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In this article, we describe a spectral sensitivity measurement procedure at the National Physical Laboratory,
London, with the aim of obtaining ground truth spectral sensitivity functions for Nikon D5100 and Sigma
SD1 Merill cameras. The novelty of our data is that the potential measurement errors are estimated at each wave-
length. We determine how well the measured spectral sensitivity functions represent the actual camera sensitivity
functions (as a function of wavelength). The second contribution of this paper is to test the performance of various
leading sensor estimation techniques implemented from the literature using measured and synthetic data and also
evaluate them based on ground truth data for the two cameras. We conclude that the estimation techniques tested
are not sufficiently accurate when compared with our measured ground truth data and that there remains signifi-
cant scope to improve estimation algorithms for spectral estimation. To help in this endeavor, we will make all our
data available online for the community. © 2015 Optical Society of America
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1. INTRODUCTION

The knowledge of camera spectral sensitivities is useful in
many applications, for example, illuminant estimation [1],
color correction [2,3], and multispectral imaging [4,5]. Camera
manufacturers do not provide their data and so it is the user’s
task to either measure or estimate their camera’s sensor sen-
sitivities. As we will address in this paper, measuring camera
spectral sensitivities is not an easy task. So, it is more practical
to estimate—through statistical argument—the spectral sensi-
tivities of a camera given, for example, the RGB response to
known spectral stimuli. The need for spectral sensitivity estima-
tion is increased because cameras made by the same manufac-
turer can have significantly different spectral sensitivities [6].

A standard methodology for measuring the sensor sensitiv-
ities is to record the response of the camera to monochromatic
light produced by a monochromator. This can be carried out in
specialist calibration laboratories with equipment suitable to
transmit a mechanically selectable narrow waveband of light
chosen from a wide range. Alternatively, one might use a set
of narrowband interference filters [7,8] and a known light
source to generate narrowband spectral stimuli. While this
second approach is notionally easier, interference filters are
expensive. Both approaches require significant lab-based
measurements of the kind not available to most users.

In this paper, we describe a camera calibration procedure
using a monochromator at the National Physical Laboratory
(NPL), the UK National Measurement Institute. We discuss
the measurement procedure in depth along with the setup of
the system. The novelty of this approach arises from the fact
that we report the measured spectral sensitivities along with
the measurement uncertainties. The stated uncertainty values
are a combination of camera and calibration uncertainties
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and are reported per measured wavelength. These values help
us understand how close the measured sensitivity values are
to the actual camera sensor sensitivity functions. To the best
of our knowledge, this detailed uncertainty evaluation has
not been addressed in other camera calibration methodolo-
gies reported in the literature. Prior calibration procedures
discussed in the literature follow a much simpler setup, with
less controlled conditions that may be easier and faster in
practice [7,9]. The downside of their approach is that they
are not in control of the variations and errors of the system
and so cannot report the uncertainty of their recovery. One of
the motivations for our detailed uncertainty driven approach
is that we wish to provide the community with an accurate
measured data set to aid the development of algorithms for
spectral sensitivity estimation.

Algorithms for estimating the spectral sensitivities are
found through regression by inverting the color formation
equation with respect to the sensor sensitivity. The idea here
is that simple image formation is linear, in the sense that the
RGB recorded by a camera for given spectral stimuli is the
integral of this spectrum with the 3 spectral sensitivity func-
tions. Given enough spectral measurements and correspond-
ing camera RGBs, the spectral sensitivities of the camera
can be solved for through regression. One of the main difficul-
ties in this approach is that the limited dimensionality of the
reflectance spectra and the presence of noise in the measure-
ments leads to an ill-posed problem [8,10]. Using more
spectrally high-frequency color samples, such as LED-based
emissive targets [11-13] or fluorescent color targets [14] have
been shown to lead to some improvements. Equally, multiple
LED illuminations [15] could be used to illuminate a target.
Though, of course, more light implies a lengthier calibration.
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In this paper, we review several regression techniques pro-
posed in the literature. Novelly, we evaluate these methods
with respect to the ground truth spectral sensitivities (e.g.,
using the same RGB data of the Macbeth ColorChecker [16,17]
viewed under D65 that was used to validate our spectral
measurements). Tested methods are Tikhonov regularization
[18,19], Tikhonov based on derivatives [20], quadratic program-
ming [21], and simple linear regression where the spectral
sensitivities are assumed to lie in the basis of a linear model
of small dimension [6,22].

We show that most of these techniques provide quick esti-
mates of the spectral sensitivities that are not as accurate as
the measured ones, though encouragingly good reasonable re-
covery is possible. Interestingly, for our test data sets, differ-
ent algorithms sometimes work better than others, suggesting
that no estimation technique is preferable. We hope that by
making the data available to the community, we aid in the
development of spectral estimation algorithms.

In Section 2, we present the background necessary for
understanding camera spectral sensitivity estimation by re-
gression. NPL calibration is explained in Section 3. Validation
tests on ground truth and estimated sensors are explained in
Section 4, followed by comparisons of the estimation tech-
niques using ground truth spectral response functions. We
conclude in Section 5.

2. BACKGROUND

Mathematically, the simplest color formation model for the ith
sensor and jth pixel response p;; can be written as

Dy = L wEMS;(HQ;(Ddw,  i=1,2,3, )

where E(1) is the spectral power distribution of the scene
illuminant, S;(4) is the surface reflectance imaged at pixel
7, and @;(4) is the spectral response of sensor . The visible
spectrum o runs from 400 to 700 nm (we use the notation
nm for nanometers). By sampling spectral quantities at 10 nm
intervals, the integral in Eq. (1) can be replaced by a summa-
tion over the m intervals (m = 31 in the example case) trans-
forming Eq. (1) into

Py =Y EMWS;QiMAL,  i=123 @2
=1

where the scalar Al denotes the nanometer sampling differ-
ence. Let us assume that A1 is incorporated in Q;(4;) for ith
sensor and the multiplication of the m x 1 vectors E and S; for
a single pixel can be rewritten as follows:

¢ = Diag(E)S. G)]

In Eq. (3) and throughout this paper underscoring denotes
vector properties, ¢ is an m x 1 vector, and the Diag is an op-
erator that converts any m x 1 vector into an m x m diagonal
matrix whose diagonal elements are the elements of the vec-
tor. For a single pixel and one sensor channel, Eq. (2) can be
transformed into Eq. (4) which can be written in vector nota-
tion as follows:
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p=clyq. )

Assuming we have n known reflectance—i.e., m x n matrix
S—then under a known illuminant we can write C =
(diag(E)S)T where C is called the nxm color stimulus
matrix, in which Q]t- is the jth row. Thus, we can write the n
responses, P, for each sensor as

P=cCy »)

Equation (5) is very powerful as, in a single equation, it
teaches that for known color signal spectra that induced
known camera responses we might, at least in principle, solve
for the spectral sensitivities through regression. Indeed,
Eq. (5) is similar to the standard regression equation Ax = b.
When there are more equations than unknowns (n > m) and C
is full rank, minimizing the sum of squares error between the
sensor responses and their estimate, using the standard—
closed-form—Moore Penrose inverse [23] illustrated in
Eq. (6), estimates a solution for g,

min||Cq - P||* = g = [C'C]"'C'P. ©)
g a

In Eq. (6), it is assumed that C’C is invertible (n must be
larger than m). In the case where there are fewer equations
than unknowns (n < m), one condition is where the matrix is
not invertible and there are infinite numbers of solutions. In
this case, we assume that the sensor ¢ is in the space of the
reflectances:

q=CX, (M

in which X is derived by applying Eq. (7) to Eq. (5) which
substitutes to Eq. (9) as

X =[CCT'P, ®
q = C'[CCT'P. €))

Of all sensors that solve Eq. (7) exactly, the solution in Eq. (9)
is the solution with least norm [24].

A full discussion of the problem of inverting (ill-conditioned)
matrices can be found in the literature [25]. Algorithms for
spectral sensor estimations, in effect, try to formulate the re-
gression problem so that the system of equations can be solved
more stably.

A. Spectral Sensitivity Recovery

Many spectral estimation algorithms begin with Eq. (7) and
attempt to provide solutions, which are more stable. We
provide only a short summary of some of these estimation
methods and we refer the reader to the original references
for further explanation.

1. Tikhonov Regularization

Tikhonov [19] regularization adds a penalty term to the normal
least-squares error in order to prevent jaggy (high norm)
sensor recoveries:

n;in(lng—an +7llall®). 10)
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where y > 0 is the regularization parameter defined by the
user. As the value of y increases the norm of the sensor be-
comes a significant part of the minimization and in effect
forces a smoother solution. Tikhonov regularization also
has a closed form solution [19]:

q=[C'C +yI1'C'P, (1D

where I denotes the m x m identity matrix. It is useful to plot
the fitting error against the norm of the recovered error for
different values of y. This forms an L-curve [18], which for
larger y shows an increase in the fitting errors and for smaller
y the Tikonov regularization resorts to simple least-squares. A
good solution is one which makes both the recovery error and
the norm of the sensor small which is usually the point on the
L-curve closest to the origin (see [18] for more details).

2. Tikhonov Regularization based on Derivatives

Dyas [20] has proposed a variant of Tikhonov regularization
which minimizes the norm of the second derivative solution.
Minimizing the seminorms explicitly targets a smooth solu-
tion. The Dyas minimization is given below:

Ilﬂqin(ll(i'g—Bll2 +7IITqll*) 12)

in which T is the discrete 2nd derivative operator in matrix
form:

1 -1 0 0 0
-1 2 -1 0 0
0 -1 2 —1 v wev e i 0
r=\ . S )
o 0 0 O 0o -1 2 -1
o 0 0 O 0o 0 -1 1

Again, the L-curve criterion is applied for finding the best y
[18]. The closed form solution for Eq. (13) with an optimal
y is

q = [C'C + yT'T|\C'P. (14)

3. Linear Models of Spectral Sensitivity

The adaption of a linear basis (in which spectral sensitivity
must lie) on itself is a powerful constraint. Here, we assume
that the spectral sensitivity can be approximated by a linear
combination of 2 number of basis functions as follows
(6,10,22]:

h
QW) =Y By, (15)
k=1

where B (1) denotes the basis as a function of wavelength 4,
and a;, is a weighing coefficient. From all the choices of basis
functions, a sine function with basis Bj (1) = sin(kiz) is
proven to perform best [22]. Jiang et al. [6] employed linear
models that are inferred from the real measured spectral sen-
sitivities. They carried out a principal component analysis
(PCA) of a data set of 28 different cameras previously mea-
sured by [26].
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Substituting Eq. (16) into matrix form we write

where B is the m x h matrix of basis functions, and a is the &
element vector of coefficients. Substituting in our regression
formulae we search to minimize

min||CBa - P||*. (17
g

4. Quadratic Programming

Quadratic programming was used by Finlayson et al. [21] to
estimate a spectral sensitivity function subject to linear con-
straints. In essence, they adopted the standard quadratic error
criterion

min(|Cq -P|? (18)

but added several linear constraints to simultaneously ensure
the recovered spectral sensitivities were all positive, smooth,
and unimodal (single peak). The positivity constraint is ap-
plied with

q>0. (19)

Unimodality at index z is applied with the following set of
inequalities:

q<q-+1, l=1,...
@ =zq+1, l=z,...,m. (20)

Smoothness is implemented by enforcing the recovered
sensor to be a linear combination of a small number of low-
order Fourier series basis functions. An example of sensor re-
covery using 5 basis functions is

q = 01 + 0y sin(x) + o3 cos(x) + o4 sin(2x) + o5 cos(2x),

2D

where ¢ is a vector of basis weights and x = (1 - 400)z/150
for A = 400, ..., 700 nm in 0 nm intervals. Subject to the above
constraints, quadratic programming will find the optimal sol-
ution that minimizes the error in Eq. (18). Various choices of
2’s are tested to find the optimal solution with minimum error.

Finally, we remark that for most of the above-mentioned
estimation techniques additional constraints can be easily
added to enhance the performance of the algorithms. As an
example, it is possible to implement Tikhonov-type regulari-
zations subject to linear constraints. However, the objective
in this paper is not to advance the state of the art in algorithm
design but rather to accurately measure the spectral sensitiv-
ities of cameras and then benchmark the performance of
existing published algorithms.

B. Number of Patches in a Color Target

Let us return to Eq. (6) where C’C is not invertible when it is
low rank (n < m) and—at least from the simplest equation
solving perspective—we are required to use the least-norm
solution in Eq. (9). One might suppose that the solution to this
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problem would be to calibrate the camera with more surface
reflectances. However, since reflectances (and so color sig-
nals) are well described by low-dimensional linear models
[27-29] the effective dimension of C'C is low (the matrix
has a very high condition number and so its inverse is not sta-
ble). The import of this is that very small perturbation to the
measured camera data can result in very different recovered
Sensors:

[C'CI'C'P # [C'CT ' CH(P + ¢). (22)

Of course, having more reflectances may still help. Let us test
this idea. In simulation, we use Eq. (5) to numerically calcu-
late the synthetic camera response for the 24 color patches of
the Macbeth ColorChecker (n < m) [16], and then for a target
comprising the 1995 samples (n > m) from [17]. In carrying
out the numerical integration we used the Nikon camera sen-
sitivities (measured in this paper) and a D65 illuminant. Impor-
tantly, each reflectance is represented in a simulated image as
a 10 x 10 pixel patch. To each patch, a small amount of ran-
dom shot noise (less than 1%) has been added per pixel of the
synthetic camera response image. We then average over each
patch before estimating the sensor spectral sensitivity using
Tikonov regularization. In Fig. 1, we see that, visually at least,
the recovery using 24 or 1995 reflectances is similar. Thus, the
1995 values do not result in significantly more accurate recov-
ery, assessed using the Vora value [30]. This is a metric that
can be used to measure how well a test spectral sensitivity set
can be used to predict the actual responses for a reference
sensor and will be discussed later in this document. The Vora
values close to 0 indicate two sensor sets ample light identi-
cally. Here, the Vora value is calculated between the estimated
sensitivities recovered using Tikonov regularization (for 24 or
1995 reflectances) and the actual Nikon spectral sensitivities.
For both reflectance sets, the Vora values are almost the same:
5.3 and 5.5, respectively. For all practical purposes, these two
estimated sensor sets are the same. Thus, we conclude that a
small number of reflectances provide equally good spectral
sensitivity estimation. Moreover, measuring the color signal
spectra reflected from a target is time consuming. Thus, in this
paper, like previous authors [20,21], we carry out calibration
using the 24 patch Macbeth ColorChecker.
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Fig. 1. Spectral response function of the Nikon camera measured at
NPL (solid line) and estimated using Tikhonov’s method (dashed line)
using reflectance data of 24 patches of the Macbeth ColorChecker and
1995 samples of the online database.
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3. NATIONAL PHYSICAL LABORATORY
SPECTRAL SENSITIVITY MEASUREMENT
SYSTEM

In this section, we provide a detailed description of the detec-
tor spectral sensitivity calibration facility of the NPL in
London. The system consists of a tungsten halogen lamp (op-
erated at a correlated color temperature of approximately
2580 K), a double monochromator, which selects a narrow-
band of wavelengths from the lamp, and optics, which direct
the emergent optical radiation from the monochromator to
either a reference silicon photodiode or the detector being
calibrated (see Fig. 2). The optics are housed within a black-
ened enclosure, which prevents ambient light from reaching
the detectors, and baffles are used to reduce the effects of any
scattered light within the enclosure.

The system is based on the principle of substitution, in
which the detector to be calibrated (the test detector) and
the silicon reference detector are placed on a linear stage
and irradiated sequentially by radiation from the monochro-
mator; in this way, the calibration is transferred from the
reference detector to the test detector. A slightly different op-
tical arrangement was used for the calibration of the cameras.
As in the usual setup, a concave mirror was used to image the
exit slit of the monochromator onto the reference silicon
photodiode. However, instead of direct substitution of the
camera for the reference detector, a white tile was moved into
the beam, in order to provide a uniform radiance field which
was then imaged by the camera. The reflectance of the white
tile in the 0/45 geometry used (i.e., irradiation at 0°, viewing at
45°) was calibrated at NPL and was allowed for when deter-
mining the sensitivity of the camera [31].

The calibration methodology was as follows: first, the mono-
chromator was set to the required wavelength and an image of
the white tile was taken with the camera. The shutter was then
closed and a dark image of the tile was captured with the cam-
era. The white tile was then moved out of the monochromator
beam, by means of the translation slide, and light and dark read-
ings were taken using the reference detector. Finally, the mono-
chromator was set to the next wavelength and the process
repeated. Apart from the camera, which was controlled inde-
pendently using a laptop PC, the rest of the system was auto-
mated and controlled by the laboratory computer.
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Fig. 2. Tllustration of the calibration setup of the NPL automated
spectral sensitivity measuring system and test camera.
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According to Eq. (2), the camera signal P depends on the
spectral radiance of the radiation incident on the camera at
the measurement wavelength and the sensitivity of the camera
at that wavelength. The radiance is measured using the refer-
ence silicon photodiode whose sensitivity at each wavelength
has been calibrated against SI units [32], allowing for the
reflectance of the tile.

This is denoted by L; for the lth wavelength and (assuming
that the diffuser behaves as an ideal cosine reflector) is
calculated using

Ly = po/ay, (23)

where p; is the dark-corrected signal from the reference de-
tector, g; is the calibrated irradiance sensitivity of the refer-
ence detector, and 9, is the reflectance of the white tile.
Thus the absolute spectral radiance sensitivity for a camera
sensor (R, G or B) at /th wavelength, denoted as q{‘, can be
calculated using

@' =/l @9

where p; is the dark-corrected camera signal of the sensor,
which is derived by subtracting the dark camera signals from
light signals and averaging over the central area of the cap-
tured images.

Note that Eq. (24) relates to the absolute spectral radiance
sensitivity of the camera sensor expressed in units of signal per
watt per meter squared per steradian. Absolute spectral sensi-
tivity measurements would require the substitution of the refer-
ence detector and the white tile to be made in the same plane at
the focus of the mirror, in which position the irradiated area
was relatively small and nonuniform. In practice, lower calibra-
tion uncertainties could be achieved by working in terms of rel-
ative spectral sensitivities, which meant that the white tile
could be placed closer to the monochromator as shown in
Fig. 2, generating a larger and more uniform measurement area
onto which the camera was focused. The camera signal value
over all wavelengths was therefore normalized by the maxi-
mum signal for each channel before performing the calculation
given in Eq. (24), yielding the relative spectral sensitivity func-
tion; note this is dimensionless, i.e., has unit = 1.

Two different cameras were calibrated using this system: a
Nikon D5100 and a Sigma SD1 Merril. Measurements were
made over the wavelength range of 380-770 nm, at 5 nm in-
tervals for the Nikon camera calibration and at 10 nm intervals
for the Sigma camera calibration. (The difference in the wave-
length interval used for the two cameras was only due to lab
time constraints. In practice, more than 2 x 78 initial test mea-
surements were taken for the Nikon camera and 2 x 40 mea-
surements for the Sigma. This was to configure the calibration
setup and exposure settings of the two cameras.) The camera
readings were averaged over a 21 x 21 pixel patch in the
center of the image, in order to reduce the effects of noise on
each pixel. Although averaging over a larger area would have
resulted in a further reduction in the noise effects, it would
have introduced additional measurement uncertainties, such
as image nonuniformities, which arise from slight differences
in the individual pixel response across the sensor and small
nonuniformities in the radiance across the tile.

The cameras were set to full aperture in each case. One of
the challenging parts of the calibration was to set the camera
shutter speed (exposure time) to avoid saturation of the
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spectral sensitivity of the sensors. Ideally, the same exposure
time would be used for all wavelengths and for all 3 sensors.
However, it was found that the range of radiances used and
the differing responsivities of the sensors meant that there
was insufficient dynamic range available to achieve this. There-
fore, an initial measurement was carried out to determine a
camera exposure which performed reasonably well on all three
channels, i.e., which minimized the range of wavelengths for
which a saturated signal was recorded while ensuring that a
measurable signal, above the noise floor, was recorded for re-
gions where each sensor was sensitive. This was found to be a
15 s exposure time. This setting caused some saturation with
the Nikon camera in the region of 580-630 nm for the red chan-
nel. This was not the case for the Sigma camera. Therefore, it
was decided to repeat the measurement on the Nikon camera
with a faster shutter speed (5 s) for the saturated wavelength
region in order to recover the lost information due to saturation
for that channel. This second data set was collected over a
slightly wider region (550—-680 nm) and the overlapping results
in the nonsaturated region (i.e., from 550 to 580 nm and 630 to
680 nm) were used to determine the scaling ratio between the
two sets of results. Informally, we call this stitching the two
data sets together. Figure 3(a) illustrates the two measured
data sets for the Nikon.

The scaling ratio value was determined from the ratio Z, in
the overlap regions:

Z; =q;/9;" (25)

where ¢} indicates the red channel spectral response mea-
sured with 15 s exposure time and ¢;* with 5 s. Figure 3(b)
illustrates this ratio with the dashed ellipsoids indicating
the overlapping region of the two data sets. The average value
of Z, over the region shown with dashed ellipsoids is equal to
the reciprocal of the scaling ratio 7. Thus,

1/r = Mean(Z;) 550 < 1 <580 and 630 <1 <680, (26)
which is then applied as follows:

q; A <580,
q, =1 7q* 585 <1<625, @7
q; 630 < A,

resulting in the final spectral sensitivity function of the red
sensor. The expected value of 7 is 3.0 (the ratio of the two
shutter speeds) and this was indeed the value obtained in our
measurements. However, the value of » was not assumed
equal to 3 in case of shutter timing errors or other possible
camera errors. The spectral response function determined
for the red channel of the Nikon camera before and after
stitching is illustrated in Fig. 3(c). Although this method
was time consuming, it was found to be the most reliable
way of calibrating the spectral responsivity of the camera sen-
sors using the NPL facility.

The measured spectral sensitivity functions of both cam-
eras are subject to a certain level of uncertainty due to
possible calibration errors. One of the motivations for calibra-
tion at NPL was to be able to determine these errors and
uncertainties for the first time, to the best of our knowledge.
This also enabled us to assess how well the functions calcu-
lated using the sensor sensitivity estimation algorithms
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described elsewhere in this paper agree with the actual sen-
sitivity functions of the cameras at each wavelength. The NPL
calibration therefore included a full evaluation of the calibra-
tion uncertainty, based on consideration and investigation of
all aspects of the measurement facility, the camera and the
reference standard detector that might impact the results ob-
tained. It is important to appreciate that the spectral respon-
sivity as given in Eq. (24) is based on an implicit assumption
that there is a linear relationship between the input radiance
and the output signal; if this is not the case, then the spectral
sensitivity will vary depending on the incident radiance at
which it is determined. The cameras were therefore set such
that the raw signals were captured, without any preprocess-
ing. In the next section, we explain the tests that were carried
out to confirm the accuracy of these raw signals and the meth-
odology of obtaining calibration uncertainty values.

A. Calibration Uncertainties
A number of factors need to be considered when evaluating
the measurement uncertainty associated with the spectral
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responsivity calibration of the camera sensors. These can
be summarized as follows:

¢ Uncertainty associated with the reference detector.
This arises from the uncertainty associated with the calibra-
tion of the reference detector by comparison with the NPL
spectral responsivity scale and additional uncertainties that
arise due to possible drift in the detector between its time
of calibration and time of use. The combined 2¢ uncertainty
for these two effects varies from about 0.6% at 380 nm to less
than 0.2% for wavelengths from 500 to 800 nm [33].

¢ Uncertainty associated with the spectral reflectance
of the white tile. This arises from the calibration of the white
tile on the NPL National Reference Reflectometer in the 0/45
geometry used and drift in the reflectance since the time of
calibration, and is 0.75% for wavelengths between 400 and
800 nm, increasing to 1.35% for shorter wavelengths [31].

e Uncertainty associated with the NPL spectral re-
sponsivity facility. This includes uncertainties arising from
stray light scattered within the measurement enclosure, wave-
length uncertainty of the monochromator, noise and drift of
the light source and reference detector, measurement repeat-
ability, etc. These effects lead to an uncertainty of about 0.8%
for the transfer of the calibration from one detector to another
in the configuration used for these measurements.

¢ Uncertainties associated with the camera. This in-
cludes uncertainties due to the scaling factor (used in the sa-
turated region for the Nikon’s red sensor), nonuniformity,
dark noise, nonlinearity and repeatability (note that by using
the raw camera signals, uncertainties due to white balance
were eliminated). It is important to appreciate that these ef-
fects may have a significant impact on subsequent measure-
ments using the camera, particularly in terms of the absolute
ratios between the sensors, and therefore some normalization
of the absolute RGB values (e.g., by referencing to a calibrated
white tile illuminated with white light source) was required
when applying the calibrated camera sensitivity functions
for measurements on spectrally broad samples (see Section 4
for further explanation). Below, we explain each of these un-
certainties associated with the camera in detail.

— Uncertainty due to scaling factor. The uncertainty as-
sociated with the scaling factor r from Eq. (26) was deter-
mined from the standard deviation of the individual ratios
Z of Eq. (25) in the overlap region, expressed as a percentage
of the mean value. This uncertainty is around 3% which was
only applicable for wavelengths between 580 and 628 nm for
the Nikon’s red sensor. This uncertainty for other wavelengths
and other sensors is zero.

— Uncertainty due to nonuniformity effects. As men-
tioned earlier, we averaged the pixel response p; over the cal-
ibration area. The uncertainty due to pixel-pixel variations of
the pixel response p’ can be calculated from the following for
each sensor:

o/n
P (28)

where 7 is the number of pixels in the calibration area (which
is 21 x 21 pixels), p is average of the dark-corrected signal
(over the 21 pixel x 21 pixel area), and o is the standard
deviation of p/ over the calibration area of the dark-corrected
image. The outcome of dividing the standard error of the mean
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by the averaged signal is the relative nonuniformity uncer-
tainty for that image. Calculating this value for each of the cal-
ibration images captured at each wavelength gave an estimate
of this uncertainty over the spectrum. It should be noted that
nonuniformities in the radiance of the surface imaged by the
camera (i.e., the white tile irradiated by the light coming from
the monochromator) were negligibly small over the 21 x 21
pixel area. In regions of the spectrum where the camera sen-
sor sensitivity was low, the apparent nonuniformity was do-
minated by noise and in these cases only the residual
uncertainty, after allowing for noise effects, was included
in the uncertainty budget.

— Uncertainty due to dark noise. This uncertainty was
measured in the same way as the nonuniformity except that
the standard error was obtained from the dark-reading images
taken at each wavelength [o4, in Eq. (28)] resulting in the
relative dark noise uncertainty for that wavelength.

— Uncertainty associated with sensor nonlinearity.
The impact of any sensor nonlinearity on the calibration re-
sults was minimized by ensuring that the input radiance varied
by less than 100:1 for all wavelengths over the full visible
wavelength range; in other words, the radiance was closely
the same at all wavelengths. The uncertainty associated with
sensor nonlinearity was evaluated by examining the relation-
ship between the camera signal and the sample reflectance for
captured images of a series of achromatic samples from the
Macbeth ColorChecker illuminated by the D65 illuminant. We
examined this for three different levels of exposure: 1/40, 1/20,
and 1/10 s for the Sigma camera and 1/40, 1/25, and 1/15 s for
the Nikon. Figure 8 in Appendix A illustrates the results of the
linearity test for the Nikon. The points fell closely on a straight
line for all three sets of exposures, indicating that the camera
response is linear. Similar results were obtained for the Sigma
camera. The maximum separation of the points from the ideal
straight line in this graph is treated as the bounds of a rectan-
gular uncertainty distribution function, so allowing the stan-
dard uncertainty associated with camera nonlinearity to be
evaluated using Eq. (28) with n = 3 when R, G, and B are be-
tween [0,1] (see Table 1). Note that the same uncertainty was
used for all wavelengths and for each camera channel.

— Uncertainty associated with camera repeatability.
This was evaluated by capturing 10 images of the same scene
(Macbeth ColorChecker illuminated by the illuminant D65).
For each data set, the maximum standard deviation of the

Table 1. Table of Linearity and Repeatability
Uncertainty Percentages for the Nikon and
Sigma Cameras®®

Linearity Repeatability
Nikon R 0.06 0.07
G 0.08 0.05
B 0.16 0.06
Sigma R 0.12 0.16
G 0.05 0.09
B 0.02 0.06

“The linearity test was carried out on the average camera signals
of 10 images of the Macbeth ColorChecker Chart for 3 sets of
exposures (1/40, 1/20, and 1/10 s for Sigma and 1/40, 1/25, and
1/15 s for Nikon).

"The repeatability test was carried out using the 10 images taken
at 1/40 s exposure with both cameras. The values in this table are
relative uncertainty percentages.
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dark-corrected camera signals of the achromatic colors
across the 10 images was used in Eq. (28) (with n = 10) to
result in the relative standard uncertainty associated with
camera repeatability. This uncertainty was determined for
each of the channels for each camera (see Table 1), and
the same value assigned to all wavelengths for that channel.

The root of sum of squares of the camera relative uncertain-
ties listed above is calculated to estimate the total camera un-
certainty. Finally, the root of sum of squares of the relative
uncertainties associated with the reference detector, white
tile, responsivity facility and camera is calculated to give the
uncertainty value for the entire calibration process. Figure 9 in
Appendix A illustrates the detailed uncertainty values for
every wavelength of the Nikon’s red sensor response. Figure 4
illustrates the measured spectral response function of the
Nikon camera, with error bars marking the uncertainties
that are higher than 0.5% for the high-frequency region of
450-650 nm. Similarly, Fig. 5 illustrates the measured spectral
response function of the Sigma camera, with error bars mark-
ing the uncertainties that are higher than 1%.

These graphs are a simple illustration of the benefit of the
calibration approach at NPL. Full uncertainty data are avail-
able online.

Note that the uncertainties in the regions of low responsivity
are relatively high. However, ultimately what we require is the
uncertainty associated with the spectrally integrated RGB val-
ues. This integration has the effect not only of “averaging out”
uncertainties due to noise (which are the dominant uncertain-

Spectral Response Function

400 450 500 550 600 650 700 750

Wavelength in nm.

Fig. 4. Measured Nikon camera sensitivities from NPL calibration
facility. Uncertainty levels over 0.5% are illustrated with black error
bars across 450-650 nm.

Spectral Response Function
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Fig. 5. Measured Sigma camera sensitivities from the NPL calibra-
tion facility. Uncertainty levels over 1% are illustrated with black error
bars across the high-frequency region of 450-650 nm. The dashed line
indicates those regions where the measurements are dominated by
noise and which therefore have a high uncertainty.
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ties in the regions of low response) but of also giving greatest
weight to the uncertainties in the regions of highest response
(since these regions make the greatest contribution to the in-
tegrated value). Thus, we can consider the uncertainties asso-
ciated with the RGB values as being similar to the uncertainties
associated with those regions of high response, i.e., around 2%
in most cases, and around 3.5% for the Nikon red sensor. Hav-
ing these low levels of uncertainties for both cameras marks
the NPL measured spectral response functions as a robust
source, reliable enough to be evaluated and applied as ground
truth data for comparison purposes in the next section.

4. EXPERIMENTS AND RESULTS

A. Validation of NPL Measured Spectral Response
Functions (Outside of NPL)

In this section we explain a validation test for the measured
spectral sensitivity functions of the Nikon and Sigma cameras
from NPL. We wish to test how close the real camera re-
sponses that we capture outside NPL are to those predicted
using the NPL sensors and numerical integration.

Real data. The 24 x 3 raw response for n color samples is
stored in matrix P. Here, this is obtained from the camera’s
(Nikon and Sigma) response to an image of a Macbeth Color-
Checker, which was placed approximately in the center of the
floor of a VeriVide cabinet, facing upward toward the D65
illuminant. The position of the camera relative to the Color-
Checker was chosen to be approximately at 45 deg. A dark
reading was taken by capturing an image while the camera
lens cap was on. For each patch in the checker, the camera
signal was obtained by averaging the dark-corrected images
for each of the red, green, and blue channels over the central
area of the patch resulting in a Py, 3 matrix for the 24 colors.
This real data set is also used to evaluate our camera sensors
(see Sections 4.2 and 4.3).

Estimated data. A PR650 was set in the same position as
the camera explained for real data collection (approximately
at 45 degrees relative to the ColorChecker placed in a VeriVide
cabinet) to obtain measured Cy,,3;. Note that, rather than
moving the PR650, the Macbeth ColorChecker was moved
into center of PR650’s focus for each color patch measure-
ment in order to keep the light intensity constant across all
24 samples. Then P24X3 is numerically calculated using Eq. (b).

Prior to comparison, all rows of P and P are divided by the
corresponding RGB values of the white in that matrix. As a
result, both matrices would have values equal to one for R, G,
and B response that represent the white and the rest of the
rows represent the relative RGB values to white (i.e., for each
channel response we would have p; /Dy, J = 1. ...24). Rela-
tive estimation error for each R, G, or B channel’s response p
and estimated response p is calculated as

E =100 (|p - pl/Ip))- 29

Table 2 illustrates the relative prediction error percentages
for the Nikon and Sigma’s validation experiment averaged
over RGB channels.

The prediction error is on average 1.5% for Nikon and 2.1%
for Sigma, correlating with less than 3 CIE Lab Delta E values.
Thus, the difference between the response of the camera pre-
dicted by the camera sensitivity functions measured at NPL
and the real measured response is small. The experiment
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Table 2. Mean Prediction Error of the
Validation Experiment (Outside NPL) for the
Measured Spectral Sensitivity Functions in

Percentages
Ep Eg Ep Average E
Nikon 14 1.4 1.6 1.5
Sigma 2.3 0.8 3.1 2.1

validated the sensor sensitivities recovered at the calibration
lab at the NPL.

B. Evaluation of Sensor Sensitivity Estimation
Algorithms

The different algorithms described in Section 2.2 have been
implemented and tested. In order to compare the methods
across the Nikon and Sigma data sets, the parameters in all
estimation techniques were set to those values that worked
well. Seven dimensional sine basis functions [22] and 5
Fourier basis for quadratic programming were found suffi-
cient. In Jian et al.’s study [6] 2 basis functions were found
to perform well for estimating the Nikon camera sensor esti-
mation. We do not use the PCA for Sigma sensor estimation,
as they are not well modeled.

We propose that the uncertainty levels measured at NPL for
each wavelength can be used as a standalone spectral re-
sponse function over the spectrum. Here we treat the upper
and lower uncertainty envelopes as two separate spectral re-
sponse functions, and we denote them as UB and LB, respec-
tively. UB is the measured sensor plus 2 standard deviations
and LB is the measured sensor minus 2 standard deviations. In
essence, we just take the points at the top and bottom bars of
Figs. 4 and 5. The UB and LB sensors represent a worse case
measurement scenario where all the uncertainty manifests
itself in sensor departure. The UB and LB sensors provide
a reasonable goal to which spectral estimation algorithm
should aim (i.e., recovery modulo the worse case sensor mea-
surement uncertainty).

Here we also introduce an additional noise-free synthetic
data set to accompany the spectral estimation using real data.
The synthetic version of matrix Coyy,3; is a result of applying
previously measured D65 light source and 24 reflectance of
the Macbeth ColorChecker to Eq. (3). Then with ¢ applied

Table 3. Table of Mean Relative Prediction Error
Percentages between the Predicted and Real
Responses®

Averaged E

Nikon Sigma
Synthetic Real

Estimation Method Synthetic Real

Tikhonov 0.7 14 04 1.0
Tikhonov (derivatives) 0.5 14 03 1.0
Sine basis-7 0.3 1.1 02 0.7
PCA basis-2 1.9 21 - -
QP-5 0.6 12 04 0.7
UB 02 14 03 21
LB 02 16 04 23

“Columns represent synthetic and real data from the Nikon and Sigma
cameras. Numbers accompanying the estimation technique names
represent the number of basis used.
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to Eq. (), synthetic data (with zero noise) is derived. The
results of the estimation algorithms are reported in Table 3
for real and synthetic data in which the values indicate the
averaged relative prediction error percentages over the RGB
channels of the Nikon and the Sigma.

In comparison with Table 2 we can see the estimation
algorithms provide plausible predictions for the camera re-
sponse. In most cases the prediction error for the synthetic
data is less than real data. Of course it is possible to produce
sensor responses using a sensor whose spectral shape is far
from the actual sensors.

C. Spectral Recovery Error

In order to compare the estimated spectral shapes with the
measured spectral sensitivity functions from NPL, spectral
error for each of the R, G, and B channels is calculated using
the following:

SE =100 x (Il - qll/llgID. 30)

where for each channel, g is m x 1 and denotes a single sen-
sor’s measured spectral sensitivity (from NPL), and § denotes
the estimated spectral sensitivity rescaled regarding to q using
the following:

4 = g(max(g)/ max(q)). (31)

The averaged SE values over the R, G, and B sensors are
illustrated in Table 4. Spectral error is a pessimistic measure,
which equivalently measures the predicted and actual
responses for monochromatic stimuli across the visible spec-
trum [30]. Vora and Trusell's measure calculates the differ-
ence in spectral response for all possible color signals
using (see [27] for discussion)

Vora = 100 x (1 - (trace(QQTQ Q1))/3). (32)

in which Q7 indicates the Moore-Penrose inverse [23] illus-
trated in Eq. (7). Vora values close to 0 indicate estimated
sensors close to measured ground truth. Vora values are
reported in Table 5.

The Vora values inform us that, for example, Tikhonov
estimates of the Nikon sensor on real data perform well in
predicting data outside the measuring data set. Notice that
spectral error and Vora values of UB and LB sensors are much

Table 4. SE Percentage Errors Averaged over RGBs*

Averaged SE

Nikon Sigma

Estimation Method Synthetic  Real  Synthetic  Real

Tikhonov 12 16 13 25
Tikhonov (derivatives) 15 17 14 18
Sine basis-7 14 18 12 17
PCA basis-2 10 10 - -
QP-5 20 22 15 17
UB 1 1 3 3
LB 1 1 3 3

“Columns represent synthetic and real data from the Nikon and Sigma
cameras. Numbers accompanying the estimation technique names
represent the number of basis used.
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Table 5. Table of Vora’s Percentage Errors*

Vora

Nikon Sigma

Estimation Method Synthetic  Real  Synthetic = Real

Tikhonov 2.1 3.0 2.9 10.4
Tikhonov (derivatives) 2.5 2.9 3.6 6.3
Sine basis-7 2.2 2.7 3.8 45
PCA basis-2 0.7 0.8 - -

QP-5 4.3 3.9 5.4 4.8
UB 0.0 0.0 0.2 0.2
LB 0.0 0.0 0.2 0.2

“Columns represent synthetic and real data from the Nikon and Sigma
cameras. Numbers accompanying the estimation technique names
represent the number of basis used.

lower than the sensitivity estimation algorithms. There is con-
siderable room for improvement in spectral estimations.

D. Discussion

From Tables 4 and 5 we observe the differences in the perfor-
mance of estimation methods across the different data sets by
comparing the SE and Vora values between real and synthetic
data for each camera. Over all, sensor estimation using sine
basis functions and Tikhonov based on derivatives perform
better than the rest across all data sets. However, the objec-
tive in this paper is not to rank the estimation algorithms with
one another but rather to benchmark their performance using
the ground truth spectral sensitivity functions. Also, we can
see that the values of the UB and LB rows are smaller than
other estimated sensors in Tables 4 and 5. The prediction
error in Table 3 is sometimes worse for LB and UB. This
indicates the peril of over fitting data (and the instability of
using predicted response to determine how well spectral
estimation algorithms work).

In Figs. 6 and 7 we choose to illustrate the estimated
Nikon'’s red sensor for the real data of the Nikon and Sigma
cameras using sine basis functions. The shape of the esti-
mated spectral sensitivity function is similar to the NPL
ground truth data. However, we can see that it does not com-
pletely overlap the ground truth sensitivities from NPL over

121

Spectral Response Functions
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Fig. 6. Illustration of the red channel spectral response function
recovered from NPL (solid line) and estimated Nikon sensor sensitiv-
ities recovered by 7 sine basis (dashed) using real data from the
Macbeth ColorChecker.
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Fig. 7. TIllustration of the red channel spectral response function re-
covered from NPL (solid line) and estimated Sigma sensor sensitiv-
ities recovered by 7 sine basis (dashed) using real data from the
Macbeth ColorChecker.

the entire spectrum. For the Nikon’s red sensor, as an exam-
ple, we have found that the estimated sensor using sine basis
exceeds the uncertainty boundaries region between UB and
LB, by 97% of the measured spectrum. Thus, further develop-
ment of these estimation techniques is required in order to
enhance their performance in terms of the shape of the
spectral recovery.

5. CONCLUSION

In this paper, we have described the methodology for meas-
uring the spectral response functions for two cameras (Nikon
D5100 and Sigma SD1 Merill). We have undertaken this
measurement at the National Physical Laboratory (NPL).
We explain how the spectral response functions can be mea-
sured using the calibration system and a reference detector
with a calibration that is traceable to SI units. We determined
approximately a 2% uncertainty value for the recovered spec-
tra per wavelength. The measured spectral response functions
from NPL for both the Nikon and the Sigma were validated in
an experiment, reporting plausible estimation errors.

Sensor sensitivity estimation techniques implemented from
the literature are Tikhonov, Tikhonov based on derivatives,
linear combination of basis functions, and quadratic program-
ming. The results of their evaluation show that most tech-
niques predict the camera responses very close to the real
ones. Additionally, we used two error metrics (spectral error
and Vora’s error) to compare the estimated sensors with the
NPL ground truth measurements. Results show that 7 sets of
sine basis and Tikhonov based on derivatives estimates the
spectral sensitivity functions consistently well across all our
data sets. Since most estimated sensor sensitivity functions
differ from ground truth sensitivities in terms of recovered
shape across the spectrum, we conclude that the estimation
techniques do not provide recoveries as accurate as the spec-
tral response functions measured at NPL. Furthermore, no
algorithm returns estimates with measurement error. We
hope that the ground truth data made available will aid the
development of the estimation techniques as well as provide
a basis for comparisons.
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APPENDIX A

Red sensor Green sensor Blue sensor

Camera Response

L o o L
Fig. 8. Figures of the linearity test for the Nikon camera. Points re-
present the camera signal in response to the input mean reflectance
for 1/40, 1/25, and 1/15 s exposure timings.
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Fig. 9. Uncertainty budget percentage for the Nikon’s red channel
spectral response function.

ACKNOWLEDGMENTS

Special thanks to the National Physical Laboratory and col-
leagues Subrena Harris (NPL), Roberto Montagnia, and Hans
Rivertz for their support. As our final goal, the measured
spectral sensitivity functions from NPL and data sets from
the evaluation experiment for both the Nikon and the Sigma
are made available for the community to download at http://
spectralestimation.wordpress.com/data/.

REFERENCES

1. G. D. Finlayson, P. M. Hubel, and S. Hodley, “Color by correc-
tion,” in Proceedings of the Fifth Color Imaging Conference:
Color Standards and Color Measurements (The Society for
Imaging Science and Technology, 1997), pp. 6-11.

2. G. D. Finlayson and M. S. Drew, “White-point preserving colour
correction,” in Proceedings of the Fifth Color Imaging
Conference: Color Standards and Color Measurements (The
Society for Imaging Science and Technology, 1997),
pp. 258-261.

3. G. D. Finlayson and M. S. Drew, “Constrained least-squares re-
gression in color space,” J. Electron. Imaging 6, 484-493 (1997).


http://spectralestimation.wordpress.com/data/
http://spectralestimation.wordpress.com/data/
http://spectralestimation.wordpress.com/data/
http://spectralestimation.wordpress.com/data/

Darrodi et al.

4.

10.

11.

12.

13.

14.

15.

16.

N. Shimano, K. Terai, and M. Hironaga, “Recovery of spectral
reflectances of objects being imaged by multispectral cameras,”
J. Opt. Soc. Am. A 24, 3211-3219 (2007).

F. H. Imai and R. Berns, “Spectral estimation using trichromatic
digital cameras,” in Proceedings of International Symposium
on Multispectral Imaging and Color Reproduction for Digital
Archives (Society of Multispectral Imaging, 1999), pp. 42-49.
J. Jiang, D. Liu, J. Gu, and S. Susstrunk, “What is the space of
spectral sensitivity functions for digital color cameras?” in IEEE
Workshop on the Applications of Computer Vision (IEEE,
2003), pp. 168-179.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. Brainard, “Digital
color cameras-2-spectral response,” HP Technical Report
(HP, 1997).

P. M. Hubel, D. Sherman, and J. E. Farrell, “A comparison of
methods of sensor spectral sensitivity estimation,” in Color Im-
aging Conference: Color Science, Systems and Applications
(The Society for Imaging Science and Technology, 1994),
pp. 45-48.

J. Nakamura, Image Sensors and Signal Processing for Digital
Still Cameras (CRC Press, 2005).

Y. H. Hardeberg, H. Brettel, and F. J. Schmitt, “Spectral charac-
terization of electronic cameras,” Electron. Imaging 3409, 100-
109 (1998).

E. L. Krinov, Spectral Reflectance Properties of Natural
Formations (National Research Council of Canada, 1953).

M. J. Vrhel, R. Gerhson, and L. S. Iwan, “Measurement and analy-
sis of object refelectance spectra,” Colour Res. Appl. 19, 4-9
(1994).

J. M. Dicarlo, G. E. Montgomery, and S. W. Trovinger, “Emissive
chart for imager calibration,” in 12th Color Imaging Conference
(The Society for Imaging Science and Technology, 2004),
pp. 295-301.

S. Han, Y. Matsushita, I. Sato, T. Okabe, and Y. Sato, “Camera
spectral sensitivity estimation from a single image under un-
known illumination by using fluorescence,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition
(IEEE, 2012), Vol. 53, 805-812.

P. Urban, M. Desch, K. Happel, and D. Spiehl, “Recovering
camera sensitivities using target-based reflectances captured
under multiple LED-illuminations,” in 16th Workshop on Color
Image Processing (CAIP, 2010), pp. 295-301.

C. S. McCamy, H. Marcus, and J. G. Davidson, “A color-rendition
chart,” J. Appl. Photogr. Eng. 2, 95-99 (1976).

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Vol. 32, No. 3 / March 2015 / J. Opt. Soc. Am. A 391

K. Barnard, “Synthetic data for computational colour constancy
experiments,” (1994), available at http:/www.cs.sfu.ca/~colour/
data/colour_constancy_synthetic_test_data/.

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the
regularization of discrete ill-posed problems,” SIAM J. Sci.
Comput. 14, 1487-1503 (1993).

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems
(Winston & Sons, 1977).

B. Dyas, “Robust color sensor response characterization,” in
Eighth Color Imaging Conference (The Society for Imaging Sci-
ence and Technology, 2000), pp. 144-148.

G. D. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device
sensitivities with quadratic programming,” in Sixth Color Imag-
ing Conference: Color Science, Systems, and Applications (The
Society for Imaging Science and Technology, 1998), pp. 90-95.
H. Zhao, K. Rei, T. T. Robby, and I. Katsushi, “Estimating
basis functions for spectral sensitivity of digital cameras,” in
Meeting on Image Recognition and Understanding (MIRU,
2009), pp. 7-13.

E. Moore, “On the reciprocal of the general algebraic matrix,”
Bull. Am. Math. Soc. 26, 394-395 (1920).

R. L. Burden and D. Faires, Numerical Analysis, 8th ed.
(Brooks/Cole, 2005).

G. H. Golub and C. F. Van Loan, Matrix Computations (Johns
Hopkins University, 1996).

J. Gu, available from http://www.cis.rit.edu/jwgu.

L. T. Maloney, “Evaluation of linear models of surface spectral
reflectance with small numbers of parameters,” J. Opt. Soc. Am
A 3, 1673-1683 (1986).

H. S. Fairman and M. H. Brill, “The principal components of
reflectances,” Color Res. Appl. 29, 104-110 (2014).

D. Tzeng and R. S. Berns, “A review of principal component
analysis and its applications to color technology,” Color Res.
Appl 30, 84-98 (2005).

P. L. Vora and H. J. Trussell, “Measure of goodness of a set
of color-scaning filters,” J. Opt. Soc. Am A 10, 1499-1508 (1993).
C. J. Chunnilall, A. J. Deadman, L. Crane, and E. Usadi, “NPL
scales for radiance factor and total diffuse reflectance,” Metro-
logia 40, S192-S195 (2003).

J. E. Martin, N. P. Fox, and P. J. Key, “A cryogenic radiometer for
absolute radiometric measurements,” Metrologia 21, 147-155
(1985).

N. P. Fox, “Trap detectors and their properties,” Metrologia 28,
197-202 (1991).


http://www.cs.sfu.ca/~colour/data/colour_constancy_synthetic_test_data/.
http://www.cs.sfu.ca/~colour/data/colour_constancy_synthetic_test_data/.
http://www.cs.sfu.ca/~colour/data/colour_constancy_synthetic_test_data/.
http://www.cs.sfu.ca/~colour/data/colour_constancy_synthetic_test_data/.
http://www.cs.sfu.ca/~colour/data/colour_constancy_synthetic_test_data/.
http://www.cs.sfu.ca/~colour/data/colour_constancy_synthetic_test_data/.
http://www.cis.rit.edu/jwgu.
http://www.cis.rit.edu/jwgu.
http://www.cis.rit.edu/jwgu.
http://www.cis.rit.edu/jwgu.
http://www.cis.rit.edu/jwgu.

	XML ID ack1

