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Abstract

Cell polarity is an important phenomenon in a multitude of cellular and develop-

mental processes. The cellular contexts that polarity occurs in include a wide array

of morphological properties such as size, shape, and growth.

An important, conserved system of cell polarity depends on the intracellular lo-

calisation of proteins that act as diffusive molecular switches. Since the localisation

of these proteins depends on their reactive and diffusive properties, cell size and

growth may alter polarity induced by localisation.

My work contributes extensive analyses of an established protein localisation

model under extreme morphological conditions such as extremely small and rapidly

growing cells. My work also uncovers non-trivial, biologically relevant behaviour

caused by the inclusion of these morphological properties and further discusses the

mechanisms underlying the observed behaviour.

In addition, I contribute and discuss a novel computational tool that can con-

tinue to aid the research community in understanding cell polarity under extreme

morphological conditions.
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Chapter 1

Introduction and Motivation

In this thesis I discuss cell polarity which is an essential phenomenon in a plethora

of biological processes. A large body of both theoretical and experimental litera-

ture exists on the molecular basis of cell polarity. While known molecular networks,

which underlie cell polarity, capture many related biological phenomena there is

also growing evidence that cell morphology can play crucial roles in the establish-

ment and maintenance of cell polarity. With the work presented in this thesis I con-

tribute to the literature on the interplay between cell morphology and cell polarity:

I present results that touch upon the influence exerted by both cell morphology and

changes in morphology on cell polarity, and I show novel behaviour that emerges

when cell morphology and cell polarity are linked through a feedback loop. I also

present a novel computational tool that can aid in further unravelling the interplay

between cell morphology and cell polarity.

1.1 Cell Polarity

Cell polarity is essential in a multitude of cellular and developmental processes

(Jilkine & Edelstein-Keshet, 2011; Johnson, 1999), Figure 1.1: A few examples in-

clude plant reproduction, bud formation that precedes reproduction in Saccharomyces

cerevisiae, directed migration of keratocytes, and shape development in early plant

and animal morphogenesis.
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Figure 1.1: An Overview of Cell Polarity in Different Biological Systems. (top
left) A pollen tube with tip polarity indicated by an observed gradient in calcium
concentrations. (top right) A keratocyte cell with F-actin (red) localised at the lead-
ing edge which is defined by an underlying polarity process. (bottom left) A yeast
cell, Saccharomyces cerevisiae, with a bud forming in a process that is dependent on
Cdc42-induced polarity (Cdc42 is a homologue of Rho). The scale bar represents
2 µm. (bottom right) A pavement cell of a plant leaf with an effector of a Rho-
homologue highlighted as white spots – this Rho-homologue induces polar growth
in multiple directions. Pollen tube reproduced from Hepler et al. (2006). Keratocyte
reproduced from Chen et al. (2013). Budding yeast reproduced from Slaughter et al.
(2009). Pavement cell reproduced from Fu et al. (2005).

Cell polarity is established in most of these processes by spatially localised acti-

vation of specific cellular processes which is usually achieved through redistribution

and localisation of multiple proteins and lipids (Johnson, 1999; Jilkine & Edelstein-

Keshet, 2011). Eukaryotic cells are generally endowed with a system for gradient

sensing that permits them to polarise in response to external environmental and

developmental cues (Jilkine & Edelstein-Keshet, 2011).

While the molecular details of gradient sensing and polarity differ between cells

and conditions, there are a number of universal features of cell polarity that are

common to most scenarios (Jilkine & Edelstein-Keshet, 2011): Cells are able to sense

both steep and shallow gradients while ignoring the absolute levels of the signal

(adaptation), many cells can respond to changing gradients and maintain polarity

even when the gradient is removed, and many cells can polarise spontaneously and

usually maintain exactly one axis of polarity. Pavement cells, Figure 1.1 (bottom

right), and other exceptions exist that maintain multiple axes of polarity.
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1.2 Mathematical Models of Cell Polarity

In light of these exceptions, such as multiaxial polarity, it is unreasonable to assume

that one class of mathematical model could capture all or most cell polarity phenom-

ena. To this end, there are a number of models that capture cell polarity in certain

phenomena better than other models (Jilkine & Edelstein-Keshet, 2011).

Local excitation global inhibition (LEGI) models usually include three chemical

species (Jilkine & Edelstein-Keshet, 2011; Levchenko & Iglesias, 2002): A local acti-

vator A, a global inhibitor I, and a local response-generating species that is present

in an inactive form R and an active form R∗. Production of the activator A and

inhibitor I is regulated by an external signal S(x, t) that upregulates both A and I

in fixed proportions (Levchenko & Iglesias, 2002). Oftentimes, the activator A is a

membrane-bound receptor, the inhibitor I a cytoplasmic enzyme, and the response

R∗ a second messenger that either diffuses along the plasma membrane (e.g. phos-

pholipids) or in the cytoplasm (e.g. cAMP) (Postma & van Haastert, 2001). A key

aspect of cell polarity that these models address is adaptation of the mechanism:

Adaptation describes polarity systems that respond to gradients in the signal S(x, t)

rather than the absolute value of it (Levchenko & Iglesias, 2002). While these mod-

els can show perfect adaptation they are usually limited to sensing and amplifying

gradients as they do not sustain polarity once the signal S(x, t) has been removed

(Jilkine & Edelstein-Keshet, 2011).

Another major family of cell polarity models is based on spatial instability driven

by a discrepancy in diffusivity (Turing, 1952). The most basic cell polarity models

with Turing-type mechanism describe two chemical species, a local self-enhancing

activator and a global inhibitor (Turing, 1952; Gierer & Meinhardt, 1972). The po-

larity patterns predicted by these models often share the following characteristics

(Jilkine & Edelstein-Keshet, 2011): They are induced spontaneously, the unpolarised

state of the cell is unstable, and the concentration profile of the activator tends to

show multiple maxima unless the domain size and diffusion coefficients are regu-

lated carefully. In some models of this type, the unpolarised state of the cell is kept

stable and exposure to critical levels of a uniform chemoattractant pushes the system

beyond a Turing bifurcation point where it then polarises spontaneously (Narang,

14



2006). Another property that most models in this family predict is that cell polarity

does not reorient in response to changing external signal gradients. Alterations of

these models exist, however, in which the inhibitor possesses a long half life, trig-

gering oscillatory repolarisation which permits cell polarity to reorient (Meinhardt,

1999).

A more recent family of models with a “wave-pinning” mechanism also de-

scribes the interaction between a local self-enhancer and a global inhibition process

(Mori et al., 2008). Specifically, Mori et al. (2008) described the dynamics of Rho GT-

Pases that exist on the membrane in an active form, and both on the membrane and

in the cytosol in an inactive form. The phenomenological mini-model proposed by

Mori et al. (2008) describes two chemical species: the active, slowly diffusing form of

Rho, and the inactive membrane-bound and cytosolic forms of Rho summarised as

one fast diffusing species. Cell polarity arising from this mechanism relies on the fol-

lowing core assumptions: The active form of Rho diffuses slowly and exerts positive

feedback on its activation, and the inactive form diffuses fast and is depleted by Rho

activation where depletion is usually achieved through mass conservation (Jilkine &

Edelstein-Keshet, 2011). Unlike Turing-type mechanisms, the wave-pinning mech-

anism allows for stable rest states of the cell and the obtained wave front can be

reversed in response to sufficiently strong stimuli. In further contrast to Turing-

type mechanisms, while wave-pinning models can be stimulated to form multiple

maxima initially these are usually resolved into one single maximum after a suffi-

cient amount of time (Jilkine & Edelstein-Keshet, 2011). The wave-pinning model

has been applied successfully to the study of multiple phenomena that depend on

Rho-induced cell polarity, including polarity in human cells (Holmes et al., 2012b),

F-actin dynamics (Holmes et al., 2012a), keratocyte migration (Marée et al., 2012,

2006), and neutrophil migration (Houk et al., 2012).

Since Rho GTPases are often found as a central module of polarity (Yang, 2008)

I focus my work in this thesis on the localisation or polarisation of homologues

of Rho. I further centre my work on the wave-pinning mini-model described by

Mori et al. (2008) since it is both tractable and inherently suited for describing Rho

dynamics.

As a side note, in line with existing literature I will use the phrases Rho GTPases
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and small G proteins interchangeably to denote members and homologues of this

family of proteins.

1.3 Cell Morphology and Changes in Cell Morphology

As one of the smallest units of life, cells occur in many contexts ranging from uni-

cellular organisms, via individual specialised cells of larger organisms, to cells em-

bedded in complex tissues. A few examples are shown in Figure 1.1 where pollen

tubes (top left) are specialised plant cells important in plant reproduction, kerato-

cytes (top right) are specialised cells of the connective tissue important in wound

healing, budding yeasts (bottom left) are unicellular organisms, and pavement cells

(bottom right) are multiaxial epidermal cells in plant leaves. In many biological

contexts cells maintain a wide range of morphologies that have the potential to con-

vey vastly different intracellular properties to the biochemical processes occurring

within them.

For instance, lamellipodia situated at the leading edge of motile keratocytes are

usually many microns wide but only about 0.1−0.2 µm high (Mogilner & Keren,

2009). The morphology of lamellipodia stands in stark contrast with the more spher-

ical shape of the cell body of keratocytes that are typically 10 µm in diameter. Hence

in keratocytes, biochemical processes that may encounter a relatively small effective

volume in the lamellipodium will encounter a far bigger volume in the trailing cell

body. This raises the question of how biochemical processes that occur in kerato-

cytes react to potentially vastly different copy numbers of their involved proteins

when comparing lamellipodia with the cell body.

Saccharomyces cerevisiae (budding yeast) divides by forming a bud and under-

going mitosis that pinches the developed bud off as a daughter cell. Reproducing

budding yeast cells undergo dramatic changes in size as they double their volume

in just under two hours before undergoing mitosis (Cross, 1988). It is therefore an

interesting question to consider how biochemical processes that underlie polarity in

the budding yeast can cope with rapid size doubling.

Pollen tubes are highly specialised, elongated cells that grow up to 1 mm/h and,

in some cases, increase their effective volume by a factor of twenty over their lifes-
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pan (Nishikawa et al., 2005; Rounds & Bezanilla, 2013). Further, considerable differ-

ences in the effective volume of the cytoplasm can be observed for different pollen

tubes of the same species grown under identical conditions (Qin et al., 2012). There-

fore it is likely that conserved biochemical processes important in establishing po-

larity in the pollen tube encounter vastly differing volumetric conditions in different

pollen tube species and different tubes of the same species.

The morphology of the cytoplasm can also have effects on biochemical reactions:

The phenomenon of macromolecular crowding has been argued by multiple authors

to have substantial effects on both the diffusivity and reactivity of proteins inside

cells (Ellis, 2001). In many cell types this phenomenon arises from the presence of

a mix of macromolecules in the cytoplasm that excludes between 5% and 40% of

the total volume accessible to biochemical reactions (Schnell & Turner, 2004). This

phenomenon can confine biochemical reactions to one-dimensional channels with

restricted effective volume and therefore reduced copy numbers of the involved

biochemical species (Schnell & Turner, 2004).

As this summary of differences in cell morphology within and between cells

shows, conserved biochemical processes are likely to occur in a multitude of differ-

ent effective reaction volumes. Further, as cells grow and divide these same bio-

chemical processes become subject to very dynamic volumetric properties.

The polarisation of Rho homologues entails biochemical processes and transport

phenomena that can be affected by both the volumetric properties of the system

and the copy number of the involved biochemical species. It is therefore important

to understand the influence of cell morphological differences and changes on the

processes that underlie cell polarity. Further it is interesting to ask whether potential

feedback between morphology, biochemical processes, and cell polarity has merit in

explaining observed biological phenomena.

1.4 Thesis Outline

In this thesis I study the interplay between cell morphology and Rho GTPase-dependent

cell polarity modelled with the wave-pinning mini-model presented by Mori et al.

(2008).
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The outline of this thesis is as follows: In Chapters 2 and 3 I study the wave-

pinning mini-model in cellular contexts at opposite extremes of the cell size spec-

trum.

In Chapter 2 I focus on the behaviour of the mini-model in small effective re-

action volumes which either arise in cells of minute size or cells that are subject

to macromolecular crowding. This restriction to small reaction volumes gives rise

to conditions where only a few hundred or thousand protein copies interact in the

reactions of the mini-model. Here I elucidate the effect of small copy numbers on

Rho-dependent polarity and some of the mechanisms through which stochastic ef-

fects may challenge polarity.

In Chapter 3 I focus on the effects of large reaction volumes and dynamically

increasing reaction volumes on cell polarity modelled with the Rho mini-model.

Here I also close the loop between cell morphology and cell polarity by linking the

rate of morphology change to the state of the polarity system. My work in Chapter

3 reveals that this closed feedback loop enriches the dynamic behaviour of the mini-

model dramatically.

While in Chapters 2 and 3 I study the existing wave-pinning mini-model, in

Chapter 4 I make the case for unfurling this phenomenological model. As I discuss

in Chapter 4, biological studies make it clear that molecular details of the biochemi-

cal processes underlying cell polarity can be crucial in illuminating the ties between

morphology and polarity. The tool I develop in Chapter 4 can be used for rapid

model disambiguation in the search for these molecular details and is therefore a

useful tool for further studies of the interplay between cell morphology and cell

polarity.
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Chapter 2

Deterministic Versus Stochastic Cell

Polarisation Through Wave-Pinning

Abstract

Cell polarisation is an important part of the response of eukaryotic cells to stimuli,

and forms a primary step in cell motility, differentiation, and many cellular func-

tions. Among the important biochemical players implicated in the onset of intra-

cellular asymmetries that constitute the early phases of polarisation are the Rho

GTPases, such as Cdc42, Rac, and Rho that present high active concentration lev-

els in a spatially localised manner. Rho GTPases exhibit positive feedback-driven

interconversion between distinct active and inactive forms, the former residing on

the cell membrane, and the latter present predominantly in the cytosol. A deter-

ministic model of the dynamics of a single Rho GTPase described earlier by Mori et

al. exhibits sustained polarisation by a wave-pinning mechanism. It remained, how-

ever, unclear how such polarisation behaves at typically low protein copy numbers,

as stochasticity could significantly affect the dynamics. We therefore study the low

copy number dynamics of this model, using a stochastic kinetics framework based

on the Gillespie algorithm, and propose statistical and analytic techniques that help

us analyse the equilibrium behaviour of our stochastic system. We use local per-

turbation analysis to predict parameter regimes for initiation of polarity and wave-

pinning in our deterministic system, and compare these predictions with determin-

istic and stochastic spatial simulations. Comparing the behaviour of the stochastic
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with the deterministic system we determine the threshold number of molecules re-

quired for robust polarisation in a given effective reaction volume. We show that

when the molecule number is lowered wave-pinning behaviour is lost due to an in-

creasingly large transition zone and fluctuations in the pinning position that cause

the collapse of the wave, while the high and low equilibrium levels are affected far

less.

2.1 Introduction

Many eukaryotic cell types undergo directed movement in a variety of scenarios.

Such motility is important in embryogenesis (Charest & Firtel, 2007), wound heal-

ing, immune surveillance (Ridley et al., 2003), and cancer metastasis (Ridley et al.,

2003).

As a first step in this process, cells polarise, forming a distinct front and rear

distinguished by biochemical profiles of signalling molecules that regulate lamel-

lipodial extension (Ridley, 2006). An important part of that internal polarising bio-

chemistry is based on the activity and distribution of Rho GTPases.

These switch-like signalling proteins exhibit a distinct active (GTP, membrane-

bound) form and an inactive (GDP) form that is largely cytosolic. Only the ac-

tive, GTP-form is able to interact with downstream effectors to exert its biological

function. Interchange between these two forms is mediated by GTPase-activating

proteins (GAPs), which augment inactivation, and guanine nucleotide exchange

factors (GEFs), which facilitate activation. It has been established that the active

form increases its own rate of activation via various self-recruitment mechanisms

(Raftopoulou & Hall, 2004; Li et al., 2003). While the active form binds the plasma

membrane, the inactive form can be both in the membrane or released to the cy-

toplasm, a process that is positively regulated by binding to guanine nucleotide

dissociation inhibitors (GDIs).

When a cell is stimulated, some Rho GTPase activity (notably, Cdc42 and Rac1)

is focused at the leading edge (Ridley et al., 2003), inducing localised actin poly-

merisation that generates protrusive forces propelling the cell (Raftopoulou & Hall,

2004).
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Here we are concerned about the onset of polarity and its maintenance, thus

focusing only on the polarisation of the Rho pattern, and not on the downstream

remodelling of the cytoskeleton (or possible feedback that this might generate). In

a later chapter of this thesis we present and study a model that includes feedback

between Rho localisation and effective downstream remodelling of the cytoskeleton.

Based on general interactions between Cdc42, Rac and Rho, and taking into ac-

count known parameters for the kinetics and diffusion of the active and inactive

forms, it has been shown that sustained polarisation within a cell is possible while

the homogeneous steady state (the rest state of the cell) remains stable (Marée et al.,

2006; Jilkine et al., 2007). Later, Mori et al. (2008) determined the mathematical

essence of the mechanism by studying a reduced deterministic model of cell polar-

isation, coining it “wave-pinning”. We refer to this reduced model as a mini-model

for Rho-dependent cell polarisation.

It remains, however, unclear to what extent stochasticity at low molecule num-

bers can influence the potential of the mechanism to initiate and sustain polarity

within the cell. We therefore compare and contrast the deterministic and the stochas-

tic version of the mini-model for wave pinning.

A simple 1D geometry in which this generic Rho GTPase can be studied is shown

in Figure 2.1, where organelles and the nucleus are omitted, L is a cell diameter,

and the chemical system is modelled by a two-component reaction with distinct

rates of diffusion Da�Db across L, since proteins diffuse much more slowly in the

lipid membrane than in the cytosol. Here A is the active and B the inactive small

GTPase (with concentrations a(x, t) and b(x, t)). The height H and width W of the

compartment are assumed to be reasonably small, so gradients are described in the

x direction for x ∈ [0, L], t≥0.

The system of reaction-diffusion equations of the deterministic GTPase model is

(Mori et al., 2008):

∂a
∂t

=Da
∂2a
∂x2 + f (a, b) , (2.1a)

∂b
∂t

=Db
∂2b
∂x2 − f (a, b) . (2.1b)
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Here f (a, b) is the rate of GTPase interconversion. Equations (2.1) are taken with no-

flux boundary conditions: ax(0)=ax(L)=0, bx(0)=bx(L)=0 and the interconversion

rate is modelled to include auto-activation of A (through a positive feedback of A

onto its own production):

f (a, b) = k0b +
γa2

K2 + a2 b− δa , (2.2)

where k0 and δ denote the basal rates of activation and inactivation of A respectively,

γ is the rate of maximal feedback strength and K is the concentration of A leading

to a half-maximal feedback level.

We first briefly describe the deterministic aspects of this model, and introduce a

local perturbation analysis that leads to insights on how the initiation of polarisation

depends on the parameters and on the total amount of molecules. We then explore

how the polarisation mechanism reacts when only a limited number of molecules is

available and stochasticity starts to impact on the polarisation state of the cell. To

do so, we describe and analyse an analogous stochastic version (low copy number

regime) of the mini-model. We confirm correctness of our stochastic implementation

by showing that simulations with large molecule and lattice numbers approach the

thermodynamic limit. To analyse the equilibrium behaviour of the stochastic system

we introduce statistical tools that provide us with intriguing insights regarding the

dynamics in the low copy number regime. Using these tools we discover that in

the low copy number regime the system is dominated by spatial fluctuations of the

transition zone rather than temporal fluctuations in the activity levels. We further

show that loss of polarity is due to the region of high activity reaching a broadness

that is unsustainable, causing the sudden collapse of the whole wave. Bifurcation

analysis of a simplified model of a pinned wave provides an explanation for the

behaviour of the stochastic system close to the point where the wave is lost due to

stochastic fluctuations.
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Figure 2.1: The Modelled Cell. (top): Schematic diagrams of a cell showing the
“slab” of length L, height H, and width W in a top-down and side view. The model
distinguishes membranous (solid circles; called A in this manuscript) and cytoplas-
mic (open circles; called B) proteins only by their distinct rates of diffusion. A typical
“polarisation” state is shown in grey/white in the top-down view. (bottom): In the
deterministic polarisation model (2.1) proposed by Mori et al. (2008), a small stimu-
lus (dashed line, not to scale) produces a pinned wave (solid black line).
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2.2 Deterministic Behaviour

2.2.1 Wave-Pinning

Given appropriate conditions and using Equation (2.1), a stimulus-pulse of GTPase

located within an otherwise homogeneous domain leads to the formation of a trav-

elling wave of activation that slows down and stalls, delimiting a spatial region of

activation, thus creating a robustly polarised cell (Mori et al., 2008).

In our simulations, this initial pulse is captured by a first-order reaction con-

verting b to a within a small domain of the cell. This is achieved through the

term ksb(x, t), which is both added to Equation (2.1a) and subtracted from Equa-

tion (2.1b).

The wave-pinning regime depends on the relative rates of diffusion and the total

amount T=
´ L

0 a(x, t) + b(x, t)dx in the system. The mechanism of wave-pinning

can be attributed to the following: relatively rapid diffusion of b (Db�Da) leads

to a relatively constant level of b over the cell, while the existence of three roots of

f (a, b) for the fixed well-mixed equilibrium b level allows for a sufficiently large

local perturbation in a to locally reach a distinct activity level (a process that we

have coined “∆-perturbability”, see below). Mass conservation ensures that, while

this peak of a levels expands similarly to a propagating wave, the relatively constant

homogeneous level of b drops. This global decrease of b slows down and eventually

limits the spatial propagation of the wave, pinning it in an equilibrium position

(Mori et al., 2008).

Even though wave-pinning requires the existence of three roots of f (a, b) for

fixed b, it is important to realise that it is not a consequence of bistability and subse-

quent front propagation between two stable states. (Note that in reaction-diffusion

systems, the terminology bistability is used to denote cases in which the correspond-

ing well-mixed system has two distinct stable steady states.) The well-mixed ODE

system has only one equilibrium, and in the PDE this equilibrium is stable against

both homogeneous and small non-homogeneous perturbations. Nevertheless, in

the spatial setting a sufficiently large local perturbation can trigger the travelling

wave, which subsequently stalls, giving rise to sustained polarity.
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2.2.2 Wave-Pinning Versus Propagation Failure

Because we compartmentalise space in this study to perform stochastic simulations,

it is relevant to introduce yet another mechanism, coined propagation failure (Brit-

ton, 1985; Keener, 1987). As a possible source of confusion, propagation failure has

previously also been referred to as “pinning of waves” (Fáth, 1998), thus evoking

the need to emphasise its clear distinction from “wave pinning” as defined in Mori

et al. (2008).

Propagation failure describes a specific phenomenon that can be observed in

bistable systems in which travelling waves fail to propagate when space is discrete.

This may occur when both the wave velocity is low and the discretisation of the

space is coarse (relative to the diffusion coefficient) (Keener, 1987; Fáth, 1998). Un-

der such conditions, propagation failure can manifest itself if, in the location of the

wave front, the diffusive flux from one subdomain into the next becomes insufficient

to bring the levels of that subdomain above the threshold required for the amplifi-

cation and subsequent propagation of the wave. In contrast, the phenomenon of

wave-pinning does not require discretised space. Instead, when the triggered wave

spreads over the domain the velocity of the wave decreases because of the drop in

the available inactive form that is used up by being converted into the active form.

Nevertheless, we here find that both phenomena become coupled to one another

when space is discretised. Due to slowing of the wave as a result of wave-pinning

the velocity of the wave eventually becomes sufficiently low that propagation fail-

ure will occur in coarse grids. Consequently, when we discretise space in this study,

which we do in both numerical PDE simulations and in Gillespie simulations, prop-

agation failure occurs for coarse grids as well as low diffusion rates.

Given that subdivision of space into grid points is a computational method but

does not represent a biological property of the cell, we will ensure below that propa-

gation failure does not play a role in the dynamics presented in this manuscript nor

influences the biological insights we derive here.
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2.2.3 Analysis of Polarity Initiation

The full bifurcation analysis of any system of partial differential equations (PDEs) is

a challenging undertaking. While Mori et al. (2011) focused on the requirements of

the travelling wave to stop, we will here discuss an analysis regarding the potential

to initiate polarity and a travelling wave, in which we probe the homogeneous state

of the cell with a local perturbation.

In short, we ask what happens if a local perturbation is introduced into a rest-

ing cell (being at a uniform steady state), by observing whether such a perturbation

will diverge to a distinct local equilibrium (eventually causing polarisation through

wave-pinning), or alternatively dampen out, returning to the rest state correspond-

ing to the globally homogeneous state of the cell. This analysis provides a straight-

forward test whether a (sufficiently large) perturbation can “invade” the initially

uniform steady state solution.

We refer to this reduced model as the “local perturbation analysis” (LPA) model,

or system, as it allows us to study invasion criteria for a local perturbation of any

given amplitude. Note that such ∆-perturbability does not directly imply sustained

polarisation through wave-pinning, see below.

To address the onset of polarisation without having to deal with the full complex-

ity of the PDEs, we break down the spatial system into two effective compartments,

one corresponding to the levels of the active and inactive form at the site of the local

perturbation, and another corresponding to the global values over the remainder of

the cell. The simplified representation of the deterministic system is given in Equa-

tions (2.4), and is used to predict the total amount of small GTPase T for which to

expect initiation of polarisation and wave-pinning. This analysis allows us to com-

pare results from the deterministic and the stochastic version of the model later on.

For the local perturbation analysis, we introduce the following assumptions and

approximations into the PDE model:

• We ask whether the value of A at a site of the localised pulse aL(0) will diverge

from the uniform global concentration of active GTPase aG(t). Since this active

form has a very low rate of diffusion, we consider the limit Da ≈ 0 and treat

aL(t) as a purely local variable, that can vary independently from aG(t). This
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is equivalent to assuming that any perturbation in A will be spatially confined

to the site of the perturbation and will initially evolve independently of the

rest of the domain.

• Since the inactive GTPase B has a relatively fast rate of diffusion, we take

the limit at which Db≈∞ and consider b(t) to be a purely global variable

(bL(0)=bG(t)≡b(t)). Restated, any local perturbation in B caused by the lo-

cal perturbation in A will be instantly adjusted to the global, homogeneous

concentration profile.

This leads to the following LPA model:

daL

dt
= f (aL, b) ,

daG

dt
= f (aG, b) ,

db
dt

= − f (aG, b) . (2.3)

Furthermore, given that we consider only a narrow initial pulse of activation that

hardly affects the overall cell levels, it is reasonable to approximate T(t) ≈
´ L

0 aG(t)+

b(t)dx ≈ constant, so that b(t)≈(T/L) − aG(t). Eliminating b(t) by conservation

leads to a system of two ODEs:

daL

dt
= f (aL, (T/L)− aG(t)) , (2.4a)

daG

dt
= f (aG, (T/L)− aG(t)) . (2.4b)

The approximations required for the polarity-invasion analysis are depicted in Fig-

ure 2.2. Note that since the activating pulse is confined to a sufficiently small subsec-

tion of the domain its variation will not affect the total amount of inactive form, and

therefore the dynamics of B solely depends on the global level of A in the extended

domain.

We can use such approximations to address the following questions: under what

circumstances would a localised pulse of activation grow in magnitude compared

with the surrounding levels? How large should the amplitude of the stimulus be to

trigger a new state (e.g. depicting an initial polarisation)? And, if a new, bounded

state exists, what values do we expect it to have? These answers depend on the

parameters and on the total number of molecules (i.e. amount of small GTPase) in
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the system. Note that we do not restrict attention to small amplitude perturbations

as is common in linear stability analysis of reaction-diffusion equations.

The LPA system, Equation (2.4), can be studied in several ways, e.g. via the aGaL-

phase plane and ODE bifurcation analysis. Performing such analysis reveals five

qualitatively distinct regions of polarity behaviour, depicted in Figure 2.3.

The behaviour in each region can be captured with a sequence of corresponding

aGaL-phase plane diagrams. In the bifurcation diagram, we plot the steady state

value aL versus the bifurcation parameter T, representing the total amount of the

small G-protein. The five distinct regimes of behaviour (labelled I–V) are sepa-

rated by two saddle-node and two transcritical bifurcations. The shape of the curve

traversing the diagram from lower left to upper right is shared with the bifurca-

tion curve that would be obtained when the PDE system is taken to be well-mixed

(Da=Db=∞). It represents a steady state where aG = aL (unpolarized cell, “rest

state”). The two actually coincide, meaning that the equilibrium level in the local

patch is neither lower nor higher than the uniform global background level of aG.

Note that for any equilibrium found in the well-mixed case, there should exist a cor-

responding equilibrium aG = aL in the LPA model. The stability of the equilibrium,

however, can change (between stable and unstable) in a transcritical bifurcation. For

example, while the equilibrium in the well-mixed case is always stable, the portion

of that curve in Region III of the LPA model is unstable. We indicate the line aG=aL

in the aGaL planes, using a dashed grey line, representing the absence of any local

perturbation.

We now explain how to interpret the diagram and its implications for polarity

behaviour. (I) In region I the total amount of molecules is low (T<19.09) and a

regime is found in which only one steady state value aL=aG<0.2 exists. That state

of low activation is unresponsive to stimuli, and no pulse can “invade”. The time-

space plot of a(x, t) stays at, or rapidly returns to, a low uniform level (solid curve)

no matter how large the amplitude of an applied stimulating pulse. That is, a cell

will not polarise when stimulated and it will remain in a rest state. (II) This is the re-

gion corresponding to the deterministic regime of cell polarisation (wave-pinning).

Here, for an intermediate level of substance 19.09<T<23.0, there are three coexist-

ing equilibria of Equation (2.4), the outer two of which are stable. A value of aG
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corresponding to the lower branch can be “invaded” by a local pulse, provided its

amplitude is large enough to surpass a threshold depicted by a dashed curve in re-

gion II. The lower branch corresponds to the aG = aL equilibrium, i.e. to a cell that

is in a homogeneous rest state. Thus, the rest state is stable against small perturba-

tions, but sufficiently large perturbations can polarise the cell. Note that as the total

amount increases, the required amplitude to trigger polarisation decreases sharply,

so that close to but just short of T=23.0 a pulse of very small size can lead to po-

larisation. We see that the full PDE solutions (top panels in Figure 2.3) show the

invasion of such a pulse in this regime, which becomes established at a finite ampli-

tude over some fraction of the domain. (III) Other patterned states (e.g. with one or

more patches of active GTPase) occur in this region. For 23.0<T<25.99, the global

steady state aG=aL is unstable to any perturbation. Here small amplitude noise or

a pulse of small magnitude will disrupt the global state leading to other patterned

states. This kind of behaviour is typical of a Turing instability. Indeed, the full

PDE solution (with random noise initial conditions such that the total amount falls

in this range) produces patterns with multiple peaks. (IV) For even higher values,

25.99<T<35.58, the total amount of GTPase is so high that the global level of activa-

tion is at an elevated steady state level (highest solid branch of the diagram). Here

an invading “pulse” has to locally deactivate a region in order to “invade” (i.e. the

pulse is a dip below the uniform global level). The amplitude of that “dip” must

cross the threshold (dashed portion of curve) to trigger the polarisation, as other-

wise it decays back to the uniform activation level. As shown in the solution of the

PDEs, a dip of sufficiently large amplitude leads to a stable local patch of depressed

activity in an otherwise high global level of activity. (V) Finally, above T>35.58 the

potential of polarisation is lost again. That is, no pulse nor dip can invade, and the

uniform global state is one of high activity everywhere in the domain.

The LPA does not address the question in what position the wave will be pinned,

but rather if a wave can be triggered and how tall it will become. The next question

therefore is in what position along the cell length the wave stalls. We denote the

wave position by L0, and the equilibrium value of L0 where the wave stalls by L0
∗.

In Mori et al. (2008), the wave-pinning position has been derived mathematically

for the limiting case of an infinite difference in diffusion rate between the active

29



and inactive form (i.e. using a sharp front approximation). In the bottom panel of

Figure 2.3 we show the steady state value L0
∗ as a function of T. We elaborate on

our numerical estimation of the sharp-front approximation in Chapter 3. Regarding

the wave-pinning itself, three regions of qualitatively different behaviour can be

discriminated. In regions i and iii no stable polarity can be found, because any

wave would completely retract or expand over the whole domain, respectively. In

contrast, in region ii we find the possibility for stable coexistence of a high and a low

state. Note that the pinning position L0
∗ depends on the value of T. Importantly,

the figure shows that the interval of sustained polarity is smaller than the interval

of regions II–IV. It illustrates that even when a wave can be triggered, it does not

always follow that it can also be sustained.

Note that both the results of the LPA and of the wave-pinning position act as

an approximation of the behaviour of the full PDE, where actual rates of diffusion

are finite and initial conditions can affect whether initially a single peak or several

peaks emerge. However, they capture correctly the basic boundaries that determine

the potential to polarise, the minimum perturbation amplitude required to do so, the

expected values to be reached in the local perturbation, and the position where the

wave pins. We will show how this contributes valuable insight when interpreting

the role of stochasticity in cell polarisation through wave-pinning.

Figure 2.2: Local Perturbation Analysis. Schematic representation of the determin-
istic local perturbation analysis (LPA). In our reduction, we introduce a local per-
turbation ∆a, and consider the evolution of the local variable aL, the inactive pro-
tein (represented by the dotted lines, evolves to the straight black line, such that
bL = bG = b), and the active protein in the rest of the cell, aG.
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Figure 2.3: Regions of Polarisation Behaviour in the Deterministic Model. Unless
otherwise indicated, all model parameter values are chosen as in Table 2.1. Middle
graph: Bifurcation diagram of the reduced deterministic model system, Equation
(2.4), showing steady-state local activated form, aL, versus the total amount of ma-
terial in the domain (T). Five distinct regimes of behaviour are found, as explained
in the text. Top row: colour plots of the solutions of the PDEs, starting close to the
uniform steady state in the given region. In these space-time plots, the time axis is
horizontal and the space axis is vertical. The activity level is depicted using a colour
gradient, with red indicating the highest and blue the lowest activity levels. Middle
row: phase plane behaviour in the aGaL planes, showing the number and stability
of steady states of the reduced system in each of the regions. In regions I and V only
a uniform level of global activity is stable, and no pulse or stimulus can grow. In the
intermediate regions only a sufficiently large pulse (II), or a sufficiently low dip (IV)
can grow. In region III, the homogeneous state is unstable to any perturbation, and a
variety of patterns can form, depending on initial conditions. Bottom graph: Wave-
pinning position as a function of T. In regions i and iii no sustained polarised state
is possible, while in region ii wave-pinning occurs, with the position of pinning, L0

∗

monotonically increasing with T.
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2.3 Stochastic Version

Next we ask how the same polarisation mechanism would behave in the low copy

number regime. We ask under what conditions a stochastic equivalent of the de-

terministic model still presents wave-pinning, i.e. after triggering the formation of

sustained regions within the cell with respectively low and high levels of the active

form, and if our approach predicts biologically relevant conditions under which

wave-pinning may be unsustainable in live, noisy cells.

We resort to the stochastic formulation of chemical kinetics (McQuarrie, 1967),

and use the stochastic simulation algorithm (SSA) due to Gillespie (1976) for our

stochastic simulations of Equation (2.1). For the discrete nature of stochastic simu-

lations, we subdivide the domain of length L into N compartments of equal width

h=L/N, see Figure 2.4.

Figure 2.4: Spatial Set-Up of the Stochastic Simulations. The membrane is divided
into N equally wide well-mixed subdomains. Diffusion within the membrane is
modelled as first-order reactions while we assume that B diffuses fast enough to
warrant modelling it as occupying a well-mixed cytoplasmic pool. Dimensions H
and W associated with the domain of length L are necessary for conversion of con-
centrations to numbers of molecules but do not play any other role: all stochastic
simulations are one-dimensional.

In the deterministic case, we choose experimentally-supported

(Postma & van Haastert, 2001; Postma et al., 2004) relative diffusion values, Db=100Da,

that effectively render B homogeneous. In our stochastic simulations we approxi-

mate B as a homogeneous cytoplasmic pool (Db→∞) to reduce the computational

cost, while maintaining a full computation for the heterogeneous A distribution.

Diffusion of A in the membrane is treated as a series of first order reactions (spatial

SSA (Erban et al., 2007)), each with propensity
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Da

h2 Ai , i = 1, . . . , N ,

where Ai denotes the current number of molecules of A in membrane lattice point i.

The above propensity equals zero for diffusion to the left when i = 1, and diffusion

to the right when i = N, respectively (no-flux boundary conditions). Similarly, we

choose the remaining propensities according to Gillespie (1976):

Background activation into membrane lattice point i : k0
B
N ,

autoactivation of A in membrane lattice point i : γA2
i

K2
N+A2

i

B
N ,

background inactivation out of membrane lattice point i: δAi,

pulse activation into membrane lattice point i: ks
B
N .

We note that B, the current number of molecules of the inactive species in the

well-mixed cytoplasmic pool, is rescaled with 1/N because each membrane lattice

point only senses this fraction of the available total number of molecules of B. For

each propensity p, the probability that the corresponding event occurs within the

next dt units of time equals p · dt + o(dt), where o(·) denotes terms that converge to

zero quicker than its argument (little o notation, limdt↓0
o(dt)

dt = 0).

In the above propensity expressions, most kinetic constants are equal to those

used in the deterministic system, Equation 2.1, since they are independent of the

units of a(x, t) and b(x, t), or Ai and B correspondingly. However, the Michaelis-

Menten constant K of Equation 2.2 has the same units as a(x, t) and needs to be

rescaled for our stochastic simulations:

KN = 10−21NAVaK ,

where NA is Avogadro’s constant, Va denotes the volume associated with each mem-

brane lattice point, Va= L
N W H

2 , and the factor 10−21 is required to rescale units (Va

has units of µm3, and K units of µM). Homogeneous initial concentrations of A and

B, a(x, 0) = a0 and b(x, 0) = b0, are rescaled to numbers of molecules equivalently:
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Ai(t = 0) = 10−21NAVaa0 ,

B(t = 0) = 10−21NAVbb0 ,

where Vb = LW H
2 .

Note that in our stochastic simulations we need to associate volumes with each

lattice point (both for the membrane and for the cytoplasm), since we reformulate

a concentration-based model, Equation 2.1, as a molecule-based stochastic model.

Even though we specify a volume for each lattice point in this conversion, the

stochastic simulations are effectively one-dimensional, as are our deterministic sim-

ulations. That is, in both the deterministic and the stochastic system we focus on

radial polarisation along the diameter of a cell.

2.4 Results

For our simulations and comparison between the stochastic and deterministic case,

we use parameter values based upon Mori et al. (2008), and summarised in Table 2.1:

k0=0.067 s−1, γ=1 s−1, K=1 µM, δ=1 s−1, and diffusion coefficients Da=0.1 µm2/s,

Db=10 µm2/s (the latter in the deterministic case only). For the initial stimulus we

choose ks=10 s−1 for 50 s≤t≤70 s and 0 µm≤x≤0.4 µm, and ks=0 otherwise. For bio-

logically reasonable concentrations (Marée et al., 2006), we set b(x, 0)=b0=2 µM and

use a(x, 0)=a0 such that f (a0, b0)=0 and (a0, b0) is linearly stable (a0=0.2683 µM).

We fix the slab height H=0.2 µm and length L=10 µm (see Figure 2.1) and simulate

our stochastic system for varying numbers of molecules by varying the width W of

our cell slab. Varying the width W (Figure 2.4) allows us to change the number of

molecules without changing the initial concentrations of A and B.

34



Da 0.1 µm2/s diffusion of the active form A in the membrane
Db 10 µm2/s diffusion of the inactive form B in the cytoplasm

(deterministic system only)
k0 0.067 s−1 rate of background activation
γ 1 s−1 maximal rate of auto-activation of A
δ 1 s−1 rate of background inactivation
K 1 µM concentration of A resulting in half-maximal rate of

auto-activation (deterministic system)
KN · · · as constant K but rescaled depending on current

volume of the system (KN ∝ NAHLW · K, where NA
is Avogadro’s number)

ks 10 s−1 rate of activation due to transient pulse
L 10 µm length of the domain
N 50 number of membrane lattice points

Table 2.1: Summary of the parameter values used in our simulations.

2.5 Propagation Failure Does not Affect the Determin-

istic Simulations

We first determine that discretisation of space does not cause propagation failure

near the parameter values used for our analysis on stochasticity. To do so we make

use of the fact that the initial perturbation that triggers a wave does not necessarily

have to be small in width. A wide (but not too wide) perturbation of sufficient am-

plitude can also trigger a wave. Perturbations that are wider than the final pinning

position, however, trigger waves with a negative velocity, i.e. waves that retract un-

til they come to halt at the pinning position. If indeed propagation failure plays a

role, both the extending and the retracting wave are expected to halt before their ve-

locities would have become zero in the continuous case. Thus, propagation failure

would cause extending and retracting waves to halt in distinct positions.

We therefore devise the following numerical experiment: We use a total amount

of T = 22.68 which lies in the wave-pinning regime, in which a ∆-perturbation is

required to trigger a wave that gives rise to sustained polarity, see black arrow in

Figure 2.3. We then start simulations, for varying values of the active form diffusion

coefficient Da and number of lattice sites N, with two different wave-shaped initial

conditions (see Figure 2.5): one narrower and higher, one broader and lower, both

indicated by dashed lines in the figure, where the former lies to the left and the latter
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to the right of the equilibrium wave-pinning position.
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Figure 2.5: Propagation Failure in the Deterministic System as a Function of Grid
Coarseness and Diffusion Coefficient of the Active Form. For each column a dif-
ferent number of compartments, N, has been used, and for each row a different
diffusion coefficient, Da. The values of both are indicated in the figure, with diffu-
sion coefficient Da in units µm²/s. Dashed lines denote initial conditions, solid lines
are equilibrium profiles (at t = 20, 000 s), thick red lines denote narrow, high initial
waves, thin blue lines denote broad, shallow initial waves. Discrepancies between
the red and blue equilibrium profiles for slow diffusion coefficients and coarse grids
can be attributed to propagation failure. At our default setting of Da = 0.1 µm2/s
and N = 50 propagation failure is not observed.

Figure 2.5 shows the equilibrium wave profiles for the narrowly initiated waves

(thick lines) and broadly initiated waves (thin lines). Sufficiently large box sizes

(low N) and sufficiently low diffusion coefficients show a discrepancy in the final

position of the pinned wave between the retracting and the extending waves. This

illustrates that sufficiently low diffusion combined with sufficiently coarse subcom-

partmentalisation leads to propagation failure. For the default values used in this

study (N = 50; Da = 10−1 µm2/s), however, no propagation failure can be observed.

A 10-fold coarser grid or 100-fold slower diffusion would be needed for propagation

failure to occur.
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2.6 Equilibrium Behaviour of the Stochastic System

Individual SSA runs (Figure 2.6, top) resemble the deterministic behaviour for suffi-

ciently large numbers of molecules (≈6800), and the averaged concentration profile

clearly shows wave-pinning after a stimulus is applied (Figure 2.6, bottom). With

fewer molecules (≈700), individual SSA runs become more erratic and the averaged

profile is homogeneous across the domain, resulting in loss of wave-pinning (Fig-

ure 2.6, bottom, inset). As we increase the number of molecules by increasing W, we

observe convergence of the stochastic system to the deterministic one, indicated by

a decreasing observed variance and smoothing of the black solid curve.

To study the distribution of pinning positions, we fit, well after wave-pinning,

the concentration profile of the active species to the symmetric Richards model

(Richards, 1959), which captures well sigmoidal profiles and contains a parameter, c,

that defines the position of the inflection point, which we consider to be the pinning

position of the wave:

afit(x) = M
(

1− 1
1 + exp(−(x− c)/h)

)
+ m ,

where M and m are the concentrations in the high and low plateau respectively, h

determines the slope in the inflection point, and c is the position of the inflection

point. The insets in Figure 2.6, top, show the distribution in pinning position for the

indicated number of molecules, based upon concentration profiles from 100 simula-

tion runs collected between 150 s and 200 s and recorded every 0.1 s (i.e. based upon

50, 100 concentration profiles). We fit this observed distribution to a normal distribu-

tion, indicated by the black line. At great molecule numbers the distribution closely

follows a Gaussian distribution, with the mean corresponding to the predicted value

from the PDE analysis (indicated by the dashed line). At small molecule numbers,

the pinning position becomes biased to smaller pinning positions L0
∗ (i.e. to the left),

due to the fact that stochasticity creates an effectively lower level of auto-activation,

see discussion below. At high molecule number, fluctuations in the pinning posi-

tion become small and closely spaced around the position within the deterministic

model (indicated by the dashed line). At lower molecule numbers the profile broad-

ens.
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To quantify convergence of the stochastic case, Ai(t), to the deterministic case,

ai(t), at time t and in lattice point i, we use the normalised Euclidean distance

d(t) =

√√√√ N

∑
i=1

[Ai(t)− ai(t)]2/

√√√√ N

∑
i=1

ai(t)2 . (2.5)

We compute this distance for J=100 SSA runs, d(t)(j) (j = 1, . . . , J), and report mean

observed distances d(t) = (1/J) ∑J
j=1 d(t)(j).

The observed mean Euclidean distance in Figure 2.7 shows the expected conver-

gence of the stochastic case to the deterministic case for increasing copy number. In

Figure 2.7, disappearance of the wave profile becomes apparent by the increasing

value of d(200) for fewer molecules. These results show the stochastic limit to the

deterministic behaviour, confirming the qualitative intuition of a stochastic lower

limit to the wave pinning mechanism. What is not clear a priori however, is the

dynamics by which wave-pinning is lost at low molecule numbers and how this is

affected by other parameter changes.
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Figure 2.6: Stochasticity in Wave-Pinning. (top) Black solid lines: ten individual
runs of the stochastic model using the SSA at t=200 s. Vertical and horizontal noise
of the jagged lines are indicated by the corresponding arrows. Grey line: behaviour
of the deterministic system. (Parameter values k0=0.067 s−1, γ=1 s−1, K=1 µM,
δ=1 s−1, Da=0.1 µm2/s, Db=10 µm2/s; diffusion of B in deterministic model only).
Total amount T=22.68. W=2.5 µm, number of molecules equals 6,820. (insets) His-
tograms of observed pinning positions when number of molecules is 6, 820 and
34, 150, respectively. Concentration profiles of 100 simulation runs between 150 and
200 s were fitted to symmetric Richards model and inflection point used as pinning
position (bottom) Black solid line: observed mean of the stochastic system over 100
runs, shown together with a grey line representing the deterministic system. Black
dashed lines enclose the 95 % c.i. of the sample mean. (bottom inset) Lines as in
bottom image, and parameters as in top image except for width, W=0.25 µm, re-
sulting in a reduction of the number of molecules to 702. The top image shows that
individual SSA runs closely reproduce the deterministic behaviour for appropriate
parameters. The corresponding mean behaviour in the bottom image confirms this.
The bottom inset depicts loss of wave-pinning from the mean behaviour when too
few molecules are present in the system.
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Figure 2.7: Convergence of Stochastic to Deterministic System. Mean Euclidean
distance over J = 100 SSA runs, d(200) at time t=200 s, after the stimulus. Simula-
tion parameters as in Figure 2.6, except for W. W is varied to obtain different total
copy numbers. This plot shows convergence of the stochastic system to macroscopic
predictions as we increase the number of molecules.

2.7 Stochastic Simulations Are not Affected by Propa-

gation Failure

Before we discuss in detail the loss of wave-pinning at low molecule numbers,

we revisit the phenomenon of propagation failure. We repeat the procedure de-

scribed above to determine potential propagation failure within the stochastic de-

scription, but now for varying molecule numbers rather than diffusion rates (Figure

2.8). As before, when the grid becomes coarser, secondary effects of propagation

failure manifest themselves and affect the pinning positions through this indepen-

dent mechanism. Again however, as we showed before in Figure 2.5, those effects

are not noticeable in the simulation regimes we focus on, and only to a very small

extent under extreme conditions of a very coarse grid.
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Figure 2.8: Propagation Failure Within Stochastic Simulations as a Function of
Grid Coarseness and Molecule Number. Dashed profiles indicate initial con-
ditions, correspondingly coloured solid lines depict mean equilibrium profiles at
t = 200 s, averaged over 100 runs. Confidence intervals are omitted for reasons
of clarity, but standard errors of mean are similar to Figure 2.6. Da = 0.1 µm2/s;
the number of compartments and molecules are indicated in the figure. Propaga-
tion failure does not affect 50 lattice point simulations. At small molecule numbers,
however, larger numbers of lattice points present deviations that are unlike propa-
gation failure and we discuss this effect in the main text.

We find that stochasticity reduces rather than increases the parameter regime for

which propagation failure can be observed (compare the column corresponding to

N = 5 in Figure 2.8 with the upper left graph in Figure 2.5). This can be under-

stood by realising that stochasticity can help overcome the threshold to propagate

the wave. This means that for coarse grids and low diffusion rates the stochasticity

at low molecule numbers can even increase the precision of the pinned wave. Be-

sides deviations at low box numbers, we also observe deviations from the stationary

solution of the deterministic model (as indicated in each frame with a black line) for

a combination of low molecule and high box numbers (see lower right graph in Fig-

ure 2.8). This is an artifact attributed to an effective change in the auto-activation

function when the number of molecules in a box becomes very small, which will be
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discussed further below.

2.8 Comparison of Deterministic and Stochastic Predic-

tions

We test our predictions from the LPA system, Equation (2.4), by classifying individ-

ual SSA runs (using the same parameter values as in Figure 2.6) as either homoge-

neous in A (i.e. uniform in A well after the stimulus, e.g. at t=200 s) or inhomoge-

neous in A (i.e. where a local pulse invaded the global concentration profile of A,

creating at least one high plateau or peak in A).

Comparing the predictions of the deterministic version of the model with the

SSA simulations we find interesting differences. With parameter values as in Fig-

ure 2.6, specifically with Da=0.1 µm2/s (central inverted cup in Figure 2.9), we ob-

serve a somewhat more stringent condition in the stochastic wave-pinning regime,

22≤T≤27, than predicted by Figure 2.3 (arrow indicates default value T = 22.68).

This discrepancy may be explained by the relatively fast diffusion of A, compared

with the limiting rates used in the theoretical treatment, which destabilises local per-

turbations in A (through high curvature in the concentration profile of A), making it

harder for perturbations to stabilise and invade the remaining profile of A. Indeed,

as we decrease Da by orders of magnitude (Figure 2.9, broadening inverted cups),

increasingly wider ranges of T allow for stabilisation of perturbations in A and their

invasion of the global homogeneous A level. Our observations for decreasing Da,

and certainly for Da=0 µm2/s (Figure 2.9, dashed line), indicate increasing agree-

ment between our stochastic simulations and the predicted wave-pinning criteria.
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Figure 2.9: Dependence of Wave-Pinning Stability on Diffusion and Total
Amount. Fraction of SSA runs (out of 100 runs) observed at t=200 s to be stably
inhomogeneous (wave-pinned, or with multiple peaks in A). System parameters
as in Figure 2.6 with varying Da. Each inverted-cup-shaped curve corresponds to a
different Da value, decreasing from Da=0.1 µm2/s to Da=10−4 µm2/s from the in-
nermost to the outermost cup, using order of magnitude changes in the parameter
value (as indicated by the arrows). Dashed line: Da=0 µm2/s. This plot shows for
what parameter values (changing total amounts T and diffusion constant Da) the
stochastic system shows stabilisation of perturbations in the uniform concentration
profile of A (high fraction of inhomogeneous runs). Stabilisation of perturbations
is difficult for high diffusivity of A (Da=0.1 µm2/s innermost, narrowest cup) since
spikes in the concentration profile of A are more readily smoothed out before they
grow to sufficiently high levels. For decreasing values of Da our observations match
progressively better with the predictions made using the LPA in the main text. That
is because the LPA assumes zero diffusivity for A and therefore ignores any effects
due to the diffusion of the active form.

2.9 Loss of Wave-Pinning in Small Number Regimes

Loss of wave-pinning for fewer molecules may either result from increased ran-

domness along the concentration axis (vertical noise, Figure 2.6), or greater random

fluctuations in the pinning position of a travelling wave (horizontal noise, Figure

2.6): With a low copy number, individual runs may show wave-pinning but the
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steepest point of the concentration profile (pinning position) may fluctuate along

the horizontal axis due to inherent stochasticity.

To distinguish the effects caused by these distinct types of noise, we quantify the

horizontal noise in lattice point i, using a sample of J=100 SSA runs, with a function

similar to autocorrelation, here denoted “spatial autocorrelation”:

RSk(i) =
E
[(

Ai(t)−E[A(t)]
) (

Ai(t + k)−E[A(t + k)]
)]

√
Var [Ai]

, (2.6)

where k is the time lag, E[A(t)] is the spatial mean of A at time t, and Var[Ai] is a

spatial variance. (We use bars to denote statistics related to spatial autocorrelation.)

Statistic E[A(t)] measures the average concentration of A at time t across the do-

main, and the spatial variance, Var[Ai], gauges the spread of the concentration of

A in lattice point i, Ai(t), about the spatial mean. Observing the concentration of

A in M equidistant time points (Ai(m), m=1, . . . , M), we estimate these statistics as

follows:

E[A(m)] ≈ µ̂(m) =
1
N

N

∑
i=1

Ai(m) , (2.7a)

Var[Ai] ≈ σ̂i
2 =

1
M− 1

M

∑
m=1

(Ai(m)− µ̂(m))2 . (2.7b)

Our estimator of spatial autocorrelation then becomes:

R̂Sk(i) =
1

M−k ∑M−k
m=1 [Ai(m)− µ̂(m)][Ai(m + k)− µ̂(m + k)]

σ̂i
. (2.8)

This function centres observations Ai(m) about the spatial mean and gauges the cor-

relation between observations k time steps apart. We also normalise our estimator

(R̂Sk(i) ∈ (−1, 1)) by dividing by the observed standard deviation about the spa-

tial mean. A high-value R̂Sk(i) denotes a lattice point i where Ai is stably far away

from the spatial mean, while a low value suggests that Ai repeatedly comes near the

spatial mean.

We report estimates of autocorrelation (spatial, and temporal further on) as sam-

ple means R̂Sk(i) = (1/J) ∑J
j=1 R̂Sk(i)(j) of the corresponding estimates for J SSA
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runs, R̂Sk(i)(j). We further compute these estimates in time periods when we expect

our system to be stable, long after the application of a stimulus and wave-pinning

(stimulus applied between 50 s and 70 s and observations between 500 s and 1500 s

used for computations).

In a regime where the mean behaviour presents wave-pinning we observe a dip

in spatial autocorrelation in a section of the domain that includes the pinning po-

sition (Figure 2.10, top). The width of this dip (shaded area in Figure 2.10, top)

increases with decreasing numbers of molecules in the system (Figure 2.10, bottom),

and spans the entire domain (10 µm) when wave-pinning is lost.

For quantifying vertical noise, we use an autocorrelation function denoted “tem-

poral autocorrelation” for clarity:

RTk(i) =
E [(Ai(t)−E[Ai]) (Ai(t + k)−E[Ai])]√

Var [Ai]
, (2.9)

where E[Ai] is the expected value and Var[Ai] is the variance of concentration Ai.

We use the common sample mean and sample variance as estimators of these statis-

tics:

E[Ai] ≈ µ̂i =
1
M

M

∑
m=1

Ai(m) , (2.10a)

Var[Ai] ≈ σ̂2
i =

1
M− 1

M

∑
m=1

(Ai(m)− µ̂i)2 . (2.10b)

Using these, our estimator of temporal autocorrelation becomes:

R̂Tk(i) =
1

M−k ∑M−k
m=1 [Ai(m)− µ̂i][Ai(m + k)− µ̂i]

σ̂i
. (2.11)

Temporal autocorrelation measures the randomness of the time evolution of A, which

is governed by a continuous-time Markov process. (If we know the distribution of

A(t) at present, the future distribution of A(s), s > t, only depends on A(t) and is

independent of observations of A before t.) Given the Markovian character of A(t),

we expect the temporal autocorrelation to be greatly dependent on the lag k: a small

lag (k=1 s) results in relatively high temporal autocorrelation (black area, Figure
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2.11 top right and bottom right), while a bigger k=20 s yields small temporal auto-

correlation (light grey area, Figure 2.11 top right and bottom right). We also observe

that the Markovian character of A(t) is comparable for small and large numbers of

molecules since the magnitude of temporal autocorrelation does not change signifi-

cantly when altering the number of molecules (Figure 2.11 right panels). This means

that in both small and large copy regimes, temporal autocorrelation decreases com-

parably fast.

While the vertical noise does not seem to decrease when increasing the number

of molecules, wave-pinning still shows up as a marked peak in temporal autocor-

relation in the transition zone of the wave (Figure 2.11, bottom right). Since overall

vertical noise is relatively constant, this peak seems to be caused by the wave fluctu-

ating about its pinning position: concentration Ai(t) in the transition zone fluctuates

between high and low values (high and low plateau of wave) causing Ai(t) to be far

away from its average repeatedly (high temporal autocorrelation).

We find spatial autocorrelation to behave markedly different from temporal au-

tocorrelation for increasing numbers of molecules (Figure 2.11, left panels). While

spatial autocorrelation is comparable in magnitude to temporal autocorrelation in a

small copy number regime (Figure 2.11 top panels), we observe much greater spa-

tial autocorrelation than temporal autocorrelation for various lag k values in a large

copy number regime (Figure 2.11 right panels). The stably high spatial autocorre-

lation, even for large lags k, far away from the pinning position suggests that the

high and low plateau of the wave are persistent in wave-pinning regimes (Figure

2.11 bottom right). The random fluctuation of the pinning position is highlighted by

the decreasing spatial autocorrelation for increasing lags k (dark to light grey area

in Figure 2.11 bottom left) in this part of the domain.

To elucidate the source of the horizontal noise and the impact it has on the sus-

tainability of a polarised cell, we make use of another spatially simplified repre-

sentation of the deterministic system. Without loss of generality, once a wave has

been formed, the concentration profile of a can be split into a plateau of length L0

and approximate concentration aL on the left, and a plateau of length L − L0 and
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approximate level aR on the right (Figure 2.12 left) where

a(0 ≤ x < L0, 0) = aL(0) = a1, a(L0 ≤ x ≤ L, 0) = aR(0) = a2 .

Here a1>a2 are two roots of f (a, bwp)=0, where bwp is the uniform concentration

of b for this wave-shaped profile, while it is assumed that Db=∞ and Da=0. Then

the total amount T of protein in the domain can be approximated as Twp = Lbwp +

L0a1 + (L− L0)a2. In the limit Da→0 (no direct communication between plateaus),

aL(t) and aR(t) evolve independently. Eliminating b(t) using mass conservation

leads to:

daL

dt
= f (aL, b) ,

daR

dt
= f (aR, b) ,

b(t) = (Twp/L)− aL(t)(L0/L)− aR(t)(L− L0)/L , (2.12)

which also implies that the position of the wavefront is

L0 =
Twp − L[b(t) + aR(t)]

aL(t)− aR(t)
. (2.13)

System (2.12) is a second deterministic reduction that leads to a way of comparing

the stochastic and deterministic model versions. In the deterministic case we expect

that the wave-pinned configuration, Figure 2.12, left panel, is stable over time when

L0 = L0
∗ (pinning position). As Equation (2.13) indicates, noise in the concentration

variables will propagate to the width of the high plateau of the pinned wave. We

expect that this propagation of noise is qualitatively the same in the full spatial sys-

tem and conjecture that noise in the pinning position (horizontal noise) is the result

of noise in the concentration levels (vertical noise).

Given that the total amount is fixed at Twp, aL and aR adjust to varying widths

of L0: increasing L0 will typically decrease aL and increase aR accordingly, and vice

versa. For system (2.12), we plot the steady-state concentration of aL as a function

of L0 (Figure 2.12, right panel) and observe two critical values for L0, L(1)
0 <L(2)

0 , at

which saddle-node bifurcations occur. The bifurcation plot in Figure 2.12 shows that

if we initialise our simplified system in a wave-pinned configuration (high plateau

on left, low plateau on right, as in Figure 2.12, left panel, with L0 = L0
∗<L(2)

0 ),
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sufficiently large horizontal noise may drive the effective plateau width, L0, away

from L0
∗ and past the critical point (L0>L(2)

0 ) which would then cause the wave to

collapse. Due to hysteresis in the bifurcation plot, L0 may fluctuate back to the left

of L(2)
0 after collapse of the wave without triggering restoration of the wave.

We expect that the saddle-node bifurcation at L(2)
0 and hysteresis explain the

sharp increase in dip width (Figure 2.10, bottom) observed in the full spatial sys-

tem: decreasing the number of molecules in the system increases vertical noise

which propagates into horizontal noise. As horizontal noise increases, the likeli-

hood that the pinning position randomly overshoots the critical value increases and

we are more likely to observe wave collapse (dip width approaching 10 µm, Figure

2.10, bottom). This prediction is further supported by our observation that under

conditions equivalent to those of Figure 2.12, and with 6, 820 molecules, we do not

observe any pinning positions greater than 6 µm (Figure 2.6, top inset).

Figure 2.12 is closely linked to Figure 2.3. While the latter shows the impact of a

∆-perturbation of infinitesimally small width, corresponding to an L0 = 0 µm, as a

function of T, the former shows the impact of perturbations of varying width, for

a fixed value of T. The link between the analysis on the loss of wave-pinning with

system 2.12 and the analysis on polarity initiation (LPA, system 2.4) is very direct.

By allowing L0 ↓ 0, system 2.12 becomes equivalent to system 2.4: aL in Equation

2.12 describes the active level on a vanishingly small domain and therefore ceases

to affect the inactive species b (i.e. aL – active left – becomes the local perturbation

aL – active local – in Equation 2.4), while aR starts occupying the entire domain

of length L and therefore only the presence of aR affects b (i.e. aR – active right –

becomes the global active form aG – active global – in Equation 2.4). Figure 2.13

brings both pieces of information together, showing a two-parameter bifurcation

plot, with L0 along the x-axis, and T along the y-axis. The right panel of Figure 2.12

corresponds to a horizontal cross-section at T = 22.68 (Figure 2.13, zone VI), while

the bifurcation diagram of Figure 2.3 corresponds to a vertical cross-section through

this bifurcation diagram at L0 = 0, along which line we have indicated the two fold

bifurcations (FB) and two transcritical bifurcations (TB) that can be seen in Figure

2.3, indeed reproduced at exactly the same parameter values.

Increasing L0 away from zero, the critical total amounts of both fold bifurcations
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in Figure 2.3 change while the critical values of the transcritical bifurcations are un-

affected (solid grey lines in Figure 2.13). This implies that at levels of T that are less

favourable for sustained polarity, narrow ∆-perturbations are still able to trigger a

wave, while broad ones can not do that any more. Moreover, this illustrates that

when the well-mixed equilibrium is unstable against spatially inhomogeneous bi-

furcations (zones III–V), the width of the perturbation becomes irrelevant. We also

observe four cusp bifurcation points (CP), highlighting where two fold bifurcation

lines merge. These points imply the possible coexistence of waves with different am-

plitudes. Finally, there are two bifurcations where a fold bifurcation and a transcrit-

ical bifurcation collide (FT). These are linked to the symmetry of the two-parameter

bifurcation plot about L0 = 5 µm, which is due to the lack of inherent bias for either

a left-oriented or a right-oriented polarisation in system 2.12: when L0 < 5 µm, the

pinned wave has its high plateau on the left, while for L0 > 5µm the high plateau is

on the right. Due to this symmetry, we observe a bifurcation plot equivalent to Fig-

ure 2.3 when plotting aR and setting L0 = 10 µm (data not shown), confirming that

initiation of a wave from the left is equivalent to initiation from the right. Together,

Figure 2.13 reveals that there are seven qualitatively different zones of levels of T,

each presenting diverse requirements on wave initiation and maintenance. It allows

us to predict the potential to trigger (or sustain, when L0 = L0
∗) a wave through a

perturbation of any possible width and height, as well as the expected height that

such a wave will reach while it travels, stalls, or stochastically fluctuates. Specif-

ically, it sets the boundaries for horizontal fluctuations to trigger a collapse of the

polarised cell state.
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Figure 2.10: Noisy Transition Zone. (top) Averaged spatial autocorrelation esti-
mate, Equation (2.8), lag k=1 s, with deterministic solution as in Figure 2.6 for ref-
erence. Bold circles: delimiters of autocorrelation dip, highlighted by shaded area.
This figure shows correspondence of a dip in spatial autocorrelation with the tran-
sition zone of the pinned wave. (bottom) As in top figure, mean autocorrelation dip
width (width of grey rectangle in top figure) over 100 SSA runs, as a function of total
number of molecules. When the dip width approaches the length of the domain of
the cell (10 µm), the pinning position stops conferring information that can be used
by the cell. We note a sudden and drastic change in width at approximately 2, 000
molecules. Simulation parameters as in Figure 2.6, except for W which is varied.
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Figure 2.11: Fluctuations in Space and Time. Spatial / temporal autocorrelation
sample mean (over J=100 SSA runs) with lag k=1 s (dark grey), k=10 s (grey), and
k=20 s (light grey). (top row) 702 molecules (W=0.25 µm) (top left) Spatial auto-
correlation. (top right) Temporal autocorrelation. (bottom row) 6, 820 molecules
(W=2.5 µm) (bottom left) Spatial autocorrelation. (bottom right) Temporal autocor-
relation. The plots in the top row show that for sufficiently few molecules both
spatial and temporal autocorrelation are almost uniform and show no pattern for
the equilibrium state (pinning position). In the bottom row and for a sufficiently
high number of molecules, spatial autocorrelation reveals a clear pattern in the equi-
librium state with the dip in autocorrelation robust across different lags k. In the
same copy-number regime, temporal autocorrelation shows a pattern for small lags
k which, however, vanishes for increasing values of k. Simulation parameters as in
Figure 2.6, except for W.
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Figure 2.12: Polarised Cell State Analysis. (left) Schematic of the simplified de-
terministic wave-shaped state, consisting of a high plateau aL of length L0 on the
left, and a low plateau aR of length L − L0 on the right. (right) Bifurcation plot of
steady-state concentrations of aL as a function of L0, with parameters as in Figure
2.6 and with total amount T=22.68. Two saddle-node bifurcations occur at critical
values L(1)

0 =3.25 µm and L(2)
0 =6.75 µm. The corresponding bifurcation plot of aR is

symmetric to this one of aL. In our stochastic simulations, for equivalent parame-
ter values and number of molecules = 6, 820, we did not observe pinning positions
greater than 6 µm (top inset, Figure 2.6), as is predicted by this analysis.
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Figure 2.13: Two-Parameter Bifurcation Plot of System 2.12. This figure shows
the connection between the LPA (Figure 2.3) and the loss-of-wave-pinning analy-
sis (Figure 2.12). It also presents the requirements on both height and width of an
initial ∆-perturbation to trigger cell polarity. (Top right) Two-parameter bifurcation
plot, with total amount T along y-axis and wave position L0 along x-axis. Grey lines
starting at FB: fold bifurcation lines; grey lines starting at TB: transcritical bifurcation
lines; CP: cusp bifurcation; FT: Collision of fold and transcritical bifurcation. (Sur-
rounding subfigures) When varying T, seven distinct zones of qualitatively differ-
ent behaviour are found, labelled I–VII. To understand the behaviour in each zone,
bifurcation diagrams are plotted of the equilibrium value aL (Equation 2.12) as a
function of L0 for a fixed value of T within that zone.

2.9.1 Validity of Stochastic Model at Large Compartment Numbers

Subdividing the domain into N compartments is a computational method that should

not influence the biological insights derived here. Above we discussed that the

coarseness of the lattice could introduce artifacts due to propagation failure, but

that the simulations in this study are sufficiently fine-grained. Figure 2.8, however,

also presented deviations from the expected wave profile when N was large. When

testing the behaviour of the stochastic model as N → ∞, we realised that this is due
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to the fact that the effective auto-activation function starts to change as the number

of molecules in a box becomes very small. Given that at high N only small vari-

ations between the mean values of neighbouring boxes are expected (as the flux

between boxes goes to infinity), we tested if the change in auto-activation could be

due to the expected stochastic variations within each box, assuming a Poisson distri-

bution for the number of active molecules within each box. We therefore calculated

the predicted mean activation rate as a function of the concentration a for different

box sizes, by taking the kernel of the Poisson distribution with the auto-activation

function itself. The insets of Figure 2.14 show the resulting auto-activation rates for

different box sizes, to which subsequently the auto-activation function γa2

K2+a2 was

fitted, with both K and γ as the fitting parameters. The figure shows that when

the number of active molecules becomes small the functional response effectively

shifts to the right (i.e. the fitted value of K becomes larger), while the plateau hardly

changes (i.e. γ remains more or less 1.0). This phenomenon is due to the plateau

in the sigmoidal activation function: while the high spectrum of the Poisson distri-

bution cannot further increase the activation rate, as it is capped, the low spectrum

decreases it. Figure 2.14 repeats the analysis of Figure 2.12 for the estimated effec-

tive values of K. It shows that consequently at lower molecule numbers the wave

becomes lower and is lost more easily due to horizontal fluctuations until, at very

low molecule numbers per box, the wave cannot be sustained any longer. Also,

the lower critical value of L0, L(2)
0 , shifts to lower values (i.e. to the left). This shift

to lower L0 and drop in height of the wave closely corresponds to the observed

changes in the stochastic simulations as can be seen in Figure 2.8, suggesting that

the side-effects observed when increasing N are due to this modification of the auto-

activation function only. This reduction in the number of molecules per box when

increasing N can be overcome in our modelling set-up by increasing W. Thus, N

can be made arbitrarily large, as long as, through modifications of W, the number of

molecules per box is maintained above around 14 (below which value the effective

K becomes too large to warrant sustainable wave-pinning).
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Figure 2.14: Predicted Effect of Stochasticity on the Auto-Activation Term and its
Consequences for Wave-Pinning. Bifurcation diagrams to analyse the polarised
cell state, as in Figure 2.12, for four different box volumes Va (top left: 0.001 µm3; top
right: 0.01 µm3; bottom left: 0.1 µm3; bottom right: 1.0 µm3). The different bifurca-
tion diagrams are made by varying the parameter values γ and K of the Hill-type
auto-activation γa2/

(
K2 + a2). The effective parameter values γ and K for small

box sizes are determined as follows: For the mean number of molecules of active
A being equal to 0, 1, 2, . . . molecules per box (indicated by the black dots in the
insets), a Poisson distribution for that number of molecules is assumed in order to
calculate an expected rate of auto-activation. These observed values are then fitted
to the auto-activation term itself using a least-squares fit. The fitted auto-activation
functions are shown as grey lines in the insets, together with the residual sums of
squares, R2. We observe that while the fitted γ hardly differs from the originally
used value (γ ≈ 1), the fitted K increases as box volume decreases. The bifurca-
tion diagrams show that this change in effective auto-activation lowers the higher
plateau and narrows the range of permissible L0 values. Note that the difference be-
tween the lower panels is virtually undetectable. Indeed, both are almost equivalent
to the bifurcation diagram for the deterministic system, which was shown in Figure
2.12. It illustrates that a volume of Va = 0.1 µm3 (bottom left) forms the upper bound
for observing this stochastic effect. This corresponds to 137 molecules per box, given
that the total concentration is 2.268 µM. The lower bound for wave-pinning to oc-
cur is reached when the effective K becomes 1.07, at a box size of Va = 0.009 µm3,
corresponding to 14 molecules per box.
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2.10 Discussion

In this manuscript we compared deterministic and stochastic aspects of a model for

cell polarisation of the wave-pinning class (Mori et al., 2008). This work was moti-

vated by recent interest in the influence of stochastic noise in biological systems. In

considering stochastic noise we account for possible effects due to low-copy num-

bers of signalling proteins, as has been done for instance by Isaacson et al. (2011).

Recent studies indicate that noise can have either constructive or detrimental ef-

fects in biological systems. For example, noting beneficial effects, Paulsson et al.

(2000) observed that stochastic focusing increased sensitivity of cascades, Rao et al.

(2002) found that noise-induced population heterogeneity improves fitness, Howard

& Rutenberg (2003) argued that biologically relevant oscillations in a two-component

dynamical system are more robust in the stochastic case than the deterministic one,

and Gamba et al. (2005) showed that stochasticity could play a role in chemotactic

responses to shallow gradients. On the other hand, detrimental effects were noted

by, for example, McAdams & Arkin (1997) who showed that gene expression in a

noisy regime resulted in bursts, rather than constant levels of gene expression. For

our stochastic model of cell polarisation, we observe that at critically low molecule

numbers stochastic noise has an impact on the behaviour of the system in a detri-

mental manner, eventually destroying polarisation.

As shown in Figure 2.6, we verify correctness of our stochastic implementation

by comparing our stochastic simulation results in large copy number regimes with

the deterministic system (approaching the macroscopic limit). The compartmen-

talised spatial Gillespie model used here, however, does present deviations when

the lattice number N becomes very small or very large. Alternatively, an off-lattice

Brownian dynamics model could have been developed (Andrews & Bray, 2004; van

Zon & ten Wolde, 2005), to independently confirm the results based upon space dis-

cretisation presented here, given that both approaches present their own limitations

(Erban & Chapman, 2007, 2009). However, to re-formulate the auto-activation in

terms of mass-action kinetics only, which is required to use off-lattice alternatives,

would require a replacement of the current parsimonious non-linear term by, for

example, specific enzyme kinetics. Unfurling such a mechanism to specific mass-
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action enzyme kinetics requires an iterative process where we propose a number of

molecular species and reactions, test the resulting mechanism for cell polarity prop-

erties, and amend the mechanism if needed. Classically this process is not trivial,

however in Chapter 4 of this thesis we develop a computational tool that allevi-

ates some of the encountered complexity and we offer an outlook that promises to

automate much of this iterative process.

Here we studied wave-pinning in a one-dimensional slab of cell material repre-

senting radial positional information available to a single cell. Our results suggest

that for small copy numbers, radial information within a cell regarding its front

and back that is available through the wave-pinning process decreases in quality

because of fluctuations of the wave around its pinning position. If we extrapolate

our results to a spherical 15 µm-diameter cell and assuming micromolar small G-

protein concentration (corresponding to 106 molecules), stable polarisation should

typically be observed. However, in vivo effective reaction compartment size is often

restricted due to macromolecular crowding and resulting volume exclusion (Schnell

& Turner, 2004; Grima, 2010): the volume encompassed by a cell is generally occu-

pied by a range of macromolecules which do not participate in any of the relevant

chemical reactions. As these macromolecules span the cell in a mesh-like fashion,

individual effective reaction compartments may emerge which have a potentially

small volume. Our results indicate that sufficiently small effective reaction compart-

ments (those that hold 103 molecules, bottom Figure 2.10), will produce inaccurate

positional information (fluctuation of the pinning position). Hence, a cell subject

to great amounts of macromolecular crowding may integrate inaccurate positional

information from its individual effective reaction compartments and therefore lose

a global sense of directionality.

Instead of a gradual loss of wave-pinning we observe a threshold number of

molecules (between 2,000 and 3,000 molecules) below which the wave is suddenly

lost. Analysis of a limiting deterministic case shows that sudden loss of wave-

pinning is due to saddle-node bifurcations with hysteresis. We conjecture that this

also explains sudden loss of polarisation in our spatial stochastic system.

Altschuler et al. (2008) studied a related positive feedback model of Cdc42 with

a homogeneous cytoplasmic pool of the inactive form. Their model includes self-
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recruitment of the active form, but the conditions for polarisation and wave-pinning

as defined through the LPA method described in this manuscript are not fulfilled,

hence no stable polarisation can be observed. Nevertheless, by defining polarisa-

tion as a transient situation where 10% of the domain holds more than 50% of the

molecules, they were able to show that within their model decreasing the numbers

of molecules, which increases the random fluctuations, could trigger polarisation.

This is opposite to what has been shown in our study, in which increasing fluctua-

tions shut off polarity. For a fixed positive feedback strength, they found that 1,000

molecules yields the maximum probability (fraction of simulation runs) for polari-

sation. For 3,000 molecules or more, they observed that fewer than 50% of the runs

would polarise. In contrast, our model predicts that polarisation fails below 2,000

molecules (Figure 2.10, bottom panel). Moreover, in our model, the behaviour of the

stochastic system more closely resembles that of the deterministic system when the

molecule number increases (bottom panel of Figure 2.6), i.e. unlike Altschuler et al.

(2008) with more molecules the polarity becomes increasingly more robust.

Khain et al. (2011) recently discussed stochastic travelling waves in a spatial one-

dimensional model of spruce budworm populations, in which the high plateau of

the wave corresponded to parts of the environment with a great number of bud-

worms (outbreak state) and the low plateau denoted few budworms (refuge state).

Note that in their model wave-pinning does not occur. Nevertheless, they compared

a deterministic version (thermodynamic limit) of their model with a stochastic ver-

sion of it and observed differences in wave propagation velocity. They explained

that these differences are caused by random jumps, possible within the stochastic

system, from the high plateau to the low plateau and vice versa, similar to our ex-

planation for the fluctuations observed in the pinning position. In their case, how-

ever, the stochasticity affects the velocity of the travelling wave, while in our study

it affects the pinning position.

In future efforts it would be interesting to study the stochastic model for cell

polarisation in higher dimensions, where effects of geometry are non-trivial (e.g. see

Strychalski et al. (2010)), as well as in off-lattice Brownian dynamics models.

58



Chapter 3

Protein Localisation in a Growing

System: A Simple Model of Pollen

Tube Growth

Abstract

Pollen tubes are projections of pollen grains that carry sperm cells from the grain to

the ovules in a growth process termed tip growth. Pollen tube growth is essential

for plant reproduction and tip growth has been the focus of a number of theoretical

studies. These existing studies either investigate the biophysical properties of tip

growth and presume molecular detail, or they focus solely on molecular interactions

with macromolecular growth as an implied outcome.

The model we present bridges this gap: We model the dynamics of a key protein,

ROP1, that is known to localise to the apex of growing pollen tubes where it guides

downstream processes that ultimately induce tip growth. The mathematical frame-

work we use allows us to bridge the gap between a molecular description of ROP1

and macromolecular growth by introducing a biologically relevant phenomenolog-

ical link.

Our model reproduces both oscillatory and constant growth modes that are ob-

served commonly in growing pollen tubes. We further discuss an explanation of the

existence of these growth modes that our model suggests.
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3.1 Introduction

Fertilisation in flowering plants is effected by a specialised cell type called pollen

tube. The pollen tube is an elongated cell that grows out of the pollen, carrying the

two sperm cells that are intended to fertilise the ovules of the flower that the pollen

lands on (Franklin-Tong, 1999).

Pollen tubes possess an interesting mode of growth referred to as tip growth:

the cell wall near the apex is extended while the remainder of the tube, towards the

pollen grain, remains unchanged (Franklin-Tong, 1999).

3.1.1 Distinct Biophysical and Ionic Properties Form the Basis of

Tip Growth

Turgor pressure is the ultimate force that drives pollen tube tip growth (Palin &

Geitmann, 2012). Since turgor pressure acts isometrically, tip growth requires tight

regulation of the mechanical properties of the primary cell wall encasing the pollen

tube (Geitmann, 2010): The cell wall needs to be extensible in the apex where the

pollen tube expands and rigid away from the apex.

The mechanical properties, such as extensibility, of the cell wall are determined

by its biochemical composition. An important part of the cell wall is a matrix com-

posed primarily of pectin molecules that have the ability to interlink tightly under

certain chemical and ionic conditions (Palin & Geitmann, 2012).

Pectin molecules are produced in the Golgi apparatus in a predominantly methyl-

esterified form and inserted into the cell wall through exocytosis (Geitmann, 2010).

In their methyl-esterified form, pectin molecules show low propensity to interlink

thus resulting in a softer, more extensible cell wall at their site of exocytosis (Geit-

mann, 2010).

The enzyme pectin methyl esterase (PME) de-esterifies pectin molecules thus

allowing them to interlink at their carboxyl groups in a calcium-dependent process

(Palin & Geitmann, 2012). PME is highly active in a narrow band in the shoulder

of the apical dome where its inhibitor is endocytosed locally thus permitting local

rigidification of the cell wall in the shank of the tube (Palin & Geitmann, 2012).

As we already touched upon, calcium is known to play at least two important
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roles in pollen tube tip growth. Firstly, localised exocytosis of pectin is thought to

rely on a calcium gradient that peaks at the leading edge of the apex. This finding is

analogous to other systems where calcium is an important regulator of secretion,

such as neurotransmitter release and histamine secretion in mast cells (Messerli

et al., 2000). Secondly, calcium is needed for the establishment of a rigid pectin-

based matrix that prevents the tube from expanding at its shanks while permitting

turgor-dependent expansion in the apex (Palin & Geitmann, 2012). Agents that re-

duce calcium uptake and treatments that disrupt the calcium gradient in the tip pre-

vent pollen tube growth (Messerli et al., 2000; Holdaway-Clarke et al., 1997; Miller

et al., 1992).

Tip-localised exocytosis and shank-localised interlinking of pectin provide a phys-

ical model of how isotropic turgor pressure may effect tip growth. However both of

these localised event types are dependent on another system that localises them in

the first place.

In the present study we are interested in a dynamic protein system that has the

potential to self-localise and that may therefore act as the localisation agent of the

pectin-dependent system required for directing the growth force of the turgor pres-

sure to the tip. We therefore introduce the components of this protein system and

their link to pollen tube growth in the following subsections.

3.1.2 Rho GTPases are Key Molecular Switches in Pollen Tube

Growth

Rho GTPases are small G proteins that bind GTP and have weak hydrolase activity

(Yalovsky et al., 2008). A key molecular player in pollen tube growth is a plant

homologue of Rho called Rho-related GTPase from plants 1 (ROP1).

In their GTP-bound state, Rho GTPases are able to bind downstream effectors

whereas in their GDP-bound state they do not communicate with their effectors.

Owing to this discrepancy in downstream signalling, we will refer to the GTP-bound

form of Rho GTPases as the active form and the GDP-bound form as the inactive

form.

Inactivation (hydrolysis of bound GTP) and activation (exchange of a bound
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GDP for a GTP) are regulated by two families of enzymes: GTPase-activating pro-

teins (GAPs) bind the active form and catalyse hydrolysis of the bound GTP molecule

while guanyl nucleotide exchange factors (GEFs) catalyse exchange of a GDP molecule

for a GTP molecule (Yalovsky et al., 2008), Figure 3.1.

Rho GTPases are modified posttranslationally to include a hydrophobic lipid

residue that allows them to attach to the plasma membrane. A class of proteins,

guanyl nucleotide dissociation inhibitors (GDIs), inhibit GEF-catalysed GDP-GTP

exchange and shield the lipid residue of Rho GTPases thus preventing rebinding

to the membrane (Yalovsky et al., 2008). GDIs are observed commonly to have far

greater affinity for the inactive than for the active form of the corresponding Rho

GTPase, Figure 3.1.

Figure 3.1: Interchange Between the Active and Inactive Form of Rho GTPases.
The active, GTP-bound, form of Rho possesses high binding affinity for its effectors
and low binding affinity for GDI. Exchange between the active and inactive form
is facilitated by GEFs and GAPs. The inactive, GDP-bound, form of Rho has low
binding affinity for its effectors but high binding affinity for the corresponding GDI.
Thus, GDI sequesters the inactive form of Rho into the cytoplasm by shielding its
lipid residue. Reproduced from Kost (2008).

3.1.3 Apical Polarity Directs Tip Growth

Pollen tube growth is facilitated by the alignment of cytoskeletal components and

directed exocytosis of cell-wall material at the tip (Rounds & Bezanilla, 2013), Figure

3.2.

Active ROP1, localised at the apex of tip-growing pollen tubes, is necessary for

the alignment of the cytoskeleton and, therefore, directed exocytosis (Lin & Yang,

1997; Gu et al., 2005; Hwang et al., 2005).
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This model of how exocytosis is directed towards the tip is based on two ob-

servations. Firstly, experiments in which ROP1 was overexpressed indicated that

ROP1 induces growth locally (Hwang et al., 2010). The key observation of these

experiments was that a wider ROP1 peak in the apex produces a wider, ballooning

pollen tube, Figure 3.3. Secondly, ROP1 has been observed to induce F-actin assem-

bly locally via interaction with an effector called RIC4 (Gu et al., 2005). Tip-localised

assembly and elongation of F-actin is important for tip growth (Rounds & Bezanilla,

2013).

Deposition of cell wall material, through directed exocytosis, has been shown to

soften the cell wall (Rojas et al., 2011) thus hinting at a biophysical mechanism of

pollen tube growth driven by an interplay between cell wall properties and turgor

pressure. Despite these observations, the molecular and biophysical link between

ROP1 and growth is not yet understood entirely. We therefore focus on the estab-

lished functional link between ROP1 localisation and local growth (Hwang et al.,

2010), Figure 3.3.

Figure 3.2: Aligned Cytoskeleton and Resultant Directed Exocytosis. The cy-
toskeleton of tip-growing pollen tubes is aligned longitudinally thus facilitating di-
rected transport of vesicles towards the tip. At the tip, vesicles that carry cell-wall
material and membrane components fuse with the plasma membrane in a process
known as directed exocytosis. Adapted from Rounds & Bezanilla (2013).

63



Figure 3.3: ROP1 Induces Local Growth. Bright lining of the apex is fluorescence
from a GFP-RIC4 construct. RIC4 is an effector and direct binding partner of ROP1
and this construct has been shown to be a sensible probe for ROP1 localisation
(Hwang et al., 2010). Different amounts (0. – 0.8 µg) of a ROP1 construct were
expressed transiently and resulting pollen tube apex morphology is pictured. A
wider spread of ROP1 causes the pollen tube to balloon at the apex, thus indicating
that ROP1 induces local growth. The scale bar represents 10 µm. Reproduced from
Hwang et al. (2010).

3.1.4 Pollen Tube Morphology Plays an Ambiguous Role in Apical

Polarity

The functional role of ROP1 is dependent on its molecular abundance, Figure 3.3,

and it is sensible to assume that the magnitude of this functional role is dependent

on the concentration of ROP1. Since pollen tubes can grow up to 1 mm/h and in-

crease their volume by a factor of twenty, the size of the cytoplasm and plasma

membrane where ROP1 is located are likely important in determining the efficacy

of ROP1 signalling (Nishikawa et al., 2005; Rounds & Bezanilla, 2013). Morpholog-

ically, the cytoplasm of the pollen tube is located near its apex and, in some cases,

callose plugs separate the sperm cell-carrying cytoplasm from the remainder of the

tube, Figure 3.4. Isolation of the cytoplasm by callose plugs is often interpreted as

a mechanism employed to retain a manageable cytosolic volume (Nishikawa et al.,

2005).

However, formation of callose plugs is observed to vary between pollen tubes

of the same species: Nishikawa et al. (2005) reported that only about 81.5 % of Ara-

bidopsis pollen tubes form callose plugs and that callose plugs are generally not ob-

served to be necessary for pollen tube elongation. Further, Qin et al. (2012) reported

the distance, measured from the grain, at which pollen tubes form their first callose

plug varies significantly between different Arabidopsis ecotypes.

Nishikawa et al. (2005) have also demonstrated that mutant Arabidopsis pollen
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tubes that do not form callose plugs still grow normally: These pollen tubes still

elongated and grew to reach the flower while sustaining a twenty-fold increase in

their volume (Nishikawa et al., 2005).

At another extreme, Zhang et al. (2008) described tomato pollen tubes that ex-

press antisense constructs to reduce the levels of LePRK2, a kinase that is important

in pollen tube signalling. While wild-type tomato pollen tubes form callose plugs

every 350 µm, antisense LePRK2 pollen tubes did so every 220 to 250 µm (Zhang

et al., 2008). Despite a reduced size of the effective cytoplasm, antisense LePRK2

pollen tubes were still observed to grow albeit at a slower rate than wild type tubes

(Zhang et al., 2008).

Since callose plugs have not been shown to be essential for pollen tube growth

we do not consider them further as regulators of cytosolic volume.

Figure 3.4: Pollen Tube Morphology. Notice the elongated shape of the pollen tube
due to its characteristic tip growth. This sketch shows the cytoplasm with organelles
and the sperm cell near the apex. The rear of the cytoplasm is closed off by callose
plugs and resulting compartments become filled with vacuoles. The cytoplasm is
often occupied by a central large vacuole (Li, 1999). Reproduced from Franklin-
Tong (1999).

3.1.5 Pollen Tube Tip Growth is Both Steady and Oscillatory

Apical pollen tube growth is observed as both a steady and an oscillatory phe-

nomenon where both the amplitude and period of oscillation are species-specific

(Rounds & Bezanilla, 2013), Figure 3.5. In oscillatory growth regimes, growth veloc-

ity and apical ROP1 activity are generally observed to oscillate with similar periods

but phase-shifted (Gu et al., 2005; Hwang et al., 2010).
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Figure 3.5: Kymographs of Tip-Growing Pollen Tubes. (Top) A pollen tube that
displays tip growth. The scale bar corresponds to 10 µm and 6 s elapse between
successive pictures. (Bottom) Kymographs of growing pollen tube tips indicated as
white strips. Time runs horizontally, space vertically. Depending on growth condi-
tions, pollen tubes can show steady growth (left) and oscillatory growth (right). The
scale bar represents 10 µm. Reproduced from Rojas et al. (2011).

By studying the correlation between different oscillators in the pollen tube it has

been hoped that a master timekeeper of oscillation would be discovered. However

none has been described so far and some authors argue that oscillations are an emer-

gent property of the system as a whole rather than being driven by one timekeeper

(Holdaway-Clarke & Hepler, 2003; Rounds & Bezanilla, 2013).

3.1.6 Existing Models

Recently, Rojas et al. (2011) described a rheological model of pollen tube growth that

captures both steady and oscillatory growth, Figure 3.5. The model of Rojas et al.

(2011) is concerned with a balance between cell wall resilience and turgor pressure-

induced growth where the properties of the cell wall are governed by deposition of

new cell wall material. Deposition of cell wall material is assumed to occur in the tip

region, and together with a negative feedback loop between pollen tube growth and

deposition Rojas et al. (2011) were able to reproduce both oscillatory and constant

growth.

While the model of Rojas et al. (2011) reproduces different modes and important

geometric aspects of tip growth, it does not explain tip-directed exocytosis which

lies at the root of tip-localised cell wall expansion.
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In another recent biophysical model, Kroeger et al. (2011) applied the Lockhart

equation that describes the rate of cell wall expansion as proportional to the ratio

between turgor pressure and cell wall thickness: The pollen tube grows faster un-

der greater turgor pressure and when its cell wall is thinner (and therefore more

extensible). While Kroeger et al. (2011) assumed rapidly controlled, and therefore

constant, turgor pressure they did assume dynamic cell wall thickness regulated by

cytoplasmic calcium. Cytoplasmic calcium plays crucial roles in both exocytosis of

cell wall building blocks and their eventual interlinking in forming the wall. The

concentration of calcium is regulated by intracellular uptake and influx from the

growth medium through stretch-activated ion channels (Kroeger et al., 2011).

The model described by Kroeger et al. (2011) relies on directed exocytosis of cell

wall material and a direct relation between the expansion rate and the turgor pres-

sure. The model of Kroeger et al. (2011) reproduces experimentally observed oscilla-

tory growth, but their model fails to explain why exocytosis is directed and further

relies on a direct relation between growth and turgor pressure that has not yet been

proven experimentally.

The strength of the models of Rojas et al. (2011) and Kroeger et al. (2011) lies in

explaining pollen tube tip growth from a biophysical point of view, however neither

of these models establish how key processes such as exocytosis are localised to the

tip. In our present work, we focus on establishment and maintenance of apical

ROP1 localisation that is assumed to direct exocytosis to the tip. To this end, we

summarise briefly two models of apical ROP1 localisation before we go into detail

about the model that we propose to describe this process.

Apical Polarity Model

Both, existing models of apical ROP1 localisation and the model that we describe

below are based on the molecular switch property of ROP1 described in Section 3.1.2.

Combined with this property, a number of experimental observations in tip-

growing cells have been drawn together to infer a sensible mechanism of apical

ROP1 localisation (Kost, 2008).

The key experimental observations that the model described by Kost (2008), Fig-

ure 3.6, is based on are the following. Fluorescently labelled GAP has been found
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localised to the flanks of pollen tube tips and significant overexpression of GAP

reduces pollen tube growth (Kost, 2008). Point-mutated ROP1 that has low associa-

tion affinity with GDI was observed to accumulate at the flanks of pollen tube tips,

whereas wild-type ROP1 localises to the apex (Kost, 2008). These observations have

been interpreted to indicate that GAP inactivates ROP1 at the flanks, where GDI se-

questers inactive ROP1 and recycles it to the apex. Further, GEF has been observed

to localise to the site of Rho activity in fission yeast and animal cells and is therefore

assumed to localise to the apex of growing pollen tubes (Kost, 2008).

Figure 3.6: Model of Apical ROP1 Localisation. In this model, based on multiple
experimental observations, there are three localised events: (i) Activation of inac-
tive ROP1 (brown disks) at the apex by localised GEF (blue rectangles), (ii) inactiva-
tion of active ROP1 (green disks) at the flanks by localised GAP (red triangles), and
(iii) sequestration of inactive ROP1 from the flanks by locally available GDI (yellow
cups) and release of the inactive form at the apex. Directed transport of GDI bound
to the inactive form follows the direction of vesicles transported directionally and
exocytosed at the apex in tip growth. Reproduced from Kost (2008).

The model described in Figure 3.6 is sensible to the extent that it incorporates

experimentally observed data and reproduces correctly apical ROP1 localisation.

However, this model also leaves some basic questions unanswered: What processes

localise GEF and GAP to their locations in the apex and flanks respectively? And if

there are processes at play that “know” where the pollen tube tip is located in order

to localise GEF and GAP to their respective positions, then why does the pollen tube

still require apical ROP1 localisation for tip growth?
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Oscillations Model

The preceding model, the Apical Polarity Model, predicts steady apical localisation

of active ROP1 and therefore steady growth.

To model oscillation of apical ROP1 activity, Yan et al. (2009) devised mathemat-

ical models that include F-actin assembly (as a proxy of the growth rate), calcium

concentration, and apical ROP1 activity. Their model is non-spatial so that all con-

centrations and activities are presumed to capture values near the apex of the grow-

ing pollen tube. Yan et al. (2009) incorporated two feedback loops, Figure 3.7: (i)

active ROP1 upregulates its downstream effector RIC4 which in turn upregulates F-

actin assembly, and (ii) active ROP1 also upregulates its downstream effector RIC3

which increases the concentration of calcium and in turn inhibits F-actin assembly

via actin-binding proteins. As Yan et al. (2009) described, apical ROP1 activity can

be observed to oscillate ahead of both growth rate and apical calcium concentra-

tion. Correlation analysis determined that ROP1 activity oscillates approximately

90 degrees ahead of growth rate while it oscillates 120 degrees ahead of calcium

concentrations. This difference in delay between ROP1 activity and downstream

observations was invoked by Yan et al. (2009) to introduce a delay, ν, between RIC3

and calcium (120 degrees) but none between RIC4 and F-actin (90 degrees), Figure

3.7.

For appropriate parameter values, Yan et al. (2009) find that their model repro-

duces the out-of-phase oscillations of apical ROP1 activity and apical calcium con-

centration that are commonly observed in growing pollen tubes.

While the model described in Figure 3.7 may have interesting dynamic and

steady-state behaviour due to its two feedback loops, it is the introduction of time

delay that permits this system to oscillate. To understand this, let us consider the

following hypothetical model of apical ROP1 dynamics:

dROP1
dt

= −αROP1(t),

where we have chosen to model the time dynamics of apical ROP1 as a nega-

tive feedback loop – corresponding to the RIC3-dependent loop in Figure 3.7. For

positive parameter values α > 0, this model predicts that an initial concentration of
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apical ROP1 decays as an exponential function described by the following expres-

sion:

ROP1(t) = ROP1initial exp (−αt).

Similar to Yan et al. (2009) we now amend this simplified negative feedback

model with delay to obtain the following model:

dROP1
dt

= −αROP1(t− ν), (3.1)

where ν>0 is the delay parameter. As Smith (2011) described, it can be shown math-

ematically that this model produces oscillatory apical ROP1 concentrations for pos-

itive parameter values α and ν if α ν>e−1. This inequality describes a condition for

apical ROP1 oscillation based on the relative magnitude of the feedback α and delay

ν.

To illustrate this, we choose ν=1 and α=1/(e ν)+1, and rename ρ=ROP1+5

where we choose ρ(t)=5 for t≤0. The resultant time behaviour of ρ shows oscilla-

tions, Figure 3.8.

What we show with this brief digression is that the model described by Yan

et al. (2009) does not produce oscillatory apical ROP1 due to the double RIC3/RIC4

feedback loop but rather due to the introduction of delay. In fact, a model as simple

as Equation (3.1) is already sufficient to produce oscillations as long as we introduce

delay. To turn the damped oscillations displayed by our simplified model, Figure

3.8, into sustained oscillations as shown by the model presented by Yan et al. (2009)

may require inclusion of feedback loops. However, the phenomenon of oscillation

is achieved solely by introducing a delay.

Hence, a shortcoming of this model, Figure 3.7, is its limited explanatory value.

This model reproduces both oscillatory and non-oscillatory growth as is observed

for live pollen tubes, Figure 3.5, for different values of ν (Yan et al., 2009). However,

the biological basis of the delay ν is not obvious and expanding this model to a

mechanistic description of ν is non-trivial due to ambiguity.

70



Figure 3.7: Model of ROP1, F-Actin, and Calcium Oscillations. In this model of
ROP1 oscillations, Yan et al. (2009) included two feedback loops: (i) active ROP1
upregulates RIC4 which increases F-actin assembly, and (ii) active ROP1 upregulates
RIC3 which downregulates F-actin assembly via calcium and actin-binding-proteins
(ABPs). All concentrations and activities in this model are non-spatial and assumed
to represent apical values. Further, F-actin assembly is understood as a proxy for
pollen tube growth. Introduction of delay ν between RIC3 and calcium and not RIC4
and F-actin assembly was rationalised with a 120 degrees phase difference between
the former and a 90 degrees phase difference between the latter pair of activities
(Yan et al., 2009). Reproduced from Yan et al. (2009).

Figure 3.8: Oscillatory Time Behaviour of ρ. For appropriate parameter values, the
time behaviour of Equation (3.1) shows oscillations. This illustrates that a model
of ROP1 dynamics as simple as Equation (3.1) can show oscillatory time dynamics
as long as we introduce a delay and choose appropriate parameter values. To turn
these damped oscillations into sustained oscillations as discussed by Yan et al. (2009)
may require adding more variables – however the phenomenon of oscillations is
produced by introducing a time delay.
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3.1.7 Pollen Tube Geometry and Line Concentrations

The pollen tube is modelled routinely as a cylinder and we apply the same geometric

simplification (Holdaway-Clarke & Hepler, 2003). We simplify the pollen tube to a

cylinder of length L and radius R. Then looking down the length of the cylinder,

and assuming radial symmetry, we assume that all planes that run along the length

of the tube are equivalent, Figure 3.9.

Figure 3.9: Simplified Pollen Tube Geometry. (left): The pollen tube simplified as
a cylinder of length L and radius R. (right): A cross section of the pollen tube. The
line denotes the top face of a plane that runs along the length of the tube. All planes
of this kind are assumed equal (rotational symmetry).

Since all planes along the length of the pollen tube are assumed equal, we will

model just one such plane, Figure 3.10.

Figure 3.10: Arbitrary Plane as Model of Pollen Tube. We choose one arbitrary
plane that runs along the length of the pollen tube as the basis for the domain of our
dynamical system. Due to the dimensions of the cylinder that represents our pollen
tube, this plane has length L and height 2R.

We restrict our current model to one spatial domain and therefore we need to

work with line concentrations of all involved chemical species. In the two-dimensional

view of our pollen tube system, Figure 3.10, the plasma membrane is a line (top, or
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equivalently, bottom horizontal edge of the plane) and therefore chemical species

that live on the membrane are given in line concentrations by definition. The cy-

toplasm, however, is two-dimensional and we need to compute the effective line

concentration of cytoplasmic species that interact with the plasma membrane.

Diffusivity of chemical species in the cytoplasm is orders of magnitude greater

than that of species attached to the plasma membrane due to the difference in viscos-

ity of these two phases (Postma et al., 2004). We assume that the radius of the pollen

tube R is fixed and significantly smaller than its, potentially increasing, length L.

Therefore we assume that any radial variation in a cytoplasmic species v vanishes

and we take the line concentration of v to equal its mean radial concentration:

v(x, t) :=
1

2R

ˆ 2R

0
v(x, s, t)ds. (3.2)

Even though we assume radial symmetry in the cytoplasm, only a small band of the

cytoplasmic species in the rectangle of area 2R ∆ x, Figure 3.10 (grey area), interacts

with membrane-bound species: Molecules of cytoplasmic species that are far away

from the membrane will not interact with membrane-bound molecules and only

cytoplasmic molecules sufficiently near the membrane can be expected to interact.

We denote the width of this biologically active band of cytoplasmic concentration by

r. Factors that contribute to r can be expected to include both the diffusion coeffi-

cient of the cytoplasmic chemical species and the timescale of their lifespan (protein

turnover).

Given the above line concentration of a cytoplasmic chemical species v, the con-

centration of v, along a stretch of length ∆x of the pollen tube, seen by a membrane-

bound chemical species is given by

∆xrv(x, t)
∆x2R

= ωv(x, t), (3.3)

where we define ω=r/2R as the radial fraction of the cytoplasm that is visible chem-

ically to membrane-bound chemical species. The ratio ω is a dimensionality correc-

tion factor that scales between line (membrane) and area (cytoplasm) concentra-

tions.

73



3.1.8 Polarity Model

In this section we introduce a reaction-diffusion model of ROP1 dynamics that has

been first described by Mori et al. (2008) for a generic Rho GTPase. This model

differs from the ones we reviewed above in that it is a spatial model, and Rho local-

isation is emergent under certain conditions rather than prespecified.

The model of Rho GTPase regulation, Figure 3.1, introduced by Mori et al. (2008)

makes the following assumptions: (i) The active form is bound to the membrane,

and the inactive form is located mainly in the cytoplasm (hence, on average dif-

fuses much faster than the active form), (ii) the active form upregulates its own

production, presumably by regulating GEFs, and (iii) GAPs have a homogeneous

distribution in space.

The reaction-diffusion equations that describe these assumptions are as follows

(Mori et al., 2008):

∂u
∂t

= Du
∂2u
∂x2 + f (u, v), (3.4)

∂v
∂t

= Dv
∂2v
∂x2 − f (u, v),

where u(x, t) and v(x, t) denote the concentration of the active (low diffusivity) and

inactive (high diffusivity) form respectively, and f is the reaction term. For simplic-

ity we assume that concentrations are in arbitrary units (a.u.), since most quantitative

data of ROP1 localisation stem from fluorescence measurements which are reported

in arbitrary units relative to an appropriate baseline. The aforementioned discrep-

ancy in diffusivity is expressed by Du�Dv. The original reaction term f stated by

Mori et al. (2008) did not include a dimensionality correction factor and we here

modify f to include ω, Equation (3.3):

f (u, v) = ωv
(

k0 +
γu2

K2 + u2

)
− δu + ks(x, t)v, (3.5)

where the first two terms describe background activation and autoactivation respec-

tively, the third term captures first-order inactivation, and the fourth term describes

a spatially confined transient stimulus which we discuss further below (Mori et al.,
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2008). Furthermore, zero flux is assumed on the boundaries (Mori et al., 2008):

∂u
∂x

= 0, (x = 0, L), (3.6)

∂v
∂x

= 0, (x = 0, L).

Note that with these boundary conditions, no protein enters or escapes at the bound-

aries and the reaction term f (·) merely describes interconversion between the active

and inactive form. A property of this system that we will discuss and use is the total

concentration of protein

T =
τ

L
, (3.7)

where L is the length of the system and τ is the total protein mass (or protein

amount) and is expressed as

τ =
ˆ L

0
(u(x, t) + v(x, t))dx. (3.8)

Given appropriate parameter values, Table 3.1, Equations (3.4) can then be observed

to evolve spontaneously from a homogeneous initial condition to a steady state with

localised active ROP1, Figure 3.11. In our current work we are not interested in

potential volume effects and therefore choose a dimensionality factor ω of value

one, Table 3.1.

Spontaneous localisation of active ROP1, Figure 3.11, is important since sponta-

neous emergence of ROP1 localisation is likely involved in leading the pollen tube

out of the grain in the first place.

For the remainder of our work we assume that there was an initial, spontaneous

ROP1 localisation event that defined the pollen tube apex. The geometry of the apex

conveys preference for localisation of active ROP1 to the tip: The reaction-diffusion

system, Equation (3.4), minimises the length of the interface between localised u

and dilute u. Generally, in a two-dimensional elliptical spatial domain we observe

that the mass of localised u migrates as a whole and along the domain boundary

towards either of the two end points of the major axis. We observe that the mass of
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localised u only stops migrating once the boundary between localised and dilute u

lies perpendicular to the major axis of the ellipse. We assume that the pollen tube

apex is already formed and that the semi-elliptical shape of the apex exerts a pull

on localised u due to this geometric effect. To account for this assumed geometry in

our one-dimensional model, we introduce a stimulus term into Equation (3.4) which

conveys preference of ROP1 localisation to the tip:

ks =

 0 : x < L− εs

ks,0 : x ≥ L− εs,

where εs denotes a small distance from the right-hand boundary, and ks,0>0 is a

positive rate constant.

With an appropriate tip stimulus and our parameter values, Table 3.1, we can

then observe tip-localised active ROP1, Figure 3.12.

Figure 3.11: The Active Form of ROP1 can Localise Spontaneously. For appro-
priate parameter values, Table 3.1, the active form can localise spontaneously start-
ing from a homogeneous initial concentration profile (Holmes, 2014; Walther et al.,
2012).
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Parameter Value Unit Comment
L 1.0 a.u. We assume that our pollen tube has length one

initially.
Dv 0.1 a.u.2/s High diffusivity of the inactive, cytoplasmic form.
Du 0.001 a.u.2/s Low diffusivity of the active, membrane-bound form.

Postma et al. (2004) reported hundred-fold lower
diffusivity for the active form compared with the
inactive form.

k0 0.067 1/s Due to Mori et al. (2008).
γ 1.0 1/s Due to Mori et al. (2008).
K 1.0 a.u.2 Due to Mori et al. (2008).
δ 1.0 1/s Spatially uniform GAP activity.
εs – a.u. Grid-dependent: chosen so that stimulus occurs in

right-most grid point.
ks,0 0.0001 1/s Choice of this value is arbitrary and determines the

total protein concentration that suffice to trigger
ROP1 localisation.

ω 1.0 – For simplicity we choose a unit correction factor.
τ 2.36 a.u. Value can be derived using the method described in

Section 3.1.9.

Table 3.1: Standard Parameter Values Used For Our Numerical Experiments.
These parameter values are based mostly on values presented by Mori et al. (2008)
and Walther et al. (2012).

Figure 3.12: Apical Localisation of Active ROP1. Kymograph of the time behaviour
of the active form u starting with a homogeneous initial condition and using the
parameter values summarised in Table 3.1. Black line: position of the interface be-
tween high and low concentrations of active ROP1 as predicted with our method
described in Section 3.1.9.
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3.1.9 Analysing the Polarity Model

We now have an overview of the polarity model that we will study. While we can

run simulations of this model for many different parameter values it will be helpful

to analyse the model and understand what behaviour we expect for a given set of

parameter values.

Perturbability: Local Perturbation Analysis

It is straightforward to see that our model, Equation (3.4), allows for at least one

non-trivial homogeneous steady state if we relate concentrations u and v via u+v=T

(mass conservation, fixed domain length L) and set the stimulus to zero everywhere,

ks=0.

Suppose our system is in one of these homogeneous steady states where both the

active and inactive form are uniform in space u(x, t)=u∗, v(x, t)=v∗ (u∗>0, v∗>0).

To observe localisation of active ROP1, u, it needs to be possible to perturb our sys-

tem out of the homogeneous steady state so that it can evolve to an inhomogeneous

steady state.

As a side note, the homogeneous steady state (u, v)=(u∗, v∗) of the reaction-

diffusion system, Equation (3.4), is also a steady state of the kinetics term f (u, v).

However, the targeted inhomogeneous steady state of the reaction-diffusion system

does generally not contain a steady state of f (u, v).

Knowing the exact steady state that our system moves to after perturbation is

hard, hence we will settle with answering two simpler questions: (i) Can we expect

our system to move to a different steady state if we apply the “right” perturbation

to it? (ii) If so, how big a perturbation (how much do we need to alter u and v) is

sufficient so that our system does not just move back to (u∗, v∗)?

The Local Perturbation Analysis (LPA) answers these questions by determin-

ing the perturbable parameter regime of given reaction-diffusion equations (Walther

et al., 2012; Holmes, 2014): In a perturbable regime, a sufficiently large perturbation

in the active form can generate a stable interface between a patch of highly concen-

trated, localised, active form in a sea of dilute active form. Our system, Equation

(3.4), is in a perturbable regime in Figure 3.12 where a stimulus on the far right is
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sufficient to trigger such an interface.

Note that this concept of perturbability is different from classical analyses of

pattern formation in reaction-diffusion systems. Classically, we would analyse the

time behaviour of infinitely small perturbations away from the homogeneous steady

state (u∗, v∗), (Tyson, 1975). Since the magnitude of these perturbations is infinitely

small, we can usually approximate their initial time behaviour with the linear part of

the Taylor series of the original dynamics term. The analytic solution of this approx-

imated dynamical system is known and tells us directly if the applied perturbations

will grow (the system leaves the homogeneous steady state) or vanish (the system

falls back to the homogeneous steady state). The marked difference between this

classical approach and LPA is that in the former we apply perturbations of infinitely

small magnitude whereas in the latter we learn something about the magnitude of

perturbation we need to apply to move the system away from the homogeneous

steady state.

Both Holmes (2014) and Walther et al. (2012) describe the LPA in detail and here

we will apply the LPA to our system, Equation (3.4). In the LPA, we consider an ex-

treme case of our system where the active form has zero diffusivity and the inactive

form has infinitely high diffusivity (Holmes, 2014; Walther et al., 2012). Applying

these approximations to our system, Equation (3.4), we generate the following sys-

tem of ordinary differential equations:

u̇G = f (uG, vG), (3.9)

u̇L = f (uL, vG),

v̇G = − f (uG, vG),

T = uG + vG,

where uG is non-diffusing active form spread across the entire pollen tube, and uL

is a perturbation away from uG with arbitrary magnitude that is located in an in-

finitely narrow interval on the membrane. Variable vG denotes the spatially uniform

concentration of the inactive form. Note that since uL and uG are assumed to be uni-

form concentration profiles and vG is uniform due to our choice of diffusivity, the

79



diffusion operator vanishes for all three variables. The last relation of Equation (3.9)

follows directly from Equation (3.7) for uniform concentrations uG and vG. Note

that uL is assumed not to contribute to the total protein concentration in the pollen

tube since it lives in an infinitely narrow interval.

Using the same parameter values as in Table 3.1, and varying total concentration

T we reproduce the bifurcation plot presented by Walther et al. (2012) in Figure 3.13.

Figure 3.13: Local Perturbation Analysis Bifurcation Plot. Bifurcation plot of the
perturbation in the active form in Equation (3.9). In zone II (IV) a sufficiently high
(low) stimulus (suppression) can trigger a travelling interface between a patch of
high (low) concentration of the active form in a sea of uniform low (high) concentra-
tion of the active form. In zone III an arbitrarily small perturbation will trigger such
a travelling interface – here a travelling interface can be triggered spontaneously by
stochastic events. In zones I and V the system is not perturbable. Adapted from
Walther et al. (2012).

The LPA bifurcation plot, Figure 3.13, summarises the answers to our previous

questions. We can perturb the homogeneous steady state to an inhomogeneous

steady state in zones II - IV and the required size of the perturbation is visible in Fig-

ure 3.13. In zone II we need to elevate uL above an unstable steady state, Figure 3.13

(black dashed line in zone II), and the size of the required perturbation depends on

the total concentration T. In zone III the homogeneous steady state (uL, vG)=(u∗, v∗)
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is unstable, Figure 3.13 (red dashed line), and therefore small random perturbations

that either elevate or suppress uL will drive the system to an inhomogeneous steady

state. In zone IV we need to suppress uL below an unstable steady state, Figure 3.13

(black dashed line in Zone IV), and the size of the required perturbation depends on

the total concentration T. In the remainder of this study our system is located either

in zone II or III and any applied perturbation, or stimulus, elevates uL rather than

suppress it.

Polarisability: The Sharp Front Approximation

The LPA guides us in choosing parameter values so that we can trigger a travelling

interface in the active form of ROP1. An important question is now: Where will

the interface stop? This is an important question to ask due to the functional link

between localised ROP1 and local growth, Section 3.1.3: If, for instance, the interface

stops near the base of the pollen tube then the tube would not grow apically and

rather balloon to the sides.

Specific to our case, we need to ask how wide the plateau with high concentra-

tions of active ROP1 will become, Figure 3.12 (red shades). Mathematically, if the

width of the high plateau becomes too big, boundary effects will destroy the formed

interface and our system evolves to a new stable rest state with the active species

uniformly high in concentration. Biologically, an excessively wide high plateau has

the aforementioned effect of pollen tube ballooning. Mathematically, if the width

becomes too small then our system evolves back to the original stable rest state with

the active species uniformly low in concentration. Biologically, an overly narrow

high plateau may be insufficient to direct local growth.

To approximate the width of the high plateau we expand a numerical analysis

technique introduced by Walther et al. (2012). This technique, similar to the LPA,

assumes that diffusivity on the membrane is infinitely low and diffusivity in the

cytoplasm is infinitely high:

Du → 0, Dv → ∞.

In this limit an interface in the active form will have a very sharp boundary as
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diffusion on the membrane tends to zero (Mori et al., 2011). As Mori et al. (2008)

discussed, the velocity of the boundary of a sufficiently sharp interface on a finite

domain such as ours can be approximated by the following expression

c f ∝
ˆ u+

u−
f (u, v(u)) du, (3.10)

where f is the kinetic term of our system, Equation (3.5), and the concentration of v

is a function of u due to mass conservation

v(u) = T − 1
L

ˆ L

0
u(x, t) dx.

The front velocity, Equation (3.10), was formulated for a left-polarised interface so

that

u(x, t)→ u+ , x → −∞,

u(x, t)→ u− , x → ∞, (3.11)

where u+>u− are both stable steady states of the kinetic term f (·), Equation (3.5).

Hence, a positive velocity c f >0 indicates that the high plateau expands in size while

a negative velocity c f <0 indicates that the high plateau retracts.

To adapt Equation (3.10) of the velocity to our right-polarised interface we make

use of the following symmetry considerations: Left-polarised and right-polarised

interfaces need to behave equally. Suppose our system displays a left-polarised in-

terface whose high plateau has width w and travels with velocity c f , Figure 3.14

(left). Then mirroring this concentration profile in the centre of the domain, we ob-

tain a right-polarised interface whose high plateau has width w and travels with ve-

locity c f in the opposite direction, Figure 3.14 (right). This mirroring operation also

reverses the velocity vector of our interface so that a left-polarised right-moving in-

terface is turned into a right-polarised left-moving interface, Figure 3.14. Based on

these considerations, we reinterpret the velocity c f to approximate how fast width

w of the high plateau expands or shrinks: If c f >0 then w expands, whereas when

c f <0 then w shrinks.
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Figure 3.14: Sharp Front Approximation. We approximate the sharp front solution
by representing it with two plateaus, uL and uR, and we track the width of the high
plateau with variable w. We reinterpret the sharp front velocity c f , Equation (3.10),
to indicate the rate at which w expands or shrinks. For our purpose we assume that
the proportionality constant in Equation (3.10) equals 1 since we are interested in
where the interface stops, c f =0, and not in the absolute velocity of the interface.

We approximate the behaviour of a sufficiently sharp interface with a three-

variable system of ordinary differential equations, Figure 3.14:

u̇L = f (uL, v),

u̇R = f (uR, v),

ẇ =
ˆ u+

u−
f (u, v) du,

v = T − wu+ − (L− w)u−, (3.12)

where uL and uR denote the concentration levels in the left- and right-hand plateau

respectively, and w denotes the width of the high plateau. The concentration in

the high plateau, u+, corresponds to uL for a left-polarised interface, Figure 3.14

(left), and uR for a right-polarised interface, Figure 3.14 (right). Note that we set

the proportionality constant in Equation (3.10) to one since we are interested in the

pinning position of the wave, c f =0, and not its precise velocity.

For a left-polarised interface, uL≈u+, uR≈u− hence ẇ and v become

83



ẇ =
ˆ uL

uR

f (u, v) du,

v = T − w · uL + (L− w) · uR, (3.13)

whereas for a right-polarised interface, uL≈u−, uR≈u+ hence ẇ and v become

ẇ =
ˆ uR

uL

f (u, v) du,

v = T − w · uR + (L− w) · uL. (3.14)

A stable steady state of the three-variable Equation (3.12) approximates the pin-

ning position and plateau levels of an interface between low and high concentra-

tions of the active form of ROP1. Hence, such a steady state approximates to what

extent active ROP1 localises.

3.1.10 Modelling Growth

Since pollen tubes can grow fast and increase their volume by a factor of twenty,

Section 3.1.4, we believe it is essential to study tip-localisation of ROP1 on a growing

domain. To model growth of the pollen tube, we use a framework developed by

Crampin E. J. (2000).

A central concept of this framework is that of local growth velocity. Suppose that

we consider a volume element of the pollen tube located in position x then the local

growth velocity of this element is given by:

dx
dt

= a(x, t). (3.15)

The local growth velocity, a(x, t), assigns a space- and time-dependent velocity to

each volume element of the pollen tube. We note that our local velocity term a(x, t)

has one space component since we are interested exclusively in longitudinal growth

and not any of the morphological deformations, such as ballooning, that are ob-

served for pollen tubes under certain conditions, Figure 3.3.
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Here we describe how our reaction-diffusion system, Equation (3.4), is altered

by the introduction of a(x, t) (Crampin E. J., 2000).

Derivation

For brevity we state the following derivation for the active form u only and intro-

duce coordinates r, and reaction term R(r, t). For an arbitrary volume element V(t),

Figure 3.15(a), we can write down a conservation equation for the protein mass con-

tained within V(t):

d
dt

ˆ
V(t)

u(r, t)dV =
ˆ

∂V(t)
−(n · j)dA +

ˆ
V(t)

R(r, t)dV (3.16)

=
ˆ

V(t)
−(∇ · j)dV +

ˆ
V(t)

R(r, t)dV

=
ˆ

V(t)
(Du∇ · ∇u + R(r, t))dV,

where u denotes the active form of ROP1, ∂V(t) denotes the surface of volume ele-

ment V(t), n is the outward-pointing normal on ∂V(t), j is some (initially unknown)

flux of u on the boundary ∂V(t), and R(r, t) is the reaction term (this term is a short-

hand for f (u(x, y, t), v(x, y, t))). Note that we use shorthand notation for coordinates

and volume elements: r stands for the two-dimensional coordinate (x, y), dV stands

for dxdy, and dA corresponds to a line segment. In the derivation of the final form

of Equation (3.16) we follow the standard steps of first applying the Divergence The-

orem over the closed surface ∂V(t) and then realising that the flux j is due to Fickian

diffusion, hence j=− Du∇u where Du is the diffusion coefficient of u.

If the volume element V(t) were constant in shape then we would be able to

draw the d/dt operator on the left-hand side under the integral and we would end

up with a standard reaction-diffusion equation. However, since V(t) will be dis-

torted by growth, Figure 3.15(a), we need to take a few extra steps.

The time derivative on the left-hand side of Equation (3.16) is, by definition,

equal to the following limit (if it exists):

d
dt

ˆ
V(t)

udV = lim
∆t→0

´
V(t+∆t) u(r, t + ∆t)dV −

´
V(t) u(r, t)dV

∆t
. (3.17)
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Let us expand the first integrand on the right-hand side in a Taylor series:

u(r, t + ∆t) = u(r, t) + ∆t
∂u
∂t

+ O(∆t2),

and assuming that ∆t is sufficiently small we ignore higher order ∆t-terms. We

substitute this approximation of u(r, t+∆t) into Equation (3.17) and obtain

d
dt

ˆ
V(t)

udV ≈ lim
∆t→0

´
V(t+∆t)

(
u(r, t) + ∆t ∂u

∂t

)
dV −

´
V(t) u(r, t)dV

∆t
(3.18)

=
ˆ

V(t)

∂u
∂t

dV + lim
∆t→0

´
V(t+∆t) u(r, t)dV −

´
V(t) u(r, t)dV

∆t
.

The Taylor approximation we introduce in Equation (3.18) allows us to view the dif-

ference between the two integrals on the right-hand side as the result of a volume

element V(t) that grows to a distorted volume element V(t+∆t) in an unchanged

field u(r, t), Figure 3.15(b). Assuming that ∆t is sufficiently small, we can approxi-

mate this difference by

ˆ
V(t+∆t)

u(r, t)dV −
ˆ

V(t)
u(r, t)dV ≈

ˆ
∂V(t)

(n · ua)∆tdA,

and substituting this into Equation (3.18) we can drop the limit (since ∆t cancels)

and obtain

d
dt

ˆ
V(t)

udV =
ˆ

V(t)

∂u
∂t

dV +
ˆ

∂V(t)
u(a · n)dA (3.19)

=
ˆ

V(t)

(
∂u
∂t

+∇ · (ua)
)

dV,

where we use the Divergence Theorem over the closed surface ∂V(t) of the volume

element V(t) in Figure 3.15(b).

This concludes our derivation of how to draw the d/dt operator on the left-hand

side of Equation (3.16) under the integral sign. Upon substituting Equation (3.19)

into Equation (3.16), we obtain
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ˆ
V(t)

(
∂u
∂t

+∇ · (ua)− Du∇ · ∇u− R(r, t)
)

dV = 0,

and since V(t) is an arbitrary choice, this integral can only equal zero if the integrand

equals zero everywhere – thus giving us the more commonly seen differential form

of this reaction-diffusion-advection system (we write ∇2u=∇·∇u for brevity):

∂u
∂t

+∇ · (ua) = Du∇2u + R(r, t) (3.20)

We are only interested in longitudinal growth and not any three-dimensional

bending or ballooning that is observed for growing pollen tubes experimentally. To

this end, we restate Equation (3.20) with our one-dimensional velocity a(x, t):

∂u
∂t

+
∂

∂x
· (u(x, t)a(x, t)) = Du

∂2u
∂x2 + R(x, t). (3.21)

The resultant full set of equations with our kinetics term f of the one-dimensional

concentration variables is:

∂u
∂t

+
∂

∂x
(ua) = Du

∂2

∂x2 u + f (u, v), (3.22)

∂v
∂t

+
∂

∂x
(va) = Dv

∂2

∂x2 v− f (u, v),

Compared with our system for a non-growing pollen tube, Equation (3.4), this sys-

tem of equations that incorporates longitudinal growth possesses the following ad-

ditional terms: dilution terms, u∂a/∂x and v∂a/∂x, and advection terms, a∂u/∂x

and a∂u/∂x. The former terms describe dilution because ∂a/∂x is a local strain rate

describing how fast points along the length of the pollen tube move apart. The latter

terms are advection terms and describe directed transport of ROP1 due to growth.

Setup and derivation of Equation (3.22) may be a bit abstract, therefore to gain

some intuition let us think of longitudinal growth as follows: In the initial pollen

tube (solid, black pollen tube Figure 3.15(c)) we label all infinitesimally small vol-

ume elements with their initial position X. As the pollen tube grows, the position

of element X describes a trajectory G(X, t) (grey, dashed pollen tube, Figure 3.15(c))
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which is equivalent to position x in Equation (3.22). Generally, the form of G(X, t) is

unknown: If we did know G(X, t) from the start then we would know exactly how

the pollen tube grows over time – specifying G(X, t) would therefore impose a spe-

cific pollen tube length for every time point t. In the more general case, G(X, t) is un-

known and evolves over time as a function of our system of protein concentrations

or other properties of the pollen tube. We impose, however, the following initial and

boundary conditions on G(X, t): (i) G(X, 0)=X which follows from the initial label

of volume elements (dashed diagonal in Figure 3.15(c)), and (ii) G(0, t)=0 which

serves to model elongation rather than translation. We assume that the pollen tube

either grows or stalls and never shrinks, hence we expect that the plot of G(X, t)

never falls below the initial diagonal line G(X, 0), Figure 3.15(c).

For longitudinal growth, the connection between G(X, t) and growth velocity

a(X, t) is:

G(X, t) = G(X, 0) +
ˆ t

0
a(X, s)ds,

and using both the fundamental theorem of calculus and summarising the afore-

mentioned initial and boundary conditions, we obtain

∂G
∂t

= a(X, t), (3.23)

G(X, 0) = X,

G(0, t) = 0.

Equation (3.23) is a partial differential equation that we can solve alongside protein

dynamics. This formulation also allows us to specify local growth velocities a(X, t)

as a function of protein concentrations or any other property of our system.

To study Equations (3.22) numerically, we make use of standard space and time

discretisation and approximation techniques. The grid size of our spatial domain

is altered by growth, potentially requiring intricate adaptive remeshing of our grid.

Therefore we reformulate Equations (3.22) for our numerical experiments in terms

of the initial positions X of the volume elements x in our domain (material coordi-
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nates).

The volume elements x of our growing pollen tube are related to their initial

positions X through the trajectory function G:

x = G(X, t),

which is a unique (one-to-one) mapping of an arbitrary X at time t=0 to a corre-

sponding volume element x at time t. Using this mapping we can transform the

spatial derivative operators in Equation (3.22) from x-space to X-space:

∂

∂x
=

1
GX

∂

∂X
, (3.24)

∂2

∂x2 =
1

G2
X

∂2

∂X2 −
GXX

G3
X

∂

∂X
.

Using these operator transformations we rewrite Equation (3.22) for X-space (ma-

terial coordinates) and combine our result with our definition of G(X, t), Equation

(3.23):

∂u
∂t

+ u
GXt

GX
+

Gt

GX

∂u
∂X

= Du

(
1

G2
X

∂2u
∂X2 −

GXX

G3
X

∂u
∂X

)
+ f (u, v), (3.25)

∂v
∂t

+ v
GXt

GX
+

Gt

GX

∂v
∂X

= Dv

(
1

G2
X

∂2v
∂X2 −

GXX

G3
X

∂v
∂X

)
− f (u, v),

∂u
∂X

= 0, (X = 0, 1),

∂v
∂X

= 0, (X = 0, 1),

∂G
∂t

= a(X, t),

G(0, t) = 0.

All concentration variables in Equation (3.25) live in X-space, the initial config-

uration of the pollen tube, Figure 3.15 (a). So for instance, u≡u(X, t). The only

undefined entity in Equation (3.25) is the local growth velocity a(X, t) which will be

defined by our choice of growth model.
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Figure 3.15: Protein Dynamics in a Growing Pollen Tube. (a) An arbitrary vol-
ume element V is shown at an initial time point and after an amount of time t has
elapsed. In this span of time, the pollen tube has grown and the volume element
V is distorted from its original configuration V(0) to its final configuration V(t).
(b) Growth of an arbitrary volume element, due to growth velocity a, from its ini-
tial configuration V(t) to its final configuration V(t+∆t) in a fixed concentration
field u(x, y, t). As this volume element expands, the amount of protein u it encom-
passes changes. Vector n is the outwards normal on the surface of V(t). (c) We
are interested in longitudinal growth of the pollen tube allowing us to ignore in-
tricate geometric effects due to bending, ballooning, and other processes that are
observed experimentally. This simplification turns our pollen tube system into a
one-dimensional spatial domain. We understand growth as a mapping G(·) that
maps material points from their initial positions X to positions G(X, t) after time t.
The mapping G(X, t) denotes the trajectory of X due to growth and this trajectory
is generally unknown as it evolves over time with changing material properties of
the pollen tube. We impose however two conditions on G(·): an initial condition
G(X, 0)=X (dashed line) and a boundary condition G(0, t)=0. This boundary con-
dition ensures that we model pollen tube elongation and not translation in space.
Further note that G(X, t) will never fall below the diagonal dashed line G(X, 0) as
we assume that our pollen tube either grows or stalls and never shrinks.

Our Model of Local Growth in the Pollen Tube

Growth of the pollen tube is localised to the tip: In growing pollen tubes, the cy-

toskeleton is arranged in a way that promotes directed exocytosis of membrane and

cell wall material at the tip, Section 3.1.3.

We think of pollen tube growth as the product of two factors: Firstly, is the pollen

tube in the condition to grow overall? And secondly, are there local differences in

the readiness to grow? We express this mathematically as follows:
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a(X, t) = aG(u, v)aL(X), (3.26)

where we represent any local growth differences by aL and global, systemic prop-

erties that determine overall propensity of the pollen tube to grow by aG. We as-

sume that ROP1 is responsible for downstream effects that place the pollen tube in

a growth regime, Section 3.1.3, and we therefore model aG as a function of the state

of our protein system, u and v.

To focus our work on the interplay between the ROP1 system and growth of the

pollen tube, we choose the most parsimonious assumption for the spatial contribu-

tion to growth by equating aL=1. This assumption results in uniform growth along

the length of our pollen tube model, Figure 3.16. With this assumption our model

loses specificity but our results gain generality and we do not need to impose any

prior belief on aL.

Figure 3.16: Uniform growth assumption used in our work. To focus our work
on the interplay between the ROP1 system and growth we assume uniform growth
along the length of the pollen tube, which we encode by substituting aL=1 into
Equation (3.26). The resultant growth velocity, a(X, t)=aG(u, v), depends solely on
the state of the ROP1 system. This assumption has the effect that the volume el-
ements of the pollen tube move apart from each other uniformly along the length
of the pollen tube. Suppose that the pollen tube doubles in length over a period of
time t then uniformly spaced volume elements (red disks) will double the distance
between themselves over the same period of time (blue disks). While this uniform
growth assumption reduces the specificity of our model it does add generality to
our model and our predictions.

3.2 ROP1 Localisation as Desired Output

In this section we subject our ROP1 model to growth and observe how its properties

of perturbability and polarisability change under these conditions.

Specifically, here we take the point of view that growth is a process that is inde-

pendent of the ROP1 system. In this simplified context, we refer to the bifurcation
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diagram that we constructed for the non-growing case to gain intuition of what we

expect to observe, Figure 3.17.

Assuming that the active profile is solely the output of the system, Figure 3.17

shows that an imbalance between growth and production can cause the ROP1 sys-

tem to shift away from the perturbable regime: (i) when production outperforms

growth the system moves towards an unperturbable state with the active form uni-

formly high, while (ii) when growth outperforms production the system moves to-

wards an unperturbable state with the active form uniformly low.

Figure 3.17: Antagonistic Effect of Pollen Tube Growth and Protein Production
on Perturbability. The total concentration T is a ratio of total protein amounts τ
and pollen tube length L, Equation (3.7). As we discussed in Figure 3.13, the total
concentration determines if our system, Equation (3.22), is perturbable. As growth
increases L and protein production increases τ, these two biological processes an-
tagonise each other and pull T in opposite directions.

3.2.1 The Effect of Growth on ROP1 Localisation

To illustrate the effect of longitudinal growth on ROP1 localisation in the pollen

tube, Figure 3.17, we consider Equations (3.22) with constant growth:
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a(X, t) = a0, (3.27)

where we substitute aG=a0>0 into Equation (3.26).

We use our standard parameter values, Table 3.1, and apply a stronger stimulus

of ks,0=0.01 s−1. As our previous results in Figure 3.12 show, the resultant initial

total concentration of T0=τ/L0 lies in zone II of Figure 3.17 so that a sufficiently

high perturbation in the active form will trigger a travelling interface.

Provided that the constant growth velocity, which we subject our pollen tube to

is sufficiently slow, our expectation for this numerical experiment is that our sys-

tem spends enough time in zone II so that we can trigger a travelling interface in

active ROP1. We further expect that as the pollen tube grows, the domain where

active ROP1 is localised shrinks in size and vanishes after a sufficient amount of

time so that ROP1 displays a low, uniform concentration profile. We draw these ex-

pectations from Figure 3.17 that predicts traversal from zone II to zone I for a ROP1

system subjected to growth, and our sharp front analysis in Section 3.1.9 that pre-

dicts a reduction in the size of the domain where ROP1 is localised for reduced total

concentrations T.

Our expectations are confirmed by our numerical results, Figure 3.18: Our sys-

tem spends enough time in zone II where our choice of stimulus, Table 3.1, triggers

a travelling interface between localised active ROP1 on the right and dilute active

ROP1 on the left. This interface retracts and disappears after a sufficient amount

of time and gives way to a low, uniform concentration profile of ROP1. We also

indicate the position of the interface as predicted by our sharp front approximation

described in Section 3.1.9, Figure 3.18 (top, black line). Our predicted interface po-

sition is a sensible fit until boundary conditions become dominant towards the end

of the simulation.

This result shows that if the growth velocity of our pollen tube is independent

from the ROP1 localisation system, then growth will inadvertently prevent the ROP1

system from sustaining apical localisation.

Further, our result in Figure 3.18 highlights an implicit assumption in our reaction-

diffusion model of ROP1, Equation (3.4): The inactive form of ROP1 is assumed to
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recycle fast between the membrane and the cytoplasm and we therefore do not ob-

serve a shift in the domain where active ROP1 is localised but rather gradual dilu-

tion of apical ROP1, Figure 3.19.

Figure 3.18: Constant Growth Drives System out of Perturbable Regime. Sim-
ulation of Equations (3.22) with constant growth velocity, Equation (3.27), with
a0=0.00009 a.u./s, initial conditions as in Figure 3.12, ks,0=0.01 s−1, and all remain-
ing parameters as in Table 3.1. As predicted by our LPA, Figure 3.17, growth drives
our system out of zone II and into zone I where the active form of ROP1 shows in-
advertently a low, uniform concentration profile. The magnitude of our choice of
a0 is sufficiently low so that our system spends enough time in zone II where it is
stimulated to form a travelling interface between highly localised active ROP1 and
dilute active ROP1. The black line indicates the position of the interface between
high and low active ROP1 as predicted by our sharp front approximation, Section
3.1.9.

3.2.2 The Effect of Production on ROP1 Localisation

The antagonist of growth in Figure 3.17 is protein production: If our system starts

out in zone II and we subject our pollen tube to conditions under which it synthe-

sises protein and does not grow, we expect that our system gradually traverses into

zone V where we expect to observe a uniformly high profile of active ROP1.

To illustrate this effect, we amend Equations (3.25) with a zero-order production

term that adds inactive ROP1 to our system:
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Figure 3.19: Comparison of Growth Effects Expected for Different ROP1 Recy-
cling Timescales. Suppose that active ROP1, denoted by green disks, is localised
initially to the tip of the pollen tube. (grey arrows) Then we may expect that upon
growth, active ROP1 entities remain near the initial apex, L(0), of the pollen tube
where they are inactivated and recycled to the cytoplasm (red disks). Since the
pollen tube has grown the total concentration of ROP1 is reduced and therefore re-
active pressure of cytosolic inactive ROP1 back onto the apical membrane is lower,
resulting in a smaller domain size where active ROP1 is localised. (black arrow)
Our numerical experiment, Figure 3.18, does not show a shift in localised active
ROP1 but rather direct gradual dilution of active ROP1 at the apex. Therefore, our
model of the ROP1 system, Equation (3.4), encodes implicitly fast recycling of inac-
tive ROP1.

∂u
∂t

+ u
GXt

GX
+

Gt

GX

∂u
∂X

= Du

(
1

G2
X

∂2u
∂X2 −

GXX

G3
X

∂u
∂X

)
+ f (u, v), (3.28)

∂v
∂t

+ v
GXt

GX
+

Gt

GX

∂v
∂X

= Dv

(
1

G2
X

∂2v
∂X2 −

GXX

G3
X

∂v
∂X

)
− f (u, v) + κ,

∂u
∂X

= 0, (X = 0, 1),

∂v
∂X

= 0, (X = 0, 1),

∂G
∂t

= a(X, t),

G(0, t) = 0,

where κ>0 is a zero-order rate constant. For our numerical experiment we further

choose zero growth velocity

a(X, t) = 0, (3.29)

to model a stationary, non-growing pollen tube.
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Figure 3.20: Constant Protein Production by Itself Drives System out of Per-
turbable Regime. Simulation of Equations (3.28) with constant, zero-order protein
production designated by κ. Our choice of κ=0.0004 a.u./s is sufficiently low so
that our system spends enough time in a perturbable regime where our choice of
stimulus, Table 3.1, can trigger a moving interface between localised active ROP1
and dilute ROP1. This established interface moves towards the rear of the pollen
tube due to production κ before our system steps outside the perturbable regime
and displays a uniformly high ROP1 profile.

Our numerical experiment, Figure 3.20, confirms our expectation: For a suffi-

ciently small production rate constant κ our system remains in a perturbable regime

for long enough to get stimulated into forming a moving interface between highly

localised active ROP1 and dilute active ROP1. This interface moves towards the rear

of the pollen tube as production rate κ adds more protein to the system. This effect

is also illustrated by our sharp front approximation of the interface position, Figure

3.20 (black line). Eventually our system steps outside the perturbable regime, Figure

3.17, and displays a high-concentration, uniform profile of active ROP1.

This result indicates that synthesis rates of ROP1 that are entirely unchecked will

drive our ROP1 system out of the perturbable regime and annihilate tip polarity.
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3.2.3 The Combined Effect of Production & Growth on ROP1 Lo-

calisation

Our results in Sections 3.2.1 and 3.2.3 confirm that sustained imbalance between

growth and protein production will inadvertently move our system out of the per-

turbable regime – nullifying the possibility for localisation of active ROP1 at the tip.

However, generally we observe apical localisation of active ROP1 in growing

pollen tubes, and so it is reasonable to postulate that there is some control mech-

anism that keeps the total concentration of ROP1 within the perturbable regime,

Figure 3.17.

In this numerical experiment, we test the hypothesis that this control mechanism

keeps the total concentration constant. The time change of the total concentration T

is given by the following expression:

Ṫ =
τ̇

L
− τ

L
L̇
L

, (3.30)

where due to our boundary conditions, Equation (3.6), the only source of mass

change is κ in Equation (3.28) hence τ̇ is given by the following expression

τ̇ = Lκ. (3.31)

Note that if L is a function of time L≡L(t) then τ̇ is also a function of time. All other

components of Equation (3.30) are either given by the state of our system, τ, L, or

by our choice of growth velocity aG.

Suppose that T lies in the perturbable regime initially, Figure 3.17, and that our

control mechanism enforces zero change in T. From Equation (3.30), Ṫ=0 under the

following condition:

κ =
τ

L
L̇
L

. (3.32)

This condition tells us that a hypothetical control mechanism needs to regulate the

rate of protein production dynamically and it needs to know the current state of the

system, τ and L, and how fast it grows, L̇. The results of our numerical experiment
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are shown in Figure 3.21.

Figure 3.21: A Presumed Mechanism That Locks the Total Concentration Into the
Perturbable Regime Sustains ROP1 Localisation. Simulation of Equations (3.28)
with constant total amounts T and other simulation parameter values as in Table 3.1.
The constant growth velocity aG=0.00009 a.u./s and stimulus strength ks,0=0.01 s−1.
The black line indicates the predicted interface position as in the other results fig-
ures.

Our results in Figure 3.21 indicate that keeping the total concentration fixed and

in the perturbable regime sustains localisation of ROP1.

We point out that Ṫ=0 if and only if κ fulfills strictly the condition in Equation

(3.32). Any deviation, for instance through noise, of κ away from this condition will

result in a changing total concentration, Ṫ 6=0, and therefore eventual breakdown of

ROP1 localisation.

As a side note regarding our results in Figure 3.21: The width of the high-

concentration ROP1 plateau increases over time as is shown both by our full nu-

merical simulation and our sharp front approximation, Figure 3.21 (top, black line).

To understand this, we recall our sharp front approximation, Equation (3.12) and

use the right-polarised expressions in Equation (3.14). Suppose now that our sharp

front approximation is in a stable equilibrium with uL=u∗L, uR=u∗R, and w=w∗. Fur-

ther, in our numerical experiment T=const. We now rearrange the expression for

the inactive form v, Equation (3.14) to obtain

98



w∗ =
T − v + Lu∗L

u∗R + u∗L
,

which tells us that, everything else kept constant, increasing L through growth in-

creases the width w of the high-concentration plateau.

3.3 ROP1 Localisation as Part of a Feedback System

Our results in Section 3.2 demonstrate that the total concentration of ROP1 is key

in apical ROP1 localisation. We have also reviewed literature in Section 3.1.3 that

establishes a causal link between apical ROP1 localisation and pollen tube growth.

Here we focus on closing the feedback loop between ROP1 localisation, pollen tube

growth, and the total concentration of ROP1.

Existing models predict sustained apical ROP1 localisation, Section 3.1.6, and

also we describe a control mechanism that retains apical ROP1 localisation, Section

3.2.3. In these existing models, localised active ROP1 is viewed as a desirable out-

come and the suggested mechanisms depend on “knowing” a number of intricate

properties of the overall system in order to retain ROP1 localisation. As an example,

the control mechanism we suggest in Section 3.2.3 needs to be capable of regulating

the rate of protein production κ while being fully aware of current protein amounts

τ, the length of the pollen tube L, and its growth velocity L̇.

These control mechanisms have two aspects in common: Firstly, they view ROP1

localisation as the outcome of successful communication between some control mech-

anism and growth. Secondly, they are quite complex biologically since a thorough

understanding of the current system state needs to be encoded with biological com-

ponents.

Here we propose a different control mechanism that includes active ROP1 lo-

calisation as a cornerstone of control and that reduces the amount of information

required to exert this control.
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3.3.1 Our Model of Feedback Provided by ROP1 Localisation

To add the concentration profile of active ROP1 to a control mechanism we need to

decide what representation of this concentration profile is biologically meaningful.

The simplest and likely most biological model would be to set the local growth

velocity proportional to the concentration profile of the active form

a(X, t) ∝ u(X, t).

This model is sensible biologically as it reproduces the functional role of increas-

ing local growth that we ascribe to localised ROP1, Section 3.1.3. Thus in a two-

or three-dimensional model of the pollen tube, this relationship would reproduce

tip growth and ballooning naturally through the vectorial growth velocity a(X, t).

However, for our one-dimensional pollen tube model where the growth velocity is

a scalar, representing longitudinal growth, Equation (3.15), this relationship would

make unreasonable predictions such as fast longitudinal growth for rear-localised

active ROP1.

To gain intuition about the velocity of longitudinal pollen tube growth we look

to experimental results reported by Hwang et al. (2010), Figure 3.22. Hwang et al.

(2010) bombarded a growing pollen tube with a ROP1 construct for overexpression

and observed the pollen tube over a period of 2.5 hours. They observed that greater

apical spread of active ROP1 (greater reported cap size) correlated with a slower

longitudinal pollen tube growth velocity, Figure 3.22. Further, Hwang et al. (2010)

reported that small and medium ROP1 cap sizes can be observed to oscillate to-

gether with pollen tube growth under normal conditions, Figure 3.32. The cap sizes

reported in Figure 3.32 correspond to those reported for early time points 0:0 and

12:40 in Figure 3.22.

Since the bombarded pollen tube was growing prior to bombardment, Figure

3.22, we assume that the ROP1 cap had a medium size and that the growth veloc-

ity was relatively fast prior to bombardment. We assume that the growth velocity

was fast since a naturally growing pollen tube would want to reach the ovules as

quickly as possible. We therefore assume that the slow growth velocities reported

in Figure 3.32 are due to a small ROP1 cap size. Taken together, we assume that
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the data reported by Hwang et al. (2010) points to the following relation between

the ROP1 cap size and longitudinal growth velocity: A small ROP1 cap size causes

slow longitudinal growth, a medium cap size fast growth, and a large cap size slow

growth.

Based on this relation we propose to use the centre of mass of active ROP1 as an

input into the control mechanism of our one-dimensional pollen tube. The centre of

mass of u(X, t) is defined as follows:

ϕ̃(u(X, t)) =
ˆ L0

0
su(s, t) ds, (3.33)

where the upper bound L0 is the initial length of the pollen tube as we work with

the active form u(X, t) in material coordinates X. Our above expression for the

centre of mass, Equation (3.33), introduces the following biases: (i) ϕ̃ increases with

increasing overall levels of u(X, t), and (ii) a uniform concentration profile of u(X, t)

results in a centre of mass ϕ̃=0.5 since our initial domain has length L0=1 a.u., Table

3.1. To remove these biases from our measure, we define the following modified

centre of mass

ϕ(u(X, t)) = 2
(

ϕ̃(u)
L0Tu

− 1
2

)
, (3.34)

where Tu=
´ L0

0 u(s, t) ds is the total concentration of the active form u(X, t) on the

membrane. We point out that the centre of mass ϕ in Equation (3.34) is given in

material coordinates X and can therefore be thought of as a relative position along

the length of the pollen tube.

To gain intuition about the centre of mass we plot four profiles and their ϕ(·)

values in Figure 3.23.

We substitute ϕ into aG of Equation (3.26) and obtain the following ROP1 depen-

dent expression for our growth velocity:

a(X, t) = ka ϕ(u(X, t)), (3.35)

where ka≥0 is a proportionality constant.

We plot the behaviour of the longitudinal growth velocity, Equation (3.35), as a
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function of simplified concentration profiles, Figure 3.23, where we equate the high

ROP1 plateau of these profiles to the ROP1 cap size, Figure 3.24.

The observed behaviour in Figure 3.24 shows that our model of the relation be-

tween longitudinal growth velocity and cap size, Equation (3.35), reproduces the

relation suggested by experimental data (Hwang et al., 2010): Small and large ROP1

cap sizes result in slow longitudinal growth while a medium cap size induces a

maximal longitudinal growth velocity.

Figure 3.22: Observed Relation Between Pollen Tube Growth Rate and ROP1 Lo-
calisation. Hwang et al. (2010) bombarded pollen tubes with small amounts of
ROP1 construct for overexpression and observed their growth over a period of 2.5
hours. Their results show that a wider spread of active ROP1 (greater cap size) cor-
relates with a reduced longitudinal growth rate. Reproduced from Hwang et al.
(2010).

3.3.2 Expectations for Numerical Experiments

With our model for ROP1-driven local growth velocity, Equation (3.35), we can first

derive some intuition before discussing the results of our numerical experiments.

Suppose that initially active ROP1 is homogeneous and the pollen tube is not

growing with velocity a(X, 0)=0 everywhere. The approximate acceleration of the

pollen tube given by our model, Equation (3.35), is

a(X, t + ∆t)− a(X, t)
∆t

=
ka

∆t
(ϕ(u(X, t + ∆t))− ϕ(u(X, t))) . (3.36)

102



Figure 3.23: Visualisation of ϕ for Sample Concentration Profiles. Our choice of
ϕ, Equation (3.34), produces the following measures of apical ROP1 localisation:
Narrow (top left) and wide (bottom right) tip-localised active ROP1 result in low
ϕ values while a medium width of active ROP1 (top right) results in a high value.
This behaviour of ϕ is sensible in light of our one-dimensional approximation of the
pollen tube and our focus on longitudinal growth, Figure 3.22.

Starting with uniform active ROP1, ϕ(·)=0, and applying a sufficiently strong stim-

ulus ks,0 to localise active ROP1 we expect that ϕ(u(X, t + ∆t))>ϕ(u(X, t)), ∆t>0.

Therefore, since the right-hand side of Equation (3.36) is positive the left-hand side

is also positive – hence we expect that inducing tip-localisation of active ROP1 ac-

celerates the pollen tube.

Suppose now that active ROP1 is tip-localised in a growing pollen tube. Then

due to growth, Equation (3.35), ROP1 is diluted and using results from our sharp

front approximation, Section 3.1.9, we expect that the interface width of localised

active ROP1 narrows. If the interface of active ROP1 starts out as in Figure 3.23 (top

right) then retraction of the interface towards the pollen tube tip, Figure 3.23 (top

left), causes deceleration as given by Equation (3.36). If the interface of active ROP1

starts out as in Figure 3.23 (bottom right) then an intermediate phase of acceleration

will be followed by deceleration. Overall, we expect that growth driven by apical

localisation of active ROP1 causes retraction of the interface towards the tip and
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Figure 3.24: Relation Between Pollen Tube Growth Rate and ROP1 Localisation
Encoded by Our Model. We plot ϕ (which is proportional to growth velocity)
against the width of the high ROP1 plateau of concentration profiles equivalent to
those shown in Figure 3.23. We assume that our width of the high concentration
profile is equivalent to the cap size reported by Hwang et al. (2010). The behaviour
of ϕ reproduces the relation between ROP1 localisation and growth that we derive
from data reported by Hwang et al. (2010): A small ROP1 cap size causes slow lon-
gitudinal growth, a medium cap size fast growth, and a large cap size slow growth.

therefore deceleration.

Due to our choice of ROP1-dependent growth velocity, Equation (3.35), growth

and ROP1 dilution will only stop once the ROP1 interface has collapsed.

Once the interface in active ROP1 has collapsed, localisation of active ROP1 – and

therefore acceleration – can only be triggered anew if the total ROP1 concentration

lies in the perturbable regime, Figure 3.17. At this point, protein production would

push ROP1 concentrations back into the perturbable regime so that another round

of acceleration and deceleration can be triggered. We therefore expect that a com-

bination of ROP1-driven growth and constitutive protein production will generate

oscillatory growth.

From these considerations we understand that constant growth of the pollen

tube may be achieved by circumventing deceleration once active ROP1 is tip-localised.

To avoid deceleration, the pollen tube would need to avoid dilution of ROP1 and

therefore the rate of protein production in our model would need to adapt to the
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rate of growth via a feedback loop. As a first approximation, such a feedback loop

could prevent any change in the total concentration T of our system thus enforcing

Ṫ=0. We have studied this example in Section 3.2.3 where we realised that Ṫ=0 can

be achieved by adapting dynamically the rate of protein production κ to the current

state of our system, Equation (3.32).

In summary, we expect oscillatory growth when ROP1-driven growth velocity

and protein production are entirely uncoupled, and constant growth when we link

protein production tightly to the state and growth velocity of our system.

3.3.3 ROP1-Driven Growth

In this numerical experiment, we simulate our system, Equations (3.28), with zero

protein production, κ=0 a.u./s, and ROP1-dependent growth rate, Equation (3.35).

Given appropriate parameter values, we expect that our system spends enough

time near its initial state (in the perturbable regime) where the applied stimulus

is strong enough to trigger apical localisation of active ROP1. We further expect

that the pollen tube only starts growing once active ROP1 is localised apically, and

continues growing until the total concentration falls below a critical value and the

system moves out of the perturbable regime. Hence we expect that the pollen tube

in this numerical experiment accelerates and decelerates once without showing sus-

tained oscillatory growth, Section 3.3.2.

Our results for this numerical experiment, Figure 3.25, confirm our expectation:

Unopposed ROP1-driven growth prohibits maintenance of apical ROP1 localisation.

Further, our estimate of the interface position reproduces the observed interface well

until boundary effects become important, Figure 3.25 (black line).

As an aside: The width of our estimated interface does not reach zero but settles

in a narrow value towards the end of the simulation, Figure 3.25 (black line). This is

due to the fact that the total concentration does not change once ROP1 localisation

is lost.
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Figure 3.25: Unopposed ROP1-Driven Growth Destroys ROP1 Localisation. In
this numerical experiment, the growth rate, Equation (3.35), is proportional to the
centre of mass of ROP1, ϕ(u(X, t)). Therefore, the observed tip velocity (bottom,
grey curve) is proportional to ϕ(u(X, t)). The extent of the high plateau of active
ROP1 (top) retracts continually while the tip velocity is high – this retraction is due
to continued reduction in total concentration. The black line traces the approxi-
mate position of the interface as predicted by our sharp front approximation, Sec-
tion 3.1.9. Once the total concentration falls below a critical point, boundary effects
draw the remaining high plateau in and the observed interface position deviates
from our sharp front approximation. This experiment confirms our previous re-
sults, Figure 3.18: Unopposed growth inadvertently lowers the total concentration
of ROP1 and prohibits maintenance of apical localisation of ROP1. Parameter values
ka=0.0005 s−1, ks,0=0.001 s−1 and all remaining parameter values as in Table 3.1.

3.3.4 ROP1-Driven Growth & ROP1 Production

As we note in Section 3.3.2 we expect oscillatory growth when growth velocity and

protein production are uncoupled. Here we test this prediction by simulating our

system, Equation (3.28), with ROP1-dependent growth velocity and constitutive

protein production. We introduce zero-order protein production by setting κ>0 in

Equation (3.28).

Our results in Figure 3.26 confirm our expectation laid out in Section 3.3.2: De-

coupling ROP1-driven growth from constitutive protein production is sufficient to

generate oscillatory growth. The interface position predicted by our sharp front

approximation, Figure 3.26, confirms our expectation further: Tip-localised active
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Figure 3.26: ROP1-Dependent Growth with Zero-Order Protein Production.
Pollen tube growth with centre-of-mass-dependent growth, Equation (3.35),
and zero-order protein production rate κ=0.00004 a.u./s. Parameter values
ka=0.0005 s−1, ks,0=0.001 s−1 and all remaining parameter values as in Table 3.1. Ini-
tially, the pollen tube has zero growth velocity and the rate of protein production is
sufficiently small so that our system remains in the perturbable regime long enough
so that active ROP1 can be stimulated to localise at the tip. Tip-localised active ROP1
induces growth, eventually lowering the total concentration of active ROP1 below
a critical value thus moving the pollen tube from the perturbable regime into zone
I, Figure 3.17. Once active ROP1 is unlocalised, growth ceases and protein produc-
tion moves the system from zone I back into the perturbable regime where a second
cycle of ROP1 localisation and dispersal is triggered. This confirms our expecta-
tion argued in Section 3.3.2: Decoupling ROP1-dependent growth from constitutive
protein production is sufficient for oscillatory growth.

ROP1 triggers growth thus dispersing localised ROP1 by lowering the total concen-

tration – this is confirmed by the narrowing approximate high plateau, Figure 3.26

(black line). Once growth has ceased due to a collapse in the ROP1 interface, consti-

tutive protein production gets a chance to increase the total concentration until the

applied stimulus ks,0 is sufficient to trigger ROP1 relocalisation – this is confirmed

by the widening approximate high plateau between the first interface collapse and

second interface rise, Figure 3.26 (black line).

When we run this numerical experiment, Figure 3.26, for longer we observe that

initially oscillatory growth gives way to constant growth, Figure 3.27, and eventual

loss of polarity on long time scales.
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Figure 3.27: ROP1-Dependent Growth with Zero-Order Protein Production.
Equivalent simulation conditions as in Figure 3.26 but simulated for a longer
amount of time. At longer time scales, the oscillatory growth behaviour observed in
Figure 3.26 turns into constant growth with stabilised apical ROP1 localisation. This
is due to a decrease in peak relative growth velocity as we explain in the main text
and Figure 3.29.

To understand this observation we recall our results form Section 3.1.9: The to-

tal concentration T of our system is paramount in determining perturbability and

maintenance of the interface between high and low active ROP1. We further under-

stand that loss of an established ROP1 interface is due to dilution of ROP1 below

a threshold value, Figures 3.25 and 3.26. Hence our result in Figure 3.27 suggests

that the total concentration T is not diluted sufficiently to cause interface collapse

towards the end of the experiment.

To understand this observation, it is important to realise that while the absolute

growth velocity during growth bursts does not change, the relative growth velocity

does, Figure 3.28.

The importance of this decline in relative growth velocity, Figure 3.28, becomes

apparent when we recall the time change of the total concentration T, Equation

(3.30): The term L̇
L in Equation (3.30) is the relative growth velocity, Figure 3.28

(black line), and τ̇ is given by Equation (3.31). We substitute our simulation data

shown in Figure 3.27 into the expression for Ṫ and plot Ṫ in Figure 3.29.
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Figure 3.28: Comparison of Absolute and Relative Growth Velocity. The rela-
tive growth velocity (black), L̇/L, decreases due to the increased pollen tube length
while the absolute growth velocity (grey), L̇, during growth bursts remains con-
stant. Velocities extracted from simulation data shown in Figure 3.27. The units of
the relative growth velocity are [L̇/L]=1/s, those of the absolute growth velocity
are [L̇]=a.u./s.

As our plot of Ṫ in Figure 3.29 demonstrates, suppression of T, denoted by neg-

ative Ṫ values, decreases gradually as the relative growth velocity decreases.

In summary, our model predicts that a pollen tube that shows growth bursts

of constant absolute growth velocity will eventually stop oscillating and grow at

a constant rate, Figure 3.29. This is due to the fact that a constant absolute peak

velocity generates a decreasing relative peak velocity and therefore becomes less

capable of diluting the total concentration below a critical value which necessary

for oscillations.

3.3.5 ROP1-Driven Growth & Length-Scaled Growth Velocity

We revisit our earlier expression for the growth velocity, Equation (3.35), in light

of the following mental model of pollen tube growth: Suppose we divide our one-

dimensional pollen tube of length L into ` equal intervals of length ∆i
x, i=1, . . . , `.

Further, suppose that the growth velocity of each of these intervals is proportional

to its length (for instance due to uptake of aqueous solution along its length)
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Figure 3.29: Time Change of Total Concentration. The black line denotes Ṫ, the grey
line is the absolute growth velocity shown in Figure 3.28, the red dashed line denotes
κ in Equation (3.28). Growth bursts L̇>0, Equation (3.30), suppress T but the rate
of suppression decreases gradually together with the magnitude of relative growth,
Figure 3.28. After each growth burst, Ṫ returns to background protein production
levels κ to recharge the ROP1 system. Based on simulation data shown in Figure
3.27.

d∆i
x

dt
∝ ∆i

x, i = 1, . . . , `,

then, assuming that all ` intervals grow equally fast, and using the relation L= ∑`
i=1 ∆i

x

we obtain

dL
dt

∝ L.

We modify our previous expression for the longitudinal growth velocity, Equation

(3.35), with this proportionality relation and obtain

a(X, t) = Lka ϕ(u(X, t)), (3.37)

where L is the current length in x-coordinates of the pollen tube.

In this numerical experiment we repeat the simulation shown in Figure 3.27 and

use our length-scaled velocity term, Equation (3.37). Our results indicate that a

length-scaled growth velocity is sufficient to sustain oscillatory growth over an ex-
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tended period of time, Figure 3.30.

Figure 3.30: ROP1-Dependent, Length-Scaled Growth. All simulation parameters
are equal to those used in Figure 3.27 except for use of the length-scaled velocity,
Equation (3.37). Dilution due to growth remains sufficient to suppress the total con-
centration below a critical threshold and trigger oscillatory growth repeatedly. The
observed absolute growth velocity increases over time indicating that a fast pollen
tube has greater propensity to oscillate than a pollen tube with a constant, slow peak
velocity, Figure 3.27.

Our model predicts that pollen tubes that scale their peak velocity with their

length are capable of sustaining oscillatory growth for longer, Figure 3.30.

Therefore, our model predicts that oscillatory growth can be viewed as the de-

fault mode of pollen tube growth: Pollen tubes that are capable of scaling their peak

growth velocity would therefore be more likely to show oscillatory growth, Figure

3.30, than those pollen tubes that continue growing at a relatively constant, slow

peak velocity, Figure 3.27. This prediction falls in line with reported observations

that fast pollen tubes show oscillations whereas slow ones grow at constant veloci-

ties (Rojas et al., 2011) and (JA Feijo, personal communication).
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3.3.6 ROP1-Driven, Non-Oscillatory Growth Requires Constant To-

tal Concentrations

In Sections 3.3.4 and 3.3.5 we show that our model of ROP1-driven growth predicts

oscillatory growth with repeated dilution (Ṫ<0) and recharge (Ṫ>0) of the total

concentration. Live pollen tubes are observed to show both oscillatory and non-

oscillatory growth, Figure 3.5, and we are therefore interested in conditions under

which our model predicts constant growth.

To this end we look at the time change of the growth velocity of our pollen tube,

Equation (3.35)

∂a
∂t

= ka
∂ϕ

∂t
= ka

∂ϕ

∂u
∂u
∂t

, (3.38)

where the second equality is due to the chain rule of differentiation. Therefore, the

time change of the growth velocity equals zero under either of two conditions: (i)
∂ϕ
∂u =0 which implies a ROP1-independent expression for ϕ, or (ii) ∂u

∂t =0 which holds

for steady states of the spatial ROP1 system.

The former condition holds for a choice of ϕ that does not vary continuously with

the concentration profile of the active form of ROP1 and is therefore not interesting.

The latter condition holds in steady states of the spatial ROP1 system which can only

be reached when all parameters of the system, including the total concentration T,

are kept constant. For appropriate parameter values, including T, we can therefore

reinterpret the latter condition as Ṫ=0 which is the same condition we established

in Section 3.2.3 for sustained ROP1 localisation despite constant pollen tube growth.

In this numerical experiment we implement this condition, Ṫ=0, together with

ROP1-driven growth, Equation (3.35), to test our prediction.
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Figure 3.31: ROP1-Dependent Growth With Tightly Coupled Protein Production.
We use parameter values equivalent to those used in Figure 3.26 and enforce con-
stant total concentrations by choosing κ as in Equation (3.32). Linking protein pro-
duction tightly to ROP1-driven growth avoids dilution of ROP1 and maintains con-
stant growth.

Our results in Figure 3.31 confirm our prediction above and show that our model

produces non-oscillatory ROP1-driven growth for tightly matched growth and pro-

tein production. We point out that the sustained localisation of ROP1, and therefore

non-oscillatory growth, in Figure 3.31 is subject to the same restrictive stability prop-

erties discussed in Section 3.2.3.

3.3.7 Delayed Feedback Between ROP1 Localisation and Growth

Velocity

The oscillations that our model produces are such that apical ROP1 activity and

growth rate oscillate in-phase, Figures 3.27 and 3.30. Recently, Hwang et al. (2010)

have shown that a peak in apical ROP1 activity is followed by a spike in tip growth

velocity, Figure 3.32.

Similar to Yan et al. (2009) we use the observed time correlation between ROP1

activity and growth rate as a first approximation of their causal link and introduce

delay in our local growth velocity:
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a(X, t) = ka ϕ(u(X, t− ν)), (3.39)

where we have modified Equation (3.35) to include delay ν≥0 and for t<0 we

choose u(X, t) such that ϕ(u(X, t))=0 for t<0.

The results of our numerical experiment, Figure 3.33, show the expected delay

between a peak in apical ROP1 activity and subsequent growth rate spike. It is im-

portant to appreciate that the delay introduced by Yan et al. (2009) into their model

served to introduce oscillatory growth, Section 3.1.6, whereas our model produces

oscillatory growth through a mechanism that is delay-independent.

In future efforts our framework may be extended to include more refined mod-

els of molecular interactions which may be a valuable tool in disentangling the time

correlations that are observed experimentally, Figure 3.32. As a first step we pro-

pose to include the immediate ROP1 effectors RIC3 and RIC4 which, due to their

scaffolding activity, have been proposed to cause some delay between active ROP1

and biomechanical changes that lead to growth (Gu et al., 2005; Yan et al., 2009).

Figure 3.32: Growth and ROP1 Activity Oscillate Out of Phase. Experimental ev-
idence suggests that growth velocity and apical activity of ROP1 oscillate out of
phase with ROP1 activity likely preceding pollen tube growth (Hwang et al., 2010).
Reproduced from Hwang et al. (2010).
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Figure 3.33: Pollen Tube Dynamics with Delay Between ROP1 Localisation and
Growth Rate. Introduction of time delay between ROP1 localisation and growth
rate increase shows peak separation as is observed in experiments, Figure 3.32 We
use the same parameter values as in Figure 3.30 and apply a delay of ν=5000 s.

3.4 Discussion

In this manuscript we studied the pollen tube as a model system of tip growth.

This work was motivated by our observation that pollen tube growth is often-

times discussed at two different scales that have, to the best of our knowledge,

not yet been combined: One set of models focuses on the biophysical properties

of pollen tube growth and assumes key properties about the lower, molecular scale

involved (Rojas et al., 2011; Kroeger et al., 2011). Another set of models focuses on

the dynamics of key molecular components with little effort to scale these models

up to the biophysical level (Yan et al., 2009; Kost, 2008).

In this manuscript we described a model of a key molecular component of pollen

tube growth and its interplay with higher-level growth processes. The molecular

component that we studied is ROP1, a Rho-homologous molecular switch that lo-

calises to the tip of growing pollen tubes. To link this molecular entity to higher-level

growth processes, we used the phenomenological assumption that active ROP1 in-
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duces growth locally (Hwang et al., 2010).

3.4.1 Localisation of ROP1 Depends on the Total Concentration of

ROP1

We have shown that the total concentration of ROP1 in the pollen tube is a key

determinant of whether ROP1 can localise to induce growth, Figure 3.13.

3.4.2 Our Model Assumes Tip-Localised ROP1 Activation

Our spatial model of the pollen tube is one-dimensional and the ROP1 model can

therefore not make use of geometric effects observed in two dimensions: In a two-

dimensional, elliptical spatial domain we observe that the mass of localised active

ROP1 migrates as a whole towards either of the end points of the major axis. We ob-

serve that the mass of localised active ROP1 only stops migrating once the boundary

between highly and lowly concentrated active ROP1 lies perpendicular to the major

axis of the ellipse.

Since our spatial model of the pollen tube is one-dimensional our simulations

are unable to make use of this geometric effect. Therefore, we resort to introducing

a tip-localised stimulus term so that we do not observe rear-localised ROP1, Figure

3.11, but rather tip-localised ROP1, Figure 3.12.

Our rationale is that we model the pollen tube after it has emerged from the

pollen grain and we assume that the semi-elliptical shape of the apex draws lo-

calised active ROP1 into the tip as in the aforementioned geometric effect. The tip-

localised stimulus term is intended to mimic this implicit geometric effect.

In future efforts it will be important to extend our spatial model to two dimen-

sions to show the influence of this geometric effect more conclusively.

3.4.3 Our Model Predicts Both Constant and Oscillatory Pollen Tube

Growth

Experimentally, pollen tube growth is observed to be both constant and oscillatory,

Figure 3.5. Our model predicts that tight matching of the growth velocity and pro-
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tein production sustains ROP1 localisation and therefore constant growth, Figure

3.31. This mode of constant growth is, however, unstable to small unmatched de-

viations in either the growth velocity or protein production rate, Section 3.2.3. At

the other extreme, our model predicts oscillatory growth when the growth rate and

protein production are “entirely decoupled”, Figures 3.27 and 3.30. When decou-

pled, a growth sprint that reduces the total concentration of ROP1 is followed by

a rest phase that allows protein production to replenish ROP1 concentrations to a

level where it can re-localise to induce growth.

3.4.4 Our Model May Explain Why Fast Pollen Tubes Oscillate

As we have shown, pollen tubes with constant peak growth velocities will eventu-

ally transition from an oscillatory to a constant growth regime, Figure 3.27. On the

other hand, pollen tubes that are capable of scaling their peak growth velocity with

length are able to sustain oscillatory growth, Figure 3.30. Our results fall in line

with observations that fast pollen tubes tend to oscillate while slow ones tend to

grow with a constant velocity (JA Feijo, personal communication) and (Rojas et al.,

2011).

3.4.5 Our Model Predicts Falsely Complete Disappearance of the

ROP1 Peak

We further point out a discrepancy between our numerical experiments, Figures

3.26 and 3.30, and experimental observations, Figure 3.32: Our numerical experi-

ments show intermittent, complete disappearance of ROP1 from the tip while in

live pollen tubes some localised ROP1 intensity is always retained. We identify our

ROP1-dependent growth velocity, Equation (3.35), as the source of this discrepancy

and further propose that this discrepancy can be lessened by amending the growth

velocity as follows:

a(X, t) = ka ·max (0, ϕ(u(X, t))− ϕ0) , (3.40)

where ϕ0 denotes an offset, and we use the maximum function max(·) to only retain
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non-negative velocities. The offset ϕ0 allows us to specify the ROP1 cap size at

which the growth velocity vanishes, Figure 3.34. Thus for an appropriate choice

of ϕ0 and tip-localised active ROP1, we expect that the pollen tube stops growing,

allowing for ROP1 to recharge, while the ROP1 cap has not disappeared completely.

Figure 3.34: Modified Measure of the Localisation of ROP1 Permitting Non-
Vanishing ROP1. We plot our measure of ROP1 localisation, ϕ (blue disks), that we
use in our numerical experiments as input to the growth velocity, Equation (3.35),
together with a modified measure, max (0, ϕ−ϕ0) (red disks), proposed in Equation
(3.40). The used offset here is ϕ0=0.2. The modified measure (red disks) ensures that
the ROP1 cap does not disappear completely before the pollen tube stops growing.
Since the modified measure (red disks) is lower in absolute value than the unmodi-
fied measure (blue disks), the value of ka in Equation (3.40) may need to be modified
to recover peak growth velocities equivalent to our numerical experiments.

3.4.6 Our Model Predicts Falsely Spiky Growth Rate Profiles

Our results predict spiky growth rate profiles for pollen tubes that are in the oscil-

latory growth regime where the pollen tube grows quickly for a brief period before

slowing down for a prolonged period, Figure 3.30. These spikes stand in contrast

to experimentally observed growth rate profiles that display a more sinusoidal be-

haviour, Figure 3.32.

Similar growth rate spikes are produced by the biophysical model described by
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Kroeger et al. (2011) although the growth rate in their model does not drop to zero

at its lowest point.

In a future endeavour it will be interesting to study the growth rate profile of

pollen tubes more thoroughly to better understand whether it displays spiky or si-

nusoidal behaviour.

3.4.7 Parameter Estimates

Our numerical experiments show that a tight coupling between the growth veloc-

ity of the pollen tube and the rate of ROP1 production, κ, permits non-oscillatory

growth.

To the best of our knowledge, κ has not been reported in the literature for the

biosynthesis of ROP1 in pollen tubes. Here we estimate κ for non-oscillatory pollen

tubes, based on the insight we have gained from our numerical experiments.

To offer estimates in sensible units we reformulate the total concentration T as a

volume concentration

T =
τ

V
, (3.41)

where τ is the total protein mass and V is the volume of the pollen tube which we

represent as a cylinder of length L and radius R, Figure 3.9. Similar to the one-

dimensional case, Section 3.2.3, the time change in the total concentration of ROP1

is given by

Ṫ =
τ̇

V
− τ

V
V̇
V

, (3.42)

and assuming that protein is produced everywhere at the same rate κ, τ̇ is given by

τ̇ = Vκ. (3.43)

For constant total concentrations (Ṫ=0) and therefore constant growth, κ needs to

meet the following condition

κ =
τ

V
V̇
V

. (3.44)
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In this relation we estimate that the total concentration of ROP1 is fixed at τ/V=5 µM

(Yan et al., 2009). Further, we estimate for wild-type Arabidopsis pollen tubes that

the growth rate a=0.05 µm/s (Hwang et al., 2010), and that the radius R=3 µm

(Nishikawa et al., 2005). Since the volume of a cylinder of length L and radius R

is πR2L, we find that the volume expansion rate for an Arabidopsis pollen tube is

V̇=1.4 µm3/s. Wild-type Arabidopsis pollen tubes are up to 300 µm long six hours

after germination (Li, 1999) and we estimate κ so that pollen tubes of corresponding

length grow at a constant rate, Figure 3.35.

Figure 3.35: Estimate of κ for Constant Growth of Arabidopsis Pollen Tubes up to
Six Hours After Germination. We estimate that these length-dependent values of κ
reflect rates of ROP1 production for which Arabidopsis pollen tubes of corresponding
length grow at a constant velocity. This is due to the fact that these values of κ should
keep the total concentration of ROP1 T relatively constant. Our numerical experi-
ments suggest that reducing κ below the indicated values should trigger oscillatory
growth through repeated dilution (Ṫ<0) and recharge (Ṫ>0) of ROP1. The maximal
and minimal predicted values of κ are 0.035 µM/s (far left) and 0.00084 µM/s (far
right) respectively. The main text describes details of the derivation.

3.4.8 Outlook

Our current model does not include formation of callose plugs which have been

described by some authors as important for keeping the volume of the cytoplasm
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manageable (Zhang et al., 2008). Pollen tubes vary wildly in their pattern of callose

plug formation and mutants that do not form callose plugs grow almost indistin-

guishably from wild type (Nishikawa et al., 2005; Qin et al., 2012). However, the

inclusion of callose plugs may form another interesting venue for explaining ROP1

dilution, ROP1 replenishment, and regulation of cytosolic volume in general. Our

model framework is extensible to include the effect of callose plug formation and

future efforts in this direction may prove important in elucidating the purpose and

observed variation of callose plug formation. Experimental measurement of cytoso-

lic volume and ROP1 dilution in growing pollen tubes is likely important to rec-

oncile the role of callose plugs: An extended model that includes callose plugs can

offer model predictions for wild-type behaviour, whereas the model presented in

this manuscript offers predictions for mutants that lack callose plugs.

The model we developed also lends itself well to testing hypotheses about the

causal link between different oscillatory components of pollen tube growth. Often-

times, observations of components that oscillate in- or out-of-phase, such as growth

rate and ROP1 intensity, have been drawn together to hypothesise about the causal

links between these components (Rounds & Bezanilla, 2013). With our framework

we are now able to include hypothesised causal links directly and observe their ef-

fect on growth behaviour, Figure 3.33.

In future efforts, our model can be extended to more detailed descriptions of

the dynamics and biochemical interactions of ROP1 with biophysical growth pro-

cesses. Thus our modelling framework can act as a bridge to further link molecular

descriptions with macroscopic models of growth.
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Chapter 4

GraTeLPy: Graph-Theoretic Linear

Stability Analysis

4.1 Abstract

A biochemical mechanism with mass action kinetics can be represented as a directed

bipartite graph (bipartite digraph) and modelled by a system of differential equa-

tions. If the differential equations of the mechanism can give rise to saddle-node

bifurcation, which often leads to multistability, then the bipartite digraph contains

a structure referred to as a critical fragment. In GraTeLPy we have implemented a

previously published graph-theoretic method that identifies the critical fragments

of the bipartite digraph of biochemical mechanisms. We have optimised GraTeLPy

so that it can aid in rapid mechanism discrimination which is an important step in

unfurling phenomenological to mechanistic models of biological processes.

4.2 Introduction

Throughout this thesis we look at cell polarity conferred by localisation of homo-

logues of the Rho family of proteins. The previous chapters were based in part on a

model of Rho localisation that was proposed by Mori et al. (2008), Figure 4.1. Based

upon existing molecular understanding of the reactions involved in Rho localisa-

tion, Figure 4.1 (left), Mori et al. (2008) proposed and analysed a phenomenological

kinetic model that omits all intermediate molecular species and focuses solely on
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the active and inactive form of Rho as the key molecular species, Figure 4.1 (right).

In this phenomenological model, GAP-driven inactivation and GDI-dependent se-

questration, Figure 4.1 (left, red dashed rectangle), are represented by a unimolec-

ular reaction, Figure 4.1 (right and bottom, red solid rectangle). Further, activation

involving a GEF-dependent intermediate, Figure 4.1 (left, green dashed rectangle),

is represented by a sigmoidal term, Figure 4.1 (right and bottom, green solid rectan-

gle).

Figure 4.1: Juxtaposition of a Mechanistic Model and a Phenomenological Model
of the Chemical Reactions Underlying Rho Localisation. (left) A mechanistic
model of Rho localisation that includes a number of known activating and inacti-
vating enzymes as well as membrane-binding and -unbinding events. This model
includes a number of intermediate chemical species as explicit variables. (right) The
simplified, phenomenological model of Rho localisation proposed by Mori et al.
(2008). This model includes solely the active and inactive form of Rho, called A
and B respectively, and the presumed mechanistic activities of certain intermediate
species are summarised as certain reaction terms: The GAP- and GDI-driven inac-
tivation and sequestration of Rho (left, dashed red rectangle) is summarised as a
unimolecular inactivation term (right and bottom, red solid rectangle). Further, the
GEF-driven activation of Rho and resulting positive feedback (left, dashed green
rectangle) is summarised as a term sigmoidal in the concentration of active Rho
(right and bottom, solid green rectangle). Modified from Mori et al. (2008).

This simplified model has several advantages: Firstly, it helps understand the

core properties of the Rho system that permit its active form to localise. These core

properties include autocatalysis of active Rho, Figure 4.1 (red rectangles), which
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is essential for both bistability of the chemical mechanism (Mori et al., 2008; Sem-

plice et al., 2012) and bistability of the chemical mechanism in a limit case of dif-

fusion (Walther et al., 2012; Holmes, 2014) – bistability of either kind is important

for Rho localisation and therefore cell polarity. Secondly, this simplified model de-

scribes only two concentration variables thus permitting thorough analysis of the

conditions under which active Rho localises (Mori et al., 2008; Walther et al., 2012;

Holmes, 2014).

Despite its advantages and general value in modelling Rho localisation, this sim-

plified model carries insufficient molecular detail when we are interested in system-

specific molecular detail. For instance we may be interested in the distribution and

molecular function of various molecular species, such as intermediate complexes.

In this context we wish to unfurl a simplified model, Figure 4.1 (right), to a more

detailed one, Figure 4.1 (left), that describes the molecular species of interest while

retaining key mechanistic properties, such as autocatalysis of active Rho, and over-

all propensity for Rho to localise.

Unfurling a simplified mechanism is an iterative process where we first propose

a number of molecular species and reactions, test whether the proposed mechanism

shows desirable behaviour such as Rho localisation, and amend with more detail

in case it does not. To test for desirable behaviour, proposed mechanisms are of-

ten translated into differential equation models and are studied with methods from

bifurcation analysis (Kuznetsov, 1998). Bifurcation analysis methods are easily ap-

plied when the differential equations have one or two variables (phase plane anal-

ysis) or have a relatively small number of parameters (numerical bifurcation anal-

ysis). These methods become difficult or computationally expensive when testing

mechanisms with many variables and reactions for desirable behaviour.

When unfurling a phenomenological model, Figure 4.1 (right), to a mechanistic

model, Figure 4.1 (left), we generally expect to propose mechanisms with a great

number of variables and parameters with uncertain values. We therefore need ap-

proaches that can cope with large dynamical systems and that generate results in-

dependent of parameter values.

Stoichiometric network analysis is a set of approaches that have been developed

for the analysis of the dynamical systems of large mechanisms and have the fol-
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lowing capabilities (Clarke, 1988). These approaches help analyse whether a pro-

posed mechanism has the potential to show desirable behaviour, independently

of parameter values. Further these approaches help understand how adding and

removing reactions changes overall capacity for the desirable behaviour (Clarke,

1988). Both of these capabilities are important since measured rate constants are of-

ten off by orders of magnitude and it is common to add and remove mechanistic

steps iteratively when unfurling simplified models (Clarke, 1988). Related, recent

graph-theoretic methods that represent chemical reaction networks as certain types

of graphs can analyse large reaction networks for their potential to show bistable

behaviour (Craciun & Feinberg, 2006; Mincheva & Roussel, 2007).

A classical example where stoichiometric network analysis helped study com-

plex mechanisms is the search for the mechanism of the Belousov-Zhabotinsky re-

action (Clarke, 1988). Examples where graph-theoretic methods have been used

include studies related to cell polarity (Goryachev & Pokhilko, 2008) and photosyn-

thesis (Amin & Roussel, 2014).

Despite their great utility, graph-theoretic methods become challenging to apply

by hand to large mechanisms making their computational implementation highly

desirable. Existing software packages in this sphere implement graph-theoretic

methods that can be used to decide if the overall structure of a given mechanism has

the capacity for multistability (Ellison & Feinberg, 2000; Soranzo & Altafini, 2009). In

GraTeLPy we have implemented a graph-theoretic method developed by Mincheva

& Roussel (2007) that identifies the precise substructures of a mechanism that can

convey multistability (Walther et al., 2014). Knowledge of these substructures may

help direct experiments and can help estimate parameter values for which the mech-

anism is multistable (Craciun & Feinberg, 2006; Mincheva & Roussel, 2007).

GraTeLPy has the following advantages over similar software packages: (i) It

identifies the sets of species and reactions that can give rise to multistability, (ii) the

generated output can guide parameter estimation, and (iii) it is both open source

and is based on freely available software. GraTeLPy can also run in parallel on

computer clusters which can increase the size of testable mechanisms, a limitation

other approaches have tried to circumvent differently (Conradi et al., 2007).
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4.3 Mathematical Background

Here we summarise general terminology and graph-theoretic criteria for multista-

bility that GraTeLPy is based on (Mincheva & Roussel, 2007).

4.3.1 Mathematical model

A biochemical mechanism with n species Ai, i=1, . . . , n, and m elementary reactions

Bj can be written as

Bj :
n

∑
i=1

αji Ai
kj−→

n

∑
i=1

β ji Ai, j = 1, . . . , m, (4.1)

where k j>0, j=1, . . . , m are the rate constants. The constants αji≥0 and β ji≥0 in

Equation (4.1) are small integers called stoichiometric coefficients that account for

the number of molecules of species Ai participating in the jth elementary reaction.

Mincheva & Roussel (2007) developed their graph-theoretic criteria for multista-

bility for a generic reaction mechanism, Equation (4.1). For brevity we here sum-

marise their graph-theoretic approach by example and we will refer continually to

the following illustrative sample mechanism:

# Mechanism file

# for use in GraTeLPy

[A1] -> ; k1

-> [A1] ; k2

[A1] + [A2] -> [A3] ; k3

[A3] -> [A2] ; k4

[A1] + [A3] -> [A4] ; k5

[A4] -> [A1] + [A3] ; k6

B1 : A1
k1−→ ∅,

B2 : ∅
k2−→ A1,

B3 : A1 + A2
k3−→ A3,

B4 : A3
k4−→ A2,

B5 : A1 + A3
k5−→ A4,

B6 : A4
k6−→ A1 + A3.

(4.2)

This is the reversible substrate inhibition mechanism which we choose for illustra-

tion since it is a well-studied system in the context of the graph-theoretic framework

that GraTeLPy implements (Mincheva & Roussel, 2007). Equation (4.2) shows the

mechanism in chemical notation on the right-hand side and the same mechanism

translated to a format understood by GraTeLPy on the left-hand side.
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Generally, we assume that every species Ak in Equation (4.1) is consumed and

produced in at least one true reaction, i.e. a reaction which is different from an out-

flow reaction Ak→∅ or an inflow reaction ∅→Ak. However, we do not specifically

require that all species participate in an inflow and an outflow reaction. This way

we ensure that if we removed all outflow reactions, there would be no species in the

system that acts as a sink for all other species. In our example, the first two reac-

tions of Equation (4.2) are an inflow and an outflow reaction respectively. Further,

in Equation (4.2) species A1 is consumed in reactions B3 and B5, A2 in B3, A3 in B4

and B5, and A4 in B6.

We further generally assume mass action kinetics for the mechanism, Equation

(4.1), so that the rates of reaction become

wj(u) = k ju
αj1
1 . . . u

αjn
n , j = 1, . . . , m, (4.3)

where uk(t) is the concentration at time t of species Ak, k=1, . . . , n, and k j≥0 is the

reaction rate constant. To illustrate, for our example in Equation (4.2) the rate of

reaction B1 is w1=k1u1 and that of reaction B5 is w5=k5u1u3.

Commonly we study reaction mechanisms such as Equation (4.2) as a system

of ordinary differential equations (ODE) that describe how fast a given species Ai is

consumed or produced. The ODE of a generic mass-action mechanism, Equation(4.1),

can be written in vector form as

u̇(t) = Sw(u), (4.4)

where u(t)= (u1(t), . . . , un(t)) is the concentration vector, Sji=β ji−αji are the en-

tries of the stoichiometric matrix S, and w(u)= (w1(u), . . . , wm(u)) is the vector of

reaction rates, Equation (4.3).

For our example, the system of ODEs for Equation (4.2) is

u̇1 = −k1u1 + k2 − k3u1u2 − k5u1u3 + k6u4,

u̇2 = −k3u1u2 + k4u3,

u̇3 = k3u1u2 − k4u3 − k5u1u3 + k6u4,

u̇4 = k5u1u3 − k6u4.

(4.5)
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The rank of the stoichiometric matrix S of Equation (4.5) equals 3 since there is one

conservation relation u2 + u3 + u4 = c0. To see this, we write out the stoichiometric

matrix S of Equation (4.5):

S =



−1 1 −1 0 −1 1

0 0 −1 1 0 0

0 0 1 −1 −1 1

0 0 0 0 1 −1


, (4.6)

where the rows of S give us the stoichiometry of the corresponding chemical species

in each reaction. As an example, for A4 we compute the dot product of the fourth

row of S with w and obtain u̇4=w5−w6. Realising that u̇2+u̇3+u̇4=0 we can rewrite

u̇4=−u̇2−u̇3 hence we can express the fourth row of S as a linear combination of its

second and third row.

Conventionally, we write the right-hand side of an ODE such as Equation (4.4)

as a function so that, for instance, u̇i= fi(u). Given our choice of mass action kinetics

these functions are

u̇i(t)= fi(u)=
m

∑
j=1

Sjiwj(u).

Suppose that our generic reaction mechanism is in a steady state so that w(u) =

(0, . . . , 0) =0. Then we can determine if this steady state is stable or unstable by

estimating the time behaviour of small perturbations away from the steady state

with a linear approximation (Kuznetsov, 1998). The linear approximation of the

time behaviour of Equation (4.4) is given by the Jacobian J(u, w) whose elements

can be written as

Jik(u, w) =
∂ fi

∂uk
=

m

∑
j=1

Sjiαjk
wj

uk
. (4.7)

Note that the concentrations uk, k = 1, . . . , n and the reaction rates wj(u), j=1, . . . , m

(both considered evaluated at a positive equilibrium) are used as parameters in

Equation (4.7), i.e. we evaluate the Jacobian in a specific steady state. Further note

that stability of the corresponding steady state is determined by the eigenvalues of

J(u, w) (Kuznetsov, 1998).
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The Jacobian matrix of our example, Equation (4.5), parametrised in (u, w) is

J(u, w) =



−w1+w3+w5
u1

−w3
u2

−w5
u3

w6
u4

−w3
u1

−w3
u2

w4
u3

0

w3−w5
u1

w3
u2

−w3+w4
u3

−w6
u4

w5
u1

0 w5
u3

−w6
u4


. (4.8)

The eigenvalues of a generic Jacobian J(u, w) are the zeros of its characteristic poly-

nomial

P(λ) = det(J(u, w)− λI) =
n

∑
k=0

ak(u, w)(−λ)n−k, (4.9)

where I is the identity matrix and coefficient ak (a0=1) is the sum of principal minors

of order k (Gantmacher, 2000):

ak = ∑
1≤i1<i2<...<ik≤n

J

i1 i2 · · · ik

i1 i2 · · · ik

 . (4.10)

As in our example, Equation (4.6), ODE models of general mechanisms, Equation

(4.4), often have mass conservation relations lowering the rank r of both the stoichio-

metric matrix S and the Jacobian J(u, w). In these cases the last non-zero coefficient

in Equation (4.9) is ar(u, w). To see this intuitively, in our example where n=4 and

r=3 the coefficient a4 of Equation (4.9) is

a4 = J

1 2 3 4

1 2 3 4

 = det J = 0, (4.11)

where the last equality holds due to the fact that row four of J can be expressed as a

linear combination of rows two and three. Hence in our example the last non-zero

coefficient of the characteristic polynomial of the Jacobian, Equation (4.8), is

a3(u, w) =
w4w6(w1 + w3)

u1u3u4
+

w1w3w6

u1u2u4
+

w3w5(w1 − w4)
u1u2u3

. (4.12)
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4.3.2 The Bipartite Digraph of a Biochemical Mechanism

Further below we will show that the potential of a mechanism for multistability

can be judged by the constants of the characteristic equation of its Jacobian matrix

(Kuznetsov, 1998). One representation of these constants is the determinant-based

approach we described in Section 4.3.1. The framework implemented by GraTeLPy

expresses these constants as functions of a graph representation of the dynami-

cal system thus allowing its user to reason structurally about stability behaviour

(Mincheva & Roussel, 2007). Further below we will compare these two representa-

tions of the coefficients and the statements about multistability that we can derive

from them.

Here we summarise terminology necessary to understand the graph-based rep-

resentation introduced by Volpert & Ivanova (1987); Mincheva & Roussel (2007). To

illustrate the definitions in this section we continue referencing the reversible sub-

strate mechanism, Equation (4.2).

Generally, a directed bipartite graph, or bipartite digraph for short, has a node

set that consists of two disjoint subsets, V1 and V2, and each of its directed arcs

has one end in V1 and the other in V2 Harary (1969). The bipartite digraph G of a

biochemical reaction network, Equation (4.1), is defined as follows. The nodes are

separated into two sets, one for the chemical species V1={A1, A2, . . . , An} and one

for the elementary reactions V2={B1, B2, . . . , Bm}. We draw an arc from Ak to Bj if

and only if species Ak is a reactant in reaction j, i.e. if the stoichiometric coefficient

αjk>0 in (4.1). Similarly, we draw an arc from Bj to Ai if and only if Ai is a product

in reaction j, i.e. if the stoichiometric coefficient β ji>0 in (4.1). In our example,

Equation (4.2), we draw an arc from A1 to B3 and one from B3 to A3, Figure 4.2, and

so forth.

The bipartite digraph of the reversible substrate inhibition mechanism, Equation

(4.2), is shown in Figure 4.2.
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Figure 4.2: Bipartite Digraph of the Reversible Substrate Inhibition Reaction
Mechanism (Mincheva & Roussel, 2007). Circles denote species nodes and squares
denote reaction nodes of the mechanism, Equation (4.2). Arcs are the relationships
between nodes in the bipartite digraph. Edges are those arcs that denote flow of
molecules into a reaction such as the consumption of A4 in reaction B6 through the
highlighted edge. Negative paths denote elements in the bipartite digraph where
two chemical species flow into the same reaction. Positive paths denote elements
where a reaction turns one chemical species into another. Cycles denote contigu-
ous chains of conversion (positive paths) and molecular interaction (negative paths)
between chemical species.

The arc [Ak, Bj] is an edge if αjk>0, i.e. if species Ak is a reactant in reaction j. For

instance, the arc pointing from A4 to B6 is an edge whereas the arc pointing from B2

to A1 is not an edge, Figure 4.2 (grey rectangles). The weight of an edge E=[Ak, Bj]

is defined as

KE = −α2
jk. (4.13)

For example, the edge E=[A4, B6] in Figure 4.2 has weight KE=− 1.

If αjkβ ji>0, then the arcs (Ak, Bj) and (Bj, Ai) form a positive path [Ak, Bj, Ai]

that corresponds to the production of Ai from Ak in a reaction j. The weight of

the positive path [Ak, Bj, Ai] is defined as αjkβ ji. For example, the positive path
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[A3, B4, A2] in Figure 4.2 (green frame) has weight 1 as can be deduced from Equa-

tion (4.2).

If αjkαji>0, then the arcs (Ak, Bj) and (Ai, Bj) form a negative path [Ak, Bj, Ai]

that corresponds to Ak and Ai interacting as reactants in reaction j. The weight

of the negative path [Ak, Bj, Ai] is defined as −αjkαji. Note that the negative paths

[Ak, Bj, Ai] and [Ai, Bj, Ak] are considered to be different since they start at differ-

ent species nodes. For example, both [A1, B3, A2] and [A2, B3, A1] in Figure 4.2 (red

frame) are negative paths with weight −1, where the weight can be deduced from

the stoichiometric coefficients in Equation (4.2).

A cycle C of G is a sequence of distinct paths with the last species node of each

path being the same as the first species node of the next path. For example, the pos-

itive path [A1, B3, A3] and negative path [A3, B5, A1] form a cycle, Figure 4.2 (yel-

low highlight). For brevity we denote cycles by their species and reaction nodes so

that the cycle in our example is written as C=(A1,A3
B3,B5

). Generally, cycles are denoted

by C=(Ai1
,Ai2 ,...,Aik

Bj1
,Bj2 ,...,Bjk

), where the number of species nodes k defines their order. The

species nodes in a cycle are unique, but there may be a repetition among the reac-

tion nodes. This is because negative paths containing the same nodes are considered

different depending on the starting species node – hence the corresponding reaction

node is repeated.

A cycle is positive if it contains an even number of negative paths and negative

if it contains an odd number of negative paths. In our example the cycle C=(A1,A3
B3,B5

) is

negative, Figure 4.2 (yellow highlight). The sign of a cycle C can also be determined

from its cycle weight which is the product of the weights of its negative and positive

paths:

KC = ∏
[Ak,Bj,Ai]∈C

(−αjkαji) ∏
[Ak,Bj,Ai]∈C

αjkβ ji. (4.14)

For example, C=(A1,A3
B3,B5

) in Figure 4.2 (yellow highlight) has order 2 with weight

KC= − 1 and therefore is a negative cycle. The cycle C=(A2,A3
B3,B4

) in Figure 4.2 has

order 2 with weight KC = 1 and therefore is a positive cycle.

A subgraph g={L1, L2, . . . , Ls} of G consists of edges or cycles Li, i=1, . . . , s,

where each participating species is the beginning of exactly one edge or path in
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a cycle. In other words, the edges and cycles in a subgraph are species mutually

disjoint. The number of species nodes in a subgraph is defined as its order and

equals s for the above subgraph g. The subgraph weight of g is defined by the cycle

and edge weights, Equations (4.14) and (4.13) respectively, of the cycles C and edges

E in g:

Kg = (−1)c ∏
C∈g

KC ∏
E∈g

(−KE), (4.15)

where c is the number of cycles in g. For our example, the subgraph g={[A1, B5],

(A2,A3
B3,B4

)} with weight Kg=− 1 is shown in Figure 4.3 (bottom right).

Figure 4.3: Critical Fragment and Subgraphs of the Reversible Sub-
strate Inhibition Mechanism. Critical fragment S3(1,2,3

5,3,4) and constituent
subgraphs of the reversible substrate inhibition mechanism computed by
GraTeLPy. (top left) Critical fragment S3=(1,2,3

5,3,4). (top right) Subgraph
g3={[A1, B5], [A2, B3], [A3, B4]}. (bottom left) Subgraph g1=C2=(A1,A3,A2

B5,B4,B3
). (bottom

right) Subgraph g2={[A1, B5], C1=(A2,A3
B3,B4

)}.

Since more than one path can exist between species nodes via different reaction

133



nodes in a bipartite digraph, the number of subgraphs through the same node sets

may be greater than one. The set of all subgraphs g of order k with the same species

nodes V̄1={Ai1 , . . . , Aik} and reaction nodes V̄2={Bj1 , . . . , Bjk} sets is called a frag-

ment of order k and is denoted by Sk(
i1,...,ik
j1,...,jk

). The weight of a fragment Sk(
i1,...,ik
j1,...,jk

) is

defined as:

KSk = ∑
g∈Sk

Kg. (4.16)

If KSk<0, then Sk is a critical fragment and we clarify the significance of this classi-

fication below.

For example, the fragment S3(1,2,3
5,3,4) is shown in Figure 4.3 (top left) together

with its three subgraphs g1=C2=(A1,A3,A2
B5,B4,B3

), Figure 4.3 (bottom left), g2 = {[A1, B5],

C1=(A2,A3
B3,B4

)}, Figure 4.3 (bottom right), and g3={[A1, B5], [A2, B3], [A3, B4]}, Figure

4.3 (top right). Each of the first two subgraphs, g1 and g2, contain a positive cycle,

and therefore S3(1,2,3
5,3,4) is a critical fragment since

KS3 = ∑
g∈S3

Kg=Kg1 + Kg2 + Kg3=− 1− 1 + 1 = −1 < 0.

Both Volpert & Ivanova (1987) and Mincheva & Roussel (2007) have shown that

the coefficients of the characteristic polynomial, Equation (4.9), have the following

graph-theoretic representation:

ak(u, w) = ∑
Sk(

i1,...,ik
j1,...,jk

)

KSk

wj1 . . . wjk
ui1 . . . uik

, k = 1, . . . , n. (4.17)

Note that here we sum over all subgraphs contained in all fragments of order k.

There is a one-to-one correspondence between any one fragment Sk(
i1,...,ik
j1,...,jk

) in

Equation (4.17) and a corresponding non-zero term in ak(u, w) in Equation (4.9)

(Mincheva & Roussel, 2007). For our example, the negative summand −w3w4w5

/(u1u2u3) of a3(u, w), Equation (4.12), corresponds to the critical fragment S3(1,2,3
5,3,4)

shown in Figure 4.3 (top left).
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4.3.3 Instability Criteria for the Jacobian and the Bipartite Digraph

So far we have mentioned that the stability properties of dynamical systems can

be deduced from the coefficients of the characteristic polynomial of their Jacobian

matrix, Section 4.3.1. We have further seen that these coefficients can be expressed

as certain components of the bipartite digraph of a given dynamical system, Section

4.3.2.

Multistability in ODE models often arises by destabilising a stable steady state

through a saddle-node bifurcation (Tyson, 1975; Kuznetsov, 1998). When a saddle-

node bifurcation occurs a real eigenvalue λ(u, w) of J(u, w) changes sign as the pa-

rameters (u, w) change values – the saddle-node bifurcation occurs where exactly

one λ(u, w)=0 (Kuznetsov, 1998). Hence, a necessary condition for multistability

arising from a saddle-node bifurcation is an(u, w)= det(−J(u, w))=0 for some pa-

rameter values of (u, w) (Kuznetsov, 1998). If the rank r of the Jacobian matrix is

reduced to r<n due to the existence of mass conservation relations, Section 4.3.1,

then ar(u, w)=0 for some values of (u, w) is necessary (Mincheva & Roussel, 2007).

To understand this intuitively for our example, Equation (4.2), we expand the

general form of the characteristic polynomial, Equation (4.9), up to the n=4 species

in our example:

P(λ) = (−λ)4 + a1(−λ)3 + a2(−λ)2 + (−λ)a3 + a4, (4.18)

where a4=0 since the rank r of the Jacobian is r=3, Equation (4.11). Hence it is

straightforward to see that λ=0 solves the characteristic equation P(λ)=0 if a3=0.

Therefore, a3 needs to contain at least one negative summand so that its overall

sum can vanish for some values of (u, w). The presence of a negative summand

does however not guarantee that we will be able to find values of (u, w) so that a3

vanishes. Fragments Sk whose weight KSk is negative are referred to as critical frag-

ments because they provide negative summands to the corresponding coefficients

of the characteristic polynomial.

Generally, for a system with rank r a critical fragment Sr(i1,...,ir
j1,...,jr) of order r, cor-

responding uniquely to a negative summand in Equation (4.17) for k=r, is required

for a saddle-node bifurcation, and thus for multistability (Mincheva & Roussel, 2007;
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Volpert & Ivanova, 1987). Thus the potential of a biochemical mechanism, Equation

(4.1), for multistability depends on the structure of its bipartite digraph.

4.4 Implementation

The purpose of GraTeLPy is to enumerate all critical fragments of user-defined order

k and, based on these fragments, inform the user of the potential bifurcation prop-

erties of their mechanism (Walther et al., 2014). Here we focus on the potential for

multistability stemming from a saddle-node bifurcation so that the fragment order

we are interested in is k=r.

Schematically, GraTeLPy achieves this purpose as follows, Figure 4.4: First we

read in the mechanism from the user-provided input file and generate the bipartite

digraph from it. We then enumerate all fragments Sk of user-defined order k and

place them in a computational queue that allows us to further process each frag-

ment, Figure 4.4 (top diamond nodes).

For each fragment Sk in this queue, we carry out a linear sequence of operations,

Figure 4.4 (central rectangular nodes), to enumerate all subgraphs g of order k con-

tained in Sk. We generate the weight Kg of each subgraph g and sum up the weights

of all subgraphs contained in Sk to compute the weight KSk of that fragment. It is

at this point that we can decide whether or not fragment Sk is a critical fragment of

order k: if KSk<0 then Sk is critical, otherwise it is not critical.

Once we have processed all fragments in the queue in this manner we can output

all collected results for the user and draw conclusions based upon these results,

Figure 4.4 (bottom diamond nodes).

Processing the queue of enumerated fragments, Figure 4.4 (central rectangular

nodes), is inherently parallel as each fragment may be handled independently of all

other fragments. To make use of this parallelism GraTeLPy provides two scripts that

implement a server role and a client role respectively.

The server script takes care of the actions in the top and bottom diamond nodes

in Figure 4.4: It creates the bipartite digraph, enumerates all fragments, places them

in a queue Figure 4.4 (top diamond nodes), and collects all computed data returned

by the client processes before displaying them for the user Figure 4.4 (bottom dia-
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mond nodes).

The client script deals with actions in the central rectangular nodes in Figure 4.4:

It fetches a fragment from the queue presented by the server, generates all subgraphs

for the given fragment, weighs both these subgraphs and the fragment, and reports

all computed results back to the server. If the fragment queue is not exhausted the

client fetches another fragment and repeats these steps.

This server-client architecture allows the user to run one or multiple instances of

the client script to analyse the many fragments of a large mechanism in parallel.

Note that the format of the mechanism file read by the fragment server is close

to how we usually describe chemical mechanisms. An example of the expected

format is provided in Equation (4.2). At present GraTeLPy expects that the user

converts their model to this format. However, we plan to include functionality to

read mechanisms provided in SBML (Hucka & et al., 2003) and other formats in a

future release of GraTeLPy.

We now elaborate on our implementation of the steps carried out by the server,

Section 4.4.1, and the client, Section 4.4.2.
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Figure 4.4: Flowchart That Summarises the Steps Taken by GraTeLPy to Find all
Critical Fragments of a Given Order. The division of tasks between a single server
and one or more clients is highlighted. (top diamonds) The fragment server reads
the user-specified mechanism file and generates the bipartite digraph. The server
generates all fragments of user-defined order k and places them in a queue. (centre
rectangles) One or more client scripts fetch fragments off the queue and process
them independently. For each fragment Sk, a client generates all subgraphs and
computes the weight of each subgraph. The subgraph weights are then added to
compute the weight of the corresponding fragment. The client passes the computed
data back to the server and fetches another fragment off the queue if the queue
is not yet exhausted. (bottom diamonds) After preparing the fragment queue, the
server waits for the results sent by the clients. Upon receipt of the client-computed
results for a fragment, the server stores these results if the fragment is found to
have non-zero weight. Once the fragment queue, created initially by the server, is
exhausted the server informs the user of the number of critical fragments discovered
and generates other informative output.
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4.4.1 Fragment Enumeration

To build some intuition about fragment enumeration, let us think of a fragment of

order k as a collection of k unique substance nodes and k possibly repeated reaction

nodes.

For our example, Figure 4.2, we look for fragments of order three, Equation

(4.12). A randomly selected collection {A1, A2, A3, B1, B2, B3} cannot be combined

to form a subgraph since it does not contain a reaction node that A3 can form an

edge or path with. However, the set {A1, A2, A3, B3, B4, B5} is a fragment since its

nodes can form a subgraph consisting of edges [A1, B5], [A2, B3], and [A3, B4], Fig-

ure 4.3 (top right). As mentioned above, we denote this fragment by the shorthand

S3(1,2,3
5,3,4).

Generalising this example to a mechanism with n species and m reactions, we

generate all fragments of order k combinatorially by pairing the (n
k) unique combi-

nations of species with mk combinations of reaction nodes. This approach generates

(n
k)·mk collections of species and reaction nodes (fragment candidates) where, as in

the above example, many of these are not fragments since their species and reaction

nodes do not form a subgraph. Hence this approach requires verification of each

fragment candidate generated.

The computational cost of this combinatorial approach becomes prohibitive even

for relatively small values for n and m as it generates a large number of fragment

candidates that then require verification. As a different approach that saves compu-

tational time by generating fewer fragment candidates, we use the fact that every

fragment Sk(
i1,i2,...,ik
j1,j2,...,jk

) has one subgraph that contains only edges [Ais , Bjs ], s=1, . . . , k.

Based upon this fact we generate all (n
k) species combinations and extend each com-

bination to zero, one, or multiple subgraphs of the form g={Ei1 , · · · , Eik} where

Eis=[Ais , Bjs ], s=1, . . . , k, is an edge. The number of subgraphs, and equivalently

fragment candidates, that we extend each species combination to is mechanism-

dependent. Since fragments correspond uniquely to the subgraphs containing edges

only, using this method we can generate all possible fragments. In our example, Fig-

ure 4.2, one of (4
3) combinations of three substance nodes is the collection {A1, A2, A3}

which contains the subgraph g={[A1, B5], [A2, B3], [A3, B4]}, Figure 4.3 (top right).
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Let us denote by |Ei| (i=1, . . . , ni) the number of edges that a species Ai is the

starting node of. If we assume that each species Ai is, on average, the starting

node of |E|=Avg(Ei) edges, then this approach generates approximately (n
k)·|E|k

fragments. Empirically, we observe that |E| is usually considerably less than some

common values for the number of reactions m. In our example, Figure 4.2, A1 is

the starting node of two edges, A2 one edge, A3 two edges, and A4 one edge: Here

|E|=1.5 compared with a much greater m=6. It is reasonable to assume that this em-

pirical value for |E| is relatively constant across many different mechanisms while

m may grow substantially.

GraTeLPy implements the latter approach which we observe to generate orders

of magnitude fewer fragments than the former, combinatorial approach. This im-

plemented approach for fragment enumeration is an important development in

GraTeLPy that permits analysis of larger mechanisms. To highlight the achieved

reduction in computational cost we plot the number of fragment candidates (of

varying order k) generated by both methods for the double-layer mitogen-activated

protein kinase (MAPK) mechanism with n=12 species and m=18 reactions (Walther

et al., 2014) in Figure 4.5.

4.4.2 Subgraph Enumeration

To generate all subgraphs contained within a given fragment Sk(
i1,i2,...,ik
j1,j2,...,jk

) we first

need to determine what “building blocks” we have available. These building blocks

are the edges [Ais , Bjs ], positive paths [Ais , Bjs , Ail ], and negative paths [Ais , Bjs , Ail ]

(l, s∈{1, . . . , k}), that are induced by the species and reactions of fragment Sk. We

refer collectively to edges, positive paths, and negative paths of a fragment as its

subgraph components.

To relate to our example, Figure 4.2, consider fragment S3(1,2,3
5,3,4), Figure 4.3 (top

left). For this fragment we identify the following subgraph components: edges

[A1, B5], [A2, B3], and [A3, B4], positive paths [A2, B3, A3] and [A3, B4, A2], and nega-

tive paths [A1, B5, A3] and [A2, B3, A1]. Note that we only include paths whose first

half can be constructed from an edge in the corresponding fragment. We do so to

preserve node multiplicity: All subgraphs constructed from a set of subgraph com-
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Figure 4.5: Comparison of the Number of Fragment Candidates Generated by
the two Described Algorithms. Number of fragment candidates of different orders
generated for the double-layer MAPK network (Walther et al., 2014) (i) combina-
torially (grey) and (ii) generated from the unique correspondence between frag-
ments and edges-only subgraphs (black). The latter algorithm is implemented
in GraTeLPy, generates orders of magnitude fewer fragment candidates than the
combinatorial algorithm, and therefore achieves a substantial decrease in computa-
tional cost. The double-layer MAPK network has n=12 species and m=18 reactions
(Walther et al., 2014).

ponents need to contain the exact same species and reaction nodes with the same

multiplicity as the corresponding fragment.

GraTeLPy stores the subgraph components of a fragment Sk in a lookup table

which lists for each species Ais all subgraph components that lie in Sk and that Ais

is the beginning of. We generate the subgraph components of fragment Sk(
i1,i2,...,ik
j1,j2,...,jk

)

as follows: (i) We extract all edges [Ais , Bjs ] (s=1, . . . , k) and store each in our lookup

table keyed with Ai1 , (ii) each edge [Ais , Bjs ] in the resultant table we combine with

all arcs (Bjs , Ail) (l=1, . . . , k) that lie in both the bipartite digraph and Sk to generate

all positive paths, and (iii) each edge [Ais , Bjs ] in the table, we combine with all arcs

(Ail , Bjs) that lie in both the bipartite digraph and Sk to generate all negative paths.

All positive and negative paths that we discover are added in our lookup table to

the record belonging to species Ais .

Once our lookup table contains all subgraph components we need to combine

these components to enumerate exhaustively all subgraphs contained in the corre-

sponding fragment. Suppose that in fragment Sk species Ai1 induces Li1 subgraph
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components, Ai2 induces Li2 , and so forth. We can attempt to generate symbolically

a subgraph g of Sk by selecting at random one subgraph component per species

since each species must be the starting node of exactly one component (Mincheva &

Roussel, 2007). Using this approach we would generate

#{subgraph candidates} = Li1 · Li2 · · · Lik (4.19)

subgraph candidates for fragment Sk(
i1,i2,...,ik
j1,j2,...,jk

).

Even though this approach guarantees that each species is the starting node of

exactly one subgraph component, we generate combinations that contain paths that

do not form cycles as defined in Section 4.3.2. Paths that are not part of a cycle do

not contribute to valid subgraphs (Mincheva & Roussel, 2007). Hence this approach

generates subgraph candidates that need to be filtered to remove those candidates

that do not satisfy the definition of a subgraph given in Section 4.3.2.

While this combinatorial approach combined with a filtering step allows us to

enumerate all subgraphs, this process generates unnecessary computational work

and its computational cost becomes prohibitive for larger mechanisms. We develop

novel methodology in the following subsections that reduces substantially the com-

putational cost of enumerating subgraphs.

Cycle Detection: The Path Graph

We can avoid generating many invalid subgraph candidates if we do not join paths

combinatorially but rather only join those paths that connect to form cycles, Section

4.3.2.

We first introduce expanded paths, where each negative path [Ai, Bm, Aj] is ex-

panded into two positive paths [Ai, Bm, Aj] and [Aj, Bm, Ai]. This is necessary in the

following methodology because negative paths can be traversed in two directions.

Note that we can only expand a negative path into positive paths that respect the

node multiplicity of the fragment under consideration. In our example, Figure 4.3

(top left), fragment S3(1,2,3
5,3,4) contains the negative path [A1, B5, A3] that can only be

expanded into the positive path [A1, B5, A3] – since the edge [A3, B5] is not included

in S3(1,2,3
5,3,4) we cannot expand to [A3, B5, A1].
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To enumerate all cycles in a fragment Sk we construct the directed graph (di-

graph) Φ, which we refer to as path graph. The nodes of Φ correspond uniquely to

the expanded negative paths and the positive paths of fragment Sk. The links in Φ

are drawn so that their origins represent paths whose endpoints are the beginning of

the paths pointed to: Suppose that Φ contains nodes [Ai1 , Bjs , Ai2 ] and [Ai2 , Bjl , Ai3 ]

then there is a link pointing from the former to the ladder node. Self-loops in Φ are

also included so that a node corresponding to the path [Ai1 , Bj1 , Ai1 ] points to itself.

For illustration we show the path graph Φ that we construct for fragment S3(1,2,3
5,3,4),

Figure 4.3 (top left), in Figure 4.6.

Figure 4.6: Path Graph for the Critical Fragment of the Reversible Substrate In-
hibition Mechanism. The path graph Φ and the detected cycles that do not have
repeated species as starting nodes of paths of the critical fragment S3(1,2,3

5,3,4), Figure
4.3 (top left). The two cycles C1 and C2 that were reported previously for this frag-
ment by Mincheva & Roussel (2007) are discovered by our method implemented in
GraTeLPy.

To detect cycles in the path graph Φ, and ultimately in the subgraphs of a given

fragment Sk, we use an implementation of Johnson’s algorithm (Johnson, 1975) pro-

vided by NetworkX (Hagberg et al., 2008).

Some of the cycles in Φ enumerated by Johnson’s algorithm revisit species and

are therefore not cycles of the bipartite graph G of the mechanism (Mincheva &

Roussel, 2007). This is the case because Johnson’s algorithm returns all cycles in

Φ without further validation of the properties of these cycles. Computationally it

is straightforward to filter out generated cycles that revisit species – however this

extra filtering step incurs computational cost. Adaptation of Johnson’s algorithm so

that only cycles that do not revisit species are generated is likely possible and left
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for future work.

Cycle Combinations: The Cycle Graph

We now have enumerated all cycles contained in a given fragment Sk. To proceed

with the enumeration of all subgraphs in Sk we remind ourselves that Sk includes

exactly one subgraph that contains edges only, Section 4.4.1. Therefore all subgraphs

that remain to be discovered must contain at least one cycle. Hence we proceed by

enumerating all possible cycle combinations in Sk – each of these combinations will

then serve as the basis of one or multiple subgraph candidates.

The following combinatorial approach is easy to devise and implement and of-

fers some intuition of the task. Suppose we discovered |Γ| cycles in Sk then we can

generate all combinations of c cycles by drawing without replacement and without

regard for the order of the c draws. Combining c=1, 2, . . . , |Γ| cycles there are at

most ∑|Γ|c=1 (|Γ|c ) possible ways to combine all |Γ| cycles. At most since a valid com-

bination of cycles needs to respect the species and reaction node multiplicity of Sk.

For instance, in Figure 4.6 cycles C1 and C2 cannot be combined as this would repeat

species A2 and A3.

To form a subgraph we amend, if necessary, each valid cycle combination with

edges whose species are in Sk, but not in any member of the cycle combination. In

our example, Figure 4.6, we need to amend C1 with one edge, [A1, B5], to generate

a subgraph of order 3, Figure 4.3 (bottom right). However C2, Figure 4.6, does not

need to be amended to form a subgraph of order 3, Figure 4.3 (bottom left).

While this combinatorial approach is easy to implement its computational cost

becomes prohibitive as the initial draw without replacement contributes to a large

number of subgraph candidates that require subsequent verification of their node

multiplicity.

To lower the computational cost, we reduce the problem of generating cycle com-

binations to a classical graph-theoretic problem that generates fewer subgraph can-

didates and can be solved with available algorithms from the literature. To this end

we generate for Sk an undirected graph Γ whose nodes correspond uniquely to the

|Γ| cycles in Sk. We refer to the undirected graph Γ as cycle graph. We draw a line

between two nodes of Γ if a combination of these two cycles respects the node mul-
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tiplicity of Sk. Such a set of cycles can, if necessary, be amended with edges to form a

subgraph. In classical graph theory, a clique is a set of nodes of an undirected graph

such that every node is connected to every other node in the set. Given the cycle

graph Γ we can enumerate all combinations of c cycles by generating all cliques in Γ

of cardinality (node count) c. This is a standard problem in graph theory, known as

clique enumeration, and can be solved using existing algorithms from the literature

(Zhang et al., 2005).

Intuitively this approach of combining cycles that are linked in Γ instead of com-

bining them by drawing without replacement has the benefit of locality: In Γ we

only combine those cycles that are linked, and therefore combinable, and we do not

bother combining cycles that are far from each other in Γ.

In our example, Figure 4.6, the cycle graph Γ we construct from C1 and C2 con-

sists of these two cycles as unconnected nodes. Since in this example Γ contains no

lines between nodes, the two cliques present are of cardinality one and equal {C1}

and {C2} respectively.

Available library methods focus on solving the maximal clique problem of enu-

merating all or some cliques of maximal cardinality in a given undirected graph

(Hagberg et al., 2008). However, for our problem we need to enumerate all cliques

of all sizes. Therefore, we implemented in GraTeLPy an algorithm by Zhang et al.

(2005) that enumerates all cliques of all sizes of an undirected graph.

Performance of Subgraph Enumeration

At the beginning of Section 4.4.2 we introduced a combinatorial approach for sub-

graph enumeration. While straightforward to implement, the computational cost of

this approach is prohibitive as it generates a large number of subgraph candidates,

Equation (4.19), that each require verification of their node multiplicity. In Sections

4.4.2 and 4.4.2 we split the problem of subgraph enumeration into cycle enumera-

tion and cycle combination and described efficient, graph-based solutions for both

subproblems.

Here we compare the computational cost of the combinatorial algorithm with the

graph-based algorithms that we developed and implemented in GraTeLPy. To this

end we count the number of subgraph candidates generated by both approaches
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for 100 randomly selected fragments (of varying size) of the double-layer MAPK

mechanism (Walther et al., 2014). Our results, Figure 4.7, show that the graph-based

algorithms implemented in GraTeLPy generate multiple orders of magnitude fewer

subgraph candidates than the naive, combinatorial algorithm.

Figure 4.7: Number of Subgraph Candidates Generated by the Combinatorial Al-
gorithm and the Graph-Based Algorithm Implemented in GraTeLPy. Number of
subgraph candidates generated for 100 randomly selected fragments (of indicated
order) of the double-layer MAPK network (Walther et al., 2014). (grey) Combina-
torial approach, (black) graph-based approach implemented in GraTeLPy that uses
the path graph, Section 4.4.2, and cycle graph, Section 4.4.2. Circles denote aver-
ages, squares denote maxima (maximal number of subgraph candidates generated
for any one of 100 randomly selected fragments). The algorithm implemented by
GraTeLPy (black) generates orders of magnitude fewer subgraph candidates than
the combinatorial approach (grey) would thus greatly reducing computational cost.

4.5 Sample Application: Cdc42 in Yeast

Our motivation for developing GraTeLPy was our interest in unfurling a phenomeno-

logical mechanism of cell polarity to study the spatial distribution of the involved

membrane-bound protein species, Section 4.2. To this end we developed and opti-

mised GraTeLPy so that it can serve as a software tool for rapid mechanism discrim-

ination.

In this section we discuss a sample analysis of a related chemical mechanism

with the current implementation of GraTeLPy and point to future extensions of

GraTeLPy that will offer a more complete analysis pipeline.
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As we mentioned in Chapter 1, Saccharomyces cerevisiae (budding yeast) divides

by formation of a bud that is separated from the parent cell through mitosis. Bud for-

mation is preceded by the localisation of active Cdc42, a Rho homologue, which di-

rects outgrowth of the bud (Slaughter et al., 2009). A mathematical model of Cdc42

localisation in budding yeast described by Goryachev & Pokhilko (2008) relies on a

Turing-type mechanism, Chapter 1. While its underlying mathematical mechanism

and, therefore, predicted localisation patterns differ from the wave-pinning mech-

anism, the molecular species and reactions described in the model of Goryachev &

Pokhilko (2008) bear close resemblance to those in our motivational example, Sec-

tion 4.2.

4.5.1 Cdc42 Network in Yeast

Goryachev & Pokhilko (2008) have proposed the following reaction network as a

model of the dynamics of Cdc42 in budding yeast:

B1 : Ec
k1−→ Em,

B2 : Em
k2−→ Ec,

B3 : RT + Em
k3−→ M,

B4 : M
k4−→ RT + Em,

B5 : Em + RD
k5−→ Em + RT,

B6 : M + RD
k6−→ M + RT, (4.20)

B7 : RT
k7−→ RD,

B8 : Ec + RT
k8−→ M,

B9 : RDIm
k9−→ I + RD,

B10 : RD + I
k10−→ RDIm,

B11 : RDIc
k11−→ RDIm,

B12 : RDIm
k12−→ RDIc,

where RD and RT denote the membrane-bound inactive and active form of Cdc42
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respectively, I denotes cytoplasmic GDI that forms a membrane-bound complex

with RD, RDIm, that detaches from the membrane and diffuses as RDIc in the cy-

toplasm. All of these species have equivalents in the mechanistic model described

earlier, Figure 4.1 (left): RD corresponds to Rho-GDP, RT to Rho-GTP, I to GDI, and

the two RDI species are equivalent to membrane-bound and cytoplasmic GDI-Rho-

GDP complexes.

The enzyme E is a complex that contains Cdc42-activating Cdc24 and exists in

both a cytoplasmic and membrane-bound form, Ec and Em, respectively. Cdc24

corresponds to the more generic GEF in Figure 4.1 (left). However, complex E also

contains a yeast-specific adaptor protein Bem1 (Goryachev & Pokhilko, 2008), hence

species and reactions that depend on E are unlikely to play a role in more generic

mechanistic models, Figure 4.1 (left). When E is on the membrane, it can form a

catalytic complex M together with RT, that aids activation of membrane-bound RD.

The bipartite digraph of the Cdc42 mechanism is shown in Figure 4.8 and the

mechanism has a stoichiometric matrix of rank r=5. This mechanism, Equation

(4.20), shows Cdc42 localisation through a Turing-type mechanism (Goryachev &

Pokhilko, 2008) and GraTeLPy can inform the user about necessary conditions per-

taining to this type of instability (Walther et al., 2014). However, for brevity we

limit our discussion to multistability of this mechanism: Both multistability of re-

action mechanisms (Semplice et al., 2012) and spatially extended mechanisms in a

diffusion limit (Walther et al., 2012; Holmes, 2014) have been shown to give rise

to protein localisation. To this end we limit our analysis to fragments Sk of order

k=r=5.

4.5.2 Fragment Detection with GraTeLPy

GraTeLPy detects 35 critical fragments of order five among which we find the two

critical fragments reported by Goryachev & Pokhilko (2008) and shown in Figure

4.9. Overall, GraTeLPy detects 152 fragments that each contribute one non-zero

summand to the corresponding constant, a5, of the characteristic polynomial of the

Jacobian, Equation (4.17). The median running time of this analysis with one pro-

cessor is 9.7 seconds and with two processors 6.1 seconds.
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Figure 4.8: Bipartite Digraph of the Yeast Cdc42 Network Described by Goryachev
& Pokhilko (2008). RD and RT are the membrane-bound inactive and active form
of Cdc42 respectively, I is cytoplasmic GDI that forms a membrane-bound complex
with RD, RDIm, which detaches from the membrane and diffuses as RDIc in the
cytoplasm. The enzyme E is a complex that contains Cdc42-activating Cdc24 and
exists in both a cytoplasmic and membrane-bound form, Ec and Em, respectively.
When E is on the membrane, it can form a catalytic complex M together with RT,
that aids activation of membrane-bound RD.

4.5.3 Putting the Fragments to Use

GraTeLPy enumerates all fragments that contribute non-zero terms to the corre-

sponding coefficient of the characteristic polynomial, Equation (4.17): For the Cdc42

mechanism, Equation (4.20), GraTeLPy enumerates 152 such fragments of order

k=r=5: Of these, 35 are critical and 117 are non-critical fragments, therefore a5 is

a sum over 35 negative summands and 117 positive summands.

We remind ourselves that we are interested in the behaviour of the steady-states

of the Cdc42 mechanism which we can express by adapting Equation (4.4):
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Figure 4.9: Critical Fragments of the Yeast Cdc42 Mechanism. Critical fragments
of order 5 of the yeast Cdc42 network reported by Goryachev & Pokhilko (2008)
and reproduced by GraTeLPy. These critical fragments show that a key component
of this mechanism, Equation (4.20), is the catalytic reactivity of M: The membrane-
bound complex M upregulates production of RT but is itself not consumed in this
reaction. It is this catalytic reactivity that has the potential to generate multistability
and therefore contribute to protein localisation (Semplice et al., 2012).

0 = Sw∗, (4.21)

where S is the stoichiometric matrix of Equation (4.20) and all flux rates are non-

negative

w∗j ≥ 0, j = 1, . . . , 12. (4.22)

The 12 non-negativity conditions in Equation (4.22) and the 8 steady-state flux con-

ditions in Equation (4.21) constrain the permissible steady-state flux vectors w∗ to a

convex, polyhedral cone that extends into the positive orthant of flux space (Clarke,

1988; Orth et al., 2010). Flux space is the space that rate vectors w lie in and in our ex-

ample, Equation (4.20), this space has dimension 12. This cone is generally referred

to as the allowable solution space (Orth et al., 2010) and is polyhedral because its

base is a polygon.

The fragments generated by GraTeLPy allow us to create a symbolic represen-
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tation of a5, based on Equation (4.17), that is a sum of terms involving the steady-

state flux rates w∗j and steady-state concentrations u∗i . If we can generate a set of

permissible values for w∗j and u∗i so that the corresponding a5(u∗, w∗)<0 then the

steady state (u∗, w∗) is unstable (Clarke, 1988). Given these 12 steady-state flux rates

w∗1 , . . . , w∗12 and 8 steady-state concentration values u∗1 , . . . , u∗8 we can then compute

the 12 reaction rate constants k1, . . . , k12. Further, since this mechanism, Equation

(4.20), has 8 species but is of rank r=5 there are 3 conservation constants that we can

also compute from the above choice for u∗ and w∗. We are then in a position to vary

numerically one of the rate constants ki to detect the occurrence of the predicted

saddle-node bifurcation (a5=0) (Clarke, 1988).

Computing permissible values w∗j and u∗i so that a5(u, w)<0 is not trivial and

we propose two approaches that may be explored in future endeavours. Here we

assume that we either have measurements or literature estimates of the steady-state

concentrations, u∗, and that our main goal here is to compute rate constants k j so

that the Cdc42 mechanism, Equation (4.20), shows the predicted saddle-node bifur-

cation. The rate constants k j can be computed with Equation (4.3).

Non-Linear Optimisation Inside the Flux Cone

Generally, the problem of computing vectors w∗ so that a5(u∗, w∗)<0 may be re-

garded as a minimisation problem where we minimise a5 over flux space.

Before we can employ one of multiple standard strategies to minimise a5, we re-

quire a fast method for generating vectors w∗ that lie in the polyhedral cone defined

by Equations (4.21) and (4.22).

A brute force approach where we generate vectors w∗ in the positive orthant of

flux space randomly is unlikely to perform well since in 12-dimensional space we

are unlikely to hit random points so that both Sw∗=0 and a5<0.

A more viable approach is to sample points w∗ directly inside the polyhedral

cone spanned by the allowable solutions space (Clarke, 1988). To sample a5 inside

this cone we need the basis vectors that span the cone. Construction of these basis

vectors is an important problem known in the field of systems biology as extreme

current enumeration and software exists that can aid in this (Orth et al., 2010).

Once we can sample repeatedly points w∗ inside this cone, we can employ a
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variety of strategies to minimise a5. Since a priori a5 does not possess an obvious

structure over the cone we suggest to explore the use of genetic algorithms for this

optimisation problem.

We leave expansion of GraTeLPy to include extreme current enumeration and

optimisation for future work.

Linear Optimisation Inside the Flux Cone

Instead of minimising the full expression of a5 an alternative approach is to max-

imise the negative summands of a5. To help with this task it would be benefi-

cial if we could identify variables wj that appear predominantly or exclusively in

the negative summands of a5. For simplicity, suppose that we identified flux rates

w−j1 , . . . , w−jn that appear exclusively in the negative summands of a5. Then to min-

imise a5 we can maximise the following linear cost function:

ac(w) =
n

∑
m=1

w−jm . (4.23)

Maximising ac(w∗) over flux space with the constraints Sw∗=0 and w∗j≥0 defines a

linear program which can be solved with well-established computer software.

The output generated by GraTeLPy makes it straightforward to test whether any

variables wj appear exclusively in the negative summands of a5. In general the sum-

mands of a coefficient ak can be thought of as products of ratios of the elements of

the edges in the corresponding fragments, Equation (4.17). We can therefore look

for variables w−j that occur exclusively in negative summands by identifying those

edges that appear exclusively in critical fragments. GraTeLPy identifies the follow-

ing set of edges in the negative summands of a5

En = {[Ec, B1], [Ec, B8], [Em, B2], [Em, B3], (4.24)

[Em, B5], [I, B10], [M, B4], [M, B6],

[RD, B10], [RDIc, B11], [RDIm, B12],

[RDIm, B9], [RT, B3], [RT, B8]},
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and the following set of edges in the positive summands of a5

Ep = {[Ec, B1], [Ec, B8], [Em, B2], [Em, B3], (4.25)

[Em, B5], [I, B10], [M, B4], [RD, B10],

[RD, B5], [RD, B6], [RDIc, B11], [RDIm, B12],

[RDIm, B9], [RT, B3], [RT, B7], [RT, B8]}.

The difference between these two sets reveals one edge that occurs exclusively in

the negative summands of a5:

En\Ep = [M, B6]. (4.26)

Given this edge, Equation (4.26), our linear cost function becomes ac(w)=w6 as the

node B6 corresponds to reaction rate w6. This allows us to formulate the following

linear program:

maximise e6 ·w,

subject to Sw ≥ 0,

−Sw ≥ 0,

w ≥ 0,

(4.27)

where e6 is the unit vector whose sixth element equals one and all other elements

equal zero, and we encode the equality Sw=0 with the two inequalities Sw≥0 and

−Sw≥0 which are easier to handle for numerical algorithms. Once we have found a

maximal value for w6 under the indicated constraints we can then test whether this

value and appropriately chosen values for the remaining flux rates wj, j 6=6, render

a5 negative.

We note that an advantage of linear programs is that they define naturally con-

strained optimisation problems: The constraints w≥0 and Sw=0 are natural parts

of the linear program in Equation (4.27) and we therefore do not need sample specif-

ically flux rates w inside the polyhedral cone.

We leave implementation and validation of this method for future endeavours.
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4.6 Discussion

In GraTeLPy we have implemented a graph-theoretic method that allows for parameter-

free mechanism discrimination.

While our discussion here focused on discovering mechanisms with multista-

bility through saddle-node bifurcation, conditions for other types of bifuractions

leading to oscillations and Turing instability can also be detected with GraTeLPy

(Walther et al., 2014). A promising route here is also a combination of GraTeLPy

with the local perturbation analysis (LPA) method discussed in Chapters 2 and 3 as

well as in Holmes (2014); Walther et al. (2012). In a diffusivity limit the LPA splits

the reaction network of a given mechanism into global and local species, and bista-

bility of the resulting mechanism is usually associated with pattern formation and

cell polarity (Holmes, 2014; Walther et al., 2012). In GraTeLPy the bipartite digraph

can be expanded similarly and an analysis of the resulting expanded graph is likely

equivalent to the results obtained with the LPA.

As opposed to similar software packages, GraTeLPy is both open-source and is

based on free software. Further, GraTeLPy enables users to identify the specific el-

ements of mechanisms that can lead to certain types of bifurcations. This level of

detail can provide mechanistic understanding of bifurcations and can aid in deter-

mining critical parameter values.

We plan to leverage this level of detail in future extensions of GraTeLPy so that

critical parameter values for which certain types of bifurcations occur are computed

automatically. We have discussed two possible strategies to tackle this problem, one

based on non-linear optimisation inside a high-dimensional cone and another based

on linear programming.

The mathematical framework implemented in the current version of GraTeLPy

assumes that the rates of all chemical reactions follow the law of mass action (Mincheva

& Roussel, 2007). An extension of GraTeLPy to a framework based on multigraphs

would lift this restriction (Mincheva & Craciun, 2008). This extension would enable

rapid model discrimination of reaction networks that are traditionally large and as-

sume reaction rates different from mass action, such as gene regulatory networks

(Karlebach & Shamir, 2008).
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Chapter 5

Discussion and Outlook

In this thesis I studied the interplay between morphology and cell polarity. I focused

on an existing, phenomenological model of a class of proteins that lie at the basis of

many biological phenomena of polarity, Chapter 1: The wave-pinning mini-model

of Rho dynamics described by Mori et al. (2008) lends itself well to numerical and

analytic studies and has proved amenable to the specific cellular conditions I am

interested in.

My work was motivated by my survey of the range of cell morphologies and the

mathematical models that are used commonly to describe polarity-inducing bio-

chemical processes, Chapter 1. As my survey outlined there is a vast size range in

effective reaction volumes that emerge in different cell types and even within indi-

vidual cells.

To the best of my knowledge, there have not been any attempts at describing

the influence of cell size and cell size change on the biochemical reactions of the

wave-pinning mini-model (Mori et al., 2008) and resulting influence on predicted

cell polarity behaviour.

With my work in this thesis I filled a gap in the literature by investigating the

influence of extremely small, extremely large, and growing reaction volumes on

the cell polarity behaviour predicted by the wave-pinning mini-model (Mori et al.,

2008). I further presented a novel computational tool that helps to unfurl phe-

nomenological terms in mathematical models to precise mechanisms: In future en-

deavours this tool can enhance our molecular understanding of the interplay be-

tween cell morphology and cell polarity.
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5.1 Discussion

My work showed that subjecting the wave-pinning mini-model to sufficiently small

reaction volumes inhibits formation and maintenance of cell polarity due to stochas-

tic effects, Chapter 2. However, my work also demonstrated that a medium level of

stochasticity can also contribute to fine-tuning of cell polarity, Chapter 2.

I have further shown that large and growing reaction volumes prevent cell po-

larity through dilution of the involved biochemical species, Chapter 3. My work

in this area also demonstrated that dilution can be countered by balancing growth

and protein production. My results show that tight coupling of growth and produc-

tion can sustain constant growth, while loose coupling can only sustain oscillatory

growth.

To the best of my knowledge, my work on the interplay between the wave-

pinning mini-model and cell morphology is the first study that investigates the

wave-pinning mechanism under these cellular conditions. Here I contrast my re-

sults with the behaviour of other mathematical models of cell polarity under similar

cellular conditions as described in the literature.

Meyers et al. (2006) performed a computational study in which they investigated

the behaviour of a LEGI model, Chapter 1, in different cell shapes and sizes. Their

model consisted of a membrane-bound receptor and a cytoplasmic signal that is ac-

tivated by the receptor, diffuses away from the point of activation, and is inactivated

by an intracellular reaction. This induces an intracellular gradient in the active form

of the signal with its maximum at the membrane where the receptor is located. The

distance over which the concentration in the active signal decays depends on its

diffusivity and rate of inactivation (Meyers et al., 2006)

Lgradient =

√
D
k

, (5.1)

where D is the diffusion coefficient of the active signal and k is the rate constant of

the first-order reaction that inactivates the signal. Assuming that a sufficiently high

concentration of the signal is necessary to upregulate target pathways inside the

cell, Meyers et al. (2006) found that pathways in thin and small cells are more likely

to get activated than in large cells. As an example of the effect of differences in the
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effective reaction volume within cells, Meyers et al. (2006) pointed out that the small

height of the leading edge of migrating cells contributes locally to the abundance of

cytoplasmic signal and therefore upregulation of downstream pathways.

The results obtained by Meyers et al. (2006) for their LEGI model stand in con-

trast to my observations with the wave-pinning model under similar cellular con-

ditions. While Meyers et al. (2006) predict an increase in intracellular signalling in

small reaction volumes, my observations in Chapter 2 suggested loss of intracellular

signalling below a threshold volume. Interestingly, the observed change in intracel-

lular signalling was gradual in the study by Meyers et al. (2006) whereas it happened

suddenly at a critical point in my work in Chapter 2. At the other extreme, at large

cell sizes, there is more agreement between the work by Meyers et al. (2006) and

my work in Chapter 3: Under this cellular condition Meyers et al. (2006) predicted

low intracellular signalling near the centre of the cell, while I also predicted loss of

intracellular signalling. It is interesting to point out that low intracellular signalling

in large cells is due to the interplay between diffusion, cell size, and signal inacti-

vation in the LEGI model (Meyers et al., 2006) whereas it is due to dilution of the

biochemical species in the wave-pinning model, Chapter 3.

Crampin et al. (1999) studied a Turing-type mechanism of cell polarity in grow-

ing cells. Turing-type mechanisms are susceptible to displaying multiple concen-

tration maxima unless the diffusivity of the involved biochemical species and the

size of the simulated cell are matched closely (Jilkine & Edelstein-Keshet, 2011). In

agreement with this property, Crampin et al. (1999) observed the emergence of mul-

tiple maxima out of one maximum in their simulations of cell growth. Importantly,

Crampin et al. (1999) did not observe loss of intracellular signalling but rather an

emergence of multiple foci of signalling.

The observations made by Crampin et al. (1999) for a Turing-type mechanism in

a growing cell stand in contrast with my observations for the wave-pinning mecha-

nism. I observed that growth diluted the relevant biochemical species and there-

fore prevented cell polarity, Chapter 3, whereas growth induces multiple peaks

for a Turing-type mechanism (Crampin et al., 1999). It is important to point out

that Turing-type mechanisms do generally not conserve protein mass and therefore

growth increases the amount of available protein in the work by Crampin et al.
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(1999).

5.2 Outlook

While in this thesis I focused on the interplay between cell size and cell polarity,

in future endeavours it will be interesting to include cell shape as an important

manifestation of cell morphology. Important examples where intricate cell shapes

and cell polarity occur concurrently include pavement cells where multiaxial shapes

develop under guidance of localised Rho-homologues (Fu et al., 2005), and pollen

tubes where molecular exchange between a dome-shaped apex and a straight base

is believed to sustain cell polarity under growth (Kost, 2008).

As the molecular exchange suggested by Kost (2008) indicated, to further under-

stand the interplay between cell shape and cell polarity it is likely important to better

understand the molecular species and events involved in maintaining cell polarity.

In the pollen tube, a fuller picture of these species and events would likely enable us

to better understand the observed separation of involved molecular species (Kost,

2008) and would open new venues for matching theory and molecular experiments.

A molecular model of localisation of a Rho homologue in the growing pollen tube

tip would permit more detailed predictions for mutant behaviour that could then

be used to drive an iterative process of simulation and experiment. To this end, I

suggest that the model discrimination software I developed in Chapter 4 would be

a useful tool for unfurling existing phenomenological models of cell polarity and

could be part of a pipeline that involves model prediction and experimental valida-

tion.
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