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Abstract

We study how different regimes of access rights to renewable natural resources –

namely, open access versus full property rights – affect sustainability, growth and welfare

in the context of modern endogenous growth theory. Resource exhaustion may occur

under both regimes but is more likely to arise under open access. Moreover, under full

property rights, positive resource rents increase expenditures on manufacturing goods

and temporarily accelerate productivity growth, but also yield a higher resource price

at least in the short-to-medium run. We characterize analytically and quantitatively

the model’s dynamics to assess the welfare implications of differences in property rights

enforcement.
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1 Introduction

We study how different regimes of access rights to renewable natural resources affect sus-

tainability and welfare in the context of modern endogenous growth theory. There is a

long tradition in resource economics of studying access rights in partial equilibrium. The

benchmark bioeconomic model – pioneered by Gordon (1954) and Schaefer (1954), and fully

characterized by Clark (1973) – typically considers the two polar cases of open access, in

which the resource is accessible to atomistic harvesters that do not control the evolution

of the aggregate resource stock, and full property rights, in which the sole owner, or a co-

ordinated group of harvesters, controls the resource stock and therefore adjusts the time

profile of harvesting to the dynamics of the resource base. The most popular result, known

as the Tragedy of the Commons (Hardin, 1968), is that open access may induce resource

exhaustion because atomistic harvesters maximize current rents neglecting the effects of

current harvesting on future resource scarcity. Related contributions emphasize that, when

both regimes yield positive resource stocks in the long run, the levels attained under dif-

ferent regimes depend on the specification of harvesting costs and discount rates (Zellner,

1962; Plourde, 1970). Importantly, because this literature focuses on partial-equilibrium

models, its results are highly sensitive to the assumption that prices and the interest rate

are exogenous (Clark, 2005).

The Gordon-Schaefer-Clark bioeconomic model has been seldom studied in the general

equilibrium framework of modern growth theory. Consequently, we still lack a satisfactory

treatment of the dependence of growth on access rights. This gap in the existing literature

motivates our analysis.

Notable attempts at integrating resource and growth economics that precede ours are

Tahvonen and Kuuluvainen (1991; 1993) and Ayong Le Kama (2001). Both introduce re-

newable resources and pollution in the neoclassical Solow-Ramsey model and study the

interactions between harvesting and negative externalities. Bovenberg and Smulders (1995)

analyze the same issues in the context of endogenous growth. Our analysis departs from

these contributions in two fundamental respects. First, we abstract from pollution exter-

nalities and provide, instead, a detailed comparison of open access and full property rights

over a renewable resource that exclusively plays the role of essential production input. Sec-

ond, we employ a Schumpeterian model of endogenous growth in which different types of

innovations coexist.

In our framework productivity growth stems from innovations pursued by incumbent
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firms as well as by new firms entering the market.1 Incumbent firms invest in projects

aimed at increasing their own total factor productivity (vertical innovation). At the same

time, entrants invest in projects that develop new products and set up production and mar-

keting operations to serve the market (horizontal innovation). The rationale for using this

approach is three-fold. First, this class of models is receiving strong empirical support in

explaining historical patterns of innovation activity and economic growth (Madsen, 2010;

Madsen and Timol, 2011). Second, the interaction between the mass of firms and techno-

logical change within the firm eliminates scale effects – that is, long-run growth rates do

not depend on the size of endowments – a property that is empirically plausible (Laincz

and Peretto, 2006; Ha and Howitt, 2007) and is furthermore realistic in the present context

where input endowments include a stock of natural resources. Third, the model is ana-

lytically tractable, a highly desirable feature in the present context. A major reason for

the lack of general-equilibrium analyses of access rights and economic growth is, as Brown

(2000) put it, that “Introducing one more differential equation to account for renewable

resource dynamics makes it difficult to get general analytical solutions and much of the

profession continues to find it tasteless to rely on computer-aided answers”. Our model

yields a detailed characterization of the dynamics of the resource stock, income levels and

productivity growth, both in the transition and in the long run. This allows us to compare

equilibrium paths under both regimes and to obtain three sets of results.

The first set of results concerns the effect of property rights regimes on resource scarcity

and sustainable resource use. Both regimes may yield resource exhaustion or sustained

growth in the long run, but the condition for long-run sustainability is always more restric-

tive under open access: if the intrinsic regeneration rate of the natural resource falls within

a specific interval of values, the economy experiences the Tragedy of the Commons under

open access but sustained resource extraction – and, hence, sustainable economic growth –

under full property rights. When natural regeneration is sufficiently intense to induce sus-

tained growth under both regimes, the resource stock is always higher under full property

rights. Importantly, this last result does not imply that the resource price is necessarily

lower under full property rights. The reason is that, in our model, the equilibrium value

of resource rents is affected by both resource scarcity and income dynamics and – contrary

to standard partial equilibrium models – income dynamics are driven by endogenous pro-

1The framework, pioneered by Peretto (1998) and Peretto and Connolly (2007), has been recently applied

to study the role of resources in fixed supply – like, e.g., land – in a closed economy (Peretto 2012) and in

a two-country, world general equilbrium model with asymmetric trade (Peretto and Valente 2012). In this

paper we extend it to the case of renewable resources.
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ductivity growth. Specifically, full property rights induce a downward pressure on prices

via scarcity effects (i.e., the resource stock tends to be preserved relatively to open access)

as well as an upward pressure on prices via rent effects (i.e., resource harvesters with full

ownership charge a higher price for given quantity).

The second set of results concerns the impact of resource property rights on market

size, innovations and productivity growth. We show that, under full property rights, the

market for manufacturing goods is always larger because strictly positive resource rents

yield additional income that boost household spending. A larger market size, in turn,

attracts entrants so that the economy converges to a steady state with a larger mass of

firms. Productivity growth, however, is not faster because the process of entry in the

manufacturing sector sterilizes the scale effect: in the long run, firm size and growth rates

are the same in the two regimes.

The third set of results concerns the overall effect on consumption and welfare of a regime

switch. A shift from full property rights to open access generates negative transitional effects

– namely, a productivity slowdown and a gradual increase of natural resource scarcity –

but also instantaneous level effects having a potentially ambiguous impact on consumption

levels: the permanent reduction in expenditure is mitigated by a reduction in the resource

price, because open access implies zero net rents from harvesting and thereby lower unit

cost for resource inputs. Therefore, switching to open access is welfare reducing only if the

utility gain generated by the initial drop in the resource price is more than offset by the

static and dynamic losses induced by lower expenditures and transitional growth.

The plan of the paper is as follows. Section 2 describes the model setup. Section

3 derives the general equilibrium relationships that characterize the economy under each

regime. Section 4 compares the two regimes in terms of equilibrium outcomes and studies

the welfare impact of a regime switch. Section 5 concludes.

2 A Model of Renewable Resources and Endogenous Growth

The supply side of the economy comprises a final sector producing the consumption good,

a manufacturing sector producing differentiated intermediate inputs, and a resource sector

that supplies harvest goods to final producers. In the manufacturing sector, incumbents

invest in R&D that raise own productivity (i.e., vertical innovations) while outside en-

trepreneurs develop new varieties of intermediate inputs and start new firms to serve the

market (i.e., horizontal innovations). The resource sector may operate under two differ-
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ent regimes – open access or full property rights – that determine different time paths of

resource rents and income levels as a result of households choices.

2.1 Final Producers

A representative competitive firm produces final output, Y , by means of H units of a

“harvest good” drawn from a stock of a renewable natural resource, LY units of labor and

n differentiated manufacturing goods. The technology is

Y (t) = H (t)α LY (t)β
∫ n(t)

0
Xi (t)

γ di, α+ β + γ = 1, (1)

where Xi is the quantity of manufacturing good i and t ∈ [0,∞) is the time index. The

final producer demands inputs according to the usual conditions equating value marginal

productivities to remuneration rates. The demand schedules for labor and resource read

LY (t) = β
PY (t)Y (t)

W (t)
, (2)

H (t) = α
PY (t)Y (t)

PH (t)
, (3)

where PY is the price of final output, W is the wage rate, and PH is the resource price. The

condition for Xi yields

Xi (t) =

[
γPY (t)H (t)α LY (t)β

PXi (t)

] 1
1−γ

, i ∈ [0, n (t)] , (4)

where PXi is the price of good i.

2.2 Manufacturing Sector: Incumbents

The manufacturing sector consists of single-product firms that supply differentiated goods

under monopolistic competition. The typical firm produces with the technology

Xi (t) = Zi (t)
θ · (LXi (t)− φ) , 0 < θ < 1, φ > 0 (5)

where Zi is firm-specific knowledge, θ is the associated elasticity parameter, LXi is labor

employed in manufacturing production and φ is a fixed labor cost. In technology (5), firm’s

productivity may increase over time by virtue of in-house R&D. Specifically, the firm’s

knowledge grows according to

Żi (t) = κ ·K (t)LZi (t) , κ > 0 (6)
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where κ is an exogenous parameter, LZi is labor employed in vertical R&D, and K is the

stock of public knowledge available to all manufacturing firms. Public knowledge is the

average knowledge in the manufacturing industry,

K (t) =
1

n (t)

∫ n(t)

0
Zj (t) dj, (7)

which is taken as given at the firm level.2 The firm maximizes

Vi (t) =

∫ ∞

t
ΠXi (s) e

− ∫ s
t (r(v)+δ)dvds, δ > 0 (8)

subject to (6)-(7) and the demand schedule (4), where ΠXi = PXiXi−WLXi−WLZi is the

instantaneous profit, r is the interest rate and δ is the exogenous death rate. The solution

to this problem, derived in the Appendix, yields a symmetric equilibrium where each firm

produces the same output level and captures the same fraction 1/n of the market:

PXi (t)Xi (t) =
1

n (t)
· γPY (t)Y (t) , (9)

where γPY Y is the final producer’s expenditure on manufacturing goods.

2.3 Manufacturing Sector: Entrants

Entrepreneurs develop new products and set up new firms to serve the market. This process

of horizontal innovations increases the mass of firms over time and the growth rate of n

depends on how much labor is employed in start-up operations. For each entrant, denoted

i without loss of generality, the labor requirement translates into a sunk cost that is pro-

portional to the value of the production good: denoting by LNi the units of labor employed

in start-up activity, the entry cost equals

W (t)LNi (t) = ψPXi (t)Xi (t) , ψ > 0 (10)

where PiXi is the value of production of the new good when it enters the market and

ψ is a parameter representing technological opportunity. This assumption captures the

notion that entry requires more effort the larger the anticipated volume of production.3 A

2Peretto and Smulders (2002) provide microeconomic foundations for the knowledge aggregator (7).
3See Etro (2004) and, in particular, Peretto and Connolly (2007) for a more detailed discussion of the

microfoundations of our assumption. They argue that the entry cost is proportional to the initial variable

cost of production because a firm setting up operations incurs the cost of building prototypes of the new

products. In symmetric equilibrium (see below) our formulation yields an entry cost equal to ψy/n (where

y ≡ PY Y ). Barro and Sala-i-Martin (2004, Ch. 6) use this assumption to eliminate the scale effect and argue

that it is empirically appropriate: the available evidence suggests that rates of innovation are functions of

R&D intensity, not of the absolute flow of resources devoted to R&D.
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free-entry equilibrium requires that the value of the new firm equals the entry cost, that is,

Vi (t) = ψPXi (t)Xi (t) . (11)

In symmetric equilibrium the mass of firms grows according to

ṅ (t)

n (t)
=

1

ψγ
· W (t)LN (t)

PY (t)Y (t)
− δ, (12)

where LN is total employment in entry (see the Appendix).

2.4 Resource Dynamics

The resource stock, S, obeys the regeneration equation

Ṡ (t) = G (S (t))−H (t) , (13)

where G (·) is natural regeneration and H is harvesting. Following the benchmark model of

renewable resources pioneered by Schaefer (1954), we assume that the regeneration function

takes the logistic form

G (S (t)) = ηS (t) ·
(
1− S (t)

S̄

)
, η > 0, S̄ > 0 (14)

where η is the intrinsic regeneration (or growth) rate and S̄ is the carrying capacity of the

habitat, i.e., the maximum level of the resource stock that the natural environment sustains

when there is no harvesting.

The harvesting technology is

H (t) = BLH (t) · S (t) , B > 0 (15)

where B is a productivity parameter also known as the “catchability coefficient” and LH is

the amount of labor employed in harvesting.4 Employment in harvesting is determined by

the choices of the households, who behave like atomistic extractive firms and earn a flow of

resource rents given by

ΠS (t) = PH (t)H (t)−W (t)LH (t) , (16)

where PH is the price of the harvest good.

4This production function, originally due to Schaefer (1954), exhibits returns to scale of degree two in

labor and the resource stock. Following the exhaustive discussion in Brown (2000), we use it for two reasons.

First, it is used as is in much of the literature (for both empirical and theoretical reasons) and we follow the

practice to make our results directly comparable to the state of the art. Second, modifying it to allow for

constant returns does not change our results in any substantial way.
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2.5 Household Behavior and Access Rights

We consider a representative household endowed with L units of labor that it can either

sell in the market for the wage W or use to produce the harvest good that it can then sell

in the market for the price PH . The household has preferences

U ≡
∫ ∞

0
logC (t) · e−ρtdt, ρ > 0 (17)

where C (t) is consumption and ρ is the discount rate. Financial wealth, A, consists of

ownership claims on firms that yield a rate of return r. The budget constraint reads

Ȧ (t) = r (t)A (t) +W (t)L+ [PH (t)BS (t)−W (t)] · LH (t)︸ ︷︷ ︸
ΠS(t)=resource rents

− PY (t)C (t) , (18)

where the term in square brackets follows from (15)-(16). The household chooses the time

paths of consumption, C, and employment in harvesting, LH , to maximize (17) subject to

(18). The choice over LH depends on the regime of access rights.

Under open access, the household has no control over the total resource stock, the

constraint (13) does not appear in the household problem, and the Hamiltonian reads

Loa ≡ logC (t) + λa (t) Ȧ (t) , (19)

where λa is the marginal shadow value of financial wealth. The first order condition with

respect to LH then yields maximization of current resource rents.

Under full property rights, instead, the household has full control over the resource stock

and maximizes the present value of the stream of benefits in a forward-looking manner:

equation (13) is an explicit constraint in the optimization problem and S is an additional

state variable. Consequently, the current-value Hamiltonian reads

Lpr ≡ logC (t) + λa (t) Ȧ (t) + λs (t) Ṡ (t) , (20)

where λs is the marginal shadow value of the resource stock.

3 General Equilibrium

Open access and full property rights yield different harvesting plans, which, in equilibrium,

induce different dynamics of consumption and innovation-led growth. Before analyzing

in detail the two regimes, we describe the general equilibrium relations that hold in the

economy independently of the type of access rights on natural resources. All the expressions

discussed below are derived in the Appendix.
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3.1 Main Features of the Equilibrium

The economy allocates labor across five activities: final production, manufacturing produc-

tion, firm-specific knowledge accumulation (vertical R&D), entry (horizontal R&D), and

resource harvesting. Because we have assigned the decision concerning employment in har-

vesting to the household, we have in fact modeled the household as determining labor supply

as L− LH . Consequently, the labor market clearing condition is

L− LH (t) = LY (t) + LX (t) + LZ (t) + LN (t) , (21)

where LX and LZ denote, respectively, total employment in production and vertical R&D.

Labor mobility yields wage equalization across all activities. We take labor as the numeraire

and set W (t) ≡ 1. We also denote expenditure on manufacturing goods by y ≡ PY Y .

The market for the final good clears when output equals consumption, Y (t) = C (t).

The household problem yields the Euler equation for consumption growth,

ṖY (t)

PY (t)
+

Ċ (t)

C (t)
=

ẏ (t)

y (t)
= r (t)− ρ. (22)

From (8), the return to financial assets is

r (t) =
ΠX (t)

V (t)
+

V̇ (t)

V (t)
− δ. (23)

The free-entry condition yields that financial wealth – the aggregate value of firms – is a

constant fraction of the value of final output:

A (t) = n (t)V (t) = ψγ · y (t) . (24)

Equilibrium of the financial market requires that all rates of return be equal.

As discussed in detail in Peretto (1998) and Peretto and Connolly (2007), models of

this class have well-defined dynamics also when one of the two R&D activities shuts down

because it is return-dominated by the other, or even when they both shut down because

they fail to generate the household’s reservation rate of return on saving. For simplicity, we

focus our analysis on the case in which both types of innovation are active and discuss the

role of corner solutions in the Appendix. The growth rate of firm-specific knowledge is

Ż (t)

Z (t)
= κθγ ·

(
γ
y (t)

n (t)

)
− (r (t) + δ) . (25)

Equation (25) shows that larger firm size γy/n increases the typical firm’s vertical R&D

effort, boosting productivity growth. The gross growth rate of the mass of firms is

ṅ (t)

n (t)
+ δ =

1− γ − ψρ

ψ
− n (t)

γy (t)
· 1
ψ
·
(
φ+

1

κ
· Ż (t)

Z (t)

)
. (26)
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The last term in (26) highlights that firm-specific knowledge accumulation reduces the

expansion rate of product variety because it raises the anticipated post-entry expenditure

on vertical innovation.

Access rights influence the equilibrium of the economy via their effect on resource use

and the income it generates. Equation (24) implies that expenditure is a constant fraction

of labor and resource income:

y (t) =
1

1− ρψγ
· (L+ΠS (t)) . (27)

Different regimes of access rights over resources yield different dynamics of resource rents

and, hence, of consumption expenditure. This mechanism has crucial implications for

growth and welfare, as we show in the next section.

3.2 Equilibrium under Open Access

Under open access, the household chooses employment in harvesting in order to maximize

current rents, while competition forces the price of the harvest good down to the marginal

harvesting cost and thus resource rents to zero. From the Hamiltonian (19), we have

P oa
H (t) =

1

BSoa (t)
=⇒ Πoa

S (t) = 0. (28)

From (27), this constant time profile of resource income yields an equilibrium with constant

expenditure on the final good which, via the saving rule (22), yields that the interest rate

equals the discount rate:

yoa (t) = yoa ≡ L

1− ψγρ
and roa (t) = ρ. (29)

This result has important implications for harvesting and innovation.

Proposition 1 (Natural resource dynamics under Open Access) Harvesting is proportional

to the existing resource stock:

Hoa (t)

Soa (t)
= αByoa =

αBL

1− ψγρ
. (30)

The regeneration equation (13) becomes

Ṡoa (t) =

(
η − αBL

1− ψγρ

)
· Soa − η

S̄
· (Soa)2 , (31)

and yields

lim
t→∞Soa (t) = Soa

ss ≡
⎧⎨
⎩

S̄
η ·
(
η − αBL

1−ψγρ

)
if η > η̄oa ≡ αBL

1−ψγρ

0 if η � η̄oa
. (32)
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There exists a condition on the parameters determining whether the economy experi-

ences natural resource exhaustion or it reaches a steady state with a positive stock. The

condition for long-run preservation, η > η̄oa, says that the intrinsic regeneration rate η must

be sufficiently high to compensate for the adverse effects of consumers’ impatience (a high

ρ boosts current consumption and thereby harvesting), resource dependency in production

(a high α yields a large demand for the harvesting good), efficiency in harvesting (a high

B raises the incentive to hire workers in harvesting), and the size of the population (a high

L also raises the incentive to hire workers in harvesting). For η � η̄oa the open-access

economy experiences the Tragedy of the Commons : the rent-maximizing harvesting rule is

unsustainable and the resource stock eventually vanishes.

The equilibrium paths of the innovation rates are as follows.

Proposition 2 (Innovation dynamics under Open Access) The rate of accumulation of

firm-specific knowledge is

Żoa (t)

Zoa (t)
= κθγ · γyoa

noa (t)
− (ρ+ δ) . (33)

The mass of firms follows a logistic process with constant coefficients,

ṅoa (t)

noa (t)
= ν ·

[
1− noa (t)

ñoa

]
, ν ≡ 1− γ − θγ − ψ (ρ+ δ)

ψ
(34)

where ν is the intrinsic growth rate, and

ñoa ≡ γyoa · 1− γ − θγ − ψ (ρ+ δ)

φ− (ρ+ δ) · κ−1
. (35)

is the carrying capacity. In the long run, the mass of firms converges to the carrying-capacity

level

noa
ss ≡ lim

t→∞noa (t) = ñoa.

One implication of Proposition 2 is that the engine of growth in the long run is firm-

specific knowledge accumulation. Entry generates transitional dynamics in the mass of firms

but, due to the fixed operating cost φ, it is not self-sustaining. Consequently, in steady state

the rate of entry exactly compensates for the death rate of firms δ. The long-run mass of

firms noa
ss , on the other hand, determines long-run firm size, γyoa/noa

ss , and thus long-run

growth. The interpretation is that, at any point in time, the equilibrium of factors market

and the consumption/saving decision of the household determine the size of the market for

manufacturing goods, γyoa. This, in turn, determines the carrying capacity in the logistic
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equation characterizing the equilibrium proliferation of firms. Peretto and Connolly (2007)

discuss in detail the intuition for why these logistic dynamics arise in a broad class of models

and how they relate to the literature. The reason why these models exhibit logistic, instead

of exponential, growth of the mass of firms is that they (re)introduce the fixed operating

costs of the static theory of product variety that first-generation endogenous growth models

set to zero.5 In this paper’s specific application of the Schumpeterian framework, the finite

amounts of labor and of the natural resource are the force that limits the proliferation of

a “specie” – firms/products – through the crowding effect implied by the fixed operating

cost.

3.3 Equilibrium under Full Property Rights

Under full property rights, resource owners do not maximize current rents at each point in

time but rather the present-discounted value of all rents in a forward-looking fashion. As a

consequence, harvesting satisfies the Hotelling rule: the marginal net rent must grow over

time at the rate of interest net of the marginal benefits from resource regeneration.6 We

show this result in the Appendix. Here, we focus on the components of the household har-

vesting plan that identify the key channels through which such plan affects macroeconomic

outcomes.

First, resource rents are strictly positive because the household chooses the extraction

path so to equalize the profits from harvesting to the marginal shadow value of the resource

stock:

Πpr
S (t) = ypr (t) · λpr

s (t)Hpr (t) . (36)

Second, the resource price is

P pr
H (t) =

1

BSpr (t)
+ ypr (t) · λpr

s (t)︸ ︷︷ ︸
scarcity rent

. (37)

5Setting φ = 0 in (34) yields that the mass of firms does not follow a logistic process anymore but grows

forever, exactly like in expanding-varieties models à la Grossman and Helpman (1991).
6The Hotelling rule – named after Hotelling (1931) – asserts that an efficient harvesting plan requires

that the growth rate of the marginal net rents from harvesting equal the interest rate minus the shadow

value of all the positive feedback effects that a marginal increase in the resource stock induces on current

rents and on future consumption benefits from resource use. If the resource is non-renewable and harvesting

costs are independent of the resource stock, the feedback effects are zero and the Hotelling rule asserts that

the growth rate of the marginal net rents from harvesting equal the interest rate.
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Third, from (27) and (36) we obtain

ypr (t) =
L

1− ρψγ − λpr
s (t)Hpr (t)

. (38)

According to these expressions, resource rents are not a constant fraction of consumption

expenditure because the incentives to harvest depend on the marginal shadow value of the

resource stock. As a consequence, full property rights induce an equilibrium path where

expenditure and the interest rate are time-varying. The reason is that, differently from the

open access regime, the level of harvesting under full property rights is not proportional to

the resource stock in each instant: since the harvesting choices of forward-looking resource

owners take into account the effect of natural scarcity on future rents, the economy’s rate

of return continuously adjusts to the dynamics of resource rents generated at each point in

time.

We can study the equilibrium path of the economy by constructing a two-by-two sys-

tem that governs the joint dynamics of the shadow value of the resource stock, m (t) ≡
λpr
s (t)Spr (t), and the physical resource stock, Spr (t).

Proposition 3 (Natural resource dynamics under Full Property Rights) Harvesting is a

monotonously decreasing function of the shadow value of the resource stock:

Hpr

Spr
= Λ(m) ≡ 2αBL

1− ρψγ +BLm+
√

(1− ρψγ +BLm)2 − 4αBLm
. (39)

The associated dynamical system consists of the costate equation generated by the Hamilto-

nian (20) and the regeneration equation (13) evaluated at the harvesting rule (39):

ṁ (t)

m (t)
= ρ+

η

S̄
Spr (t)− α

m (t)
; (40)

Ṡpr (t)

Spr (t)
= η − η

S̄
Spr (t)− Λ (m (t)) . (41)

The system is saddle-path stable and converges to:

limt→∞m (t) = mss ≡
⎧⎨
⎩

α
ρ+(η/S̄)Spr

ss
if η > η̄pr ≡ Λ (mss)

α
ρ if η � η̄pr

,

limt→∞ Spr (t) = Spr
ss ≡

{
S̄
η · (η − Λ (mss)) if η > η̄pr ≡ Λ (mss)

0 if η � η̄pr
.

(42)
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Figure 1 around here

Caption Figure 1: Dynamics under full property rights according to Proposition 3. Left

graph: the case η > η̄pr implies positive resource stock in the long run. Right graph: the

case η < η̄pr leads to long-run resource exhaustion.

Figure 1 illustrates the dynamics in the two cases: η > η̄pr yields positive resource

stock in the steady state (left diagram) whereas η < η̄pr leads to resource exhaustion (right

diagram). The condition for long-run resource preservation is conceptually analogous to

that obtained under open access: if the intrinsic regeneration rate is too low, resource

exhaustion occurs. However, the intrinsic regeneration rate triggering exhaustion under

full property rights, η̄pr ≡ Λ (mss), differs from that obtained under open access, η̄oa. We

discuss this point in detail in section 4.

The convergence results in (42) imply that consumption expenditure and the interest

rate are constant in the long run: from (38) and (22), we obtain

lim
t→∞ ypr (t) = yprss ≡

L

1− ψγρ−mssΛ (mss)
and lim

t→∞ rpr (t) = ρ. (43)

In light of these results, we can characterize the dynamics of innovation as follows.

Proposition 4 (Innovation dynamics under Full Property Rights) The rate of accumula-

tion of firm-specific knowledge is

Żpr (t)

Zpr (t)
= κθγ · γy

pr (t)

npr (t)
− (rpr (t) + δ) .

The mass of firms follows the logistic process with time-varying carrying capacity

ṅpr (t)

npr (t)
= ν ·

[
1− npr (t)

ñpr (t)

]
, ν ≡ 1− γ − θγ − ψ (ρ+ δ)

ψ

where ν is the intrinsic growth rate, and

ñpr (t) ≡ γypr (t) · 1− γ − θγ − ψ (ρ+ δ)

φ− (rpr (t) + δ) · κ−1

is the carrying capacity. In the long run, since ypr (t)→ yprss and rpr (t)→ ρ , we have

npr
ss ≡ lim

t→∞npr (t) = lim
t→∞ ñpr (t) = γyprss ·

1− γ − θγ − ψ (ρ+ δ)

φ− (ρ+ δ) · κ−1
. (44)

Proposition 4 can be interpreted along similar lines as Proposition 2: the mass of firms

follows a logistic process converging towards a stable carrying-capacity level npr
ss . As we
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noted above, the finite amounts of labor and of the natural resource limit the prolifera-

tion of a “specie” – firms/products – that would otherwise grow exponentially. Unlike the

open-access regime, the carrying capacity of firms changes over time due to agents’ inter-

nalization of the dynamics of the natural resource stock. More generally, human activity

– i.e., harvesting – affects the evolution of the resource stock by modifying the habitat in

which it grows. The evolution of the resource stock, in turn, affects the “economic habitat”

in which firms grow in number and size. Productivity growth in the long run is driven by

vertical innovation, whose incentives depend on firm size.

The crucial difference between the open access and the full property rights regimes

is that in the former the economy lacks a price signal of scarcity capable of inducing an

adaptive response of resource extractors to the changing habitat. This is why, under open

access, resource exhaustion – which essentially represents a Tragedy of the Commons –

occurs for a larger set of values of the natural regeneration rate under open access than

under full property rights, as we show below.

3.4 Resource Preservation in the Long Run

The two regimes imply different conditions for a strictly positive resource stock in the long

run. We adopt the standard notion of strong sustainability, according to which a strictly

positive resource base must be preserved forever, and interpret such conditions for long-run

preservation as conditions for sustainable development. The reason is that in our model

the renewable resource is a macro-level essential input that cannot be exhausted without

collapsing the entire economy. Our main result is the following.

Proposition 5 (Resource preservation in the long run) The condition for long-run resource

preservation is more restrictive under open access: η̄pr < η̄oa. Specifically, there are three

cases:

(i) For η̄pr < η̄oa < η, both regimes yield resource preservation in the long run, with

Spr
ss > Soa

ss , yprss > yoa, npr
ss > noa

ss .

(ii) For η̄pr < η < η̄oa, the economy preserves the resource under full property rights

(Spr
ss > 0) but experiences the Tragedy of the Commons under open access (Soa

ss = 0).

(iii) For η < η̄pr < η̄oa, both regimes yield resource exhaustion in the long run.
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The intuition behind the first statement in Proposition 5 follows immediately from

the regeneration equation (13). To preserve the resource in the long run, the intrinsic

regeneration rate η must be able to compensate for the depletion due to harvesting. Under

open access, cumulative harvesting is more intense because agents do not consider the effects

of current exploitation on future scarcity. Also, full property rights generate a higher level of

expenditure that induces more intense entry during the transition and, consequently, more

firms in the intermediate sector in the long run.7 It is worth emphasizing that in both cases

the threshold for sustainability is increasing in population size. Our general equilibrium

model thus captures a crucial channel through which population size puts pressure on the

natural environment. For reasons of space we leave the analysis of the implications of

this channel to future work. We stress, however, that its presence places strong demands

on studies that aim to allow for population growth since, strictly speaking, it rules out

simply adding exogenous population growth but, rather, requires the explict modeling of

the feedback from the resource stock to population growth.

Figure 2 around here

Caption Figure 2: Regime Comparison according to Proposition 5. The black bold

trajectory represents full property rights. The grey bold trajectory along the vertical axis

represents open access.

Figure 2 illustrates the dynamics of the resource stock S (t) and of its shadow value

m (t) in the three scenarios listed in Proposition 5. The grey trajectories along the vertical

axis – i.e., a zero shadow value in each instant – represent open access whereas the black

trajectories are associated with full property rights. When (i) both regimes exhibit preser-

vation, more intense harvesting under open access yields a lower resource stock in the long

run. Alternatively, we may observe (ii) the Tragedy of the Commons under open access, or

(iii) asymptotic exhaustion in both regimes. Figure 2 clarifies that open access is a special

case of full property rights that obtains for m (t) = 0 because agents do not internalize the

regeneration equation (13) in their intertemporal choices.

7An anonymous referee pointed out that not everything is new in expressions for the sustaibility thresh-

olds. The roles of the discount rate and harvesting technology, which also appear in our paper, are well

known from the literature, see e.g. the contributions of Clark (1973), Clark and Munro (1975, 1978). What

is novel is that we now also have to check the production elasticities of the resource (α) and manufacturing

(γ) for final output, as well as the entry parameter (ψ). As the refereee points out, these new elements enter

the sustainability threshold because of the model’s General Equilibrium structure.
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3.5 Equilibrium Growth Rates

To discuss economic growth, we concentrate on the case where long-run preservation obtains

in both regimes.8 In equilibrium, the logarithm of consumption in each instant equals

logC (t) = log ā+ log y (t)︸ ︷︷ ︸
market size

− logPH (t)α︸ ︷︷ ︸
input cost

+ log
[
(n (t))1−γ (Z (t))θγ

]
︸ ︷︷ ︸

TFP

, (45)

where we have defined the constant ā ≡ ααββγ2γ . This expression shows that consumption

is higher the higher is the value of final output (market-size effect), the lower is the resource

price (input-cost effect), and the higher is total factor productivity (TFP) determined by

the mass of firms and by the firm-specific knowledge stock. Accordingly, the growth rate of

consumption is

g (t) ≡ Ċ (t)

C (t)
= r (t)− ρ− α

ṖH (t)

PH (t)
+ (1− γ)

ṅ (t)

n (t)
+ γθ

Ż (t)

Z (t)
. (46)

According to this expression the economy’s growth rate has three components. The first

is the usual consumption rate of return net of discounting, r (t) − ρ. The second is the

resource price drag, αṖH/PH , which represents the negative effect of increased scarcity of

the natural input as reflected by the dynamics of the resource price. The third component

is TFP growth, a weighted average of the two innovation rates.

In the long run, the resource stock, the harvesting rate, the interest rate and the mass

of manufacturing firms are all constant in both regimes. Consequently, the only source

of consumption growth in the long run is firm-specific knowledge growth. An important

implication of Propositions 2 and 4, then, is that the economy’s steady-state growth rate is

the same under open access and under full property rights.

Proposition 6 (Steady-state growth) In the long run, firm size is the same in the two

regimes, i.e.,

lim
t→∞

γyoa

noa (t)
= lim

t→∞
γypr (t)

npr (t)
=

φ− (ρ+ δ) · κ−1

1− γ − θγ − ψ (ρ+ δ)
≡ γyss

nss
, (47)

implying the same long-run growth rate in the two regimes:

lim
t→∞ g (t) = lim

t→∞ γθ
Ż (t)

Z (t)
= γθ ·

[
κγθ · γyss

nss
− (ρ+ δ)

]
> 0. (48)

8There exist corner solutions where vertical and horizontal innovation shut down as the economy becomes

smaller due to resource exhaustion. Thus, if long-run preservation fails to hold, growth falls to zero with the

level of economic activity. Discussing such dynamics is feasible but much more cumbersome than focusing

on the more interesting case that we consider in the text.
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Growth rates coincide in the two regimes because, in our framework, long-run growth

does not exhibit scale effects – that is, the size of factor endowments does not influence the

pace of development in the long run. Importantly, this invariance result equally applies to

the labor endowment and to the natural resource stock, conferring further empirical plau-

sibility to this framework.9 Therefore, regimes characterized by different rates of resource

exploitation yield different income levels but equal growth rates in the long run. The reason

is that the interaction between horizontal and vertical innovations fragments the interme-

diate goods market into submarkets whose size does not depend on endowments: although

the long-run levels of expenditures and of the mass of firms differ between the two regimes,

the size of each firm converges to the same equilibrium level, determined by expression (47),

which shows that the fragmentation process makes long-run firm size independent of total

market size. Factor endowments, therefore, do not affect the incentives to undertake R&D

in the long run because in equilibrium they work through the market size effect, which is

sterilized by the entry process in this model. Armed with these results, we can investigate

in detail the role of the regime of access rights.

4 Regime Comparison

In this section we compare the two regimes in four respects. First, we show that different

regimes of property rights induce contrasting effects on the equilibrium value of the resource

price (subsection 4.1). Second, we distinguish between instantaneous and transitional ef-

fects of property rights regimes on consumption (subsection 4.2). Third, we characterize

analytically the welfare impact of a regimes switch from full property rights to open ac-

cess (subsection 4.3). Fourth, we assess the model predictions quantitatively by performing

three numerical simulations that compare the two regimes in three cases: (i) under identi-

cal initial conditions; (ii) following a switch from full property rights to open access; (iii)

following a switch from open access to full property rights (subsection 4.4).

4.1 Resource Price: Scarcity versus Rent Effects

The equilibrium value of the resource price is affected by property rights regimes in two

ways. First, the resource price at a given instant reflects current scarcity – i.e., the current

9In models where production requires the use of natural resources, the absence of scale effects is a

particularly desirable property because the available empirical evidence does not support the existence of

positive relationships between growth rates and resource stocks in resource-rich countries; see, e.g., see

Bretschger and Valente (2012).
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level of the resource stock – and different regimes entail different degrees of resource preser-

vation. Second, under full property rights, the resource price is also affected by income

dynamics through the rent effect – that is, forward-looking extractors with full ownership

make positive profits by charging a higher price than under open access given the same

resource stock (cf. subsection 3.3). The interplay between scarcity effects and rent effects

yields the following result.

Proposition 7 (Resource price in the two regimes). For a given level of the resource stock

Soa (t) = Spr (t) = S (t), positive resource rents under full property rights imply a higher

resource price than under open access:

P oa
H (t) =

1

BS (t)
< P pr

H (t) =
1

BS (t)
+ ypr (t)λpr

s (t)︸ ︷︷ ︸
Rent effect

.

In long-run equilibria with positive preservation, the resource stock is higher under full

property rights, Spr
ss > Soa

ss > 0, but the rent effect implies an ambiguous price gap:

lim
t→∞P oa

H (t) =
1

BSoa
ss

� lim
t→∞P pr

H (t) =
1

BSpr
ss︸ ︷︷ ︸

Scarcity effect

+ lim
t→∞ ypr (t)λpr

s (t)︸ ︷︷ ︸
Rent effect

.

In general, full property rights induce an upward pressure on prices via the rent effect as

well as a downward pressure via scarcity effects. If we compare the two regimes at time zero,

when the resource stock is given, the resource price is necessarily higher under full property

rights because the rent effect is fully operative and is not mitigated by scarcity effects.

As the two economies converge to their respective steady states, however, full property

rights imply more intense resource preservation (cf. Figure 2), and the resulting scarcity

effect may, but does not necessarily, determine a lower price than under open access. The

implications of this tension between scarcity and rent effects for consumption and welfare

may be substantial, as we show below.

4.2 Consumption: Expenditure-Price Trade-off and Transitional Effects

Different harvesting regimes determine different paths of resource price, income and con-

sumption. This mechanism has two main components. The first is the expenditure-price

trade-off captured by the first two terms in (45). High expenditure levels do not necessarily

imply high consumption: if the resource price is also high, the positive impact of market size

may be more than offset by the negative impact of input costs. This observation is immedi-

ately relevant to our regime comparison. On the one hand, full property rights yield higher
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expenditures relative to open access: from (27), positive resource rents imply ypr (t) > yoa

in each t. On the other hand, full property rights determine a higher resource price at time

zero and, possibly, in the long run (cf. Proposition 7). The expenditure-price trade-off thus

suggests that full property rights do not necessarily enhance consumption at each point in

time. In particular, open access can yield higher consumption in the short run.

The second source of consumption gaps between the two regimes is given by differences

in transitional growth rates. Expression (46) captures the relevant components. On the

one hand, equilibrium interest rates differ during the transition because full property rights

yield positive and time-varying profits from harvesting (cf. subsection 3.3). On the other

hand, productivity growth rates differ between regimes during the transition: entry in

manufacturing proceeds at different speeds because, starting from a given initial condition

n (0), the mass of firms must reach different long-run levels, npr
ss or noa

ss , in the two regimes.

All these mechanisms jointly determine the overall impact of property rights regimes

on consumption and thereby on present-value welfare. In particular, the expenditure-price

trade-off suggests that open access is not necessary welfare-reducing. Although open access

is by definition a regime that fails to maximize present-value resource rents, it is not possible

to conclude that full property rights are always Pareto-superior because access rights inter-

act with other market failures – namely, monopolistic competition in manufacturing and

non-decreasing returns to R&D – and the favorable impact of open access on resource prices

can be substantial. The next subsection sheds further light on this issue by characterizing

analytically the welfare effects of a regime shift.

4.3 Switching from Property Rights to Open Access: Analytical Results

Suppose that the economy is initially in the steady-state equilibrium of the full property

rights regime with positive resource stock (i.e., η̄pr < η). At time t = 0, the economy

suddenly shifts to open access – as a result of, e.g., failure in enforcing property rights.

The overall impact of the regime switch on welfare depends on the combination of the

instantaneous and transitional effects discussed below.

Instantaneous level effects. At time zero, the regime switch induces two instantaneous

adjustments: expenditure jumps down, from yprss to yoass , and the resource price jumps down,

from
(
P pr
H

)
ss

= (1 +Byprssm
pr
ss) /BSpr

ss to P oa
H = 1/BSpr

ss . From expression (45), the ratio

between consumption levels (immediately) before and (immediately) after the switch is

Cpr (0−)
Coa (0+)

=
yprss
yoass

·
(
P oa
H (0+)

P pr
H (0−)

)α

=
yprss
yoass

·
(

1

1 +Byprssm
pr
ss

)α
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This ratio may be above or below unity in view of the expenditure-price trade-off. Hence,

the overall level effect is generally ambiguous: at the time of the regime switch, we may

observe either an instantaneous drop or an instantaneous increase in consumption.

Transitional growth effects. After time 0, there are two types of transitional effects

respectively induced by productivity growth and resource scarcity. First, there is a tran-

sitional slowdown in productivity growth via both horizontal and vertical innovations: the

switch to open access reduces the mass of firms over time (n must move from the initial

state npr
ss to the new steady state noa

ss < npr
ss) and also reduces the growth rate of firm-specific

knowledge as a result of reduced expenditure. As a consequence, the transitional growth

rate of TFP after the switch is smaller than the rate enjoyed before – in fact, it may even

be negative because the mass of firms is shrinking. The second transitional effect results

from increased scarcity: the resource stock moves from the initial state Spr
ss to Soa

ss < Spr
ss ,

and this decline increases the resource price after the initial instantaneous drop.

Overall effect on welfare. After the switch, the consumption path generated by open

access may be above or below the baseline path – i.e., the path, characterized by permanent

full property rights, that the economy would have followed without the regime switch. The

reason is the ambiguous impact of the instantaneous level effects: while the transitional

growth effects (i.e., productivity slowdown and increased scarcity) tend to reduce consump-

tion after the regime switch, the initial drop in the resource price may be strong enough

to raise consumption above the baseline level at time zero. Figure 3 describes the possible

outcomes according to three scenarios. If the initial jump in consumption is downward, the

entire time profile of consumption for t > 0 is strictly below the baseline path – in which

case, the switch to open access yields a welfare loss. If the initial consumption jump is

upward, the impact on welfare is positive if consumption remains forever above the baseline

path, and is generally ambiguous if consumption falls short of the baseline path at some

finite time.

Figure 3 around here

Caption Figure 3: Effects of a regime switch from full property rights to open access at

time t = 0. Scenario I: welfare loss (consumption is always below the baseline level).

Scenario II: welfare gain (consumption is always above the baseline level). Scenario III:

ambiguous welfare effect.

Since the model yields a closed-form solution for the equilibrium path after the regimes

switch, we can assess the scope of possible ambiguities in welfare effects analytically:
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Proposition 8 The welfare change experienced by an economy that switches to the open

access regime is

ρ (Uoa − Upr
ss ) = αBmpr

ssy
pr
ss︸ ︷︷ ︸

Initial price drop

−
(
1− yoa

yprss

)(
1 +

ϕ

ρ+ ν

)
︸ ︷︷ ︸
Expenditure fall amplified

by productivity slowdown

− α

ρ+ ω

(
1− Soa

ss

Spr
ss

)
︸ ︷︷ ︸

Increased scarcity

(49)

where we have defined ϕ ≡ (κ/ν) (θγ)2 xss + (1− γ) with xss ≡ limt→∞ γy (t) /n (t), and

ω ≡ η −BLoa
Hss with Loa

Hss ≡ limt→∞ Loa
H (t).

Proposition 8 formally establishes that the switch to open access yields a welfare loss

unless the positive effect of the initial drop in the resource price is large enough to com-

pensate for the negative effects induced by (i) the instantaneous fall in expenditure due to

the destruction of the flow of resource rents; (ii) the transitional slowdown of TFP growth

induced by reduced expenditure; (iii) the gradual increase in resource scarcity. This result

suggests a more general conclusion that abstracts from the experiment of regime switching:

full property rights improve welfare relative to open access if the utility cost induced by pos-

itive resource rents is more than offset by the static gains generated by higher expenditure

and the dynamic gains induced by faster (transitional) productivity growth.

It should be clear that our results concerning the welfare effects of property-rights

regimes depend crucially on the endogenous nature of both the resource price and the

productivity growth rate. This property differentiates our analysis from the traditional

resource economics literature, which typically employs partial equilibrium models.

4.4 Numerical Simulations: Parallel Paths and Regime Switching

This subsection presents a quantitative assessment of our model with particular focus on

three questions. First, what is the dominant source of welfare differentials between the two

regimes if we assume identical initial conditions? Second, assuming a failure of property

rights enforcement, is the switch to open access welfare-reducing under plausible parameter

values? Third, what are the dynamics of endogenous variables assuming an opposite regime

switch, from open access to full property rights?

The first question highlights the main difference between our theory and partial equilib-

rium models. Since both resource harvesting and aggregate productivity are endogenous in

our analysis, different regimes of property rights yield different welfare levels via the three

channels emphasized in expression (45): the size of the market, the cost of resource inputs
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and TFP. We compute for each regime the equilibrium path from t = 0 to t → ∞ start-

ing from the same initial conditions (S (0) , n (0) , Z (0)) and assuming identical parameters.

These parallel paths show differences in economics outcomes arising only from differences in

property rights regimes. Quantitatively, the key channel of such differences is TFP growth

rather than to the resource price drag (cf. expression (46) above).

To tackle the second and third questions we depart from the method of “parallel paths”

and run two further simulations, respectively labelled “switch to open access” and “switch

to full property rights”. In both cases, the switch to the new regime occurs starting from the

long-run equilibrium of the old regime. The simulation “switch to open access” complements

our theoretical results in subsection 4.3 and shows the extent to which the collapse of full

property rights implies a welfare loss. The simulation “switch to full property rights”

clarifies what are the dynamics of endogenous variables in the opposite case where the

economy abandons open access.

All simulations use the following set of parameter values. The input elasticities in

production of the natural resource and of manufacturing goods are, respectively, α = 0.15

and γ = 0.35, reflecting conventional empirical estimates for resource-rich countries. Total

labor is L = 1 and the utility discount rate is ρ = 4%. In the resource sector we set η = 3%,

B = 0.15 and S̄ = 50. The technological parameters determining innovation rates are set

so as to generate a long-run growth rate of consumption of 2% per year: δ = 0.1, κ = 0.32,

θ = 0.5, ψ = 2.5, φ = 1. The initial conditions vary according to the exercise, as described

below.

4.4.1 Simulation 1 – Parallel Paths

This simulation calculates for each regime the equilibrium path from t = 0 to t → ∞
starting from the same initial condition: S (0) = 23.65, n (0) = 0.0725, Z (0) = 1. Table 1

reports the associated steady-state values of the relevant endogenous variables, along with

calculated present-value welfare.

Regime yss Sss Hss PH(∞) nss gss U

Full Property Rights 1.090 22.02 0.37 0.44 0.085 0.02 113.1

Open Access 1.036 11.14 0.26 0.60 0.081 0.02 107.6

Table 1. Long-run values in the simulation “Parallel Paths”

Figure 4 around here

Caption Figure 4: Simulation results – Parallel Paths. The equilibrium paths of the

relevant variables under full property rights and open access are depicted with bold lines
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and dotted lines, respectively.

Figure 4 shows the equilibrium paths. The quantitative exercise illustrates nicely the

forces highlighted in the qualitative analysis. Initially the open access regime features more

harvesting and a lower resource price. However, over time the resource becomes more

expensive than in the property rights regime. Given the common initial condition, the

resource stock is always higher under property rights. Consequently, the size of the market

for manufacturing goods is larger and the economy grows faster. Such difference in TFP

growth explains the bulk of the quantitative difference in the consumption paths because

the difference in resource price drag is very small. It is worth re-iterating the key point

of this exercise: because we hold everything but the property rights regime the same in

constructing these two paths, the analysis quantifies differences due solely to access rights.

The next two exercises, in contrast, quantify the effects of moving from one regime to the

other and thus do not hold everything but the access rights constant since in each case the

dynamics features a different initial condition.

4.4.2 Simulation 2 – Switch to Open Access

In this simulation the economy is initially in the long-run equilibrium with full property

rights and, at time t = 0, experiences a permanent switch to the open access regime.

From the values reported in Table 1, we thus have the initial conditions Soa (0) = 22.02

and noa (0) = 0.085, keeping Zoa (0) = 1 without loss of generality. Figure 5 depicts the

equilibrium path with open access, which is followed from t = 0 onwards, and the baseline

path with full property rights , i.e., the path that the economy would have followed if the

regime switch had not occurred.

Figure 5 around here

Caption Figure 5: Simulation results – Switch to Open Access. The equilibrium paths

of the relevant variables under full property rights (baseline path) and open access (actual

path) are depicted with bold lines and dotted lines, respectively.

The consumption gap is negative between t = 0 and t = 2 because immediately after

the switch there is more harvesting and more production. The effect is quantitatively

small, however (it not very evident in Figure 5 because of the scale but it exists). This

result illustrates numerically what we have called Scenario III in our theoretical analysis of
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section 4.3 (see Figure 3), namely, that upon switching to open access consumption jumps

instantaneously up but, due to the associated productivity slowdown, it then goes below

the baseline level. Recall that in this scenario the sign of the welfare change is generally

ambiguous. In this numeric simulation we find that the switch to open access is welfare-

reducing since

Upr
(baseline) = 104.7 > 99.7 = Uoa.

Several other simulations based on alternative parameter values (not shown here) suggest

that switching to open access is welfare reducing as long as crucial parameters like α and γ

are kept within ranges that are empirically plausible for modern industrialized economies,

i.e., α < 0.2 and γ > 0.2. However, for higher values of α and/or lower values of γ – which

may be plausible for regions or (less industrialized) countries where production is heavily

dependent on resources – it seems possible that the switch to open access becomes welfare

improving.

4.4.3 Simulation 3 – Switch to Full Property Rights

The last simulation assumes that the economy is initially in the long-run equilibrium with

open access. The switch at time t = 0 to the regime with full property rights thus features

the initial conditions Spr (0) = 11.14 and npr (0) = 0.081, with Zpr (0) = 1. Figure 6

depicts the equilibrium path followed from t = 0 onwards, and the baseline path with

open access as a reference benchmark. Although on impact harvesting falls, during the

transition both harvesting and the resource stock are increasing, eventually converging to

higher values. Because of these dynamics, the resouce price initally rises and then gradually

falls to a lower level. This evolution of the resource sector drives a graduak expansion of the

market for manufacturing goods, which, in turn, drives a temporary acceleration of TFP

and consumption. The temporary acceleration of consumption growth drives the rise in

welfare.

Figure 6 around here

Caption Figure 6: Simulation results – Switch to Full Property Rights. The equilibrium

paths of the relevant variables under full property rights (actual path) and open access

(baseline path) are depicted with bold lines and dotted lines, respectively.
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5 Conclusion

This paper analyzed the impact of different regimes of access rights to renewable natural

resources on sustainability conditions, innovation rates and welfare levels in a Schumpeterian

model of endogenous growth. The crucial difference between open access and full property

rights is that, in the former, the economy lacks a price signal of scarcity capable of inducing

an adaptive response of resource extractors to the changing habitat. Consequently, the

critical condition for long-run sustainability is always more restrictive under open access:

the economy might experience the Tragedy of the Commons under open access and sustained

economic growth under full property rights.

Full property rights yield positive rents from harvesting and therefore higher expenditure

relative to open access: the bigger market size induces faster productivity growth during

the transition via both horizontal and vertical innovations. However, positive rents also

imply that the resource price is lower under open access given the same resource stock.

Consequently, a failure in property-rights enforcement that induces a regime switch to

open access generates negative transitional effects via slower productivity growth but also

ambiguous level effects on consumption because reduced resource prices mitigate the impact

of lower expenditures. The closed-form solution delivered by the model shows that switching

to open access is welfare reducing if the utility gain generated by the initial drop in the

resource price is more than offset by the static and dynamic losses induced by reduced

expenditure.

The crucial role played by endogenous prices and endogenous productivity growth in

our conclusions confirms that a proper understanding of the relationship between long-

term sustainability and property-rights regimes requires a full general equilibrium analysis.

In particular, the vertical structure of production that characterizes our model implies

that prospects for sustainability hinge on the link between price formation in upstream

extraction/harvesting and the incentives to innovate faced by downstream industries: this

topic deserves further research at both the theoretical and the empirical levels.
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A Appendix

Manufacturing sector (incumbents): maximization problem. Using the demand

schedule (4) and the technology (5), the incumbent firm’s profit equals

ΠXi =

[
γPY H

αLβ
Y

PXi

] 1
1−γ [

PXi −WZ−θ
i

]
−WLZi −Wφ. (A.1)
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The firm maximizes (8) subject to (A.1) and (6)-(7), using PXi and LZi as control variables,

firm-specific knowledge Zi as the state variable, taking public knowledge K as given. The

current-value Hamiltonian is

Lx
i ≡ ΠXi =

[
γPY H

αLβ
Y

PXi

] 1
1−γ [

PXi −WZ−θ
i

]
−WLZi −Wφ+ λx

i · κKLZi, (A.2)

where λx
i is the dynamic multiplier associated to (6). Since the Hamiltonian is linear in

LZi, we have a bang-bang solution. The necessary conditions for maximization read

1 =
1

1− γ

[
PXi −WZ−θ

i

PXi

]
, (A.3)

λx
i · κK −W � 0 ( < 0 if LZi = 0, = 0 if LZi > 0), (A.4)

(r + δ) · λx
i − λ̇

x
i = θ ·XiWZ−θ−1

i . (A.5)

Condition (A.3) follows from ∂Lx/∂PXi = 0 and yields the standard mark-up rule

PXi =
1

γ
·WZ−θ

i . (A.6)

Condition (A.4) is the Kuhn-Tucker condition for R&D investment: in an interior solution,

the marginal cost of employing labor in vertical R&D activity (W ) equals the marginal

benefit of accumulating knowledge (λx
i κK). Condition (A.5) is the costate equation for

knowledge: with strict equality in (A.4), substitution of both λx
i = W/ (κK) and (A.6) in

(A.5) yields

r + δ = γθ · XiPXi

W
· κK

Zi
+

Ẇ

W
− K̇

K
. (A.7)

Manufacturing sector (incumbents): symmetry. The symmetry of the equilib-

rium is established in detail in Peretto (1998: Proposition 1) and Peretto and Connolly

(2007). Applying the same proof to the present model, the mark-up rule (A.6) is invariant

across varieties and implies the same price PXi, the same quantity Xi, and the same em-

ployment in production LXi for each i ∈ [0, n]. Therefore, we can combine (A.3) and (A.6)

to write each firm’s market share as in expression (9) in the main text. Concerning the

knowledge stock, from (7) and (6), the equilibrium growth rate under symmetry is

K̇/K = Żi/Zi = Ż/Z = κ · LZi, (A.8)

where we can substitute LZ = nLZi to obtain

Ż

Z
= κ · LZ

n
. (A.9)
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Manufacturing sector (entry): derivation of (12). Given a constant death rate of

firms δ, the mass of entrants in each instant equals the gross variation in the mass of firms

ṅ+δn. This implies that total labor employed in entry activities equals LN = LNi (ṅ+ δn),

and equation (10) may be written as

WLN = (ṅ+ δn)ψPXiXi. (A.10)

Rearranging terms, we have
ṅ

n
=

WLN

ψnPXiXi
− δ, (A.11)

where we can substitute (9) to obtain (12).

General equilibrium: derivation of (22). In both regimes of access rights – see the

Hamiltonians (19) and (20) – the household problem yields the necessary conditions

1/C = λaPY , (A.12)

λ̇a = λa (ρ− r) , (A.13)

from which we obtain the standard Keynes-Ramsey rule (22).

General equilibrium: derivation of (23). Time-differentiating (8) yields (23).

General equilibrium: derivation of (24). Combining (9) with (11), we obtain (24).

General equilibrium: derivation of (25). Substituting (A.8) in (A.7) yields

Ż

Z
=

Ẇ

W
+ κθγ2 · PY Y

Wn
− (r + δ) . (A.14)

Setting W = 1 in (A.14) yields equation (25) in the text.

General equilibrium: derivation of (26). Time-differentiating the free entry con-

dition (24), we obtain

V̇i

Vi
=

ṖY

PY
+

Ẏ

Y
− ṅ

n
. (A.15)

Substituting (A.15) in (23) to eliminate V̇i/Vi yields

r + δ +
ṅ

n
=

ṖY

PY
+

Ẏ

Y
+

ΠXi

Vi
(A.16)

where, because C = Y , we can use the Keynes-Ramsey rule (22) to obtain

ṅ

n
=

ΠXi

Vi
− ρ− δ. (A.17)

Substituting (A.6) and (A.9) in the definition of profits ΠXi, we have

ΠXi = γ (1− γ) · PY Y

n
−Wφ−W

1

κ

Ż

Z
. (A.18)
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Substituting (A.18) in (A.17), and using (24) to eliminate Vi, we have

ṅ

n
=

1− γ

ψ
−W

n

ψγPY Y
·
[
φ+

1

κ

Ż

Z

]
− ρ− δ,

which reduces to (26) for W = 1.

General equilibrium: derivation of (27). Substituting A = ψγ ·PY Y from (24), as

well as Y = C, in the wealth constraint (18), we obtain

ṖY

PY
+

Ẏ

Y
= r +

L− y

ψγ · y +
ΠS

ψγ · y . (A.19)

The Keynes-Ramsey rule (22) then yields

y (1− ψγρ) = L+ΠS , (A.20)

which yields (27) in the text.

Equilibrium under open access: derivation of (28) and (29). Under open access,

normalizing W ≡ 1 and recalling expression (18), the Hamiltonian (19) reads

Loa ≡ logCoa + λoa
a · [roaAoa + L− P oa

Y Coa + (P oa
H BSoa − 1) · Loa

H ] , (A.21)

where Coa and Loa
H are control variables and Apr is the only state variable. The necessary

conditions for maximization are:

1/Coa = λoa
a P oa

Y ; (A.22)

P oa
H BSoa = 1; (A.23)

λ̇
oa
a = λoa

a · (ρ− roa) . (A.24)

From (A.23), we have P oa
H BSoa = 1 =⇒ Πoa

S = 0, which is expression (28) in the text.

Substituting (28) in (27), we have

P oa
Y Y oa = L (1− ψγρ)−1 , (A.25)

which, substituted into the Keynes-Ramsey rule (22), yields roa = ρ.

Equilibrium under open access: proof of Proposition 1. Combining (28) with

(3), we obtain (30). Substituting (30) into (13), we obtain the differential equation (31)

which converges to the unique steady state

lim
t→∞Soa (t) =

(
S̄/η
) · (η − αBL

1− ψγρ

)
.
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Imposing the non-negativity restriction on physical quantities Soa � 0 determines the crit-

ical threshold reported in (31).

Equilibrium under open access: proof of Proposition 2. As noted in the main

text, Proposition 2 assumes that innovation activities are operative in each instant: that is,

the economy uses positive amounts of labor in vertical R&D and entry activities (LZ > 0

and LX > 0) implying positive rates of public knowledge growth (Ż (t) > 0) and of gross

entry ( ṅ(t)n(t)+δ > 0). A detailed analysis of the implied restrictions on parameters is reported

at the end of this Appendix. Expression (33) is obtained by substituting y = yoa and roa = ρ

from (29) into equation (25). Substituting (33) into (26) yields (34), which is dynamically

stable around the unique positive steady state noa
ss ≡ limt→∞ noa (t) = ñoa.

Equilibrium under Full Property Rights: the Hotelling rule. Under full prop-

erty rights, normalizing W ≡ 1 and recalling expression (18), the Hamiltonian (20) reads

Lpr ≡ logCpr + λpr
a ·
[
rprApr + L− P pr

Y Cpr +Πpr
S

]
+ λpr

s · Ṡpr,

that is,

Lpr ≡ logCpr + λpr
a ·
[
rprApr + L− P pr

Y Cpr +Πpr
S

(
Spr, Lpr

H

)]
+

+λpr
s ·
[
G (Spr)−Hpr

(
Spr, Lpr

H

)]
, (A.26)

where Cpr and Lpr
H are the control variables, Apr and Spr are the state variables, and the

functions

ΠS

(
Spr, Lpr

H

) ≡ (
P pr
H BSpr − 1

) · Lpr
H , (A.27)

G (Spr) ≡ ηSpr · [1− (Spr/S̄
)]

, (A.28)

H
(
Spr, Lpr

H

) ≡ BLpr
HSpr, (A.29)

directly follow from definitions (16), (14) and (15). The necessary conditions for maximiza-

tion are:

1/Cpr = λpr
a P pr

Y ; (A.30)

∂ΠS

(
Spr, Lpr

H

)
∂Lpr

H

=
λpr
s

λpr
a

· ∂H
(
Spr, Lpr

H

)
∂Lpr

H

; (A.31)

λ̇
pr
a

λpr
a

= ρ− rpr; (A.32)

λ̇
pr
s

λpr
s

= ρ− ∂G (Spr)

∂Spr
+

∂H
(
Spr, Lpr

H

)
∂Spr

− λpr
a

λpr
s

∂ΠS

(
Spr, Lpr

H

)
∂Spr

; (A.33)
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along with the transversality conditions

lim
t→∞λpr

a (t)Apr (t) e−ρt = 0, (A.34)

lim
t→∞λpr

s (t)Spr (t) e−ρt = 0. (A.35)

Henceforth, we denote the marginal net rent from employing an additional unit of labor in

harvesting as

Π′
S ≡

∂ΠS

(
Spr, Lpr

H

)
∂Lpr

H

=
(
P pr
H BSpr − 1

)
=

ΠS

(
Spr, Lpr

H

)
Lpr
H

. (A.36)

Time-differentiating (A.31), we obtain

λ̇
pr
s

λpr
s

− λ̇
pr
a

λpr
a

=
Π̇′

S

Π′
S

− Ṡpr

Spr
,

where we can substitute (A.32) and (A.33) to obtain

Π̇′
S

Π′
S

= rpr −
{
λpr
a

λpr
s

· ∂ΠS

(
Spr, Lpr

H

)
∂Spr

+

[
∂G (Spr)

∂Spr
− ∂H

(
Spr, Lpr

H

)
∂Spr

]
− Ṡpr

Spr

}
. (A.37)

Equation (A.37) is a generalized Hotelling rule: an efficient harvesting plan requires that

the growth rate of the marginal net rents from resource harvesting equal the interest rate

minus the term in curly brackets – which represents the shadow value of all the positive

feedback effects that a marginal increase in the resource stock induces on current rents

and on future consumption benefits from resource use. If the resource were non-renewable

(η = 0 implies that ∂G/∂S = 0) and harvesting costs were independent of the resource

stock (∂H/∂S = 0), the term in curly brackets would be zero: in that case, equation (A.37)

would collapse to the basic Hotelling’s (1931) rule Π̇′
S/Π

′
S = ṖH/PH = rpr.

Equilibrium under Full Property Rights: derivation of (36)-(37). From (A.27)

and (A.29), the first order condition (A.31) can be re-written as

λpr
a ·
(
P pr
H BSpr − 1

)
= λpr

s ·BSpr,

where we can substitute λpr
a = 1/

(
P pr
Y Y pr

)
from (A.30), and multiply both sides by Lpr

H ,

to obtain (
P pr
H BSpr − 1

) · Lpr
H = λpr

s ·BSprLpr
H · ypr, (A.38)

which yields expression (37) in the main text. The left-hand side of (A.38) equals current

net rents from harvesting, Πpr
S . Therefore, substituting Hpr = BSprLpr

H from (15) into

(A.38), we obtain equation (36) in the text.
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Equilibrium under Full Property Rights: derivation of (38). From (27), we can

rewrite the relation between expenditure and resource rents as

Πpr
S (t) = ypr (t) (1− ρψγ)− L. (A.39)

Substituting Πpr
S in (A.39) by means of (36), we obtain

ypr (t) =
L

1− ρψγ − λpr
s (t)Hpr (t)

, (A.40)

that is equation (38) in the text. For future reference, notice that – using the resource

demand schedule (3) – resource rents can also be written as

Πj
S (t) = P j

H (t)Hj (t)− Lj
H (t) = αyj (t)− Lj

H (t) . (A.41)

Combining (A.39) with (A.41) under full property rights, it follows that

L− Lpr
H (t) = (1− ρψγ − α) · ypr (t) . (A.42)

In any equilibrium with positive final output, we must have L > Lpr
H (t) and, consequently,

the parameter restriction

1− ρψγ − α > 0. (A.43)

Equilibrium under Full Property Rights: proof of Proposition 3. The proof

hinges on three steps: (i) the derivation of the dynamic system (40)-(41); (ii) the proof of

saddle-point stability; (iii) the proof of results (42).

(i) Dynamic system First, we derive equation (40). From (A.28) and (A.29), we have

∂G (Spr)

∂Spr
− ∂H

(
Spr, Lpr

H

)
∂Spr

= η − 2
(
η/S̄
) · (Spr)−BLpr

H . (A.44)

From (A.30) and (A.27), we respectively have

λpr
a = 1/ypr and

∂ΠS

(
Spr, Lpr

H

)
∂Spr

= P pr
H BLpr

H . (A.45)

Substituting (A.44) and (A.45) into (A.33), as well as Hpr/Spr = BLpr
H from (15), we

have
λ̇
pr
s

λpr
s

= ρ− η + 2
(
η/S̄
) · (Spr) +

Hpr

Spr
− 1

λpr
s

· P
pr
H Hpr

yprSpr
. (A.46)

Substituting P pr
H by means of (3), we obtain

λ̇
pr
s

λpr
s

= ρ− η + 2
(
η/S̄
)
Spr +

Hpr

Spr
− 1

λpr
s

· α

Spr
. (A.47)
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From (13) and (15), the growth rate of the resource stock is

Ṡpr

Spr
= η − (η/S̄)Spr − Hpr

Spr
. (A.48)

Equations (A.47)-(A.48) imply

λ̇
pr
s

λpr
s

+
Ṡpr

Spr
= ρ+

(
η/S̄
)
Spr − α

λpr
s Spr

. (A.49)

Equation (A.49) can be transformed into a differential equation governing the shadow

value of the resource stock, m ≡ λpr
s Spr, which depends on the resource stock:

ṁ

m
= ρ+

(
η/S̄
)
Spr (t)− α

m
, (A.50)

which is equation (40) in the text. We now derive (41). From (A.38), we have

P pr
H BSpr = 1 + λpr

s Spr ·Bypr. (A.51)

Substituting P pr
H = αypr/Hpr from (3) into (A.51), and using m ≡ λpr

s Spr, we have

Spr

Hpr
=

1

αBypr
+

m

α
. (A.52)

Using (A.40) to substitute ypr in (A.52), we obtain

Spr

Hpr
=

1− ρψγ −m · Hpr

Spr

αBL
+

m

α
,

which generates the second-order static equation

αBL

(
Spr

Hpr

)2

− (1− ρψγ +BLm) · S
pr

Hpr
+m = 0. (A.53)

Equation (A.53) determines, at each point in time, the equilibrium stock-flow ratio

Spr/Hpr for given m. The roots of (A.53) are

Spr

Hpr
=

1− ρψγ +BLm±
√
(1− ρψγ +BLm)2 − 4αBLm

2αBL
. (A.54)

Notice that, in order to ensure a real value for Spr/Hpr, the term under the square

root is constrained to be strictly positive:

(1− ρψγ +BL ·m)2 − 4αBL ·m =

(1− ρψγ)2 + 2 (1− ρψγ − 4α)BLm+ (BLm)2 > 0. (A.55)
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In order to isolate the admissible root in (A.54), notice that Hpr = BLpr
HSpr from

(15) and Lpr
H < L from the requirement of strictly positive labor (see (A.43) above)

imply that Hpr < BLSpr must hold in each instant in an equilibrium with positive

harvesting and positive final production. Imposing this inequality in (A.54), we have

BLSpr

Hpr
=

1− ρψγ +BLm±
√
(1− ρψγ +BLm)2 − 4αBLm

2α
> 1. (A.56)

The above inequality can only be satisfied by the solution exhibiting the plus sign in

front of the square root.10 Inverting the stock-flow ratio in (A.56), we can thus write

Hpr

Spr
= Λ(m) (A.57)

in each instant t in which there is an equilibrium with positive production, where

Λ (m) ≡ 2αBL

1− ρψγ +BL ·m+
√
(1− ρψγ +BL ·m)2 − 4αBL ·m

. (A.58)

Notice that, given the restriction (A.55), definition (A.58) implies

Λ′ (m) ≡ ∂Λ (m)

∂m
< 0. (A.59)

These results allow us to complete the autonomous two-by-two system: equation (40)

is (A.50) above; substituting result (A.57) into (A.48), we obtain (41).

(ii) Saddle-point stability The steady-state loci of system (40)-(41) are given by:

ṁ (t) = 0→ Spr (t) =
S̄

η
·
(

α

m (t)
− ρ

)
; (A.60)

Ṡpr (t) = 0→ Spr (t) =
S̄

η
· [η − Λ (m (t))] . (A.61)

The steady state (mss, S
pr
ss ) is therefore characterized by:

Spr
ss =

S̄

η
·
(

α

mss
− ρ

)
; (A.62)

Λ (mss) = η − (η/S̄)Spr
ss . (A.63)

Therefore, there exists a steady state with positive resource stock if and only if pa-

rameters are such that

mss <
α

ρ
and Λ (mss) < η. (A.64)

10The proof of this statement is by contradiction: picking the solution with the minus sign, inequality

(A.56) would imply 4α {α− (1− ρψγ)} > 0, which is not possible because we would violate the parameter

restriction (A.43).
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Linearizing system (40)-(41) around the steady-state (mss, S
pr
ss ), we have⎛

⎜⎜⎝
ṁ/m

Ṡpr/Spr

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

ς1 ≡
(
α/m2

ss

)
ς2 ≡

(
η/S̄
)

ς3 ≡ −Λ′ (mss) ς4 ≡ −
(
η/S̄
)
⎞
⎟⎟⎠
⎛
⎜⎜⎝

m−mss

Spr − Spr
ss

⎞
⎟⎟⎠ ,

where (recalling result (A.59) above), the coefficients have definite signs: ς1 > 0,

ς2 > 0, ς3 > 0, ς4 < 0. These signs imply (ς4ς1 − ς2ς3) < 0. As a consequence, the

characteristic roots of the linearized system, given by the eigenvalues

(ς1 + ς4)±
√

(ς1 + ς4)
2 − 4 (ς4ς1 − ς2ς3)

2
,

are necessarily real and of opposite sign. The steady state (mss, S
pr
ss ) thus displays

saddle-point stability: given the initial state Spr (0) = S0, there is a unique trajectory

determined by the jump variable m (0) driving the system towards (mss, S
pr
ss ). Ruling

out explosive paths by standard arguments,11 the saddle-path determines a unique

equilibrium path which converges to a positive stationary level of the resource stock

Spr
ss > 0 provided that the restrictions (A.64) are satisfied.

(iii) Steady states Results (42) follow from the condition for positive steady-state re-

source stock implied by (41). If the parameters are such that η > Λ (mss), restric-

tions (A.64) are satisfied and saddle-point stability implies that (m (t) , Spr (t)) con-

verge to the steady state (mss, S
pr
ss ) with Spr

ss > 0 determined by (A.62)-(A.63): see

Figure 1, left graph. If parameters imply η � Λ (mss), instead, the steady state

(A.62)-(A.63) is not feasible in view of restrictions (A.64) and the dynamics gener-

ated by the loci (A.60)-(A.61) imply that (m (t) , Spr (t)) converge to a steady state

with limt→∞ Spr (t) = 0 and limt→∞m (t) = α/ρ, as shown in Figure 1, right graph.

Equilibrium under Full Property Rights: proof of Proposition 4. As noted

in the main text, Proposition 4 assumes that innovation activities are operative in each

instant (i.e., Ż (t) > 0 and ṅ(t)
n(t) + δ > 0: see the further details reported at the end of

this Appendix). The equilibrium growth rate of Zpr follows directly from (25), and can be

substituted into (26) to obtain

ṅpr (t)

npr (t)
=

1− γ − θγ − ψ (ρ+ δ)

ψ
− 1

ψ
· npr (t)

γypr (t)
·
[
φ− 1

κ
· (rpr (t) + δ)

]
. (A.65)

11Explosive paths would violate either the transversality condition limt→∞m (t) e−ρt = 0 appearing in

(A.35) or the intertemporal resource constraint (13).

37



Defining ν ≡ 1−γ−θγ−ψ(ρ+δ)
ψ and ñpr (t) ≡ γypr (t)· 1−γ−θγ−ψ(ρ+δ)

φ− 1
κ
·(rpr(t)+δ)

, expression (A.65) reduces

to
ṅpr (t)

npr (t)
= ν ·

[
1− npr (t)

ñpr (t)

]
. (A.66)

Having established that limt→∞ ypr (t) = yprss and limt→∞ rpr (t) = ρ in (43), the carrying

capacity ñpr (t) is asymptotically constant,

lim
t→∞ ñpr (t) = γyprss ·

1− γ − θγ − ψ (ρ+ δ)

φ− (ρ+ δ) · κ−1
,

implying that equation (A.66) is dynamically stable around the steady state limt→∞ npr (t) =

limt→∞ ñpr (t).

Long-Run Equilibria: proof of Proposition 5. The proof hinges on two steps: (a)

proving that η̄oa > η̄pr, and (b) comparing the three subcases (i)-(iii).

(a) Proof that η̄oa > η̄pr. From (32) and (42), the difference between the critical levels

η̄oa − η̄pr = αBL
1−ψγρ − Λ (mss). Substituting the definition of Λ (mss) from the third

expression in (42), we have

η̄oa−η̄pr ≡ αBL

1− ψγρ
·
⎡
⎣1− 2 (1− ψγρ)

1− ψγρ+BLmss +
√
(1− ρψγ +BLmss)

2 − 4αBLmss

⎤
⎦ .

The term in square brackets is strictly positive if and only if 1−ρψγ > α, a condition

that surely holds given the restriction (A.43).

(b) Proof of subcases (i)-(iii) Considering subcase (i), suppose that η̄pr < η̄oa < η.

Then, both regimes yield positive stock in the long run with the following property.

From (32) and (42),

Soa
ss − Spr

ss =
S̄

η
·
[
Λ (mss)− αBL

1− ψγρ

]
=

S̄

η
· (η̄pr − η̄oa) < 0,

because the last term is strictly negative (η̄oa > η̄pr). Hence, Spr
ss > Soa

ss . Under

full property rights, positive harvesting in the long run implies a positive asymptotic

shadow value of the resource stock: mss > 0 and Λ (mss) > 0. Consequently, (29)

and (43) yield yprss > yoa. Concerning the mass of firms, from (35) and (44), we have
noa
ss

npr
ss

= yoa

yprss
, which implies npr

ss > noa
ss . Considering subcase (ii), suppose that η̄pr < η <

η̄oa. Then, we have Spr
ss > 0 from (42) and Soa

ss = 0 from (32); since the production

function (1) implies that the resource is essential, resource exhaustion under open

access yields zero production/consumption under open access. Considering subcase
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(iii), suppose that η < η̄pr < η̄oa. Then, we have Spr
ss = 0 from (42) and Soa

ss = 0 from

(32), that imply zero production/consumption under both regimes.

Equilibrium growth rates: derivation of (45). Symmetry in the manufacturing

sector implies that final output (1) and the market share of intermediates (9) can be re-

written as Y = HαLY
βnXγ andXi = γ PY Y

nPXi
, respectively. Combining these two expressions

to eliminate X, and using the profit-maximizing conditions of the final sector (2) and (3)

to eliminate H and LY , we have

Y = HαLY
βn1−γ

(
γ
PY Y

PXi

)γ

=

(
αPY Y

PH

)α(βPY Y

W

)β

· n1−γ

(
γPY Y

PX

)γ

.

Observing that Y drops out, and solving the above expression for PY , we obtain

PY =
1

ααββγγ
· Pα

H ·W β · n−1+γ · P γ
X .

Observing that C = Y = y/PY , the above expression yields

logC = logααββγγ + log y − logPα
H + log n1−γ − log

(
W βP γ

X

)
.

Using the the pricing rule (A.6) to eliminate PX , the above expression becomes

logC = logααββγγ + log y − logPα
H + log n1−γ − log

[
W β ·

(
1

γ
·WZ−θ

i

)γ]
,

where, setting W = 1 and rearranging terms, we have

logC = logααββγ2γ + log y − logPα
H + log

(
n1−γZθγ

)
.

Defining ā ≡ ααββγ2γ , the above expression yields (45) in the text.

Equilibrium growth rates: derivation of (46). Time-differentiating (45) and sub-

stituting ẏ/y by means of the Keynes-Ramsey rule (22), we obtain (46).

Equilibrium growth rates: proof of Proposition 6. Propositions 2 and 4 imply

the result of identical firm size in the long run (47). Substituting (47) in (25), we obtain

identical asymptotic rates of vertical innovation, limt→∞
Ż(t)
Z(t) = κγθ γyss

nss
− (ρ+ δ). Letting

t→∞ in expression (46), we obtain limt→∞ g (t) = limt→∞ γθ Ż(t)
Z(t) and therefore (48).

Resource price: proof of Proposition 7. From (28) and (37), the resource prices

under the two regimes read

P oa
H =

1

BSoa
and P pr

H =
1 +Bmypr

BSpr
.
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For a given level of the resource stock S (t) = S̃, the above expressions imply P oa
H |S=S̃ <

P pr
H

∣∣
S=S̃

because Bm (t) ypr (t) > 0. In the long-run equilibria of the two regimes, resource

prices equal

lim
t→∞P oa

H (t) =
1

BSoa
ss

and lim
t→∞P pr

H (t) =
1 +Bmssy

pr
ss

BSpr
ss

.

Consequently, the sign of the gap limt→∞ P oa
H (t) − limt→∞ P pr

H (t) is determined by the

inequality 1
BSoa

ss
≷ 1+Bmssy

pr
ss

BSpr
ss

, that is,

Spr
ss

Soa
ss

≷ 1 +Bmssy
pr
ss . (A.67)

Substituting Soa
ss and Spr

ss by (32) and (42), and eliminating yprss by (43), the above expression

reduces to
η − Λ (mss)

η − αBL
1−ψγρ

≷ 1 +
BmssL

1− ψγρ−mssΛ (mss)
. (A.68)

The sign is generally ambiguous because, defining Υ ≡ 1 − ψγρ and Δ ≡ Λ (mss), we can

rewrite (A.68) as

(Υ−mssΔ)︸ ︷︷ ︸
positive

(αBL−ΔΥ)︸ ︷︷ ︸
positive

− (mssBL)︸ ︷︷ ︸
positive

(ηΥ− αBL)︸ ︷︷ ︸
positive

≷ 0.

Regime switch: proof Proposition 8. Rewrite (45) as

logC (t) = log ā+ log y (t)− α logPH (t) + log T (t) , (A.69)

where we have defined total factor productivity as

TFP = T (t) ≡ (n (t))1−γ (Z (t))θγ . (A.70)

Starting from (A.69)-(A.70), the derivation of expression (49) involves three intermediate

steps: deriving explicit expressions for (i) TFP, (ii) the resource price, and (iii) present-value

utility, under the regime of open access.

(i) Total factor productivity For future reference, we denote the rate of vertical inno-

vation by Ẑ (t) ≡ Ż (t) /Z (t), its asymptotic value by Ẑss ≡ limt→∞ Ẑ (t), and the

long-run growth rate of the economy by gss ≡ limt→∞ g (t) = θγẐ (t). Under open

access, the TFP term can be re-expressed as follows. By definition,

log T oa (t) = θγ logZ0 + θγ

∫ t

0
Ẑoa (s) ds+ (1− γ) log n0 + (1− γ) log

(
noa (t)

n0

)
,
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where we can add and subtract Ẑss from Ẑ (t), obtaining

log T (t) = log
(
Zθγ
0 n1−γ

0

)
+ gss · t+ θγ

∫ t

0

[
Ẑ (s)− Ẑss

]
ds+ (1− γ) log

(
n (t)

n0

)
.

(A.71)

Denoting xj (t) ≡ γyj (t) /nj (t), and recalling that yoa (t) = yoa is constant over time,

we have ṅoa/noa = −ẋoa/xoa. Therefore, the differential equation for noa in (34)

yields ẋoa = ν (xoass − xoa), the solution of which is

xoa (t) = xoa0 e−νt + xoass
(
1− e−νt

)
. (A.72)

Result (A.72) implies that

θγ

∫ t

0

(
Ẑ (s)− Ẑ∗

)
ds = κ (θγ)2

∫ t

0
(x (t)− xss) ds

=
κ (θγ)2 xss

ν

(
x0
xss

− 1

)(
1− e−νt

)
. (A.73)

Also, from the solution (34), we have

n (t)

n0
=

1 +
(
nss
n0
− 1
)

1 +
(
nss
n0
− 1
)
e−νt

,

where we can take logarithms and approximate the resulting terms to obtain

log

(
n (s)

n0

)
=

(
nss

n0
− 1

)(
1− e−νt

)
. (A.74)

Observing that nss
n0
− 1 = x0

xss
− 1, results (A.73) and (A.74) yield

log T (t) = log
(
Zθγ
0 n1−γ

0

)
+ gss · t+ ϕ

(
nss

n0
− 1

)(
1− e−νt

)
, (A.75)

where we have defined ϕ ≡ κ(θγ)2xss

ν + (1− γ).

(ii) Resource price Since open access implies a constant harvesting rate, the resource

stock follows the logistic process

Ṡoa (t)

Soa (t)
= ω ·

(
1− Soa (t)

Soa
ss

)
, (A.76)

where, denoting by LHss = limt→∞ LH (t), we have defined the constants ω ≡ η −
BLHss and Soa

ss ≡ S̄ · η−BLHss
η . The solution of (A.76) is

S (t)

S0
=

1 +
(
Sss
S0
− 1
)

1 +
(
Sss
S0
− 1
)
e−ωt

,
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where we can take logarithms and approximate the resulting terms to obtain log S(t)
S0

=(
Sss
S0
− 1
) (

1− e−ωt
)
. Since (28) implies − log

P oa
H (t)

P oa
H (0) = log S(t)

S0
, we have

− log
P oa
H (t)

P oa
H (0)

=

(
Sss

S0
− 1

)(
1− e−ωt

)
. (A.77)

(iii) present-value utility Under open access, expression (A.69) reads

logCoa (t) = log ā+ log

(
yoa(

P oa
H (0)

)α
)
− α log

(
P oa
H (t)

P oa
H (0)

)
+ log T oa (t) . (A.78)

Without loss of generality, let us normalize log ā+log
(
Zθγ
0 n1−γ

0

)
≡ 0.12 Substituting

(A.75) and (A.77) in (A.78), we obtain

logCoa (t) = log yoa − α logP oa
H (0) + gss · t

+α

(
Soa
ss

S0
− 1

)(
1− e−ωt

)
+ ϕ

(
noa
ss

n0
− 1

)(
1− e−νt

)
. (A.79)

Substituting (A.79) in the welfare functional (17), and integrating, we obtain

Uoa =
1

ρ

[
log yoa − α logP oa

H (0) +
gss
ρ

+
α

ρ+ ω

(
Soa
ss

S0
− 1

)
+

ϕ

ρ+ ν

(
noa
ss

n0
− 1

)]
,

(A.80)

which is the level of welfare associated to the transition dynamics under open access

given generic initial conditions S0, Z0, n0.

On the basis of these results, we consider the initial conditions at time zero as determined

by the steady state of the full property rights regime. In particular, given the general

expression (A.69), the baseline consumption path that the economy would follow if full

property rights were maintained after time zero is given by

logCpr (t) = log ā+ log yprss − α logP pr
H,ss + log T pr (t) , (A.81)

where TFP grows at the asymptotic rate gss in each instant after time zero. Consequently,

the baseline present-value welfare generated by the baseline consumption path (A.81) equals

Upr
ss =

1

ρ

[
log yprss − α log

(
P pr
H

)
ss
+

gss
ρ

]
. (A.82)

Taking the difference between (A.80) and (A.82), we obtain expression (49).

12This normalization only simplifies the notation and does not affect the results.
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Further details: operativeness of innovation activities. Both Proposition 2 and

Proposition 4 assume that innovation activities are operative in each instant – that is,
Ż(t)
Z(t) > 0 and ṅ(t)

n(t) + δ > 0. The parameter restrictions that guarantee this outcome can be

derived as follows. For simplicity, consider the open access regime. From (29), substitute

yoa = yoa and roa = ρ into equation (25): the non-negativity constraint on firm-specific

R&D implies

Żoa (t)

Zoa (t)
=

{
κθγ · γyoa

noa(t) − (ρ+ δ) if noa (t) < n̄oa ≡ κθγ2

ρ+δ y
oa

0 if noa (t) � n̄oa
. (A.83)

Substituting this result in (26), we obtain

ṅoa (t)

noa (t)
+ δ =

⎧⎨
⎩

1−γ−ψρ−θγ
ψ − φ−(ρ+δ)·κ−1

ψγL(1−ψγρ)−1 · noa (t) if noa (t) < n̄oa

1−γ−ψρ
ψ − φ

ψγL(1−ψγρ)−1 · noa (t) if noa (t) � n̄oa
. (A.84)

Imposing the non-negativity constraint on employment in entry, LN , expression (A.84)

implies two threshold levels on the mass of firms. First, when Żoa (t) > 0, there exists

noa
T1 ≡ γL(1−γ−ψρ−θγ)

(1−ψγρ)[φ−(ρ+δ)κ−1]
, such that

noa (t) < n̄oa and
ṅoa (t)

noa (t)
+ δ =

⎧⎨
⎩

1−γ−ψρ−θγ
ψ − φ−(ρ+δ)·κ−1

ψγL(1−ψγρ)−1 · noa (t) if noa (t) < noa
T1

0 if noa (t) � noa
T1

.

(A.85)

Second, when Żoa (t) = 0, there exists noa
T2 ≡ γ(1−γ−ψρ)L

φ(1−ψγρ) , such that

noa (t) � n̄oa and
ṅoa (t)

noa (t)
+ δ =

⎧⎨
⎩

1−γ−ψρ
ψ − φ

ψγL(1−ψγρ)−1 · noa (t) if noa (t) < noa
T2

0 if noa (t) � noa
T2

.

(A.86)

It follows from (A.85) and (A.86) that a sufficient condition for positive gross entry is

noa (t) < min {noa
T1, n

oa
T2} . (A.87)

Provided that (A.87) holds, the mass of firms obeys the logistic process described in (A.84).

Proposition 2 thus assumes implicitly that condition (A.87) is satisfied. This assumption

is without loss of generality: because the logistic process (34) always converges to a finite

steady state, satisfying (A.87) is equivalent to imposing restrictions on the exogenous pa-

rameters appearing in (A.84) and on the initial condition noa (0). The alternative cases in

which parameters yield no horizontal R&D are a less interesting special case because the

model collapses to an economy with vertical R&D only.
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