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Abstract

Observations and Earth System Model (ESM) projections indicate that a reduction in the

oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence

of on-going anthropogenic warming. The contribution of external forcing factors to

observed changes in dissolved oxygen concentration ([O2]) relative to natural internal

variability is examined using statistical methods which synthesise historical measurements

and ocean biogeochemistry model output. Using a formal optimal fingerprinting method,

an externally forced signal, derived from ESM response patterns, is detected within the

observational record of [O2] between ∼ 1970 and ∼ 1992 at the 90 % confidence level.

Positive detection results in response to external forcing are robust for depth-averaged

(100–3000 m) and depth-resolving zonal mean patterns globally and for the Pacific basin,

however [O2] changes in the Atlantic basin are indistinguishable from internal variability as

characterised by unforced ESM integrations. Current ESMs are also shown, using optimal

detection techniques, to consistently underestimate the magnitude of observed [O2] change

by a factor of ∼ 2 – 4. Accordingly, targeted hindcast experiments are conducted using the

PlankTOM10-NEMO3.1 model, quantifying the impact of physical and biogeochemical

processes on the spatiotemporal distribution of O2. The largest magnitude of uncertainty is

shown to be entrained into [O2] response patterns due to model parameterisation of pCO2-

sensitive C:N ratios in carbon fixation and imposed atmospheric forcing data. Historical

trends and variability in Bottom Mixed Layer (BML) [O2] for the North Sea region are also

investigated. Observed (−0.62µmol L−1) and regional model simulated (−0.35µmol L−1

[GETM-ERSEM]) area mean linear trends in summer BML [O2] (1959–2006) are shown

to exceed global estimates, suggesting that stratified shelf seas could be especially sensitive

to warming-driven deoxygenation. However, the detectability of secular changes is reduced

by model error and internal variability associated with historical transitions between

hydrodynamic regimes.

v



Acknowledgements

I am eternally indebted to my primary supervisor, Corinne Le Quéré, whose patient
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1.1 The Anthropocene ocean

1.1.1 Overview

The ocean is the largest ecosystem on Earth, occupying more than 70 % of the planet’s

surface and containing 97 % of all water. As a major part of the hydrosphere, the ocean

communicates with other spheres of the Earth System via physical fluxes of energy,

momentum, and matter (Fig. 1.1). Biogeochemical exchanges also occur between the

ocean and atmosphere across the air-sea interface, providing a principal vector for transfer

of carbon and other biologically active elements. The ocean also acts as a globally important

store of thermal energy and carbon within the Earth System by virtue of its large mass and

volume (∼ 1.33 × 109 km3 based on satellite altimetry data [Charette and Smith, 2010]),

high heat capacity, and many points of contact with other spheres. These properties are

central to understanding the role of the ocean in regulating climate on various timescales.

Increased human population and economic development has brought about a profound

alteration to many physical and biogeochemical aspects of the “natural” Earth System,

a change which has been conceptualised by some as indicative of transition into a new

geological epoch – the Anthropocene (cf. Crutzen and Stoermer, 2000; Crutzen, 2002).

Particularly, since the start of the industrial revolution (∼ 1750) human activities including

fossil fuel burning, land use change and, to a lesser extent, cement production have led to an

increase in the atmospheric abundance of greenhouse gases such that current concentrations

of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are unprecedented

over the last 800 ka (based on polar ice core records [Masson-Delmotte et al., 2013]).

These anthropogenic changes to atmospheric composition have brought about a radiative

imbalance since at least∼ 1970 (Church et al., 2011), whereby more incident solar radiation

is retained in the Earth System than exits at the top of the atmosphere due to the increased

absorption and re-emission of outgoing long-wave infrared radiation by greenhouse gases.

Perturbation of Earth’s energy balance via a net positive radiative forcing has caused the

climate system to warm, driving an increase in global mean surface temperature for the

combined land and ocean of 0.85◦C over the period 1880-2012 (Hartmann et al., 2013).

Ocean warming accounts for most (∼ 93 %) of excess heat energy that has accumulated

in the Earth System between 1971 and 2010, two thirds of which is confined to the upper

700 m (Fig. 1.2; Rhein et al., 2013).
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Figure 1.1: Schematic summarising the major physical and biogeochemical connections between
spheres of the Earth System. Reproduced with permission from Stocker (2013).

1.1.2 Oceanic climate change

Figure 1.3 summarises recent changes in major physical and biogeochemical properties of

the ocean system in response to climate warming, centered around 50-year temperature

and salinity trends reported by Durack and Wijffels (2010), expressed as zonal averages.

Observed ocean warming is largest in near surface waters, with global mean temperature in-

creases of 0.11◦C per decade for the upper 75 m compared to 0.015◦C per decade at 700 m

depth (Rhein et al., 2013). Intensified near surface ocean warming and decreases in density

relative to the subsurface have been associated with a 4 % increase in thermal stratification

(0-200 m depth) over the same time period (Levitus et al., 2009) with significant implica-

tions for ventilation processes (See Sect. 1.2.2). Temperature changes are also observed

within the ocean interior as the signal of surface heating is transported downward via

mixing and water mass subduction. However temperature anomalies in the ocean interior

are more heterogeneous, smaller in magnitude and based on more spatiotemporally limited

data from repeat transects. As shown in Figure 1.3, coherent zonal mean temperature

increases are generally observed down to ∼ 2000 m depth and in deep and abyssal waters

(from 3000 m depth to the ocean floor), particularly in the recently ventilated Antarctic Bot-

tom Water (AABW) in the Southern Ocean (e.g. Purkey and Johnson, 2010). Some other
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Figure 1.2: Time-series of the energy accumulated within each component of the Earth System
between 1971 and 2010 (in ZJ; 1 ZJ = 1021 J). Upper ocean warming (light blue; < 700 m depth);
deep ocean warming (dark blue; > 700 m depth); ice melt (grey; Greenland and Antarctic ice
sheet estimates start from 1992, Arctic sea ice estimate 1979-2008); land warming (orange); and
atmospheric warming (pink). Errors (dot-dashed line) are provided at the 90 % confidence level.
Reproduced from Rhein et al. (2013).
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volumetrically important water masses have, however, cooled over the historical period,

particularly the Antarctic Intermediate Water (AAIW) north of 30◦S and the Lower North

Atlantic Deep Water (LNADW, for which a net heat loss of−4.3± 0.5× 1021 J is reported

by Mauritzen et al [2012] for the period 1955–2005). However, the detection of long-term

changes in NADW properties is complicated by strong decadal scale internal variability

associated predominantly with the North Atlantic Oscillation (NAO; See Sect. 1.1.3).

Distinct regional changes in ocean salinity have been reported over the historical period.

Consistent with a climate-driven intensification of the hydrological cycle (∼ 8 ± 3 % per

degree of surface warming [Durack et al., 2012]), observations indicate an enhancement

of existing patterns of surface water fluxes (evaporation-minus-precipitation [E − P ])

such that subtropical (E > P ) regimes are becoming more saline, whereas water masses

formed in tropical and polar regions (E < P ) are becoming fresher. Observed freshening

within the subpolar domain has also been associated with enhanced ice melt and riverine

freshwater input, along with changes in ocean circulation (Bindoff et al., 2007; Helm et al.,

2010). Rhein et al. (2013) report that, as a result of this regional divergence in hydrologic

forcing, the global mean contrast between high and low salinity regimes has increased by

0.12-0.13 PSS78 between 1950 and 2008, based on the Sea Surface Salinity (SSS) data of

Boyer et al. (2009) and Durack and Wijffels (2010).

Marked changes in ocean biogeochemistry have also been observed in response to

rising greenhouse gas concentrations and climate warming. The ocean is an important store

of anthropogenic carbon (CANT ), having absorbed 155 ± 30 Pg C of atmospheric CO2 for

the period 1750-2010 (Rhein et al., 2013; Khatiwala et al., 2013), equivalent to ∼ 25 %

of total anthropogenic carbon emissions since the onset of the industrial era (Le Quéré

et al., 2014b). The oceanic sink of carbon therefore plays an important role in buffering

rising atmospheric CO2, with recent accumulation of CANT in the subsurface associated

with interior transport along major ventilation pathways (CANT inferred indirectly using

observational or model-based methods [Khatiwala et al., 2013]). However, increased

carbon uptake and surface ocean pCO2 via enhanced air-sea fluxes down a partial pressure

gradient has significantly reduced the pH and calcium carbonate (CaCO3) saturation state

(Ω) of seawater (called “ocean acidification” [cf. Doney et al., 2009]). Specifically, the

dissolution of CO2 gas in seawater drives an increase in hydrogen ion concentration [H+],
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which has caused a global decrease in surface pH of 0.1 units and associated reductions in

[CO2−
3 ] of up to 10 %, relative to pre-industrial values (Orr et al., 2005). A decrease in

subsurface dissolved oxygen concentration (hereafter [O2]) has also been observed across

nearly all ocean basins over the last 50 years. Understanding the processes controlling

the climate response of ocean [O2] on regional and global scales is a central objective

of this research (Sect. 1.5.1), such that a thorough appraisal of the oceanic oxygen cycle

(Sect. 1.2) along with observed (Sect. 1.3) and projected (Sect. 1.4) changes is provided

subsequently.

1.1.3 Detection and attribution of oceanic climate change

The ocean responds gradually to imposed climate forcing owing to its large heat capacity

and slow circulation driven by wind and density contrasts. This thermal inertia within the

ocean system acts to damp large magnitude temperature changes, and causes a lag in the

forced response of near-surface temperatures to rising greenhouse gas concentrations (e.g.

Pierce et al., 2011; Hansen et al., 1985). The long (multi-decadal) timescales over which

ocean processes occur also integrate short-term climate noise (or “internal variability”)

such that secular changes within the climate system can be more readily identified in

ocean properties (e.g. Hegerl et al., 2006; Bindoff et al., 2013). Observed changes in a

climate-sensitive variable result from a combination of processes that are both internal

and external to the climate system. External factors (or “forcings”) that alter the radiative

balance or other aspect of the climate system can be natural (e.g. changes in solar output or

stratospheric volcanic aerosols) or anthropogenic (e.g. changes in well-mixed greenhouse

gas concentrations) in origin. Variability is also internal to the climate system, generated

by non-linear dynamical (and thermodynamical) processes within the atmosphere, ocean

or coupled ocean-atmosphere system (e.g. Deser et al., 2012). This variability is generally

characterised as a series of preferred spatial patterns that comprise the dominant climate

modes (e.g. the North Atlantic Oscillation [NAO; Hurrell et al., 2003]), often identified

through inter-regional spatial teleconnections. Internal variability occurs on all timescales

(Hasselmann, 1976), complicating the separation (or “detection”) of externally forced

changes from these chaotic, unforced variations within the climate system. Detection is

defined by the IPCC Good Practise Guidance Paper on Detection and Attribution (Hegerl
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et al., 2010) as the process of demonstrating that the climate, or a system affected by

climate, has changed in a statistical sense, and that the likelihood of this observed change

being caused by natural internal variability is low. Attribution, however, requires that an

assignment of confidence can be given to the various forcing factors that cause a detected

change.

Atmosphere-Ocean General Circulation Model (AOGCM) simulations can be used to

separate the contributions of different external forcing factors and internal variability to

observed climate change (e.g. Hegerl and Zwiers, 2011). The standard “optimal fingerprint-

ing” approach (Hegerl et al., 1996; Hasselmann, 1997; Allen and Tett, 1999) involves the

use of linear regression methods to compare observed changes in a climate variable against

a series of model simulated spatial, temporal (or space-time) response patterns to different

external forcings (or “fingerprints”). These so-called detection and attribution studies

seek to express an observed change as the linear sum of various spatiotemporally unique

responses to external forcings, such as changes in greenhouse gas concentration or solar

output, and natural internal variability. A reliable estimate of observed internal variability is

a necessary pre-requisite for detection and attribution assessment (e.g. Imbers et al., 2014).

However, in lieu of centennial-scale climate records which are uncontaminated by external

forcing this is generally provided by sampling long, unforced AOGCM simulations (or in

some cases by using the intra-ensemble variability from a suite of transient simulations [e.g.

Stott et al., 2003b]). A number of enhancements to the original Ordinary Least Squares

(OLS; Hegerl et al., 1996) regression model used in detection studies have been made in

recent years (cf. Stone et al., 2009; Hegerl and Zwiers, 2011). Particular focus has been

given to accounting for sampling (Total Least Squares [TLS] regression; Allen and Stott,

2003) and structural (Error-In-Variables [EIV] regression; Huntingford et al., 2006) errors

in model fingerprints. Large uncertainties remain, however, particularly with regard to

quantifying the contribution of external forcing to climate change at regional scales and

extreme events (Hegerl and Stott, 2014).

Detection and attribution studies conducted over the past ∼ 20 years have been instru-

mental in quantifying the anthropogenic contribution to observed changes in Global Mean

Surface Temperature (GMST). Based partly on the results of these analyses, Working

Group 1 (WG1) of the Intergovernmental Panel on Climate Change (IPCC) states in its
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Fifth Assessment Report (AR5) that “It is extremely likely that human activities caused

more than half of the observed increase in GMST from 1951 to 2010” (Bindoff et al.,

2013). A number of formal, fingerprint-based detection studies have also been conducted

in order to detect external influences on observed changes in ocean properties (e.g. Hegerl

et al., 2007; Bindoff et al., 2013). These studies have focused mainly on changes in ocean

temperature (e.g. Barnett et al, 2005; Pierce et al., 2006; Palmer et al., 2009), with the most

recent analysis of Pierce et al. (2012) identifying a detectable change in observed upper

ocean (0–700 m) temperature for the period 1955–2004 based on combined space-time

model fingerprints derived from 12 models participating in Phase 5 of the Coupled Model

Intercomparison Project (CMIP5). Observed temperature changes are shown to be incon-

sistent with internal variability or natural external factors (volcanic and solar forcings) and

consistent with anthropogenic external forcing at the 95 % confidence level, with Gleckler

et al. (2012) demonstrating similar positive detection results to be robust across a range of

different bias-corrected ocean temperature datasets.

External forcings have also been detected in observed 33-year trends of SSS for the

global ocean and Pacific basin at the 90 % confidence level using model fingerprints which

include natural and anthropogenic forcings, however for the Atlantic ocean observed

changes are indistinguishable from model estimates of internal variability (Terray et al.,

2012). This work has been extended by Pierce et al. (2012) who isolate a detectable

anthropogenic signal in observed interior salinity changes down to 250 m depth at the 5 %

significance level for the period 1955–2004. Interestingly, the authors also find that by

combining physically linked temperature and salinity changes into a multi-tracer fingerprint

the model-predicted anthropogenic signal strength increases, such that detection results

are more robust than for each variable in isolation. This highlights the potential utility of

multivariate signal vectors as a means of improving the detectability of externally forced

changes in ocean properties relative to internal climate variability (Santer et al., 1995).

The detectability of external influences on recent changes in biogeochemical variables

is less well constrained. As highlighted by Beaulieu et al. (2013) and Henson et al. (2010)

in statistical analyses of ocean colour satellite records, confidence in detection is restricted

by the lack of observations of sufficient duration to separate secular trends from long

period internal variability within the ocean system. However, recently published synthesis
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datasets of dissolved oxygen concentration ([O2]; Sect. 1.3.2) and carbon (e.g. Surface

Ocean CO2 Atlas [SOCAT; Bakker et al., 2014b]) provide multi-decadal records of ocean

biogeochemistry change, and could form the basis of formal detection and attribution

studies (Sect. 1.5). Moreover, the most recent generation of Earth System Models (ESMs)

output biogeochemical variables as standard practice for simulations co-ordinated through

CMIP5 (Taylor et al., 2012), providing a suite of targeted historical experiments for analysis

under a detection and attribution framework.

1.2 The oceanic oxygen cycle

1.2.1 Overview

The atmospheric and oceanic inventories of oxygen (O2) are coupled via air-sea gas transfer

(QF ) down a partial pressure gradient, a relationship that can be expressed as:

QF = kwα(pOatm2 − pOocean2 ) (1.1)

where kw is the gas transfer velocity, α is the solubility of O2 in seawater (e.g. Weiss et

al., 1970) and pOatm2 and pOocean2 are the partial pressures of oxygen in the atmosphere and

surface ocean, respectively. This rapid exchange maintains surface ocean mixed layer (<

100 m) dissolved oxygen concentration ([O2]surface) close to its saturation value ([O2]sat)

for a given potential temperature and salinity (Garcia and Gordon, 1992). Equilibration

of surface O2 with the overlying atmosphere is, however, never perfect (Ito et al., 2004),

with the largest near-surface oxygen disequilibria having been identified in high-latitude

regions of water mass renewal (e.g. Gordon and Huber, 1990; Duteil et al., 2013).

In the oceanic interior, [O2] is chiefly set by the balance between the physical supply

of this O2-rich water into the subsurface via transport and mixing processes (hereafter,

“ventilation”), biological supply from photosynthesis in the euphotic zone, and subsequent

consumption of oxygen in the remineralisation of organic material. Accordingly, in ocean

biogeochemistry models the conservation equation that describes the temporal evolution

of passive tracers like oxygen can be written as (Eq. 1.2; after Enright et al., [2014] and

Matear [2004]):
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dO2

dt
= ∇ · (~uO2) +∇ · ( ~K∇O2) +QF +QR (1.2)

where ~u is fluid velocity (representing advection), ~K is the diffusion co-efficient,

and QR represents oxygen production (via photosynthesis in the euphotic zone) and

consumption (via remineralisation of organic material, with a contribution from the growth

of nitrogen fixers on N2 [Le Quéré et al., 2014a; Enright et al., 2014]).

Deviation over time in the observed [O2] of a recently ventilated water parcel from

[O2]sat is termed the Apparent Oxygen Utilisation (AOU ; Equation 1.3). AOU increases

with ventilation age according to the rate at which organic material is oxidised by bacteria

(Oxygen Utilisation Rate; OUR = dAOU
dt ), and thus is used as a classical measure of

respiration in the ocean interior (assuming that [O2]sat = [O2]surface).

AOU = [O2]sat − [O2] (1.3)

High OUR and weakening ventilation allow for the development of a natural O2

minimum near the base of the permanent thermocline (Wyrtki, 1962). These [O2] minima

are most pronounced within the so-called Oxygen Minimum Zones (OMZs; Fig. 1.4)

of the eastern tropical oceans (e.g. Karstensen et al., 2008; Paulmier and Ruiz-Pino,

2009). In these regions, sluggish cyclonic circulation (within poorly ventilated “shadow

zones” [Luyten et al., 1983]) and elevated export production maintain low-O2 conditions

at intermediate depths. As a result, open ocean OMZs contribute significantly to the global

inventory of hypoxic ([O2]< 60µmol kg−1;∼ 5 % of ocean volume [Deutsch et al., 2011])

and suboxic ([O2] < 5µmol kg−1; ∼ 0.05 % of ocean volume [Karstensen et al., 2008])

waters. Comparatively, as shown in Figure 1.4, upper ocean [O2] is generally much higher

across much of the well-ventilated mid- to high-latitude ocean where colder (more soluble)

nutrient rich waters can be supersaturated with respect to atmospheric O2 (e.g. 140 %

saturation in surface waters west of the Antarctic peninsula [Carrillo et al., 2004]).

Exposure to low-O2 conditions (or “dead zones” [Diaz and Rosenberg, 2008]) can cause

negative physiological effects and increased mortality in aerobic marine biota if ambient

[O2] falls below a taxon-specific hypoxic threshold (e.g. Vaquer-Sunyer and Duarte, 2008;

Gray et al., 2002). O2 depletion can also impact significantly upon marine biogeochemical
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Figure 1.4: Distribution of [O2] minima (µmol L−1) for the global ocean. Data obtained from
Bianchi et al. (2012), who apply a linear correction to World Ocean Atlas (2005) [O2] based on
in situ measurements, which reduces the underestimation of OMZ extent in gridded WOA fields.
Hypoxic (60µmol L−1; black) and suboxic (5µmol L−1; purple) contours are overlain.

cycles, particularly nitrogen, with implications for nutrient availability and greenhouse gas

emissions. Particularly, under suboxic conditions a shift occurs towards the use of nitrate

(NO3
−) as an oxidant in the microbial decomposition of organic material via denitrification –

a dominant pathway for the removal of fixed inorganic nitrogen from the ocean (e.g. Gruber,

2008). In addition, despite occupying less than 10 % of the ocean by volume, hypoxic

and suboxic waters account for ∼ 25–50 % of open ocean N2O production (Codispoti,

2010; Suntharalingam et al., 2000) as a consequence of both enhanced denitrification (e.g.

Naqvi et al., 2010a) and improved N2O yields from nitrification (e.g. Frame and Casciotti,

2010; Bakker et al., 2014a) under low-O2 conditions. Enhanced oceanic production of

nitrous oxide has important implications for climate mitigation: since 2011, N2O has

the third largest radiative forcing of all anthropogenic greenhouse gases (0.17 ± 0.03 W

m−2 [Myhre et al., 2013]). Uncertainties are large, however, particularly regarding the

interaction between projected future oxygen changes and marine N2O production (e.g.

Bianchi et al., 2012; Freing et al., 2012).
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1.2.2 Drivers of change in oceanic oxygen

Observations (Sect. 1.3) and prognostic model experiments (Sect. 1.4) indicate that a

reduction in the oxygen inventory of the global ocean, termed “ocean deoxygenation”

(Keeling et al., 2010; Falkowski et al., 2011), is a likely consequence of global climate

change and ocean heat uptake. [O2] responds to climate forcing both directly, via the

reduced solubility of [O2] at higher temperatures (∆Osol
2 ), and indirectly as a result of

perturbation to the physical and biological processes which control [O2] within the ocean

interior (see Figure 1.5; Equation 1.4). Specifically, warming-induced stratification of

the upper ocean (Rhein et al., 2013; Capotondi et al., 2012) reduces exchange between

surface waters and the ocean interior, increasing ventilation age and allowing for more

oxygen utilisation to occur. Importantly, ventilation is taken here to mean all processes

which transport oxygen to the ocean interior (sensu Keeling et al., 2010), since increases

in thermal stratification will impede both: (1) ∆Omld
2 : the immediate re-supply of O2

from near-surface to thermocline (i.e. mixed layer detrainment [e.g. Deutsch et al., 2006;

Kwon et al., 2014]) and (2) ∆Ocirc
2 : water mass renewal and circulation pathways within

the ocean interior (e.g. Helm et al., 2011; Brennan et al., 2008).

Linked to these physical controls, biological processes (∆Obio
2 ) such as changes in

export production (Bopp et al., 2001) and the fraction of particulate organic material (POM)

which is remineralised at a given depth (e.g. Hofmann and Schellnhuber, 2009) will also

impact upon ∆Otot
2 . For example, increased thermal stratification at mid- to low latitudes

has also been shown to drive a reduction in upwelling of nutrient-rich waters into the

photic zone (Bopp et al., 2001) yielding a decrease in biological export production and

thus OUR, such that thermocline [O2] increases (e.g. Bopp et al., 2002). The relative

contribution of this process, which reduces deoxygenation associated with increases in

ventilation age, will be related in part to the disproportionate contributions of organic

(Particular Organic Carbon [POC]) versus inorganic (preformed) pathways of nutrient

export in a more stratified ocean (Keeling et al., 2010).

These competing processes can be combined simply as follows to provide an estimate

of the overall change in subsurface [O2] (∆Otot
2 ) in response to external perturbation (with

an additional term, ∆Odiseq
2 , representing changes in the atmosphere-ocean disequilibrium

of [O2]surface, as noted in Section 1.2.1).
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∆Otot2 = ∆Osol2 + ∆Omld2 + ∆Ocirc2 + ∆Obio2 + ∆Odiseq2 (1.4)

1.3 Observed changes in oceanic oxygen

1.3.1 Regional perspective

Dissolved oxygen has been a staple oceanographic measurement for more than a century,

used alongside temperature and salinity as a tool for understanding ocean circulation (e.g.

Körtzinger et al., 2005). As a result, the spatiotemporal record of [O2] is more complete

than for any other biogeochemical parameter, the reliability of which owes a debt to the

early development of an elegant chemical titration method which remains in use today

(Winkler titration; Winkler [1888]). These data, therefore, have the potential to provide

unique insights into the state of the ocean system over the historical period, particularly

with regard to the influence of anthropogenic warming on coupled physical-biogeochemical

processes (Joos et al., 2003).

It must, however, be acknowledged that early titration measurements contain some

inaccuracies (e.g. Wong and Li, 2009; Bindoff et al., 2007), owing, for instance, to the

use of visual rather than automated methods in the identification of titration end points

(Naqvi et al., 2010b). Particularly, a systematic [O2] overestimation of up to 5µmol L−1

has been identified in early measurements of low-O2 (OMZ) waters (Naqvi et al., 2010b;

Codispoti and Christensen, 1985). Bianchi et al. (2012) demonstrate that this positive

observational bias within OMZs is also entrained into gridded, climatological [O2] data

products (e.g. World Ocean Atlas 2005 [Garcia et al., 2006]; See Figure 1.4), due to a

combination of measurement error, interpolation artifacts, and natural internal variability

in oceanic oxygen (as also noted by Garcia et al. [2005]). However, Gilbert et al. (2010)

show in a meta-analysis of [O2] data that measurement inconsistences associated with

refinements to analytical methods (e.g. Jones et al., 1992; Morrison et al., 1999) have

a negligible impact on the calculation of large-scale historical trends. Moreover, recent

data compilations (see Section 1.3.2) synthesise quality-controlled in-situ datasets (e.g.

Hydrobase-2 [Curry, 2008]) and state-of-the-art optode O2 measurements from profiling

floats (e.g. Gruber et al., 2010; Johnson et al., 2009; Körtzinger et al., 2005) to generate



1.3 Observed changes in oceanic oxygen 16

Figure 1.5: Diagram summarising the changing oceanic oxygen cycle. The oceanic reservoir of
oxygen communicates with the atmosphere via air-sea gas exchange (QR). In the ocean interior a
change in [O2] over time can be driven by changes in: (1) surface ocean O2 solubility (∆Osol

2 ) and
atmosphere-ocean disequilibrium (∆Odiseq

2 ) (2) ventilation (∆Omld
2 + ∆Ocirc

2 ) and (3) biological
utilisation of oxygen in the remineralisation of POC (∆Obio

2 ).

reliable [O2] trend estimates, whilst also objectively mapping data to reduce sampling

biases associated with changing observational coverage (e.g. Stramma et al., 2012a; Helm

et al., 2011).

Continuous time series measurements in the subarctic North Pacific (Whitney et al.,

2007; Ono et al., 2001) provide the longest record of open ocean [O2] change, allowing

historical trends and variability to be interrogated. These data reveal compelling evidence

of secular subsurface [O2] decreases over the last ∼ 50 years, with linear [O2] declines of

∼ 0.7µmol kg−1 yr−1 at both Ocean Station Papa in the Eastern North Pacific (Whitney

et al., 2007) and within the Oyashio Current region of the Western North Pacific (Ono et

al., 2001) on isopycnal surfaces within the 100-450 m depth range (Fig. 1.6). Major [O2]

decreases across much of the subarctic North Pacific are also evident in ocean “snapshots”

obtained from World Ocean Circulation Experiment (WOCE) repeat sections between

the 1980s and 1990s (Emerson et al., 2004), and have been associated with a long-term

reduction in outcropping of lower ventilated thermocline waters (σ = ∼ 26.6) in response
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to elevated stratification using model hindcasts (Deutsch et al., 2005; Deutsch et al., 2006).

However, as shown in Figure 1.6, North Pacific [O2] time series measurements also exhibit

significant variability on quasi-decadal timescales, which complicates the interpretation of

secular changes and potential detection of climate signals. Such patterns are characteristic

of basin scale variability in upper ocean [O2] and AOU, whereby small linear trends

are often superimposed upon significant interannual to decadal fluctuations (Garcia et

al., 2005). In the case of the subarctic North Pacific, the mechanism driving observed

(natural) variability in mid-depth [O2] remains uncertain (Keeling et al., 2010; Cummins

and Masson, 2012; Ito and Deutsch, 2010). However, Andreev and Baturina (2006) suggest

that these low frequency (∼ 17 year period [Ito and Deutsch, 2010]) oscillations can be

explained by a combination of large-scale climate variability associated with the intensity

of the Aleutian low-pressure system (North Pacific Index [Trenberth and Hurrell, 1994]),

tidal forcing and wind stress.

Observations from the North Atlantic provide a complementary perspective, with

substantial decreases in upper-ocean [O2] reported in subpolar mode waters between 1988

and 2003 by Johnson and Gruber (2007). The authors attribute these changes to cooling

driven by a shift from high to low NAO (Hurrell et al., 2003) state, however the short

(∼ 15 year) time period and limited spatial coverage confound a full attribution. Since then,

Stendardo and Gruber (2012) have compiled a high quality [O2] dataset for the entire North

Atlantic Ocean that provides an unprecedented assessment of long-term [O2] changes

along isopycnal surfaces for the period 1960-2009. Similarly, these data show decreases of

∼−4.8 ± 2.2µmol kg−1 across mode and upper intermediate waters of the North Atlantic.

This decline is, however, unrelated to NAO shifts and attributable mainly to ventilation

and circulation changes (∆Omld
2 + ∆Ocirc

2 ), based on water mass O2 to heat change ratios

which exceed those expected in response to solubility changes (∆Osol
2 ) alone. Interestingly,

deeper layers of the North Atlantic (Lower Intermediate and Labrador Sea Water) exhibit

coeval increases in [O2] which can be associated mainly with NAO factors – a consequence

of increased oxygen solubility driven by strong water mass cooling under an increasingly

positive NAO. The recent shift in NAO towards a more negative state, as noted by Stendardo

and Gruber (2012), could have important implications for future oxygenation of lower

North Atlantic intermediate waters with the potential for exacerbation of any [O2] changes
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driven by ocean warming. Moreover, the differing interpretations of oxygen changes in the

North Atlantic offered by Johnson and Gruber (2007) and Stendardo and Gruber (2012)

highlight the importance of spatiotemporal coverage to process level understanding.

At lower latitudes, Stramma et al. (2008) also report long-term negative trends in [O2]

(−0.13 to −0.34µmol kg−1 yr−1) over the last 50 years at intermediate depths within the

established OMZs of the eastern tropical Atlantic and equatorial Pacific Ocean (Fig. 1.6).

It has been suggested that these changes may be related to a weakening of the zonal jets

that supply oxygenated water into OMZs along isopycnal surfaces (e.g. the tropical North

Atlantic [Brandt et al., 2010]). Observed [O2] decreases have been accompanied with a

marked vertical expansion of OMZ waters and shoaling of the mid-depth hypoxic boundary

– a phenomenon with wide-ranging implications for pelagic ecosystems and fisheries (cf.

Gilly et al., 2013). For example, OMZ shoaling of ≤ 1 m yr−1 has been associated with a

15 % habitat loss in the upper 200 m of the tropical northeast Atlantic OMZ between 1960

and 2010 (Stramma et al., 2012b). However, as with historical changes in the subpolar

North Pacific and North Atlantic [O2], the role of multidecadal variability driven by the

dominant climate modes remains important to OMZ dynamics. For example, Deutsch et

al. (2011) show, using a forced ocean biogeochemistry model, that thermocline depths

in the tropical Pacific OMZ are highly correlated with the Pacific Decadal Oscillation

(an index of North Pacific Sea Surface Temperature variability), which can be invoked to

explain 24 % of simulated historical variability in suboxic volume.

A recent meta-analysis of [O2] time series data carried out by Gilbert et al. (2010)

suggests the coastal zone may also be an import locus of historical deoxygenation – with

an order of magnitude larger median rate of coastal [O2] decrease (0–30 km from coast)

relative to the open ocean between 1976 and 2000. In addition, a significantly greater

proportion of negative [O2] trends are found in available time series data for the coastal

zone (64 %) compared to the open ocean (49 %). As such, an understanding of coastal

hypoxia is necessary to fully quantify changes to the global ocean oxygen inventory.

Various coastal and shelf sea regimes have experienced [O2] decreases and increasing

hypoxia over the historical period (cf. Rabalais et al., 2010; Zhang et al., 2010). Particularly,

oxygen depletion has been reported in eastern boundary current systems, where upwelling

and advective processes can transfer O2-poor water from offshore onto the inner shelf (e.g.
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Chan et al., 2008; Bograd et al., 2008; Grantham et al., 2004), providing a mechanism

by which open ocean oxygen dynamics can influence the coastal zone. Summer stratified

regimes, such as the semi-enclosed shelf seas, have also experienced secular oxygen

decreases in bottom waters over the historical period (e.g. the North Sea; Queste et al.,

2012), however the detectability of these changes relative to internal variability remains

uncertain (e.g. Greenwood et al., 2010; Weston et al., 2008; see Section 1.5).

There has also been a global increase in the number of low-[O2] coastal “dead zones”,

with hypoxic systems now occupying an area of more than 245,000 km2 (Diaz and Rosen-

berg, 2008). Hypoxic development in the coastal ocean is predominantly driven by

anthropogenic perturbation to the riverine flux of nutrients and organic material, which

stimulates localised eutrophic conditions and elevated AOU in the coastal ocean (e.g.

Rabalais et al., 2010). However physical alteration to the coastal zone by climate change

may also influence [O2] dynamics, for example via changes in stratification and regional

wind patterns, which impose a significant control on mixing processes (see Figure 1.7;

Rabalais et al., 2010; Rabalais et al., 2009). Notably, Gilbert et al. (2010) find that the most

acute coastal [O2] declines are detected both at the surface and beneath the mixed layer (>

100 m), which is inconsistent with the expected [O2] signature of enhanced eutrophication

(∼ 20-50 m depth), suggesting a link to solubility and ventilation changes. This [O2]

fingerprint indicates that increased hypoxia in the coastal zone may be modulated by

historical warming, warranting further investigation (Sect. 1.5).

1.3.2 Global perspective

Observations and model hindcasts across ocean basins provide a consistent view of recent

changes in oceanic oxygen whereby secular (mainly) decreasing trends in subsurface [O2]

driven by physical processes (∆Omld
2 + ∆Ocirc

2 ) are overlain by significant interannual to

decadal variability. This interaction between forced and unforced variability, associated

mainly with the dominant climate modes (e.g. NAO [Stendardo and Gruber, 2012]; PDO

[Deutsch et al., 2011]), complicates the interpretation of trends, particularly on relatively

short (< 20 year) timescales (Gruber, 2009). Unforced AOGCM simulations also highlight

the importance of natural climate modes in modulating [O2] changes, with the NAO and

PDO explaining more than 50 % of simulated internal variability in [O2] of the North
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MA04CH02-Doney ARI 3 November 2011 13:27

Vertical carbon flux

Nutrient-enhanced
productivity

Bottom-water
hypoxia 

Harmful and
noxious
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Nutrient loads
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Sedimentary carbon
and nutrient pools

Biological responses

Metabolic rates (mostly +)
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Respiration (+)
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Oxygen saturation (–)
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activities

Hydrologic
cycle (+) (–)

Sea-level
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Climate variability/
climate change

Reactive N
(mostly +)

Water
temperature
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Winds

Figure 2
Conceptual diagram of human and climate interactions on nutrient-enhanced productivity, harmful and
noxious algal blooms, and formation of hypoxia. Positive (+) interactions designate a worsening of
conditions related to algal blooms and hypoxia, and negative (−) interactions designate fewer algal blooms
and lessening of hypoxia symptoms. Dashed lines indicate negative feedback processes to nutrient-enhanced
production and subsequent hypoxia. Dotted line between anthropogenic activities and climate variability/
climate change indicates that current climate change is driven largely by humans, but that climate change
can certainly affect human activities. Modified from Rabalais et al. (2010).

2006). Available time series point to broad trends of increased wind-driven upwelling across many
of the ocean’s major EBCSs (Garcı́a-Reyes & Largier 2010, Patti et al. 2010).

Projected declines in ocean oxygen levels reflect the combined effects of reduced oxygen solu-
bility from warming and reduced ventilation from stratification and circulation changes (Keeling
et al. 2010). Deoxygenation is also possible because of shifts in the magnitude and composition of
sinking organic material (Hofmann & Schellnhuber 2009). Stramma et al. (2008) reported ver-
tical expansion of the intermediate-depth low-oxygen zones in the eastern tropical Atlantic and
the equatorial Pacific during the past 50 years, and Whitney et al. (2007) documented persistent
oxygen declines in the eastern subarctic Pacific between the 1950s and 2000s. Such events related
to warming are not well documented in coastal waters, but the number of coastal hypoxic regions
has grown dramatically with time (Diaz & Rosenberg 2008), in large part because of human ac-
tivities that increase the amount of bioavailable nitrogen that reaches the coastal ocean. Future
levels of coastal hypoxia will be modulated by climate change via alterations in vertical stratifi-
cation (temperature, precipitation, freshwater runoff ), winds, and mixing (Rabalais et al. 2010;
Figure 2).

In the open ocean, rising atmospheric CO2 and the resulting increased oceanic CO2 uptake are
the predominant factors driving ocean acidification (Dore et al. 2009). Ocean acidification reflects
a series of chemical changes: elevated aqueous CO2 and total inorganic carbon as well as reduced
pH, carbonate ion, and calcium carbonate saturation states (Doney et al. 2009). Sea-surface pH is
estimated to have dropped by 0.1 pH units since the preindustrial era, a 26% increase in acidity
over the past 150 years, mostly in the past several decades. Future projections suggest declines of
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Figure 1.7: Summary of physical and biological responses to climate change and anthropogenic
activities, and their influence on coastal hypoxia and algal bloom formation. Positive (+) interactions
indicate a worsening of hypoxia and vice versa. Dashed lines indicate negative feedbacks within
the system. Reproduced with permission from Doney et al. (2012).

Atlantic and North Pacific, respectively (Frölicher et al., 2009). This climate variability has

been associated with large-scale propagating [O2] anomalies (e.g. Deutsch et al., 2006),

which, along with incomplete data coverage, preclude unequivocal detection of anthro-

pogenic climate trends. Particularly, the potential exists for aliasing of a secular forced

response with climate noise where temporal resolution is limited and internal variability is

large, for instance, in the analysis of repeat hydrographic sections in the North Atlantic

(Johnson and Gruber, 2007). In this case, decadal scale fluctuations in [O2] associated with

natural patterns of variability may be projected onto long-term trends, yielding erroneous

attribution to an external forcing. Gilbert et al. (2010) demonstrate this point using multiple

synthetic time series of different lengths (10, 25, and 50 year), assuming random white

(climate) noise with a realistic interannual variability (σ = 23µmol L−1), finding that the

likelihood of large amplitude trends in [O2] increases as time series become shorter, and

vice versa. Thus, in order to constrain the anthropogenic component of observed [O2]

changes there is a requirement for internally consistent data (e.g. Stendardo and Gruber,

2012) on large spatiotemporal scales so as to improve the signal to noise ratio.



1.4 Future ocean oxygen depletion 22

A more holistic perspective is provided by recent global compilations of [O2] data,

which reveal coherent subsurface [O2] decreases across nearly all ocean basins, particularly

at mid- to high latitudes and within established OMZs (as reviewed in Section 1.3.1). Area

mean trends derived from historical data converge on a global thermocline [O2] decrease

of ∼ 0.05µmol kg−1 yr−1, however trend estimates range from −0.042µmol kg−1 yr−1

(1970s–1990s [Helm et al., 2011]) to −0.066µmol kg−1 yr−1 (1960–2010 [Stramma et

al., 2012a]), primarily due to differences in the sampled time period and data used. These

trends are allied with a ∼ 0.55 ± 0.13 × 1014 mol yr−1 depletion to the global oceanic

oxygen inventory (Helm et al., 2011), consistent with, but slightly larger than, observational

estimates of oceanic O2 outgassing since ∼ 1990 (0.44 × 1014 mol O2 yr−1) derived from

air-sea heat fluxes (Keeling and Manning, 2014; Keeling and Garcia, 2002). Based on these

results, the IPCC, in WG1 of AR5, states that there is medium confidence (high agreement

based on limited evidence) that observed thermocline [O2] has declined in many regions of

the ocean since the 1960s, and that this decrease is consistent with the expected response

of oxygen to climate-driven ventilation changes and thermal effects (Rhein et al., 2013).

1.4 Future ocean oxygen depletion

Future changes in oceanic oxygen have been investigated using a range of Intermediate

Complexity Earth System Models (EMICs; Plattner et al., 2001; Schmittner et al., 2008;

Oschlies et al., 2008; Shaffer et al., 2009) and AOGCMs (Sarmiento et al., 1998; Matear

et al., 2000; Bopp et al., 2002; Matear and Hirst, 2003; Frölicher et al., 2009; Cocco et

al., 2013; Bopp et al., 2013; Gnanadesikan et al., 2012). There is broad consensus that

future climate warming will exacerbate observed ocean oxygen depletion and increase

the role of the ocean as a net source of oxygen to the atmosphere. As shown in Table 1.1,

model simulated decreases in global mean [O2] range from 3 to 12µmol kg−1 for the end

of the century (equivalent to a 1–7 % total inventory loss) under a range of future climate

forcings. The lower bound placed on this multi-model estimate is provided by Frölicher

al. (2009) who attribute their more muted global [O2] decrease (3–4µmol kg−1) in part to

the lower climate sensitivity of CSM1.4-CCCM. These changes are generally consistent

with the most recent suite of Earth System Model (ESM) experiments conducted under
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CMIP5 (Taylor et al., 2012), which project global [O2] decreases of 1.5–4 % between 1990–

1999 and 2090–2099 for all Representative Concentration Pathways (RCPs; Fig. 1.8A).

AOGCMs also simulate significant increases in net sea-air oxygen flux over the 21st century

in response to protracted ocean warming, with outgassing of 0.23–0.40 mol O2 m−2 y−1

for the year 2100 (relative to a modern baseline of ∼ 0–0.1 O2 m−2 y−1 [Bopp et al., 2002;

Frölicher et al., 2009]). However, there is considerable natural internal variability in

sea-air O2 fluxes on interannual (± 0.12 mol O2 m−2 y−1) to decadal (± 0.04 mol O2

m−2 y−1) timescales (Bopp et al., 2002), which is generally poorly constrained by the

current generation of ocean biogeochemistry models (Rödenbeck et al., 2008).

Nearly all models project future declines in subsurface [O2] to be mainly driven by

warming-induced increases in density stratification, reducing the resupply of oxygen to

the ocean interior via circulation (∆Ocirc
2 ) and mixing (∆Omld

2 ) processes (Plattner et

al., 2001; Bopp et al., 2002; Matear and Hirst, 2003). Comparatively, solubility changes

(∆Osol
2 ) are projected to explain between 18–50 % of simulated total ocean deoxygenation

by 2100 (Table 1.1). This prediction is consistent with observed patterns of [O2] change,

with Helm et al. (2011) attributing up to 85 % of recent deoxygenation of the ocean interior

to weakening ventilation, and the remainder to reduced solubility (∆Osol
2 ).

Prognostic ocean biogeochemistry models consistently project ventilation driven de-

oxygenation across much of the mid- to high-latitude ocean by the end of the century,

with CMIP5 ESMs simulating the largest subsurface [O2] decreases (up to 50 mmol m−3)

in the North Atlantic, North Pacific and Southern Ocean for both RCP2.6 and RCP8.5

(Fig. 1.8C–1.8D). There is good agreement between models that persistent [O2] decreases

are expected in mode and intermediate waters of the North Pacific by 2100, driven predom-

inantly by shoaling of the mixed layer, but with a significant contribution from solubility

effects (Frölicher et al., 2009; Matear and Hirst, 2003; Bopp et al., 2013).

A number of model studies also indicate that changes in overturning circulation and

rates of water mass renewal will contribute significantly to future ocean deoxygenation,

particularly in the North Atlantic and Southern Ocean (Plattner et al., 2001; Frölicher et

al., 2009). For example, Plattner et al. (2001) simulate decreases in North Atlantic Deep

Water (NADW) formation of 40–60 % associated with considerable (> 100µmol kg−1)

[O2] depletion of the intermediate and deep North Atlantic by the end of the century.
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Similarly, Frölicher et al. (2009) found decreases in Atlantic Meridional Overturning

Circulation (AMOC) of 27 % by 2100 under a SRES A2 emissions scenario, attributing

[O2] decreases of ∼ 30µmol kg−1 in deep (> 2000 m) water masses of the North Atlantic

to coeval increases in ventilation age and OUR. However, as noted by Bopp et al. (2013)

in their analysis of 10 CMIP5 ESMs, projected deoxygenation and warming trends in

North Atlantic water masses vary considerably between models due to considerable dif-

ferences in simulated AMOC weakening (Cheng et al., 2013). For instance, Bopp et

al. (2002) report much smaller reductions in NADW and Antarctic Bottom Water (AABW)

formation (10 % and 13 %, respectively, for 2100) which yield more muted [O2] decreases

(15–20µmol kg−1) at high latitudes when compared to other physical models in which

overturning responds strongly to imposed climate forcing (e.g. Plattner et al., 2001; Matear

and Hirst, 2003).

The Southern Ocean (south of 60◦S) is also predicted to experience considerable

subsurface deoxygenation in response to future reductions in high-latitude convection and

ventilation processes. Projected [O2] decreases at intermediate depths (∼ 200–400 m)

range from 50–70µmol kg−1 for model simulations integrated to 2100 (Matear et al., 2000;

Matear and Hirst, 2003; Frölicher et al., 2009). However, major uncertainties remain

regarding the impact of climate change on ocean ventilation processes (particularly as to

the roles of stratification and wind forcing [e.g., Le Quéré et al., 2007; Böning et al., 2008])

such that model projections of large magnitude mid- to high-latitude deoxygenation remain

tentative.

Uncertainties are even larger regarding the impact of climate change on [O2] within the

tropical oceans. Central to this uncertainty is the inability of current ESMs to reproduce

observed (climatological) volumes of observed hypoxic and suboxic water (Cocco et al.,

2013; Bopp et al., 2013; Fig. 1.8B) and the recent vertical expansion and intensification

of eastern tropical OMZs (e.g. Stramma et al., 2012a; Sect. 1.3.1). Particularly, models

generally simulate anomalously large suboxic volumes at low latitudes (Cocco et al., 2013;

Duteil and Oschlies, 2011) along with historical [O2] increases in the tropical thermocline,

counter to observed deoxygenation (Stramma et al., 2012a). These model uncertainties are

also evident in future projections of hypoxia (defined in their study as < 50µmol kg−1)

provided by CMIP5 ESMs, which variously simulate both increases and decreases in
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hypoxic volume by 2100 under RCP8.5 (Bopp et al., 2013). Cocco et al. (2013) find

more model-model agreement for simulated changes in suboxia (< 5µmol kg−1), however

the majority of ESMs project a contraction in suboxic volume (up to −10 %) between

the 1870s and 2090s following a SRES A2 emissions pathway. These projections are

contrary to recent quasi-continuous time series measurements, which indicate an expansion

of low-O2 waters in the tropical oceans over the last 50 years (Stramma et al., 2008;

Sect. 1.3.1).

Over oxygenation of the tropical thermocline in hindcast and prognostic model simula-

tions has been attributed to a range of physical and biogeochemical model deficiencies. A

widely posited driver for poor performance in coarse resolution ocean-climate models is

the absence of mesoscale eddies and tropical zonal currents which exert a major control

on ventilation processes within the eastern tropical OMZs (Brandt et al., 2010; Keeling

et al., 2010). Duteil et al. (2014) address this point using 2 configurations of the NEMO

physical ocean model with differing horizontal resolutions, and find that representation

of the eastern tropical Atlantic OMZ improves significantly when using a high resolution

(eddying) physical model, owing to a more intense equatorial current system supplying

oxygen into the OMZ. Other physical processes have also been shown to be important

in controlling tropical [O2] dynamics and the propagation of low-O2 waters, particularly

model parameterisation of isopycnal (Gnanadesikan et al., 2012) and diapycnal (Duteil and

Oschlies, 2011) mixing, and the impact of upper ocean stratification on ventilation ages in

the tropical thermocline (Gnanadesikan et al., 2007).

A number of poorly constrained ocean carbon cycle feedbacks not included in most

ESMs could also impact upon model representation of tropical [O2]. For example, EMIC

experiments which include a pCO2-sensitive C:N drawdown ratio in primary production, as

suggested by some mesocosm experiments (Riebesell et al., 2007), project future increases

of up to 50 % in the volume of the suboxic waters by 2100 associated with enhanced

remineralisation of POC (Oschlies et al., 2008; Tagliabue et al., 2011). Additionally,

Hofmann and Schellnhuber (2009) suggest, using targeted ocean carbon cycle model

experiments, that future hypoxic extent could be amplified by changes in the POC - CaCO3

export ratio in response to rising pCO2. Ocean acidification under simulated high-CO2

conditions reduces biogenic calcification and the rain rate of CaCO3 from the surface
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ocean, weakening the effect of CaCO3 mineral ballasting on POC export fluxes. As a result,

POC is remineralised at shallower depths (200 – 800 m) as mineral ballast fluxes weaken,

exacerbating the projected expansion of established shallow hypoxic waters (Hofmann

and Schellnhuber, 2009). These studies suggest that the interactive effects of climate

change and ocean acidification on the biological pump could be significant in driving future

propagation of low-O2 and OMZ waters.

Overall, there is significant qualitative agreement between prognostic ocean-climate

models that future anthropogenic warming will exacerbate observed [O2] decreases, how-

ever regional heterogeneities and differences in the magnitude of projected [O2] change

are evident. Inconsistencies between model platforms can be attributed to differences in

parameterisation of key processes which control oceanic oxygen, and uncertainties as to

the response of ocean biogeochemistry and circulation to future climate change. However,

most models agree that future ocean deoxygenation will be driven chiefly by changes in

ventilation of the ocean interior in response to enhanced stratification, with pronounced

[O2] depletion projected for subsurface waters of the North Pacific, North Atlantic and

Southern Ocean by the end of the century. EMICs integrated over longer (millennial)

timescales also suggest that on-going anthropogenic ocean warming amplified by positive

feedbacks within the Earth System could yield severe, long-term ocean deoxygenation,

with global mean [O2] decreases of up to 56µmol kg−1 below pre-industrial levels in ide-

alised experiments using an A2 emissions scenario and high climate sensitivity (Shaffer et

al., 2009). However, as noted by Keeling et al. (2010), a necessary prerequisite for credible

projections are models that can adequately reproduce observed trends and variability in

oceanic oxygen.

1.5 Thesis structure

1.5.1 Objectives

The overarching aim of this research is to investigate the detectability of secular changes

in [O2] relative to natural variability at regional and global scales, using both statistical

methods and targeted model experiments. Particularly, this work aims to advance the

current understanding of the role of external factors in driving observed changes in oceanic
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oxygen by synthesising observations and output from a range of ocean biogeochemistry

models.

Specific objectives are to:

1. Evaluate the performance of recent ESM simulations in reproducing observed histor-

ical changes and variability in oceanic oxygen

2. Quantify the detectability of observed changes in open ocean [O2] at global and

ocean basin scales relative to natural internal variability

3. Investigate the impact of imposed atmospheric forcing on the spatiotemporal distribu-

tion of oceanic oxygen over the last ∼ 50 years in a hindcast ocean biogeochemistry

model

4. Investigate the impact of biogeochemical parameterisations of ocean carbon cycle

feedbacks on the spatiotemporal distribution of oceanic oxygen in a hindcast ocean

biogeochemistry model

5. Examine fingerprints of secular ocean deoxygenation in the coastal ocean, with a

focus on summer stratified shelf sea regimes

1.5.2 Chapter outine

In order to achieve the objectives outlined in Section 1.5.1 this thesis is arranged as follows.

Chapter 2 describes the application of optimal fingerprinting methods (Sect. 1.1.3) in order

to determine the contribution of external forcing and natural internal variability to observed

changes in oceanic oxygen at global and ocean basin scales. This study makes use of a

suite of recently available historical and unforced ESM experiments (CMIP5 [Taylor et

al., 2012]) along with a multi-decadal global [O2] dataset (Helm et al., 2011) in order to

quantify, for the first time, the detectability of secular changes in oceanic oxygen using

formal detection and attribution techniques. Optimal fingerprinting methods also provide

an effective and rigorous strategy for evaluating ocean-climate model simulations against

observations (cf. Hegerl and Zwiers, 2011), such that this study also implicitly provides an

assessment of ESM performance with respect to historical changes and variability in ocean

[O2]. Chapter 2 is presented as published in Biogeosciences (Andrews et al., 2013).
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Chapter 3 presents an analysis of ocean-only hindcasts conducted as part of this thesis

using a forced global ocean biogeochemistry model (PlankTOM10-NEMO3.1; Le Quéré et

al., 2014a; Enright et al., 2014). The simulated spatiotemporal distribution of passive tracers

in ocean-only models has been shown to be sensitive to imposed atmospheric forcing, as

demonstrated in modelling studies which investigate trends and variability in the ocean

carbon cycle (e.g. Le Quéré et al., 2010; Ishi et al., 2014; Swart et al., 2014). As a result, a

series of model experiments are initialised in this study using different atmospheric forcing

products in order to investigate the sensitivity of “exogenous” variability and historical

changes in oceanic oxygen over the last ∼ 50 years to the meteorological data provided

to calculate turbulent fluxes of heat, freshwater and momentum in hindcast models (cf.

Brodeau et al., 2010; Large and Yeager, 2004). The impact of ocean carbon cycle and

acidification feedbacks on the historical distribution of [O2] in ocean biogeochemistry

models also remains poorly understood (cf. Stramma et al., 2012a; Keeling et al., 2010).

To address this uncertainty, a number of hindcast model experiments are initialised which

include newly developed biogeochemical parameterisations accounting for the interactive

(cf. Matear and Lenton, 2014) effects of ocean acidification on mineral ballasting (e.g.

Heinze, 2004; Hofmann and Schellnhuber, 2009; Armstrong et al., 2002) and C:N ratios

in primary production (e.g. Oschlies et al., 2008; Tagliabue et al., 2011; Stramma et al.,

2012a).

In Chapter 4, a synthesis of observed and model simulated historical [O2] changes

within the shelf and coastal ocean is carried out, focusing on the summer stratified Greater

North Sea, part of the NW European continental shelf regime. This work makes use

of a recent hindcast experiment carried out with a state-of-the-art regional ecosystem

model configured for the North Sea domain (GETM-ERSEM; van Leeuwen et al., 2013)

along with a recent compilation of historical North Sea [O2], temperature and salinity data

(Queste et al., 2012) in order to quantify the signal of secular changes in ocean properties

relative to internal climate noise. Chapter 4 is presented as a “scoping report” which has

contributed to a collaborative research project between the Tyndall Centre for Climate

Change Research and the Centre for Environment, Fisheries and Aquaculture Science

(CEFAS): Fingerprints of Ocean Deoxygenation in the North Sea (FODINS).

Finally, Chapter 5 provides a précis of key results along with limitations and possible
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ways to extend this work in the future. Perspectives are also provided on the implications

of the research, focusing on the notion of optimal metrics for detecting climate change in

the ocean and the role of model skill in informing policy-relevant detection and attribution

results.
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2.1 Abstract

Ocean deoxygenation has been observed in all major ocean basins over the past 50 yr.

Although this signal is largely consistent with oxygen changes expected from anthropogenic

climate change, the contribution of external forcing to recent deoxygenation trends relative

to natural internal variability is yet to be established. Here we conduct a formal optimal

fingerprinting analysis to investigate if external forcing has had a detectable influence on

observed dissolved oxygen concentration ([O2]) changes between ∼ 1970 and ∼ 1992

using simulations from two Earth System Models (MPI-ESM-LR and HadGEM2-ES). We

detect a response to external forcing at a 90 % confidence level and find that observed

[O2] changes are inconsistent with internal variability as simulated by models. This

result is robust in the global ocean for depth-averaged (1-D) zonal mean patterns of [O2]

change in both models. Further analysis with the MPI-ESM-LR model shows similar

positive detection results for depth-resolved (2-D) zonal mean [O2] changes globally

and for the Pacific Ocean individually. Observed oxygen changes in the Atlantic Ocean

are indistinguishable from natural internal variability. Simulations from both models

consistently underestimate the amplitude of historical [O2] changes in response to external

forcing, suggesting that model projections for future ocean deoxygenation may also be

underestimated.
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2.2 Introduction

The oceanic oxygen inventory is coupled to the climate system via a number of physical

and biogeochemical processes making oxygen a useful tracer for detecting changes in the

state of the earth system (Joos et al., 2003; Brennan et al., 2008). In particular, changes in

temperature, ocean circulation, biological production and respiration, expected in response

to global climate change, all exert a major control on dissolved oxygen concentration

([O2]). Open ocean deoxygenation has been recorded in nearly all ocean basins during

the second half of the 20th century (Helm et al., 2011) with more acute [O2] decreases

in the coastal ocean (Gilbert et al., 2010). Oxygen time series measurements also show

historical expansion and intensification of established oxygen minimum zones (OMZs)

in the eastern tropical Atlantic and equatorial Pacific since 1960 (Stramma et al., 2008)

along with long-term [O2] decreases in the subarctic North Pacific between 1956 and 2006

(Whitney et al., 2007).

Historical deoxygenation has been associated with global climate change, chiefly due

to enhanced ocean stratification in a warming climate which increases the ventilation age of

downwelling water masses, and augmented by the reduced solubility of dissolved oxygen

at higher temperatures (Keeling et al., 2010). These findings are supported by prognostic

simulations from a suite of Atmosphere-Ocean General Circulation Models (AOGCMs),

which show ventilation-driven reductions in global mean [O2] between 3 and 12 µmol kg−1

by 2100 (Sarmiento et al., 1998; Bopp et al., 2002; Matear and Hirst, 2003; Frölicher

et al., 2009). Global [O2] decreases have also been simulated over longer timescales in

response to protracted ocean warming. For example, model simulations using Intermediate

Complexity Earth System Models (EMICs) produce a tripling in the volume of suboxic

([O2] < 5 µmol kg−1) waters by 2500 (Schmittner et al., 2008). Ocean deoxygenation

and expansion of the OMZs has also been projected to persist on millennial timescales for

EMIC simulations with high greenhouse gas emissions or high climate sensitivity (Shaffer

et al., 2009).

All global models simulate that the most significant [O2] decreases occur at mid- to

high latitudes, consistent with observations and caused by decreasing ventilation of the

oceanic interior in response to enhanced upper ocean stratification. However, models

generally do not reproduce the deoxygenation observed at low latitudes, which leads to
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considerable uncertainties for future projections. The predictive skill of coarse resolution

ocean models at low latitudes is limited by the need to resolve zonal currents thought to

be important in supplying oxygen into the tropical OMZs (Keeling et al., 2010; Brandt

et al., 2010; Stramma et al., 2010). Climate change integrations of coupled AOGCMs

often simulate [O2] increases in the tropical thermocline associated with reductions in

the volume of O2-depleted waters at low latitudes, contrary to recent trends (Matear

and Hirst, 2003; Gnanadesikan et al., 2012). Gnanadesikan et al. (2007) propose that

this oxygenation is driven by reduced exchange between poorly ventilated deep water

and the tropical thermocline in a more stratified ocean. However, this process has been

posited to be a numerical artifact tied to unrealistically high rates of diapycnal mixing

in coarse resolution ocean models (Keeling et al., 2010). A recent sensitivity study

by Duteil and Oschlies (2011) confirms the importance of vertical diffusivity and its

parameterisation on the evolution of suboxic areas in global models. Simulated oxygenation

of suboxic zones has also been attributed to an elevated supply of oxygen from isopycnal

diffusion in one study using the GFDL ESM2.1 (Gnanadesikan et al., 2012). Up to now,

biogeochemical models can reproduce observed low-latitude deoxygenation and expansion

of hypoxic and suboxic waters in the tropical OMZs only when they take into account

poorly constrained pCO2-driven changes to the C:N ratio in primary production (Oschlies

et al., 2008; Tagliabue et al., 2011) or the alteration to CaCO3 mineral ballasting in response

to ocean acidification (Hofmann and Schellnhuber, 2009).

The implications of a climate change signal in [O2] changes are profound, owing to

the deleterious impact of reduced oxygen concentrations and expanding hypoxic zones

on marine ecosystems and fisheries (e.g., Doney et al., 2012; Stramma et al., 2012b), and

the sensitivity of biolimiting marine nutrient cycles such as nitrogen and phosphorous

to oceanic redox conditions (Keeling et al., 2010). However, attribution of secular [O2]

changes to global climate change is confounded by natural interannual to decadal variability

driven by the leading climate modes which act to mask any climate-driven signal (e.g.,

the North Atlantic Oscillation, Frölicher et al., 2009). To this end, modelling studies

have demonstrated that internal variability associated with the major climate modes in the

North Pacific drive propagating O2 anomalies that are large enough to frequently preclude

unequivocal detection of anthropogenic trends in dissolved oxygen on decadal timescales
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and regional scales (Deutsch et al., 2006; Ito and Deutsch, 2010). However, Deutsch et

al. (2005, 2006) highlight that in the North Pacific strong historical [O2] decreases within

the lower ventilated thermocline are reproduced by models and are likely to be driven by

long-term changes in ocean ventilation and circulation, but a formal detection study is

required to separate external causes from internal variability.

We use an optimal fingerprinting methodology to objectively quantify the detectabil-

ity of externally forced changes in oceanic [O2] relative to natural internal periodicity.

Numerous detection studies have been conducted investigating the impact of external

forcing on oceanic variables such as ocean temperature (e.g., Barnett et al., 2005; Pierce

et al., 2006; Gleckler et al., 2012) and salinity (Stott et al., 2008; Terray et al., 2012), but

these techniques have not yet been used for biogeochemical tracers like oxygen. [O2]

changes, therefore, provide a novel means for detecting and attributing anthropogenic

climate change in the oceans and for the evaluation of model performance (Hegerl et al.,

2006). As such, this study aims to conduct a formal optimal fingerprinting analysis to

investigate the “signal in noise” problem of historical changes in oceanic oxygen using

[O2] data and simulations from two Earth System Models (ESMs) participating in Phase 5

of the Coupled Model Intercomparison Project (CMIP5).

2.3 Methods

2.3.1 Observations and CMIP5 models

We use a recent collation of global World Ocean Circulation Experiment (WOCE) O2 data

compared with earlier ocean oxygen profiles (Helm et al., 2011) to investigate the cause of

the observed historical changes in global marine oxygen distribution. This compilation

maps all historical [O2] data (1940–1988; mean year ∼ 1970) onto the locations of WOCE

profiles to facilitate comparison with WOCE measurements (∼ 1989–2000; mean year

∼ 1992) using an optimal-interpolation technique that adapts the length scales to suit the

density and distribution of oxygen data (Helm et al., 2010). The [O2] data is binned into

regular 1◦× 1◦ grid cells with 101 fixed pressure levels, excluding shallow (< 1000 m)

profiles and observations above 100 m where seasonal variability dominates the oxygen

signal (Garcia et al., 2005). Noise variance calculated using the difference between
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neighbouring data points is used to provide an a priori estimate of natural variability in

[O2] data (Helm et al., 2010, 2011; Bindoff and Wunsch, 1992). This technique accounts

for mesoscale processes and to some extent longer period internal variability such as the

dominant climate modes.

This dataset is used in an optimal detection analysis along with the biogeochemical

output from two state-of-the-art ESMs (MPI-ESM-LR and HadGEM2-ES) participating in

the CMIP5 experiments (Taylor et al., 2009, 2012). [O2] fields from MPI-ESM-LR and

HadGEM2-ES have been selected here because they display a higher level of realism in

simulating both climatological [O2] distribution and historical oxygen changes compared

to the other available CMIP5 ESMs. Sufficient qualitative agreement between modelled

and observed [O2] distribution allows for direct quantitative comparison using an optimal

fingerprinting algorithm without any requirement for a prior transformation of the model’s

variables (e.g., Banks and Bindoff, 2003).

The Max Plank Institute for Meteorology Earth System Model used here (MPI-

ESM-LR; Giorgetta et al., 2012) is a low resolution model version that includes the

ECHAM6 atmospheric GCM with T63 horizontal resolution (1.875◦) and 47 vertical

layers (Stevens et al., 2013; developed from ECHAM5 (Roeckner et al., 2006) with modifi-

cations in the shortwave radiative transfer and representation of the middle atmosphere).

It is coupled to the MPIOM physical ocean model (Jungclaus et al., 2013; Marsland

et al., 2003) which includes a thermodynamic-dynamic sea ice component (Notz et al.,

2013) and ocean biogeochemistry model (HAMOCC5; Ilyina et al., 2013; Maier-Reimer,

1993; Maier-Reimer et al., 2005) implemented on a curvilinear bipolar orthogonal grid

with a nominal horizontal resolution of 1.5◦ and 40 z-levels which increase in thickness

with depth. The HAMOCC5 ocean biogeochemistry component includes an extended

Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) type ecosystem model (Six and

Maier-Reimer, 1996) along with over 30 prognostic variables in the water column and

the upper sediments including co-limiting nutrients nitrate, phosphate and iron, as well as

DIC and oxygen. The ocean and atmosphere components are coupled daily without flux

corrections.

The Hadley Centre Global Environment Model Version 2 Earth System Model (HadGEM2-

ES, Collins et al., 2011; HadGEM2 Development Team, 2011) is also a coupled AOGCM
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and has an atmospheric resolution of N96 (1.875◦× 1.25◦) with 38 vertical levels. The

ocean model has a 1◦× 1◦ horizontal resolution (increasing smoothly to 1/3◦ at the equa-

tor) with 40 unevenly spaced depth levels. The ocean biogeochemistry component of this

model is Diat-HadOCC, which is an NPZD model with two phytoplankton functional

types (developed from the HadOCC model; Palmer and Totterdell, 2001), and includes the

nutrient cycles of nitrogen, silica and iron along with prognostic tracers such as dissolved

oxygen.

We use output from the ∼ 1000 yr control (piControl) experiments of MPI-ESM-LR

and HadGEM2-ES, which prescribe non-evolving pre-industrial forcings, and an ensemble

of historical experiments for the period ∼ 1850 to 2005 (Table 2.1). The piControl runs

were initialised from a pre-industrial spin-up to pseudo-equilibrium. Boundary conditions

for the historical experiments are prescribed from observations as an evolving record

of climate forcing factors. These include external forcings from: historical greenhouse

gas concentrations, tropospheric and stratospheric ozone changes, surface emissions of

tropospheric aerosols and land use changes as well as the natural forcings from changes in

solar irradiance and volcanic aerosols. Each member of the model ensemble is initialised

from a different point in the control simulation in order to create a spectrum of equally

plausible historical simulations each starting at a different phase of internal variability. The

MPI-ESM-LR and HadGEM2-ES CMIP5 experimental design and spin-up are described

in Mauritsen et al. (2012) and Jones et al. (2011), respectively. A persistent climate drift

in HadGEM2-ES oxygen fields has been isolated from a 20 yr low-pass filtered version

of the control run and subtracted at each grid point of the historical [O2] data using the

corresponding segment of the piControl integration. Since residual drift can also bias noise

estimates required for the optimal fingerprinting procedure (as estimated from long control

experiments) an equivalent point-by-point drift is also removed from the HadGEM2-ES

piControl integration. In this case removal of a linear trend diagnosed from a low pass filter

provides an adequate representation of climate drift behaviour, as distinct from natural

internal periodicity.
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Model Experiment (name) Forcing Ensemble Control
size (n) length

(years)

MPI-ESM-LR Historical (r1:ni1p1) ALL 3
piControl (r1i1p1) 1 1000

HadGEM2-ES Historical (r1:ni1p1) ALL 4
piControl (r1i1p1) 1 965∗

Table 2.1: Summary of CMIP5 model output used in the optimal detection, comprising MPI-
ESM-LR and HadGEM2-ES historical and piControl integrations. ALL = natural + anthropogenic
external forcing. * control length after drift removal.

2.3.2 Optimal fingerprinting method

We test the null hypothesis that historical changes in [O2] are indistinguishable from natural

internal variability (β = 0) using an optimal detection algorithm (Hasselmann, 1997; Allen

and Tett, 1999). This statistical technique is widely used in the detection and attribution of

climate change (e.g., IDAG, 2005; Hegerl et al., 2010) and also provides a powerful test

of ESM performance which includes the effect of natural internal variability. We use this

technique to regress model simulated patterns of [O2] change (xi) against corresponding

observed patterns (y) using a Total Least Squares (TLS) method (Allen and Stott, 2003)

which estimates the scaling factors (βi) required to match simulated and observed changes

following Eq. (2.1):

y =

1∑
i=1

βi(xi − vi) + v0 (2.1)

where in the single signal case, for the i-th forcing, vi is the error in the model response

xi and v0 is the climate noise in the observations. If the confidence interval that contains

β exceeds zero a signal is detected in response to an imposed forcing i. If this scaling

factor is consistent with one the simulated and observed responses are said to be similar

in magnitude. In this study, the simulation consists of the ESM, all of its parameters and

all of the temporal and spatial variations of the external forcing i transformed through the

physical and chemical processes represented in the model. Thus, a value of β consistent

with one demonstrates that forcing i and the theory are consistent with the observations, and

a β estimate which is significantly greater than 0 demonstrates that the null hypothesis of no

contribution from forcing i can be rejected. TLS is likely to yield a more robust β estimate

than an Ordinary Least Squares (OLS) approach because it also includes a signal error
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term (vi) arising from averaging across a finite model ensemble to obtain the simulated

response pattern. Signal error (vi) is inversely proportional to the model ensemble size (n)

and can negatively bias scaling factors (Allen and Tett, 1999), particularly for variables

where the forced response is small relative to internal variability. Thus, TLS is widely used

in optimal detection studies as a more conservative approach which explicitly accounts

for the effect of noise in simulated response patterns relative to that which is found in the

observations (e.g., Stott et al., 2003a; Stott et al., 2008; Terray et al., 2012).

We focus our single fingerprint analysis on the “all forcings” historical scenario of

MPI-ESM-LR and HadGEM2-ES, with model output being bi-linearly interpolated onto

a 1◦× 1◦ grid and masked to emulate the pattern of missing values found in the obser-

vations of Helm et al. (2011) (Fig. 2.1). [O2] changes between ∼ 1970 and ∼ 1992 are

then calculated for these experiments and provided as model response patterns (xHIST) in

the TLS regression against corresponding observed [O2] changes (y) in order to estimate

scaling factors (β). The instrumental record of dissolved O2 measurements is not suffi-

ciently long to get a reliable approximation of internal climate variability (v0), and also

includes perturbations driven by external forcing. In order to characterise unforced climate

variability in [O2] on a global scale, we estimate v0 by sampling non-overlapping 22 yr

slabs of [O2] fields taken from the long (∼ 1000 yr) control integrations of MPI-ESM-LR

and HadGEM2-ES. The non-overlapping model [O2] fields are also masked and re-gridded

as “pseudo-observations”. Subsampled model piControl output is then used to (1) estimate

internal variability in [O2] data and (2) place 5–95 % uncertainty limits on calculated

scaling factors.

The TLS regression is carried out in a reduced dimension space where model and

observed data are projected onto k leading Empirical Orthogonal Functions (EOFs) of

simulated internal variability. Signal-to-noise ratios are optimised in a standard way via

normalisation of observations and model response patterns by internal climate variability

(e.g., IDAG, 2005), a transformation which down-weights patterns of [O2] change with

high internal variability and vice versa. Dimensionality of the detection space in this

study is further reduced by averaging across multiple ensemble members in each historical

CMIP5 experiment (see Table 2.1), and by calculating zonal means for observed and

modelled [O2] changes. The analysis of Helm et al. (2011) shows pronounced global
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[O2] decreases between ∼ 1970 and ∼ 1992 in all ocean basins, accommodating a zonally

averaged spatial domain. This removes small-scale variability in [O2] and allows the

detection analysis to focus on global and basin-scale patterns of oxygen change. Gridded

dissolved oxygen data are also smoothed vertically and horizontally. Modelled [O2]

changes are calculated as temporal averages of annual data between 1960–1980 and 1990–

2000 in order to be consistent with the historical spread of observations, with sensitivity

tests demonstrating simulated [O2] changes to be relatively invariant across a range of

small changes in averaging period.

We prepare model fingerprints and observations for the optimal detection analysis

using two different zonal averaging schemes: (1) 1-D analysis: zonal mean of depth-

averaged [O2] changes between 100 and 3000 m; (2) 2-D analysis: zonal mean [O2]

changes explicitly resolve depth (between 100–3000 m) globally and separately for the

Atlantic and Pacific basins. Both MPI-ESM-LR and HadGEM2-ES models are used in the

1-D analysis. The MPI-ESM-LR model only is used to extend the work and provide a more

detailed 2-D analysis. For the 2-D optimal detection, masked MPI-ESM-LR output and

observations are remapped onto a ∼ 5◦ latitude by ∼ 10◦ longitude grid with 40 unevenly

spaced z-levels to mediate the effects of internal noise on the signal whilst still retaining the

depth structure of meridional [O2] change between ∼ 1970 and ∼ 1992. The use of several

models and several spatial averaging schemes provides multiple model fingerprints that

are used to quantify possible errors in model response patterns (“structural uncertainty”)

driven by inadequate representation of physical and biogeochemical process in ESMs (e.g.,

Hegerl and Zwiers, 2011).

In order to avoid spurious detection it is a necessary prerequisite that the internal

variability estimated from control simulations (v0) provides a realistic estimate of observed

climate noise in [O2]. As such, the number of EOFs retained in the optimal detection

analysis is guided by checking the fidelity of model simulated internal variability against

the residual observed variance at k truncations using a standard residual consistency F test

(Allen and Tett, 1999). This check is used to test the null hypothesis that internal variability

as simulated by models is consistent with observed variability on the scales retained in

the analysis. Failure of the residual consistency test could also indicate that the timing

or pattern of ESM response is incorrect. We choose to truncate the 1-D MPI-ESM-LR



2.3 Methods 45

analysis at 40 EOFs (k = 40) since this is the first truncation for which the residual test

passes the consistency check, reducing the likelihood of keeping poorly sampled higher

order EOFs in the optimal detection. Fewer truncations (k = 31) are needed to pass the

residual consistency check in the 1-D HadGEM2-ES analysis, however, scaling factors

are not substantially different at higher k values (see Sect. 2.4.2). The 2-D analysis both

globally and between ocean basins required the maximum number of EOFs (k = 49) to be

retained in the regression to pass the residual consistency check (apart from for the Atlantic

basin where the F test p value falls marginally outside the 5–95 % range). A higher number

of retained EOFs is consistent with the greater amount of information needed to describe

spatial patterns of both depth and latitude variations, with more modes being necessary to

explain variability in the depth-resolved signal.

In addition to the residual consistency test, we assess the reliability of model simu-

lated climate variability by comparing piControl output with detrended subsurface [O2]

measurements from two long-term time series: Ocean Station Papa (1956–2007, Whitney

et al., 2007) and the Oyashio Current region (1968–1998, Ono et al., 2001). Observed

decadal standard deviations calculated for both time series fall within the 10–90 % ranges

of MPI-ESM-LR control simulation estimates, demonstrating that this model provides

a robust estimate of internal variability in [O2] on decadal timescales (Table 2.2). The

HadGEM2-ES control simulation significantly underestimates decadal variability in [O2]

when compared to time series data and is, thus, less reliable than simulations from MPI-

ESM-LR in the context of our analysis.

Observations MPI-ESM-LR HadGEM2-ES

Ocean Station Papa 11.1 9.1 (6.2–12.0) 5.3 (3.9–6.7)
Oyashio Current region 8.1 9.9 (4.9–15.1) 1.4 (0.4–2.4)

Table 2.2: Comparison of decadal standard deviations of [O2] (µmol kg−1) between observations
and CMIP5 piControl experiments at Ocean Station Papa in the Eastern North Pacific (50◦ N,
145◦ W, σ = 26.9, ∼ 250–350 m) and the Oyashio Current region in the Western North Pacific (39–
42◦ N, 143–145◦ E, σ = 26.9,∼ 400–450 m). piControl output from MPI-ESM-LR and HadGEM2-
ES is sampled to calculate multiple estimates of decadal standard deviations for each time series.
The mean and (10th–90th) percentile ranges of piControl estimates are shown. Observations are
detrended using a linear fit to extract variability. Drift has been removed from the control integration
of HadGEM2-ES as described in Sect. 2.3.1
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2.4 Results

2.4.1 Model-data comparison

We evaluate model performance by comparing simulated and observed zonally averaged

[O2] distributions for the ∼ 1992 time period. Historical integrations of MPI-ESM-LR and

HadGEM2-ES are able to capture the general latitude-depth pattern of [O2] distribution

present in the observations (Fig. 2.2). The [O2] minimum between 20◦ S and 20◦ N is

reproduced at mid-depths by both models, with increasing [O2] towards higher latitudes

in both hemispheres. However, HadGEM2-ES simulates higher than observed oxygen

concentrations in the [O2] minimum. MPI-ESM-LR overestimates the spatial extent of

low-latitude [O2] minimum waters and produces erroneously high [O2] south of 60◦ S.

Ilyina et al. (2013) present a detailed comparison between biogeochemical tracers in MPI-

ESM-LR CMIP5 historical simulations and observations using a range of statistical metrics

to assess model capability.

A marked meridional structure also exists in observed depth-averaged zonal mean [O2]

changes, with deoxygenation increasing with latitude poleward of 40◦ (up to 12µmol kg−1)

in both hemispheres (Fig. 2.3). Pronounced deoxygenation in the mid- to high-latitude

ocean is opposed by no change or a small zonal mean [O2] increase of ∼ 1–2µmol kg−1

between 20◦ S and 20◦ N. Both MPI-ESM-LR and HadGEM2-ES historical integrations

show predominant global decreases in [O2] at high latitudes consistent with but smaller

(< 5µmol kg−1) than the observations, with no net oxygen change at low latitudes. Ob-

served and modelled global mean [O2] decreases both reach their maxima at ∼ 60◦ N.

In some regions MPI-ESM-LR and HadGEM2-ES historical experiments show a much

reduced or inverse [O2] change signal, particularly in areas of the Southern Ocean (65◦ S)

and at ∼ 50◦ N where significant observed zonal mean [O2] decreases (3–6µmol kg−1)

contrast with small oxygen increases in both models.

The consistency between models and observations is further examined in zonal mean

sections as a function of depth (Fig. 2.4). [O2] data show acute deoxygenation of the

ventilated thermocline (100–1000 m depth) at all latitudes, with large oxygen decreases

(> 10µmol kg−1) extending throughout the water column poleward of 40◦ in both hemi-

spheres (Fig. 2.4a). These regions of deoxygenation are countered by areas of increasing

[O2] (5–10µmol kg−1) located between 30◦ S and 30◦ N below 1000 m depth and within
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Figure 2.2: Zonal mean [O2] distribution (µmol kg−1) for ∼ 1992 as a function of latitude and
depth from (A) observations (Helm et al., 2011), and historical integrations of (B) MPI-ESM-LR
and (C) HadGEM2-ES.
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Figure 2.3: Zonal mean change (∼ 1992 minus ∼ 1970) in [O2] (µmol kg−1) as a function of
latitude averaged between 100–3000 m depth for observations (black; Helm et al., 2011), and
HadGEM2-ES (green) and MPI-ESM-LR (red) historical integrations. Error bars in observed [O2]
are given at the 95 % confidence level and are associated with instrumental uncertainty, un-resolved
ocean processes and methodological uncertainty in forming the zonal averages (derived from an a
priori estimate of noise using the method of Bindoff and Wunsch, 1992).

the shallow subtropical gyres (15–30◦). Both models generally reproduce the key zonal

mean features of observed [O2] change, simulating [O2] decreases at high latitudes and

within the thermocline, with an area of increasing [O2] beneath ∼ 1500 m depth at mid-

to low latitudes. In agreement with data, MPI-ESM-LR simulates strong [O2] depletion

extending throughout the water column north of 40◦ N and shows a distinct region of

increased [O2] beneath ∼ 1500 m between 30◦ S and 30◦ N (Fig. 2.4b). MPI-ESM-LR also

displays significant deoxygenation between 40◦ S and 60◦ S, but this is opposed by a limb

of [O2] increase within the interior of the Southern Ocean (a feature which is entrained

into the depth-averaged trend of Fig. 2.3). HadGEM2-ES exhibits deoxygenation in the

upper ocean at mid- to high latitudes in both hemispheres, with [O2] depletion extending

down to ∼ 3000 m depth south of 65◦ S and at ∼ 60◦ N (Fig. 2.4c). Near ubiquitous [O2]

decreases are also simulated in the ventilated thermocline, apart from within the subtropi-

cal gyres (15–30◦) where HadGEM2-ES reproduces, in part, the observed [O2] increases.

However, the oceanic interior between 60◦ S and 40◦ N becomes increasingly oxygenated

over the modelled analysis period, with an anomalous region of positive [O2] change below
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∼ 1500 m in the polar north and protruding into the upper ocean at ∼ 65◦ S. Both models

fail to emulate the pattern of [O2] loss recorded by observations in the low-latitude OMZs

(< 1000 m), displaying small [O2] increases within the tropical thermocline between 20◦ S

and 20◦ N. This failure of the models to replicate the low-latitude OMZs is discussed in

Sect. 2.2 and is well known. Overall, simulated [O2] changes for both models tend to be

similar but smaller in magnitude than recorded by observations, with MPI-ESM-LR ex-

hibiting generally more skill at reproducing patterns of observed [O2] change as a function

of depth.

On a basin scale (Fig. 2.5) there is a higher level of agreement between modelled

and observed water mass changes over the analysis period in the Pacific compared to the

Atlantic. MPI-ESM-LR reproduces observed deoxygenation of the high-latitude North

Pacific down to ∼ 3000 m depth, and shows a general trend towards decreasing [O2]

levels within the ventilated thermocline. In comparison, the structure of modelled oxygen

changes within the Atlantic Ocean is largely inconsistent with observations. MPI-ESM-LR

simulates extensive deoxygenation (up to 4µmol kg−1) throughout much of the Atlantic

between 1000 and 3000 m depth, and does not resolve major regions of observed [O2]

increase in the interior of the Atlantic between 30◦ S and 30◦ N. In both the Atlantic

and Pacific basins, following the global trend, MPI-ESM-LR does not reproduce the

pronounced deoxygenation signal recorded within the low-latitude OMZs. This model-data

mismatch is most apparent in the thermocline of the tropical Atlantic where MPI-ESM-LR

shows strong [O2] increases of > 5µmol kg−1 in opposition to observed [O2] depletion.

Changes in upper ocean stratification are associated with changes in the ventilation

(and oxygenation) of subsurface water masses. Figure 2.6 shows historical changes in

zonal mean upper ocean density stratification as a function of latitude (between 200 m and

1000 m) from observations and for MPI-ESM-LR and HadGEM2-ES models. Observed

and model derived zonal mean density stratification generally increases at mid- to high

latitudes between ∼ 1970 and ∼ 1992, with decreases in global stratification within the

subtropical and equatorial ocean. However, at high latitudes in the Southern Ocean both

MPI-ESM-LR and HadGEM2-ES underestimate the observed stratification change signal,

with major increases in stratification between 50◦ S and 60◦ S not reproduced by either

model. Analysis of the density structure of these models show that in this region the density
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Figure 2.4: Zonal mean change (∼ 1992 minus ∼ 1970) in [O2] (µmol kg−1) as a function of
latitude and depth from (A) observations (Helm et al., 2011), and historical integrations of (B)
MPI-ESM-LR and (C) HadGEM2-ES.
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Figure 2.5: Observed (left) and simulated (right) patterns provided to the 2-D optimal detection
as zonal mean [O2] changes (µmol kg−1) as a function of latitude and depth for the global ocean
(60◦ S–60◦ N; A), and for the Pacific (B) and Atlantic (C) ocean basins. Masked MPI-ESM-LR
[O2] fields and observations are interpolated onto a ∼ 5◦ latitude by ∼ 10◦ longitude grid with 40
unevenly spaced depth levels and zonally averaged.
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profile is more homogeneous than observed with more vigorous vertical mixing.

2.4.2 Optimal detection analysis

We apply the optimal detection approach outlined in Sect. 2.3.2 to quantitatively investigate

the consistency of modelled and observed changes in [O2], and to assess the detectability

of observed changes in response to external forcing. Figure 2.7 shows observations

and model response patterns provided to the 1-D TLS regression using MPI-ESM-LR

and HadGEM2-ES oxygen fields, plotted against the model-estimated range of internal

variability. The envelope of estimated internal variability in [O2] scales with latitude in both

models such that sub-polar and polar regions where a strong zonal mean deoxygenation

signal is observed coincide with areas of largest internal variability (±2–4µmol kg−1).

Nevertheless, the magnitude of observed zonal mean [O2] change exceeds the spread of

simulated internal variability in the mid- to high-latitude ocean, with a deoxygenation

signal emerging above natural internal variability poleward of 30–40◦ in both hemispheres.

Simulated internal variability is smaller in the HadGEM2-ES piControl experiment such

that observed [O2] decreases become distinct from internal variability across more of the

mid-latitude ocean. Both MPI-ESM-LR and HadGEM2-ES historical integrations simulate

more muted deoxygenation signals compared to the observations which are largely within

the range of internal variability at all latitudes. Structural errors in the pattern of [O2]

change simulated by both models also generally fall within the spread of internal variability.

Observations and model response patterns have also been provided to the TLS regression

from depth-resolved 2-D [O2] changes globally and for the Pacific and Atlantic basins

between 100–3000 m depth (Fig. 2.5).

Scaling factors (β) resulting from the single fingerprint analysis confirm that a sta-

tistically significant change in observed [O2] in response to external forcing is detected

and inconsistent with simulated internal variability at a 90 % confidence level (Fig. 2.8).

Projection of observations onto the simulated “all forcings” response of MPI-ESM-LR

and HadGEM2-ES shows a detectable change in depth-averaged zonal mean [O2] between

∼ 1970 and ∼ 1992, since the best estimates of the scaling factors and their confidence

intervals at the global scale are significantly different from 0. Scaling factors calculated

for the MPI-ESM-LR and HadGEM2-ES 1-D analyses are 2.82 and 3.59, respectively,
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Figure 2.6: Zonal mean change (∼ 1992 minus∼ 1970) in upper ocean stratification as a function of
latitude from observations (black; Helm, 2008), and HadGEM2-ES (green) and MPI-ESM-LR (red)
historical integrations. The Stratification Index is calculated as the vertical density gradient (δρ/δz)
between 200–1000 m depth. Model stratification is estimated by calculating density (kg m−3) from
CMIP5 historical temperature and salinity fields at 200 m and 1000 m depth levels. Positive values
indicate an increase in upper ocean stratification over time. These stratification changes differ from
those presented by Helm et al. (2011) because we exclude surface data (< 100 m) from the Hadley
SST climatology. Error bars for observed stratification changes are given at the 95 % confidence
level as in Fig. 2.3

indicating that the effect of external forcing is detectable and that the models and observa-

tions have significant correlations in the latitudinal pattern of variation. However, since

these β values are greater than one we can infer that the ESM simulated [O2] responses to

external forcing are significantly underestimated and need to be amplified (by a factor of

between ∼ 2 and ∼ 4) to be consistent with observed changes. The residual consistency

test passes for both model experiments indicating no inconsistency between residual ob-

served variance and model simulated internal variability, and suggesting that both ESMs

simulate the externally forced signal adequately to explain observed [O2] changes. For

both MPI-ESM-LR and HadGEM2-ES β estimates for the 1-D analysis are robust across a

range of truncations proximal to the chosen values of k, adding confidence to the presented

optimal detection results (Fig. 2.9).

In agreement with the 1-D result, the 2-D detection analysis using MPI-ESM-LR yields

a best estimate scaling factor of greater than 1 (β = 2.26) for the global ocean, although in



2.4 Results 54

-60 -40 -20 0 20 40 60
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

Latitude (oN)

 D
is

so
lv

ed
 [O

2] 
ch

an
ge

 (μ
m

ol
 k

g-1
)

Observations
HadGEM2-ES historical
Control internal variability

-60 -40 -20 0 20 40 60
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

Latitude (oN)

 D
is

so
lv

ed
 [O

2] 
ch

an
ge

 (μ
m

ol
 k

g-1
)

Observations
MPI-ESM-LR historical
Control internal variability 

B.

A.

Figure 2.7: Observed (black) and simulated (red or green) patterns provided to the 1-D optimal
detection as zonal mean [O2] changes (µmol kg−1) averaged between 100–3000 m depth using
MPI-ESM-LR (A) and HadGEM2-ES (B) historical experiments. The spread of internal variability
(shown by the shaded area) is estimated by sampling model piControl simulations, as described in
Sect. 2.3.2
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this case the 5–95 % uncertainty bounds on this value are consistent with 1. This range of

estimated β values demonstrates that the simulated response of the MPI-ESM-LR model

provides a good fit to observed zonal mean [O2] changes between ∼ 1970 and ∼ 1992

in response to external forcing. A positive detection result (β = 5.30) is also found

for observed [O2] changes in the Pacific Ocean using a 2-D pattern with MPI-ESM-LR.

However, this scaling factor is much larger than 1 indicating poor model-data agreement in

amplitude. In contrast, the null hypothesis that observed changes in marine oxygen are

caused by natural internal variability cannot be rejected for the Atlantic Ocean, where the

5–95 % range of β estimates are indistinguishable from zero, with a best estimate scaling

factor of less than 1 (β = 0.89). The residual consistency test fails for this region only,

suggesting that there are elements of the observed [O2] variability which are not well

captured by the model in the Atlantic Ocean. Overall, an external influence on historical

changes in observed [O2] is detected for the zonally averaged global ocean and Pacific

basin, although the observed response is larger than that simulated by ESMs at all scales.

2.5 Discussion

This study presents, for the first time, an optimal fingerprinting analysis detecting sta-

tistically significant global decreases in observed oceanic [O2] in response to external

forcing, as distinct from internal variability driven by the leading climate modes. The

primary natural external forcing imposed on [O2] is explosive volcanism, a perturbation on

the climate system that is generally limited to the ocean’s upper ∼ 500 m on interannual

timescales (Frölicher et al., 2009). Because the observed and modelled deoxygenation

occurs throughout the water column and on interdecadal timescales, we can infer that

rising greenhouse gas concentration is the main driver of a detectable external forcing

on historical [O2] changes between ∼ 1970 and ∼ 1992. In the 1-D analysis we find the

most detectable [O2] change signal relative to internal variability at mid- to high latitudes

in regions of water mass renewal where the observed subsurface zonal mean oxygen

decreases are largest. Helm et al. (2011) attribute ∼ 85 % of global ocean deoxygenation

in polar regions to elevated upper ocean stratification which increases the ventilation age

of downwelling water parcels allowing for more biological oxygen consumption to occur,

consistent with a range of prognostic modelling studies (Sarmiento et al., 1998; Bopp et al.,
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Figure 2.8: Best estimates and 5–95 % uncertainty ranges of regression coefficients (β) from single
fingerprint optimal detection analysis. Two types of model response pattern are projected onto
dissolved oxygen observations. Left: a 1-D global depth-averaged (100–3000 m) zonal mean [O2]
change using MPI-ESM-LR (k = 40) and HadGEM2-ES (k = 31). Right: a 2-D depth-resolving
zonal mean [O2] change globally and for the Atlantic and Pacific Ocean basins (k = 49) using
MPI-ESM-LR only (* indicates a failed residual consistency test at all EOF truncations).

2002; Matear and Hirst, 2003). We also find significant increases in upper ocean stratifica-

tion between ∼ 1970 and ∼ 1992 at high latitudes for MPI-ESM-LR and HadGEM2-ES

historical integrations concurrent with enhanced subsurface deoxygenation. Moreover,

the inability of either model to reproduce observed increases in zonal mean stratification

in the Southern Ocean could provide a mechanistic explanation for why modelled [O2]

decreases are considerably smaller than observed in this region. Jungclaus et al. (2013) also

show that the ocean model within MPI-ESM-LR overestimates ventilation in the Antarctic

Circumpolar Current system, producing enhanced oxygenation of the oceanic interior in

this region. Large uncertainties are entrained into model estimates of physical circulation

changes owing to incomplete assessments of the competing roles of stratification and wind

forcing (e.g., Le Quéré et al., 2007; Böning et al., 2008; Downes et al., 2011) in controlling

ventilation processes in a warmer world.
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Figure 2.9: Regression coefficients (β) and their 90 % confidence intervals plotted as a function of
EOF truncation (k) for 1-D MPI-ESM-LR (A) and HadGEM2-ES (B) optimal detection analyses.
β estimates are relatively invariant where the residual consistency check passes (at k values shown
in red).
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Although we find a clearly identifiable influence of external forcing on recorded

patterns of [O2] change, best estimates of β for both 1-D and 2-D global analyses are

consistently greater than one suggesting that model responses need to be scaled up to

match the observations. There are a number of potential explanations for this result.

One possibility, endemic to climate sensitive variables that are locally heterogeneous and

difficult to simulate (Masson and Knutti, 2011), is that [O2] data could exhibit too much

small-scale variability to be directly comparable with smoother model fields. This potential

discrepancy could yield observed change signals with artificially inflated amplitudes

relative to model response patterns, although we try to account for this effect by spatially

smoothing the data prior to model evaluation. Detection results are robust across a range

of EOF truncations and temporal averaging schemes with no evidence of under or over

fitting within the TLS regression, such that methodological choices about data processing

are unlikely to have significantly biased scaling factors. Model errors could also contribute

to elevated β values if imposed forcings in CMIP5 historical experiments are too weak or

ESMs are less responsive to external forcing than in reality. Since CMIP5 historical forcings

are prescribed from observations (Taylor et al., 2009, 2012) the former seems unlikely;

however, there is evidence to support the proposition that the current generation of ESMs

systematically underestimate observed variability in [O2]. For example, in good agreement

with our 1-D scaling factors, hindcast simulations initialised globally (Rödenbeck et al.,

2008) and for the North Pacific (Deutsch et al., 2005, 2006) underestimate observed

interannual to decadal variability in ocean oxygen by a factor of between ∼ 2 and ∼ 3.

It has been suggested that coarse resolution models might underestimate variability in

simulated passive tracers since they do not resolve mesoscale ocean dynamics (Hirst et

al., 2000; Jochum et al., 2007). Moreover, coupling frequency between the ocean and

atmosphere (once a day in MPI-ESM-LR and HadGEM2-ES simulations) might also

be insufficient to fully capture climate variability in state-of-the-art ESMs. This could

support the assertion that the response of models to secular climate change may also be

underestimated, since a more naturally variable ocean-climate system will likely be more

sensitive to imposed external forcings (von Storch and Zwiers, 1999; Swanson et al., 2009).

However, the piControl derived estimates of natural internal variability used in this analysis

are shown to be consistent with observed variance using a standard residual consistency
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test and comparison of simulated noise with two observational estimates (Sect. 2.3.2 and

Table 2.2).

Qualitative model-data comparison (Sect. 2.4.1) suggests that regional differences

between modelled and observed patterns of [O2] change could also contribute to the

weaker simulated zonal mean signal. However, consistent with the assumption of the TLS

detection model that “structural uncertainty” has the same structure as internal variability

(e.g., Terray et al., 2012), model errors generally fall within the range of internal variability

(Fig. 2.7). Regional differences probably result from the omission of key biogeochemical

and physical processes that control marine oxygen distribution at a local scale. Particularly,

2-D model response patterns are unable to reproduce a net deoxygenation signal in the

tropical thermocline, consistent with deficiencies in modelling studies (Bopp et al., 2002;

Matear and Hirst, 2003; Stramma et al., 2012a). Stramma et al. (2012a) report that the

spurious tropical [O2] increases at 300 dbar in the UVic ESM may be primarily related

to the inability of coarse resolution ocean models to resolve the fine scale equatorial

currents which control the oxygen budget of the OMZs (Brandt et al., 2010; Stramma et al.,

2010). Their sensitivity study suggests that alternative proposed model deficiencies such as

artificially high rates of diapycnal mixing within the tropical thermocline (Gnanadesikan et

al., 2007) and the omission of a pCO2 sensitive C:N stoichiometry in primary production

(Oschlies et al., 2008; Tagliabue et al., 2011) do not resolve the erroneous tropical [O2]

increases in their model. In the case of MPI-ESM, a comparison between the low resolution

(analysed in this study) and eddy-permitting model configurations (MPI-ESM-MR with a

nominal resolution of ∼ 0.4◦) shows only a slight improvement in the representation of

[O2] in the thermocline (Ilyina et al., 2013). This indicates that eddy-permitting spatial

resolution of the ocean model alone is insufficient to solve the coupled models deficiencies

with respect to [O2] dynamics. Other model-data discrepancies, particularly simulated

oxygen increases within the ocean interior at high latitudes, are likely to be related to

persistent errors in model physical mixing and deep ocean ventilation, as reported for

historical CMIP5 experiments of IPSL-CM5A and CNRM-CM5.1 (Séférian et al., 2013).

In addition, the inability of models to capture [O2] dynamics in ice-covered high-latitude

areas can be attributed to uncertainties in the underlying sea-ice models related to the

growth and melting of seasonal ice (e.g., Notz et al., 2013).
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Counter to the global and Pacific Ocean detection results, our analysis finds observed

patterns of [O2] change in the Atlantic basin to be indistinguishable from natural internal

variability. The high internal variability of Atlantic oxygen has been reported by others

(e.g., Johnson and Gruber, 2007) and in an analysis of the essential ocean indices the

Atlantic scored poorly from the perspective of the strength of signal-to-noise ratio (Banks

and Wood, 2002). These findings are supported by modelling studies which show secular

increases in Apparent Oxygen Utilisation (AOU) of the subsurface North Atlantic to

be rendered statistically insignificant by internal variability associated with the North

Atlantic Oscillation (Frölicher et al., 2009). Thus, in the Atlantic, high levels of internal

variability coupled to a smaller observed mid- to high-latitude deoxygenation trend (relative

to the Pacific and Southern Oceans; Helm et al., 2011) reduce the signal-to-noise ratio,

contributing to the null detection result for this basin. The same conclusion was reached

for sea surface salinity where the single fingerprint analysis of Terray et al. (2012) shows

robust detection of observed salinity changes in response to anthropogenic forcing for the

Pacific basin but with scaling factors consistent with 0 for the Atlantic Ocean.

2.6 Summary and conclusions

Our analysis shows that the global consistency and pronounced meridional structure of

[O2] changes between∼ 1970 and∼ 1992 recorded by Helm et al. (2011) provide a distinct

fingerprint of climate change in the oceans, which is robustly detected against internal

variability as simulated by models. The unprecedented spatiotemporal coverage of data

and sensitivity of [O2] to climate perturbation provides a unique opportunity to validate the

response of ESMs to conditions of global change on multidecadal timescales. Rigorous

assessment of ESMs against observations using detection and attribution methods supports

the need to improve model physics and biogeochemistry, but also reveals that these models

already have significant capacity to simulate many aspects of the ocean system, particularly

the deoxygenation at mid- to high latitudes. However, both MPI-ESM-LR and HadGEM2-

ES underestimate the observed [O2] response to external forcing, suggesting that model

projections for future ocean deoxygenation in response to climate change may be too

conservative. Furthermore, both models perform poorly at low latitudes, indicating that

model projections in that region may not be reliable.
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Detectable anthropogenic contributions to recent trends in ocean temperature (Barnett

et al., 2005; Pierce et al., 2006; Gleckler et al., 2012) and salinity (Stott et al., 2008; Terray

et al., 2012) have already been identified. Taken together, these marked changes to global

heat and freshwater fluxes implicitly support our finding that stratification-driven global

deoxygenation has started to emerge from the envelope of internal variability. We find the

most detectable changes in [O2] relative to internal variability to occur at high latitudes

where the independent and synergistic effects of secular ocean warming, acidification

and deoxygenation could have a major impact on polar ecosystems and biogeochemical

cycles (Gruber, 2011). Subsurface [O2] changes at high latitudes (particularly in the

Pacific and Southern Oceans) should, therefore, be monitored closely alongside more

widely documented [O2] decreases within the OMZs (e.g., Stramma et al., 2008) to better

constrain the anthropogenic fingerprint of climate change in the oceans. Models predict

that ocean deoxygenation at mid- to high latitudes will continue to intensify under global

warming conditions, such that climate-driven perturbation to oceanic oxygen will become

more distinct with time. Therefore, on-going observational efforts from time-series, repeat

hydrographic sections and global in-situ profiling floats (e.g., Argo; Gruber et al., 2010) are

crucial to better understanding natural variability in marine O2 on multidecadal timescales

and improving the detectability of emergent anthropogenic trends.
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3.1 Introduction

The implementation of realistic oxygen cycling remains an important and active area of

ocean–climate model development (e.g. the Fast Met Office UK Universities Simulator

[FAMOUS]; Williams et al., 2014) owing to the ecological importance of [O2] and its

sensitivity to climatic perturbation on interannual to millennial timescales (Keeling et al.,

2010). A pervasive feature of recent ESM projections is a reduction in the oxygen content

of the global ocean in response to future anthropogenic climate change (e.g. Sect. 1.4;

Ciais et al., 2013; Doney et al., 2014). Despite widespread model agreement in terms of

the sign of change in a globally integrated sense, there is significant uncertainty as to the

spatial pattern (or “fingerprint”) and magnitude of future ocean deoxygenation (Bopp et

al., 2013; Cocco et al., 2013). The ability of current models to reproduce the observed

dynamics and distribution of ocean [O2] therefore forms a central line of enquiry towards

isolating uncertainties entrained into prognostic experiments (e.g. Sect. 2.4.1; Stramma et

al., 2012a).

A number of persistent model biases have been identified in the [O2] fields of both

Ocean General Circulation Models (OGCMs; Chapter 2; Duteil et al., 2014) and EMICs

(Stramma et al., 2012a) initialised for the historical period (see Section 1.4 for a compre-

hensive review). Most evident is the inability of current ocean–climate biogeochemistry

models to reproduce the observed distribution and variability of [O2] at low latitudes,

particularly within the eastern tropical OMZs (e.g. Keeling et al., 2010; Stramma et al.,

2012a). For example, coupled AOGCMs generally simulate [O2] increases within the

tropical thermocline (e.g. Bopp et al., 2002; Matear and Hirst, 2003) and a contraction of

suboxic waters (Cocco et al., 2013) in response to ocean warming. This ubiquitous model

response is contrary to time series data constructed by Stramma et al. (2008) for the eastern

tropical OMZs, which show marked deoxygenation trends and expansion of low-O2 waters

over the last ∼ 50 years. Gnanadesikan et al. (2013) also highlight the limited capacity

of recent CMIP5 ESMs to reproduce the observed climatological distribution of [O2] at

intermediate depths. This systematic model bias is entrained into the biogeochemically

significant (cf. Bianchi et al., 2012) volume censuses of low-O2 waters, with models

variously both underestimating (e.g. HadGEM2-ES [Jones et al., 2011]) and overesti-

mating (e.g. MPI-ESM-LR [Ilyina et al., 2013]; GFDL-ESM2.1 [Dunne et al., 2013])
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hypoxic and suboxic extent within the ocean interior (see also Section 2.4.1; Figure 2.2). A

range of dynamical and biogeochemical model deficiencies have been invoked to explain

the divergence between observed and simulated [O2] at low latitudes (e.g. Keeling et

al., 2010). Chief among them is the inability of coarse resolution global ocean–climate

models to explicitly simulate the mesoscale structures which resupply O2 into the eastern

tropical OMZs (e.g. Brandt et al., 2010). To this end, eddy-resolving spatial resolution

has been shown to improve representation of [O2] in the Arabian Sea (Resplandy et al.,

2012) and eastern tropical Atlantic (Duteil et al., 2014) OMZs via more realistic transport

processes in the physical model. Uncertainties surrounding the parameterisation of lateral

(Gnanadesikan et al., 2012; Gnanadesikan et al., 2013) and vertical (Duteil and Oschlies,

2011) diffusion have also been shown to place important constraints on the extent and

evolution of low-O2 waters in ESMs.

The simplistic representation of biological processes in ecosystem models and their

response to physical and geochemical forcing has also been suggested as an important

limitation on O2 dynamics in ocean models (e.g. McKinley et al., 2003; Rödenbeck et

al., 2008). For example, Matear and Lenton (2014) show using an ensemble of coupled

carbon-climate ESM experiments that the interactive effects of climate change and ocean

acidification could drive significant alteration to biogeochemical cycles, suggesting that

ocean warming should not be considered in isolation when considering future ocean deoxy-

genation. Of most importance to model representation of oxygen cycling are the potential

impacts of ocean acidification on primary production and the biological pump. Particu-

larly, mesocosm experiments carried out using natural plankton communities (Riebesell

et al., 2007; Bellerby et al., 2008) suggest that the C:N uptake ratio in photosynthetic

carbon fixation increases under elevated pCO2 due to DIC over-consumption, causing the

composition of exported organic material to deviate from classical Redfield stoichiometry

(e.g. C:N = 6.6 [Redfield, 1963]). Specifically, Riebesell et al. (2007) report higher C:N

drawdown ratios in diatom and coccolithophore-dominated mesocosm enclosures exposed

to increased partial pressures of CO2 (pCO2 = 700µatm, C:N = 7.1; pCO2 = 1050µatm,

C:N = 8.0), whilst N:P ratios remain unchanged from Redfield proportions. The effects of

stoichiometric plasticity in marine ecosystems remain largely unaccounted for in current

ocean biogeochemistry models (cf. Flynn, 2010), which generally rely on fixed elemental
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ratios in the formation of organic material (e.g. Aumont and Bopp, 2006). However, recent

studies using configurations of the UVic EMIC (Oschlies et al., 2008) and PISCES Ocean

Biogeochemistry General Circulation Model (OBGCM; Tagliabue et al., 2011) which

implement a pCO2 sensitive C:N ratio in primary production suggest that stoichiometric

effects in response to ocean acidification could have a major impact on biogeochemical

cycles. Particularly, model experiments with variable C:N stoichiometry simulate increases

in cumulative carbon export of between 70 and 100 Pg C by 2100 in response to future

CO2 forcing. Moreover, the export of (relatively) more carbonaceous organic material

from the surface in response to acidification-driven DIC over-consumption also causes

biological oxygen demand to increase. As a result, these model experiments project ele-

vated deoxygenation of the tropical thermocline (> 20µmol L−1) and 36 – 50 % increases

in the volume of suboxic waters by 2100 (Tagliabue et al., 2011; Oschlies et al., 2008),

compared to no change or a small [O2] increases as simulated by fixed stoichiometry

ESMs (CMIP5; Bopp et al., 2013). Stramma et al. (2012a) investigate the impact of

variable C:N ratios on historical [O2] trends using a low-resolution EMIC, and find that

this effect reduces model-data disagreement in zonal mean depth averaged [O2] trends.

However, the impact of accounting for variable stoichiometry on historical [O2] changes in

more complex OBGCMs (e.g. Tagliabue et al., 2011) or Plankton Functional Type (PFT)

ecosystem models (e.g. Buitenhuis et al., 2013; Le Quéré et al., 2014a) remains uncertain.

The dissolution of gaseous CO2 in seawater causes a decrease in pH as weak carbonic

acid (H2CO3) forms and dissociates into bicarbonate (HCO3
−) and hydrogen (H+) ions.

However, the hydrolysis of CO2 concomitantly consumes carbonate ions (CO3
2−) follow-

ing Equation 3.1, thereby reducing the saturation state of seawater with respect to calcium

carbonate (both calcite [Ωcal] and its less stable polymorph, aragonite [Ωarag]).

CO2 +H2O + CO2−
3 → 2HCO−

3 (3.1)

A decrease in Ω under elevated pCO2 has been shown by a number of laboratory

and field studies to reduce biogenic calcification rates in some calcareous holoplankton

(coccolithophores, foraminifera and pteropods) and warm-water corals (cf. Fabry et al.,

2008; Doney et al., 2009). Extrapolating these results, Heinze (2004) projects a ∼ 50 %

decline in global CaCO3 export production by 2250 using an ocean biogeochemistry model
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which accounts for reduced biocalcification rates in response to ocean acidification (SRES

A1B emissions scenario). Beyond direct effects, it has been suggested by Armstrong

et al. (2002) that changes in the “carbonate pump” may also impact upon the export of

organic material, since fluxes of POC and PIC are highly correlated beneath ∼ 1000 m

depth (the so-called “PIC:POC rain ratio” [Archer et al., 2000; Klaas and Archer, 2002]).

Specifically, it has been proposed that export fluxes of dense calcareous (CaCO3) and

siliceous (SiO2) biominerals provide ballast which increases the sinking speed and transfer

efficiency of POC into the ocean interior. Therefore, reduced export production of CaCO3

in response to ocean acidification could impact upon the efficiency of the organic (“soft

tissue”) biological pump, such that POC remineralises at shallower depths as mineral ballast

fluxes weaken. This effect has been reproduced by 3-D ocean biogeochemistry models

which include simple ballasting sub-models (e.g. Heinze, 2004), with implications for

other biogeochemical cycles including oxygen. For example, Hofmann and Schellenhuber

(2009) have demonstrated, using idealised experiments of the POTSMOM-C low resolution

(3.75◦× 3.75◦) OGCM with a [CO3
2−] dependency in calcification rates (RCAL), that

shallower POC remineralisation depths in response to weakened ballasting exacerbates

O2 depletion within established subsurface O2 minima. In particular, reduced ballasting

alone is shown in prognostic experiments under a SRES A1F1 emissions scenario until

2100 (with emissions declining to 0 at 2200) to reduce [O2] by 20 – 40µmol L−1 between

∼ 200 – 800 m depth by the year 3000, with the largest decreases within tropical OMZs (e.g.

> 50µmol L−1 at 500 m depth in the Arabian Sea). As such, the interactive effects of ocean

acidification on carbon export have been shown to have a major impact on O2 distributions

and forced responses in ocean-climate model projections. However, no studies have so

far addressed the impact of accounting for these processes in reconciling the mismatch

between observed [O2] and that simulated by hindcast models.

Current ocean biogeochemistry models also underestimate temporal variability in O2 on

interannual to decadal timescales. For example, Deutsch et al. (2005, 2006) report decadal

scale variability in Apparent Oxygen Utilisation (AOU) as simulated by an ensemble of

ocean-only hindcast model experiments for the North Pacific region to be underestimated

by a factor of ∼ 3 relative to repeat hydrographic section data. Similarly, interannual

variability in global Atmospheric Potential Oxygen (APO) fluxes have been shown to be
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underestimated by a factor of ∼ 2 – 4 in hindcast ocean biogeochemistry models relative to

those estimated using global atmospheric transport inversions (Rödenbeck et al., 2008).

These results are also consistent with the model-data comparison presented in Chapter 2,

where optimal fingerprinting methods applied to recent CMIP5 ESMs show that model

[O2] responses need to be scaled up by a factor of between ∼ 2 and 4 to match observed

changes (see Section 2.4.2, Figure 2.8). Recent work using hindcast configurations of the

UVic EMIC (Swart et al., 2014) and PlankTOM5 OBGCM (Le Quéré et al., 2010; Ishi

et al., 2014) demonstrate the sensitivity of simulated trends and variability in the ocean

carbon cycle to imposed atmospheric forcing. For instance, Ishi et al. (2014) find significant

differences in the interannual variability of CO2 outgassing fluxes from the tropical Pacific

using PlankTOM5.3 ocean-only experiments forced with the JPL CCMP Ocean Surface

Wind Product (Atlas et al., 2011) compared to those derived from NCEP/NCAR reanalysis

data (Kalnay et al., 1996). Additionally, model representation of large scale physical

transport processes such as the Atlantic Meridional Overturning Circulation (AMOC) have

been shown to be sensitive to the choice of imposed atmospheric forcing. For example,

Stepanov and Haines (2013) show model simulated long period variability in AMOC

transport at 26.5◦N to be significantly different between hindcast experiments which

employ ECMWF ERAInterim reanalysis data (Simmons et al., 2007) compared to those

which calculate bulk fluxes using the Drakkar Forcing Set 3 (DFS3; Brodeau et al., 2010)

hybrid (blended meteorological and satellite) forcing product. As a result, whilst it must

be acknowledged that natural variability is also generated internally to the ocean system,

ocean-only model configurations allow considerable “exogenous” variability to be directly

related to the imposed atmospheric forcing (e.g. Stepanov and Haines, 2013). Therefore,

the use of high frequency, high quality atmospheric data to calculate turbulent fluxes of

heat, freshwater and momentum in hindcast models (cf. Large and Yeager, 2004; Brodeau

et al., 2010) could provide a mechanism for improving interannual to decadal variability in

simulated O2.

In the present study a range of physical and biogeochemical perturbation experiments

are conducted using a state-of-the-art global ocean biogeochemistry model (PlankTOM10;

Le Quéré et al., 2014a) in order to better constrain the source of systematic biases in model

representation of O2 (e.g. Keeling et al., 2010). Specifically, this work aims to quantify
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the impact of (1) imposed atmospheric forcing and (2) interactive ocean acidification

effects (variable C:N stoichiometry and reduced mineral ballasting) on the spatiotemporal

distribution of [O2] over the last ∼ 50 years.

3.2 Model description

3.2.1 Ocean biogeochemistry model

The PlankTOM10 Dynamic Green Ocean Model (DGOM; Le Quéré et al., 2014a) is

a global ocean biogeochemistry model which describes lower-trophic level ecosystem

dynamics explicitly based on dominant PFTs, following the rationale of Le Quéré et al.

(2005). PlankTOM10 builds on previous DGOMs (PlankTOM5.2 [Buitenhuis et al., 2010]

and PlankTOM5.3 [Buitenhuis et al., 2013]) by including ten PFTs: picophytoplankton,

N2-fixers, coccolithophores, mixed phytoplankton, diatoms, colonial Phaeocystis, bacteria,

protozooplankton, mesozooplankton and macrozooplankton. The present model version

comprises 39 biogeochemical tracers, and simulates the full marine cycles of Carbon (C),

Phosphorous (P), Oxygen (O2), Silicon (Si), along with simplified cycles of Nitrogen (N)

and Iron (Fe). Growth of PFTs is co-limited by temperature, light, macronutrients (N, P and

Si) and Fe. PlankTOM10 includes 3 detrital pools (semi-labile dissolved organic material

[DOM], and small and large POC), with a fixed Redfield stoichiometry (172O:122C:

16N:1P [Anderson and Sarmiento, 1994]) in the formation and remineralisation of organic

material for the standard model configuration (see Section 3.3.1). However, Fe:C, Chl:C

and Si:C (for diatoms) ratios are variable, as calculated by the model based on PFT and

abiotic factors. N pools are also subject to denitrification and N2-fixation processes.

As described in Buitenhuis et al. (2013), PlankTOM10 also includes a sophisticated

parameterisation of mineral ballasting, whereby the sinking speed of large POC increases

as a function of opal (SiO2) and calcite (CaCO3) content. This parameterisation applies

the direct measurements of mineral ballasting by opal and calcite in copepod fecal pellets

(Ploug et al., 2008) to the drag equations of Buitenhuis et al. (2001) in order to derive a

relationship between particle density and gravitational sinking speed of large POC (vsink)

following Equation 3.2.
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vsink = a(ρpar − ρsw)b (3.2)

Where a = 0.0303, b = 0.6923, ρsw is the density of seawater and ρpar is the density of

the particle, calculated by:

ρpar =
(LPOC × 240 + CAL× 100 + SIL× 60)

max(LPOC×240
ρLPOC

+ CAL×100
ρCAL

+ SIL×60
ρSIL

, 10−15)
(3.3)

Where LPOC is large particulate organic carbon, CAL is sinking calcite, SIL is

sinking opal, 240 is wet weight/mol POC, 100 is the molar mass of calcite, 60 is the

molar mass of opal, and ρLPOC = 1.08 kg L−1, ρCAL = 1.34 kg L−1, ρSIL = 1.2 kg L−1

(calculated based on the data of Ploug et al. [2008]). Small POC is set to sink at a constant

rate of 3 m d−1, whereas LPOC has a maximum numerically stable sinking speed set to

150 m d−1. For further details of the PlankTOM10 biogeochemistry model, Le Quéré et al.

(2014a) and Enright et al. (2014) present a full description of parameter values and model

equations.

In all model experiments described subsequently biogeochemical fields are initialised

from Global Ocean Data Analysis Project (GLODAP; Key et al., 2004) data for Dissolved

Inorganic Carbon (DIC) and alkalinity, and World Ocean Atlas 2005 observations for O2

(Garcia et al., 2006a) and nutrients (phosphate, nitrate and silicate [Garcia et al., 2006b]).

Biological variables are restarted from the output of a previous PlankTOM10 model run

(e.g. Vogt et al., 2010). The model is forced with atmospheric CO2 data at each timestep

(Keeling and Whorf, 2005). Dust fluxes are interpolated to daily values from the monthly

fields of Jickells et al. (2005) and provide Fe (0.035g Fe per g dust) and Si (0.308 g Si per

g dust) inputs to the surface ocean.

3.2.2 Physical model

PlankTOM10 is embedded within the Nucleus for European Modelling of the Ocean

version 3.1 (NEMOv3.1; http://www.nemo-ocean.eu) physical model, which

comprises the primitive equation Océan Parallélisé version 9 (OPA9; Madec, 2008) OGCM
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coupled to the Louvain-la-Neuve Ice version 2 (LIM2; Timmermann et al., 2005) dynamic-

thermodynamic sea ice model. This study employs a global configuration (ORCA2; Madec

and Imbard, 1996) of NEMOv3.1 where the model is discretised on a tripolar curvilin-

ear grid with a zonal resolution of 2◦, and a meridional resolution of 2◦× cos(latitude)

increasing to ∼ 0.5◦ at the equator and towards the poles. In the vertical, ORCA2 has 30

z-levels with a maximum resolution of 10 m for the upper 100 m, decreasing to ∼ 500 m at

5 km depth. Vertical mixing is calculated using a turbulent kinetic energy model (Gaspar

et al., 1990), with subgrid scale eddy-induced mixing processes accounted for using the

parameterisation of Gent and McWilliams (1990). Active tracers are initialised from World

Ocean Atlas 2005 temperature (Antonov et al., 2006) and salinity (Locarnini et al., 2006)

observations in all model experiments. A range of atmospheric forcing data has been used

to derive surface fluxes of momentum, heat and freshwater as boundary conditions to the

hindcast NEMOv3.1 physical model, as described in Section 3.3.2.

3.3 Model set-up

As outlined in Table 3.1, sensitivity experiments are carried out using the PlankTOM10-

NEMO3.1 model which examine the impact of ocean carbon cycle feedbacks and imposed

physical forcing on the simulated spatiotemporal distribution of [O2] over the historical

period. Further details of ocean biogeochemistry (Sect. 3.3.1) and atmospheric forcing

(Sect. 3.3.2) model runs are provided subsequently.

Model Time Period Atmospheric Forcing pCO2-sensitive pCO2-sensitive
Experiment C:N ratio RCAL

REF 1948 – 2013 NCEP/NCAR No No
STO10 1948 – 2013 NCEP/NCAR Yes No
BAL10 1948 – 2013 NCEP/NCAR No Yes
CORE2 1948 – 2007 COREv2-IAF No No
DFS4 1958 – 2006 DFS4.3 No No
IPSL 1948 – 2005 IPSL-CM5A-LR No No

Table 3.1: Summary of the model configurations used in each ocean-only hindcast PlankTOM10-
NEMO3.1 experiment.
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3.3.1 Ocean biogeochemistry experiments

In order to investigate the impact of ocean acidification on the spatiotemporal distribution of

[O2] for the historical period two biogeochemistry perturbation experiments are conducted,

alongside a baseline (REF) experiment following the standard model configuration as

described in Section 3.2. These comprise explicit representation within the PlankTOM10

biogeochemical model of (1) a pCO2-sensitive C:N ratio in primary production (STO10)

and (2) a pCO2-sensitive calcification rate (RCAL) and associated impacts on the PIC:POC

rain ratio (BAL10). As discussed in Section 3.3.2 all ocean biogeochemistry experiments are

conducted using a common NCEP/NCAR atmospheric forcing with the greatest temporal

coverage (1948 – 2013; REF).

For the STO10 experiment, following the prognostic modelling studies of Oschlies

et al. (2008) and Tagliabue et al. (2011), a change in the C:N ratio of organic matter via

increased photosynthetic carbon fixation in response to ocean acidification is parameterised

using the results of mesocosm experiments carried out on natural plankton communities un-

der elevated pCO2 (Riebesell et al., 2007). Based on these experiments, a non-dimensional

“CO2 sensitivity” factor (see Figure 3.1) is derived to provide a relationship between

observed pCO2 model forcing and the C:N ratio in organic carbon production and reminer-

alisation. In STO10 this factor is multiplied by the rate of net organic carbon production

(prodt) and used to calculate a variable (pCO2-sensitive) O:C ratio in organic material.

A second experiment, BAL10, investigates the impact of a pCO2-sensitive biogenic cal-

cification rate (RCAL) on marine biogeochemical cycles. The parameterisation used in this

study is taken directly from laboratory manipulations carried out with the coccolithophore

species Emiliania huxleyi and Gephyrocapsa oceanica, in which the PIC:POC rain ratio is

measured to decrease under elevated [CO2(aq)] (Zondervan et al., 2001). PlankTOM10

includes explicit representation of coccolithophores as a calcifying PFT with growth

rates based on observations (cf. Le Quéré et al., 2014a). Thus, when compared to other

NPZD-type biogeochemistry models which have investigated an acidification response in

calcification (e.g. Heinze, 2004; Hofmann and Schellnhuber, 2009), an experimentally-

derived parameterisation based on coccolithophore responses to acidification can be more

appropriately applied to PlankTOM10 model equations. Following Zondervan et al. (2001)

and Heinze (2004), the CaCO3:Corg production ratio (RCaCO3/Corg
) is parameterised in
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Figure 3.1: “CO2 sensitivity” factor applied to the STO10 PlankTOM10-NEMO3.1 model ex-
periment based on prescribed atmospheric CO2 following the results of mesocosm experiments
conducted by Riebesell et al. (2007). Reproduced with permission from Tagliabue et al. (2011).

experiment BAL10 as a function of the partial pressure of CO2 (pCO2):

RCaCO3/Corg = R
CaCO3/Corg
max (1−A(pCOobs2 − pCOpreindustrial2 )) (3.4)

where A = 4.4 × 10−4 (based on Zondervan et al. [2001]), pCOpreindustrial2 = 277.32

ppm and pCOobs2 is prescribed to the biogeochemical model from observations (following

Keeling and Whorf [2005]).

3.3.2 Atmospheric forcing experiments

Globally gridded atmospheric fields from interannual weather reanalyses provide a means

of prescribing surface boundary conditions to drive multi-decadal hindcasts in OBGCMs.

In this study, a series of PlankTOM10-NEMOv3.1 experiments are conducted using a

range of atmospheric fields in order to investigate the sensitivity of historical changes and

variability in simulated ocean [O2] to imposed forcing. Model experiments are initialised

using four different atmospheric forcing data products (see Table 3.2). As shown in

Figure 3.2, these experiments also differ in terms of the bulk formulae used to provide

turbulent fluxes of momentum, heat and freshwater to the NEMOv3.1 physical ocean
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model.

The baseline experiment used in this study (REF) employs the CLIO bulk formulation

of Goosse et al. (1999) to calculate surface boundary conditions, using NCEP/NCAR

reanalysis data (Kalnay et al., 1996). This forcing approach is supported by the NEMO

System Team as the reference configuration for NEMOv3.1 (Madec, 2008) and is con-

sistent with other recent hindcast experiments conducted using the PlankTOM DGOM

platform (e.g. Da Cunha et al., 2013; Buitenhuis et al., 2013). Moreover, NCEP/NCAR

reanalysis data are updated annually (http://www.esrl.noaa.gov/psd/data/

gridded/data.ncep.reanalysis.html#temp) such that the REF experiment

has the longest temporal coverage, being forced with interannually varying NCEP/NCAR

fields from 1948 to 2013. As summarised in Table 3.2, the REF experiment uses daily

frequency NCEP/NCAR 10 m air temperature (θ10), 10 m u and v wind components (U10,

V10), total precipitation rate (pptn), 10 m specific humidity (q10) and total cloud cover

(tcdc). Wind speed is computed offline (wspd = [u2 +v2]0.5) and used to calculate surface

ocean stress (τx, τy) which is provided directly to the ocean model as a surface momentum

flux. Sensible and latent heat fluxes are calculated using the CLIO bulk formulation based

on the difference between imposed surface air temperature and model simulated SST,

taking into account the specific humidity. Radiative fluxes are calculated from daily total

cloud cover fields from NCEP/NCAR reanalysis.

Three other experiments (CORE2, DFS4, IPSL) are conducted using different imposed

atmospheric forcings, all of which employ a more recent bulk formulation (CORE; Large

and Yeager, 2004, 2009), which requires a slightly different set of meteorological sur-

face variables (Table 2). The CORE bulk formulae use an inertial-dissipative method to

calculate turbulent fluxes (momentum, sensible heat and evaporation) using 10 m wind

speed components (U10, V10) along with specific humidity and air temperature, referenced

at either 10 m (q10, θ10; CORE2) or 2 m (q2, θ2; DFS4 and IPSL) dependent on input

atmospheric data. Under a CORE bulk formulation shortwave and longwave components

of the radiative heat flux are estimated directly based on downwelling shortwave (radsw)

and longwave (radlw) radiation at the sea surface. Precipitation is provided as a total

precipitation rate (precip) along with a solid fraction (snow). The details of each model

experiment are given in Table 3.2, but are summarised here for clarity:
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1. CORE2: Following Large and Yeager (2004, 2009) this model experiment is ini-

tialised with Version 2 of the Common Ocean-Ice Reference Experiments interannu-

ally Varying Forcing (COREv2-IAF) dataset for the period 1948 – 2007. COREv2-

IAF is a blended (or “hybrid”) atmospheric forcing data product, which applies

corrections to known biases in NCEP/NCAR reanalysis state variables (U10, V10,

θ10, q10) and utilises satellite derived radiative flux (ISCCP-FD [Zhang et al., 2004])

and precipitation (merged GCGCS product [Large and Yeager, 2009]) estimates so as

to limit the imbalance in model heat and freshwater budgets. As such, COREv2-IAF

comprises bias corrected 6 hourly 10 m NCEP/NCAR surface air temperature (θ10),

10 m specific humidity (q10), and 10 m wind components (U10, V10), daily frequency

incoming shortwave (radsw) and longwave (radlw) radiation, and monthly total

precipitation (precip) and solid precipitation (snow). Climatological mean annual

cycles are provided for radsw and radlw prior to 1984 and for precip and snow

prior to 1979.

2. DFS4: This experiment uses the DRAKKAR Atmospheric Forcing Set Version

4.3 (DFS4.3) for the period 1958 – 2006, as presented in Brodeau et al. (2010).

Following the approach used to generate COREv2-IAF fields, DFS4.3 is a blended

atmospheric forcing dataset which uses satellite radiation (ISCCP-FD) and precipita-

tion (GCGCS) products. Surface atmospheric state variables are, however, provided

from ERA-40 ECMWF reanalysis data (Uppala et al., 2005), with adjustments as

described in Brodeau et al. (2010). ERA-40 is considered a “second generation”

reanalysis product, with improvements in terms of resolution, data assimilation

methods, and atmospheric models. Temporal frequency and input variables follow

those described for CORE2, however surface air temperature and specific humidity

are referenced at 2 m (θ2, q2) rather than 10 m in ERA-40.

3. IPSL: Forcing data for the IPSL experiment has been generated from the output of

an ESM participating in Phase 5 of the Coupled Model Intercomparison Project

(CMIP5). Historical integrations of the IPSL-CM5A-LR ESM (Séférian et al.,

2013) were conducted under CMIP5 for the period 1850 – 2005 using climatic

forcings which are prescribed from observations (Taylor et al., 2012). In this study,

atmospheric fields from one ensemble member of the “historical” IPSL-CM5A-LR
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experiment (r1i1p1) were processed in order to extract surface meteorological vari-

ables according to the approach of DFS4 and CORE2, however temporal frequency

was limited by the availability of model output. Thus, for this hindcast experiment,

daily frequency U10, V10, θ2, q2, radsw and radlw were used along with monthly

mean precip and snow, with modifications made to the NEMOv3.1 physical model

set-up to account for changes to the temporal frequency of imposed forcing. The

IPSL-CM5A-LR ESM was selected in order to limit the physical inconsistency with

the PlankTOM10-NEMOv3.1 model platform, since IPSL-CM5A-LR also utilises

the NEMO physical modelling framework, whilst also reducing the impact of errors

associated with spatial interpolation. Other studies have conducted prognostic ocean-

only OBGCM experiments using CMIP5 atmospheric fields (e.g. MEDUSA-2.0;

Yool et al., 2013), however the impact of an ESM-derived forcing in hindcast model

configurations remains uncertain.

3.4 Results

Section 3.4.1 and Section 3.4.2 present results from a series of PlankTOM10-NEMOv3.1

ocean biogeochemistry (STO10 and BAL10) and atmospheric forcing (CORE2, DFS4,

IPSL) model experiments (EXP), respectively. In order to isolate the impact of these

biogeochemical and physical perturbations, model fields are generally presented rela-

tive to baseline REF configurations (EXP − REF ). This approach is consistent with

other studies which evaluate the impact of incorporating new processes (Manizza et al.,

2008) or anthropogenic impacts (Suntharalingam et al., 2012) into the PlankTOM biogeo-

chemistry model via comparison with an unperturbed hindcast experiment. As a result,

non-equilibrium artefacts and other dynamical processes are removed, such that this analy-

sis focuses on understanding the impact of these imposed physical and biogeochemical

assumptions on hindcast biogeochemical tracers. This work therefore presents a synthesis

of “process level” sensitivity experiments, and differs from other modelling studies (e.g.

Chapter 2; Stramma et al., 2012a) focusing on model-data comparison of absolute changes

in [O2] over the historical period.

In Section 3.4.1, output from ocean biogeochemistry experiments is analysed for the

full 1948 – 2013 NCEP/NCAR reanalysis period (REF forcing). In Section 3.4.2 results
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B.#

A.#

Figure 3.2: Schematic summary of meteorological variables used to provide surface fluxes of
heat, freshwater and momentum as boundary conditions to PlankTOM10-NEMOv3.1 ocean-only
model experiments using CLIO (A) and CORE (B) bulk formulations. “T+S” = Total and solid
precipitation rate.
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from the ensemble of atmospheric forcing experiments are analysed over a common time

period (1958 – 2005) to avoid sampling biases associated with the differing temporal ranges

of forcing products. All 3-D PlankTOM10-NEMO3.1 model fields are interpolated from

the curvilinear ORCA2 grid onto a regular 1◦ × 1◦ grid using weighted nearest neighbour

interpolation, whilst retaining the native ORCA2 z-axis. Scalar and vectorial (U10 and

V10) 2-D surface forcing data are remapped from various native atmospheric grids onto the

regular 1◦ × 1◦ grid using bilinear and bicubic interpolation algorithms, respectively.

3.4.1 Ocean biogeochemistry experiments

3.4.1.1 Ocean carbon cycle

The interactive effects of ocean acidification included in BAL10 and STO10 model experi-

ments impact upon ocean carbon cycle variables as simulated by PlankTOM10-NEMOv3.1.

For STO10, the dominant carbon cycle effects of including a pCO2-sensitive C:N ratio in

organic carbon production are modification to simulated POC export from the euphotic

zone (Fig. 3.3A) and changes to the spatial distribution of DIC within the ocean interior

(Fig. 3.3B – 3.3D). Globally, POC export at 100 m increases in STO10 by 0.22 mol C

m−2 y−1 relative to the fixed C:N ratio REF experiment, for the period 1993 – 2013.

This corresponds to 20 % increase in area mean POC export at 100 m associated with the

inclusion of a pCO2-sensitive carbon fixation rate. Increases in POC export in STO10 are

most pronounced (> 0.3 mol C m−2 y−1) within established high-production regions of

the global ocean, as shown in Figure 3.3A. Specifically, elevated POC export in STO10

is simulated in the productive eastern boundary upwelling systems, such as the eastern

equatorial Pacific. Comparable increases in export are also found at mid- to high latitudes

(40 – 60◦) within the subpolar North Pacific, North Atlantic and Southern Ocean, where

existing high rates of annual primary production associated within the boreal (and austral)

spring blooms are accentuated. A marked increase in POC export fluxes for STO10 across

many high-production open (and coastal) ocean regimes is opposed by no change or a

smaller increase within the mid-latitude oligotrophic gyres. Coeval decreases in DIC at

100 m depth across much of the tropical and mid-latitude ocean (up to 3µmol L−1 for 1993

– 2013) are consistent with carbon overconsumption within the euphotic zone in response

to the CO2 fertilisation as parameterised in STO10 (Fig. 3.3B). Lower DIC concentrations
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([DIC]) simulated in STO10 within the euphotic zone are opposed by zonal mean [DIC] in-

creases ([DIC] > 5µmol L−1) between 500 – 3000 m, associated with a strengthened “soft

tissue” pump as more exported POC is remineralised at depth (Fig. 3.3C). The temporal

fingerprint of DIC changes associated with a pCO2-sensitive C:N ratio in organic carbon

fixation is shown in Figure 3.3D. Alteration to the depth profile of DIC as simulated in

STO10 becomes most apparent in the 2000s, with a signal of increased [DIC] within the

ocean interior propagating surfacewards towards the base of the ventilated thermocline

(∼ 1000 m depth) over the course of the hindcast, consistent with rising atmospheric CO2.

Similarly, Figure 3.4 presents major ocean carbon cycle changes associated with the

BAL10 perturbation experiment, which includes a pCO2-sensitive calcification rate. The

global mean ratio of CaCO3 to POC export production (EXPCaCO3 /EXPPOC) at 100 m

decreases in BAL10 by 4.9 % relative to REF for the period 2003 – 2013, consistent with

a reduced rate of biogenic calcification in response to historical ocean acidification. As

shown in Figure 3.4A, the largest decreases in EXPCaCO3 /EXPPOC occur within the

tropical Indian Ocean and eastern tropical Atlantic Ocean, and in mid- to high-latitude

regions of the North Atlantic and North Pacific. Reductions in EXPCaCO3 /EXPPOC of up

to ∼ 0.01 are similar in magnitude to those reported by Hofmann and Schellnhuber (2009)

between control and [CO2−
3 ]-sensitive RCAL experiments for the period 2003 – 2013.

Within the North Pacific, marked decreases in EXPCaCO3 /EXPPOC are centered on the

North Pacific Current (NPC) region. The eastward flowing NPC is a major transverse

surface current which bisects the subtropical and subarctic North Pacific and plays an

important role in the resupply of nutrients and oxygen into the interior of the Alaskan gyre

(Whitney et al., 2013), where secular [O2] decreases have been observed for the historical

period (Whitney et al., 2007). Thus, EXPCaCO3 /EXPPOC reductions as simulated by

BAL10 for the NPC could have important downstream implications for biogeochemical

cycles in the eastern subpolar North Pacific and California Current region (e.g. Sydeman

et al., 2011).

Reduced export of CaCO3 mineral ballast from the surface ocean causes a global

mean reduction in model simulated gravitational sinking speeds for large POC (vsink)

between 0 – 2000 m depth of 0.2 m d−1 (0.4 %) between 2003 and 2013. The spa-

tial pattern of vsink reductions in BAL10 is most pronounced (> 0.5 m d−1) where
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Figure 3.3: Summary of differences in simulated STO10 ocean carbon cycle variables (STO −
REF ). (A) POC export (mol C m−2 y−1) at 100 m depth, (B) Concentration of DIC (µmol L−1)
at 100 m depth, (C) zonal mean DIC concentration for the period 2003 – 2013. (D) Depth-time
Hovmöller plot of global mean DIC concentration, for the period 1948 – 2013.

EXPCaCO3 /EXPPOC decreases are largest (Fig. 3.4B). As such, consistent with other

model studies (e.g. Heinze, 2004; Hofmann and Schellnhuber, 2009), perturbation to the

PIC:POC “rain ratio” can be invoked to explain coeval changes in sinking speeds of large

POC. Figure 3.4C and Figure 3.4D present depth-time Hovmöller plots showing the tem-

poral changes in EXPCaCO3 /EXPPOC and vsink, respectively, as a function of depth. The

most pronounced changes in EXPCaCO3 /EXPPOC and vsink occur at intermediate depths

(within the upper 3000 m), and become more acute as the concentration of atmospheric

CO2 increases (particularly from 2000 onwards).

3.4.1.2 Oxygen

Carbon cycle changes as described in Section 3.4.1.1 impact upon the spatiotemporal

distribution of [O2] in STO10 and BAL10 experiments via changes to the rate of oxygen
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Figure 3.4: Summary of differences in simulated BAL10 ocean carbon cycle variables
(BAL10−REF ). (A) EXPCaCO3

/EXPPOC at 100 m depth and (B) gravitational sinking speeds
for large POC vsink (m d−1) between 0 – 2000 m for the period 2003 – 2013, relative to REF. (C)
Depth-time Hovmöller plot of global mean EXPCaCO3

/EXPPOC and (D) vsink for the period 1948
– 2013.

production and consumption. Figure 3.5 shows the difference in zonal mean (Fig. 3.5A –

3.5B) and depth-averaged zonal mean (Fig. 3.5C) [O2] for the upper 3000 m, displayed as a

temporal mean for the last 10 years of integration (2003 – 2013; EXP −REF ). Mirroring

the pattern of DIC concentration changes presented in Figure 3.3C, zonal mean [O2] in

STO10 increases by up to 6µmol L−1 within the more productive (sub)tropical euphotic

zone. These near-surface [O2] increases are opposed by marked deoxygenation throughout

much of the ocean interior, particularly at mid- to high latitudes, where biological oxygen

demand rises as more carbonaceous (> C:N ratio) organic material is remineralised at

depth. Subsurface [O2] depletion for 2003 – 2013 reaches a zonal mean maximum of

> 10µmol L−1 within intermediate waters of the subpolar North Atlantic (∼ 60◦N). As

shown in Figure 3.5C, the signature of depth-averaged zonal mean [O2] change scales

with latitude, such that the largest [O2] decreases (≥ 2µmol L−1) occur poleward of 60◦ in
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regions of deep water renewal.

Comparatively, carbon cycle feedbacks associated with BAL10 cause almost no change

in zonal mean [O2] relative to REF for the period 2003 – 2013 (Fig. 3.5B). However, in

agreement with the prognostic model results of Hofmann and Schellnhuber (2009), BAL10

reproduces a small [O2] decrease relative to REF within the ventilated thermocline (100 –

1000 m), which is likely to be exacerbated in response to future pCO2 forcing. Aside from

imposed pCO2, the more muted magnitude of [O2] change simulated by BAL10 can also be

attributed to the relatively small overall global export production which dampens the impact

of any acidification driven reductions in EXPCaCO3 on EXPCaCO3 /EXPPOC . However,

generally the results of BAL10 suggest that the inclusion of a pCO2-sensitive biocalcifica-

tion rate in an ocean biogeochemistry model does not impact significantly upon simulated

O2 dynamics for the historical period, despite alteration to EXPCaCO3 /EXPPOC and sink-

ing speeds of large POC, as described in Section 3.4.1.1. Accordingly, Section 3.4.1.2 now

focuses on hindcast O2 changes associated with the STO10 model experiment.

Inclusion of a variable C:N ratio in photosynthetic carbon production also impacts

upon the characteristics of model simulated low-O2 waters, with implications for the

biogeochemical cycling of nitrogen (cf. Bianchi et al., 2012). As shown in Figure 3.6, near

global decreases in the absolute values of [O2] minima throughout the water column are

simulated in STO10 relative to REF for the period 2003 – 2013. Simulated decreases in

the absolute value of [O2] minimum values are most pronounced (> 8µmol L−1) within

the subpolar North Atlantic, and for the Indian Ocean and eastern equatorial Pacific OMZ

waters. Associated with this intensification of low-O2 conditions within the ocean interior,

STO10 also simulates a 2 % increase in the number of suboxic ([O2] ≤ 5µmol L−1) grid

cells along with a 13 % increase in the number of hypoxic grid cells ([O2] ≤ 60µmol L−1)

relative to REF by 2013. Expansion of low-O2 waters within the STO10 integration also

has significant implications for nitrogen cycling, with the promotion of denitrification

processes under low-O2 (suboxic) conditions where nitrate (NO3
−) is used as an oxidant

in the remineralisation of organic material (e.g. Gruber, 2008). For the period 2003 – 2013,

area mean STO10 denitrification rates increase by 0.27µmol N m−3 y−1 (34 %) for the

global ocean between 0 – 2000 m depth, associated with oxygen depletion in response to

elevated POC export fluxes.
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Figure 3.5: Difference (EXP −REF ) in zonal mean [O2] (µmol L−1) for (A) STO10, (B) BAL10
and (C) depth-averaged zonal mean [O2] between 0 – 3000 m (STO10 = red, BAL10 = green).
Results plotted for the temporal mean of 2003 – 2013.

Historical trends in [O2] are also influenced by inclusion of a pCO2-sensitive C:N ratio

in STO10. Figure 3.7 shows 50-year changes in [O2] as simulated by the STO10 model ex-

periment, expressed relative to baseline REF changes (∆[O2]STO10−REF ). Consistent with

the climatological fingerprints of STO10−REF [O2] depletion presented in Figure 3.5, the

STO10 CO2 fertilisation effect produces an additional historical [O2] increase within the

low-latitude euphotic zone (∼ 300 m depth; Fig. 3.5A) opposed by marked deoxygenation

of up to 10µmol L−1 throughout much of the ocean interior (Fig. 3.7B). Significantly, this

pattern of elevated historical deoxygenation in STO10, which extends throughout the water
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Figure 3.6: Difference (STO10−REF ) in the minimum [O2] values throughout the water column
at each grid point (µmol L−1) for the period 2003 – 2013. Contours are overlain for ∆[O2] =
−8µmol L−1 (dotted red).

column poleward of 60◦ (Fig. 3.7C), is in good agreement with the global fingerprint of

absolute [O2] change as simulated by the most recent generation of ESMs over the last

50 years (see Chapter 2). As such, the inclusion of a variable C:N ratio in organic carbon

production could act to augment the fingerprint of climate-driven ocean deoxygenation

produced by fixed stoichiometry models for the historical period (e.g. Bopp et al., 2013).

Stoichiometric diversity in OBGCMs should, therefore, be considered an important vector

for reducing the discrepancy between observed and model simulated oxygen depletion,

which are both primarily driven by changes in physical (mixing) processes (Helm et al.,

2011). As shown in Figure 3.7D, the signal of enhanced [O2] depletion associated with

elevated POC export propagates towards the surface over the course of the STO10 model

hindcast in response to rising atmospheric CO2. Further deoxygenation within established

subsurface O2-minima (∼ 200 – 700 m) will act to exacerbate the climate-driven shoaling

of OMZ waters (e.g. Stramma et al., 2008), leading to further habitat compression and as-

sociated impacts on tropical pelagic fish (e.g. within tropical Northeast Atlantic [Stramma

et al., 2012b] and eastern tropical Pacific [Prince and Goodyear, 2006]).
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Figure 3.7: Historical change in STO10 [O2] (µmol L−1) between 1953 – 1963 and 2003 – 2013
compared to REF (∆[O2]STO10 −∆[O2]REF ; blue colours indicate historical deoxygenation relative
to REF). [O2] changes presented at (A) 300 m depth, (B) 0 – 3000 m depth, and as zonal mean (C)
and depth-time Hovmöller (D) plots for the period 1948 – 2013.

3.4.2 Atmospheric forcing experiments

The imposed time-varying meteorological data used to force the ocean-only models pro-

vides important constraints on temporal variability in [O2]. As such, the sensitivity of

hindcast PlankTOM10-NEMO3.1 [O2] fields to atmospheric forcing is investigated here,

both in terms of interannual variability (Sect. 3.4.2.1) and historical changes (Sect. 3.4.2.2).

3.4.2.1 Interannual variability

Interannual variability in model simulated thermocline [O2] for a range of atmospheric

forcing experiments (REF, CORE2, DFS4, IPSL) is presented in Figure 3.8 (A – D) as

the temporal standard deviation (σ) of annual mean [O2] fields at 300 m over the common

hindcast forcing period (1958 – 2005). [O2] fields are also taken from biogeochemical

output of the IPSL-CM5A-LR CMIP5 “historical” experiment (ESM; Fig. 3.8E) used to
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derive the atmospheric forcing for IPSL. As a result, direct comparison can be drawn

between variability in the coupled IPSL-CM5A-LR ESM configuration and the ocean-

only PlankTOM10-NEMOv3.1 experiment conducted using atmospheric fields from this

integration. A boxcar (low-pass) filter is applied in order to diagnose secular trends in

subsurface [O2], with the 10-year running mean being removed at each grid point in order

to retain only an estimate of interannual (unforced) variability. This transformation is

robust to changes in the width of the imposed boxcar window.

Simulated interannual variability in thermocline [O2] differs between hindcast PlankTOM10-

NEMOv3.1 experiments, with DFS4 exhibiting the largest area mean variability (σ[O2]

= 2.4µmol L−1) when compared to CORE (σ[O2] = 1.9µmol L−1) and IPSL (σ[O2] =

1.8µmol L−1) model experiments. Elevated σ[O2] in the DFS4.3 hindcast suggests that

ERA-40 derived forcing products generate more exogenous variability in passive tracer

fields of ocean-only models when compared to NCEP/NCAR (REF, CORE2) or ESM

(IPSL) based atmospheric data. However, a number of other differences between forcing

products (see Table 3.2) could also contribute to the larger interannual variability in DFS4,

for instance the alteration to surface fluxes caused by referencing of DFS4.3 surface air

temperature and specific humidity at 2 m rather than 10 m.

Comparatively, the coupled IPSL-CM5A-LR model (ESM) simulates more variability

in thermocline [O2] (area mean σ[O2] = 2.7µmol L−1) relative to the ensemble mean of

all ocean-only atmospheric forcing experiments (σ[O2] = 2.1µmol L−1). Since IPSL and

ESM experiments include identical atmospheric forcings along with similar physical and

biogeochemical model components (IPSL = PlankTOM10-NEMOv3.1; ESM = PISCES-

NEMOv3.2 [Séférian et al., 2013]) the residual interannual variability between experiments

(σ[O2]ESM−IPSL = ∼ 1µmol L−1) can plausibly be attributed to that which is generated

internally to the ocean-atmosphere system under a coupled formulation.

As shown in Figure 3.8, simulated interannual variability scales with latitude for all

model experiments, such that σ[O2] is most pronounced (σ ≥ 4µmol L−1) poleward of

40◦ in both hemispheres. This result is consistent with data based reconstructions (e.g.

Levine et al., 2008) which show interannual variability in subsurface biogeochemistry to

be largest in regions of mid- to high-latitude water mass renewal. All model experiments

exhibit an elevated σ[O2] signal of up to 10µmol L−1 within the north-western subpolar
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gyre of the North Atlantic and subpolar central and western North Pacific (Fig. 3.8A –

3.8E). These regional patterns have been identified in other O2 modelling studies (e.g.

Frölicher et al., 2009; McKinley et al., 2003) and are associated with the NAO and PDO,

respectively, which provide the dominant source of Northern Hemisphere climate variability

on interannual to decadal timescales. As such, all experiments converge on a maximum

σ[O2] of ∼ 6µmol L−1 at ∼ 60◦N consistent with variability associated with the dominant

climate modes, whereas the signal of interannual variability in the Southern Ocean is less

certain – with zonal mean σ[O2] ranging from 1 – 7µmol L−1 for different atmospheric

forcings south of 60◦S (Fig. 3.8F). Particularly, the CORE2 and IPSL experiments simulate

σ[O2] ≤ 2µmol L−1 across much of the Southern Ocean (Fig. 3.8B, Fig. 3.8D) whereas

zonal mean σ[O2] exceeds 4µmol L−1 for REF, DFS4 and ESM (Fig. 3.8F).

As presented in Figure 3.9, interannual variability in windspeed (σwspd; Fig. 3.9A)

and near-surface air temperature (σθ; Fig. 3.9B) also differ between imposed atmospheric

forcing products. DFS4.3 exhibits the largest zonal mean variability in windspeed and near-

surface air temperature, consistent with the largest simulated σ[O2] of all ocean-only exper-

iments (Fig. 3.8C). However, DFS4.3 windspeed and near-surface air temperature data do

not reproduce the meridional structure of σwspd and σθ exhibited by all other atmospheric

forcing fields. Excluding DFS4.3, the largest inter-forcing divergence in σwspd occurs in

the tropics (20◦S – 20◦N) where elevated interannual variability in COREv2-IAF tropical

windspeeds (∼ 0.5 m s−1) relative to IPSL-CM5A-LR derived winds (∼ 0.25 m s−1) can be

invoked to explain the more muted tropical variability in thermocline [O2] (σ[O2]) of IPSL

compared to CORE2 (Fig. 3.8F). In contrast, larger interannual variability in σwspd does

not generate a first-order response in σ[O2] at mid- to high latitudes, with, for example,

elevated variance in the westerlies over the Southern Ocean for IPSL not being associated

with a coeval increase in σ[O2] (Fig. 3.8D).

Comparatively, the largest deviation in zonal mean σθ between atmospheric datasets

occurs poleward of 60◦S, where COREv2-IAF exhibits lower interannual variability (σθ =

∼ 0.4 K) when compared to IPSL-CM5A-LR (σθ = ∼ 0.8 K) and NCEP/NCAR reanalysis

(σθ = ∼ 1.2 K) derived near-surface air temperatures. These σθ differences track the inter-

experiment divergence in σ[O2] for the Southern Ocean, such that model biases in the

simulation of thermocline [O2] variability agree with differences in the magnitude of
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Figure 3.8: Interannual variability (σ) in annual mean [O2] (µmol L−1) at 300 m depth between
1958 – 2005 for a range of forced PlankTOM10-NEMOv3.1 hindcast experiments (REF = black
[A], CORE2 = red [B], DFS4 = green [C], IPSL = blue [D]) and the coupled IPSL-CM5A-LR
“historical” CMIP5 experiment (ESM = turquoise [E]). [O2] contours are overlain in black for σ[O2]
= 4µmol L−1. Zonal mean interannual variability in [O2] at 300 m for all model experiments is
presented in Panel F.

imposed σθ. Specifically, reduced interannual variability in near-surface air temperature in

CORE2 and IPSL can be related to lower σ[O2] relative to REF, which exhibits elevated

σθ and, therefore, σ[O2] poleward of 60◦S. This modulation of tropical O2 variability

by windspeed and extratropical (subpolar) O2 variability by surface heat flux has been

reproduced by other forced ocean models investigating variability in North Atlantic O2

fluxes (Friedrich et al., 2006).

3.4.2.2 Historical changes

Historical changes in upper thermocline [O2] (µmol L−1) at 300 m depth between 1960 –

1965 and 2000 – 2005 for hindcast model experiments are presented in Figure 3.10, relative

to baseline changes in REF (∆[O2]EXP−REF ). Atmospheric forcing perturbation experi-

ments generally simulate [O2] increases relative to REF, suggesting that the CLIO bulk

formulation used for the baseline experiment produces a larger deoxygenation signal over
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Figure 3.9: Interannual variability (σ) in de-trended zonal mean (A) windspeed (m s−1) and (B)
near-surface air temperature (θ; K) for NCEP/NCAR reanalysis (black), COREv2-IAF (red) and
DFS4.3 (green) products, and IPSL-CM5A-LR derived atmospheric fields (blue). Forcing data
are provided as daily mean values for all products, and bicubically interpolated onto a common
regular (1◦ × 1◦) grid so as to reduce sampling biases. Windspeed is calculated offline from U10

and V10 wind components. Following Swart et al. (2014) windspeed is plotted as a measure of
momentum flux rather than wind stress since the latter has a strong dependency on the choice of
drag co-efficient.

the historical period than those which employ a CORE formulation, however significant

spatial heterogeneities exist between forcing products (Fig. 3.10A – 3.10C). The CORE2 in-

tegration exhibits a reduced ∆[O2]EXP−REF of <∼ 20µmol L−1 (Fig. 3.10A) consistent

with the shared provenance of this forcing product and REF in NCEP/NCAR reanalysis

data (Table 3.2). The largest differences in ∆[O2]EXP−REF between atmospheric forcing

experiments are found in the tropics (20◦S – 20◦N), with the zonal mean change in histori-

cal [O2] relative to REF ranging from −10µmol L−1 (CORE2) to +40µmol L−1 (DFS4

and IPSL). This considerable inter-forcing product spread (∼ 50µmol L−1) in simulated

[O2] change within the tropical thermocline reinforces the notion of model uncertainty in

reproducing consistent trends in low-latitude O2 (Keeling et al., 2010; Cocco et al., 2013),

and highlights the central role of imposed atmospheric forcing in determining the sign of

simulated trends. Additionally, an elevated zonal mean ∆[O2]EXP−REF signal (∼ 20 –

60µmol L−1; Fig. 3.10D) is found in all hindcast experiments south of 60◦S, suggesting

uncertainties in imposed forcings for the Southern Ocean, particularly with regard to the

REF NCEP/NCAR forcing. Indeed, NCEP/NCAR reanalysis data has known biases in

its representation of westerly winds over the Southern Ocean which have been attributed

elsewhere to spurious trends in simulated biogeochemical variables for the historical period

(e.g. Laufkötter et al., 2013). Overall, in this study the largest ∆[O2]EXP−REF values
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are found within the tropics and at mid- to high latitudes, suggesting that uncertainties in

atmospheric forcing are largest in these regions.

3.5 Discussion and summary

To date, much research has focused on understanding the impact of biogeochemical

(Tagliabue et al., 2011; Oschlies et al., 2008; Matear and Lenton, 2014) and physical (Bopp

et al., 2013; Cocco et al., 2013) processes in OBGCMs on simulated future climate-driven

perturbation to the global oxygen inventory. This work, rather, aims to better constrain the

implications of the interrelated physical-biogeochemical drivers for [O2] dynamics over

the historical period, towards reconciling the well-documented (cf. Keeling et al., 2010;

Stramma et al., 2012a) discrepancies between model-simulated and observed [O2] changes.

To this end, state-of-the-art OBGCM ocean-only experiments conducted in this study

reveal that the sign and magnitude of [O2] change over the last∼ 50 years depend critically

on parameter choices made regarding ocean carbon cycle feedbacks and prescribed air-sea

fluxes of heat, water and momentum.

Specifically, across the range of PlankTOM10-NEMO3.1 experiments analysed herein,

differences in historical zonal mean thermocline [O2] change of more than ± 20µmol L−1

are found to be associated with the inclusion of physical-biogeochemical modifications.

Given that the observed signal of zonal mean deoxygenation between ∼ 1970 and ∼

1992 (100 – 3000 m depth) reaches a maxima of ∼ 12µmol L−1 within mid- to high-

latitude regions of water renewal (see Chapter 2; Fig. 2.3), the appropriate representation

in OBGCMs of processes described in this work could provide significant potential for

improved model-data agreement in terms of the sign and magnitude of simulated [O2]

change. However, a quantitative appraisal of model-data agreement, in terms of absolute

trends in hindcast variables (sensu Chapter 2; Chapter 4), is beyond the scope of this

analysis. Such an assessment would require a series of computationally expensive (> 1000

year) spin-up integrations to remove non-equilibrium artefacts, since persistent drifts in

the [O2] fields of ESMs have the potential to dominate any externally-forced historical

response (Gupta et al., 2013). Instead, for a comprehensive evaluation of steady-state

PlankTOM5 and PlankTOM10 model skill in terms of reproducing observed global-scale

bulk properties (including surface [O2], [DIC] and chlorophyll) please refer to the recent
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Figure 3.10: Change in upper thermocline [O2] (µmol L−1) at 300 m depth between 1960 – 1965
and 2000 – 2005 from historical (A) CORE2, (B) DFS4 and (C) IPSL model experiments (EXP),
expressed relative to REF (∆[O2]EXP−REF ; blue colours indicate historical deoxygenation
relative to REF). (D) Changes presented as depth averaged, zonal mean ∆[O2] relative to REF
(CORE2 = red; DFS4 = green; IPSL = blue).

ocean biogeochemistry model inter-comparison of Kwiatkowski et al. (2014). Nonetheless,

using a sensitivity study approach, this work indicates that the largest magnitude of

uncertainty in [O2] is entrained into hindcast experiments due to choices made regarding

stoichiometric effects in organic carbon fixation (Sect. 3.4.1.2) and imposed atmospheric

forcing (Sect. 3.4.2.2).

In this analysis, explicit representation of observationally-based ocean acidification

impacts on photosynthetic carbon drawdown yields major changes to the spatiotemporal

distribution of OBGCM simulated POC export and, consequently, subsurface O2 utilisation.

Notably, historical POC export changes associated with the inclusion of a pCO2-sensitive

C:N ratio are similar in magnitude but differ in sign to the absolute historical changes

predicted by current fixed stoichiometry models as a result of secular ocean warming. For

example, Laufkötter et al. (2013) report zonal mean POC export decreases at 100 m of ∼

0.5 mol C m−2 y−1 for much of the extrapolar ocean between 1960 and 2006 in hindcast

simulations of the CCSM3-BEC model. Comparatively, the inclusion of a pCO2-sensitive

C:N ratio in this study yields global increases in POC export of > 0.3 mol C m−2 y−1,
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suggesting that stoichiometric effects could act to compensate a significant component

of the “direct” climate-driven reduction in export production. Thus, as highlighted by

Tagliabue et al. (2011), the inclusion of stoichiometric plasticity in the next generation

of ESMs could alter the classical view that historical (Laufkötter et al., 2013) and future

(Steinacher et al., 2010; Bopp et al., 2013) anthropogenic forcing drives a simulated

reduction in global marine production, the observational basis for which remains contested

(e.g. Boyce et al., 2010; Rykaczewski and Dunne, 2011). Equally, Laufkötter et al. (2013)

report increases in POC export of up to 0.6 mol C m−2 y−1 in subpolar (light-limited)

regimes, associated with historical density stratification increases in their hindcast model

(cf. Bopp et al., 2001). In this case, the inclusion of ocean acidification effects on organic

carbon drawdown could act to amplify secular increases in POC export change associated

with ocean warming, with subpolar export production increasing by up to ∼ 0.5 mol C

m−2 y−1 in STO10 relative to the reference experiment.

A strengthened “soft tissue” pump associated with the inclusion of pCO2-sensitive C:N

ratio also drives major changes to simulated remineralisation within the ocean interior, as

evidenced by stronger gradients in [DIC] and [O2] relative to the reference configuration.

Coeval subsurface [O2] decreases and a reduction to the global inventory of O2 are

consistent with model projections which include pCO2-sensitive C:N ratios in carbon

fixation (e.g. Oschlies et al., 2008; Tagliabue et al., 2011). However, counter to these model

experiments, the spatial pattern of [O2] decrease associated with carbon overconsumption

in this study follows the absolute fingerprint of (observed) ventilation-driven deoxygenation

(see Chapter 2). As such, the most pronounced O2 depletion occurs at mid- to high latitudes,

rather than focused within the tropical OMZs. This result does not, therefore, support

the suggestion (e.g. Keeling et al., 2010; Ciais et al., 2014) that inclusion of a pCO2-

sensitive C:N ratio in carbon fixation would invoke a net deoxygenation of the tropical

thermocline for the historical period, in agreement with recent hindcast (Stramma et al.,

2012a) and prognostic (Matear and Lenton, 2014) ESM experiments which include variable

stoichiometry. Rather, stoichiometric effects in response to historical ocean acidification

are shown here to bring about elevated oxygen depletion in mid- to high-latitude regions of

water renewal, thus providing a biogeochemical amplifier for (chiefly) physically driven

simulated [O2] changes (e.g. Bopp et al., 2013). Accordingly, the inclusion of this process
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in the next generation of ESMs could act to reduce the discrepancy between observed (Helm

et al., 2011) and more muted ESM simulated historical deoxygenation trends. Specifically,

Helm et al. (2011) report an area mean observed [O2] decrease of 0.9µmol L−1 between

∼ 1970 and ∼ 1992 (100 – 1000 m), compared to a global decrease of 0.7µmol L−1 as

simulated by the CMIP5 HadGEM2-ES ESM (see Chapter 2) over the same depth-time

interval. Stoichiometric effects alone account for a model simulated historical [O2] decrease

of 0.2µmol L−1 between 100 – 1000 m when compared to the reference configuration in

this study, such that this process could provide an important mechanism for bringing ESM

trends within the uncertainty bounds of the observed changes (see Fig. 2.3). Additionally,

consistent with prognostic model studies, the inclusion of a pCO2-sensitive C:N ratio

produces an increase in the simulated volume of low-O2 waters. Further expansion of

suboxic and hypoxic water bodies in response to anthropogenic forcing has important

implications for the global marine nitrogen cycle, with a coeval increase in denitrification

rates (34 %; 0 – 2000 m) associated with the elevated consumption of nitrate (NO3
2−) in

microbial decomposition of organic material under suboxic conditions (e.g. Gruber, 2008).

Although, consistent with a smaller imposed pCO2 forcing, the magnitude of suboxic

volume increase simulated for the historical period (2 % for 2013) is smaller than that

projected for 2100 in variable stoichiometry models (36 – 50 % [Tagliabue et al., 2011;

Oschlies et al., 2008]).

As noted by Matear and McNeill (2009), however, caution is required when extrapolat-

ing the results of mesocosm experiments carried out with one natural plankton assemblage

(Riebesell et al., 2007) to the global scale for all phytoplankton taxa and biogeographical

provinces. To this end, a review of experimental evidence carried out by Hutchins et

al. (2009) highlights that, despite good agreement within unialgal cultures towards elevated

C:N ratios in response to acidification, reported stoichiometric changes within CO2 manip-

ulation experiments carried out on natural plankton communities are much more variable.

Differences between results are attributed in part to changing experimental practice, such

as “batch-mode” versus continuous culture incubation methods. However, a number of

external biological factors are also invoked to explain the inconsistent response of natural

assemblages to elevated pCO2, including differing zooplankton grazing rates or commu-

nity composition between oceanographic regimes. For instance, Thingstad et al. (2008)
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demonstrate for the Arctic pelagic ecosystem that elemental stoichiometry changes within

phytoplankton biomass depend critically on the nature of growth-limiting factors within

the heterotrophic community.

Comparatively, biogeochemical experiments which account for pCO2-driven pertur-

bation to biogeonic calcification rates are shown here to have only a negligible impact

on [O2] dynamics for the historical period. However, as highlighted by Ridgwell et

al. (2009), unresolved questions regarding the observed “form and sensitivity” of ocean

acidification impacts on calcification introduce significant uncertainties into the param-

eterisations adopted in global models such as PlankTOM10. Moreover, the impact of

ocean acidification on the “PIC:POC rain ratio” must be considered alongside other ex-

ternal influences on the biological pump, particularly changes in export production in

response to ocean warming (Steinacher et al., 2010; Bopp et al., 2013). For instance,

model simulated historical (Laufkötter et al., 2013) and future (Steinacher et al., 2010;

Bopp et al., 2013) reductions in overall export production associated with increased density

stratification may act to moderate the impact of any acidification driven reductions in

CaCO3 production on EXPCaCO3 /EXPPOC . Although, whilst this study suggests that

interactive pCO2-calcification effects may be less important for biogeochemical cycles

over the historical period, these processes may remain relevant on centennial (Heinze,

2004) and millennial (Hofmann and Schellnhuber, 2009) timescales.

Imposed atmospheric forcing is also shown in this study to play a major role in

modulating both interannual variability and historical changes in subsurface [O2] as

simulated by the hindcast PlankTOM10-NEMO3.1 model. Particularly, in agreement

with forced ocean model results of Friedrich et al. (2006) for the North Atlantic, simulated

interannual variability in O2 is shown here to be primarily controlled by heat fluxes

(σθ) in extratropical (mainly subpolar) regions and wind stress (σwspd) in the tropics. In

terms of historical changes, the largest inter-forcing data differences in simulated [O2]

also occur at mid- to high latitudes and within the tropics. Large uncertainties between

prescribed meteorological datasets in these regions propagate into simulated thermocline

[O2], consistent with a recent inter-comparison of surface reanalysis data, which attributes

elevated multiproduct inconsistency in the tropics and extratropics chiefly to wind stress

and heat flux uncertainties, respectively (Chaudhuri et al., 2013). The important role of
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tropical zonal wind stress in controlling variations in model simulated low-O2 water bodies

has been demonstrated in recent work carried out the UVic EMIC (Ridder and England,

2014) and GFDL Generalised Ocean Layer Model (GOLD; Deutsch et al., 2014), providing

further motivation for the provision of appropriate wind forcing to ocean-only models

investigating O2 dynamics.

Overall, an important outcome of this study is the demonstration that using different

atmospheric forcing products to provide surface fluxes of heat, water and momentum

to an ocean model can produce markedly different interannual variability and historical

changes in simulated [O2] fields, particularly within the tropics. The sensitivity of ocean

biogeochemical variables to imposed atmospheric boundary conditions is supported by

other recent model studies which analyse historical ocean carbon cycle changes under

different meteorological forcings (Swart et al., 2014; Ishi et al., 2014). One significant

implication of this work, therefore, is that whilst all atmospheric forcing products used

here provide surface fluxes which are a priori representative of observed changes in

meteorological variables (aside from IPSL), data choices still place major constraints

on simulated changes in ocean properties. As such, further work is required to better

understand the biases in atmospheric forcing datasets provided to the ocean modelling

community, both in terms of comparing meteorological fields (e.g. Chauduri et al., 2013)

and assessing how uncertainties in these prescribed forcings (and bulk formulae) impact

upon the evolution of hindcast variables.

Towards this objective, the Coordinated Ocean-ice Reference Experiments (COREs)

project proposes a standard protocol for running hindcast ocean-ice models, emphasising

the need for models to be integrated using different atmospheric forcings in order to

“assess implications on the ocean and sea ice climate of various atmospheric reanalysis or

observational products” (Griffies et al., 2009). However, the majority of recent physical (e.g.

Dansbasoglu et al., 2014) and biogeochemical (e.g. Kwiatkowski et al, 2014) multi-model

hindcast studies remain focused on investigating the implications of a common atmospheric

forcing for a range of ocean models. As argued here, this approach lends credence to

the misconception that all data products provide an equally appropriate representation of

historical changes in observed air-sea fluxes. Thus, a multifaceted approach is required in

order to better evaluate surface meteorological data products, involving both multi-model



3.5 Discussion and summary 98

inter-comparison under a common atmospheric forcing (e.g. COREv2-IAF; Danabasoglu

et al., 2014) and ensembles of different atmospheric forcing experiments using a common

ocean model (e.g. Mathiot et al., 2008).





Chapter 4

Fingerprints of Ocean

Deoxygenation in the North Sea

This chapter is presented as a ‘scoping report’ which has contributed to a collaborative

research project between the Tyndall Centre for Climate Change Research and the Centre

for Environment, Fisheries and Aquaculture Science (CEFAS): Fingerprints of Ocean

Deoxygenation in the North Sea (FODINS).



4.1 Introduction 101

4.1 Introduction

Coastal and shelf seas are a vital component of the marine ecosystem, accounting for up

to 30 % of total ocean primary production (Longhurst et al., 1995; Gattuso et al., 1998;

Walsh, 1991) and providing ∼ 90 % of global fish catches (Pauly et al., 2002). To this

end, coastal and shelf seas have been identified as an important repository of provisioning

(e.g. fisheries), regulating (e.g. carbon sequestration), supporting (e.g. marine habitats)

and cultural (e.g. recreation) ecosystem services (Millennium Ecosystem Assessment,

2005; Hoegh-Guldberg et al., 2014). These regions are also useful “natural laboratories”

for examining anthropogenic perturbation to marine systems, owing to the dominant

influence of external forcings from atmospheric, oceanic and terrestrial sources on trends

and variability of ecologically relevant variables in marginal seas (Holt et al., 2010; Zhang

et al., 2010). [O2] is a useful metric for interrogating the competing roles of external and

internal processes in driving physical and biogeochemical change (e.g. Andrews et al.,

2013; Chapter 2; Sect. 1.3) and is also an important indicator of Ecological Quality in

shelf seas (Painting et al., 2005).

Oxygen depletion occurs in subsurface water masses where the rate of organic carbon

remineralisation exceeds that at which oxygen is re-supplied through ventilation and biolog-

ical production processes (Peña et al., 2010). Low [O2] conditions, or hypoxia, can occur

naturally on a variety of spatiotemporal scales (Kemp et al., 2009), ranging from episodic

or seasonal events within fjords or inland seas through to the large (> 100,000 km2), per-

manent OMZs of Eastern Boundary Upwelling Systems (Fig. 4.1). In near-shore regimes

eutrophication-driven hypoxic areas have developed in response to elevated nutrient and

organic carbon loadings from anthropogenic sources (Rabalais et al., 2009; Rabalais et

al., 2010). There is strong evidence that these “dead zones” have expanded significantly

since the 1960s in response to elevated coastal eutrophication, such that over 400 hypoxic

systems now affect an area of more than 245,000 km2 (Diaz and Rosenberg, 2008). Whilst

reported historical [O2] decreases are largest in the coastal zone (Gilbert et al., 2010),

secular declines in [O2] have also been recorded in the open ocean over the last 50 years

(Keeling et al., 2010). Open ocean deoxygenation has been attributed to historical an-

thropogenic global ocean warming via increased density stratification and reduced O2

solubility at higher temperatures (Helm et al., 2011; Andrews et al., 2013).
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Fig. 5 Fig. 5. A synthesis of the variability of temporal and spatial and ty-
pological categories for environments with hypoxia. The scales are
without units but go from lower to higher. The red and green colors
represent the relative ratio of human versus natural influences, re-
spectively. As human influences increase in shallower waters to the
coastal ocean, there are more ecosystem effects. Upwelling areas
and OMZs are primarily natural, but human activities that indirectly
affect global climate change are also affecting these areas. OMZs
are the largest, most persistent and natural oxygen-depleted areas
in the world’s ocean and have the greatest ecosystem changes rela-
tive to oxygen conditions, but these are the result of adaptation over
geologic time.

or to persistent year-round hypoxia. Near coastal systems
linked to climate modes like El Niño Southern Oscillation
can also develop severe hypoxia when modes are shifted.
The ecosystems in which hypoxia occurs range from inshore
estuaries, through the coastal ocean and into ocean waters,
over depths of 1- to 2-m in estuaries to 600- to 700-m in the
open ocean and vary in physiography, physical processes, or-
ganic and nutrient loading, and ecosystem structure. Over
this range of ecosystems there is also a pattern in factors that
lead to development of hypoxia. Anthropogenic factors are
responsible for virtually all hypoxia in estuaries and on in-
ner continental shelves, and have worsened dissolved oxygen
conditions in many fjords. Outer shelf and slope hypoxia is
all driven by natural factors; however, global climate change
(GCC) related to human activities may become a factor in the
near future. The richness of temporal and spatial scales helps
us understand the basic dynamics of hypoxia, changes in re-
lation to anthropogenic and climate forcing, and the potential
for recovery of ecosystems from hypoxia. Overall there is an
increase in ecosystem level effects as hypoxia increases in
duration and develops over larger areas. These effects range
from altered energy flows to disruptions in biogeochemical
cycling. Larger systems tend to have hypoxia for longer pe-
riods of time, exceptions being fjord like systems.

The combination of physical, chemical, and biological
processes that lead to hypoxia differs in magnitude and im-
portance by water body, but there is one basic response. Hy-
poxia, or oxygen deficiency, occurs when the amount of dis-
solved oxygen in the water column is decreased by the pro-
cess of respiration at a faster rate than resupply through air-
sea exchange, photosynthetic production of oxygen, or ad-
vection. Hypoxia is usually associated with a density bar-
rier, caused by temperature, salinity or both that prevents the
diffusion of oxygen from a higher concentration layer to a
lower concentration layer, but may occur without stratifica-
tion in a smaller, highly eutrophic system, typical in the form
of diel-cycling hypoxia (Flindt et al., 1997; Irigoien, 1999;
Tyler et al., 2009), or in larger systems that have intense het-
erotrophic activity (Verity et al., 2006). Hypoxia may also
be “introduced” by advection of low-oxygen source waters.
In the eastern Pacific, changes in input of intermediate, low-
oxygen water masses contribute to temporal observations of
oxygen declines (Chan et al., 2008; Bograd et al., 2008). The
Yaquina Bay system in Oregon, USA, experiences episodes
of hypoxia when low dissolved oxygen water is advected into
the system from the continental shelf (Brown et al., 2007).
In Dokai and Ise Bays, Japan (Nakata et al., 1997; Ueda et
al., 2000) and Chesapeake Bay, USA (Breitburg, 1992), lo-
cal winds drive advection of seasonally hypoxic deep waters
into shallow areas that reduce shellfish populations.
The carbon source that fuels the respiratory reduction

of oxygen most often originates from settled phytoplank-
ton production (autochthonous), but may have a natural
terrestrial source (allochthonous) or be from discharge of
sewage/industrial waste. Settled phytoplankton production
in the form of senescent cells, zooplankton fecal pellets or
marine aggregates will settle at a density gradient, as is the
case with oxygen minimum zones and subsurface oxygen
minima (e.g., off productive river deltas). In other instances
the organic carbon sinks to the seabed in shallower waters,
where the respiratory decomposition depletes the oxygen in
the water column below a strong density gradient.
Human-induced coastal hypoxia is a symptom of eutroph-

ication, the increase in the rate of carbon production and
carbon accumulation in an aquatic ecosystem (Nixon, 1995;
Grall and Chauvaud, 2002). Eutrophication was initially a
description for the natural aging process of freshwater sys-
tems, but has more recently been applied to estuarine and
coastal systems. As noted above, the source of the in-
creased organic carbon may come from within the system
(autochthonous) or from outside the system (allochthonous).
This distinction is relevant when management strategies are
developed to reverse eutrophication, and its negative symp-
toms such as hypoxia, and to identify the sources and mech-
anisms of carbon accumulation. For example, a coastal
system could become eutrophic from an increased delivery
of organic carbon from terrestrial sources or from nutrient-
enhanced primary production resulting from increased nutri-
ent loads or from a combination of both sources. Reducing
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Figure 4.1: Summary of spatiotemporal variability in hypoxic systems from Rabalais et al. (2010).
Green and red colours indicate the relative roles of (direct) natural and anthropogenic influences on
hypoxia in each environment, respectively. However, indirect drivers of oxygen depletion such as
climate change may also influence hypoxia.

Hypoxic waters (typically defined as [O2] <∼ 60µmol kg−1) [Gray et al., 2002])

occupy ∼ 5 % of the modern ocean by volume (Deutsch et al., 2011) and represent a

threshold below which negative behavioural or physiological responses are elicited in

marine organisms (Rabalais et al., 2010). However, responses to low-O2 conditions vary

considerably between taxa, such that the conventional hypoxic boundary of∼ 60µmol kg−1

exceeds the empirical sub-lethal and lethal limit for 50 % of marine benthic organisms

(Vaquer-Sunyer and Duarte, 2008). As such, when appraising [O2] depletion in this

analysis, thresholds for negative ecological impacts of hypoxia are considered to range

from 125–190µmol L−1, in accordance with Ecological Quality objectives set by the Oslo

and Paris Commission (OSPAR) for coastal and offshore waters of England and Wales

(Painting et al., 2005).

This study focuses on [O2] changes in the North Sea; a semi-enclosed basin on
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the north-west European continental shelf with an open northern boundary to the North

Atlantic Ocean. In the North Sea a general cyclonic circulation is dominated by southward

propagation of warm, saline inflow from the North Atlantic (e.g. Winther and Johannessen,

2006) however other water masses, particularly low salinity Skaggerak water derived from

Baltic outflow, also contribute to the region’s hydrography. The North Sea is relatively

shallow, with two thirds of the basin less than 100 m in depth (see model bathymetry in

Sect. 4.2.2). As a result, much of the southern North Sea is well mixed year round due

to a strong tidal influence. However, deeper central and northern areas stratify thermally

in the summer months as air temperatures rise. Figure 4.2 highlights areas of permanent

stratification, predominantly the Norwegian Trench region in the northeast, where low

salinity Baltic outflow drives year-round haline stratification and isolation of denser bottom

waters. Stratified regions of the North Sea provide conditions conducive to seasonal [O2]

depletion in bottom waters (Weston et al., 2008). Significant export of organic material

driven by a spring bloom is accompanied by limited ventilation of the interior due to the

development of a stable pycnocline and weak horizontal advection, allowing for biological

oxygen utilisation to persist (Kemp et al., 2009).

There is a general lack of published work addressing the potential for hypoxia in

bottom waters of the North Sea, with the majority of studies focusing on the coastal

zone (Colijn et al., 2002). Recently, however, measured bottom water O2 concentrations

have declined to minima of 162µmol L−1 and 203µmol L−1 prior to the cessation of

summer stratification at two moorings in the central North Sea (Greenwood et al., 2010).

Moreover, Weston et al. (2008) report minimum [O2] of 64.7µmol L−1 within the Oyster

Grounds region of the seasonally stratified North Sea following an exceptionally warm

summer. Results from a hydrographic survey in August 2010 provide further support for

substantial seasonal O2 depletion ([O2] ≤ 200µmol L−1) in bottom waters of the stratified

North Sea (Queste et al., 2012). Significantly, observed summer oxygen concentrations of

less than 200µmol L−1 could indicate that Ecological Quality objectives set by OSPAR

to avoid negative ecological impacts of low-O2 conditions ([O2] > 125–190µmol L−1)

are not being met in some offshore regions of the North Sea. These studies highlight

the importance of coupled climate-ocean processes, particularly stratification and direct

solubility effects, in determining the propensity for oxygen depletion in the North Sea.
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Figure 4.2: Dominant hydrodynamic regimes in the North Sea (time median) as simulated by the
hindcast GETM-ERSEM simulation used in this study (adapted from van Leeuwen et al. [2014];
Sect. 4.2.2). White shading indicates that the dominant regime is present for < 50 % of model
years; highlighting transitional areas with variable hydrodynamic characteristics. ROFI = Regions
of Fresh Water Influence. The locations of important regions are also highlighted (EC = English
Channel, GB = German Bight, DB = Dogger Bank, SK = Skagerrak, NT = Norwegian Trench).

UK Climate Projections (Lowe et al., 2009) and forced simulations using the Proudman

Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS; Holt et al.,

2010) suggest that for an SRES A1B emissions scenario, the North Sea will experience

future increases in the duration and intensity of stratification, conceivably increasing

seasonal oxygen utilisation and leading to further bottom oxygen depletion (Keeling et al.,

2010).

Coastal time series records (MacKenzie and Schiedek, 2007) and satellite remote

sensing observations (Good et al., 2007) show considerable sea surface temperature (SST)

warming in the North Sea since the 1980s, at three times the rate of the global mean trend.
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This is supported by a recent analysis of Large Marine Ecosystems (LMEs) using U.K Met

Office Hadley Centre SST (HadSST2) data that found the most rapid SST warming (> 1◦C)

for the period 1982–2006 occurred within the marginal European seas, when compared

to other LMEs globally (Belkin, 2009; Fig. 4.3). Superimposed upon this rapid warming

trend, time series measurements also indicate that summer North Sea SSTs have risen 2–5

times faster than those in other seasons (MacKenzie and Schidek, 2007), with implications

for seasonal pycnocline development. To this end, Holt et al. (2012) demonstrate using

a hindcast simulation of the POLCOMS regional model that surface warming trends in

the seasonally stratified North Sea exceed those at depth, suggesting an increase in the

strength of stratification over the historical period. However, these simulated changes are

not validated with observations due to the lack of seasonally resolved temperature data

in the analysis. Coeval with rapid surface warming, historical records derived from the

International Council for the Exploration of the Sea (ICES) database show significant

decreases in summer bottom water [O2] of the stratified North Sea from 1990 onwards

(Queste et al., 2012). However, the contribution of historical warming (via solubility

and stratification) relative to internal changes driven predominantly by the North Atlantic

Oscillation (NAO; Sharples et al., 2006) is yet to be determined.

The aim of this study is to use an integrative approach, bringing together information

from historical data (Sect. 4.2.1) and a hindcast regional ocean biogeochemistry model

(Sect. 4.2.2), to assess the detectability of trends in North Sea [O2] and temperature relative

to natural internal variability.

4.2 Methods

4.2.1 Data

In this study we use a collation of historical temperature, salinity and [O2] data from the

ICES oceanographic database for the North Sea, as presented by Queste et al. (2012).

CTD and bottle data containing [O2], pressure, temperature and salinity for the period

1959–2006 were processed to retain only summer values (June–September) and binned

into ICES regular grid squares following Berx and Hughes (2009). Consistent with Queste

et al. (2012) a mean value for the bottom third of the water column is taken, which provides
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Gyre (Baffin Bay, Labrador Sea, and Irminger Sea) was dominated
by strong and persistent cold northwestern winds from the Cana-
dian Arctic. Once the NAO index flipped in 1995–1996, these cold
winds collapsed and a milder climate set up over the Subarctic
Gyre and adjacent shelves of West Greenland and Canadian Mari-
times. This dramatic climate shift also affected the Iceland Shelf,
Faroe Plateau, and Norwegian Sea, owing in part to advection by
the Irminger Current, North Atlantic Current, and Norwegian
Atlantic Current, respectively.

The rapid warming in Clusters 2 and 3 might have had a differ-
ent origin. Nearly all these seas are situated between land masses
that have undergone rapid warming since 1979 (Trenberth et al.,
2007, p. 253, Fig. 1, bottom left). This very proximity and the
semi-enclosed or land-locked nature of these seas suggest a possi-
bility that the rapid warming in Clusters 2 and 3 might have been
caused in part by the nearby land warming (natural or anthropo-
genic). Indeed, surface air temperature in Europe, Middle East,
and East Asia increased in 1979–2005 at rates between 0.35–
0.75 !C/decade or 2–4 times the global mean surface temperature

warming rate of 0.177 ± 0.052 !C/decade between 1981 and 2005
(Trenberth et al., 2007, p. 253). Also, the LMEs from Clusters 2
and 3, except the Red Sea, are adjacent to heavily populated indus-
trialized countries, suggesting that the rapid warming in the land-
locked and semi-enclosed European and East Asian LMEs may in
part be of direct anthropogenic origin.

4.7. Freshwater runoff and rapid warming of coastal seas

The most rapid warming in Clusters 2 and 3 occurred in those
LMEs whose salinity regime is significantly affected by freshwater
runoff, e.g. the North Sea, Baltic Sea, Black Sea (primarily its sizable
Northwest Shelf), and East China Sea. In these LMEs, river runoff in
spring–summer creates a buoyant surface layer that traps solar
radiation, thereby enhancing vertical stratification through posi-
tive feedback. Therefore, SST in such LMEs is strongly affected by
river runoff. For example, the Yangtze (Changjiang) River dis-
charges !800 Gt/year of fresh water to the East China Sea, creating
a buoyant plume spreading across the sea. In summer, positive
temperature differential between the warm plume and colder off-
shore water further enhances vertical stratification and solar heat
trapping by the upper layer. The Yangtze River runoff is an impor-
tant seasonal heat source to the East China Sea since (a) the river
runoff peaks during summer when riverine water is warmer than
offshore water (Zhang et al., 2007; Yang, in press), and (b) stream
temperature in the Yangtze Estuary increased by !2 !C since 1986
(Zhou et al., 2005), thereby contributing to the extremely rapid
warming observed in the western East China Sea (Ho et al., 2004)
(Fig. 4).

It is particularly important that freshwater runoff from the sur-
rounding land masses can affect the coastal ocean SST indirectly, by
enhancing stratification (=vertical density gradient), thereby
enhancing the upper mixed layer’s ability to trap solar radiation.
In fact, this mechanism seems to be much more important than
heat transport by river plumes. Indeed, most river plumes would
only act as heat sources during a certain season, when the plume
is warmer than the coastal sea. For example, the Danube River
Plume acts as heat source for the Black Sea during two spring
months when the Danube discharge is warmer than the surface

Fig. 2. Net SST change (!C) in Large Marine Ecosystems, 1982–2006. Rapid warming (red and pink) is observed around the North Atlantic Subarctic Gyre, in the European Seas,
and in the East Asian Seas. The Indian Ocean LMEs and Australian–Indonesian seas warmed at slow rates. The California and Humboldt Current LMEs cooled.
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Fig. 3. Comparison of SST warming rates in Large Marine Ecosystems (this study,
1982–2006) with the IPCC-2007 global mean SST warming rate, 1979–2005
(Trenberth et al., 2007). Color palette is the same as in Fig. 2.
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Figure 4.3: Net SST change (◦C) from HadSST2 data (1982 - 2006) for a range of Large Marine
Ecosystems. Reproduced with permission from Belkin (2009).

an estimate of the Bottom Mixed Layer (BML) in the summer stratified North Sea whilst

also allowing measurements taken within the well-mixed southern North Sea to be retained.

Data has been filtered to remove those grid boxes where summer values include fewer than

5 data points (n < 5), with additional masking of data to omit grid cells not sampled by

the GETM-ERSEM model (see Section 4.2.2). As part of this analysis, data has also been

processed to generate a regularly gridded netCDF product from which to derive a testable

pattern of historical temperature and [O2] change (‘fingerprint’). Salinity fields are also

included in the model validation (Sect. 4.3.1 and Sect. 4.3.2) due to the central role of

active tracers in controlling model hydrography and ventilation processes. However, trends

in summer BML salinity are not considered since this work focuses on historical trends in

properties that are strongly constrained by the annual cycle of surface forcing rather than

the slower ocean - shelf exchange processes (e.g. Holt et al., 2010).

4.2.2 North Sea ecosystem model

A 50-year (1959–2006) hindcast run of the physical - biogeochemical model GETM-

ERSEM, applied to the North Sea region (van Leeuwen et al., 2013; http://www.nioz.

nl/northsea_model), is used in this study to provide a model [O2] response pattern

along with temperature and salinity fields. The full North Sea GETM-ERSEM model
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domain and bathymetry is presented in Figure 4.4. GETM-ERSEM comprises the Gen-

eral Estuarine Transport Model (GETM; Stips et al., 2004; Burchard and Bolding, 2002;

http://www.getm.eu) coupled to the European Regional Seas Ecosystem Model

(ERSEM; Baretta et al., 1995; Vichi et al., 2004; Blackford et al., 2004), as summarised

in Figure 4.5. GETM is a fully baroclinic 3-D hydrodynamic model, which uses the Gen-

eral Ocean Turbulence Model (GOTM; http://www.gotm.net) for representation of

vertical turbulence structure. The ERSEM model component has been developed from

ERSEM III and the Biogeochemical Flux Model (BFM; http://www.bfm.cmcc.it)

and describes the dynamics of pelagic and benthic biogeochemical fluxes in temperate

seas. ERSEM explicitly simulates the biogeochemical cycles of carbon and oxygen along

with the macronutrients nitrogen, phosphorous and silicon, and includes a functional group

representation of phytoplankton (diatoms, flagellates, picophytoplankton and dinoflagel-

lates), zooplankton (carnivorous and omnivorous mesozooplankton, microzooplankton

and heterotrophic nanoflagellates) and benthos (epibenthos, deposit feeders, filter feeders,

meiobenthos and benthic predators).

In this study, model fields are taken from a hindcast simulation of the GETM-ERSEM

North Sea model configuration, with a spatial resolution of 6 nautical miles and 26 general

coordinate vertical layers (van Leeuwen et al., 2013). Atmospheric forcing for the hindcast

experiment is provided by ECMWF ERA40 6-hourly meteorological data, with model

output being written on a daily basis. Climatological temperature and salinity data are used

as open boundary conditions into the model domain. Fluvial inputs (fresh water, phosphate,

silicate, ammonia and nitrate) are also included from 152 rivers discharging into the Greater

North Sea area. The hindcast experiment was initialised from a previous multi-decadal

GETM-ERSEM simulation in order to achieve quasi-steady state conditions for the benthic

system. Further details of the GETM-ERSEM hindcast simulation can be found in van

Leeuwen et al. (2013) and van Leeuwen et al. (2014). Monthly mean model fields have

been processed in this analysis using Climate Data Operators (CDO) to retain only summer

values (June–September) from each year, averaging model output for the bottom third of

the water column for each grid cell (representing the BML). GETM-ERSEM data has also

been interpolated from its native grid onto the regular ICES grid and masked to emulate

the pattern of missing values found in the observations (Sect. 4.2.1) in order to provide a
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Figure 4.4: Full domain and bathymetry (metres depth) of the GETM-ERSEM hydrodynamic-
biogeochemical model, as applied to the North Sea region.

Figure 4.5: Schematic representation of the GETM-ERSEM model and its constituent physical
and biological components and forcings (NIOZ, 2012).
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consistent spatiotemporal domain for model-data comparison.

4.3 Results

4.3.1 Model-data comparison

Table 4.1 summarises the bias (model minus observations) and Root Mean Squared Error

(RMSE) statistics resulting from comparison of gridded ICES data with the GETM-ERSEM

model hindcast for the full North Sea domain using summer BML ocean properties for the

period 1959–2006. Generally, the model displays some skill at simulating the bulk proper-

ties of observed summer BML temperature and salinity, with mean biases of 0.3◦C and

−0.2 psu respectively. However, summer BML [O2] is considerably underestimated by the

GETM-ERSEM model experiment, yielding a significant negative bias of −36.6µmol L−1

and an elevated RMSE value.

The spatial distributions of observed and simulated variables and their associated error

metrics are shown in Figure 4.6 in order to better constrain the spatial pattern of model-

data agreement. Simulated summer BML temperatures exhibit a small overall warm bias

(Table 4.1). This bias is predominantly driven by model overestimation of the northward

propagating elevated bottom temperatures in the shallow southern North Sea, with a

contribution from an anomalously warm BML in the Skagerrak (Fig. 4.6A–Fig. 4.6D).

Comparatively, model simulated bottom temperatures are generally in good agreement

with the observations in central and northern regions, which are of most importance when

assessing seasonal oxygen depletion in the stratified North Sea. The spatial structure of

summer BML salinity is also generally well simulated by the GETM-ERSEM hindcast

(Fig. 4.6E–Fig. 4.6H). A small overall negative salinity bias can be attributed chiefly to

Variable Mean (observed) Mean model bias RMSE
(model minus observations)

Temperature (◦C) 11.8 0.3 1.8
Salinity (psu) 34.3 −0.2 1.0

[O2] (µmol L−1) 249.9 −36.6 54.3

Table 4.1: Validation of GETM-ERSEM model hindcast for the period 1959–2006 over the full
North Sea domain, using gridded ICES historical data (summer BML temperature, salinity and
oxygen).
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the overestimation of salinity minima in the coastal southern North Sea and Skagerrak

region. Similar model errors have been reported in other studies (e.g. POLCOMS-ERSEM;

Artioli et al. 2012) and are likely to be caused by deficiencies in the parameterisation of

fluvial discharge and Baltic outflow in regional models. In the central and northern North

Sea, RMSE is uniformly low, and the model is able to capture the important southward

propagating tongue of saline (∼ 35 psu) bottom water derived from the North Atlantic.

However the spatial extent of this feature is overestimated in the central North Sea.

Comparatively, hindcast GETM-ERSEM [O2] fields are dominated by an anomalously

low oxygen signal (< 200µmol L−1) emanating from the Skagerrak region (Fig. 4.6I–

Fig. 4.6L). This feature yields a significant negative [O2] bias and large RMSE values

in the Skagerrak, Norwegian Trench and shallow southern North Sea. Whilst generally

lower summer BML [O2] values are observed in the stratified North Sea, this feature is

significantly overestimated by the model and likely to be an artifact of imposed open

boundary conditions which influence the inflow of Baltic water and will have an important

impact on model simulated hydrography in the eastern North Sea. However, the model

reproduces a [O2] gradient of ∼ 60µmol L−1 between the central stratified North Sea and

more oxygenated regions to the northwest as an emergent property. Moreover, RMSE

values are, relatively, lower in regions of interest for historical [O2] depletion events in

the central North Sea, such as north of Dogger Bank (north of ∼ 55◦N) where the model

simulates less hypoxic summer BML waters.

4.3.2 Interannual variability

Interannual variability in BML temperature, salinity and [O2] is investigated in this analysis

by calculating the temporal standard deviation (σ) of annually binned summer ICES data

and contemporaneous masked model fields. Observed and model simulated zonal and

meridional mean standard deviations calculated for the period 1959–2006 are presented

in Figure 4.7. The impact of applying a low-pass filter in order to isolate interannual

variability from long-term trends on patterns of observed variability was found to be small

(results not shown). As a result, unfiltered data are used here to compare observed and

model simulated variability at all scales. However, linearly de-trended model fields are

plotted in Figure 4.8 to investigate model representation of interannual variability since
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Figure 4.6: Comparison of observed and model simulated summer (June–Sept) BML temperature
(A-D; ◦C), salinity (E–H; psu) and [O2] (I–L; µmol L−1) for the period 1959–2006.
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linear trends can be more appropriately fitted to spatiotemporally complete unmasked

model fields.

Patterns of interannual variability are generally similar between observations and model

data, with the meridional and zonal mean structure of variability being reproduced by

GETM-ERSEM (Fig. 4.7). For example, both observed and model simulated summer BML

temperatures display elevated interannual variability between 52–55◦N (Fig. 4.7A), and

reach their zonal maxima at ∼ 8◦E (Fig. 4.7B; spatial correlation [r2] = 0.36). Observed

spatial patterns of variability in summer BML salinity are also well represented by the

GETM-ERSEM simulation (spatial correlation [r2] = 0.48). Particularly, elevated inter-

annual variability is observed and simulated in the south-eastern North Sea for summer

BML salinity where GETM-ERSEM captures the meridional mean peak in variability

of ∼ 0.5 psu at 8–9◦E. Comparatively, the observed pattern of interannual variability in

summer BML [O2] is captured less successfully by the model simulation, with an overall

spatial correlation (r2) of 0.16. However, the observed zonal mean structure of interannual

variability is reproduced to some extent, with the model simulating increased variability

in the central North Sea and reaching a maxima between 54–55◦N. The model does not

capture the observed meridional mean structure of summer BML [O2] variability (a model

error that contributes significantly to the low overall spatial correlation).

Importantly, however, whilst the GETM-ERSEM hindcast exhibits reasonable qualita-

tive agreement in terms of the zonal and meridional patterns of interannual variability, the

magnitude of variability is consistently underestimated by the GETM-ERSEM hindcast

for all variables. This suggests that model information regarding the spatial structure,

rather than absolute magnitude, of variability may be of more use when investigating

externally driven changes in North Sea BML properties (Fig. 4.8). However, elevated noise

within sampled observations could also contribute to this discrepancy, when compared to

smoother “true” monthly mean fields provided by the model.

Figure 4.8 shows the simulated spatial pattern of interannual variability derived from

linearly de-trended summer BML temperature, salinity and [O2] fields. Consistent with

meridional and zonal mean patterns, simulated BML temperature variability reaches a

maximum in the southern and eastern North Sea (Fig. 4.8A). This elevated interannual

variability can be related to strongly variable frontal positions, particularly in the German
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Figure 4.7: Interannual variability (σ) in observed (black) and model simulated (red) summer BML
temperature (A–B; ◦C), salinity (C–D; psu) and [O2] (E–F; µmol L−1) for the period 1959–2006.

Bight where there is a strong riverine influence and relatively weaker tides (e.g. Holt et al.,

2012). As highlighted by van Leeuwen et al. (2014) this region is an important transition

zone between model simulated hydrodynamic regimes, characterised as exhibiting both

periodic seasonal stratification and dominant fresh water influence (ROFI) over the course

of the hindcast (Fig. 4.2). Similarly, modelled interannual variability in BML salinity

is largest in the south-eastern North Sea, however this variability intensifies within the

permanently mixed coastal zone (Fig. 4.8B). Considerable interannual variability in this

region is likely to be coupled to variability of riverine fluxes driven by precipitation

patterns within the German Bight. The structure of simulated interannual variability in

bottom [O2] is, comparatively, more complex (Fig. 4.8C). Consistent with temperature and

salinity patterns, BML [O2] variability reaches its maximum extent in the southern and

eastern North Sea. However, elevated interannual variability in summer BML [O2] is also

simulated in the north-eastern North Sea, along the boundary between the central North

Sea and Norwegian trench region. This variability coincides with an important transition
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Figure 4.8: Interannual variability (σ) in linearly de-trended GETM-ERSEM simulated summer
BML temperature (A; ◦C), salinity (B; psu) and [O2] (C; µmol L−1).
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zone between hydrodynamic regimes: displaying both permanent haline stratification due

to saline Baltic outflow (as in the Norwegian trench) and seasonal thermal stratification

(dominant in the central North Sea) over the historical period (Fig. 4.2; van Leeuwen et

al., 2014). Historical transitions between hydrodynamic regimes are therefore found to

be the dominant driver of simulated variability in summer BML [O2] and temperature on

interannual timescales.

4.3.3 Linear trends

Linear trends in modelled and observed summer BML temperature and [O2] for the

period 1959–2006 are shown in Figure 4.9. Observed trends in summer BML temperature

(Fig. 4.9A) show good qualitative agreement with sub-sampled model simulated trends

(Fig. 4.9B), however modelled trends are consistently smaller than observed. Simulated

and observed temperature trends are dominated by warming, with the largest positive

temperature signals (> 0.1 ◦C yr−1) within the well-mixed southern and eastern North Sea.

A smaller, but more uniform, observed warming trend is also reproduced by the model

in the northern North Sea, however data coverage is more limited in this region. GETM-

ERSEM simulates an erroneous cooling trend within the Norwegian Trench, however this

feature has been found to be an artifact of masking model data with observational coverage

(results not shown). The model is able to reproduce observed cooling trends in the English

Channel and in the central North Sea (north of Dogger Bank).

GETM-ERSEM hindcast trends in summer BML [O2] (Fig. 4.9C) are also generally

consistent with ICES data (Fig. 4.9D). In agreement with observations, simulated [O2]

trends are predominantly negative in the summer stratified central and eastern North Sea.

However, as highlighted in historical temperature trends, model-data discrepancies are

evident both in terms of sign and magnitude. For example, within the Norwegian trench

and Skagerrak region GETM-ERSEM simulates positive trends in summer BML [O2]

counter to observed deoxygenation. Also, considerable [O2] increases within English

Channel waters are not reproduced by the model. Consistent with BML temperature trends,

the magnitude of linear trends in summer BML [O2] are generally underestimated by the

model, with an observed area mean linear trend of −0.62µmol L−1 yr−1 compared to a

simulated trend of −0.35µmol L−1 yr−1.
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4.3.4 Signal-to-noise ratio

By combining linear trends (Sect. 4.3.3) with estimates of interannual variability (Sect. 4.3.2)

and model error (Sect. 4.3.1) it is now possible to calculate a ‘signal-to-noise’ ratio (SNR),

which quantifies the detectability of externally forced changes in summer BML temperature

and [O2] relative to natural internal variability and model uncertainty. SNR is calculated at

the 90 % confidence level using the formulation of Holt et al. (2012), following Hawkins

and Sutton (2009):

SNR =
LT

1.65
√

(σ2 + E2)
(4.1)

where, for unmasked model fields, L is the simulated linear trend, T is time (years),

σ2 is variance in summer BML values, and E is model error (taken as the RMSE between

ICES data and model fields, with missing values in-filled using equal weighting nearest

neighbour interpolation). This calculation assumes that model error (E) and internal

variability (σ2) are Gaussian and independent. Additionally, a ‘potential SNR’ is calculated

which assumes zero model error (NoErr; E = 0) following Hawkins and Sutton (2011).

This idealised signal-to-noise-ratio will establish the impact of model uncertainty relative

to internal variability on the detectability of climate signals in BML variables.

The signal-to-noise ratio in simulated summer BML temperature (Fig. 4.10A) is

generally largest (SNR > 0.5) in the central and eastern North Sea coeval with significant

linear warming trends and more muted interannual variability (Fig. 4.8A). Comparatively,

despite large warming trends in the south-eastern North Sea, signal-to-noise ratios in this

region are ∼ 0.5 owing to the combined impact of elevated model RMSE (Fig. 4.6D) and

internal noise associated with variable frontal positions. Figure 4.10C shows ‘potential

SNR’ in summer BML temperature. This metric demonstrates that, particularly in the

south-eastern North Sea, statistically significant (SNR > 1) increases in model detectability

of BML temperature change can be invoked as model uncertainty is reduced.

Equally, model skill plays a major role in determining the detectability of climate

signals in simulated summer BML [O2] (Fig. 4.10B and Fig. 4.10D). Signal-to-noise ratios

in summer BML [O2] are generally low (SNR < 0.2) for much of the North Sea domain

(Fig. 4.10B). However, this deficiency can be mainly attributed to model uncertainty and

elevated RMSE. Since, when compared to the traditional signal-to-noise ratio (Fig. 4.10B),



4.4 Discussion and conclusions 118

major improvements in trend detectability are yielded under the idealised ‘potential SNR’

formulation (Fig. 4.10D). In this case, statistically significant (SNR <−1) decreases in

[O2] can be detected in the central North Sea, with SNR generally between −0.5 and

−1 across much of the model domain. Moreover, consistent with analysis of interannual

variability (Fig. 4.8C), elevated noise along the transitional zones between hydrographic

regimes (e.g. at the margin of the Norwegian Trench and in the German Bight) preclude

positive detection results (SNR < 0.2) despite larger deoxygenation trends.

4.4 Discussion and conclusions

Bringing together historical observations and results from a hindcast 3-D physical biogeo-

chemical model (GETM-ERSEM) this study presents a unique perspective on trends and

variability in North Sea summer BML [O2] and temperature over the last ∼ 50 years. A

central result is that both model simulated and observed summer BML [O2] fields exhibit

historical decreases across much of the summer stratified central North Sea, coeval with a

spatially coherent BML warming trend (Fig. 4.9). This supports recent reports of elevated

summer oxygen depletion associated with strong thermal stratification in the central North

Sea (e.g. Greenwood et al., 2010; Weston et al., 2008) and prognostic modelling work

predicting future increases in the risk of North Sea hypoxia as a result of climate-driven

intensification of seasonal pycnocline development and solubility effects (Meire et al.,

2013). A recent meta-analysis carried out by Gilbert et al. (2010) suggests that, globally,

the coastal ocean is an important locus for deoxygenation, with depth-averaged (0–300 m)

mean linear trends for the period 1976–2000 of −0.35µmol L−1 yr−1 (0–30 km from

coast) and −0.19µmol L−1 yr−1 (30–100 km from coast). To put these global estimates

into context, Table 4.2 presents a summary of linear trends and interannual variability

in North Sea summer BML [O2] and temperature derived from historical ICES data and

GETM-ERSEM fields. Additional results are also reported from a prognostic simulation of

the Geophysical Fluid Dynamics Laboratory (GFDL) ESM2.1 global Earth System Model

(GFDL-ESM2.1 [Frölicher, Pers. Comm.]; model configuration and experimental design

as described in Cocco et al. [2013] and Jones et al. [2013]; ∼ 1◦ resolution) sampled for

the North Sea region.

Observed area mean summer BML deoxygenation trends presented in this analysis
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(−0.62µmol L−1 yr−1) exceed global mean estimates of Gilbert et al. (2010) by a factor of

between∼ 2 and 3 (Table 4.2). As such, summer BML trends in stratified shelf regimes like

the North Sea could be important in the early detection of anthropogenically driven hypoxia

(Zhang et al., 2010). Comparatively, as shown in Section 4.3.3, trends in both summer BML

[O2] and temperature are considerably underestimated by the GETM-ERSEM hindcast.

However, model simulated [O2] trends are in good agreement with the estimates of Gilbert

et al. (2010) for the coastal zone (−0.35µmol L−1 yr−1). GETM-ERSEM is also able to

reproduce the observed ratio of linear trends in [O2] to temperature for the period 1959–

2006 (≈ −7.5µmol L−1 ◦C−1). Similarly, whilst GETM-ERSEM exhibits more muted

interannual variability, the ratio of model simulated variability in [O2] to temperature is

consistent with observations (≈ 19µmol L−1 ◦C−1). Taken together, these results suggest

that GETM-ERSEM is able to simulate physically realistic patterns of change in summer

BML [O2] as a function of temperature, despite underestimating the absolute magnitude. A

systematic underestimation of historical trends and variability in near-bottom temperature

has been reported elsewhere by studies that apply 3-D regional models to the northwest

European continental shelf (e.g. POLCOMS; Holt et al. 2012), however the cause of this

model deficiency is uncertain. Although, reduced interannual variability in BML properties

as simulated by GETM-ERSEM can likely be attributed in part to imposed climatological

boundary conditions at spatial model edges, which remove an important source of internal

variability associated with ocean-shelf exchange processes.

In comparison, the global GFDL-ESM2.1 Earth System Model (ESM) simulates no

historical linear trend in North Sea summer bottom [O2] or temperature for the period

1959–2006 (Table 4.2). Under a SRES A2 emissions scenario GFDL-ESM2.1 projects an

area mean decline in summer North Sea bottom [O2] of ∼ 5µmol L−1 between 1990–2009

and 2080–2099, corresponding to a ∼ 2 % decrease. This reduction falls at the lower end

of ESM simulated decreases in global oxygen inventory for 2100 relative to the 1990s

(2–4 % [Cocco et al. 2013]; 1.5–4 % [Ciais et al., 2014; Bopp et al., 2013]) suggesting

that, contrary to larger observed trends, future BML [O2] changes in the North Sea will

be consistent in magnitude with global deoxygenation in the open ocean. However, poor

model-data agreement for the historical period (Table 4.2), related to the limited capacity

of coarsely resolved ESMs to represent shelf sea processes (e.g. Holt et al., 2009; Holt
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et al., 2014), reduces the efficacy of global models in projecting future North Sea climate

impacts. Indeed, this result is opposed by prognostic experiments carried out using the

GOTM-ERSEM-BFM 1-D hydrodynamical-biogeochemistry model which simulates much

larger climate-driven bottom [O2] decreases (5–9 % by 2100) at three sites in the stratified

North Sea for a more moderate emissions pathway (SRES A1B; van der Molen et al.,

2012).

Similarly, forced experiments conducted with a 1-D ecosystem model calibrated for

the central North Sea project summer BML [O2] decreases of up to 11.5 % by the end

of the century under a SRES A1B emissions scenario (Meire et al., 2013). These 1-D

model integrations suggest that future climate forcings will drive a significant reduction in

the oxygen inventory of the North Sea as a result of enhanced stratification and solubility

effects, leading to an increased risk of seasonal hypoxia (Meire et al., 2013). However,

historical ICES data and GETM-ERSEM regional model fields analysed in this study

indicate that long term secular decreases in summer BML [O2] are already occurring.

Moreover, GETM-ERSEM simulates a 13 % increase in the number of grid cells where

summer BML water [O2] is less than 190µmol L−1 between 1960–1965 and 2000–2005,

suggesting that Ecological Quality objectives set by OSPAR to mediate the negative impacts

of hypoxia in coastal and offshore regions of the North Sea (Painting et al., 2005; see

Section 4.1) are not being met.

Whilst this work has identified a unique fingerprint of change in North Sea BML prop-

erties, attribution of historical trends to external climate forcing requires an understanding

of climate variability on multiyear timescales. As a result, this study also investigates the

detectability of GETM-ERSEM simulated trends relative to model estimates of natural

internal variability and model uncertainty (Sect. 4.3.4). Signal-to-noise ratios for summer

BML temperature remain less than unity across much of the central North Sea, consistent

with an analysis of the POLCOMS regional model which reported similar values (SNR< 1)

for annual BML temperature trends (Holt et al., 2012). Comparatively, Holt et al. (2012)

found statistically significant historical trends in POLCOMS simulated SSTs across much

of the North Sea domain, likely owing to the stronger warming signal at the surface which

is tightly coupled to the imposed atmospheric forcing, therefore limiting the confounding

influence of model error. Indeed, using a potential SNR approach (which assumes that
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model error can be reduced to zero [Hawkins and Sutton, 2011]) it has also been possible

here to better quantify the impact of ‘structural error’ (e.g. Hegerl and Zwiers, 2011;

Sect. 2.5) in ocean models on the detectability of climate signals. Notably, by applying a

‘perfect model’ assumption, trends in both summer BML temperature and [O2] are robustly

detected at the 90 % confidence level across much of the summer stratified central and east-

ern North Sea. This result suggests that structural error is a key factor limiting the ability

of models to detect emergent climate signals in the North Sea, and highlights the potential

gains of improving resolution and representation of shelf processes in both regional models

(e.g. NEMO-ERSEM; Edwards et al., 2012) and the current generation of global ESMs

(for instance, via dynamical downscaling methods [Holt et al., 2014] or by using a distorted

spatial grid [Gröger et al., 2013]). Particularly, the large increase in detectability yielded

by applying a ‘perfect model’ assumption to simulated [O2] changes emphasises the need

for better parameterisation of the coupled physical and biogeochemical processes which

control oxygen dynamics and hypoxia in ocean models (e.g. Peña et al., 2010; Keeling et

al., 2010).

Results presented here also highlight the potential utility of BML [O2] and temperature

as tracers for historical and future alteration to hydrographic conditions in the North

Sea, which provide the dominant physical constraints on marine ecosystems and fisheries.

Particularly, regions of elevated interannual variability in BML temperature and [O2] have

been shown to correspond with important transition zones between dominant hydrodynamic

regimes (Sect. 4.3.2). Moreover, the spatial distributions of summer BML properties,

taken together, effectively demarcate boundaries between summer stratified, permanently

stratified, well mixed, and fluvially influenced regions of the Greater North Sea (Fig. 4.6).

To this end, the capacity of regional models and observational programs to identify shifts

in hydrodynamic characteristics on the northwest European continental shelf using BML

properties could play an important role in future marine spatial planning (van Leeuwen et

al., 2014). Particularly, the Marine Strategy Framework Directive (MSFD), adopted by the

European Union in 2008, includes a qualitative descriptor for reaching Good Environmental

Status by 2020 which requires that ‘Permanent alteration of hydrographical conditions does

not adversely affect marine ecosystems’ (Cardoso et al., 2010). As such, an integrative

approach combining historical data and hindcast model results, as presented here, could
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provide important reference conditions and targets for Good Environmental Status to be

used as steps towards implementation of the MSFD (Borja et al., 2010).
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General Conclusion and Outlook
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5.1 Précis of key results

The overall motivation for work presented in this thesis has been to further the under-

standing of secular changes in oceanic oxygen as a fingerprint of anthropogenic climate

change in the ocean. In pursuit of this goal, a range of statistical and numerical methods

have been developed to better elucidate the drivers and detectability of observed changes

in [O2]. These include regression-based optimal fingerprinting methods (Chapter 2) and

hindcast 3-D ecosystem models initialised at global (Chapter 3) and regional (Chapter 4)

scales. Using this multi-faceted approach it has been possible to build a coherent picture of

the changing spatiotemporal distribution of O2 over the historical period by synthesising

observations and model output. The major research outcomes of this thesis are as follows,

in accordance with the initial research objectives set out in Section 1.5.1 (italicised):

1. Evaluate the performance of recent ESM simulations in reproducing observed his-

torical changes and variability in oceanic oxygen. Chapter 2 presents a model-data

comparison of climatological and recent changes in subsurface [O2] using a compila-

tion of historical [O2] data to evaluate output from two CMIP5 ESMs (MPI-ESM-LR,

HadGEM2-ES). Both models are shown to reproduce the climatological distribution

of [O2] within the ocean interior in terms of meridional structure, but either underes-

timate (HadGEM2-ES) or overestimate (MPI-ESM-LR) the extent of established

low-O2 waters, in agreement with recent CMIP5 model inter-comparisons (Gnanade-

sikan et al., 2013; Bopp et al., 2013). The fidelity of ESM simulated and observed

historical changes in subsurface [O2] (between ∼ 1970 and ∼ 1992) was assessed

using formal optimal fingerprinting methods (Sect. 2.4.2), which complement more

descriptive comparisons (Sect. 2.4.1) by providing a rigorous, quantitative test of

model performance accounting for the role of internal variability (Hegerl and Zwiers,

2011). Regression coefficients (β) obtained from the application of detection and

attribution (D&A) methods in this analysis indicate that significant correlations

exist between simulated and observed space-time patterns of historical [O2] change

(100 – 3000 m depth), although CMIP5 ESMs consistently underestimate the mag-

nitude of change by a factor of ∼ 2 – 4. A standard (cf. Allen and Tett, 1999)

consistency check (F-test) on the residuals of the Total Least Squares regression

was used alongside β values in order to diagnose possible inconsistencies between
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ESM response patterns and observations for a given number (k) of retained EOFs of

internal variability. F-test p-values fall within the 0.05 – 0.95 range for all optimal

detection experiments on global and ocean basin scales (excluding the Atlantic basin,

for which the test marginally fails) demonstrating the capacity of ESMs to estimate

forced and unforced variability in [O2] for the historical period. Consistent with

standard D&A practise (e.g. Hegerl et al., 2010) internal variability in observed [O2]

was characterised by sampling long (∼ 1000 year) pre-industrial control integrations

of ESMs. The residual consistency test was here used to guide the analysis towards

a reduced dimension space in which internal variability is well simulated by models.

ESM simulated internal variability was also generally shown to fall within the range

of observed variance derived from sampling detrended long-term [O2] time series

data at Ocean Station Papa and within the Oyashio Current region (Table 2.2).

2. Quantify the detectability of observed changes in open ocean [O2] at global and

ocean basin scales relative to natural internal variability. In Chapter 2, formal D&A

techniques were applied in a single fingerprint optimal detection analysis testing the

null hypothesis that observed (∼ 1970 to ∼ 1992) changes in subsurface [O2] are

indistinguishable from climate noise. Model fingerprints were taken from historical

ensembles of two CMIP5 ESMs including “ALL” external forcings (anthropogenic

+ natural [Taylor et al., 2012]), sampled as pseudo-observations according to the

spatiotemporal coverage of historical measurements. Positive detection results (β

> 0) in response to “ALL” external forcings were found at the 90 % confidence

level for global depth-averaged (1-D) and depth-resolved (2-D) zonal mean [O2]

changes. The results of this optimal regression analysis indicate that an externally

forced “fingerprint” is already detected within the observational record of (mainly)

decreasing subsurface [O2], and that this signal is statistically distinct from climate

variability as characterised by unforced ESMs. Additionally, the global 2-D detection

experiment revealed 5 – 95 % uncertainty bounds on β scaling factors which were

consistent with 1, passing the so-called “attribution test” of consistency in observed

and model-simulated signal amplitudes (Hasselmann, 1997). The D&A analysis was

also extended to ocean basin scales, wherein 2-D zonal mean [O2] changes for the

Pacific basin were detected in response to external forcing (90 % confidence level)
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whereas those within the Atlantic basin were indistinguishable from internal noise.

3. Investigate the impact of imposed atmospheric forcing on the spatiotemporal distribu-

tion of oceanic oxygen over the last ∼ 50 years in a hindcast ocean biogeochemistry

model. The role of imposed meteorological boundary conditions as an exogenous

driver of historical changes and variability in model simulated O2 was assessed in

Chapter 3. A series of hindcast PlankTOM10-NEMO3.1 sensitivity experiments

were initialised under different atmospheric forcings and bulk formulae. This anal-

ysis confirmed the results of previous hindcast model studies (e.g. Friedrich et al.,

2006) which found tropical and extratropical variability in subsurface O2 to be mod-

ulated by imposed wind stress and heat flux, respectively. However, the presented

results also demonstrate, for the first time, that choices made regarding interannually

varying atmospheric forcing products derived from observations (COREv2-IAF,

DFS4.3, NCEP/NCAR) and numerical models (IPSL-CM5A-LR) place major con-

straints on simulated changes and variability in passive tracers for the historical

period. Particularly, experiments carried out using forcing data based on “second

generation” ERA-40 ECMWF reanalysis data (Uppala et al., 2005) were shown

to generate more exogenous variability in O2, and alter the sign and magnitude of

historical changes, when compared to the baseline NCEP/NCAR reanalysis run.

A spatially inconsistent hindcast model response to different atmospheric forcing

products, which provide a priori equally representative historical air-sea fluxes,

presents an interesting problem to ocean modellers. Namely, provision should be

made within community efforts to standardise experimental protocols for ocean-ice

hindcast model experimental (e.g. COREs; Griffies et al., 2009) to better constrain

biases in different atmospheric forcing products. Moreover, this chapter suggests that

caution is required when interpreting historical changes in ocean biogeochemistry

variables using output derived from multiple OBGCMs under different atmospheric

forcings (e.g. Henson et al., 2010), since competing errors associated with forcing

biases and model error are difficult to disentangle.

4. Investigate the impact of biogeochemical parameterisations of ocean carbon cycle

feedbacks on the spatiotemporal distribution of oceanic oxygen in a hindcast ocean

biogeochemistry model. Chapter 3 investigated the implications of pCO2-sensitive
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(1) C:N ratios in photosynthetic carbon fixation and (2) calcification rates on hindcast

[O2] in the PlankTOM10-NEMO3.1 ocean biogeochemistry model. Using observa-

tionally based parameterisations it was shown that the inclusion of stoichiometric

C:N effects in carbon drawdown yield major changes to the spatiotemporal distri-

bution of subsurface [O2] via enhanced carbon export production which promotes

remineralisation of POC within the ocean interior. Notably, counter to prognostic

model studies which include a variable C:N ratio (Tagliabue et al., 2011; Oschlies et

al., 2008), stoichiometric diversity is shown to produce elevated historical deoxy-

genation throughout the water column at mid- to high latitudes, rather than within

established OMZs. Indeed, carbon overconsumption within the tropical euphotic

zone was found to drive [O2] increases (≤ 300 m depth) due to elevated production

in response to CO2 fertilisation, with implications for model-data consistency in

the tropical OMZs (see Section 5.2.2 for further discussion). Comparatively, the

impact of ocean acidification on biogenic calcification rates was shown to have only

a negligible impact on [O2] dynamics for the historical period, despite yielding

reductions in the ratio of CaCO3 to POC export and coeval decreases in POC sinking

speeds as mineral ballast fluxes weakened.

5. Examine fingerprints of secular ocean deoxygenation in the coastal ocean, with a

focus on summer stratified shelf sea regimes. Historical trends and variability in

summer Bottom Mixed Layer (BML) [O2] and temperature for the summer stratified

North Sea domain were investigated in Chapter 4 using an integrative approach which

synthesised historical measurements and output from the hindcast GETM-ERSEM

regional model. Negative linear trends were reported in observed and masked

model simulated summer BML [O2] across much of the summer stratified North

Sea hydrodynamic regime, alongside spatially coherent summer BML warming.

However, observed trends in summer BML [O2] for the historical period (1959 –

2006;−0.62µmol L−1) are underestimated by a factor of∼ 2 by the GETM-ERSEM

model (−0.35µmol L−1). Observed area mean North Sea deoxygenation trends are

shown in this chapter to exceed global estimates provided by Gilbert et al. (2010)

(0.09 – 0.35µmol L−1) suggesting that summer stratified shelf sea areas could be

especially sensitive to warming-driven ocean deoxygenation. The analysis was
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extended to examine signal-to-noise ratios (SNR) of simulated changes in summer

BML [O2] and temperature, quantifying the detectability of historical trends relative

to estimates of model error and internal variability provided by GETM-ERSEM.

SNR is shown to be largest (∼ 0.5) for summer BML temperature and [O2] (∼ 0.2)

within areas of the central stratified North Sea, consistent with other recent studies

(e.g. Holt et al., 2012), however the detectability of this signal is reduced by high

model error and internal variability associated with variable frontal regions along the

margins of different hydrodynamic regimes. Finally, a ‘potential SNR’ formulation

is used to interrogate the role of model error in masking the detectability of simulated

trends. Using this ‘perfect model’ assumption, statistically significant signals in

summer BML [O2] and temperature emerge across areas of the summer stratified

central and eastern North Sea at the 90 % confidence level.

5.2 Synthesis and future work

5.2.1 Detecting changes in ocean variables

This thesis constitutes the first formal D&A assessment of changes in ocean biogeochem-

istry in response to external forcing, conducted using established optimal fingerprinting

methods. Chapter 2 reveals that a fingerprint of secular ocean deoxygenation in response

to external forcing is detectable within the historical record of subsurface [O2] at the 90 %

confidence level, for the global ocean and Pacific basin individually. The results of this

analysis, taken together with observed warming-driven perturbation to known physical

drivers of oxygen depletion (cf. Rhein et al., 2013), led the IPCC to conclude in WG1

of AR5 that there is “medium confidence that the observed global pattern of decrease in

oxygen dissolved in the oceans from the 1960s to the 1990s can be attributed in part to

human influences” (Bindoff et al., 2013). However, the IPCC confidence level ascribed to

attribution of changes in oceanic oxygen to human influence is, relatively, lower than for

physical properties such as upper ocean temperature (high confidence) and (sub-)surface

salinity (high confidence). The higher degree of certainty in D&A of physical ocean

variables is evidenced by the significance threshold at which observed changes have been

detected above internal variability – with historical changes in upper ocean temperature (0
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– 700 m) and salinity (0 – 250 m) now being detectable at the 99 % (Glecker et al., 2012)

and 95 % (Pierce et al., 2012) confidence level, respectively.

A number of possible extensions to the optimal fingerprinting work carried out in this

thesis could provide greater confidence in the detection of long-term changes in oceanic

oxygen. Firstly, in accordance the IPCC Good Practise Guide on Detection and Attribution

(Hegerl et al., 2010), once an identifiable signal is detected within the observational record

of a climate variable its attribution to a combination of causal factors requires that other

possible forcing combinations can be ruled out. As such, whilst Chapter 2 provides a

statistically robust demonstration that changes in subsurface [O2] are detected in response

to all external forcings, in order to attribute these changes to, for instance, anthropogenic

influence, other external factors such as changes in solar output and volcanism must first

be discounted. The ability to conduct such a multi-fingerprint D&A assessment depends

critically upon the availability output from targeted ESM historical integrations which

include anthropogenic (“historicalANT”) or natural (“historicalNAT”) climate forcing

factors only. However, under CMIP5, specialised D&A ensembles comprise part of the

lower priority “Tier 2” of requested model experiments (Taylor et al., 2012), with the

availability of output being further reduced by the limited subset of ESMs reporting ocean

biogeochemical variables. Accordingly, for the ESMs selected in Chapter 2 based on their

ability to adequately reproduce observed changes in oceanic oxygen (MPI-ESM-LR and

HadGEM2-ES), single-forcing experiments with sufficient ensemble members to minimise

signal error (cf. Allen and Stott, 2003) were not available at the time of writing. As

such, it was not possible to further decompose the detectable external signal of observed

[O2] change into contributions from anthropogenic (greenhouse gases and aerosols) and

natural (solar and volcanic) external forcings. However, preliminary results from the

implementation of a multi-pattern D&A analysis making use of historicalNat experiments

reported for the GFDL-ESM2M model (Dunne et al., 2013) indicate that observed [O2]

decreases cannot be explained by natural external forcings alone (β = 0; results not shown).

This finding is consistent with the physical understanding of volcanic forcing effects on

oceanic oxygen, with Frölicher et al. (2009) demonstrating that the climate impact of

explosive volcanism on [O2] is generally limited to the upper ∼ 500 m on interannual

timescales.
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Alongside consideration of external natural factors, robust D&A of changes in a climate

sensitive variable also requires that estimates of natural internal variability be characterised

appropriately. In Chapter 2, long pre-industrial control ESM integrations are sampled as

pseudo-observations in order to provide an estimate of internal variability in [O2], consis-

tent with established optimal fingerprinting practise (e.g. IDAG, 2005). This approach

is based on the underlying rationale in D&A assessment that climate noise is not easily

estimated from observations on large spatial and temporal scales, and that unforced climate

models provide a pure expression of variability in the internal system. Using this method,

the detection analysis is optimised by projecting all data onto the k leading eigenvectors

calculated from an estimate of the inverse of the covariance matrix of internal variability.

The choice of k is determined using a standard “consistency check” (Allen and Tett, 1999)

whereby model simulated variability on the scales retained in the analysis is compared

against the residuals of the regression using an F-test. However, this test is relatively

weak (e.g. Allen et al., 2006; Terray et al., 2012) and does not take into account the shape

of the residuals, only their amplitude. Moreover, as highlighted by Ribes et al. (2013),

the relatively arbitrary choice to truncate at k EOFs introduces a degree of uncertainty

into detection results, with regression coefficients (β) being somewhat sensitive to the

retained dimension space (as shown in Figure 2.9). However, as demonstrated in a recent

analysis of global mean temperature changes conducted by Imbers et al. (2014), D&A

results generally hold independent of the chosen characterisation of internal variability.

Nonetheless, the authors recommend that a wider range of statistical tests are used in

D&A studies to improve confidence in detection results, for instance, via comparison with

long-term time series data, as undertaken in Chapter 2 (Table 2.2).

Moreover, despite the established attribution of changes in the physical ocean system to

human influence (cf. Bindoff et al., 2013), a number of uncertainties remain regarding the

detectability of changes in the physical factors which control the spatiotemporal distribution

of passive tracers like [O2]. Particularly, whilst qualitative links have been made between

historical changes in upper ocean stratification and deoxygenation (e.g. Figure 2.6; Rhein et

al., 2013; Capotondi et al., 2012), the signal of upper ocean density change and, indeed, its

impact on biogeochemical processes remains debated (e.g. Dave and Lozier, 2013; Dave,

2014). This deficiency could be addressed using an optimal fingerprinting method, making
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use of recently available co-located historical temperature and salinity observations (e.g.

MIMOC [Schmidtko et al., 2013]) and the wealth of active tracer output made available

from CMIP5 ESMs (Taylor et al., 2012) in order to better constrain the detectability of

long-term ventilation changes as a driver of historical deoxygenation. Such an analysis

would build on recent work utilising multivariate signal vectors to detect climate change in

the ocean wherein combined temperature-salinity model fingerprints are shown to yield

greater signal strengths within historical observations (Pierce et al., 2012; Santer et al.,

1995). Additionally, as highlighted by atmospheric forcing experiments conducted in

Chapter 3 (Sect. 3.4.2), surface wind stress places major constraints on historical changes

in thermocline [O2] via its direct influence on large-scale patterns of ocean circulation and

air-sea fluxes of energy. However, major uncertainties remain regarding the relative roles of

stratification and wind forcing in driving historical and future changes in ventilation at mid-

to high latitudes (e.g., Le Quéré et al., 2007; Böning et al., 2008). Thus, the application of

D&A approaches to historical changes in near surface wind speeds could provide further

process-level understanding of historical changes in subsurface ocean biogeochemistry,

whilst also affording an opportunity for the validation of observed and model simulated

atmospheric state variables, as called for in Chapter 3.

A major limiting step in the statistical attribution of changes in biogeochemical proper-

ties to climate change is the availability of sustained observations with sufficient spatiotem-

poral coverage to adequately characterise trends and variability on multiyear timescales (cf.

Henson, 2014; Dunstone, 2014). This deficiency is particularly relevant to the evaluation of

historical changes in O2, where pronounced variability on interannual to decadal timescales

associated with internal ocean-atmosphere feedbacks can act to mask any secular changes

(e.g. Sect. 1.3.2; Frölicher et al., 2009; Deutsch et al., 2005). As such, concerted efforts are

required to improve observational capabilities at all scales, from the addition of dissolved

O2 sensors to the global array of ARGO profiling floats (ARGO-oxygen program [Gruber

et al., 2010]) through to continued support for established fixed-point time series stations

(Send et al., 2009). Not only this, but the growing scientific focus on warming-driven

changes to biogeochemical variables also necessitates further application of temperature-

dependent functions in observational descriptions of oceanic oxygen status (Hofmann and

Brewer, 2014). Importantly, as noted by Séférian et al. (2014), D&A techniques can be
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used to identify regions of the global ocean where secular changes in ocean variables are

likely to be most detectable relative to internal noise, thus informing decisions as to where

to target future in situ observations. For instance, in the case of open ocean [O2], the most

detectable deoxygenation signal is shown to emerge from the envelope of internal vari-

ability in high-latitude regions of water renewal (Chapter 2). As such, this work provides

further impetus for the development of co-ordinated marine biogeochemistry observational

networks in the Arctic and Southern Ocean (e.g. Southern Ocean Carbon and Climate

Observations and Modelling project [SOCCOM; Sarmiento et al., 2014]) in order to better

constrain anthropogenic perturbation to the oceanic oxygen inventory. Additionally, the

results of Chapter 4 indicate that summer BML [O2] changes within the central and eastern

stratified North Sea could provide a detectable signal of deoxygenation within the coastal

zone, warranting further observations of sufficient temporal resolution to detect seasonal

[O2] patterns.

The application of fingerprinting methods to assess the detectability of external signals

at regional scales (Stott et al., 2010; Zwiers and Zhang, 2003) and on observed climate

change impacts (Rosenzweig and Neofotis, 2013) is a growing area of interest, currently

restricted by limited regional model-data capacity and the confounding influences of

elevated internal variability and poorly understood (non-climate) drivers (Hegerl and

Zwiers, 2011; Hegerl and Stott, 2014). However, as shown in Chapter 4, good observational

coverage coupled with regional model fields that reproduce aspects of observed trends and

variability suggest that summer BML [O2] changes in the North Sea may provide a useful

case study for regional D&A. Such an analysis would, however, necessitate a coupled

ocean-atmosphere model for the North Sea region able to reproduce shelf sea processes,

an application for which global models are not currently fit for task (Sect. 4.4; Holt et al.,

2009; Holt et al., 2014). Another interesting avenue would be to explore the detectability

of changes in the intensity and frequency of extreme hypoxic events, which have been

recorded in recent years for the North Sea (e.g. Weston et al., 2008) and are projected

to increase in number under future climate forcing (Meire et al., 2013). A statistical

framework is currently under development for climate event attribution (Attribution of

Climate Related Events group [Stott et al. 2013]), with recent studies successfully applying

optimal fingerprinting methods to detect changes temperature and precipitation extremes
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(Bindoff et al., 2013).

Nonetheless, work presented in Chapter 2 demonstrates that the capacity already

exists, using current model-data resources and fingerprinting methods, to detect statistically

significant changes in [O2] at the global scale in response to external forcing, motivating

further efforts to better quantify forced changes in ocean biogeochemistry. To this end,

recent work carried out under an optimal detection framework (Séférian et al., 2014)

and using a Time of Emergence (ToE) SNR approach (Keller et al., 2014b; Mora et al.,

2013) suggests that anthropogenic influences on the surface ocean carbon cycle are already

detected above internal variability.

5.2.2 Model-data agreement

D&A methods applied to CMIP5 ESMs in Chapter 2 and trend estimates calculated for

the GETM-ERSEM regional model in Chapter 4 show that ocean biogeochemistry models

at both global and regional scales systematically underestimate observed deoxygenation

over the last ∼ 50 years. As discussed in Section 3.1, the inadequate representation

of various physical and biogeochemical processes in current models has been widely

posited in the literature as a likely source of error, motivating the PlankTOM10-NEMO3.1

sensitivity study presented in Chapter 3. Of particular importance to the simulation of

historical changes in [O2] are possible carbon cycle feedbacks associated with ocean

acidification (cf. Matear and Lenton, 2014), particularly the impact of a pCO2-sensitive

C:N ratio in the photosynthetic fixation of organic carbon. To this end, the inclusion

of stoichiometric effects in the PlankTOM10-NEMO3.1 ocean biogeochemistry model

was shown in Section 3.4.1 to amplify historical zonal mean [O2] decreases by up to

10µmol L−1 between the 1950s and 2000s due to the enhanced export flux of organic

carbon to the ocean interior. Therefore, if the historical impact of a pCO2-sensitive C:N

ratio were to be incorporated into historical deoxygenation estimates provided by the fixed

stoichiometry ESM (Chapter 2) the model underestimation of observed [O2] decreases

would reduce markedly. This supposition, however, assumes equivalent behaviour between

CMIP5 ESM biogeochemistry sub-models and PlankTOM10 in terms of the stoichiometric

response to elevated pCO2 – an assumption which may be appropriate given that current

model parameterisations are based on the inclusion of a simple observationally-derived
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“CO2 sensitivity” factor (Riebesell et al., 2007; Oschlies et al., 2008; Tagliabue et al., 2011).

Accordingly, the results of this thesis suggest that accounting for stoichiometric effects

within the next generation of IPCC-class ESMs could yield improvements in terms of

reproducing observed historical deoxygenation at mid- to high latitudes.

However, in agreement with the EMIC sensitivity study of Stramma et al. (2012a),

inclusion of stoichiometric effects did not produce a net deoxygenation of the tropical

thermocline, which is required to reconcile ESMs (Cocco et al., 2013; Bopp et al., 2013)

with observations (Stramma et al., 2008). In the light of persistent and irresolute tropical

[O2] biases within current ESMs one intriguing possibility is that coupled model responses

may be mechanistically correct but out of phase with observed multidecadal patterns of

internal variability over the historical period. This assertion is based on two lines of

evidence brought to the fore by recent model-data analyses. First, Deutsch et al. (2014)

reconstruct variations in the extent of North Pacific anoxia using a geochemical proxy for

integrated denitrification rates (δ15N) obtained from sediment core data extended back to

∼ 1850. This sedimentary δ15N record for the eastern tropical North Pacific indicates that,

consistent with recent observations (Stramma et al., 2008), the North Pacific OMZ has

expanded since ∼ 1990, however this expansion was preceded by a longer term contraction

throughout much of the 20th century – such that the current spatial extent of the North

Pacific OMZ is not without precedent over the last ∼ 150 years. Deutsch et al. (2014)

show using climate model data and reanalysis products that, in agreement with Ridder and

England (2014) and results presented in Chapter 3, the spatial extent of low-O2 water over

the historical period is modulated by the strength of equatorial trade winds. Specifically,

weakening low-latitude wind stress causes a reduction in the wind-driven upwelling of

nutrient rich waters such that biological activity and associated oxygen consumption rates

decrease, causing a net oxygenation within eastern boundary shadow zones. Thus, the

recent expansion of OMZ waters in the equatorial North Pacific (since ∼ 1990) can be

explained by the pronounced strengthening of trade winds over the same period. However,

as reported by England et al. (2014), recent intensification of easterly surface wind stress

over the tropical Pacific is not well captured by recent coupled climate models, since

this feature is a manifestation of a strongly negative Interdecadal Pacific Oscillation and

coupled models do not reproduce the phasing of natural internal variability. Indeed, some
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CMIP5 models predict a small weakening of eastern trade winds over the last 20 years,

such that coeval OMZ contraction as simulated by many ESMs could be explained by an

erroneous periodicity of wind forcing rather than lacking model processes. As such, future

ESM studies should focus on initialised decadal hindcasts (Meehl and Teng, 2012) and data

assimilation methods (e.g. Guemas et al., 2013) in order to investigate absolute changes in

[O2] over the last 20 years, making use of the range of atmospheric data products presented

in Chapter 3. However, the timescales over which wind-driven forcing associated with trade

wind dynamics will dominate tropical OMZ extent relative to the impact of solubility and

ventilation effects associated with historical and future ocean warming remains uncertain.

Finally, whilst further process-level understanding of the spatiotemporal distribution

of oceanic oxygen will improve model-data agreement, the robust statistical treatment of

remaining model error, particularly within D&A studies (Hegerl and Zwiers, 2011), remains

important. In Chapter 2, as discussed in Section 5.1, a standard residual consistency F-test

(Allen and Tett, 1999) is employed which checks for adequate model-data agreement and

identifies possible structural errors. However, a possible extension to this method would

be to apply an Error in Variables (EIV) optimal detection technique (Huntingford et al.,

2006), which explicitly accounts for inter-model error as an additional uncertainty in the

optimal detection regression. Moreover, Hannart et al. (2014) extend this methodology to

formalise an “easily implementable” statistical inference procedure based on the likelihood

maximisation approach of EIV. Nonetheless, ‘perfect model’ assumptions, which explicitly

disregard structural model error, are commonplace in optimal fingerprinting (TLS; Allen

and Stott, 2003) and signal-to-noise studies, and remain central to policy relevant D&A

assessments and hypothesis testing. Moreover, as shown in Chapter 4, perfect model

assumptions can also inform model development needs. Specifically, using a ‘potential

SNR’ formulation (Hawkins and Sutton, 2009) for summer BML temperature and [O2]

alongside a traditional SNR it was possible to identify areas of the greater North Sea where

model error, as opposed to internal variability, precludes detectable changes in simulated

properties.
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5.3 Wider perspectives

This thesis contributes to a growing body of scientific evidence highlighting the current

(Rhein et al., 2013; Bindoff et al., 2013) and projected future (Ciais et al., 2013) extent

of ocean oxygen depletion driven by secular warming. Anthropogenic perturbation to

the oxygen inventory of the global ocean poses a major risk to marine communities due

to the increased exposure of aerobic organisms to hypoxic conditions (Vaquer-Sunyer &

Duarte 2008) and associated habitat restriction (e.g. Stramma et al., 2012b). Of particular

significance for marine ecosystems is the shoaling and expansion of established OMZs

(Gilly et al., 2013), which will cause decreases in biodiversity (Gooday et al., 2010) and

abundance losses for [O2]-sensitive groups such as mesopelagic and epipelagic fishes,

amongst many other taxa (cf. Pörtner et al., 2014). As a result, the IPCC caution in

Working Group 2 of AR5 that ocean deoxygenation associated with climate warming is

very likely to increase the vulnerability of fisheries and aquaculture – particularly within

eastern boundary upwelling zones and semi-enclosed seas (Hoegh-Guldberg et al., 2014).

This statement is supported by model studies which find the combined effects of ocean

deoxygenation, ocean warming and acidification to drive reductions in the body size

(Cheung et al., 2013) and catch potential (Cheung et al., 2011) of exploited demersal fish

and invertebrates. Indeed, the potential for synergistic effects between multiple ocean

stressors, or the so-called “triple whammy” of deoxygenation, warming and acidification

(Gruber, 2011), has further implications for the vulnerability of marine ecosystems to global

change (e.g. Brewer and Pelzer, 2009) such that these effects such should not be considered

in isolation (Doney, 2010). To this end, ecosystem-based adaption in fisheries management

is required to improve the resilience of species and habitats to future climate change

and safeguard coastal livelihoods, food resources and other valuable marine ecosystem

services (Ruckelshaus et al., 2013). For instance, Micheli et al. (2012) show, for the Baja

California region, that the establishment of marine protected areas has increased local

resilience within benthic invertebrate communities to mass mortality events caused by

episodic hypoxia.

Aside from climate impacts and adaptation, further understanding of oceanic oxygen is

also useful in informing the debate around climate change mitigation. Firstly, as discussed

elsewhere (e.g. Section 1.2.1), observed and on-going expansion of low-O2 waters is likely
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to affect the biogeochemical cycles of redox-sensitive elements, potentially increasing

the role of the ocean as a net source of climatically important gases like N2O and CH4

to the atmosphere (e.g. Bakker et al., 2014). In the Gaian sense (Lovelock, 1979), this

process constitutes a potential “positive feedback” within the Earth System, whereby

warming-driven ocean deoxygenation increases the marine production of greenhouse gases,

promoting further warming. However, the form, magnitude and sensitivity of this effect

to persistent O2 depletion remain uncertain. Additionally, recent evaluations of different

climate geoengineering proposals have included an assessment of the associated impact

on ocean oxygen dynamics as a “side affect” of Carbon Dioxide Reduction (CDR) based

methods within the marine realm. For instance, Keller et al. (2014a) show, using idealised

EMIC experiments which include artificial ocean upwelling and iron fertilization climate

engineering, that subsurface ocean deoxygenation intensifies under both experiments, with

enhanced suboxia in eastern boundary systems and for the Southern Ocean, respectively.

Indeed, as argued by Bauman et al. (2014), the net benefits of proposed enhanced upwelling

as a geoengineering option must be balanced carefully against the associated long-term

impact of enhanced productivity, acidification and deoxygenation on marine ecosystems.

Finally, Cao et al. (2014) show, using prognostic model experiments, that continued

uncertainties around equilibrium climate sensitivity (1.5◦C – 4.5◦C [high confidence;

IPCC, 2013]) have a major impact on projected ocean deoxygenation due its tight coupling

to ocean temperature. As a result, for the year 2500, each degree of increase in climate

sensitivity causes a further 5 % simulated reduction in global mean [O2]. Thus, the

detection of forced responses in climate sensitive tracers like oceanic oxygen, as presented

in this thesis, can enable observationalists and modellers to better characterise fundamental

properties of the climate system and their implications for future warming.

Overall, this thesis has contributed to improve our quantitative understanding of the in-

teractions between climate change and oceanic oxygen. The results, taken together, support

the potential utility of oceanic ocean as a bellwether indicator of “dangerous anthropogenic

interference with the climate system” (cf. UNFCC, 1992), owing to its sensitivity to exter-

nal forcing on decadal to centennial timescales, and the deleterious implications for marine

ecosystems and coastal communities of continued ocean deoxygenation. However, many

uncertainties remain – particularly regarding the competing roles of buoyancy forcing and
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regional wind dynamics in modulating [O2] changes, and the confounding influence of

(under-sampled) long-period variability in detecting climate signals. Thus, as highlighted

by Keeling et al. (2010), a “critical first step” in our understanding of oxygen dynamics

in a warming world is the development of models at regional and global scales with the

capacity to reproduce observed trends and variability. Accordingly, of the many further

research directions that could be explored, it is suggested here that continued efforts to

improve model-data agreement in O2 at the process level are required, drawing upon the

growing availability of high-quality observations and high-complexity ESMs. Using this

approach it will be possible to garner a mechanistic understanding of observed changes in

oceanic oxygen towards improved predictions of future change.
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Gröger, M., Maier-Reimer, E., Mikolajewicz, U., Moll, A., and Sein, D.: NW European

shelf under climate warming: implications for open ocean – shelf exchange, primary

production, and carbon absorption, Biogeosciences, 10, 3767-3792, doi:10.5194/bg-

10-3767-2013, 2013.

Gruber, N.: The marine nitrogen cycle: overview and challenges, in: Nitrogen in the

Marine Environment, edited by: Capone, D. G., Bronk, D. A., Mulholland, M. R.,

and Carpenter, E. J., Elsevier, Amsterdam, 1–50, 2008.

Gruber, N.: Carbon cycle: Fickle trends in the ocean, Nature, 458, 155–156, 2009.

Gruber, N.: Warming up, turning sour, losing breath: ocean biogeochemistry under global

change, Phil. Trans. R. Soc. A, 369, 1980–1996, doi:10.1098/rsta.2011.0003,

2011.

Gruber, N., Doney, S. C., Emerson, S. R., Gilbert, D., Kobayashi, T., Körtzinger, A.,
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S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A.,

Soden, B. J., Thorne, P. W., Wild, M., and Zhai, P. M.: Observations: Atmosphere



156

and Surface. in: Climate Change 2013: The Physical Science Basis. Contribution

of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel

on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,

M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,

Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.

Hasselmann, K.: Stochastic climate models. 1. Theory, Tellus, 28, 473–485, 1976.

Hasselmann, K.: Multi-pattern ngerprint method for detection and attribution of climate

change, Clim. Dynam., 13, 601–612, 1997.

Hawkins, E. and Sutton, R. T.: The potential to narrow uncertainties in regional climate pre-

dictions, B. Am. Meteorol. Soc., 90, 1095–1107, doi:10.1175/2009BAMS2607.1171,

2009.

Hawkins, E. and Sutton, R. T.: The potential to narrow uncertainty in projections of

regional precipitation change, Clim. Dynam., 37, 407–418, doi:10.1007/s00382-

010-0810-6, 2011.

Hegerl, G. C., and Stott.: P. A.: From Past to Future Warming, Science, 343, 844–845, doi:

10.1126/science.1249368, 2014.

Hegerl, G. C. and Zwiers, F.: Use of models in detection and attribution of climate change,

WIREs Clim. Change, 2, 570–591, doi:10.1002/wcc.121, 2011.

Hegerl, G.C., von Storch, H., Hasselmann, K., Santer, B. D., Cubasch, U., and Jones, P. D.:

Detecting Greenhouse Gas induced Climate Change with an Optimal Fingerprint

Method, J. Climate, 9, 2281 – 2306, 1996.

Hegerl, G. C., Karl, T. R., Allen, M., Bindoff, N. L., Gillett, N., Karoly, D., Zhang,

X. B., and Zwiers, F.: Climate change detection and attribution: Beyond mean

temperature signals, J. Clim., 19, 5058–5077, doi:10.1175/JCLI3900.1, 2006.

Hegerl, G. C., Zwiers, F. W., Braconnot, P., Gillett, N. P., Luo, Y., Marengo Orsini, J. A.,

Nicholls, N., Penner, J. E., and Stott, P. A.: Understanding and Attributing Climate

Change., in: Climate Change 2007: The Physical Science Basis, Contribution of

Working Group I to the Fourth Assessment Report of the Intergovernmental Panel

on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z.,

Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge Univ. Press,

Cambridge and New York, 2007.



157

Hegerl, G. C., Hoegh-Guldberg, O., Casassa, G., Hoerling, M. P., Kovats, R. S., Parmesan,

C., Pierce, D.W., and Stott, P. A.: Good practice guidance paper on detection

and attribution related to anthropogenic climate change, in: Meeting report of

the Intergovernmental Panel on Climate Change Expert Meeting on Detection

and Attribution Related to Anthropogenic Climate Change, 14–16 September

2009, IPCC Working Group I Technical Support Unit, University of Bern, Bern,

Switzerland, 1–8, 2010.

Heinze, C.: Simulating oceanic CaCO3 export production in the greenhouse, Geophys.

Res. Lett., 13, L16308, doi:10.1029/2004GL020613, 2004.

Helm, K.P.: Decadal ocean water-mass changes: Global observations and interpretation,

Ph.D. thesis, University of Tasmania, Australia, 2008.

Helm, K. P., Bindoff, N. L., and Church, J. A.: Changes in the global hydrological-cycle in-

ferred from ocean salinity, Geophys. Res. Lett., 37, L18701, doi:10.1029/2010GL044222,

2010.

Helm, K. P., Bindoff, N. L., and Church, J. A.: Observed decreases in oxygen content of

the global ocean, Geophys. Res. Lett., 38, L23602, doi:10.1029/2011GL049513,

2011.

Henson, S., A.: Slow sciences: the value of long ocean biogeochemistry records, Phil.

Trans. R. Soc. A., 372, 20130334, doi: 10.1098/rsta.2013.0334, 2014.

Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., John, J.,

and Beaulieu, C.: Detection of anthropogenic climate change in satellite records of

ocean chlorophyll and productivity, Biogeosciences, 7, 621-640, doi:10.5194/bg-7-

621-2010, 2010.

Hirst, A. C., O’Farrell, S. P., and Gordon, H. B.: Comparison of a Coupled Ocean-

Atmosphere Model with and without Oceanic Eddy-Induced Advection. Part I:

Ocean Spinup and Control Integrations, J. Climate, 13, 139–163, 2000.

Hoegh-Guldberg, O., Cai, R., Poloczanska, E. S., Brewer, P. G., Sundby, S., Hilmi,

K., Fabry, V. J., and Jung, S.: The Ocean, in Climate Change 2014: Impacts,

Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working

Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate

Change, edited by: Barros, V.R., Field, C. B., Dokken, D. J., Mastrandrea, M. D.,



158

Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C.,

Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and

White, L. L., Cambridge University Press, Cambridge, United Kingdom and New

York, NY, USA, 2014.

Hofmann, M. and Schellnhuber, H. J.: Ocean acidication affects marine carbon and

triggers extended marine oxygen holes, Proc. Natl. Acad. Sci., 106, 3017–3022,

doi:10.1073/pnas.0813384106, 2009.

Holt, J., Harel, J., Proctor, R., Michel, S., Ashworth, M., Batstone, C., Allen, J. I., Holmes,

R., Smyth, T. J., Haines, K., Bretherton, D., and Smith, G.: Modelling the global

coastal ocean, Phil. Trans. R. Soc. A, 367, 939–951, 2009.

Holt, J., Wakelin, S., Lowe, J., and Tinker, J.: The potential impacts of climate change on

the hydrography of the Northwest European Continental shelf, Prog. Oceanogr.,

86, 361–379, doi:10.1016/j.pocean.2010.1005.1003, 2010.

Holt, J., Hughes, S., Hopkins, J., Wakelin, S. L., Holliday, N. P., Dye, S., Gonzalez-Pola, C.,
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M.-F., Sinha, B., Totterdell, I. J., and Cox, P. M.: iMarNet: an ocean biogeochem-

istry model inter-comparison project within a common physical ocean modelling

framework, Biogeosciences Discuss., 11, 10537-10569, doi:10.5194/bgd-11-10537-

2014, 2014.

Kwon, E. Y., Deutsch, C., Xie, S.-P., and Schmidtko, S.: The North Pacific oxygenation

rate over the past half-century, J. Climate, submitted, 2014.

Large, W. G. and Yeager, S. G.: Diurnal to decadal global forcing for ocean and sea-ice

models: the datasets and flux climatologies, Tech. Rep. TN-460+STR, National

Center for Atmospheric Research, Boulder, Colorado, 2004.

Large, W. G. and Yeager, S. G.: The global climatology of an interanually varying air-sea

flux dataset, Clim. Dynam., 33, 341–364, 2009.

Laufkötter, C., Vogt, M., and Gruber, N.: Long-term trends in ocean plankton produc-

tion and particle export between 1960–2006, Biogeosciences, 10, 7373-7393,

doi:10.5194/bg 10-7373-2013, 2013.
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