate a possible range of emission values to aid

the comparison between years. In the following text this±1σ

range is given in brackets following each emission estimate.

CO emissions for the Indian region are taken from

the Emission Database for Global Atmospheric Research

(EDGAR) v. 4.2 (JRC & PBL, 2009). We include emissions

from the following countries; Bangladesh, Bhutan, India, Sri

Lanka, the Maldives, Nepal and Pakistan. EDGAR emissions

are provided per year and are split into categories includ-

ing various industrial and domestic processes, transport and

biomass and biofuel burning. Baker et al. (2012) used the

Global Fire Emission Database (GFED, v.3.2, van der Werf

et al., 2010) to show that CO emitted from biomass burn-

ing was greatly reduced during the monsoon, accounting for

around 0.5 % of total annual CO fire emissions during 2008.

To account for this reduction, the EDGAR biomass burning

emissions were corrected for the effect of the monsoon us-

ing the GFED data and the method in Baker et al. (2012). As

we had no evidence that anthropogenic Indian CO emissions

had seasonality we divided these emissions evenly through-

out the year. We believe any errors arising from this assump-

tion are likely to be within the general errors associated with

the EDGAR emissions (see below), in particular due to the

dominance of burning as a source of CO in India (Dickerson

et al., 2002). This method gave an average monthly emission

during the 2008 monsoon of 4.2 Tg CO month−1. Maximum

errors on the EDGAR CO database are given as up to±50 %

(Olivier et al., 1999), likely reduced by our additional use

of the GFED database. We do not consider the given error

on the EDGAR data further as the main objective of these

emission estimates is to provide a comparison of CH2Cl2
emissions over time and we assume that this error remains

constant throughout the EDGAR database.

Using the 2008 CH2Cl2 /CO slope (Table 4) and the

EDGAR CO emissions of 4.2 Tg CO month−1 gives an emis-

sion estimate of 1.7 (1.3–2.1) Gg CH2Cl2 month−1 from the

Indian region. As industrial sources of CH2Cl2 have no sea-

sonality we assume that this emission rate is constant over

the year and so estimate that 20.3 (15.8–24.8) Gg of CH2Cl2
were emitted from the Indian region in 2008. The most re-

cent estimate of global emissions is 515± 22 Gg yr−1 given

in Montzka et al. (2011b) which is based on top-down es-

timates from Simmonds et al. (2006) from data collected

between 1999 and 2003. Considering the caveat that global

emissions are likely to have increased since this figure was

published, our estimate for emissions from the Indian region

in 2008 is roughly 5 % of the global total. These estimates

are discussed further in Sect. 3.6.

CH2Cl2 emissions from the Indian subcontinent were also

estimated for the 1998, 1999 and 2000 ASM seasons using

the same analysis described above for 2008. Figure 5b shows

the CH2Cl2 vs. CO correlation for 1998–2000, coloured by

year. No significant difference (Fisher’s z test with a z-crit.

value of 0.05) was observed between the three years but we

consider the three years individually to provide similar data

sets for comparison with the 2008 data set (with respect to

sample size and length of sampling period, see Table 2).

EDGAR monthly CO emissions, modified to account for re-

duced burning during the monsoon, as described above, were

4.1, 4.2 and 4.2 Tg CO month−1 for 1998, 1999 and 2000 re-

spectively. As CO has anthropogenic sources one may ex-

pect its emissions to have increased over time, however the

monthly emissions for 1998–2000 are similar to those for

2008. To investigate this result we compared the EDGAR

data to three previous studies. EDGAR monthly emissions

compare well to those of Fortems-Cheiney et al. (2011) who

reported relatively stable CO emissions from South Asia be-

tween 2000 and 2010. EDGAR monthly emissions also com-

pare well to the GIS-based emission estimate of Dalvi et

al. (2006) and the air pollutant emission inventory of Streets

et al. (2003) who estimated that CO emissions from India in

2000 were 69 and 63 Tg respectively, similar to the 66 Tg

annual emission estimated from the EDGAR database for

2000. We use only the EDGAR data in the subsequent emis-

sion estimates for consistency with both our 2008 emission

estimate as well as previous studies, referenced above. The

resulting annual CH2Cl2 emissions are estimated at 4.9 (2.7–

7.2) Gg yr−1 in 1998, 7.9 (5.1–10.8) Gg yr−1 in 1999 and

12.6 (10.8–14.4) Gg yr−1 in 2000. Our emission estimates

suggest that emissions have increased significantly over time,

from a range of 3–14 Gg in the late 1990s to around 16–

25 Gg in 2008.

3.4 CH2Cl2 measured during flights across the Atlantic

to Central America

The final flight route with the temporal resolution needed

for identifying CH2Cl2 trends is across the Atlantic to Cen-
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tral America (Cuba, the Dominican Republic and north-

ern Venezuela). Figure 6 shows the distribution of CH2Cl2
against both latitude and longitude sampled on flights to

these destinations. The gradient along the flight tracks,

shown in Fig. 6 as average values binned for every 5◦ lati-

tude and 10◦ longitude, show very little variation in the early

years of the data set (2001–2002). For example, the average

CH2Cl2 value in the 5◦ latitude bins varied between 20 and

25 ppt along the entire transect. The mean CH2Cl2 concen-

tration was 23.8 (σ 3.9, n= 9) ppt between 50 and 55◦ N and

19.5 (σ 2.6, n= 8) ppt between 20 and 25◦ N. The latitudinal

gradient increases over time and can be seen in the binned

mean values for 2009–2011 which is to be expected as the

northern section of the flight route crosses western Europe

(Sect. 3.1). Due to the smaller number of samples collected

at the far ends of the transect (e.g. n= 5 and n= 3 for the far

northern and southern bins during the 2009–2011 flights) we

do not quantify the gradient along the flight track. However,

it is still less pronounced than the latitudinal gradients ob-

served en route to Africa or India, likely due to the influence

of clean Atlantic air.

Annual tropospheric values (Fig. 6c) show an increase in

time, as discussed in previous sections, although the magni-

tude of the increase is much smaller and within the levels

of variation observed. Unlike previous sections, where we

had defined spatial and temporal regions (e.g. Europe, In-

dian monsoon) for which to calculate CH2Cl2 increases, this

flight route can provide an idea that we see CH2Cl2 increases,

albeit small (from 23.2 ppt (σ = 3.6) to 32.0 ppt (σ = 7.8)),

even in cleaner air masses from over the Atlantic and Cen-

tral America. There is a lack of CH2Cl2 measurements in the

Central American region with which to compare the CAR-

BIC data.

Quasi-vertical profiles of CH2Cl2 along this route can also

provide information on changes in CH2Cl2 over time. In

Fig. 7 profiles of CH2Cl2 are plotted as a function of O3, as

described in Sect. 2. To investigate changes over time, Fig. 7

shows CH2Cl2–O3 profiles for 2000–2002, 2009–2010 and

2011–2012. Samples within each of these 2-year periods are

distributed evenly across many months and so it is unlikely

that seasonal bias plays a role in the changes observed over

time. Between 400 and 500 ppbv O3 (n= 4 for each 2-year

period) the median CH2Cl2 value increased from 11 ppt in

2001–2002 to 16.0 ppt in 2011–2012. However, due to the

low sample number and the high variability this increase is

within the uncertainties of these averages.

3.5 Vertical profiles of CH2Cl2 in the tropics

Air in the TTL may move quasi-horizontally into the ExTL

or the LMS, or vertically into the stratospheric overworld.

Despite the fact that only a portion of the air from the TTL

moves into the free stratosphere, for short-lived species rapid

convective transport to the TTL followed by ascent to the

free stratosphere is the most efficient transport pathway to

the stratosphere (Law et al., 2007). With a common cruise

altitude of 10–12 km, CARIBIC flies at the lower edge of

the TTL, which is commonly defined as covering a potential

temperature, θ , region of between around 345 K (∼ 12 km)

and 380 K (∼ 17 km). For this reason, we present only an up-

per limit on the changing input of CH2Cl2 into this important

region.

All data sampled within the tropical latitude band of 25◦ S

to 25◦ N (the distribution of which can be seen in Fig. 1, with

further information in Table 1) were plotted as quasi-vertical

profiles relative to θ in Fig. 8. A clear increase in the mag-

nitude of high CH2Cl2 “pollution” events can be seen. Be-

cause of this skew, median values and the range (min–max)

are given for each 5 K altitude bin. In 1998–2002 the median

CH2Cl2 concentration between 345–350 K was 18.1 (13.4–

25.0, n= 20) ppt. The median value within this altitude bin

between 2009–2012 was 23.2 ppt with a range spanning 12.4

to 90.4 ppt (n= 97). The increase in median values is mod-

est due to the inclusion of the 2009–2010 data (see Sect. 3.4).

However, despite the variability there is a statistically signif-

icant (Mann–Whitney test, p < 0.05) difference between the

CH2Cl2 concentration observed between 345 and 350 K.

With the exception of 2009–2010, see Sect. 3.4, CH2Cl2
concentrations observed in this vertical band increased over

time, reaching 26.8 (12.4–90.4, n= 63) ppt in 2011–2012.

Other measurements of CH2Cl2 within this region are sparse.

In 1991–1992 Schauffler et al. (1993) measured a mean

CH2Cl2 concentration of 14.9 (σ = 1.1, n= 12) in the TTL

between 15.3 and 17.2 km (366–409 K). Schauffler’s aver-

age is lower than that seen in the early CARIBIC data, al-

though this is likely to be due to the fact that (1) their mea-

surements were taken a few years earlier than CARIBIC; (2)

their measurements were taken at a higher altitude; and (3)

their suggestion that their mean value was biased low due

a high degree of mixing with stratospheric air during their

sampling period. Point (3) demonstrates the influence that

stratospheric mixing may have in this region and may ex-

plain the low values we observed in the 2009–2010 period

(see also Sect. 3.4). Between 2009 and 2011 tropical CH2Cl2
measurements were made by the HIAPER Pole-to-Pole Ob-

servations (HIPPO) project (Wofsy et al., 2012). The HIPPO

database contains 20 samples taken within the latitude band

0◦± 25◦ and within the 345–350 K θ band. These values are

reported on the NOAA scale and are therefore comparable

with CARIBIC data. The HIPPO results, an average CH2Cl2
value of 26.3 (15.9–49.8) ppt, compare well to the CARIBIC

results discussed above.

The data in Fig. 8 have been coloured by sampling route,

thus providing a rough indication of possible air mass source

regions. Of interest is the group of high values in Fig. 8e sam-

pled on the one flight made to Bangkok and Kuala Lumpur

at the end of 2012. With the rise of industrial activity in

Asia it is likely that emissions of industrial solvent emis-

sions have also increased. Studies in China have shown ex-

ceedingly high ground-level concentrations of CH2Cl2. For
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Figure 6. (a) Latitudinal and b) longitudinal distributions of CH2Cl2 along flight routes across the 1255 
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Figure 6. (a) Latitudinal and (b) longitudinal distributions of CH2Cl2 along flight routes across the North and Central Atlantic to Central

America where colour= year (see inset colour bar, colour scale is consistent with Figs. 2, 4 and 6). Average, x̄, values for 5◦ latitude and

10◦ longitude bins are shown for 2001–2002 and 2009–2011 (see Sect. 3.4), error bars are the 1σ variation within these bands. (c) Annual

tropospheric values (see Fig. 2) with 1σ error bars.

example, a 2001 study in 45 different Chinese cities by Bar-

letta et al. (2006) saw an urban average of 226 ppt (σ232)

and individual occurrences of up to 3 ppb. It is possible that

high levels are also emitted in other industrial parts of Asia,

although there are little, if any, ground-based measurements

to support this.

3.6 Potential causes for increasing CH2Cl2

One likely contributor to the increase in CH2Cl2 is the in-

creasing use of hydrofluorocarbons (HFCs) as replacements

for ozone-depleting CFCs and HCFCs, the production and

consumption of which are strictly controlled by the Mon-

treal Protocol. Specifically, CH2Cl2 is used in the production

of difluoromethane, also known as HFC-32 (Ramanathan et

al., 2004). HFC-32 is used in combination with HFC-125 to

make the refrigerant R410A, a direct replacement for HCFC-

22. It is estimated that about 96 % of HFC-32 emissions are

in the NH (McCulloch, 2004), where the majority of pro-

duction and consumption of this HFC is likely to occur. Re-

cent analysis of archived and AGAGE air samples shows

that HFC-32 has increased from around 0.7 ppt, when the

first measurements were made in 2004, to around 6.2 ppt

in 2012, with the growth rate reaching 17 % yr−1 in recent

years (O’Doherty et al., 2014; Montzka et al., 2011b). As

HFCs do not deplete stratospheric ozone they are not con-

trolled by the Montreal Protocol. However, they are potent

greenhouse gases and, as such, are covered by European leg-

islation controlling their production, consumption and emis-

sion. This legislation is likely to reduce CH2Cl2 emissions

from HFC production in Europe in the coming years. In con-

trast, it is expected that much of the future demand for HFCs

is likely to come from developing countries (Velders et al.,

2009). The use of air conditioning systems is growing rapidly

in India (e.g. NRDC, 2013); it is the world’s third largest

consumer of CH2Cl2 (IHS, 2014) and HFC-32 production

plants have opened in recent years (Daikin, 2012). A rapidly

expanding air conditioning industry and increased consump-

tion of CH2Cl2 in India could at least partly explain the oc-

currence of high CH2Cl2 observations in the latter years of

the CARIBIC data set (Sect. 3.3 and Fig. 4e). A shift in

the main consumers and emitters of HFCs is supported by

O’Doherty et al. (2014) who suggest that East Asian emis-

sions are underestimated in some inventories (e.g. EDGAR)

and that emissions from East Asia are growing in importance.

There are other uses for CH2Cl2 which could be contribut-

ing to the increasing atmospheric concentrations. Industrial

sources include use in office (plastic) materials and electron-

ics (Bin Babar and Shareefdeen, 2014; Kowalska and Gier-

czak, 2012), the production and use of which is increasing in
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Figure 7. Profiles of CH2Cl2 relative to O3 from samples collected on flights across the North and 1269 

Central Atlantic to Central America. Median values are for 50 ppb O3 bins between 0-100 ppbv and 1270 

100 ppbv O3 bins above this, error bars are 1σ. The coloured band highlights the region between 1271 

400-500 ppbv O3 discussed in Section 3.4. The dashed line represents 30 ppt of CH2Cl2 (see Section 1272 

1), provided as a visual marker to illustrate the shift over time to higher concentrations of CH2Cl2.  1273 
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Figure 8. Profiles of CH2Cl2 relative to potential temperature for samples taken within the latitude 1276 

range 0° ±25°. Median (error bars are range) values for 5 K bins are overlaid in black. Colour 1277 

represents flight route, as shown by the inset colour bar.  1278 
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Figure 8. Profiles of CH2Cl2 relative to potential temperature for samples taken within the latitude range 0◦± 25◦. Median (error bars are

range) values for 5 K bins are overlaid in black. Colour represents flight route, as shown by the inset colour bar.

developing nations such as India and those in Southeast Asia.

A CH2Cl2 source from municipal waste disposal (Majumdar

and Srivastava, 2012) may be of particular importance for In-

dia where mismanagement of waste disposal has been found

to lead to high levels of fugitive volatile organic compound

emissions from waste disposal sites. CH2Cl2 is also used by

the pharmaceutical industry in drug preparation, where its

use may be increasing as a replacement for CCl4 which is

regulated by the Montreal Protocol (UNEP CAP, 2009).

The likely sources of increased CH2Cl2 emissions over the

past decade suggest that India might be an increasingly im-

portant source of industrial CH2Cl2 emissions, as seen in the

CARIBIC data set, although its emissions are still small on

a global scale. We estimate CH2Cl2 emissions from the In-

dian region in 2008 to be in the region of 20.3 (15.8–24.8)

Gg. This is similar to an estimate of 24 (16–33) Gg yr−1 for

2005 USA emissions calculated by Millet et al. (2009). The

latest global estimate provided by the WMO (Montzka et al.,

2011b) gave global emissions of 515 Gg yr−1 for 1999–2003

based on Simmonds et al., 2006). Both the India and USA

emissions are small fractions of this total (which is a lower

limit due to the time frame it was based upon and the increas-

ing emissions over time) suggesting that other regions con-

tribute significantly. Significant growth in industrial produc-

tion and consumption of HFCs in Asia, in particular in China,

was projected by Velders et al. (2009), suggesting that these
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regions may be or may become important source regions of

CH2Cl2 and warrant further study.

4 Conclusions

Results from CARIBIC flights spanning a significant part

of the world provide evidence that CH2Cl2 has increased in

the atmosphere since our measurements began in 1998, con-

sistent with the increase observed at a remote surface site,

MHD. A summary of the increase seen in each region is

provided in Table 2. An increase of between 38 % (Atlantic

routes) to 69 % (India monsoon route) was observed, corre-

sponding to an increase of between ∼ 7–9 ppt in cleaner air

masses, such as those encountered on flights to South Africa

and across the North and Central Atlantic and ∼ 12–15 ppt

in air masses over industrial regions such as Europe and In-

dia. This increase was seen in the average CH2Cl2 obser-

vations for each region, as well as in an increase in high-

concentration “pollution” events (e.g. Figs. 4 and 8). The in-

crease is most likely a result of increasing industrial use of

CH2Cl2, such as its use as a feedstock for the production of

HFC-32.

Our results show that CH2Cl2 emissions from the Indian

subcontinent have increased two- to fourfold in a decade

(1998–2008). The annual emissions from the Indian region in

2008, at ∼ 20 Gg, are similar to those estimated for the USA

in 2005. Other Asian regions may also prove to be emitting

large quantities of CH2Cl2: from a limited data set we sug-

gest that Southeast Asia may be an important source region.

However, there are few in situ data available for this region

and further investigations are warranted.

Increases in CH2Cl2 in UT air masses with the poten-

tial to enter the TTL can also be observed in the CARIBIC

database. Whilst CH2Cl2 is only a minor contributor to

stratospheric ozone depletion, many other chlorocarbons

have stable (e.g. CH3Cl, see Umezawa et al., 2014) or de-

creasing (e.g. CFCs, CH3CCl3) atmospheric abundances. As

our data suggest that CH2Cl2 may still be increasing in the

atmosphere its relative importance may increase if this trend

continues.

The Supplement related to this article is available online

at doi:10.5194/acp-15-1939-2015-supplement.
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