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Abstract
The objective of this study is to investigate under what circumstances Förster
theory of electronic (resonance) energy transfer breaks down in molecular
aggregates. This is achieved by simulating the dynamics of exciton diffusion, on
the femtosecond timescale, in molecular aggregates using the Liouville–von
Neumann equation of motion. Specifically the focus of this work is the inves-
tigation of both spatial and temporal deviations between exciton dynamics dri-
ven by electronic couplings calculated from Förster theory and those calculated
from quantum electrodynamics. The quantum electrodynamics (QED) derived
couplings contain medium- and far-zone terms that do not exist in Förster the-
ory. The results of the simulations indicate that Förster coupling is valid when
the dipole centres are within a few nanometres of one another. However, as the
distance between the dipole centres increases from 2 nm to 10 nm, the inter-
mediate- and far-zone coupling terms play non-negligible roles and Förster
theory begins to break down. Interestingly, the simulations illustrate how con-
tributions to the exciton dynamics from the intermediate- and far-zone coupling
terms of QED are quickly washed-out by the near-zone mechanism of Förster
theory for lattices comprising closely packed molecules. On the other hand, in
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the case of sparsely packed arrays, the exciton dynamics resulting from the
different theories diverge within the 100 fs lifetime of the trajectories. These
results could have implications for the application of spectroscopic ruler tech-
niques as well as design principles relating to energy harvesting materials.

Keywords: electronic energy transfer, quantum dynamics, QED, chemical
physics

1. Introduction

Excitation (or electronic) energy transfer (EET), also sometimes referred to as resonance energy
transfer, is an important process exploited throughout nature. It involves the transfer of energy
from an initially electronically excited species such as an atom, molecule or chromophore (the
excited state donor) to another nearby species in the ground electronic state (the excited state
acceptor). When the donor returns to its ground state, the acceptor becomes excited.
Fundamentally this is a quantum mechanical process that involves the exchange of a virtual
photon between (valence) electrons of the two species. Electronic energy transfer can be highly
efficient, as exemplified by many natural photosynthetic organisms whereby solar energy is
captured by their antenna complexes and transferred to their reaction centres, often with over
90% efficiency [1, 2]. Due to the importance of EET in the development of solar energy
harvesting technologies, it is not surprising that enormous effort has been undertaken to
understand the mechanisms behind such efficient photochemical systems [3–6]. This has
resulted in a wide range of synthetic structures that are able to mimic some features of natural
antenna complexes [7–10]. Further to this, a great deal work has been carried out on energy
transfer in organic materials such as thin films or molecular aggregates and quantum dot
arrays [11, 12].

The theory of EET was first described by Förster in the late 1940s and is generally valid
for molecules close in proximity to one another, but beyond wavefunction overlap. This kind of
short range EET (called near-zone EET) is most commonly described by semi-classical
mechanisms in which first order perturbative processes are induced by the instantaneous
Coulomb interaction [13, 14]. The Förster theory of EET has proved to be successful for
describing the process in wide a variety of systems. It is also regularly exploited to measure
distances between chromophores in supramolecular systems using Förster resonance energy
transfer (FRET) spectroscopic ruler techniques [15–18]. However there are systems where
Förster theory drastically fails. In recent years scientists have investigated many systems in
which Förster theory fails, and theoretical models and some approaches have been devised that
are adequately able to describe these failures [19–23]. Common to all of these approaches is that
the point-dipole approximation is rejected.

For many years it was generally assumed that the process of electronic energy transfer
between two species separated by distances beyond wavefunction overlap occurred through one
of two distinct mechanisms. The first, already discussed, is known as radiationless transfer
(near-zone) where the electronic coupling between the chromophores has an inverse cubed
dependence (R−3) on the distance between chromophores. The second is radiative transfer (far-
zone) which occurs over significantly longer distances and is characterised by an R−1 distance
dependence of the electronic coupling, which leads to the well-known inverse square law for
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rates of EET. In the near-zone mechanism the chromophores are so close in proximity that the
mediating photon never develops real character, hence the mechanism is referred to as
radiationless. On the other hand, the radiative mechanism occurs by the transfer of a photon
with real character. This happens because the molecules are separated by distances exceeding
the reduced wavelength (wavelength divided by 2π) of the mediating photon. Since the late
1980s it is understood that these two descriptions are simply limits to a wider portrayal that can
be applied over all distances [24–30]. This unified theory, derived through the application of the
principles of quantum electrodynamics (QED), predicts another range of EET; the so called
intermediate-zone which has an R−2 distance dependence on the electronic coupling between
chromophores [24]. It should be emphasized that this contribution to the EET process is
especially important over distances close to the reduced wavelength of the mediating virtual
photon. For UV radiation this equates to about 30–60 nm. Consequently, although the unified
theory of EET has been firmly established for 25 years, the significance of its importance is
starting to emerge through the development and rapid proliferation of nanoscale and
mesoscopic photonic devices.

Although the description given by Förster of a coupling between a donor and an acceptor
is often valid, particularly at short distances, the upshot of the unified theory means that the
physical interpretation of the transfer of electronic energy is not always as straightforward as
one might like to assume. The unified theory replaces the need for two distinct mechanisms,
once thought to compete with one another, with a single mechanism that seamlessly moves
from the near-zone to the far-zone [24]. The theory therefore represents a complete description
of energy transfer, incorporating the distance dependencies essential for describing intermediate
interactions. This therefore serves to describe EET correctly both in systems where Förster
applies and circumstances where the Förster theory breaks down. The role of the intermediate-
zone coupling term could be non-negligible when considering EET in many systems which are
of interest in chemical physics, physical chemistry and biology. For example in the case of EET
in mesoscopic energy harvesting devices such as thin film molecular aggregates and quantum
dot arrays, or biological photosynthetic units where excitation may be transferred between
antenna complexes, where EET can potentially occur over long distances [31–39]. It has
already been suggested [40], that contributions from intermediate-zone interactions may explain
deviations from the R−6 distance dependence on the rate of EET, seen in some FRET studies
[41–43].

The aim of this work is to investigate the difference in exciton dynamics when Förster
coupling between the molecules is assumed, and when the electronic coupling is derived from
the unified theory of EET. The model employed considers pairwise interactions between the
molecules, which are described by transition dipole moments (TDM’s) that are are oriented in a
brickstone lattice, similar to that used in previous studies [37]. The Förster coupling (VF) is
calculated in the usual way—directly from the transition dipole moments in the lattice. The
QED coupling (VQED) is calculated by contraction of the fully retarded electromagnetic
coupling tensor with the TDM’s of the individual molecules. The dynamics of energy transfer is
modelled by numerical implementation of the Liouville–von Neumann equation which
describes the time evolution of the density matrix.

This paper is structured in the following way. In section 2, an outline of the important
aspects of the unified theory for EET that results from QED is given, focussing on the key
elements employed in this work as well as details of the quantum dynamics calculations. In
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section 3, the results of the work are reported and analysed and concluding remarks are made in
section 4.

2. Theory

2.1. QED theory

The full derivation and description of the unified theory for EET which emerges from QED may
be found elsewhere [24–30, 40]. Only the equations which are central to this study are
overviewed here.

Within the formalism of QED, where intermolecular interactions are mediated by the
propagation of transverse photons, the Hamiltonian for the closed dynamical system of light and
matter is expressed as [44, 45]

∑ ∑= + +H H H X H X( ) ( ), (1)
X X

rad mol int

where, H X( )mol is the Hamiltonian of molecule X and the summation over X implies the
summation over all molecules in the system. Hrad is the Hamiltonian of the radiation field
(equation (2)) and H X( )int is the Hamiltonian describing the interaction of the radiation with the
molecules, representing the coupling between the molecular subsystem and the quantized field.
These interaction terms may be expressed in the electric dipole approximation (equation (3)),
however higher multipole terms may also be used

∑= ℏ +
λ

λ λH a a ck ek k( ) ( ) , (2)
k

rad

,

( ) † ( )
vac

με= − ⋅− ⊥( )H X X d R( ) ( ) . (3)Xint 0
1

In equation (2) the sum is taken over radiation modes with wave-vector (k) and
polarization λ. The terms λa k( )( ) † and λa k( )( ) are the operators for the creation and annihilation
of a virtual photon, respectively, while evac is the energy of the photon vacuum. In equation (3)
μ X( ) is the electric dipole operator of molecule X positioned at RX, while ⊥( )d RX is the electric
displacement field operator.

For the energy transfer between a pair of chromophores comprising a donor (D) and an
acceptor (A), the Hamiltonian given above may be simplified. When the effects of the other
molecules comprising the medium are not taken into account the Hamiltonian becomes

= + +
+ +

H H H D H A

H D H A

( ) ( )

( ) ( ). (4)
rad mol mol

int int

Note that there is no direct coupling between the donor and acceptor. All coupling occurs
via the radiation field. The initial and final state vectors of the energy transfer process are given
by the two equations below where both are eigenvectors of the zero-order Hamiltonian

=
=

I D A

F D A

* 0 ,

* 0 . (5)

D and A are the states of the donor and the acceptor, respectively. The asterisk
indicates an electronically excited state and 0 refers to the photon vacuum. The energies
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associated with these states are given by

= + + = + +E e e e E e e e, , (6)* *I D A F D Avac vac

where the terms eD (eD*) and eA (eA*) refer to the ground (excited) state energies of the donor
and the acceptor respectively.

The second order transition matrix element connecting the initial and final states given by
the equation (5) can be written as

=M F T I , (7)FI

where, T is the transition operator, given by

⎛
⎝⎜

⎞
⎠⎟= +

− +
+ ⋯ = + + ⋯T V V

E H s
V T T

1

i
(8)

I
0

(1) (2)

= +V H D H A( ) ( )int int and H 0 is the unperturbed Hamiltonian. The si term in the
denominator is an imaginary infinitesimal that eliminates the singularity.

The first order term, T (1), is identical to V and represents the single photon interaction
events of photoabsorption and photoemission by individual molecules. Although important
with respect to the initial excitation of a molecule and the possible dissipation of the excited
energy, this term does not contribute to the energy transfer rate. As shown by the Feynman
(time-ordered) diagrams [23, 43], EET is a two-photon interaction process—a virtual photon is
created at one species and annihilated at another species. As a result, it is the second-order term
of the transition operator that produces the leading contribution for electronic energy transfer
processes. The transition matrix element in equation (7) is therefore rewritten F T I(2) to
emphasize the fact that it is a second order process. This matrix element is analogous to the off-
diagonal coupling terms in the site basis Hamiltonian and will form the basis of the
Hamiltonian used in the quantum dynamics simulations.

The energy transferred in the process is given by

ℏ = − = − >ck e e e e 0, (9)* *A A D D

where k is the wavenumber of the transferred energy, not the wavenumber corresponding to the
mediating virtual photon2. Within the context of the site basis Hamiltonian, these energies
correspond to the diagonal elements.

The expression for the transition matrix element can be rewritten in tensor form

μ θ μ=F T I k R( , ) . (10)Al lj Dj
(2)

This equation employs the summation convention over the repeated Cartesian coordinates
l and j. The terms μD and μA are the transition dipole moments of the donor and the acceptor,
respectively

μ μ
μ μ

=
=

D D D

A A A

( ) * ,

* ( ) . (11)
D

A

2 The reason for this is that there are two possible Feynman diagrams associated with the energy transfer process.
However, only one results in the conceptually attractive view of the virtual photon being created as the donor falls
into its ground state.
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The final form of the electromagnetic coupling tensor for the retarded dipole–dipole
coupling between a donor and an acceptor in a vacuum is given as

⎜ ⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎤
⎦⎥

θ
πε

δ

δ

= − −

− −

( )

( )

k
k

R R
k R k R

R R
kR

R( , )
e

4
3 ˆ ˆ 1 i

ˆ ˆ 1
, (12)

lj

kR

lj l j

lj l j

3 i

0
3 3 2 2

where R is the magnitude of the distance between the donor and the acceptor and =R̂ R R/ , the
unit vector along the donor–acceptor separation vector. The use of the summation convention of
the Cartesian coordinates, represented by the subscripts l and j, results in the use of the unit
vectors along the x and y directions. The final variable in the equation is the Kronecker delta, δlj
which is equal to 1 when l = j and equal to 0 when l≠ j.

This tensor gives the three different distance dependencies of energy transfer and is the
important equation for calculating the off-diagonal elements of the Hamiltonian for the
molecular aggregate. It contains the R−3 term characteristic of the radiationless, near-zone (kR
≪ 1) transfer of energy as well as the R−1 term, associated with the radiative, far-zone transfer
(kR≫ 1), where the virtual photon propagating between the donor and the acceptor takes on
more of a real character. The R−2 term, where the photon has reduced virtual character is
important at critical retardation distances (kR≅ 1) [26, 27]. This occurs when the distance
between the donor and the acceptor is approximately equal to the reduced wavelength ƛ λ π= 2
of the energy being transferred.

In order to investigate the role of the intermediate- and far-zone terms on the exciton
dynamics occurring within molecular aggregates, the Coulomb point dipole approximation of
Förster theory is also considered

μ μ
πε

κ
=V

R

1
4

. (13)mn
dd mn m n

0
3

κmn is the orientation factor between molecules m and n given by

μ μ μ μκ = ⋅ − ⋅ ⋅( )( )( )ˆ ˆ ˆ ˆR̂ R̂3 , (14)mn m n n m

where all of the vectors shown are unit vectors. This orientation factor is analogous to the term
δ −( )R R3 ˆ ˆlj l j in equation (12), which defines the orientational dependency for the near- and,

intermediate-zone contributions.

2.2. Exciton dynamics

The focus of the current study is to compare and contrast the exciton dynamics resulting from a
Hamiltonian with off-diagonal elements derived from equation (10) with the dynamics of an
exciton moving under the influence of a Hamiltonian derived from Förster theory, equation (13).
For the quantum dynamical simulations the Liouville–von Neumann equation is employed

ρ ρ= −
ℏt

t H t
d
d

( )
i

[ , ( )]. (15)

The electronic Hamiltonian operator for a molecular aggregate in the site basis employed
in the simulations is expressed as
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∑ ∑ε= + +
= ≠

( )H n n V n m V m n , (16)
n

N

n

n m n

N

nm mn

1 ,

where, εn are the energies of the electronic excitations of the molecules at each site, n. These are
analogous to the energies of equation (9), within the QED framework. The parameters Vnm and
Vmn are the couplings between the monomers at sites n and m in the lattice consisting of a total
of N monomers. These couplings are complex conjugate to one another. The electronic
couplings are calculated directly from equations (10) and (13). The diagonal elements of the
density matrix, ρ t( ), represent the population of the exciton at each molecular site at time t,
while the off-diagonal elements of the matrix represent the excitonic coherences between the
coupled molecules. The exciton density matrix is evolved utilizing a numerical implementation
of equation (15), based on a truncated Taylor series expansion. Exciton population is conserved
to machine precision for the lifetime of all trajectories presented.

Note that one would sometimes incorporate a phenomenological model of disorder to
account for temperature. This study is focused on potentially important differences between
Förster theory and the QED description of EET, and since there is no obvious mechanism for
thermal effects to impinge on retardation, thermal effects can be ignored to a good first
approximation.

2.3. Details of the simulations

In a recent study by Lock et al [40], the QED derived couplings (both the electromagnetic
coupling tensor and rate equation couplings) were investigated for a series of two-dimensional
molecular aggregates, modelled as a square lattice. The purpose of that study was to investigate
the role of distance and orientation dependence of the transition dipole moments of the
chromophores on the electronic coupling. Incoherent population transfer of exciton movement
within a one dimensional lattice was also investigated using Pauli master equations. In the
current study a brickstone lattice is employed where points are stacked in rows on top of one
another, with every other row displaced by exactly half the distance between the dipoles, as
shown in figure 1. The lattice is defined by three vectors: rX, rY and a third vector which in this
work is ½RX. Associated with each point of the lattice is a transition dipole, μi, which are used
to simulate the monomers of the aggregate.

In these simulations, of particular interest is how the couplings and hence exciton
dynamics changes as a function of the distance between the molecular centres. A series of
different separation vectors, rx and ry are used, namely, rx = ry = 2 nm, rx = ry = 5 nm and
rx = ry = 10 nm. The resulting 2D lattice for the first case has approximate dimensions of 50 nm
by 50 nm, with 25 molecules in each direction. The other grids are scaled proportionately. The
electronic excitation energy for the molecules in this work was taken to be 3 eV and therefore
the reduced wavelength is approximately 66 nm.

The electronic coupling terms were then calculated for every pairwise interaction by
employing equations (10) and (13) for the QED and Förster terms respectively. The transition
dipole moments of the molecules were taken to be 10.0D, which is consistent with the types of
molecules that make thin film aggregates [40]. All dipoles are centred at the lattice points and
oriented along the x-direction and hence parallel to one another.

In the case of the Förster coupling, the orientation factors between each of the pairs are
calculated using equation (14). The coupling itself, VF, is then calculated using equation (13).
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The QED coupling, VQED, is calculated by contracting the electromagnetic coupling tensor,
equation (12) with the transition dipole moments of the donor and acceptors, equation (10). The
density matrix is initialized with the full population localised on the central molecule of the
lattice.

3. Results

The focal point of this work is the investigation of both spatial and temporal deviations between
exciton dynamics driven by electronic couplings calculated from Förster theory and those
calculated from the unified theory of EET. Of particular interest in this work is the importance
of the intermediate-and far-zone terms that appear in the electromagnetic coupling tensor and
how this is reflected through equation (10). This theoretical investigation is motivated by
several studies that have noted deviations from Förster theory’s characteristic −R 6 dependence
on the rate of EET (the rate of EET is proportional to the square of the coupling) [41–43]. Any
deviations from Förster theory could have an impact on design strategies for the development of
mesoscopic energy harvesting materials [47–59].

3.1. The electronic coupling landscapes

For the case of the brickstone lattice, the electronic coupling landscapes derived from both
Förster theory and QED, between the central molecule of the lattice and each of the other
molecules is shown in figure 2. Each of the terms for the QED derived couplings, that is the −R 3

, −R 2 and −R 1 dependent terms are considered independently. The total couplings for the Förster
and QED cases are also considered.

From the bottom part of figure 2 it is evident that the couplings derived from Förster theory
and QED are very similar. In both cases there are regions of very strong coupling at short
ranges. Keeping in mind that the transition dipoles are aligned parallel to the x-axis, the shape of
the red region implies that molecules are coupled by mediating photons with fields that have
both transverse and longitudinal character. Fields of longitudinal character most strongly couple
transition dipole moments that are parallel to one another and also parallel to the displacement

Figure 1. Brickstone lattice of transition dipoles, modelling a 2D J-aggregate.
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vector. Fields of transverse character couple transition dipole moments that are parallel to one
another, but perpendicular to the displacement vector. Although not easily obvious to the naked
eye when considering the bottom plots in figure 2, it is clear from the top panels that the −R 2

and −R 1 terms contribute to the QED coupling. As the −R 3 and −R 2 terms have a common
orientation factor, δ −( )R R3 ˆ ˆlj l j , the shape of their coupling landscapes, figures 2(b) and (c) are

identical, but with the intermediate-zone −R 2 more strongly damped at short distances. In the
case of the far-zone −R 1 coupling, there is no coupling between the central molecule and other
molecules at y = 0 nm, this is because there is no contribution from longitudinal fields in the far-
zone coupling term. The far-zone coupling is dominated by photons with transverse fields, and
hence the coupling fans out along the y-coordinate. It is also interesting to note the St Andrew’s
cross like region of very low coupling for the −R 2 and −R 3 landscapes. This exists because
molecules coupled in this orientation are not strongly coupled by either transverse or
longitudinal fields. For deeper accounts of photon coupling, the reader is pointed
elsewhere [46].

3.2. Quantum dynamics—closely packed lattice; Rx =Ry = 2 nm

In this section, the coupling terms associated with the Förster and QED theories are investigated
by considering exciton dynamics on a 25 × 25 brickstone lattice. The lattice has dimensions of
approximately 49 nm×48 nm. The electronic excitation energy associated with each site and
therefore the energy of the transferring UV photon is taken to be 3 eV. The electronic energy

Figure 2. Coupling magnitudes (on logarithmic scale) between the central molecule and
all other molecules in the aggregate for rx = ry = 2 nm. (a) Contributions to the coupling
from the far-zone, −R 1, term, (b) the intermediate-zone, −R 2 term, (c) the near-zone, −R 3,
(d) the Förster coupling, (e) the full QED coupling and (f) the difference in (logarithms
of) the QED and Förster couplings. Note that figure (f) has a different scale to the
others.
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transfer processes is initialized such that a site close to the centre of the brickstone lattice
initially has 100% exciton density.

Figures 3 and 4 display the results of the quantum dynamics simulations. Figure 3
corresponds to simulations that employ electronic couplings derived from Förster theory, and
figure 4 corresponds to simulations based on QED derived couplings. The figures are contour
plots of the population of the exciton density over the lattice, at selected times during 100 fs
trajectories. Figure 5 shows the exciton population data at selected sites in the lattice as a
function of time for the VQED simulations.

From figures 3 and 4 it can be seen the dynamics derived from Förster theory agree well
with the accurate QED description, for lattices of this type, where the TDM’s are 2 nm apart.
The migration of the exciton energy is anisotropic, as already predicted in reference [37] for
these kinds of lattice geometries. The population spreads out from the centre of the lattice in
both the x and y directions, with the predominant axis of exciton transport being that of the x-
axis. These favoured directions of energy transfer can be explained through the coupling
depictions described previously, where there is significant longitudinal character of the fields
associated with the photons and hence the exciton moves more rapidly along the x-direction
than the y-direction. Early on in the trajectory (at 2 and 20 fs) the spatial dependence of the
population at the sites in the lattice matches well between both theories. This can be clearly seen
in the similarities of the shapes of the coupling diagrams described by the Förster and QED
theories. As the dynamics continues, the regions of low population that were present along the
diagonal directions from the centre of the lattice now begin to gain some exciton population. At
times greater than 40 fs the spatial dependence now takes on more of an elliptical shape as the
population of exciton energy increases further out into the lattice. From figure 5 the symmetrical
nature of the transfer of energy can clearly be seen. Figure 5 (left) shows how the population at

Figure 3. Logarithmic plots of the exciton population at selected times during the
dynamics simulation using the Förster theory coupling VF.
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the central site decays, before gaining exciton population after around 50 fs, and then falling
away once more, characteristic of the wavelike motion of the exciton diffusion process. It can
also be seen that the increase in exciton population of the nearest neighbours to the central site
lying in the positive and negative x-direction (sites 312 and 314) are strongly correlated to the
decay of population at site 313. This is consistent with the illustrations from the contour plots
that energy is transferred in the direction of maximum coupling.

From the quantum dynamical results it can be seen that there does not appear to be any
significant difference in either the spatial or temporal dependence of the exciton dynamics using
electronic couplings derived from the two different theories. To corroborate this, figure 6
displays the difference between the contour plots given in figures 3 and 4.

A value of 0 in the plots of figure 6 is represented by a sky blue colour which indicates that
there is no significant difference in the populations at those sites in the lattice. A value greater

Figure 4. Logarithmic plots of the exciton population at selected times during the
dynamics simulation using the QED theory coupling VQED.

Figure 5. Populations at central sites as a function of time using the QED theory, with
rx = ry = 2 nm. Central site + the site either side numbering about central site (right).
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than 0 implies that the QED theory gives rise to a larger population, while a value below 0
indicates that the Förster theory produces a larger population (for a specific grid point and time).
Looking at all panels of figure 6, the population change that occurs in the central region of the
lattice is the same for the two models of energy transfer, Förster and QED. This quantitatively
shows that the two theories are consistent with one another in the near-zone, at least for the
lattice parameters employed here. However, small differences in the spatial dependency of
energy transfer for Förster and QED derived couplings can be clearly seen in some regions of
the lattice at early times. The difference then becomes ‘washed-out’ as time goes on, and the
exciton populations eventually reach equivalence. This occurs because far-zone coupling (the
R−1 distant dependent term in equations (10) and (12)) dominates at early times when direct
transfer of population occurs between the initially populated central site and molecular centres
at the periphery of the lattice. It is important to keep in mind that the spatial dependence of the
far-zone coupling term is significantly different to the other terms because it is coupled solely
by transverse photons. The far-zone coupling spreads out in the y direction because transition
dipole moments that are perpendicular to each other and also perpendicular to the displacement
vector are coupled.

Although one may naively expect the exciton dynamics produced by QED theory to result
in a faster population transfer and hence greater population at greater distances, Förster theory
in fact yields a larger population before the 40 fs point of the trajectory in some regions of the
lattice (the dark blue regions of the figures). Contributions from the intermediate-zone
interactions explain why the Förster coupling shows larger populations at some sites in the

Figure 6. Plots of the difference in the logarithm of the exciton population between the
two theories at selected times during the dynamics. A value of 0 indicates that there is
no difference between the populations resulting from the two theories and is shown in
the plots by a sky blue colour. The positive values indicate that the QED theory results
in a greater population, while a value less than 0 signifies that the Förster theory results
in a greater population.

12

New J. Phys. 16 (2014) 113067 J E Frost and G A Jones



lattice during the trajectory. Consideration of the retarded dipole–dipole electromagnetic
coupling tensor, equation (12), reveals that the R−2 contribution is taken away from the R−3

term. Consequently a weaker coupling results between the central molecule and those
molecules that are most strongly coupled by the intermediate-zone coupling term. Hence a
greater population is seen at early times when the Förster coupling is employed. At times
> 40 fs, these differences begin to disappear and the two theories become increasingly consistent
with one another. Interestingly, this is about the same time scale that corresponds to the change
in shape of the contour plots in figures 3 and 4, where the distinct low population diagonal
regions are lost and a more elliptical shape is formed. This can be interpreted as the exciton
dynamics becoming dominated by the short range ‘hopping’ mechanism induced by the near-
zone coupling. In effect, the short range mechanism eventually catches up to the longer range
contributions to the dynamics and begins to wash-out the effects of the R−2 and R−1 terms in the
QED coupling. As explained before, the R−2 term dominates when ≅kR 1 and this occurs
when the donor-acceptor separation distance, R, is approximately equal to the reduced
wavelength of the mediating virtual photon. The electronic excitation energy for the molecules
in this work was taken to be 3 eV and therefore the reduced wavelength is approximately 66 nm.
For these simulations in which lattice parameters of 2 nm have been employed with a 25 × 25
grid, the distance over which exciton diffusion is able to occur does not exceed the reduced
wavelength of the mediating virtual photon, except at the outskirts of the diagonal regions of the
lattice. Thus, although the intermediate and far-zone terms have a clear effect, neither term has a
lasting influence on the dynamics of energy transfer. Consequently the quantum dynamics
derived from couplings calculated with Förster theory are largely consistent with those derived
from coupling calculated from QED.

3.3. Quantum dynamics—sparsely packed lattices; Rx =Ry = 5 nm and Rx =Ry = 10 nm

The first of these scenarios employs the same brickstone lattice model and transition dipoles
used above, but with 5 nm between the rows and 5 nm between the monomers in the x direction.
By employing the 25 × 25 grid as before, the dimensions of the lattice become approximately
122 nm× 120 nm. Figures 7 and 8 show contour plots of the exciton population at selected times
during the simulations using the Förster and QED theories respectively (logarithmic scale).

The first thing to note from these results is that the rate at which energy migrates from the
central site is much slower than in the case of the 2 nm spaced lattice. Figures 7 and 8 both show
similar qualitative features, as those shown in figures 3 and 4. That is, the exciton migration is
anisotropic, with the principal axes of transfer occurring along the directions of maximum
coupling. However, due to the increased lattice size, the elliptical shape seen after around 40 fs
in the case of the 2 nm spaced lattice is not seen here. Instead the distinctive spatial dependence
remains throughout the dynamics. This is a consequence of the fact that there is a much slower
rate of energy transfer and hence the population actually transferred is small on the time scale of
these simulations. The final population recorded at the central site for both theories is
approximately 0.95 at 100 fs.

The exciton dynamics plots, figures 7 and 8, once again seem to suggest that the results
from QED coupling qualitatively match the result from the Förster coupling. However there are
clear differences when one looks at the population difference plot (figure 9), suggesting that the
intermediate- and far-zone terms are starting to have a sustained influence on the exciton
dynamics when the distance between the centres is approximately greater than 5 nm.
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Figure 7. Logarithmic plots of the exciton population at selected times during the
dynamics simulation using the Förster theory for lattice parameters Rx =Ry = 5 nm.

Figure 8. Logarithmic plots of the exciton population at selected times during the
dynamics simulation using the QED theory for lattice parameters Rx =Ry = 5 nm.
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Figure 9 shows similar topographies as those for the 2 fs time in figure 6, although the
features are now significantly more prominent and long lasting, with differences persisting to
the 100 fs mark. It can be clearly seen that the narrow regions protruding diagonally out from
the initially excited molecule favour exciton transport described by QED coupling, while the
triangular regions above and below the central point predict slower exciton transport for QED
coupling than Förster coupling. This contrast between the exciton dynamics resulting from
QED derived couplings and those of Förster theory becomes even larger when the separation
between the dipole centres increases (to 10 nm), as can be seen in figures 10–12.

Looking at the outer regions of the lattice in the plots in figures 9 and 12, one can see that
there are more significant differences between the two coupling theories in describing the
population dynamics as the distance between the sites spread out. Importantly, the results also
show that the differences are no longer washed out as quickly as they were with the lattice with
2 nm spacings between molecules. This indicates that intermediate and far-zone terms for the
QED coupling are starting to play an important role in the dynamics of energy transfer for
molecules separated by these distances. In terms of the spatial dependence, it can be seen that
regions of differences form a very distinctive pattern. The fact that the areas of these plots in
which the QED coupling is shown to result in a larger population occur along the diagonal
regions emanating from the centre of the lattice, indicate that it is the R−1 term that is
contributing at these sites. As explained before, the origin of these diagonal features is in the
fact that the far-zone coupling term seen in equation (12) has a different orientational
dependence. Again there are regions in which the Förster coupling yields larger populations,
originating from the intermediate-zone, R−2 term, which is subtracted from the R−3 near-zone
term in these regions of the lattice. In a similar trend to the results of the lattice with molecules
separated by 2 nm, some of the population differences are washed out with time. For example

Figure 9. Plots of the difference in the logarithm of the exciton population between the
two theories at selected times during the dynamics for the 5 nm lattice.
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Figure 10. Logarithmic plots of the exciton population at selected times during the
dynamics simulation using the Förster theory for lattice parameters Rx =Ry = 10 nm.

Figure 11. Logarithmic plots of the exciton population at selected times during the
dynamics simulation using the QED theory for lattice parameters Rx =Ry = 10 nm.

16

New J. Phys. 16 (2014) 113067 J E Frost and G A Jones



on the outskirts of the diagonal regions of the lattice where the Förster theory dynamics
approaches the same population as the QED coupling dynamics at later times. However
convergence of exciton populations of the two theories does not occur. For example, there are
parts of the lattice, above and below the central region (where the intermediate-zone term
dominates) in which the Förster theory appears to produce a greater population as time goes on
(i.e. it becomes less realistic in these regions). This is presumably because the influence of the
intermediate-zone R−2 term dominates over these specific distances and orientations. It is
especially interesting to note that even though these distances are significantly shorter than the
reduced wavelength of the mediating photon (approximately 66 nm for these simulations), the
R−2 contribution to the QED coupling plays a significant role at early times, within the context
of these simulations.

In closing this section, it is important to point out that while the absolute differences in the
populations may in fact be quite small in magnitude, this is largely because the EET dynamics
is undertaken on lattices of 625 molecules. Consequently the absolute population that any of the
molecular centres possesses, especially near the periphery of the grids, where the deviations
between Förster theory and the unified theory of EET are most apparent, will be very small.
Nevertheless, as can be seen clearly from the figures, the exciton dynamics is significantly
different. The differences will be compounded when the number of molecular centres is reduced
and it is expected that these differences will be especially important for energy transfer between
two species, as is the case in many FRET studies.

4. Conclusions

In this work, the electronic coupling terms associated with the Förster theory of energy transfer and
the unified theory of EET have been investigated. The analysis considered the spatial dependence

Figure 12. Plots of the difference in the logarithm of the exciton population between the
two theories at selected times during the dynamics for the 10 nm lattice.
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of the coupling terms themselves as well as through a quantum dynamical approach for simulating
the process of electronic energy transfer in a brickstone lattice. The coupling term associated with
the Förster theory, equation (13), and the transition matrix element associated with the unified
theory, equation (10), are employed as off-diagonal coupling terms in the site basis Hamiltonian.
The Liouville–von Neumann equations of motion were used to propagate the exciton density
matrix. The focus throughout this investigation was to study the difference between the ensuing
exciton dynamics, based on the two different coupling methods. Of particular interest is the role
that intermediate- and far-zone terms play in the spatial and temporal dynamics.

The results revealed that for closely spaced lattices, in which the distances between the
points of an array are 2 nm, the QED theory is consistent with the Förster theory. It was found
that by increasing the size of the lattice simply by increasing the distance between the transition
dipole moments in the array, the intermediate- and far-zone contributions to the couplings start
to play important roles in the spatial and temporal exciton dynamics. In some regions of the
lattice greater populations were seen when QED couplings were employed, and in other regions
smaller populations resulted at specific times.

The differences in the resulting dynamics became more pronounced as the distance
between the transition dipole moments became greater. In the case where rx and ry = 2 nm, any
deviations between the dynamics driven by VF and VQED were quickly washed-out. As the
distance between the molecular centres increased, the exciton dynamics driven by QED
couplings diverged significantly from the dynamics of Förster theory for the full 100 fs.

These results indicate that intermediate-zone and even far-zone terms may be important in
accurately describing exciton movement in mesoscopic structures, where EET can occur over
tens of nanometres, such as quantum-dot arrays. However more ab initio quantum simulations
will be required to verify how significant this is for realistic structures. Further, there may be
implications for the application of spectroscopic ruler techniques, with a number of
experimental studies recently predicting deviations from the usual R−6 dependence on the
rate of EET [41–43, 59].
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