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I Abstract 

In order for hydrogen to be utilised as an energy vector, precious metals such as 

platinum are often employed as electrocatalysts, to enable the efficient conversion of hydrogen 

into electrical energy. However, the low abundance and high cost of such metals limits their 

economic viability. 

Frustrated Lewis pairs (FLPs) are capable of heterolytically cleaving hydrogen, and have 

found application in hydrogenation chemistry. In this thesis, the hydrogen-activating ability of 

FLPs is exploited for the development of new, metal-free electrocatalysts for hydrogen oxidation. 

In essence, this approach combines FLP hydrogen activation with the electrochemical oxidation 

of the resulting borohydride.  

Initially, a fundamental study into the single-electron reduction of the archetypal Lewis 

acid, tris(pentafluorophenyl)borane, was undertaken in low donor strength solvents. This 

allowed pertinent thermodynamic, kinetic and mechanistic information to be obtained. 

The redox chemistry of the archetypal FLP system, tris(pentafluorophenyl)borane/tri-t-

butylphosphine, was then studied for the first time. FLP pre-activation of hydrogen was found 

to decrease the required potential for non-aqueous hydrogen oxidation by 610 mV at 

inexpensive and abundant carbon electrodes. This system was then extended to include 

platinum electrode materials, where strong surface electrocatalytic effects were exhibited. 

The combined electrochemical-frustrated Lewis pair approach was applied to a series of 

carbene-stabilised borenium cations. Their efficacy towards the electrocatalytic oxidation of 

hydrogen was assessed. The borenium cation derived from 9-borabicyclo[3.3.1]nonane 

decreased the required voltage for hydrogen oxidation by 910 mV. This system also exhibited 

improved catalyst recyclability compared with the original tris(pentafluorophenyl)borane 

system. 

Finally, the cyclic voltammetry of two regioisomers of tris[bis(trifluoro-

methyl)phenyl]borane was explored for the first time. Solutions of tris[3,5-

bis(trifluoromethyl)phenyl]borane in the donor solvent tetrahydrofuran were highly effective 

for facile hydrogen cleavage. Replacing the Lewis basic component of conventional FLP systems 

with donor solvents is a new approach to FLP chemistry, and proffers many advantages for 

electrochemical-FLP systems. 
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D  – Diffusion coefficient (cm2 s−1) 

j  – Diffusive flux (mol cm2 s−1) 

d  – Diffusion layer on ordinate x 

φ  – Electrical potential (V) 

A  – Electroactive area (cm2) 

r  – Electroactive radius (cm) 

F  – Faraday constant (96485.3 C mol−1) 

kf  – Forward electrochemical rate constant (m s−1) 

R  – Gas constant (8.314 V C K−1mol−1) 

G  – Gibbs free energy (J mol−1) 

ΔG  – Gibbs free energy change (J mol−1) 

GCE  – Glassy carbon macrodisk working electrode 

E  – Heterogeneous electron transfer (Testa and Reinmuth notation) 

C  – Homogeneous chemical reaction (Testa and Reinmuth notation) 

ct=0  – Initial concentration of the electroactive species (mol L−1) 

i  – Inner-sphere reorganisation energy (J mol−1) 
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𝜕𝑐

𝜕𝑥
  – Local concentration gradient at point x (mol L−1 m−1) 

mT  – Mass transport coefficient 

Emid  – Mid-peak potential (V) 

n  – Number of electrons involved in electrode process 

E  – Experimentally observed reduction potential (V) 

k  – Observed electrochemical rate constant (cm s−1 for a 1st order process) 

OCP  – Open circuit potential 

η  – Overpotential (V) 

o  – Outer-sphere reorganisation energy (J mol−1) 

PEM  – Proton exchange membrane 

ip  – Peak current (A) 

Ep  – Peak potential (V) 

ΔEpp  – Peak-to-peak separation (V) 

[φM−φS]  – Potential difference at a single electrode-solution interface (V) 

𝜕2𝑐

𝜕𝑥2
  – Rate of change in the local concentration gradient 

  – Reorganisation energy (J mol−1) 

kb  – Reverse (oxidative) electrochemical rate constant (m s−1) 

ν  – Scan rate (V s−1) 

λ0  – Solvent reorganisation energy (J mol−1) 

x  – Spatial ordinate for theoretical models of diffusion 

k0  – Standard electrochemical rate constant (cm s−1) 

SHE  – Standard hydrogen electrode (for Cp2Fe0/+, E0 = +0.64 vs SHE) 

E0  – Standard reduction potential (V) 

iss  – Steady-state current at a microdisk electrode 

t  – Time (s) 

Q  – Total charge passed (C) 

ηV  – Viscosity (Pa s) 

With respect to abbreviated words and phrases 

ca  – Circa 

cf.  – Confer 

e.g.  – Exempli gratia 

et al.  – Et alii 
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etc.  – Etcetera 

i.e.  – Id est 

vs  – Versus 

Compound structures 

 

9-BBN = 9-Borabicyclo[3.3.1]nonane 

 

DABCO = 1,4-Diazabicyclo[2.2.2]octane 

 

DFB = 1,2-Difluorobenzene 

 

DME = Dimethoxyethane 

 

[BArF24]− = Kobayashi’s anion, tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate 

 

lut = 2,6-Lutidine 
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THF = Tetrahydrofuran 
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1.1 Hydrogen discovery and production 

Hydrogen is the most abundant element in the universe.[2] In its molecular form, H2 is a 

highly reactive yet non-polluting gas. Whilst, H2 is the main constituent of stars and can be found 

as interstellar gas, on planet Earth it is relatively low in abundance. Despite elemental hydrogen 

accounting for ca 15% of the atoms in the Earth’s crust and oceans,[2,3] the majority of this is 

locked up in molecules such as water, CH4 and other organic materials. 

H2 is believed to have first been produced towards the end of the 15th century by early 

researchers who dissolved metals in acids.[4] Despite this, it wasn’t until the 18th century that H2 

was finally isolated and identified by the English nobleman, H. Cavendish.[5] Cavendish found 

that a common gas (described as “inflammable air” and known today to be H2) could be 

produced from the combination of different metals and different acids. 

Today, H2 is mainly produced on an industrial scale from natural gas (where CH4 is the 

main component) or oil-refinery feedstocks using steam reforming.[6] A mixture of the 

hydrocarbon feedstock (e.g. CH4) and steam is subjected to high temperatures and pressure 

(typically 850°C at 25 atm) in the presence of a metal catalyst (such as nickel) to generate a 

mixture of CO and H2, known as synthesis gas or “syngas” (Scheme 1). This process is highly 

endothermic (ΔH0 = +206.2 kJ mol−1). Syngas is often utilised for the industrial-scale production 

of methanol and other useful hydrocarbons in the Fischer-Tropsch process.[7] 

 

 

Scheme 1 Steam reforming of CH4 to generate syngas (ΔH0 = +206.2 kJ mol−1). 

 

An additional equivalent of H2 can be recovered from the exothermic water-gas shift 

reaction shown in Scheme 2. 

 

 

Scheme 2 The water-gas shift reaction (ΔH0 = −41.1 kJ mol−1). 

 

Steam reforming is a highly energy intensive process that uses a non-renewable 

feedstock, requires metal catalysts, and generates a greenhouse gas (CO2). In addition to this, 

the overall efficiency of the process on an industrial scale is rarely above 80%.[6] As far as this 

process is concerned, there are no economic or environmental advantages to using H2 as a fuel 

for energy. The main source of H2 is neither sustainable nor environmentally clean. 
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Thankfully, huge efforts have been invested into the development of new, renewable 

technologies that allow the sustainable and carbon-neutral production of H2. Sustainable 

methods of H2 production employ either water or biomass as feedstocks.[8] 

A significant energetic driving force is required in order to split water due to the intrinsic 

strength of the H-O bonds (bond dissociation energy, BDE = 497.1 kJ mol−1)[3], however, a 

number of technologies exist.[8,9] These include electrolysis,[10] photocatalysis (artificial 

photosynthesis),[11,12] and thermochemical reactions that are driven using concentrated solar 

energy.[13] 

Whilst the electrolysis of water is capable of generating ultra-pure H2 and has been 

proven on an industrial scale, its widespread adoption has been limited by the cost of electricity 

vs hydrocarbon feedstocks.[4] The half-cell equations shown in Scheme 3 describe the splitting 

of deionised water at the anode and cathode of proton exchange membrane (PEM) 

electrolysers.[8,10] 

 

 

 

Scheme 3 The electrolysis of deionised water at PEM electrolysers (E0
Cell = −1.23 V).[14] 

 

H2 can be produced from biomass using a variety of thermochemical (pyrolysis and 

gasification) and biological (biophotolysis, fermentation and the biological water-gas shift 

reaction) processes.[15,16] 

Ultimately, the energy that is required to drive all of these aforementioned (water 

splitting or biomass conversion) processes can be harnessed from the solar energy of the Sun 

(see Figure 1).[17] However, for electrochemical processes the required electricity may be 

generated from other renewable resources including wind, waves, tidal currents and 

geothermal energy. 
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Figure 1 Renewable methods of H2 production (reproduced from reference [8]). 

 

1.2 The hydrogen economy 

As the demand for sustainable and carbon-neutral sources of electricity increases, there 

is a need for new technologies that allow the efficient storage and utilization of energy.[18] H2 is 

attractive as an energy vector. Energy from renewable sources may be stored in its chemical 

bond (BDE = 435.8 kJ mol−1),[3] and when there is a high energy demand, this chemical energy 

may be converted back into electricity. This simple concept is the basis of a “hydrogen 

economy”.[4,9] 

Contrary to popular belief, one must emphasise the fact that H2 is not a true energy 

source. In contrast to natural gas or crude oil, H2 does not freely exist in abundance (on Earth at 

least). Much like electricity, H2 must be manufactured by man; it is therefore not a primary 

energy source. 

The foundation for a successful hydrogen economy is a readily available, cheap, carbon-

neutral and renewable primary energy source i.e. H2O or biomass, from which H2 would be 

sustainably produced. As a storage medium for energy, H2 would be stored as a pressurised gas, 

or more safely in H2-absorbing materials, and other fuels such as MeOH. Safety issues aside for 

now, H2 could be transported in pipelines or tankers over large distances. 
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In this hydrogen economy, H2 could be used to fuel internal-combustion engines for 

transportation. As opposed to conventional gasoline and diesel engines (which also emit 

carbonaceous and inorganic particulates, CO, CO2, and nitrogen oxides) the exhaust gases from 

the combustion of H2 would mainly constitute H2O, although a small quantity of nitrogen oxides 

would be inevitably generated due to the high operating temperatures. Better still, electricity 

(for transportation and backup/portable power) can be generated from H2 in a safer, cleaner, 

and more efficient approach using fuel cell technology.[4,19] 

1.3 Hydrogen fuel cells 

H2 fuel cells are electrochemical engines that effectively perform the combustion 

process (reaction with O2) in a controlled and flameless manner. This produces electricity along 

with pure H2O and some heat.[4] As opposed to internal-combustion engines, fuel cells do not 

emit nitrogen oxides, have no moving parts and have the potential for greater efficiency. To 

generate electricity from the combustion of H2 (ΔH = −286 kJ mol−1) the heat produced is used 

to produce steam and turn a turbine (converting heat to mechanical energy) which would drive 

a generator (converting mechanical energy to electricity). Owing to the difficulty in transferring 

heat efficiently, this is an extremely inefficient process. In contrast, fuel cells directly convert 

chemical energy into electrical energy with a maximum efficiency of 83%.[19] 

Batteries (galvanic/voltaic cells) and fuel cells convert chemical energy into electrical 

energy via redox reactions at the anode and cathode.[18] They are the opposite to electrolysers, 

which convert electrical energy into chemical energy (fuel) e.g. the production of H2 from the 

electrolysis of H2O, as described by the reaction in Scheme 3. Batteries differ from fuel cells in 

that the electrodes participate in the spontaneous redox reactions, and that the system is closed 

from the environment. In fuel cells, the electrodes simply function as charge-transfer media and 

the device is driven by a continuous supply of fuel for the redox reaction, which is delivered from 

outside the cell. 

The processes involved in the operation of a H2 fuel cell are shown in Figure 2.[19] The 

basic setup involves two Pt electrodes that are separated by a permeable membrane electrolyte 

i.e. an electrochemically inactive polymer that is conductive and neutralizes separated charge. 

H2 and O2 are supplied at opposite sides of the cell. At the anode, H2 undergoes oxidation to 

generate 2 H+ and 2 e−. The electrons are transferred to the Pt electrode, making it negatively 

charged. At the cathode, O2 removes 4 e− from the Pt electrode, making it positively charged, 

where it is combined with 4 H+ to give 2 H2O molecules. For reasons that are not yet fully 

understood, this O2 reduction reaction is the rate-limiting step in aqueous fuel cell systems.[19] 
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The local depletion of protons establishes an electrochemical gradient, causing the migration of 

H+ across the electrolyte membrane (from the anode to the cathode compartment) to maintain 

electroneutrality. The interaction of these two half-cell processes establishes a potential drop 

(an open circuit potential) between the anode and the cathode, which can be utilised for useful 

work in an external circuit. The spatial separation of these two half-cell reactions essentially 

allows H2 to be “electrochemically combusted” with limited heat generation. It is worth noting 

that this approach is not limited to H2 – the combustion of any fuel can be separated into two 

half-cell reactions, and therefore any fuel can be utilised in a fuel cell for electricity generation 

(borohydride, [BH4]–, is another well-developed example)[20–22]. 

 

Figure 2 Basic principle of H2 fuel cell operation (adapted from reference [19]). 

 

The first known example of a H2 fuel cell was fabricated by Grove in 1839.[23] Two tubes, 

one containing H2 and the other containing O2, were each inverted over Pt electrodes, which 

were submerged into a beaker of aqueous H2SO4. After connecting 26 of these cells in series, 

Grove was able to use the current generated from this dubbed “gaseous voltaic battery” to drive 

the electrolysis of H2O (Figure 3).[24] 
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Figure 3 Grove’s gaseous voltaic battery – the first H2 fuel cell (reproduced from reference 

[23]). 

 

Arguably, today’s conventional fuel cells differ very little to the early example that was 

demonstrated by Grove nearly 200 years ago. Today, Pt is still the most widely used electrode 

material,[19–22,25–28] and is often used for both half-cell reactions of a fuel cell (H2/fuel oxidation 

and O2 reduction). The high cost and relative scarcity of such electrode materials (50.5 US$/g for 

Pt,[29] yearly average at the time of writing) presents a significant economic barrier to the 

widespread adoption of fuel cell technology. Of course, this is also true for a multitude of 

processes, and as a result, huge efforts have been made to find inexpensive and abundant 

alternatives to the precious metals.[30] 

1.4 Pt as an electrocatalyst for H2 oxidation 

Pt electrodes are electrocatalytic towards the H2 oxidation reaction. By definition, an 

electrocatalyst is a species that increases the rate of electron transfer i.e. the standard 

electrochemical rate constant (k0), which results in an increase of the Faradaic current (the 

current that passes at an electrode surface during an electrochemical reaction).[31] Since this 

current increase is sometimes masked by other non-electrochemical rate-limiting steps, the 

greatest indication of an electrocatalytic effect is the shift of the electrode reaction to a lower 

overpotential. An overpotential (η) is the deviation between the experimentally observed 

reduction potential (E) and its standard potential (E0), and is required for a given current to flow 

at an electrode (Equation 1).[31] Essentially, η is the additional energetic “driving force” required 

to overcome the kinetics of an electrochemical reaction. 
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0EE   

Equation 1 Electrochemical definition of an overpotential (η) in terms of the experimentally 

observed reduction potential and its value under standard conditions (E0). 

 

Analogous to chemical catalysis, electrocatalysis can be either homogeneous or 

heterogeneous in character. In homogeneous electrocatalysis, both the electrocatalyst and the 

substrate are in the same phase. In heterogeneous electrocatalysis, the catalyst is either 

immobilised on the electrode surface or the electrode itself performs as the catalyst. In the case 

of the H2 oxidation reaction at Pt electrodes, the electrode material itself is the heterogeneous 

electrocatalyst. 

The uncatalyzed conversion of the energy stored in the H-H chemical bond to electricity 

comes at a considerable energetic cost. Pt (and other precious metal) surfaces are capable of 

the dissociative adsorption (chemisorption) of H2, in which the H-H bonds break in favour of Pt-

H bond formation on the electrode surface.[32] This adsorption mechanism gives rise to much 

increased electrode kinetics, which provides an electrocatalytic effect.[28,33] In the absence of a 

suitable electrocatalyst, the oxidation of H2 to generate two protons and two electrons requires 

a large overpotential. Indeed the H2 oxidation electrode reaction is observed at much lower 

potentials at Pt (fast k0, small η) compared to carbon-based electrodes (slow k0, large η). 

Typically, in aqueous solutions at carbon electrodes this overpotential is several hundred 

millivolts in excess of the thermodynamic potential of the H2/H+
 couple. In non-aqueous 

electrolytes the problem is exacerbated – at bare glassy carbon electrodes (GCEs, see 1.7.5), the 

overpotential for H2 oxidation is large and broad, ill-defined oxidation waves are observed in the 

cyclic voltammetry. 

In a bid to find a compromise between Pt cost and a low overpotential at the anode, 

attempts have been made to fabricate composite electrode materials that have low Pt loadings 

whilst maintaining a large electroactive Pt surface area. Conventional fuel cells tend to employ 

nanostructured Pt-group metals that are loaded onto a carbon support material (Pt/C) and then 

embedded into a polymer matrix.[19] Again, this technology deviates very little from work of 

Grove, who found that the use of platinized platinum (Pt particles deposited on a bulk Pt 

electrode) produced greater currents, due to a significant increase in the electroactive area 

(which he described as the “surface of action”) compared to the geometric area of the 

electrode.[23] Electron conductive polymers such as polyaniline, polypyrrole, polyacetylene or 

polythiophene can be applied to immobilize and disperse Pt nanoparticles.[34–36] The conductivity, 
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porous structure and high surface area of such materials allow efficient shuttling of electrons 

between the electrode surface and the metal particles, which can be easily dispersed 

throughout the matrix. Lamy and co-workers prepared Pt-modified polyaniline composite 

electrode material through the oxidative electropolymerisation of aniline onto a GCE surface 

followed by the electrodeposition of Pt particles via the reduction of K2PtCl6.[26] They explored 

H2 oxidation at various different Pt loadings, and found that they could achieve electrocatalytic 

activities similar to the bulk material at a Pt loading of ca 150 μg cm−3. Polypyrrole-based 

materials are highly desirable for electrode applications due to being environmentally stable, 

easy to prepare, yet highly conductive. By virtue of its high oxidation potential, polypyrrole was 

found to be more electrochemically stable than conventional carbon support materials.[37] More 

recently, this concept has been extended to Pt-encapsulated graphene nanosheets.[38,39] An 

unusually high electrocatalytic activity towards methanol oxidation was achieved through the 

formation of sub-nano Pt clusters (<0.5 nm in diameter) using this approach. Whilst composite 

electrode materials can provide a significant decrease in the extent of Pt loading compared to 

bulk Pt, this is unfortunately not sufficient. The United States Department of Energy estimate 

that the Pt content of current PEM fuel cells would need to be cut by a quarter (to 30 US$/kW) 

for fuel cell technology to become a viable alternative to the internal combustion engine.[40] 

Another issue relating to the use of Pt-containing nanocomposite materials is that they 

are inherently unstable.[41,42] Investigations into the degradation mechanism of these 

electrocatalysts have indicated that the leaching or aggregation of particles results in the loss of 

catalytic activity.[43–45] The current state-of-the-art strategies used in the stabilisation of Pt-based 

fuel cell electrocatalysts have recently been reviewed by Cao and co-workers.[41] 

The cost and stability of Pt-based electrocatalysts presents a significant barrier to the 

commercialisation and wide-spread adoption of current fuel cell technology. Thus, there is clear 

demand for new H2 oxidation electrocatalysts that are free from precious metals. 

1.5 Non-precious metal electrocatalysts for H2 oxidation 

Great efforts have been made to find inexpensive and abundant alternatives to the 

platinum group metals for the anodic H2 oxidation reaction. In the late 1960s and early 1970s 

the tungsten oxides (WOn and MnWO3, where M = Na, K, Ba, Pb, Tl, U or Cd) were explored as 

potential heterogeneous electrocatalytic anode and cathode materials for H2 fuel cell 

applications.[46,47] The electrocatalytic activity of these materials was found to be insufficient for 

their application as electrode materials, especially with respect to the H2 oxidation reaction. 
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The use of tungsten carbide (WC) as an electrocatalytic anode material was explored by 

Böhm in 1968, who found that WC possessed a good electrical conductivity (WC has the lowest 

reported electrical resistivity of any of the interstitial carbides)[48] whilst exhibiting catalytic 

activity towards H2 oxidation.[49,50] Shortly after, the apparent Pt-like catalytic behaviour of WC 

was reported for H2 oxidation and hydrogenolysis reactions by Levy and Boudart.[51] This 

pioneering body of work has since provided the impetus for the study of WC-based materials as 

a viable alternative to Pt electrodes for H2 oxidation.[52–56] WC electrodes have been employed 

successfully for the H2 oxidation half-cell in PEM fuel cells, achieving high current densities.[54] 

However, the electrochemical activity of WC for the oxidation of pure H2 is still 4 orders of 

magnitude lower than that of Pt (at 25°C).[57] 

This thesis concerns the development of molecular electrocatalysts. The advantage of 

molecular electrocatalysts is that they allow the use of cheap and ubiquitous electrode materials, 

such as plain graphitic carbon electrodes. Another advantage, from a developmental perspective, 

is that more mechanistic information can be extracted from the study of homogeneous catalysts. 

The majority of molecular electrocatalysts for H2 oxidation (or production) have taken 

inspiration from from the hydrogenase enzymes that are found in nature.[30,58–65] These enzymes 

are responsible for H2 production in microbial organisms such as green algae.[16] [FeFe] 

hydrogenase and [NiFe] hydrogenase are the most-studied class of hydrogenase enzyme, and 

feature coordinatively unsaturated metal centres that are bound to ligands such as CO and 

CN.[58,63,64] Various structural, theoretical, and spectroscopic investigations have provided strong 

evidence to suggest that a pendent amine is present on the dithiolate ligand in [FeFe] 

hydrogenase.[66–69] These enzymes are capable of catalysing the interconversion of H+ and H2, 

demonstrating that this property is not unique to Pt metal. The transfer of electrons, to or from 

the active site, occurs through a series of neighbouring [Fe4S4] cubane clusters (ferredoxins) that 

form an electron transport chain (essentially a molecular wire). The respective supply/removal 

of H2 and H+ occurs through hydrophobic channels and a H+ transport chain. Typical structural 

features of [FeFe] and [NiFe] hydrogenase enzymes, along with a simple depiction of an [FeFe] 

hydrogenase enzyme active site, are illustrated in Figure 4. 
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Figure 4 a) Typical structural features of the [FeFe] (1) and [NiFe] (2) hydrogenase enzymes; 

b) a simple depiction of the active site of an [FeFe] hydrogenase enzyme, the channels that 

exist for H2, H+ and e− transport have been emphasised (reproduced from reference [30]). 

 

The first crystal structures of the [NiFe] and [FeFe] hydrogenases were first reported by 

Fontecilla-Camps et al.[70] and Peters et al.,[71] respectively. Since then, several groups have made 

efforts to synthesise structural models of hydrogenase active sites.[59,63,72,73] These models 

perform some of the same reactions as the natural hydrogenase enzymes. A good example of 

this is the pioneering work of Pickett and co-workers in 2005, who reported the first synthesis 

of a metallosulfur cluster core (3) that structurally resembles the active site of an [FeFe] 

hydrogenase.[74] Complex 3 was prepared by reacting a thioacetyl di-iron complex with an [Fe4S4] 

cubane cluster, where three of the Fe atoms were sterically blocked by a large chelating ligand 

(Scheme 4). The electrocatalytic reduction of H+, to produce H2, was demonstrated using 3 as a 

functioning structural model of an [FeFe] hydrogenase. 
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Scheme 4 Synthesis of a structural [FeFe] hydrogenase model (3) by Pickett and co-workers. 

 

In 2009, Tard and Pickett published a comprehensive review into the development of 

structural and functional analogues of the active sites of [Fe], [NiFe], and [FeFe] hydrogenases.[59] 

The most up-to-date review that details advances made in elucidating the structure and function 

of these enzymes was published by Lubitz et al. in early 2014.[65] 

Many prominent research groups (most notably the groups of DuBois, Bullock, and 

Rakowski DuBois) have been active in the development of “bio-inspired” molecular 

electrocatalysts i.e. functional models of hydrogenase enzymes.[30,60,75] Rather than attempting 

to build elegant structural models that mimic the precise structural features of [FeFe] 

hydrogenases (cf. the work of Pickett and co-workers)[74], this approach simply and effectively 

focuses on retaining two main features: 

i) The use of abundant and inexpensive metals. 

ii) The incorporation of pendent base groups in close proximity to the metal centre. 

This takes inspiration from the proposed amine moiety on the dithiolate ligand 

of [FeFe] hydrogenase. 

 

These enzyme mimics are able to overcome the high energy cost that is required to 

heterolytically cleave H2 (318.0 kJ mol−1 in MeCN)[76,77] by virtue of the strong hydride acceptor 

ability of the metal centre and the strong proton acceptor ability of the pendent base groups. 

Fe is generally attractive for catalysis due to its high earth-abundance (it is the second most 
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abundant metallic element in the Earth’s crust after Al and much easier/cheaper to extract)[2] 

along with being inexpensive and of low toxicity; indeed, in this respect, Bolm recently suggested 

that a “new iron age” may be upon us.[78] A multitude of complexes containing Ni,[79–84] Fe,[85–89] 

Co[90–93], and Mo[94–96] metals have been reported to be effective electrocatalysts for H2 

production, and a number of complexes containing Ni[79,97,98] and Fe[85,99,100] metal centres have 

been demonstrated to be effective H2 oxidation electrocatalysts. The development of molecular 

electrocatalysts using this approach was most recently reviewed by DuBois and Bullock in 

2011.[60] 

A molecular H2 oxidation electrocatalyst of notable interest is the Fe-H complex (4-H) 

shown in Scheme 5.[100] This complex was synthesised by Bullock and co-workers in 2013, and 

was designed to mimic the active site of [FeFe] hydrogenase. The active form (4+) features a 

vacant coordination site on a single FeII centre (for H2 binding) with pendent amine groups in 

close proximity (on a bidentate cyclic phosphine ligand).  

Cyclic voltammetry of a 1 mM solution of 4-H in fluorobenzene was recorded under H2 

(1.0 atm) in the presence of increasing quantities (0-52 mM) of the Brønsted base, N-

methylpyrrolidine. The current of the oxidation wave was observed to increase with added base; 

this behaviour is highly indicative of an underlying electrocatalytic mechanism – where the 

starting material is catalytically regenerated by a follow-up chemical reaction after 

electrooxidation (see 1.7 below for further information on electrochemical techniques). 

Furthermore, 4-H provided the highest turnover frequencies reported for H2 oxidation using an 

Fe complex (0.66-2.0 s−1), at low overpotentials and room temperature. 

The proposed mechanism for the electrocatalytic oxidation of H2, in the presence of 4-

H, is illustrated in Scheme 5. Initially, the FeII centre of 4-H undergoes single-electron oxidation 

to give FeIII, [4-H]+. This increases the acidity of the Fe-H bond, facilitating the intramolecular 

transfer of H+ to the pendent amine group, which is then deprotonated intermolecularly by the 

added base. Single-electron oxidation of the resulting FeI centre to FeII (4+) facilitates the binding 

of H2 to give the dihydrogen adduct, [4-H2]+. The heterolytic cleavage of H2 (mediated by the 

pendent amine) is followed by another intermolecular H+ transfer process, regenerating the 

initial complex (4-H) and closing the electrocatalytic cycle. 
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Scheme 5 Mechanism of electrocatalytic H2 oxidation by Bullock’s pendent amine-containing 

FeII complex (4-H) in the presence of a Brønsted base (reproduced from reference [100]). 

 

A significant barrier to the adoption of hydrogenase-derived technology is that the 

enzymes (and their mimics) are often highly sensitive to O2, losing their electrocatalytic activity 

on exposure to air. Ogo and co-workers have recently isolated a new bacterium strain 

(Citrobacter sp. S-77) containing an O2-stable membrane-bound [NiFe] hydrogenase, 

[NiFe]S77.[101] They purified and biochemically characterized [NiFe]S77, which was found to be 

potent towards H2 oxidation, yet remarkably stability towards O2 (retaining 95% of its original 

H2 oxidation activity following exposure to air for 30 h). The group very recently constructed a 

fuel cell comprising a [NiFe]S77 electrode as the anode and a conventional Pt/C cathode.[102] The 

[NiFe]S77 electrode was prepared by physisorbing [NiFe]S77 onto carbon black, which was then 

physisorbed onto a hydrophobic carbon cloth. The mass activity of the [NiFe]S77 electrode 
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(functioning as an anode) was found to be 637 times higher than Pt for 1 mg of either electrode 

material. When considering the mass activity for 1 mg of Fe and Ni metal atoms vs Pt atoms, the 

result was a staggering 506 000 fold improvement in activity. The electrode is also stable to air 

and can be recovered quantitatively after exposure to CO, unlike Pt surfaces which are 

“poisoned” and become inactive. 

Rauchfuss and co-workers took an alternative approach to H2 oxidation electrocatalysis. 

They prepared an unsaturated IrIII complex containing bulky redox non-innocent 

amidophenolate ligands (5) – shown in Scheme 6 along with the proposed H2 oxidation 

mechanism.[103,104] The amidophenolate ligands are strong π-donors and capable of stabilising 

the electronically unsaturated 16-electron complex. However, these ligand π-donor orbitals are 

also the HOMO (highest occupied molecular obital) and are redox-active. Single-electron 

oxidation of the amidophenolate ligand, to give a cationic complex (5•+), causes a weakening of 

the metal-ligand bond and decreases the electron density on the metal centre. This induces 

Lewis acidity in the metal centre, allowing the formation of a H2 adduct, [5-H2]•+, that is 

susceptible to deprotonation on addition of a weakly-coordinating base (2,6-di-tert-

butylpyridine), forming the hydride, [5-H]•. Further, ligand-centered, single-electron oxidation 

of [5-H]• generates [5-H]+, which undergoes another deprotonation step to regenerate 5 and 

close the electrocatalytic cycle. The oxidation state of the IrIII complex formally remains constant 

throughout the cycle. Subtle changes in the electron-donor properties of the redox-active ligand 

are induced by its oxidation; this modifies the Lewis and Brønsted acidity of the intermediates 

and drives the overall oxidation of H2. They found that the relative rate of H2 oxidation was 

strongly dependent on the ion-pairing ability of the counterion; indeed, the reduction of 

[5•][B(C6F5)4] by H2 is about 30 times faster than that of analogous [5•][PF6]. 

The tutorial overview of Lyaskovskyy and de Bruin provides further examples that 

illustrate the power of redox non-innocent ligands for general catalytic applications.[105] 
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Scheme 6 Mechanism of electrocatalytic H2 oxidation by Rauchfuss’ IrIII amidophenolate 

complex (5) in the presence of a weakly-coordinating base. 

 

All of the aforementioned approaches still use metal-containing catalysts, and there are 

a greater number of literature reports that focus on biomimetic electrocatalysts for the reverse 

process – H2 production via H+ reduction – than for H2 oxidation.[60] To the best of my knowledge, 

there are currently no metal-free electrocatalysts for the H2 oxidation reaction. The greatest 

challenges in developing H2 energy technologies still remain – to find systems that are catalytic 

in terms of H2 bond cleavage, that operate at low overpotentials (i.e. that are “electrocatalytic”), 

that are metal-free and/or employ inexpensive, readily-available electrode materials such as 

carbon, and that are simple and economically viable to produce. 
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1.6 Frustrated Lewis pairs 

Lewis introduced his theory of acids and bases in 1923;[106] this was in the same year 

that Brønsted and Lowry had independently published their own definitions.[107–109] As opposed 

to the Brønsted-Lowry model, where an acid is defined as a H+ donor, a Lewis acid is a species 

that is capable of accepting a pair of electrons from a Lewis base (electron pair donor). The 

combination of a simple Lewis acid and base, for example BMe3 and NMe3 respectively, results 

in the formation of a classical Lewis adduct, Me3BNMe3 (6), as shown in Scheme 7.[110] In this 

reaction, the Lewis acidity of BMe3 is effectively quenched through a (dative) bonding 

interaction between its lowest unoccupied molecular orbital (LUMO) and the HOMO of NMe3, 

and both central atoms (B and N) achieve an octet of electrons in their valence shell. 

 

Scheme 7 Formation of a classical Lewis adduct (6). 

 

The influence of steric effects on the formation of classical Lewis adducts was first 

uncovered by Brown and co-workers in 1942.[111] They were investigating the reaction of 

different pyridines with simple boranes when they failed to form a classical Lewis adduct from 

the combination of 2,6-lutidine (lut) and BMe3. This was in stark contrast to the corresponding 

combination of lut and BF3, which reacted to give adduct 7, as expected from Lewis acid-base 

theory (Scheme 8). The inability of BMe3 to form an adduct with lut was rationalized in terms of 

the steric hindrance of the Me groups on the approaching Lewis acid and base. This argument 

was supported by the construction of molecular models (Scheme 8b and d). 
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Scheme 8 Brown’s early work into steric frustration: a) The formation of the classical Lewis 

adduct, 7, and b) Brown’s original molecular model of 7; c) no reaction was observed 

between BMe3 and 2,6-lutidine (lut), d) Brown’s original molecular model rationalises the 

lack of reactivity in terms of steric effects (photos are reproduced from reference [111]). 

 

In 2006, Stephan and co-workers were investigating the interaction of phosphines with 

B(C6F5)3 (8).[112] This strong-yet-bulky Lewis acid, 8, was known to behave as a traditional Lewis 

acid, forming classical Lewis adducts when combined with various Lewis bases.[113,114] However, 

they found that 8 undergoes para-nucleophilic aromatic substitution with the sterically bulky 

secondary phosphine, Mes2PH (Mes = C6H2Me3), to afford the zwitterionic phosphonium borate, 

9 (Scheme 9). The treatment of 9 with Me2SiHCl effected H−/F− exchange to give the zwitterionic 

product, 10. Considering that 10 contains both hydridic and protic fragments, it was found to be 

remarkably stable towards H2 evolution. On heating to 150°C, the elimination of H2 was achieved 

and the deep orange-red phosphino-borane (11) was generated. According to classical Lewis 

theory, one would expect the intermolecular formation of classical Lewis adducts. Manners and 

co-workers had previously reported a number of cyclic and polymeric structures that were 

formed from the thermal, or catalytically-induced, elimination of H2 from simple phosphino-

boranes of the form R2PH(BH3).[115,116] However, 11 was surprisingly found to be monomeric in 
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solution; this exception was rationalized in terms of the steric encumbrance of the P and B 

centres by the surrounding groups. Most remarkably, when 11 was admitted to H2 (1 atm) at 

room temperature, the orange-red colour discharged and 10 was regenerated. Until this 

pioneering work, the facile heterolytic cleavage of H2 by a metal-free system was unprecedented. 

The ability of 10 to activate H2 was attributed to the “unquenched” Lewis acidity and basicity of 

the borane and phosphine components, resulting from the steric preclusion of adduct formation. 

 

Scheme 9 Preparation and demonstration of a phosphino-borane (11) that is capable of 

reversible H2 activation. 

 

To examine the generality of this H2 activation chemistry, Welch and Stephan extended 

their approach to separate Lewis acid and base components.[117] When the bulky phosphines, 

PMes3 and PtBu3 (12), were combined with B(C6F5)3 (8), they found no evidence of classical Lewis 

adduct formation; only the individual component resonances were observed by NMR 

spectroscopy, even when the reaction mixture was cooled to −50°C. On exposure to H2 (at 1 atm 

and room temperature), phosphonium salts of the form [R3PH][8-H] were rapidly generated 

through the facile heterolytic cleavage of H2. Unlike 10, these salts were thermally stable to the 

liberation of H2, even when heated to 150°C. 
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Scheme 10 Activation of H2 by 8/phosphine FLPs. 

 

The range of Lewis acidity and basicity that is required for H2 activation to occur was 

explored by employing BPh3 as a weaker Lewis acid. The rate of H2 activation was found to be 

much slower when 12 was combined with BPh3, and the product, [12-H][HBPh3], was only 

isolated in 33% yield (compared to the 90% yield reported for analogous [12-H][8-H]). When the 

basicity of the phosphine was also decreased through substituting 12 for PMes3 (whilst still 

employing BPh3), no reaction was observed. The same was true when a strong Lewis base (12) 

was used in combination with the much weaker Lewis acid, BMes3. Whilst these Lewis acid and 

base combinations did not form adducts, this observation suggested that a sufficiently strong 

combined Lewis acidity/basicity is required to effect the activation of H2. Pápai and co-workers 

later related the thermodynamic feasibility of H2 activation to the acid-base strengths of 

experimentally-studied systems, through quantum chemical calculations.[118] 

Stephan later coined the term “frustrated Lewis pairs” (FLPs) to describe the behaviour 

of these three-component systems.[119] Since their advent, FLPs have emerged as an intense and 

rapidly growing area of research (Figure 5). The application of FLPs for the activation of H2 and 

other small molecules has been reviewed extensively.[30,120–122] The latest and most 

comprehensive review was written by Stephan and published in Comprehensive Inorganic 

Chemistry II in 2013.[120] 
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Figure 5 Citations per year for the term “frustrated Lewis pair” (supplied by Web of 

ScienceTM on 20/01/2015).[123] 

 

FLPs are not limited to the use of phosphines as the Lewis base. In a later study, Rieger 

and co-workers studied the application of bulky amines as the Lewis base. They found that 

2,2,6,6-tetramethylpiperidine (TMP) and 8 did not combine to form a classical Lewis adduct, yet 

on exposure to H2 yielded the corresponding ammonium borohydride, [TMP-H][8-H] (Scheme 

12).[124] From a NMR spectroscopic study, they speculated that on exposure to H2 (at 1 atm and 

room temperature) an intermediate complex forms where the cation and the anion are strongly 

associated (N-H∙∙∙H-B). The reaction can be driven towards the product, [TMP-H][8-H], through 

evaporation of the solvent, leaving the solution for 1 day, or by heating. 
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Scheme 11 H2 activation by the 8/TMP FLP. 

 

The groups of Tamm and Stephan simultaneously published (in the same issue of Angew. 

Chem. Int. Ed.) their independent work into the application of sterically bulky N-heterocyclic 

carbenes (NHCs) as the Lewis base component of FLPs for H2 activation.[125,126] When combined 

with 8, the NHC (tBuN)2C3H2 (ImtBu2) was discovered to be an effective FLP for H2 activation. 

However, Tamm and co-workers found that when left to stand at room temperature for 2 hours, 

a reaction occurs to give an abnormal carbene (13) via substitution of the H substituent at the 

C-4 position on the NHC for 8. This could be avoided by keeping the reaction mixture cold (−60°C) 

prior to H2 exposure, on which immediate H2 cleavage occurs to afford [(ImtBu2)-H][8-H]. 

 

Scheme 12 H2 activation and side-reaction of the 8/ImtBu2 FLP. 

 

The unusual, metal-like ability of FLPs to heterolytically activate H2 has prompted a number 

of detailed computational mechanistic studies. Pápai and co-workers initiated a computational 

study into the 12/8 system.[118,127] They determined that an energy minimum for the approach 

of 12 and 8 is obtained when the B-P separation is 4.2 Å. This encounter complex was reported 
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to be stabilised by intermolecular H∙∙∙F interactions, a claim that has been supported by similar 

reports from other research groups.[125,128,129] It was proposed that H2 reacted by traversing into 

the “pocket” of the encounter complex and then undergoing synergistic electron transfer steps 

between: 

i) The lone pair (HOMO) of the Lewis base and the anti-bonding (σ*) molecular orbital 

of H2. 

ii) The bonding (σ) orbital of H2 and the vacant p orbital (LUMO) on the Lewis acid. 

 

It was proposed that this results in the weakening and subsequent heterolytic cleavage of 

the H-H bond. In the transition state structure, the H2 molecule was found to be slightly 

elongated, and almost aligned with the B-P axis. 

Grimme and co-workers were unhappy with the notion that H2 bond cleavage occurs via an 

almost linear P-H-H-B arrangement in the transition state. They suggested that this result was 

obtained from the insufficient treatment of intramolecular London dispersion forces between 

the large substituents. Using a dispersion-corrected density functional theory (DFT) method, 

they obtained a non-linear P-H-H-B transition state.[130,131] They then suggested a simpler 

mechanistic picture where heterolytic bond cleavage results from the polarisation of H2, which 

is induced by the strong electric field within the FLP cavity. In this electric field model, the entry 

of H2 into the FLP cavity provided the barrier and the subsequent heterolysis process was 

completely barrierless. 

Pápai and co-workers have since re-evaluated the ability of the electron transfer and electric 

field models to explain the mechanism of H2 cleavage by FLPs.[132] They admitted that in their 

previous study, the insufficient treatment of dispersion effects had indeed resulted in an 

underestimated P-H-H-B bend. Using an improved DFT model, they performed computational 

studies on 6 different FLP systems that had previously been explored experimentally, and 

contrasted the predictions from both models. They found that FLPs with similar reactivity show 

remarkably different electric field characteristics, and that the electric field generated is too 

small to provide a qualitative interpretation for any change in electronic structure. They also 

found that donor/acceptor interactions of the FLP with H2 were present in the transition states 

of all systems studied. Using this model, the characteristic non-linear arrangement of the 

transition state can be rationalized by considering the optimum orbital overlaps for electron 

transfer to occur, whereas the electric field model provides no explanation for this required 

geometry. Indeed, the parallel orientation of H2 to the electric field should suffice for this model. 

The results of this work suggest that the earlier electron transfer model still provides the best 
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description for the mechanism of heterolytic H2 cleavage by FLPs. An illustration of this 

mechanistic model is depicted in Figure 6. 

 

Figure 6 Proposed electron transfer mechanistic model for heterolytic H2 activation by a FLP, 

a non-linear transition state is shown (LA = Lewis acid, LB = Lewis base). 

 

The application of FLPs towards the hydrogenation of organic substrates has been 

reported extensively. A wide range of functional groups including imines, enamines, nitriles;[133–

136] aldehydes,[124] and ketones[137] have been reduced by delivery of the H− fragment following 

FLP H2 activation. 

Stephan and co-workers were able to hydrogenate sterically encumbered imines using 

a catalytic quantity of 8 (5 mol%), generating the corresponding amines in high isolated yields.[133] 

The presence of additional Lewis base is not required since the imines are themselves Lewis 

basic and sufficiently sterically bulky. Activation of H2 by the imine and 8 initially generates the 

iminium borohydride intermediate (Scheme 13). Hydride transfer from [8-H]− affords the amine 

and releases 8, which is then available for another hydrogenation cycle. 
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Scheme 13 Catalytic imine hydrogenation by 8. 

 

While this approach is limited to imines that are sufficiently basic and sterically 

congested, it is worth noting the bulky ketamine (14) was too bulky and precluded the final 

hydride transfer to the iminium salt. After a 48 hour reflux, only the salt [14-H][8-H] was 

obtained (Scheme 14). 
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Scheme 14 Attempt to hydrogenate the bulky imine (14) using catalytic quantity of 8. 

 

Catalytic asymmetric hydrogenation has been achieved by employing chiral boranes as 

one of the FLP components.[138–140] Klankermayer and co-workers were able to achieve high 

enantiomeric excesses (ee) of up to 83% for imine hydrogenation using boranes derived from 

camphor (15 and 16, see Scheme 15).[139] 

 

Scheme 15 Catalytic asymmetric imine hydrogenation using FLPs comprised of chiral 

boranes (15 and 16). 

 

For a Lewis acid-base combination to be suitable for FLP H2 activation it was often 

assumed that the pair must be sterically precluded to the extent that negligible classical Lewis 

adduct formation is apparent. Early reports suggested that Lewis acid-base combinations 
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behaved either classically (i.e. they reacted to give classical Lewis adducts) or as FLPs. Inspired 

by the early work of Brown,[111] Geier and Stephan explored the use of FLPs containing lut 

further.[141,142] The combination of lut and 8 afforded an equilibrium mixture of the free 

components and the classical Lewis adduct, lut∙8, (Scheme 16). The equilibrium could be driven 

towards the formation of lut∙8 by cooling the sample to −40°C. When H2 (1 atm) was admitted 

to this mixture at room temperature, the H2 activation product, [lut-H][8-H], was obtained. This 

system effectively rebuts the previous assumption that Lewis acid-base combinations are 

mutually exclusive towards either classical or FLP behaviour. Instead, this study suggests that 

the exhibition of classical vs FLP reactivity is a continuous function of steric preclusion i.e. is 

based on the relative strength of the dative bond in the adduct (provided that the Lewis acid 

and base are still sufficiently strong to effect H2 cleavage). 

 

Scheme 16 2,6-Lutidine (lut) and 8 exhibit both classical and frustrated behaviour. 

 

It is worth noting that a similar phenomenon was observed by Erker and co-workers in 

their early work on intramolecular phosphine-borane FLPs,[143] shortly after the advent of 

Stephan’s initial FLP system (11).[112] They were utilising the hydroboration of various 

alkenylphosphines with “Piers’ borane”, HB(C6F5)2, as a route to the preparation of new 

intramolecular FLPs. The resulting hydroboration product (17) of (Mes)2PCHCH2 was found to 

exist in equilibrium between the open-chain and four-membered ring forms, the latter arising 

from the formation of an intramolecular P-B bonding interaction. Computational studies 

suggested that this interaction was weakened through ring strain. On admission of 17 to H2, the 

corresponding zwitterionic H2 activation product, 18, was formed (Scheme 17). 17 was found to 

be a much more active catalyst than 8 for the metal-free hydrogenation of imines and operated 

under milder conditions (25°C, 1.5 atm), although much greater catalyst loadings (> 20 mol%) 

were sometimes required.[136] 
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Scheme 17 Hydroboration using Piers’ borane to give an intramolecular phosphine-borane 

adduct that effects H2 activation. 

 

In addition to the adequate frustration that is required for H2 activation, the Lewis acid-

base combination must also be free from any other deactivation pathways. For example, 8 is 

incompatible with tertiary amines that possess H substituents on the C positions that are α and 

β to the N atom.[113] When NEt3 is treated with 8, α-hydride abstraction initially affords the 

borohydride, [8-H]−, and an iminium intermediate. A second equivalent of NEt3 then abstracts a 

β-proton from this intermediate to generate [Et3NH]+ and an enamine, which undergoes further 

reaction with a second equivalent of 8 to give a zwitterion (Scheme 18).[144] This reaction 

proceeds cleanly and in quantitative yield. 

 

Scheme 18 Reaction of tertiary amines (NEt3) with 8. 

 

The Lewis acid component of a FLP is most often a strongly electrophilic borane, typically 

8 or a derivative thereof.[112,117,124,125,145] For this reason, 8 is often considered to be the mainstay 
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Lewis acid for FLP applications. However, FLP H2 activation has also been achieved using boron-

based Lewis acids that do not contain C6F5 groups.[146–151] An interesting example is the NHC-

stabilised borenium cation, [(ImiPr2)(BC8H14)]+ {19+; ImiPr2 = C3H2(NiPr)2}, that is derived from the 

ubiquitous borane reagent 9-borabicyclo[3.3.1]nonane (9-BBN) (Figure 7). 

 

Figure 7 Molecular structure of 19+. 

 

Borenium cations are three-coordinate borocations, [LBR2]+, that possess two σ-bound 

substituents (R) and a datively bound neutral ligand (L). The ligand stabilises the borocation by 

occupying the third coordination site and reducing the electrophilicity of the boron centre.[152–

154] The notion of formally representing the positive charge on the B atom, rather than the N 

atom of the NHC, (see Scheme 19) is supported by the following arguments: 

i) B is more electropositive, i.e. less electronegative, than N (Pauling 

electronegativity, χB = 2.04 vs χN = 3.04). 

ii) Previous computational studies have suggested that there is significant positive 

charge localised on the boron centre. [153,155] 

iii) Such compounds behave as though they are boron cations; the boron centre is 

highly electrophilic and the site of Lewis acidity. 
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Scheme 19 Alternative resonance form of 19+. 

 

Stephan’s group found that when 19[B(C6F5)4] is combined with the bulky phosphine 

(12), it forms a FLP that is capable of H2 activation, affording the neutral NHC-borane adduct (19-

H) and the phosphonium salt, [12-H][B(C6F5)4] (Scheme 20). 

 

Scheme 20 FLP activation of H2 using a borenium cation (19+). 

 

The lack of electron-withdrawing groups in 19+ imparts considerable hydridic character 

to the neutral NHC-borane adduct, even in comparison with anionic borohydrides such as [8-

H]–.[150,156] Indeed, it was reported that 8 is capable of abstracting H− from 19-H, to generate the 

salt 19[HB(C6F5)3].[150] The hydride donor properties of NHC-borane adducts have previously 

been exploited for the reduction of various substrates,[157,158] and Stephan and co-workers have 

found 19-H to be a potent and highly selective catalyst for the hydrogenation of imines and 

enamines at room temperature. Also, 19+ was found to be much more tolerant of different 

functional groups when compared to archetypal 8. 

Another Lewis acid that does not contain C6F5 groups, yet has been successfully applied 

for FLP H2 activation, is tris[3,5-bis(trifluoromethyl)phenyl]borane (20). FLP H2 activation of 20 

was reported in 2012 by our collaborators (the research group of Dr. A. Ashley)[146] and another 

independent group,[147] who were simultaneously working on the same Lewis acid. In stark 

contrast to the majority of previous FLP systems, H2 activation by 20 was found to be dominated 

by the formation of a bridging hydride, [(μ-H)(20)2]− (Scheme 21). Bridging hydrides are rare in 
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FLP chemistry, the only previous borane example being 1,8-bis(dipentafluoro- 

phenylboryl)naphthalene (21).[159] 21 contains two Lewis acidic centres that are pre-organised 

for the formation of a bridging hydride, when combined with a molar equivalent of TMP and 

admitted to H2. The tendency of 20 to form a bridging hydride most likely results from the low 

steric demand of the surrounding groups, combined with a strong Lewis acidity, when compared 

to 8 (which is dominated by terminal hydride formation, as illustrated by the many examples in 

this chapter). Indeed, the corresponding aluminium analogue of 8, Al(C6F5)3 (22), is far less 

bulky[160] albeit less Lewis acidic,[161] and also favours the formation of a bridging hydride, [12-

H][(μ-H)(22)2], when H2 is admitted to the 22/12 FLP system.[162] The reduced steric bulk of 22 

results from Al having a much larger covalent radius than B (121(4) vs 84(3) pm). 



Chapter 1 – Introduction 

32 

 

 

Scheme 21 Examples of Lewis acids that favour the formation of bridging hydrides (μ-H). 
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Ashley and Tamm both found that the addition of a Lewis base/donor solvent (LB = 

pyridine (py), tetrahydrofuran (THF), CH3CN) to [(μ-H)(20)2]− resulted in the formation of the 

terminal hydride, [20-H]−, and a classical Lewis adduct, LB∙20 (Scheme 22). The Lewis base is able 

to effectively sequester any excess Lewis acid, 20, that is bound to the [20-H]− unit as [(μ-

H)(20)2]−. 

 

 

 

 

Scheme 22 The formation of a classical Lewis adduct (LB∙20) between 20 and Lewis base (LB 

= py, THF, CH3CN) drives the conversion of the bridging hydride ([(μ-H)202]−) into a terminal 

hydride ([20-H]−). 
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FLP chemistry is not limited to the heterolytic cleavage of H2; the activation of C-F 

bonds[163] and small molecules including alkenes,[119,164] dienes,[165] alkynes,[166–168] 

cyclopropanes,[169] tetrahydrofuran (THF),[125,170–172] isocyanates,[173] NO2,[174,175] CO2,[176–178] and 

O2
[179] has also been demonstrated. The reactivity of FLPs (comprised of 8) towards a variety of 

different small molecules is demonstrated by the examples shown in Scheme 23. 

 

Scheme 23 Examples of small molecule activation by FLPs containing 8. 

 

It is worth noting that FLPs are not limited to the main group;[180–182] Wass and co-

workers previously demonstrated the ability of zirconocene-phosphinoaryloxide complexes to 

mimic the reactivity of FLPs whilst offering additional, unprecendented reactivity towards C-Cl 

and C-O bond cleavage as well as COx (x = 1-2) reduction.[181] 

I am only aware of two prior reports that combine electrochemistry with FLP systems. 

Stephan and co-workers explored the combination of various mono- and bis-
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ferrocenylphosphines with 8 for the generation of new FLPs.[183] The ferrocenyl groups were 

incorporated as a method of increasing the steric encumbrance of the Lewis base. In most cases, 

the para-substitution products were obtained, analogous to the reaction illustrated in Scheme 

9 (where 9 is generated). However, the bulky phosphine (23) did not react with 8 and was found 

to be effective for the irreversible heterolysis of H2, forming [23-H][8-H]. Cyclic voltammetry was 

performed on [23-H][8-H], where the quasi-reversible oxidation of the ferrocenyl redox label 

was observed along with the reduction of [23-H]+.  

 

 

Scheme 24 Activation of H2 by the ferrocenyl phosphine (23)/8 FLP. 

 

Aldridge and co-workers have provided a more inspiring example of a combined 

electrochemical-FLP study.[184] Inspired by Stephan’s application of FLPs for the trapping of N2O 

(see Scheme 23),[175] they successfully employed an FLP system comprising tBu3P (12) and the 

ferrocenyl borane, FcB(C6F5)2, for the detection of N2O. The reaction of N2O with this FLP 

generates the product, tBu3P∙N2O∙BFc(C6F5)2, which can be detected by a cathodic shift of 300 

mV in the Fc0/+ {Fc = CpFe(η5-C5H4), where Cp = (η5-C5H5)} quasi-reversible oxidation wave. More 

importantly, this characteristic shift was demonstrated to allow for the detection of small 

quantities of the N2O-trapped product (<100 μM), and was not observed in the presence of O2. 

As highlighted in this section, the application of FLP H2 activation chemistry is currently 

mainly limited to synthetic transformations – where the resulting H− and H+ fragments are 

delivered to appropriate substrates. Returning to fuel cell technology (discussed in 1.3-1.5), 

aqueous-phase [BH4]– electrochemistry has been reviewed extensively because of its potential 

for fuel cell applications.[20–22] The advantage of using [BH4]– (rather than H2) as a fuel is that a Pt 

electrocatalyst is not required – cheap and ubiquitous carbon electrodes can be employed. 

However, the commercialisation of direct borohydride fuel cells (systems that oxidise [BH4]− 

directly) has been hampered by the fact that these systems cannot be recharged. It is extremely 

difficult to regenerate [BH4]− from metaborate, [BO2]− (the product of alkaline [BH4]− 

oxidation).[21,185] In the previous section I stated that, to the best of my knowledge, there are 

currently no metal-free electrocatalysts for the H2 oxidation reaction. In light of the relatively 
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recent developments in FLP chemistry: the ability of such systems to activate H2 and generate 

borohydrides without the need for metals, I believe that a full investigation of the 

electrochemical properties of FLPs is warranted. FLPs may offer a new electrocatalytic approach 

to H2 oxidation. 

1.7 Electrochemical methods 

This section aims to provide the reader with the basic principles of the electrochemical 

methods that will feature in this thesis. Throughout this section, the reversible single-electron 

reduction process shown in Scheme 25 will be considered. 

 

 

Scheme 25 The single-electron electrochemical reduction of A results in the formation of B. 

 

1.7.1 Electrochemical equilibria 

Analogous to chemical reactions, the direction of an electrochemical process is 

governed by thermodynamics. When a system is at equilibrium, its Gibbs free energy (G) is 

minimised. Considering the hypothetical electrochemical reaction shown in Scheme 25, if an 

inert electrode (such as a Pt wire) is inserted into a solution containing a mixture of the oxidised 

(A) and reduced (B) species, then an electrochemical equilibrium becomes established between 

the two species and the electrons in the electrode. The initial net movement of electrons is 

infinitesimally small, such that the change in concentration of A and B at the electrode surface 

is negligible. When the equilibrium is reached, the transfer of electrons to and from the 

electrode is balanced and no further net change in the solution composition occurs. The onset 

of this equilibrium gives rise to charge separation between the electrode and the solution; 

indeed, an “electrode potential”, [φM−φS]Pt, now exists at this interface. It is impossible to 

measure an absolute value for the potential difference across a single electrode-solution 

interface, and therefore an additional electrode must be introduced. This second (and necessary) 

“reference” electrode-solution interface is assigned an arbitrary potential of [φM−φS]Reference = 0 

V. Thus, the electrode potential (E) at the Pt wire-solution interface can now be measured 

relative to that at the reference electrode (Equation 2). 
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E = [φM−φS]Pt − [φM−φS]Reference 

Equation 2 The measured electrode potential (E) at a Pt wire electrode vs a reference 

electrode. 

 

In non-aqueous electrochemistry (which features throughout this thesis) a Ag wire is 

often used as a pseudo-reference electrode. The potential difference across the Ag wire-solution 

interface is not fixed, since changes in the electrode surface chemistry i.e. passivation due to 

adsorption, corrosion, etc. leads to a continuous drift in the electrode potential. The recorded 

potential must therefore be referenced externally; the current IUPAC convention is to correct 

the recorded potentials to the Cp2Fe0/+ redox couple.[186] 

The Nernst equation relates the observed reduction potential (E) of an electrochemical 

reaction to its standard reduction potential (E0) in terms of the activities of the species involved 

– denoted as γX[X]0 for species X of concentration [X]0 at the electrode surface. The activity 

coefficient, γX, accounts for solution non-ideality resulting from ion-ion and solvent-ion 

interactions in the electrolyte; for ideal solutions, γX approaches unity. The Nernst equation is 

shown below (Equation 2) for the electrochemical reduction of A to B (according to Scheme 

25).[33,187] 
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Equation 3 The Nernst equation describing the observed reduction potential (E) for an n 

electron process (n = 1 in this case). R = gas constant (8.314 V C K−1mol−1); T = temperature 

(K); F = Faraday constant (96485.3 C mol−1). 

 

When considering complex electrochemical systems that involve multiple reversible 

electrochemical reactions, it is important to remember that multiple Nernstian equilibria are 

under operation. Therefore, the experimentally observed reduction potentials (E) may deviate 

significantly from the standard value (E0). 

1.7.2 Electrode kinetics 

The current passed at an electrode surface during electrolysis is directly proportional to 

the electroactive area of the electrode (A) and the flux of reactant to the electrode surface (j) 

(Equation 4). 
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nFAji   

Equation 4 The measured current is related to the flux of reactant (j) and the electroactive 

area (A) at the electrode. 

 

The net flux of reactant undergoing electrolysis at the electrode (j) can be expressed in 

terms of the relative rates of the forward (kf) and reverse (kb) electrochemical reactions. In the 

case of the electrochemical reaction shown in Scheme 25, Equation 5 describes the net flux of 

reactant A undergoing reduction to form product B. 

0b0f [B][A] kkj   

Equation 5 The net flux of reactant A at the electrode surface (undergoing reduction to B). 

 

The kinetics of an electrochemical reaction are dependent on the potential that is 

applied. In the case of the reduction of A, kf would be expected to be dominant at relatively 

negative potentials, since the electrode is providing a large driving force for the forward reaction. 

The potential-dependence of the rate constants kf and kb can be expressed in terms of the 

overpotential (η = E – E0, refer back to Equation 1 in 1.4) by the electrochemical representation 

of the Arrhenius equation (Equation 6). 
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Equation 6 The observed electrochemical rate constant for a) the forward (kf), and b) the 

backward (kb) electrochemical reactions in terms of the overpotential, constants, kf
0 and kb

0, 

and the charge transfer coefficient, α. 

 

The combination of Equations 5-6 provides an expression for the net flux of reactant in 

terms of the overpotential (Equation 7). 
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Equation 7 The net flux of reactant A in terms of its overpotential. 

 

When the forward and backward electrochemical rate constants are equal, an 

equilibrium has become established and there is no net flux of reactant (j = 0). Under these 

conditions, Equation 7 is found to reduce to the Nernst equation (Equation 3) when the 

constants kf
0 and kb

0 are equal (kf
0 = kb

0). Based on this observation, Equation 7 can therefore be 

simplified by replacing kf
0 and kb

0 by the standard electrochemical rate constant (k0) – as shown 

in Equation 8. 
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Equation 8 The net flux of reactant A in terms of its overpotential. 

 

The combination of Equation 4 and Equation 8 yields the Butler-Volmer equation 

(Equation 9), which relates the observed current to the applied potential (through the 

overpotential) and the electrode surface concentrations of the electroactive species. The Butler-

Volmer model of electrode kinetics forms the basis to the solution of all electrochemical 

problems. The Butler-Volmer equation shows that a small perturbation in the applied potential 

(E) gives rise to a significant increase in the rate of an electrochemical reaction e.g. a 1 Volt 

change in E will provide a ca 109 fold increase in the observed electrochemical rate constant (k). 
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Equation 9 The Butler-Volmer equation describing the observed current (i) in terms of the 

standard electrochemical rate constant, k0, and the charge transfer coefficient, α. 

 

For a reductive (cathodic) electrode process, the observed rate of electron transfer i.e. 

the observed electrochemical rate constant (k), increases as the electrode potential becomes 

more negative. The standard electrochemical rate constant (k0) is simply a measure of the 

relative rate of electron transfer for a redox couple. If k0 is large then an electrochemical 
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equilibrium is rapidly attained; if k0 is small then the converse is true, and Nernstian behaviour 

will not be observed (the electrode process is described as irreversible). Values of k0 may span 

many orders of magnitude, indeed values have been reported to range from 10−9 to 10 cm s−1.[33] 

The electrochemical parameter α is known as the charge transfer coefficient and can range from 

a value of 0 to 1; it describes whether the transition state lies closest to the reactants (α = 0) or 

the products (α = 1) in terms of reaction coordinate. In most systems, α is often found to lie in 

the range 0.3 and 0.7, and can usually be approximated to 0.5 (which suggests a symmetrical 

interaction between the free energy curves of the electroactive species – see Figure 8) in the 

absence of any measurements. 

 

Figure 8 The effect of the charge transfer coefficient (α) on the symmetry of the interacting 

Gibbs free energy curves for the reduction of A to B (adapted from reference [33]). 

 

The charge transfer coefficient  also describes the relationship between the Marcus 

theory of electron transfer and Butler-Volmer kinetics (Equation 10). 
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Equation 10 Charge transfer coefficient in terms of Gibbs free energy change (ΔG) and the 

reorganisation energy (). 

 

Marcus theory describes the rate of adiabatic electron transfer in terms of the 

reorganisation energy (). This is comprised of contributions from inner (i) and outer (o) 

sphere reorganisation energies. The term i describes changes in bond strength and angles 

during electron transfer, and o depends on contributions from dipole reorientation and electric 

polarization of the surrounding solvent molecules.[187]  
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The Gibbs free energy term (ΔG) in Equation 10 is not fixed; indeed, ΔG changes with 

the applied electrode potential, and as a result of this,  is a potential-dependent quantity. 

However, since kinetic data is often collected over a very narrow potential range,  is often 

treated as a constant value. At applied potentials close to E0 (where ΔG = 0) i.e. a redox couple 

under equilibrium conditions,  is approximately 0.5. In the limit ΔG >> 0, the electrode reaction 

is not spontaneous and since ΔG ≈ ,  tends towards 1. Conversely, in the limit ΔG << 0, the 

electrode reaction is spontaneous and driven by the electrode potential; at this limit, ΔG ≈ − 

and  tends towards 0. 

1.7.3 Mass transport – diffusion, convection and migration 

Electrons transfer between the electrode surface and the electroactive species e.g. A, 

by quantum mechanical tunnelling over a distance of ca 10-20 Å.[187] This results in a depletion 

zone, whereby additional “unreacted” electroactive species must first diffuse (down the 

concentration gradient) from the bulk solution to within this distance before further electron 

transfer may occur. The diffusion process can be adequately described by Fick’s laws.[188,189] The 

symmetry of the diffusion field is dependent on the geometry of the electroactive surface area 

of the electrode. Planar electrodes present a simple case where linear diffusion occurs in one 

direction along the ordinate x (Figure 9). 

 

Figure 9 Symmetry of the diffusion field at a planar electrode surface. 

 

At any point from the electrode, x, there will be diffusive flux (j). This is quantified by 

Fick’s first law (Equation 11) and is proportional to the local concentration gradient, 
𝜕𝑐

𝜕𝑥
. The 

negative sign indicates that the flux is down the concentration gradient, and the proportionality 

constant D is known as the diffusion constant.[190,191] 
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Equation 11 Fick’s first law of diffusion. 

 

The magnitude of D increases with increasing temperature, and decreases with 

increasing solvent viscosity; values are typically in the range of 10−6 to 10−5 cm2 s−1 for common 

non-aqueous electrochemical solvents (CH2Cl2, THF, CH3CN etc.) at room temperature. Larger 

molecules create more viscous drag, and therefore diffuse more slowly than smaller molecules. 

If a molecule is assumed to be spherical, then the value of D is related to temperature (T), solvent 

viscosity (ηV), and particle radius (r) by the Stokes-Einstein equation (Equation 12).[192] 

r

Tk
D

V

B

6
  

Equation 12 Stokes-Einstein equation – kB = Boltzmann’s constant (1.38 × 10−23 J K−1). 

 

The change in concentration with time, 
𝜕𝑐

𝜕𝑡
, at point x is described by Fick’s second law 

(Equation 13) and is proportional to the rate of change in the local concentration gradient, 
𝜕2𝑐

𝜕𝑥2
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Equation 13 Fick’s second law of diffusion for a planar electrode. 

 

Natural convection involves the movement of molecules from more to less dense 

regions i.e. density gradients. This phenomenon maintains the concentration of the bulk solution 

at a constant value. During electrolysis, the reactant becomes depleted and the new product 

builds up at the electrode surface. This causes a change in local densities and establishes a 

density gradient, making natural convection inevitable. However, close to the electrode surface, 

additional frictional forces limit this effect. Considering that the timescale of most 

electrochemical measurements is relatively short (10-20 s), it is assumed that the vicinity of the 

electrode surface is free of any convection processes. This zone is therefore described as the 

diffusion layer. Whilst slight temperature variations in the bulk solution may also induce natural 

convection, it is assumed that electrochemical experiments are perfectly thermostatted. Indeed, 

experiments may be successfully interpreted using diffusion-only models – the unpredictable 
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and irreproducible nature of natural convection effects would be very difficult to model 

(although significant progress has been made in the last decade).[193] 

Forced convection is the deliberate agitation of the solution by a mechanical means i.e. 

stirring or swirling. For electrochemical techniques that operate under diffusion control (all the 

analytical techniques that will be discussed in this section and feature throughout this thesis), it 

is necessary to mechanically agitate the solution between experimental runs, since diffusion is 

a relatively slow process over large distances. This effectively refreshes the electrode-solution 

interface. For electrochemical techniques that operate over a longer timescale, forced 

convection is deliberately used to dominate the other migration effects (such as diffusion and 

natural convection), since its hydrodynamic behaviour is well-defined. For example, stirring is 

employed throughout bulk electrolysis experiments – where the electrochemical conversion of 

reactant to product is driven to completion. 

Migration effects concern the movement of ions due to their electrostatic interaction 

with an external electric field i.e. the applied electrical potential at the electrode. Faradaic 

current is the electron current that flows during electrolysis.[33] In the absence of electrolysis, 

there is a build-up of surface charge at the working electrode surface. Supporting electrolyte, an 

inert salt, is deliberately added in concentrations ca two orders of magnitude greater than the 

electroactive species of study. This balances the buildup of electrode surface charge through the 

formation of an adsorption layer of solvated and unsolvated electrolyte ions.[192] Supporting 

electrolyte also ensures that the potential drop (φM−φS) between the electrode and solution is 

compressed to within 10-20 Å – the distance where quantum mechanical tunneling occurs. In 

doing so, the electric field outside of this range is zero. Diffusion is therefore the only means of 

mass transport from the bulk solution to this region i.e. migration effects are eliminated. If the 

potential drop was to occur over a distance greater than this, then the full potential would not 

be available to drive the electrochemical reaction forwards. 

The density of the electrical double-layer (formed by the electrolyte) is highly ordered 

at the electrode surface, but becomes more diffuse as the distance from the electrode is 

increased. This results from Brownian motion and is adequately described by the Grahame 

model.[194] As the applied electrode potential changes, capacitive charging currents arise from 

the continuous movement of electrolyte, since the composition of the electrolyte double-layer 

is highly dynamic. This capacitive charging current, often referred to as the double-layer 

capacitance (Cdl), is observed as a background signal and is directly proportional to the 

electroactive surface area of the working electrode (and the voltage scan rate in cyclic 

voltammetry, see 1.7.8 below). 
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1.7.4 Supporting electrolyte 

Non-aqueous electrochemical experiments are predominantly conducted in CH3CN, THF, 

or CH2Cl2 containing supporting electrolyte comprising [nBu4N]+ salts of either [BF4]−, [PF6]−, 

[ClO4]−, or [CF3SO3]−. Such supporting electrolytes suffer from poor conductivities due to 

incomplete dissociation of the ion pairs.[195] Another issue relates to the nucleophilicity of the 

anion component. Whilst [BF4]− was long believed to be a “non-coordinating anion”, it is now 

widely accepted that such a notion is in fact incorrect.[196] The non-innocence of [BF4]− as a non-

coordinating anion has previously been demonstrated through its coordination to cationic main 

group metals, and its vulnerability to undergo decomposition via fluoride abstraction 

reactions.[197] The observation of such behaviour in synthetic organometallic chemistry has 

driven the development of a new family of weakly coordinating anions that are of a very low 

nucleophilicity. [198] 

Weakly coordinating anions feature a low overall charge that is delocalised as fully as 

possible over the whole anion; no atom or group bears a high level of charge. Effective 

candidates are kinetically and thermodynamically stable and contain only weakly basic sites on 

their periphery. Two excellent examples are Kobayashi’s anion, tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate, [BArF24]−;[199] and [B(C6F5)4]− (Figure 10).[200] 

 

Figure 10 Examples of weakly coordinating anions: a) Kobayashi’s anion, [BArF24]−;  

and b) B[(C6F5)4]−. 

 

An electrolyte solution of [nBu4N][BArF24] in CH2Cl2 was first investigated by Mann and 

co-workers in 1991, using cyclic voltammetry.[201] They were able to obtain quasi-reversible 

cyclic voltammetry for the single-electron oxidations of Cp2Ru and Cp2Os. This result was in stark 

contrast to the behaviour observed when traditional electrolytes were used. In the case of 

traditional electrolyte such as LiClO4, irreversible two-electron processes are observed, 
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suggesting that the electrogenerated cations are susceptible to interaction and reaction with 

the non-innocent electrolyte anions. 

The electrochemical application of the weakly coordinating electrolyte, [nBu4N][B[C6F5)4], 

was first explored by LeSuer and Geiger almost a decade later in 2000.[202] They were interested 

in finding a system that provided a more positive potential window than that of [nBu4N][BArF24]. 

The potential window is defined as the potential range where the electrolyte/solvent mixture 

remains electroinactive, beyond which large currents are observed as a result of solvent or 

electrolyte decomposition. Indeed, the anodic limit for [nBu4N][B[C6F5)4] was found to occur at 

+1.84 V vs Cp2Fe0/+ compared with +1.55 V vs Cp2Fe0/+ for [nBu4N][BArF24] in CH2Cl2. The relative 

advantages and disadvantages of [nBu4N][B[C6F5)4] vs [nBu4N][BArF24] have since been revisited 

by Geiger and co-workers.[195,203] 

For the electrochemical study of strong Lewis acids such as boranes, it is advisable to 

limit the electrolyte system to non-donor solvents such as CH2Cl2. As highlighted in 1.6, the 

tendency of boranes to form classical Lewis adducts with strong and sterically unencumbered 

donor solvents, such as THF or CH3CN, is high. 1,2-Difluorobenzene (DFB) has been reported to 

provide significant advantages for electrochemical studies over CH2Cl2.[204] It has a high dielectric 

constant (13.8 vs 8.9 for CH2Cl2) that permits the dissolution of electrolyte salts and highly 

polar/ionic electroactive species. DFB is also weakly-coordinating and relatively chemically inert 

with a wide potential window. However, its expense presents a significant disadvantage that 

limits its widespread use. 

The use of a weakly coordinating electrolyte for the electrochemical study of Lewis 

acidic (and oxophilic) boranes will preclude the occurrence of any side-reactions that involve 

either halide abstraction or classical Lewis adduct formation. Such reactions would be highly 

likely if traditional electrolytes containing [BF4]−, [PF6]−, or [ClO4]− were employed.[197] 

1.7.5 Electrode materials 

Glassy carbon is defined as an agranular, non-graphitizable carbon material with a very 

high isotropy of its structural and physical properties and with a very low permeability for liquids 

and gases. The original surfaces and the fracture surfaces are described to have a glass-like 

appearance.[205] The surface structure of glassy carbon is composed of interwoven graphitic 

ribbons. The edges of the graphitic ribbons (where the graphite layers terminate) are decorated 

with a large density of oxygen-containing surface functionalities containing carbonyl and 

hydroxyl moieties.[206] Compared to Pt electrodes, GCEs are cheap and ubiquitous but, in general, 

do not perform electrocatalysis. 
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Figure 11 The structure of glassy-carbon (adapted from reference [207]). 

 

1.7.6 The need for a three-electrode setup 

In 1.7.1, the requirement for a reference electrode was discussed. All the 

electrochemical techniques that feature in this thesis use a three-electrode setup: 

i) The working electrode (glassy carbon or Pt) is the site of interest. It is the flow 

of current/potential across the working electrode-solution interface that is 

being measured. 

ii) The reference electrode (Ag wire) provides a means of measuring the applied 

potential at the working electrode (see 1.7.1). Whenever possible, it is corrected 

to the Cp2Fe0/+ redox couple (according to IUPAC recommendations).[186] 

iii) The counter electrode (Pt wire or gauze) simply functions as an electron source 

or sink, in order to maintain the potential at the working electrode surface. This 

prevents large currents from passing through the reference electrode, and 

causing fluctuations and drift in its potential, [φM−φS]Reference. 

1.7.7 Chronoamperometry 

In single step chronoamperometry, the potential is stepped from a value where no 

electrolysis ocurrs (E1) to a value where the electroactive species undergoes complete 

electrolysis at the electrode surface (E2). In double-step experiments, the potential is then 

stepped to another potential. For experiments that feature reversible electrochemical reactions, 

this value is usually set to the initial potential (E1) so that the products are converted back to the 

reactants. The current response for this process is measured as a function of time. An example 

of such an experiment at a macrodisk electrode (where the electroactive radius r is of the order 
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of millimetres and, predominantly, planar diffusion is exhibited)[208] is shown in Figure 12 for a 

reversible oxidation (e.g. the oxidation of B to A in Scheme 25). 

 

Figure 12 Chronoamperometry at a macrodisk electrode: a) the potential-time profile 

applied at the working electrode and b) the current-time response measured. 

 

As described previously in 1.7.2, the current passed is directly proportional to the 

electroactive area of the electrode (A) and the flux of reactant to the electrode surface (j) 

(Equation 4). The solution of Fick’s second law (Equation 13), to give the diffusive flux (change 

in concentration) of the electroactive species at the electrode surface as a function of time, 

results in the Cottrell equation (Equation 14).[209] 
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Equation 14 The Cottrell equation (current-time transient) at a macrodisk electrode of 

electroactive area A. ct=0 is the initial concentration of the electroactive species. 

 

The Cottrell equation (Equation 14) shows that the current passed at a macrodisk 

electrode is inversely proportional to the square-root of time (t½). In practical terms, a 
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chronoamperogram that is recorded at a macrodisk electrode will show a current-time response 

that decays towards zero current (as illustrated in Figure 12b). As time progresses, the product 

builds up at the electrode surface and, conversely, the reactant becomes depleted. The diffusion 

layer (of thickness d) expands, and the reactant must diffuse over an ever-increasing distance 

before it can undergo electron transfer with the electrode surface. Since the electrode radius (r) 

is considerably larger than the diffusion layer thickness (d), the current that passes is limited by 

the diffusive flux. If the electrode area (A) and the number of electrons (n) involved in the 

electrochemical process are known, then the current-time response can be fitted using the 

Cottrell equation, to determine the diffusion coefficient (D) of the reactant. 

It is interesting to compare the current-time response at a macrodisk electrode to that 

at a microdisk electrode (where the electrode radius r is of the order of micrometres) for the 

same oxidation process (Figure 13). In stark contrast to the current-time response at a macrodisk 

electrode where the current converges to zero current, at a microdisk electrode the current 

instead converges towards a steady-state current (iss). 

 

Figure 13 Chronoamperometry at microdisk (red line) vs macrodisk (blue line) electrodes. 

 

This phenomenon results from the diffusional field symmetry at a microdisk electrode 

being dissimilar to that at a macrodisk electrode at long experiment times, which is a 

consequence of edge-effects. As discussed previously, the diffusion symmetry at a macrodisk 

electrode can be approximated to being planar. Realistically, planar diffusion accounts for more 

than 95% of mass transport at macrodisk electrodes, with the remaining contribution (<5%) 
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resulting from convergent diffusion on the edge of the electrode. As the electrode size decreases, 

there is an enhancement in the edge-effects, since the circumference to area ratio increases. At 

microdisk electrode geometries, edge-effects dominate to the extent that more than 95% of 

mass transport occurs by convergent diffusion (Figure 14). 

 

Figure 14 Diffusion field symmetries at a) microdisk and b) macrodisk electrodes at long 

experiment times (predominantly convergent and planar, respectively). 

 

During a chronoamperometry experiment at a microdisk electrode, the initial 

perturbation in applied potential results in a Cottrellian current response that is predominantly 

planar, since the diffusion layer thickness (d) is relatively small compared to the electrode radius 

(r). However, as the diffusion layer expands, the convergence of the flux lines to a common point 

has the consequence of almost infinite diffusional flux, and the electrode is fed by a constant 

concentration gradient. The steady-state current (iss) that eventually flows is given by Equation 

15. Provided that the number of electrons involved in an electrode reaction is known, the 

diffusion coefficient can be estimated from the measured steady-state current. 

DrnFci tss 04   

Equation 15 The diffusion-limited steady-state current (iss) at a microdisk electrode 

of radius r. 

 

The full current-time transient at a microdisk electrode is expressed by Equation 16, 

where 𝑓(𝜏) is a function of dimensionless time, 𝜏 =
4𝐷𝑡

𝑟2
. 
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Equation 16 The current-time transient at a microdisk electrode of radius r. 

 

A numerical expression for 𝑓(𝜏) was obtained by Shoup and Szabo (Equation 17),[210] 

and provides an accurate approximation (with a maximum error of less than 0.6%) for the 

current-time transient at both the short and long experimental time limits. 
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Equation 17 The Shoup-Szabo expression for f(τ). 

 

The significance of this result is that for a sample of known initial concentration (ct=0), 

both the diffusion coefficient (D) and the number of electrons (n) involved in the electrode 

process can be simultaneously determined through data fitting. This is provided that the 

electroactive radius (r) is accurately known. 

1.7.8 Cyclic voltammetry 

 In cyclic voltammetry experiments, the applied potential at the working electrode is 

swept from a start potential (E1) to an upper vertex potential (E2) and back again to the stop 

potential (E3 = E1) at a constant voltage scan rate, ν (Figure 15). Note that it is not necessary for 

the start and stop potentials to have the same values. 

 

 

Figure 15 Potential-time profile applied in cyclic voltammetry experiments. 
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 The current that flows is measured and plotted against the applied potential to produce 

the resulting cyclic voltammogram (CV). An example of a CV recorded at a microdisk and 

macrodisk electrode is shown in Figure 16 for a reversible oxidation (e.g. the oxidation of B to A, 

shown in Scheme 25). 

 

Figure 16 Cyclic voltammetry at a) microdisk, and b) macrodisk electrodes  

(adapted from reference [187]). 

 

At the microdisk electrode, a sigmoidal current response is observed, whereby the 

steady-state current (iss, discussed in the previous sub-section) is rapidly established. On the 

reverse scan, the current response is often almost overlaid. For this reason, linear sweep 

voltammetry (where the reverse scan from E2 to E1 is absent) is often performed at microdisk 

electrodes, since the reverse scan does not provide any further information. All further 

discussion on cyclic voltammetry will assume that the working electrode is a macrodisk. 

In stark contrast, at the macrodisk electrode the CV exhibits a well-defined peak for both 

the forward and the reverse scans. This corresponds to the oxidation of B to A, and the reduction 

of A back to B. The appearance of a peak results from the depletion of material at the electrode 

surface, as the current becomes diffusion-limited and decays towards zero (Cottrellian 

behaviour). 

Note that throughout this thesis, a positive current is indicative of an oxidative (anodic) 

electrode process and a negative current is indicative of a reductive (cathodic) electrode process. 

The E axis starts are more negative potentials on the left and increasingly positive potentials are 

found further to the right. This is the current IUPAC recommendation for sign conventions and 

the plotting of electrochemical data.[211] 
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 In 1.7.2, electrode kinetics were discussed in terms of the standard electrochemical rate 

constant (k0). It was stated that the relative magnitude of k0 characterises whether an 

electrochemical process is deemed as electrochemically reversible or irreversible, depending on 

whether fast or slow electrode kinetics are respectively apparent. Cyclic voltammetry is an 

excellent tool for determining whether an electrochemical process is reversible or irreversible. 

Figure 17 demonstrates how the appearance of a CV changes with different k0 values (whilst 

maintaining the other electrochemical parameters constant) for a single-electron oxidation 

process. 

 

Figure 17 Simulated CVs exhibiting reversible (red line, k0 = 1 cm s−1), quasi-reversible (blue 

line, k0 = 10−2 cm s−1), and irreversible (black line, k0 = 10−5 cm s−1) behaviour at a macrodisk 

electrode. 

 

As the relative magnitude of k0 decreases, the peak-to-peak separation increases until 

it reaches the irreversible limit. At this limit the peak-to-peak separation is large, and in extreme 

cases the back-peak is not always observed on the reverse scan. It is important to consider that 

the majority of systems are quasi-reversible; they exhibit reversible-like wave shapes with the 

back-peak present, but do not conform to the ideal behaviour exhibited at the reversible limit. 

When considering the reversibility of an electrochemical process, it is important to 

consider that the relative magnitude of k0 is measured against the rate of mass transport. The 
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rate of mass transport is described by the mass transport coefficient (mT) which is defined as the 

ratio of the diffusion coefficient (D) to the diffusion layer thickness (d) (Equation 18). 

d

D
mT   

Equation 18 The mass transport coefficient, mT. 

 

In the reversible limit the rate of the electrode process is much faster than that of 

diffusion (k0 >> mT) whereas in the irreversible limit, the converse is true (k0 << mT). In the 

irreversible limit, the rate of the electrode process is so slow that the oxidised product diffuses 

away from the electrode surface before it can undergo reduction back to the reactant. 

 In the reversible limit, the peak-to-peak separation (ΔEpp) given by the difference 

between the oxidative and reductive peak potentials (Ep,ox and Ep,red respectively, shown in Figure 

18) is 57 mV at 293 K. This is irrespective of the voltage scan rate (ν) employed (Figure 19); 

however, for quasi-reversible and irreversible processes, ΔEpp is variable and increases with 

increasing scan rate, ν. 

 

Figure 18 An annotated simulated CV exhibiting reversible behaviour at a macrodisk 

electrode. 

 

For reversible systems under standard conditions, the average value of the peak 

potentials (Equation 19) is equal to the standard reduction potential (E0), provided that the 

charge transfer coefficient α = 0.5. However, under non-standard conditions and for quasi-
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reversible systems, it is cautious to define this value as the mid-peak potential, Emid.[212] It is a 

highly important thermodynamic parameter that gauges how readily an electroactive species 

undergoes oxidation or reduction. 

2

,,

mid

redpoxp EE
E


  

Equation 19 The mid-peak potential (Emid) for a reversible electrode process. 

 

Under reversible conditions, the ratio of the oxidative and reductive peak currents (ip,ox 

and ip,red, respectively) are equal (
𝑖p,ox

𝑖p,red
= 1). In both the reversible and irreversible limits, the 

peak current (ip) is observed to be directly proportional to the square root of scan rate (ν½), albeit 

with a different proportionality constant, if the electroactive species is dissolved in solution and 

under diffusion control. This effect is demonstrated for a reversible system in Figure 19, and the 

scan rate dependence of peak current is described by the Randles-Sevčik equation (Equation 

20). 
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Equation 20 The Randles-Sevčik equation describing the dependence of voltage scan rate, ν, 

on peak current, ip, for a reversible process operating under diffusion control at 25°C. 
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Figure 19 a) Simulated CVs of varying scan rates (ν) for a reversible single-electron oxidation, 

and b) a Randles-Sevčik plot showing the linear relationship of peak current (ip) with square 

root scan rate (ν½). 

 

One must note that while peak current increases with voltage scan rate, the total charge 

passed (Q) remains constant (since i = 
𝑑𝑄

𝑑𝑡
). Since the thickness of the diffusion layer (d) increases 

with time, it is much thinner at the faster scan rates and the flux of the reactant undergoing 

electrolysis (at the electrode surface) is much greater. It is also important to note that the ν½ 

dependence on current is not necessarily linear under quasi-reversible conditions. 

Finally, it is helpful to summarise this and preceding sub-sections by comparing the 

voltammetric behaviour of a macrodisk electrode with that of a microdisk electrode (Table 1). 
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Table 1 Comparing the cyclic voltammetric behaviour (mass transport effects) of macro- and 

microdisk electrodes (adapted from reference [187]). 

 

Electrode geometry 

Macrodisk Microdisk[a] 

d vs r d << r d >> r 

Observed response Defined peak, ip Steady-state current, iss
 

ν dependence? Yes No 

i dependence ip  ∝ ν½ D½ A iss  ∝ r D 

 

[a] Note that this behaviour is applicable at slow to modest scan rates; at very high scan rates, 

a microdisk electrode may exhibit macrodisk-like behaviour i.e. the observation of defined 

peaks with a scan rate dependence. 

1.7.9 Coupled chemical reactions and adsorption 

All the previously described systems feature the simple A/B redox couple shown in 

Scheme 25, where A and B are both chemically stable on the timescale of the electrochemical 

experiment. In reality, this simplistic model does not hold true and homogeneous chemical 

follow-up steps can be in operation. This is particularly true for the development of 

electrocatalytic systems, where the electrogenerated species perform an important role rather 

than sitting stable and dormant in solution. Testa and Reinmuth notation is used to describe the 

exact mechanism involved in an electrochemical system where multiple electrode processes 

may be coupled to multiple chemical reactions.[213] This notation uses the italicised letters E and 

C to denote a heterogeneous electron transfer and a homogeneous chemical reaction, 

respectively. The ordering of the letters describes the specific order of these steps. Using this 

convention, the simple system involving the A/B redox couple (Scheme 25) can be described as 

an E reaction. 

The EC reaction presents the simplest case of an electrochemical process coupled to a 

chemical reaction. It denotes that single-electron transfer is followed by chemical reaction of 

the electrogenerated product to give an electroinactive product. An example of an EC reaction 

is given in Scheme 26 for the oxidation of B to A, where A undergoes conversion in solution to 

form electroinactive Y. 
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Scheme 26 A generic EC reaction. Y is electroinactive. 

 

The cyclic voltammetric behaviour exhibited by such a system is shown in Figure 20. The 

variation of voltage scan rate (ν) provides kinetic information on the rate of the coupled C step. 

At low scan rates (orange line) one may erroneously assume, at first glance, that the absence of 

a back-peak suggests that the redox couple is simply electrochemically irreversible (Eirr). As the 

voltage scan rate increases however, the kinetics of the C step are surpassed by the rate at which 

the potential switches from a value where oxidative current flows to one where reductive 

current begins to flow. At fast scan rates, species A can be reduced back to B before it undergoes 

further reaction in solution to form electroinactive Y. 

 

Figure 20 Simulated CVs of varying scan rates (ν) for an oxidative EC process. 
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An EC’ reaction denotes an electrochemical system where the follow-up chemical 

reaction rapidly regenerates the starting material, rendering the process electrocatalytic. In the 

example shown in Scheme 27, the single-electron electrochemical oxidation of B results in the 

formation of A, which undergoes a catalytic homogeneous follow-up reaction with 

electroinactive Z to regenerate B and electroinactive Y.  

 

 

 

Scheme 27 A generic EC’ reaction. Y and B are electroinactive. 

 

When an underlying EC’ mechanism is apparent, the resulting CV may become sigmoidal 

in appearance (see Figure 21) if the rate constant of the C’ step is sufficiently large. This is 

because the rapid and constant regeneration of the electroactive species (B) results in the 

perceived “infinite flux” of B at the electrode surface. The steady-state current that passes is 

limited by the kinetics of the electrode reaction and the rate of the catalytic chemical reaction 

(turnover frequency), which in this case is dependent on the concentration of Z. For many EC’ 

processes with modest catalytic rates, peak shaped voltammetry is still observed, except that 

either the oxidation or reduction process being catalysed exhibits an enhanced peak current 

compared to the simple E case in the absence of electrocatalysis, and a correspondingly 

diminished reverse peak current. 
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Figure 21 Simulated CV for an oxidative EC’ process. 

 

Such an electrocatalytic effect was observed in the cyclic voltammetry of the Fe-based 

molecular H2 oxidation electrocatalyst (4-H), discussed in 1.5. In the presence of H2 and added 

base (N-methylpyrrolidine), 4-H exhibited a catalytic oxidation wave. In this case, the current 

was limited by the concentration of the added base, and was observed to increase until 44 

equivalents of base were added in total. Above this concentration, no significant increase in 

current was observed with further additions of base; instead, the current was limited by the 

kinetics of the electrode reaction and the turnover rate. 

1.7.10 Simulation of cyclic voltammetric data 

The simulation of cyclic voltammetric data allows pertinent kinetic and thermodynamic 

parameters (E0, , k0, k1 etc.) to be extracted for the heterogeneous electrode reactions and any 

coupled homogeneous chemical reactions. This information allows the experimental behaviour 

of an electrochemical system to become well-understood and predictable, aiding in the further 

development and optimisation of such systems. The accurate simulation of voltammetric data 

requires the appropriate theoretical models; such models are well-established and have been 

discussed in the preceding sub-sections. 
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The simulation of cyclic voltammograms relies on the resolution of the multiple partial 

differential equations that define mass transport.[214] This allows the concentration profiles of 

all the electroactive species present to be modelled as a function of both distance, x, and time, 

t. From this, the current-potential-time response of the system may then be calculated for a 

given perturbation in applied potential at the electrode surface. The solution of this 

mathematical problem may be accomplished using analytical, semi-analytical or numerical 

methods. Analytical methods are attractive, since they provide exact solutions to mathematical 

problems. However, the complexity of the electrochemical systems (for example, the presence 

of multiple electroactive species and follow-up chemical reactions) limits their feasibility. 

Numerical methods are the best option, and offer very accurate approximations to the true 

solution through the iterative optimisation of simulated data. 

Since Fick’s second law (Equation 13) is a second order differential equation, its solution 

is only possible through the introduction of the boundary conditions – conditions that the 

solutions must meet within specified regions. The first boundary condition concerns the 

concentration profiles at the beginning of the electrochemical experiment, t = 0. If the system is 

at equilibrium then the concentration of any species is uniform across the solution; the initial 

condition is expressed by Equation 21a. For a planar electrode, the limiting condition is 

sometimes defined for the furthest point away from the electrode surface. Here, it is assumed 

that the concentrations of the species are unperturbed and inexhaustible by the electrode 

reaction, regardless of the experimental time. For the semi-infinite diffusion model, it is 

assumed that any point on x beyond the diffusion layer (at x = d) tends towards the infinite limit 

expressed by Equation 21b. Within the diffusion layer or infinite limit, the concentration and 

diffusive flux of the electroactive species at the electrode surface is dependent on the applied 

potential. For a reversible process this can be expressed in terms of the relative rates of the 

forward (kf) and reverse (kb) electrochemical reactions (reduction and oxidation, respectively), 

as indicated by Equation 21c. The potential dependence of the rate constants is described by 

Butler-Volmer kinetics (discussed in 1.7.2). Mass is conserved applying the condition set out by 

Equation 21d; the flux of product, B, from the surface must be balanced by the flux of reactant, 

A, to the surface. Where an electroinactive product is generated through homogeneous 

chemical reactions, e.g. as in an EC process, the product is assumed to have zero flux at the 

electrode surface (Equation 21e). A simple depiction of the various boundary conditions for an 

EC mechanism is shown in Figure 22. 
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Equation 21 General boundary conditions for an electrochemical experiment. 

 

 

 

Figure 22 Scheme of the boundary conditions in an electrochemical system involving an EC 

mechanism. 
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As well as defining boundary conditions, the number and order of the heterogeneous 

electron transfer (E) and homogeneous chemical reaction (C) processes must also be defined 

e.g. E, EC, ECE etc. In addition to this, the appropriate electrical perturbation applied must be 

considered. For example, when attempting to simulate cyclic voltammetric data, the potential 

of the working electrode and its scan rate (υ) must be taken into account. 

Finite difference equations are used as approximations of partial derivatives to model 

the concentration profiles. Concentration is approximated to be a function of discrete points in 

time (t) and one-dimensional space (x). Points in the x-direction are assigned as natural numbers 

j = 0, 1, 2, 3… that are spaced Δx apart, whereas points in time are analogously assigned as 

natural numbers l = 0, 1, 2, 3… that are spaced Δt apart. Any point concentration may therefore 

be described by its j and l values as 𝑐𝑗
𝑙. Thus, finite difference equations for the concentration 

gradients, 
𝜕𝑐

𝜕𝑥
, between points (e.g. j ± ½) and at a point (e.g. j) may be defined by Equation 22a, 

b, and c respectively. The combination of Equation 22a and b provides an approximation for the 

second derivative, 
𝜕2𝑐

𝜕𝑥2
 (Equation 22d). An approximation for the change in concentration with 

time, 
𝜕𝑐

𝜕𝑡
, may also be defined by Equation 22e. 
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Equation 22 Finite difference equations for the approximation of partial derivatives. 

 

The backward implicit method is frequently used as a numerical method for 

approximating a set of concentrations in one- and two-dimensional spatial systems. This method 

applies the described finite difference equations to discretise mass transport. Fick’s second law 
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(Equation 13) can be described by combining Equation 22d and e to give Equation 23a, which 

can be rearranged to give a set of linear equations (Equation 23b). 
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Equation 23 Conversion of Fick’s second law into a set of linear equations for the backward 

implicit method 

 

Any boundary conditions that are applicable for the simulation are then applied and the 

linear equation is arranged into a matrix equation, which is solved sequentially after inserting 

the initial bulk concentration values. Multiple iterations will eventually give a steady-state 

system, where the concentration profile no longer changes with further iterations. This process 

is repeated for the timescale of the experiment, to build up a description of how the 

concentration-distance profiles change with time. The diffusional flux of reactant to the 

electrode surface can be used directly to calculate the current that passes at the working 

electrode (from the Butler-Volmer equation, Equation 9). From this, a simulated CV can be 

produced. Owing to the complexity of electrochemical systems, simulation is performed using 

computational software such as DigiElch,[215] which can be run on a modern standard desktop 

computer. 

1.8 Aims 

My primary aim is to combine the ability of FLPs to “pre-activate” H2 with the non-

aqueous electrochemical oxidation of the resulting borohydride (Scheme 28). It is envisaged that 

two-electron oxidation of the borohydride will be more energetically favourable than that of H2 

at cheap and ubiquitous carbon electrodes, effectively lowering the potential (driving force) that 

is required i.e. performing electrocatalysis. Assuming that electrooxidation of the borohydride 

regenerates the Lewis acid (LA), the system should be catalytic i.e. fully recyclable, unlike 

conventional direct borohydride fuel cell technology.[21,185] 
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Scheme 28 The electrochemical-FLP approach to the electrocatalysis of H2 oxidation. 

 

To realize this concept, a thorough electrochemical study of FLPs and electron deficient 

boron-based Lewis acids is required. An ideal and logical starting point is to study systems based 

on the archetypal Lewis acid, B(C6F5)3 (8). 

I aspire to pioneer a new and unique approach to the development of electrocatalysts 

for H2 oxidation. Combined electrochemical-FLPs may ultimately find application in the anodic 

half-cell of a H2 fuel cell. However, please note that I am not concerned with the fabrication of 

fuel cell prototypes, nor am I concerned with coupling the H2 oxidation reaction to the O2 

reduction reaction. Indeed, such attempts would be well beyond the scope of this project and 

should be reserved for a time when suitable and stable electrochemical-FLP systems have been 

identified and optimised. 



 

 

 

 

 

 

Chapter 2 

Results and discussion 

Exploring the redox chemistry of B(C6F5)3 
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2.1 Overview 

When Massey and co-workers first reported B(C6F5)3 (8) in 1963,[216–218] they noted that it 

had a tendency to form strong adducts with a number of different Lewis bases. The Lewis acidity 

of 8 was later measured and determined to be intermediate between BF3 and BCl3.[218–220] Unlike 

the boron trihalides, however, 8 is a relatively thermally stable solid that exhibits a good 

resistance to hydrolysis.[221,222] 8 therefore offers an unprecedented ease of handling, combined 

with strong Lewis acidity and adequate steric bulk. It is for this reason that Piers and Chivers 

described 8 as “the ideal boron-based Lewis acid”.[222] 

Aside from its application as an archetypal Lewis acid for FLP applications (as discussed 

in 1.4), 8 has found numerous applications in synthetic organic transformations,[223–227] the 

preparation of weakly coordinating anions,[228–230] and the activation of olefin polymerization 

catalysts.[231–235]  

In addition to its interesting Lewis acidic properties, the ability of 8 to act as a one-

electron oxidant was accidentally discovered by Norton’s group in 1999.[236] Erker and co-

workers had previously demonstrated that 8 could be used to open zirconocycles to generate 

effective olefin polymerization catalysts.[237] When Norton and co-workers attempted to extend 

this concept to heteroatom-substituted zirconocycles, they noted the partial oxidation of their 

catalyst. Soon afterwards, Green et al. also observed the one-electron oxidation of a η2-vinyl 

molybdenum complex in the presence of 8.[238] Norton’s group further investigated the redox 

properties of 8; they chemically reduced 8 using the strong reluctant decamethylcobaltocene, 

CoII(CpMe5)2 (CpMe5 = η5-C5Me5), and studied the resulting 8− intermediate via EPR and UV-vis 

spectroscopic methods.[239] The rate of decomposition of 8− was determined to be ca 5.7 × 10−3 

s−1 at 23°C using UV-vis spectrophotometry (λmax = 603 nm).[239] However, this value should be 

treated with some caution, given that the experiments were performed in the donor solvent 

THF and the formation of the 8THF adduct is well known (Figure 23).[240–242] 
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Figure 23 Molecular structure of 8THF.[241] 

 

Despite there being an interest in the redox properties of 8, its direct electrochemical 

reduction initially proved to be difficult. Early attempts to record the cyclic voltammetry of 8 

were made using either coordinating (donor) solvents, e.g. THF, and/or common supporting 

electrolyte salts of ClO4
−

, PF6
− or BF4

− – which can react with electrophilic species such as 8. These 

experimental conditions resulted in ill-defined cyclic voltammograms at best, and only enabled 

predictions of the reduction potential of 8.[236,243] In 2011, O’Hare and collaborators (including 

my supervisor, G. Wildgoose) demonstrated, for the first time, the direct reduction of 8 using 

cyclic voltammetry.[244] This was achieved by employing a carefully selected weakly-coordinating 

electrolyte and solvent system that was composed of Kobayashi’s anion, [nBu4N][B{3,5-

(CF3)2C6H3}4], and CH2Cl2.[203] However, no further mechanistic or kinetic studies were 

undertaken at that time. 

This classical Lewis acid is the foundation of my initial work into the development of H2 

oxidation electrocatalysts using a FLP approach. Therefore, it is important that any gap in 

understanding is addressed before progressing to more complex systems. In this chapter, I 

report a kinetic and mechanistic study into the one-electron reduction of 8 in two low donor 

solvents: CH2Cl2 and DFB. Electrochemical experiments, combined with digital simulation of 

voltammetric data, DFT computational studies and multinuclear NMR analysis allow 

thermodynamic, kinetic and mechanistic information on the redox activity of 8 to be obtained, 
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whilst also alluding to the fate of the electro-/chemically-generated radical anion, 8•− i.e. its 

decomposition products.  

The results contained herein have been published in the journal Dalton Transactions.[245] 

2.2 Electrochemical experiments 

The direct voltammetric reduction of 8 was explored at a Pt macrodisk electrode using 

cyclic voltammetry (Figure 1). A weakly coordinating electrolyte system composed of a solution 

of [nBu4N][B(C6F5)4] in either CH2Cl2 or DFB solvents was selected to avoid any reaction of 8 with 

coordinating solvent or anions of the supporting electrolyte. Similar voltammetric behaviour 

was observed for both solvents. Upon first scanning (at 100 mV s-1) from the open circuit 

potential (OCP) towards more negative potentials a reduction wave was observed at −1.82 and 

−1.67 V vs Cp2Fe0/+ for CH2Cl2 and DFB respectively. There was an absence of the corresponding 

oxidative back-peak when the scan direction was reversed at slow scan rates (<500 mV s-1). 

However, at faster scan rates (500-5000 mV s-1) a small oxidation wave was observable, 

becoming more pronounced as the scan rate was increased. 
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Figure 24 Overlaid CVs of 8 in a) CH2Cl2 (5.0 mM) and b) DFB (5.1 mM), recorded at scan rates 

(ν) of 100, 500, 1000, 2000 and 5000 mV s−1 at a Pt macrodisk working electrode. 
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The observed voltammetric behaviour is highly indicative of an underlying EC 

mechanism, when described using Testa-Reinmuth notation.[213] Initially, 8 undergoes a 

heterogeneous, electrochemically quasi-reversible reduction (E-step) at the electrode surface. 

This is rapidly followed by an irreversible, homogeneous chemical step in the solution (C-step) 

to form electroinactive decomposition products – as evidenced by the absence of any other 

significant features in the CV. Indeed, it is well-known that radical-chain mechanisms usually 

gives rise to complex product mixtures, and so it safe to assume that the same is true of 8•−. As 

the scan rate is increased, the kinetics of the chemical follow-up step begin to be outrun on the 

voltammetric timescale, and the re-oxidation of intermediate 8•− back to the neutral parent 

compound, 8, is observed (Scheme 1). 

 

 

Scheme 29 Postulated EC mechanism for the reduction of B(C6F5)3, 8. 

 

On closer inspection, additional small reduction and corresponding oxidation waves are 

also observed at more cathodic (negative) potentials – ca 200 mV – than the main B(C6F5)3 (8) 

reduction peak. Their broad, symmetric wave shape is very characteristic of surface-adsorbed 

species. In light of the NMR analysis of the reaction products (vide infra) this is tentatively 

attributed to the formation of radical species on the electrode surface during the decomposition 

process of 8•−. 

To fully understand the mechanism of 8 reduction, the voltammetric process needs to 

be digitally simulated. But first, in order to perform this, the number of electrons (n) involved in 

the reduction process must be determined analytically. The diffusion coefficient (D) of 8 is also 

required for simulation purposes. Values of n and D were determined simultaneously by 

performing single potential-step chronoamperometry at a Pt microdisk electrode and 

numerically fitting the experimental data using the Shoup-Szabo approximation (see 1.7 for 

further details).[210] This function accurately predicts the current response at a microdisk 

electrode over the entire time domain to a maximum error of less than 0.6%.[210] This is provided 

that both the concentration of the redox active species and the radius of the microelectrode are 

accurately known. Chronoamperomograms were recorded for the reduction of 8 in both CH2Cl2 

and DFB, and are shown in Figure 25 along with the Shoup-Szabo best fits (which were 
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determined using Origin™ software[246]). The fitted data confirm that 8 undergoes single-

electron (n = 1) reduction in both solvent systems, with diffusion coefficients of (8.5 ± 0.1) x 10−6 

and (3.9 ± 0.1) x 10−6 cm2 s−1 for CH2Cl2 and DFB respectively. The difference in the value of the 

diffusion coefficient between CH2Cl2 and DFB likely reflects the greater viscosity of DFB 

compared to CH2Cl2. 
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Figure 25 Experimental chronoamperograms (crosses) and Shoup-Szabo best fits (line) for the 

reduction of 8 in a) CH2Cl2 (4.8 mM, 31 m electroactive radius) and b) DFB (5.0 mM, 30 m 

electroactive radius) at a Pt microdisk working electrode. 
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To further confirm the diffusion coefficients of 8, steady-state linear sweep voltammetry 

was performed at Pt microdisk electrodes in both solvent systems (Figure 26). Assuming a single-

electron reduction process, the diffusion coefficients of 8 can be determined from the measured 

steady-state current, which is diffusion-limited at microdisk electrode geometries (see 1.6 for 

further details).[187] The diffusion coefficient, D, was found to be (8.4 ± 0.1) x 10−6 and (4.7 ± 0.1) 

x 10−6 cm2 s−1 for CH2Cl2 and DFB respectively. Considering the experimental error encountered 

in accurately measuring a steady-state current, these D values are in excellent agreement with 

those obtained using chronoamperometry. 
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Figure 26 Linear sweep voltammogram for the one-electron reduction of 8 in a) CH2Cl2 (4.8 

mM, 31 m electroactive radius) and b) DFB (5.0 mM, 30 m electroactive radius), recorded at 

a scan rate of 5 mV s−1 at a Pt microdisk working electrode. 
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2.3 Digital simulation 

Having ascertained that 8 undergoes single-electron reduction, along with quantifying 

its D values in the solvents studied, the next step was to perform digital simulation of the 

experimentally-observed cyclic voltammetric data in order to extract kinetic and 

thermodynamic parameters. The voltammetric reduction of 8 produced very good fits between 

simulation and experiment, as shown in Figure 27 and Figure 28, when modelled as a simple EC 

process (Scheme 1). A variety of other plausible, yet more complex, mechanisms for the decay 

of 8•− were also simulated. These included its decomposition to form further redox-active 

products (ECE), disproportionation (DISP), and bimolecular radical recombination (EC2 or EC2E) 

mechanisms. However, none of these mechanisms were found to fit the observed voltammetry. 

The globally optimized parameters for the electrochemical reduction (E0, , and k0) and the 

pseudo-first order rate constant (k1) for the homogeneous chemical decomposition step are 

given in Table 2 for the best fit obtained (using the EC reaction model). 
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Figure 27 a) Experimental (line) and simulated (open circles) overlaid CVs for the reduction of 8 

(5.0 mM) in CH2Cl2 at a Pt macrodisk working electrode; b) corresponding Randles-Sevčik plot 

comparing simulated (open circles) and experimental (closed circles) peak currents against the 

square root of scan rate (ν); c) corresponding Laviron plot comparing simulated (open circles) 

and experimental (closed circles) peak potentials against the logarithm of scan rate (ν). ν = 100, 

500, 1000, 2000 and 5000 mV s−1. 
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Figure 28 a) Experimental (line) and simulated (open circles) overlaid CVs for the reduction of 8 

(5.1 mM) in DFB at a Pt macrodisk working electrode; b) corresponding Randles-Sevčik plot 

comparing simulated (open circles) and experimental (closed circles) peak currents against the 

square root of scan rate (ν); c) corresponding Laviron plot comparing simulated (open circles) 

and experimental (closed circles) peak potentials against the logarithm of scan rate (ν). ν = 100, 

500, 1000, 2000 and 5000 mV s−1. 
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Table 2 Simulated parameters for the voltammetric reduction of 8. 

Parameter CH2Cl2 DFB 

E0 vs Cp2Fe0/+/ V −1.79 ± 0.05 −1.65 ± 0.05 

α 0.5 ± 0.05 0.5 ± 0.05 

k0 / 10−2 cm2 s−1 1.3 ± 0.2 1.1 ± 0.2 

D8 / 10−6 cm2 s−1 8.5 ± 0.1 3.9 ± 0.1 

D8− / 10−6 cm2 s−1 8.5 ± 0.1 3.9 ± 0.1 

k1 / s−1 6.1 ± 0.1 7.7 ± 0.2 
 

 

The E0 values for the reduction of 8 were found to be 0.5-0.6 V more negative than the 

value predicted by Cummings et al. during their electrochemical study of the series 

B(Mes)n(C6F5)3-n (n = 1-3).[243] Their measurements were made in the coordinating electrolyte 

system, THF/[NBu4][PF6], and required the equilibrium constants for THF adduct formation 

(8∙THF) to be accounted for. Since these values were crudely estimated by measuring chemical 

shifts of 11B NMR spectra with varying amounts of THF, and assuming that the chemical shift 

change between free borane and the THF-bound Lewis adduct is the same for all compounds in 

their series, it is likely that their predicted E0 values are inaccurate. Also, the potential for 

abstraction of F− from the supporting electrolyte was not considered. 

The modest value of the standard electrochemical rate constant (k0) suggests that the 

reduction of 8 is an electrochemically quasi-reversible process. However, the chemical reactivity 

of 8•− limits the observation of the corresponding (oxidative) back-peak, except at relatively fast 

scan rates. 8•− undergoes a rapid follow-up chemical reaction with pseudo-first order rate 

constants (k1) of 6.1 ± 0.1 and 7.7 ± 0.1 s−1 in CH2Cl2 and DFB respectively. These values obtained 

in weakly coordinating solvents are approximately three orders of magnitude larger than the 

decomposition rate constant reported by Norton and co-workers using EPR measurements in 

the donor solvent, THF.[239] Indeed the follow-up reaction in CH2Cl2 or DFB occurs so rapidly as 

to preclude any kinetic measurements using EPR techniques. When 8 was reduced using the 

strong single-electron chemical reductant, CoII(CpMe5)2 (E0 = −1.94 V vs Cp2Fe0/+ in CH2Cl2)[247], it 

was found that the decomposition of 8•− occurred too rapidly (<5 s) to be able to measure the 

EPR signal. This was despite my best efforts, including freezing one or both solutions to −196°C 
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prior to mixing and then allowing to thaw to −50°C in the spectrometer. Visually, this 

corresponded to a rapid (almost immediate) colour change from a blue solution to a yellow 

solution on mixing. This indicated the complete formation of [CoIII(CpMe5)2]+, even at −78°C. 

2.4 Computational modelling of B(C6F5)3•− 

Given the strong Lewis acidity of 8, it is somewhat curious to find that k0 is only of the 

order of 10–2 cm s–1 i.e. it exhibits quasi-reversible electrode kinetics. To help understand this, 

DFT computational modelling of the 8 and 8•− species was performed by V. Oganesyan to 

ascertain the optimised (gas phase) geometry, singly occupied molecular orbital (SOMO), and 

comparative charge and spin density distributions. For spin-unrestricted types of calculations, 

the unpaired molecular orbital of 8•− is best represented by the SOMO shown in Figure 29a. The 

resulting spin density distribution of 8•− is shown in Figure 29b, and the charge distributions 

(based on Mulliken electron population analysis) of 8 and 8•−, respectively, are shown in Figure 

30. 

The optimised geometries of 8 and 8•− reveal little deviation from planarity around the 

trigonal planar boron centre, although the torsion angle between the aryl rings and the central 

plane containing the B atom is reduced from 37°, in the case of 8, to 34° in the 8•− species. This 

is due to delocalisation of some spin density onto the C6F5 rings, within the SOMO. 

 

 

Figure 29 DFT calculated a) SOMO of 8•− and b) its corresponding spin-density. 
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Figure 30 View of the geometry optimized structures of a) 8 and b) 8•−. Partial charges are 

shown for each atom (units are e), based on Mulliken electron population analysis. 
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The relationship between Marcus theory and Butler-Volmer kinetics was described in 

1.7 by Equation 10. To reiterate, i describes changes in bond strength and angles during 

electron transfer, and o depends on contributions from the (dipole) reorientation and 

electronic polarization of the surrounding solvent molecules.[187] Given that DFT calculations 

indicate that there is no significant change between the structures of 8 and 8•−, one can infer 

that the solvent reorganisation energy (o) is the rate-limiting factor during electron transfer 

(Equation 24). 










 


o

G


 1

2

1
 

Equation 24 Charge transfer coefficient () in terms of Gibbs free energy change (ΔG) and the 

solvent reorganisation energy (o). 

 

Since the obtained values of  are close to 0.5 in either solvent system (Table 2), it is 

suggested that the reorganisation energy (o) is very much larger than the Gibbs free energy 

change (ΔG) for this electrochemical process. 

DFT modelling shows that when 8 is reduced, both spin and charge density are 

predominantly localized on the boron-centre of 8•−. Together with the indication that solvent 

reorganisation is strongly coupled to the electron transfer, these findings may indicate that the 

decomposition of 8•− predominantly proceeds via reaction with solvent at the boron centre to 

form four-coordinate species (vide infra). 

2.5 Exploring the fate of B(C6F5)3
− 

Finally, I attempted to elucidate the reaction products that result from the decay of 8•−, 

using 11B and 19F NMR spectroscopy. When a colourless solution of 8 (in either CH2Cl2 or DFB) 

was treated with an aliquot of CoII(CpMe5)2, a deep blue coloured solution was formed, indicative 

of the generation of 8•−. The intense blue colour rapidly discharged to give a dark yellow/brown 

solution upon standing. 11B and 19F NMR spectroscopy was performed directly on the reaction 

mixture using a C6D6 insert. Then, the sample was taken to dryness under vacuum to yield a 

brown residue, which was taken up in either CDCl3 or CD3CN (0.8 mL) for further NMR analysis 

(and to allow 19F NMR spectra to be obtained for the DFB samples). 

The 11B NMR spectrum obtained after the chemical reduction of 8 in CH2Cl2 revealed a 

mixture of five radical decomposition products formed via reaction with the solvent. These are 

listed in Table 3. The identity of each product has also been tentatively assigned, where possible, 

by comparison with known literature compounds.[117,200,248,249] The doublet observed at δ −0.52 
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ppm has a coupling constant of 77 Hz, hence I assign this to an as yet unidentified four-

coordinate borate species containing one B-H bond (vide infra). 

 

Table 3 11B NMR data and analysis for the reduction of 8 with CoII(CpMe5)2 in CH2Cl2. 

δ / ppm Multiplicity Assignment 

−0.52 d; 1JB-H = 77 Hz [HClB(C6F5)2]− [a] 

−3.82 s [Cl2B(C6F5)2]− [248] 

−7.04 br. s [ClB(C6F5)3]− [249] 

−13.40 s [B(C6F5)4]− [200] 

−25.40 d; 1JB-H = 92 Hz [HB(C6F5)3]− [117] 

 

[a] Speculative – see text. 

 

The corresponding 19F NMR spectrum of this same sample is complex. Five signals were 

observed as doublets of multiplets (arising from second-order spin-spin coupling) between δ 

−132.0 and −135.9 ppm, corresponding to ortho-F nuclei on the C6F5 rings. A further series of 

broad overlapping multiplets were observed from δ −162.0 to −165.5 ppm and from δ −165.7 to 

−168.4 ppm, corresponding to aryl fluorine nuclei in the para- and meta- positions respectively. 

Whilst these latter overlapping signals could not be assigned, the ortho-F signals are listed in 

Table 4 together with their relative product distribution, as determined by integration of the 

peaks. A tentative assignment has been made by comparison to literature values.[117,200,248,249] 
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Table 4 19F NMR data and analysis for the reduction of 8 with CoII(CpMe5)2 in CH2Cl2. 

δ / 
ppm 

Multiplicity 
Relative product 
distribution /% 

Assignment 

−132.4 dm 39 ± 1 [ClB(C6F5)3]− [249] 

−133.7 dm 14 ± 2 [HB(C6F5)3]− [117] 

−134.4 dm 21 ± 2 [Cl2B(C6F5)2]− [248] 

−135.4 m 6 ± 1 [B(C6F5)4]− [200] 

−135.8 dm 20 ± 3 [HClB(C6F5)2]− [a] 

 

[a] Speculative – see text. 

 

The 19F peak at δ –135.8 ppm is as yet unassigned, but it is likely to correspond to the 

unidentified product giving rise to the doublet at δ −0.52 ppm in the 11B NMR spectrum. Based 

on chemical intuition, if one speculates that this signal corresponds to [HClB(C6F5)2]– (for which 

no previous literature characterization data exists) then it forms approximately 20% of the 

product distribution (based on integration of the 19F NMR signals). 

When the reduction of 8 was performed in DFB, three signals were observed in the 11B 

NMR spectrum at: δ –3.88 (s, unassigned), –13.28 (s, [B(C6F5)4]−)[200], and –0.28 to 1.16 (br. m, 

unassigned) ppm. The broad multiplet between –0.28 and 1.16 ppm most likely corresponds to 

several structurally-related products that give rise to overlapping signals. Indeed, a complex 

series of overlapping muliplets were observed in the 19F NMR spectrum in the range δ −131.7 to 

−135.4 (ortho-F), –161.4 to –164.7 (para-F), and –166.0 to −166.6 (meta-F) ppm, indicative of 

multiple products containing fluorinated aryl rings. No significant change in any of the NMR 

spectra was observed upon exchanging the solvent to CDCl3 or CD3CN; this suggests that the 

decomposition products of 8•− are exclusively four-coordinate boron compounds. 

The lack of NMR data in the literature for boron compounds containing C6H4F/C6H3F2 

groups hindered full assignment of the products. Only [B(C6F5)4]− can be assigned with any 

certainty. However, given that the rate of decomposition of 8•− is pseudo-first order and similar 

in either solvent system, it is likely that DFB reacts with 8•− in an analogous manner to CH2Cl2 – 

the solvent being in vast excess in both cases. Comparison of the 11B and 19F NMR spectra of 

authentic samples of [nBu4N][BF4] and [nBu4N][FB(C6F5)3] revealed no evidence for the formation 

of reaction products containing B–F bonds in either the dichloromethane or DFB solvent systems. 
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Hence, one can speculate that the unidentified (major) products of the decomposition of 8•− in 

DFB are likely to be borate species of the form [(C6F5)3-xB(C6H4F)x]– (x = 1-2). Furthermore, 1H 

NMR (CDCl3) analysis of the products from either solvent system revealed no evidence for the 

decomposition of [CoIII(CpMe5)2]+. 

Whilst the decomposition of the 8•− radical anion via reaction with solvent may not be 

surprising, the key point to note is that, in contradiction to Norton’s earlier suggestion,[239] 

[CoIII(CpMe5)2][B(C6F5)4] is only a minor product of this reaction (approximately 5%). Further, 

whilst CH2Cl2 is known to be prone to radical attack, DFB is usually considered to be less 

susceptible.[204] Yet, the 8•− radical anion intermediate must be sufficiently reactive enough to 

decompose at a similar rate in either weakly-coordinating solvent. 

Interestingly mass spectrometry of the reaction products from either DFB or CH2Cl2 only 

detected one product with molecular ion peaks at m/z values at 678.90 (100%, M−), 677.80 

(24.98%) and 679.90 (25.75%) Da. This is highly indicative of [B(C6F5)4]−; however, given the 

likelihood of fragmentation and recombination reactions in the mass spectrometer this 

observation must be interpreted with some caution. 

2.6 Summary 

The direct voltammetric reduction of 8 was studied in two weakly coordinating solvents, 

CH2Cl2 and DFB. In either case, cyclic voltammetry combined with digital simulation indicated 

that the electrochemical process follows an EC mechanism. Electrogenerated 8•− undergoes a 

rapid chemical decomposition step in solution to form redox inactive products. Multinuclear 

NMR analysis of these products was obtained through the chemical reduction of 8 with 

CoII(CpMe5)2. The NMR data is indicative of the formation of several four-coordinate borate 

species, arising from radical reaction pathways. Hence, the reaction of solvent with 8•− 

predominantly occurs at the boron centre; this observation is further supported by spin density 

and charge distribution calculations on the SOMO of 8•−. 

Chronoamperometry at a microdisc electrode confirmed that the reduction of 8 is 

indeed a one-electron process. Diffusion coefficients were quantified for 8 in each of the 

solvents used. 

Digital simulation of the voltammetric data enabled the pseudo-first order rate 

constants for the chemical decomposition of the 8•− radical anion to be determined. The 

standard reduction potentials, E°, for 8 were determined to be –1.79 ± 0.1 V and –1.65 ± 0.1 V 

vs Cp2Fe0/+ in CH2Cl2 and DFB respectively.  
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The rate of decomposition of the radical anion is sufficiently fast in solvents of low donor 

strength that I was unable to measure a signal from 8•− using EPR spectroscopy, even at low 

temperatures – in stark contrast to previous reports using strong donor solvents.[239] 

Thus, after more than fifty years since the discovery of 8, pertinent thermodynamic and 

kinetic parameters relating to its redox properties in selected weakly-coordinating electrolyte 

systems have been reported for the first time. Once again, one must emphasise the importance 

of carefully considering the choice of solvent when attempting to study the redox chemistry of 

highly electrophilic and Lewis acidic species. 

This results chapter establishes the foundation for my initial work into the development 

of H2 oxidation electrocatalysts using a FLP approach. Now that the fundamental 

electrochemical properties of 8 have been established, one can begin to explore the 

electrochemistry of (relatively) more complex FLP systems that feature 8 as the key component. 
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3.1 Overview 

In Chapter 2, a kinetic and mechanistic study into the one-electron reduction of 8 in the 

low donor solvents, CH2Cl2 and DFB, was discussed. This included the extraction of 

thermodynamic and kinetic parameters relating to the observed electrochemical behaviour of 

8; the fate of the radical anion, 8•−, was also explored. 

This chapter builds upon the fundamental work of Chapter 2, by beginning to explore 

the electrochemistry of FLPs. Following on from his initial success of discovering the first FLP 

system,[112] Stephan’s group soon incorporated 8 into an intermolecular FLP system.[117] Through 

the combination of 8 with a suitably strong, yet sterically bulky Lewis base (tBu3P, 12) they were 

able to heterolytically cleave H2 to give a salt, [8-H][H-12], containing both hydridic and protic 

components. When one considers the extensive application of 8 in FLP chemistry,[121,122,250,251] it 

makes perfect sense to start with systems based on 8 when beginning to explore the 

electrochemical properties of FLPs. 

Here, I introduce a new approach that combines classical FLP chemistry with non-

aqueous electrochemical oxidation of the resulting borohydride. The overall aim for the project 

(see 1.8) is to develop a system that uses a FLP to pre-activate H2 and form hydridic and protic 

components. The hydridic component is then electrochemically oxidized to give H+ and 2e−, 

whilst regenerating the Lewis acidic component of the FLP. The system will ideally effect the net 

electrocatalytic conversion of H2 into 2H+ and 2e− (at much reduced potentials than that of H2). 

 

 

Scheme 30 The proposed electrochemical-FLP concept: electrooxidation of the H2-activated 

8/12 FLP results in the net generation of two protons and two electrons. 

 

This chapter initially focusses on the electrochemical study of [8-H]− using an authentic 

sample, before progressing towards in situ H2 activation using the paradigm 8/12 FLP system. 

Here, I demonstrate that this approach allows for a significant reduction in the potential (the 

required energetic driving force) for non-aqueous H2 oxidation at inexpensive and ubiquitous 

glassy carbon electrodes (GCEs). To the best of my knowledge, this is the first time that FLPs 

have been directly used for the electrochemical activation of small molecules. The results 
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contained in this chapter have been published in the Journal of the American Chemical 

Society.[252] 

3.2 Authentic [HB(C6F5)3]− 

For initial electrochemical studies, an authentic sample of [nBu4N][HB(C6F5)3] ([nBu4N][8-

H]) was prepared by treatment of 8 with the strong hydride donor, Na[HBEt3], to generate Na[8-

H]; the resulting hydride was then metathesised with [nBu4N]Cl to give the product containing 

the hydridic component ([8-H]−) of the H2-activated FLP, 8/12. The reason for substituting [H-

12]+ for [nBu4N]+ is two-fold. Firstly, the electrochemical reduction of a phosphonium moiety has 

previously been reported by Stephan and co-workers.[183] Since I was only concerned with the 

electrochemical properties of [8-H]−, I wanted to select an redox-innocent cation. [nBu4N]+ 

seemed to be an excellent choice, given that it is commonly used has an electrolyte and has a 

large potential window.[195] Secondly, [nBu4N]+ imparts considerable solubility to [8-H]− in the 

weakly-coordinating electrolyte systems, and assuming that there is no considerable ion-pairing 

(for the purpose of the experiment), [nBu4N]+ simply becomes a component of the electrolyte 

system. 

[nBu4N][8-H] was characterized by spectroscopic methods and X-ray crystallography. 

The spectral data for [8-H]− is consistent with that reported by Welch and Stephan for [8-H][H-

12] – the product of FLP H2 activation by 8/12. The crystal structure of [nBu4N][8-H] is shown in 

Figure 31. Colourless plates, suitable for X-ray crystallography, were grown by dissolving 

[nBu4N][8-H] in a minimum quantity of CH2Cl2, warming to 35°C, adding an equal quantity of light 

petroleum ether and then allowing the solution to cool slowly to room temperature. X-ray 

diffraction data were collected by the EPSRC National Crystallography Service and data solution 

and refinement was performed by Dr. D. Hughes. Crystallographically, two components were 

observed for the anion in a 92:8 ratio, with negligible structural differences; all further 

discussions are based on the major component. In [8-H]−, the geometry about the boron centre 

is tetrahedral, deviating from the idealised bond angle of 120°, expected for the trigonal planar 

geometry of 8, to bond angles (°) of 109.9(2), 112.18(19) and 115.47(19) for C11-B1-C21, C11-

B1-C31, and C21-B1-C31 respectively. The hydride itself was clearly explicitly observed. The 

three C6F5 aryl rings have a propeller-like conformation about the B-H axis as illustrated by the 

torsion angles (°) of the aryl rings about the B-H plane, which were found to be 45.4, 21.7 and 

40.0. The average value for the torsion angles (approximately 36°) is close to the calculated value 

for the DFT-optimized geometry of 8 in 2.2. For 8, the torsion angle between the aryl rings and 
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the central plane containing the B atom was found to be 37°, whereas in the radical anion, 8•−, 

the torsion angle was found to be 34°. 

 

Figure 31 Molecular structure of [8-H]− (only the anion and its major conformation are 
shown). 

 

3.3 Initial electrochemical studies 

The preparation of [nBu4N][8-H] allowed a detailed electrochemical study into the redox 

behaviour of [8-H]− to be undertaken. Much the same as my previous electrochemical study of 

8 (Chapter 2), a weakly coordinating electrolyte system comprising [nBu4N][B(C6F5)4] in CH2Cl2 

was selected for all electrochemical studies to minimize the decomposition of any 

electrogenerated Lewis acids (such as 8).[203,244]  

The direct voltammetric oxidation of [nBu4N][8-H], at varying concentrations, was 

performed at a macrodisk GCE using cyclic voltammetry (Figures 32-34). On sweeping the 

potential anodically (to more positive potentials) from the OCP at a scan rate of 100 mV s−1, an 

oxidative wave was initially observed at +0.88 ± 0.01 V vs Cp2Fe0/+. On reversing the scan 

direction, no corresponding back-peak was observed. However, a small reduction wave (again, 

with no observable back-peak) was sometimes observed at –1.59 V vs Cp2Fe0/+ (Figure 32). Both 

the oxidation wave and the reduction wave are characteristic of two related EC processes. The 

large oxidation current of the oxidation wave can be initially assigned to the two-electron 

oxidation of [8-H]− to form H+ and regenerate the parent Lewis acid, 8. The reduction wave is 

thereby assigned to the single-electron reduction of 8 (see Chapter 2).[243] The unpredictable 

nature of this small and very ill-defined reduction wave is likely to result from the susceptibility 
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of 8 to undergo decomposition in the presence of any electrogenerated protons. Of course, it is 

also known that the any generation of transient 8•− will lead to some loss of 8 through reaction 

with the solvent (see Chapter 2). 

 

Figure 32 CV of a 4.9 mM solution of [nBu4N][8-H] in CH2Cl2 recorded at voltage scan rate of 

1000 mVs−1 over the full potential window on a GCE. 

 

The observed voltammetry can be explained by the mechanism proposed in Scheme 31, 

which is supported by excellent fit between simulation and experiment at two different 

concentrations of [nBu4N][8-H] (Figures 33-34), and detailed chemical and density functional 

theory (DFT) studies (see 3.4 and 3.5, vide infra). The globally optimized parameters describing 

the oxidation of [8-H]− (Table 5) were obtained from digital simulation of the experimental CVs , 

whilst the parameters describing the reduction of 8 are taken directly from Chapter 2. 

Initially, [8-H]− undergoes quasi-reversible single-electron oxidation at the electrode 

surface to form [HB(C6F5)3]• ([8-H]•). This electrogenerated species is transient and rapidly 

dissociates to give H+ and 8•−. As explored in Chapter 2, 8•− exhibits its own redox chemistry and 

therefore undergoes single-electron oxidation to generate the parent Lewis acid, 8. Of course, 

8•− is susceptible to reaction with the solvent; however, since the reduction potential of the 8/8•− 
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is much lower than that of [8-H]−, the electrooxidation of [8-H]− can be almost considered as a 

two-electron process (leading to oxidative currents being observed). A competing side-reaction 

between electrogenerated H+ and incoming [8-H]− regenerates H2 and 8. This, along with small 

contributions from the decay of 8•−, reduces the observed current to slightly less than that 

expected for a simple two-electron process. 

 

 

 

 

 

Scheme 31 Proposed mechanism and associated thermodynamic and kinetic parameters 

used to simulate the oxidation of [8-H]− at a GCE. 
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Figure 33 a) Experimental (line) and simulated (open circles) overlaid CVs for the oxidation 

of [nBu4N][8-H] (2.9 mM) in CH2Cl2 at a GCE; b) corresponding Randles-Sevčik plot comparing 

simulated (open circles) and experimental (closed circles) peak currents against the square 

root of scan rate (ν); c) corresponding Laviron plot comparing simulated (open circles) and 

experimental (closed circles) peak potentials against the logarithm of scan rate (ν). ν = 50, 

100, 200, 300, 400, 500, 750 and 1000 mV s−1. 
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Figure 34 a) Experimental (line) and simulated (open circles) overlaid CVs for the oxidation 

of [nBu4N][8-H] (4.9 mM) in CH2Cl2 at a GCE; b) corresponding Randles-Sevčik plot comparing 

simulated (open circles) and experimental (closed circles) peak currents against the square 

root of scan rate (ν); c) corresponding Laviron plot comparing simulated (open circles) and 

experimental (closed circles) peak potentials against the logarithm of scan rate (ν). ν = 50, 

100, 200, 300, 400, 500, 750 and 1000 mV s−1. 
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Table 5 Globally optimized best-fit thermodynamic and kinetic parameters obtained from 

the digital simulation of voltammetric data for [nBu4N][8-H] at a GCE, following the 

mechanism proposed in Scheme 31. 

Redox process 

Redox parameters 

E0 / V vs 

Cp2Fe0/+ 

k0 / 10−2 

cm s−1 
α 

 
+1.13±0.05 1.3±0.2 0.7±0.1 

 
−1.79±0.05 [a]     1.3±0.2 [a] 0.5±0.05 [a] 

 

 

Chemical step k / s−1 

 k1 > 1  1013 

 
k2 > 6.1[a] 

 
k3 = (1.50±0.25)  107 M−1 

 

[a] Parameters are taken from my electrochemical study of 8 in Chapter 2 
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3.4 Spectroscopic studies 

When [nBu4N][8-H] was treated with a stoichiometric quantity of the single-electron 

chemical oxidant [NO][PF6] in CH2Cl2, effervescence was observed. Analysis of the reaction 

mixture headspace using gas chromatography with a thermal conductivity detector (GC-TCD) 

revealed that H2 gas was evolved. 

The observed production of H2 gas can be rationalized by two plausible reaction 

mechanisms: 

i) The reaction of H+, generated by the chemical oxidation of [8-H]−, with [8-H]− (as 

was proposed in Scheme 31). 

 

 

Scheme 32 Hypothesised H2 evolution pathway i. 

 

ii) Through a radical reaction pathway, which is likely to occur through a 

combination of the following two mechanisms: 

a) Radical disproportionation of two transient intermediate [8-H]• molecules, 

functioning as H• donors, to give 8 and H2. 

b) H• atom abstraction from [8-H]− by intermediate [8-H]• to give 8, 8•− and H2. 

 

 

Scheme 33 Hypothesised H2 evolution pathway ii. 

 

In order to exclude the possibility of such radical pathways (ii), a control experiment was 

conducted using a common source of H• atoms. nBu3SnH was mixed with 4-bromobenzophenone 

(a hydrogen atom scavenger) in equimolar quantities, sealed in an NMR tube and then allowed 

to react under UV light. 1H NMR characterization of the products revealed the formation of 

benzophenone via radical dehalogenation of 4-bromobenzophenone by H•. However, when 

[nBu4N][8-H] was stoichiometrically oxidized in the presence of [NO][PF6] and an equimolar 

quantity of 4-bromobenzophenone, the latter was recovered in quantitative yield by NMR. No 

benzophenone was detected in the reaction mixture. This result is surprising, since the ability of 

borohydrides to participate in hydrogen atom (H•) transfer (HAT) reactions is well-known.[253–257] 

This includes the radical dehalogenation of 4-bromobenzophenone, which is favoured by more 
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sterically bulky borohydrides such as [Li(DME)2][H2BMes2], where DME = dimethoxyethane.[253] 

This observation suggests that reactions involving [8-H]• are not a major contributor to the 

observed evolution of H2 as a side-product. 

Furthermore, effervescence is observed when [nBu4N][8-H] and a stoichiometric amount 

of Jutzi’s strong Brønsted acid, [H(OEt2)2][B(C6F5)4],[258] are combined in CH2Cl2. H2 gas is once 

again detected in the reaction headspace, supporting the proposed proton-mediated H2 

evolution mechanism. Note that in either case, 11B NMR characterization of the product mixture 

reveals a number of peaks in the range −0.5 to −7.0 ppm. The products of chemical oxidation of 

[8-H]− are likely to give a complex mixture of products, including F− abstraction products from 

the [PF6]− anion present, as well as products resulting from the solvent-specific decomposition 

of intermediate, 8•− (such as [ClB(C6F5)3]–, [Cl2B(C6F5)2]– and [HClB(C6F5)2]– – see Chapter 2). In the 

case of the reaction of [nBu4N][8-H] with [H(OEt2)2][B(C6F5)4], there is no evidence to suggest the 

formation of the classical Lewis adduct, 8∙Et2O, or the protonation of the labile C6F5 groups of 8 

to give HC6F5. 

When a deuterated sample of authentic hydride, [nBu4N][DB(C6F5)3] ([nBu4N][8-D]), was 

fully oxidized in the presence of 12 at a carbon felt electrode using controlled potential bulk 

electrolysis, a triplet resonance was observed in the 31P{1H} NMR spectrum at  59.6 ppm (J = 

65.8 Hz) (Figure 35), corresponding to [tBu3PD]+. Since the only possible source of D+ must 

originate from the B-D bond (via the oxidation of [8-D]–), this result provides conclusive evidence 

for the proposed mechanism in Scheme 31, wherein B-D/B-H bond cleavage in [8-D/H]• results 

in the formation of D+/H+ and 8•−. A large quantity of the oxide, 12=O, was also generated in the 

process, and was observed at  60.7 ppm as an intense singlet.[259] This is unsurprising, given 

that the oxidation potential of 12 is close to that of [8-D/H]–. 12 is extremely air and moisture 

sensitive and may have become exposed to air during its transfer to the NMR tube (despite using 

the appropriate inert techniques). 
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Figure 35 31P{1H} NMR spectra of aliquots taken before and after the oxidative bulk 

electrolysis (+1.7 V vs Ag0/+, 15 minutes) of [nBu4N][8-D] (4.2 mM, CH2Cl2) at a carbon felt 

working electrode when in the presence of excess 12 (6 mM). 

 

3.5 Computational modelling 

DFT computational calculations were performed (by Dr. V. Oganesyan) on the HOMO 

and the LUMO of the geometry-optimized [8-H]− species, and the SOMO of [8-H]•, the proposed 

intermediate of oxidation. Interestingly, partial atomic charge calculations for [8-H]− revealed 

that the B-H bond is not particularly polar (Figure 37). Contributions from the H and B atoms 

amount to −0.099e and +0.078e respectively, indicating that [8-H]− is a weak hydride donor. This 

is consistent with the suggestion that small molecule hydrogenation (using FLPs) proceeds 

stepwise, with protonation preceding hydride transfer.[118,260] The B-C and B-H BDEs for [8-H]− 

were calculated to be ΔHB-C = 408.1 kJ mol−1 and ΔHB-H = 312.2 kJ mol−1 respectively, whilst for 

[8-H]• the values were found to be ΔHB-C = 71.7 kJ mol−1 and ΔHB-H = 34.0 kJ mol−1 respectively. 

The strength of the B-H bond in [8-H]• is almost comparable to a moderate hydrogen bonding 

interaction between 8•− and H+.[261] This suggests that the electrochemical oxidation of [8-H]− 
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significantly reduces the BDE of the B-H bond, facilitating its bond cleavage and lending further 

support to the mechanism that was proposed in Scheme 31. 

 

 

Figure 36 View of the a) geometry-optimized structure of [8-H]−, b) HOMO of [8-H]−, c) 

SOMO of [8-H]•, d) SOMO of 8•−. 
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Figure 37 View of the geometry optimized structure of [8-H]− with partial charges shown for 

each atom (units are e), based on Mulliken electron population analysis. 

 

3.6 Proof of concept 

The redox chemistry of [8-H]− has now been studied, and its electrochemical mechanism 

has been elucidated. The next step was to proceed towards in situ electrochemical studies of 

the archetypal 8/12 system in the presence of H2. The relative rate of H2 cleavage by this system 

is much slower than that of electron transfer at an electrode surface. Although Stephan 

describes H2 cleavage by the 8/12 FLP as being immediate,[120] when I monitored the reaction 

using 11B, 19F and 31P{1H} NMR spectroscopy (see Figure 38 for 11B NMR spectra), the reaction 

was complete after approximately 12 hours. However, some evidence of H2 cleavage, i.e. the 

loss of the signal corresponding to 8 (ca δ 60 ppm) and some [8-H][H-12] formation (ca δ −25 

ppm), could be observed in the NMR spectra after 1 hour. 
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Figure 38 11B NMR spectrum showing the reaction progress of H2 activation by the 8/12 FLP 

under ambient conditions. 

 

For proof of concept, an equimolar solution of 8/12 (containing Cp2Fe as an internal 

reference and [nBu4N][B(C6F5)4] as supporting electrolyte) in CH2Cl2 was admitted to H2 gas 

overnight and a CV was recorded (Figure 39a). The characteristic oxidation wave of [8-H]− was 

observed, and was reassuringly identical to that of [nBu4N][8-H]. This was confirmed by 

observing a proportional increase in the oxidation current at +0.88 V vs Cp2Fe0/+ when the 

solution was spiked with a known quantity of authentic [nBu4N][8-H] (Figure 39a). The electrode 

kinetics of uncatalysed H2 oxidation at a GCE are very slow, leading to the observation of a broad 

and ill-defined wave at +1.49 V vs Cp2Fe0/+ in CH2Cl2 (Figure 39b). In this respect, a combined 

electrochemical-FLP approach effectively reduces the H2 oxidation potential by 610 mV (117.7 

kJ mol-1). Note that whilst [12-H]+ was not found to be redox active at the potentials studied, the 

oxidation of a small quantity of unreacted 12 was apparent as a small (EC-like) oxidation wave 

at +0.44 V vs Cp2Fe0/+. 
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Figure 39 a) CV of a 5 mM solution of 12 and 8 in CH2Cl2 at a GCE after admission to H2 (red 

line, ν = 100 mVs−1). The addition of authentic [nBu4N][8-H] to the sample confirms the 

observed wave as the product of H2 activation (blue line, ν = 100 mVs−1). b) CV of a H2-

saturated CH2Cl2 solution (1 atm) at a GCE (ν = 100 mVs−1). All samples contained Cp2Fe as an 

internal standard. 
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To investigate whether or not this electrochemical-FLP system can be recycled, i.e. is 

catalytic in 8, repeat oxidation cycles were performed. A 5 mM equimolar solution of 8/12 and 

0.1 M [nBu4N][B(C6F5)4] electrolyte in CH2Cl2 was sealed under an atmosphere of H2 (1 atm) for 

12 hours at room temperature. This ensured that the FLP heterolytic cleavage of H2 had gone to 

completion. An initial CV was obtained, which showed the characteristic [8-H]− oxidation wave. 

The reaction mixture was then subjected to controlled potential bulk electrolysis at a carbon felt 

electrode until all [8-H]– had been oxidized; the oxidation wave was no longer apparent when a 

second CV was recorded after the bulk electrolysis step. For proof of concept, another 

equivalent of 12 was then added to the solution, which was again sealed under H2 for a further 

12 hours. A second bulk electrolysis cycle was undertaken, and this was then repeated once 

more (Figure 40). Disappointingly but unsurprisingly, upon a second and third electrolytic cycle, 

there was no evidence for the regeneration of 8, since the re-formation of [8-H]− could not be 

observed voltammetrically. This is consistent with previous NMR characterization of the 

products of chemical oxidation of [8-H]−. In addition to this, only a small and ill-defined reduction 

wave is sometimes observed for 8 following the voltammetric oxidation of [nBu4N][8-H] (Figure 

32, vide supra). Clearly, any 8•− that is produced as an intermediate (following the oxidation of 

[8-H]−) is susceptible to side-reactions with the solvent during the (very short) timescale before 

successive oxidation steps. The decomposition of 8 through reaction with electrogenerated 

(unsolvated) H+ is likely to play a major role in limiting the recyclability of this system. Note that 

“buffering” the electrolyte using excess Lewis base (12) to disfavour undesirable protonolysis of 

8 is not possible for this system, since 12 is redox active at similar potentials to [8-H]–. 
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Figure 40 Repeat oxidative bulk electrolysis cycles of a 5.6 mM 8/12 solution following 

overnight exposure to H2 (1 atm) demonstrates that the system cannot be recycled 

(■, cycle 1; ●, cycle 2; ▲, cycle 3). 

 

This is the first study of the electrochemistry of FLPs towards H2 activation. Whilst the 

classical 8/12 system appeared to be a logical starting point for these investigations, it is perhaps 

not surprising that this system is not optimal. However, these findings are important as they 

demonstrate that metal-free electrocatalysis of H2 oxidation may be conceivable, using an 

electrochemical-FLP. However, one can immediately identify areas for future improvement: 

i) The competing reaction of [8-H]− with redox-generated H+ results in H2 

evolution and reduces the overall efficiency of the process (although H2 may 

be subsequently recycled in future systems). 

ii) Protonolysis leads to the unwanted decomposition of 8. Either alternative 

Lewis acids that are resistant to protonolysis are required, or a solution that 

decreases the reactivity of these protons needs to be implemented. 

iii) Electrogenerated 8•− (from oxidation of [8-H]−) is susceptible to reaction with 

the solvent, again preventing the system from being recycled. Steric and/or 
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electronic protection of any radical anion intermediates is required to limit 

this side-reaction. 

iv) The kinetics of FLP-mediated heterolytic H2-cleavage are the rate determining 

step (compared to very rapid electron transfer) for this classical FLP system. 

FLPs with faster H2-cleaving kinetics are required. 

3.7 Summary 

The complex non-aqueous redox chemistry of [8-H]− has been explored for the first time, 

by studying an authentic borohydride sample ([nBu4N][8-H]). The pre-activation of H2 using the 

8/12 FLP system, when combined with electrochemical oxidation of the resultant borohydride, 

decreases the required potential for non-aqueous H2 oxidation by 610 mV (117.7 kJ mol−1) at 

readily available carbon electrodes. This represents a significant energy reduction whilst being 

metal-free, and opens up the possibility of a hitherto unexplored route to the development of 

economically viable energy technologies. The oxidation of in situ generated [8-H][H-12] by the 

classical 8/12 FLP system was also explored in the presence of H2. 

Whilst 8 has previously been described as “the ideal boron-based Lewis acid”,[222] this 

work has identified specific areas that require development in order to advance the combined 

electrochemical-FLP system. It is clear from this work that 8 is not the ideal Lewis acid for such 

systems. Fortunately, the steric and electronic effects of Lewis acids and bases are highly tunable, 

providing plenty of scope to optimise such systems. 

This chapter has been a preliminary investigation into the electrochemical properties of 

FLP. This groundwork suggests that a combined electrochemical-FLP approach may be viable for 

H2 energy applications. Later chapters will focus on steric/electronic modifications to this system, 

in an attempt to improve recyclability, further reduce oxidation potentials, and increase the rate 

of H2 cleavage. 
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4.1 Overview 

In Chapter 3, the non-aqueous redox chemistry of the FLP borohydride component, [8-

H]−, was explored using an authentic sample, [nBu4N][8-H]. The 8/12 FLP system was then utilized 

to activate H2; this was combined with electrochemical oxidation of the resultant borohydride. 

Using this approach, the required potential for non-aqueous H2 oxidation was effectively 

reduced by 610 mV (117.7 kJ mol−1) at carbon electrodes. 

During the preliminary studies into the redox chemistry of [nBu4N][8-H], both carbon 

and Pt electrodes were explored. The voltammetric response of [8-H]− was found to exhibit a 

strong electrocatalytic effect at Pt electrode surfaces. This was in stark contrast to the reponse 

obtained using a GCE. 

This chapter reports the results obtained when the combined electrochemical-FLP 

approach was extended to Pt electrode surfaces. Efforts were made to elucidate the underlying 

electrochemical mechanisms that give rise to the observed voltammetric behaviour. This 

included performing electrochemical studies in the presence of a radical scavenger, and 

sterically shielding the B-H bond through modification of the surrounding aryl groups on the 

Lewis acid. The electrooxidation of [8-H]− was found to be dominated by HAT reactions between 

Pt, Pt-H adatoms, and intermediate [8-H]•. 

The results contained in this chapter have been published in Chemistry – A European 

Journal.[262] 

4.2 Electrochemical studies 

The redox properties of [nBu4N][8-H] was explored at a Pt macrodisk electrode using 

cyclic voltammetry (Figure 41) at varying concentration in CH2Cl2 containing the weakly-

coordinating supporting electrolyte, [nBu4N][B(C6F5)4] in a similar fashion as described in the 

previous chapters. As the potential was swept from the OCP to more anodic (positive) 

potentials at a scan rate of 100 mV s−1, a large and well-defined oxidation wave was observed 

at +0.49 V vs Cp2Fe0/+. The scan direction was reversed just before the limit of the potential 

window for the electrolyte system.[203] On the return scan, the current was observed to cross-

over the trace for the oxidation wave of the forward scan, indicating that an oxidation process 

was still in progress. The current then gradually decreased, whilst remaining positive at 

potentials more negative than the observed oxidation potential of [8-H]−. The current was 

observed to re-cross the forward scan trace over the potential range −0.30 to −0.25 V vs 

Cp2Fe0/+. At more cathodic (negative) potentials, a series of small and ill-defined reduction 

waves were also observed. 
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Figure 41 Overlaid CVs of [nBu4N][8-H] [2.3 mM (pink line) and 4.8 mM (red line)] at a Pt 

macrodisk electrode in CH2Cl2 at a scan rate (ν) of 100 mV s−1. 

 

The observed voltammetric response of [8-H]− at a Pt macrodisk electrode contrasts 

significantly to what was previously observed at a GCE in Chapter 3 (Figure 42). As a reminder, 

at a GCE, [8-H]− is observed to exhibit EC-like voltammetric behaviour. The oxidation wave of [8-

H]− is electrochemically reversible, however the absence of a corresponding reduction wave 

indicated the presence of chemical follow-up steps. No current-crossing was observed, and a 

small reduction wave at a more negative potential was tentatively assigned to the reduction of 

regenerated 8. 

Crossing-currents in cyclic voltammetry are an unusual phenomenon, and are only 

observed in one of the following situations: 

i) Special cases of an ECE reaction mechanism.[187] 

ii) When a change in the electrode surface structure occurs, usually during an 

electrocatalytic process. For example, significant current-crossover is observed 

when methanol is oxidized at Pt electrodes, owing to the formation of various 
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adsorbed intermediate species that are electroactive at lower oxidation 

potentials.[263] 

 

In the case observed here, the height at which the reverse current crosses the forward-

going current strongly suggests that the latter scenario, a structural change on the electrode 

surface, is likely to be responsible for this effect. 

 

Figure 42 Overlaid CVs comparing 5 mM solutions of [nBu4N][8-H] recorded at Pt (red line) 

and glassy carbon (black line) macrodisk electrodes in CH2Cl2 (ν = 100 mV s−1). Current 

density allows electrodes of different geometric areas to be directly compared. 

 

It is clear, from the comparison of Pt and GCE voltammetric behaviour, that the Pt 

electrode is non-innocent and exhibits strong electrocatalytic properties (Figure 42). The rate of 

electron transfer during the oxidation of [8-H]− is very much faster at the Pt electrode than at 

the GCE. This corresponds to a steeper gradient being observed at Pt (compared to the GCE) in 

the initial, rising part of the oxidation wave, where the observed current density is limited by 

electrode kinetics, along with a greater peak current density. Furthermore, strong evidence in 
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support of electrocatalysis at the Pt surface is exhibited by a 390 mV decrease in the oxidative 

peak potential, compared to glassy carbon. 

To explain these observations at Pt electrodes, a modification to the original mechanism 

(that was given in Chapter 3) for [8-H]− oxidation is proposed (Scheme 34). This adaptation takes 

into account the well-documented ability of Pt surfaces to adsorb H• atoms, as is observed for 

the direct, electrocatalytic oxidation of H2 at Pt electrodes in aqueous electrolyte systems.[26,27] 

At both Pt and glassy carbon electrodes, [8-H]− first undergoes a single-electron 

oxidation to give the transient intermediate, [8-H]•. Previous DFT calculations (see 3.5) on the 

SOMO of [8-H]• have shown that the B-H bond becomes significantly weakened (calculated BDE 

is 34.0 kJ mol−1) following the electrooxidation of [8-H]−. At carbon electrodes, [8-H]• very rapidly 

dissociates to generate a proton and 8•−, which undergoes further oxidation in competition with 

its decomposition in solution (see Chapters 2-3 for further details). However, at Pt electrodes, 

the surface is able to compete with the dissociation step by abstracting H• from [8-H]•. This HAT 

process liberates the parent borane, 8, whilst effecting a change on the surface of the electrode 

by forming a H-adatom (surface hydride, Pt-H). Since, the oxidation potential of Pt-H is much 

lower than the applied potential at this time in the cyclic voltammetric experiment (close to the 

main oxidation wave), it rapidly undergoes a second single-electron oxidation. This forms H+ and 

electrocatalytically regenerates the Pt electrode surface. Since this process occurs throughout 

the beginning of the reverse sweep, the surface concentration of Pt-H builds up until the current 

crosses back over the forward-going scan. Owing to the presence of significant quantities of Pt-

H, oxidation continues to occur throughout the reverse sweep, giving rise to an oxidative current 

at potentials more negative than that of the main [8-H]− oxidation wave. This process ceases to 

occur when the applied potential approaches the reduction potential of the Pt-H system at 

approximately −0.3 V vs Cp2Fe0/+. 



Chapter 4 – Surface catalytic effects at Pt electrodes 

112 

 

 

Scheme 34 a) The proposed redox mechanism with individual steps for the electrocatalytic 

oxidation of [8-H]− at a Pt electrode surface; b) the schematic representation of the entire 

mechanistic cycle. The decomposition pathways of 8 and 8•− are omitted for clarity (see 

Chapters 2-3 for details). Also shown is the competing HAT reaction (C2) between a substrate 

(Sub) and the H-adatoms on the Pt surface (Pt-H). 

 

Note that all electron transfer steps are quasi-reversible, and are therefore subject to 

Nernstian equilibria.[187] The rapid formation of Pt-H at the electrode effectively depletes the 

surface concentration of [8-H]•, and causes a perturbation in the Nerstian equilibria. This 

phenomenon is responsible for the observed electrocatalytic effect on Pt, whereby the onset of 

[8-H]− oxidation occurs at lower potentials than that at a GCE. Considering that the presence of 

follow-up chemical reactions could cause a shift in the observed redox potentials, the small 

reduction wave at approximately −2.0 V vs Cp2Fe0/+ may result from the reduction of free 8. In 

Chapter 3 it was shown that significant quantities of 8 are generated through the reaction of 

incoming [8-H]− with electrogenerated H+. It was also noted that the majority of electro-

/chemically-generated 8 undergoes decomposition through protonolysis. This explains why the 

reduction peak is small in comparison to the oxidation peak. Proton reduction on the 

polycrystalline Pt surface may also be responsible for the small and broad reduction waves that 

were observed between –0.3 and –1.0 V. This assignment is supported by the observation of 

similar voltammetric features when an electrolyte solution in CH2Cl2 is spiked with the strong 

Brønsted acid, [H(OEt2)2][B(C6F5)4].[258] 

Since Pt-H formation on the surface of the electrode cannot be modelled using our 

diffusion-only simulation software, digital simulation of the voltammetric data is prohibited. This 

prevents the proposed mechanism from being confirmed through fitting of the experimental 
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data. It also means that relevant kinetic and thermodynamic parameters cannot be extracted. 

Nonetheless, evidence to support the proposed mechanism in Scheme 34 was obtained by: 

i) Competition experiments in the presence of a radical scavenger. 

ii) Increasing the steric bulk surrounding the B-H bond. 

4.3 Competition experiments 

The cyclic voltammetry of [nBu4N][8-H] was conducted in the presence of increasing 

molar equivalents of the radical scavenger, 6-bromo-1-hexene. This commonly known radical 

clock reagent functions as a H• atom scavenger, forming 5-hexenyl radical intermediates that 

cyclize at a known rate.[264–270] 

 

 

Scheme 35 Reaction of the radical scavenger, 6-bromo-1-hexene, with H• from 

electrogenerated [8-H]•. 

 

6-bromo-1-hexene was selected because neither it nor any of its intermediate radicals 

or cyclized products exhibit any redox chemistry in the potential window of interest. The effect 

of adding up to 10 molar equivalents of the radical clock on the voltammetric oxidation of [8-H]− 

is shown in Figure 43. 
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Figure 43 Overlaid CVs show the effect of adding increasing molar equivalents of 6-bromo-1-

hexene (0, red; 1, blue; 2, green; 4, purple; 8, orange; and 10, grey molar equivalents) to a 

4.8 mM solution of [nBu4N][8-H] (red line) in CH2Cl2at a Pt macrodisk electrode 

(ν = 100 mV s−1). 

 

Upon the addition of the first molar equivalent of radical clock, the oxidation wave of 

[8-H]− was observed to shift to significantly more positive potentials and decrease in height. The 

extent of current cross-over is significantly reduced (and almost negligible) in comparison to the 

CV obtained in absence of the radical clock. Indeed, the observed oxidation wave-shape and 

peak potential is remarkably similar to that observed at a GCE. This can be rationalized by 

considering why the process that gives rise to a crossing-current may have become inoperative. 

In this case, the radical clock competes with the Pt surface to abstract H• from the 

electrogenerated [8-H]• intermediate. This competing pathway prevents the formation of Pt-H 

on the surface, and therefore the previously observed oxidation of the Pt-H surface species (as 

a crossing-current) at lower potentials (Scheme 34) is effectively inhibited. The oxidation of [8-

H]− at a Pt electrode now exhibits similar voltammetric behaviour to a GCE (see Chapter 3). Thus 

the radical atom scavenger 6-bromo-1-hexene functions as a competitive inhibitor for any 



Chapter 4 – Surface catalytic effects at Pt electrodes 

115 

surface HAT step at the Pt electrode. As the concentration of radical clock is increased, the peak 

potential and current is also observed to gradually increase. The increase in peak potential is a 

direct effect of the reaction between 6-bromo-1-hexene and [8-H]•, since this reaction perturbs 

the Nernstian equilibria that govern the initial oxidation of [8-H]−. The increase in peak current 

can be understood in similar terms. The abstraction of H• from [8-H]•, by the radical scavenger, 

prevents its dissociation into H+ and 8•−. This inhibits the reaction of H+ with a second incoming 

[8-H]− molecule (see Scheme 34b), a process that would otherwise deplete the concentration of 

[8-H]− at the electrode surface and cause the observed oxidation current to be effectively 

reduced. 

4.4 Steric effects 

Another method to inhibit the formation of Pt-H is to increase the steric bulk around the 

B-H bond, and thus effectively shield the hydride from any interaction with the Pt electrode 

surface. My approach was to substitute the C6F5 groups for bulkier C6Cl5 groups, by synthesising 

the hitherto unknown borohydride, [nBu4N][HB(C6Cl5)3], [nBu4N][24-H]. 

[nBu4N][24-H] was prepared using a similar method to that used in the preparation of 

[nBu4N][8-H] in Chapter 3. Treatment of the parent perchlorinated analogue of 8, B(C6Cl5)3 (24), 

with Na[HBEt3] in toluene at 80°C yielded Na[24-H]. This was followed by metathesis with 

[nBu4N]Cl to give [nBu4N][24-H]. Note that the borane, 24, was selected because its synthesis and 

redox properties have already been studied and reported by the Wildgoose research group.[244] 

24 is much more electron deficient than 8, despite Cl being less electronegative than F (Pauling 

electronegativity, χCl = 3.16 vs χF = 3.98). The -overlap between the Cl 3p and the C 2p orbitals 

on the aromatic ring is weaker than that of the F 2p and C 2p orbitals; as a result, the Hammett 

parameter for a Cl substituent at the para position is greater than that for a F substituent (para(Cl) 

= 0.227, para(F) = 0.062).[271] Where steric factors are concerned, the C6Cl5 groups are much 

bulkier than the C6F5 groups, with a Cl substituent occupying a similar volume as a methyl group 

(Taft steric substituent constant Es(F) = −0.46, Es(Cl) = −0.97,Es(Me) = −1.24), and therefore 

provide greater shielding of the B centre (as illustrated by the space-filling models shown in 

Figure 44). 
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Figure 44 Space-filling view of the boranes a) 8 and b) 24, showing the extent of steric 

shielding of the B centre by the surrounding C6F5 and C6Cl5 groups, respectively. 

 

Colourless needles of [nBu4N][24-H], suitable for X-ray crystallography, were grown by 

dissolving the sample in a minimum quantity of CH2Cl2 , warming to approximately 40°C, adding 

an equal quantity of light petroleum ether followed by slow-cooling to room temperature. X-ray 

diffraction data was collected by the EPSRC National Crystallography Service and data solution 

and refinement was performed by D. Hughes (see Figure 45). Crystallographically, two 

components were observed for the anion in a 69:31 ratio, with negligible structural differences. 
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The separation of the carbon atoms in each aryl ring was not resolved and each ipso-C site 

therefore accommodates both the major and minor atom sites. All further discussions are based 

on the major component. In [24-H]−, the geometry about the boron centre deviates from the 

trigonal planar geometry of 24 (as indicated by the sum of the bond angles, which equal 360°),[244] 

towards the idealised tetrahydral bond angle of 109.5° [selected bond angles (°) for [24-H]− are 

112.0(5), 111.0(6) and 112.2(6) for C11-B1-C21, C11-B1-C31, and C21-B1-C31 respectively]. The 

hydride itself was clearly explicitly observed. The three C6Cl5 aryl rings have a propeller-like 

conformation about the B-H axis; the torsion angles (°) of the aryl rings about the B-H plane were 

found to be 38.7, 38.6 and 37.9. The average value for the torsion angles (approximately 38°) is 

smaller than that of the parent Lewis acid, 24, where the average torsion angles are 56°.[244] The 

torsion angles in 24 are much larger than those of geometry-optimised 8 (37°; see 2.4); this 

reflects the increased steric profile of the C6Cl5 aryl rings compared to the C6F5 groups. The 

space-filling view of the B-H bond, shown in Figure 46b, shows the extent to which the B-H bond 

is sterically shielded (effectively buried) by the surrounding C6Cl5 aryl rings, compared to the B-

H bond in [8-H]− (Figure 46a). 

 

Figure 45 Molecular structure of [24-H]− (only the anion and its major conformation are 

shown). 
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Figure 46 Space-filling view of the anions a) [8-H]−, and b) [24-H]−, showing the extent of 

steric shielding of the B-H bond by the surrounding C6F5 and C6Cl5 groups, respectively. 

 

When cyclic voltammetry was performed on [nBu4N][24-H] (Figure 47) at a Pt electrode, 

it was found to undergo oxidation at a slightly higher potential (ca 100 mV) than [nBu4N][8-H]. 

This suggests that [24-H]− is less hydridic than [8-H]−, and is consistent with the parent borane, 

24, being more electrophilic than 8.[244] However, in the case of [nBu4N][24-H], no current cross-

over is observed at any scan rate. This suggests that the steric bulk around the B-H bond in [24-

H]− is sufficient (see Figure 46b) to preclude the formation of any Pt-H surface species via a HAT 

process – electrocatalysis is not observed at a Pt electrode. This observation further supports 
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the proposed mechanism (Scheme 34) that describes the oxidation of [8-H]− at Pt electrodes. 

Instead a new, quasi-reversible redox wave is observed at a mid-peak potential of +0.98 V vs 

Cp2Fe0/+. When considering the radical anions of the parent boranes, the relative stabilities of 

8•− and 24•− contrast greatly. Whilst 8•− rapidly undergoes decomposition in solution to form 

solvent-specific reaction products (see Chapter 2), chemically-generated 24•− (obtained from the 

reduction of 24 by Na in THF, E0 = −3.04 V vs Cp2Fe0/+)[247] persists in solution with a measured 

half-life of 115 minutes at 298 K.[244] The enhanced stability of 24 follows from its boron centre 

being sufficiently sterically shielded by the C6Cl5 groups to avoid any reaction with the solvent. 

Based on this, it can be tentatively proposed that the additional quasi-reversible oxidation wave 

at +0.98 V vs Cp2Fe0/+ corresponds to the single-electron oxidation of [24-H]• radicals, which are 

likely to be relatively long-lived in comparison to [8-H]•, and which occurs alongside competing 

dissociation pathways. Note that this hypothesis is also supported by the height of the first (EC-

like) oxidation wave, which corresponds to a single-electron process for [nBu4N][24-H], but 

corresponds to an effective number of electrons transferred that is greater than 1 in the case of 

[nBu4N][8-H]. Further studies into a series of perchlorinated boranes are ongoing, within the 

research group, at the time of writing this thesis. 
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Figure 47 Overlaid CVs comparing the oxidation of 5 mM solutions of [nBu4N][8-H] (red line) 

and [nBu4N][24-H] (blue line) in CH2Cl2 at a Pt macrodisk electrode (ν = 100 mV s−1). 

 

4.5 Proof of concept 

Finally, for completeness, the in situ combined electrochemical-FLP activation of H2 was 

studied at Pt (in much the same fashion as the previous efforts at a GCE in Chapter 3). The 

resulting cyclic voltammetry is shown in Figure 48. When a CV of an equimolar solution of the 

8/TMP FLP[124] in CH2Cl2 was recorded at the Pt electrode (in the absence of H2), the 

corresponding waves for the reduction of 8 and the oxidation of TMP were clearly observed 

(blue line, Figure 48). The electrolyte solution was sparged with H2 for 1 hour before a second 

cyclic voltammogram was recorded (red line, Figure 48). Although the kinetics of H2 cleavage by 

this FLP system are relatively slow (refer to Chapter 3 for details), within only 1 hour of admitting 

the sample to H2, clear voltammetric evidence for the formation of [8-H]− is observed as a new, 

albeit small peak at +0.43 V vs Ag0/+. This oxidation wave lies between the oxidation of TMP and 

the reduction of 8. Although this new peak is broad and small compared with the authentic [8-

H]− owing to its low concentration, its position is characteristic of the voltammetry of [8-H]−. 
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Figure 48 Overlaid CVs demonstrating the 8/TMP FLP system (5 mM solution in CH2Cl2) 

before (blue line) and after (red line) a 1 h sparge with H2 (ν = 100 mV s−1). 

 

The results of this chapter are less applicable to energy applications than those of 

Chapter 2. This is because one can oxidize H2 directly and relatively easily at Pt when an aqueous 

electrolyte is used, since the electrode potential of the standard hydrogen electrode (SHE) is is 

−0.64 V vs Cp2Fe0/+.[14] However, in light of the findings above, it does open up the tantalizing 

prospect of using combined electrochemical-FLPs to activate H2 for HAT reactions with potential 

applications in novel electrosynthesis. 

4.6 Summary 

In this chapter, the electrochemistry of [8-H]− has been explored at a Pt macrodisk 

electrode in extension to the study in Chapter 3, which focused on carbon electrodes. Pt 

electrodes have been found to exhibit strong electrocatalytic surface effects for the oxidation of 

[8-H]−. Evidence for this phenomenon arises from the observation of significant current-

crossover (due to a surface change) in the cyclic voltammetry of authentic [8-H]− and, more 
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importantly, a 390 mV reduction in the oxidation peak potential compared to that obtained at a 

GCE. 

It was postulated that the electrochemical mechanism of [8-H]− oxidation involved HAT 

between electrogenerated [8-H]• and the Pt electrode, forming H• adatoms on the surface (Pt-

H). It was found that this pathway could be competitively blocked in the presence of a competing 

radical scavenger. Also, when cyclic voltammetry of the bulkier perchlorinated analogue, [24-

H]−, was explored at Pt, this surface electrocatalytic effect was no longer observed. This is likely 

to result from steric preclusion of the H atom within the C6Cl5 aryl rings. Instead of this, an 

additional quasi-reversible oxidation wave was observed and tentatively assigned to the single-

electron oxidation of [24-H]•. 

The use of Pt electrodes in conjunction with combined electrochemical-FLP systems 

permits a significant energy saving for the effective conversion of chemical energy, stored in the 

H-H bond, to electrical energy that is available for work. The elucidated electrochemical 

mechanism suggests the prospect of using combined electrochemical-FLP chemistry to activate 

H2 for HAT reactions i.e. electrosynthesis. Thus, the results of this chapter allude to the prospect 

of a completely new area of exploration for the combined electrochemical-FLP concept. Since 

this concept deviates somewhat from main the scope of the project (and the thesis), it was not 

explored any further. 
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5.1 Overview 

In Chapter 3, a combined electrochemical-FLP approach to H2 oxidation was explored 

for the first time using the 8/12 FLP system. Electrochemical oxidation of the resultant 

borohydride, [8-H]–, was found to decrease the required potential for non-aqueous H2 oxidation 

by 610 mV (117.7 kJ mol−1) at carbon electrodes. However, the presence of unwanted side-

reactions (namely the decomposition of 8 in the presence of H+), unfortunately prevented the 

system from turning over. 

Borenium cations, [LBR2]+, are an alternative family of boron-based Lewis acids that are 

relatively unexplored, when compared to their borane counterparts. Unlike boranes, which 

require strong electron withdrawing groups, the electrophilic nature of borenium cations is 

imparted by virtue of the positive charge at the boron centre. The electrophilicity and steric 

hinderance of the boron centre can be easily varied through modification of the ligand and R 

groups. 

Despite numerous attempts to incorporate borenium cations into FLPs for H2 activation, 

only a single definitive example exists in the literature – the 9-BBN-derived NHC-stabilised 

borenium cation (19+) reported by Stephan’s group (discussed in 1.6).[150,272] The relatively strong 

hydride donor ability of the neutral NHC-borane adduct, 19-H, compared to anionic 

borohydrides, such as [8-H]–,[150,156] suggests that NHC-borane adducts are likely to exhibit 

desirably low oxidation potentials, whilst being sufficiently electrophilic for FLP H2 activation. In 

addition to this, the BDE of the B-H bond is effectively decreased by the coordination of a 

carbene ligand, and NHC boranes have been reported to be effective H• donors.[273,274] These 

properties, when combined with the reportedly improved tolerance of 19+ towards different 

functional groups (compared to the archetypal Lewis acid, 8) is likely to be beneficial for my 

electrochemical-FLP approach to H2 oxidation. 

The first example of a borenium cation that is stabilised by an NHC ligand was reported 

by Matsumoto and Gabbaï in 2009.[275,276] The borenium cation, [(ImMe2)BMes2]+ {25+; ImMe2 = 

C3H2(NMe)2}, was prepared as the triflate salt (25[OTf]) by refluxing Mes2BF with Me3SiOTf and 

the silver(I) NHC salt, [Ag(ImMe2)2][Ag2I3], in chlorobenzene. Whilst the electrochemical 

properties of 19+ and 19-H are hitherto unknown, the cyclic voltammetry of 25[OTf] was found 

to be quasi-reversible in the conventional (and potentially non-innocent) electrolyte 

[nBu4N][PF6]. Until now, the ability of 25+ to effect H2 activation as part of a FLP remains 

unexplored or, at least, unreported. 

In this chapter, the combined electrochemical-FLP approach is extended from 

triarylboranes to NHC-stabilised borenium cations. Firstly, the redox chemistry of several (new 
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and previously reported) NHC-stabilised borenium cations was explored. This allowed an 

assessment of the H2-activation abilities of these borenium cations, as part of a FLP system, to 

be made. Finally, the suitability of the most promising candidate (19+) for the combined 

electrochemical-FLP approach was explored using a similar protocol to that of Chapter 3. This 

involved an electrochemical study of the NHC-borane adduct (19-H) and recycling experiments. 

The results suggest that the substitution of 8 for 19+ gives significant improvements in the 

recyclability of the Lewis acid, along with a desirable further decrease in the voltage that is 

required to oxidise the B-H bond. Some of the results contained in this chapter have been 

published in the journal Angewandte Chemie International Edition.[277]  

5.2 Synthesis and characterization of the borenium cations 

Firstly, the literature compounds 19[B(C6F5)4] and 25[OTf] were prepared. 19[B(C6F5)4] 

was prepared according to the literature method of Farrell et al.[150] However, Matsumoto and 

Gabbaï’s original literature procedure[275,276] for the preparation of 25[OTf] proved to be difficult 

in my hands. Additionally, the conditions required (a chlorobenzene reflux at 131°C) seemed 

rather excessive and the resulting product contained imidazolium triflate salt as an impurity (5%). 

I decided to use an alternative method, which gave the required product in relatively 

good yield and purity at room temperature (Scheme 36). Instead of using a NHC silver (I) 

complex as an NHC transfer agent, I decided to use the free NHC species. Treatment of FBMes2 

with ImMe2 gave the intermediate NHC-borane adduct (25-F). This was then separated from the 

reaction mixture before F− abstraction was performed with Me3SiOTf to give the product 25[OTf]. 

This step-wise approach gave good results without the need for forcing conditions. 

 

 

Scheme 36 Preparation of 25[OTf] (R = Me, R’ = H), 26[OTf] (R = iPr, R’ = H) and 

 27[OTf] (R, R’ = Me). 

 

The NHC, ImMe2, is an unstable oil when isolated, but persists in THF solution for days 

at −30°C without substantial decomposition.[278] I found that it was best to generate and use this 

directly in situ, following deprotonation of the imidazolium chloride salt with NaH. This synthetic 

method is, of course, limited by the stability of the free carbene. Indeed, this reaction was much 
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easier and cleaner to perform when the bulkier and more persistent ImiPr2 analogue was used. 

The novel NHC-stabilised borenium salt, [(ImiPr2)BMes2][OTf], 26[OTf], simply precipitated from 

the chlorobenzene reaction mixture as a pale yellow solid. Using the same method, the new 

borenium compound [(ImMe4)BMes2][OTf], 27[OTf], was also prepared using ImMe4. 

The steric constraints of the groups around the boron centre in 26+ are apparent from 

the 1H NMR spectrum. Separate singlet resonances are observed for each ortho-CH3 

environment of the Mes rings at δ 2.06 and 1.92 ppm. Free rotation of the Mes rings about the 

B-C bond is impeded by the steric bulk of the Mes groups and NHC ligand. Fluxionality is not 

exhibited on the NMR timescale, leading to the presence of two signals instead than one signal. 

This phenomenon was also observed for 25+.[275,276] In the case of 26+, the CH3 protons from the 

NHC iPr groups are diastereotopic and give rise to the observation of separate doublet 

resonances at δ 1.46 and 1.15 ppm. This is not the case for 19+, where the lack of steric 

encumbrance allows the free rotation of the NHC about the axis of the B-C bond i.e. the 

neighbouring B centre is not chiral. 

The molecular structures of the cations 25+ and 26+ are shown in Figure 49. Crystals of 

26[OTf] (colourless blocks), suitable for X-ray crystallography, were grown by dissolving the 

sample in a minimum quantity of CH2Cl2 at room temperature, slowly layering with Et2O and 

allowing to stand at room temperature. X-ray diffraction data was collected by the EPSRC 

National Crystallography Service and data solution and refinement was kindly performed by Dr. 

R. Blagg. Single crystal diffraction data was also collected for 27[OTf], but was unfortunately not 

of a sufficient quality to confirm atomic connectivity without the use of an excessive number of 

constraints. 

In the case of 25[OTf] and 26[OTf], all structures have a trigonal planar geometry about 

the boron centre as indicated by the sum of bond angles, which equal 360°.[150,275,276] For 26+, the 

B1-C1 bond connecting the boron centre to the ImiPr2 ligand is of a comparable length to that in 

25+ [1.589(2) vs 1.579(7) Å, respectively]. The angle between the two trigonal planes about the 

boron and the carbon atom of the NHC ligand (C1) is 37.19° and 52.19° for 25+ and 26+, 

respectively. This reflects the increased steric influence of the bulkier ImiPr2 ligand compared to 

ImMe2. Indeed, in 26+, the average torsion angle between the Mes rings and the boron trigonal 

plane (52.3°) is similar to that between the NHC ligand and the boron plane (46.1°). This is in 

contrast with 25+, where the corresponding average torsion angle for the NHC ligand (37.2°) is 

much more acute than that of the Mes rings (54.32°). 
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5.3 Electrochemical study of the borenium cations 

Cyclic voltammetric data for 25[OTf], 26[OTf] and 27[OTf] were recorded under my 

supervision by Ms. K. Resner, whereas data for 19[B(C6F5)4] were recorded by myself (Figure 50). 

For consistency, and to allow the cyclic voltammetry of the borenium compounds to be directly 

compared to that of the original 8/[8-H]– system (in Chapters 3 and 4), the weakly coordinating 

supporting electrolyte system CH2Cl2/[nBu4N][B(C6F5)4] was selected for all electrochemical 

experiments (which were performed at GCEs). 

 On sweeping the potential cathodically from the OCP at 100 mV s−1, a reduction wave 

was observed for all four borenium cations. On the return scan, a large back-peak was observed 

for 25+, 26+ and 27+ at mid-peak potentials of −1.62, −1.72, and −1.75 (± 0.01) V vs Cp2Fe0/+, 

respectively. The peak-to-peak separation was always in excess of 57 mV, expected for a fully-

reversible single-electron system, suggesting that the dimesitylborenium cations exhibit quasi-

reversible voltammetry. This is in agreement with what was observed by Matsumoto and Gabbaï 

for the voltammetric reduction of 25+ using the supporting electrolyte, [nBu4N][PF6]. 

In the case of 19+, a reduction wave was observed at −1.97 ± 0.01 V vs Cp2Fe0/+ (at 100 

mV s−1), however there was no back-peak present, even at voltage scan rates as high as 1000 

mV s−1. This effect is highly indicative of an underlying EC mechanism, and suggests that a rapid 

chemical follow-up step is in existence. This is likely to be analogous to the chemical follow-up 

process involved in the corresponding reduction of 8 (discussed in Chapter 2) – which primarily 

involved the reaction of the radical species with the solvent. However, in the case of 8, the 

chemical decomposition kinetics of 8•− were beginning to be outrun at scan rates of 750 mV s−1 

or greater, as evidenced by the return of a back-peak. This was not the case for the reduction of 

 

Figure 49 Molecular structures of the dimesitylborenium cations a) 25+,[275,276] and b) 26+. 
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19+, since the back-peak was absent, even at scan rates as high as 1000 mV s−1. This suggests 

that the electro-reduced species is very short-lived and rapidly undergoes decomposition before 

it has time to diffuse away from the electrode surface. 

Digital simulation of the experimental CVs for the reduction of 25+, 26+ and 27+ at a GCE 

was performed. Initially, the voltammetric reduction of each borenium cation (generically 

denoted as B+) was simply modelled as a quasi-reversible, single-electron process (E mechanism). 

It was assumed that the electrogenerated neutral NHC-boryl radical species (B•) was persistent 

throughout the experimental timescale, becoming re-oxidised (to B+) on the return scan. 

However, this assumption resulted in a poor fit for the oxidation wave on the return scan; the 

simulated current was consistently too large in the case of 25+, 26+ and 27+. Instead, an excellent 

fit between experimental and simulated CVs (see Figures 51-54) was obtained when the 

 

Figure 50 Overlaid CVs for the borenium cations a) 25[OTf] (1.9 mM), b) 26[OTf] (1.5 mM), c) 

27[OTf] (1.4 mM), and d) 19[B(C6F5)4] (4.3 mM) recorded in CH2Cl2 at a GCE over the scan 

rate (ν) range 100-1000 mV s−1. 
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electrochemical reduction of B+ was modelled as an EC process (shown in Scheme 37). This was 

true for all the borenium cations studied, including 19+. 

 

 

Scheme 37 The proposed mechanism and associated thermodynamic and kinetic 

parameters used in digital simulation of the voltammetric reduction of borenium cations (B+) 

25[OTf], 26[OTf], 27[OTf] and 19[B(C6F5)4] at a GCE. 

 

The simulated CVs do not take contributions from capacitive charging currents into 

account i.e. non-Faradaic current due to electrolyte migration effects (refer to 1.7 for further 

discussion). Since the experimental data is baseline corrected before simulation, this is not a 

problem for the forward scan. In the case of the return scan, however, the total current for the 

oxidation wave includes contributions from both the redox process and capacitive charging. This 

issue is applicable in the case of the borenium cations 25+, 26+, and 27+. The capacitive charging 

current contributions were estimated for each scan rate by extrapolating from a region where 

no Faradaic current was being passed (just before the onset of the back-peak on the return scan) 

to the observed peak potential for the back-peak (where the current is mainly Faradaic). In 

Figures 51b-53b, open squares denote the simulated peak currents, following an attempt to 

correct for capacitive charging current contributions. In Figures 51-53a the fitted CV is only 

shown for the 200 mV s−1 scan rate. This is because the current offset, arising from capacitive 

charging currents, makes it difficult to clearly distinguish the separate fits. The goodness of fits 

can be appreciated by considering the Randles-Sevčik and Laviron plots in Figures 51b-53b and 

Figures 51c-53c, respectively. 
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Figure 51 a) Experimental (line) and simulated (open circles) CV for the reduction of 25[OTf] 

(1.9 mM) at a GCE in CH2Cl2 (ν = 200 mV s−1); b) corresponding Randles-Sevčik plot 

comparing simulated (open circles/squares) and experimental (closed circles) peak currents 

against the square root of scan rate (ν). Open circles denote non-corrected peak current 

values whereas open squares attempt to account for current contributions due to capacitive 

charging (Cdl); c) corresponding Laviron plot comparing simulated (open circles) and 

experimental (closed circles) peak potentials against the logarithm of scan rate (ν). ν = 100, 

150, 200, 400, 600, 800, 1000 mV s−1. 
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Figure 52 a) Experimental (line) and simulated (open circles) overlaid CVs for the reduction 

of 26[OTf] (1.5 mM) at a GCE in CH2Cl2 (ν = 200 mV s−1); b) corresponding Randles-Sevčik plot 

comparing simulated with (open circles) and without (open squares) Cdl corrections and 

experimental (closed circles) peak currents against the square root of scan rate (ν); c) 

corresponding Laviron plot comparing simulated (open circles) and experimental (closed 

circles) peak potentials against the logarithm of scan rate (ν). ν = 100, 150, 200, 250, 500, 

750, 1000 mV s−1. 
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Figure 53 a) Experimental (line) and simulated (open circles) overlaid CVs for the reduction 

of 27[OTf] (1.4 mM) at a GCE in CH2Cl2 (ν = 200  mV s−1); b) corresponding Randles-Sevčik 

plot comparing simulated with (open circles) and without (open squares) Cdl corrections and 

experimental (closed circles) peak currents against the square root of scan rate (ν); c) 

corresponding Laviron plot comparing simulated (open circles) and experimental (closed 

circles) peak potentials against the logarithm of scan rate (ν). ν = 100, 150, 200, 250, 500, 

750, 1000 mV s−1. 
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Figure 54 a) Experimental (line) and simulated (open circles) overlaid CVs for the reduction 

of 19[B(C6F5)4] (4.3 mM) at a GCE in CH2Cl2 (multiple scan rates, see below); b) corresponding 

Randles-Sevčik plot comparing simulated (open circles) and experimental (closed circles) 

peak currents against the square root of scan rate (ν); c) corresponding Laviron plot 

comparing simulated (open circles) and experimental (closed circles) peak potentials against 

the logarithm of scan rate (ν). ν = 100, 200, 300, 400, 500, 750, 1000 mV s−1. 
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The proposed EC mechanism (Scheme 37) is comparable to that proposed in Chapter 2 

for the 8/8•− redox couple. The electrogenerated species, B•, is susceptible to decomposition in 

solution through reaction with the solvent to give a complex product mixture. The presence, or 

absence, of a back-peak on the reverse scan is dependent on the chemical rate constant, k1. 

Relevant electrochemical and chemical parameters, extracted from digital simulation of the 

experimental CVs, are summarized in Table 6. 

 

Table 6 Globally optimized best-fit thermodynamic and kinetic parameters obtained from 

digital simulation of the voltammetric data for 25[OTf], 26[OTf], 27[OTf] and 19[B(C6F5)4] at a 

GCE, following the mechanism proposed in Scheme 37. 

Redox 

parameters 

Borenium cation 

25+ 26+ 27+ 19+ 

E0 / V vs Cp2Fe0/+ −1.61 ± 0.05 −1.71 ± 0.05 −1.75 ± 0.05 −1.94 ± 0.05 

k0 / 10−2 cm s−1 6.0 ± 0.1  1.1 ± 0.1  6.4 ± 0.1  0.34 ± 0.1  

α 0.5 ± 0.05 0.5 ± 0.05 0.5 ± 0.05 0.6 ± 0.05 

 

Chemical 

parameters 

Borenium cation 

25+ 26+ 27+ 19+ 

k1 / s−1 0.14± 0.05 0.02± 0.005 0.10± 0.05 >2  1013    

D / 10−5 cm2 s−1 1.64 ± 0.1 1.01 ± 0.1 1.01 ± 0.1 0.987 ± 0.1 

 

 

The formal reduction potentials (E0), extracted from digital simulation, suggest the 

electrophilicity series: 25+ > 26+ ≈ 27+ > 19+, with 19+ being significantly less electrophilic (lower 

E0) than the dimesitylborenium cations: 25+, 26+ and 27+. The error in the E0 values for 26+ and 

27+ is greater than the difference between the two values (ΔE0 ≈ 0.04 ± 0.07 V), therefore the 

electrophilicity order cannot be differentiated for this pair (hence why 26+ ≈ 27+) 

The electronic effects of seventy-six different NHCs have been quantifed by Gusev 

through the measurement of CO ligand infrared (IR) spectroscopic symmetrical stretching 

frequencies (νCO) for Ni(CO)3(NHC).[279] The lower the νCO value, the weaker the CO-Ni bond, 
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suggesting that there is increased electron density on the Ni centre that is available for back-

donation to the CO ligand (into the CO π* orbital). The increased electron density comes from 

the NHC ligand and therefore νCO is a good indicator of the relative electron-donating ability of 

the NHC ligand. The reported νCO values for the NHC ligands; ImMe2, ImiPr2 and ImMe4; are 

2054.1, 2051.5 and 2051.7 cm−1, respectively. Based on this, the predicted electrophilicity series 

for the dimesitylborenium cations is: 25+ > 27+ > 26+, since increasing the electron-donating 

ablity of the NHC ligand is expected to decrease the electrophilicty of the boron centre (and 

therefore result in a lower reduction potential). This approach also suggests that the 

electrophilicity strength of 26+and 27+ are comparable, since the reported νCO values for the 

ImiPr2 and ImMe4 NHC ligands are similar (ΔνCO = 0.2 cm−1). 

Previous DFT and EPR studies of 25• suggested that the spin density electron is localized 

in the B-C π-bonding orbital of the ligand, with notable polarization towards the B atom.[275,276] 

Considering that there is very little difference in the electronic properties of the NHC ligands 

used (and they are all poor π acceptors), it is reasonable to assume that the same is true for 26•, 

27• and 19•. Thus it is likely that any decomposition of the NHC-boryl radicals occurs through 

reaction with solvent at the boron centre, to form a mixture of various redox-inactive, four-

coordinate borates (comparable to the decay of 8•−, discussed in Chapter 2). The rate of the 

NHC-boryl radical decomposition step (k1), and the size of the oxidative back-peak in the cyclic 

voltammetry, is likely to be a function of the steric preclusion of the boron centre by the 

surrounding substituents and the NHC ligand R groups. This is illustrated by space-fill models of 

the borenium cations (shown in Figure 55), assuming that no significant structural 

reorganisation occurs on reduction. The boron atoms are shown in pink. It is clear that the boron 

atom is most exposed in 19+ (Figure 55c), and most sterically encumbered in 26+ (Figure 55b). 

The Mes groups (in 25+ and 26+) are extremely good at sterically protecting the boron centre, 

whereas the 9-BBN ring system is simply not bulky enough. These steric effects rationalize why 

the rate constant (k1) for the decomposition of unencumbered 19• is extremely fast and under 

diffusion control (>1010 s−1), whereas k1 values for the much bulkier radicals (25•, 26• and 27•) 

are very small indeed (<0.15 s−1). It is important to note that the electrochemical reduction 

process is independent of the counteranion, provided that there is no significant ion-pairing 

between the cation and anion of the borenium salts. 
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Figure 55 Space-filling view of the borenium cations of a) 25+,[275,276] b) 26+, c) 27+, and  

d) 19+ [150] showing the extent of steric shielding of the boron centre by the surrounding 

groups. 

 

 The slow rate constants for the decomposition of 25•, 26• and 27• would be 

advantageous for the electrochemical-FLP system. This is because negligible quantities of Lewis 

acid would be lost during the borohydride oxidation process through decomposition of the 

transient NHC-boryl radical, between the first and second successive electron transfer steps. 

Indeed, a long-lived radical intermediate would make the process truly catalytic. The fact that 

the stability of such compounds is unaffected by the cheaper and more readily available 

supporting electrolyte, [nBu4N][PF6], would also be highly advantageous. 

5.4 Study into FLP H2 activation 

The 19+/12 system is already proven for H2 activation, making 19[B(C6F5)4] an ideal 

candidate for the exploration of H2 oxidation using a combined electrochemical-FLP approach. 

Additional screening was therefore not required. However, the NHC-stabilised 

dimesitylborenium cations (25+, 26+ and 27+) exhibited very unusual behaviour when they were 

screened for H2 activation as part of a B+/12 pair. 
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Since 26+ is structurally related to 19+ (it has the same NHC ligand), its H2 activation 

ability was explored first. When a solution containing equimolar quantities of 26[OTf] and 12 in 

CD2Cl2 was admitted to H2 (4 atm), H2 activation was not immediately observed using NMR 

spectroscopy. When the sample was left to stand at room temperature overnight, it surprisingly 

became bright blue in colour (see Figure 56). This colour persisted for over 40 days; however, 

after 49 days at room temperature, it was noted that the sample had become brown in colour. 

Over this time period, the reaction progress was monitored using NMR spectroscopy, and 

revealed a number of slowly evolving signals in the 31P{1H} NMR spectra at δ 122.9 (s) and 50.3 

(t, J = 22 Hz) ppm. These signals appeared at either side of the PtBu3 (12) singlet signal, which 

was observed at δ 62.5 ppm. The 11B NMR spectra did not change significantly from that of free 

26+ (δ 68 ppm), suggesting that the activation process is not necessarily boron-centered. 

However, a small additional signal was also observed at δ −11.1 ppm. The NMR spectra that 

were obtained for the brown solution suggested that the reaction was complete after the 49 

day period (the previously observed 31P{1H} NMR signal that corresponded to 12 was no longer 

apparent). The blue colour possibly indicated the presence of an intermediate radical species, 

however it is unlikely that there was a large concentration of this species present at any one 

time, since the NMR spectra did not appear to be paramagnetically shifted. 

Curiously, when a molar equivalent of 12 was added to 26+ in CDCl3, an almost 

immediate colour change to dark brown was observed (Figure 56). This initially suggests that 

the acidity of the solvent likely plays a role in the observed rate of reaction. The 31P{1H} NMR 

spectrum showed the presence of two singlet signals (with equal integration values) at δ 122.8 

and 46.7 ppm. The former signal is the same as that observed in the reaction with CD2Cl2, 

whereas the latter signal is slightly upfield of that observed for the CD2Cl2 activation product. 

Considering that [tBu3P(CH3)]+ gives a 31P{1H} NMR resonance at δ 50 ppm,[280] the signal at δ 46.7 

ppm can be tentatively assigned to the species, [tBu3P(CCl3)]+, whereas the 1:1:1 triplet signal 

resulting from CD2Cl2 activation, at δ 50.3 ppm, is tentatively attributed to the formation of 

[tBu3P(CDCl2)]+. Further evidence for the formation of [tBu3P(CDCl2)]+ was provided by the 

observation of a singlet 31P{1H} NMR resonance at δ 50.7 ppm when the reaction was performed 

in CH2Cl2 instead of CD2Cl2 – this is indicative of [tBu3P(CHCl2)]+. This evidence for phosphine 

methylation suggests that an electron transfer process may be involved, proceeding via the 

radical cation species, 12•+.[281–283] It is uncertain what may be responsible for the chemical 

oxidation of 12. In both cases, the signal at δ 122.8 could not be assigned. As before, the 11B 

NMR spectrum did not deviate significantly from that of free 26+ (δ 67 ppm), although there was 

a small additional signal at δ −5.4 ppm. The 1H NMR displayed an upfield shift (Δδ = −0.7 ppm) 

in the protons that correspond to the unsaturated CHCH backbone of the NHC ligand, with the 
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relative integral halving from 2 to 1. This observation led me to believe that abnormal carbene 

adduct formation (Figure 57) may be apparent,[125,147] where the boron centre is now bound to 

the C-4 NHC ring position and the C-2 position is now bound to a D substituent, originating from 

the NMR solvent (no additional proton signals were observed for the C-2 position in the 1H NMR 

spectrum). 

 

 

 

Figure 56 Photograph of samples obtained after 24 hours when 26[OTf] is treated with a 

molar equivalent of 12 in either CD2Cl2 (top) or CDCl3 (bottom). 

 

 

 

Figure 57 Initially proposed abnormal carbene adduct with C-2, C-4, and C-5 positions 

labelled in red. 

 

When H2 activation was attempted in CH3CN using the 26+/12 pair, no H2 cleavage was 

immediately observed. NMR spectra revealed 26[OTf] and 12 to be present as separate species 

(no adduct formation), and no significant reaction had appeared to have occurred with the 

solvent. However, after leaving the sample under H2 for 10 days, the appearance of trace 

amounts of the H2 cleavage product was suggested by the presence of a very small doublet in 

the 11B NMR spectrum at δ -19.7 ppm (J = 84 Hz). This is likely to be indicative of the formation 

of 26-H. Evidence for the presence of trace amounts of [HPtBu3]+ in the 31P{1H} NMR was given 

by the appearance of a very small singlet resonance at approximately δ 60 ppm. The H2 

activation reaction did not go any further towards completion, despite leaving the sample for 
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several weeks and even heating the sample at 60°C for several hours in an attempt to drive the 

reaction forward. 25[OTf] was not found to be successful for the H2 activation either. Perhaps 

the boron centre of the dimesitylborenium compounds is too sterically precluded to allow the 

formation an encounter complex with the correct geometry for H2 activation. One may also 

speculate that ion-pairing between the borenium cation and the counterion (if present, and to 

what extent) could influence the propensity of such compounds for H2 activation.[284] Indeed, 

the anion [B(C6F5)4]− is less coordinating than [OTf]−.[285,286] Ingleson and co-workers previously 

found that the fierce electrophilicity of borenium cations can often lead to deactivation 

reactions, such as ligand deprotonation, preventing their incorporation into FLPs for H2 

activation.[272] 

To further investigate the possibility of abnormal carbene adduct formation, the 

tetramethylated-borenium cation 27+ was utilized in order to prevent binding at the C-4 and C-

5 NHC ring sites. When a solution of 27[OTf] in CDCl3 was treated with a molar equivalent of 12, 

1H, 31P{1H} and 11B NMR spectra showed no change after 30 minutes. However after leaving the 

solution for approximately 6 hours at room temperature, the sample had become dark brown 

in colour. The 31P{1H} NMR spectrum showed the same signals to be present at δ 122.8 and 46.7 

ppm, as observed previously for 26+. This observation rebuts the previous comment regarding 

the formation of abnormal carbene adducts, since the same reaction is observed even when the 

binding sites (at the C-4 and C-5 positions) are blocked by Me substituents. The chemical shifts 

of the 31P{1H} NMR resonances also suggest that the P-containing products are not specific to 

the NHC ligand employed. 

Crystals, suitable for X-ray crystallography, were grown from concentrated CH2Cl2 and 

CDCl3 reaction mixtures of 12 and 26+ via the slow evaporation of solvent – a residual brown oil 

was also apparent. The samples produced multiple crystal morphologies. Both samples resulted 

in the same unit cell, which corresponded to that of 26[OTf]. However, for the CH2Cl2 sample, 

another crystal morphology resulted in a different unit cell. When this data was solved and 

refined by Dr. R. Blagg, it was found to correspond to 26[Cl]. This suggests that solvent 

breakdown results in the generation of free Cl−, which results in some metathesis of 26[OTf]. 

This result generally supports the notion that the borenium cation remains intact (as evidenced 

by 11B NMR spectroscopy), and suggests that it may catalyse solvent decomposition reactions in 

the presence of 12, possibly [CH(3−n)Cln]+ (n = 1-3) abstraction.[287] It is highly likely that the 

tetraalkylphosphonium triflate/chloride salts behave as ionic liquids (the brown oil that was 

observed), and would be almost impossible to crystallise.[288] 

Since, the solvent activation mechanism and its associated products could not be 

elucidated, 25[OTf], 26[OTf] and 27[OTf] were not explored any further. All further 
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investigations and subsequent discussion will focus on the application of 19[B(C6F5)4] towards 

H2 oxidation using the electrochemical-FLP approach. 

5.5 Electrochemical studies into the NHC-borane adduct 

The NHC-borane, 19-H, was prepared according to the method of Farrell et al.[150] and 

its redox properties were explored using cyclic voltammetry. A single oxidation wave was 

observed at +0.58 ± 0.01 V vs Cp2Fe0/+ (Figure 58a) with no corresponding reduction wave at 

scan rates up to 5 V s−1. The observed voltammetric behaviour of 19-H is very similar to that of 

[8-H]–[252] (Figure 58b) and therefore the mechanism shown in Scheme 38 is proposed to account 

for the observed voltammetry. 

 

  

Scheme 38 The proposed mechanism and associated thermodynamic and kinetic 

parameters used in digital simulation of the voltammetric oxidation of 19-H at a GCE. 
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Figure 58 a) Overlaid CVs of 19-H (2.0 mM) in CH2Cl2 recorded at scan rates (ν) of 200, 300, 

400, 500 and 750, and 1000 mV s−1 at a GCE; b) CVs at a GCE comparing CH2Cl2 solutions of 

19-H (2.0 mM, navy blue), [nBu4N][8-H] (2.0 mM, brown), and H2 (saturated, pink) at scan 

rates (ν) of 100 mV s−1. 
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Upon the application of an oxidising potential, 19-H undergoes single-electron oxidation 

to form a transient [19-H]+ species. This then undergoes rapid dissociation in solution to give H+ 

and the neutral NHC-boryl radical, 19•. Since the applied potential is very positive of the formal 

potential for the 19+/19• couple (E0 = −1.94 ± 0.05 V vs Cp2Fe0/+, see 5.3 vide supra), this radical 

undergoes a second one-electron oxidation to generate 19+. This second oxidation occurs in 

competition with the following side reactions: 

i) The decomposition of 19• through reaction with the solvent. 

ii) The reaction between redox-generated H+, and a second incoming molecule of 

19-H to generate 19+ and H2 (see Scheme 38). 

 

On the reverse scan (Figure 58a) a smaller, EC-like reduction wave was observed at –

1.97 ± 0.01 V vs Cp2Fe0/+. This corresponds to the single-electron reduction of electrogenerated 

19+, as discussed above in 5.3. It is worth noting that the reduction of 19 + occurs 150 mV more 

negative than that of the archetypal Lewis acid 8 (see Chapter 2). The fact that 19+ is less 

electrophilic than 8, accounts for the increased hydride donor ability (and lower oxidation 

potential) of 19-H compared to [8-H]−. It is worth noting (in extension to the study in 5.3) that 

the oxidative back-peak continues to be absent for the reduction of 19+, even at a scan rates up 

to 5 V s−1. This is due to the rapid decomposition of 19• in solution to form a mixture of various 

redox-inactive, four-coordinate borates. However, the reduction wave (and hence the 

concentration) of electrogenerated 19+ arising from the oxidation of 19-H is much larger than 

that observed in the 8/[8-H]– system.[252] 

5.6 Proton-mediated generation of the borenium cation 

Treatment of 19-H with one equivalent of Jutzi’s strong acid, [H(OEt2)2][B(C6F5)4],[258] was 

found to result in the quantitative conversion of 19-H to 19[B(C6F5)4]. This confirms the protolytic 

side-reaction between redox-generated H+ and 19-H. This is in stark contrast to the 

corresponding reaction of [8-H]− with H+, where neither the free Lewis acid, 8, nor the etherate 

adduct, Et2O∙8, were found to be present (see Chapter 3). This result, together with the 

observation of significant amounts of electrogenerated 19+ in the cyclic voltammetry of 19-H, 

suggests that Lewis acid 19+ has a markedly improved stability towards H+ compared to 8.  

5.7 Digital simulation of the NHC-borane oxidation 

Digital simulation of the cyclic voltammetric data for the oxidation of 19-H was 

undertaken in order to extract pertinent mechanistic, thermodynamic and kinetic parameters. 



Chapter 5 – Borenium cations 

143 

The experimental and simulated cyclic voltammograms were found to be in very good 

agreement (Figure 59) when simulated according to the mechanism proposed in Scheme 38. 

 

 

 

 

 

Figure 59 Experimental (line) and simulated (open circles) CVs showing the full potential 

window following the oxidation of 19-H (2.0 mM, CH2Cl2) at a GCE (ν = 500 mVs−1). 
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Figure 60 a) Randles-Sevčik plot comparing simulated (open circles) and experimental 

(closed circles) oxidative peak currents of 19-H against the square root of scan rate (ν); b) 

Laviron plot comparing simulated (open circles) and experimental (closed circles) oxidative 

peak potentials of 19-H against the logarithm of scan rate (ν); c) Randles-Sevčik plot 

comparing simulated (open circles/squares) and experimental (closed circles) reductive peak 

currents of electrogenerated 19+ against the square root of scan rate (ν). Open circles 

denote non-corrected peak current values whereas open squares attempt to account for 

contributions due to capacitive charging currents; d) Laviron plot comparing simulated 

(open circles) and experimental (closed circles) reductive peak potentials of 

electrogenerated 19+ against the logarithm of scan rate (ν). ν = 200, 300, 400, 500, 750, 1000 

mV s−1. 
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Table 7 Globally optimized best-fit thermodynamic and kinetic parameters obtained from 

digital simulation of the voltammetric data for 19-H at a GCE, following the mechanism 

proposed in Scheme 38. 

Redox process 

Redox parameters 

E0 / V 

vs Cp2Fe0/+ 
k0 / cm s−1 α 

 
+0.77 ± 0.05 0.89 ± 0.01 0.5 ± 0.05 

 
−1.94 ± 0.05[a] (3.4 ± 0.1) × 10−3[a] 0.6 ± 0.05[a] 

 

Chemical step k / s−1 

 
k1 > 2  1013 [a] 

 k2 > 3  1011 M−1 

 k3 = 150 ± 25 

 

[a] The parameters for 19[B(C6F5)4] were taken directly from Table 6, vide supra. 

 

Comparing the results of the digital simulations for the 19-H/19+ system to the [8-H]–/8 

system discussed in Chapter 3, four observations are apparent: 

i) The rate of oxidation of 19-H is approximately seventy times greater than for [8-

H]–, leading to larger oxidative currents (see Figure 58b). 

ii) The oxidation potential of 19-H is 300 mV less positive than that of [8-H]–, 

corresponding to a significantly large (910 mV) net decrease in the potential 

required to oxidise H2 at a GCE (see Figure 58b). 

iii) The rate (k1) of 19• decomposition is under diffusion control (> 1010 s−1) whereas 

the corresponding process for 8•− (> 6.1 s−1) is much slower. 

iv) The rate of unwanted protonation of 19-H by electrogenerated H+ to generate 

19+ and H2 (k3) is 105 times slower than in the [8-H]– system. 

 

Indeed, for point (iv), simulation reveals that only 30-40% of 19+ that is reduced 

at the electrode surface is generated via this undesirable protolytic H2 regeneration 
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process, with the majority of 19+ being generated through the two-electron oxidation of 

19-H. This, combined with the greater chemical stability of 19+ towards unsolvated H+, 

demonstrates a significant improvement over the earlier [8-H]–/8 system.  

5.8 Electrocatalyst recyclability 

Encouraged by these findings, the application of 19+ towards in situ H2 oxidation was 

investigated using a combined electrochemical-FLP approach. Most importantly, an 

investigation was performed to determine whether this system could then be subsequently 

recycled. H2 (1 atm) was admitted to a 1:1 solution of 19[B(C6F5)4]/12 in CH2Cl2 containing 

[nBu4N][B(C6F5)4] electrolyte. The reaction mixture was then left to stir in a sealed flask overnight 

to allow FLP H2 cleavage to go to completion. The resulting solution containing 19-H (as 

identified from an initial cyclic voltammogram of the solution) and [12-H][B(C6F5)4] was then 

subjected to a bulk electrolysis cycle, holding the electrode at the oxidation potential of 19-H 

until complete conversion was achieved. Afterwards, an aliquot of 12 (equimolar to the original 

quantity of 19[B(C6F5)4]) was added to the solution, and the reaction mixture was resealed under 

H2 overnight. This cycle of bulk electrolysis and subsequent “recharging” under H2 was repeated 

a total of three times (see Figure 61). The total charge passed (equivalent to the concentration 

of 19-H) in the second cycle of electrolysis was 75% that of the first cycle, clearly indicating that 

the system is capable of turning over more than a single cycle. However, upon the third cycle of 

electrolysis the current and charge passed had dropped to below 10% of the initial cycle. Closer 

investigation revealed that the capacitive charging current had diminished considerably and 

cyclic voltammetry of the solution provided evidence of electrode fouling due to the presence 

of a broad, ill-defined, surface bound oxidation wave over the range 0.2-0.8 V vs Cp2Fe0/+. This 

most likely results from oxidative polymerization of the phosphine Lewis base, which, assuming 

that 100% of 19-H could be regenerated in each step, was subsequently present in excess. 

Although the oxidation potential of 12 occurs at slightly more positive potentials than that of 

19-H, the oxidation of free 12 may still occur to an extent. Whilst it is not yet clear whether 

improved turnover of the system may have been possible in the absence of fouling, the fact that 

19-H can be recycled even once is an improvement over the previously studied [8-H]–/8 system 

in Chapter 3, where all attempts to recycle the system failed. Note that whilst the system is 

electrocatalytic in the Lewis acid component, it is stoichiometric in the Lewis base 12. This is 

because this study is only concerned with the anodic half-cell reaction i.e. H2 oxidation. If this 

system as to be utilized as part of a complete electrochemical cell reaction (e.g. a fuel cell) then 
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clearly it would require coupling to a suitable cathodic half-cell reaction, that is capable of 

consuming the generated protons and closing the catalytic cycle. 

 

 

Figure 61 Repeat oxidative bulk electrolysis cycles of 19-H, generated from the overnight 

exposure of a 5 mM 19[B(C6F5)4]/12 solution (CH2Cl2) to H2 (1 atm), demonstrate that the 

system can be somewhat recycled (■, cycle 1; ●, cycle 2; ▲, cycle 3). 

 

5.9 Summary 

The redox chemistry of several (new and previously reported) NHC-stabilised 

dimesitylborenium cations, 25[OTf], 26[OTf] and 27[OTf], was explored at a GCE. The borenium 

cations were found to exhibit quasi-reversible voltammetry with a very slow follow-up chemical 

step resulting in some decomposition of the electrogenerated B• species. Cyclic voltammetry 

was also performed on Stephan’s borenium compound, 19[B(C6F5)4]. The boron centre of the 

electrogenerated 19• species is not sufficiently sterically precluded to prevent significant 

decomposition of the radical through reaction with the solvent. 19[B(C6F5)4] therefore exhibits 

classical EC-like voltammetry that is reminiscent of that obtained for 8 in Chapter 2. 
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The borenium cations, 25[OTf], 26[OTf] and 27[OTf], were found to be very poor 

candidates for FLP H2 activation when combined with the Lewis base, 12. In fact, unusual and 

colourful behaviour was observed when the 26+/12 FLP was formed in the chlorinated solvents, 

CDCl3 and CD2Cl2. I was unable to fully elucidate the reaction mechanisms and products involved. 

At the time of writing this thesis, the only borenium cation that is known to definitively activate 

H2, as part of a FLP, remains to be 19[B(C6F5)4]. 

The remainder of this chapter focused on successfully demonstrating the utility of 

19[B(C6F5)4] for H2 oxidation using a combined electrochemical-FLP approach. Using 19[B(C6F5)4] 

as the Lewis acid component of the FLP has several advantages over the initial 8-based system 

reported in Chapter 3. Indeed, the oxidative voltage (driving force) required to oxidise H2 at a 

carbon electrode is decreased by almost one Volt (910 mV, ca 175.6 kJ mol−1), the rate of H2 

oxidation is also faster, producing larger currents, and the NHC-stabilised borenium Lewis acid 

catalyst is more resistant to unwanted side-reactions with redox-generated H+. These factors 

combine to make the NHC-stabilised borenium system somewhat “rechargeable” – allowing the 

in situ regeneration of 19-H from 19+ in the presence of 12 and H2, with 75% efficiency after the 

first cycle. 

 



 

 

 

 

 

 

Chapter 6 

Results and discussion 

Tris[bis(trifluoromethyl)phenyl]boranes 
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6.1 Overview  

In Chapter 5, the combined electrochemical-FLP approach was extended from 

triarylboranes to NHC-stabilised borenium cations. The 9-BBN-derived borenium cation, 19+, 

was found to proffer significant improvements over 8 (studied in Chapter 3). The 

electrochemical oxidation of the B-H bond in 19-H, was found to occur 300 mV lower than in [8-

H]−. In addition to this desirable voltage decrease, it was also possible to recycle the Lewis acid 

19+ and regenerate 19-H after an oxidative bulk electrolysis cycle. This was not possible for the 

8/[8-H]− system (Chapter 3). 

In this final results and discussion chapter, I return to explore a new class of 

triarylboranes. Tris[bis(trifluoromethyl)phenyl]boranes, B{C6H3(CF3)2}3, (introduced in 1.6) are a 

lesser studied class of sterically-bulky and strong Lewis acids; their electrochemical properties 

are hitherto unknown. This chapter addresses this by investigating the reductive redox 

chemistry of the 3,5- (20) and 2,4- (28) bistrifluoromethylated isomers using cyclic voltammetry. 

In addition to this, the electrochemical properties of the bridging, [(μ-H)(20)2]−, and the terminal, 

[20-H]−, hydrides of 20 are studied for the first time. 

As discussed in Chapters 2 and 3, donor solvents such as THF are usually not compatible 

with FLP systems containing strong Lewis acids such as 8. This is due to the formation of strong 

classical Lewis adducts or ring-opening, in the case of THF, to give a gel.[170] The first reported 

example of a FLP that functions in donor solvents made use of the borane, HB(fmes)2 [fmes = 

2,4,6-tris(trifluoromethyl)phenyl]. When combined with either 1,4-diazabicyclo[2.2.2]octane 

(DABCO) or NEt3, this borane was capable of activating H2 in the donor solvent, Et2O. The 

significant steric bulk of the boron centre in HB(fmes)2, compared to 8, precludes the formation 

of any etherate Lewis adduct; the Lewis acidity of the boron centre therefore remains 

unquenched.[149] Ashley and co-workers have since found that the 20/TMP FLP is capable of 

heterolytically activating H2 in Et2O solvent, presumably the diethyletherate adduct, Et2O∙20, 

dissociates sufficiently at room temperature to allow free 20 to participate in FLP H2 activation 

with the Lewis base, TMP.[146] Since then, Stephan’s group have since found that combinations 

of 8 and near stoichiometric quantities of ethers (including Et2O) can function as effective 

hydrogenation catalysts in non-donor solvents such as CD2Cl2.[289] This report prompted our 

collaborators to investigate the application of ethereal solvents as the frustrated Lewis base for 

hydrogenation catalysis using a series of perfluorinated/perchlorinated boranes related to 8; 

B(C6F5)n(C6Cl5)3−n (n = 1-3). This approach was successful for hydrogenation catalysis, and (most 

importantly) eliminated the requirement for the presence of any additional phosphines/amines 

as the Lewis base.[290] Stephan very recently extended this approach to provide the first FLP 
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example of catalytic ketone hydrogenation, affording the corresponding alcohol products.[137] 

This was simply achieved using a FLP derived from 8 (5 mol%) and the ethereal solvent, Et2O. 

In this chapter, the use of donor solvents for FLP H2 activation by 20 is explored for the 

first time (in the absence of additional P- or N- containing Lewis bases). This provides further 

mechanistic insight into the various underlying H2 activation equilibria, involving 20. The concept 

of employing a donor solvent as the Lewis base is then also extended to the electrochemical-FLP 

system. 

6.2 Synthesis and characterization of the boranes 

In the past, the regioisomers B{C6H3(3,5-CF3)2}3 (20) and B{C6H3(2,4-CF3)2}3 (28) were 

accidently isolated as either unwanted reaction products or side-products. In both instances, 

their molecular structures were elucidated using X-ray crystallography (see Figure 62).[291,292] 

 

 

Figure 62 Molecular structures of the B{C6H3(CF3)2}3 variants a) 20,[291] and b) 28.[292] 

 

Remarkably similar methods for the facile preparation of 20 (on a practical scale) were 

reported independently by the research groups of Ashley and Tamm in 2012.[146,147] I prepared a 

sample of 20 by following the method of Tamm and co-workers (according to Scheme 39a).[147] 

The reason for this was simply that Tamm’s protocol for temperature control was easier to 

implement than that of the alternative method. The separation of 20 from the crude product 

proved to be more difficult than suggested by the original literature procedures. On removal of 

the reaction solvent, a sticky solid amber foam resulted. I found that it was best to leave this 

foam under vacuum (10−2 mbar) at room temperature overnight, in order to fully remove any 

residual (unbound) solvent. It was then possible to grind the dry foam into a tan-coloured 
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powder that could then be sublimed (80°C, 10−6 mbar) to give pure 20 as a white powder. 

Unfortunately, the contamination of 20 by the magnesium salts necessitated the need for a 

second sublimation and recrystallization (hot toluene) step. If the crude product wasn’t left 

under vacuum for prolonged periods of time, the first sublimation step proved to be very difficult 

due to the continual formation of foam in the sublimation tube apparatus. 

Whilst the 2,4-variant (28) has also been reported previously, the original preparation 

method of Cornet et al. is far from clean and high yielding. The authors deprotonated C6H4(2,4-

CF3)2 with nBuLi at −78°C to give a mixture of the 1- and 3- organolithiated species, 1/3-

LiC6H3(2,4-CF3)2. Treatment of this reaction mixture with an excess of BCl3∙OEt2 afforded a 

product mixture of the mono-, bis-, and tris-substitued boranes: Cl2B{C6H3(2,6-CF3)2} (14%), 

FB{C6H3(2,6-CF3)2}2 (5%), and 28 (17%) on warming to room temperature, which were separated 

by distillation under reduced pressure. 

A sample of 28 was prepared by Dr. T. Herrington (of Dr. A. Ashley’s research group) 

using a modified version of the procedure described above (see Scheme 39b). Lithium-halogen 

exchange of BrC6H3(2,4-CF3)2 with nBuLi at −78°C selectively generated the organolithium species, 

1-LiC6H3(2,4-CF3)2. Treatment of this with a ⅓ of an equivalent of BCl3, followed by warming to 

room temperature, subsequent removal of the volatiles and sublimation, allowed 28 to be 

obtained in excellent yield (90%). 

 

 

Scheme 39 Preparation of a) 20,[146,147] and b) 28.[292] 
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6.3 Electrochemical study of the boranes 

Cyclic voltammetric data for 20 and 28 was recorded at a GCE (Figure 50), in 

collaboration with Ms. K. Resner and Dr. R. Blagg. Separate samples of 20 and 28 (2.7 mM) were 

prepared as solutions in CH2Cl2, containing the supporting electrolyte [nBu4N][B(C6F5)4]. On 

sweeping the potential cathodically from the OCP at 100 mV s−1, single reduction waves were 

observed for both of the samples (20 and 28) at −1.67 and −1.88 V vs Cp2Fe0/+ respectively. On 

the reverse scan, however, a back-peak was only observed for 28, at Ep,ox = −1.76 V vs Cp2Fe0/+. 

No corresponding oxidation wave was observed for 20, even when the scan rate was increased 

to 800 mV s−1. In contrast, the back-peak was always apparent for 28, independent of the scan 

rate employed. 

 

 

Figure 63 Overlaid CVs for the B{C6H3(CF3)2}3 variants a) 20 (2.7 mM), and b) 28 (2.7 mM) 

recorded at a GCE in CH2Cl2 at scan rates (ν) of 100, 200, 400, 800 mV s−1. 

 

Throughout this thesis, the voltammetric reduction of boron-based Lewis acids has been 

found to be dominated by EC electrochemical reactions (refer to Chapters 2 and 5). For the 

boron-based Lewis acids studied, the electrochemical quasi-reversible, single-electron reduction 

is typically coupled to an irreversible chemical follow-up step, where the reduced boron species 

undergoes further reaction with the solvent. The B{C6H3(CF3)2}3 variants studied here were no 

exception to this. Indeed, excellent fits (Figures 64-65) were obtained when the experimental 

CVs of 20 and 28 were fitted according to the EC process shown in Scheme 40 (digital simulation 

was performed in collaboration with Dr. R. Blagg). As was the case for the dimesitylborenium 

cations (25+, 26+ and 27+) in Chapter 5, the voltammetric reduction of 28 appears to be fully 

reversible (a simple E process) at first glance. However, any attempts to model the experimental 
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CVs in this way resulted in simulated currents that were consistently too large. This suggests 

that whilst the electrogenerated radical anion, 28•−, is significantly more stable than 

corresponding 20•−, it is still susceptible to decomposition via an EC-type mechanism, albeit with 

a much slower rate constant for the chemical decomposition process. 
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Figure 64 a) Experimental (line) and simulated (open circles) CV for the reduction of 

authentic 20 (2.7 mM) at a GCE in CH2Cl2 (multiple scan rates, see below); b) corresponding 

Randles-Sevčik plot comparing simulated (open circles/squares) and experimental (closed 

circles) peak currents against the square root of scan rate (ν); and c) corresponding Laviron 

plot comparing simulated (open circles) and experimental (closed circles) peak potentials 

against the logarithm of scan rate (ν). ν = 100, 200, 400 and 800 mV s−1. 
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Figure 65 a) Experimental (line) and simulated (open circles) CV for the reduction of 

authentic 28 (2.7 mM) at a GCE in CH2Cl2 ( multiple scan rates, see below); b) corresponding 

Randles-Sevčik plot comparing simulated (open circles/squares) and experimental (closed 

circles) peak currents against the square root of scan rate (ν). Open circles denote non-

corrected peak current values whereas open squares attempt to account for current 

contributions due to capacitive charging (Cdl); c) corresponding Laviron plot comparing 

simulated (open circles) and experimental (closed circles) peak potentials against the 

logarithm of scan rate (ν). ν = 100, 200, 400 and 800 mV s−1. 
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Scheme 40 The proposed mechanism and associated thermodynamic and kinetic 

parameters used in digital simulation of the voltammetric reduction of the B{C6H3(CF3)2}3 

variants (20 and 28) at a GCE. 

 

Table 8 Globally optimized best-fit thermodynamic and kinetic parameters obtained from 

digital simulation of the voltammetric data for 20 and 28 at a GCE, following the mechanism 

proposed in Scheme 40. 

Redox parameters 

B{C6H3(CF3)2}3 variant 

20 28 

E0 / V vs Cp2Fe0/+ −1.63 ± 0.05 −1.81 ± 0.05 

k0 / 10−3 cm s−1      24 ± 0.1      9.3 ± 0.1 

α   0.34 ± 0.05    0.52 ± 0.05 

 

 

Chemical 

parameters 

B{C6H3(CF3)2}3 variant 

20 28 

k1 / s−1   18 ± 2 (2.8 ± 0.05) × 10−3 

D / 10−5 cm2 s−1 3.7 ± 0.05  1.1 ± 0.05 

 

 

The formal reduction potential (E0) for 28 was found to be similar to that of 8, as 

determined in Chapter 2 (where E0 = −1.79 ± 0.05 V). However, the E0 values suggest that 20 is 

more electrophilic than 28 (ΔE0 = 0.18 ± 0.07 V). This is surprising, given that a CF3 substituent 

at the para position of a phenyl group is more electron-withdrawing than that at a meta position, 

as described by the relative Hammett parameter values (meta(CF3) = 0.430 vs para(CF3) = 

0.540).[271] Note that Hammett parameters are not available for substituents in the ortho 
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position, since such parameters attempt to rationalize electronic effects independently of steric 

effects (and were originally obtained from experimental observations). The Gutmann-

Beckett[293,294] and Childs[295] methods were not successful for assessing the relative Lewis acidity 

of 28 relative to 20, since the significant steric bulk of 28 unfortunately precluded any interaction 

between the added Lewis bases and the Lewis acidic, boron centre. The apparent contradiction 

between the expected order of redox potentials using available Hammett parameter values and 

the experimentally observed formal potentials suggests that additional electronic or steric 

effects may exist in either 20 or 28. Considering the electron-withdrawing effects of a CF3 

substituent, one would simply expect 28 to be more electrophilic than 20. DFT calculations are 

currently being carried out on the structurally optimised geometries of 20 and 28. An 

assessment of the relative partial charge distributions will hopefully allow the rationalization of 

this phenomenon. At this stage, I suspect that the pendant fluorine atom of the ortho-CF3 

substituent on 28 may partially quench the electrophilicity of the boron centre via a non-

bonding donor-acceptor interaction between the lone pair on the F atom and the central B atom. 

 Digital voltammetric simulation determined that the rate (k) of radical anion 

decomposition (via reaction with the solvent) is approximately 6000 times greater for 20•− than 

for 28•−. This can be accounted for by considering the steric accessibility of the boron centre in 

the parent Lewis acids. This assumes that negligible structural reorganization occurs on 

reduction, and also that the unpaired electron of the radical anion is localized on the boron 

centre (as is the case for 8•−, see 2.4). This is clearly illustrated by the space-fill models shown in 

Figure 55, where the boron atoms are shown in pink. Whilst the boron centre in 28 appears to 

be almost completely engulfed by the surrounding aryl rings, the opposite is true for 20 (the 

boron centre can be easily identified). It is no surprise that solvent molecules can easily approach 

the SOMO of 20•− and react with its unpaired electron. It is worth remembering that an ortho-

CF3 substituent is extremely effective at sterically protecting the boron centre from interactions 

with other molecules such as the solvent; this imparts significant stability to the radical anion. 
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Figure 66 Space-filling view of the B{C6H3(CF3)2}3 variants a) 20,[291] and b) 28[292] showing the 

extent of steric shielding of the boron centre by the surrounding -CF3 substituents. 

 

6.4 Exploring FLP H2 activation using B{C6H3(2,4-CF3)2}3 

When the structural isomer 28 was mixed with either 12 or TMP in CH2Cl2, the 1H, 19F{1H}, 

31P{1H}, and 11B NMR spectra were identical to that of the individual components, suggesting 

that a classical Lewis adduct had not formed. These mixtures were admitted to H2 (4 atm) and 

left for several days, however, the absence of any heterolytic H2 activation products suggested 

that 28 is ineffective towards FLP chemistry. Whilst the sterically-protected boron centre of 28 

has advantages for limiting the decomposition of 28•− in electrochemical studies (see 6.3), the 

opposite is true for FLP applications. The added Lewis base and H2, simply can’t interact with the 

Lewis acidic boron centre of 28 (refer to the space-fill models above, Figure 66). Indeed this 

effect is likely to be exacerbated by the fact that 28 is also less electrophilic than 20 (as 

determined from the relative formal potentials in Table 8). Since 28 was devoid of any FLP 

activity, it was not explored any further. 

6.5 Ethereal solvents as the Lewis base for FLP H2 activation 

When H2 is admitted to the 20/TMP FLP, the bridging hydride, [TMP-H][(μ-H)(20)2], is 

observed to rapidly precipitate from the CH2Cl2 reaction mixture.[146] The equilibrium can be 

forced towards the terminal hydride, [TMP-H][20-H], by the addition of extra Lewis base (LB), 

including the donor solvents THF or CH3CN. The formation of the classical Lewis adduct, LB∙20, 

drives the sequestration of 20 from [(μ-H)(20)2]− to completion.  

Interestingly, when an isolated sample of [TMP-H][(μ-H)(20)2] (prepared according to 

the literature method)[146] was dissolved in THF, the formation of [TMP-H][20-H] and THF∙20 was 
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found to be concomitant with evolution of a small quantity of H2 gas. Whilst effervescence was 

not observed, some dissolved H2 was detected in the product mixture as a singlet resonance at 

δ 4.53 ppm in the 1H NMR spectrum.[296] This suggests that an equilibrium becomes established 

between [TMP-H][20-H] and 20/TMP/H2 FLP, although the position of this equilibrium strongly 

favours the formation of the hydride (see Scheme 36a). This can be rationalized in terms of the 

relative hydride donating abilities of the bridging and terminal hydrides. Compared to [20-H]−, 

the hydride donor ability of [(μ-H)(20)2]− is reduced by the presence of an additionally bound 20 

unit. This makes the terminal hydride, [20-H]−, more susceptible to the reverse reaction, where 

H2 is regenerated via the Brønsted acid/base reaction of [20-H]− with [TMP-H]+. 

Out of curiosity, I subjected the product mixture of [TMP-H][20-H] and THF∙20 to a 

freeze-pump-thaw cycle, and admitted the sample to H2 (4 atm). NMR spectra were then 

obtained as soon as possible. To my surprise, a new, broad signal had appeared at δ 4.3 ppm in 

the 11B NMR spectrum, observed directly between the signals corresponding to [20-H]− (δ −9 

ppm, broad) and THF∙20 (δ 11 ppm, broad).[147] This signal was tentatively assigned to the 

formation of the bridging hydride product [H(THF)n][(μ-H)(20)2], where the protons are solvated 

by THF molecules.[297,298] Indeed, Ashley and co-workers found that Et2O∙20, dissociates 

sufficiently at room temperature to allow free 20 to participate in FLP H2 activation with the 

Lewis base, TMP.[146] My observations suggest it may be possible to activate H2 using 20 in 

ethereal solvents without the need for additional TMP Lewis base. 

It is worth noting that Ashley and co-workers had difficulty in obtaining full NMR 

spectroscopic characterization of [TMP-H][(μ-H)(20)2] due to its poor solubility in most common 

(deuterated) non-donor solvents. Only when [TMP-H][(μ-H)(20)2] was heated to 80°C in DFB 

could they obtain a sufficient signal to noise ratio that allowed 1H NMR assignments be made, 

and even these are ambiguous. They failed to obtain any 11B NMR spectroscopic information, 

due to an insufficient sample concentration. Tamm and co-workers have previously assigned 

[(μ-H)(20)2]− as a broad 11B NMR signal at δ −10 ppm.[147] However, since they erroneously 

attempted to characterize their product in the donor solvent THF, and in light of my findings 

below, I believe Tamm’s reported spectral data actually corresponds to the terminal hydride, 

[20-H]−, and not the bridging hydride as the authors mistakenly claimed. Tamm and co-workers’ 

error was made despite the authors explicitly discussing the observed formation of [20-H]− from 

[(μ-H)(20)2]− on the addition of the Lewis base, CH3CN. 

Inspired by the previous reports from Stephan’s group,[289] and the work of our 

collaborators[290] (which was conducted in parallel to my work, see 6.1), I decided to further 

investigate whether H2 activation by 20 was possible using only the donor solvent THF as the 

Lewis basic component. A sample of 20 was dissolved in d8-THF to give the classical Lewis adduct, 
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d8-THF∙20, which was observed in the 11B NMR spectrum at δ 10.3 ppm. After admission of the 

sample to H2 (4 atm) a broad signal was immediately observed at δ 3.7 ppm; this signal was 

characteristic of that observed previously when the sample containing [TMP-H][20-H] and 

THF∙20 was admitted to H2. A new, broad signal was observed downfield in the 1H NMR at δ 

11.11 ppm. This is assigned to the presence of THF-solvated protons, generated from the 

heterolytic cleavage of H2.[290,298] New aryl CH multiplets were observed in the 1H NMR at δ 7.86 

and 7.82 ppm with relative integrals of 1 and 2, respectively. Additionally, a new singlet 

resonance was also observed at δ −63.6 ppm in the 19F{1H} NMR. Assuming that the new signals 

correspond to [H(THF)n][(μ-H)(20)2], integration of the new aryl 1H and 19F{1H} NMR signals 

relative to those of the d8-THF∙20 starting material suggests that [H(THF)n][(μ-H)(20)2] initially 

forms in 16% conversion on admission to H2. When spectra were obtained again after several 

days, H2 cleavage had progressed no further, suggesting that the activation of H2 by 20 in THF is 

reversible and that equilibrium is rapidly attained within minutes (i.e. the time it takes to run 

the sample on an NMR spectrometer) of H2 being added to the sample (see Scheme 36b). 

Attempts were made to isolate the H2 activation product, [H(THF)n][(μ-H)(20)2]. A 

sample of 20 in toluene was solubilised by adding several drops of THF, forming THF20 in 

solution. After saturating the solution with H2 (1 atm), the reaction mixture was stirred overnight 

at room temperature. The sample was then cooled to −20°C for 5 hours to yield a small crop of 

colourless crystals. The crystals were washed with light petroleum ether and dried under 

vacuum. NMR spectra of the product in CD2Cl2 strongly suggested that the H2 activation product, 

[H(THF)n][(μ-H)(20)2], previously formed in equilibrium with the THF20, had been successfully 

isolated. Interestingly, no resonance was observed for the B-H-B unit in the 1H NMR spectrum, 

and there was no observable loss of H2 from prolonged periods under vacuum. Elemental 

analysis suggested that [H(THF)2][(μ-H)(20)2] had been obtained and was analytically pure 

[Calculated analytical C H values for C56H36B2F36O2: C 46.50, H 2.51%. Found: C 46.65, H 2.38%]. 

Unfortunately, this sample failed to produce crystals of suitable quality for X-ray crystallography. 

Upon repeated attempts I failed to reproducibly isolate the H2-cleavage product from the 

equilibrium mixture of THF20, and instead isolated only crystals of either free 20 or the Lewis 

adduct THF20. Further attempts to crystallise the [H(THF)2][(μ-H)(20)2] product were attempted 

using both THF/petroleum ether and CH2Cl2/THF/petroleum ether solvent mixtures to no avail. 

If the co-solvent system is not sufficiently polar then crystallization of the starting material is 

promoted, whilst if the solvent mixture is too polar then crystallization does not occur at all. It 

seems that the optimal toluene/THF ratio and the correct concentration of 20 are critical to the 

selective crystallization of the desired H2 activation product. For this reason, a crystal structure 
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could not be obtained for this product despite my best and repeated efforts. Fortunately, there 

was enough material remaining to record its cyclic voltammetry (see 6.6, below). 

One might wonder why the terminal hydride, [20-H]−, is never observed on exposure of 

a solution of 20 in THF to H2. A logical starting point is to assume that the same underlying 

chemical equilibria observed for the TMP/20 FLP system (Scheme 36a) also applies to the 

20/THF system (Scheme 36b). Since the donor solvent THF is in vast excess in the 20/THF system, 

rather than dismissing the existence of [H(THF)2][20-H], one can simply assume that it is so 

unstable to loss of H2 that it rapidly reverts back to the starting material, THF20. This leads to 

the onset of the observed chemical equilibrium, which lies towards the starting material. Indeed, 

evidence for the loss of H2 was observed spectroscopically for [TMP-H][20-H] (see above). The 

relative stabilities of [H(THF)2][20-H] and [TMP-H][20-H] can be rationalized by considering their 

logarithmic acid dissociation constants (pKa). pKa values for the conjugate acids of TMP and THF 

are 11.1 and −2.1, respectively.[3,299] Since protonated THF is ca 13 orders of magnitude more 

acidic than [TMP-H]+, is it no surprise that [H(THF)2][20-H] is unstable to decomposition (via H2 

evolution). Conversely, [TMP-H]+ is not sufficiently protic to react with [20-H]− and liberate H2. 

The behaviour of the 20/THF FLP, towards H2 activation, is remarkably similar to that of 

the previously reported Al(C6F5)3 (22)/12 system.[281] The reaction of the H2 activation product, 

[12-H][(μ-H)(22)2], with Lewis bases such as Et2O or PMe3 resulted in the rapid evolution of H2 

and the observed formation of the classical Lewis adducts, LB∙22 (where LB = Et2O, PMe3). In this 

case, the added Lewis base sequestered 22 from [(μ-H)(22)2]− and generated the salt [12-H][22-

H], which is unstable with respect to H2 loss. 



Chapter 6 – Tris[bis(trifluoromethyl)phenyl]boranes 

163 

 

 

Scheme 41 Postulated H2 activation equilibria exhibited by 20 when paired with the Lewis 

bases a) TMP (in CH2Cl2), and b) THF (as the reaction solvent). 

 

With an improved mechanistic understanding of the 20/THF FLP system (Scheme 36b), 

I wondered whether it would be possible drive the activation of H2 to completion using 

stoichiometric quantities of THF in a non-donor solvent. On the admission of a solution of 20∙THF 

(in CD2Cl2) to H2 overnight, a set of colourless crystals formed. Unfortunately, X-ray 

crystallography identified that the aqua adduct (THF)2(H2O)∙20 had been crystallised, where the 

associated THF molecules were hydrogen bonded to the aqua adduct. No further attempts have 

since been made. 

Where appropriate Lewis base choices are concerned, TMP and THF contrast greatly. 

TMP is a significantly stronger Lewis base than THF, as indicated by the relative pKa values of 

their conjugate acids (TMP = 11.1, THF = −2.1). However, THF is much less sterically encumbered 

than TMP, hence (with 20) it forms the classical Lewis adduct, THF20. Out of curiosity, I decided 

to investigate the combination of 20 with the Lewis base pyrrolidine (29), and its ability (or lack 

of) for FLP H2activation. 29 effectively has the Lewis basicity (conjugate acid pKa = 11.3)[300] of 

TMP, but has the decreased steric bulk of THF. I postulated that these properties may favour the 

formation of the terminal hydride, [29-H][20-H]. When 20 was dissolved in 29, the formation of 

2920 was evidenced by the presence of a sharp singlet resonance in the 11B NMR spectrum at 

δ −0.4 ppm. On admission to H2, no change in the NMR spectrum was observed. This 
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unfortunately suggests that the classical Lewis adduct, 2920, is so tightly bound that it is unable 

to partake in H2 activation chemistry. An equilibrium involving the partial dissociation of LB20 

into free LB and 20 is essential for a successful FLP systems – and this must be considered in the 

development of solvent-based FLP systems that are free from additional Lewis base. 

Switching to donor solvents for the combined electrochemical-FLP system is likely to 

provide the following three advantages: 

i) There is no doubt that the presence of unsolvated protons accelerate the H2 

evolution side-reaction in the previously explored systems (where the non-

donor solvent, CH2Cl2, is used). Donor solvents such as THF would function as a 

buffer agent for any redox-generated H+, sequestering protons so that 

unsolvated protons are never present. This effect would reduce the rate of the 

undesirable side-reaction of H+ with the hydridic intermediates formed in the 

FLP activation of H2. 

ii) Donor solvents would effectively lock up the Lewis acid as the Lewis adduct. This 

may reduce the susceptibility for decomposition of the Lewis acid when exposed 

to trace amounts of air and moisture (in future applications). 

iii) Adopting the solvent as the Lewis base removes the need for additional Lewis 

bases (such as amines/phosphines etc.) in the system. This may eliminate 

recyclability issues such as those encountered in Chapter 5 for the 

19[B(C6F5)4]/12 system, where the 87% decrease in total charge passed during 

the third bulk electrolysis cycle was attributed to electrode fouling by the 

electro-oxidised Lewis base, 12. 

6.6 Electrochemical studies of the H2 activation products 

The redox properties of the bridging hydride products of FLP H2 activation, [TMP-H][(μ-

H)(20)2] (3.1 mM) and [H(THF)2][(μ-H)(20)2] (1 mM), were studied at a GCE using cyclic 

voltammetry (Figure 67) in the non-donor supporting electrolyte system, 

CH2Cl2/[nBu4N][B(C6F5)4]. Note that whilst [TMP-H][(μ-H)(20)2] is sparingly soluble in C(H/D)2Cl2 

for NMR studies, it is sufficiently soluble for electrochemical studies. The voltammetric 

behaviour of both [(μ-H)(20)2]− samples were almost identical. When the potential was scanned 

anodically from the OCP at 100 mV s−1, an oxidation wave was observed at +1.49 V vs Cp2Fe0/+. 

This wave appeared as a shoulder on the edge of the solvent window, where the onset of 

oxidative solvent/electrolyte breakdown begins to occur. No back-peak was observed when the 

scan direction was reversed, suggesting that an EC-like mechanism is at play. This oxidation 
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event is attributed to the two-electron oxidation of [(μ-H)(20)2]− to give H+ and two molecules 

of 20. Unfortunately, the potential required for the oxidation of [(μ-H)(20)2]− is the same as that 

of molecular H2 (see Chapter 3). This suggests that whilst FLP H2 activation by 20/THF is 

extremely facile, a decrease in the required oxidation potential is not achieved and hence FLP 

pre-activation of H2 by 20/THF does not provide an electrocatalytic effect. It is likely that the 

strength of the B-H bond is comparable to that in H2 (BDE = 435.8 kJ mol−1).[3] Indeed, the 

bridging hydride salt can, effectively, be considered as an electrolyte salt within the positive 

potential window. 

On the reverse scan, a reduction wave was observed at ca −1.80 V vs Cp2Fe0/+ for both 

[TMP-H][(μ-H)(20)2] and [H(THF)2][(μ-H)(20)2]. This wave was devoid of a back-peak and 

reminiscent of that observed for the single electron reduction of the parent borane (20) (see 6.3, 

above). This wave is therefore ascribed to the generation of 20 from the electrooxidation of [(μ-

H)(20)2]−. The observation of this reduction wave suggests that electrogenerated 20 is less 

susceptible to protolytic decomposition than previously studied 8, where an ill-defined 

corresponding reduction wave is observed (refer to Chapter 3 for details). A second reduction 

wave was also observed at −2.39 V vs Cp2Fe0/+ for [H(THF)2][(μ-H)(20)2], and close to the solvent 

window at −2.54 V vs Cp2Fe0/+ for [TMP-H][(μ-H)(20)2]. This second wave likely corresponds to 

the reduction of H+ back to H2 which requires a significantly large overpotential at carbon 

electrodes in non-aqueous solvents. The varied reduction potential observed likely reflects the 

relative acidity and hence the ease with which [H(THF)2]+ is reduced compared to [TMP-H]+.[301] 

The onset of solvent/electrolyte breakdown close to the observed oxidation wave of [(μ-

H)(20)2]− unfortunately prevents digital simulation of the voltammetric data i.e. relevant 

thermodynamic and kinetic parameters cannot be extracted for this system. 
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Figure 67 Experimental CVs of the isolated bridging hydrides a) [TMP-H][(μ-H)(20)2] (3.1 

mM), and b) [H(THF)2][(μ-H)(20)2] (1 mM), recorded in CH2Cl2 at a GCE (ν = 100 mV s−1). 
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To allow a study into the redox chemistry of the terminal hydride, [20-H]−, to be 

conducted, a sample of authentic Na[20-H] was prepared. Unlike in Chapter 3, metathesis of the 

Na salt was not necessary, since it is sufficiently soluble in the THF/[nBu4N][B(C6F5)4] electrolyte 

system (THF is now the preferred choice of solvent for the electrochemical-FLP approach). 

Cyclic voltammetry was performed on a solution of Na[20-H] (3.5 mM) in THF at a GCE 

(Figure 68). On sweeping the potential anodically from the OCP at 100 mV s−1, an oxidation wave 

was observed at +0.78 V vs Cp2Fe0/+. The wave was indicative of an underlying EC mechanism, 

that is analogous to that of [nBu4N][8-H] (+0.88 V vs Cp2Fe0/+, see Chapter 3). However, the 

required oxidation potential for [20-H]− occurs approximately 100 mV lower than that of [8-H]−. 

This suggests that [20-H]− is significantly more hydridic than [8-H]−, albeit not as hydridic as the 

NHC-borane, 19-H ((+0.58 V vs Cp2Fe0/+, Chapter 5). Note that the voltammetric reduction of the 

parent Lewis acid, 20, was not observed on the reverse scan. This is because any 

electrogenerated 20 becomes quenched by the donor solvent, forming the classical Lewis 

adduct THF20. Indeed, a solution of 20 in THF/[nBu4N][B(C6F5)4] electrolyte was found to be 

electroinactive at all potentials (−2.6 to +1.4 V vs Cp2Fe0/+)[195] within the electrochemical 

window. Whilst the coordination of THF to 20 is reversible, its equilibrium position strongly 

favours the formation of THF20, hence there is negligible free 20 available at any one time for 

electro-reduction. 

It is not possible to digitally simulate the electrochemical oxidation of Na[20-H] due to 

the large quantity of unknown thermodynamic and kinetic parameters. The previous hydride 

systems ([8-H]− and 19-H) were simulated using values obtained from independent fits of the 

CVs obtained for the reduction of the parent Lewis acids (8 and 19). Since the electroreduction 

of 20 cannot be measured in donor solvents, these parameters cannot be deduced. 

The cyclic voltammetry of [TMP-H][(μ-H)(20)2] (3.5 mM) was also conducted (at a GCE) 

in THF solution. Unsurprisingly, an oxidation wave that is characteristic of Na[20-H] was 

observed, indicating the formation of [TMP-H][20-H] (and electroinactive THF20). This provides 

further supporting evidence for the mechanism and equilibria proposed in 6.5 and Scheme 36. 
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Figure 68 Overlaid CVs for the authentic terminal hydride, Na[20-H] (3.5 mM), recorded in 

THF at a GCE at scan rates (ν) of 50, 100, 200, 300, 400, 500, 750 and 1000 mV s−1. 

 

6.7 Investigating in situ H2 oxidation 

In situ electrochemical oxidation of H2 by 20 using THF as the Lewis base was not 

attempted for two reasons: 

i) The pre-activation of H2 via the formation of [(μ-H)(20)2]− does not provide a 

decrease in the energetic driving force for H2 oxidation. 

ii) It is not possible to differentiate between molecular H2 and [(μ-H)(20)2]−, since 

both oxidation waves are observed at +1.49 V vs Cp2Fe0/+. 

 

Whilst 20/THF is not an electrocatalyst for H2 oxidation, and any efforts to utilise this 

system would be futile, the terminal hydride, [20-H]−, provides a 710 mV (137.0 kJ mol−1) 

decrease in the required potential for H2 oxidation. Considering this benefit, I decided to 

investigate whether it was possible to activate H2 in situ and oxidise the resulting [20-H]−. In an 
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attempt to favour the formation of [20-H]−, I decided to employ the 20/TMP system in THF 

solvent. 

An equimolar 20/TMP solution (2.5 mM) in THF was sparged with H2 for 15 minutes 

before a CV was recorded at a GCE (ν = 100 mV s−1). A large EC-like oxidation wave, characteristic 

of the terminal hydride [20-H]−, was observed at +1.36 V vs Cp2Fe0/+. However, from the previous 

study on the authentic Na[20-H] sample, it was clear that this wave is at too high a potential (ΔEp 

≈ 550 mV) to correspond to [20-H]−. 

I was concerned that I’d overlooked one of the fundamental reactions exhibited by some 

FLP systems, their ability to ring-open THF.[147,170] As a control experiment, the cyclic 

voltammetry of 20 was recorded in THF under N2 (Figure 69); no redox waves observed to be 

present. When a molar equivalent of TMP was added to generate an active FLP (the system 

remaining under a N2 atmosphere) the same wave at +1.36 V vs Cp2Fe0/+ was observed, as before. 

An additional EC-like oxidation wave was also observed at +0.78 V vs Cp2Fe0/+; this corresponds 

to the single-electron oxidation of TMP to its corresponding radical cation[302] (and was 

confirmed independently). It is likely that the oxidation wave at +1.36 V vs Cp2Fe0/+ corresponds 

to an oxidation process involving the relatively strong B-O bond of the zwitterionic THF 

activation product (30, Scheme 42). Indeed, the ring-opening of THF by 20 paired with the bulky 

NHC carbene, ImtBu2, has been previously reported by Tamm and co-workers.[147] 

 

 

Scheme 42 Postulated product (30) of THF ring-opening by 20/TMP. 

 

Note that THF is not sufficiently Lewis basic to ring-open itself in the presence of 20 

during the timescale of electrochemical experiments. Over the course of 1-2 months, solutions 

of 20 in d8-THF were observed to become gel-like in appearance, presumably due to the very 

slow rates of THF activation in the absence of a strong bulky base (such as TMP). 
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Figure 69 CV of the 20/TMP FLP (2.5 mM) recorded in THF at a GCE, showing the THF 

activation product (ν = 100 mV s−1). 

 

6.8 Hydride shuttle processes between boranes 

Electrochemical studies (6.3) and the Gutmann-Beckett[293,294] and Childs[295] methods 

(by Ashley and co-workers)[146] suggested that 20 is significantly more electrophilic and Lewis 

acidic than the more commonly used bulky Lewis acid, 8. Intuitively, one would normally expect 

the corresponding hydride of the least Lewis acidic/electrophilic borane to be a stronger hydride 

donor. Indeed, this has previously been used to assess the relative Lewis acidity of different 

boron-based Lewis acids.[272] Since 20 has a tendency to form [(μ-H)(20)2]− in preference to [20-

H]− in non-donor media, I was curious as to whether this expectation would still hold true. When 

a solution of [TMP-H][(μ-H)(20)2] in CD2Cl2 was treated with a molar equivalent of 8, the 

formation of a clear and colourless solution indicated that the sparingly soluble starting material 

had undergone reaction. Surprisingly, 1H, 19F{1H} and 11B NMR spectra indicated the presence of 

[TMP-H][8-H] and 20. The high oxidation potential of [(μ-H)(20)2]− would suggest that it has a 

low hydride donor ability compared to [8-H]−. Given this, the driving force for the observed 
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hydride transfer reaction (shown in Scheme 43) must result from entropic effects i.e. the release 

of two molecules of 20. 

 

 

 

Scheme 43 Hydride shuttle process between [TMP-H][μ-H(20)2] and 8. 

 

The rate of [8-H]− formation has always been a limiting factor for the electrochemical-

FLP systems (refer to Chapter 3). Whilst evidence of H2 activation is spectroscopically observed 

after 1 hour in NMR experiments, the observation of a well-defined doublet (corresponding to 

hydride formation) in the 11B NMR spectrum is not observed until after 12 hours.[124] While 

Stephan has described H2 activation by the 8/12 system as being immediate,[120] when Rieger 

and co-workers reported H2 activation by the 8/TMP FLP, they found that, unless H2 activation 

is driven to completion by either heating or solvent removal, it takes approximately a day for H2 

activation to go to completion. These kinetics are similar to what I observed for the 8/12 system 

in Chapter 3; Rieger and co-workers postulated that an encounter complex forms between H2 

and the 8/TMP FLP. There are clearly some discrepancies in the literature with respect to the 

rate of H2 cleavage by these FLP systems – this is probably related to the choice of solvent, the 

presence of additional ionic media (i.e. added electrolye salts), and variation in H2 

pressure/solubility. As demonstrated in Chapter 3, for electrochemical-FLP systems based on 8, 

the oxidation potential of [8-H]− is much lower than that of H2. Conversely, while 20/TMP 

exhibits rapid H2 cleavage kinetics, [TMP-H][(μ-H)(20)2] does not offer an electrocatalytic effect 

(the potential is the same as that of H2). The observation of hydride transfer between [TMP-

H][(μ-H)(20)2] and 8 led me to consider whether the combined 8/20 Lewis acid pair is capable of 

facilitating the formation of [8-H]− in the presence of TMP and H2. Using 20 as a hydride shuttle 

would provide a system that offers the oxidation potential of [8-H]− with the extremely rapid H2 

cleavage kinetics of 20. 

When an equimolar solution of 8, 20, and TMP in CD2Cl2 were admitted to H2 (4 atm), 

the immediate formation of [8-H]− was evidenced by the appearance of a doublet resonance in 

the 11B NMR spectrum at δ −24.3 ppm (J = 87 Hz). The presence of an additional broad signal at 

δ 0.0 ppm was tentatively attributed to the formation of the mixed bridging hydride species, 

[20(μ-H)8]−. An attempt to accelerate the formation of [8-H]− using a catalytic quantity of 20 (10 

mol%) did not work. In this case, only after ca 12 hours of exposure to H2 was a fully resolved 
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doublet observed in the 11B NMR spectrum, characteristic of [8-H]− and similar to the 

characteristic FLP behaviour of 8 alone towards H2. 

The development of hydride shuttles may allow the optimisation of FLP systems that 

have a high kinetic barrier to H2 activation, despite the process being thermodynamically 

favourable. For example, the acridine-stabilized borenium cation (reported by Clark et al.) is an 

extremely strong carbon-based Lewis acid, however for reasons that are unknown it has a high 

kinetic barrier to H2 activation.[303] If a catalytic hydride shuttle process could be developed then 

this carbon-based Lewis acid may function effectively as a hydrogenation catalyst. For 

electrochemical-FLP systems, synergy between two different Lewis acids may combine their 

best attributes for improved H2 cleavage kinetics and lower oxidation potentials. In such a case, 

one would wish for a Lewis acid, that is capable of rapidly cleaving H2 in THF alone, to act as the 

FLP hydride shuttle to another Lewis acid that has more favourable electrochemical properties. 

Whilst this is not possible with Lewis acid combination 20/8 in THF (due to the propensity of THF 

to undergo ring opening reactions in the presence of 8), the 20/8/TMP system (in CH2Cl2) does 

at least demonstrate that this tantalising prospect is a strong possibility. Alternative Lewis basic 

solvent systems, including tetrahydrothiophene (THT) and dioxanes may prove more resistant 

to ring opening side reactions whilst still enabling added base-free solvent-FLP activation of H2 

to occur. Ideally, however, it would be more desirable to find a solvent-based FLP system that 

containing only one Lewis acidic component, yet provides an acceptable compromise between 

fast H2 cleavage kinetics and a desirably low hydride oxidation potential. Current studies and on-

going efforts (within the Wildgoose group) seek to modify the electronic and steric properties 

of Lewis acids similar to 20, to fine tune the electrochemical-FLP approach for the truly 

electrocatalytic oxidation of H2. 

6.9 Summary 

In this final results and discussion chapter, the electrochemistry of regioisomers of 

B{C6H3(CF3)2}3, 20 and 28, were explored for the first time. The boranes exhibited quasi-

reversible voltammetry coupled with a follow-up decomposition step in solution. Whilst the 

decomposition process is very fast for 20•−, the boron centre of 28•− is sterically protected by 

the ortho-CF3 groups, making it more stable towards decomposition. Whilst this was 

advantageous for electrochemical applications, the steric bulk of 28 prevented its utility for H2 

activation when paired with TMP. An optimal balance of steric protection and accessibility to H2 

is clearly required. 
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Solutions of 20 in THF were highly effective for H2 activation, with the donor solvent 

functioning as the Lewis base. On admission of H2, an equilibrium is immediately established 

(faster than can be measured using NMR spectroscopy) between the bridging hydride, [(μ-

H)(20)2]−, and the classical Lewis adduct, THF20. The reaction mechanism was rationalized by 

comparing the 20/THF system to the previously studied 20/TMP system, and considering relative 

hydride donor abilities and pKa values. The substitution of additional phosphine or amine Lewis 

bases by a suitable donor solvent is likely to provide a number of advantages for combined 

electrochemical-FLP systems. This includes the buffering of redox-generated H+ and 

improvements in recyclability through reduced electrode-fouling in the absence of any added 

Lewis bases. 

The redox properties of the bridging and terminal hydrides were also investigated. The 

oxidation potential for [(μ-H)(20)2]− was found to be identical to that for H2. Whilst the 20/THF 

system offers extremely fast H2 cleavage kinetics, the formation of [(μ-H)(20)2]− unfortunately 

provides no energetic advantages i.e. a lower oxidation potential (electrocatalysis), and can be 

considered as an electrolyte salt. Although [20-H]− decreases the required potential for H2 

oxidation by 710 mV (137.0 kJ mol−1), it is not an easily accessible species under the conditions 

in which an ideal electrochemical-FLP system would need to operate. 

Finally, [(μ-H)(20)2]− was found to participate in hydride transfer reactions to the Lewis 

acid, 8. The rate of H2 activation by the 8/TMP FLP can be greatly accelerated by using 

stoichiometric amounts of 20 as a hydride shuttle (full conversion of 8 to [8-H]– in the presence 

of 20 is observed in the time it takes to run an NMR spectrum, this is compared to several hours 

in the absence of 20). The discovery of this shuttle process alludes to the possibility of new 

electrochemical-FLP systems, where the advantages of two different Lewis acids are combined 

for improved H2 cleavage kinetics and lower oxidation potentials. 
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7.1 Conclusions 

The work contained in this thesis details progress towards the development of 

electrocatalysts for H2 oxidation. This new generation of electrocatalysts are unique in that FLPs 

are utilised for the pre-activation of H2 for the net conversion of H2 into 2H+ and 2e− at decreased 

oxidation potentials. 

In Chapter 2, an initial study into the fundamental redox chemistry of 8 was conducted 

in two weakly coordinating solvents, CH2Cl2 and DFB. 8 was found to undergo quasi-reversible 

single-electron reduction to give the radical anion, 8•−. The rapid decomposition of 

electrogenerated 8•− in solution results in the formation of redox inactive products. A sample of 

8 was chemically reduced using CoII(CpMe5)2 and some of the decomposition products were 

identified using multinuclear NMR spectroscopy. The spectra suggested the formation of several 

four-coordinate borate species, arising from radical reactions with the solvent. This indicated 

that the reaction of solvent with 8•− predominantly occurs at the boron centre, and was further 

supported by spin density and charge distribution calculations on the SOMO of 8•−. 

The fundamental work of Chapter 2 enabled an electrochemical study of the archetypal 

8/12 FLP system to be conducted for the first time in Chapter 3 using [nBu4N][8-H] – an authentic 

sample of the borohydride. The FLP pre-activation of H2, when combined with electrochemical 

oxidation of the resultant borohydride, was found to decrease the required potential for non-

aqueous H2 oxidation by 610 mV (117.7 kJ mol−1) at readily available carbon electrodes. In situ 

oxidation of [8-H][H-12], generated by the classical 8/12 FLP system in the presence of H2, was 

also explored. 

In Chapter 4, the electrochemical study of [8-H]− was extended to a Pt electrode, where 

strong electrocatalytic surface effects were exhibited following its electrooxidation. This was 

apparent from the significant current-crossover (phase change) observed in the cyclic 

voltammetry of [8-H]− and, more importantly, a 390 mV reduction in the oxidation peak 

potential compared to that obtained at a GCE. It was postulated that HAT occurs between 

electrogenerated [8-H]• and the Pt electrode, forming H• adatoms on the surface. It was found 

that this pathway could be competitively inhibited in the presence of a competing radical 

scavenger. Also, when cyclic voltammetry of the bulkier perchlorinated analogue, [24-H]−, was 

explored at Pt, this surface electrocatalytic effect was no longer observed. This is likely to result 

from steric protection of the H atom within the C6Cl5 aryl rings, precluding HAT to the Pt 

electrode surface. 

In Chapter 5, the redox chemistry of several (new and previously reported) NHC-

stabilised borenium cations was explored at a GCE. Whilst 25[OTf], 26[OTf] and 27[OTf] were 
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found to exhibit relatively stable B+/B• redox couples (with a slow B• decomposition step) they 

were very poor candidates for FLP H2 activation when combined with the Lewis base, 12. In fact, 

these FLPs exhibited unusual behaviour in the chlorinated solvents, CDCl3 and CD2Cl2, and I was 

unable to fully elucidate the reaction mechanisms and products involved. In converse, 

19[B(C6F5)4] was found to exhibit typical EC-like cyclic voltammetry with a rapid rate of 19• 

decomposition, and its ability for hydrogen activation is known. Using 19[B(C6F5)4] as the Lewis 

acid component of the FLP was found to have several advantages over the initial 8-based system. 

Indeed, the voltage required to oxidise H2 at a carbon electrode was decreased by almost one 

volt (910 mV, 175.6 kJ mol−1), the rate of H2 oxidation was also faster, producing larger currents, 

and 19+ appeared to be more resistant to undesirable side-reactions with redox-generated H+. 

This electrochemical-FLP system was found to be somewhat “rechargeable” – allowing the in 

situ regeneration of 19-H from 19+ in the presence of 12 and H2, with 75% efficiency after the 

first cycle. 

In Chapter 6, the electrochemistry of two structural isomers of B{C6H3(CF3)2}3, 20 and 28, 

were explored for the first time. The cyclic voltammetry exhibited by these boranes was 

analogous to that of the 8/8•− redox couple explored in Chapter 2. The decomposition of 

electrogenerated 28•− is approximately 6000 times slower that of 20•−, since the boron centre in 

28•− is sterically protected by the ortho-CF3 groups. Whilst this was advantageous for 

electrochemical applications, the steric bulk of 28 prevents its utility for FLP H2. However, 

solutions of 20 in THF were found to be highly effective for H2 activation, where the donor 

solvent functions as the Lewis base. On admission to H2, an equilibrium is immediately 

established between the bridging hydride, [(μ-H)(20)2]−, and the classical Lewis adduct, THF20. 

The redox properties of the bridging and terminal hydrides were also investigated. The oxidation 

potential for [(μ-H)(20)2]− was found to be identical to that for H2. Whilst the 20/THF system 

offers extremely fast H2 cleavage kinetics, the formation of [(μ-H)(20)2]− unfortunately provides 

no energetic advantages i.e. a lower oxidation potential (electrocatalysis). Although [20-H]− 

decreases the required potential for H2 oxidation by 710 mV (137.0 kJ mol−1), it is not easily 

accessible. Finally, [(μ-H)(20)2]− was found to be highly effective for hydride transfer reactions 

to the Lewis acid, 8. The rate of H2 activation by the 8/TMP FLP can be greatly accelerated by 

using stoichiometric amounts of 20 as a hydride shuttle (full conversion of 8 to [8-H]− appears to 

be immediate, compared to several hours when in the absence of 20). 

The ability of FLPs to activate H2 provides a significant energy saving (up to one Volt, 

thus far) for the net conversion of H2 into 2H+ and 2e− without the use of precious metals. This 

opens up hitherto unexplored routes to the development of economically viable electrocatalysts 

for H2 oxidation. 
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7.2 Future work 

This thesis presents the first study of its kind into the development of electrocatalytic 

FLPs for H2 oxidation. Whilst there is no doubt that this work has made significant progress since 

the advent of the initial 8/12 system, it is not surprising that this system is not yet optimal. 

The kinetics of H2 cleavage is usually the rate-limiting step in these systems. This can be 

improved through the modification of the combined steric and electronic effects of the Lewis 

acidic and basic FLP components. Indeed, new Lewis acids and improved FLP combinations are 

constantly being reported within the field. Highly electrophilic Lewis acids (relative to 8) are 

likely to exhibit a greater propensity for FLP H2 activation. For example, FLPs composed of 20 

were found to be potent for the facile activation of H2. However, one must consider the impact 

imposed on the oxidation potential of the hydride through modifying electronic effects. 

The oxidation potential of the hydride is extremely important for these electrochemical-

FLP systems. The lower the oxidation potential, the greater the energy saving that is achieved 

via the pre-activation of H2 by a FLP. The electrophilicity of the Lewis acid is often negatively 

correlated to the hydride donor ability (and oxidation potential) of the corresponding 

borohydride. Therefore, it is likely that the optimised electrochemical-FLP system will need to 

compromise the desired rate of H2 heterolysis for an appropriate decrease in the oxidation 

potential compared to that of molecular H2. 

The shortcoming of systems based on 20 was that the bridging hydride failed to provide 

an adequate electrocatalytic effect. Conversely, the terminal hydride provided a 710 mV 

decrease in the required potential for H2 oxidation, but was practically unattainable for an ideal 

system. Based on this, I propose that short term, future work should focus on incrementally 

increasing the steric bulk of 20. Subtle steric changes about the boron centre may favour the 

formation of terminal hydride whilst retaining its ability for facile H2 cleavage. 

The recent work of Samigullin et al. details a systematic approach to the synthesis of 

boranes containing C6H3(3,5-CF3)2 groups; essentially, the boranes are assembled in a sequential 

(ring-by-ring) fashion.[304] This controlled and selective approach may enable subtle changes in 

the sterics of 20 to be made through variation of one or two of the surrounding groups. For 

example, the substitution of one of the C6H3(3,5-CF3)2 rings for a more encumbering C6H3(2,4-

CF3)2 group. In the medium term, this synthetic protocol could be extended to the synthesis of 

a huge range of novel Lewis acids containing combinations of C6F5, C6Cl5, and C6H3(CF3)2 groups. 

The transient radical intermediates that are redox-generated during borohydride 

oxidation are often highly susceptible to radical decomposition via reaction with the electrolyte 

system. This leads to deactivation of the electrocatalyst, which limits the ability to 
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turnover/recycle the system and prevents the system from being truly electrocatalytic. 

Increasing the steric protection of boron centre is likely to improve the stability of any redox-

generated intermediates, by limiting the accessibility of the boron-centred unpaired electron to 

surrounding solvent molecules. However, this effect will negatively impact the rate of FLP H2 

activation, and (as for the oxidation potential) a compromise must be met. Indeed, an 

electrochemical study of the incredibly bulky borenium cations: 25+, 26+, 27+; and the bulky 

borane, 28, suggested that the electrogenerated radicals were relatively stable to 

decomposition. However, these Lewis acids were completely ineffective for H2 activation when 

paired with a Lewis base. The introduction of large, conjugated groups that delocalise spin 

density from the boron centre may also provide improvements in the stability of radical 

intermediates and is worth exploring further. 

The substitution of additional phosphine or amine Lewis bases for a suitable donor 

solvent is likely to provide a number of advantages for combined electrochemical-FLP systems. 

This includes the buffering of redox-generated H+ and improvements in recyclability through 

reduced electrode-fouling. In future, all new Lewis acids must be screened for FLP activity in 

donor solvents (such as THF, THT, 1,4-dioxane etc.) as well as traditional low donor solvents 

(such as CH2Cl2) containing added Lewis base. The electrochemical-FLP may not be limited to 

ethereal solvents. I envisage that in the future, FLP systems may be stable under aqueous 

conditions. Indeed, Clark and Ingleson have already reported a new FLP that is active in the 

presence of trace amounts of water, using carbon-based Lewis acids.[284] 

While our ideal optimized system would be electrocatalytic in the Lewis acid component, 

it would still be stoichiometric in the Lewis base. Whilst this would generally not be an issue for 

donor solvent-based systems, where the Lewis base is in large excess, it may cause concern for 

the systems that rely on the presence of additional Lewis base. So far, all studies into this system 

have only been concerned with the electrocatalysis of the anodic half-cell reaction i.e. H2 

oxidation. However, if the system were to be utilized as part of a complete electrochemical cell 

reaction (e.g. a fuel cell) then clearly it requires coupling to a suitable cathodic half-cell reaction 

(e.g. O2 reduction) that is capable of closing the catalytic cycle by consuming the redox-

generated protons. First, an optimized and economically viable system that is suitable for H2 

oxidation needs to be developed. Future long term goals would then involve the fabrication of 

this system into prototype fuel cell devices, in an attempt to couple this system to the O2 

reduction half-cell reaction. 

Finally, one could digress and question why this type of electrocatalyst should only be 

restricted to H2 oxidation processes. Indeed, hydrogenase enzymes mimics have also been 

developed for the reverse process i.e. H2 evolution/production.[60] The H2 evolution side-reaction 
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that is apparent in the electrochemical-FLP systems alludes to the possibility of using boranes 

for the electrocatalysis of H2 production, at least in non-aqueous systems. I previously believed 

that the formation of a borohydride from H+ would present a considerable challenge. The first 

step would obviously involve single-electron reduction of the borane to give a radical anion. 

However, the formation of the borohydride from H+ is likely to be a challenge. Conventional H2 

production electrocatalysts, based on hydrogenase mimics, make use of pendant amines (which 

function as H+ relays, lowering the barrier for H+ transfers to the metal centre) and the versatility 

of metal centres to occupy different oxidation states (thereby functioning as an electron source). 

Since our boranes only exhibit single-electron redox chemistry, borohydride formation would 

need to proceed via a HAT or PCET process. Chiu and co-workers recently found that the 

hydroxylphenyl-substituted borane (31) undergoes single-electron reduction followed by 

intramolecular HAT from the phenol group to the boron centre, resulting in the formation of a 

phenoxyl radical anion.[305] This intermediate undergoes a second single-electron reduction to 

give the borohydride phenoxide dianion (32). 

While, the authors were concerned with the antioxidant activity of hydroxyphenyl-

substituted boranes, from my perspective, such compounds may be better suited as 

electrocatalysts for H2 production. I postulate that in the presence of an appropriate Brønsted 

acid, 32 would become unstable, resulting in concomitant H2 evolution and re-protonation of 

the phenoxide to regenerate 31. It is highly likely that this system would exhibit the E1C1E2C2’ 

mechanism shown in Scheme 44, which would be evidenced by the observation of an 

electrocatalytic reduction wave in the CV. This is a simple, yet high impact, concept that would 

open up a whole new area of chemistry to the research group, and I strongly recommend that 

this idea is explored further. 
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Scheme 44 New concept for electrocatalytic H2 production using the hydroxyphenylborane 

(31), E1 < E2. 
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8.1 General considerations 

All synthetic reactions and manipulations were performed under a rigorously dry N2 

atmosphere (BOC Gases) using standard Schlenk-line techniques on a dual manifold 

vacuum/inert gas line or either a Saffron or MBraun glovebox. All glassware was flame-dried 

under vacuum before use. 

8.2 Materials 

8.2.1 Solvents 

Anhydrous solvents were dried by reflux over appropriate drying agents and were 

collected by distillation. THF, Et2O, hexane, pentane and light petroleum ether were dried by 

reflux over Na/benzophenone diketyl; toluene was dried by reflux over molten Na; 

chlorobenzene, bromobenzene, CH2Cl2, DFB, pyrrolidine (29), and CH3CN were dried by reflux 

over CaH2. All solvents were sparged with N2 gas to remove any trace of dissolved O2 and stored 

in ampoules over activated 4 Å molecular sieves. 

Deuterated NMR solvents (CDCl3, 99.8%; DMSO-d6, 99.9%; C6D6, 99.5%; CD3CN, 99.8%; 

[D8]THF, 99.5%; CD2Cl2, 99.9%) were purchased from Cambridge Isotope Laboratories Inc. (MA, 

USA) and were dried over P4O10, degassed using a triple freeze-pump-thaw cycle process and 

stored over activated 4 Å molecular sieves. 

8.2.2 Gases 

N2 gas (O2-free) and H2 gas (99.995%) were purchased from BOC gases and passed 

through drying columns containing P4O10 and 4Å molecular sieves. D2 gas was generated in situ 

from the reaction of Na with degassed D2O (99.9%, Cambridge Isotope Laboratories Inc.); and 

was passed through drying a column containing P4O10. HCl gas was generated in situ from the 

reaction of H2SO4 with NaCl and was passed through drying a column containing CaCl2. 

8.2.3 Reagents 

Bromopentafluorobenzene, 3,5-bis(trifluoromethyl)bromobenzene, and 2,4-

bis(trifluoromethyl)bromobenzene were purchased from Fluorochem (Hadfield, UK) and used 

without further purification. Mg turnings were purchased from Alfa Aesar and used as supplied. 

nBu4NCl was purchased from Alfa Aesar and recrystallized from anhydrous acetone prior to use. 

NOPF6 was purchased from Alfa Aesar and used as supplied. All other reagents were purchased 

from Sigma-Aldrich and were of the highest grade available and used without further 

purification. 
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8,
[306] 24 (prepared and supplied by Dr. T. Herrington of Dr. A. Ashley’s group),[244] FBMes2,[307] 

NHCs (ImiPr2, ImMe2;[308] and ImMe4
[278]), 19-H,[150] [19][B(C6F5)4],[150] 20,[146,147] [TMP-H][(μ-

H)(20)2],[146] [nBu4N][B(C6F5)4],[195,200,309] [H(OEt2)2][B(C6F5)4][258] and 12[310] were prepared 

according to literature methods. [TMP-D][DB(C6F5)3] was prepared using an adapted literature 

method, which is detailed below.[124] 28 was prepared by Dr. T. Herrington of Dr. A. Ashley’s 

group using a modified literature procedure, which is detailed below.[292] 

8.3 Instrumentation 

NMR spectra were recorded using either a Bruker Avance DPX-300 MHz or Bruker 

Avance DPX-500 MHz spectrometer. Chemical shifts are reported in ppm and are referenced 

relative to appropriate standards: 19F (CFCl3); 11B (Et2OBF3); 31P (85% H3PO4); 1H (solvent residual 

signal); 2D (spiked with non-deuterated solvent).[296] For NMR experiments (other than 2D NMR) 

performed in non-deuterated solvents a C6D6 insert was used. 

IR spectra were recorded using a PerkinElmer μ-ATR Spectrum II spectrometer. 

Sample headspace analysis was performed using a PerkinElmer Clarus 580 gas 

chromatograph coupled with a thermal conductivity detector (GC-TCD). Retention time for H2 

gas was calibrated using a standard sample. ESI-MS spectra were recorded using a Shimadzu 

LCMS 2010EV spectrometer in negative ESI mode. 

EPR spectra were recorded using a Bruker ER200D spectrometer fitted with a dual-mode 

(ER4116M) X-band cavity and interfaced to an EMX control system. A flow-through cryostat used 

in conjunction with a Eurotherm (B-VT-2000) variable temperature controller provided 

temperatures ranging from 80-180 K. 

Details on electrochemical methods, including the digital simulation of voltammetric 

data, and density functional theory (DFT) computational modelling are given below. 

X-ray crystallographic instrumentation details are given in the appendix of 

crystallographic data. 

8.4 DFT computational modelling 

 All calculations were performed using the Gaussian 09 computational package.[311] 

Geometry optimisation and frequency calculations have been carried out using the three-

parameter exchange functional of Becke (B3)[312] and the correlation functional of Lee, Yang, and 

Parr (LYP), B3LYP.[313] In each case an all electron 6-311+G(d,p) basis set has been implemented 

for all atoms. Structures were geometry optimised in the gas phase with the default convergence 

criteria and confirmed as minima through frequency calculations. Zero-point energies and 
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thermodynamic properties were calculated at 298.15 K and 1 atm. All calculations have been 

performed at spin-unrestricted level of theory. Bond dissociation energies were calculated by 

taking the difference in the total enthalpies between the original structure and optimized 

fragments, assuming homolytic cleavage. The enthalpies included both electronic contributions 

and thermal corrections. The charge distribution shown for 8•− in Figure 6 is based on Mulliken 

electron population analysis. 

8.5 Electrochemical methods 

8.5.1 General methods 

All electrochemical experiments were performed using either an Autolab PGSTAT 30 or 

PGSTAT 302N computer-controlled potentiostat (Utrecht, The Netherlands). Cyclic voltammetry 

(CV) was performed using a three-electrode configuration consisting of either a Pt macrodisk 

working electrode (GoodFellow, Cambridge, UK; 99.99%; area 1.4 ± 0.5 x 10−3 cm2), glassy carbon 

macrodisk working electrode (GCE) (diameter of 3 mm; BASi, Indiana, USA), or a Pt microdisk 

working electrode (GoodFellow, Cambridge, UK; 99.99%; radius 30.5 ± 0.5 m), combined with 

a Pt wire counter electrode (99.99%; GoodFellow, Cambridge, UK) and a Ag wire pseudo-

reference electrode (99.99%; GoodFellow, Cambridge, UK). For air- and moisture-sensitive 

samples, an inert atmosphere three-electrode cell was used (designed and made in-house). 

The GCE was polished between experiments using successive grades of diamond paste 

slurries from 3.0 to 0.1 μm (Kemet, Maidstone, UK), and briefly sonicated and rinsed with 

ethanol to remove any adhered microparticles. The Pt working electrodes were polished 

between experiments using successive grades of alumina slurries (from 1.0 to 0.3 μm), rinsed in 

distilled water and subjected to brief ultrasonication to remove any adhered alumina 

microparticles. The electrodes (except the GCE) were then dried in an oven at 120°C to remove 

any residual traces of water. 

The GCE and Pt macrodisk working electrode areas were calibrated for each experiment 

using a 5.0 mM Cp2Fe solution in either CH3CN or CH2Cl2 solvent containing 0.1 M [nBu4N][PF6] 

as the supporting electrolyte. The macrodisk electroactive areas were accurately determined by 

construction of a Randles-Sevčik plot from cyclic voltammograms recorded at varying scan rates 

(50-750 mV s−1).[187] The Pt microdisk working electrode area was accurately determined from 

the steady state current, measured using linear sweep voltammetry (scan rate = 5 mVs-1).[187] 

The Ag wire pseudo-reference electrodes were calibrated to the Cp2Fe0/+ couple in 

CH2Cl2 at the end of each run to allow for any drift in potential, following IUPAC 

recommendations.[186] 
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Controlled potential bulk electrolysis was performed using a three-electrode 

configuration consisting of a carbon felt (99.0%; Alfa Aesar, Massachusetts, USA) working 

electrode combined with a Ag wire pseudo-reference electrode (99.99%, GoodFellow, 

Cambridge, UK) and a Pt gauze counter electrode (52 mesh woven from 0.1 mm diameter wire, 

99.9%; Alfa Aesar, Massachusetts, USA). The working and pseudo-reference electrodes were 

separated from the counter electrode compartment by a porous glass frit. 

All electrochemical measurements were performed at ambient temperatures under an 

inert N2 atmosphere in either CH2Cl2, THF, CH3CN or 1,2-difluorobenzene (DFB) containing 0.05-

0.1 M [nBu4N][B(C6F5)4] as the supporting electrolyte (unless stated otherwise). 

Prior to performing a cyclic voltammetric experiment at a macrodisk electrode, the 

uncompensated resistance (iR drop) was first determined using a positive feedback technique 

(a standard Autolab procedure). This technique is a based on a trial and error method where a 

user-defined iR-compensated potential pulse was applied to the working electrode, and its 

current response was measured. The potential of the working electrode was then plotted as a 

function of time. As the iR compensation approaches 100%, the measured potential response 

shows damped oscillation. The user-defined iR compensation value that is required for this 

damped oscillation effect provides an accurate approximation to the solution resistance. All 

recorded CV data at macrodisk electrodes was then partially iR–compensated to within 85 ± 5% 

of the determined uncompensated resistance using the positive feedback iR compensation 

circuit that is built into the Autolab PGSTAT series potentiostat. 

8.5.2 Digital simulation of voltammetric data 

CV simulations were performed on baseline-corrected data using DigiElch – Professional 

(v 7.030) software.[215] Any non-Faradaic current, resulting from double-layer capacitance, was 

not accounted for in the simulations. The postulated electrochemical mechanisms were applied 

to the baseline-corrected and iR-compensated cyclic voltammograms of the system under 

investigation, taken over various scan rates ranging from 50-2000 mV s–1. The diffusion 

coefficients for the starting materials were determined using either diffusion-ordered NMR 

spectra (DOSY) in CD2Cl2 or by numerically fitting potential-step chronoamperometric data at a 

microdisk electrode using the Shoup-Szabo approximation.[210] The diffusion coefficient values 

were left fixed for all electrochemical simulations. The other electrochemical and kinetic 

parameters were initially assigned an approximate starting value before they were allowed to 

converge to a set of values that provided an optimum fit at all voltage scan rates studied. To 

provide an approximation of the associated error for each parameter, each of the globally-
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optimised electrochemical and kinetic parameters were manually adjusted until the simulation 

no longer provided a satisfactory fit across the complete scan rate range. 

8.6 Synthetic methods 

8.6.1 Chemical reduction of 8 for NMR studies 

A colourless solution of 8 (49 mg, 0.1 mmol) in dry, degassed CH2Cl2 or DFB (4 mL) was 

added to a saturated brown/yellow solution of Co(CpMe5)2 (33 mg, 0.1 mmol) in either CH2Cl2 or 

DFB (4 mL) under an inert N2 atmosphere, shaken and left for 5 minutes during which it rapidly 

formed a dark yellow/brown solution. An aliquot (0.8 mL) was taken, the solvent was then 

removed and rigourously dried in vacuo to yield a brown residue, which was taken up in CDCl3 

(0.8 mL) for NMR analysis. 

8.6.2 Preparation of Na[8-H] 

To a solution of 1.0 M Na[HBEt3] in toluene (3.7 mL, 3.7 mmol) was added a solution of 

8 (1.71 g, 3.3 mmol) in toluene (30 mL). The reaction mixture was left to stir under N2 at room 

temperature for 2 h, during which time a white precipitate formed. The precipitate was left to 

settle before it was filtered and triturated with toluene (2 × 10 mL). The residue was dried in 

vacuo to yield Na[8-H] (1.15 g, 2.1 mmol) as a fine white powder in 64% yield. 

1H NMR (300 MHz, DMSO-d6): δ 3.56 (br. q, J = 87 Hz, 1H); 19F{1H} NMR (282 MHz, DMSO-

d6): δ −132.9 (m, 6F, ortho-F), −162.8 (m, 3F, para-F), −166.1 (m, 6F, meta-F); 11B NMR (96.3 MHz, 

DMSO-d6): δ −25.2 ppm (d, J = 87 Hz); 13C{1H} NMR (75.5 MHz, DMSO-d6): δ 147.5 (dm, J = 236 

Hz, ortho-C), 137.2 (dm, J = 243 Hz, para-C), 135.8 (dm, J = 246 Hz, meta-C), 124.9 (s, ipso-C). 

8.6.3 Preparation of [nBu4N][8-H] 

A solution of nBu4NCl (0.45 g, 1.6 mmol) in CH2Cl2 (20 mL) was added to a white 

suspension of Na[8-H] (0.86 g, 1.6 mmol) in CH2Cl2 (20 mL) at room temperature, with stirring 

under N2. This resulted in the formation of a fine flocculent precipitate with the simultaneous 

breakup of the suspended material. The reaction mixture was left to stir overnight. The 

precipitate was then allowed to settle before it was filtered. The filtrate was concentrated in 

vacuo until a minimum quantity of solvent remained. A white precipitate was obtained at room 

temperature by layering the solution carefully with light petroleum ether (40/60, approximately 

twice the volume of solution was added). The precipitate was filtered and dried in vacuo to 

afford [nBu4N][8-H] (0.89 g, 1.2 mmol) as a white powder in 74% yield. Crystals suitable for X-ray 

crystallography (colourless plates) were grown by dissolving [nBu4N][8-H] in a minimum quantity 
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of CH2Cl2, warming to ca 35°C, adding an equal quantity of light petroleum ether and slow-

cooling to room temperature. 

1H NMR (300 MHz, CDCl3): δ 3.60 (br. q, J = 82 Hz, 1H, BH), 3.07 (m, 8H, CH2), 1.56 (m, 

8H, CH2), 1.32 (m, 8H, CH2), 0.92 (t, J = 7.2 Hz, 12H, CH3); 19F{1H} NMR (282 MHz, CDCl3): δ −133.6 

(m, 6F, ortho-F), −163.4 (m, 3F, para-F), −166.7 (m, 6F, meta-F); 11B NMR (96.3 MHz, CDCl3): δ 

−25.4 (d, J = 82 Hz); 13C{1H} NMR (75.5 MHz, CDCl3): δ 148.3 (dm, J = 240 Hz), 138.0 (dm, J = 245 

Hz), 136.6 (dm, J = 248 Hz), 125.0, 58.9, 23.8, 19.6, 13.4. IR (ATR, cm−1): 2424 (νB–H, w). Anal. 

Calcd for C34H37BF15N: C 54.06; H 4.94; N 1.85. Found: C 53.79; H 5.06; N 1.86. 

8.6.4 Preparation of [TMP-D][DB(C6F5)3] 

A clear yellow solution of TMP (0.28 g, 1.95 mmol) in toluene (10 mL) was added to a 

clear colourless solution of 8 (1.00 g , 1.95 mmol) in toluene (20 mL) to give a clear, pale yellow 

solution. The sample was sparged with D2 gas for 1 h. The pale yellow solution was then 

concentrated to ca 5 mL and pentane (15 mL) was added to give a precipitate. The precipitate 

was allowed to settle and then filtered to give [TMP-D][DB(C6F5)3] (1.15 g, 1.75 mmol) as a white 

powder in 90% yield. 

1H NMR (500 MHz, C6D6): δ 4.23 (t, J = 49 Hz, 1H, NH), 0.76 (m, 2H, CH2), 0.67 (m, 4H, 

CH2) 0.56 (s, 12H, CH3); 19F{1H} NMR (471 MHz, C6D6): δ −133.1 (m, 6F, ortho-F), −161.7 (m, 3F, 

para-F), −165.5 (m, 6F, meta-F); 11B NMR (160 MHz, C6D6): δ −23.8 (s); 2D NMR (556 MHz, CH2Cl2): 

δ 5.40 (d, J = 1.1 Hz, ND), 3.60 (br. m, BD). 

8.6.5 Preparation of [nBu4N][8-D] 

A clear colourless solution of [TMPD][DB(C6F5)3] (0.31 g, 0.47 mmol) in toluene (20 mL) 

was added to NaH (11 mg, 0.47 mmol) to give some effervescence. The reaction mixture was 

left to stir at room temperature under N2 overnight. The reaction mixture was then filtered and 

the filtrate was concentrated in vacuo. The residue was dissolved in CH2Cl2 (10 mL) to give a clear 

colourless solution. To this was added a clear colourless solution of nBu4NCl (0.13 g, 0.47 mmol) 

in CH2Cl2 (10 mL). A very fine precipitate rapidly formed. The reaction mixture was left to stir at 

room temperature for 1 h before it was filtered. The filtrate was concentrated to ca 2 mL to give 

a white precipitate. This was filtered and the filtrated was concentrated in vacuo to yield a 

colorless viscous oil that solidified overnight to give [nBu4N][8-D] (0.10 g, 0.13 mmol) as an 

amorphous colorless solid in 28% yield. 

1H NMR (500 MHz, CDCl3): δ 3.08 (m, 8H, CH2), 1.57 (m, 8H, CH2), 1.32 (m, 8H, CH2), 0.93 

(t, J = 7.4 Hz, 12H, CH3); 19F{1H} NMR (471 MHz, CDCl3): δ −133.5 (m, 6F, ortho-F), −163.4 (m, 3F, 

para-F), −166.6 (m, 6F, meta-F); 11B NMR (160 MHz, CDCl3): δ −25.3 (d, J = 82 Hz). 2D NMR (556 

MHz, CH2Cl2): δ 3.66 (br. s). IR (ATR, cm−1): 1800 (νB–D, w). 
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8.6.6 Preparation of Na[24-H] 

A clear colorless solution of 1.0 M Na[HBEt3] in toluene (0.3 mL, 0.30 mmol) was added to a 

pale yellow suspension of 24 (0.15 g, 0.20 mmol) in dry toluene (10 mL). The reaction mixture was 

heated to 80°C and left to stir under N2 overnight; warming resulted in dissolution of the suspension 

to give a pale yellow solution and a white precipitate formed as the reaction progressed. The reaction 

mixture was allowed to cool, and the precipitate was left to settle, before it was filtered and 

triturated with dry toluene (2 × 3 mL). The residue was dried in vacuo to yield Na[24-H] (0.14 g, 0.18 

mmol) as a white powder in 89% yield. 

1H NMR (300 MHz, DMSO-d6): δ 4.28 (br. m, 1H); 11B NMR (96.3 MHz, DMSO-d6): δ −8.42 

(br.). 

8.6.7 Preparation of [nBu4N][24-H] 

A clear colorless solution of nBu4NCl (0.041 g, 0.15 mmol) in dry CH2Cl2 (3 mL) was added 

to a white suspension of Na[24-H] (0.12 g, 0.16 mmol) in dry CH2Cl2 (3 mL) at room temperature, 

with stirring under N2. This resulted in the formation of a fine flocculent precipitate with the 

simultaneous breakup of the suspended material. The reaction mixture was left to stir overnight. 

The precipitate was then allowed to settle before it was filtered; the residue was triturated with 

dry CH2Cl2 (2 × 1.5 mL). The filtrate and extracts were combined and concentrated in vacuo to 

give [nBu4N][24-H] (0.11 g, 0.11 mmol) as a white powder in 77% yield. Crystals suitable for X-

ray crystallography (colorless needles) were grown by dissolving [nBu4N][24-H] in a minimum 

quantity of dry CH2Cl2, warming to approximately 40°C, adding an equal quantity of dry light 

petroleum ether and slow-cooling to room temperature. 

1H NMR (300 MHz, CDCl3): δ 4.32 (br. m, 1H, BH), 3.12 (m, 8H, CH2), 1.57 (m, 8H, CH2), 

1.35 (m, 8H, CH2), 0.94 (t, J = 7.1 Hz, 12H, CH3); 11B NMR (96.3 MHz, CDCl3): δ −8.68 (d, J = 76 Hz); 

13C{1H} NMR (75.5 MHz, CDCl3): δ 138.2, 138.0, 130.0, 129.7, 127.8, 59.1, 24.1, 19.9, 13.8. 

8.6.8 Preparation of [25]OTf 

An aliquot of freshly prepared ImMe2 (0.2 g, 2.1 mmol) in dry light petroleum ether was 

added to FBMes2 (0.51 g, 1.90 mmol) with stirring to give a pale orange solution. The 

precipitation of material was observed within a minute, and the reaction mixture was then left 

to stir under N2 for a further 15 minutes. The precipitate was filtered and washed with dry light 

petroleum ether (3 × 10 ml) to give an orange residue, which was dried in vacuo. The residue 

was dissolved in dry CH2Cl2 (5 mL) to give a deep red solution. To this was added Me3SiOTf (0.42 

g, 1.89 mmol) and the reaction mixture was left to stir under N2 for 1 h. The reaction mixture 

was then concentrated to approximately half its volume and an equal quantity of Et2O was 

added to afford an orange precipitate. The precipitate was filtered and washed with dry toluene 
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(3 × 5 mL) followed by dry light petroleum ether (3 × 5 mL) before it was dried in vacuo to yield 

[25]OTf (0.57 g, 1.15 mmol) as a pale yellow powder in 61% yield. 

1H NMR (500 MHz, CDCl3): δ 7.91 (s, 2H, CHCH), 6.90 (s, 4H, Ar CH), 3.51 (s, 6H, NMe), 

2.33 (s, 6H, Mes para-CH3), 2.08 (s, 6H, Mes ortho-CH3), 1.87 (s, 6H, Mes ortho-CH3); 19F{1H} NMR 

(470.6 MHz, CDCl3): δ −78.36 (s). 11B NMR (160.5 MHz, CDCl3): δ 63.3 (br.); 13C{1H} NMR (125.8 

MHz, CDCl3): δ 144.19, 142.4, 141.0, 138.7, 138.0, 130.0, 129.2, 128.4, 127.6, 125.4, 122.2, 37.3, 

22.7, 21.6; Anal. Calcd. for C24H30BF3N2O3S: C 58.31, H 6.12, N 5.67%. Found: C 58.41, H 6.25, N 

5.53%. 

8.6.9 Preparation of [26]OTf 

A clear colourless solution of ImiPr2 (0.85 g, 5.58 mmol) in dry light petroleum ether (5 

mL) was added to a clear colourless solution of FBMes2 (1.50 g, 5.59 mmol) in dry light petroleum 

ether (5 mL) to give a pale yellow solution, from which a white precipitate rapidly started to 

form. The reaction mixture was left to stir at room temperature overnight (under N2). The white 

precipitate was filtered and the residue was washed with dry petroleum ether (3 × 5 mL) and 

dried in vacuo. The white residue was dissolved in dry C6H5Cl (5 mL) to give a pale yellow solution. 

To this was added a straw coloured solution of Me3SiOTf (1.24 g, 5.58 mmol) in dry C6H5Cl (1 mL) 

to give a pale yellow solution. Within minutes, a colourless precipitate had begun to form. The 

reaction mixture was left to stir at room temperature overnight (under N2). The precipitate was 

filtered and washed with dry light petroleum ether (3 × 5 mL). The residue was dried in vacuo to 

give [26]OTf (2.26 g, 4.11 mmol) as a pale yellow powder in 74% yield. Crystals suitable for X-ray 

crystallography (colourless blocks) were grown by dissolving [26]OTf in dry CH2Cl2, slowly 

layering with dry Et2O and leaving to stand at room temperature. 

1H NMR (500 MHz, CDCl3): δ 8.11 (s, 2H, CHCH), 6.92 (d, J = 3.9 Hz, 4H, Ar CH), 4.20 (m, 

J = 6.7 Hz, 2H, iPr CH), 2.34 (s, 6H, Mes para-CH3), 2.06 (s, 6H, Mes ortho-CH3), 1.92 (s, 6H, Mes 

ortho-CH3), 1.46 (d, J = 6.8 Hz, 6H, iPr CH3), 1.15 (d, J = 6.6 Hz, 6H, iPr CH3); 19F{1H} NMR (470.6 

MHz, CDCl3): δ −78.17 (s); 11B NMR (160.5 MHz, CDCl3): δ 66.0 (br.); 13C{1H} NMR (75.5 MHz, 

CDCl3): δ 144.1, 142.1, 140.7, 130.3, 129.9, 123.7, 52.9, 23.4, 23.0, 22.9, 22.5, 21.6; Anal. Calcd. 

for C28H38BF3N2O3S: C 61.09, H 6.96, N 5.09%. Found: C 60.91, H 6.88, N 5.15%; HRMS (EI, m/z): 

for C27H38BN2
+ Calcd: 401.3123. Found: 401.3175. 

8.6.10 Preparation of [27]OTf 

A pale yellow solution of FBMes2 (1.53 g, 5.71 mmol) in dry light petroleum ether (30 

mL) was added to ImMe4 (0.71 g, 5.72 mmol) to give a yellow reaction mixture. The consumption 

of IMe4 solid was observed with the concomitant formation of an off-white precipitate. The 

reaction mixture was left to stir under N2 for 1 h before it was filtered and the resulting residue 
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washed with dry light petroleum ether (3 × 5 mL). The residue was dried in vacuo to afford a 

pale yellow solid. This was dissolved in dry CH2Cl2 (5 mL) and Me3SiOTf (1.27 g, 5.7 mmol) was 

added slowly to give a yellow reaction mixture with precipitate. This was left to stir at room 

temperature under N2 overnight. The precipitate was allowed to settle before it was filtered to 

give a pale yellow residue. This was washed with light petroleum ether (3 × 5 mL) and the residue 

was dried under vacuum to give [27]OTf (1.40 g, 2.68 mmol, 47%) as an off-white powder. 

1H NMR (500 MHz, CDCl3): δ 6.86 (m, 4H, Ar CH), 3.36 (s, 6H, N-CH3), 2.37 (s, 6H, Mes 

para-CH3), 2.30 (s, 6H, C-CH3), 2.03 (s, 6H, Mes ortho-CH3), 1.89 (s, 6H, Mes ortho-CH3); 19F{1H} 

NMR (470.6 MHz, CDCl3): δ −78.30 (s); 11B NMR (160.5 MHz, CDCl3): δ 67.2 (br.); 13C{1H} NMR 

(75.5 MHz, CDCl3): δ 143.6, 132.1, 129.9 (Ar CH), 33.9 (N-CH3), 22.8 (ortho-CH3), 21.6 (C-CH3), 9.4 

(para-CH3); Anal. Calcd. for C26H34BF3N2O3S: C 59.78, H 6.56, N 5.36%. Found: C 59.60, H 6.68, N 

5.42%; HRMS (EI, m/z): for C25H34BN2
+ Calcd: 373.2810. Found: 373.2822. 

8.6.11 Proton-mediated generation of 19[B(C6F5)4] 

To a solution of 19-H (0.14 g, 0.53 mmol) in toluene (5 mL) was added a suspension of 

[H(OEt2)2][B(C6F5)4] (0.41 g, 0.53 mmol) in toluene (10 mL). Vigorous effervescence was 

immediately observed and a gelatinous precipitate was formed. The reaction mixture was left 

to stir overnight before it was concentrated in vacuo to give a white powder. The residue was 

recrystallized from chlorobenzene (3 mL) overnight at −20°C. The crystals were then filtered and 

washed with dry petrol (4 × 1 mL). The crystals were dried in vacuo to yield 19[B(C6F5)4] (0.42 g, 

0.41 mmol, 77%) as a white powder. 

1H NMR (300 MHz, CDCl3): δ 7.61 (s, 2H), 4.77 (m, J = 6.8 Hz, 2H, CH), 2.44-2.24 (br. m, 

6H), 2.20-2.12 (br. m, 2H) 2.10-1.94 (br. m, 4H), 1.88-1.59(br. m, 2H), 1.68 (d, J = 6.7 Hz, 12H, 

CH3); 19F{1H} NMR (471 MHz, CDCl3): δ −137.7 (m, 8F, ortho-F), −168.2 (m, 4F, para-F), −172.1 (m, 

8F, meta-F); 11B NMR (160 MHz, CDCl3): δ 83.8 (br), −16.7 (s). 

8.6.12 Preparation of 28 

To a schlenk tube was added C6(2,4-CF3)2H3Br (2.00 g. 1.16 ml, 6.83 mmol) and Et2O (100 

ml). The solution was cooled to –78°C and, with the aid of rapid stirring, nBuLi (2.87 ml, 7.17 

mmol, 2.5 M in hexanes), was added slowly by means of a syringe. Following one hour of stirring, 

BCl3 (2.28 ml, 2.28 mmol, 1 M in hexanes) was syringed into the amber solution and the mixture 

permitted to warm to room temperature. Under vacuum, the volatiles were removed and the 

off white residue extracted with CH2Cl2 (3 x 25 ml) and filtered through Celite®. CH2Cl2 was 

removed under vacuum and, following a high vacuum sublimation step (1 x 10–6 mbar) at 85 ºC, 

a pure white solid was obtained. Yield 1.33 g (2.04 mmol, 90%). 
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1H NMR (400.4 MHz, CD2Cl2): δ 8.06 (s, 3H, meta-CH), 7.87 (d, 3H, J = 8 Hz, meta-CH), 

7.46 (d, 3H, J = 8 Hz, ortho-CH); 19F{1H} NMR (376.8 MHz, CD2Cl2) δ −56.6 (s, ortho-C(CF3)), −63.8 

(s, para-C(CF3)); 11B NMR (128.4 MHz, CD2Cl2) δ 74.0 (s, br); 13C{1H} NMR (100.6 MHz, CD2Cl2) δ 

144.2 (br, B-C), 135.9 (s, ortho-CH), 134.2 (q, J = 34 Hz, C(CF3)), 133.7 (q, J = 34 Hz, C(CF3)), 127.9 

(q, J = 3 Hz, meta-CH), 123.9 (q, J = 273 Hz, CF3), 123.6 (m, J = 3 Hz, meta-CH), 123.6 (q, J = 273 

Hz, CF3); Anal. Calcd. for C24H9BF18: C 44.34; H 1.40%. Found: C 44.48; H 1.47%. HRMS (EI, m/z): 

for BC24F18H9 Calcd: 650.0510. Found: 650.0491. 

8.6.13 Preparation of Na[20-H] 

To a white suspension of 20 (0.40 g, 0.62 mmol) in toluene (10 mL) was added, with 

stirring under N2 at room temperature, a 1.0 M solution of Na[HBEt3] (0.6 mL, 0.6 mmol) in 

toluene. A fine precipitate began to form. The reaction mixture was left to stir for 6 h to give a 

colourless solution, which was filtered. All volatiles were removed under vacuum to give a white 

residue, which was washed with light petroleum ether (2 × 5 mL) and dried under vacuum to 

give Na[HB{C6(3,5-CF3)2H3}3] (0.40 g, 0.59 mmol) as a white powder in 95% yield. 

1H NMR (500 MHz, CD3CN): δ 7.70 (s, 6H, ortho-CH), 7.58 (s, 3H, para-CH), 3.66 (q, 1H, J 

= 84 Hz, BH); 19F{1H} NMR (470.6 MHz, CD3CN): δ −63.02 (s); 11B NMR (160.5 MHz, CD3CN): δ −9.1 

(d, J = 88 Hz); 13C{1H} NMR (125.8 MHz, CDCl3): δ 165.0 (q, J = 49 Hz, ipso-C), 135.7 (s, ortho-C), 

130.1 (q, J = 32 Hz, meta-C), 126.0 (q, J = 272 Hz, CF3), 118.5 (s, para-C). Anal. Calcd for 

C24H10BF18Na: C 42.76, H 1.50%. Found: C 42.95, H 1.61%. 

8.6.14 In situ formation of [H(THF)n][(μ-H)(20)2] 

20 (47.3 mg, 0.073 mmol) was dissolved in THF-d8 (0.8 mL)and H2 (4 atm) was admitted 

to the sample using a freeze-pump-thaw process. [H(THF)2][(μ-H)(20)2] was formed in 16% 

conversion. 

1H NMR (300 MHz, THF-d8): δ 11.11 (s, 4H, {THF}2H), 7.86 (m, 6H, para-CH), 7.82 (s, 12H, 

ortho-CH); 19F{1H} NMR (282.4 MHz, THF-d8): δ −63.6 (s); 11B NMR (96.3 MHz, THF-d8): δ 3.9 (br.). 

8.6.15 Isolated [H(THF)2][(μ-H)(20)2] 

Trace amounts of [H(THF)2][(μ-H)(20)2] were isolated by suspending 20 (0.30 g, 0.46 

mmol) in dry toluene (10 mL), adding several drops of dry THF to effect the dissolution of solid 

– through the formation of THF20. After admission of the sample to H2, through sparging, the 

sample was left to stir overnight at room temperature. It was then placed in the freezer for 5 h 

to give a small quantity of colourless crystals. These were filtered and washed with dry 

petroleum ether (2 × 10 mL) and then dried shortly under vacuum. 
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1H NMR (500 MHz, CD2Cl2): δ 10.24 (br. s, 3H, {THF}2H), 7.78 (m, 6H, para-CH), 7.73 (s, 

12H, ortho-CH), 3.52 (m, 16H, OCH2), 1.78 (m, 16H, CH2CH2); 19F{1H} NMR (471 MHz, CD2Cl2): δ 

−63.1 (s); 11B NMR (160.5 MHz, CD2Cl2): δ 4.4 (s); 13C{1H} NMR (100 MHz, CD2Cl2): δ 133.1 (s, 

ortho-C), 130.7 (q, J = 32 Hz, meta-C), 124.5 (q, J = 272 Hz, CF3), 120.8 (m, para-C), 68.8 (s, THF), 

25.6 (s, THF); Anal. Calcd. for C56H36B2F36O2: C 46.50, H 2.51%. Found: C 46.65, H 2.38%. 

8.6.16  Hydride transfer between [TMP-H][[(μ-H)(20)2] and 8 

A solution of 8 (18.2 mg, 0.036 mmol) in CD2Cl2 (0.8 mL) was added to [TMP-H][(μ-

H)(20)2] (49.0 mg, 0.034 mmol) to give a colourless solution. The formation of free 20 and [TMP-

H][8-H] was indicated by the NMR spectra. 

1H NMR (500 MHz, CD2Cl2): δ 8.24 (br., m, 6H, para-CH), 8.03 (br., m, 12H, ortho-CH), 

5.16 (t, J = 52 Hz, 2H, NH2), 3.48 (br., q, 1H), 1.84 (m, 2H, CH2), 1.76 (m, 4H, CH2), 1.49 (br., 12H, 

CH3); 19F{1H} NMR (471 MHz, CD2Cl2): δ −63.4 (s, 36F, CF3), −134.0 (br., 6F, ortho-F), −162.9 (m, 

3F, para-F), −166.4 (br., 6F, meta-F); 11B NMR (160.5 MHz, CD2Cl2): δ 58.74 (br.), −24.1 (br.). 
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Appendix of crystallographic data 

 

Diffraction intensities were recorded, an absorption correction applied, and the data 

reduced by the EPSRC UK National Crystallography Service at the University of Southampton.[1] 

Data solution and refinement was kindly performed by either Dr. D. Hughes, or Dr. R. Blagg 

The structures of [nBu4N][8-H] and [nBu4N][24-H] were solved (by Dr. D. Hughes) using 

WinGX,[314,315]and space groups assigned with ShelXS-97[316] using direct methods, and then 

refined with the ShelXL-97[316] refinement programme using least squares minimisation. 

The structure of 26[OTf] was solved (by Dr. R. Blagg) using Olex2,[317] and space group 

assigned with SuperFlip/EDMA[318,319] using charge flipping, and then refined with the ShelXL-

2013/4[316] refinement programme using least squares minimisation. 
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Table 9 Crystallographic data 

Parameter [nBu4N][8-H] [nBu4N][24-H] 26[OTf] 

Elemental 

formula 
C16 H36 N, C18 H B F15 C16 H36 N, C18 H B Cl15 C28 H38 B F3 N2 O3 S 

Formula weight 755.46 1002.21 550.47 

Temperature / K 100 140 (1) 100(2) 

Crystal system Monoclinic Orthorhombic Monoclinic 

Space group P21/n Pbca P21/c 

a / Å 10.141(4) 19.8043(10) 9.2387(14) 

b / Å 18.471(7) 20.3022(9) 12.2592(17) 

c / Å 18.792(7) 21.5428(8) 25.386(4) 

α / ° 90 90 90 

β / ° 100.504 (7) 90 98.023(3) 

γ / ° 90 90 90 

Volume / Å3 3461 (2) 8661.7(7) 2847.0(7) 

Z 4 8 4 

ρcalc / mg mm−3 1.450 1.537 1.284 

 / mm−1 0.140 0.980 0.165 

F(000) 1552 4064 1168 

Crystal size / 

mm3 0.21 × 0.11 × 0.04 0.03 × 0.05 × 0.18 0.14 × 0.07 × 0.03 

Reflections 

collected 
25957 92236 25007 

Independent 

reflections 

6049 
[R(int) = 0.030] 

5652 
[R(int) = 0.141] 

6505 
[R(int) = 0.1464] 

‘Observed’ data 

[I≥2σ(I)] 
5559 4734 6505 

Data / restraints 

/ parameters 
6049 / 0 / 548 5652 / 0 / 605 6505 / 0 / 495 

Goodness-of-fit 

on F2 
1.128 1.307 1.055 

Final R indexes 

[I≥2σ(I)] 

R1 = 0.054 
wR2 = 0.117 

R1 = 0.077 
wR2 = 0.101 

R1 = 0.0506 
wR2 = 0.1307 

Final R indexes 

[all data] 

R1 = 0.061 
wR2 = 0.121 

R1 = 0.097 
wR2 = 0.106 

R1 = 0.0541 
wR2 = 0.1357 

Largest 

difference peak / 

hole /e.Å−3 

0.41 / −0.30 0.34 / −0.27 0.407 / -0.673 

 

 


