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Abstract 

 

Pectin is a complex structural polysaccharide present in the cell walls of 

terrestrial plants, fruit and vegetables. Modified pectin (MP), pectin treated 

with pH, heat or enzymes, has been shown to have anti-cancer activity in 

several cancer cell lines. The galactan chains of MP are postulated to be 

essential for bioactivity due to their ability to bind and inhibit the pro-

metastatic protein galectin-3 (Gal3) on cancer cells. However, the structural 

requirements for bioactive MP, as well as interactions with Gal3 in vitro, have 

rarely been addressed. In this study several pectins from citrus, sugar beet 

and potato were screened for their biological effects on colon cancer cells, 

their structures characterised in detail to assess the structure-function 

relationship and the molecular mechanisms of action investigated. Alkali-

treated sugar beet pectin (SSBA) reduced viability of HT29 cells via induction 

of apoptosis. The enzymatic removal of galactan side chains abolished 

activity indicating their importance for anti-proliferative action. Additionally, 

potato rhamnogalacturonan I (P-RGI) reduced viability of DLD1 cells and the 

homogalacturonan backbone, not the galactan side chains, was shown to be 

essential for bioactivity. siRNA-mediated knockdown of Gal3 expression in 

cells showed that bioactivities of SSBA and P-RGI are independent of Gal3, 

prompting an investigation into alternative mechanisms of action. Expression 

of the adhesion molecule ICAM1 was shown to be significantly reduced by P-

RGI, suggesting a novel potential mode of action. Results presented in this 

thesis suggest that MPs of varying structures can exert anti-proliferative 

activity in colon cancer cells via Gal3-independent mechanisms and in a cell-

specific manner. This study is also the first to report the anti-cancer activity of 

sugar beet pectin. The structural complexity of pectin makes it a potential 

multi-functional therapeutic agent, and results highlight the need for 

extensive structural characterisation of bioactive pectins as well as further 

exploration of Gal3-independent mechanisms of action. 
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1.1 Colorectal carcinogenesis 

1.1.1 Epidemiology of colorectal carcinogenesis 

Colorectal cancer (CRC) is a major cause of morbidity and mortality. It is the 

third most prevalent cancer worldwide and accounts for over 9% of all cancer 

incidences [1, 2]. Wide geographical differences in incidence rates and data 

from migrant studies indicate that diet and lifestyle play a major role, such as the 

high consumption of red meat [3, 4], fat and alcohol [5], smoking [6], lack of 

exercise and obesity [7] as well as the low consumption of fruit, vegetables and 

fibre [8]. 

1.1.2 The adenoma-carcinoma sequence 

The multiplication of cells is carefully regulated by the body and loss of control 

can cause a cell to grow and divide in an unregulated fashion. Carcinogenesis is 

a complex multistep process whereby a normal cell undergoes a series of 

mutations (genetic, chromosomal or spontaneous) eventually transforming into a 

cancer cell [9]. It is widely accepted that CRC arises via the adenoma-carcinoma 

sequence of carcinogenesis (Figure 1). CRC originates from the epithelial cells 

lining the gastrointestinal (GI) tract. An accumulation of genetic and epigenetic 

mutations see the cells become hyper-proliferative, transforming into 

adenomatous polyps and benign tumours and ultimately producing a neoplastic 

phenotype [10, 11]. Mammalian cells have multiple safeguards to defend them 

against cancer gene mutations, and only when several genes are defective does 

an invasive cancer develop. Tumour suppressor genes contribute to this 

safeguarding process; however, when a tumour suppressor gene loses its 

normal function due to a mutation in both alleles or epigenetic changes such as 

promoter methylation, the first step of hyper-proliferation can occur. The tumour 

suppressor genes APC, TP53, SMAD4 and PTEN are major targets of these 

genetic changes [12-15]. Mutations in proto-oncogenes, genes that code for 

proteins that regulate cell growth and differentiation, also play a major part, over-

expressing and increasing the genes already established role in promoting cell 

proliferation. KRAS and BRAF are two proto-oncogenes that have a significant 

role in the onset of CRC [12, 16-18]. 
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1.1.3 Cell signalling 

Cells depend on an elaborate intracellular communication network that co-

ordinates growth, differentiation and metabolism, and the ability of cells to 

perceive and correctly respond to their microenvironment is essential for normal 

tissue homeostasis. Cells communicate by means of extracellular signalling 

molecules such as growth factors and cytokines which bind to specific target 

receptors to initiate a physiological response. Once a receptor protein is 

activated it undergoes a conformational change which subsequently promotes a 

series of protein-protein interactions that carries the signal to the cell interior. 

This process of converting extracellular signals into cellular responses is called 

signal transduction, or cell signalling. Cells employ several cell signalling 

pathways that cross-talk between each other to regulate activity, which results in 

numerous multifunctional proteins and transcription factors that can regulate 

many aspects of cell survival. 

1.1.3.1 Cell cycle 

Cells proceed through a sequence of phases called the cell cycle, regulation 

of which critical for the normal development of cells. The cell cycle is divided 

into four major phases. The first is the G1 phase where cells grow and 

synthesise proteins and mRNA ready for DNA duplication during the 

synthesis (S) phase. Following successful completion of DNA duplication the 

cell goes into a period of rapid cell growth and protein synthesis called the 

G2 phase during which the cell readies itself to enter the mitotic (M) phase 

which results in cell division into two daughter cells, each containing an 

identical copy of the parental cell’s genetic material. Progress along the cycle 

is controlled at key checkpoints, which ensure that one phase has been 

successfully completed before proceeding to the next phase. The G1/S 

checkpoint guarantees the integrity of DNA before proceeding to DNA 

duplication, and the G2/M checkpoint verifies that DNA synthesis has been 

completed without mistakes before allowing mitotic division.  If any problem 

is detected, the cell cycle is arrested until the problem is resolved, or cell 

death through apoptosis is induced when the damage cannot be repaired. 

http://en.wikipedia.org/wiki/Homeostasis
http://en.wikipedia.org/wiki/Protein


21 

 

Progression through checkpoints is regulated by protein kinases called 

cyclins and cyclin-dependent kinases (CDKs) which form CDK-cyclin 

complexes [19]. Although CDKs are constitutively expressed in cells, cyclin 

expressions increase and decrease in phase with the cell cycle in response 

to various molecular signals such as growth factors. When a CDK is bound 

and activated by a cyclin it phosphorylates target proteins to coordinate 

progression into the next phase of the cell cycle. The first cyclin to be 

produced, cyclin D, complexes with CDK4/6, resulting in the production of 

the cyclin E-CDK2 complex which drives the cell from G1 to S phase. The 

cyclin B-CDK1 complex is necessary for the progression of the cells into and 

out of M phase of the cell cycle and cyclin A regulates multiple steps of the 

cell cycle, depending on its complex with either CDK1 or CDK2. Cdc25 is a 

family of phosphatases involved in activating CDKs and therefore control 

progression through various phases of the cell cycle [20]. Deregulation of 

these phosphatases has been implicated in CRC [21, 22]. Cyclins, 

particularly cyclin D, are frequently overexpressed in CRC, stimulated by an 

over expression of β-catenin and c-myc, resulting in cell proliferation [23-25].  

Several tumour suppressor proteins keep the cell cycle in check by inhibiting 

these cyclin/CDK complexes including p21CIP1/WAF1, p27Kip1, p15INK4B and p16 

that prevent progression through to S phase [26-29]. The tumour suppressor 

protein (TSP) p53 is at the centre of a complex network of extracellular 

signals (such as mitogen and anti-mitogen signals) and intracellular signals 

(such as revealing the presence of a viral infection).  Activated by DNA 

damage signals, p53 can arrest cell cycle by activating p21CIP1/WAF1 as well 

as activating DNA repair proteins.  If damage cannot be repaired p53 can 

initiateapoptosis via activation of pro-apoptotic proteins Noxa and Puma 

(Figure 2g) [30, 31]. The p53 gene (TP53) is thought to be mutated in half of 

all CRCs [32], resulting in dysregulation of the cell cycle and uncontrollable 

cell growth.  

1.1.3.2 Cell proliferation 

The gene most commonly mutated in the adenoma-carcinoma sequence is in 

the tumour suppressor APC, which occurs early on in carcinogenesis [13]. 

http://en.wikipedia.org/wiki/Cell_cycle
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However, this must be followed by further mutations in additional genes to 

progress to cancer. APC is a key member of the Wnt signalling pathway (Figure 

2a), a critical pathway in CRC that regulates gene transcription. Wnt signalling 

begins when a Wnt protein binds to the Frizzled receptors. This causes an 

accumulation of β-catenin in the cytoplasm and its eventual translocation into 

the nucleus. Acting in conjunction with the transcription factor family TCF/LEF, 

β-catenin stimulates transcription of Wnt target genes including c-myc and cyclin 

D, integral to tumour formation because of their role in cell proliferation, 

apoptosis and cell-cycle progression [24, 33]. When the Wnt protein does not 

bind to the receptor, a destruction complex forms composed of APC, Axin and 

GSK3β, which phosphorylates β-catenin and degrades it [34-36]. When APC is 

mutated, truncations in the protein lack the Axin binding domains and 

subsequently the ability to join the destruction complex and target β-catenin for 

degradation [37]. The result is an accumulation of β-catenin in the nucleus, 

contributing to tumourigenesis.  
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Figure 1 Representation of the adenoma-carcinoma sequence  
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Another cell proliferation-associated protein is KRas of the Ras family of GTPases. 

Ras proteins regulate cell growth, differentiation and apoptosis. Other members 

include H- and N-Ras, which are regulated in a similar manner but differ slightly in 

sites and modes of action. Ras operates as a molecular on/off switch, alternating 

between GDP (inactive) and GTP (active) states. This rate of conversion is 

increased by accessory proteins such as SOS1 [38]. KRas is a crucial protein for the 

functioning of normal tissue signalling. 30% of tumours express oncogenic 

constitutively active Ras, with the most common mutations in the KRAS gene in 

pancreatic, colon and lung cancers [39]. Synthesised in the cytosol on free 

polysomes, KRas has a hypervariable region in the C-terminus that ends with a 

CAAX motif that directs it to the plasma membrane [40], where it is anchored via the 

C-terminal S-farnesylcysteine [41].  KRas can also be directed to the intracellular 

membranes of the endoplasmic reticulum [42]. Once activated it recruits and 

activates a multitude of effectors including Raf and PI3-Kinase and Ral-guanine 

exchange factors, essential players in cell proliferation, differentiation, survival and 

death (see Figure 2).   

The MEK/ERK cascade (Figure 2c) is another pathway central to cell proliferation 

and survival. A key protein in the cascade, KRas, is typically activated by mitogens 

such as growth factors through receptor tyrosine kinases (RTKs). Adaptors like SHC 

or GRB2 link the receptor to a guanine nucleotide exchange factor such as SOS that 

transduces the signal to GTP-binding KRas. KRas activation triggers the protein 

kinase activity of Raf kinase which phosphorylates and activates MEK1/2 which in 

turn phosphorylates and activates mitogen-activated protein kinase (ERK1/2). Once 

activated, ERK1/2 can regulate targets in the cytosol and also translocate to the 

nucleus where it phosphorylates a variety of transcription factors that govern 

proliferation, differentiation and cell survival [43]. Two key components of this 

cascade, KRas and BRaf are often aberrantly expressed in CRC. The genes coding 

KRas (KRAS) and B-Raf (BRAF), are mutated in 30-40%, and 10% of all CRC’s, 

respectively [6, 44], locking the proteins into a constitutively activated state in which 

they signal to downstream effectors such as those in the MEK/ERK pathway which 

drives the overexpression of oncogenes such as c-myc and c-fos which ultimately 

http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase
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drive cell growth and proliferation. KRas is also an effector of the PI3K/Akt pathway, 

explained further in this section [45]. 

NFκB is a protein complex that controls transcription of DNA and is therefore important 

to cell proliferation. There are five homologous subunits in the NFκB family: NFκB1, 

NFκB2, RelA, RelB and c-Rel.  While in an inactivated state, NFκB (composed of 

subunits) is complexed with the inhibitory protein IκBα in the cytosol. A variety of 

extracellular signals, such as tumour necrosis factor alpha (TNFα), interleukin 1-beta (IL-

1β) and reactive oxygen species (ROS) can activate the enzyme IκB kinase (IKK) 

(Figure 2b). IKK subsequently phosphorylates the IκBα protein, which results in its 

separation from NFκB, and consequent degradation. The activated NFκB is then 

translocated into the nucleus where it binds to specific sequences of DNA, ultimately 

resulting in a change of cell function [46]. NFκB can contribute to CRC progression by 

regulating the expression of genes that control cell proliferation, cell survival and 

angiogenesis such as c-myc, Ras, p53 and Cox-2 [47-49]. However, NFκB is better 

known for its role in the immune response and can induce cytokines IL-1 and TNF-alpha 

and endothelial-leukocyte adhesion molecules such as ICAM1 and VCAM1 [50-52]. 

http://en.wikipedia.org/wiki/Transcription_factor
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/I%CE%BAB%CE%B1
http://en.wikipedia.org/wiki/Tumor_necrosis_factor-alpha
http://en.wikipedia.org/wiki/IL1B
http://en.wikipedia.org/wiki/IL1B
http://en.wikipedia.org/wiki/Reactive_oxygen_species
http://en.wikipedia.org/wiki/I%CE%BAB_kinase
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Figure 2 Example of intracellular cell signalling pathways in a colon cancer cell (a) Wnt signalling pathway (b) NFκB 

signalling pathway (c) MEK/ERK signalling pathway (d) PI3K/AKT signalling pathway (e) Extrinsic apoptosis pathway (f) Intrinsic 

apoptosis pathway (g) Cell cycle pathway. ---- Extracellular signalling molecule. 
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1.1.4 Apoptosis 

Unchecked cell growth and multiplication can result in tumour growth. 

Apoptosis, a programmed mechanism of cell death, plays a very 

important role in cell population control. The first visible signs of apoptosis 

are condensation of the nucleus and DNA fragmentation, which are 

followed by shrinkage, blebbing, and the eventual consumption of the cell 

by phagocytic cells. There are two apoptosis signally pathways: the 

extrinsic, or death receptor pathway, and intrinsic or mitochondrial 

pathway [53]. The extrinsic pathway is mediated by members of the TNF-

receptor family (e.g. Fas and TNFα), and once activated leads to the 

formation of the ‘death inducing signalling complex’ (DISC), composed of 

FADD and procaspase 8. This induces the activation of cysteine-aspartic 

proteases known as caspases, leading to the initiation of the caspase 

cascade which promotes cell death (Figure 2e). The intrinsic pathway 

(Figure 2f) is characterised by the depolarisation of the mitochondria and 

the release of cytochrome c which facilitates the formation of the 

apoptosome complex which initiates the activation of the caspase 

cascade through caspase 9. The initiation of the intrinsic pathway is 

regulated by members of the Bcl-2 family, which comprises pro-apoptotic 

(Bax, Bad, Bid, Bak, Bim, Puma, Noxa) and anti-apoptotic (Bcl-2 and Bcl-

XL) proteins. Bcl-2 has been shown to suppress p53-dependent 

apoptosis [54] and loss of Bcl-2 expression has been shown to be a 

prognostic factor in CRC [55, 56].  

The TSP, PTEN is essential in the regulation the PI3K/Akt pathway, a key 

pathway in the regulation of apoptosis as well as cell cycle progression 

and proliferation. 5-14% of CRCs have a PTEN mutation [57], resulting in 

the over-activation of this pathway. PI3-Kinase (PI3K) is an enzyme that 

activates PtdIns(3,4,5)P3 and PtdIns(3,4)P2 at the plasma membrane. 

These proteins recruit and bind the pleckstrin homology domain of Akt 

(also known as PKB), a serine/threonine protein kinase.  Akt is important 

in regulating cell survival by binding and regulating downstream effectors 

such as the pro-apoptotic protein Bad and TNF-related apoptosis-

http://en.wikipedia.org/wiki/Phosphatidylinositol_(3,4,5)-trisphosphate
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inducing ligand (TRAIL) [58, 59], as well as activation of β-catenin [60]. 

PTEN is an inhibitor of this pathway, blocking the recruitment of Akt to the 

membrane [61]. The transforming growth factor-β (TGFβ) pathway is 

another cascade involved in CRC apoptosis and cell proliferation. TGFβ 

superfamily ligands bind to receptors that recruit receptor-regulated 

SMADs which ultimately phosphorylate SMAD4, a transcription factor and 

TSP that can regulate apoptosis and cell cycle arrest [62]. SMAD4 

mutations are found in approximately 10% of patients with sporadic 

CRCs, respectively [63, 64]. The SAPK/JNK pathway is also involved in 

cell survival. SAPK/JNK is activated by environmental stresses, 

inflammatory cytokines and growth factors. It translocates to the nucleus 

to regulate the transcription of genes such as p53 and c-jun involved in 

cell cycle progression and apoptosis [65-67]. Similar to the SAPK/JNK 

pathway, the p38 MAP kinase pathway is activated by cellular stresses. 

MKK3/4/6/7 activate p38 to mediate various genes involved in cell cycle 

progression and apoptosis [68]. 

1.1.5 Cell Adhesion 

There is a close link between the survival of various normal and tumour 

cell types and adhesion to the extracellular matrix (ECM) [69]. The ECM 

provides structural support in tissues and is a network consisting of 

polysaccharides, fibrous proteins and adhesive proteins that are secreted 

by cells. Cell-cell and cell-ECM interactions are essential to provide 

signals for regulating cell growth and survival, particularly apoptosis. 

Integrins are a large family of transmembrane proteins that that promote 

adhesion of cells to the ECM or to the surface of other cells. When cells 

detach from the ECM, normal cell-ECM interactions are lost and this can 

result in anoikis, a form of programmed cell death. However, cancerous 

cells may be able to escape anoikis, allowing them to invade other 

organs. Focal adhesion kinase (FAK) is a protein kinase which is 

activated in response to integrin-mediated adhesion and controls a 

number of biological processes including cell spreading, proliferation, 

survival and motility [70, 71]. It has been shown that the adhesion of cells 
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to the ECM stimulates the interaction of PI3K with FAK, resulting in 

increased Akt expression and subsequent survival and growth [72]. FAK 

also enhances detachment and apoptosis in colon cancer cell lines [73]. 

CD44 is another important molecule whose role is to maintain organ and 

tissue structure via cell-cell and cell-matrix adhesion. CD44 gene 

transcription is in part activated by Wnt signalling pathway via β-catenin. 

Over expression of CD44 is a hallmark of CRC cells [74] and there is 

accumulating evidence that CD44 is involved in the initiation and 

progression of CRC [75-77]. 

As well as contact with the ECM, cell-cell interactions are fundamental for 

cell survival. Cell-cell contact is mediated by a variety of cell adhesion 

molecules including integrins, selectins and cadherins. Cadherins are a 

large family of transmembrane adhesion proteins that form adherens 

junctions to bind cells within tissues together, orchestrating crucial 

intracellular and extracellular signalling processes [78]. Down regulation 

of E-cadherin expression has been correlated with colorectal carcinoma 

tumour size, histopathology and differentiation [79] and has been shown 

to augment β-catenin nuclear localisation resulting in cell growth and 

survival [80]. As well as a Wnt transducer, β-catenin is also a vital 

component of adherens junctions where it links E-cadherin and α-catenin 

as well as binding actin and actin-associated proteins [81]. Additional cell 

adhesion proteins that mediate cell-cell contact are intercellular adhesion 

molecules (ICAMs) and vascular cell adhesion molecule-1 (VCAM1), 

predominantly known for their role in inflammation by mediating the 

adhesion of leukocytes and lymphocytes to the vascular endothelium. 

ICAM1 can be induced by cytokines IL-1 and TNFα and is expressed by 

the vascular endothelium, macrophages, and lymphocytes. However 

ICAM1 and VCAM1 are also expressed in colon cancer cells, mediating 

cell-cell adhesion [82-86]. It has been shown that over expression of 

VCAM1 and ICAM1 may stimulate tumour progression in CRC [87, 88]. 

http://en.wikipedia.org/wiki/Transcription_(genetics)
http://en.wikipedia.org/wiki/Wnt_signaling_pathway
http://en.wikipedia.org/wiki/Vascular_cell_adhesion_molecule-1
http://en.wikipedia.org/wiki/Macrophages
http://en.wikipedia.org/wiki/Lymphocytes
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1.1.6 Colon cancer cell lines as models to study colorectal cancer 

Animal models and human studies have been used to demonstrate 

mechanisms that link the consumption of pectin to disease risk. However, 

in vivo models are not suitable for the initial screening of compounds or 

the investigation of molecular mechanisms, of which in vitro models are 

more suitable. In cancer biology, immortalised cell lines are often used 

because of their widespread availability and representation of the in vivo 

state. Five colon cancer cell lines were employed in this study. The DLD1 

cell line was established from the colon of a male with colorectal 

carcinoma [89, 90]; HT29 cells were isolated from a primary colon 

adenocarcinoma in a 44 year old Caucasian female [91]; HCT116 were 

established from a primary tumour of the ascending colon of a 48 year old 

male [92]; Caco2 cells were derived from colorectal carcinoma [93]; the 

LoVo cell line was established from a colorectal adenocarcinoma of a 56 

year old male [94]. Both HT29 and Caco2 cells are able to differentiate 

into cells acquiring enterocyte-like phenotypes. All five cell lines originate 

from colon carcinomas; however, the intricate cellular pathways in each 

cell line are different owing to mutations in different key genes. Table 1 

shows the main mutations present in each of the five cell lines, although 

other mutations may exist. Although an effective tool to study molecular 

mechanisms, cell culture does have its limitations owing to the fact that 

cultured cells will not be fully representative of the tissue from which they 

are derived due to the absence of the cell microenvironment. However, 

providing that limitations are appreciated, cell culture is an immensely 

valuable tool in biomedical science. 
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Table 1 Colon cancer cell line mutations. Adapted from [95]. 

 

 Cell line APC KRAS PIK3CA P53 SMAD4 BRAF PTEN 

DLD       

HCT116       

HT29       

Caco2       

LoVo       

 

 

1.2 Colorectal cancer and diet 

Diet is known to play a major role in CRC, particularly the high 

consumption of processed red meat [4, 96], and the low consumption of 

fruit, vegetables and fibre [8, 97, 98]. The European Prospective 

Investigation into Cancer and Nutrition (EPIC) study investigates the 

associations between fruit, vegetable and fibre consumption and cancer 

risk. It is an ongoing study, followed for almost 15 years, with more than 

half a million participants recruited across 10 European countries. 14 

sites of cancer are investigated, including the colon where CRC risk is 

inversely correlated with total intake of fruit, vegetables and fibre [97]. 

Fibre has long been credited with protecting against the development of 

diseases such as cardiovascular disease [99], diabetes [100], as well as 

with reduced CRC risk [101]. In 1971, Burkitt observed the low incidence 

rate of CRC among rural Africans whose diet comprised a high content of 

fibre [102]. From this the hypothesis that dietary fibre reduces the risk of 

colorectal cancer was born. Until fairly recently, results of the 

epidemiological studies investigating the association between risk of CRC 

and intake of fibre have been inconsistent. However, recent studies 

support the connection [98, 103, 104]. Dietary fibre is found naturally in 
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fruits, vegetables and whole grains, but can also be obtained from plant 

raw material by physiological, enzymic or chemical means. It has been 

defined as carbohydrate polymers of ≥10 monomeric units occurring in 

the diet that are resistant to digestion and absorption in the small 

intestine, with complete or partial fermentation in the large intestine [105]. 

Dietary fibre encompasses a wide variety of plant matter including pectin, 

chitin, lignin, waxes, inulin, resistant starch, non-starch polysaccharides, 

β-glucans and oligosaccharides. Research into defining and measuring 

fibre as well as determining the health benefits of fibre consumption are 

ongoing. Fibre can be classed as soluble and insoluble.  It is not clear 

which specific types of sources or which components of dietary fibre are 

associated with reduced risk of CRC. Several plausible mechanisms have 

been suggested to explain the association of fibre with CRC risk, 

including increased faecal bulk and reduced intestinal transit times [106], 

the dilution of faecal carcinogens [107], and the formation of short chain 

fatty acids from fermentation of colonic bacteria [108]. 

Pectin, largely a soluble fibre, has been shown to reduce cholesterol 

[109] and to have prebiotic properties [110-112], as well as anti-cancer 

effects that will be discussed later. Pectin is consumed in the diet 

predominantly as a component of fruit and vegetables. Values of pectin 

contents in fruit and vegetables can be highly variable depending on 

source, cultivar, genus, species and state of maturity [113]. The pectin 

contents of some fruits and vegetables are shown in Table 1. Contents 

are variable; however, an approximate mean of 0.6% can be used to 

estimate the daily intake of pectin as 1.8 g (assuming consumption of 

approximately 300 g fruits and vegetables per day). Pectin is also 

consumed as an additive in foodstuffs as it is used in the food industry as 

a gelling and thickening agent and stabiliser in food, for example in jams 

and yoghurt drinks. Pectin for commercial purposes is usually extracted 

from citrus peel due to its high pectin content (approximately 30-

35%[114]). 
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Table 2 Published values of pectin contents of fruit and vegetables. 

Taken from [113]. 

Food Pectin content % Reference 

Apples 0.14-1.15 [115, 116] 

Apricots 0.42-1.32 [115] 

Bananas 0.44-1.02 [117] 

Cherries 0.01-1.15 [115] 

Grapes 0.12-0.8 [118, 119] 

Grapefruit 0.24-0.65 [120, 121] 

Oranges 0.25-0.76 [115] 

Raspberries 0.1-0.88 [115] 

Quince 1.4 [122] 

Squash 0.67 [123] 

Sweet potato 0.61-0.78 [123, 124] 

Carrots 0.71-1.01 [125, 126] 

Beans 0.27-0.63 [124] 

 

1.3 Pectin 

1.3.1 General pectin structure 

Pectins are important structural components of cell walls of the soft, non-

woody parts of fruit, vegetables and terrestrial plants. Within a living plant 

it is an important structural polysaccharide with functions in plant growth, 

morphology and development [127]. Fruit ripening involves pectin 



34 

 

breakdown induced by the enzymes pectinase and pectinerase leading to 

cell separation [128]. When extracted, the major commercial use for 

pectin is as a gelling or thickening agent and as a stabiliser in food, for 

example in jams and yoghurt drinks. The most important source of 

commercial pectin today is waste from the juice industry in the form of 

citrus peel, mainly from lemon and lime. Other commercial pectins are 

sourced from orange peel and apple pomace, and an emerging new 

source is from sugar beet from the sugar industry.  

Pectins are conceivably the most complicated of the natural plant 

carbohydrates, both in terms of their chemical composition and their 

physical chemical structure. They contain a number of defined structural 

units [127]: homogalacturonans (HG), rhamnogalacturonan I (RGI), and 

substituted galacturonans such as rhamnogalacturonan II (RGII). Other 

substituted galacturonans (apiogalacturonans and xylogalacturonans) 

have been identified, but only in extracts from certain specific plant 

species. The familiar components of interest in discussing the bioactivity 

of pectin as an anti-cancer agent are HG and RGI.  

The most predominant region of pectin is HG, composed principally of a 

homopolymer of (14)-linked α-D-galacturonic acid (GalA) partially 

methylated at C-6 [129] (Figure 3). The degree of methylation (DE) refers 

to the ratio between methylated and non-methylated GalA. Pectin with 

high DE is known as HM pectin and generally refers to pectin with 50% or 

more methyl ester groups on the HG backbone, and low DE pectin (LM 

pectin) with fewer than 50%. The methyl-ester content is particularly 

important in pectin research as it strongly determines the physical 

properties of pectin. The GalA residues at O-2 and O-3 may also be 

partially esterified with acetic acid in certain plant species such as sugar 

beet [130]. Again, the ratio between acetylated and non-acetylated GalA 

is referred to as the degree of acetylation (DAc) (Figure 3).  
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Figure 3 Primary structure of the polygalacturonic acid backbone of 

pectin. 

 

A second well-characterised component constitutes the ‘hairy’ regions of 

pectin or rhamnogalacturonan I (RGI) regions. RGI consists of a 

backbone composed of a repeating disaccharide of GalA and rhamnose 

(Rha) residues [-4)-α-D-GalA-(1,2)-α-L-Rha-(1-]n [131, 132]. They are 

highly branched structures with neutral sugar side chains of varying 

degrees of polymerisation attached to O-4 or O-3 position on the α-L-

rhamnose residues [133, 134] (Figure 4). These side chains consist 

mainly of α-L-arabinose and/or β-D-galactose residues. The major types 

of sidechain present are: (i) Arabinan (Ara), comprising (15)-α-L-Ara 

units and often ramified with short (13)-α-L-Ara or single α-L-Ara non-

reducing units at O-2, O-3 or O-5 positions (Figure 4b); (ii) Galactan (Gal) 

comprising linear, type I (1→4)-β-D-Gal (Figure 4a) or branched, type II 

(1→3,6)-β-D-Gal, depending on the plant source; (iii) Arabinogalactan I 

(AGI) consisting of a basal chain of (14)-β-D-Gal substituted at O-3 with 

short (12)/(13)-α-L-Ara or single α-L-Ara non-reducing units (Figure 

4c); (iv) type II arabinogalactan (AGII) which has a backbone of (13)-β-

D-Gal heavily substituted at position 6 by mono- and oligosaccharide Ara 

and Gal side chains. Recent studies on the bioactivity of pectin are 

beginning to emphasise the potential importance of these neutral sugar 

chain-containing regions. RGIs, as with whole pectins themselves are 

Methyl esters 

O-acetyl ester 
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highly variable depending on source and extraction. The RGI regions in 

Figure 4 are shown as containing all the identified types of sidechains, 

although it is not known whether there are different types of RGI regions 

containing just arabinans, galactans or arabinogalactans. Depending on 

the source the sidechains may contain minor amounts of other sugars 

such fucose, xylose, mannose, glucose [135], glucuronic acid and methyl 

esterified glucuronic acid and, in some cases, phenolics [136].  

 

 

 

Figure 4 Schematic diagram of RGI. (a) Linear (1→4)-β-D-Galactan; (b) 

Arabinogalactan II; (c)  branched (1→3,5)-β-L-Arabinan; (d) Arabinogalactan I 

1.3.2 Pectin Models 

The details of the exact molecular arrangement of the different pectic 

molecules relative to one another are still ill-defined. Pectins are usually 

considered to contain mainly HG and RGI with smaller amounts of RGII 

and are commonly represented as a contiguous structure with RGI and 



37 

 

RGII interspersed between smooth HG regions (Figure 5a). Enzymatic 

degradation of HG can enrich the RGI regions signifying that these 

regions are linked together; however RGI is not always dispersed within 

HG backbone, and can depend on the pectin source. Round and co-

workers showed that RGI from tomato is found at the ends of HG or in 

aggregates [137]. Recent evidence additionally suggests an alternative 

structure in which HG may be present as side chains of RGI (Figure 5b). 

Direct observation of the molecular structure of pectin extracts by atomic 

force microscopy (AFM) reveals the presence of complex aggregated 

structures that release HG upon mild acid hydrolysis, as well as individual 

HG molecules, some branched with GalA sidechains [137]. HG was only 

degraded under conditionsthat break GalA-GalA linkages, and no 

detectable decrease in HG length was seen on removal of rhamnose by 

acid hydrolysis, which would be expected if the RGI region were 

interspersed with HG [137]. This suggests that the neutral sugars are 

located in the aggregates or at the ends of HG, favouring the alternative 

model [375].  

 

http://www.sciencedirect.com/science/article/pii/S2212619813000089#f0005
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Figure 5 Schematic diagrams of two proposed structures of pectin. 

(a) The generally accepted contiguous model of pectin. (b) An alternative 

structure whereby HG are side chains of RGI.  

 

1.4 Sources of Pectin 

Industrial pectins have particular specifications, confirmed by the Food 

and Agriculture Organisation that includes no less than 65% GalA, as well 

as various other stipulations to fulfil the specification of E440 as a food 

additive. However, pectins from different sources can vary in polymer size 

distributions, molecular weight, DE, the nature and placing of the neutral 

sugars as well as the addition of acetyl and feruloyl groups. Pectin 

structure from the same sources also vary with respect to the differences 

between plantations, climates, hereditary traits of the trees and could 

even vary day to day owing to factors such as the ripeness of the fruit and 

the weather prior to harvest [138]. It is these diverse structures from 

different sources and extraction conditions and modifications that make it 

possible to tailor pectins for distinct functionalities.  

1.4.1 Citrus peel 

Traditionally, citrus peel and apple pomace, as waste products from juice 

production, are the main sources of industrial pectin. Citrus peel is the 

more widely used, desirable due to its high pectin yield of 30-35% [114] 

and superior gelling properties. Commercial citrus pectin has relatively 

long HG chains, with a MW of approximately 79-200 kDa, and a high DE 

of around 70% [139, 140]. It additionally has a low DAc, and 

comparatively low neutral sugar content which make it suitable as a 

gelling agent. 

1.4.2 Sugar beet pulp 

An emerging source of pectin is from sugar beet pulp. Each year it is 

estimated that about 4 million tons of sugar beet pulp is generated in the 

European community as a result of the extraction of sugar from sugar 
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beet. This pulp is used primarily as a low-value animal feed; however the 

increased production of this waste-stream, as well as the increased cost 

of energy to prepare animal feed has diminished demand for this product. 

However, sugar beet pectin comprises ~19% of the pulp [141], which, if 

its functional properties are characterised, could potentially add value to 

this waste-stream. Its relatively high pectin yield and the ready availability 

of the raw material have made it a source that has justified extensive 

study. 

The chemical structure of sugar-beet pectin has been characterised by 

means of acid hydrolysis and enzymatic degradation [142, 143] [130, 

144, 145] and AFM [146, 147]. It has a relatively high DAc [148], a low 

DE, higher neutral sugar and protein content than other commercial 

pectins [141, 145]. Furthermore, unlike pectins from many other sources, 

sugar beet pectin contains feruloyl groups attached to the O-2 position of 

(15)–α-L-arabinans and the O-6 position of (14)-β-D-galactans within 

the RGI regions [134, 142]. The foremost commercial distinction of sugar 

beet pectin is that it has poor gelling ability, which is thought to be the 

result of these chemical characteristics [149].  

1.4.3 Potato pulp 

Potato pulp is a waste material of the potato starch industry. It is 

estimated that one million tons of potato pulp are created annually, of 

which only a minimal amount is exploited as animal feed [150].  Like 

sugar beet pectin, potato pectin has poor gelling properties which have 

been associated with a relatively high neutral sugar content [150]. Potato 

pectin is especially rich in RGI, of which the neutral sugar side chains are 

predominantly linear galactans, arabinogalactan I, and to a lesser extent 

highly branched arabinans [151]. 

1.4.4 Additional sources 

Other pectins under investigation that are thought to have attractive 

industrial properties are those extracted from sunflower head residues 
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[152], olive pomace [153], and peach [154]. As well as dietary sources, 

pectic polysaccharides are often extracted from plants usually associated 

with traditional medicine [155-159]. 

1.5 Pectin extraction and modification 

1.5.1 Pectin Extraction 

The physical properties of pectin are highly dependent on the conditions 

of extraction [148]. Pectins in an aqueous environment are not stable 

molecules, and under conditions of high temperature and a pH outside of 

the stable range of pH ~3-4, degradation reactions such as 

depolymerisation and de-esterification will occur. Therefore, conditions of 

extraction should be carefully controlled to attain the desired final 

properties of the pectin. Procedures for the extraction of industrial pectins 

are usually optimised to enhance not only the highest yield of pectin, but 

also a high content of HG and methyl esters, which generates the useful 

functional gelling properties of pectin. As well as the structures of pectin 

in situ, the extraction method will have a significant influence on the 

properties of pectins. Industrial methods generally involve extraction with 

hot acid. The peel or pulp is suspended in 70-90°C water with nitric acid 

to pH 1-3 for 3-12 hours. This is then filtered and the fluid that has been 

leached from the plant material is concentrated and mixed with alcohol to 

precipitate the pectin, after which it can be dried and milled [138].  

For research purposes, pectin extraction in the laboratory tends to be 

under milder conditions and to have more complex steps [148]. Extraction 

may be optimised to preserve or isolate parts of the pectin depending on 

what is being researched. An alternative method of pectin extraction is 

microwave-assisted flash extraction. As hot acid extracted pectin 

undergoes a relatively long period of heating, it experiences thermal 

degradation, whereas microwave extracted pectin can take just 15 

minutes of heating, therefore producing a higher yield and higher 

molecular weight pectin in a fraction of the time [160, 161]. 
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1.5.2 Pectin modification 

To create pectins for different functions, the pectin has to be modified. 

This is easily achieved as pectins are unstable and susceptible to 

changes in pH and temperature. Pectin has good stability in aqueous 

solution at around pH 3-4. At acidic conditions lower than pH 3 glycosidic 

bonds and methyl-ester linkages may undergo hydrolysis. The rate of 

hydrolysis increases with higher temperature and lower pH [162]. 

Hydrolysis of the sensitive neutral sugar side chains may lead to an 

increase in GalA content and decrease in neutral sugar content.  Studies 

have shown that mild acid hydrolysis causes the progressive release of 

sugars accompanied by their rapid degradation in the order of 

Ara>Gal>Rha>>GalA. This cleavage of glycosidic linkages in the HG 

chain causes a decrease in viscosity, molecular weight and polymer 

length [137, 163]. 

Incubation at high pH can significantly alter pectin structure. At a high 

temperature, alkali treatment will cause depolymerisation of the HG 

backbone by β-elimination, which occurs for glycosidic bonds of GalA 

moieties that are methyl-esterified at C-6 [164]. The rate of this reaction is 

accelerated with increasing degrees of methylation, temperature and pH 

[165]. Furthermore, at a high pH rapid de-esterification occurs [164, 166]. 

This cleaving of methyl esters is the most common modification in the 

pectin industry as it creates LM pectin useful for making gels with low 

sugar content. Pectin is often used in the process of jam-making and the 

usual method involves boiling HM pectin with sugar and citric acid, which 

make the pectin less soluble in water and on cooling sets to form a gel 

network. However, products with reduced sugar content require LM 

pectins to set as a gel. After pectin extraction, pulp can be treated with 

alkali or acid at a low temperature to cleave methyl-esters while retaining 

the long HG chains. Once esters are cleaved, carbonyl acid groups 

remain, and these negative acid groups have a strong affinity for small 

counter ions, such as calcium. The removal of esters needs to be 

sufficient enough to create blocks of GalA which associate between 

chains via this calcium binding to enable a gel network to form in the 
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absence of sugar at room temperature. This interaction with calcium also 

makes LM pectins useful as a stabiliser in yogurt and milk-based drinks. 

Ammonia is also sometimes used to convert ester groups into amide 

groups to achieve amidated pectin, which behaves much in the same way 

as LM pectin. 

Enzymes such as methylesterase can be used in the de-esterification 

process of pectins, and are known to give a more precise structural 

outcome [167]. However due to economic restraints they is rarely used in 

industry. In the laboratory enzymes are an extremely useful tool to 

characterise pectin subunits and study molecular structure [136, 168, 

169], as well as create pectic fractions for the study of bioactivity [170, 

171].  

1.6 Pectin and cancer  

1.6.1 Pectin and anti-cancer activity 

Polysaccharides (glucans, glycans, galactomannans, pectins etc.) from 

plants and fungi have long been used by cultures around the world for 

their medicinal and dietary benefits, and recent studies have shown 

certain polysaccharides to have anti-cancer effects [172-174]. Pectins 

and pectic polysaccharides, such as RGI and arabinogalactan, are 

among these compounds. High intakes of dietary fibre have been 

associated with a lower incidence of certain cancers, and this has given 

rise to considerable research into the anti-cancerous effects of pectin and 

pectic polysaccharides. Okhami and colleagues discovered that rats with 

azoxymethane-induced colon tumours that are fed diets containing 20% 

apple pectin or 20% citrus pectin showed a decrease in the number of 

tumours, with apple pectin having the most significant impact. They 

believe this is due to pectin decreasing faecal bacteria enzymes, which 

are potentially key in the generation of carcinogens [175]. A 

corresponding study by Tazawa and co-workers reported that rats fed a 

diet supplemented by 20% apple pectin presented a significantly 

decreased number of colon tumours and tumour incidence [176].  Pectin 
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also has potential as a prebiotic, stimulating the growth and activity of 

advantageous bacteria in the colon [177, 178]. Short chain fatty acids 

(SCFA’s) are produced when pectin is fermented in the gut and are 

thought to modulate various proteins associated with colon cancer 

progression [179, 180]. Avivi-Green and colleagues found that 

dimethylhydrazine-treated rats fed a pectin rich diet had decreased 

tumour number and volume, as well as cells with decreased Bcl-2 

expression and a high apoptotic index. They assume that SCFA’s may 

play a key role, although this is just speculation [181]. Reactive oxygen 

species (ROS) have also been implicated in the effect of dietary pectin on 

colonocyte modulation and apoptosis. ROS’s have been implicated in the 

effect of dietary pectin on rat colonocyte apoptosis. Sanders and co-

workers found that feeding rats a diet rich with fish oil and pectin 

enhances apoptosis, and this may be due to a modulation of the redox 

environment that promotes ROS-mediated apoptosis [182].  

There is a large body of literature on the effects of pectin and pectic 

polysaccharides on immune system function. Citrus pectin [183] and 

apple pectin [184] can affect cytokine production by lymphocytes, and 

numerous pectic polysaccharides can stimulate NO secretion, increase 

lymphocyte proliferation, complement fixing activity, and macrophage 

phagocytosis [158, 185-187]. As the progression of cancer and the 

immune system are inextricably linked, these studies play an important 

role in understanding the benefits of pectin on cancer progression, as well 

as other conditions such as gastric ulcers [188], bacterial infection [189] 

and wound healing [190]. 

1.6.2 Modified pectins and anti-cancer activity 

There is growing evidence linking modified forms of pectin with anti-

cancer activity. These pectins are often referred to as ‘modified pectin’ 

(MP), an ambiguous term simply meaning pectin that has been modified 

using pH, heat or enzymes. The majority of studies into the anti-cancer 

effects of MP utilise pectin from citrus peel, presumably for the reason 

that this is the main source of commercial pectin. Studies using modified 

http://en.wikipedia.org/wiki/Gut_flora
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citrus pectin (MCP) may have MCPs of different structures due to varying 

extraction and modification methods.  

Studies have highlighted effects of MP that are considered distinct from 

the effects of unmodified pectin. A seminal study by Platt and Raz [191] 

indicated that citrus pectin modified with pH and heat (MCP) to 

purportedly become lower in molecular weight and richer in galactan side 

chains has anti-cancer activity while the unmodified citrus pectin (CP) 

does not. Mice were injected with melanoma cells, and the formation of 

tumour colonies in the lungs was measured. It was found that mice 

injected with CP suffered from several tumour colonies in the lungs, 

whereas mice injected with MCP saw a 90% decrease in tumour 

colonies. This study built on the original hypothesis of Uhlenbruck and co-

workers [192] that β-galactose containing compounds could bind and 

block lectins. Since the study by Platt and Raz the principal explanation 

for the anti-cancer effects of MP is that galactan side chains on MP can 

bind to and inhibit Galectin-3 (Gal3), a multifaceted and pro-metastatic 

protein whose expression is upregulated in many cancers. Gal3 can 

preferentially bind to β-galactosides via its carbohydrate binding domain. 

The biology of Gal3 will be discussed later in section 1.7. 

Numerous studies investigating the effects of MCP on cancer cell lines, 

rodents and human cancer patients have been published. In a similar 

vein to Platt’s first study in mice, Pienta and colleagues investigated the 

effects of oral intake of MCP in rats injected with MAT-lylu prostate 

cancer cells.   Again, MCP significantly reduced the number of tumour 

colonies in the lung, while CP did not. They also found that MCP inhibited 

the adhesion of MAT-lylu cells to endothelial cells in vitro [193]. Adhesion 

of cancer cells to the endothelium is a major step in the formation of 

tumours and the ability to metastasise. Another similar study looked at 

mice injected with colon cancer [194] and breast cancer cells, as well as 

the adhesion of breast cancer cells to endothelial cells [195]. All results 

were consistent with Pienta’s study. 
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More recently, the majority of the studies relating to MP and cancer have 

been carried out with MCPs, specifically two patented MCPs; pH and 

temperature modified GCS-100 (La Jolla Pharmaceutical Co., CA, USA) 

and enzymatically modified Pectasol-C (Econugenics, CA, USA). Several 

studies confirm the anti-cancer effects of GCS-100. GCS-100 has been 

found to induce apoptosis, via activation of caspase-8 and -3, in multiple 

myeloma cells resistant to chemotherapeutic drugs melphalan, 

doxorubicin and bortezomib, possibly by overcoming the cytoprotective 

effects of Bcl-2 [196]. Extending this study, Streetly and co-workers 

confirmed an induction of myeloma cell apoptosis by GCS-100, this time 

via down-regulation of pro-survival proteins Bcl-XL and MCL-1, as well as 

up-regulation of p21, a regulator in cell cycle and cell growth progression 

[197]. In another study to demonstrate the effectiveness of GCS-100 in 

drug resistant cancer cells, GCS-100 was able to enhance cell sensitivity 

to cistplatin, a chemotherapy drug used to induce apoptosis [198]. GCS-

100 has also proved to be successful in the treatment of patients with 

relapsed chronic lymphocytic leukaemia, with 4/24 patients showing 

>50% shrinkage of lymph node regions [199].  

Pectasol-C is currently marketed in the US as a health supplement. 

Pectasol-C has a very low MW of 5-10 kDa and it has been postulated 

that this low MW allows it to be absorbed by the body, while larger MW 

pectin stays in the gut. Pectasol-C is known to chelate heavy metals in 

the bloodstream, which supports this claim [200]. Several studies have 

investigated the activity of Pectasol-C in numerous cancer cell lines, as 

well as in prostate cancer patients. Pectasol-C was found to inhibit 

proliferation [201], induce apoptosis and cell cycle arrest [202] in several 

prostate cancer cell lines, as well as inhibit breast and prostate cancer 

cell adhesion and migration when combined with two other Econugenic 

health supplements BreastDefend and ProstaCaid, respectively [203]. In 

a paclitaxel drug resistant ovarian cancer cell line, combination of this 

chemotherapy drug with Pectasol-C was found to overcome sensitisation 

and reduce cell viability [204]. Pectasol-C has also been found to have 

immunomodulatory properties including activation of NK cells, T-cytotoxic 
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and B cells against K562 leukemic cells [205] and reduce renal injury and 

fibrosis in rats with acute kidney injury [206]. Positive effects of Pectasol-

C have also been shown in humans with prostate cancer. A phase II 

study reported that eight out of ten men, returning after an initial 

treatment with surgery or radiation for prostate cancer, showed increased 

prostate-specific antigen (PSA) doubling time after taking Pectasol-C 

every day for 12 months. Prostate-specific antigen (PSA) doubling time is 

a measure of the rate at which blood levels of PSA rise. PSA is a marker 

of prostate cancer progression or recurrence, and so longer PSA 

doubling time is associated with slower disease progression [207]. A later 

trial in patients with advanced solid prostate tumours demonstrated that 

20.7% of patients studied had an overall clinical benefit from oral intake of 

Pectasol-C [208]. These results help to confirm an acceptable human 

safety profile of MCP.  

Numerous studies have shown bioactivity from MPs from various other 

sources. Li and colleagues studied the effects of modified apple pectin on 

a mouse model of colitis-associated colon cancer and showed that it 

enhanced apoptosis, decreased inflammation and prevented tumour 

formation [209]. Pectic polysaccharides from various plants including 

swallow root and ginger, as well as CP and arabinogalactan from 

larchwood, induced breast cancer cell apoptosis [210]. RGI derived from 

okra reduced cell-cell contact and adhesion, increased apoptosis and 

decreased cell proliferation in a mouse melanoma cell line [211], and 

ginseng pectic polysaccharides were shown to reduce murine 

fibrosarcoma cell migration [212] and reduce colon cancer cell 

proliferation [213].  

1.7 Galectins and Galectin-3 

1.7.1 Galectins 

Galectins are a family of soluble β-galactoside-binding lectins that have 

diverse biological functions both inside and outside cells and are 

implicated in cancer, immunity and inflammation.  A lectin is a protein that 
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does not chemically modify its ligands but binds and forms multivalent 

non-covalent complexes with them. There are 15 mammalian galectins 

with distinct similarities.  All have at least one carbohydrate recognition 

domain (CRD) of ~130 amino acids arranged in tight β-sheets, and have 

an affinity for β-galactose-containing carbohydrates and glycoconjugates. 

They are found in and on the surface of a variety of cell types, as well as 

the surrounding extracellular matrix. In the face of these common 

features, galectins have been split into three structural groups. Prototype 

galectins have just one CRD and are either monomers (galectin-5 and -

10) or homodimers (galectin-1,- 2, -7, -11, -13, -14, -15). Tandem repeat 

galectins have two CRD’s connected by a short linker peptide (galectin-4, 

-6, -8, -9, -12). Finally the chimera type, of which galectin-3 (Gal3) is the 

only member, contains one CRD and also a non-lectin domain [214, 215]. 

Evidence that galectins are found in many types of cells and have a wide 

cellular distribution, despite their lack of signalling peptides, points to a 

multifunctional set of proteins. Indeed, they have been implicated in 

controlling cell-cell and cell-matrix interactions, adhesion [216, 217], 

proliferation [218], apoptosis[219-221], and inflammation [222-225]. 

Evidence suggests that the structural arrangement of galectins 

determines the affinity and specificity of the CRD on interactions with 

multivalent carbohydrates [226]. Therefore different galectins can confer 

separate functions and mechanisms of action. Galectin-7 has been 

implicated in breast cancer metastasis, as well as inducing apoptosis and 

up-regulating MMP-9 expression in lymphoma cells [227, 228]. 

Conversely, galectin-4 has been named as a tumour suppressor, down-

regulating Wnt signalling target genes [229]. Galectin-8 appears to have 

dual functionality of a pro- and anti-metastatic galectin, inhibiting cell 

adhesion, migration in colon cancer cells while increasing migration in 

endothelial cells [230, 231]. Similarly, Galectin-9 has been implicated as 

anti-metastatic in myeloma cells [232] and breast cancer mouse models 

[233, 234], while causing increased cell adherence and aggregation in 

squamous cell carcinomas [235, 236]. 
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The most widely studied galectins are Gal3 and galectin-1 (Gal1). Gal1 

has been pinpointed as a potential therapeutic target in cancer due to its 

pro-metastatic behaviour [237-239]. However, it has also been implicated 

in inducing apoptosis in breast, colon and prostate cells [240-242].  

Conversely, Gal3 has been repeatedly implicated in tumourigenesis, with 

substantial evidence of inducing cell migration morphogenesis and 

adhesion [243-247], cell proliferation, and inhibiting apoptosis [248-256] 

in a wide variety of cancer cell lines.  

1.7.2 Galectin-3  

Gal3 (also known as CBP35, Mac2 and IgEBP) is a 30kDa chimeric 

protein unique to the galectin family. It is found in the nucleus, cytosol, 

plasma membrane and surface of various cell types including epithelial 

and endothelial cells, cells of the immune system and erythrocytes. It has 

three domains: a NH2-terminal domain containing a serine-6 

phosphorylation site, a collagen like pro/gly rich domain, and a COOH 

terminal containing the CRD and the NWGR death motif emblematic of 

the Bcl-2 family (Figure 6) [257]. It exists as a monomer in solution [258]. 

As the NH2-terminal contains serine-6 and -12, it can be phosphorylated 

by casein kinase I (CKI) [259]. This is thought to occur in the nucleus, 

where Gal3 can then be translocated to the cytoplasm to carry out its 

cellular functions [252]. The amino terminal domain also regulates self-

association into dimers or oligomers [260, 261], allowing for multivalent 

interactions of which its biological activities can depend on. To investigate 

the importance of the NH2-terminal, Gong and co-workers used site 

directed-mutagenesis to delete its 11 amino acids, resulting in loss of 

Gal3 nuclear localisation, abolition of secretion and diminished 

carbohydrate-mediated functions [257].  However, there is evidence the 

carboxyl-terminal domain may also have a role to play in oligomer 

formation [261, 262].  

The Gal3 CRD is essential for binding with β-galactose containing 

carbohydrates and glycoconjugates. It is comprised of 5- and 6-stranded 

β-sheets forming a β-sandwich. An apolar patch in the face of the 5-
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stranded β-sheet may provide a site for monomer-monomer interactions. 

Like other galectins, Gal3 CRD has an affinity for lactose and N-

acetyllactosamine (LacNAc), but it has a distinct attraction for larger 

oligosaccharides found on many cell surface and extracellular matrix 

molecules [215]. Gal3’s ubiquitous cellular localisation in the nucleus and 

cytoplasm, as well as the extracellular microenvironment, lends it great 

flexibility as a regulator of many biological systems. Its ability to bind 

multivalent molecules as well as modulate apoptosis and cell proliferation 

connects it with the pathogenesis of numerous diseases and conditions. 

Complicit in inflammation [225, 263, 264] and fibrosis [265-267], Gal3 has 

also been intensely studied with respect to carcinogenesis. 

 

 

Figure 6 Galectin-3 Structure  

 

1.8 Galectin-3 and Cancer 

1.8.1 Galectin-3 and cancer  

There has been a great deal of conflicting data with respect to expression 

of Gal3 in carcinogenesis, depending on the type, the grade, and the 

localisation of Gal3.  There is evidence that Gal3 is upregulated in 

cancers of the thyroid [268, 269], colon [270-272], liver [273], and 

downregulated in breast [274, 275]  and prostate [237, 276] cancers. 

However, Gal3 has also been noted to be downregulated in CRC [277-

279].  
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In malignant thyroid cells, there is significant evidence of high expression 

of Gal3 [268, 280], and there have been a number of published articles 

discussing the use of Gal3 expression as a diagnostic marker for thyroid 

carcinoma [281, 282]. A number of papers point to an overexpression of 

Gal3 in CRC [283, 284]. Analysing Gal3 expression in 153 tissue 

specimens of various stages of CRC, Schoeppner and colleagues found 

that there was a correlation between overexpression of Gal3 and the 

advancing stages of the disease, with survival greatest for patients with 

low grade Gal3 expression [270]. Further research confirms that by 

reducing Gal3 levels in mice, liver colonisation and spontaneous 

metastasis is clearly decreased [285]. Conversely, Lotz and co-workers 

concluded that progression from normal mucosa to carcinoma was 

associated with a significant fall in Gal3 protein and mRNA [277]. 

Decreased expression of Gal3 in breast cancer is associated with the 

invasive and metastatic phenotype, with reduced Gal3 correlating with 

increased histologic grade [274, 275]. Idikio and colleagues suggest this 

may be to do with decreased extracellular matrix binding and increased 

motility of invasive cells. However, an additional study found that if Gal3 

is supressed in malignant breast cancer cells, this reduced tumour growth 

in nude mice indicating that Gal3 is necessary for the maintenance of the 

transformed tumorigenic phenotype [286].  

There is also confirmation of decreased Gal3 in prostate cancer, and loss 

of Gal3 has been associated with cancer progression [237]. Pacis and 

colleagues found that Gal3 was expressed in 70% of benign or normal 

tissue compared to 10.5% of stage II and 53% of stage III tumours. The 

authors suggest that this alteration in Gal3 expression between tumour 

stages implies diverse roles for Gal3 in prostate cancer progression [276]. 

In fact, van den Brule and co-workers found that Gal3 translocating 

between the nucleus and cytoplasm in prostate carcinoma cells seemed 

to correlate with development of the disease. In normal lesions, Gal3 was 

found in the nucleus and cytoplasm, but in malignant lesions Gal3 was 

either non-existent or exclusively cytosolic [287]. This alteration of the 

cytoplasmic and nuclear expression pattern of Gal3 has been studied in 
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several papers. Gal3 can be predominantly cytoplasmic, predominantly 

nuclear, or dispersed between the two. Despite the differences in Gal3 

expression in separate cancer types, the majority of research is agreed 

on the intracellular localisation. In normal or benign tissue Gal3 is either 

in the nucleus and cytoplasm, or mainly in the nucleus. In carcinogenic 

and metastatic tissues, Gal3 is always located in the cytoplasm and 

excluded from the nucleus [277, 287, 288]. This prompts a question mark 

as to whether Gal3 has anti-tumour activities in the nucleus.     

1.8.2 Nuclear Galectin-3  

Gal3 shuttles between the cytoplasm and the nucleus. The first 11 

residues of the N-terminal and the last 28 residues of the C-terminal 

(within the CRD) are thought to be important for nuclear import [257, 

289]. A study by Nakahara and colleagues found that Gal3 binds directly 

to importin-α, a protein that imports other proteins to the nucleus by 

binding a nuclear localisation signal (NLS), and is required for Gal3 

nuclear localisation. The NLS equivalent in Gal3 is on the CRD and 

deletion of this sequence resulted in the complete loss of nuclear import 

[289]. Another critical factor in the export of Gal3 from the nuclear is its 

phosphorylation. Phosphorylated Gal3 is found in the nucleus and 

cytoplasm, whereas non-phosphorylated Gal3 is found exclusively in the 

nucleus. Takenaka and co-workers showed that in response to apoptotic 

insults, CKI phosphorylates Gal3 in the nucleus, so phosphorylated Gal3 

can translocate to the cytoplasm to protect the cell from drug-induced 

apoptosis [252].  

1.8.3 Intracellular Galectin-3 

Gal3 is found intracellularly in the nucleus, cytoplasm, at the plasma 

membrane and at the mitochondria. Its main role inside the cell is thought 

to be in regulating apoptosis, proliferation and cell cycle progression, vital 

for the maintenance of tissue homeostasis and prevention of 

tumourigenesis. Its association with numerous ligands connected with cell 

survival illustrates Gal3’s multifaceted behaviour.  
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Within its C-terminal, Gal3 encompasses a NWGR death motif 

emblematic of the Bcl-2 family (Figure 6, p.49). Members of the Bcl-2 

family are vital to the intrinsic mitochondrial apoptotic pathway. Activated 

by events such as DNA damage, pro-apoptotic signals direct Bax, Bad 

and Bid to the mitochondria where they interact with anti-apoptotic Bcl-2 

and Bcl-XL to establish whether or not apoptosis will be initiated. If the 

pro-apoptotic proteins prevail, cytochrome c is released from the outer 

membrane and interacts with the apoptosome, leading to the activation of 

effector caspases and apoptosis. For Bcl-2 to exert its anti-apoptotic 

actions, its BH1 domain is vital [290]. Within this domain is the highly 

conserved NGWR motif. As Gal3 is also anti-apoptotic, Yang and co-

workers speculated whether Gal3 and Bcl-2 had common features.  They 

indeed found that, unlike other galectins, Gal3 encompasses the NGWR 

motif [291]. They went on to demonstrate that Bcl-2 binds to Gal3 in a 

lactose-inhibitable manner. Bcl-2 is known to bind Bax via its BH1 

domain, so it is possible that Gal3 regulates apoptosis via its interaction 

with Bcl-2. However, it should also be considered that Gal3 could mimic 

or replace Bcl-2. Akahani and colleagues mutated the NGWR motif of 

Gal3, and consequently found that it failed to inhibit apoptosis in breast 

carcinoma cells [292]. Gal3 also did not alter the expression levels of Bcl-

2. Similar research by Yu and co-workers demonstrated that Gal3 is 

upregulated in the mitochondrial membranes following apoptotic stimuli.  

Here they revealed that Gal3 protects mitochondrial integrity and 

downregulates the caspase cascade following intrinsic apoptotic signals 

[251] Furthermore, they verified that synexin, a member of the annexin 

family of proteins that regulates intracellular vesicle fusion and membrane 

trafficking, is vital in translocating Gal3 to the mitochondrial membranes 

to carry out its anti-apoptotic functions. They note that while Bcl-2 exists 

on the mitochondrial outer membrane through its C-terminal anchor 

domains, Gal3 has no such domain, so the molecular actions are still 

unclear. They speculate that Gal3 could adhere to the mitochondria via 

Bcl-2, or directly interact with the mitochondrial permeability transition 

pore complex. Conversely, an additional study showed that Gal3 binds 
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and inhibits ATP synthase in the inner membrane of the mitochondria, 

and Gal3 suppression induces cell cycle progression in colon cancer cells 

[293].  In further research, Gal-3 null LNCaP prostate cancer cells were 

transfected with Gal3 and their reaction to pro-apoptotic treatments 

measured. To induce apoptosis, these agents induce DNA damage which 

increases Bad expression and increases its phosphorylation, leading to 

membrane depolarisation and cytochrome c release. In Gal3 transfected 

cells, induction of chemotherapeutic agents caused translocation of Gal3 

from the nucleus to the cytoplasm where it reversed this pro-apoptotic 

effect by decreasing Bad phosphorylation and protecting mitochondrial 

integrity [255]  

Another Gal3 associated ligand is KRas, a crucial protein in the regulation 

of cell growth, differentiation and apoptosis (Figure 7). KRas operates as 

a molecular on/off switch, alternating between GDP (inactive) and GTP 

(active) states. KRas has a region in the C-terminus that ends with a 

CAAX motif that directs it to the plasma membrane [40], where it is 

anchored via the C-terminal S-farnesylcysteine [41].  Once activated it 

recruits and activates a multitude of effectors including Raf and PI3K, 

essential players in cell proliferation, differentiation, survival and death. 

Gal3 is recruited by GTP bound KRas from the cytosol to the plasma 

membrane, where a hydrophobic pocket within the CRD of Gal3 is 

thought to accommodate the farnesyl group of KRas. KRas forms 

nanoclusters at the plasma membrane, which are essential for signal 

transduction. Once recruited to the plasma membrane, Gal3 becomes an 

integral nanocluster component, stabilising KRas in its active state and 

increasing signal output. Shalom-Feuerstein and colleagues found that 

when they mutated the Gal3 hydrophobic pocket, KRas nanocluster 

formation was reduced, along with cell proliferation and transformation 

[294]. 

Gal3 can also act on the PI3K/Akt pathway by upregulating Akt (Figure 

7). Song and co-workers demonstrated that downregulation of Gal3 in 

colon cancer cells led to reduced phosphorylation of Akt, increased 
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GSK3β activity, and therefore phosphorylation of β-catenin and its 

degradation, leading to a reduction in cell proliferation [295]. Akt can also 

inhibit TRAIL sensitivity in bladder cells via inhibiting Bid cleavage, and 

therefore apoptosis, with Gal3 boosting this mechanism by activating Akt 

[296]. In keratinocytes, Gal3 was found to enhance Akt activity, while 

suppressing ERK activation [297].  

Gal3 is additionally involved in the Wnt signalling pathway (Figure 7). Shi 

and colleagues showed that silencing Gal3 led to the inhibition of 

TCF/LEF-reporter activity, decreased cytosolic β-catenin and cyclin D1 

expression in CRC cells [298]. Furthermore, Kobayashi and co-workers 

discovered that Gal3 upregulated β-catenin in pancreatic cancer cells. In 

addition, they found the mechanism to be Gal3 causing upregulation of 

phosphorylated Akt and GSK3β, and therefore β-catenin [299]. This 

theory is supported in a study of Gal3, β-catenin and cyclin D1 correlation 

in benign and malignant thyroid neoplasms [300]. Gal3 has also been 

shown to directly bind with β-catenin. Shimura and colleagues showed 

that the C-terminal of Gal3 (amino acid residues 63-250) binds the N-

terminal of β-catenin, and co-localises with the β-catenin/TCF/LEF 

complex within the nucleus of CRC cells. This binding domain is within 

the CRD of Gal3 and is lactose inhibitable. They speculate whether Gal3 

is involved in the nuclear retention of β-catenin, as the molecular 

mechanism that targets β-catenin to the nucleus is unclear [301]. In a 

corresponding study, Shimura and colleagues note that as well as 

phosphorylating β-catenin, GSK3β also phosphorylates Gal3 at serine 96 

(Figure 7) [302]. As well as having an effect on cell proliferation via the 

Wnt pathway, Gal3 has also been shown to have an effect on cancer cell 

motility, morphology and malignant cell invasion.  Kim and co-workers 

confirmed that Gal3 interacts directly with GSK3β. While investigating the 

effects of Gal3 on the actin bundling protein fascin-1, they found that 

mutating Gal3 at serine 96 decreased the level of fascin-1 expression, 

whilst also decreasing levels of phosphorylated GSK3β and nuclear β-

catenin.  They theorise that a Gal3, GSK3β, and β-catenin/TCF/LEF 

complex translocates to the nucleus, binds to the fascin-1 promoter, 



55 

 

increases fascin-1 expression, and therefore enhances cell migration 

[246].  
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Figure 7 Cell signalling pathways associated with intra- and extracellular Galectin-3 



 

 

1.8.4 Extracellular Galectin-3 

Galectins are well known to bind simple β-galactosides such as lactose, N-

acetyllactosamine (LacNac) and poly-LacNac. Hydrogen bonding to O-4 and 

O-6 on galactose has been found to be important for stabilising lactose-

based structures within the CRD [303], indicating the binding of terminal 

galactose residues within the CRD. Lactose is the simplest unit required for 

Gal3 binding [304], however the binding affinity is relatively weak and Gal3 

has a stronger binding affinity for more complex oligosaccharides like 

polymers of β(13)-linked-LacNAc units found on many ECM and cell 

surface molecules [226]. The extracellular biological activities of Gal3 largely 

involve its interactions with β-galactoside-containing glycans on the surface 

of various cell types via the Gal3 CRD [305]. Extracellular Gal3 is thought to 

be involved in chemotaxis, chemoinvasion, aggregation and angiogenesis 

[243-247]. On the cell surface and in the microenvironment, Gal3 interacts 

with many ligands resulting in cell-ECM binding. These include laminin [306], 

collagen IV [307], fibronectin [308], and mucins. Colon cancer cells produce 

mucin glycoproteins on their surfaces and in the ECM, and production has 

been correlated with their metastatic ability [309]. The mucins contain 

polylactosamine chains which are a major ligand for endogenous Gal3.  

Integrins are also major ligands for Gal3. Markowska and co-workers 

showed that Gal3 binds αvβ3 integrin N-glycans via its CRD. The ability to 

promote αvβ3 integrin clustering and subsequent activation of vascular 

endothelial growth factor (VEGF) and fibroblast growth factor (FGF) 

signalling drives angiogenesis. To confirm, the authors showed that when 

Gal3 was knocked down in cells this reduced VEGF and bFGF mediated 

angiogenesis [247].  Via another mode of action, Gal3 oligomer, α3β1 and 

NG2 proteoglycan (expressed by pericytes in newly formed blood vessels) 

form a complex on endothelial cell surfaces, activating α3β1 and inducing 

cell motility and morphogenesis [244].  Furthermore, a study by Nangia-

Makker and colleagues showed that by injecting a mouse model with Gal3 

expressing breast cancer cells and Gal3-null controls, tumour angiogenesis 

was significantly greater when Gal3 was present. They speculate that once 
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extracellular Gal3 binds to cell surface receptors, integrin αvβ3 increases, 

which causes endothelial cell migration and attachment.  What is more, they 

found that if they neutralised Gal3 CRD, there was a reduction in tumour 

formation [243].  

It is thought that for extracellular Gal3 to carry out its functions, the cleavage 

of secreted Gal3 is vital. Cleavage of galectins by matrix metalloproteinase’s 

(MMPs) has been associated with progression of breast and prostate cancer 

in humans [310, 311]. The collagen α-like sequence of Gal3 contains a 

cleavage site for MMP-2 and -9 [312]. Nangia-Makker and colleagues 

showed that cleavage at this site is correlated with blood vessel density and 

progressive stages of breast cancer [313]. This cleavage is thought to allow 

the release of Gal3 into the tumour microenvironment, and subsequently 

induce chemotaxis, invasion and angiogenesis. In a pilot study, Balan and 

co-workers showed that a functional polymorphism in the Gal3 gene results 

in susceptibility to MMP2/9 cleavage. Using genotype analysis they also 

found that this polymorphism is related to racial disparity in breast cancer 

incidence in Asian and Caucasian women [292].  

1.9 Modified pectin and Galectin-3 

The pro-metastatic actions of extracellular Gal3 largely involve its interacting 

with oligosaccharides with terminal-linked galactose residues via the Gal3 

CRD. Consequently, the hypothesis has arisen that it may be possible to 

inhibit metastasis of tumour cells by blocking lectins with galactose-

containing polysaccharides. Given the structural and functional significance 

of the Gal3 CRD, numerous lactose-based compounds have been 

synthesised to bind specifically at this site [314-318]. However, due to non-

specificity and potential side-effects, these synthetic inhibitors are potentially 

poor therapeutic clinical agents. Consequently, galactose-rich saccharides 

from food are thought to provide an attractive natural alternative.  

A study by Evans and colleagues suggests that the protective effect of fruit 

and vegetable fibre in the diet could be related to their galactose content 

[319]. However, the majority of research into the galectin/galactose 
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hypothesis has been carried out mechanistically in vitro and in vivo. An early 

study by Beuth and colleagues showed that the metastasis of sarcoma cells 

to the liver in mice was inhibited by injection of arabinogalactan. The authors 

attributed this to the blocking of hepatic asialoglycoprotein receptor protein 

(liver lectin) by arabinogalactan, as it significantly delayed the elimination of 

asialoglycoprotein from the serum of mice. D-galactose delayed 

asialoglycoprotein elimination to a lesser extent to arabinogalactan and this 

was attributed to the rapid metabolism and elimination of D-galactose in the 

serum [320]. The direct binding of MPs to Gal3 was first demonstrated by 

Inohara and co-workers. Recombinant Gal3 added to plates coated with 

MCP or bovine albumin serum (BSA) as a control, stuck to MCP coated 

plates, but not BSA. This binding was completely blocked by lactose, which 

indicates a specific interaction between MCP and the Gal3 CRD [321]. 

Further investigations showed that MCP, but not CP, almost completely 

prevented the binding of Gal3 to endothelial cells [195]. A study utilising 

biophysical techniques including atomic force spectroscopy showed that 

specific binding to Gal3 CRD involves neutral sugar side chains containing 

terminal galactose at the non-reducing end of the polysaccharide chain. 

Studies on potato RGI and galactan showed that Gal3 specifically binds 

β(14)-linear galactans. NMR analysis of potato galactan showed the 

existence of linear side chains linked to the RGI backbone at an average 

length of 22 residues. The authors also reported that HG-domains derived 

from citrus pectin showed no specific interaction with Gal3 [322]. The 

disaccharide β-galactobiose was also shown to bind specifically to Gal3 

[323].  

MCP has also been shown to have an effect on Gal3 protein expression. In 

multiple myeloma cells, the anti-proliferative effect of chemotherapeutic 

agent dexamethasone was greatly enhanced by the MCP GCS-100, and was 

concomitant with a downregulation of Gal3 protein [196]. Conversely, 

melanoma cells incubated with okra RGI were shown to upregulate Gal3 

protein located in the cell membrane. Okra RGI was shown to reduce 

melanoma cell proliferation and induce apoptosis and cell adhesion [211]. 

Similarly, modified apple pectin (MAP) increased levels of Gal3 in the 

http://www.sciencedirect.com/science/article/pii/S0168827886800265
http://www.sciencedirect.com/science/article/pii/S0168827886800265
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nucleus and cytoplasm of cells from a mouse model of colitis-associated 

CRC. As MAP enhanced apoptosis, decreased inflammation and prevented 

tumour formation in mice, as well as reduce levels of Gal3 in their serum, the 

authors speculate that the increase in intracellular Gal3 could be due to MAP 

preventing Gal3 binding to its targets, causing the cell to produce more Gal3 

to compete with the actions of MAP [209]. Conversely, Liu and colleagues 

showed that despite MCP reducing liver metastasis in mice, serum Gal3 

expression was shown to not be modulated by MCP, leading to speculation 

that extracellular Gal3 is blocked by MCP, while intracellular Gal3 remains 

unaffected [194]. 

As well as binding to Gal3, MCP has also been postulated to interact with 

and displace Gal3 from cells. In tumour bearing mice vaccinated with tumour 

antigen, injection with GCS-100 led to tumour rejection in 50% of the mice, 

whereas all control animals died. The effect was attributed to the ability of 

GCS-100 to displace Gal3 from the surface of tumour-infiltrating 

lymphocytes, facilitating surface mobility of T-cell receptors and their 

association with CD8, thus enhancing the cytotoxicity of the cells [324]. 

Additionally, Huang and colleagues showed that the concentration of Gal3 in 

culture medium after cultivation of liver and lung cancer cells was increased 

after incubation with enzyme-treated citrus pectin, as opposed to untreated 

or CP-treated cells. The authors speculate that the release of Gal3 from 

cancer cells could interrupt the binding of cancer-membrane bound Gal3 to 

normal cells, thus diverting adhesion, aggregation and subsequent 

metastasis. 

A comprehensive study by Gao and colleagues has investigated the 

inhibitory effects of ginseng RGI on Gal3 [325]. The binding affinity of 

ginseng RGI for Gal3, determined by surface plasmon resonance, was 

significantly higher than that of MCP and potato galactan. Gal3 interactions 

were also verified by the binding of RGI to recombinant Gal3-coupled beads. 

Bound RGI was completely washed off by lactose, indicating a specific 

binding with the Gal3 CRD. However, the isolated backbone of RGI, devoid 

of galactan side chains, was also shown to bind tightly to Gal3, although this 
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was not lactose inhibitable indicating a non-specific interaction. The authors 

speculate that this could be an ionic interaction, although contemplate that it 

is possible that there may be secondary carbohydrate recognition sites within 

the Gal3 molecule. Additionally, ginseng RGI significantly inhibited the 

adhesion of HT29 cells to Gal3-coated plates, and inhibited the binding of 

Gal3 to T-cells. Furthermore, the authors employed a haemagglutination 

assay used in some investigations to measure the potential of Gal3 

inhibitors. The assay was first employed by Sathisha and co-workers who 

showed that swallow root pectic polysaccharides significantly inhibited the 

agglutination of red blood cells. The agglutination is assumed to be Gal3-

mediated as lactose also had inhibitory activity [210]. Ginseng RGI also 

significantly inhibited the agglutination of red blood cells, and the authors go 

on to demonstrate the importance of the galactan side chains of RGI in this 

activity. They attribute the inhibition of agglutination solely to the blocking of 

Gal3 by RGI [325]. 

Numerous studies investigating the effects of MP on cancer cells attribute 

anti-cancer effects to Gal3. Pectasol-C was shown to reduce cell viability, 

induce adhesion and apoptosis in ovarian cancer cells, with an enhanced 

effect when combined with the chemotherapy agent Paclitaxel. Conversely, 

exogenous recombinant Gal3 was shown to increase cell viability and inhibit 

adhesion and apoptosis. The authors claim Pectasol-C sensitises ovarian 

cancer cells to Paclitaxel via specific inhibition of Gal3 [204]. In another 

study, CP was shown to reduce proliferation in two colon cancer cell lines 

known to express Gal3, while CP had no effect in a Gal3 negative 

lymphoblast cell line, leading the researchers to believe that the anti-

proliferative effect was possibly due at least in part to its capacity to inhibit 

Gal3 [326].  Induction of endothelial cell [327] colon [328], myeloma [197], 

and prostate cancer cell apoptosis [201], as well as fibroblast cell migration 

[212] has been attributed to the inhibition of Gal3 by Pectasol-C. 

Despite numerous studies supporting the galectin-galactose hypothesis, it 

cannot be ruled out that MP may exert its bioactivity via Gal3-indepenent 

mechanisms. Two studies have showed that MCP significantly induced 
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apoptosis in the prostate cancer cell line LNCaP, which does not express 

Gal3 [201, 329], verifying that the mechanism must be Gal3-independent. A 

study into the relationship between guar galactomannan (HPGG) and Gal3 

additionally showed that although HPGG bound strongly to recombinant 

Gal3, it bound weakly to endogenous Gal3 in a cell culture system, leading 

the authors to suggest that carbohydrate ligands on epithelial cell surfaces 

may impair HPGG binding [330]. Additionally, although MCP prevented Gal3-

induced endothelial cell chemotaxis, MCP was also shown to prevent FGF-

induced chemotaxis [195]. There are also a few studies that suggest distinct 

bioactive roles for pectin structures for oligomers of GalA. Pectic acid has 

been reported to induce apoptosis in rat pituitary tumour cells [331]. Liu and 

co-workers studied the effects of pentamers of GalA using a mouse model of 

colitis-associated CRC: the oligomers were found to be active against 

inflammation and carcinogenesis [332]. These studies demonstrate Gal3-

independence as well as the bioactivity of non-Gal3-binding HG, which 

suggest possible multiple roles for pectin structures in bioactivity. 

1.10 The structure-function relationship of modified pectin 

Investigations into the bioactivity of pectins should be supplemented with an 

understanding of the structure of the biologically active pectin, although this 

can be complicated by the complex and often ill-defined nature of the starting 

material. A wide range of pectic polysaccharides, particularly from traditional 

medicinal plants, are known for possessing various immunomodulatory 

properties, and the relationship between structure and function of these 

polysaccharides is often addressed. Several studies have shown that the 

observed biological activities such as complement fixation [333-335] cytokine 

secretion [336, 337], increased phagocytosis [159], and lymphocyte 

proliferation [185], are due to neutral sugar-rich RGI regions. The 

immunomodulatory action of pectic polysaccharides is also thought to 

depend on the GalA content. GalA-rich pectins were shown to decrease 

accumulation of macrophages and inhibit leukocyte activity [159].  

Despite the numerous studies investigating the structure-function relationship 

behind the immunomodulatory properties of pectic polysaccharides, no 
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mechanism of action has been identified. It has been suggested that the 

neutral sugar-rich RGI region of polysaccharides isolated from Bupleurum 

falcatum could cross-link with membrane B-cell receptors [338]. On the other 

hand, the anti-cancer activity of MP is habitually attributed to the inhibition of 

Gal3 by β-Galactan side chains on the RGI regions of MP. Consequently, the 

increased bioactivity of MCP to CP is often assumed to due be increased 

neutral sugar content. However, few studies have taken into account the 

structural aspects of MP to its ability to modulate cell activity or inhibit Gal3. 

Evidence for the bioactivity of neutral sugars in MP is shown by studies into 

the anti-tumour effects of arabinogalactans, which have been shown inhibit 

the metastasis of sarcoma cells to the liver in mice [192, 320, 339] which the 

authors attribute to the binding of galactose to liver lectins. Sathisha and 

colleagues studied the effects of pectic polysaccharides from various plants 

including swallow root and ginger, as well as CP and larchwood 

arabinogalactan. In addition to inducing breast cancer cell apoptosis and 

reducing invasion, they found that swallow root pectin polysaccharides 

(SRPP) and CP inhibited the agglutination of red blood cells which they 

attributed to Gal3 inhibition. They suggest that this may be due to the 

presence of arabinose and galactose as major sugars in SRPP and CP, 

considering that ginger-derived pectic polysaccharide, which had no 

inhibitory activity, contained low levels of galactose. However, the authors 

suggest that the level of galactose alone may not be important as CP 

contained 19% galactose, compared with 25% galactose in Andrographis 

pectic polysaccharide, which had lower agglutination inhibitory activity. 

Arabinogalactan also had reduced activity, leading to the suggestion that the 

arrangement of galactose and arabinose as arabinogalactans may be 

important for activity, as well as galactose alone.  Thus the steric 

accessibility of the galactose may be as important as the level of galactose 

present in the sample [210]. 

One research group has carried out extensive study into the structure and 

function of ginseng pectin. Ginseng pectin was broken down into neutral and 

acidic populations before fragmenting the latter into four parts using 
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sequential elution. Further purification resulted in four RGI-rich fractions and 

four HG-rich fractions. One HG-rich fraction was shown to reduce 

proliferation of HT29 colon cancer cells by 20% after 72 hours, while the RGI 

fractions had no effect [213]. HG-rich fractions also significantly inhibited L-

929 murine fibrosarcoma cell migration, with the inhibitory effects increasing 

with GalA content, while RGI-rich fractions with low GalA content had no 

effect [212]. The authors suggest that the HG domain is an important 

functional element in the reduction of cell proliferation and the inhibition of 

cell migration. The latest study, by Gao and colleagues [325], has 

investigated the inhibitory effects of ginseng RGI, potato galactan, MCP and 

lactose on Gal3. An assay measuring the agglutination of red blood cells 

showed that the four samples greatly reduced agglutination in the order of 

ginseng RGI > MCP > potato galactan (P-Gal) ≥ Lactose, with ginseng RGI 

possessing the greatest inhibitory activity. As lactose was shown to inhibit 

agglutination, it was assumed agglutination was Gal3 mediated. Additional 

assays to measure the potential of Gal3 inhibition, including asialofetuin-

induced breast cancer cell aggregation and recombinant Gal3 to HT29 colon 

cancer cell adhesion additionally showed the same sequence of Gal3 

inhibitory activity. Subsequently, the importance of neutral sugar side chains 

on ginseng RGI activity was assessed. The enzymatic removal of 27% 

(14)-α-Ara side chains greatly increased the inhibitory activity of ginseng 

RGI, while the removal of 56% arabinan from AG chains was shown to 

decrease activity. The authors suggest that Ara could potentially regulate 

Gal3 binding depending on location. Two thirds of Rha residues in ginseng 

RGI were shown to comprise a side chain of between 1 to 4 Gal residues, 

with 20% of these side chains comprising 4 Gal residues. The complete 

removal of these long side chains greatly decreased inhibitory activity. 

However, activity was still relatively high and on a par with P-Gal and 

lactose. The importance of Gal chain length was consequently assessed 

using β(14)galacto-oligosaccharides. Agglutination inhibitory activity was 

shown to increase with Gal chain length, but only up to a tetramer, as chains 

between 5 and 65 residues did not provided additional activity. The Gal3 

CRD is known to bind terminal galactose residues within the CRD and so the 
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authors suggest these results indicate that short chains of <4 Gal residues 

on ginseng RGI may still be significant in regulating the activity of Gal3. 

Furthermore, these β(14)galacto-oligosaccharides were shown to have 

significantly reduced inhibitory activity than ginseng RGI, indicating that the 

ginseng RGI backbone is as important to bioactivity as the Gal sidechains. 

Moreover, the ginseng RGI backbone, on complete removal of neutral sugar 

side chains, was shown to have a high binding affinity to Gal3. This binding 

was not lactose inhibitable indicating a non-specific interaction that could be 

an ionic interaction; however, the authors contemplate that it is possible that 

there may be secondary carbohydrate recognition sites within the Gal3 

molecule. Additionally, a sample of HG-rich ginseng pectin was shown to 

have relatively high agglutination inhibitory activity.  

Jackson and co-workers provided the first evidence that specific structural 

characteristics of pectin are responsible for inducing apoptosis in prostate 

cancer cells [329]. They investigated CP, Pectasol-C, a heat treated citrus 

pectin ’Fractionated Pectin Powder’ (FPP, Thorne Research, Dover, ID, 

USA), as well as purified HG, sycamore RGI and red wine RGII. They 

wanted to investigate whether pectin prepared with different extraction 

protocols had similar biological effects. They found that out of all the 

samples, only FPP induced apoptosis in LNCaP prostate cancer cells. That 

HG, RGI and RGII had no effect implies that activity does not reside in the 

individual components. They also found no correlations between sugar ratios 

or molecular weight and bioactivity of these pectins. To assess the 

importance of methyl-esterification they treated FPP with alkali to remove 

ester linkages and found that this abolished the apoptotic effects. They also 

found that this alkali treatment also removed arabinan; however, they claim 

that specific removal of arabinan with endo-arabinase had no effect on 

apoptosis. They conclude that an ester-based cross-link in pectin is needed 

for the apoptotic activity of FPP. This study is additionally interesting as 

LNCaP cells do not express Gal3, demonstrating a Gal3-independent 

mechanism of action.  
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In conclusion, numerous different structures of MPs have been shown to 

modulate cell activity in vitro and in vivo; however, the structural elements of 

bioactive MP are rarely addressed. Exceptional studies have shown the 

significance of ester-based cross-links in HM pectin [329], β(14)-Gal side 

chains, the RGI backbone [325], as well as the HG backbone [212, 213]. 

Such a range of pectin structures suggests a structural polypotency whereby 

various structures of MP could potentially act by various mechanisms in 

order to modulate biological activity. 

1.11 Modified Pectin Digestion and Absorption 

Dietary pectin is typically assumed to be non-digestible, being resistant to 

hydrolysis during passage through the human GI tract and uptake into 

systemic circulation. Pectin has indeed been demonstrated to have 

significant advantages as a drug delivery system into the colon, as it has 

been found to not be broken down in the stomach or small intestine [340]. 

Despite the apparent inertness of pectin, it is known to have diverse roles in 

the GI tract including prebiotic activity [110, 177], modulation of intestinal 

nutrient uptake [341] and mucoadhesion [342]. LM and GalA-rich sugar beet 

pectin has been shown to adhere to porcine colon tissue via binding to 

mucins on the colon cell apical layer [343]. This has been corroborated in 

other studies, which showed that GalA-rich LM pectin can bind strongly to 

mucin [342, 344]. There is a surprising lack of information regarding the 

uptake and transport of pectin in vivo; however, there is recent intriguing 

evidence for the uptake of MP and pectic polysaccharides. Animal studies 

into the effects of oral consumption of MCP on tumours and metastasis 

suggest that MCP is effectively absorbed into the bloodstream and thereby 

able to act upon its sites of action. As confirmed in humans, MCP 

administered orally has been found to assist with the urinary excretion of 

toxic elements, with toxicity reduced in the bloodstream [200]. The authors 

attribute the uptake of MCP to low MW as compared with unmodified pectin 

which is thought to be too large to be absorbed and have an effect. However, 

Crinnion [345] has questioned the interpretation and structure of these trials. 
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Knaup and colleagues showed that amidated pectin and the monomer D-

Galacturonic acid could have metabolic potential in the small intestine. 

Although stable in human saliva and simulated gastric juice, they found that 

in ileostomy fluid, representing the small intestine, 65-78% of the amidated 

pectin and 100% of the D-Galacturonic acid was degraded after 10 hours. 

Degradation produced SCFAs and methanol, but 15% of the pectin is 

unaccounted for [346]. Another study similarly found that 90% of ingested 

pectin was recovered in the terminal ileum, and suggest that 10% may have 

been degraded by bacteria at this site [347]. Bacterial degradation is entirely 

possible; however, it is feasible that some of the pectin could be absorbed in 

the small intestine. Support for the absorption of MP into the bloodstream 

comes from an early study by Sakurai and co-workers who showed that 

pectin RGI from Bupleurum falcatum, a Chinese medicinal plant, was 

detected in the bloodstream and liver of mice. Mice were fed purified 

polysaccharides from B. falcatum for one week and, using an antibody 

specific for B. falcatum RGI, detected it in the T-cell area of follicles in 

Peyer’s patch staining, as well as in the liver. It is still not apparent whether 

the pectin was modified in the body by endogenous enzymes and other 

factors, but it could be concluded that at least some of the pectic 

polysaccharide was absorbed in the body after oral administration [348].  

The theory that pectin fragments could be taken up by Peyer’s Patches is 

intriguing, and a possible answer to the mechanism of systemic uptake of 

MP may be found in the studies on the uptake of β-glucans. β-Glucans, like 

pectin, are non-digestible carbohydrates that are fermented to some extent in 

the colon. Natural branched fungal β-(1-3,6)-linked glucans such as lentinan 

and schizophyllan are known for their immunomodulating effects [349], and 

although how β-glucans exert an effect in humans is still not completely 

understood, based mainly on animal studies, molecular mechanisms of 

uptake and the resultant anti-cancer effects have been suggested. β-glucans 

labelled with fluorescein have been used to track their uptake and processing 

following oral administration [350, 351]. It has been shown that soluble β-

glucans such as lentinan and scleroglucan can be internalised by intestinal 

epithelial cells and gut-associated lymphoid tissue (GALT) cells [351], 
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facilitated by binding to receptors such as Dectin-1 and TLR-2. The 

internalised β-glucans were found to be engulfed by macrophages via the 

Dectin-1 receptor and then transported through the body to the spleen, 

lymph nodes and bone marrow. Whilst within the macrophage the β-glucans 

were broken down into smaller fractions which were released from the 

macrophages [350]. It remains to be determined whether there are 

analogous uptake and transport mechanisms involved in the bioactivity of 

MP. 

 

 

 

Figure 8 Uptake of β-glucans by macrophages  

 

 

 

 

As well as the uptake of pectin fragments via macrophages, another theory 

that fragments could directly traverse the small intestinal epithelium has been 

explored [352]. Utilising a Caco-2 cell monolayer representing the small 

intestine, transport of oligosaccharides across the cell barrier was monitored. 

On presenting FITC-labelled Pectasol-C to the monolayer, it was found that 

fragments of the pectin were transported; predominantly low DP RGI derived 
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neutral sugar fractions of linear galactan (DP 2-7) and arabinogalactan (DP 

3-6). Epithelial cell junction tightness was inversely correlated with flux, 

confirming the paracellular pore as aroute for neutral oligosaccharide 

absorption. Intriguingly, acidic GalA oligomers of DP 2-26 were not able to 

traverse the barrier. However, an earlier study demonstrated modest 

transepithelial permeability of GalA polymers between 2-4 DP through Caco-

2 monolayers [353]. 

Despite the long established acceptance that pectin is not broken down in 

the gut, evidence suggests that, although the bulk of pectin may not be 

absorbed, small MW fragments may be able to pass into the bloodstream 

and have systemic effects [200, 348]. The preparation of MP generates 

fragments that are potentially small enough to be absorbed, yet large enough 

to elicit bioactivity. It is not known whether these materials are further 

modified in the body. Knowledge of the uptake and transport within the body 

is important, both for understanding the fate of MP taken as drugs or dietary 

supplements, as well as the fate of native pectins on consumption of fruits 

and vegetables. Such studies would help answer the question as to whether 

health benefits of pectin can be obtained through the consumption of fruits 

and vegetables or processed foods or juices. Although the level of active 

components may be low compared to those used for treatment of cancer, 

lower levels might contribute to reduced risk factors for the onset and 

progression of cancers. Such studies would also help in proposing and 

testing the efficacy of claims for the bioactivity of medicinal plants and herbs. 
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Chapter 2 

Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Cell culturing 

2.1.1 Description of cell lines 

All cell lines in this study are immortalised, adherent, epithelial colon cancer 

cell lines purchased from the American Type Culture Collection (Middlesex, 

UK). The DLD1 cell line was established from the colon of a male with 
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colorectal carcinoma; HT29 cells were isolated from a primary colon 

adenocarcinoma in a 44 year old Caucasian female; HCT116 were 

established from a primary tumour of the ascending colon of a 48 year old 

male; Caco2 cells were derived from colorectal carcinoma; the LoVo cell line 

was established from a colorectal adenocarcinoma of a 56 year old male 

(Ahmed 2013). 

2.1.2 Passage and storage of cells 

DLD1, HT29, HCT116, LoVo and Caco-2 cells were cultured in Dulbecco's 

Modified Eagle Medium: Nutrient Mixture F-12 (DMEM / F-12) (Invitrogen, 

Paisley, UK), supplemented with 10% heat inactivated foetal bovine serum 

(FBS) (Sigma, Poole, UK), and 2% Penicillin/streptomycin 1000U/ml 

(Invitrogen, Paisley, UK). Cells were maintained in a controlled atmosphere 

at 37°C with 5% CO2 in a HERAcell 150 CO2 incubator (Fisher Scientific, 

Loughborough, UK), and grown in TPP 75cm2 or 25cm2 filter screw cap 

tissue culture flasks (Helena Biosciences, Sunderland, UK). At 80% 

confluency they were passaged as follows. Medium was aspirated and cells 

washed with phosphate buffered saline (PBS) (Sigma, Poole, UK), then 1.2 

ml Trypsin/EDTA (0.25% trypsin, 1 mM EDTA) (Invitrogen, Paisley, UK) was 

added and the flask incubated for 5-10 minutes at 37°C until cells were 

detached. 5 ml of medium was then added and the cells centrifuged at 200 g 

for 5 minutes. The pellet was re-suspended in 10mls medium and the cell 

number determined using a haemocytometer. Cells were disposed of after 

passage number 35. All filter pipette tips were sterile filter (Starlab, Milton 

Keynes, UK), and all equipment was sterilised and the cabinet carefully 

disinfected after each use with 70% ethanol and UV light twice a week.   

2.1.3 Cell seeding concentrations 

Table 3 shows the cell numbers required to be seeded per well depending on 

cell line (DLD1, HT29, HCT116, Caco-2 or LoVo), sample treatment time (24, 

48, 72, 96 or 120 hours) and cell culture plate type (96- or 6-well plates). 

Table 3 Cell seeding concentrations 
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Cell line 96-well plate cells/well 6-well plate cells/well 

24 hour treatment  
 DLD1 15,000 150,000 

HT29 15,000 150,000 

48 hour treatment 
 DLD1 4200 100,000 

HT29 4200 100,000 

HCT116 3500 85,000 

72 hour treatment 
 DLD1 2000 50,000 

HT29 3000 75,000 

HCT116 2000 50,000 

Caco-2 6000 - 

LoVo 2000 - 

96 hour treatment 
 DLD1 1000 30,000 

HT29 2000 60,000 

120 hour treatment 
 DLD1 500 11,000 

HT29 1500 30,000 

 

2.2 Pectins and pectic polysaccharides 

Commercial pectins were extracted and modified at CPKelco (section 3.3.1). 

Purified polysaccharide fractions potato galactan (Cat. P-GALPOT), β(14)-

Galactobiose (Cat. O-GB1), larchwood arabinogalactan (Cat. P-ARGAL), 

Sugar beet arabinan (Cat. P-ARAB), citrus polygalacturonic acid (Cat. P-

PGACT) and potato rhamnogalacturonan I (Cat. P-RHAM1, lot number 1201)  

were all purchased from Megazyme (Wicklow, Ireland). Pectasol-C modified 

citrus pectin was purchased from Econugenics (Santa Rosa, CA, USA). 

2.3 Sample preparations for cell treatment 

Pectins were dissolved by adding to filtered ultrapure water while vortexing at 

room temperature, to a concentration of 10 mg/ml. All pectins were placed 

under UV for 20 seconds using a Stratagene UV Stratolinker 1800 

(Stratagene, Santa Clara, CA, USA), and all citrus pectins and pectic 

polysaccharides were filtered using a 0.2 μM syringe filter (Sartorius Stedim, 

Epsom, UK), before storage at -20°C. Pectin and cell culture medium 

solutions were made fresh for every experiment from stock solutions. 
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Farnesylsalicylic acid (Cambridge Bioscience, Cambridge, UK) was 

dissolved in DMSO (Sigma, Poole, UK) purged with argon gas for a stock 

solution of 50 μM. Staurosporine (Enzo Life Sciences, Exeter, UK) was 

dissolved in DMSO at a concentration of 0.01 μg/ml. 

2.4 Cell viability assay 

2.4.1 Sample preparation and WST-1 cell viability assay 

Cells were seeded in Nunclon 96-well plates (Fisher Scientific, 

Loughborough, UK) at the densities specified in Table 3 (pg.72) in 100 μl 

medium and allowed to adhere overnight. Cells were then incubated with 

pectin samples or filtered ultrapure water at the concentration and times 

indicated at a final volume of 200 μl per well, using five biological replicates 

per sample concentration. Farnesylthiosalicylic acid (FTS, also known as 

Salirasib) (Cambridge Bioscience, Cambridge, UK), an anti-cancer drug 

known to reduce cell proliferation [354, 355] was used on every plate as a 

positive control at 150 μM. After incubation medium was removed and 

replaced with 100 µl fresh medium containing 10 µl WST-1 reagent (Roche 

Diagnostics, Burgess Hill, UK) used to create a formazan dye facilitated by 

the reaction between mitochondrial dehydrogenase released from viable 

cells and the tetrazolium salt of WST-1. To determine a suitable incubation 

time, absorption was initially measured at different time points after the 

addition of WST-1 (0.25, 0.5, 1, 2, 3, 4 and 5 hours), determining 3 hours as 

the optimal incubation time. The intensity of the coloured compound was 

then quantified using a Benchmark Plus microplate spectrophotometer with 

Microplate Manager 5.2.1 software (Bio-Rad Laboratories, Hercules, CA, 

USA), with absorbance measured at 450 nm, with the reference at 630 nm. 

Results were expressed as percentage of viable cells remaining after 

treatment relative to the untreated control. The statistical differences for the 

comparison of individual means were determined by the student’s t-test. All 

analyses have been carried out using SPSS (IBM, Portsmouth, UK). 
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2.5 Cell imaging 

Cells were grown in Nunclon 6-well plates (Fisher Scientific, Loughborough, 

UK) and exposed to pectins at the desired conditions. After the specified 

incubation times cells were imaged under a Leica M165C stereo microscope 

using Leica Application Suite V4.2 software (Leica microsystems, Wetzlar, 

Germany). 

2.6 Apoptosis detection by flow cytometry 

2.6.1 Sample preparation 

2.6.1.1 Supernatants 

Cells were grown in Nunclon 6-well plates and exposed to pectins at the 

desired conditions in Table 3 (pg.72). Staurosporine was used as a positive 

control at 0.1 ng/ml. After incubation, 200 μl supernatant from each well was 

removed, de-clumped with a CellTrics 50 μM filter (Partec, Milton Keynes, 

UK) and transferred to a Nunclon 96-well plate alongside corresponding 1 

mg/ml pectin samples in medium, in triplicate, which were also filtered. 

Supernatant and pectin samples were then ready for analysis (section 2.4.2). 

2.6.1.2 Cell samples 

Adherent cells were washed with PBS, trypsinised for 20 minutes to detach 

all cells and after the addition of medium were put in 1.5 ml tubes, 

centrifuged at 200 g for 5 minutes and washed in 1 ml PBS. Cell staining was 

carried out using a FITC-Annexin V Apoptosis Detection Kit with PI 

(Biolegend, London, UK). Cells were twice centrifuged and washed with 1 ml 

4°C cell staining buffer (Biolegend, London, UK), de-clumped with a CellTrics 

50 μm filter and each sample re-suspended in 100μl Annexin V binding 

buffer, 2ul FITC-Annexin V and 4 μl PI. After gentle vortexing and a 15 

minutes incubation in the dark, 100 μl Annexin V binding buffer was added 

and samples were transferred to a Nunclon 96-well plate along with the 

supernatants, pectins in medium at the concentrations specified, controls of 

unstained cells, and staining solution without cells. During apoptosis 
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phosphatidyl serine (PS) residues, which are normally located on the internal 

surface of the plasma membrane, are redistributed to the external surface. 

PS binds the protein Annexin V and so apoptosis can be observed by the 

incubation of cells with FITC labelled Annexin V [356]. PI is used for 

identification of dead cells with a loss of membrane integrity as it cannot 

penetrate an intact membrane.  

2.6.2 Apoptosis data acquisition and analysis  

Data acquisition and analysis were carried out using an EC800 Sony Eclipse 

flow cytometer with EC800 V1.3.6 software (Sony Biotechnology, Weybridge, 

UK) equipped with a 488 nm laser. Each sample was run at 20 μl/min for 4 

minutes, capturing approximately 10,000 events. Fluorescence spill-over was 

appropriately compensated for. Figure 9A shows how the characteristic 

forward and side scatter profile of cells was used to construct gate (a) which 

distinguishes cells from debris. Both FITC and PI are excited by the 488nm 

laser, with FITC having an emission maximum of 520nm and PI of 617nm, 

allowing capture in separate PMTs (Figure 9). 

 

2.6.2.1 Supernatants 

Figure 9A was used to distinguish detached cells in the cell culture 

supernatant from debris and pectin. Any non-specific reactivity due to the 

presence of pectin in the culture medium was corrected for by subtracting the 

number of events acquired in culture medium containing pectin from those 

derived from the supernatant. 

 

2.6.2.2 Cell samples 

Gate (a) (Figure 9A) was used to examine PI and Annexin V reactivity of 

cells (Fig.9B). Next, through comparison with unstained control cells, a 

quadrant gate was constructed to distinguish the different patterns of PI and 

Annexin V reactivity. Within this quadrant live healthy cells have taken up 

neither PI nor Annexin V (b), early apoptotic cells have reacted with Annexin 

V alone (c), late apoptotic cells are Annexin V plus PI stained (d) and dead 

cells are stained with PI alone (e). The statistical differences for the 
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comparison of individual means were determined by the student’s t-test 

using SPSS (IBM, Portsmouth, UK). 

 

 

 

Figure 9 Flow cytometry method of analysis for apoptotic cells. (A) Cells 

are gated by their characteristic light scatter profile to distinguish them from 

debris (a) live cells; (B) Cells within a quadrant gate show (b) live cells, (c) 

early apoptotic cells, (d) late apoptotic cells and (e) dead cells. 
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Figure 9 Simple layout of a flow cytometer. Particles are transported through a 

flow chamber into a laser beam. As the laser strikes the particle, some light is 

deflected off the surface. Forward scattered light (FSC), measuring cell size and 

surface area, is collected by a photodetector placed in line with the laser, while side 

scattered light (SSC), measuring cell shape and granularity, is collected by a 

photomultiplier tube (PMT) perpendicular to the laser beam. The laser beam 

additionally excites fluorophores, such as propidium iodide or FITC, attached to the 

particle which causes them to emit light at a longer wavelength than the laser. 

These signals are collected in the same direction as the SSC but pass through a 

series of filters to allow only certain wavelengths to reach the appropriate PMTs, 

which then generate electrical signals which are digitised and sent to the computer 

for analysis. Figure adapted from (‘Flow cytometry, a basic intro’ M. Ormerod) 
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2.7 Cell cycle detection by flow cytometry 

2.7.1 Sample preparation 

Cells were grown in Nunclon 6-wells plates and exposed to medium 

supplemented with or without pectins for the desired incubation times. FTS 

was used as a positive control. After incubation medium was removed and 

the cells washed with PBS and trypsinised (as described in section 2.6.1 

above). After cell detachment and the addition of medium, cells were put in 

1.5 ml tubes, centrifuged at 200 g for 5 minutes, washed in 1 ml PBS and 

centrifuged a second time. Cells were then re-suspended in 200 μl ice-cold 

PBS with 5 mM ethylenediaminetetraacetic acid (EDTA) and de-clumped 

slowly using a CellTrics 50 μM filter. Cells were then added drop wise to 1 ml 

4°C 70% ethanol while vortexing, and incubated at 4°C for at least 2 hours. 

Before staining the cells were centrifuged at 200 g for 10 minutes, washed 

with 4°C PBS and centrifuged again before being re-suspended in a staining 

solution of 0.1% TritonX-100, 0.02 mg/ml PI and 0.2 mg/ml RNase A (Fisher 

Scientific, Loughborough, UK), made up to 200 µl with cold PBS. Samples 

were transferred to a Nunclon 96-well plate alongside controls of PBS only, 

staining solution only or unstained cells, and incubated at 37°C for 30 

minutes ready for analysis. PI is used for the quantification of DNA content in 

the cells as it binds to DNA by intercalating between the DNA bases with no 

sequence specificity. PI also binds to double stranded RNA, which is 

removed by the RNase treatment. 

2.7.2 Cell cycle data acquisition and analysis  

Data acquisition was carried out with an EC800 Sony Eclipse flow cytometer 

(Sony Biotechnology, Weybridge, UK) equipped with a 488 nm laser. Each 

sample was run at 20 μl/min for 3 minutes, capturing approximately 10,000 

events. Data acquisition and analysis were performed with EC800 V1.3.6 

software. Figure 10 shows how cells were first gated to enable discrimation 

of single cells from doublets, multiplets and DNA fragments. To do this, a plot 

of pulse width versus pulse area was constructed (A). Doublets were 

identified by their higher area and width values than single cells which are 
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shown in oval gate (a). The PI uptake of cells within gate (a) was assessed in 

a histogram plot and markers were used to define phases of the cell cycle: 

sub-G1 (b); G0/G1 (c); S (d) and; G2/M (e). The statistical differences for the 

comparison of individual means were determined by the student’s t-test 

using SPSS. 

 

 

 

 

Figure 10 Flow cytometry method of cell cycle analysis. (A) Single cells 

are gated (a); (B) Cells are gated into cells in (b) sub-G1; (c) G0/G1; (d) S 

and; (e) G2/M phases. 

 

2.8 Cell counting 

Nunclon 6-well plates were seeded at a concentration of 150,000 cells per 

well and 100,000 cells per well with HT29 and DLD1 cells, respectively, in 

2ml cell culture medium. The initial cell concentration was chosen in order to 

have untreated cells at 80-90% confluency after 96 hours.  After 24 hours, 

the culture medium was replaced with medium supplemented with or without 

1 mg/ml pectin and incubated for the times specified. Each condition of 

treatment was carried out in duplicate over three independent experiments. 

After the desired incubation time 400 μl of trypsin-EDTA was added and 
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incubated at 37°C for 20 minutes to detach all cells. 1.6 ml of cell culture 

medium was added and cells were pipetted up and down carefully with a 1 

ml pipette to de-clump, before being counted on a haemocytometer. Actual 

cell number was calculated by multiplying the mean number of cells counted 

by 104. Results were expressed as number of cells remaining after treatment 

relative to the untreated control. The statistical differences for the 

comparison of individual means were determined by the student’s t-test. All 

analyses have been carried out using SPSS. 

2.9 Analysis of gene expression 

2.9.1 RNA isolation 

RNA extraction was performed with the RNeasy Mini kit (Qiagen, Crawley, 

UK). Following exposure to pectins, cells were washed twice with PBS and 

then incubated with lysis buffer containing 1% (v/v) β-mercaptoethanol 

(Sigma, Poole, UK). Cells were scraped and lysate collected and transferred 

to 1.5 ml tubes on ice. An equal volume of 70% ethanol was added to each 

sample, and mixed before transferring into an RNeasy Mini spin column on a 

vacuum manifold. Under vacuum, samples were washed once with 700μl 

RWI buffer and twice with 500 μl RPE buffer. Columns were then transferred 

to a 2 ml tube and centrifuged at 13,000 g for 1 minute, before transferring 

again to a 1.5 ml tube. RNA was eluted by pipetting 30 μl of RNAse-free 

water directly onto the spin column membrane and centrifuging at 13,000 g 

for 1 minute. 

2.9.2 DNase treatment 

DNase treatment was carried out in order to degrade any DNA contamination 

in the RNA samples. This was carried out using DNase I kit (Sigma, Poole, 

UK). 1 μl 10x reaction buffer and 1 μl amplification grade DNase I was added 

to 8μl RNA extract, mixed and incubated for 15 minutes at room temperature. 

Duplicate tubes were prepared for reactions with and without reverse 

transcriptase to check amplification of contaminating DNA. 1 μl was then 
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added and heated to 70°C for 10 minutes to inactivate and denature DNase I 

and the RNA. 

2.9.3 RNA quantification 

A NanoDrop spectrophotometer (Labtech International, Uckfield, UK) was 

used to quantify RNA concentration by absorbance measurement at 260 nm. 

The 260/280 ratio was measured to assess the presence of contaminants, 

and samples with ratios ranging between 1.9 and 2.2 were accepted. 

2.9.4 Reverse Transcription 

cDNA was synthesised from total RNA. Amount of RNA (ng) was worked out 

for every plate according to the lowest concentration of the samples. RNA 

volume for 8 μl was between 250 and 470 ng for DLD1 cells and 740 to 760 

ng for HT29 cells. Samples were made up to a total of 10ul with RNase free 

water. RNA samples were mixed, vortexed and centrifuged in a 96-well PCR 

plate (Fisher Scientific, Loughborough, UK) with 2 μl Quanta qScript cDNA 

Supermix (VWR International, Lutterworth, UK), which contains MgCl2, 

dNTPs, recombinant RNase inhibitor protein, qScript reverse transcriptase, 

random primers and oligo (dT) primer. The plate was then incubated in a 

PCR thermal cycler (Applied Biosystem, Warrington, UK) using the following 

cycle: 5 minutes at 25°C followed by 30 minutes at 42°C and 5 minutes at 

85°C. After the cycle was completed samples were diluted with EB buffer 

and EB buffer added to one well as a control. Samples were stored at -20°C 

for later use. 

2.9.5 PCR Annealing Temperature Optimisation 

Primers were designed using Universal Probe Library software (Roche 

Diagnostics, Burgess Hill, UK) and PCR was performed to determine optimal 

primer annealing temperatures (Tm). PCR reactions (10 μl) containing 5 μl 

Immomix (Bioline, London, UK), 1 μl BSA, 0.1 μl 50 mM MgCl2, 2 pmol 

forward and reverse primer, 0.5 μl DLD1 cDNA and 0.5 μl HT29 cDNA made 

up to a volume of 7 μl with RNase free water. Reactions were incubated in a 

PCR thermal cycler (Applied Biosystems, Warrington, UK) and subject to the 
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following cycling conditions: 1 cycle of 95°C for 10 minutes, 35 cycles of 

95°C 30 seconds, annealing temperature (58, 59, 60 and 61°C) for 30 

seconds, followed by 72°C for 30 seconds. All reactions were then 

electrophoresed on a 3% agarose gel in Tris-acetate EDTA buffer (TAE 

buffer) supplemented with 0.01 μl/ml Ethidium Bromide (Fisher Scientific, 

Loughborough, UK). Samples were run for 50 minutes at 80 V and visualised 

by exposure to UV light to identify the annealing temperature that produced a 

single bright band. 

2.9.6 Quantitative Real-Time PCR 

RT-PCR was performed to measure the mRNA levels of target genes. The 

housekeeping gene 18S ribosomal RNA (18S) (Sigma, Poole, UK) was used 

as a reference gene for data normalisation. Primers were designed using 

Universal Probe Library software (Roche Diagnostics, Burgess Hill, UK). A 

probe labelled with 5’ reporter dye, FAM (6-carboxyfluoroscein) and 3’ 

quencher dye, TAMRA (6-carboxytetramethylrhodamine) (Sigma, Poole, UK) 

was used combined with primers based on 18S gene sequences. All other 

primers were combined with SYBR Green (Fisher Scientific, Loughborough, 

UK) to detect PCR product. 18S primer sequences are shown in Table 4. 

 

Table 4 18S primer sequences for RT-PCR 

Gene   Sequence (5' - 3') 

18S F GTATTAGCTCTAGAATTACCACAGTTATCC 

 
R GGCTCATTAAATCAGTTATGGTTCCT 

 
Probe [6FAM]TGGTCGCTCGCTCCTCTCCCAC[TAM]  

 

mRNA quantification for all genes was performed in a 10μl reaction using a 

Mastermix of 5 μl Immomix (Bioline, London, UK), 1 μl BSA, 0.1μl 50mM 

MgCl2, 2 pmol forward and reverse primer, 0.01 μl probe or 0.0625 μl SYBR 

Green, and 0.2 μl ROX, made up to a volume of 7 μl with RNase free water. 

A Corbett robot, set up with Robotics 4 software (Qiagen, Crawley, UK), and 

using Aeroguard T-Genesis pipette tips (Alpha Laboratories, Eastleigh, UK) 

was used to add 7 μl of the Mastermix to 3 μl cDNA in a Microamp optical 

96-well reaction plate (Invitrogen, Paisley, UK). Microamp optical adhesive 
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film (Invitrogen, Paisley, UK) was used to seal the plate prior to analysis. 

Samples were run using the ABI 7500 Fast RT-PCR System (Applied 

Biosystems, Warrington, UK). Primers combined with probes were run using 

a 10 minute hot start at 95°C, followed by 40 cycles of denaturing at 95°C for 

30 seconds and annealing/extension at 60°C for 60 seconds. Primers 

combined with SYBR Green were run using a 10 minute hot start at 95°C, 

followed by 40 cycles of denaturing at 95°C for 30 seconds and 

annealing/extension at the specified Tm for 30 seconds, and an extension of 

72°C for 30 seconds. 

Data were normalised against the reference gene 18S. The threshold cycle 

number (Ct) obtained was converted into fold of relative induction using the 

comparative 2-ΔΔCt method [357]. The statistical differences for the 

comparison of individual means were determined by the student’s t-test 

using SPSS software. 

2.10 NMR spectroscopy 

NMR analysis was carried out by Ian Colquhoun at the Institute of Food 

Research. NMR spectra were obtained on a Bruker Avance III spectrometer 

operating at 600 MHz for 1H and 151 MHz for 13C; the software was 

Topspin v3.2.The spectrometer was equipped with a TCI cryoprobe. 

Samples were prepared as solutions in D2O at concentrations between 10 

and 40 mg/ml depending on solubility and viscosity. Spectra were usually 

recorded at 334°K or 338°K, although lower temperatures (320-330°K) were 

used in a few cases to avoid interference between the residual water signal 

and carbohydrate signals. 1H spectra were acquired using the water 

suppression sequence noesygppr1d (names of Bruker pulse programmes 

are italicised) with TD 65536 (time domain points); SW 20.49 ppm (spectral 

width); AQ 2.67 s (acquisition time); D1 3 seconds (relaxation delay); p1 ~7 

µs (90° pulse length); NS 64 (number of scans). Free induction decays 

(FIDs) were Fourier transformed with an exponential window EM= 0.3 Hz 

and zero filling. 13C spectra were acquired using the DEPT sequence, 

deptsp135, which gives positive CH and CH3 signals with inverted CH2 

signals (quaternary carbons, e.g. –COOH are not observed). Key parameters 
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were TD= 65536, SW= 220.87 ppm, AQ= 0.98 s; D1= 2 s; P1= 12 µs (13C 

900 pulse); NS= 20000 to 80000, depending on sample concentration. FIDs 

were transformed with EM= 3.0 Hz and zero filling. Parameters used in the 

2D NMR experiments are summarised Tables 5 and 6. 

 

 

 

 

 

Table 5 1H/1H NMR correlation 

Experiment Sequence TD SI SW ppm NS Comments 

COSY cosygpprqf 2048x256 2048x1024 11.97x11.97 16  

TOCSY mlevphpr.2 2048x512 2048x1024 11.97x11.97 24 MT= 0.1s 

ROESY roesyphpr 2048x512 2048x1024 11.97x11.97 24 MT=0.2s 

 

 

Table 6 1H/13C NMR correlation 

Experiment Sequence 
TD 

1
Hx

13
C 

SI 
1
Hx

13
C 

SW ppm 

1
Hx

13
C 

NS Comments 

HSQC hsqcetgpprsisp2.2 2048x256 2048x1024 11.97x165 72  

HSQC hsqcetgpprsisp2.2 2048x256 2048x1024 11.97x70 72 
High 

resoln. 
13

C 

HSQC-

TOCSY 
hsqcdietgpsisp.2 2048x256 2048x1024 11.97x165 192 MT= 0.15s 

HSQC-

TOCSY 
hsqcdietgpsisp.2 2048x256 2048x1024 11.97x70 192 

High 

resoln. 
13

C 

HMBC hmbcgplpndprqf 2048x256 2048x1024 11.97x250 192  

 

 

TD is the number of time domain data points in each dimension (t2xt1); SI, 

the number of data points in each frequency dimension after 2D Fourier 

transformation (f2xf1); SW, the spectral width in ppm in each dimension; NS, 

the number of scans per t1 increment; MT, the mixing time; in the high 

resolution versions of the 1H/13C experiments the chemical shifts of the sugar 
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ring 13C signals are determined with greater accuracy, but the chemical shifts 

of e.g. acetate and rhamnose methyl groups fall outside the reduced 13C SW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Analysis of the structure of commercial pectins and 

pectic polysaccharides 
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3.1 Introduction 

Pectin is a family of heteropolysaccharides present in the cell walls of fruit, 

vegetables and land plants, with an extremely complex structure made up of 

several structural elements. However, a basic model of pectin comprises 

linear regions of HG interspersed with ramified RGI regions in which neutral 

sugars are present as side chains. HG is composed of linear stretches of 

α(14)-linked-GalA residues that are partially methylated at C-6 and acetyl-

esterified at O-2 and/or O-3 [358]. The RGI region consists of repeating 

disaccharide units [4)-α-D-GalA-(12)-α-L-Rha(1]n, highly branched 

with neutral sugar side chains attached to O-4 or O-3 position on the α-L-

rhamnose. These side chains mainly consist of (14)-β-D-Galactans and 

(15)-α-L-Arabinans usually ramified with short (13)-α-L-Ara or single α-L-

Ara residues. Depending on the source, pectin may also contain branched, 

type II (1→3,6)-β-D-Gal. AGI is also a common side chain with a basal chain 

of (14)-β-D-Galactan substituted with short (12)/(13)-α-L-Ara or single 

α-L-Ara non-reducing units, as well as AGII which has a backbone of (13)-

β-D-Gal heavily substituted at position 6 by mono- and oligosaccharide Ara 

and Gal side chains. Other sugars including xylose, mannose, glucose and 

fucose can also be sometimes found covalently linked to the RGI backbone. 

Pectin additionally contains minor amounts of highly complex RGII regions 

that have a backbone similar to HG substituted with four side chains 

comprising ten different monosaccharides. 
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The predominant utilisation of pectin is in the food industry as a gelling agent 

and food stabiliser. Commercial pectin is produced mainly from citrus peel or 

apple pomace which is available as by-products from the juice industry. 

Additionally, a relatively small amount of pectin is produced from sugar beet 

pulp which is generated by the extraction of sugar from sugar beet. Pectins 

from different sources have individual structural characteristics which 

subsequently convey unique physicochemical properties which can be 

employed for particular commercial uses. Pectin from citrus peel is highly 

prized due to its substantial gelling properties, due to an abundance of long, 

highly methylated HG chains which form a gel network under acidic and 

high-sugar conditions. On the other hand, sugar beet pectin has inferior 

gelling properties which are understood to be due to their high acetyl content 

[149, 359]. Additionally, sugar beet pectin contains higher amounts of neutral 

sugars, particularly arabinan, which can be substituted with ferulic acid. 

Currently, the main use of sugar beet pectin is as an emulsion stabiliser, 

mainly due to the high protein content.  Both citrus peel and sugar beet pulp, 

as industrial waste streams, are rich sources of pectin, with pectin making up 

30% and 19% of dry weight, respectively [114, 360, 361]. 

Commercial extraction of citrus peel is optimised to extract a high yield of 

high MW and HM pectin in order to maximise gelling ability. Conditions of 

commercial extraction are generally to suspend the raw material in water at a 

high temperature (50-90°C) for 3-12 hours under acidic conditions (pH 1-3), 

usually brought about with nitric acid. The resulting solution is filtered, 

optionally concentrated and ion-exchanged, and then mixed with alcohol to 

precipitate the pectin [138]. The high temperature and low pH drive 

hydrolysis and subsequently depolymerisation of the pectic HG backbone. 

Acidic conditions also serve to reduce neutral sugar content, and acid 

hydrolysis is known to cause the release of sugar residues at different rates, 

in the order of Ara>Gal>Rha>>GalA [137, 358]. The higher the temperature 

and the lower the pH, the greater the rate of hydrolysis, neutral sugar 

breakdown and yield of pectin [163, 362].  
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Pectin can be further modified chemically or enzymatically. Incubation under 

alkaline conditions will reduce the DE of pectin [363], and is also known to 

reduce neutral sugar content, particularly arabinan [364]. β-elimination, and 

subsequent depolymerisation of the pectin backbone also occurs under 

these conditions unless the temperature is significantly lowered. Pectin 

structure can also be altered enzymatically. Polygalacturonase (PG), an 

enzyme that hydrolyses glycosidic bonds that link GalA residues of the pectin 

backbone, is sometimes employed to create low MW pectin, and 

methylesterase to remove methyl groups. However, due to high costs they 

are rarely used in industrial pectin production. Due to their specificity and 

selectivity in the degradation of pectins, enzymes are often employed 

alongside controlled chemical degradation in structural research to gain an 

understanding of pectin fine structure [143, 365, 366], as well as to create 

pectic oligosaccharides for experimental research into biological activity [170, 

177, 325]. 

Nuclear magnetic resonance (NMR) spectroscopy is an analytical technique 

used in carbohydrate and polysaccharide chemistry to identify sugar 

constituents, their configurations and linkage positions. In addition it may be 

possible to determine the nature and location of any substituents. 1H and 13C 

NMR are the applications of NMR spectroscopy to hydrogen and carbon 

nuclei, respectively, these being the most important nuclei for carbohydrates. 

The 1H spectrum is the foundation for most structure determinations 

particularly in conjunction with the powerful 1H-1H two-dimensional methods 

of COSY (correlation spectroscopy), TOCSY (total correlation spectroscopy) 

and NOESY/ ROESY (nuclear Overhauser effect spectroscopy and rotating 

frame Overhauser effect spectroscopy). The 13C spectrum may be necessary 

for further characterisation of the molecule as the chemical shift range (~60-

110 ppm for carbohydrates) is much greater than the corresponding 1H 

range (~3-5.8 ppm) and the spectra are less overlapped. Additionally there is 

only one signal for each 13C atom whereas 1H signals are usually in 

multiplets. However, the NMR sensitivity of the 13C nucleus is only 1.8x10-4 

that of 1H. Observation of 13C signals with improved sensitivity is assisted by 

two-dimensional methods such as HSQC (heteronuclear single quantum 

http://en.wikipedia.org/wiki/Atomic_nucleus


 

89 

 

correlation for 1H/13C chemical shift correlation via one-bond hydrogen-

carbon coupling, 1JCH) and HMBC (heteronuclear multiple bond correlation 

for 1H/13C correlation via longer range H-C coupling, nJCH, where n = 2 or 3). 

Molecular structure can be ascertained from a combination of these 

homonuclear (1H-1H) and heteronuclear (1H-13C) 2D NMR methods to 

determine the connections between atoms within a molecule [367]. 

 

3. 2 Aims 

This chapter will study the extraction and modification of ten pectins from 

citrus peel and sugar beet pulp, and study the structure of these and another 

seven pectic polysaccharides by way of anion exchange chromatography, 

size exclusion chromatography, mass spectrometry and NMR. 

 

3.3 Materials and Methods 

3.3.1 Pectin extraction and modification 

Five sugar beet and five citrus pectin fractions were supplied by CPKelco. All 

extracts were filtered with Filtercel 450 (Advanced Minerals Corporation, CA, 

USA), precipitated in three parts 80% IPA, washed in 5L 60% IPA, adjusted 

to pH 4 with NaOH, then dried and milled. The procedure to extract and 

prepare the pectins is shown in Figure 11. The pectins were obtained by the 

following methods: 

3.3.1.1 Raw materials 

50 kg freshly dug sugar beet was chopped and washed in 30°C water under 

agitation for 30 minutes, drained, then washed once more for 30 minutes 

under agitation. Dried citrus peel was from lemons as a waste stream from 

the juice industry. 
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3.3.1.2 Commercial extraction of pectin 

In a 50L extraction tank, 1000 g of dried citrus peel or 12.15 kg of washed 

sugar beet was mixed in a 50 L extraction tank with 70°C de-ionised water 

adjusted to pH 1.7 with nitric acid. Citrus peel and sugar beet pulp were then 

incubated for 3 and 4 hours under agitation, respectively. The liquid extracts 

were filtered and precipitated. The sugar beet extract was additionally 

vacuum evaporated at 60°C to concentrate to 5.4 times the original sugar 

content prior to precipitation, as measured by refractometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dried lemon peel 

1 kg peel in water 
70°C pH 1.7 3hrs  

Liquid Residue 

CP 
Re-suspended in water 

98°C pH 2 1hr 

CH 

Re-suspended in 60% 

IPA 5°C pH 12.5 1hr 

CA 

2 kg peel in water 

75°C pH 3.5 2hrs 

CO 

Liquid Residue 

Re-suspended in water with 

1.5 mg/ml 

Polygalacturonase1hr 

COPG 

50 kg freshly dug sugar beet, chopped, washed 

30°C 30 minutes, drained and repeated 

12.5 kg pulp in water 

70°C pH 1.7 4hrs 

Concentrated 

SBC 

12.5 kg pulp in water  

75°C pH 3.5 2hrs 

SBO 

Re-suspended in water with 1.5 

mg/ml Polygalacturonase 1hr 

Concentrated 

SBPG 

Residue 

Re-suspended in water 

98°C pH 2 1hr 

SBH 

60% IPA 5°C pH 12.5 1hr 

SBA 

a.  

b.  
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Figure 11 Procedure used to extract and prepare pectins (a) Citrus pectins; (b) 

Sugar beet pectins 

3.3.1.3 Heat treatment of commercially-extracted pectin 

The solid part from the commercially-extracted pectins (section 3.3.1.1) was 

mixed with de-ionised water at 98°C and adjusted to pH 2 with nitric acid for 

1 hour. 

3.3.1.4 Alkali-treatment of commercially-extracted pectin 

Half the precipitate from the heat-treated pectin (section 3.3.1.2) was mixed 

in 5 L of 60% IPA at 5°C and adjusted to pH 12.5 with NaOH for 1 hour. 

3.3.1.5 Oxalic acid extraction of pectin  

In a 50 L extraction tank, 2000 g of dried citrus peel or 12.15 kg of washed 

sugar beet was mixed in a 50 L extraction tank with 70°C de-ionised water 

adjusted to pH 13.5 with oxalic acid/Na-oxalate buffer for 2 hours under 

agitation. Solids from the citrus peel extract then underwent re-extraction. 

Solids were mixed with 70°C de-ionised water adjusted to pH 3.5 for a further 

2 hours. The liquid extracts were then filtered and precipitated. The sugar 

beet extract was additionally vacuum evaporated at 60°C to concentrate to 

5.8 times the original sugar content prior to precipitation. 

3.3.1.6 Polygalacturonase treatment of pectin  

The solid parts from the oxalic-extracted pectins (section 3.3.1.4) were mixed 

in de-ionised water with 15 ml Rohament PL polygalacturonase (AB 

Enzymes, Darmstadt, Germany) in 100ml ion-exchanged water, pH 3.5 for 1 

SSBA 

Centrifuged 

Insoluble fraction Soluble fraction 
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hour. The sugar beet extract was additionally vacuum evaporated at 60°C to 

concentrate to 5 times the original sugar content prior to precipitation. 

3.3.2 Obtaining the soluble fraction of alkali-treated sugar beet pectin 

Alkali-treated sugar beet pectin (SBA) was dissolved in water at 10 mg/ml 

and centrifuged at 3700 g for 1 hour. The supernatant (SSBA) was separated 

from the pellet and freeze dried. 

3.3.3. Pectic polysaccharides 

Purified polysaccharide fractions potato RGI (P-RGI and P-RGI-X), potato 

galactan (P-Gal), citrus polygalacturonic acid (C-PGA), galactobioase (GB), 

sugar beet arabinan (SB-Ara), and larchwood arabinogalactan (L-AG) were 

purchased from Megazyme and Pectasol-C modified citrus pectin was 

purchased from Econugenics (see section 2.2).  

3.3.4 Structural analysis of pectins and pectic polysaccharides 

3.3.4.1 Monosaccharide, molar mass and protein analysis 

Monosaccharide, molar mass and protein analysis was carried out at the 

United States Department of Agriculture Agricultural Research Service 

(USDA-ARS), Philadelphia, USA. Monosaccharide analysis was carried out 

by high-performance anion-exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD). Neutral and acidic monosaccharides 

were separated in a single run using a mobile phase that was 10 mM NaOH 

isocratic for 10 minutes, then a 0-60 mM CH3COONa gradient in 100 mM 

NaOH by 13 minutes and 60-120 mM CH3COONa in 100 mM NaOH by 30 

minutes. The mobile phase returned to 10mM NaOH for 30 minutes prior to 

the next injection. Other conditions were reported previously [111]. Molar 

mass was determined by High Pressure Size Exclusion chromatography 

(HPSEC) using methods given by Qi and co-workers [368], and protein 

analysis methods are detailed by Fishman and colleagues [147]. The 

procedures as reproduced from these sources are detailed in Appendix B. 
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MW values quoted in the text and tables are weight average values (MW) 

unless otherwise stated. 

3.3.4.2 Acetate and methyl-ester analysis 

Acetate and methyl-ester analysis was carried out at CPKelco, Koge, 

Denmark. 1g of each sample was washed with 10 ml acid alcohol (60% IPA 

+ 35% water + 5% concentrated (37%) HCl) for 1 minute, centrifuged at 

10,000rpm for 10 minutes, and repeated, discarding the supernatant each 

time. The samples were then washed in 30 ml 60% IPA for 1 minute, 

centrifuged at 10,000 rpm for 10 minutes, and repeated twice, discarding the 

supernatant each time. Each sample was mixed with 30 ml 100% IPA for 1 

minute and centrifuged 10,000 rpm for 10 minutes, the supernatant 

discarded and the sample dried for 2.5 hours at 105°C. 0.2g of each dry 

sample was then wetted with 100% IPA and mixed with 50 ml CO2-free 

water for 15 minutes before titration with 0.1 M NaOH to pH 8.5. 10 ml 0.5 M 

NaOH was then added and left to stand for 15 minutes before the addition of 

10 ml 0.5 M HCl and stirred until a constant pH is achieved, before titration 

with 0.1 M NaOH to pH 8.5. Acetic acid from saponification of acetate ester 

groups was determined with an enzyme kit (R-Biopharm, Darmstadt, 

Germany) following the instructions provided with the kit  

3.3.4.7 NMR spectroscopy 

NMR analysis was carried out by Ian Colquhoun at the Institute of Food 

Research. Samples were prepared as solutions in D2O at concentrations 

between 10 and 40 mg/ml depending on solubility and viscosity. NMR was 

carried out as described in section 2.10. Data tables for pectins and pectic 

polysaccharide are supplied in Appendix B.  
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3.4 Results 

3.4.1 Extraction, modification and chemical analyses of ten pectins 

from citrus peel and sugar beet pulp 

Pectins were extracted from dried lemon peel and fresh sugar beet, either 

commercially or with a mild acid, and modified in a variety of ways to provide 

an array of pectins with varying sugar compositions, methyl-ester contents 

and MWs. Pectin from citrus and sugar beet was extracted commercially, 

with nitric acid at pH 1.7, 70°C to create pectin similar to that employed in 

food products (CP, SBC). As expected, CP yield was higher than SBC, while 

SBC has a considerably higher neutral sugar and lower GalA content (Table 

7). The GalA:Rha ratios in Table 8 indicate the number of GalA residues to 

one Rha residue which gives an idea of the RGI backbone to HG content, 

and the Gal:Rha and Ara:Rha ratios the number of neutral sugar residues 

attached to the RGI backbone. These ratios indicate that SBC is almost 7-

fold richer in RGI regions than CP, although the number of neutral sugar 

residues per Rha are similar. CP is richer in methyl-esters with a DE of 70% 

as opposed to 58% in SBC (Table 9). On the other hand, CP has a lower 

DAc (1.5% versus 20%), protein content (1.2% versus 8.5%). CP additionally 

has a lower MW (430 kDa versus 548 kDa) (Table 9), however this is 

unusual and could be explained by a potential greater presence of 

aggregated molecules in sugar beet pectin [369] or the cross-linking of ferulic 

acids [370, 371]. The polydispersity index (weight average molecular weight 

divided by the number average molecular weight, Mw/Mn) of both pectins is 

relatively high. Monodisperse polymers with equal chain lengths will have a 

polydispersity index of 1, and the larger the index, the broader the MW. CP 

has an index of 2.3, which suggests it consists of varying chain lengths; 

however, SBC has a higher index of 2.9 which indicates a broader spectrum 

of polymer sizes. SBC additionally contains higher amounts of xylose and 

glucose which could derive from an additional hemicellulose component 

extracted with the pectin, such as xyloglucan, or possibly sugars branched 

from RGII. 

http://en.wikipedia.org/wiki/Weight_average_molecular_weight
http://en.wikipedia.org/wiki/Number_average_molecular_weight
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Further pectin samples, CH and SBH, were extracted from the solid part of 

the initial commercial extraction, at a higher temperature, 90°C, at pH 2.4, in 

order to depolymerise the backbone and create lower MW pectins. Contrary 

to these predictions, results indicate that MW was not significantly lowered in 

sugar beet pectin. However, the MW of citrus pectin was reduced 

considerably from 430 kDa to 144 kDa, indicating a smaller pectin size. 

These results additionally correspond with the vast increase in RGI to HG 

regions, implying a breakdown of the HG backbone. High heat extraction 

additionally decreased the arabinan content from 2.2% to 1% and 13.1% to 

6.9% in citrus and sugar beet pectin, respectively. Sugar beet pectin 

structure did not appear to be effected in any other way, however, the DE of 

citrus pectin decreased from 70.2% to 63.1%, while protein content 

increased from 1.2% to 5.4%.   

CH and SBH were further modified with alkali, pH 13 at 5°C, in order to yield 

pectins with low DE (CA and SBA). As predicted, alkali treatment significantly 

reduced DE from 63% to 45%, and 55% to 18% in citrus and sugar beet 

pectin, respectively. Sugar beet pectin appeared to be more vulnerable to 

alkali treatment with a 37% decrease in DE to 18% in citrus pectin. DAc of 

sugar beet pectin was also greatly reduced from 22% to 8.8%. Alkali 

treatment of pectin was carried out at a low temperature in order to inhibit β-

elimination, and thus depolymerisation of the pectin backbone. On the 

contrary, alkali treatment significantly reduced sugar beet pectin MW from 

535kDa to 362kDa, which coincides with a decrease in GalA and an increase 

in RGI to HG regions. However, it is possible that this reduction in MW could 

be due to the break-up of aggregates. Neutral sugar side chains remained 

unchanged by this treatment.  
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Table 7 Sugar analysis of pectins and Pec-C (%mol).  Relative percent sugar composition analysis and uronic acid content of pectins 

isolated from citrus and sugar beet and Pec-C health supplement.  

  GalA  Rha Gal Ara Xyl Glu GlcA Fuc 

Citrus pectins 

       CP 91 1.2 4.6 2.2 0.4 0.4 0.2 0.1 

CH 89.7 2.3 5.8 1 0.4 0.8 0.1 0.1 

CA 91.8 1.6 5 0.6 0.3 0.6 0.1 0 

CO 83.2 1.4 3.8 10.3 0.5 0.5 0.3 0.1 

COPG 82.2 1.9 4.3 9.2 1.1 0.8 0.3 0.2 

Sugar beet pectins 
     

 SBC 62 5.5 12.4 13.1 1.6 4.5 0.9 0.1 

SBH 60.1 6.4 14.4 6.9 3.7 7.6 0.9 0.1 

SBA 47.4 11.6 25.1 10.5 0.9 3.5 0.8 0.1 

SSBA 52.5 11.4 18.5 7.8 3 4.1 2.6 0.2 

SBO 43.6 3.2 9.4 31.4 3.9 8 0.5 0.2 

SBOPG 36.9 3.9 11.1 36.5 3.3 2.4 0.7 0.1 

Health supplement 

      Pec-C 93.5 0.7 3 1.1 0.1 0.6 0.9 0.1 
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As well as commercial extraction, citrus peel and sugar beet pulp also 

underwent weak acid extraction with oxalic acid (pH 3.5) at 75°C in order to 

prevent degradation of the pectin and subsequently yield samples with high 

neutral sugar content (CO, SBO). Results revealed that MWs of the oxalic 

acid-extracted pectins were indeed considerably higher with an increase of 

654kDa and 873kDa in CO and SBO, respectively, than their commercially 

extracted counterparts. These pectins were also revealed to have 

significantly higher arabinan contents, while galactan content was similar. 

Sugar analysis results showed SBO and CO to have arabinan contents of 

31.4% and 10.3%, while the harsher, commercial extractions yielded pectins 

with 13.1% and 2.2% arabinan, respectively. Overall, yields of oxalic acid-

extracted pectin were significantly lower than commercially extracted pectins. 

 

Table 8 GalA, Gal and Ara to Rha ratios of pectins and Pec-C. Ratios of GalA 

(GalA:Rha), Gal (Gal:Rha), and Ara (Ara:Rha) to Rha, of ten pectins and Pectasol-C 

health supplement. Data are presented as number of GalA, or Gal and Ara residues 

to one Rha residue. Values taken from Table 7. 

  GalA:Rha Gal:Rha Ara:Rha 

Citrus pectins 
  

CP 73.9 3.7 1.8 

CH 39.3 2.5 0.4 

CA 58.9 3.2 0.4 

CO 59 2.7 7.3 

COPG 42.6 2.2 4.8 

Sugar beet pectins 
  

SBC 11.4 2.3 2.4 

SBH 9.3 2.2 1.1 

SBA 4.1 2.2 0.9 

SSBA 4.6 1.6 0.7 

SBO 13.8 3 10 

SBOPG 9.4 2.8 9.3 

Health supplement 
  

Pec-C 133.6  4.3  1.6  
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Table 9 %DE, %DAc, %protein, MW, and polydispersity of pectins and Pec-C.  %DE, %DAc, % protein, viscosity [η], molecular weight 

(MW) and polydispersity index (Mw/Mn) of pectins isolated from citrus and sugar beet and Pec-C health supplement. * no data available. 

  %DE %DAc % protein MW (kDa) Mw/Mn 

Citrus pectins 

    CP 70.2 1.5 1.2 430 2.3 

CH 63.1 2 5.4 144 3.1 

CA 45.3 2.6 3.9 129 3.6 

CO 76.5 1.1 1.5 798 2.5 

COPG 67.5 2.1 2.4 653 2.9 

Sugar beet pectins 

    SBC 56.8 23.4 6.1 548 2.9 

SBH 54.7 21.6 6.1 535 2.9 

SBA 18 8.8 4.2 362 3.2 

SBO 62.4 25.3 3.1 1381 2.5 

SBOPG 62.4 32 2.8 594 2.1 

Health supplement 

   Pec-C 5 * * 23 1.4 
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Further pectin samples, COPG and SBOPG, were extracted from the solid 

part of the initial oxalic acid-extraction by incubation with endo-

polygalacturonase (PG), an enzyme that hydrolyses glycosidic bonds that 

link GalA residues of the pectin backbone, in order to create lower MW 

pectins without compromising the neutral sugar content. As expected, PG 

treatment depolymerised the HG backbone of both citrus and sugar beet 

pectin, considerably lowering the MWs by 145kDa and 787kDa in COPG and 

SBOPG. Accordingly, the GalA:Rha ratio was slightly lowered, indicating an 

increased concentration of highly branched regions of RGI. PG treatment 

also reduced DE in citrus pectin by 10%. Sugar compositions were 

unaffected.  

The health supplement Pec-C has featured in a number studies into the anti-

cancer effects of modified pectin [201, 205, 329] and so was employed in this 

study and its structure analysed. Results reveal that the content of Pec-C is 

largely GalA, with just 3% galactan and 1.1% arabinan. The sizeable 

GalA:Rha ratio and small branching ratio indicate that Pec-C is mainly HG 

backbone with few RGI regions with short galactan and arabinan side chains. 

Additionally, Pec-C is very small in size with a MW of 23kDa and an 

extremely low methyl-ester content of 5%. 

It was noted in subsequent chapters that the sugar beet pectins were not 

completely soluble, and as SBA showed significant bioactivity, it was 

investigated if this played a role in reducing cell viability. The soluble and 

insoluble components of SBA were separated by centrifugation to yield the 

soluble fraction of SBA (SSBA). The monosaccharide composition of SSBA 

was assessed and shown to be very similar to that of the original SBA (Table 

7), showing that the soluble part is representative of the whole SBA. 

3.4.2 Chemical analyses of pectic polysaccharides                                                                                                                                                              

Pectic polysaccharides were employed in this study to ascertain which 

structural features of pectin have the optimum effect on colon cancer cells. 

Seven polysaccharides were selected to represent the two major regions of 

pectin, HG and RGI. Citrus polygalacturonic acid (C-PGA) represents the HG 
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backbone of pectin and potato RGI (P-RGI and P-RGI-X) the RGI regions. 

Potato galactan (P-Gal), sugar beet arabinan (SB-Ara) and larchwood 

arabinogalactan (L-AG) represent the neutral sugars that constitute RGI.  

Table 10 shows the sugar composition of the six pectic polysaccharides as 

well as MW and polydispersity, as analysed for this study. Results showed 

the presence of Rha, Ara and Gal in varying proportions. Only traces of Xyl, 

Glu, Man and Fuc were present. Sugar compositions of some of the 

polysaccharides, particularly P-RGI-X, P-Gal and SB-Ara were shown to be 

different from those quoted by Megazyme (Table 11). According to the 

manufacturer, P-Gal is prepared by an alkali extraction of potato fibre 

followed by acid hydrolysis and enzymatic treatments to remove 

polysaccharides other than Gal. The sugar composition of P-Gal proved to 

be very different to that quoted by Megazyme. P-Gal consists of 63.5% Gal, 

rather than the quoted 88%, and considerably higher amounts of GalA and 

Rha than published. A ratio of 4.6 GalA residues to one Rha residue 

indicates a presence of RGI regions comparable with P-RGI, albeit with 

significantly more galactan residues. P-Gal has a MW of 390kDa, and a 

polydispersity index of 4, indicating that P-Gal consists of polymers with a 

wide range of molecular mass.  
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Table 10 Sugar analysis of pectic polysaccharides (%mol) Relative percent sugar composition analysis, uronic acid content, 

molecular weight (MW) and polydispersity index (Mw/Mn) of pectic polysaccharides.  

  GalA  Rha Gal Ara Xyl Glu Man Fuc MW Mw/Mn 

P-Gal 26 5.7 63.5 2.9 0.1 1.4 0 0.4 390 4 

P-RGI 44.8 21.5 21.8 6.4 1.9 1.8 1.4 0.5 42 2.42 

P-RGI-X 47.8 21.6 19.6 5.6 1.5 1.8 1.2 1 14.3 * 

C-PGA 90.3 2 5.6 1 0.1 0.6 0.3 0.1 379 4.4 

SB-Ara 19 7 15.8 57.7 0 0.2 0 0 206 1.5 

L-AG 2.3 0 79.5 16.5 0.6 0.9 0 0.1 46 1.1 

 

Table 11 Quoted sugar ratios of pectic polysaccharides (%mol) Quoted sugar ratios of pectic polysaccharides from Megazyme. 

  GalA  Rha Gal Ara Xyl Glu Man Fuc 

P-Gal 7 3 88 2 0 0 0 0 

P-RGI 62 20 12 3 0 0 0 0 

P-RGI-X 62 20 12 3 0 0 0 0 

C-PGA 96 1 1 0.2 0 0 0 0 

SB-Ara 7 2 3 88 0 0 0 0 

L-AG 0 0 81 14 0 0 0 0 
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Table 12 GalA, Gal and Ara to Rha ratios of pectic polysaccharides. Ratios of 

GalA (GalA:Rha), Gal (Gal:Rha), and Ara (Ara:Rha) to one Rha residue. Values 

taken from Table 10. 

  GalA:Rha Gal:Rha Ara:Rha 

P-RGI 2.1 1 0.3 

P-RGI-X 2.2 0.9 0.3 

C-PGA 43.7 2.8 0.5 

P-Gal 4.6 11.2 0.5 

SB-Ara 2.7 2.3 8.2 

 

 

Investigation into the sugar composition of P-RGI showed it was similar to 

that of the quoted sugar content. According to the producers, P-RGI is 

prepared by enzymatic hydrolysis of pectic galactan from potato, similar to P-

Gal. Enzymes include endo-arabinanase, endo-galactanase, 

polygalacturonanase and a-L-arabinofuranosidase which hydrolyse the 

pectin backbone and cleave arabinan and galactan side chains. P-RGI 

consists of 44.8% GalA and 21.5% Rha. As the RGI backbone consists of 

repeating disaccharide units of GalA-Rha, results indicate that P-RGI is 

mainly composed of RGI, although regions of HG are still present. Neutral 

sugars of RGI are made up of 21.8% Gal and 6.4% Ara, with branching ratio 

of just one Gal and 0.2 Ara residues per Rha residue. This indicates P-RGI 

contains very short sugar side chains of mainly galactan. P-RGI has a 

relatively low MW at 42kDa. P-RGI-X is potato RGI from Megazyme with the 

same catalogue and lot number as P-RGI. P-RGI-X was shown to have a 

very similar monosaccharide composition to P-RGI, however it has a lower 

MW of 14.3 kDa (Table 10).   

The producers of C-PGA assert that it is prepared from citrus pectin by 

enzymatic hydrolysis with polygalacturonase followed by de-methylation. C-

PGA is intended to represent the HG backbone of pectin, and results show it 

is mainly composed of GalA. However C-PGA also contains 5.6% Gal and 

1% Ara and has a ratio of 45 GalA residues to one Rha, which indicates that 

the structure is not pure HG, but also contains RGI regions with short sugar 
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side chains. MW is relatively high at 379kDa; however the polydispersity 

index is correspondingly high, signifying a wide range of polymer sizes within 

C-PGA. 

SB-Ara is extracted from sugar beet pulp with calcium hydroxide solution at 

90°C, according to the manufacturers. It is rich in arabinan, 57.7%, although 

the content is significantly less than the 88% quoted. SB-Ara also contains 

15.8% Gal, 19% GalA and 7% Rha, indicating that arabinans exist as side 

chains of an average length of 10 residues on an RGI backbone. The 

polydispersity index of SB-Ara is relatively low, signifying a narrow size 

distribution with a molar mass of 206kDa MW. Results show that the sugar 

composition and MW of L-AG is almost identical of that quoted by the 

manufacturers. L-AG is composed of 79.5% Gal and 16.5% Ara, with a 

monodisperse MW of 46kDa. L-AG is extracted from larchwood, and differs 

from the other pectic polysaccharides as it does not contain an RGI 

backbone (and therefore has been excluded from Table 12). Published data 

confirms that larchwood arabinogalactan typically consists of a main chain of 

β(13)galactose units with 1-3DP side chains of β(16)galactan and α-L-

arabinan [372] 

3.4.3 NMR analysis of pectins and pectic polysaccharides 

NMR spectroscopy was carried out to further characterise certain pectins 

and pectic polysaccharides that demonstrated bioactivity in colon cancer 

cells in the proceeding chapters. The partial 13C NMR spectrum in Figure 12 

shows that Gal chains in P-Gal are relatively long with major peaks 

characteristic of linear (14)-β-D-linked Gal chains [373] These chains are 

linked to Rha residues in the RGI backbone whose presence is shown by the 

appearance of two Rha Me signals in the 1H spectrum, with intensity ratio 

2:1, at 1.31 and 1.25 ppm (Figure 13B). Detailed analysis of the P-RGI 

spectrum (Appendix B, Table B1) had shown that the first of these two 

signals corresponded to Rha units substituted (at C4) by Gal, whilst the 

second signal arose from Rha units that were not Gal-substituted (RhaU). 

Rha units either carry a long Gal Chain (RhaG) or a single terminal Gal 
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(RhaGT), and the intensities of the Rha Me signals show that 

(RhaG+RhaGT):RhaU is 2:1. There was no signal for Ara. Estimation of the 

galactan chain length of P-Gal required quantification of minor signals. The 

Gal C2 signals were used since they allowed to distinguish between Gal 

units in the (14)-β-Gal chain (RhaG, Figure 12B(h)), single terminal Gal 

residues linked to Rha (RhaGT, Figure 12C(c)) and terminal Gal units that 

terminate the (14)-β-D-linked Gal chains (GalT, Figure 12C(i)). The 

intensities of the weak signals, c and i, were difficult to determine directly 

from the 13C spectrum (Figure 12C) but better sensitivity and resolution was 

obtained by measuring intensities at the 13C shifts indicated using cross-

sections through the 1H/13C HSQC spectrum at the 1H chemical shifts shown 

in Table 13. Peak c represents RhaGT and is approximately equal to GalT 

(peak i), and the ratio of RhaG (peak h) to GalT is 23:1, giving a mean chain 

length of 23 residues. Additionally the ratio of RhaUS: RhaG: RhaGT was 1:1:1. 

The 13C NMR spectrum did not show signals for GalAHG, presumably 

because of association between (14)-α-linked-GalA chains. The analytical 

data (Table 10) shows P-Gal is composed of 26% GalA and 6% Rha which 

leaves 20% GalAHG allowing for GalA in the RGI regions.  

 

Table 13 1H/13C HSQC NMR spectrum of P-Gal. Peaks taken from Figure 12 

Peak  1H 

ppm 

13C 

ppm 

Identity 

h 3.69 74.53 C2 Gal in (14)-β-Gal side chain (RhaG) 

c 3.53 74.39 C2 Terminal Gal in single unit side chain  

(RhaGT) 

i 3.62 74.15 C2 Terminal Gal in (14)-β-Gal side chain 

GalT 

j 3.92 71.33 Common to all terminal Gal 

e 4.16 80.22 C4 Gal in (14)-β-Gal side chain 
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Figure 12 13C NMR spectra of P-RGI, P-Gal and SSBA. 151MHz 13C NMR spectra of pectin samples at 3380K in D2O (anomeric, C6 (Gal) 

and C6 (Rha) regions of the spectra not shown). (A) P-RGI; (B) P-Gal; (C)P-Gal (y-gain increased to show weaker peaks); (D) SSBA. (a-d) 

terminal Gal stub: a C5; b C3; c C2; d C4; (e-h) (14)-β-linked-Gal units: a C4; b C5; c C3; d C2; (i) C2 terminal unit of (1,4)-linked side chain; 

(j) C4 combined signal for stubs and chain termini. 
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Figure 13 1H NMR spectra of P-RGI, P-Gal and SSBA. 600MHz 1H NMR spectra of pectin samples at 3380K in D2O with insets showing Rha 

Me signals. (A) P-RGI; (B) P-Gal; (C) SSBA. SSBA has two acetate (GalA substituent) signals at 2.17 and 2.18 ppm that are not shown. 

Separate Rha Me signals are observed for units substituted with Gal (sub) or not substituted (unsub). 
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The 13C spectrum of SSBA (Figure 12D) was considerably more complex 

than that of P-Gal as it had signals from partly substituted and esterified 

GalA and Ara as well as from Gal. However the same major ((14)-β-D-

linked) and minor Gal signals were evident as in P-Gal and have been 

labelled with the same letters. The greater prominence of peaks c and i 

showed that Gal chains in SSBA were relatively short compared with P-Gal. 

Using the HSQC spectrum in the same way as described for P-Gal, the 

‘longer’ chains in SSBA were estimated to have an average Gal chain length 

of 3.5 residues, and there were 1.6 times as many of these ‘long’ chains as 

there were single terminal Gal stubs. Additionally, the integration of the 1H 

spectrum (Figure 13C) of SSBA gave a 1:1 ratio for Rha substituted with Gal 

(C6 at 1.31 ppm) and unsubstituted Rha (C6 at 1.25 ppm). Consequently, it 

can be determined that the different types of Rha residue in the RGI region 

of SSBA are in the ratio of 5:3:2 for RhaU: RhaG RhaGT. Again using the 

HSQC cross-sections, the intensities of the C1 peaks for terminal Ara 

(1H/13C=5.14/109.8 ppm) and (15)-linked-Ara (5.07/110.1) in SSBA were 

practically equal. The high proportion of terminal Ara implies that Ara side 

chains are mostly either single stubs or else very short.  
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Figure 14 13C NMR spectra of P-RGI and P-RGI-X. 151MHz 13C NMR spectra of P-RGI and P-RGI-X at 338°K in D2O (anomeric 

region). 
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Table 14 Monosaccharide composition of P-RGI and P-RGI-X obtained by 13C 

NMR (a) Relative percent monosaccharide composition of P-RGI and P-RGI-X; (b) 

Relative percent composition of total GalA as GalAHG, GalAR, GalANR and GalARE  

Pectin 
Monosaccharide 
compositiona % 

Total GalA compositionb % 

  GalA Rha Gal GalAHG GalAR GalAT GalARE GalUS 

P-RGI 46 25 29 34.8 43.5 21.6 0 3.5 

P-RGI-X 49 26 25 0 44.9 24.5 34.7 2 

 

Two batches of potato RGI with the same catalogue and lot numbers were 

obtained from Megazyme. While P-RGI was shown to reduce viability of 

colon cancer cells, the second RGI, P-RGI-X, lacked this bioactivity (Chapter 

5). Therefore the fine structures of the polysaccharides were compared. 

Sugar ratios, as determined according to integrals of the C1 peaks in 13C 

NMR, were very similar to those obtained by HPAEC-PAD (Table 14a and 

Table 10). 13C NMR spectra display signals for neutral sugars in similar 

proportions for both P-RGI and P-RGI-X (Figure 14). The majority of Rha is 

substituted with Gal at an approximate ratio of 5:1 (Figure 13A), and Gal 

chains are very short, consisting of just 1-3 DP. Use of the HSQC spectrum, 

as before, gives a ratio of approximately 4:1 for the ratio of single terminal 

Gal to ‘longer’ chains. Therefore the ratio of the different types of Rha 

residue is 1:1:4 for RhaU: RhaG:RhaGT. The prominent terminal Gal signals 

(linked to RhaGT) are labelled in Figure 12A (a-d). Exactly the same pattern 

was found for the side chains in P-RGI-X.  

The distinctions between the two RGIs lie in the composition of GalA. Five 

types of GalA can be recognised: GalAHG is GalA in the HG region i.e. 

(14)-α-linked-GalA linked to GalA; GalAR is GalA linked to Rha in the RGI 

region; GalAT is terminal GalA; GalARE is reducing end GalA; and GalAUS is 

unsaturated GalA (Table 14B). Two obvious dissimilarities exist between the 

two RGIs. The 13C NMR spectrum clearly displayed signals for βGalARE and 

αGalARE in P-RGI-X, that were entirely absent in P-RGI (Figure 14). The 

presence of different types of non-reducing end coupled with an absence of 

reducing ends in P-RGI is surprising as in a linear core structure the number 
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of reducing ends should be equal to the number of non-reducing ends. This 

could imply P-RGI has a branched structure whereby GalA exists as HG side 

chains branched from an RGI backbone in line with newer models of pectin 

[374, 375]. For this proposed model it would be expected that the number of 

branch points would match GalAT, however no branch points were detected. 

Nevertheless, it is possible that the HG side chains are of restricted mobility 

and therefore invisible to NMR. On the other hand, the ratio of terminal to 

reducing end GalA in P-RGI-X is equal. The content of GalARE is higher than 

GalAT, but approximately one third of GalARE exists as free GalA, leaving a 

GalAT:GalARE ratio of 1:1. The second major distinction between the samples 

is the absence of GalAHG 13C NMR signal in P-RGI-X (Figure 14). 44.9% of 

GalA exists attached to Rha residues in the P-RGI-X backbone (Table 14b), 

and the remaining 55.1% most likely exists as free mono- and disaccharides: 

one third of GalARE is free GalA (Figure 14B), while the remainder is 

matched in amount to GalAT, which implies free GalA disaccharides. On the 

other hand, 34.8% of GalA in P-RGI exists as HG (Table 14b). The probable 

reason for these differences can be understood by the content of GalAUS, a 

product of pectic lyase action on GalAHG. P-RGI has 1.75-fold the content of 

GalAUS than P-RGI-X and this disparity implies a variation in the method of 

enzymatic treatment. It is most likely that P-RGI and P-RGI-X correspond to 

different extents of depolymerisation, either in the initial preparation or from 

some residual enzyme activity in the samples which begins when solutions 

are prepared. Detailed analysis of the P-RGI-X, P-Gal and SB-Ara spectrums 

are detailed in Appendix B (Tables A2-4). 

 

 

 

 

 

 



 

 

3. 5 Discussion 

Citrus and sugar beet pectins were extracted and modified in a variety of 

ways to provide an array of pectins with varying MWs, DE, DAc, protein and 

neutral sugar contents. In general, sugar beet and citrus pectins differed in 

several ways. Sugar beet pectins generally exhibited lower DE and GalA 

content, and higher DAc, protein and neutral sugar content than citrus 

pectins, as predicted [138] [141, 376]. Moreover, sugar beet pectins 

exhibited a higher occurrence of RGI regions, as shown by ratios of 

GalA:Rha,  while the neutral sugar content of each RGI region is similar in 

both sugar beet and citrus pectin samples, with relatively low Gal:Rha and 

Ara:Rha ratios indicating short side chains. Additionally, sugar beet pectin 

was show to have higher MWs than citrus pectin, which is unusual. However, 

it is possible that, as pectin has a natural tendency for aggregation of 

molecules, even in dilute solution, that the interpretation of light-scattering 

data could be uncertain [369, 377]. Additionally, it is known that ferulic acid 

present on Ara can form cross-links between chains which could explain the 

high MWs [370, 371]. The polydispersity of all pectins was relatively high, 

indicating that pectin consists of varying chain lengths.  

Sugar beet and citrus pectins were extracted under two different conditions: 

a mild acid extraction to extract pectin without compromising the neutral 

sugar content and HG backbone, and conventional commercial extraction 

under high acidic conditions. Pectins extracted under weak acid conditions 

were revealed to exhibit significantly higher MWs and Ara contents than their 

commercially-extracted counterparts, as well as slightly higher DE. The 

milder extraction conserves the HG backbone as well as Ara side chains 

[376, 378]. Further enzymatic modification intended to depolymerise the HG 

backbone was successful, reducing MW and the ratio of HG to RGI regions 

while leaving neutral sugar side chains intact. On the other hand, commercial 

extraction creates pectins with relatively low MW and neutral sugar contents. 

Heat-treatment of commercial pectins generated pectins with reduced MW 

and DE, particularly in CP, which follows an increased rate of hydrolysis and 

the breakdown of the HG backbone. Additionally, Ara content in both sugar 

beet and citrus pectin was approximately halved by this heat extraction. An 
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additional treatment with alkali significantly reduced the DE of the pectins, as 

well as MW, GalA and protein content. These effects were particularly 

pronounced in sugar beet pectin. Alkali treatment was carried out at 5°C to 

avoid β-elimination; however, the sugar beet pectin HG backbone was 

significantly fragmented, increasing the occurrence of RGI regions 3-fold, 

while the neutral sugar content of each RGI region remained unchanged.  

Pec-C, a MCP marketed as a health supplement in the US and the subject of 

various studies into the health effects of Gal-rich MCP, was shown to have 

an extremely low MW and DE, as published [200]. However, despite the 

assurance of Gal-rich pectin [200-202, 204], Pec-C was shown to have a 

very low Gal content, consisting predominantly of GalA.  

As pectin is mainly composed of two regions, HG and RGI, polysaccharides 

were chosen to denote these regions in order to determine the structural 

features of pectin required for an optimum effect on cancer cells in the 

proceeding chapters. C-PGA represents HG and P-RGI and P-RGI-X the 

RGI region. P-Gal, SB-Ara and L-AG represent the neutral sugars that 

constitute RGI. C-PGA, representing the HG backbone, was shown to indeed 

consist of predominantly GalA, although RGI regions do appear in a small 

quantity.  SB-Ara was shown to comprise of predominantly Ara side chains 

branched from RGI, although GalA content was also relatively high. As 

predicted, L-AG comprises predominantly Ara and Gal, and differs from the 

pectic polysaccharides given that it does not contain an RGI backbone. P-

Gal is shown to consist largely of Gal; however, it also contained a relatively 

high amount of GalA and Rha. Gal chains are estimated to be approximately 

23 residues in length, with an equal number of RhaU, RhaG and RhaGT. P-Gal 

is shown to be particularly heterogeneous, with a higher polydispersity index 

than pectins of equivalent or higher MW, indicating an assortment of polymer 

lengths. The MW of P-Gal is surprisingly high, although consistent with the 

value of 272kDa [322] and 50-550 kDa [379] reported previously for potato 

galactan. However, these results could be an overestimate due to the 

stiffness of the (14)-β-Gal side chains relative to the highly flexible pullulan 

standards, as well as the complex shape of highly branched RGI.  
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P-RGI was chosen to represent the RGI region of pectin. However, 

monosaccharide analysis shows that, although P-RGI is rich in RGI 

backbone, it contains very little in the way of neutral sugars. Indeed, results 

from NMR analysis show that Gal side chains on P-RGI are just 1-2 residues 

in length, while Ara was not detected at all. Indeed, P-Gal was shown to 

contain the same ratio of HG to RGI regions as P-RGI. However, previous 

studies of RGI show Gal chains of up to 2 Gal units in okra [211], and 4 Gal 

units in ginseng [325] RGI. Results from this study additionally show that 

pectins contain Gal chains of no more than 4 residues. A second potato RGI, 

P-RGI-X, was shown to have a very similar neutral sugar content as P-RGI. 

However, the 13C NMR spectrums of each of these samples proved to differ 

significantly in their compositions of GalA. P-RGI was shown to contain 

regions of HG, while P-RGI-X was shown to lack these HG regions. 

Furthermore, there was a surprising absence of any reducing end GalA in P-

RGI, leading to the conclusion that a proportion of the HG chains of P-RGI 

could exist as side chains from the RGI backbone, a structure that has been 

proposed in previous studies [137, 374]. The presence of pectic lyase 

product in P-RGI indicates a variation in the methods of treatment of P-RGI 

and P-RGI-X. Both samples are prepared by enzymatic hydrolysis of potato 

galactan to create a backbone of RGI, and it is likely that the full duration of 

enzymatic hydrolysis was not carried out, leaving intact HG chains in P-RGI. 

Further evidence of depolymerisation is provided by the lower MW of P-RGI-

X to P-RGI. 

Following the preparation of sugar beet pectins for use in cell culture 

experiments in the following chapters, SBA was shown to be insoluble. 

Consequently, only the soluble fraction of SBA, SSBA, was employed in cell 

experiments. Monosaccharide and NMR analysis revealed the structures of 

SBA and SSBA to be almost identical. SSBA exhibits exceptionally low GalA 

content and high neutral sugar content due to a very high ratio of RGI 

regions, boasting 15-fold more RGI regions per molecule than CA. 

Consequently, the neutral sugar content of each RGI region is relatively low. 

NMR data confirms this surmise, estimating the average Gal chain length at 

just 3.5 Gal units. Furthermore, half of all Rha residues in the RGI backbone 
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are unsubstituted, while the remaining are branched with either short side 

chains or single Gal units. Of most interest is that the HG to RGI ratio of 

SSBA is comparable to that of P-RGI. SSBA also contains higher neutral 

sugar content than P-RGI, which consequently means that SSBA could be 

classed as sugar beet RGI. NMR additionally revealed the presence of 

feruloyl groups attached to Gal residues. 

3.6 Conclusion 

Five sugar beet and five citrus pectins were extracted and modified to create 

pectins with various MWs, neutral sugar, DE, DAc and protein contents. As 

predicted, sugar beet pectins proved to exhibit lower DE and GalA content 

and higher DAc, protein and neutral sugar content than citrus pectins. Both 

heat and alkali treatment depolymerised the HG backbone, increasing the 

RGI content, while alkali treatment additionally reduced DE. Pectic 

polysaccharides were chosen for their resemblance of the individual 

components of pectin. P-Gal was shown to have long Gal side chains of 

approximately 23 residues, while P-RGI Gal chains were revealed to be short 

chains of 1-2 units in length.  Furthermore, P-RGI was shown to contain HG 

regions that could exist as side chains from the RGI backbone, in line with 

newer pectin models. 
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Chapter 4 

Effects of modified pectins on colon cancer cells and 

correlation with pectin structure 
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4.1 Introduction 

CRC is the third most common cancer worldwide and the most common diet-

related cancer, influenced by diets rich in saturated fats, red meat, and low in 

plant-based foods. Epidemiological studies have shown that fruit and 

vegetable consumption is associated with a reduced risk of developing CRC 

[98, 380]. Although the exact bioactive components remain unclear, dietary 

fibre is thought to play a major role, and this has given rise to research into 

the anti-cancer effects of pectin and pectic polysaccharides. Pectins from 

numerous sources such as citrus [201, 329], apple [381], okra [211], and 

ginseng [212, 213], extracted and modified in various ways, have been 

investigated for their anti-cancer effects and have been shown to reduce cell 

proliferation, migration, adhesion, and induce apoptosis in a variety of cancer 

cell lines. 

Pectin that has been treated with pH (low or high), heat or enzymes is 

generally referred to as ‘modified pectin’, although this term remains 

ambiguous as pectin is a highly heterogeneous material. Modified pectin 

structure can vary widely depending on the pectin source, extraction and 

method of modification. The majority of research into the effects of modified 

pectin has been carried out with citrus pectins, and several studies have 

demonstrated the benefits of modified citrus pectin (MCP) over commercial, 

un-modified citrus pectin (CP) [191, 193-195]. It is generally understood that 

modifying CP with heat and pH will decrease MW and proportionally increase 

total neutral sugars, although in the majority of studies the extent of structure 

modification was not examined. Pectasol-C, enzymatically modified citrus 

pectin on sale in the USA as a health supplement, has a low MW but is also 

very low in neutral sugar content. It has been shown to reduce proliferation 

and induce apoptosis in prostate cancer cells [201], to have 

immunostimulatory properties [205] and to increase the prostate specific 

doubling time in prostate cancer patients [207]. Generally it is thought that 

pectins with a high neutral sugar content to be more bioactive due to the 

hypothesis that galactan side chains on pectin can bind to the pro-metastatic 

protein Galectin-3 which could then result in suppression of cancer cell 

proliferation, aggregation, adhesion and metastasis[195, 321]. 
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This chapter investigates two sources of pectin. Sugar beet pulp: a source of 

pectin known to be rich in neutral sugars with low DE, high DAc, high protein 

content and the presence of ferulics; and citrus peel: a source of pectin used 

in many investigative studies into the anti-cancer effects of pectin, with low 

neutral sugar content, high DE, low DAc and low protein content. The pectins 

are extracted and modified in a variety of ways to provide an array of pectins 

with varying sugar compositions, DE, DAc and protein contents and MWs. 

4.2 Aims 

The first objective of this chapter was to screen five sugar beet and five citrus 

pectins characterised in Chapter 3, and Pectasol-C for their effects on the 

viability of HT29 and DLD1 cells. Selected pectins were further investigated 

for time-dependent effects on cell viability, apoptosis and effects on the cell 

cycle. Secondly, the relationship between pectin structure and bioactivity was 

investigated in order to test the hypothesis that decreased MW and 

increased neutral sugar content of pectin are important for bioactivity. 

4.3 Materials and Methods 

4.3.1 Pectins 

Pectins were characterised in Chapter 3. Sample preparations for cell 

treatment were carried out as in section 2.3. 

4.3.2 Cell viability assays 

For dose-dependent studies, cells were seeded in Nunclon 96-well plates 

and after 24 hours were incubated in 200 μl cell culture medium 

supplemented with pectin at 0.2, 0.5 and 1 mg/ml for 48 hours. For time-

dependent studies cells were incubated with 200 μl cell culture medium 

supplemented with 1 mg/ml pectin for 48, 72, 96 and 120 hours.  For the 

study of acute treatments, HT29 cells were incubated with 1 mg/ml CA and  

1mg/ml SSBA for 24 hours and the medium replaced with fresh medium 

without pectin for a further 48 hours. Cells were seeded at the concentrations 

specified in Table 3 (pg.72). In one assay 5 biological replicates were 
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performed for each condition of treatment, and between 3 and 17 separate 

assays were performed for each pectin. Detection of cell viability and 

statistical analyses were carried out as described in section 2.4. 

4.3.3 Cell counting  

Nunclon 6-well plates were seeded in 2 ml cell culture medium at the 

concentrations specified in Table 3 (pg.72). The initial cell concentration was 

chosen in order to have untreated cells at 80-90% confluency after 120 

hours.  After 24 hours, the culture medium was replaced with medium 

supplemented with 1 mg/ml pectin and incubated for a further 24, 48, 72, 96 

or 120 hours.  Each condition of treatment was carried out in duplicate over 

three independent experiments. Cell counting and statistical analyses were 

performed as described previously (section 2.8) 

4.3.4 Cell imaging 

HT29 cells were seeded in Nunclon 6-well plates at 200,000 cells/well in 2ml 

cell culture medium. The initial cell concentration was chosen in order to 

have untreated cells at 80-90% confluency after 96 hours. After 24 hours, the 

culture medium was replaced with medium supplemented with 1 mg/ml 

pectin and incubated for a further 72 or 96 hours. Cell imaging was 

performed as described previously (section 2.5). 

4.3.5 Apoptosis detection by flow cytometry 

Nunclon 6-well plates were seeded with HT29 cells in 2 ml medium at the 

concentrations specified in Table 3 (pg.72). After 24 hours the medium was 

replaced with 2 ml cell culture medium supplemented with 0.5 or 1 mg/ml 

SSBA or 0.01 μg/ml staurosporine and incubation continued for a further 72 

hours. Each treatment was performed in triplicate over three independent 

experiments. Sample preparation and data analyses were carried out as 

described in Chapter 2.6. 
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4.3.6 Cell cycle analysis by flow cytometry 

Nunclon 6-well plates were seeded with HT29 cells in 2 ml medium at the 

concentrations specified in Table 3 (pg.72). After 24 hours the medium was 

replaced with 2 ml cell culture medium supplemented with 0.5 or 1 mg/ml 

SSBA or 150 μM FTS and incubation continued for a further 72 hours. Each 

treatment was performed in triplicate over three independent experiments. 

Sample preparation and data analyses were performed as described 

previously (section 2.7) 

4.4 Results 

4.4.1 Effects of citrus and sugar beet pectins on viability of HT29 and 

DLD1 cells  

Pectin structure differs depending on the source and method of preparation. 

Therefore, to examine whether pectins prepared using different extraction 

protocols have similar biological effects, five citrus pectins and five sugar 

beet pectins were screened for effects on HT29 and DLD1 colon cancer 

cells. Cells were treated with 0.2, 0.5 or 1 mg/ml of pectin over 48 hours, and 

their viability assessed. Table 15 shows that among the pectins tested, alkali 

treated sugar beet (SBA) and alkali treated citrus pectin (CA) significantly 

reduced HT29 cell viability in a dose dependent manner over 48 hours, with 

1 mg/ml of CA and SBA reducing viability by 19% and 21%, respectively. 

Untreated commercial citrus (CP) and sugar beet (SBC) pectins together 

with the oxalic acid-extracted pectins (SBO, SBOPG) and Pectasol-C had no 

effect. None of the commercial pectins or Pectasol-C affected DLD1 cells 

after 48 hours. 
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Table 15 Effects of different doses of pectin on HT29 and DLD1 cell 

viability. Cells were treated with 0.2, 0.5 and 1 mg/ml pectins for 48 hours. 

Results are expressed as percentage of viable cells remaining after 

treatment relative to the untreated control. Data are shown as mean ± 

standard error. * p<0.05; ** p<0.001. 

Pectin  0.2 mg/ml 0.5 mg/ml 1 mg/ml 

HT29 cells     

CP 94.3 ± 4.3 101.1 ± 6.5 97.6 ± 4.7 

CH 90.4 ± 3.3 100.4 ± 7.7 95.3 ± 3.3 

CA 87.4 ± 8 79.9 ± 6.8** 81 ± 4.3** 

CO 103.6 ± 4.1 97.3 ± 7 96 ± 4.6 

COPG 89.3 ± 7.1 93.4 ± 12.9 90.1 ± 7.7 

SBC 101.8 ± 5.1 89.6 ± 6.7 94.6 ± 6.2 

SBH 110.5 ± 7 97 ± 5 92.24 ± 6.8 

SBA 83.5 ± 6.3* 79.2 ± 5.8** 79.3 ± 5.9** 

SBO 103.7 ± 11.6 101.8 ± 7.3 111.347 ± 9 

SBOPG 103.4 ± 18.5 83.7 ± 24.4 92 ± 13.9 

Pec-C 92.4 ± 11 88.9 ± 8.6 91.6 ± 8 

DLD1 cells     

CP 103.4 ± 6.2 100.4 ± 3 97.8 ± 4.3 

CA 103.9 ± 2.3 99.9 ± 4.3 94.2 ± 6.5 

CH 102.2 ± 3.5 106.4 ± 3.4 106.7 ± 4.7 

CO 105.9 ± 5.7 101.9 ± 3.2 103.1 ± 3.3 

COPG 100.6 ± 6.9 101.2 ± 10.5 107.9 ± 11.9 

SBC 107.6 ± 4.7 109 ± 5.5 111.5 ± 2.1 

SBH 101.3 ± 3.9 103.6 ± 7.1 103.8 ± 8.5 

SBA 98.5 ± 3.2 100.3 ± 6.5 98 ± 8.5 

SBO 99.7 ± 9.6 97.4 ± 7 101.3 ± 8.2 

SBOPG 101.4 ± 10.3 98.7 ± 18.4 103 ± 6.5 

Pec-C 105.7 ± 3.1 91.9 ± 7.3 99.8 ± 5.4 

 

 

 



 

121 

 

It was observed that the pectins that reduced cell viability, SBA and CA, 

caused the cell culture medium to become viscous, and it was suggested 

that this could inadvertently cause cell death. The viscosity occurs because 

both SBA and CA are pectins with a low degree of esterification (DE). Upon 

modification with alkali, the DE of sugar beet pectin is reduced from 55% to 

18%, and citrus pectin from 70% to 45%. This cleavage of methyl esters 

generates the formation of negatively charged acid groups, which can bind 

and sequester small counterions, such as calcium present in cell culture 

medium, linking pectin molecules together to form a gel. To investigate the 

contribution of low DE to bioactivity, four LM pectins of 10% and 40% DE 

sourced from citrus peel and apple pomace were examined for effects on cell 

viability. An apparent inverse relationship was observed between the DE of 

the pectin and the viscosity of the medium. However, none of these LM 

pectins had any significant effect on cell viability (Figure 15), indicating that 

viscosity per se does not affect cell viability and that the low DE may not be 

sufficient for bioactivity. 

 

 

 

Figure 15 Effect of LM pectins on HT29 cell viability after 72 hours. 

Results are expressed as percentage of viable cells remaining after 

treatment relative to the untreated control. $ p<0.0001.  

 

 

0

20

40

60

80

100

120

Apple 40%
DE

Citrus
40% DE

Apple 10%
DE

Citrus
10% DE

SBA 18%
DE

CA
45% DE

$ $ 

R
e

la
ti

ve
 c

el
l v

ia
b

ili
ty

 (
%

) 



 

122 

 

4.4.2 Time dependent effects of pectins on HT29 and DLD1 cell viability 

and proliferation 

As 1 mg/ml SBA and CA consistently reduced HT29 cell viability after 48 

hours, the time dependent effects were investigated, alongside the 

unmodified pectins CP and SBC. The effects of SBA and CA on cell viability 

were time dependent (Figure 16). SBA reduced cell viability by 18%, 37%, 

57%, and 67% after 48, 72, 96 and 120 hours, respectively (p<0.0001), and 

CA by 19%, 28%, 48% and 50% (p<0.0001). SBC, which did not affect cell 

viability after 48 hours, induced a significant decrease in cell viability after 96 

hours (p<0.01). While SBA had no effect on DLD1 cell viability after 48 

hours, treatment for 72, 96 and 120 hours significantly decreased cell 

viability by 11%, 25% and 36%, respectively (Figure 17). After 120h, CA and 

SBC also reduced cell viability by 28% and 18%, respectively. CP did not 

significantly affect the viability of either cell line. Pec-C had no effect on 

DLD1 cells, and in HT29 cells required 96 hours to reduce viability by 19% 

(p<0.05) and 120 hours by 39% (p<0.001). 

It was noted that the sugar beet pectins were not completely soluble, and as 

SBA showed significant bioactivity, it was investigated if this played a role in 

reducing cell viability. The soluble and insoluble components of SBA were 

separated by centrifugation, and the time dependent effects of the soluble 

fraction (SSBA) were examined with HT29 and DLD1 cells. In both HT29 and 

DLD1 cells it was found that there was no significant difference in the effects 

of SSBA and total SBA on cell viability (Figure 16 and 17). The 

monosaccharide compositions of SBA and SSBA were analysed in Chapter 

3 and they were shown to be almost identical. Therefore, only SSBA was 

used in subsequent studies.  
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Figure 16 Effects of CP, CA, SBC, SBA and SSBA on HT29 cell viability 

over 120 hours. Results are expressed as percentage of viable cells 

remaining after treatment relative to the untreated control. Data are shown as 

mean ± standard error (CP n=7, 5, 3, 3; CA n=5, 8, 5, 4; SBC n=4, 3, 3, 3; 

SBA n=8, 3, 3, 3; SSBA n=10, 16, 8, 4) *p<0.05; **p<0.01; ***p<0.001; $ 

p<0.0001 

 

 

Figure 17 Effects of pectins on DLD1 cell viability over 120 hours. 

Results are expressed as percentage of viable cells remaining after 

treatment relative to the untreated control. Data are shown as mean ± 

standard error (CP n=5, 4, 3, 3; CA n=5, 4, 4, 3; SBC n=5, 4, 5, 4; SBA n=5, 

4, 3, 3; SSBA n=3, 5, 4, 3) **p<0.01; $ p<0.0001 
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The results presented suggest that there may be cell-specific effects of 

SSBA as it was consistently more effective in HT29 cells than DLD1 cells. To 

investigate this further the effects of SSBA on three other colon cancer cell 

lines were determined. HCT116, Caco2 and LoVo cells were incubated with 

1 mg/ml SSBA, alongside 1 mg/ml CP as a negative control for 72 hours. 

SSBA did not reduce cell viability in any of these additional cell lines (Figure 

18).  

 

Figure 18 Effect of SSBA and CP on cell viability of HCT116, Caco2 and 

LoVo cells over 72 hours. Results are expressed as percentage of viable 

cells remaining after treatment relative to the untreated control. Data are 

shown as mean ± standard error (n=3)  
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detected every 24 hours, but at a significantly reduced rate than the 

untreated cells.  

Figure 20 shows images of HT29 cells treated with 0.5 and 1 mg/ml SSBA 

after 72 and 96 hours. Consistent with the cell viability data, the total cell 

population of SSBA-treated cells and the sizes of the cell groups were 

significantly smaller, suggesting that SSBA affected cell growth in a dose- 

and time-dependent manner 

 

 

Figure 19 Time-dependent effect of CP, SSBA and CA HT29 cell 

number. Results are expressed as the fold change increase in cell number 

relative to the seeded number of cells. Data are shown as mean ± standard 

error (n=3) * p>0.05; $ p<0.0001 
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a                72 hours   b                  96 hours 

      Untreated cells           Untreated cells       

      SSBA 0.5 mg/ml        SSBA 0.5 mg/ml       

          SSBA 1 mg/ml               SSBA 1 mg/ml 

Figure 20 Images of HT29 cells after incubation with 0.5 and 1 mg/ml 

SSBA over 72 and 96 hours. (a) 72 hour incubation (b) 96 hour incubation 
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The reduction in HT29 cell viability induced by SSBA and CA was only 

evident after 48 hours of treatment. This raises the possibility that these 

pectins could be having a transitory effect on the cells leading to the 

subsequent observed effects on cell viability. To assess this, HT29 cells 

were treated with CA and SSBA for 24 hours, the pectin-containing medium 

was then replaced with fresh medium without pectin for a further 48 hours. 

Figure 21 shows that cells are not affected by a transitory 24 hour exposure 

and they need to be continually exposed to the pectins for the significant 

effect on cell viability to be evident.  

 

 

 

Figure 21 Effect of transitory  and continual treatments of CA and SSBA 

on HT29 cells over 72 hours. Results are expressed as percentage of 

viable cells remaining after treatment relative to the untreated control. Data 

are shown as mean ± standard error (acute treatments n=3) $ p<0.0001 

4.4.3 Effect of SSBA on HT29 cell apoptosis and the cell cycle 

A reduction in cell viability is often associated with an induction of apoptosis, 

or a reduction in cell proliferation due to regulation of the cell cycle. The 

effect of SSBA on these mechanisms in HT29 cells was examined using flow 

cytometry. To investigate apoptosis, three independent experiments were 

carried out with HT29 cells treated with 0.5 or 1 mg/ml SSBA over 72 hours. 
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The cells were then stained with Annexin V and PI to detect cells that were 

either live, undergoing early or late apoptosis, or dead. Figure 22a displays 

the percentage of cells in these four categories compared with the effects of 

the known apoptosis-inducing agent staurosporine (ST) [382]. 

a 

 

b 

 

Figure 22 Dose dependent effects of SSBA and ST on apoptosis of 

HT29 cells. (a) The percentage of cells in each stage of apoptosis. (b) The 

number of cells per μl in each stage of apoptosis. Data are shown as mean ± 

standard error. ** p<0.01; $ p<0.0001 
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Cells treated with SSBA for 72 hours had a significantly higher percentage of 

cells in the apoptotic phases, with an increase of 10% and 8% of cells in 

early apoptosis and 7% and 9% in late apoptosis, with 0.5 and 1 mg/ml 

SSBA, respectively. Figure 22b indicates the number of cells counted per μl, 

and clearly shows that the number of live cells is dependent on the dose and 

incubation time of SSBA. 

Examination of the supernatant taken from the cells incubated with SSBA 

can also give an indication of cell death by the number of floating cells in the 

medium, as dead cells will often detach from the plate. Figure 23 shows a 

dose-dependent increase in detached cells following treatment with 0.5 or 1 

mg/ml SSBA, with the increase in the number of detached cells reaching 

statistical significance for the 1 mg/ml SSBA treatment.  

 

 

Figure 23 Number of events counted per μl in cell culture medium after 

incubation with 0.5 and 1 mg/ml SSBA over 72 hours. Counts/μl shown 

here are after subtraction of counts/μl of pectins only, and so represent 

whole or broken down cells detached from the plate. *p<0.05; $p<0.0001 
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a 

 

b 

 

Figure 24 Dose dependent effects of SSBA on the cell cycle of HT29 

cells. (a) The percentage of cells in each phase of the cell cycle. (b) The 

number of cells per μl in each phase of the cell cycle. Data are shown as 

mean ± standard error. ** p<0.01; $ p<0.0001   
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To investigate the effect of SSBA on the cell cycle of HT29 cells, three 

independent experiments were carried out with a treatment of 0.5 or 1 mg/ml 

SSBA over 72 hours. Cells were fixed and then stained with PI to detect cells 

in each stage of the cell cycle; G0/G1, S, G2/M, as well as the sub G1 phase 

which indicates apoptosis. Farnesylthiosalicylic acid (FTS), an anti-cancer 

drug known to induce cell cycle arrest [383] was used as a positive control. 

Figure 24a shows that the proportion of cells in each phase of the cell cycle 

was unaffected by treatment with SSBA, except for an increase in the sub 

G1 phase, indicating an increase in apoptotic cells.  Figure 24b indicates the 

number of cells counted per μl, and clearly shows that the number of live 

cells is dependent on the dose and incubation time of SSBA. FTS, however, 

increased the accumulation of cells in G0/G1 phase, as well as the sub G1 

phase, indicating that FTS reduces cell viability via a combination of 

apoptosis and cell cycle arrest.  

4.5 Discussion 

Various modified pectins have been shown to have anti-cancer activity; 

however there is a lack of comparative studies that take structure into 

consideration. In this chapter citrus and sugar beet pectins, which had been 

extracted and modified in a variety of ways and characterised in chapter 3, 

were investigated for their effects on the viability of HT29 and DLD1 cells in 

order to further our understanding of the potential anti-cancer properties of 

pectin and the structure-function relationship.  

It has previously been proposed that the components of pectin responsible 

for their anti-cancer activity reside in the neutral sugar rich RGI regions [191], 

and so it was hypothesised that those pectins with a higher neutral sugar 

content and lower MW should be more bioactive. The pectins were modified 

in a variety of ways to provide an array of pectins with varying neutral sugar, 

DE, DAc and protein contents and MWs, in order to assess any correlation 

between these traits and effects on cells. The initial screen for bioactivity 

determined the effects of the pectins on the colon cancer cell lines HT29 and 

DLD1 utilising an assay that measures metabolic activity of the cells and, 
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therefore, captures effects of treatments on cell viability. The cellular effects 

of pectins, which significantly impacted cell viability, were then explored in 

more detail. 

Of the five citrus pectins, only alkali-treated citrus pectin, CA, consistently 

reduced cell viability in HT29 cells in a dose- and time-dependent manner, 

although a 120 hour treatment was required for the effect of this pectin to 

become significant in DLD1 cells. Unmodified commercial citrus pectin, CP, 

did not affect the viability of either cell line.  Of the sugar beet pectins, again 

it was the alkali-treated pectin SSBA that had the most significant effect, and 

SSBA was the only pectin to significantly reduce cell viability in both HT29 

and DLD1 cell lines, although a longer time period (72 vs 48 hours) was 

required for the reduction in cell viability to become significant in DLD1 cells. 

Unmodified sugar beet pectin SBC reduced cell viability in HT29 cells after 

96 hours and in DLD1 cells after 120 hours. The oxalic acid extracted 

pectins, SBO, SBOPG, CO and COPG did not affect the viability of either cell 

line. Pec-C did not affect DLD1 cells but in HT29 cells started to reduce 

viability after 96 hours. Pectin is a natural part of the human diet. The intake 

of pectin from a daily diet of 300g fruits and vegetables can be estimated to 

be 1.8 g. Typical levels of pectin used as a food additive are between 0.5% 

and 1%, approximately the same amount of pectin contained in fresh fruit 

and vegetables. Low toxicity allows pectin to be consumed in relatively large 

quantities or given at a high dose as a drug. Experimental results from 

numerous studies have shown pectins to reduce viability, induce apoptosis at 

1 mg/ml [201, 204, 321, 329, 384]. As such, the concentration range in this 

study is reasonable. 

The effect of SSBA on the viability of HT29 cells was attributable to an 

induction of apoptosis, which explains the observed, significant dose-

dependent decrease in live cell number and the observed, significant dose-

dependent increase in detached and fragmented cells floating in the cell 

culture medium following treatment. The effect of SSBA on the cell cycle of 

HT29 cells was also examined but was shown not to be affected. Together 

with the observation that SSBA-treated cells continue to proliferate, albeit at 
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a reduced rate, suggests that SSBA induces apoptosis in a proportion of 

cells and does not impact the proliferation of the remainder.  

In Chapter 3, all pectins were characterised for neutral sugars, GalA, DE, 

DAc, protein content and MW in order to assess any relationship between 

structure and bioactivity. In HT29 cells, SSBA and CA were considerably 

more effective at reducing cell viability than the other pectins, and had major 

structural differences. The most significant effect of the alkali treatment of the 

pectins was to decrease DE. Alkali treatment cleaved methyl esters, 

reducing the DE from 57% in SBC to 18% in SSBA and from 70% in CP to 

45% in CA. This raises the possibility that the DE is significant for bioactivity. 

However, SSBA has a lower DE than CA, but is more bioactive. In addition, 

the bioactivity of four additional LM pectins was shown to have no effect on 

cell viability after a 72 hour treatment. Additionally, Pec-C which has a very 

low DE of 5% had no effect on cells at 72 hours; however it did start to 

reduce cell viability after 96 hours. This indicates that the DE per se is not 

significant for bioactivity, and other characteristics of SSBA and CA are more 

important for bioactivity. The effect of pectin DE has been looked into in 

previous studies. A comprehensive mechanistic study by Jackson and co-

workers showed that alkali treatment of heat-treated citrus pectin destroyed 

its apoptosis-inducing activity in LNCaP prostate cancer cells. They 

suggested that it is the ester linkages in pectin that are essential for 

bioactivity [329]. This certainly cannot be true of pectins in this study. In 

another study, Bergman and colleagues proposed that DE made no 

significant difference to bioactivity, and showed that CP with DE of 30% and 

60% reduced HT29 cell proliferation by 45% and 57%, respectively [326]. 

A further noticeable difference between SSBA and CA and the other pectins 

is MW. The oxalic extracted pectins, due to the weak acid extraction, have 

extremely high MWs, and these were shown to have no effect on cell activity. 

Heat treating the commercial extracted pectins reduces MW, and alkali 

treatment reduces this further. Thus SSBA and CA have relatively low MW. 

However, Pec-C has a significantly lower MW than SBA and CA but took 

much longer to elicit bioactivity. Moreover, SSBA has a significantly higher 
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MW than CA but exhibits greater bioactivity suggesting that MW alone is not 

indicative of bioactivity. 

SSBA and CA also vary from the other pectins in their sugar composition.  

The treatment of the commercial pectins SSBC and CP with heat and alkali 

reduced arabinan content significantly, and the hydrolysis of the pectin 

backbone enriched the pectins in neutral sugar-containing RGI regions. It 

should also be noted that, although SSBA has short Gal side chains of <3.5 

residues branching from RGI backbones, it is 14-fold richer in these RGI 

regions than CA, which might be a reason for its greater bioactivity.  

The effects of SSBA and CA on cell viability appear to be cell specific with 

enhanced activity towards HT29 cells compared with DLD1 cells. SSBA did 

not affect the viability of three additional colon cancer cell lines HCT116, 

Caco2 and LoVo providing further support for cell-specificity in the bioactivity 

of these modified pectins. This will be explored in greater detail Chapter 8. 

4.6 Conclusion 

In summary, the alkali-treated pectins SSBA and CA significantly reduced 

cell viability in HT29 cells via an induction of apoptosis. The results 

presented in this chapter provide some support for the initial hypothesis that 

pectins with a higher neutral sugar content and lower molecular weight will 

exhibit greater bioactivity. However, while SSBA and CA are relatively low in 

MW, SSBA has a higher MW than CA but exhibits greater bioactivity. SSBA 

and CA also have relatively low arabinan content. However, this alone does 

not rule out the importance of the sugar side chains for bioactivity. The 

results from this chapter provide greater insight into the structural 

requirements for pectin bioactivity, which will be explored in greater detail in 

subsequent chapters. They also provide a framework for the exploration of 

the molecular mechanisms of the cellular interaction with pectins and the 

consequences for cell viability. 
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Effects of pectic polysaccharides on colon cancer 

cell viability, apoptosis, cell cycle and correlation 

with polysaccharide structure 
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5.1 Introduction 

A wide range of pectic polysaccharides encompassing homopolymers to 

highly complex pectins have been reported to display anti-cancer activities. 

Two of the major structural elements of pectins are HG regions composed of 

repeating GalA residues, and RGI regions composed of a backbone of 

repeating GalA and Rha residues, highly branched with neutral sugar 

arabinan, galactan and arabinogalactan side chains of varying degrees of 

polymerisation. As yet, no well-defined evidence has been obtained on the 

structural requirements necessary for optimal activity towards cancer cells. 

The hypothesis that (14)-β-D-galactan side chains branched from the RGI 

regions of pectin can bind to the pro-metastatic protein Galectin-3 has given 

rise to the belief that the RGI regions of pectin, and particularly the (14)-β-

D-galactan side chains, are important for bioactivity [321, 325, 385]. 

However, another study showed that the HG regions of ginseng pectin were 

important for anti-proliferative activity [213]. 

In this chapter, seven pectic polysaccharides were investigated in order to 

determine the structural features of pectin required for an optimum effect on 

cancer cells. As pectin is mainly composed of two regions, HG and RGI, 

polysaccharides were chosen to denote these regions. C-PGA represents 

HG and P-RGI and P-RGI-X the RGI region. P-Gal, galactobiose (GB), SB-

Ara and L-AG represent the neutral sugars that constitute RGI.  

5.2 Aims 

The first aim of this chapter was to screen seven pectic polysaccharides 

characterised in Chapter 3 for their effects on the viability of HT29 and DLD1 

cells. Selected pectic polysaccharides were investigated for time-dependent 

effects on cell viability, cell proliferation, apoptosis and effects on the cell 

cycle. Secondly, the relationship between structure and bioactivity was 

examined in order to test the hypothesis that the neutral sugar side chains of 

RGI are important for bioactivity. 
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5.3 Materials and Methods 

5.3.1 Pectic polysaccharides 

Pectic polysaccharides were purchased from Megazyme (see section 2.2) 

and were characterised in Chapter 3. Galactobiose (GB), purchased from 

Megazyme, was not characterised in Chapter 3. According to the 

manufacturers, GB is prepared by controlled enzymic hydrolysis of potato β-

galactan by endo-galactanase to yield a mixture of two isomeric 

disaccharides, Gal-β-(14)-Gal and Gal-β-(13)-Gal (ratio ~ 2:1). Sample 

preparations for cell treatment were carried out as in section 2.3.1. 

5.3.2 Cell viability assays 

For dose-dependent studies, cells were seeded in Nunclon 96-well plates 

and after 24 hours were incubated in 200 μl cell culture medium 

supplemented with pectin at 0.2, 0.5 and 1 mg/ml for 48 hours. For time-

dependent studies cells were incubated with 200 μl cell culture medium 

supplemented with 1 mg/ml pectin for 48, 72, 96 and 120 hours.  Cells were 

seeded at the concentrations specified in Table 3 (pg.72). In one assay 5 

biological replicates were performed for each condition of treatment, and 

between 3 and 12 separate assays were performed for each pectin. 

Detection of cell viability and statistical analyses were carried out as 

described in section 2.4. 

5.3.3 Cell counting  

Nunclon 6-well plates were seeded in 2 ml cell culture medium at the 

concentrations specified in Table 3 (pg.72). The initial cell concentration was 

chosen in order to have untreated cells at 80-90% confluency after 120 

hours.  After 24 hours, the culture medium was replaced with medium 

supplemented with 1 mg/ml pectin and incubated for a further 24, 48, 72, 96 

or 120 hours.  Each condition of treatment was carried out in duplicate over 

three independent experiments. Cell counting and statistical analyses were 

performed as described previously (section 2.8) 
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5.3.4 Cell imaging 

HT29 cells were seeded in Nunclon 6-well plates at 200,000 cells/well in 2 ml 

cell culture medium. The initial cell concentration was chosen in order to 

have untreated cells at 80-90% confluency after 96 hours. After 24 hours, the 

culture medium was replaced with medium supplemented with 1 mg/ml 

pectin and incubated for a further 24, 72 or 96 hours. Cell imaging was 

performed as described previously (Chapter 2.5). 

5.3.5 Apoptosis detection by flow cytometry 

Nunclon 6-well plates were seeded with DLD1 cells in 2 ml medium at the 

concentrations specified in Table 3 (pg.72). After 24 hours the medium was 

replaced with 2 ml cell culture medium supplemented with 0.5 or 1 mg/ml P-

RGI or 0.01 μg/ml staurosporine and incubation continued for a further 72 

hours. Each treatment was performed in triplicate over three independent 

experiments. Sample preparation and data analyses were carried out as 

described in Chapter 2.6. 

5.3.6 Cell cycle analysis by flow cytometry 

Nunclon 6-well plates were seeded with DLD1 cells in 2 ml medium at the 

concentrations specified in Table 3 (pg. 72). After 24 hours the medium was 

replaced with 2 ml cell culture medium supplemented with 0.5 or 1 mg/ml P-

RGI or 150 μM FTS and incubation continued for a further 72 hours. Each 

treatment was performed in triplicate over three independent experiments. 

Sample preparation and data analyses were performed as described 

previously (Chapter 2.7) 

5.4 Results 

5.4.1 Effects of seven pectic polysaccharides on the viability of colon 

cancer cells  

The pectic polysaccharides were tested for their effects on cell viability. Cells 

were treated with 0.2, 0.5 and 1 mg/ml of each polysaccharide for 48 hours 

prior to the quantification of the number of viable cells. Table 16 shows that 
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none of the pectic polysaccharides had any effect on the viability of HT29 

cells after 48 hours. In DLD1 cells however, P-RGI significantly reduced cell 

viability in a dose-dependent manner with a decrease of 10% (p<0.001) with 

0.5 mg/ml and 20% with 1mg/ml (p<0.0001) (Table 16). The remaining 

polysaccharides did not affect DLD1 cell viability after 48 hours. Since P-RGI 

consists of galactans, arabinans, arabinogalactans and polygalacturonic 

acid, a mixture of P-Gal SB-Ara, L-AG and C-PGA was investigated. 

However this combination of pectic polysaccharides did not reduce cell 

viability (Table 16).   

 

Table 16 Effects of different doses of pectic polysaccharides on HT29 

and DLD1 cell viability. Cells were treated with 0.2, 0.5 and 1 mg/ml pectins 

for 48 hours. Results are expressed as percentage of viable cells remaining 

after treatment relative to the untreated control. Data are shown as mean ± 

standard error. * p<0.05; *** p<0.001. 

 

Pectin   0.2 mg/ml 0.5 mg/ml 1mg/ml 

HT29 cells       

P-RGI 94.3 ± 4.9 91.8 ± 4.2 93 ± 5.6 

SB-Ara 83.3 ± 12.8 84.4 ± 17.6 86.1 ± 18.1 

P-Gal 90.5 ± 5.4 86.8 ± 6.4 85.6 ± 8 

L-AG 87.6 ±11.2 81.7 ± 9.3 96.7 ± 9.1 

GB 99.1 ± 12 91.4 ± 1.5 90.8 ± 7.5 

C-PGA 93.1 ± 5.6 83.9 ± 5.9 92.8 ± 6.7 

DLD1 cells 

   P-RGI 97.2 ± 3.2 89.8 ± 2.5*** 79.9 ± 4.7*** 

SB-Ara 102.2 ± 4.8 98.3 ± 6.7 98.5 ± 3.8 

P-Gal 96.1 ± 1.5 94.8 ± 2.8 91.9 ± 8.1 

L-AG 98.5 ± 1.2 100.5 ± 4.1 97.8 ± 2.9 

GB 97.6 ± 2.9 98.4 ± 1 99.2 ± 1.4 

C-PGA 102.2 ± 3.8 100.9 ± 4 100.8 ± 2.2 

P-Gal + SB-Ara + L-AG 
+ C-PGA 

104.8 ± 2.4 100.6 ± 1 102 ± 1.5 

P-RGI-X 99.6 ± 3.2 104.2 ± 1.4 100.9 ± 2.8 
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5.4.2 Time-dependent effects of pectic polysaccharides on colon 

cancer cell viability 

The seven pectic polysaccharides did not have any effect in HT29 cells over 

48 hours, and so their effect over a longer period of time was investigated. 

However, no reduction in HT29 cell viability was observed (Figure 25). 

 

 

 

Figure 25 Time-dependent effects of pectic polysaccharides on HT29 

cell viability. Results are expressed as percentage of viable cells remaining 

after treatment relative to the untreated control. Data are shown as mean ± 

standard error (P-RGI n=10, 6, 3; SB-Ara n=3, 3, 4; P-Gal n=5, 3, 3; L-AG 

n=5, 3, 4; GB n=3, 3, 3; C-PGA n=4, 5, 3). 

 

The effect of incubation time on DLD1 cell viability was also determined for 

the seven pectic polysaccharides. Figure 26 shows that the effects of P-RGI 

are time-dependent and reduce cell viability by 20%, 18%, 38% and 48% 

over 48, 72, 96 and 120 hours respectively (p<0.0001). P-Gal, showed no 

detectable effect on cell viability after 48 hours but induced a significant 

decrease in cell viability with prolonged incubation with a 12% reduction after 

72 hours (p<0.05), 10% after 96 hours  (p<0.05) and 19% after 120 hours 

(p<0.01). There was no observable effect of the remaining polysaccharides 

on the viability of DLD1 cells. 
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Figure 26 Time-dependent effects of pectic polysaccharides on DLD1 

cell viability. Results are expressed as percentage of viable cells remaining 

after treatment relative to the untreated control. Data are shown as mean ± 

standard error (P-RGI n=12 at 48 hrs, 6 at 72 hrs, 5 at 96 hrs, and 4 at 120 

hrs; SB-Ara n=3, 3, 3, 3; P-Gal n=12, 7, 5, 8; L-AG n=3, 3, 3, 3; GB n=7, 3, 3, 

3; C-PGA n=6, 4, 4, 4; P-RGI-X 3, 6, 3, 4) *p<0.05; **p<0.01; $ p<0.0001 

 

In order to investigate how cell viability is reduced by P-RGI and P-Gal, the 

effect on cell proliferation was explored. Counting the number of cells every 

24 hours after incubation with the pectins for 120 hours can give an 

indication if the cells are still dividing and growing. Figure 27 shows the 

untreated cells increased in number by 2-3 fold every 24 hours, which 

declined with time, probably due to nutrients becoming expended in the 

medium. Cells treated with P-RGI and P-Gal showed a significantly reduced 

growth rate, with P-RGI having the greater effect. However, an increase in 

cell number was still detectable indicating that cell proliferation was not 

completely inhibited. Figure 28 shows images of DLD1 cells treated with 1 

mg/ml P-RGI and P-Gal after 24, 72 and 96 hours. Consistent with the data 

on cell viability, the images of P-RGI-treated cells clearly show a dose- and 

time-dependent reduction in total cell population and the sizes of the cell 
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groups. P-Gal-treated cells displayed a similar morphology to untreated cells, 

indicating that the effect of P-Gal is not as significant in DLD1 cells as P-RGI. 

 

 

 

Figure 27 Effect of P-RGI and P-Gal on DLD1 cell number. Results are 

expressed as the fold change increase in cell number relative to the seeded 

number of cells. Data are shown as mean ± standard error (n=3) $ p<0.0001 
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a  24 hours           b          72 hours              c           96 hours     
    
          

        
Untreated cells   
    

        
P-RGI 1mg/ml 
 

        
P-Gal 1mg/ml 
 
Figure 28 DLD1 cells treated with or without 1mg/ml P-RGI or P-Gal (a) 

24 hours; (b) 72 hours; (c) 96 hours.  
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5.4.3 Effects of P-RGI and P-Gal on HCT116, Caco2 and LoVo colon 

cancer cells 

P-RGI and P-Gal specifically inhibited the viability of DLD1 cells but not 

HT29 cells suggesting the effects of these polysaccharides may be cell-type 

dependent. To investigate this further the effects of P-RGI and P-Gal on 

three other colon cancer cell lines were determined. Caco2 and LoVo cells 

were incubated with P-RGI or P-Gal at 1 mg/ml for 72 hours. Neither P-RGI 

nor P-Gal reduced cell viability in these two cell lines (Figure 29). Time- and 

dose-dependent effects were also investigated in the HCT116 cell line. P-

RGI at 0.5 and 1 mg/ml or P-Gal at 1 mg/ml were used to treat HCT116 cells 

for 48 and 72 hours.  Figure 30 shows that, similar to DLD1 cells, P-RGI at 

1mg/ml reduced cell viability by 10% after 48 hours, and at 0.5 and 1 mg/ml 

P-RGI reduced cell viability after 72 hours by 9% and 14%, respectively. P-

Gal did not reduce the viability of HCT116 cells. 

 

.  

Figure 29 Effect of P-RGI and P-Gal on the viability of Caco2 and LoVo 

cells. Effect of 1 mg/ml P-RGI or P-Gal on Caco2 and LoVo cells after 72 

hours. Results are expressed as the percentage of viable cells remaining 

after treatment relative to the untreated control. Data are shown as mean ± 

standard error (n=3).  
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Figure 30 Time-dependent effects of P-RGI and P-Gal on cell viability of 

HCT116 cells. Effect of 0.5 and 1 mg/ml P-RGI or 1 mg/ml P-Gal on the 

viability of HCT116 cells.  Results are expressed as the percentage of viable 

cells remaining after treatment relative to the untreated control. Data are 

shown as mean ± standard error (n=3). *p<0.05; ***p<0.001. 

 

5.4.4 Effect of P-RGI on DLD1 cell apoptosis and the cell cycle 

Results from chapter 4 revealed that SSBA reduced cell viability by inducing 

apoptosis in HT29 cells. To investigate the potential mechanism by which P-

RGI reduced cell viability, P-RGI-treated DLD1 cells were subjected to 

apoptosis and cell cycle analyses. To investigate the effect of P-RGI on 

apoptosis, three independent experiments were carried out in DLD1 cells 

treated with 0.5 or 1 mg/ml P-RGI for 72 hours. An Annexin V-FITC/PI 

staining assay was used to ascertain cells that were either live, undergoing 

early or late apoptosis, or dead. Figure 31a displays the number of cells 

counted per μl in these four categories compared with the effects of the 

known apoptosis-inducing agent staurosporine (ST).. It shows that the 

number of live cells was decreased significantly in a dose dependent manner 

by P-RGI, as expected. However, this decrease in live cells is not attributable 

to apoptosis. While ST predictably increased the percentage of cells in the 

apoptotic phases, the percentage of cells undergoing apoptosis did not differ 

0

20

40

60

80

100

120

P-RGI
0.5mg/ml

P-RGI
1mg/ml

P-Gal

%
 c

e
ll
 v

ia
b

il
it

y
 r

e
la

ti
v

e
 t

o
 u

n
tr

e
a
te

d
 

c
o

n
tr

o
l 

48h

72h

*** * * 



 

146 

 

in untreated cells or cells treated with P-RGI (Figure 31b). Although there 

was no evidence of an increase in cells undergoing apoptosis, Figure 32 

shows that there was a significant 2.2 fold increase in detached cells present 

in the cell culture medium from cells treated with P-RGI. ST also caused a 7 

fold increase in detached cells.   

 

a 

 

b 

 

Figure 31 Effects of different doses of P-RGI on apoptosis of DLD1 

cells. (a) The number of cells per μl in each stage of apoptosis. (b) The 

percentage of cells in each stage of apoptosis. Data are shown as mean ± 

standard error. *p<0.05; ***p<0.001; $ p<0.0001 
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Figure 32 Number of events counted per μl in cell culture medium after 

incubation of DLD1 cells with 0.5 and 1mg/ml P-RGI for 72 hours. 

Counts/μl shown here are after subtraction of counts/μl of pectins only, and 

so represent whole or fragmented cells detached from the plate. *p<0.05; 

$p<0.0001 

 

 

Figure 33 Effects of different doses of P-RGI on the cell cycle of DLD1 

cells over 72 hours. The percentage of cells in each phase of the cell cycle. 

Data are shown as mean ± standard error. *p<0.05; $ p<0.0001. 
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To investigate the effect of P-RGI on the cell cycle of DLD1 cells, three 

independent experiments were carried out with a treatment of 0.5 or 1 mg/ml 

P-RGI for 72 hours. Cells were fixed and then stained with PI to detect cells 

in each stage of the cell cycle; G0/G1, S, G2/M, as well as the sub G1 

phase, which indicates apoptosis. Figure 33 shows that the proportion of 

cells in each phase of the cell cycle was unaffected by treatment with P-RGI. 

FTS was used as a positive control and Figure 33 shows that the proportion 

of cells in the G0/G1 phase was significantly increased in cells treated with 

FTS, indicating cell cycle arrest, as well as the proportion of cells in the sub-

G1 phase, which indicates an increase in cell apoptosis. 

5.5 Discussion 

In this chapter seven commercially-available pectic polysaccharides were 

investigated for their effects on colon cancer cells. It has previously been 

suggested that the components of pectin responsible for anti-cancer activity 

reside in the neutral sugar-rich RGI regions [191, 322]. Therefore it was 

hypothesised that RGI, and the neutral sugars themselves, particularly 

galactan, would be responsible for the bioactivity of pectin. Seven pectic 

polysaccharides were chosen to represent the different constituent parts of 

pectin, in order to assess any correlation between these components and 

their effects on cells. The initial investigation for bioactivity determined the 

effects of the polysaccharides on the colon cancer cell lines HT29 and DLD1 

utilising an assay that measures cell viability. Cellular effects were then 

investigated in more detail. 

Of the pectic polysaccharides only P-RGI and P-Gal significantly reduced cell 

viability in DLD1 cells, with a greater effect observed with P-RGI. A mix of the 

representative RGI components C-PGA, P-Gal, SB-Ara and L-AG, failed to 

have an effect on cells. This indicates the conformation of the whole P-RGI 

molecule is important for activity. None of the polysaccharides were able to 

reduce HT29 cell viability. This is in contrast to a study by Cheng and 

colleagues, which showed that potato RGI reduced cell viability in HT29 after 

72 hours via an induction of cell cycle arrest [384]. The effects of P-RGI and 
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P-Gal on cell viability appear to be cell specific with enhanced activity 

towards DLD1 cells compared with HT29 cells. Three additional colon cancer 

cell lines HCT116, Caco2 and LoVo, were also investigated for their 

response to treatment with P-RGI and P-Gal. Of these cell lines only 

HCT116 cells were affected. While P-Gal had no effect on the cells, P-RGI 

reduced cell viability in a dose- and time-dependent manner. It is notable that 

both DLD1 and HCT116 cells have KRAS and PI3KCA mutations, while the 

remaining cell lines lack this double mutation. Implications of cell-specificity 

will be discussed in Chapter 8. 

An investigation into the cellular effects of P-RGI showed that the reduction 

in cell viability was not attributable to either apoptosis or cell cycle arrest. 

Quantifying the effects of P-RGI and P-Gal on cell proliferation showed that, 

similar to the effects of SSBA treatment of HT29 cells (Chapter 4), treated 

cells continue to proliferate, although at a significantly reduced rate 

compared with untreated cells. However, unlike SSBA-treated HT29 cells, 

there was no evidence for an induction of apoptosis in P-RGI-treated DLD1 

cells. There was a significant dose-dependent increase in detached and 

fragmented cells floating in the cell culture medium following treatment. This 

would usually imply apoptosis, though it could also suggest a decrease in 

cell-cell or cell-surface adhesion, which could lead to reduced cell growth 

and proliferation. Further evidence for a decrease in cell adhesion will be 

explored in Chapter 8.  

In Chapter 3, sugar composition and NMR analyses of six of the seven pectic 

polysaccharides were performed in order to assess any relationship between 

structure and bioactivity. In DLD1 cells, P-RGI and P-Gal were the only 

polysaccharides effective at reducing cell viability. This provides support for 

the hypothesis that bioactivity resides in the RGI regions and that the 

galactan side chains are at least partly responsible. However, P-RGI-X did 

not demonstrate any activity towards DLD1 cells. P-RGI-X was purchased 

from Megazyme with the same catalogue number and Lot number as P-RGI. 

However, upon NMR and sugar analyses it was evident that the structures of 

these two RGIs were different. The hypothesis that the RGI regions are 
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responsible for bioactivity is largely due to the concept that RGI is rich in 

neutral sugars, particularly (14)-β-D-galactan side chains. However, 

although P-RGI was shown to be very rich in RGI regions, NMR analysis 

revealed that it contains very short galactan chains of 1-3 DP, and no 

arabinan, although a small amount was detected by monosaccharide 

analysis. This is similar to the structure of ginseng RGIs characterised in a 

study by Yu and colleagues who showed galactan side chains were 1-3 

residues in length [171]. Both P-RGI and P-RGI-X are almost identical to 

each other in terms of monosaccharide composition; however they are very 

distinct in the type of GalA present. NMR confirmed that P-RGI contains 16% 

GalA-linked GalA that makes up the HG backbone of pectin. Conversely, P-

RGI-X does not contain any HG, with all GalA existing in either the RGI 

backbone or as free GalA mono-, di- or tri-saccharides. These findings 

suggest that HG is essential for the bioactivity of P-RGI. Previous studies 

have shown HG regions of ginseng pectin were important for bioactivity. 

Cheng and colleagues observed that HG-rich ginseng polysaccharide 

reduced viability in HT29 cells while neutral sugar-rich polysaccharide had no 

effect. The authors concluded that HG-rich pectins contain the active 

component of ginseng polysaccharides [213]. However, C-PGA which 

contains 96% GalA did not reduce DLD1 cell viability. This indicates that the 

HG backbone is not solely responsible for P-RGI bioactivity. A further 

noticeable difference between P-RGI and P-RGI-X provides further insight 

into the structural requirements for the bioactivity of P-RGI. In a linear 

polysaccharide a ratio of 1:1 reducing end and terminal GalA would be 

expected, in which was observed for P-RGI-X. However, P-RGI does not 

appear to contain reducing end GalA (section 3.4.3). This is unusual but 

suggests that HG is present as side chains of P-RGI, rather than integrated 

into the backbone. However no branch residues were observed so 

consequently it is unknown how HG may branch from P-RGI. Taken 

together, these findings suggest that HG, possibly present as side chains of 

P-RGI, is essential for P-RGI bioactivity. 

The results in this chapter imply that galactan is not important for bioactivity. 

However, P-Gal reduced the viability of DLD1 cells, albeit to a lesser extent 
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and after an extended treatment time compared with P-RGI. P-Gal is 

composed of 26% GalA and 63% galactan, with long galactan chains of an 

average 23 residues branched from a short backbone of RGI. In the case of 

P-Gal, the galactan side chains could potentially be important for bioactivity. 

However, it should be noted that L-AG had no effect on cells and is 

composed of 79% galactan. The distinction between the two polysaccharides 

is that L-AG consists of only 2% GalA and no Rha, suggesting that if 

bioactivity resides in the galactan chains, they require an RGI backbone. 

Alternatively, the arabinan side chains on L-AG could prevent the bioactivity 

of the galactan chains, as arabinan itself did not affect cell viability. The fact 

that P-RGI and P-Gal have different structures yet have bioactivity in the 

same cell line could indicate multiple structures of pectin could have multiple 

mechanisms of action in cancer cells. 

5.6 Conclusion 

In summary, this study demonstrates that the RGI domain and, to a lesser 

extent, galactan from potato pectin, reduce the viability of DLD1 cells. This 

was not due to an induction of apoptosis or an arrest of the cell cycle. 

However, an observed increase in detached cells suggests that P-RGI 

reduces DLD1 cell viability by inducing the detachment of cells. The results 

presented in this chapter provide some support for the initial hypothesis that 

galactans are important for bioactivity. However, structural analysis of P-RGI 

and its comparison with P-RGI-X show that this hypothesis may not be 

completely accurate. The results presented indicate that the HG regions, 

possibly as side chains of P-RGI, are essential for bioactivity.  The cell-

specificity of P-RGI towards cell lines with KRAS and PI3KCA mutations 

provides a further mechanistic understanding of the activity of P-RGI. Due to 

the complexity of the structure of pectin domains it is possible that an 

assortment of pectic structures could exert bioactivity in a variety of cancer 

cells, via multiple mechanisms. This study uncovered some correlation 

between pectic structures and their bioactivities. This evidence furthers our 

understanding of the structural requirements for pectin bioactivity, which may 

aid the potential design of preventative therapies against CRC. 



 

152 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

An investigation into the role of neutral sugar side 

chains in pectin bioactivity 
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6.1 Introduction 

As shown in Chapter 4, the exposure of HT29 colon cancer cells to SSBA 

significantly reduced cell viability via an induction of apoptosis. Similar anti-

proliferative and pro-apoptotic effects have been observed in studies 

performed on cancer cells treated with MCP [196-198, 201, 329, 384]. 

However, modified pectin, as a term, is ambiguous due to the extraordinary 

complexity of pectin structure, which can differ depending on source, 

extraction and modification methods. This is the first study to observe 

modified sugar beet pectin as an apoptosis-inducing agent. It has been 

hypothesised that β(14)galactans branched from the RGI regions of 

pectins can bind to galectins, specifically Gal3, and inhibit its pro-metastatic 

actions [321, 322]. This has given rise to the premise that galactan side 

chains are important for pectin bioactivity. However, despite numerous 

studies investigating the anti-cancer effects of pectins, extensive analyses 

correlating structural features of pectin with bioactivity in cancer cells is 

scarce. Evidence for the bioactivity of neutral sugars in MP is shown by 

studies into the anti-tumour effects of arabinogalactans, which have been 

shown to inhibit the metastasis of sarcoma cells to the liver in mice [192, 

320, 339]. Galactan side chains of RGI were also shown to be important for 

the agglutination of erythrocytes, and also for binding to Gal3 [325]. Jackson 

and colleagues observed that alkali treatment of citrus pectin abolished its 

apoptosis-inducing activity. Alkali treatment removed methyl esters and 

furthermore greatly reduced the extent of arabinan side chains. However, the 

presence of methyl esters was considered to be essential for the apoptosis-

inducing activity rather than the arabinan side chains [329].  

SSBA significantly reduced HT29 cell viability in a time- and dose-dependent 

manner while unmodified sugar beet pectin (SBC) had no effect (Chapter 4). 

The structure of SSBA was shown to have significantly higher neutral sugar 

content than SBC, leading to the hypothesis that the neutral sugar side 

chains are important for the anti-proliferative effect of SSBA. However, HT29 

cell viability was not affected by neutral sugar-containing pectin fragments 

such as P-RGI, P-Gal, L-AG and SB-Ara, leading to the suggestion that the 
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entire pectin molecule, with HG backbone, is required for bioactivity. 

However, it is still possible that the neutral sugar content of SSBA is 

important for bioactivity. To investigate this, the galactan and arabinan side 

chains were enzymatically cleaved from SSBA and the effects on cell viability 

were determined. Polysaccharide degrading enzymes are suitable tools to 

study the structure of pectin due to their specificity in comparison to chemical 

methods. Pectic enzymes are classified according to the mode of attack on 

their specific structural elements of the pectin molecule. α-L-

arabinofuranosidase and β-galactosidase are both exo-type enzymes that 

catalyse the hydrolysis of terminal non-reducing arabinans and galactans 

respectively; and endo-1,4-β-galactanase and endo-arabinase are endo-type 

enzymes that cleave at random residues within galactan and arabinan 

polymers, respectively [386]. 

6.2 Aims 

In this chapter galactan and arabinan side chains were enzymatically 

cleaved from SSBA in order to investigate the role of the neutral sugar side 

chains of SSBA in mediating the activity towards HT29 cells. The effects of 

these modified SSBAs on HT29 cell viability were examined, and the 

relationship between pectin structure and bioactivity was investigated in 

order to test the hypothesis that high neutral sugar content of pectin is 

important for bioactivity. 

 

6.3 Materials and Methods 

6.3.1 Enzyme digestion of SSBA 

The enzymes β-galactosidase (3200 U/ml), endo-1,4-β-galactanase (1300 

U/ml), α-L-arabinofuranosidase (400 U/ml) and endo-arabinase (200 U/ml) 

were purchased from Megazyme (Wicklow, Ireland), diluted in 7mls milliQ 

water in duplicate to the concentrations and combinations indicated in Table 

17 and filtered with a 0.2 μm syringe filter. SSBA at 10 mg/ml was added to 

6mls of one set of enzyme dilutions, and incubated at 40°C for 24 hours 
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under agitation. Samples were then heated to 70°C for 10 minutes to halt 

digestion. 0.6 ml of each sample was then taken and freeze dried for NMR 

analysis. As a control, SSBA in water only also underwent these incubations. 

The other set of enzyme dilutions were kept as controls.   

 

Table 17 Concentrations of enzymes and enzyme combinations. For dilution in 

H2O, ready for addition to SSBA or for use as controls. 

Enzyme Enzyme concentrations 

β-galactosidase + Endo-1,4-β-
galactanase  

5 U/ml β-galactosidase + 5 U/ml endo-1,4-β-
galactanase  

α-L-Arabinofuranosidase + 
Endo-arabinase  

1 U/ml α-Arabinofuranosidase + 1 U/ml Endo-
arabinase  

All enzymes 
5 U/ml β-galactosidase + 5 U/ml endo-1,4-β-
galactanase + 1U/ml α-L-arabinofuranosidase + 
1U/ml endo-arabinase  

 

6.3.2 NMR 

All freeze dried samples were dissolved in 600 μl D2O at a concentration of 

10 mg/ml. 1H, 13C and 2D NMR spectra of the enzyme treated SSBA 

samples in D2O were run at 338°K using the same methods described in 

Chapter 3. The modifications in polysaccharide structure produced by each 

enzyme treatment were assessed in an essentially qualitative manner by 

examination of the 1H spectra with cross-sections through the 1H/13C HSQC 

spectra providing semi-quantitative information on the extent to which the 

different side chains were removed. To allow for slightly different amounts of 

material dissolved in the different samples the spectra were normalised by 

equalising the 1H NMR intensities of the Rha Me signals (not affected by 

enzyme treatment) prior to the quantitative comparisons. 
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6.3.3 Cell viability assays 

HT29 cells were seeded at the concentrations specified in Table 3 (pg.72) in 

Nunclon 96-well plates and allowed to adhere overnight. Cells were then 

incubated in 200 μl cell culture medium supplemented with 1 mg/ml enzyme-

digested SSBAs, SSBA heated to 70°C for 10 minutes (SSBA-ne), enzymes 

only, or medium only, for 72, 96 or 120 hours. Following incubation the 

medium/pectin solution was replaced with 100 μl fresh medium. In each 

assay 5 biological replicates were performed for each condition of treatment, 

and between 3 and 4 separate assays were performed for each pectin. 

Detection of cell viability and statistical analyses were carried out as 

described in Chapter 2.4. 
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6.4 Results 

6.4.1 Structural features of enzyme-digested SSBA 

Enzymes were added to SSBA to cleave Gal and Ara in order to assess if 

these side chains are important for bioactivity. SSBA that was not incubated 

with enzymes but underwent the same incubation conditions (SSBA-ne) was 

structurally unchanged and indistinguishable to the original SSBA 

characterised in Chapter 3 (Figure 34).  

 

 

Figure 34 1H NMR spectra of SSBA and SSBA-ne  600MHz 1H NMR spectra of 

(A) Original SSBA and; (B) SSBA control that underwent the same incubation 

conditions as enzyme-digested SSBA. 
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Table 18 Effect of enzyme digestion of SSBA on neutral sugar side-chain 

content.  

Sample Treatment 
% β1,4-
galactan 
content 

% 1,5-
linked Ara 

content 

% 
Terminal 

Ara 
content 

SSBA-ne Control 100 100 100 

SSBA-ara 
α-L-Arabinofuranosidase + 

endo-arabinase 
100 0 36 

SSBA-gal 
β-galactosidase + endo-

galactanase 
4-13 30 36 

SSBA-all All four enzymes 4-20 0 36 

 

Figure 35 shows a comparison of the 1H spectra of the untreated SSBA-ne 

with the reaction mixtures obtained following the three enzyme treatments 

(Table 18). In each case the main panel shows the main carbohydrate signal 

region (3.0-5.5 ppm). Table 18 shows the amount of (14)-β-Gal chains, 

(15)-Ara chains and terminal Ara remaining in SSBA after enzymatic 

digestion.  In order to cleave galactan side chains, a mix of 5 U/ml β-

galactosidase and 5 U/ml endo-galactanase was added to SSBA to generate 

SSBA-gal. Characteristic H1 (a) and H4 (b) signals of a β-(1,4)-linked Gal 

chain evident in SSBA-ne (Figure 35A) have largely been removed in SSBA-

gal (Figure 35B), the number being reduced by 87-96% (Table 18). This 

enzyme combination additionally removed 70% (15)-Ara chains and 64% 

of terminal Ara. However a number of new signals are evident in the 

anomeric region of SSBA-gal. These include GalA reducing end signals, 

from both free GalA (e, h) and GalA that is 4-linked to another GalA (c, g), 

i.e. this represents the reducing end of an oligogalacturonide; another new 

signal (i) corresponds to H4 of a non-reducing end GalA unit. Free galactose 

was produced (H-1α, signal e and H-1β, signal h) and terminal Gal (linked to 

O-4 of Rha, signal g) was also present. It should be noted that the signals 

labelled g and h have both been assigned to two different sugar units with 

the help of 2D NMR experiments. Although terminal Gal units linked to Rha 
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were also found in SSBA (Chapter 3) it can be seen from the Rha Me signals 

that the ratio of substituted to unsubstituted units does not change in SSBA-

gal (or indeed with either of the other enzyme treatments). It is therefore 

concluded that the endo-galactanase/ β-galactosidase treatment leaves a 

Gal stub at every position which was occupied in the SSBA RGI regions by 

either a stub or a longer galactan chain. The observation of free GalA and 

oligo-GalAs in SSBA-gal shows that there must be an unexpected 

polygalacturonase activity present in the commercial endo-galactanase used 

(separate experiments using only endo-1,4-β-galactanase or only β-

galactosidase had shown that the impurity was solely associated with the 

former enzyme). Thus SSBA-gal shows two effects of the enzyme treatment: 

a removal of galactan side chains in the RGI regions to leave only stubs and, 

unexpectedly, a partial depolymerisation of the GalA HG regions. This 

depolymerisation was also seen in SSBA incubated with all four enzymes 

(SSBA-all). 

To investigate the role of the Ara side chains, SSBA was treated with 1 U/ml 

α-L-arabinofuranosidase and 1 U/ml endo-arabinase, yielding SSBA-ara. The 

only new signals seen in SSBA-Ara (Figure 35C) were j (H1 α-Arap) and k 

(H1 β-Arap), the released free arabinose existing in the pyranose form rather 

than the furanose form found in arabinan side chains. The 1H spectrum of 

SSBA-ara (Figure 35C) shows that approximately the same amount of Ara 

monosaccharide was released as in SSBA-all, leading to the assumption that 

enzymes removed 100% (15)-Ara chains and 64% of terminal Ara (Table 

18, p.157). However, there is no direct measurement on the different types of 

Ara from the HSQC spectrum (Figure 35) as with SSBA-all. It is unknown 

whether terminal Ara is linked to Rha or Gal residues.  The 1H spectrum of 

SSBA-all appears to be a simple summation of SSBA-gal and SSBA-ara 

without any evidence of major additional changes arising from a synergistic 

effect of the enzyme combination. 
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Figure 35 1H NMR spectra of enzyme-digested SSBA 600MHz 1H NMR spectra of SSBA and enzyme treated samples (D2O, 3380K). A) 

SSBA-ne (control); B) SSBA-gal; C) SSBA-ara; D) SSBA-all. Signal assignments (residue involved is shown in bold): a) H1 β-(1,4)-Gal; b) H4 

β-(1,4)-Gal; c) H1 GalA(1→4)-α-GalARE; d) H1 α-GalA; e) H1 α-Gal; f) H1 α-Rha; g) H1 GalA(1→4)-β-GalARE and H1 t-β-Gal-(1→4)-α-Rha; h) 

H1 β-GalA and H1 β-Gal; i) H4 α-GalANR; j) H1 α-Arap; k) H1 β-Arap 



 

 

6.4.1 Effects of enzyme-digested SSBA on HT29 cell viability  

The effect of each enzyme treatment of SSBA on HT29 cell viability was 

investigated. Firstly, to eliminate the possibility that the enzymes themselves 

have cell modulating properties, cells were treated with enzymes only for 72 

hours. No significant effect on cell viability was observed for any of the 

enzyme combinations (Figure 36). To eliminate the possibility that incubation 

at 40°C for 24 hours followed by heating to 70°C for 10 minutes had an effect 

on SSBA bioactivity, SSBA treated under these conditions without the 

addition of enzymes (SSBA-ne) was also added to cells for 72 hours. There 

was no significant effect of SSBA-ne on the viability of HT29 cells (Figure 

37). 

               

 

Figure 36 Effect of enzymes on HT29 cell viability after 72 hours. Data are 

shown as mean ± standard error (n=4).  
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Figure 37 Effect of SSBA-ne on HT29 cell viability over 72 hours. Effects of 

SSBA and SSBA-neon HT29 cell viability after 72 hours. Data are shown as mean ± 

standard error (n=4). $ p< 0.0001 

 

 

 

Figure 38 Time-dependent effect of SSBA and enzyme-digested SSBAs on cell 

viability of HT29 cells Data are shown as mean ± standard error (n=4) *p<0.05; 

**p<0.01; ***p<0.001; $p<0.0001. 
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Figure 38 shows the effect of enzyme-digested SSBA and non-digested 

SSBA on HT29 cell viability. Treatment of HT29 cells with 1 mg/ml SSBA-ne 

reduced cell proliferation in a time-dependent manner (p<0.0001), however, 

removal of Ara side chains to produce SSBA-ara also significantly reduced 

cell viability in a time-dependent manner (p<0.0001), but at a reduced rate 

with a 12.8%, 7.2% and 14.5% decrease in the effect on cell viability after 72, 

96 and 120 hours, respectively (p<0.01), compared with SSBA-ne. This 

indicates that, although not essential, Ara plays a role in bioactivity.  

Removal of Gal side chains to yield SSBA-gal had an even more pronounced 

effect such that SSBA-gal did not significantly affect cell viability after 72 

hours, while after 96 and 120 hours, SSBA-gal significantly reduced cell 

viability but to a significantly reduced extent compared with  SSBA-ne  

(p<0.001). This indicates that the galactan side chains play an extremely 

important role in the effects of SSBA on reducing cell viability. To investigate 

the role of both Gal and Ara SSBA was treated with all four enzymes to 

remove 100% of (1,5)-linked-Ara, 64% terminal Ara and 80-96% Gal chains, 

to yield SSBA-all, which had an effect on cell viability comparable to SSBA-

gal.  

6.5 Discussion 

Monosaccharide analysis showed SSBA consists of 47% GalA, 12% Rha, 

25% Gal and 11% Ara (Chapter 3). NMR analysis showed that the neutral 

sugar content is comprised of Ara existing as 5-substituted or terminal 

residues within (15)-α-Ara, and Gal in short 1-3.5 DP (14)-β-Gal chains. 

The results of the cell viability assay show that hydrolysing Ara residues 

significantly decreased the SSBA-induced response indicating that (15)-α-

Ara side chains are important for its anti-proliferative function. Moreover, the 

cleavage of Gal side chains completely abolished the SSBA-induced 

response after 72 hours, indicating that the Gal side chains of SSBA are 

necessary for bioactivity. However, SSBA-gal additionally underwent partial 

depolymerisation of the GalA HG regions. This could suggest that the 

breakdown of the HG backbone could be the reason that activity is 
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abolished; however a significant amount of HG still remains, therefore it is 

unlikely that partial depolymerisation would completely abolish activity. It is 

possible that the subsequent reduction in viability of cells after 96 hours 

could be due to the 4-13% β-Gal chains remaining on SSBA. However, it is 

more likely that the HG or RG backbone of SSBA could be a secondary 

bioactive component with less significant effects that take longer to detect. 

These two distinct phases strongly suggest there may be more than a single 

mechanism of action. The complete removal of (15)-linked-Ara along with 

the almost complete hydrolysis of Gal in SSBA-all induced a comparable 

response to SSBA-gal. These results suggest that the presence of Gal is a 

determining factor for the bioactivity of SSBA as the higher Ara content in 

SSBA-gal does not affect bioactivity. However, Ara does have an important 

role as on removal activity is reduced, although it appears that Ara alone 

does not exert bioactivity. It is possible that Ara may assist in the 

presentation of Gal to receptors and, moreover, that the cooperation 

between these side chains, together with the HG/RG backbone, may be 

required for optimal bioactivity. 

The results from this study are similar to the findings of Gao and co-workers 

[325], who investigated the inhibitory effects of ginseng RGI on the 

agglutination of red blood cells, which was attributed to Gal3 inhibition. 

Complete enzymatic removal of ‘long’ Gal side chains of 4 DP greatly 

decreased inhibitory activity. However, they additionally showed that the 

incomplete removal of Ara by α-L-arabinofuranosidase, which cleaves 

terminal Ara residues, increased inhibitory activity, leaving the authors to 

suggest that high Gal content, as well as Ara in the form of AG-type side 

chains, were important for the inhibition of agglutination, and therefore the 

binding of Gal3. It is curious that the removal of Gal from SSBA produced 

such a significant impact as the Gal side chains were initially only 1-3.5 

residues in length. However, Gao and co-workers investigated the 

contributions of Gal chain length to Gal3 inhibition and showed that activity 

was shown to increase with Gal chain length but only up to a tetramer, as 

chains between 5 and 65 residues did not provided additional activity. The 

Gal3 CRD is known to bind terminal galactose residues within the CRD and 
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so the authors suggested that short chains of <4 Gal residues on ginseng 

RGI may still be significant in regulating the activity of Gal3 [325]. It is 

possible, therefore, that SSBA could exert its activity by binding and 

inhibiting Gal3.  

The HG or RG backbone of SSBA could potentially be an additional bioactive 

component, as shown by the anti-proliferative effect of Gal- and Ara-depleted 

SSBA-gal and SSBA-all after 96 hours of treatment. There are a few studies 

that suggest distinct bioactive roles for HG pectin structures. Pectic acid has 

been reported to induce apoptosis in rat pituitary tumour cells [331] and Liu 

and co-workers showed pentamers of GalA to be active against inflammation 

and carcinogenesis in a mouse model of colitis-associated CRC [332]. Gao 

and colleagues also showed that the backbone of ginseng RGI, depleted of 

all neutral sugar side chains, still inhibited agglutination, albeit this required 

higher concentrations than forginseng RGI. In addition, they showed that the 

ginseng RGI backbone had high binding affinity to Gal3, although this was 

not inhibited by lactose suggesting a non-specific, perhaps ionic, interaction. 

However, the authors also raised the possibility that there may be secondary 

carbohydrate recognition sites within the Gal3 molecule [325].   

6.6 Conclusion 

LM and neutral sugar-rich sugar beet pectin reduces HT29 cell viability in a 

dose- and time-dependent manner via induction of apoptosis. The bioactive 

components of SSBA are thought to be the galactan side chains branched 

from RGI since β-galactan is known to bind and inhibit the pro-metastatic 

protein Gal3. To investigate the role of the neutral sugar side chains in the 

anti-proliferative activity of SSBA, Gal and Ara side chains were 

enzymatically cleaved from SSBA and the subsequent effect on HT29 cell 

viability determined. Removal of Ara residues resulted in a reduction in anti-

proliferative activity suggesting that arabinan side chains are important. 

However, the results presented suggest that Ara must be in combination with 

Gal to affect cell viability. Moreover, the cleavage of Gal side chains 

completely abolished the SSBA-induced response after 72 hours indicating 



 

166 

 

that Gal is necessary for the bioactivity of SSBA. These results provide 

support for the hypothesis that β-galactan chains branched from SSBA bind 

and inhibit Gal3 resulting in loss of cell viability. It is also possible that SSBA 

has a secondary bioactive component in the HG backbone due to the 

observed bioactivity of Gal-depleted SSBA. Altogether, results suggest that 

Gal and Ara side chains, together with the HG backbone, cooperate to exert 

bioactivity in distinct phases, which strongly implies the existence of more 

than a single mechanism of action. 
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Chapter 7 

P-RGI and SSBA reduce colon cancer cell viability via 

a galectin-3 independent mechanism 
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7.1 Introduction 

Modified pectins from various sources have been found to reduce cell 

proliferation, migration, adhesion and induce apoptosis in numerous cancer 

cell lines as well as reduce tumour formation and metastasis in rodents. The 

mechanisms responsible for the observed effects of modified pectin on 

cancer are unclear, however, a role for the pro-metastatic protein galectin-3 

(Gal3) has been proposed. Galectins are a family of fifteen soluble β-

galactoside-binding lectins that have diverse intra- and extracellular 

biological functions and have been implicated in cancer, immune function 

and inflammation [387-389]. The most extensively studied galectin, Gal3, has 

been pinpointed as a potential therapeutic target in cancer due to its 

suggested role in promoting metastasis [390]. Gal3 is a ubiquitous protein 

expressed in a variety of tissues and cell types and found in the nucleus, 

cytoplasm, the cell surface, as well as in the extracellular matrix [215, 391, 

392]. There is substantial evidence that Gal3 induces cell migration, 

morphogenesis, adhesion and proliferation, inhibits apoptosis and promotes 

angiogenesis in a wide variety of cell lines [243-248, 250, 252, 254-256, 296, 

308]. Structurally, Gal3 consists of an N-terminal domain linked to a 

carbohydrate recognition domain (CRD), which specifically binds with β-

galactose-containing carbohydrates and glycoconjugates, such as those in 

the RGI regions of pectin. Gal3 has been shown to bind to or activate various 

intracellular proteins involved in the regulation of cell survival, including 

intracellular KRas [393], Akt [296, 394], and β-catenin [301] and Bcl-2 [291]. 

The proto-oncogene KRas, once recruited to the plasma membrane and 

anchored via its C-terminal S-farnesylcysteine, is activated and can drive cell 

growth, differentiation and inhibit apoptosis. Gal3 is recruited by KRas from 

the cytosol to the plasma membrane, where a hydrophobic pocket within the 

CRD of Gal3 is thought to accommodate the S-farnesylcysteine group of 

KRas. KRas forms nanoclusters at the plasma membrane, which are 

essential for signal transduction. Once recruited to the plasma membrane, 

Gal3 becomes an integral nanocluster component, stabilising KRas in its 

active state and increasing signal output [294]. Farnesylthiosalicylic Acid 

(FTS), a specific inhibitor of KRas that prevents translocation to the plasma 
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membrane, inhibited Gal3-mediated apoptosis resistance [395] while a 

mutation in the Gal3 hydrophobic pocket reduced KRas nanocluster 

formation along with cell proliferation and transformation [294].  

A study utilising biophysical techniques including atomic force spectroscopy 

has verified that potato galactan, containing linear (14) galactan chains, 

binds specifically to recombinant Gal3, whilst potato RGI showed a lower 

level of specific binding and polygalacturonic acid (PGA) showed no specific 

binding [322]. The disaccharide β-galactobiose was also shown to bind to 

Gal3 [323]. In vitro studies have shown modified pectin binds to recombinant 

Gal3 [321, 325] and inhibits human umbilical vein endothelial cell migration 

to Gal3 [195]. Also, when combined with the anti-inflammatory drug 

dexamethasone, MP reduced the protein expression of Gal3 [196]. Taken 

together these observations suggest that the binding of small pectin 

fragments to Gal3 may disrupt the interactions of Gal3 with other proteins 

and peptides, inhibiting its ability to promote cell adhesion and proliferation 

and to prevent apoptosis.  

7.2 Aim 

This chapter investigates the effects of potato RGI (P-RGI) on cell viability in 

the colon cancer cell lines DLD1 and HCT116, and the soluble fraction of 

alkali-treated sugar beet pectin (SSBA) on HT29 cells. Knocking down the 

expression of Gal3 in these cell lines using siRNA has been used to 

elucidate the role of this lectin in mediating the intracellular bioactivity of 

pectin extracts. 

7.3 Materials and Methods 

7.3.1 Pectins 

P-RGI and SSBA were characterised in Chapter 3. Sample preparations for 

cell treatment were carried out as in section 2.3. 
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7.3.2 Gal3 siRNA transfection 

Gal3 gene silencing was performed with one or more of four validated 

LGALS3 siRNA (siRNA1, siRNA2, siRNA3 and siRNA4) from FlexiTube 

GeneSolution (Cat. GS3958) purchased from Qiagen (Crawley, UK). ID 

numbers are provided in Table 19. Non-specific siRNA (Negative All Stars, 

Qiagen, Crawley, UK) and medium only were used as controls. Cell 

transfection of DLD1 and HCT116 cells was performed with HiPerfect 

transfection reagent (Qiagen, Crawley, UK), and transfection of HT29 cells 

with Lipofectamine RNAiMAX (Invitrogen, Paisley, UK). Cells were seeded in 

triplicate in Nunclon 6-well plates for determination of Gal3 protein 

expression and Nunclon 96-well plates for determination of Gal3 gene 

expression and cell viability analysis, at the cell concentrations shown in 

Table 3 (pg.72) and incubated briefly at 37°C. siRNA at 10 nM final 

concentration for DLD1 and HCT116 cells and 20 nM for HT29 cells, was 

suspended in OptiMem serum and penicillin-free medium (Invitrogen, 

Paisley, UK) and either HiPerFect or Lipofectamine RNAiMAX, respectively, 

at the amounts shown in Table 20. After vortexing and incubating at room 

temperature for 10 minutes the complexes were added to cells and 

incubated at 37°C for 24 hours.  

 

Table 19 FlexiTube GeneSolution Gal3 siRNA ID numbers 

  ID number 

siRNA1 S104250799 

siRNA2 S100470050 

siRNA3 S104366124 

siRNA4 S104374251 
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Table 20 Amounts of transfection reagent and Optimem medium added to 

siRNA prior to transfection of cells 

  μl per well 6-well plate 
μl per well 96-

well plate 

10nM siRNA     

HiPerfect 6.3 0.63 

OptiMem 200 20 

20nM siRNA     

Lipofectamine RNAiMAX 12.6 1.26 

OptiMem 200 20 

 

7.3.3 Validation of siRNA-mediated knockdown of Gal3 gene expression 

The effect of Gal3-specific siRNAs on Gal3 gene expression was assessed 

using RT-PCR. After 24 hours of transfection, culture medium was replaced 

with fresh complete growth medium and incubation continued for 48 hours 

(DLD1 and HCT116 cells) or 72 hours (HT29 cells). Sample preparation and 

gene expression analysis were performed as described in section 2.9. Primer 

sequences and melting temperature (Tm) of Gal3 are reported in Table 21. 

 

Table 21 Galectin-3 primer sequences F= Forward; R = Reverse. 

Gene Common name   Primer sequence 5' to 3' Tm °C 

LGALS3 Galectin-3 F AGGCAAAGGCAGGTTATAAGG 60 

    R GAGCCTACCCTGCCACTG   

 

7.3.4 Validation of siRNA-mediated knockdown of Gal3 protein 

expression 

7.3.4.1 Protein extraction 

The effect of Gal3-specific siRNAs on Gal3 gene expression was assessed 

using western blot. After 24 hours of transfection, culture medium was 

replaced with fresh complete growth medium and incubation continued for 48 

hours (DLD1 and HCT116 cells) or 72 hours (HT29 cells). Following 
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incubation, cells were washed twice with cold PBS and lysed with RIPA 

buffer (Tris-HCl 50 mM pH 8, NaCl 150 mM, Triton X-100 1%, sodium 

deoxycholate 0.5% and sodium dodecyl sulphate 0.2%) (Fisher Scientific, 

Loughborough, UK) supplemented with HALT protease and phosphatase 

inhibitor cocktail (Fisher Scientific, Loughborough, UK) for two minutes on 

ice. Cell lysates were collected, transferred to 1.5 ml tubes and centrifuged at 

13,000 g for 10 minutes at 4°C. Supernatants were collected and pellets 

were discarded. 

7.3.4.2 Protein quantification 

Protein concentration was determined using a bicinchoninic acid (BCA) 

protein assay kit according to the manufacturer’s instructions (Fisher 

Scientific, Loughborough, UK). The BCA assay is a colorimetric assay to 

measure total protein concentration compared to a protein standard. 

Standards were created by a serial dilution of bovine serum albumin (BSA) 

(Sigma, Poole, UK) diluted in lysis buffer.In a 96-well plate, in triplicate, 100ul 

working reagent was added to 3 μl of each sample and standard. A standard 

curve was then performed to measure sample protein concentration. 

7.3.4.3 Sample preparation and gel electrophoresis 

Protein separation and transfer were performed with the NuPAGE Bis-Tris 

electrophoresis system following the manufacturer’s instructions (Invitrogen, 

Paisley, UK). 2 μl NuPAGE sample reducing agent and 5 μl NuPAGE LDS 

sample buffer were added to 25 μg protein extract and incubated at 70°C for 

10 minutes. Protein samples and Hyperladder IV (Bioline, London, UK) pre-

stained standard were loaded on a NuPAGE Novex 4-12% Bis-Tris Gel in 

triplicate, and run using the Invitrogen Zoom Duel Power Supply (Invitrogen, 

Paisley, UK) at 200 V for 50 minutes. 

7.3.4.4 Protein transfer 

Proteins were transferred from the gel to a polyvinylidene fluoride (PVDF) 

membrane (Millipore, Darmstadt, Germany) using Invitrogen Zoom Duel 

Power Supply according to the manufacturer’s instructions. Protein transfer 

was performed at 30 V for 1 hour. 



 

173 

 

7.3.4.5 Immunoblotting and development 

Non-specific binding of antibodies to the membrane was prevented by 

incubating the membrane in Superblock blocking solution (Invitrogen, 

Paisley, UK) for 2 hours at room temperature under agitation. The membrane 

was then incubated for 16 hours at 4°C with blocking solution supplemented 

with  primary antibody against Gal3 (rabbit polyclonal IgG Ab53082 AbCam, 

Cambridge, UK) at a dilution of 1:2500. After four washes of 5 minutes with 

TBST (tris-buffered saline pH 7.6 with 0.05% Tween 20 (Sigma, Poole, UK), 

the membranes were incubated with secondary antibody diluted to 1:5,000 in 

blocking solution for 1 hour at room temperature. Antibody-protein 

complexes were detected and quantified by chemiluminescence using the 

Pierce Supersignal west pico chemiluminscent detection kit (Fisher Scientific, 

Loughborough, UK). Membranes were stripped by incubation in Reblot Plus 

membrane stripping solution (Merck Millipore, Darmstadt, Germany) for 15 

minutes at room temperature, before β-actin levels were measured similarly 

using anti-β-actin primary antibody (Rabbit polyclonal IgG, Cat. AB8227, 

Abcam, Cambridge, UK) diluted to 1:5000 in blocking solution.  

7.3.5 Cell viability assay 

After 24 hours of transfection medium from DLD1 and HCT116 cells was 

replaced with fresh complete growth medium with or without 1 mg/ml P-RGI 

for 48 hours. Medium from transfected HT29 cells was replaced with fresh 

complete growth medium with or without 1 mg/ml SSBA for 72 hours. 

Quantification of cell viability and statistical analyses were carried out as 

described in Chapter 2.4. 
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7.4 Results 

7.4.1 Effect of Gal3 siRNA transfection on Gal3 gene and protein 

expression 

Relative quantities of Gal3 mRNA levels were determined by RT-PCR in the 

three colon cancer cell lines DLD1, HCT116 and HT29. Figure 39 shows that 

DLD1 cells express Gal3 at approximately 9-fold higher levels than HCT116 

and HT29 cells (p<0.01). 

 

 

Figure 39 Relative expression of Gal3 in DLD1, HCT116 and HT29 cells. Data 

are shown as mean ± standard error of triplicate samples normalised against 18S 

rRNA. 

Transfection of DLD1 cells with four Gal3-specific siRNA’s (siRNA1, siRNA2, 

siRNA3 and siRNA4) decreased steady-state levels of Gal3 mRNA by 95%, 

89%, 93% and 97%, respectively, compared with cells transfected with non-

specific, control siRNA (siRNA-Ctrl)  (Figure 40a). This led to a reduction in 

Gal3 protein expression of 95% and 84%, by siRNA1 and siRNA4, 

respectively (Figure 41a). HCT116 cells transfected with siRNA1 and siRNA2 

decreased Gal3 mRNA expression by 80% and 65%, respectively (Figure 

40b), which consequently led to a reduction of Gal3 protein expression of 

95% and 86% (Figure 41b). In the HT29 cell line, siRNA2 and siRNA4 

induced a strong decrease in Gal3 mRNA of 76% and 73%, respectively 

(Figure 40c), which consequently led to a reduction of Gal3 protein 

expression by 58% and 66% (Figure 41c). siRNA3 did not significantly 

decrease Gal3 mRNA expression in HT29 cells. 
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a 

 

b 

 

c 

 

Figure 40 Validation of knock-down of Gal3 mRNA. Cell transfection with Gal3-

specific siRNA’s decreased Gal3 mRNA in (a) DLD1 cells (b) HCT116 cells (c) 

HT29 cells. Data are shown as mean ± standard error of triplicate samples 

normalised against 18S rRNA. (a) is the result of three individual experiments. p 

values are relative to Ctrl-siRNA. *p<0.05; ** p<0.01; ***p<0.001 
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a                        b                                        c 

 

Figure 41 Validation of siRNA-mediated knock-down of Gal3 protein 

expression. Cell transfection with Gal3-specific siRNA’s decreased Gal3 protein in 

(a) DLD1 cells (b) HCT116 cells (c) HT29 cells. Data are shown as mean ± standard 

error (n=3). p values are relative to Ctrl-siRNA; ** p<0.01; ***p<0.001. 

 

7.4.2 Effect of P-RGI and SSBA on Gal3 knock-down cells 

Previous studies in our lab showed that potato galactan (P-Gal) and β-

Galactobiose (GB) bound specifically to recombinant Gal3, whilst potato RGI 

(P-RGI-X) showed a lower level of specific binding [385]. In chapter 5 these 

three pectic polysaccharides, as well as a second potato RGI with a different 

structure (P-RGI), were tested for their activity in colon cancer cells. Results 

showed that both P-RGI and P-Gal significantly reduced cell viability of DLD1 

cells after 48 and 72 hours, respectively, while P-RGI-X and GB had no 

effect.  To investigate whether the interaction between these pectic 

polysaccharides and Gal3 plays a role in mediating their effects on cell 

viability the effect of Gal3 knockdown on the P-RGI-induced inhibition of cell 

viability was determined. Figure 42a shows that P-RGI treatment significantly 

decreased the viability of DLD1 cells transfected with Gal3-specific siRNA1, 

siRNA2, siRNA3, siRNA4, non-specific siRNA (siRNA-Ctrl) or cell culture 
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medium only by 21%, 14%, 20%, 24%, 24% and 21%, respectively. There 

was no significant difference between the effects of P-RGI on cells 

transfected with Gal3-specific siRNA compared with Ctrl-siRNA. Similar 

results were observed in HCT116 cells. siRNA1, siRNA2, Ctrl-siRNA 

transfected and non-transfected P-RGI-treated HCT116 cells reduced cell 

viability by 12%, 5%, 10% and 10%, respectively (Figure 42b). 

 

a 

 

b 

 

Figure 42. Effect of P-RGI on Gal3 knock-down cells. Effect of P-RGI (1mg/ml for 

48 hours) on cell viability after transfection with either Gal3-specific siRNAs or 

siRNA-Ctrl (a) DLD1 cells (b) HCT116 cells. Results are expressed as the 

percentage of viable cells remaining after treatment relative to the untreated control. 

Data are shown as mean ± standard error (n=3). (A) is the result of three individual 

experiments. **p<0.01; ***p<0.001; $p<0.0001.  
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Figure 43 shows that a 72 hour incubation with SSBA significantly decreased 

the viability of HT29 cells transfected with Gal3-specific siRNA2, siRNA3, 

siRNA4, siRNA-Ctrl or cell culture medium only by 52%, 45%, 42%, 42% and 

57%  respectively. There was no significant difference between the effects of 

SSBA on cells transfected with Gal3-specific siRNA compared with Ctrl-

siRNA or non-transfected cells. 

 

 

Figure 43 Effect of SSBA on Gal3 knock-down HT29 cells. Effect of SSBA 

(1mg/ml for 72 hours) on HT29 cell viability after transfection with either Gal3-

specific siRNAs or siRNA-Ctrl. Results are expressed as the percentage of viable 

cells remaining after treatment relative to the untreated control. Data are shown as 

mean ± standard error (n=3). **p<0.01; ***p<0.001; $p<0.0001.  
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8.4.3 Effect of SSBA combined with FTS on DLD1 and HT29 cells 

 

 

Figure 44 Effect of SSBA combined with FTS on DLD1 and HT29 cell viability 

after 72 hours. Effect of treatment with 1 mg/ml SSBA, 150 μM FTS, and 1 mg/ml 

SSBA combined with 150 μM FTS for 72 hours on cell viability. Results are 

expressed as percentage of viable cells remaining after treatment relative to the 

untreated control.**p<0.01; $ p<0.0001.  

 

The proto-oncogene KRas plays a significant role in the regulation of colon 

cancer cell growth and apoptosis. The Gal3 CRD binds the farnesyl group of 

KRas maintaining it in its active state to promote cell proliferation. Mutation of 

the Gal3 CRD inactivates KRas [396] and so it is possible that the binding of 

Gal3 CRD by β-galactosides may inactivate KRas and reduce cell 

proliferation. FTS, a Ras inhibitor, can also bind the KRas farnesyl group, 

retaining KRas as a cytosolic protein and disrupting its transforming activity. 

SSBA and FTS were combined and incubated with DLD1 and HT29 cells to 

investigate whether they had related mechanisms of activity. Figure 44 

shows that SSBA reduced cell viability by 20% and 42%; FTS by 50% and 

61%; and SSBA combined with FTS by 74% and 85% in DLD1 and HT29 

cells, respectively. This indicates that SSBA and FTS act independently to 
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reduce cell viability providing further support to the Gal3-independent 

mechanism for the anti-proliferative activity of SSBA. 

7.5 Discussion  

Modified pectin has been shown to have anti-proliferative effects in various 

cancer cell lines although the mechanisms remain unclear.  The inhibition of 

the function of the ubiquitous protein Gal3 by binding of galactan side chains 

on pectin has been postulated as a potential mechanism [322, 397, 398]. 

Initial studies found that lectins were important for metastasis, particularly in 

relation to binding to carbohydrate expressed on tumour cells leading to cell-

cell and cell-ECM adhesion and ultimately tumour formation [399, 400].  It 

was then hypothesised that lectins could potentially bind, and thus be 

inhibited by, exogenous carbohydrates containing terminal galactoside 

residues. Numerous studies have since been undertaken using galactose-

rich substances, with many postulating a particular inhibition of Gal3 [195, 

196, 321]. Indeed, recent studies in our laboratory have shown that P-Gal 

and the disaccharide GB showed a high level of specific binding to 

recombinant Gal3, while the interaction with P-RGI-X was weaker. These 

interactions were shown to be inhibited by the presence of lactose, which 

confirms that the binding occurs within the CRD of Gal3 [322, 323]. In 

Chapter 3 the structure of P-RGI-X was examined in detail.  13C NMR data 

show that P-RGI-X contains a high proportion of β(14)galactan side chains 

with a high ratio of terminal β(14)galactan, which suggests short side 

chains of 1-3 galactose residues. On the other hand, P-Gal has an RGI 

backbone with β(14)galactan chains of an estimated average chain length 

of ~23 galactose residues. The CRD of Gal3 recognises disaccharides 

containing β-galactosides [215], which would account for the high affinity for 

GB and P-Gal. However if the disaccharide is bound to the backbone or if 

there are other forms of steric hindrance, longer side chains may be required 

to allow the terminal disaccharide to bind, which would account for the 

weaker interaction with P-RGI-X. Another comprehensive study investigated 

the relationship between ginseng RGI and potato galactan structure and 

galactan chain length on Gal3 binding activity [325]. They showed that 
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tetramers of β(14)galactan from potato galactan conferred significantly 

increased Gal3 binding activity than monomers, although β(14)galacto-

oligosaccharides with longer chains up to 63 galactose residues did not show 

increased affinity. The authors suggest these results indicate that short 

chains of 1-3 galactose residues on RGI may still be significant in regulating 

the activity of Gal3. However, they also showed that recombinant Gal3 

bound to isolated RGI backbone following the complete hydrolysis of the 

galactan side chains. The authors proposed therefore that there could 

potentially be secondary carbohydrate recognition sites within the Gal3 

molecule.  

Results from Chapter 5 showed P-RGI to have a time- and dose-dependent 

inhibitory effect on viability of DLD1 and HCT116 cell lines. P-Gal also 

demonstrated inhibitory activity in DLD1 cells although to a lesser extent, 

while GB had no effect on either cell line.  Remarkably, P-RGI-X did not 

affect cell viability. Structural analysis of P-RGI and its comparison with P-

RGI-X show that it is possible that HG regions, possibly as side chains of P-

RGI, are essential for bioactivity.  However, as discussed, short galactan 

chains on RGI could still potentially interact with Gal3 and regulate its 

activity. The significance of the role of Gal3 in determining the biological 

effect of P-RGI on cell viability was assessed using RNA interference. The 

results of this approach showed that reducing the expression of Gal3 by 

approximately 90% by siRNA transfection did not affect the cellular response 

to P-RGI in two colon cancer cell lines, indicating that the effect of P-RGI on 

the viability of these two cell lines is independent of Gal3. These results 

suggest that an interaction with Gal3 may not be important for the anti-

proliferative effects of modified pectin.  

Results from previous chapters suggest that structurally different pectins may 

have diverse mechanisms of action. SSBA, the soluble fraction of alkali-

treated sugar beet pectin, was shown to have a time- and dose-dependent 

inhibitory effect on the viability of HT29 cells (Chapter 5). Furthermore, it was 

shown that enzymatic removal of galactan side chains markedly decreased 

SSBA activity, suggesting that galactan side chains could modulate activity 
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through binding and inhibiting Gal3. The role of Gal3 in mediating the anti-

proliferative activity of SSBA towards HT29 cells was assessed by reducing 

Gal3 gene and protein expression in this cell line. Knocking down the 

expression of Gal3 by approximately 75% by siRNA transfection did not 

affect the cellular response to SSBA in HT29 cells, indicating that the 

decrease in cell viability was independent of Gal3.   

Further support for a Gal3-independent mechanism is provided by the 

observed effects on cell viability by combined SSBA and FTS, a known 

inhibitor of KRas function. Gal3 is known to drive cell proliferation and inhibit 

apoptosis via its interactions with intracellular proteins such as KRas, Akt 

and β-catenin. Although the anti-proliferative and apoptotic activity of MP has 

been postulated as a consequence of binding and inhibiting Gal3, it is not 

known how MP may bind to intracellular Gal3. It could be possible that low 

MW pectin may enter cells, a mechanism postulated by Huang and 

colleagues who showed that embryonic kidney cells absorbed MCP with a 

low MW of 1kDa [401]; however this experiment lacked controls and has not 

been repeated. Another possibility is that MP could bind to Gal3 located in 

lipid rafts [402], specialised membrane microdomains that function as 

organising centres for the assembly of signaling molecules [403, 404]. Gal3 

is known to be recruited by KRas from the cytosol to the plasma membrane, 

becoming an integral nanocluster component and binding and stabilising 

KRas in its active state, driving cell proliferation and preventing apoptosis 

[294, 405]. FTS binds to the farnesyl group of KRas and prevents its 

translocation to the plasma membrane, thereby inhibiting its interaction with 

the Gal3 CRD [393]. Treatment of cells with SSBA combined with FTS led to 

an additive effect on cell viability when compared with SSBA or FTS alone. 

This shows that FTS did not inhibit the anti-proliferative activity of SSBA 

indicating that these compounds are acting by independent mechanisms. 

Therefore, this raises the possibility that the anti-proliferative activity of SSBA 

is not via an effect on KRas activity. As Gal3 at the plasma membrane is 

known to exert its activity via Kras, these results lend further support for a 

Gal3-independent mechanism for the anti-proliferative effects of SSBA. 

These results strongly suggest that an interaction with Gal3 may not be 

http://en.wikipedia.org/wiki/Signaling_molecule
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important for the anti-proliferative and pro-apoptotic effects of modified 

pectin. The Gal3-independent activity of modified pectins is also consistent 

with the results from two previous studies, which showed that modified citrus 

pectin induced apoptosis in the prostate cancer cell line LNCaP, which does 

not express Gal3 [201, 329]. 

Many studies have reported effects of modified pectin including reduced cell 

proliferation, induction of apoptosis and modulation of the cell cycle in a 

number of cancer cell lines from various tissues [196, 197, 201, 384, 406]. 

Since these cell lines exhibit significant diversity in characteristics including 

tissue of origin and genetic mutations, together with the heterogeneity of the 

modified pectins in terms of source, and the methods for extraction and 

modification, the role of Gal3 cannot be ruled out in mediating the cellular 

response in these studies. The proposed use of modified pectin as an anti-

cancer agent is based on the effects of modified pectin on the spread of 

cancers. Many studies have reported effects of modified pectin on reduced 

cell migration, adhesion, angiogenesis and tumour formation [194, 210, 321, 

325]. In this context, extracellular Gal3 is accessible to pectin extracts, which 

could inhibit the role of Gal3 in cancer metastasis. The present study 

suggests that P-RGI can inhibit cell viability and hence may play a chemo-

preventative role by influencing intracellular pathways that control cellular 

homeostasis, and thereby perhaps reduce the risk of cancer initiation. The 

fact that this biological effect is independent of Gal3 suggests that the 

structural features important for reducing cancer cell proliferation may be 

different to those required for the use of pectin as an anti-metastatic agent. It 

is evident that further research is required to provide a mechanistic 

understanding of the potential chemo-preventive properties of this important 

dietary constituent. Such understanding would underpin consideration of the 

health benefits of pectin in the diet or as a food supplement. 

7.6 Conclusion 

This chapter demonstrates that the viability-reducing activity of RGI extracts 

from potato in DLD1 and HCT116 cells, and alkali-treated sugar beet pectin 

in HT29 cells is independent of Gal3. Thus the structural features of pectin 
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extracts responsible for their anti-proliferative activity towards cancer cells 

may differ considerably from those required for the potential use of such 

extracts as anti-metastatic agents. Further mechanistic studies are required 

to assess the potential chemo-preventative role of pectin as a dietary 

constituent. 
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Chapter 8 

Effects of potato RGI on colon cancer cell gene 

expression 
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8.1 Introduction 

Previous chapters investigated the bioactive effects of modified pectins and 

showed that potato derived RGI (P-RGI) and alkali-treated sugar beet pectin 

(SSBA) reduced cell proliferation in a dose- and time-dependent manner in 

colon cancer cells, the latter by induction of apoptosis. Similar results were 

reported in other studies performed on several types of cancer cells following 

exposure to MP, but the molecular mechanisms responsible for the observed 

biological effects have not been fully elucidated. The most well-known 

mechanism postulated for bioactivity of MP is the binding and inhibition of 

pro-metastatic protein Gal3. However, it was shown in the previous chapter 

(Chapter 7) that the anti-proliferative effects of P-RGI and SSBA are 

independent of Gal3. To elucidate the mechanisms behind the bioactivity of 

MP, its effects on the expression of certain genes can be observed to reveal 

the cell signalling pathways that may be affected. Changes in cell behaviour 

relevant to cancer progression are induced by changes in gene and protein 

expression. Cells depend on an elaborate intracellular communication 

network of signalling pathways, which exhibit cross-talk, to regulate cell 

function. Any loss of control in these signalling pathways, often brought on by 

gene mutations that result in the overexpression of oncogenes or the 

inhibition of tumour suppressor proteins, can cause unregulated cell growth 

and transformation. The MEK/ERK, Wnt, PI3K/Akt, apoptosis and cell cycle 

pathways are all deregulated in CRC and consequently the components of 

these signalling cascades make interesting targets for therapeutic 

intervention. 

Previous studies have investigated the effects of MP on protein expression. 

Two studies have shown MP to affect cell cycle progression. Potato RGI was 

shown to arrest HT29 cells in the G1 phase of the cell cycle, which was 

accompanied by a reduction of expression of the proteins cyclin B1 and 

CDK1, which are required for the transition into S phase [384]. Similarly, the 

MCP, GCS-100, reduced cell proliferation via G1/S cell cycle arrest in 

myeloma cells, which was accompanied by a reduction of Cyclin E and 

CDK2, cyclin D and CDK6, and  the cyclin/CDK inhibitor p21, restricting cell 

progression through to the S phase. As well as causing cell cycle arrest, 
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GCS-100 was shown to induce apoptosis, which was accompanied by a 

decrease in the pro-survival proteins MCL-1, Bcl-XL and Akt, and an 

increase in the pro-apoptotic protein Noxa, while the expression of anti-

apoptotic Bcl-2 and pro-apoptotic Bax, Bak, Bim, Bad, Bid and Puma 

proteins remained unchanged. [197]. Some interesting results from Umar 

and co-workers demonstrated that increases in cellular β-catenin, cyclin D 

and c-myc were blocked in the colonic crypt cellular extracts of mice fed a 

diet of 6% CP [407], and MCP was shown to supress MAPK signalling [201]. 

Stimulation of cells with cytokines such as TNFα and IL-1 is associated with 

activation of IKK, decreased IκBα and increased NFκB, which is known to 

drive proliferation [408]. Streetly and colleagues also showed that GCS-100 

decreased levels of activated IKK and decreased IκBα after cytokine 

stimulation [197]. 

8.2 Aims 

The molecular mechanisms behind the bioactivity of P-RGI on DLD1 cells 

will be explored in this chapter. Effects on the expression of 53 genes 

selected for their involvement in the regulation in cell proliferation, apoptosis, 

adhesion, cell cycle progression and immune function will be investigated.  

8.3 Materials and Methods 

8.3.1 Pectins 

P-RGI, SSBA and CP were characterised in Chapter 3. Sample preparations 

for cell treatment were carried out as in section 2.3. 

8.3.2 Analysis of gene expression 

DLD1 and HT29 cells were seeded in Nunclon 6-well plates at the cell 

concentrations specified in Table 3 (pg.72). After 24 hours, to allow cell 

adhesion, medium was discarded and DLD1 cells were exposed to 2 ml 

medium supplemented with 1 mg/ml P-RGI or 1 mg/ml CP, and HT29 cells 

exposed to 2 ml medium supplemented with 1 mg/ml SSBA or 1 mg/ml CP 
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for the times specified. Four biological replicates were performed for each 

condition of treatment. Three individual experiments were carried out on 

DLD1 cells exposed to P-RGI and CP for 24 hours. RNA extraction, 

quantification and RT-PCR were performed according to the procedures 

described previously (section 2.9). Primer sequences and melting 

temperatures (Tm) of selected genes are reported in Tables 22 to 25. 

 

Table 22 Primer sequences for genes associated with the cell cycle. Common 

names, primer sequences and Tm of selected genes. F= Forward; R = Reverse. 

Gene Common name   Primer Sequence (5'to 3') Tm °C 

CDK2 CDK2 F aaagccagaaacaagttgacg 62 

  

R gtactgggcacaccctcagt 

 CDK4  CDK4  F gtgcagtcggtggtacctg 52-58 

  

R ttcgcttgtgtgggttaaaa 
 CDK6  CDK6  F tgatcaactaggaaaaatcttgga 60 

  

R ggcaacatctctaggccagt 

 CDK7 CDK7 F ccatgtgctcgaattacgg 60 

  

R cttggcagctgacatccag 

 CCNB1  Cyclin B1 F acatggtgcactttcctcct 60 

  

R aggtaatgttgtagagttggtgtcc 

  CCND1 Cyclin D1 F gctgtgcatctacaccgaca 60 

  

R ttgagcttgttcaccaggag 

 CCND2 Cyclin D2 F ccatcagcaaatgtgtacgtg 60 

  

R tacagtcagtaaggcactttatttcc 

 CCND3 cyclin D3 F cctccctgcatctgacca 60 

  

R atgctggtgtatgtatccaattctg 
 CCNE1  Cyclin E1 F ggccaaaatcgacaggac 60 

  

R gggtctgcacagactgcat 

  TP53  p53 F aggccttggaactcaaggat 60 

  

R ccctttttggacttcaggtg 

  CDKN2B  p15INK4B  F gcggggactagtggagaag 60 

  

R ctgcccatcatcatgacct 

 CDC25A cdc25A F cgtcatgagaactacaaaccttga 60 

    R tctggtctcttcaacactgacc   
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Table 23 Primer sequences of genes associated with cell proliferation and cell 

survival Common names, primer sequences and Tm’s of selected genes. F= 

Forward; R = Reverse. 

Gene Common name   Primer Sequence (5'to 3') Tm °C 

 MAP2K1 MEK1 F ttttaggaaaagttagcattgctgt 60 

  

R agggcttgacatctctgtgc 

 MAP2K2 MEK2  F accaaagtccagcacagacc 60 

  

R atgatctggttccggatgg 

 MAP2K3 MKK3  F gaggacatccttggggagat 60 

  

R gtggatcaccgacagcttg 

 MAP2K4 MKK4  F ggccaaagtataaagagcttctga 60 

  

R cagcgatatcaatcgacatacat 

 MAP2K6 MKK6  F caaggcttgcatttctattgg 58-61 

  

R ccagttccattataggctcca 

 MAP2K7 MKK7  F cggaggatcgacctcaac 59-61 

  

R gggagctctctgaggatgg 

  MAPK3 ERK1 F ccctagcccagacagacatc 62 

  

R gcacagtgtccattttctaacagt 

  MAPK1 ERK2 F caaagaactaatttttgaagagactgc 60 

  

R tcctctgagcccttgtcct 

 MAPK14 P38  F gggacctccttatagatgagtgg 62 

  

R ggactccatctcttcttggtca 

 MAPK8 JNK  F gggcagccctctccttta 58-61 

  

R cattgacagacgacgatgatg 

 PTEN PTEN F gcacaagaggccctagatttc 58-62 

  

R cgcctctgactgggaatagt 

 CTNNB1 β catenin  F acttgcattgtgattggcct 60 

  

R caaaaaggaccagaacaaaaagtttac 

 MYC c-myc F agatccggagcgaataggg 60 

  

R gtccttgctcgggtgttgta 

 JUN Jun  F agagcggaccttatggctaca 60 

  

R cgttgctggactggattatca 

 TCF7L2 TCF7 F ttgaccgacagactttatggtg 61-65 

  

R tgtatgtagcgaacgcactttt 

 PIK3CA PI3K  F cacgagatcctctctctgaaatc 60 

  

R ggtagaatttcggggatagttaca 

 GSK3B GSK3β F cagaccaataatgctgcttctg 60 

    R atattctttccaaacgtgaccagt   
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Table 24 Primer sequences of genes associated with apoptosis Common 

names, primer sequences and Tm’s of selected genes. F= Forward; R = Reverse. 

Gene Common name   Primer Sequence (5'to 3') 
Tm 
°C 

CASP3 Caspase-3  F ttgtggaattgatgcgtgat 62 

  

R ggctcagaagcacacaaaca 

 CASP7 Caspase-7  F ggcgtgatctcggaagact 62-68 

  

R ggatgccatcatcaagctc 

 CASP9 Caspase-9  F aagcccaagctctttttcatc 62-68 

  

R actcgtcttcaggggaagtg 

 BID Bid F tgtgaaccaggagtgagtcg 60 

  

R ggctggaaccgttgttga 

 BAX Bax F ccatcatgggctggacat 56 

  

R cactcccgccacaaagat 

 AKT1 Akt F ggctattgtgaaggagggttg 61-65 

  

R tccttgtagccaatgaaggtg 

 FAS Fas  F gtggacccgctcagtacg 61-65 

  

R ggacgataatctagcaacagacg 

 PMAIP1 Noxa F ggagatgcctgggaagaag 58-61 

  

R cctgagttgagtagcacactcg 

  BBC3 PUMA F gacctcaacgcacagtacga 61-65 

  

R gagattgtacaggaccctcca 

 MCL-1 MCL-1 F aagccaatgggcaggtct 60 

    R tgtccagtttccgaagcat   
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Table 25 Primer sequences of genes associated with cell adhesion and 

immune function. Common names, primer sequences and Tm’s of selected genes. 

F= Forward; R = Reverse.   * No gene product found. 

Gene Common name   Primer Sequence (5'to 3') Tm 

PTK2 FAK  F gtctgccttcgcttcacg 60 

  

R gaatttgtaactggaagatgcaag 

 ICAM1 ICAM1 F ccttcctcaccgtgtactgg 61-65 

  

R agcgtagggtaaggttcttgc 

 ICAM2 ICAM2 F caatgaattccaacgtcagc * 

  

R accaaagtgggttgcagtgt 

 ICAM3 ICAM3 F ggtaccatccgtgttgtgg * 

  

R gaactcctgcccctggac 

 CD44 CD44  F caacaacacaaatggctggt 61-65 

  

R ctgaggtgtctgtctctttcatct 

 CXCL12 SDF-1  F ttgacccgaagctaaagtgg * 

  

R ccctctcacatcttgaacctct 

 PTGS2 Cox2  F cttcacgcatcagtttttcaag * 

  

R tcaccgtaaatatgatttaagtccac 

 VCAM1 VCAM1 F tgcacagtgacttgtggacat * 

  

R ccactcatctcgatttctgga 

 CDH1 E-Cadherin F tggaggaattcttgctttgc 59-62 

  

R cgctctcctccgaagaaac 

 IL1B IL-1β F tacctgtcctgcgtgttgaa * 

  

R tctttgggtaatttttgggatct 

 TNF TNFα F cagcctcttctccttcctgat * 

  

R gccagagggctgattagaga 

 NFKB1 NFκB1 F ctggcagctcttctcaaagc 60 

  

R tccaggtcatagagaggctca 

 IKKα IKKα F tgtgcctcttctagcaatgga 60 

  

R ttctggtttgttgagcagctt 

 NFKBIA IкBα F gacgaggagtacgagcagatg 58-61 

    R atggccaagtgcaggaac   
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8.4 Results 

8.4.1 Effect of P-RGI on DLD1 gene expression 

P-RGI reduces DLD1 cell viability in a time- and dose-dependent manner 

(Section 5.4). To ascertain the molecular mechanisms behind this bioactivity, 

changes in DLD1 gene expression were analysed following incubation with 

P-RGI. Changes in DLD1 gene expression were additionally analysed after 

incubation with CP, used as a negative control due to the absence of any 

effect on cell viability. 53 genes were selected for their role in cell cycle 

progression, proliferation, apoptosis, cell adhesion and immune function. P-

RGI and CP were incubated with DLD1 cells for 24 hours and mRNA was 

extracted.  

Figure 45 shows the effect of P-RGI and CP on the expression of 46 genes 

over 24 hours. P-RGI reduced the expression of ICAM1, cyclin B1, p38,      

β-catenin and Bid by 49%, 32%, 30%, 24%, 44%, respectively, while cyclin 

D1 was increased by 55%. However, with the exception of ICAM1, CP also 

modulated the expression of these genes to a similar extent to P-RGI. This 

was unexpected considering that CP does not confer anti-proliferative effects 

in DLD1 cells. To test which genes are modulated in relation to reducing cell 

viability, and to test for specific mechanisms of P-RGI, CP can be considered 

as a negative control. Figure 44 shows the effect of P-RGI on DLD1 gene 

expression relative to the effect of CP. Observing the specific effects of P-

RGI, ICAM1 was the only gene to be significantly modulated, with a 

decrease of 56% (p<0.05).  
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Figure 45 Effect of P-RGI and CP on gene expression in DLD1 cells. The mRNA expression of 46 genes was determined in DLD1 cells 

treated with 1 mg/ml P-RGI or 1 mg/ml CP for 24 hours. Results are expressed as percentage change in expression relative to untreated cells. 

Data are shown as mean ± standard error (n=4). *p<0.05; **p<0.01; $p<0.0001. 
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Figure 46 Specific effect of P-RGI on gene expression. The mRNA expression of 46 genes was determined  in DLD1 cells treated with 1 

mg/ml P-RGI for 24 hours relative to cells treated with 1 mg/ml CP for 24 hours. Results are expressed as percentage change in expression 

relative to CP-treated cells. Data are shown as mean ± standard error (n=4). *p<0.05; **p<0.01; $p<0.0001. 
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The expression of the genes ICAM1, FAK, E-cadherin and CD44 were tested 

due to their roles in cell adhesion. Figure 32 in chapter 5 shows that there 

was a significant 2.2 fold increase in detached cells found in the cell culture 

medium from cells treated with P-RGI. As the reduction of DLD1 cell viability 

by P-RGI was not attributable to apoptosis, it is possible that P-RGI induces 

the detachment of cells, either from each other or from the cell culture plate. 

Due to the significant effect on ICAM1 gene expression by P-RGI, the effect 

of P-RGI on the expression of several other genes relating to ICAM1 were 

determined. SDF-1 and Cox-2 are known to upregulate ICAM1 in colon 

cancer cells [409-411], however DLD1 did not express these genes. ICAM1 

expression is also known to be regulated by the NFκB pathway, and its 

expression in colon cancer cells is upregulated by cytokines. Therefore the 

expression of IL-β, TNFα, as well as NFkB1, IKKα, and the NFκB inhibitor 

IκBα were investigated in P-RGI-treated DLD1 cells. Only NFkB1, IKKα and 

IκBα were found to be expressed in this cell line, and none of these genes 

were modulated by P-RGI (Figure 47). 
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a 

 

b 

 

Figure 47 Relative changes in NFκB1, IKKα and IκBα gene expression in P-

RGI-treated DLD1 cells (a) mRNA expression of NFκB1, IKKα and IκBα in DLD1 

cells after exposure to 1 mg/ml P-RGI and 1 mg/ml CP for 24 hours. Results are 

expressed as percentage change in expression relative to untreated cells. (b) 

mRNA expression of NFκB1, IKKα and IκBα in DLD1 cells after exposure to 1 

mg/ml P-RGI. Results are expressed as percentage change in expression relative to 

mRNA expression of genes after exposure to 1 mg/ml CP for 24 hours. Data are 

shown as mean ± standard error (n=4).  

-60

-40

-20

0

20

40

60

80

NFкβ1 IKKα Iкβa 

R
e
la

ti
v

e
 c

h
a
n

g
e
 i

n
 g

e
n

e
 

e
x
p

re
s
s
io

n
 (

%
) 

RGI

CP

-20

-10

0

10

20

30

40

50

60

70

80

90

NFкβ1 IKKα Iкβa 

R
e
la

ti
v

e
 c

h
a
n

g
e
 i

n
 g

e
n

e
 

e
x
p

re
s
s
io

n
 (

%
) 



 

 

 

197 

 

Since P-RGI induced a significant decrease in ICAM1 expression, the time-

dependent effect of P-RGI on ICAM1 gene expression in DLD1 cells was 

investigated. A non-significant 38% decrease in mRNA levels of ICAM1 in P-

RGI-treated DLD1 cells relative to cells treated with CP was observed after 8 

hours, which decreased to 61% after 24 hours with no further decrease 

observed up to 72 hours (Figure 48).  

 

 

Figure 48 Time-dependent relative change in ICAM1 gene expression in P-

RGI-treated DLD1 cells. Alterations of ICAM1 mRNA expression in DLD1 cells 

after exposure to 1 mg/ml P-RGI for 2, 8, 24, 48 or 72 hours. Results are expressed 

as percentage change in expression relative to mRNA expression in DLD1 cells 

after exposure to 1 mg/ml CP at the same time points. Data are shown as mean ± 

standard error (n=4). *p<0.05; **p<0.01. 
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8.4.2 Effect of SSBA on ICAM1 expression in HT29 cells 

P-RGI significantly reduced ICAM1 gene expression in a time-dependent 

manner in DLD1 cells, which suggests this reduction in ICAM1 could 

contribute to the observed effects of P-RGI on DLD1 cell viability. As SSBA 

reduces cell viability in HT29 cells, its effects on ICAM1 expression were 

investigated. No significant effect on ICAM1 expression was observed in 

SSBA-treated HT29 cells after 24 hours. 

8.5 Discussion

In previous chapters potato-derived RGI (P-RGI) was shown to reduce cell 

proliferation in DLD1 cells in a Gal3-independent manner, and this was not 

attributable to an induction of cell cycle arrest or apoptosis. To gain insight 

into the molecular mechanisms behind the bioactivity of P-RGI, the effect of 

P-RGI on the expression of several genes involved in cell proliferation, 

apoptosis, adhesion and the cell cycle were investigated. Owing to the 

modulation of genes by CP, pectin that does not confer anti-proliferative 

effects in DLD1 or HT29 cells, CP was employed as a control to test for 

specific mechanisms of P-RGI. Only the expression of ICAM1 was 

specifically affected by P-RGI treatment. P-RGI induced a rapid decrease in 

expression in DLD1 cells, which preceded the observed decrease in cell 

proliferation, suggesting that the abrogation of this gene could be play a role 

in the reduction in cell growth.  

Intercellular adhesion molecules (ICAMs) are members of the 

immunoglobulin superfamily of proteins and consist of five ICAMs designated 

ICAM1 to ICAM5. ICAM1 contains five extracellular domains that function in 

cell-cell and cell-ECM adhesive interactions [412] and is present on the cell 

surface of a wide variety of cell types including leukocytes, keratinocytes, 

fibroblasts, endothelial cells, and epithelial cells. Normal colon tissue does 

not express ICAM1 [413] but over-expression of this adhesion molecule has 
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been linked with tumour progression in CRC patients [87, 414]. Significantly 

higher levels of serum ICAM1 were found in CRC patients compared with 

healthy controls, with a positive association with disease stage and presence 

of metastasis [415, 416]. Colon cancer cell lines such as DLD1 and HT29 

express ICAM1. Gallicchio et al showed that the Cox-2 inhibitor Celecoxib 

reduced ICAM1 expression in HT29 cells, which also decreased their 

adhesion to FBS coated plastic wells[411]. In DLD1 and SW48 colon cancer 

cells it was shown that CXC chemokine ligand 12/stromal cell-derived factor-

1 (SDF-1) increased ICAM1 expression and adhesion to endothelial HUVEC 

cells, and that the ERK, JNK and p38 pathways were critical for in mediating 

this effect. Reduction of ICAM1 expression by knockdown of NFκB and MEK 

inhibitors was followed by a loss of adhesion in DLD1 cells [409].  

Typically, a reduction in cell viability results from cell cycle arrest or induction 

of apoptosis, but P-RGI did not induce these effects in DLD1 cells. However, 

an increase in cell debris detected in the supernatant from P-RGI-treated 

cells suggests a loss of cell adhesion as a possible mechanism of action of 

P-RGI. Although other genes involved in cell adhesion, E-cadherin, FAK and 

CD44, were not affected, the observed P-RGI induced decrease in ICAM1 

expression together with the previous observation of an inhibition of cell 

adhesion in cells with knocked down ICAM1 [409] supports this conclusion. 

MP has previously been implicated in the inhibition of cell adhesion. MCP 

and pectic polysaccharides from swallow root and ginseng were shown to 

block agglutination of red blood cells [210, 325], and okra RGI reduced 

melanoma cell aggregation via reduction in the expression of pan-cadherin 

and α5 integrin [211]. MCP blocked the binding of ovarian cancer cells to 

Wharton’s jelly [204], blocked the interaction of B16-F1 breast cancer cells 

with laminin [321], and inhibited the adhesion of rat and human prostate 

cancer cells to endothelial cells [193]. In all cases this inhibition of adhesion 

was presumed to be Gal3 mediated; however, in this present study the 

effects of P-RGI on the loss of cell adhesion are Gal3-independent.  
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 Besides its involvement in cell adhesion, ICAM1 is recognised more 

specifically for its contribution to immune function and is associated with a 

variety of inflammatory diseases and conditions including asthma, 

atherosclerosis, inflammatory bowel disease, and autoimmune disease [417-

420]. ICAM1 is a ligand for LFA-1, an integrin found on leukocytes and 

macrophages [412, 421], and MUC-1 on endothelial cells. ICAM1 is involved 

in aiding transmigration of leukocytes across the endothelium and epithelium 

[422] as well as facilitating the adhesion of cancer cells to the endothelium 

and subsequently promoting metastasis [423]. Roland and colleagues 

suggest that tumour cells bind to endothelial ICAM1 via MUC-1, promoting 

the release of chemoattractants for circulating macrophages, which can then 

bind to ICAM1 on tumour cells, enhancing the expression of cytokines that 

recruit neutrophils [423]. The expression of ICAM1 in DLD1 and HT29 colon 

cancer  cells has been shown to be enhanced by the presence of pro-

inflammatory cytokines such as TNFα, IL-β, IL-1, IFN-α and IFN-γ [85, 413, 

424, 425]. The ICAM-1 promoter region contains binding sites for a number 

of sequence-specific transcription factors, the most important of which is 

NFκB, which can mediate the induction of ICAM1 in response to different 

stimuli in different cell types [426, 427] and in CRC [428, 429]. c-jun, c-Fos 

and p53 are also known to activate ICAM1 expression [426, 430]. 

The decrease in ICAM1 expression in P-RGI-treated cells prompted further 

investigation into ICAM1-associated genes present in colon cancer cells. 

Consequently, the expression of genes encoding the proteins SDF-1 and 

Cox-2, known to upregulate ICAM1 expression in CRC [409, 410], and 

NFκB-associated genes IKKα, IκBα, NFκB1, TNFα and IL-β, as well as 

ICAM2 and ICAM3 were investigated. Results showed that only three of 

these genes, IKKα, IκBα, NFκB1, were expressed in DLD1 cells and P-RGI 

had no effect on their expression. However, to observe whether P-RGI has 

an effect on the NFκB pathway, it may be necessary to stimulate the cells 

first with cytokines.  
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It is noteworthy that P-RGI significantly affected the expression of a gene 

implicated in immune function since pectic polysaccharides are often shown 

to possess immunomodulatory properties. Numerous pectic polysaccharides 

are known to stimulate NO secretion, increase lymphocyte proliferation, 

complement fixing activity, and macrophage phagocytosis [185-

187][151,152] Polysaccharides from Astragalus membranaceus, a herb used 

in traditional Chinese medicine, has been shown to supress ICAM1 

expression in TNFα-stimulated endothelial cells by blocking NFκB activation 

[431], while β-glucan has been shown to decrease ICAM1 expression in lung 

tissue concomitant with a decrease in cytokine release [432]. Furthermore, 

human milk oligosaccharides with immunomodulatory properties, have been 

shown to influence the expression of ICAM1 in HT29 cells [433]. 

Previous chapters have shown that LM sugar beet pectin, SSBA, significantly 

reduces cell proliferation in HT29 cells via induction of apoptosis. SSBA has 

a different structure to P-RGI and, as it induces apoptosis, likely has a 

different mechanism of action. Correspondingly, SSBA did not affect the 

expression of ICAM1 in HT29 cells. The cell-specificity of P-RGI and SSBA 

may offer some clue to the mechanisms of action of these MPs. All the cell 

lines tested for the bioactivity of MPs originate from colon carcinomas, yet 

the intricate cellular pathways in each cell line are different, owing to 

mutations in different key genes. P-RGI significantly reduced viability in 

DLD1 and HCT116 cell lines which both have KRAS and PIK3CA mutations, 

but did not affect the other cell lines that lack this double mutation. These cell 

lines differ in the TP53 gene, which is mutated in DLD1 cells but not in 

HCT116 cells. It is interesting to note that P-RGI consistently had a greater 

effect on DLD1 cells than on HCT116 cells. P-RGI preferentially exerts its 

activity in cell lines with KRAS and PI3KCA mutant genes, which suggests 

that P-RGI potentially exerts its activity via the PI3K/Akt pathway. On the 

other hand, SSBA significantly reduced viability in HT29 cells, and to a lesser 

extent DLD1 cells which share PI3KCA and TP53 mutations, but differ in the 



 

 

 

202 

 

BRAF mutation present in HT29 cells. The observed, independent effects of 

SSBA and the Ras-inhibitor FTS on the viability of HT29 and DLD1 cells 

indicates that SSBA does not exert its effects through KRas inhibition but 

suggest that, since BRAF functions downstream of KRas, SSBA may 

specifically target the activity of the BRAF/MEK/ERK signalling pathway.  It is 

thought that BRAF mutation cell lines, such as HT29 have developed an 

‘addiction’ to hyper-activation of the MEK/ERK pathway and are thus 

sensitive to MEK or ERK inhibitors, while cell lines with a KRAS mutation, 

such as DLD1 will be less sensitive to these inhibitors due to additional 

parallel signalling down the PI3K pathway [434, 435]. An additional mutation 

in PI3KCA can enhance this resistance [436, 437]. This could go some way 

to explaining the lessened effect of SSBA in KRAS mutant DLD1 cells. 

However, further studies are required to demonstrate these effects and 

explore other signalling cascades affected by MP exposure. This could be 

achieved by performing transcriptomic analyses, for example using 

microarrays, which would provide information on the effects of MP on the 

expression of all genes simultaneously, and would thus identify the signalling 

pathways influenced by MP providing further understanding of the 

mechanisms of the cellular effects of MP. 

8.6 Conclusion 

The expression of genes associated with cell proliferation, apoptosis, 

adhesion and cell cycle progression were investigated in DLD1 cells after 

incubation with potato RGI, an MP that significantly reduced cell proliferation 

in DLD1 cells, potentially via loss of cell adhesion. Only ICAM1 expression 

was identified as being significantly modulated by P-RGI. The role of ICAM1 

in cell adhesion and its significant decrease in expression prior to the 

reduction of DLD1 cell viability by P-RGI suggests that the P-RGI-induced 

reduction in ICAM1 expression results in a loss of cell adhesion, which 

subsequently affects cell viability. ICAM1 is also significantly involved in 

immune function, suggesting that P-RGI could possess immunomodulatory 
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properties. ICAM1 expression was not affected by SSBA in HT29 cells. 

Therefore, the cell-specific effects of P-RGI and SSBA provide some insight 

into the molecular mechanisms of their bioactivity. However, further studies 

are required to fully elucidate the specific mechanisms of MP bioactivity 

within cells. 
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9.1 Discussion 

Data presented in this thesis show the ability of alkali-treated sugar beet and 

citrus pectin and potato-derived RGI and galactan to significantly reduce cell 

proliferation in colon cancer cells, suggesting the possible 

chemopreventative effects of MP. In summary, SSBA, and to a lesser extent 

CA, reduced proliferation of HT29 cells via the induction of apoptosis, while 

P-RGI, and to a lesser extent P-Gal and SSBA, reduced proliferation of 

DLD1 cells, possibly via a loss of cell adhesion. One of the most intriguing 

elements of this study comes from structural examination of these bioactive 

pectins, which showed that they have very different structures. Furthermore, 

a small change in structure can significantly affect pectin bioactivity. These 

results, combined with the cell-specificity of each of the bioactive pectins, 

suggest a very complex structure-function relationship.  

Investigations into the bioactivity of pectins should be supplemented with an 

understanding of the structure of the biologically-active pectin. However, the 

structural requirements for bioactive MP have rarely been addressed in 

previous studies. There is growing evidence linking modified forms of pectin 

with anti-cancer activity, although modified pectin is an ambiguous term 

simply meaning pectin that has been modified using pH, heat or enzymes. 

Moreover, pectin is an extremely complex material and pectins from different 

sources can vary in polymer size distributions, molecular weight, DE, the 

nature and placing of the neutral sugars as well as the addition of acetyl and 

feruloyl groups. Pectin structure from the same sources also vary with 

respect to the differences between plantations, climates, hereditary traits of 

the trees, and could even vary day to day owing to factors such as the 

ripeness of the fruit and the weather prior to harvest [128]. MPs from various 

sources, extracted and modified in numerous ways, have been shown to 

induce various cellular effects in many different cell types. The lack of 

structural analysis in these studies means that the structure-function 

relationship is often unknown; inconsistencies are often reported and results 
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are difficult to compare. Findings in the literature can be considerably diverse 

which is likely due to inconsistencies of source material, which impede 

interpretation of results, as well as methodology and environment. However, 

the inhibition of the function of the pro-metastatic protein Gal3 by binding of 

Gal side chains on pectin has been postulated as a potential mechanism of 

action [322, 397, 398], establishing the theory that Gal content of MP is 

significant for bioactivity. However, studies that have specifically investigated 

structure-function aspects of pectin activity have found that bioactivity can 

depend on the DE content [329], as well as the HG backbone of pectin [212, 

213].  

This study has shown that various pectin structures can confer bioactivity 

and suggests that different regions of the pectin molecule may give rise to 

different bioactive properties. The actions of SSBA lend evidence for the 

importance of neutral sugar-rich RGI for activity. SSBA differs from SBC in 

that it is significantly richer in neutral sugars. The hydrolysis of the pectin 

backbone by heat and alkali treatment created pectin with increased RGI 

content. SBC required significantly more time to exert its anti-proliferative 

activity on HT29 cells than SSBA, which may be due to fewer RGI regions in 

SBC. Moreover, the enzymatic removal of Gal and Ara residues from SSBA 

significantly reduced its bioactivity. The removal of Ara residues, yielding 

SSBA containing only linear (14)-β-galactan and single unit Ara and Gal, 

considerably reduced the SSBA-induced response. Enzymatic removal of 

both linear (14)-β-galactan and (1—5)-α-Ara chains completely abolished 

the SSBA-induced response after 72 hours. Taken together these results 

indicate that the Gal side chains of SSBA are essential for bioactivity, while 

the presence of Ara side chains enhance activity, suggesting that Ara may 

assist in the presentation of Gal to receptors.   

While it is evident that neutral sugars are extremely important for the 

bioactivity of SSBA, further evidence shows that the HG backbone may also 

play a significant role.  Gal- and Ara-depleted SSBA reduced HT29 cell 
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viability after an extended treatment. It is possible that this reduction may be 

due to the 4-13% Gal remaining in SSBA. However, it is more likely that the 

HG or RGI backbone of SSBA could be a secondary bioactive component 

with less significant effects that take longer to detect.  A similar pattern was 

observed for HT29 cells treated with Pec-C, which is predominantly 

composed of GalA and had no effect on cells at 72 hours but reduced cell 

viability after 96 hours, although to a lesser extent than SSBA-gal. However, 

C-PGA, which also consists predominantly of GalA, had no effect on the 

cells. Pec-C has a significantly lower MW than C-PGA and SSBA-gal, which 

may explain the observed disparities in bioactivity. Further evidence for the 

importance of the HG backbone emerged from the studies of P-RGI and P-

RGI-X, two potato-derived pectic polysaccharides that underwent enzymatic 

treatment to remove HG chains and sugars while leaving the RGI backbone 

intact. Interestingly, P-RGI was shown to have anti-proliferative activity 

against DLD1 cells, while P-RGI-X did not. Investigation into the fine 

structure of these RGI samples showed that P-RGI contained GalA residues 

residing in HG chains, while GalA in P-RGI-X was found to reside only in the 

RGI backbone or as free GalA mono- or disaccharides. Furthermore, it was 

shown that the HG chains in P-RGI may exist as side chains from the RGI 

backbone. These results show that HG chains are essential for the bioactivity 

of P-RGI. However, it is more likely that the combination of RGI and HG 

backbone is responsible for activity, since C-PGA, which consists almost 

entirely of HG backbone, did not possess anti-proliferative activity. There are 

a few studies that suggest distinct bioactive roles for the pectin backbone. 

HG-rich ginseng pectin was shown to reduce proliferation in HT29 cells and 

inhibit fibroblast cell migration [212, 213], while the backbone of ginseng 

RGI, depleted of all neutral sugar side chains, still inhibited agglutination, 

albeit requiring higher concentrations than with the intact RGI [325]. 

Additionally, pectic acid induced apoptosis in rat pituitary tumour cells [331], 

and pentamers of GalA were shown to be active against inflammation and 

carcinogenesis in a mouse model of colitis-associated CRC [332]. These 
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studies demonstrate the bioactivity of HG and its Gal3-independence, which 

suggest multiple roles for pectin structures in bioactivity. 

A further structural aspect of MPs that could influence bioactivity is methyl-

ester content. Alkali treatment significantly lowered the DE of both sugar beet 

and citrus pectins to yield SSBA and CA, which were the only commercial 

pectins to significantly reduce HT29 cell viability after 72 hours. Although 

alkali treatment also hydrolysed the HG backbone, particularly in sugar beet 

pectin, the effect on citrus pectin structure was minimal, except for the 

significant reduction in methyl-ester content. This raises the possibility that 

DE is significant for bioactivity, particularly for CA. However, SSBA had a 

lower DE than CA, but was more bioactive. In addition, four additional LM 

apple and citrus pectins were shown to have no effect on cell viability. This 

indicates that the DE per se is not significant for bioactivity, and other 

characteristics of SSBA and CA are more important. The effect of pectin DE 

has been investigated in previous studies. Jackson and co-workers showed 

that, contrary to the observation in this study, alkali treatment of heat-treated 

citrus pectin abolished its apoptosis-inducing activity in prostate cancer cells 

suggesting that the ester linkages in pectin  are essential for bioactivity [329]. 

This certainly cannot be true of pectins in this study. However, Bergman and 

colleagues proposed that DE made no significant difference to bioactivity, 

and showed that CP with DE of 30% or 60% reduced HT29 cell proliferation 

by comparative amounts [326]. Investigating the structure-function of 

bioactive pectins is immensely challenging due to the complex nature of 

pectin. This study has shown that pectins with very different structures can 

exert activity on colon cancer cells. Gal side chains, with the support of Ara 

chains, were shown to be crucial for the activity of SSBA, while the HG 

backbone is essential for P-RGI.   

Commercial and dietary pectins are often assumed to be non-digestible in 

the GI tract and resistant to systemic uptake due to their relatively high MW. 

Modifying pectin lowers its MW and studies have shown MP to have a 
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systemic effect in rodents [193, 195] and humans [200]. In vitro, however, 

correlations between the size of MP and activity have not been reported. 

Jackson and co-workers showed that heat-treated citrus pectin significantly 

induced apoptosis in prostate cancer cells, while higher MW unmodified 

citrus pectin did not. However, they also showed that Pectasol-C, which has 

a significantly lower MW than unmodified citrus pectin, did not induce 

apoptosis suggesting that low MW is not sufficient for bioactivity [329]. Gao 

and colleagues also showed no correlation between the size of ginseng MP 

and activity [325]. These studies corroborate the lack of any correlation 

between pectin MW and bioactivity towards HT29 cells observed here, where 

the MWs of pectins in the order of their bioactivity was 362 > 129 > 548 > 23 

kDa.  

Many studies have shown  modified pectins reduce cell proliferation, 

migration, adhesion and induce apoptosis in numerous types of cancer cells 

[204, 210-213, 321, 329] as well as reduce tumour formation and metastasis 

in rodents [191, 193, 195]. A mechanism for these observed effects has been 

proposed, based on the presence of  β-galactans, branched from pectin, 

binding and inhibiting  the function of the protein Gal3 [321, 322, 325]. Gal3 

has been highlighted as a potential therapeutic target in cancer due to its 

suggested role in promoting metastasis [390]. Gal3 contains a domain which 

specifically binds with β-galactose-containing carbohydrates and 

glycoconjugates, such as those in the RGI regions of pectin. Numerous 

studies have shown the specific and direct binding of recombinant Gal3 to β-

galactan [322, 323] and MP [321, 325]. Recent studies in our laboratory have 

shown that recombinant Gal3 had a high affinity for P-Gal and the 

disaccharide GB, while the interaction with P-RGI-X was weaker. These 

interactions were shown to be inhibited by the presence of lactose, which 

confirms that the binding occurs within the CRD of Gal3 [322]. P-RGI-X 

contains short (14)-β-galactan side chains of 1-3 Gal residues; while P-Gal 

has an RGI backbone with long β(14)galactan chains of approximately 23 
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galactose residues. The CRD of Gal3 recognises disaccharides containing β-

galactosides [215], which would account for the high affinity for GB and P-

Gal. However if the disaccharide is bound to the backbone or if there are 

other forms of steric hindrance, longer side chains may be required to allow 

the terminal disaccharide to bind, which would account for the weaker 

interaction with P-RGI-X. However, Gao and co-workers showed that 

ginseng RGI, containing short β-galactan side chains of 1-4 residues, had a 

high binding affinity with recombinant Gal3, and that (14)-β-galacto-

oligosaccharides with long chains up to 63 galactose residues did not show 

increased affinity. The authors suggest these results indicate that short 

chains of 1-3 galactose residues on RGI may still be significant in regulating 

the activity of Gal3. The significance of the role of Gal3 in governing the 

effect of P-RGI on cell viability was assessed using RNA interference and 

showed that reducing the expression of Gal3 by approximately 90% did not 

affect the cellular response to P-RGI in two colon cancer cell lines, indicating 

that the effect of P-RGI on the viability of these two cell lines is independent 

of Gal3. This may have been anticipated since HG and not β-galactan was 

shown to be an essential bioactive component of P-RGI. β-galactan side 

chains, however, were critical for the biological activity of SSBA, and 

therefore an interaction with Gal3 may be responsible. However, knocking 

down the expression of Gal3 by approximately 75% did not affect the cellular 

response to SSBA in HT29 cells, indicating that the decrease in cell viability 

was independent of Gal3.   

Further support for a Gal3-independent mechanism for the anti-proliferative 

effects of SSBA is provided by the observations that SSBA and FTS, a 

known inhibitor of KRas function, act by independent mechanisms. Gal3 is 

known to drive cell proliferation and inhibit apoptosis via its interactions with 

intracellular proteins such as KRas, Akt and β-catenin. Although the anti-

proliferative and apoptotic activity of MP has been postulated as a 

consequence of binding and inhibiting Gal3, it is still not clear how MP may 
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bind to intracellular Gal3. It is possible that low MW pectin may enter cells, a 

mechanism postulated by Huang and colleagues who showed that 

embryonic kidney cells absorbed MCP with a low MW of 1kDa [401]; 

however this experiment lacked controls and has not been repeated. Another 

possibility is that MP could bind to Gal3 located in lipid rafts [438], 

specialised membrane microdomains that function as organising centres for 

the assembly of signaling molecules [403, 404]. Gal3 is known to be 

recruited by KRas from the cytosol to the plasma membrane, where it plays a 

role as an integral nanocluster component by binding and stabilising KRas in 

its active state, driving cell proliferation and preventing apoptosis [294, 405]. 

Results show that SSBA and FTS affect cell viability via separate 

mechanisms, which indicates that SSBA does not affect the activity of KRas. 

As Gal3 at the plasma membrane is known to exert its activity via KRas, 

these results lend further support for a Gal3-independent mechanism for the 

anti-proliferative effects of SSBA.  

The Gal3-independent activities of MPs are also consistent with the results 

from previous studies. Two studies showed that MCP significantly induced 

apoptosis in the prostate cancer cell line LNCaP, which does not express 

Gal3 [201, 329], confirming that the mechanism must be Gal3-independent. 

A study into the relationship between guar galactomannan and Gal3 also 

showed that, although galactomannan bound strongly to recombinant Gal3, it 

bound weakly to endogenous Gal3 in a cell culture system, leading the 

authors to suggest that carbohydrate ligands on epithelial cell surfaces may 

impair galactomannan binding [330]. Additionally, although MCP prevented 

Gal3-induced endothelial cell chemotaxis, MCP was also shown to prevent 

bFGF-induced chemotaxis [195]. However, the role of Gal3 cannot be ruled 

out in mediating the cellular response in many other studies that have 

reported effects of MP such as those reporting the in vitro effects of MP on 

cell migration, adhesion, angiogenesis and agglutination [210, 325], as well 

as in vivo effects such as inhibition of metastasis and tumour formation [321]. 

http://en.wikipedia.org/wiki/Signaling_molecule
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The mechanisms responsible for these effects are likely to be different to 

those in the experimental model of this study. In particular, extracellular Gal3 

that is accessible to pectin extracts is likely to be involved in cell migration 

and metastatic behaviour, whereas inaccessible intracellular Gal3 is probably 

involved in cell survival. In addition to anti-metastatic effects, MP has been 

reported to have anti-inflammatory properties, which may be mediated by the 

binding of Gal chains to Gal3 on circulating immune cells [324]. The fact that 

the biological effects of P-RGI and SSBA observed in this study are 

independent of Gal3, and the apparent importance of HG chains, suggest 

that the structural features required for reducing cancer cell proliferation may 

be very different to those required for the use of pectin as an anti-metastatic 

agent. 

Since P-RGI and SSBA exert their effects via a Gal3-independent 

mechanism indicates alternative mechanisms of action for which insight may 

be provided by the cell-specificity of these MPs. P-RGI preferentially exerts 

its activity in cell lines with KRAS and PI3KCA gene mutations, which 

suggests that P-RGI may exert its effect via the PI3K/Akt pathway. The 

observed, independent effects of SSBA and the Ras-inhibitor FTS on the 

viability of HT29 and DLD1 cells, which carry a mutation in the BRAF gene, 

indicates that SSBA does not inhibit KRas activity but suggests that, since 

BRAF functions downstream of KRas, SSBA may specifically target the 

activity of the BRAF/MEK/ERK signalling pathway.  It is thought that BRAF 

mutation cell lines, such as HT29, have developed an ‘addiction’ to hyper-

activation of the MEK/ERK pathway and are therefore particularly sensitive to 

MEK or ERK inhibitors, while cell lines with a KRAS mutation, such as DLD1 

will be less sensitive to these inhibitors due to additional parallel signalling 

down the PI3K pathway [434, 435]. Support for this is provided by the 

weaker effect of SSBA on DLD1 cells together with the lack of effect on 

HCT116 cells, which both have KRas mutations. 
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In order to gain further insight into the molecular mechanisms behind the 

bioactivity of P-RGI, the effect of P-RGI on the expression of several genes 

involved in cell proliferation, apoptosis, adhesion and the cell cycle were 

investigated. Interestingly, only the expression of one gene, ICAM1, was 

specifically affected by P-RGI treatment. P-RGI induced a rapid decrease in 

ICAM1 expression in DLD1 cells, which preceded the observed decrease in 

cell proliferation, suggesting that reduction of the expression of this gene 

may play a role in the reduction in cell growth. Over-expression of ICAM1 

has been linked with colon tumour progression[87, 414], and in DLD1 colon 

cancer cells it was shown that SDF-1 increased ICAM1 expression and 

adhesion to endothelial HUVEC cells, while inhibition of ICAM1 expression 

was followed by a loss of adhesion [409]. Typically, a reduction in cell 

viability results from cell cycle arrest or induction of apoptosis, however, P-

RGI did not induce these effects in DLD1 cells. Instead, an increase in cell 

debris detected in the supernatant from P-RGI-treated cells suggests a loss 

of cell adhesion as a possible mechanism of action of P-RGI. The P-RGI-

induced decrease in ICAM1 expression together with the previous 

observation of inhibition of cell adhesion in cells with down-regulated ICAM1 

expression [409] supports this conclusion. Confirmation of the association of 

MP with cell adhesion comes from numerous studies. MCP blocked the 

binding of ovarian cancer cells to Wharton’s jelly [204], blocked the 

interaction of B16-F1 breast cancer cells with laminin [321], and inhibited the 

adhesion of rat and human prostate cancer cells to endothelial cells [193]. 

MCP and pectic polysaccharides from swallow root and ginseng were shown 

to block agglutination of red blood cells [210, 325], and okra RGI reduced 

melanoma cell aggregation via a reduction in the expression of pan-cadherin 

and α5 integrin [211]. In all cases this inhibition of adhesion was presumed to 

be mediated by Gal3. However, in this study, the effects of P-RGI on the loss 

of cell adhesion were independent of Gal3.  
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In addition to its role in cell adhesion, ICAM1 is also recognised more 

specifically for its contribution to immune function. ICAM1 is a ligand for LFA-

1, an integrin found on leukocytes and macrophages [412, 421], and is 

involved in facilitating the adhesion of leukocytes to the endothelium and 

subsequent transmigration into tissues [439]. The expression of ICAM1 in 

DLD1 and HT29 colon cancer  cells has been shown to be enhanced by the 

presence of pro-inflammatory cytokines [85, 413, 424, 425, 440], and the 

ICAM1 promoter region contains binding sites for a number of sequence-

specific transcription factors, the most important of which is NFκB, which can 

mediate the induction of ICAM1 in response to different stimuli in different 

cell-types [429, 430] and in CRC [427, 428]. The P-RGI-induced decrease in 

ICAM1 expression led to the further investigation into the expression of 

several ICAM1-associated genes in DLD1 cells. However, results showed 

that either these genes were not present in DLD1 cells or were not affected 

by P-RGI treatment. It is interesting that P-RGI significantly affected the 

expression of a gene implicated in immune function since pectic 

polysaccharides are often shown to possess immunomodulatory properties. 

Numerous pectic polysaccharides, typically from traditional medicinal plants, 

are known to increase macrophage phagocytosis, lymphocyte proliferation 

complement fixing activity and stimulate NO secretion [158, 159, 187-189]. β-

glucans, polysaccharides well known for their immunomodulatory properties, 

have also been shown to decrease ICAM1 expression in lung tissue 

concomitant with a decrease in cytokine release [432], and polysaccharides 

from Astragalus membranaceus, a herb used in traditional Chinese 

medicine, has been shown to supress ICAM1 expression in TNFα-stimulated 

endothelial cells by blocking NFκB activation [431]. Human milk 

oligosaccharides with immunomodulatory properties have also been shown 

to influence the expression of ICAM1 in HT29 cells [433]. 

The established role of ICAM1 in cell adhesion together with the observed P-

RGI-dependent decrease in its expression prior to the reduction of DLD1 cell 
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viability suggests that the P-RGI-induced reduction in ICAM1 expression 

results in a loss of cell adhesion, which subsequently affects cell viability. 

ICAM1 is also significantly involved in immune function, suggesting that P-

RGI could possess immunomodulatory properties. SSBA, however, did not 

affect the expression of ICAM1 in HT29 cells. SSBA has a different structure 

to P-RGI and, since it induces apoptosis, probably has a different 

mechanism of action. Previous studies into LM and GalA-rich sugar beet 

pectin have shown it possesses muco-adhesive properties, adhering to 

mucins on colon cancer cells and providing a barrier to toxins [336]. 

However, although undifferentiated HT29 cells in culture are heterogeneous 

in that they contain a small proportion of columnar absorptive cells and 

mucous cells [441, 442], the proportion of mucous-secreting cells can 

sometimes be as low as <0.08% of the cell population [442]. This makes it 

very unlikely that muco-adhesion occurs in an interaction between SSBA and 

HT29 cells. 

The main aims of this study were to: i) characterise several commercial 

pectins and screen them for bioactivity; ii) assess any correlation between 

structure and bioactivity; iii) investigate the role of Gal3 in mediating pectin 

bioactivity, and iv) investigate possible alternative mechanisms of action for 

pectin bioactivity. One of the main outcomes of this study was to show that 

correlations between the structure and function of MP are extremely 

complex, and it is highly likely that different components of pectin, perhaps in 

cooperation, can exert bioactivity via diverse mechanisms. This finding is 

supported by the numerous reports on MP activity that vary substantially in 

their outcomes. SSBA reduced HT29 and DLD1 cell viability via an induction 

of apoptosis, where Gal side chains of an average 2–3.5 residues were 

shown to be essential for activity, while the HG backbone may provide a 

secondary bioactive component. SSBA potentially acts as an inhibitor of the 

MEK/ERK pathway and exerts its activity in a Gal3-independent manner. 

Previous studies investigating LM pectin have shown that it has muco-
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adhesive properties and it is possible that SSBA could bind to mucins on 

HT29 cells in a non-specific manner. However, how this might induce 

apoptosis is unknown and further investigation is required. P-RGI, on the 

other hand, reduced cell viability in DLD1 and HCT116 cells independently of 

Gal3.  The HG region was shown to be essential for bioactivity. P-RGI 

reduced the expression of ICAM1 prior to the loss in cell viability, therefore 

suggesting a mechanism whereby P-RGI induces a decrease in cell 

adhesion by suppressing ICAM1 expression with consequences for cell 

viability. 

The question remains, however, as to how these results translate from in 

vitro to in vivo. At present very little is known about the uptake and transport 

of pectin within the body. Dietary pectin is often assumed to be non-

digestible and resistant to hydrolysis during passage through the human GI 

tract. Animal trials suggest that MP is absorbed by the body owing to the 

observed systemic effects in studies of experimental metastasis in rodents 

[314, 186, 188], although this could be a prebiotic effect from colonic 

fermentation by bacteria. However, support for absorption of pectin into the 

bloodstream comes from studies that showed pectic RGI and 

arabinogalactan to be detectable in the bloodstream and liver of rodents 

[342]. A report from human studies on orally administered Pectasol-C has 

been shown to assist with the urinary excretion of toxic elements, with 

toxicity reduced in the bloodstream [193]. It is not apparent whether the 

modification of pectin generates fragments that are small enough to be 

absorbed, or whether it is possible that pectin could be modified in the body 

by endogenous enzymes or other factors. Small neutral fragments of pectin, 

such as linear galactans and arabinogalactans, have been shown to 

paracellularly cross a simulated intestinal monolayer [346]. Studies on the 

uptake of β-glucans suggest two possible routes: firstly, passive absorption 

in the small intestine, and secondly the uptake by M cells residing in Peyer’s 

patches, leading to uptake, modification, transport and release by 
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macrophages [344, 345]. It is postulated that analogous uptake and transport 

mechanisms could be involved in the bioactivity of MPs [443]. Colonic 

fermentation additionally might generate smaller fragments but this would be 

in competition with uptake by colonic microflora. Pectic oligosaccharides 

have been shown to act as prebiotics, enhancing populations of 

Bifidobacteria and the Bacteriodes-Prevotella group, with neutral sugars 

being selective for Bifidobacteria [444]. In addition to being absorbed, it is 

possible that MP could act directly on colon cancer cells. It is known that 

pectin is able to bind to mucins on colonic epithelial cells [343]; however, 

how pectins may exert bioactivity via this mechanism is unknown, as is the 

length of time MP might have to exert its biological effects before breakdown 

in the gut by colonic microflora.  

Results from this study emphasise the importance of an understanding of the 

structure of biologically-active pectins and the multiple bioactive roles that 

the components of pectin may convey. This research showed that Gal3 did 

not play a role in the reduction in cell viability via an induction of apoptosis 

and a loss of cell adhesion by MPs, and highlights the importance of 

investigating alternative mechanisms of action. There is a need for detailed 

mechanistic structure-function studies at the molecular and cellular level on 

the bioactive roles of well-characterised MPs. The reduction of ICAM1 by 

potato-derived RGI is a significant discovery, and alongside the apparent 

cell-specific effects of MPs underlines the requirement of further studies to 

investigate signalling cascades and specific genes affected by MP exposure. 

This could be achieved by performing transcriptomic analyses, such as 

microarrays, which would identify the signalling pathways influenced by MP 

providing further understanding of the mechanisms of the cellular effects of 

MP. The use of MPs as drugs in the treatment of cancers and other diseases 

will rely on successful clinical trials. The ‘natural’ nature of MPs make them 

ideal candidates as adjuvants to harsh conventional therapies such as 

radiotherapy and chemotherapy, however, there is the potential of MPs to be 
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useful as a supplement for maintaining overall health. The presence of pectin 

in fruits and vegetables, and in processed food and drinks, necessitates 

investigation into whether pectin in this form can be released, modified, and 

the bioactive fragments transported within the body. The uptake of pectin 

and pectic fragments by macrophages, and the oral and gastric breakdown 

of pectin, for example, could be examined. Such investigations would also be 

useful in considering potential modes of action of pectic polysaccharides 

from medicinal plants. Should such processes result in low levels of bioactive 

fragments they may provide a foundation for promoting early stage protection 

against the onset and progression of diseases, and furthermore could 

provide a basis for a mechanistic explanation of the health benefits of the 

consumption of fruit and vegetables.  

In conclusion, results presented in this thesis suggest that modified pectins 

of varying structures can exert anti-proliferative activity in colon cancer cells, 

in a cell-specific manner. The individual components of pectins, particularly 

the HG backbone together with galactan and arabinogalactan side chains of 

RGI, are important for bioactivity and potentially act cooperatively to exert 

maximum biological effect. MPs in this study do not exert their effects via the 

inhibition of Gal3, which prompted investigation into alternative mechanisms 

of action. Expression of the adhesion molecule ICAM1 was shown to be 

significantly modulated by P-RGI, which suggests a novel potential mode of 

action. This study is also the first to report sugar beet pectin as a biologically-

active substance, consequently highlighting a potential novel exploitation of 

waste stream sugar beet pulp. Taken together, these results highlight the 

need for detailed mechanistic investigations at the molecular and cellular 

level on the bioactive roles of MPs that have been extensively characterised. 

The extraordinary structural complexity of pectin makes it a potential multi-

functional therapeutic agent, and investigations into the uptake of pectin 

could provide a mechanistic explanation for the health benefits associated 

with the consumption of fruit and vegetables.  
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Appendices 

Appendix A Monosaccharide, molar mass and protein analysis 

A1 Monosaccharide Analysis 

Methanolysis was performed by adding 100 μl methyl acetate and 400 μl 1.5 

M HCl in methanol to up to 1 mg samples (dried in 50°C vacuum oven) and 

heating them at 85°C for 17 hours. After the samples had cooled to room 

temperature, 5 drops of n-butanol was added and the samples were 

evaporated to dryness under a stream of nitrogen. In order to hydrolyse 

methyl glycosides formed by methanolysis, 0.5 ml of 2M trifluoroacetic acid 

was added, and the samples were heated at 121°C for 1 hour. The samples 

were cooled to room temperature and evaporated to dryness, and 0.5 ml of 

methanol was added and evaporated to dryness three times. Water was 

added to each sample, and they were filtered (0.25 μm) prior to injection. 

Inositol was added to each sample prior to methanolysis as an internal 

standard. Hydrolysates were analysed for neutral monosaccharide content 

by HPAEC pulsed amperometric detection (PAD) using a Dionex ICS-2500 

system that included a CarboPac PA20 column and guard column, an EG 50 

eluent generator that produced the isocratic 10mM KOH mobile phase, a 

continuously regenerated anion trap column, a GP 50 pump operated at 0.5 

ml/min, an ED50 electrochemical detector utilizing the quadruple potential 

waveform, and an AS50 autosampler with a thermal compartment (30°C 

column heater). The acidic monosaccharide content was determined with a 

Dionex DX-500 system, which included a GP50 gradient pump (0.5 ml/min), 

a CarboPac PA20 column and guard column, an ED40 electrochemical 

detector (gold working electrode and pH reference electrode), an LC25 

chromatography oven (30°C), a PC10 pneumatic controller (post column 

addition of 500 mM NaOH), and an AS3500 autosampler. The mobile phase 

consisted of isocratic 10mM CH3COONa, 1mM NaOH eluent for 10 minutes, 
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and then a linear gradient of 100 to 130 mM CH3COONa in 100mM NaOH 

for the following 20 minutes [111]. 

A2 Molar mass analysis 

Molar mass was determined by HPSEC at USDA-ARS. The biopolymer 

solutions containing 3.0 mg/mL β-LG and/or 1.0 mg/mL SBP, individually or 

mixed and/or pre-heated were characterized by HPSEC (1200 Series, 

Agilent Technologies, Santa Clara, CA). The solvent delivery system 

consisted of a vacuum degasser, auto sampler and a pump. The mobile 

phase was 0.05 M NaNO3 and 0.01% NaN3 (pH 6.65). The injection volume 

was 200 μL, and flow rate was held at 0.7 mL/min. Samples were run in 

triplicate. Two guard columns (TSK-GEL® PWXL 6.0 mm ID × 4.0 cm L, 12 

μm, Tosoh Bioscience, Tokyo, Japan) were used. One was placed before the 

separation columns, which consisted of a set of three model TSKgel 

GMPWXL size exclusion columns (7.8 mm × 300 mm, particle size 13 μm, 

Tosoh Bioscience, Tokyo, Japan), and the other before the detectors. The 

column set was heated in a water bath at 35°C, and connected in series to a 

UV-1260 Infinity spectrophotometer (Agilent Technologies, Santa Clara, CA), 

HELEOS II multi-angle laser light scattering photometer (MALLS) (Wyatt 

Technology, Santa Barbara, CA), Model 255-V2 differential pressure 

viscometer (DPV) (Wyatt) and an RI detector (Wyatt). Narrowly 

monodispersed pullulan P-50 (Shodex STANDARD P-82, JM Science, 

Grand Island, NY) was used to calibrate the scattering intensity at the 90° 

angle. BSA (Sigma–Aldrich, St. Louis, MO) was used to align all detectors, 

UV/vis, MALLS, DPV and RI. The percentage of recovery was obtained from 

the ratio of the mass eluted as determined by integration of the refractometer 

signal to the mass injected. All signals from the four detectors were analysed 

by the ASTRA software (V.6.1.1.17, Wyatt Technology). All samples were 

analysed at UV278 nm and UV325 nm. The extinction coefficient for each 

wavelength was determined from the RI concentration of each individual 

sample [368]. 
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A3 Protein analysis 

Protein analysis was carried out at USDA-ARS. The protein content of pectin 

was estimated using standard methods for determining the nitrogen content 

of samples by use of a combustion instrument followed by thermal 

conductivity (AOAC Method 990.03, AACC Method 46–30). A Flash EA 1112 

Elemental Analyser (CE Elantech, Inc., Lakewood, NJ) calibrated with 

aspartic acid was used for the nitrogen determination. Percentage nitrogen 

was multiplied by 6.25 to obtain an estimation of protein (AOAC Method 

22.052) [137]). 
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Appendix B 1H and 13C chemical shifts of selected pectins 

 

Table B1 P-RGI R= rhamnogalacturonan, H= homogalacturonan, NR= non-

reducing end, us= unsaturated GalA. Other conventions: RhaGal= rhamnose 

substituted with Gal single residue or chain, Rha-= unsubstituted rhamnose, 

Gal (in bold) indicates the residues for which values are presented 

  1 2 3 4 5 6 

GalAR 
H 5.05 3.93 4.11 4.43 4.61 - 

C 100.55 70.66 73.06 79.76 74.14 177.0 

        

GalAR 

(minor) 

H 5.03      

C 100.21      

        

GalAH 
H 5.10 3.77 3.99 4.43 4.70 - 

C 101.55 70.93 71.65 80.67 74.05 177.8 

        

GalANR 
H 5.09 3.75 3.91 4.29 4.69 - 

C 101.70 70.97 72.26 73.41 74.93 178.3 

        

GalAus 
H 5.12 3.76 4.28 5.79 - - 

C 101.77 72.88 68.61 109.14 148.3 171.6? 

        

GalAus-1 
H 5.10 3.74 3.98 4.56 4.76 - 

C   71.53? 81.94 74.10  

        

RhaGal 
H 5.28 4.13 4.10 3.66 3.87 1.32 

C 101.01 79.58 72.06 83.26 70.18 19.47 
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Rha- 
H 5.28 4.12 3.90 3.40 3.80 1.26 

C 101.01 79.02 ~72.1 74.81 71.53 19.25 

        

RhaNR 
H 5.23      

C 102.91      

        

t-Gal(1→ 

2)Rha 

H 4.63 3.53 3.68 3.93 3.70 3.79 

C 105.99 74.36 75.41 71.34 77.68 63.55 

        

→4)Gal(1→ 

2)Rha 

H 4.66 3.61 3.79 4.17 3.72 (3.79, 3.84) 

C 106.15 74.72 75.93 79.76 77.07 (63.25) 

        

t-Gal(1→ 

4)Gal(1→ 

H 4.60  3.62 3.67 3.93   

C 106.89 74.09     

        

→4)Gal(1→ 

4)Gal(1→ 

H 4.64  3.69 3.77 4.18   

C 106.9 74.4     
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Table B2 P-RGI-X R= rhamnogalacturonan, H= homogalacturonan, NR= 

non-reducing end, us= unsaturated GalA, RE= reducing end. Other 

conventions: RhaGal= rhamnose substituted with Gal single residue or chain, 

Rha-= unsubstituted rhamnose, Gal (in bold) indicates the residues for which 

values are presented. n.d. = not detected 

 

  1 2 3 4 5 6 

GalAR 
H 5.05 3.92 4.11 4.444 4.63 - 

C 100.62 70.69 73.09 79.72 74.2  

        

GalAR 

(minor) 

H 5.03 3.91 4.10 4.438 4.64 - 

C 100.26 70.69 73.09 79.72 74.12  

        

GalAH 
H n.d.      

C       

        

GalANR 
H 5.11 3.76 3.93 4.31 4.72  

C 101.83 71.04 72.29 73.4 75.02  

        

GalAus_1 
H 5.14 3.76 4.30 5.80 - - 

C 101.91 72.88 68.63 109.3   

        

GalAus_2 
H 5.12 3.75 4.28 5.79 - - 

C 101.91 72.88 68.63 109.3   

        

GalA(1→ 

4)αGalARE 

H 5.32 3.83 4.00 4.44 4.44  

C 94.85 70.93 71.5 81.14 73.37  

        

αGalARE H 5.29 3.82 3.92 4.30 4.38  
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C 94.89 70.82 71.97 73.39 74.06  

        

Rha(1→  

4)αGalARE 

H 5.29 3.91 4.05 4.43 4.43  

C 94.9 ~70.7 ~72.9 ~79.7? 73.4?  

        

GalA(1→ 

4)βGalARE 

H 4.61 3.50 3.75 4.38 4.06  

C 98.81 74.37 75.12 80.16 77.06  

        

βGalARE 
H 4.57 3.50 3.68 4.22 4.053  

C 98.72 74.37 75.61 72.96 78.21  

        

Rha(1→  

4)βGalARE 

H 4.56 3.57 3.82 4.36 4.046  

C 98.76 74.34 76.51 79.1 77.35  
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Table B2 P-RGI-X (contd.) 

 

  1 2 3 4 5 6 

RhaGal 
H 5.27 4.123 4.10 3.66 3.86 1.31 

C 101.0 79.54 72.08 83.30 70.19 19.49 

        

Rha- 
H 5.29 4.118 3.89 3.40 3.79 1.25 

C 101.0 78.97 72.15 74.80 71.58 19.25 

        

RhaNRGal 
H 5.22 4.08 4.03 3.64 3.86 1.30 

C 102.94 73.11 72.58 83.58 69.81 19.25 

        

RhaNR- 
H 5.23 4.06 3.80 3.37 3.77 1.24 

C 103.07 73.08 72.83 74.91 71.29 19.25 

        

t-Gal(1→ 

2)Rha 

H 4.62 3.53 3.67 3.93 3.69  

C 106.0 74.36 75.42 71.35 77.72  

        

→4)Gal(1→ 

2)Rha 

H 4.65 3.605 3.78 4.16 3.72  

C 106.13 74.72 75.90 79.76 77.05  

        

t-Gal(1→ 

4)Gal(1→ 

H 4.60 3.62 3.66 3.92   

C 106.90 74.1 75.46 71.36   

        

→4)Gal(1→ 

4)Gal(1→ 

H 4.64 3.68     

C 106.90 74.36     
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Table B3 P-Gal. Major peaks only – see Table B2 for minor peaks such as 

those from t-Gal 

 

  1 2 3 4 5 6 

→4)Gal(1→ 

4)Gal(1→ 

H 4.62 3.69 3.77 4.16 3.70 3.81 

C 106.97 74.54 76.0 80.24 77.14 63.43 
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Table B4 SB-Ara Ara peaks only. Minor peaks detected include β-(1,4)-Gal, 

GalAR, RhaGal, Rha- as in Tables B1 and B2. 

 

  1 2 3 4 5 

t-Araf-(1→3) 

H 5.16 4.14 3.97 4.05 3.73, 

3.84 

C 109.79 83.97 79.30 86.60 63.89 

       

t-Araf-(1→2) (minor) 

H  5.18 4.14 3.98 4.07 3.74, 

3.83 

C 109.69 84.08 79.32 86.67 63.87 

       

(1,3,5) -Araf-(1→5) 

H 5.12 4.29 4.10 4.30 3.85, 

3.94 

C 110.18 81.92 85.04 84.17 69.26 

       

(1,5) -Araf-(1→5) 

H 5.09 4.14 4.03 4.22 3.80, 

3.89 

C 110.18 83.57 79.39 84.91 69.10 

       

(1,2,3,5) -Araf-(1→5) 

(minor) 

H 5.25 4.31 4.24 4.31 n.d. 

C 109.07 87.73 83.12 83.62 n.d. 
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Abbreviations 

 

L-AG Arabinogalactan, Megazyme (larchwood) 

AFM Atomic force microscopy 

AGI Arabinogalactan type I 

AGII Arabinogalactan type II 

Ara Arabinan 

BSA Bovine albumin serum 

CA Heat and alkali treated citrus pectin 

CDK Cyclin-dependent kinase 

CH Heat treated citrus pectin 

CKI Casein kinase I 

CO Oxalic acid extracted citrus pectin 

COPG 
Oxalic acid extracted citrus pectin treated with  

polygalacturonase 

COSY Correlation spectroscopy 

CP Commercial citrus pectin 

C-PGA Polygalacturonic acid, Megazyme (citrus) 

CRC Colorectal cancer 

CRD Carbohydrate recognition domain 

DAc Degree of acetylation 

DE Degree of esterification 

DP Degree of polymerisation 

ECM Extracellular matrix 

f furanose 

FAK Focal adhesion kinase  

FGF Fibroblast growth factor 

FSC Forward Scatter 

FTS Farnesyl salicylic acid 

Gal Galactan 
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Gal1 Galectin-1 

Gal3 Galectin-3 

GalA Galacturonic acid 

GB Galactobiose, Megazyme (potato) 

GCS-100 Modified citrus pectin, La Jolla Paramaceuticals 

GI Gastrointestinal 

Glu Glucose 

HG Homogalacturonan 

HM High methyl-ester 

HMBC  Heteronuclear multiple bond correlation for 1H/13C correlation via longer range H-C coupling, nJCH, where n = 2 or 3 

HSQC 

Heteronuclear single quantum correlation for 1H/13C chemical shift correlation via one-bond hydrogen-carbon coupling, 

1JCH 

ICAM Intercellular adhesion molecule 

IL Interleukin 

kDa Kilodalton 

LacNAc N-acetyllactosamine 

LM Low methyl-ester 

MAP Modified apple pectin 

MCP Modified citrus pectin 

MMP Matrix-metalloprotein 

MP Modified pectin 

MW Molecular weight 

NMR Nuclear magnetic resonance 

NO Nitric oxide 

NOESY/ ROESY  nuclear Overhauser effect spectroscopy and rotating frame Overhauser effect spectroscopy 

p pyranose 

Pec-C Pectasol-C, Econugenics (citrus) 

PG Polygalacturonase 

P-Gal Galactan, Megazyme (potato) 

PMT Photomultiplier tube 
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P-RGI Rhamnogalacturonan I, Megazyme (potato) 

P-RGI-X Rhamnogalacturonan I , Megazyme (potato) 

PSA Prostate-specific antigen 

RGI Rhamnogalacturonan I 

RGII Rhamnogalacturonan II 

Rha Rhamnose 

Rha Me Rhamnose methyl 

ROS Reactive oxygen species  

SBA Heat and alkali treated sugar beet pectin 

SB-Ara Arabinan, Megazyme (sugar beet) 

SBC Commercial sugar beet pectin 

SBH Heat treated sugar beet pectin 

SBO Oxalic acid extracted sugar beet pectin 

SBOPG Oxalic acid extracted sugar beet pectin treated with polygalacturonase 

siRNA Short interfering RNA 

SSBA Soluble fraction of heat and alkali treated sugar beet pectin 

SSBA-ara α-arabinofuranosidase- and endo-arabinase-treated SSBA 

SSBA-gal β-galactosidase- and endo-galactanase-treated SSBA 

SSBA-ne Non enzyme digested control SSBA 

SSC Side scatter 

ST Staurosporine 

t Terminal 

TCF/LEF Group of transcription factors 

TGFβ Transforming growth factor-β  

TNFα Tumour necrosis factor alpha  

TOCSY Total correlation spectroscopy 

TSP Tumour supressor protein 

VEGF Vascular endothelial growth factor 

Xyl Xylose 
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