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10 ABSTRACT: Iron bioavailability in unleavened white and wholegrain bread made from two commercial wheat varieties was
11 assessed by measuring ferritin production in Caco-2 cells. The breads were subjected to simulated gastrointestinal digestion and
12 the digests applied to the Caco-2 cells. Although Riband grain contained a lower iron concentration than Rialto, iron
13 bioavailability was higher. No iron was taken up by the cells from white bread made from Rialto flour or from wholegrain bread
14 from either variety, but Riband white bread produced a small ferritin response. The results probably relate to differences in
15 phytate content of the breads, although iron in soluble monoferric phytate was demonstrated to be bioavailable in the cell model.
16 Nicotianamine, an iron chelator in plants involved in iron transport, was a more potent enhancer of iron uptake into Caco-2 cells
17 than ascorbic acid or 2′-deoxymugineic acid, another metal chelator present in plants.
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19 ■ INTRODUCTION

20 Iron deficiency anemia accounts for around 50% of all
21 anemias,1 with infants, children, and premenopausal women
22 being most at risk. In both developing and developed countries
23 the consequences of anemia result in significant health
24 problems and economic cost.2 One strategy for addressing
25 the problem of iron deficiency is biofortification, with plant
26 breeding or genetic engineering techniques being used to
27 produce new types of staple foods (such as rice, wheat, maize,
28 millet, and legumes)3−6 with higher iron contents. This
29 approach of increasing the micronutrient density of foods is
30 particularly valuable in settings where food fortification or
31 supplementation is not feasible.7

32 There is wide natural genetic variation between commercial
33 cultivars of wheat grain with respect to total iron concentration,
34 reported to range from 19 to 58 mg/kg.8−10 This suggests that
35 it should be possible to select iron-rich genotypes which can be
36 exploited in breeding for biofortification. Furthermore, recent
37 data show that the levels of iron in wholegrain are reflected in
38 the white flour fraction, which is used to make many food
39 products including white bread.11 This is an important
40 observation as the content and bioavailability of iron in food
41 will be determined by the type of processing used. During
42 milling of wheat, the outer layers of the grain and the embryo
43 are removed to give the bran, leaving the starchy endosperm as
44 the main component of white flour.12 However, because the
45 bran contains a higher concentration of iron,13 the control of
46 iron accumulation at sites within the grain is also of
47 importance.14

48The form in which iron is present within the grain affects its
49bioavailability, as does the presence of iron-binding complexes
50such as phytate. Most of the iron in cereal grain is bound to
51inositol hexakisphosphate (IP6) or pentaphosphate (IP5) and
52forms phytate salts.15 Minerals bound to phytate are not
53accessible to iron transporters in the human gut due to the lack
54of specific enzymes that cleave the iron−phytate complexes,16

55but there is evidence that phytates may be either insoluble or
56soluble, depending on the nature of the bonding. Soluble salts
57in the form of monoferric phytate (MFP)15,17 may be a
58bioavailable source of iron.18

59In plants, the metal chelator nicotianamine (NA),19 formed
60by NA synthase from three molecules of S-adenosylmethio-
61nine,20 is involved in the intra- and intercellular transport of
62metal cations. The presence of elevated levels of NA in the
63grain has also been reported to enhance iron uptake in both cell
64and murine models.19,21 Another chelator of iron uptake is 2′-
65deoxymugineic acid (DMA), which is synthesized via NA
66aminotransferase in graminaceous plants.22,23 DMA is a
67phytosiderophore, and thus has a high affinity for ferric iron,
68and plays an important role in the solubilization and acquisition
69of iron(III) by the plant from the rhizosphere.23,24 In a previous
70study using SEC-ICP-MS to measure the iron speciation in
71Rialto and Riband,11 we found that iron complexed with NA/
72DMA accounted for 19.3 and 32.1% of the total iron in the
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73 white flour fraction in Rialto and Riband, respectively. In the
74 whole grain, Fe-NA/DMA accounted for 5.3 and 7.3% of the
75 total iron in Rialto and Riband, respectively. Our method did
76 not allow a separation of Fe−NA from Fe−DMA as the two
77 complexes are very similar. Therefore, increasing NA and/or
78 DMA is another strategy for increasing bioavailable iron in
79 plant foods, but this requires the use of transgenic technologies.
80 The aim of this research was to investigate whether there are
81 differences in iron availability between unleavened bread made
82 from wholegrain and white flours from two commercial wheat
83 cultivars differing in the total iron concentration (Rialto, a hard
84 wheat used for bread, which is high in iron; and Riband, a soft
85 wheat used for biscuits and cakes, which is low in iron). Caco-2
86 cells are widely used as an in vitro model to study iron
87 bioavailability,25−27 and previous studies have shown good
88 agreement between in vitro results (using this particular cell
89 line) and in vivo determination of iron bioavailability from food
90 in the presence of enhancers and inhibitors28,29 (e.g., ascorbic
91 acid (AA) and calcium30,31). We have therefore used Caco-2
92 cells, in combination with simulated gastrointestinal digestion
93 of unleavened bread, to determine the availability of iron from
94 MFP, iron(II) chloride, and iron(II) sulfate and the effects of
95 NA, DMA, and AA on iron uptake into the cells.

96 ■ MATERIALS AND METHODS
97 Preparation of Grain Materials and Unleavened Bread. Two
98 commercial wheat cultivars (Rialto and Riband) that accumulate
99 different levels of iron in their grain10 were grown in field trials at
100 Rothamsted Research in 2010, as described by Shewry et al.32 Grains
101 were milled in a Buhler mill (MLU-202) at Campden BRI,
102 Gloucestershire, UK, to obtain whole wheat (100% extraction) and
103 white flour (Riband, 38 ± 2.1% extraction; Rialto, 41 ± 3.4%
104 extraction). Unleavened bread was made on a small scale: 20 g of flour
105 was placed in a silica crucible, 5.76 mL of deionized water and 0.4 g of
106 salt were added, and the mixture was kneaded into dough. The dough
107 was left to proof at 30 °C for 30 min before being baked at 200 °C for
108 15 min. The breads were then broken up by hand into smaller pieces,
109 approximately 0.5 cm3, before flash freezing in liquid nitrogen and
110 freeze-drying for 72 h. Samples were then homogenized and ground to
111 a fine flour in an agate ball mill (Retsch PM400, Düsseldorf,
112 Germany). The characteristics of the flours and unleavened bread

t1 113 samples are summarized in Table 1.

114Solutions of Ascorbic Acid, Monoferric Phytate, Nicotian-
115amine, and 2′-Deoxymugineic Acid for Caco-2 Cell Studies. In
116Caco-2 cell studies, it is common practice to add AA to give an AA/Fe
117molar ratio in the range of 10−20:1, the amount being calculated on
118the basis of the concentration of iron in the samples.26,33 However, as
119there was wide variation in total iron in the unleavened bread samples,
120ranging from 6.65 to 46.7 mg/kg, a standard amount of AA (880 μM,
121AA dissolved in Milli-Q water) was added to each gram of unleavened
122bread. Although this meant that some samples had a higher AA/Fe
123 t2ratio than others (Table 2), the amount of AA added was high enough
124to ensure that it achieved maximal effect on iron uptake into Caco-2
125cells, as observed in previous studies.34

126Monoferric phytate (MFP) was prepared from a solution of 100 mL
127of 0.5 M acetic acid, 10 g of sodium phytate, and 1 g of ferric chloride.
128The mixture was stirred for 2 h until all of the sodium phytate was
129completely dissolved, 100 mL of 95% (v/v) ethanol was added, and
130the solution was left overnight. The precipitate was then collected by
131centrifugation (5000g for 10 min) (Medowrose Scientific Ltd., Oxford,
132UK), washed three times with acetone, allowed to air-dry, and stored
133in a desiccator.35 The final product was analyzed by inductively
134coupled plasma atomic emission spectroscopy after digestion in
135ultrapure HNO3 and HClO4 (87:13% v/v).
136Commercial sources of DMA and NA, with certified chemical
137composition (see TOC graphic), were purchased from Toronto
138Research Chemicals Inc. (Toronto, Canada). Both DMA and NA form
1391:1 molar complexes with Fe. The F (II)−NA solution was prepared
140from ferric chloride (Sigma-Aldrich, Vienna, Austria), and Fe(III)−
141DMA was prepared from ferrous sulfate (Sigma-Aldrich). Each of the
142compounds was dissolved separately in Milli-Q water, and appropriate
143solutions were then mixed immediately to avoid oxidation. The molar
144concentrations are given in the captions of the figures.
145Cell Culture Procedures. Caco-2 cells were grown in collagen-
146coated six-well plates (Greiner, Dungannon, UK) at a density of 4.75
147× 104 in 2 mL of Dulbecco’s modified Eagle’s medium (DMEM)
148(LGC, Teddington, UK) supplemented with 10% fetal bovine serum,
1492 mM L-glutamine, 5 mL of 5000 u/mL penicillin/streptomycillin
150solution (Gibco, Paisley, UK), and 5 mL of 100× nonessential amino
151acids (Sigma, Dorset, UK). Media were replaced every 2 days. Cells
152between passages 27 and 34 were used for experiments at 13 days post
153seeding, and 24 h prior to experimentation, cells were switched to
154serum-free medium (minimum essential medium, MEM)37 supple-
155mented as above with the exception of fetal bovine serum.
156Experiments without a simulated digestion phase were initiated by
157the addition of fresh serum-free medium containing the appropriate
158treatment. After 24 h, the treatment medium was aspirated from the
159six-well plates, and the cells were washed twice with 2 mL of PBS.
160Deionized water was then applied to each well, and the Caco-2 cells
161were scraped off using an inverted 10 μL pipet tip. The cell suspension
162from each well was sonicated on ice, three times for 5 s, using a probe
163sonicator and stored at −20 °C.

Table 1. Iron and Phytate Content of Rialto and Riband
Flours and Unleavened Breads

flour type
iron (mg/kg)
in floura

phytate (g/kg dry wt) in
unleavened breadb

phytic acid/iron
molar ratio

Rialto white 11.9 ± 0.8 1.0 ± 0.1 7.13
Rialto
wholegrain

46.7 ± 4.3 6.4 ± 0.2 11.60

Riband
white

6.7 ± 0.5 0.4 ± 0.01 5.08

Riband
wholegrain

30.3 ± 1.7 4.5 ± 0.2 12.57

aTotal Fe (±SE, n = 3) determined by ICP-MS. bAnalysis of phytate
was performed using a commercially available kit (K-PHYT 12/12
Megazyme, Ireland), as per the manufacturer’s instructions. Eiither 0.5
of 1.0 g of sample was extracted with 10 mL of HCl followed by an
enzymatic dephosphorylation step with phytase and alkaline
phosphatase and precipitation using a color reagent prepared from
AA in sulfuric and ammonium molybdate. The absorbance (655 nm)
of free phosphorus and total phosphorus (±SE, n = 3) was compared
to phosphorus standards using a Varioskan spectrometer (Thermo,
Finland).

Table 2. Iron and Ascorbic Acid (AA) Concentrations of
Unleavened Bread Digests

unleavened bread
(1 g)

Fe content
(μg)

Fe content
(μmol/L)

AA
(μmol/L)

Fe/AA
molar ratio

Riband white 6.7 8.0 880 1:110
Rialto white 11.9 14.2 880 1:62
Riband wholegrain 30.3 36.2 880 1:24
Rialto wholegrain 46.7 55.7 880 1:16
Riband white
fortified

36.7 43.8 880 1:20

Rialto white
fortified

41.9 50.0 880 1:18

Riband wholegrain
fortified

60.3 72.0 880 1:12

Rialto wholegrain
fortified

76.7 91.6 880 1:10
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164 Initially, the simulated digestion procedures were identical to those
165 reported by Glahn et al.27,38 However, due to the low iron content of
166 the flour samples, the sample volume was increased from 0.5 to 1 g
167 and subsequently to 3 g, which produced a thick digestate, so the
168 duodenal phase of the simulated digestion was performed in a test tube
169 for 2 h and not above the Caco-2 monolayer (the usual procedure in
170 Glahn’s assay). Experiments with unleavened bread were initiated with
171 iron deprivation of the cells by switching from supplemented DMEM
172 to MEM. Twenty-four hours of simulated digestion27,37 was then
173 carried out with the following modification: the duodenal phase of
174 digestion was continued for 2 h in test tubes (rather than over the
175 cells) at 37 °C on a rotating table, and once completed all samples
176 were centrifuged at 21000g for 10 min to remove any sample residue,
177 which could have resulted in physical blockage of the dialysis
178 membrane. After centrifugation, 10% of the resulting supernatant from
179 each treatment was applied to the dialysis membranes and placed over
180 the appropriate wells. Cells were incubated for 1 h with the
181 supernatant at 37 °C on a rotating table at a speed of 20 oscillations
182 per minute, after which time the digests were removed and the cells
183 were incubated for a further 23 h. Then they were harvested,
184 sonicated, and frozen at −20 °C. For the analysis sonicated cell lysates
185 were defrosted at room temperature and kept on ice, and a
186 spectroferritin ELISA assay (Ramco Laboratories, Stafford, TX,
187 USA) was carried out 24 h post sonication, according to the
188 manufacturer’s instructions. Total protein was quantified using a BCA
189 protein assay (Pierce, Rockford, IL, USA), and iron availability
190 assessed from the ferritin content (expressed as ng/mg protein), a
191 surrogate measure of iron bioavailability.38,39

192 Experiments Using Ascorbic Acid, Monoferric Phytate,
193 Nicotianamine, and 2-Deoxymugineic Acid. A series of experi-
194 ments were also performed without a simulated digestion. Solutions
195 containing NA, DMA, and MFP were prepared in Milli-Q water.
196 When appropriate, AA was added either at 1:9 molar ratio (Figure 4)
197 or various ratios (Figure 5). The pH was adjusted to 2, and the
198 samples were incubated for 1 h at 37 °C. The samples were diluted
199 with MEM to the desired iron concentrations (1.6 or 3.11 μg Fe/mL)
200 and incubated in a water bath at 37 °C for 1 h. Because small
201 concentrated volumes of NA, DMA, or MFP solutions were used (600
202 μL were diluted in 6 mL), they did not markedly affect the pH of the
203 treatment solutions (the final pH was 6.9−7.0). Before addition to the
204 cell monolayers, all treatment solutions were filtered with 0.22 μm
205 syringe filters (Merck Millipore, Watford, UK). The cells were
206 incubated for 24 h and then harvested, sonicated, and analyzed as
207 described above.
208 Statistical Analysis. Unless otherwise stated, all statistical analyses
209 were performed using SPSS Inc. (Chicago, IL, USA; version 16.0.0).
210 One-way ANOVA with Tukey’s post hoc was used to examine pairwise
211 differences on power-transformed data. Data are presented as the
212 mean ± SD. Differences were considered significant at p < 0.05.

213 ■ RESULTS
214 Caco-2 Ferritin Response to Unleavened Flat Bread
215 Samples: Simulated Digestion Experiments. Data ob-

f1 216 tained from 1 g samples of unleavened breads (Figure 1)
217 showed that significantly more ferritin was produced with white
218 Riband flour than with wholegrain Riband and Rialto flours, in
219 the presence of AA (p < 0.005 and p = 0.004, respectively).
220 There were no significant differences in ferritin formation
221 between the wholegrain and white flour breads from the two

f2 222 cultivars. When 3 g samples were used (Figure 2), the cells
223 exposed to white unleavened bread (Rialto and Riband)
224 produced significantly more ferritin protein than cells exposed
225 to wholegrain breads (p < 0.0005 in both). Cells exposed to
226 white bread from Riband produced significantly more ferritin
227 than cells exposed to the other breads (p < 0.0005 in all
228 comparisons).
229 To increase the cell response further, all flour samples were

f3 230 supplemented with ferrous sulfate with 30 mg Fe/kg prior to

231 f3the production of the bread (Figure 3). There was a
232significantly higher cell ferritin response to unleavened bread
233made from white than from wholegrain flour, for both Rialto
234and Riband (p < 0.0005 for all comparisons). Cells exposed to
235Riband wholegrain bread produced significantly more ferritin
236than cells exposed to Rialto wholegrain bread (p = 0.001). The
237cell ferritin response to the positive control (53.54 μM FeSO4)
238was not significantly different from the cell response to Riband
239white bread, but was significantly higher than the response to
240Rialto white and wholegrain and to Riband wholegrain breads
241(p = 0.049, p < 0.0005, and p < 0.0005, respectively). The cell
242response to unleavened bread made from Rialto wholegrain
243flour was not significantly different from the blank (17.7 ± 2.5
244ng/mg total protein).

Figure 1. Ferritin concentration in Caco-2 cells exposed to digests
prepared from 1 g of unleavened bread made from Rialto and Riband
white and wholegrain flours in the presence of 880 μmol/L ascorbic
acid (AA), expressed as ferritin concentration (ng/mg total protein).
Data represent the mean ± SD (n = 6). Bars without a common letter
(a−c) are significantly different, p < 0.05.

Figure 2. Ferritin concentration in Caco-2 cells exposed to digests
prepared from 3 g of unleavened bread made from Rialto and Riband
white and wholegrain flours in the presence of 880 μmol/L ascorbic
acid (AA) expressed as ferritin concentration (ng/mg total protein,
gray bars, y-axis). The phytate content (g/kg dry weight) of the
unleavened bread is shown on the second y-axis and the iron content
(mg/kg) on the x-axis. Data represent the mean ± SD (n = 6). Bars
without a common letter (a−c) are significantly different, p < 0.05.
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245 Cell Ferritin Response to Iron(II), Iron(III), or MFP
246 Treatments with Nicotianamine, Ascorbic Acid, 2-
247 Deoxymugineic Acid, or Nicotianamine plus Ascorbic

f4 248 Acid. AA was present in the treatments (Figure 4) at a ratio of

249 approximately 1:9 (Fe/AA), whereas DMA or NA was present
250 at a ratio of 1:1 (Fe/NA or DMA). The cell ferritin response to
251 iron with NA (Figure 4) was significantly higher than to iron
252 with DMA (p < 0.0005), suggesting that NA is a more potent
253 enhancer of iron uptake than DMA (at the tested molar ratio).
254 The response was also significantly increased when AA was
255 added to the iron with DMA (p < 0.0005), but further addition
256 of NA had no extra effect.
257 The cell ferritin responses to MFP plus AA and iron(II)
258 chloride plus AA were not significantly different, suggesting that
259 the availabilities are similar. Also, further addition of NA to
260 MFP plus AA or to iron(II) chloride plus AA significantly

261increased ferritin formation in cells (p < 0.0005 in both
262comparisons).
263 f5An experiment (Figure 5) was also designed to determine
264whether there was a dose−response effect of NA and to

265compare it with AA, the most potent known enhancer of iron
266uptake. Cells exposed to iron in the presence of increasing NA
267concentrations (from 1:0.25 Fe/NA molar ratio through 1:0.5
268to 1:1 molar ratio) produced significantly more ferritin with
269increasing NA (p < 0.0005, p = 0.001, and p = 0.004,
270respectively). When a higher Fe/NA molar ratio of 1:4 was
271used, the ferritin levels were not significantly different from
272those in cells exposed to a 1:0.5 Fe/NA molar ratio. The cell
273ferritin response was positively related to AA concentration
274(from 1:0.25 Fe/AA molar ratio through 1:4 and 1:10 molar
275ratio; p = 0.002, p < 0.0005, and p < 0.0005, respectively). Cells
276exposed to the highest molar ratio of Fe to AA (1:10) produced
277ferritin at similar levels to cells exposed to the lowest molar
278ratio of Fe to NA (1:0.25), indicating that NA is a more potent
279enhancer of iron bioavailability than AA and evoked the highest
280ferritin response.

281■ DISCUSSION
282Unleavened bread made with white flour from the wheat
283cultivar Riband contained more available iron (when in the
284presence of AA) than the other breads tested, despite having
285the lowest iron content of all samples. A likely explanation for
286this is that it contained the lowest phytate content and lowest
287phytic acid/iron molar ratio (Table 1); there was an inverse
288relationship between cell ferritin response and phytate content
289(Figure 2). When unleavened bread was supplemented with
290iron (30 μg/g), together with AA (Figure 3), the same trend
291was observed.
292Another contributory factor to the difference in iron
293availability between bread made from white and wholegrain
294flour may be the content of phenolic acids. Although not
295analyzed in our samples, limited data in the literature suggest
296that white flour has a much lower concentration of phenolic
297acids40 as they are found primarily in the bran fraction.41

298Nevertheless, the difference observed between bread made
299from Riband and Rialto white flour is unlikely to be explained
300by their content of phenolic acids. Fernandez-Orozco et al.42

301analyzed flour from a number of locations and years and found
302no differences in the content of free phenolic acids between
303Riband and Rialto wholegrain flours (both contained 12 ± 7

Figure 3. Ferritin concentration (ng/mg protein) in Caco-2 cells
exposed to digests prepared from unleavened bread made from Rialto
and Riband white and wholegrain flours in the presence of 880 μmol/
L ascorbic acid (AA) and 53.54 μM ferrous sulfate (FeSO4). Data
represent the mean ± SD (n = 6). Bars without a common letter (a−
d) are significantly different, p < 0.05.

Figure 4. Ferritin concentration (ng/mg protein) in Caco-2 cells
exposed to 1.6 μg of ferrous chloride (Fe(II)), ferric chloride
(Fe(III))−DMA, or MFP in the presence of NA (at 1:1 Fe to NA
ratio) or AA (at 1:9 Fe to AA ratio). Cell response is expressed as
ferritin concentration (ng/mg total protein). Data represent the mean
± SD (n = 6). Bars without a common letter (a−d) are significantly
different, p < 0.05.

Figure 5. Ferritin concentration in Caco-2 cells exposed to 3.11 μg
(13.88 μM) of ferrous sulfate (FeSO4) with or without NA at Fe/NA
ratios of 1:0.25, 1:0.5, 1:1, and 1:4 or AA at Fe/AA ratios of 1:0.25,
1:4, or 1:10. Cell response is expressed as ferritin concentration (ng/
mg total protein). Data represent the mean ± SD (n = 6). Bars
without a common letter (a−f) are significantly different, p < 0.05.
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304 μg/g), but Riband (990 ± 87 μg/g) had a significantly higher
305 total phenolic acids content (p = 0.026) than Rialto (833 ± 118
306 μg/g). As the ferritin response was higher in Riband, assuming
307 typical phenolic acids concentrations in the wheat samples used
308 in these experiments, this indicates that phytate is the main
309 determinant of iron bioavailability.
310 The cell ferritin response was inversely proportional to the
311 concentrations of phytate and iron in the breads tested.
312 However, because the iron contents of the samples were not
313 the same, the AA/Fe molar ratios in the samples differed
314 (Table 2), with the highest AA/Fe ratio being present in the
315 sample with the lowest iron content (Riband white unleavened
316 bread). The rationale for using the same amount of AA for all
317 samples is that when AA is used in excess/ it should have a
318 similar effect across all iron concentrations.34

319 Since 1953, it has been mandatory in the United Kingdom to
320 add iron to white and brown flours to restore the content to the
321 levels found in wholegrain flour (16.5 mg kg−1).43,44 The iron
322 present in wholegrain products is not bioavailable due to the
323 presence of inositol phophates IP6, IP5, IP4, and IP3, which bind
324 iron tightly. However, iron present in monoferric phytate,
325 found in wheat,35 appears to be more bioavailable (Figure 4). In
326 dogs, monoferric phytate has been shown to be about 50% as
327 available as ferrous sulfate at a low dose of iron (1.5 mg),
328 although only one-seventh as available at a higher dose of iron
329 (15 mg).36

330 NA had a clear enhancing effect on iron availability, being a
331 more potent enhancer of iron uptake than DMA (Figure 4) and
332 AA (Figure 5) (as also reported by Zheng et al.21 for rice flour).
333 The lowest molar ratio of Fe/NA that was tested (1:0.25) had
334 an effect similar to that of AA at a 1:10 Fe/AA molar ratio
335 (Figure 5).The most effective Fe/NA molar ratios observed in
336 this study were 1:1 to 1:4 (Figure 5). Zheng et al.21 also
337 reported that a 1:1 Fe/NA molar ratio was the most effective
338 for wild type rice and that a 1:4 Fe/NA molar ratio was most
339 effective for a transgenic rice grain expressing an additional
340 nicotianamine synthase (NAS) gene. However, these results
341 cannot be directly compared with those presented here as the
342 iron compounds were examined in the absence of a food matrix
343 and the test materials were not subjected to a simulated
344 digestion procedure.
345 In the samples studied the phytate levels had more influence
346 on iron bioavailability than total iron, a finding that should be
347 taken into account in the development of biofortification
348 strategies to reduce iron deficiency anemia. Our results also
349 demonstrated that MFP with AA provoked a similar cell ferritin
350 response to iron(II) chloride plus AA, whereas endogenous
351 phytate (mainly IP6 and IP5) in wheat flour prevented iron
352 from being taken up into Caco-2 cells.
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