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Abstract

This investigation of endemic land-races of Saudi-Arabian cereals, Triticum aestivum,
Triticum durum, Hordeum vulgare, Panicum miliaceum and Pennisetum glaucum was
aimed at identifying and characterizing stress-tolerant populations appropriate for
germplasm-banking. Native soils were saline, nutrient-poor, sandy and subject to
seasonal drought and hot summers. Consequently, the work focused on responses of
germination and early growth to salinity (0-1000 mM NaCl) and high temperatures,
using mainly thermogradient plates and incubators. I examined germination rate,
enforced dormancy and viability, in recently collected seeds and in material naturally or
artificially aged under different storage conditions. Electrolyte leakage (measured as
electrical conductivity) was evaluated as an indicator of deterioration of wheat seed
quality. The germination responses to salinity of all five species showed remarkable
tolerance, these cereal species are not normally regarded as halophytes but the
behaviour of these land races suggested tolerance as high as that of many true
halophytes of coastal salt marshes. None of these species showed significant dormancy,
presumably as a result of previous domestication, and none showed critical temperature
requirement for germination found in many wild species of adverse environments. It is
additionally proposed that dry biomass can be an indication for quick inspection of
crops under salinity stress. Salt stress similarly results in a significant reduction in the
fresh and dry masses of leaves. Due to their response to salinity and significant positive
correlation with germination and biomass these characters could be used to assess wheat
genotypes under saline field environments. The germination response to artificial ageing
was most influenced by the salt stress NaCl during the incubation period particularly at
higher concentration of 500, 1000 NaCl mM. The initial moisture content of seeds
resisted ageing when being low. The conclusion is that development of plants with
increased resistance to inhibition of growth by the osmotic effects of external salinity is

both feasible and desirable.
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Chapter 1

General introduction

Germplasm is the foundation of the genetic potential of living organisms. Among other
things, diversified germplasm allows organisms to adapt to changing environmental
conditions. No single individual of any species, however, contains all the genetic
diversity of that species individually. Thus the total genetic potential is represented only
in populations made up of many individuals. Such genetic potential is referred to as the
gene pool. The potential represented in a gene pool is the foundation for our crop plants
in both agriculture and forestry. Germplasm is only maintained in living tissue, most
often preserved in the embryo of seeds in ‘seed banks’. When the seed dies the
germplasm is lost. The limited number of plants that has historically fed the human
inhabitants is approximately one per cent of the flora of the world, and the numbers that
have entered agriculture is a small fraction of that per cent. As our human inhabitants
have grown in number over the last two thousand years, and especially since the
development of the science of genetics, we have depended increasingly on a shorter list
of the most productive and most easily stored and shipped crops. Today only about 150
plant species (Prescott-Allen and Prescott-Allen 1990) with about one-quarter million
local landraces (Wilkes, 1991) are important in meeting the calorie and all nutrient
needs of humans. Extinction of a species or a genetic line represents the loss of a unique
resource. This type of genetic and environmental impoverishment is irreversible. All
over the world people increasingly consume food, take medicine, and employ industrial
materials that owe their source to genetic resources of biological organisms. Specified
the desires of the future, genetic resources can be reckoned among society’s most
valuable raw material. Any reduction in the diversity of resources narrows society’s
scope to respond to new problems and opportunities (Altieri et al., 1987). To the degree
that we cannot be certain what needs may arise for food security in the future (new plant
diseases or pests, climatic change due to the greenhouse effect, and so forth), it makes
sense to keep our options open. This conservation rationale for future generations of
humans applies to the Earth’s endowment of useful plants more than to almost any other
category of natural resources. For many centuries wheat, for example, has been grown
in Saudi Arabia. Being a vast area with small areas of fertile land scattered all over the

country and in the absence of a unified agricultural policy — in the past — each



community has kept its own cultivars, growing them year after year for countless
generations. These local ‘cultivars’ show a great diversity of types and in many cases
they are rather mixtures so they are considered as traditional varieties. This is natural
since wheat cultivars have never been bred in the area but introduced from the
surrounding countries. Due to the social traditions, the Saudi people have favoured hard
wheat for their own local recipes. This led to almost domination of hard red types of
bread wheats in addition to amber durum types. However, some other types still existed
in small quantities. In recent years the Kingdom of Saudi Arabia started programmes
aiming towards the improvement of wheat production in the country. New Mexican
cultivars were introduced for example cultivar, ‘Super-X’ was promoted to replace
native bread wheat cultivars, while c.v. ‘Jori’ is an alternative for the native durums.
This situation will eventually lead to the disappearance of old native land races or
varieties, and even though their pure stands cannot match the new cultivars in
productivity, they carry germplasm valuable for wide adaptation to tough growing

conditions such as salinity, drought and maturing under adverse, hot conditions.

1.2.1 Crop production and salinity

Salinity is a major limitation to crop production in the arid and semiarid areas of the
world, where low rainfall, high surface evaporation, irrigation with saline water, rising
water tables and poor irrigation practices increase levels of soluble salts (Ashraf 1994;
Hollington 1998). Salinity management and improved irrigation techniques are often
prohibitively expensive and provide only short-term solutions to conquer salinity
(Ashraf 1994; Shannon 1997). Plant breeding is a more attainable and permanent
approach to minimizing the toxic effects of salinity, with the development of cultivars
that can grow and produce economic yield under moderately saline conditions (Flowers
and Yeo 1995; Shannon 1997). Selection is an essential part of the breeding
programmes and several selection and selection schemes have been proposed for salt
tolerance improvement in wheat and other crops (Dewey 1962; Kingsbury and Epstein
1984; Kelman and Qualset 1991; Karadimova and Djambova 1993; Pecetti and Gorham
1997). Field screening measures in saline soils are confronted by high spatial variation
and unpredictability problems (Hajrasuliha et al., 1980; Richards 1983). Consequently,
most screening attempts for salt-tolerant genotypes have been conducted under either in

vitro or controlled environmental conditions (Kingsbury and Epstein 1984; Rawson et



al., 1988; Barakat and Abdel Latif 1996; Arzani and Mirodjagh 1999; Munns et al.,
2000). Some researchers have recommended that screening for salt tolerance could be
more efficient if the measurement was conducted under controlled environmental
conditions and using physiological traits rather than selecting for yield and yield
components under saline soil conditions (Shannon and Noble 1990; Flowers and Yeo
1995). For example, low Na' uptake and enhanced K'/Na" discrimination, traits located
on chromosome 4D of bread wheat (Gorham et al., 1987), had been projected as a
decisive factor for selecting salt tolerant genotypes in bread wheat (Gorham and Wyn
Jones 1993; Dvorak et al., 1994). These characteristics are controlled by a single locus
(Knal) and linked with RFLP markers on chromosome 4DL (Dubcovsky et al., 1996).
However, (Munns et al., 2000) reported that low Na' increase and high K'/Na"
discrimination of similar magnitude to that of bread wheat have been found in durum
wheat. Dry material production was used as a selection criterion for salt tolerance in
controlled environments affected with salinity (Kingsbury and Epstein 1984;
Meneguzzo et al., 2000). Despite the fact that in vitro screening of germplasm has been
a successful approach to improve salt tolerance in wheat (Karadimova and Djambova
1993; Barakat and Abdel Latif 1996; Arzani and Mirodjagh 1999), reassessment of in
vitro selected materials under field conditions has not been reported. This is not with
standing the fact that genotypic differences observed under in vitro conditions may not
match to those observed at the mature stages in the field. To facilitate and evaluate the
efficiency of screening methods for improving salt tolerance in crops, re-examination
should be carried out under naturally saline field environments (Richards et al., 1987,
Kelman and Qualset 1991). The intention of this analysis was to evaluate the
performance of selected salt-tolerant genotypes of durum wheat derived from indirect
(in vitro) and direct (field) selection methods, using three growing conditions (saline
field, non-saline field and saline hydroponic conditions). It should be mentioned that a
similar but smaller range of germplasm was used for in vitro screening of salt-tolerant

genotypes.



1.2.2 Salinity affecting soil

Information on soil salinity may assist in rapid identification of the required germplasm
accessions and/or characteristics and may help to prevent excessive duplication of
efforts, while showing where the gaps are. From a political and fairness perspective,
information on the origin of the accessions is also relevant. Ease of access to the
information may make it easier for both breeders (as is the case) and also farmers (as it
should also be) to use the materials. Yet news from the Report from CGIAR
(Consultative Group on International Agricultural Research) on what we know about
the stored seeds is, again, not good: although 37% of national collections and nearly all
the CGIAR gene bank accessions have passport data (the standard descriptors that
characterize plants cultivars as well as recent field observations), in most collections
these data refer only to the country of origin. Plant breeders and farmers often develop
their own collections because of the lack of information on collections in the gene
banks. The value of characterization and evaluation are also very low. In fact, the
accessions of national collections are not fully utilized even by current gene bank
clients: the breeders. The exceptions to poor characterization appear to be most
countries in Europe, East Asia, North America, Ethiopia, India and the Philippines.
Whereas some gene banks have their collections fully documented, computerized and
even put in the Internet (as it is the case of the Vavilov Institute and the USA base
collections), others have not documented any of their accessions. These factors clearly
limit the use of the accessions stored in the gene banks. Nevertheless, a large number of
accessions are exchanged around the world. For example, over the last three years the
CGIAR centres have distributed an annual average of over 120,000 accessions to
national programs all over the world. And in that time the USA has distributed 116,897
samples to 126 countries. However, Figure 1.1 and Tablel.1 shows the distribution of
salt-affected soils all over the world and show that continent on the plant are not

isolated from this effect of soil to turn up as salt-effected soils (Szablose 1989).
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Figure 1.1 Global distribution of salt-affected soils (Szablose 1989)

Table 1.1 Regional distributions of salt-affected soils (in million hectares).

Total area Saline soils Sodic soils
Region

Mha Mha % Mha %

Africa 1,899 39 2.0 1.8 1.8

Asia, the Pacific & Australia 3,107 195 34 249 8.0

Europe 2,011 7 6.3 73 3.6

Latin America 2,039 61 0.3 51 2.5

Near East 1,802 92 5.1 14 0.8

North America 1,924 0.2 15 0.8 0.8
Total 12,782 3942 | 62.7% | 389.6 | 17.5%

Source: FAO Land and Plant Nutrition Management Service (2000).
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1.2.3 Traditional varieties salinity resistant and rich in genetic
diversity

“A landrace of a seed-propagated crop is a variable population, which is identifiable
and usually has a local name. It lacks 'formal' crop improvement, is characterized by a
specific adaptation to the environmental conditions of the area of cultivation (tolerant
to the biotic and abiotic stresses of that area) and is closely associated with the uses,
knowledge, habits, dialects, and celebrations of the people who developed and continue
to grow it.”’(Veteldinen et al., 2009) there are two forms of conservation:
in situ: Where the plant is grown, managed and harvested in its original agricultural
environment.
ex situ: Were seeds, plants, plant parts, tissues or cells are preserved in an artificial
environment. The most common form of ex-situ conservation is by the use of gene-
banks. The seeds are typically stored in laminated packets which are placed in

containers and kept frozen at -18°C.

Crop plants are one of the world's most valuable resources. Approximately 60 per cent
of the human population directly or indirectly makes their living from agriculture
(Wilkes 1992). However, the loss of the genetic diversity of some of the world's crops
has accelerated in recent decades, with many crops becoming increasingly susceptible
to diseases, pests, and environmental stresses (Plucknett et al. 1983). Human population
around the world is increasing every year irrespective of the quantity and quality of the
food production. Over the years people around the world had developed hundreds of
crop plants through continuous selection and breeding (McMichael et al.
2007). Extensive and intensive breeding programmers, especially during the latter half
of 20th century, have eventually resulted in replacing many of the age-old cultivars with
high-yielding varieties (Paarlberg and Philip 2007). Large-scale production by these
new varieties has, often, created problems for small-scale traditional producers, whose
working resources were low inputs and marginal lands. The new high-yielding varieties
are also often susceptible to pests and pathogens. The genetic constitution of many
improved varieties is tolerant of only a few, specific contemporary problems
(Buddenhagen 1983). New pests or pathogens, ozone depletion and consequent

overexposure to ultraviolet rays, etc., may be serious problems the future farmers may
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have to face. Future breeders therefore, cannot give up the genetic reserves holding the
local races and wild relatives, in breeding for resistant varieties (Byrne 2001). Recent
innovations in biotechnology, for example recombinant DNA technology, have made

the transfer of genes across species much easier than before (Guanming et al., 2013).

Improved cultivars could offer a better-assured food supply, which might liberate
most humans from the daily quest for food, particularly in less developed countries in
Africa and elsewhere. However, in order to meet the current demands for agricultural
modernization, efforts should be made to preserve indigenous agriculture along with the
genetic diversity found in those areas associated with agricultural origins and
development, such as the areas in south-western Arabian Peninsula and the northeast
Africa. According to plant geneticists, the south-western region of the Arabian
Peninsula together with northeast Africa are widely regarded as one of the centres of
origin of some of the important cash crops and cereals such as wheat, millet and barley.
A wide variety of vegetables like onion, okra, aubergine, potato, tomato, carrot,
cabbage, turnip, different kinds of pumpkins, cucumbers and gourds, chilli, sugar beet,
pulses and leaf crops, etc. are being cultivated in different parts of the country of Saudi
Arabia, some of which are indigenous while others have found their way to Saudi
Arabia in recent times from several Afro-Asian countries. Al-Qassim and Al-Baha
region in the kingdom of Saudi Arabia are other areas where several crops are being

cultivated, including an indigenous variety of wheat (Chaudhary and Al-Jowaid 1999)

The agricultural production from these areas has continuously contributed the food
security of this region’s inhabitants and the mode of cultivation was part of their culture
and social expression. Unfortunately, the loss of genetic diversity of some of the
Kingdom of Saudi Arabia’s crops has accelerated in the past few decades. Over the
years, the valuable germplasms of these cultivars has been subjected to genetic erosion
as a result of the adoption of high yielding varieties, which has, finally resulted in

abandoning the traditional varieties that were rich in genetic diversity (Hassan 1979).

Throughout the Middle East, due to the inflow of exotic cultivars, primitive crop
varieties have been ignored and have been seldom cultivated in the past few decades,
resulting in their gradual disappearance. In the mid-1960s, a number of plant breeders
expressed concern about the accelerated displacement of primitive crop varieties.

Germplasm development is vital for the conservation, management and recovery of

12



threatened cultivars. Conserved germplasm may be utilized for the establishment of ex-
situ populations, which may then be used for the development of salinity-tolerant high
yield/disease resistant varieties (Hassan 1979). Seeds of Triticum aestivum (Arabic local
name, Haap), from Al-Baha region Triticum aestivum (Arabic local name, meyeh),
Triticum durum (Arabic local name, logemei), Hordeum vulgare (Arabic local name,
saear arubi), Panicum miliaceum (Arabic local name, mlessa) and Pennisetum glaucum
(Arabic local name, sudany) from Al-Qassim region were collected for each species,
The seed were brought to the U.K. and have been stored at the Millennium Seedbank,
Wakehurst Place (Royal Botanic Gardens, Kew).

1.3.1 Seed viability and germination

Seed viability and germination tests are necessary for several reasons: to ensure that only
good quality seed is banked for long-term storage; to inform workers of appropriate
germination conditions when it is subsequently used; and as a further indication of the
environmental tolerances of these races and therefore their potential contribution to breeding
or genetic engineering programmes. Seeds of many agricultural crops as well as many wild
plants in many countries of the world have been investigated (Vozzo 1978). Many
researchers (Baskin and Baskin 1998) have pointed to the importance of the germination
process in plant life histories in completing the plant life cycle successfully, especially for
those plants that are native to dry, desert or saline environments. Plants that are endemic to
the regions of desert areas depend on three important mechanisms: (1) dispersal to an
appropriate microsite for germination, (2) germination in a timely manner, (3), and
maintaining a ‘bank’ of seeds in the soil as insurance against unpredictable conditions. The
germination process can be affected by many external environmental factors, such as
temperature, salinity and light regime (Mayer and Poljakoff-Mayber 1989; Baskin and
Baskin 1998; Carter and Ungar 2003). Furthermore, it is reported that temperature and
salinity play an effective role in determining the timing of germination in most groups of
plant and especially salt-tolerant plants, or halophytes (Rozema 1975; Ungar 1987; Woodell
1985). The thermal requirements for germination (including alternating or continuous
temperatures) also may vary considerably between species (Crocker and Barton 1953;

Berger 1985). For example, Robert (1988) has made comprehensive reference to the detailed
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effects of temperature on the germination process. Also Steinbauer and Grigsby (1957)
pointed out when they studied 85 plant species belonging to 15 families, using seeds
collected from Europe, that the germination rates were high (80%) in alternating
temperatures when compared to constant temperature. Thompson (1970) clarified that the
geographical distribution of different types of plants of Caryophyllaceae in Europe was
associated closely with the germination responses of their seeds to accumulated
temperatures, expressed as heat-sums. Many seeds remain dormant even though they are

viable.

1.3.2 Effects of salinity on plants

Plant growth and development in saline environments is one of the major themes that
have been studied in soil science plant physiology. Salts, existing mainly in the rooting
zone and affect all growth phases of the plant life cycle. Seed germination rate and
percentage of growth tends to be reduced with salinity (Bernardo et al., 2000). A
number of growth problem rose from the effects of salinity which can be in the form of
reduced rates of net CO, acclimatization, cut-rate of leaf area, reduce leaf cell growth
and leaf growth (Cramer et al., 2001). The reaction of a plant to salinity is complex and
differs from one plant to another, depending on salinity, kind of salt, growth stage of
plant at exposure, period of the day, and many other factors (Cramer et al., 2001).
Excessive quantities of salts in the rooting area generate low (more negative) external
water potentials and consequently decrease water availability to be up taking by the
plants. It correspondingly decreases root pressure driven xylem transfer of water and
solutes (Marschner 1995; Munns 1993). The outhers proposed a biphasic model to
describe growth responses of plants to salinity. According to this model growth was
primarily decreased by the reduction in soil water potential. This stage of the growth
decrease was called water stress and is a consequence of salts external to the plants
rather than internal ones. Furthermore, it is reported that the rate of leaf development
responds more rapidly not like what happing in the ion concentration in the increasing
cells or internally (Delane et al., 1982) and the decrease in leaf development can be
correspondingly encouraged by additional osmotic (Delane et al., 1982; Termaat and
Munns 1986; Yeo et al., 1991). Dissimilarities in genotypes occur because they vary in
the period for salt to reach its maximum concentration in the vacuoles of mesophyll
cells. Leaves normally die earlier among salt-sensitive genotypes because salts reach

them more quickly, or because cells are less able to compartment alise salts in their
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vacuoles than the tolerant genotypes at high concentrations. Other authors have also
reorganized the growth response to salinity as two-stage process. Yeo et al., (1991) and
Cramer and Bowman (1991) have proposed a well-defined separation between ‘short
term’ and ‘long term’ consequences of salinity on plant growth. Sodium and chloride
are mostly the major ions in saline environments, and their greater uptake leads to salt
damage in salt sensitive plants (Serrano et al., 1999). Growth impairment and damage
of the vegetation in many herbaceous crop species happens even at lower concentrations
of NaCl salinity (Sykes 1992). Salt damage in plant leaves and stem occurs as a
consequence of higher uptake of Na" and CI associated with a decrease in K™ supply
(Sharma 1995). Definite ion controls have been connected to concentration of toxic
ions, like CI" and Na” or to Ca®" and K" reduction on leaf senescence (Yeo et al., 1991).
Hu and Schmidhalter (1998) advocated that the accumulation of solutes under saline
conditions arises both by increasing the net uptake rate and by decreasing growth. Salt
accumulation in the leaf apoplast is an essential component of salinity toxicity;
furthermore, there is growing support for the hypothesis of Oertli (1968), which
depends on turgor loss and dehydration and eventually loss of leaf tissues and cells
(Munns 1988; Flowers 1988). Sodium chloride toxicity is correspondingly believed to
be accompanied by higher production of superoxide radicals and lipid peroxidation that
imposes an oxidative strain at the mitochondrial level (Hernandez et al., 1993). The
barrier of oxidative phosphorylation on exposure of mitochondria to NaCl has been
mention by Flowers (1975) in salt-tolerant and also in salt-sensitive species. Higher
concentrations of NaCl in the root zone lead to membrane depolarization (Shabala and
Newman 2000). The superfluous of Na' causes membrane leakage (Epstein 1972) since
the monovalent Na" might cause deterioration of the membrane structure by replacing
divalent bridges provided by Ca®" or other divalent cations (Leopold and Willing 1984).
Conversely, Ca”" might help to stabilize phospholipids and therefore, limit membrane
permeability (Cramer et al., 1989). The ionic composition of saline soils is fairly
different from that of normal soils, with Na" and CI” ions more predominant. As
transport systems in plants are disturbed by exposure to NaCl, there are consequences
for tissue ion distribution and thus nutrient status (Lauchli and Epstein 1990). At high
salinity stress, inhibited nutrient uptake, consumption, and transport could lead to
growth suppression (Marschner 1995). Uptake and transport of K™ (Lynch and Lauchli
1984), Ca®™ (Lynch and Lauchli 1985), N (Pessarakli and Tucker 1988), and P
(Martinez and Lauchli 1994) may be depressed. A reduction in K™ uptake might be due
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to external Na" blocking (Amtmann and Sanders 1999). Shabala (2000) discovered that
net discharge of K transpired under NaCl salinity. Salinity-induced Mn deficiency has
also been postulate as a main cause of growth decrease in barley provided with low
concentrations of manganese and high concentrations of NaCl (Cramer and Nowak
1992). The response to P under saline conditions is rather inconclusive. In natural
conditions of high P availability, NaCl may improve P uptake and reduce plant growth
by P toxicity (Roberts et al., 1984), while at low P concentrations, NaCl decrease uptake
and translocation of P (Martinez and Lauchli 1991) and additional P amount on such
sub traits increases the salt tolerance (Awad et al., 1990). Higher Na" concentrations in
the saline zone may limit uptake and transport of Ca*" and promote Ca*" deficiency
where Ca®" concentrations are low or Na'/Ca®" ratios high (Lynch and Lauchli 1985).
Sodium chloride induced Ca®" efflux from cell walls has also been described (Shabala
and Newman 2000). In saline soils, poor growth of wheat and barley could be attributed
to Ca’" deficiency, as there was greatly improved growth with addition of Ca*" (Ehret et
al., 1990). The efficiencies of nutrient usage are also reduced under saline conditions.
Higher concentration of CI is believed to decrease the uptake and consumption of NO>
(John et al., 1977). The CI induced NO* deficiency has been studied as a fundamental
mechanism for growth decrease in wheat plants under salinity stress (Torres and

Bingham 1973).

The production and transport of phytohormones is affected in saline environments
and is increasingly thought to be part of the intricate plant responses to salinity. Helmy
et al., (1994) stated that early leaf senescence in tomato plants could be due to increased
production of ethylene (C,H4) in saline conditions. Incompatibility, among sensitive
plant varieties inconsistent in salt tolerance, where in the tolerant varieties is more adept
to produce C,H4 (Lutts et al., 1996). In saline environments, the level of cytokinins
(CYT) 1s repressed (Kuiper et al., 1990), whereas abscisic acid (ABA) is increased (La
Roza et al., 1985). The increased levels of ABA are correspondingly thought to assist
with osmotic adjustment and consequently salt tolerance. (Amzallag et al., 1990)
demonstrated enhanced salt tolerance in sorghum plants due to foliar sprays of ABA. A
parallel enhancement in growth of sorghum under saline environments has also been
described after application of CYT, especially if it was combined with gibberellic acid
(Amzallag et al., 1992). Nabati et al., (1994) found better shoot and root growth in grass

species in saline environments when different plant growth regulating mechanisms
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(plant growth substances) were used. Nevertheless, there are occurrences where no
relationships were found between salt tolerance and endogenous levels of ABA or CYT.
Growth analysis is a key factor to understand effect of salinity on plant growth
characteristics and to understand the raw data and the fitted regressions and growth-
functions obtained for all selected species using (Hughes and Freeman 1967)
programme. The details used are: relative growth rate and relative leaf area growth rate
R and RL; leaf area ratio, LAR; unit leaf rate, E the values plotted are instantaneous

fitted values for each harvest time.

1.3.3 Germination effects under salinity

Commonly, salinity inhibits seed germination (Jibury et al., 1986; Yaseen et al., 1989;
Kumar et al., 1988; Mondal et al., 1988; Navetiyal et al., 1989; Alwan et al., 1989;
Begum et al., 1992; Kabar 1986). Narele et al. (1969) found that salinity of 4.5 mmhos
cm” usually did not affect germination, whereas salinity 8.9 mmhos cm™ inhibited
germination. Many other workers have reported reduced or delayed germination of
wheat seed or Pepper (Babu and Kumar 1975; Kabar 1986 and Kadir et al., 2004) by
salinity. Prakash and Sastry (1992) similarly discovered that germination and early
growth phases in wheat were affected by salinity. Salinity and sodicity reduced the
germination and root/shoot ratio in wheat (Ray and Khaddar 1992). Dell’ Aquila and
Spada (1993) detected a decline or loss of polypeptides under salinity stress of two salt
tolerant genotypes at radical emergence stage. Additionally, whilst the seeds of the
same genotypes were irrigated with water no new polypeptides. They likewise
discovered a difference synthesis of polypeptides that are distinctive to every cultivar.
Therefore they introduced the concept of salt stress proteins to be associated to the
adaptive development of seeds to salinity in addition to the genetic composition of
particular salt-tolerant genotypes. Rice seed germination and seedling growth are
particularly sensitive to salinity (Alam et al., 2004). Dass and Jain (1988) found that
Ziziphus rotundifolia was tolerant when irrigated with water of 4.5 - 6.5 mmhos EC
throughout germination and seedling growth stages. Ziziphus spinachisti and Z.
mauritiana cv Tikadi showed moderate tolerance at 2.5 mmhos, whereas Z. hummularia
was sensitive to salinity. Poljakoff-Mayber et al., (1994) considered that the osmotic
potential is the main effect of salinity on germination in nature. Nevertheless, the
combined osmotic and ionic effects, particularly at high concentrations of NaCl, can

prevent germination. Inhibition of germination at high NaCl concentrations is more
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severe in scarified seeds than in intact ones, indicating that the seed coat can be
something of a barrier to Na' influx, at least in Kosteletzya virginica (Malvaceae)
(Somers 1982); they also reported that K. virginica is more resistant to salinity at the
germination stage compared to the seedling stage. Shah et al., (1973) and Al-Ansari
(2003) all have reported that in wheat increasing of the salinity reduces both

germination and coleoptile length.

1.3.4 Strategic importance within the Kingdom of Saudi Arabia

The Kingdom of Saudi Arabia lies between 15°45' and 34°35' N and 34°40' and 55°45'
E (Chaudhary and Al-Jowaid 1999). Occupying most of the Arabian Peninsula, the
Kingdom, with an area of 2,200,000 km?” contains significant diversity of arid
vegetation. The diverse physiographic (Fig. 1.2) features coupled with their peculiar
climates have influenced the vegetation remarkably. Though there is a vast expanse of
desert in the Kingdom, Saudi Arabia is not totally a desert. The mountain ranges
bordering the western seashore, rising from 500 m, run into escarpments as high as
3000 m (Chaudhary and Al-Jowaid 1999). This mountain system receives more rain
than other parts of the country, and holds arborescent vegetation with high species
richness. The shrubby and herbaceous life forms subtended by the arborescent
vegetation also tend to be diverse. Numerous small and large interlaced wadis are
distributed throughout the country. Because of the slow seepage of moisture preserved
beneath the adjoining landmasses, the lower landscapes forming the wadis have a better
soil moisture regime and shelter more species than the adjoining areas. These wadis
provide shelter for a large segment of the flora of the country. The inland sabkhas,
coastal salt marshes, and the littoral tidal zones host diverse halophytic communities.
The relief features edging the Arabian shield are also peculiar niches for particular kinds
of plants. The Rub’ al- Khali, the Nafud and the Dahna are vast sand expanses, which
experience extreme aridity (Abd El-Rehman 1986). Although sparse and species poor,
the flora comprising species characteristically adapted to the extremes of the xeric
climate inhabit these deserts. Surrounded by the Mediterranean, Near East, and
Abyssinian (Ethiopian) and Indian centres, Arabia is an important plant diversity center
(Al-Farhan 1991). The Peninsula provides some of the least man-modified landscapes
and life forms within the Irano-Turanian phytochorion. Saudi Arabia is also an ancient

cultural center housing many agricultural crops and practices. The climate of Saudi
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Arabia are its sub-tropical latitude range of 16- 32°N, and its position both close to the
circum-global latitudinal belt of generally high atmospheric pressure and sandwiched
between the vast continental land masses of Africa and Asia. These aspects mark Saudi
Arabia one of the hottest and sunniest countries in the world, with low humidity, except
in summer along the coasts. Although Saudi Arabia is strictly a peninsula, the adjacent
Red Sea and Arabian Gulf are narrow and close land. These waters become very warm
in summer and limit the night-time drop in air temperature, making hot, humid nights an
uncomfortable feature of summer along Saudi Arabia’s western and eastern coastal
plains. Along the coastal plains even typical night-time minima are as high as 29-30 °C
through summer months, with relative humidity higher than in the daytime.

Rainfall is unreliable and annual average totals are typically around 100 mm or,
especially inland, less; for instance 35 mm at Tabuk, inland in the north-west. The
wettest area is the far south west in the region of Saudi Arabia’s highest mountains,
where most of the rain comes from spring and summer convection, raising annual totals
to 199 mm at Khamis Mushait (about 2100 m above mean sea level (a.m.s.l.)) and 141
mm at Jizan on the adjacent coastline. In the northern half of the country, any rain falls
mainly during November to April from weak weather systems moving eastwards from
the Mediterranean or North Africa. In the southern half of the country away from the far
south-west, what rain there is can fall in any season.

The temperature distribution across Saudi Arabia is controlled mainly by altitude
and, to a lesser extent, proximity to sea. Temperatures are somewhat lower and more
comfortable along the chain of mountains stretching from north-west to south-east
along the western side of the country. To the west of these mountains is a very narrow
Red Sea coastal plain and to the east is a vast high plateau that gradually descends to a
broader eastern coastal plain. With the exception of the mountains, typical daytime
temperature maxima from May to September are between 38°C and 43°C (several
degrees higher on some days) in comparison to 30-32°C at 2100m (a.m.s.l) at Khamis
Mushait. However, there is usually a sharp drop of temperature at night, especially in
the interior, where, in addition to mountains in the northwest, frost and snow occur
occasionally in winter. Annual mean temperatures range from 30-31°C at low-lying
Dhahran, Makkah and Jizan to 25°C at more elevated Riyadh, 22°C at Tabuk (800m
(a.m.s.]) in the north-west) and 20 °C at Khamis Mushait (2100 m (a.m.s.]) in the south-

west).
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In addition to extreme high temperature events in Saudi Arabia’s long and very hot
summer and the extreme combination of heat and humidity along the coasts on summer
nights, climate hazards include sand/dust storms and localised floods. In late spring and
early summer, a strong north-westerly ‘shamal’ wind blows almost constantly for
almost three months, particularly in eastern Arabia, producing sand/dust storms that can
decrease visibility to a few meters. However, strong winds and dust storms of briefer
duration also occur in winter.

Two types of salt marshes are present in Saudi Arabia, namely inland and littoral
(Coastal). Inland salty areas, which are usually far away from the seashore, are small to
large depressions and are characterized by shallow underground water table. In certain
areas, such as Al-Awshaziyah and Al-Hassa Oasis, the ground water reaches on the
substratum and forms a somewhat perennial lake of saline water. Littoral or coastal
sabkhas can be seen throughout the Arabian Gulf and the Red Sea coast. Coastal salty
areas are characterized by fine clay soil mixed with humus, which are carried by flash
floods from inland areas. Coastal lands are sparsely vegetated, mostly dominated by
mangroves and some succulent plants of the families such as Chenopodiaceae,
Zygophyllaceae, Plumbaginaceae, etc. The water for the growth of such plants growing
in close proximity with sea mostly comes from seawater, whereas plants growing far
away from the seashore are fed by rainwater. In certain areas of coastal salt marsh
where the area is regularly inundated by tides, the composition and density of salt is low
whereas in areas having high evaporation rate, the salinity level is very high. However,
during rainy season, soil salinity will drastically drop due to flooding and runoff from
the land coupled with heavy rainfall.

Present estimates show that Saudi Arabia contains over 100 species distributed in 33
families or so. These species are either strictly halophytes or having adaptations to
survive in wider ecological amplitude. Among the halophytes recorded from Saudi
Arabia, the highest number of from Chenopodiaceae followed by Poaceae,
Zygophyllaceae and Tamaricaceae. In Saudi Arabia halophytes are regarded as good
fodder during adverse climatic conditions; some of them rich in terms of nutritive value
while others have plenty of water to quench the thirst of the domesticated animals.
Some of the halophytes dominating in the Red Sea coastal regions are: Avicennia
marina, Rhizophora mucronata, Cressa cretica, Limonium spp., Zygophyllum

coccineum, etc. whereas the halophytic species dominating in the Arabian Gulf coast
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are: Suaeda vermiculata, Suaeda maritima, Salicornia europaea, Halocnemum

strobilaceum, Arthrocnemum macrostachyum, etc.
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Fig. 1.2 Physiographic map of Saudi Arabia (after Abd El-Rehman, 1986).
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1.4. Research aim and objectives

Wheat growing became the major objective of government encouragement in the early
part of the 1980s in Saudi Arabia. Until 1981 the proportion of wheat to total cereal
production was approximately 50%. The ratio jumped in 1981 to 63.7% and in 1982 to
85.3%. This high percentage was maintained for ten years. Throughout this phase,
wheat production progressively increased to reach a record 3,741,229.86776 metric
tonnes in 1992,3 well in excess of the self- sufficiency requirement of the country’s
16.1 million population. Additionally, well beyond the storage capacity of the
government’s Grain Silos and Flour Mills Organization (GSFMO) of 2.38 million tons
(Saudi Ministry of Planning 2003). In 1992 the government initiated emphasize in
barley growing. Within one year, in 1993, production jumped by 340%, to 1.421 million
tons from 417,000 tons in 1992. One year later, in 1994, barley production peaked to
2.01 billion tons. The number of farmers who sold their barley to GSFMO increased
proportionately. In 1992, the number was 4,015 farmers. In 1993, it jumped to 11,804
farmers and in 1994, to a maximum of 12,637 farmers (SSY 2001). To achieve this
enormous growth, the cereals producing surface was increased by a phenomenal
924,000 hectares (1.125 million hectares in 1992 — 201,000 hectares in 1973), or by
560%. The overall irrigated surface of all crops expanded by 1.198 million hectares,
from 373,000 hectares in 1973 to 1.571 million hectares in 1992, or by 421%. The
irrigated surface expanded further in 1993 to 1.596 million hectares. An arid Saudi
Arabia was turned into the world’s sixth largest wheat exporting country during the
same period (1973 to 1992), the surface of the other agricultural irrigated area increased
impressively as well, by 274,000 hectares (1.198 million hectares — 924,000 hectares),
or 259%. However, production of the other crops increased sharply, vegetables; by
520% (to 2.073 million tons from 399,000 tons), fruits; by 253% (to 0.899 million tons
from 355,000 tons) and alfalfa; by 705% (to 2.425 million tons from 344,000 tons).
Starting 1993, however, financial pressures forced the Saudi government into a policy
reversal. Combined with the cost of the 1991 Gulf War and persistent budget deficits
since the early 1980s, caused the government a severe shortage of liquidity. In1992,
subsidies to primarily wheat growing were reduced by 12%, from a peak of SR6
billions in 1991 (UK £1.02 billions) to SR5.28 billions (UK £0.89 billions). In August
1993, it was announced that the government would not buy wheat in 1994 from the six

main commercial producers, while imposing quota restrictions on purchases from
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smaller commercial farmers. In 1995, the subsidies dropped by 50% from 1994
[SR2.536 billions from SRS5 billions]. The slide continued till the subsidies became
about SR0.94 billions (UK £159.15 millions) in 2000.

Within 4 years, by 1996, the all-cereal growing land surface dropped by a
dramatic 559,000 hectares (1.125 million hectares in 1992 — 566,000 hectares in 1996),
or by 50%. Wheat production dropped even more steeply, by 70% (1.2 million tons in
1996/ 4,124 million tons in 1992). By 2000, however, wheat production recovered to a
level sufficient for the country’s domestic consumption, 1.787 million tons. Barley
production’s fall was similarly dramatic. Within one year, 40% of the 2.01 billion tons
produced in 1994 was cut, to 794,000 tons in 1995. The number of farmers delivering
barley to GSFMO dropped from 12,637 farmers in 1994 to 2,126 farmers in 1995 (SSY
2001). Since then, barley growing continued its sliding trend. In 1999 production was
only 192,000 tons, with the number of barley growers who sold to GSFMO dropping to
368 farmers (MOP, 2003). In 2000, production became 118,000 tons. Meanwhile,
barley imports in 2001 were 3.25 million tons. Barley production declined mainly due

to problems of water supply (underground water) and salinity problems.

The main aim of this research is to investigate on the germination responses of
endemic, locally preserved land-races of cereal-crop species Triticum aestivum (Arabic
local name, Haap), from Al-Baha region Triticum aestivum (Arabic local name, meyeh),
Triticum durum (Arabic local name, logemei), Hordeum vulgare (Arabic local name,
saear arubi), Panicum miliaceum (Arabic local name, mlessa) and Pennisetum glaucum
(Arabic local name, sudany) from Al-Qassim region from the varied climatic conditions
found in Saudi Arabia. Specifically, in arid and semi-arid areas, it is important to
understand adaptive responses to salinity at 0, 100, 200, 300, 400, 500, 600 and 700
mM sodium chloride and range of temperatures grids (6 up to 33 °C), using a surface
thermometer controlled unit. Ultimately such work would provide information to help
preserve the Kingdom’s rare and indigenous crops for future generations, and provide
plant breeders with the genetic resources necessary for developing stress-resistant
cultivars in the future. In order to address these aims, a number of objectives needed to

be met, which have been addressed in the chapters below:

23



Chapter2:

Plants growing in saline environments have developed a number of morphological,
physiological and biochemical adaptive mechanisms, which qualify them to continue
and grow in the presence of salts (Naseer et al., 2014). There is a great amount of
literature accessible dealing with the responses of various plant species to external
salinity however the precise mechanisms amended by different species is not yet well
defined. Commonly plants prevent excessive amounts of toxic salts either by limiting
ion uptake into the plant shoot, or by tolerating ion uptake and regulating high salt
concentration throughout osmotic regulation (Mirza et al., 2014). In conclusion plants
should reach and provide favorable water stability as well as a favourable ionic stability
at the plant cell and entire plant levels to effectively grow under saline environments
(Nadeem et al., 2014). This chapter will cover germination response to salinity and
germination recovery, especially for those plants that are native to dry, desert or saline
environments. Plants that are endemic to the regions of desert areas depend on three
important mechanisms. Between 15 December 2012 to 7 January 2013, seeds from
populations of five species of Poaceae, Triticum aestivum, Triticum durum, Hordeum
vulgare, Panicum miliaceum and Pennisetum glaucum, were collected from Al-Qassim
(Figure 4.1) The hypothesis, that local endemic land races of Saudi-Arabian cereal
species will germinate in low concentrations of salt, and that some will germinate at

higher concentrations.

Chapter 3:

Seed germination efficacy testing presents an integrative framework to explain and to
predict biological changes achieved by different modes of treatment (Waller 2013). This
in vivo examination of germination performance was made under different
concentration of salinity and different range of temperatures as a major cause of
decrease in seed germination as well as leaves and roots development. Temperature is
one of the most important factors determining growth rates of plants in the field
(Scherrer et al., 2011). Germination of non-dormant seeds under multiple temperature
conditions can be predicted from constant temperature (Reyer et al., 2013). Thermal-

response simulations of this type have not been confirmed under virtual field-variable
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temperature conditions that vary in daytime form, diurnal range and longer-term trends
in mean—daily temperature. The purpose of this experiment was to evaluate germination
response of Triticum aestivum (Arabic local name, Haap), from Al-Baha region
Triticum aestivum (Arabic local name, meyeh), Triticum durum (Arabic local name,
logemei), Hordeum vulgare (Arabic local name, saear arubi), Panicum miliaceum
(Arabic local name, mlessa) and Pennisetum glaucum (Arabic local name, sudany) from
Al-Qassim region, under both constant and mutable temperature regimes in the
laboratory. In addition, one commercial variety of winter wheat, Triticum aestivum
(Istabraq), was used for comparison. The (1) to establish a protocol to investigate
germination responses to temperature generally and, in particular, determine basal,
optimal and ceiling temperatures for germination for these economically important
Saudi Arabian cereal land-races; (2) to make broad preliminary comparisons of the
effects of temperature, salinity and their interaction across a wide range of species and

varieties of some of them.

Chapter 4:

Ecophysiology of seed germination, is the study of the interrelationship between a seeds
physical functioning and its environment by analysing the physical and chemical
characteristics of soils from the plant habitat as well as the climatically parameters
(Angiolini et al., 2013). Plants are capable of absorbing and assimilating as many as
forty or fifty different chemical elements. Sixteen of these chemical elements have been
found to be essential to the growth of most plants (Stiles 2013). Knowledge of the
chemical and physical characteristics of soil is essential to the successful growth of all
plant life. Whether it is for the professional raising of crops for commercial purposes or
an amateur enterprise such as the raising of grassland, shrubbery or a garden for
decorative purposes. Soils are examined to define if important plant nutrients are
available and if the soil result or pH value is accurate for growing the chosen plants
(Chandra et al., 2014). If the appropriate elements do not exist, the soil tests tell what
must be done to provide the correct balance of the necessary nutrients and to provide the
proper soil reaction (Bird 2014). Subsequently certain known plant nutrients are
essential; reasonably add the necessary plant nutrients mechanically to be sufficient
amounts of these plant nutrients present. The determination of this experiment was to

evaluate chemical and physical characteristics of soil and compare germination
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response of Triticum aestivum (Arabic local name, Haap), from Al-Baha region
Triticum aestivum (Arabic local name, meyeh), from Al-Qassim region, that taking
from two different climatical region of Saudi Arabia, Seeds from a population of
Triticum aestivum from Al-Qassim and a population from Al-Bahah, were collected
between 15 December 2012 and 7 January 2013 (Table 4.2). It is hypothesized that the
germination response of 7. aestivum seeds collected from the two regions will differ
under differing environmental stresses (temperature and salinity) and that this will be

related to the climatic and soil conditions from where they originated.

Chapter 5:

Electrical conductivity (EC) has been evaluated as a possible method for measuring
viability and seedling vigour in wheat and other crops (Suma et al., 2014). A study was
conducted using dormant, stock, by artificial-ageing wheat seeds Triticum aestivum to
evaluate the effect of different seed lots on electrical conductivity. All seed lots were
subjected to the following tests: standard germination; speed of germination;
germination rate; time to reach 50% germination; electrical conductivity test. There are
variables that affect explanation of results based on the design of the vigor test. As,
most vigour tests assess specific seeds/seedlings and then specify a composite value for
example a percentage of the seed lot. This vigor test scheme has value since it is more
rapid and less expensive to manage than individual seed analyses (Lazar et al., 2014).
The overall understanding of conductivity outcomes it that it characterizes an average
value functional to each seed. Another approach to vigor test design is based on
identification that maximum vigor tests define specific facets of seed quality. Such as,
the enhanced ageing test offers suggestion of the storage ability of a seed lot whereas
the conductivity test evaluates membrane integrity. Together mechanisms are important
determinants of seed vigor. Equally significant, it has been proposed that better
knowledge about seed quality might be gained from conducting study of seed vigor
tests and summarizing the results as a single vigor test index. This method is
comprehensive but it is difficult to effectively implement. Seeds from a population of
Triticum aestivum from Al-Qassim and a population from Al-Bahah, were collected
between 15 December 2012 and 7 January 2013 (Table 4.2). The hypothesis was that

aged seeds of poorer quality would be less salt tolerant. The second aim was to
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investigate the practical value of EC measurements of electrolyte leakage in predicting
relative seedling emergence for these land-races of Triticum aestivum under different
salinity conditions, where average germination lay in the commercially conventional
range. A supplementary aim was to measure electrolyte leakage from different parts of

the seed and establish how it was affected by the different salinity treatments.

Chapter 6:

Growth is a fundamental role of plants and specifies the regular intensification in
number and size of cells. The progressions of growth and development are painstaking
to begin with germination, tailed with large composite sequence of physiological and
morphological events (Ting 1982). Alongside with extra positive environmental
situations, passable and also accessibility of crucial components help to increases the
growth. The existence of salts in the irrigation systems of arid and semi- arid regions is
among the critical reasons affecting the accessibility of water and important nutrients to
plants by osmotic stress. Salinity forms the accessibility of nutrients and decreases plant
growth (Zalba and Peinemann 1998). Growth parameter for example germination, leaf
area, relative growth rate are very essential to evaluate the growth and are affected by
salinity. Substantial decreases in vegetative growth on wheat genotypes have been
detected in saline situations (Nassem et al., 2000). The reduction of growth may be due
to slow cell division rate, reduction in seedling growth (Zeng and Shannon 2000).
Growth of salt wheat genotypes that affected by salinity was mainly because of their
failure in photosynthetic capability rather than a decrease in leaf area, (El- Hendawy et
al., 2005). In his extensive work on the functional approach, (Hunt 1982) states 12
benefits of this technique. Among them are the following: (1) The functional approach
provides a clearer perception of ontogenetic drift; (2) Assumptions involved in the
calculation of mean values of NAR are avoided; (3) Statistical analyses may be
integrated into the same analytical procedure as the calculation of the derived quantities.
Effect of salinity on plant growth characteristics is to understand the raw data and the
fitted regressions and growth-functions obtained for all selected species using Hughes
and Freeman programme. The details used are: relative growth rate and relative leaf
area growth rate R and RL; leaf area ratio, LAR; unit leaf rate, E the values plotted are
instantaneous fitted values for each harvest time. Between 15 December 2012 and 7

January 2013, seeds from populations of five species of Poaceae, Triticum aestivum,
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Triticum durum, Hordeum vulgare, Panicum miliaceum and Pennisetum glaucum, were
collected from Al-Qassim (Figure 4.1). The hypothesis that the osmotic effects of
salinity on water availability and/or the directly toxic effects of salt would inhibit the
growth of the Saudi-Arabian land-races races of wheat. The objectives were (1) to
compare the effects of salinity on them with those on known salt-sensitive and salt-
tolerant varieties of wheat and (2) partition those growth effects using the methods of

quantitative growth analysis to understand better their significance.

Chapter 7:

Presents general discussion of the preceding chapters and an evaluation of their results

in order to draw conclusions and suggest recommendations for future research.
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Chapter 2. Germination response to salinity and germination recovery

2.1. Introduction

Salinization is a very serious agricultural dilemma. Most of the crops have low salt
tolerance. Isolation and identification of salt tolerant genes and cultivars are very
important in salt-tolerant crop breeding (Li et al., 2003; Wang et al., 2004). Wheat
(Triticum aestivum L.) 1s one of the most important nutritious crops, which ranks first in
the production of nutritious crops in the world. Due to the increasing global population
and limitation of cultivated lands, increasing the productivity of wheat, including the
ability to exploit and utilize saline soils. However, more research is needed on the salt
tolerance of potential crop species, particularly local cultivars of species that may be
locally adapted to saline or droughted conditions.

Plants tolerance to salt is determined by a series of genes that have relevant
direct or indirect effects to form a complex regulating network. However, it is
impracticable to investigate all the genes of all potential salt tolerant plant cultivars
simultaneously. Because of the numerous complications pathways such as the ion
homeostasis, osmoregulation, antioxidant, hormonal systems and natural
heterogeneity of soil, assessment of salt-tolerant cultivars frequently has occurred under
controlled environments. Germination is a vital phase for plant establishment (Song et
al., 2008) and most plants are vulnerable to ion stress at the germination stage (Catalan
et al.,, 1994) or during seedling growth (Rogers et al., 1995; Carvajal et al., 1998).
However, (George and William 1964) suggested that higher salinity tolerance at
germination is associated with low respiration rates and the replacement of respiratory
materials. (Saboora et al. 2006) investigated nine wheat cultivars at germination and
initial seedling growth using six salt treatments, and found that differing salt treatments
had significant effects on germination percentage, rate of germination, dry mass of
shoot and root and total dry mass.

Salinity is deleterious to plant growth through various mechanisms that include
induced nutrient deficiencies, osmotic effects and specific ion toxicities. There are
strong negative associations between the absorption of Na™ and CI” in leaf sap and fresh
mass of a number of wheat genotypes (Saqib et al., 1999). In contrast, sodicity can
inhibit plant growth predominantly due to abnormal pH, with high concentrations of
bicarbonates, and frequently shows a negative correlation with Na'; sodic soils may also

have boron toxicity (Marschner 1995). In some regions of the world, salt-affected soils
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are countered by heavy irrigation to leach soluble salts. This approach is applicable only
for saline soils, excluding the sodic and saline-sodic soils (Muhammad 1983; Qadir et
al., 1996). Additionally, for heavy irrigation good quality water is necessary in
sufficient quantity for the leaching of soluble salts. However, high-quality water is rare
and drought is more typical in many parts of the world.

Alongside the conventional approaches to cope with salinity and drought,
researchers need to consider the technologies and methods needed to achieve greatest
production under saline-sodic soils in a predominantly droughted environment.
Breeding for salt-tolerant, as well as drought-tolerant, varieties could potentially help
overcome the difficulties of these environmental stresses.

The desert climate and saline soils of the Kingdom of Saudi Arabia and other
countries of the Arabian Peninsula mean that the native and agricultural flora have high
potential to provide important salt tolerant cultivars and genetic plant materials.
However, relatively few studies have examined the flora of these countries, particularly
in regard to the germination of species in relation to salt. Little work appears to have
been done on several key cereal species, including Triticum aestivum, Triticum durum,
and Panicum miliaceum. The aim of this study was to investigate the germination of
seeds of five Poaceae species, Triticum aestivum Arabic local name (Meyeh), Triticum
durum Arabic local name (Logemei), Hordeum vulgare Arabic local name (saear arubi),
Panicum miliaceum Arabic local name (Mlessa), Pennisetum glaucum Arabic local
name (sudany), in differing saline conditions (0-700 mM sodium chlorine). The
subsequent germination in freshwater of ungerminated Triticum aestivum seeds that
were subjected to salt stress was also investigated. It was hypothesized that local
endemic land races of Saudi-Arabian cereal species will germinate in low

concentrations of salt, and that some will germinate at higher concentrations.

30



2.2. Methods

2.2.1 Seed Collection

Between 15 December 2012 to 7 January 2013, seeds from populations of five species

of Poaceae, Triticum aestivum, Triticum durum, Hordeum vulgare, Panicum miliaceum

and Pennisetum glaucum, were collected from Al-Qassim (Figure 4.1), Saudi Arabia

(Table 2.1). For each species, the farmers collected a total of 2-3 kg of seed from a field

of 1 hectare. Seeds were transported in paper bags to the laboratory, cleaned of

impurities and particulates and left to dry in the lab rooms at a temperature of 22 °C.

The seed was then brought to U.K. and were subsequently stored at the Millennium

Seedbank, Wakehurst Place (Royal Botanic Gardens, Kew) (Fig. 2.1).

Table 2.1 Locations in Saudi Arabia and species names of plants from which seeds were

collected.
Family Scientific name Arabic Local Collectors Location
Name
Triticum aestivum Meyeh N 26,134,89 E 043,96864
Triticum durum Logemei N 26,06349 E 440,63544
Poaceae | Hordeum vulgare saear arubi | Sami Albarih | N 2591733 E 043,78138
Panicum miliaceum Mlessa N 25,88129 E 043,80604
Pennisetum glaucum | sudanyah N 26,09399 E 043,96964

31




Figure 2.1 Millennium Seedbank, Wakehurst Place (Royal Botanic Gardens, Kew).

2.2.2. Germination response to salinity

For each of the five species, ten replicate Petri dishes each containing 20 seeds were
used in each of seven treatments of differing sodium chloride concentrations (0, 100,
200, 300, 400, 500, 600, 700 mM sodium chloride). Seeds were placed on 9 cm filter
papers (Whatman No. 1) and 10 ml of the appropriate sodium chloride solution was
added per dish. This was topped up every four days, according to need and replaced
every ten days. Dishes were wrapped around with a layer of Nescofilm, in order to
reduce evaporation. Petri dishes were placed in temperature-controlled incubators with
an 12 hour alternating temperature regime (15/25°C) and a 12/12 hour photoperiod. The
choice of temperature range was based on the climatic information recorded in the study
area, which were taken from the Meteorological Administration in Al-Qassim (see
Chapter 4).

Germinated seeds (with emerged radicles) were counted in every dish every
twenty-four hours, and the germinated seeds immediately removed. This was continued
for a period of thirty days. The cumulative germination over time was used to calculate
the tso, the period of time taken for 50% of seeds to germinate. After this, seeds that had
not germinated were washed with distilled water thoroughly several times, and then
transferred to new Petri dishes with 10 ml distilled water, and incubated and counted as

previously for a further 5 days until no further germination was observed.
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In order to further investigate the recovery of seeds that have been subjected to salt
stress, ten replicate Petri dishes each containing 20 Triticum aestivum seeds were
subjected to treatments of four differing concentrations of sodium chloride, 400, 500,
600, 700 mM sodium chloride. Seeds were placed on 9 cm filter papers (Whatman No.
1) and 10 ml of the appropriate treatment solution was placed in the dish. This was
topped up every four days, according to need. Petri dishes were placed in temperature-
controlled incubators as for the germination experiment above. Germinated seeds (with
emerged radicles) were counted in every dish every twenty-four hours, and the
germinated seeds immediately removed. This was continued for a period of three and
five days. After this, seeds that had not germinated were washed with distilled water
thoroughly several times, and then transferred to new Petri dishes, and incubated for

five days to make sure no farther germination occurs.

2.2.3. Seed viability

At the end of the experiment all ungerminated seeds from each species were tested for
viability by the tetrazolium method, following the method recommended by the
International Seed Testing Association (Anon 1999 a, b). The tetrazolium method was
selected because it 1s widely used throughout the world as a highly regarded method of
estimating seed viability and is a routine test in many seed testing laboratories.
Furthermore, it is a quick test, completed in only a few hours, compared to regular
germination tests that require as long as two months for some species. More important
was to simulate the effect of re-irrigation in the field, an agronomic practice that will be
explained in detail in section 6.2.2. Seeds to be tested were soaked in distilled water for
about half an hour and were then opened into half and fully immersed in petri dishes
filled with tetrazolium. Petri dishes were placed in a darkened incubator, to prevent
photo-conversion of the solution, set to 30 °C. After 24 h, seeds were observed and
diagnosed using a magnifying glass or microscope. Tetrazolium test is a biochemical
test, which differentiates live from dead tissues of seed embryos on the basis of
dehydrogenase enzyme activity (respiration enzymes). Upon seed hydration, the activity
of dehydrogenase enzymes increases, resulting in the release of hydrogen ions, which
reduce the colourless tetrazolium salt solution (2,3,5-triphenyltetrazolium chloride) into

a chemical red compound called formazan. Formazan stains living cells with a red
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colour, while dead cells remain without colour. The viability of seeds is interpreted

according to the staining pattern of the embryo and the intensity of the colouration.

Proportion of seeds that germinated were arcsine and transformed prior to analysis.
The differences in germination of a species between salinity treatments were examined
using one-way ANOVAs and Tukey post-hoc tests using SPSS, version 21. The
differing responses amongst species to salinity treatments were examined using a two-

way ANOVA (R Core Team 2012).

2.3. Results

2.3.1. Germination response to salinity

Triticum aestivum

Seeds of T. aestivum germinated at all sodium chloride concentrations except 700 mM.
However, the number of seeds germinating was reduced with increasing sodium
chloride concentration (Fig. 2.2, Table 2.2), with significant differences between
treatments (df=7,72, F=1753, P<0.001). There were no significant differences in the
percentages of germination between 0 mM, 100 mM and 200 mM of sodium chloride
(Fig 2.3). The speed of germination (tso) was faster for 7. aestivum than for the other
species (Table 2.3). The speed of germination was reduced by increasing concentrations
of sodium chloride (Fig 2.3, Table 2.3). Also seeds recovered from the salinity in both
treatments, as was evident after three and five days, at 400, 500, 600 and even 700 mM
NaCl (Figure 2.4, 2.5)
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Figure 2.2. Mean cumulative number of Triticum aestivum seeds that germinated over time (10 replicates,

each containing 20 seeds) in 0, 100, 200, 300, 400, 500, 600 and 700 mM of sodium chloride.
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Figure 2.3. Mean (+SE) proportion (%) of Triticum aestivum seeds that germinated in different

concentrations of sodium chloride. Differing letters denote significant differences (P<0.001).
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Figure 2.4. Mean number of Triticum aestivum seeds that germinated after three days in different
concentration of sodium chloride (saline treatment) (10 replicates, each with 20 seeds), and the number of
seeds that did not germinate under the salt treatments, but which subsequently germinated in 0 mM NaCl

(recovery in freshwater) 400, 500, 600, 700.
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Figure 2.5. Mean number of Triticum aestivum seeds that germinated after five days in different
concentration of sodium chloride (saline treatment) (10 replicates, each with 20 seeds), and the number of
seeds that did not germinate under the salt treatments, but which subsequently germinated in 0 mM NaCl

(recovery in freshwater) 400, 500, 600, 700.
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Triticum durum

Seeds of T. durum did not germinate in sodium chloride concentrations of 600 or 700
mM and the number of seeds germinating was reduced with increasing sodium chloride
concentration, with significant differences between treatment (df=7,71, F=206,
P<0.001) (Fig. 2.5, Table 2.2). There was no significant difference in the percentages of
germination between 0 mM, 100 mM and 200 mM of sodium chloride, and there was
no significant difference in the germination between the highest concentrations (500,
600 and 700 mM) (p<0.001 in all cases). The speed of germination was reduced (tso) by

increasing concentrations of sodium chloride (Fig 2.6, Table 2.3).
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Figure 2.5. Mean cumulative number of Triticum durum seeds that germinated over time (10 replicates,

each containing 20 seeds) in 0, 100, 200, 300, 400, 500, 600 and 700 mM of sodium chloride.
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Figure 2.6. Mean (+SE) proportion (%) of Triticum durum seeds that germinated in different

concentrations of sodium chloride. Differing letters denote significant differences (P<0.001).

Hordeum vulgare

Seeds of H. vulgare germinated in all sodium chloride concentrations except 700 mM
and the number of seeds germinating were reduced with increasing sodium chloride
concentration (Fig. 2.7, Table 2.2), with significant differences between treatments
(df=7,72, F=130, p<0.001). There was no significant difference in the percentages of
germination between the treatments 0 mM and 100 mM, but germination in the control
treatment (0 mM) was significantly higher than in all other treatments (p<0.05 in all
cases). The germination in all treatments greater than 300 mM were significantly
different to those in all concentrations (P<0.001 in all cases), with the exception of 600
mM and 700 mM between which there was no significant difference. The speed of
germination was reduced (tso) by increasing concentrations of sodium chloride (Fig 2.8,

Table 2.3).
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Figure 2.7. Mean cumulative number of Hordeum vulgare seeds that germinated over time (10 replicates,

each containing 20 seeds) in 0, 100, 200, 300, 400, 500, 600 and 700 mM of sodium chloride.
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Figure 2.8. Mean (£SE) proportion (%) of Hordeum vulgare seeds that germinated in different

concentrations of sodium chloride. Differing letters denote significant differences (P<0.001).
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Panicum miliaceum

Seeds of Panicum miliaceum germinated poorly in 300 and 400 mM of NaCl and there
was no germination in concentrations greater than 400 mM (Fig. 2.9, Table 2.2). There
were significant differences in the percentage of seeds germinating between treatments
(df=7,72, F=136, p<0.001). There were no significant differences in the percentage
germination between 0 mM, 100 mM and 200 mM of sodium chloride, and there were
no significant differences between the highest concentrations (Fig. 2.10, P<0.001 in all
cases). The speed of germination was reduced (tsp) by increasing concentrations of

sodium chloride (Fig 2.10, Table 2.3).
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Figure 2.9. Mean cumulative number of Panicum miliaceum seeds that germinated over time (10

replicates, each containing 20 seeds) in 0, 100, 200, 300, 400, 500, 600 and 700 mM of sodium chloride.
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Figure 2.10. Mean (+SE) proportion (%) of Panicum miliaceum seeds that germinated in different

concentrations of sodium chloride. Differing letters denote significant differences (P<0.001).

Pennisetum glaucum

Seeds of Pennisetum glaucum also germinated poorly in 300 and 400 mM of NaCl and
there was no germination in concentrations greater than 400 mM (Fig. 2.11, Table 2.2).
There were significant differences in the percentage germination between treatmetns
(df=7,72, F=218, p<0.001). The percentage germination in the control treatment (0
mM) was significantly higher than in all other treatments (P<0.001 in all cases).
Germination in the higher concentrations (=400 mM) were significantly lower than in
the other treatments (P<0.001 in all cases). The rapid speed of germination (tsp) was

reduced with increasing concentrations of sodium chloride (Fig 2.10, Table 2.3).
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Figure 2.11. Mean cumulative number of Pennisetum glaucum seeds that germinated over time (10

replicates, each containing 20 seeds) in 0, 100, 200, 300, 400, 500, 600 and 700 mM of sodium chloride.
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Figure 2.12. Mean (£SE) proportion (%) of Pennisetum glaucum seeds that germinated in different

concentrations of sodium chloride. Differing letters denote significant differences (P<0.001).
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Differing responses of species to salinity

Species differed significantly in their response to salinity treatments (significant interaction
between concentration and species, F=4.73, P<0.001). 7. aestivum and H. vulgare were able to
germinate in higher concentrations compared to the other species. In contrast, whilst
Pennisetum glaucum and Panicum miliaceum had slightly lower germination in the control (0

mM) compared to the other species, both had substantially lower germination rates that the

other species in saline conditions (Table 2.2).

Table 2.2. Mean proportion (%) of seeds germinating of five Poaceae species under different

concentrations of sodium chloride.

Plant species
Concentration of sodium chloride (mM)
0 100 200 300 400 500 600 700
T. aestivum
99.5 98.5 93.5 81 68 38 10 0
T. durum
96.5 94.5 89 77.5 38 6 0 0
H. vulgare
98.5 95 88.5 87.5 71 28 5.5 0
P. miliaceum
92 89 82 48.5 9 0 0 0
P. glaucum
94.5 76 69 35 3 0 0 0

Table 2.3. Time (days) taken for 50% of seeds of five Poaceae species to germinate (Tsg) in

differing concentration of sodium chloride (mM).

Species Concentration of NaCl (mM)
0 100 200 300 400 500 | 600 700
T. aestivum 1 1 2 2 2 6 7 _
T. durum 1 1 2 3 4 7 8 _
H. vulgare 1 1 2 4 4 6 10 _
P. miliaceum 1 1 2 4 7 _ _ _
P. glaucum 1 2 4 6 6 _ _ _
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2.2.4 Seed viability tests

There was little variation between species in the viability of seeds (Table 2.4), with germination

rates being very high (>95%).

Table 2.4. Seed viability (100 seeds), tested using tetrazolium (2,3,5-triphenyl-2H-tetrazolium

chloride), for five Poaceae species collected in Al-Qassim, Saudi Arabia.

Species Live seeds (%) Dead seeds (%)
Triticum aestivum 98 2
Triticum durum 97 3
Hordeum vulgare 97 3
Panicum miliaceum 95 5
Pennisetum glaucum 96 4
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2.3. Discussion

The germination responses to salinity of all five species showed considerable
tolerance to high concentrations of NaCl other researchers have found what is very
sensitive. All species, with the exception of Pennisetum glaucum, germinated equally
well in 100 mM of NaCl as in distilled water. Furthermore, all species germinated at
400 mM and two species, Hordeum vulgare and Triticum aestivum, germinated in 600
mM solution, a concentration greater than full strength seawater. These cereal species
are not normally regarded as halophytes but the behavior of these races suggested
tolerance as high as that of many true halophytes of coastal salt marshes. For example,
(Woodell 1985) found that several species considered true halophytes and frequently on
intertidal salt marshes, such as Triglochin maritimum and Plantago maritima, failed to
germinate in full strength seawater. Most halophytes normally germinate best in fresh
water (Woodell 1985, Bakker et al., 1985), with increasing enforced dormancy and
mortality as salinity increases (Pujol et al., 2000). Triticum aestivum, T. durum and
Hordeum vulgare were particularly salt-tolerant and could be considered for more saline
agricultural situations, as well as being especially suitable germplasms for breeding
tolerance into future crop varieties.

The use of germination tests as the standard methods of assessing seed quality
was highly effective and indicated clearly that the vitality of seeds of all plant species
studied was high. The tetrazolium testing and germination studies showed that overall
the seed samples were of high quality for germplasm banking.

None of the study species showed critical temperature, presumably as a result of
previous domestication (See chapter 4) found in many wild species of adverse
environments (Crocker and Barton 1953; Berger 1985). None of them should present
problems for regeneration of plants from the stored seeds. However, replanting seed
from good grain fields is a common practice on local farms. Nevertheless, cleaning
seeds in the field from weed seed is needed, especially if the seed originated from
another farm or from another region. Seed must be dried cautiously to 10 or 12% seed
moisture content immediately following harvesting to ensure good later germination. At
50% atmospheric relative humidity, the equilibrium moisture content of wheat and rye
seeds is about 12%, barley 11% and oats 10.5% (Navarro and Noyes 2010). The
equilibrium moisture content of small grain seed that exposed to 70% relative humidity

is approximately 15% and this remains too high for safe storage. At 90% atmospheric
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relative humidity, the seed moisture content of several small grain crops augments to 20
- 23% Viability and vigor are lost rapidly under these conditions.

The most remarkable aspect of the findings of these experiments with these land
races was the apparent salinity tolerance from seed to the establishment of seedlings.
Germination of all species was high in relatively high salinities; although it is unknown
how well these races would grow as adult plants in saline conditions, these results are
positive and the effect on adult plants should be investigated as a priority. The
performance at higher salinity of Hordeum vulgare and Triticum aestivum was
particularly interesting. The germination result of Pennisetum glaucum in 100 mM of
NaCl equally to distilled water was unexpected. Interestingly, growth of Panicum
miliaceum in the salt was meaningful at 300 mM NaCl, which also was not predicted.
Exposure to high concentration of salt might either begin the priming of seeds before
germination or it might result in their death (Gulzar & Khan, 2002; Ungar, 1995).
Furthermore, extreme salinity and destructive photoperiod together with thermoperiod
that plant exposed too could inhibit seeds germination, strikingly in this land race
Triticum aestivum have recovered from salt stress at 400, 500, 600, and even in 700 mM
NaCl. (Rubio-Casal et al., 2002; Song et al., 2005) have stated that seeds of other
specise could germinate when the environment becomes favorable; this kind of reaction
has been linked to the need to take advantage of the periods with suitable conditions for
establishment (Neo and Zedler 2000). Seeds that have very good germination, for
example Hordeum vulgare and Triticum aestivum, could have very good yield giving
the consequences that those that germinated better, may produce better food plants.
From point of view of agronomic perspective, the improvement of germination (e.g. by
7-13%) might be significant for farmers or horticulturists in improving yield and
reducing the costs of production (Panagopoulos and Margaritis, 2010). This project has
successfully identified appropriate local, salt tolerant populations of these species in
rural farms of the Al-Qassim region. Importantly, this project has persuaded local
farmers to allow collection of part of their fiercely guarded heritage, sometimes with
difficulty. Bulk collections of seed have been made in a fashion that would be expected
to represent the genetic diversity within these land races of cereal species. This will
need to be confirmed, preferably by molecular genetic analyses, in future development
and use of the germplasm bank. The preparation and deposition of voucher herbarium

specimens for each type should provide an invaluable archive of the material and will
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allow cross-referencing with the morphological and taxonomic characteristics of future
collections of the same species.

The most important outcome of this work, is that the fully documented seed
collections made have now been dried down to less than 8% moisture content and
placed in long-term storage at -20 °C, and have therefore been secured for the benefit of
future research and exploitation. The validity of the methodology and the utility of the
germplasm-banking resources established in the Kingdom of Saudi Arabia have
therefore been established. However, bulk of seeds also has been stored at Millennium

Seedbank, Wakehurst Place (Royal Botanic Gardens, Kew).
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Chapter 3. Efficacy of seed germination testing in response to
temperature and salinity

3.1 Introduction

Seed germination and initial plant development are multifaceted processes reliant on
interactions between soil temperature and soil moisture, together with photoperiod
(Montieth 1981), among other factors. Temperature is among the most important factors
for germination: germination rate increases with higher temperatures, until a threshold
or optimal temperature is exceeded, beyond which germination rate is reduced
(Montieth 1981). Thus different cultivars may have different base temperatures, below
which no biological progress will occur (Montieth 1984); similarly they will vary in
their optimal and ceiling temperatures. However, not only the amount of germination
but also the speed of germination can be affected by temperature. Hence, the length of
time taken for germination differs between plant biotypes or cultivars (Weaver and
Thomas 1986; Eagles 1988) and variations in the responses to temperature over the base
temperature occur between varieties (Mann et al., 1985). Experiments have established
the base temperatures for a wide range of species by providing optimum moisture
conditions and photoperiod (e.g. Bierhuizen and Wagenvoort 1974; Del Pozo et al.,
1987; Roche et al., 1997a,b). As germination is initiated after an imbibed seed is
subjected to temperatures over the base temperature (Montieth 1981), base and other
cardinal temperatures have been frequently determined through the assessment of
germination rates over a range of temperatures (Montieth 1981; Garcia-Huidobro et al.,
1982; Del Pozo et al., 1987). Even when seeds are able to germinate, there may be
variations in the vigour and health of the resulting seedlings as a result of environmental
conditions during the germination process and this might be expected to be reflected in

the dry mass of seedlings shortly after germination.

Surprisingly little is known about how other environmental factors may affect the basal,
optimal and ceiling temperatures for germination, or the subsequent vigour of seedlings,
but it has been shown that the sensitivity of seeds to salinity may interact with the
ability to germinate at extreme temperatures (Warner et al., 2000). In the particular
context of cereal land-races from the hot, arid areas of Saudi Arabia, it would be of
considerable interest to know whether salinity interacts with temperature to influence

agronomic outcomes.
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The identification of crop biotypes that differ in their base temperature, time of
germination and growth reaction to temperature species, may allow the development of
crop varieties that grow quicker at extremes of temperature, increasing food production.
Breeding for cultivars that have high germination rates at low temperatures has been
effective for beans (Dickson 1971), tomatoes (Cannon et al., 1973; De Vos et al., 1982;
Scott and Jones 1985), maize (Eagles 1988) and cotton (Marani and Dag 1962).
Temperature reduction comparison experiments have been conducted for maize

(Hodges et al., 1994, 1995) and soybean (Bramlage et al., 1979).

The objectives of the research described in this chapter were: (1) to establish a protocol
to investigate germination responses to temperature generally and, in particular,
determine basal, optimal and ceiling temperatures for germination for these
economically important Saudi Arabian cereal land-races; (2) to make broad preliminary
comparisons of the effects of temperature, salinity and their interaction across a wide

range of species and varieties of some of them.

3.2 Methods

These experiments were conducted at the Millennium Seedbank, Wakehurst Place
(Royal Botanic Gardens, Kew). One land-race of each of five cereal species from the
Al-Qassim region of Saudi Arabia (see Chapter 2) were investigated: Triticum aestivum,
Triticum durum, Hordeum vulgare, Panicum miliaceum and Pennisetum glaucum. In
addition, one commercial variety of winter wheat, Triticum aestivum (Istabraq), was
used for comparison. Germination was tested at a wide range of constant temperatures
and salinities using two complementary approaches; a thermogradient plate with a high
resolution for temperature but limited capacity for species/treatment combinations, and
a series of incubators with greater capacity but offering a more limited number of
temperature treatments.

3.2.1 Thermogradient plate experiment

This experiment focused on wheat and barley species: Triticum aestivum, T. aestivum
(Istabraq), Triticum durum and Hordeum vulgare. Twenty seeds were sown onto the
surface of germination paper in Petri dishes (50 mm). Petri dishes were watered with

one of four salinity treatments, 0 mM, 250 mM, 500 nM and 1000 mM of sodium
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chloride. Three replicate petri dishes per species and salinity treatment were subjected
to one of 13 constant temperatures across the thermogradient plate (Grant Instruments,
Cambridge, UK, testing 1191672 GRD1) ranging from approximately 6 to 33 °C with a
12 h photoperiod (white light with photon flux density of 50 W m™). The temperature of
a Petri dish at each position was measured using temperature probes and a Grant
temperature logger set to record at each position on the gradient every 10 minutes for
the duration of study (Figure 3.1). These measurements were used to define the precise
treatment temperatures. Germination was scored every two hours from 08:00 to 19:00
daily only to see if there is any new seeds will germinate for a period of at least three
weeks until no further germination was observed. Germination was defined as radicle
emergence of 2 mm daily. As a measure of vigour, two germinated seeds were collected
randomly from each Petri dish three days after germination and the seedlings separated

into two roots and shoots, before drying and weighing to obtain dry mass.

3.2.2 Incubator experiments

All five Saudi Arabian cereals (Triticum aestivum, Triticum durum, Hordeum vulgare,
Panicum miliaceum and Pennisetum glaucum) were examined. Incubators were set at
five constant temperature regimes (10, 15, 20, 25, 30, 35 °C). The choice of temperature
range was based on the climatic information recorded in the study area, which were
taken from Meteorological Administration in Al-Qassim (see Chapter 4). Seeds were
placed on 9 cm filter papers (Whatman No. 1) and 7 ml of one of four salinity
treatments, distilled water (0 mM NaCl), 250 mM, 500 mM and 1000 mM of NaCl,
added per dish, which was replaced every two days. For each species three replicate
Petri dishes each containing 20 seeds was used in each salinity and temperature
combination. Germinated seeds (with emerged radicles) were counted in every dish
every two hours from 08:00 to 19:00, and any germinated seeds immediately removed
after three days. This was continued for a period of 17 days. As previously described,

seedlings were sampled, dried and weighed.
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3.2.3 Analysis

Germination percentage was transformed to arcsin and then analysed using linear
models that included temperature, salinity, species and the interaction between
temperature and salinity, and a polynomial term that allowed for non-linear

relationships (R Core Team 2012).

The time taken for the viable seeds to germinate was represented by the time to 50%
germination (tso), which was derived from the cumulative germination curves over time.
Basal, optimal and ceiling temperatures were derived from relationships of '/tso against
temperature, using the Kew Millennium Seedbank standard technique of fitting
intersecting linear regressions; the data points were then divided into sub- and supra-
optimal ranges and linear regressions fitted to the ascending and descending ranges.

Let x = temperature and y = '/ts

For the sub-optimal range: y =a + bx

When y = 0, x = basal temperature = -a/b

For the supra-optimal range: y = ¢ + dx

When y = 0, x = ceiling temperature = -c/d

At the intersection temperature: a + bx =c + dx

Therefore optimal temperature =(a-c)/(d - b)
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Figure 3.2. Three photographs showing the thermogradient plate, temperature logger and
arrangement of the Petri dishes containing seeds.
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3.3 Results

3.3.1 Thermogradient plate germination experiment

The cumulative germination curves at all the different combinations of temperature and
salinity are shown for Triticum aestivum, T. aestivum (Istabraq), Triticum durum and
Hordeum vulgare in Figs 3.2, 3.3, 3.4 and 3.5 respectively. In all cases these followed

the inverse sigmoidal pattern expected. No germination occurred in any species/variety

at 1000 mM Na Cl.
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Figure 3.2. Time course of cumulative germination for Triticum aestivum (Qassim) at (a) 0 mM,
(b) 250 mM, and (c¢) 500 mM NaCl on the thermogradient plate.
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Figure 3.3. Time course of cumulative germination for Triticum aestivum (Istabraq) at (a) 0
mM, (b) 250 mM NaCl on the thermogradient plate.
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Figure 3.4. Time course of cumulative germination for Triticum durum at (a) 0 mM, (b) 250
mM NaCl on the thermogradient plate.
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Figure 3.5. Time course of cumulative germination for Hordeum vulgare at (a) 0 mM, (b) 250
mM, and (¢) 500 mM NaCl at (a) 0 (b) 250 (c¢) 500 (mM) NaCl on the thermogradient plate.
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The final germination of these species in response to temperature and salinity is shown

in Fig. 3.6.
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Figure 3.6. Response of final germination to temperature in (a) Triticum aestivum (Quassim),
(b) T. aestivum (Istabraq), (¢) 7. durum, and (d) H. vulgare at salinities of 0, 250 and 500 mM
NacCl on the thermogradient plate. Locally smoothed non-parametric regressions (LOESS) on
temperature are shown.
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In the absence of salinity, final germination was high and not much affected by
temperature in any of the land-races or varieties of these species. At a salinity of 250
mM NaCl, the final germination was decreased and a temperature optimum of c. 18 —
23 °C became more evident in all species. There is a suggestion that the Istabraq variety
of Triticum aestivum had a lower temperature optimum than the Qassim land race, and
also than the Saudi land-races of the other two species. At 500 mM, germination was
relatively low in Triticum aestivum (Qassim) and only slightly higher in Hordeum
vulgare; there was no germination at all in Triticum aestivum (Istabraq) or 7. durum at
this salinity. General linear models showed that the effects of salinity, temperature and
their interaction on germination were highly significant in all land-races or varieties of
these species; in addition when all the land-races/varieties were considered together,

they were also highly significantly different (Table 3.1).

Table 3.1. Summary of general linear models of the effects of salinity and temperature on
arcsin-transformed germination percentage in the four species individually and all four
combined, in the Thermogradient plate experiment. A polynomial term was included to allow
for non-linear relationships.

Species Effect F P

All combined Species 13.68 <0.001
Salinity 1238.80 | <0.001
Temperature 95.78 <0.001
Temperature x salinity | 44.03 <0.001

T. aestivum (Qassim) | Salinity 990.24 | <0.001
Temperature 51.28 <0.001
Temperature x salinity | 35.03 <0.001

T. aestivum (Istabraq) | Salinity 990.24 | <0.001
Temperature 35.23 <0.001
Temperature x salinity | 15.44 <0.001

T. durum Salinity 619.85 | <0.001
Temperature 50.40 <0.001
Temperature x salinity | 38.43 <0.001

H. vulgare Salinity 112.37 | <0.001
Temperature 18.03 <0.001
Temperature x salinity | 6.9 <0.001
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Data for speed of germination, expressed as the reciprocal of the time to 50%

germination 1/(tsp), for this experiment are given in Table 3.2. These are generally more

sensitive to temperature than final germination and can be used to derive the basal

cardinal (basal, optimal and ceiling) temperatures (Table 3.3).

Table 3.2. Speed of germination, expressed as '/ts; at different temperatures for the four plant
species at three concentrations of NaCl on the thermogradient plate.

Variety Temperature (°C)

Salinity

NaCl (mM) 8.0 99 | 118 | 13.8 | 157|176 | 195|214 | 253 | 272|291 | 31.1 | 33.0

T. aestivum 0 013 | 014 | 0.22 | 0.25 | 0.29 | 0.29 | 0.29 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.03

(Qassim) 250 0.11 ] 0.09 | 0.10 | 0.09 | 0.09 | 0.20 | 0.20 | 0.22 | 0.25 | 0.07 | 0.08 | 0.07 | 0.00

500 0.00 | 0.08 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

0 013 | 014 | 022 | 0.22 | 025 | 0.25 | 0.29 | 0.29 | 0.33 | 0.33 | 0.33 | 0.25 | 0.22

T. aestivum 250 0.00 | 0.08 | 0.08 | 0.08 | 0.13 | 0.13 | 0.13 | 0.08 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00

(Istabraq) 500 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

0 0.11 ] 0.20 | 0.25 | 0.25 | 0.50 | 0.50 | 0.50 | 0.25 | 0.25 | 0.25 | 0.25 | 0.20 | 0.20

T. durum 250 0.00 | 0.11 | 013 | 017 | 017 | 017 | 025 | 0.25 | 0.17 | 0.33 | 0.00 | 0.00 | 0.00

500 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

0 013 | 014 | 014 | 0.25 | 0.25 | 0.25 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.03

H. vulgare 250 006 | 0.14 | 0.14 | 014 | 011 | 0.20 | 017 | 014 | 0.10 | 011 | 0.13 | 0.10 | 0.00

500 0.00 | 0.14 | 015 | 014 | 013 | 0.07 | 011 | 013 | 0.13 | 0.13 | 0.00 | 0.00 | 0.00

Table 3.3. Estimates of basal (Typn), optimal (To,) and ceiling (Tma) temperatures for
germination of four species/varieties at three salinities on the thermogradient plate, derived from
pairs of linear regressions of '/ts) on temperature. The four regression parameters are described
in the methods; non-significant regressions are not presented.

Species Concentration Regression parameters Tmin (°C) | Topt(°C) | Tmax (°C)
of NaCl (mM)
a b c d
T. aestivum 0 -0.0725 | 0.0237 | 0.6751 | -0.0150 3.1 19.3 45.0
(Qassim) 250 -0.0125 | 0.0103 0.9444 | -0.0347 1.2 21.3 27.2
500 -0.0107 | 0.0051 | 0.5486 | -0.0217 21 20.9 25.3
T. aestivum 0 0.0769 | 0.0106 | 0.9651 | -0.0235 -7.3 26.0 41.1
(Istabraq) 250 -0.0444 | 0.0113 3.9
500
0 -0.1077 | 0.0344 3.1
T. durum 250 -0.0377 | 0.0136 | 0.7821 | -0.0252 2.8 21.1 31.0
500
H. vulgare 0 -0.0072 | 0.0157 | 0.6402 | -0.0131 0.5 22.5 48.9
250 -0.0138 | 0.0126 | 0.3375 | -0.0087 1.1 16.5 38.8
500 0.0469 | 0.0047 | 0.4137 | -0.0137 -10.0 19.9 30.2

This technique depends to an extent on the goodness of fit of the pairs of regression

lines. Because of the temperature range used, there were generally more points and

therefore better fits in the sub-optimal ranges than in the supra-optinal ranges. Hence it
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was possible to produce estimates of basal temperature for more land-race/salinity
combinations than estimates of optimal and ceiling temperatures. The most complete
data were for the Qassim race of 7. aestivum, which showed evidence of a narrowing of
its temperature range with increasing salinity. There was little evidence of systematic

effects in the other races/species.

The dry masses of seedlings three days after germination in this experiment are given in
Tables 3.4 and 3.5 for the 0 and 250 mM NacCl treatments, respectively. In the absence
of salt, there were marked variations in seedling mass, reflecting better vigour in
seedlings that had germinated at intermediate temperatures (20-21 °C) than at the
extremes (Fig. 3.4). Seedlings that had germinated in 250 mM NaCl were all very much
smaller indicating greatly reduced vigour as a result of salt stress; however the greatest

mass for each race was seen at the slightly lower temperature of 19.5 °C (Fig. 3.5).

Table 3.4. The dry mass of seedlings of four plant races/species (mg) at an NaCl concentration
of 0 mM three days after germination on the thermogradient plate.

T. aestivum T. aestivum T. durum H. vulgare
Temp%rature Istabraq
c Mean SE Mean SE Mean SE Mean SE
8.0 18.1 22.3 2.0 19.4 12.3 22.3 20.0 22.4
99 23.2 25.6 11.5 26.7 32.3 24.3 12.4 35.7
11.8 20.4 23.2 13.2 37.6 15.3 24.0 19.8 44.4
13.8 18.6 31.0 11.5 34.0 13.5 37.9 22.6 43.8
15.7 37.2 34.5 20.2 27.8 16.2 37.9 41.6 54.7
17.6 46.4 33.3 25.7 31.5 35.4 41.3 48.4 63.1
19.5 51.3 22.2 33.2 20.1 40.8 30.2 57.3 56.3
21.4 53.2 15.7 316 23.9 42.2 155 | 66.2 | 36.4
25.3 18.1 15.8 19.2 5.0 15.1 17.5 23.1 23.9
27.2 16.0 9.1 5.6 7.5 14.7 10.9 16.0 22.6
291 254 7.5 3.2 4.3 14.3 11.8 114 20.1
311 19.4 14.7 2.0 3.5 13.7 18.1 13.4 18.4
33.0 24.8 73 2.2 0.7 9.9 3.0 9.5 4.0
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Table 3.5. The dry mass of seedlings of four plant races/species (mg) at an NaCl concentration
of 250 mM three days after germination on the thermogradient plate.

T. aestivum T. aestivum T. durum H. vulgare
Temp%rature Istabraq
c Mean SE Mean SE Mean SE Mean SE
8.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
9.9 9.9 0.0 0.0 0.0 0.0 0.0 0.0 10.4
11.8 11.8 0.0 0.0 0.0 18.8 0.0 17.9 14.7
13.8 13.8 5.7 20.8 3.7 32.1 3.7 342 | 116
15.7 15.7 5.9 33.9 3.8 10.9 5.0 8.1 17.8
17.6 17.6 3.8 14.0 4.8 43.3 1.8 34.6 32.1
195 19.5 8.7 36.2 5.9 13.7 5.2 142 | 396
21.4 21.4 3.6 14.7 4.6 11.3 3.6 7.0 38.8
253 253 2.0 10.6 3.0 5.6 1.9 5.2 18.1
27.2 27.2 2.0 8.9 2.8 9.7 2.0 4.7 15.1
29.1 201 1.1 8.4 15 0.7 0.7 0.3 4.9
311 31.1 0.0 0.0 0.0 0.0 0.0 0.0 8.2
33.0 33.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1
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3.3.2 Incubator experiment

The cumulative germination curves at all the different combinations of temperature and
salinity are shown for Triticum aestivum, T. durum, Hordeum vulgare, Panicum
miliaceum and Pennisetum glaucum in Figs 3.7, 3.8, 3.9, 3.10 and 3.11 respectively. In

all cases these followed the inverse sigmoidal pattern expected. No germination

occurred in any species at 1000 mM Na Cl.

a)
15°C
20°C
100 A 25 °C
30°C
— 35°C
80
g
c
£ 60
©
£
£
D 40
(O]
20
O T T T T T T T T T T T T T 7171
1234567 891011121314151617
Time (days)
b)
15°C
20°C
100 25°C
30°C
35°C
80
S
c
£ 607 j
g =
=
D 40~
(O]
20~ £
0

T T T T T T T T T T T T T
1234567 891011121314151617
Time (days)

65



15°C
20°C
100 25°C
30°C
35°C
80
g
c
S 60
(]
£
E
Q
0] 40_
20 i
/ b o
/ .
OIIIII’I‘/‘I'IIIIIIIIII
12345678 91011121314151617

Time (days)

Figure 3.7. Time course of cumulative germination for Triticum aestivum (Qassim) at (a) 0 mM,
(b) 250 mM, and (c¢) 500 mM NaCl in the incubator experiment.
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Figure 3.8. Time course of cumulative germination for Triticum durum at (a) 0 mM, (b) 250
mM, and (c) 500 mM NaCl in the incubator experiment.
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Figure 3.9. Time course of cumulative germination for Hordeum vulgare at (a) 0 mM, (b) 250
mM, and (c) 500 mM NaCl in the incubator experiment.
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Figure 3.10. Time course of cumulative germination for Panicum miliaceum at (a) 0 mM, (b)
250 mM NaCl in the incubator experiment.
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Figure 3.11. Time course of cumulative germination for Pennisetum glaucum at (a) 0 mM, (b)
250 mM, and (c) 500 mM NaCl in the incubator experiment.
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The temperature response of final germination to salinity in the five species is
summarized in Fig. 3.12. As in the thermogradient plate experiment, final germination
was not very sensitive to temperature in the absence of salinity. Triticum aestivum. T,
durum and Panicum miliaceum showed no obvious temperature optimum, whereas
Hordeum vulgare showed somewhat reduced germination at low temperature, and
Pennisetum glaucum displayed rather lower germination at both extremes. At 250 mM
NaCl, however, final germination was distinctly lower in all species, and especially so
at lower temperatures. These effects were further magnified at 500 mM NaCl, where
germination was generally poor and rather erratic. H. vulgare showed a consistent trend

towards higher germination with increasing temperature.
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Figure 3.12. Response of final germination to temperature in (a) Triticum aestivum (Quassim),

(b) T. durum, (c) H. vulgare (d) P. miliaceum and (e) P. glaucum at salinities of 0, 250 and 500
mM NaCl) in the incubator experiment.
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General linear modelling showed that the effects of salinity and temperature on
germination were highly significant in all of these species; the interaction between
temperature and salinity was also highly significant in all species except Triticum
durum. When all species were considered together, they were highly significantly
different, and the overall temperature and salinity effects were also highly significant,

but their interaction was not significant (Table 3.6).

Table 3.6. Summary of general linear models of the effects of salinity and temperature on
arcsin-transformed germination percentage in the four species individually and all four
combined, in the incubator experiment. A polynomial term was included to allow for non-linear
relationships.

Species Treatment F P

All combined Species 15.96 | <0.001
Salinity 285.48 | <0.001
Temperature 12.53 | <0.001
Temperature x salinity | 2.65 0.345

T. aestivum (Qassim) | Salinity 362.30 | <0.001
Temperature 17.06 | <0.001
Temperature x salinity | 35.03 | <0.001

T. durum Salinity 73.54 | <0.001
Temperature 8.25 <0.001
Temperature x salinity | 4.32 0.006

H. vulgare Salinity 122.92 | <0.001
Temperature 20.39 | <0.001
Temperature x salinity | 22.44 | <0.001

Panicum miliaceum | Salinity 150.18 | <0.001
Temperature 12.07 <0.001

Temperature x salinity | 9.72 <0.001

Pennisetum glaucum | Salinity 112.36 | <0.001
Temperature 6.68 <0.001
Temperature x salinity | 11.43 | <0.001

Data for speed of germination, expressed as the reciprocal of the time to 50%
germination 1(/tsp), for this experiment are given in Table 3.7. Germination was
generally rapid under these conditions. The trends are very similar in this case to final
germination with not much variation over the temperature range 15 — 35 °C. However,

the speed of germination was markedly reduced on average by increasing salinity in
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every species, and this effect tended to be most pronounced at the lower temperatures
(15-20 °C). T. aestivum showed a pronounce narrowing of its germination-speed

temperature response with increasing salinity.

Table 3.7. Speed of germination, expressed as '/ts; at different temperatures for the four plant
species at three concentrations of NaCl in the incubator experiment.

Species Temperature (°C)

NaCl concentration 15 20 25 30 35

(mM)
T aestivum 0 0.33 | 0.33 | 0.33 | 0.25| 0.33
250 0.25 | 0.20 | 0.17 | 0.25 | 0.25
500 0.00 | 017 | 0.25 | 0.25 | 0.00
0 0.33 | 0.25 | 0.33 | 0.33 | 0.33
T. durum 250 0.25 | 0.20 | 0.25 | 0.25 | 0.00
500 0.17 | 0.20 | 0.00 | 0.00 | 0.25
0 014 | 025 | 0.25 | 0.25 | 0.25
H. vulgare 250 0.20 | 0.20 | 0.25 | 0.25 | 0.25
500 0.10 | 0.17 | 0.14 | 0.20 | 0.17
0 0.13 | 0.20 | 0.25 | 0.33 | 0.33
P. miliaceum 250 0.00 | 0.10 | 0.17 | 0.14 | 0.1
500 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0 0.17 | 0.25 | 0.33 | 0.33 | 0.33
P. glaucum 250 0.00 | 0.17 | 0.00 | 0.17 | 0.13
500 0.00 | 0.00 | 0.20 | 0.00 | 0.00

The dry masses of seedlings three days after germination in this experiment are given in
Tables 3.8, 3.9 and 3.10 for the 0, 250 and 500 mM NaCl treatments, respectively. In
the absence of salt, the greatest vigour of seedlings appeared to be at 15-20 °C, although
results for 7. aestivum and H. vulgare were more erratic (Fig. 3.8). Seedlings that had
germinated in 250 mM or 500 NaCl showed similar trends with temperature but were
progressively smaller with increasingly salinity indicating greatly reduced vigour as a

result of salt stress.
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Table 3.8. The dry mass of seedlings of four plant races/species (mg) at an NaCl concentration
of 0 mM three days after germination in the incubator experiment.

Tempoerature T. aestivum T. durum H. vulgare P. glaucum P. miliaceum
¢ Mean SE Mean SE Mean SE Mean SE Mean SE
10 21.2 6.7 7.8 23.5 201 26.5 3.9 24.8 1.9 22.4
15 26.3 8.8 27.3 38.8 43.9 21.0 8.4 34.7 2.1 29.7
20 22.6 6.6 18.4 29.1 17.7 38.1 4.0 27.5 1.6 26.9
25 17.9 6.6 10.5 35.3 11.5 46.6 4.5 29.1 3.1 25.1
30 38.2 13.2 15.2 4.9 40.4 37.4 1.5 0.6 0.7 0.3
35 - - - - - - - - - -

Table 3.9. The dry mass of seedlings of four plant races/species (mg) at an NaCl concentration
of 250 mM three days after germination in the incubator experiment.

Tem[lerature T. aestivum T. durum H. vulgare P. glaucum P. miliaceum
© Mean | SE | Mean SE Mean SE Mean SE Mean SE
10 13.8 4.2 7.6 12.7 7.2 22.8 4.0 23.6 2.0 4.5
15 1.1 3.8 8.2 15.5 5.3 24.3 2.7 30.4 3.0 19.0
20 8.5 26 | 17.8 21.8 31.6 14.7 3.2 33.5 3.3 30.8
25 5.3 1.6 5.6 20.5 9.6 27.5 7.5 15.9 25 20.3
30 4.3 1.5 3.6 27.4 19.0 16.3 4.9 1.8 1.9 11.0
35 - - - - - - - - - -

Table 3.10. The dry mass of seedlings of four plant races/species (mg) at an NaCl concentration
of 500 mM three days after germination in the incubator experiment.

Templerature T. aestivum T. durum H. vulgare P. glaucum P. miliaceum
¢ Mean SE Mean SE Mean SE | Mean | SE | Mean SE

10 3.6 1.1 4.5 16.1 3.2 13.3 ] ] ] ]

15 5.0 1.5 4.0 11.6 2.6 15.9 ] ] ] ]

20 6.8 2.0 5.5 20.4 6.9 26.6 ] ] ] ]

25 2.5 0.7 29 20.3 7.6 15.1 ] ] ] ]

30 1.8 0.6 2.2 15.0 5.4 8.2 ] ] ] ]

35 - - - - - - - - - -
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3.5 Discussion

The fine resolution of temperature provided by the thermogradient plate allowed both
an evaluation of the method for examining basal, optimal and ceiling temperatures,
using a limited range of the Saudi-Arabian land-races, and also preliminary information
on how their temperature responses to germination are affected by salinity. The
complementary incubator experiment, with fewer temperature treatments, embraced a
wider range of species and was more effective in providing further information on the
effects of salinity on their germination. Both approaches yielded useful information on

the effects of salinity on the subsequent vigour of germinated seedlings.

It was striking that when no salinity treatment was applied, temperature had little effect
on the total percentage germination of Triticum aestivum, T. durum or Hordeum vulgare
in either experiment; effects on Panicum miliaceum and Pennisetum glaucum,
investigated, only in the incubator experiment, were also relatively small. On the other
hand, the speed of germination (tso) was much more sensitive to temperature, and this
was reflected in the cardinal temperatures discussed later. Increasing salinity both
decreased the total germination generally and decreased it especially towards the
extremes of temperature, generally revealing a more obvious optimum temperature and
a narrowing of the temperature range over which germination could occur. This is
consistent with the findings for a range of salt-tolerant species found in the vegetation
of coastal shingle by Walmsley and Davy (1997). The Saudi land-race of 7. aestivum
was clearly much more tolerant of salinity than the cultivar Istabraq, former having low
but appreciable germination at 500 mM NaCl and the latter showing no germination at
all above 250 mM NaCl. This indicates an evolved adaptation in the Saudi land-race, as
Istabraq is a conventional winter variety that has not been bred for salt tolerance and
which performs well in the cool climate of the UK (Fenwick 2012). The effects of

salinity on germination are discussed more fully in succeeding chapters of this thesis.

The Kew Millenium Seedbank regression techniques (Newton et al., 2009) for
determining cardinal temperatures showed considerable efficacy for use with Saudi
material. The probably genetically heterogeneous land-races showed more variability
than might be expected for highly bred cultivars and certain of the regressions proved
inadequate as predictors. Surprisingly, however, the commercial variety of 7. aestivum

Istabraq performed least reliably in this experiment; results for this cultivar and the
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negative basal temperature for Hordeum vulgare should probably be disregarded.
Otherwise the basal temperatures of c. 1-3 °C were consistent with a previous estimate
of 2.6 °C for wheat (Angus et al., 1981) and the fact that these landraces are ‘winter’
forms. Basal temperature can be very different between species, for instance as high as
9.8 °C in the C4 species maize (Angus et al., 1981). Similarly the optimal temperatures
and ceiling temperatures were within the ranges that might be expected from previous
work (e.g. Garcia-Huidobro et al., 1982a; Covell et al., 1986; Benech-Arnold et al.,
1990a). Consequently there is every reason to expect that methodology employed here
would work well with other cereal land-races. There was no clear evidence that salinity
affected basal or optimum temperature, but an interesting indication that it reduced the
ceiling temperature, in two of the species. As has been mentioned previously, a
narrowing of the temperature range for germination with increasing salinity has been

reported for species of coastal shingle vegetation by Walmsley and Davy, 1997.

Measurements of dry mass shortly after germination, of those seedlings that were able
to germinate, have also proved to respond to temperature and salinity and, although the
results were a little erratic for some species, this parameter should represent a good
indicator of their effects on seedling vigour. As expected, seedling dry masses tended to
be greatly reduced towards the more extreme temperatures and by increasing salinity, in
both the thermogradient and incubator experiments. The trends mostly followed those
seen in total germination and speed of germination, but seedlings of Saudi-Arabian T.
aestivum performed better at high temperatures under saline conditions on the
thermogradient plate than might have been expected. The reasons for this are not clear
and this is an approach that would benefit from further research, as it has been exploited

rather little previously.

Non-dormant seeds respond to continually varying temperature conditions in the field
but their temperature responses can be characterized from these constant temperature
germination experiments if the concept of thermal time is employed. Germination
below the optimal temperature is generally modelled as a linear response to
accumulated day-degrees above the basal or threshold temperature (Garcia-Huidobro et
al., 1982b; Benech-Arnold et al., 1990a). This underlines the importance of determining
basal temperatures in experiments such as those described here. They represent a

succinct distillation of experimental data that allows generalizations and comparisons,
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across populations and between environmental conditions (Garcia- Huidobro et al.,
1982a; Covell et al., 1986; Benech-Arnold et al., 1990a; Probert 1992). These resulting
models can also help to define future experimental strategies for acquiring the data
needed to assess the differences in thermal responses between populations and between
seed lots (Covell et al., 1986; Ellis et al., 1986; Benech-Arnold et al., 1990a; Fidanza et
al., 1996; Holshouser et al., 1996).
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Chapter 4. Ecophysiology of germination in Triticum aestivum from
contrasting environments in Saudi Arabia

4.1 Introduction

Five percent of the dry zones in the world are located in the Kingdom of Saudi Arabia
(Hajrah 1979), but there is little information on the salinity of the soils in the Kingdom.
Most of Saudi Arabia consists of arid or semi-arid land. Soil salinity is a common
problem in arid and semi-arid regions, where poor irrigation water always holds a
considerable volume of salts. Twenty-five percent of the irrigated land is affected with
salts in arid and semi-arid areas, making the effects of salinity more visible (Azevedo et
al., 2004). Certain climatic parameters, for example high temperature, low rainfall and
wind, can aggravate the salinity problem by increasing evaporation rates, which in turn
increase the soil’s salt concentration. Soil salinity is a major factor of soil degradation
and considered to be one of the most limiting factors for plant growth. There is also
little information on the relationship between the distribution of plants and their
environment. Soil salinity plays a key role in the composition of vegetation, particularly
in coastal areas (Al-Oudat and Qadir 2011).

It is possible to apportion the Kingdom of Arabia into five regions for the
characteristics of soil: (1) the Najd region (2) region of the Arabian Shield (3) Eastern
Region (4) area of the Red Sea coast and (5) of the Empty Quarter (Abd El Rahman
1986). The Empty Quarter area is characterized by soil find according to medium
varying depth and contains a high percentage of calcium carbonate, and near the
hydrogen ion concentration (pH = 8) with low, cation exchange capacity. However, Al-
Qassim comes from the Najd region and Al-Bahah from area of the Red Sea coast
(Figure 4.1) The Arabian Shield area of soil is usually deep medium-soft and neutral for
the hydrogen ion. In the eastern region, characterized by the Arabian Gulf Coast, soil
salinity is high with many soluble salts, particularly sodium chloride. Coastal soils are
characterized by low altitude surface. Further from the coast the land is covered by wind
deposited sand dunes. The soil of the Red Sea coast is characterized highly saline and
the surrounding areas of the coast are vulnerable to the effects of the tsunami and by
infiltration of sea water. The Empty Quarter covered with loose soil and deep sand (Abd

El Rahman 1986).
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Salt is a common environmental feature of the deserts of the Middle East
(Zohary 1973) and only a few halophytic plant species can tolerate such environments,
including Halopeplis perfoliata and Limonium axillare (Mahmoud et al., 1982;
Mahmoud et al., 1983b), Avicennia marina and Hammada elegans (Al-Hugqail 2008;
Mahmoud 1985; Al-Homaid et al.,, 1990) and Suaeda aegyptiaca. However, the
distribution of plants in relation to the environment is generally poorly described in
Saudi Arabia.

This study aims to compare in detail the environments of land-races Triticum
aestivum 1n the contrasting Al-Bahah and Al-Qassim regions of Saudi Arabia, and relate
these to the germination characteristics of the two races. This involves characterization
of the two climates as well as characterization of the physical and chemical
characteristics of soil collected from the root zones of the field sites from which seed
was collected. Soil conditions characterized include (1) soil texture, (2) electrical
conductivity (EC), (3) pH and (4) ecologically significant ions, Na", CI', Ca*", K +,
Mg**, PO, SO4*. Triticum aestivum was selected because of the importance of this
crop in these regions. It is very common in both regions of the Kingdom of Saudi
Arabia, which share more or less the same agricultural practices of cultivation. Soil
samples were collected from the root zone of this plant to understand the soil structure
and the availability of the nutrient to this crop plant in these regions.

It 1s hypothesized that the germination response of 7. aestivum seeds collected
from the two regions will differ under differing environmental stresses (temperature and
salinity) and that this will be related to the climatic and soil conditions from where they

originated.
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Figure 4.1. Map shows Al-Qassim and Al-Bahah and there location in the map of Saudi Arabia.
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4.2 Details of the Weather Station in Al-Qassim

The weather station at Unaizah City records provided the majority of the climate data
used in this study for both regions. However, all data for Al-Bahah came from the
weather station in Al-Bahah city and sent to Unaizah weather station, Al-Bahah city is
at latitude 20.0000° N, longitude 41.4500° E, with a site elevation of 2,155 m. The
Ministry of Water and Agriculture (Hydrology Section) provided daily and monthly
time series of maximum and minimum temperature, total daily rainfall and potential
evaporation. Climate data were obtained for both regions for a 30-year period, 1971-
2000 (Table 4.1). All data series were prepared for analysis by careful reading through
these records sheets and checking visually for errors and break points in the series. The

data were used to investigate the differences in climate between the two regions, Al-

Qassim and Al-Bahah.

Table 4.1. The meteorological data of Unaizah weather station used in this study.

Parameters Period Period
Max temperature (° C) 1971-2000 | Daily
Min temperature (° C) 1971-2000 | Daily
Rainfall (mm) 1971-2000 | Daily
Evaporation (mm) 1971-2000 | Monthly

82




: ; '—\ >  F i =
b . < e 3 : e % v '3 (\‘\k‘ L ri . ; l
Figure 4.2. Weather station a, Unaizah City, at latitude 26° 04’ N, longitude 43° 56 E, elevation 724m.
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4.3.1 Study sites

Al-Bahah

Al-Bahah highland is considered one of the richest and most variable floristic regions of
the Asir Mountains, located in the south-west of Saudi Arabia. This highland is a part of
the Arabian Shield, comprising Precambrian crystalline rocks. It spreads for a distance
of 70 km in the north-south direction (19°50'-20°18' N, 41°38'-42°10" E) with rocky
topography and elevation above sea level ranging between 1700 m eastwards and 2400
m westwards. The soils in the area vary substantially, being shallow and coarse-textured
in elevated and sloping sites, but deep and of sedimentary texture in valley (lowland)
sites.

The climate in Al-Bahah Province is greatly influenced by its varying topography. It
is generally moderate in summer and cold in winter with average temperatures ranging
between 7 °C in January to 35 °C in July, and relative humidity ranging between 24% in
July to 54% in December. At Bahah city, the rainfall ranges from 85 mm in January to
10 mm in September, with a distinct peak in evaporation in April and May (Fig. 4.3).
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Figure 4.3. Mean monthly temperature (°C) rainfall and evaporation (mm) in Al-Bahah, Saudi
Arabia, between 1971 and 2000.
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Al-Qassim

Al-Qassim area is situated between latitudes 24° 30° and 27° 15° N, and longitudes 41°
50’ and 44° 50’ E, in the centre of Saudi Arabia. It is an arid zone, where the annual
potential evaporation exceeds the rainfall. The climate at Al-Qassim is characteristically
continental with long, hot and dry summers, and short, cool winters. The average
monthly temperature, rainfall, and evaporation, for the 30-year period 1971 to 2000 are
plotted in Figure 4.3.

Rainfall is substantially lower in Al-Qassim compared to Al-Bahah, with less than
2 mm of rain in June, July, August and September (Fig. 4.4). Monthly rainfall has a
high degree of variability through the year; rainfall is highly seasonal and variable from

year to year, because rainfall events are infrequent and of irregular occurrence.
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4.3.2 Collection of soil samples

In July 2013, one soil sample for each species (500 — 1500 g) was collected from three
locations within the same field at each of four depths, 0-25 cm, 25-50 cm, 50-75 cm,
and 75-100 cm, in areas where Triticum aestivum dominated. Samples were placed in
sealed plastic bags and transported in plastic bags to the Organic Farming Research
Centre, Onaizah, where they were air-dried for about a week. Samples were then sieved

to <2 mm in preparation for physical and chemical analysis.

4.3.3 Soil texture hydrometer method

Three replicate sub-samples of 50 g of soil were each blended with 20 ml of a solution
of sodium hexametaphosphate (50 g of sodium hexametaphosphate + 25 g sodium
hydroxide in a litre of distilled water) and then suspended in a litre of water in a
cylinder. A Bouyoucos hydrometer was inserted after 4 min to measure the mass of clay
+ silt in the soil, and again after two hours to measure the mass of clay alone. The
masses of sand and silt were obtained by subtraction. The percentage contents of sand,
silt and clay were calculated and used to assign a textural class on the soil texture

triangle, using the USDA classification scheme (Bouyoucos 1962).

4.3.4 Chemical analysis of soils

Three replicate sub-sample of 1 g soil was mixed with 100 ml distilled water and left for
2 h. The mixuture was then filtered with 0.45 pm filter paper. One ml of extract was
diluted with distilled water to 10 ml and a 20 pl sample was injected into an ion
chromatograph and analyzed for the anions CI, SO,*, NO3y, HCO; and PO,”. The
same procedure was used for analyzing the cations Na“, K™ Ca’" and Mg”". Carbonate
was analyzed by titration with H>SO4 (0.02 M), using methyl orange and
phenolphthalein as indicators. Total nitrogen was determined by the Kjeldahl method
using two steps: sulphuric-salicylic acid digestion, followed by steam distillation with

mossy zinc into boric acid, and titration with sulphuric acid (Bremner 1965).
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A sub-sample of 25 g of soil was mixed with 25 ml distilled water, using the method of
(Rhoads 1982), in order to make a paste to test the soil pH and electrical conductivity
(EC). The pH of the soil was measured using a pH-meter D8120 (Weilheim pH40),
following the method in (Mclean 1982), and placing a glass electrode in to the paste.
Similarly, electrical conductivity (EC) was measured using an electronic meter and
electrode (Wissenschaftlich-Technische Werkstatten LF530). Using the same soil paste,
concentrations of sodium and potassium were measured by spectral analysis using the a
(M7D) Flame photometer (Knudsen et al., 1982). The carbonate in the paste was
measured by titration with sulphuric acid, using the indicators phenolphthalein and
orange bromide (Richards 1954). Phosphorus was determined spectrophotometrically
using a Spectronic 20 D (Watanabe and Olsen 1965). Total nitrogen in the soil paste

was determined by the Kjeldahl method using two steps, as described above.

4.3.5 Germination experiments

The germination methods in this Chapter follow those in Chapter 3. Seeds from a
population of Triticum aestivum from Al-Qassim and a population from Al-Bahah, were
collected between 15 December 2012 and 7 January 2013 (Table 4.2). For each
population, approximately 2-3 kg of seed in total was collected randomly from at least
50 plants. Seeds were transported in paper bags to the laboratory, cleaned of impurities
and particulates and left to dry in the lab rooms, at a temperature 22 °C. The seed were
brought to U.K. and have been stored in the dry room at the Millennium Seedbank,
Wakehurst Place (Royal Botanic Gardens, Kew).

For each population, three replicates of 20 seeds were sown onto the surface of
germination paper in Petri dishes (50 mm) and watered with one of three salinity
treatments, 0 mM, 250 mM and 500 mM of sodium chloride. Petri dishes were placed
on a thermogradient plate (Grant Instruments, Cambridge, UK), set at 13 constant
temperatures ranging from approximately 6 - 35 °C with a 12 h photoperiod (white light
with photon flux density of 50 Wm™). The temperature of each Petri dish was measured
using temperature probes set to record every 10 minutes for the duration of study
(Figure 3.1). Germination was scored every two hours during the day from 08:00 to

18:00 for a period of at least three weeks until no further germination was observed.
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Germination was defined as radicle emergence of 2 mm. Two seedlings were selected
from each Petri dish in thermogradient experiment three days after germination, and
each seedling separated into two parts, roots and leaves. The plant material was weighed

and then dried at 45 °C for 24 hours and the dry masses measured.

The analysis used in this part of the study is a linear model including temperature,
salinity, site and the interaction between temperature and salinity and a polynomial term

that allows for non-linear relationships with (R Core Team 2012).

Table 4.2. The plants scientific and local Arabic name, collector, GPS, from different location
from Al-Qassim, Al-Bahah reigons, collected between15 December to 7 January 2013

Family Scientific name | Arabic Local Name Collector G.P.S.
Poaceae Triticum aestivum Meyeh . ) N 26,134,89 E 043,96864
Sami Albarih
Triticum aestivum Haap N 20,108233 E 41,285070

90



4.4 Results

4.4.1 Physical and chemical characteristics of soils from Al-Bahah

Soil textures in the topsoil of the three sites in Al-Bahah were mainly loamy sand types,

with sand content ranging between 36-45% and silt between 39-48% and clay between

14-19% (Table 4.3). The results indicate that EC ranges between 2.8 and 4.6

mmhos/cm. There was no consistent change in soil texture or conductivity with depth.

The pH and chemical composition at different depths are reported in Fig. 4.4. The

difference in electrical conductivity between physical and chemical analysis is due to

the titration.

Table 4.3. Mean (SD) composition and electrical conductivity (EC) in soil collected from Al-
Bahah, Saudi Arabia, at differing depths.

Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Texture | EC (mr1nhos
cm’)
0-25 43(10) | 41(10) | 18 (2) 3.03 (2)
25-50 38(11) | 48(8) | 14(4) | 34 (2)
50-75 45(12) | 39(12) | 16(0) | gund | 2803
75-100 36 (12) | 45(10) | 19 (4) 46 (3)

Table 4.4. Chemical analyses of soil samples collected from locations where Triticum
aestivum was found in the Al-Bahah region of Saudi Arabia.

3 3
Ezer;;t)h pH Conductivit¥ Anion (mM 1009'1) Cation (mM 1009'1) H(E;()) (0’;1) ((:0?) [zsr?"lt;
¢ (mmhos cm') ° ° °
EC . . , ,
S0,% | PO | cI K Mg~ | ca®™ | Na’
0-25 8.46 1.1 3.55 3.6 16 | 2.64 4.33 55 |2.16 1.09 27 0.63 0-25
25-50 7.81 1.55 3.02 1.77 8 3.97 43 3.2 3.31 0.89 1.24 0.23 25-50
50-75 7.16 0.44 2.33 1.23 8 212 3.8 1.5 3.31 0.21 0.77 0.01 50-75
75-100 7.34 6 1.79 1.07 | 6.79 1.78 2.78 2.02 1.79 0.02 0.65 Nil 75-100
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4.4.2 Physical and chemical characteristics of soils from Al-Qassim

Soil textures in the topsoil of the site in Al-Qassim were also loamy sand types.

However, the sand content at Al-Qassim was greater than that in Al-Bahah (69-85%

compared to 36-46%). The proportion of silt range was also greater, 54-63%, but the

proportion of clay was lower (Table 4.5). The EC ranged between 5.8 and 6.43

mmhos cm™, higher than that found at Al-Bahah. The pH and chemical composition

at different depths are reported in Fig. 4.6.

Table 4.5. Mean (SD) composition and electrical conductivity (EC) in soil collected from Al-
Qassim, Saudi Arabia, at differing depths.

Depth (cm) | Sand Silt (%) Clay Texture EC (mmhos
(%) (%) cm’)
0-25 68 (27) | 54 (42) 12 (7) 5.93 (0)
25-50 85 (5) 58 (47) 11 (1) Loamy 5.80 (1)
50-75 70 (29) | 63 (40) 5(3) Sand 6.43 (1)
75-100 69 (33) |63 (43) 8 (4) 6.27 (0)

Table 4.6. Chemical analyses of soil samples collected from locations where Triticum
aestivum was found in the Al-Qassim region of Saudi Arabia.

3 3

[zsﬁ]t? pH Conductivit}/ Anion (mM 1009'1) Cation (mM 1009'1) H(Coi()) (0’)) ((:o?) [Zgr?]t;
(mmhos cm') ° ° °
EC i .
S04~ PO~ | CI K Mg~ | ca™ | Na’

0-25 8.98 12.50 2.51 NIL 4.77 | 0.43 0.97 3.1 2.71 0.77 | 0.23 0.22 0-25
25-50 | 9.33 9.11 2.04 NIL 3,57 0.19 0.05 3.78 (128 0.75 | 0.18 0.27 25-50
50-75 | 7.16 4.44 1.13 NIL 213 | 212 0.08 2.51 1.31 0.01 0.32 0.01 50-75
75-100 | 7.34 6 1.19 NIL 1.11 1.78 NIL 2.21 1.07 Nil 0.12 Nil 75-100
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4.4.3 Germination response to salinity and temperature

The overall germination of seeds from Al-Bahah and Al-Qassim is compared in Table

4.7. The time-course of germination at the 13 temperatures and 3 salinities for Al-Baha

and Al-Qassim is shown in Figs 4.5 and 4.6, respectively.

Table 4.7. The percentage of seed germinating of Triticum aestivum from Al-Bahah and

Al-Qassim.
Descriptive Statistics
SITE N Minimum Maximum Mean Std. Deviation
GERM 39 0.0 100.0 65.6 39.1
Al-Qassim
Valid N (listwise) 39
GERM 39 0.0 100.0 56.7 39.9
Al-Bahah
Valid N (listwise) 39
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Figure 4.5. Mean proportion of Triticum aestivum seeds from Al-Bahah germinating under
range of temperature (6-35°C) at, (a) 0 (b) 250 (c) 500 (mM) NaCl in the thermogradient table.
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The origins of the seeds were a significant determinant of the proportion germinating
(F=16.75, P<0.001), with more seeds from Al-Qassim germinating that from Al-Bahah
(mean+SD, Al-Qassim 66+39%, Al-Bahah 57+40%). Temperature and salinity were
both significant determinates of germination (temperature F=52.36, p<0.001; F=207.48
P<0.001) and, importantly, there was also a significant interaction between salinity and
temperature (F=14.07, P<0.001). Taking both land races together, in the 0 mM
treatment, there was no relationship between temperature and germination, with the
majority of seeds germinating at all temperatures (Fig. 4.7). At 250 mM, germination
tended to be constant at the lower temperatures, but dropped off quickly above 27 °C.
However, at 500 mM, there was a distinctive humped relationship between temperature

and germination.
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Figure 4.7. Mean proportion of Triticum aestivum seeds germinating under range of salinity (0
mM, 250 mM and 500 mM NaCl) and temperature conditions (thermogradient table). Loess
lines are fitted.
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Figure 4.8. Response of final germination to temperature in (a) Triticum aestivum (Al-Bahah)

(b) Triticum aestivum (Al-Qassim) at salinities of 0, 250 and 500 mM NaCl thermogradient
plate experiment.

The speed of germination (tso) of both populations of 7. aestivum were reduced by high
concentrations of sodium chloride (Tables 4.9 and 4.10) and by the lowest and highest
temperatures (Figs 4.5 and 4.6).
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Table 4.7. Time (days) to achieve 50% germination (tso) of 7. aestivum from Al-Bahah on the
thermogradient plate.

Temperature °C
NaCl
Concentration | 6 | 84 | 10.8 | 13.2 | 156 | 18 | 204 | 22.8 | 25.2| 27.6 | 30 | 324 | 34.
0 mM 9| 5 4 4 4 2 2 4 4 4 4 5 5
250 mM 0] 9 8 6 6 6 4 4 6 3 0 0 0
500 mM 0] 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.8. Time (days) to achieve 50% germination (tso) of 7. aestivum from Al-Qassim on the
thermogradient plate.

Temperature °C
NaCl
Concentration | 6 | 84 | 108 | 132|156 | 18 | 204 | 22.8 | 252|276 | 30 | 324 | 34.
0 mM 45|45 5 5 5 5 5 5 5 5 5 4.5 4
250 mM 6 6 6 6 6 4 4 4 6 2 2 0 0
500 mM | 0 0 7 7 3 2 2 2 2 0 0 0 0

Seedling masses for both land-races 3 days after germination on the thermogradient
plate are given in Tables 4.9 and 4.10 for salinities of 0 and 250 mM NaCl, respectively.
Seedling masses peaked at 18-23 °C in the absence of salinity and were greatly
decreased by salinity in both land-races. The largest mean mass in Al-Qassim seedlings

was approximately double that of the Al-Baha seedlings.
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Table 4.9. Mean seedling dry mass (mg) three days after germination and standard deviation
(SE) of T. aestivum germinated in 0 mM NaCl on a thermogradient plate.

T. aestivum Al-Bahah T. aestivum Al-Qassim
Temperature °C Mean SE Mean SE
6.0 4.0 0.0 18.2 4.4
8.4 13.3 0.7 22.5 6.0
10.8 17.8 1.4 21.0 2.2
13.2 11.9 1.4 18.9 6.4
15.6 20.9 4.9 27.5 3.7
18.0 23.9 2.9 47.4 5.9
20.4 29.9 1.7 51.0 3.5
22.8 31.6 5.9 64.2 18.9
252 21.3 1.0 18.1 4.5
27.6 6.9 0.7 17.6 4.3
30.0 3.9 0.0 27.3 3.5
32.4 3.1 0.6 20.1 0.1
34.8 3.3 0.5 26.1 2.7

Table 4.10. Mean seedling dry mass (mg) three days after germination and standard deviation
(SE) of T. aestivum germinated in 250 mM NaCl on a thermogradient plate.

T. aestivum Al-Bahah T. aestivum Al-Qassim
Temperature °C Mean SE Mean SE

6.0 0.0 0.0 0.0 0.0
8.4 0.0 0.0 0.0 0.0
10.8 0.0 0.0 0.0 0.0
13.2 3.3 1.7 0.0 0.0
15.6 5.1 0.5 7.5 0.6
18.0 4.2 0.2 4.9 0.7
20.4 7.9 1.1 7.6 0.1
22.8 4.7 0.9 2.8 0.4
252 4.0 0.3 3.1 0.6
27.6 3.7 0.2 3.2 0.6

30 2.7 7.3 2.8 0.4
324 0.0 0.0 0.0 0.0
34.8 0.0 0.0 0.0 0.0
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4.5 Discussion

Comparison of the long-term mean data for the two sites confirms that the two land-
races experience distinctly contrasting climates. Although both sites have similarly hot
summers, there is virtually no rainfall at Al-Qassim from May to October (and little in
October itself), whereas low to moderate rainfall is maintained throughout the summer
at Al-Baha. The winters, when most growth occurs, have similar rainfall and mostly
mild temperatures. This has implications for the timing of germination and harvest.
Sowing of these land-races in Saudi Arabia can be from mid-September to early January
(see Chapter 6). Clearly, irrigation would be needed if sowing was before November at
Al-Qasim and by then temperature would be lower than at Al-Baha; however, as
irrigation can be used, selection may not necessarily be expected to have favoured
germination at the lower temperatures. Given the constraints of drought at the end of the

growing season, early establishment at Al-Qassim might be advantageous.

The soil analyses confirmed the extreme nature of the environments that these land-
races of cereal were growing in. Both were saline, and salinization is typical of arid and
semi-arid environments, where annual evapotranspiration is greater than annual
precipitation, and is exacerbated by irrigation with groundwater containing salts (Abd
El Rahman 1986). The high pH values, and sulphate and chloride concentrations were
consistent with salinization, Presumably because of the summer drought and
substantially greater annual water deficit, Al-Qassim has average higher soil salinities,
when expressed as conductivity readings. The soil environments are markedly different,
with much sandier, less water retentive substrates at Al-Qassim, which might exacerbate
the irrigation requirement and salinization, or potentially limit germination in its
absence. Al-Qassim was also nutrient deficient, in terms of concentration of total
nitrogen, phosphate and potassium, notwithstanding the use of manures (See Chapter 6).
Al-Jaloud et al. (1996) and Hussain et al. (1996) in their field experiments on wheat
cultivars found that the yield of wheat and its nitrogen use efficiency were greatly
affected by nitrogen application and treatment with effluent irrigation: wheat grain yield

ranged between 5.20-6.87 Mg ha™' for well-watered crops.
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The results of the germination experiment revealed that wheat land-races collected from
two different locations indeed reacted differently to salinity stress, with a highly
significant interaction between land-race and salinity in the GLM: most strikingly, seeds
from Al-Baha did not germinate at all at 500 mM NaCl. whereas those from Al-Qassim,
which had the higher soil salinity, showed up to 70% germination at optimal
temperatures (c. 23 °C). Even at 250 mM NaCl, Al-Qassim seeds consistently
germinated faster (lower values of tsp) and had a broader range of temperature tolerance
than those from Al-Baha. Other studies have also found that different wheat cultivars
have different responses to salinity stress, resulting in differing grain yields (Richards et
al., 1987; Slavich et al., 1990; Albarih 2010). In a large-scale study of 103 wheat
genotypes from across Europe, Asia and the Middle East, genotypes from locations in

Pakistan were among the most and least salt tolerant (El-Hendawy et al., 2005).

The results of this experiment strongly support an important finding also seen in the
work described in chapters 3 and 5: a progressive narrowing of the range of temperature
at which germination can occur as salinity was increased; as elsewhere this narrowing
was evident at the higher extreme temperatures at moderate salinity and then also at the
lower extreme temperatures at higher salinity. This i1s discussed in more detail

elsewhere.
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Chapter 5. Effects of seed ageing on the germination response to
salinity and electrolyte leakage in wheat land-races

5.1 Introduction

The advancement of technology and mechanization of agricultural production has
improved the prospects for long-term seed storage. During storage, physical and
physicochemical transformations occur in seeds as a result of ageing (Silva et al., 2005;
Sisman 2005). The deterioration in quality that accrues with ageing is usually
manifested primarily as a decrease in germination percentage; however aged seeds that
do germinate may also produce weak seedlings. Throughout the ageing process, seeds
lose their vigour, ability to germinate and eventually become significantly less viable
(Maity et al., 2000). The decline in seed quality can begin before harvest, depending on
field weather conditions and harvesting time but is most important during seed storage.
The deterioration is greater if seeds are stored at high temperatures and/or high relative
humidity. For example, one of the most sensitive seeds, Cottonseed, shows substantial
deterioration after just one year of storage (Powell et al., 2000). The susceptibility of
seeds to ageing depends on their ability of seed to resist degradation through various
defence mechanisms, which may vary in different plant species (Gupta and Aneja 2004;
Sisman and Delibas 2004; Mohammadi et al., 2011). Thus seeds of different plant
species in similar storage environments may lose viability to higher or lower degrees

and seed storage has obvious consequences for seed viability.

The main external conditions influencing seed damage during storage are the relative
humidity of the air, temperature and oxygen concentration. The opportunity to control
these factors creates the foundation for longer seed storage. However, seeds with low
viability are the first to die. Seeds that contain large amounts of lipids tend to have
limited longevity because of their particular chemical composition (Voelker and
Kinney 2001). The moisture content of seed is the most important factor of longevity
under storage as the chemical potential of water in the system determines the activity of
all chemical reactions (Basra 1984). Mature seed collected from the field may have
moisture content as high as 14%, too high for long-term storage in most species. The
seed of the majority of agricultural species can be stored for several years if the

moisture content i1s maintained at 5-8%. However, the seed moisture content depends on
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air relative humidity; high air humidity will increase seed moisture content, which could
lead to rapid seed deterioration, especially at over 12% moisture content. Similarly, the
chemical reactions leading to deterioration in quality will tend to proceed faster at
higher storage temperatures, Oxygen is required for the ageing repair mechanisms but,
on the other hand, oxidative damage is more likely with storage at higher oxygen

concentrations.

One possible consequence of deteriorating seed quality is a disproportionately reduced
ability to germinate under conditions of stress. As has been investigated in previous
chapters, of particular interest for land-races in arid environments is the ability to
germinate under high salinity. Little is known about this, but Walmsley and (Walmsley
and Davy 1997) found that storage of seeds of coastal-shingle species for 7 years at low
humidity and temperature resulted subsequently in lower germination rates at both high

salinities and temperatures.

Practically, it is valuable to be able to assess the effects of seed ageing on viability
quickly prior to sowing and germination (Perry 1972). Measurements of electrical
conductivity (EC) during artificial ageing treatments potentially are an effective way to
measure seed vigour, as has been demonstrated for of pea and soybean (Association of
Official Seed Analysts, 2002). Although such investigations are generally dependable
for these two species, application of this approach to other species remains less well
tested; its effectiveness in defining seed vigour of additional species correspondingly
needs further investigation (Marcos-Filho 1998). The EC method depends on the fact
that seeds, after soaking in water, release ions, sugars and other metabolites from the
beginning of the soaking phase, due to changes in the integrity of the cell membranes.
As seeds deteriorate, the repair mechanisms become ineffective, or the membranes are
severely damaged (Bewley and Black 1985), therefore enabling leakage of higher
electrolyte volumes. EC experimental results can be highly reproducible because certain
conditions are known to affect the results, for example seed size (Tao 1978; Deswal and
Sheoran 1993), water soaking temperature (Murphy and Noland 1982), soaking time
(Loeffler et al., 1988; Schmidt and Tracy 1989), preliminary seed moisture content (Tao
1978; Loeffler et al., 1988), and physical injury to the seeds (Tao 1978; Duke and

Kakefuda 1981). Thus all of these influences can be controlled to decrease their effects.
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Other factors, requiring investigation, cannot be so easily controlled, for example the
effect of genotype (Short and Lacy, 1976; Panobianco and Vieira 1996), or
developmental stage at harvest (Styer and Cantliffe, 1983; Powell 1986) and the storage
environment (Ferguson 1988; Vieira et al., 2001). Reports on soybean seeds have
shown the results of the EC examination could be affected by storage temperature,
particularly low temperatures, for example 10 °C (Ferguson 1988; Vieira et al., 2001).
EC test results have been successful in predicting seed germination and stand
establishment under a wide range of field conditions, as reported for soybean seeds
(Colete et al., 2004; Vieira et al., 2004), showing the importance of vigour testing for
this species (Vieira et al., 1999a,b). Increasing conductivity in seed leachates has been
found to correlate with reduction in germination and seed vigour in several crop species
(Ghosh 1981 and Rudrapal 1979). Ultimately, the outcomes of EC experiments are
determined by the integrity of seed membrane systems, and thus can be used for the
evaluation of potential seed vigour, since they detect seed deterioration in the early

stages of its progression.

Such vigour tests can be used to predict the essential emergence performance of seed
lots more quickly and accurately than traditional germination tests. Two validated tests,
now in the International Seed Testing Association Rules (ISTA 2006), are the electrical
conductivity (EC) of seed soak water (Matthews and Powell 2006) and accelerated
ageing tests (TeKrony and Egli 1977). Accelerated ageing, generally achieved by
subjecting seeds to a combination of high temperature and humidity, allows the effects

of natural ageing to be uncovered on a relatively short time scale.

The aims of this part of the study were two-fold. The first was to subject seeds from two
land races Triticum aestivum from different climatic zones represented by the Al-
Qassim and the Al-Bahah region to accelerated ageing and investigate their subsequent
ability to germinate under saline conditions. The hypothesis was that aged seeds of
poorer quality would be less salt tolerant. The second aim was to investigate the
practical value of EC measurements of electrolyte leakage in predicting relative
seedling emergence for these land-races of Triticum aestivum under different salinity
conditions, where average germination lay in the commercially conventional range. A
supplementary aim was to measure electrolyte leakage from different parts of the seed

and establish how it was affected by the different salinity treatments.
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5.2 Methods

5.2.1 Experimental materials

Seeds of land-races of Triticum aestivum from climatic zones represented by the Al-
Qassim region (Arabic local name Meyeh) and the Al-Bahah region (Arabic local name,
Haab) were collected from the farms in Saudi Arabia in 15 December to 7 January 2013
and deposited in the drying room at the Millennium Seedbank, Wakehurst Place (Royal
Botanic Gardens, Kew), where part of this study was conducted. Details of the

collection sites and their environments are presented in Chapter 4.

5.2.2 Controlled ageing procedure

This method aims to generate a single seed survival curve, using a carefully controlled
ageing environment. Seeds were withdrawn from dry storage and first rehydrated by
equilibration with a closed atmosphere at 47% RH for 14 d, to minimise the change in
water content when samples were transferred to accelerated ageing conditions. Seeds
were placed in open dishes on a grid over lithium chloride (385 gL' LiCl) solution at 20
°C 1n sealed electrical enclosure boxes (Fig. 5.1; Ensto, UK Ltd).

For controlled ageing, the seeds were transferred to another sealed electrical enclosure
box at 60% RH (in equilibrium with 300 gL' LiCl; Fig.5.2) which was placed in a fan-
assisted oven at 45 °C. Ageing times that would result in 75, 50, 25 and 0% germination
were estimated from the predicted seed moisture content as 0, 5, 14, 23 and 30 d using
the Kew website dedicated calculator (http://www.kew.org/data/sid.) Three replicate
seed samples were withdrawn on each of these days and transferred 15% RH at 15 °C to
stop the ageing process. Five replicates of 3 seeds were also taken to check that their
moisture content was consistent. The aged seeds were sealed in vials and transferred to

the University of East Anglia for germination tests.

5.2.3 Germination tests

Each of the three replicate samples of 100 seeds of each land-race for each ageing
period were allocated randomly to 4 Petri dishes (25 seeds per dish) and each was
subjected to a different salinity treatment: 0, 250, 500 and 1000 mM NaCl. Seeds were
placed on 9 cm filter papers (Whatman No. 1) and 7 ml of distilled water or the
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appropriate concentration of sodium chloride solution per dish was added. Dishes were
placed in a temperature-controlled incubator at 25 °C. Solutions were topped up every
four days, according to need. Germinated seeds (with emerged radicles) were counted in
every dish every twenty-four hours, and the germinated seeds immediately removed.
The solutions were replaced completely every four days. Seeds that had not germinated
after 17 d were washed with distilled water thoroughly several times, and then
transferred to new Petri dishes, and incubated for a further 5 days to make sure that no
further germination would occur. A ‘cut test’ performed at the end of each germination
test, to confirm that any non-germinated seeds were dead and not otherwise unviable
(empty or infested). Incompetent seeds were excluded from the calculation of

germination percentage.

A cumulative germination curve was used to calculate the rate of germination (tso; the
period of time needed to achieve 50% germination) by dropping a vertical line from
50% germination to intersect with the time axis. Statistical analysis was by ANCOVA

with salinity as the main effect and ageing time as the co-variate (SPSS version 21).

Figure 5.1.The rehydration box with seed samples inside.
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Figure 5.2. The ageing-treatment box with seeds sealed inside.

5.2.4 Electrical conductivity testing

Electrical conductivity measures the leakage of electrolytes during imbibition. Seeds of
the two land-races were drawn from seed lots two days before the beginning of the
controlled ageing experiment. Three replicates of 25 seeds for each salinity were soaked
on the surface of germination paper in a Petri dish after adding 5 ml distilled water and
then left for 4 h in an incubator at 25 °C to imbibe. Then seeds were transferred to
another Petri dish and treated with 7 ml of a solution of 0, 250, 500 or 1000 mM NaCl,
before being incubated for 5 h at 25 °C. Then sub-samples of five seeds were chosen
randomly from each Petri dish and washed with distilled water to remove any surface
salt, and then different batches were used to examine three different components: whole
seeds, seed coats, and embryos. Five seeds were kept as a reserve in case there were
problems during the separation of the seeds into parts. Each component was placed
separately in a glass vial to which was added 12 ml distilled water, and the electrical
conductivity meter (Oakton T-100 Conductivity Meter Resolution 0.01, 0.1, 1 Accuracy
+ 2% of reading) was used to measure electrical leakage every 2 h from 8:00 am - 6:00

pm until there was no further change.
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5.3 Results

5.3.1 Germination response to salinity in aged seed

No germination at all occurred in either of the 500 and 1000 mM NaCl treatments.
Cumulative germination curves at 0 and 250 NaCl mM salinities for the seeds from Al-
Qassim and and Al-Bahah are shown in Figures 5.3 and 5.4 respectively. In the absence
of salinity and with no ageing treatment germination was high (95-97%) and showed no
notable differences between the two land races. However, as predicted controlled ageing
greatly reduced germination in both races, with only 8% for Triticum aestivum from Al-

Qassim and 14.8% for that from Al-Bahah after 30 days of ageing at 250 mM NacCl
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Figure 5.3. Cumulative germination of 7riticum aestivum from Al-Qassim region, after different
ageing times, treated with (a) 0 and (b) 250 mM NaCl.
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Figure 5.4. Cumulative germination of species Triticum aestivum from Al-Bahah region, after
different ageing times, treated with (a) 0 and (b) 250 mM NaCl.

The germination survival curves in the 0 and 250 mM NacCl treatments (Figures 5.5 and
5.6) followed the inverted sigmoidal expected. At both both races at all ageing times,
germination was reduced by the higher salinity. One-way ANCOVA, with salinity as a
fixed factor and ageing as covariate, yielded highly significant models (Table 5.1). The
effect of ageing was highly significant for both races; the effect of salinity and the
salinity*ageing interaction were both highly significant for the Al-Baha race, whereas
for the Al Qassim race salinity was marginally significant and the interaction was not
significant. A two-way ANCOVA, allowing for comparison of the two races, confirmed
the significance of salinity and ageing main effects but showed that the effect of race
and the race*salinity interaction were significantly; however, race*ageing interaction
was highly significant, indicating the two races responded differently to the ageing

treatment at both salinities.
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Figure 5.5. Germination survival curve in response to controlled ageing in the Al-Qassim race

of Triticum aestivum when subsequently germinated at salinities of 0 or 250 mM NaCl and 25
°C.
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Figure 5.6. Figure 5.5. Germination survival curve in response to controlled ageing in the Al-

Bahah race of Triticum aestivum when subsequently germinated at salinities of 0 or 250 mM
NaCl and 25 °C.
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5.1. One-way ANCOVA, with salinity as a fixed factor and ageing as covariate, for arc-sin
percentage germination of seeds of the land-race of 7. aestivum from (a) Al-Qassim region and

(b) Al-Bahah region
(a

T aestivum Al-Qassim Type Ill Sum df Mean Square F Sig.
of Squares
Corrected Model 8.351° 3 2.784 47112 <0.01
[intercept 17.399 1 17.399 294.457 <0.01
Salinity 0.242 1 0.242 4.093 0.053
Ageing 8.048 1 8.048 136.209 <0.01
Salinity * Ageing .057 1 0.057 0.967 0.335
IError 1.536 26 0.059
Total 19.831 30
Corrected Total 9.888 29
a. R Squared = 0.845 (Adjusted R Squared = 0.827)
(b)
T. aestivum Al-Bahah | Type lll Sum df Mean Square F Sig.
of Squares
Corrected Model 5.208° 3 1.736 44.624 <0.01
Intercept 13.432 1 13.432 345.310 <0.01
Salinity 1.774 1 1.774 45.612 <0.01
Ageing 3.047 1 3.047 78.330 <0.01
Salinity * Ageing 0.458 1 0.458 11.784 0.002
Error 1.011 26 0.039
Total 20.223 30
Corrected Total 6.219 29

a. R Squared = 0.837 (Adjusted R Squared = 0.819)
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Table 5.2 Two-way ANCOVA, with salinity and race as a fixed factors and ageing as covariate,
for arc-sin percentage germination of seeds of the two land-races of 7. aestivum.

Source Type Ill Sum df Mean Square F Sig.
of Squares
Corrected Model 66403.019° 7 9486.146 33.520 <0.001
Intercept 176875.129 1 176875.129 | 625.004 | <0.001
Salinity 4214.650 1 4214.650 14.893 <0.001
Race 453.570 1 453.570 1.603 0.211
Ageing 52681.133 1 52681.133 186.154 | <0.001
Salinity * Race 1004.262 1 1004.262 3.549 0.065
Race * Ageing 3723.492 1 3723.492 13.157 | . <0.001
Salinity * Race * 631.995 2 315.997 1.117 0.335
Ageing
Error 14715.914 52 282.998
Total 234336.000 60
Corrected Total 81118.933 59

a. R Squared = 0.819 (Adjusted R Squared = 0.794)

The time taken to achieve 50% of the final germination (tso) in all of the treatments in
this experiment is shown in Table 5.3. In general, germination was rapid (with tso of 1-7
d). There was a general trend for tso to increase with ageing time in some treatments
(e.g. the Al-Qassim race at 250 mM and the Al-Baha race at 0 mM NaCl); however tso
was rather erratic in other treatments and ANCOVA did not yield significant effects

from either ageing time or salinity for either race (Table 5.4).

Table 5.3. Time to 50% germination £SE in two land races from Al-Qassim and Al-Bahah
regions after controlled ageing and subsequent germination at salinities of 0 or 250 mM NaCl
and 25 °C. MC indicates the mean seed moisture content (%) during ageing.

Controlled ageing time (days)
Land races MC (%)
0 5 14 23 30

Al-Qassim race:

0 mM NaCl 1.23 £0.5 1.38 +1.7 3.8 £9.1 5.38+3.5 | 1.38+1.7 10.37
250 mM NaCl 4.8 +1.1 1.14 +1.0 14.9+£5.8 6.14+2.0 | 0.38 +1.0 10.68
Al-Bahah race:

0 mM NaCl 0.83 +0.5 1.15 1.1 1.14 £1.0 3.8+9.2 | 6.38+3.5 10.34
250 mM NaCl 1.15 +1.1 1.14 +1.0 591458 71420 | -——- - 10.39
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Table 5.4. One-way ANCOVA, with salinity as a fixed factor and ageing as covariate, for the

time to 50% germination (tso) of seeds of the land-race of 7. aestivum from (a) Al-Qassim
region and (b) Al-Bahah region.

(a)

(®)

T. aestivum Al- Type lll Sum df Mean Square F Sig.
Qassim of Squares
Corrected Model 23.396° 3 7.799 0.322 0.810
Intercept 58.069 1 58.069 2.399 0.172
Salinity 17.254 1 17.254 0.713 0.431
Ageing 0.059 1 0.059 0.002 0.962
Salinity * Ageing 3.201 1 3.201 0.132 0.729
Error 145.236 6 24.206
Total 332.900 10
Corrected Total 168.632 9
a. R Squared = .139 (Adjusted R Squared = -.292)
T. aestivum Al-Bahah Type lll Sum df Mean Square F Sig.
of Squares
Corrected Model 21.430° 3 7.143 0.986 0.460
Intercept 5.444 1 5.444 0.751 0.419
Salinity 4.577 1 4.577 0.632 0.457
Ageing 16.155 1 16.155 2.230 0.186
Salinity * Ageing 4.862 1 4.862 0.671 0.444
Error 43.470 6 7.245
Total 146.867 10
Corrected Total 64.899 9

a. R Squared = .330 (Adjusted R Squared = -.005)
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5.3.2 Electrolyte leakage in response to salinity

Electrical conductivity measurements representing the leakage of electrolytes from
whole seeds, seed coats and embryos after incubation at a range of salinities are shown
in Figures 5.7 and 5.8 for the races from Al-Qassim and Al-Baha regions, respectively.
The two races behaved very similarly. Whole seeds released increasing amounts of
electrolytes after incubation with increasing salinities. However the difference between
the 0 and 250 mm NaCl treatments was very small, and electrolyte leakage increased
more after incubation at, 500 mM. Leakage doubled after incubation at 1000 mM NaCl.
The trends were similar in isolated seed coats and embryos, but overall levels of
conductivity were about an order of magnitude lower in both cases, presumably
reflecting their relative masses. In particular there was very little evidence of an adverse

effect on the embryos below 1000 mM NaCl.
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Figure 5.7 Electrical conductivity of leachates (representing electrolyte leakage) from seeds and
isolated seed coats and embryos of Triticum aestivum from Al-Qassim region, after incubation
at a range of salinity (0, 250, 500 and1000 mM NacCl).
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Figure 5.8 Electrical conductivity of leachates (representing electrolyte leakage) from seeds and
isolated seed coats and embryos of Triticum aestivum from Al-Baha region, after incubation at a

range of salinity (0, 250, 500 and 1000 mM NacCl).
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5.4 Discussion

Germination of both races showed substantial salt tolerance, by the standards of wheat
varieties and in comparison with halophytes (Woodell 1985; Pujol et al., 2000; Garcia-
Huidobro et al., 1982b; Benech-Arnold et al., 1990a), as they germinated well at a
salinity of 250 mM NaCl. However, the absence of any germination at 500 or 1000 mM
NaCl suggests that they are not among the most salt-tolerant types investigated in this
study. There was some suggestion that the Al-Qassim race was more tolerant of 250
mM NaCl than the Al-Bahah race (cf. Figures 5.5. and 5.6) but the race*salinity
interaction in Two-way ANCOV A narrowly failed to achieve significance (P = 0.065).

The accelerated ageing treatment (60% RH at 45 °C) was extremely effective, as has
been shown previously (Dearman et al., 1986; Bailly et al., 1998; Dell'Aquila and Tritto
1990; Walmsley and Davy 1997), with declining viability at both salinities during the
30 days of ageing. Interestingly, the Al-Bahah race was less severely affected by the
ageing treatment than the Al-Qassim one (P < 0.001 for the race*ageing interaction in
the Two-way ANCOVA), highlighting the genetic diversity of local land races (Hassan
1979). This might be an adaptation to the much higher summer rainfall (and therefore
humidity) in Al-Bahah than in Al-Qassim (see Chapter 4), as there is likely to have been

selection for good storage properties under local humidity conditions.

The key question was whether accelerated ageing affected salinity tolerance, as this has
implications for seed storage conditions and time (Ellis et al., 1990; Navarro and Noyes
2010). Perhaps because it was only possible to test this at two salinities in the event, the
answer 1s somewhat equivocal. On the one hand there was no evidence that the salt
tolerance of germination was affected by ageing in the Al-Qassim race, whereas on the
other, salt tolerance in the Al-Bahah race was retained significantly better during ageing
(P = 0.002 for the salinity*ageing interaction in One-way ANCOVA). Again this
emphasizes the genetic diversity among local land-races, and possible selection for
good storage properties under the more humid conditions of Al-Bahah. Walmsley and
Davy (1997) examined the germination response to salt of six species of coastal shingle
vegetation after one and 7 years of storage over silica gel at -20 °C; they found a
significant degradation of salt tolerance after 7-year’s storage in four of them (Crambe

maritima, Eryngium maritimum, Glaucium flavum and Honckenya peploides. In general
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is has been suggested that seeds of poorer quality become more responsive than

vigorous ones to a variety of stress factors (Perry 1973).

The main aim of the electrolyte leakage experiment was to determine the effects of
salinity during imbibition on membrane integrity in seeds and their component parts, as
a rapid indication of seed quality (Tao 1978; Loeffler et al., 1988). The conductivities
measure clearly reflected the masses of the material involved: highest for whole seeds,
lower for the seed coats and lowest for the embryos. However the individual component
can be compared across salinity treatments. In both land-races and whatever the
component examined, the results indicate very little loss of membrane integrity (seed
quality) after imbibition in 250 mM NaCl (Vieira et al., 1999a, 1999b). This is
consistent with the percentage germination results, discussed previously, which showed
very little impairment at this salinity. In contrast, treatment with 500 or 1000 mM NaCl
during imbibition resulted in much greater electrolyte leakage subsequently, which is
also consistent with the failure of all seeds to germinate at these salinities. Interestingly,
the damage suffered at 500 mM NacCl, although evident in whole seeds and their coats,
was not observable in the embryos themselves. Consequently the electrolyte leakage
tests for seed vigour, carried out in a few hours, have proved to be good indicators for
the germination response to salinity in the full-scale experiment (Bewley and Black,

1985; Don et al., 1981; Hill et al., 1988).
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Chapter 6. Effects of salinity on plant growth

6.1 Introduction

The main focus of this thesis has been on the crucial germination stage of the life cycle.
However, evolutionary fitness and therefore agricultural productivity necessarily
depend on the entire life cycle. The work described in this chapter represents a
preliminary investigation of the next phase of life history - responses of vegetative
growth in young plants to salinity. This is of particular interest because of the
distinctive agronomic techniques that have been evolved by the artisanal farmers using
local land-races of wheat in the semi-arid environments of Saudi Arabia (see section

6.2).

Growth reduction in both halophytes and glycophytes occurs because of total osmotic
potential of soil water and/or toxic concentrations of soluble salts (Flowers et al., 1977;
Greenway and Munns 1980). Negative effects are detected at the whole-plant level, for
example as the death of plants or reduction in yield. Suppression of growth may be
evident in every part of the plant, but plant tolerance to salinity differs extensively
between plant species. Salt stress disturbs all of the main processes that underpin
growth, including, photosynthesis, protein synthesis, nutrient uptake and lipid

metabolism.

Salinity stress has many effects in checking of plant growth (Hernandez et al., 1995;
Cherian et al., 1999). A rapid reaction to salt stress is typically a decrease of the rate
leaf area expansion (Wang and Nil 2000). Salt stress similarly results in a significant
reduction in the fresh and dry masses of leaves, stems, and roots (Hernandez et al.,
1995; AliDinar et al., 1999; Chartzoulakis and Klapaki 2000). In halophytes such as
Rhizophora mucronata, optimal growth may be achieved at a salinity equivalent to 50%
sea-water but growth drops with further increase in salinity (Aziz and Khan 2001).
Similarly, in Salicornia rubra optimal growth is evident at 200 mM NaCl and the
growth deteriorates at higher salinity (Khan 2001). However, most plants (glycophytes)
have little tolerance of salinity before growth is impaired. For example in Raphanus
sativus (radish) whole plant dry mass is reduced at high salinity approximately 80%

reduced which could lead to decrease in leaf area development and consequently
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decrease the light capture. The small leaf area at high salinity is related to a reduction in
specific leaf mechanisms that lead to increase tuber/shoot weight ratio and decrease
plant dry weight at high salinity (Marcelis and VanHooijdonk 1999). Nevertheless a salt
mangrove Aegiceras corniculatum could tolerate up to 250 mM NaCl and 300 mM was
discovered to be toxic in this circumstance (Mishra and Das 2003). Salt accumulation
was ccompanied by substantial decreases in shoot mass, plant height, number of leaves
per plant, root length, and root surface area in tomato plants (Mohammad et al., 1998).
Increased levels of NaCl resulted in a significant reduction, in root, shoot, and leaf
growth biomass but an increase in root:shoot ratio in cotton (Meloni et al., 2001). (Khan
et al., 1999) stated that when Halopyrum mucronatum (a perennial grass found on
coastal dunes near Karachi, Pakistan) was treated in sand media with 0, 90, 180, and
360 mM NacCl, it was found that fresh and dry masses of roots and shoots reached an
optimum at 90 mM NaCl, and further increase in salinity impeded growth, resulting
eventually death at 360 mM NaCl (Parida et al., 2004a). (Kurban et al., 1999) reported
that in Alhagi pseudoalhagi (a leguminous plant), overall plant mass reductions were
low at 50 mM NaCl but nevertheless were severe higher at salinity (100 and 200 mM
NaCl).

Clearly plant mass and other metrics, such as plant height and tiller or organ number,
can provide valuable insights into the effects of salinity on growth. However, the more
coherent and powerful trechniques of plant growth analysis, which allow the
partitioning of growth into ecologically interpretable components (Evans 1970), have

less commonly been applied to these problems (but see Redondo-Gomez et al. 2007).

The hypothesis in this part of the study was that the osmotic effects of salinity on water
availability and/or the directly toxic effects of salt would inhibit the growth of the
Saudi-Arabian land-races races of wheat. The objectives were (1) to compare the effects
of salinity on them with those on known salt-sensitive and salt-tolerant varieties of
wheat and (2) partition those growth effects using the methods of quantitative growth

analysis to understand better their significance.
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6.2. Traditional wheat growing in Al-Qassim region

6.2.1 Land-races

‘Land-races’ of wheat are genetically diverse mixtures traditionally planted by an area’s
farmers. They are cleaned and stored for future sowing on their farms by the local
farmers. Land-races are generally more rugged and resistant to a variety of problems.
Planting of a landrace, or possibly a mix of older varieties, can produce a crop which is
reputed to keep out weeds better, be more saline-tolerant and less susceptible to disease,
therefore giving a more consistent crop year-on-year under adverse and variable

conditions.

6.2.2 Sowing time and cultivation practices

Wheat is separated into spring and winter types. Spring wheat grows relatively fast and
is sown at the start of spring (usually March); winter wheat is sown at the beginning of
winter, between October and the end of November. Winter wheat needs a period after
initial growth with consistent temperatures under 7 °C in order for it to be vernalised
and become reproductive. However these wheat varieties may be sown earlier with
advantage for two different reasons, first to reduce the quantity of seeds needed and
second to provide grazing. Seeds may be sown in the middle of September at about 50
kg ha™ and the crop grown until the plants reach 25-30 cm in height; then irrigation is
stop completely to allow grazing by animals for forty days, before intense irrigation is
applied allow to further growth and the production of spikes at about 12-13 per plant.
This produces a full-sized of seed and reduces the height of the plants to approximately
150 cm. On the other hand, a the later sowing at the beginning of January requires 120
kg seeds ha™' and regular irrigation until the harvest time to produce 2-3 spikes per

plant.

The sowing site can be a normal bed or a raised bed. A raised bed should mean the soil
will warm up approximately a week earlier. The site should be as little over-shadowed
as possible both for rain and sun. Some shelter from wind can however be an advantage.
However, soil preparation is important before sowing. If the bed is at normal ground
level, traditionally this would mean digging over with spade before start sowing,

digging and breaking up with fork a week to two before sowing, if necessary re-plowing
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immediately before sowing and then raking into a fairly good surface tilth. Treatment
for a raised bed could be similar but probably requires less digging as there is less
likelihood that soil has become compacted. Usually a wheat crop would be rotated in
the next year being a bean or other nitrogen-fixing crop, followed by another crop,

which might be alfalfa.

Both winter and spring wheat in an average year will be ready for harvesting in late July
to August. If harvested in a traditional manner the crop will be cut and bundled into
sheaves and then these stacked into stooks to dry in the open for three to four weeks.
The crop will then be ready to be threshed and winnowed at the beginning of
September. All this information has been derived from interviewing local farmers and,

although they differ in detail from one another, these are the general practices.

6.3 Material and methods

6.3.1 Experimental design

Three bread-wheat genotypes including one salt-tolerant genotype (Karachi 65), and
two salt-sensitive genotypes (W9940, TW161) were obtained from the John Innes
Centre, Norwich Research Park, Colney, Norwich, Norfolk NR4 7UH. They were
compared with the land-race Meyeh Triticum aestivum from the al-Qasssim region of

Saudi Arabia.

The experiment was conducted in the glasshouse located at University of East Anglia,
Norwich, Norfolk, on movable benches 95 cm high 2000 cm wide and 3000 cm long,
with daily glasshouse temperature ranging from 25°C during the day and 15°C during
the night artificial light are used to give more bright. It was a factorial experiment with
4 genotypes (races) x 4 salinities x 4 harvests x 10 replicate plants. Seeds were selected
for uniform size and mass, and surface-sterilized with sodium hypochlorite (1%). Seeds
were planted in pots (25 cm in diameter) containing perlite rooting medium size
(Figures 6.4-6.9). From one week after sowing, pots were irrigated three times a week
with a 20% Hoagland’s solution (Hoagland and Arnon 1950). Control plants were
irrigated twice a day with 50 ml of distilled water. In the first and second weeks salt-

treatment plants were subjected to 50 ml of 100 mM NaCl; in the third week the two
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higher salt treatments were increased to 200 and 300 mM NaCl respectively. Salt

treatments were maintained for 55 days.

Ten plants were harvested randomly from each treatment, at weekly intervals between
24 and 45 days from sowing, and transported in paper bags directly to the laboratory.
Fresh mass was recorded and leaf area determined by using a leaf area meter (LIC-COR
Portable area meter Model LI-300). Then plants were partitioned into roots, stems and
leaves and placed to dry in an oven at 60 °C for 42 hours, before dry masses were

recorded.
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6.3.2 Growth analysis

Increases in dry mass were used to derive relative growth rate (R) and this was
partitioned into leaf area ratio (LAR) and unit leaf rate (ULR) (Evans 1972). This was
accomplished using stepwise polynomial regressions of In dry mass and In leaf area on
time with the software HPcurves for the Windows 95/98/XP platform (Hunt and
Parsons 1974). After presentation with replicated measurements of two plant variables ¥
(mass) and Z (leaf area) at four or more harvests in time ¢, HPcurves fits first, second or
third order polynomial exponential curves to the trends in InY versus ¢ and in InZ versus
t. The choice of order of polynomial exponential was determined automatically by the
program (at P< 0.05). The output from HPcurves contained tables of primary and
derived growth-analytical data. These constituted observed and fitted values of InY and
InZ, and values of d¥Y/d¢, dZ/d¢, (1/Y)(dY/dr) (R), (1/2)(dZ/df) (relative leaf growth rate),
Z/Y (LAR) and (1/2)(dY/df) (ULR). 95% confidence intervals are provided for all

estimates.
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Figure 6.3. First emergence of seeds after five days of planting
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Figure 6.6. The plant near the end of the experiment
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6.4 Results

The trends of total dry mass and total leaf area with time for Triticum aestivum Meyeh
at the four salinities are shown in Figure 6.7. A growth analysis using polynomial
exponential regression is presented in Figure 6.8. A linear regression was the best fit for
In dry mass for all treatments and for In leaf area in all except 300mM NaCl, for which
a cubic was fitted; the estimating equations are given in Table 6.1. Relative growth rates
(R) in all treatments were constant throughout the experiment. R was not reduced
relative to the control (0 mM NaCl) by treatment with 100 mM NaCl, but was
progressively lower at 200 and 300 mM (Figure 6.8b). It is clear that the differences in
R between salinity treatments could be attributed to differences in Unit Leaf rate rather

than Leaf Area Ratio (compare Figure 6.8 ¢ &d).
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Fig. 6.7. Growth of Triticum aestivum Meyeh in response to treatment with 0, 100, 200
and 300 mM NaCl in a glasshouse experiment: (a) dry mass; (b) leaf area.
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Figure 6.8. Growth analysis of 7. aestivum Meyeh in response to treatment with 0, 100, 200 and 300 mM
NacCl in a glasshouse experiment: (a) In dry mass; (b) Relative growth rate; (c) Leaf area ratio; (d) Unit
leaf rate. Estimating equations are presented in Table 6.1.
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The trends of total dry mass and total leaf area with time for Triticum aestivum Karachi
at the four salinities are shown in Figure 6.9. A growth analysis using polynomial
exponential regression is presented in Figure 6.10. A linear regression was the best fit
for In dry mass for all treatments and for In leaf area in all except 0OmM NaCl, for which
a cubic relationship was fitted; the estimating equations are given in Table 6.1. In all
treatments R was constant throughout the experiment. Relative to the control (0 mM
NaCl) R was reduced progressively by increasing salinity (Figure 6.10b). The
differences in R between salinity treatments were mainly related to differences in Unit

Leaf rate rather than Leaf Area Ratio (compare Figure 6.10 ¢ &d).
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Fig. 6.9. Growth of Triticum aestivum Karachi in response to treatment with 0, 100, 200
and 300 mM NacCl in a glasshouse experiment: (a) dry mass; (b) leaf area.
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Figure 6.10. Growth analysis of T. aestivum Karachi in response to treatment with 0, 100, 200 and 300
mM NaCl in a glasshouse experiment: (a) In dry mass; (b) Relative growth rate; (c) Leaf area ratio; (d)
Unit leaf rate. Estimating equations are presented in Table 6.1.

The trends of total dry mass and total leaf area with time for 7riticum aestivum TW161 at
the four salinities are shown in Figure 6.11. A growth analysis using polynomial
exponential regression is presented in Figure 6.12. A quadratic regression was the best
fit for In dry mass for three of the treatments but a linear fit was best for 200 mM NaCl;
for In leaf area, a quadratic fttted best at 0 and 200 mM, but a cubic was employed at
100 and 300 mM; the estimating equations are given in Table 6.1. At 200 mM R was
constant but it declined throughout the experiment in the other treatments. Overall, there
was little difference in average R, ULR of LAR in the four different treatments (Figure
6.12b,c & d).
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Fig. 6.11. Growth of Triticum aestivum TW161 in response to treatment with 0, 100, 200
and 300 mM NaCl in a glasshouse experiment: (a) dry mass; (b) leaf area.
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Figure 6.12. Growth analysis of 7. aestivun TW161 in response to treatment with 0, 100, 200 and 300
mM NaCl in a glasshouse experiment: (a) In dry mass; (b) Relative growth rate; (c) Leaf area ratio; (d)
Unit leaf rate. Estimating equations are presented in Table 6.1.

137



The trends of total dry mass and total leaf area with time for Triticum aestivum W9940 at
the four salinities are shown in Figure 6.13. As growth in this variety was particularly
poor, significant trends of In dry mass and In leaf area with time were not found in most
treatments; the exceptions were at 100 mM NaCL, where there were linear fits for both
variables, and at 300 mM, where there was a linear only for In leaf area; the estimating
equations, where applicable, are given in Table 6.1. Consequently no useful growth

analysis can be presented for this variety.
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Fig. 6.13. Growth of Triticum aestivum W9940 in response to treatment with 0, 100, 200
and 300 mM NacCl in a glasshouse experiment: (a) dry mass; (b) leaf area.
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Table.6.1. Log-polynomial estimating equations, derived from HPcurves, relating dry
mass (Y) and leaf area (Z) to time (T) for harvests of four varieties of Triticum aestivum
at weekly intervals between 24-45 days of age.

NaCl (mM) Dry mass Leaf area
Variety
0 In(Y) = +3.537810 +0.051347T In(Z) = +2.461973 +0.020586T
100 In(Y) = +3.673793 +0.049871T In(Z) = +2.191139 +0.039492T
Triticum aestivum
Meyeh 200 In(Y) = +4.368809 +0.031017T In(Z) = +2.801591 +0.021231T
300 In(Y) = +4.617566 +0.014009T In(Z) = *** -1.652025T
+0.051111TT -0.000513TTT
0 In(Y) = +3.411023 +0.055765T In(Z) = ** -2.721137T
+0.079168TT -0.000748TTT
B , 100 In(Y) = +2.834204 +0.079454T In(Z) = +2.326014 +0.041521T
Triticum aestivum
Karachi 200 In(Y) = +2.928345 +0.071040T In(Z) = +2.646499 +0.028684T
300 In(Y) = +3.552399 +0.042391T In(Z) = +2.192447 +0.029247T
0 In(Y) = +2.078135 +0.153267T - | In(Z) =-0.082306 +0.174519T -
0.001818TT 0.002492TT
100 In(Y) =-0.710521 +0.301619T - In(Z) = *** -0.869318T
Triticum aestivum 0.003298TT +0.031983TT -0.000350TTT
TW161 200 In(Y) = +3.807989 +0.041982T In(Z) = -0.390215 +0.201314T -
0.002679TT
300 In(Y) = -2.461895 +0.390360T - In(Z) = ** -1.707077T
0.005078TT +0.056922TT -0.000604TTT
0 No significant fit No significant fit
B , 100 In(Y) = +3.502008 +0.055090T In(Z) = +2.021188 +0.043857T
Triticum aestivum
W9940 200 No significant fit In(Z) = +4.223420 -0.044329T
300 No significant fit No significant fit

*#* Indicates an intercept too large for output in the format used by HPcurves.

A summary comparing the relative growth rates of all four varieties over the whole

experimental period is presented in Table 6.2.
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Table 6.2. Summary of average relative growth rates (mg mg™ d') for the whole
experimental period of four varieties of Triticum aestivum grown in four salinity
treaments.

Variety Treatment (mM NaCl)

0 100 200 300
Meyeh 0.051 0.050 0.031 0.014
Karachi 0.056 0.080 0.071 0.042
TW161 0.028 0.074 0.042 0.040
W9940 0 0.055 0 0

TW161 decline throughout the experiment because it is sensitive to the growing
conditions.
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6.5 Discussion

Overall, growth was unexpectedly poor in this experiment. The highest overall relative
growth rates under any conditions were only c. 0.08 mg mg" d' (Table 6.2). British
wild grasses at optimal temperatures over a similar period from germination can achieve
and R of ¢. 0.2 mg mg' d' (Grime and Hunt, 1975) and individually potted cereal
plants may have an RGR up to 1.2 mg mg" d”' even in artificially lit (130 umol m* s™)
growth rooms (e.g. Mallott and Davy, 1978). Relatively restricted growth is likely to
have been the result of suboptimal conditions for wheat in the glasshouse environment.
The experiment was carried out in late autumn/winter when ambient light valus were
low in a glasshouse with heating but limited supplementary lighting. Consequently
photosynthesis was almost certainly limited by conditions that were too warm, with
consequently low atmospheric relative humidity, for the light energy available. These
varieties also showed considerable variability within replicates and this, at least in the
case of Meyeh, might be partly due to the genetic variability typically found within land
races (Hassan 1979).

However, the main purpose of this experiment was to compare the growth and salt
tolerance of a typical Saudi Arabian land-race (Meyeh) with types of previously known
performance. Under control conditions, Meyeh grew very similarly to Karachi 65, the
variety with established salt tolerance, but it showed substantially less tolerance than
Karachi as salinity was increased; Karachi actually increased its RGR up to 200 mM
NaCl and at 300 mM its RGR was not much lower than the control, whereas the RGR
of Meyeh declined progressively with increasing salinity. Karachi was clearly the most
salt-tolerant variety in the trial, as it was able to maintain both the LAR and ULR
components of RGR at high salinity, unlike the othere three types. W9940, a known
salt-sensitive type, was probably the least salt-tolerant in the experiment, although its
growth was so poor and erratic, even in the control treatment, this cannot be stated with
confidence. The performance of Meyeh at increased salinity was not obviously any
better than that of TW161, another salt-sensitive variety but, again the data for TW161
showed much variability and its performance declined thoughout the experiment in all

treatments.
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Although it is not possible to ascribe particular salt tolerance to Meyeh in the vegetative
growth phase of its life history, it did show features that are consistent with selection for
its native habitat in the semi-arid regions of Saudi Arabia. First, its overall growth was
not seriously impaired up to a salinity of 200 mM NacCl; this represents a salinity of
about 40% that of oceanic seawater and would be very high in comparison with a
conventional agricultural system. Second, it was able to maintain its LAR, even at the
highest salinity. This implies that it was able to achieve sufficient water uptake, in spite
of the low osmotic potential of its root environment, to develop the turgor required for
leaf cell expansion. This is a feature of true halophytes, such as Atriplex portulacoides
(Redondo-Gomez et al., 2007), and in itself could represent an adaptive response to
salinity, as high salinity has been shown to affect RGR by reducing turgor pressure and
cell wall extension in other species (Peter et al., 1998). The declining growth with
increased salinity appears to have stemmed mainly from effects on unit leaf rate. ULR,
the rate of dry mass increase per unit leaf area, is essentially analogous to a measure of
average net photosynthesis (Evans 1972). Hence we should look to effects on
photosynthesis (and possibly respiration, although it is quntitatively less important) for
an explanation of the response to salinity. A declining photosynthetic rate with
increased external salinity is also a feature of some halophytes and has been associated
with declining stomatal conductance (and hence CO; uptake) rather than adverse effect
on photosynthetic biochemistry (and hence CO, fixation) in Atriplex portulacoides
(Redondo-Gomez et al., 2007). This may also be the case in Saudi-Arabian wheats but

further work would be needed to establish it.
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Chapter 7. Synthesis and General Discussion

The Arabian Peninsula harbours many local races of crop species (land races) that have
been selected and preserved by generations of indigenous farmers. Because of the local
selection for productivity, they are likely to be well adapted to the prevailing
environmental conditions. Much of the Arabian Peninsula experiences arid or semi-arid
conditions with hot, dry summers and erratic rainfall in winter. The resulting net
evapotranspiration can cause an accumulation of salts in the surface layers of the soil
and hence saline root environments. Plant growth can be severely affected by the
osmotic effects of salinity on water availability and the directly toxic effects of high
concentration of ions (Flower et al., 1977) and this can be a major constraint on crop
productivity (Flowers et al., 1995). However, the climate of the huge area of Saudi
Arabia is far from uniform. Hence the local land races would be expected to have, to a
greater or lesser extent, different tolerances to drought, high temperatures and salinity.
Thus they represent a largely unknown and unexploited source of germplasm that could
be of value for crop breeding in a world where food security demands greater
productivity in areas considered sub-optimal, or even unsuitable, for cultivation, and
projected climate change suggests that growing conditions will become increasingly
extreme. The overall aim of the work described in this thesis was to examine some of
the tolerances of land races of a range of cereal species that are widely cultivated by
artisanal farmers in the Kingdom of Saudi Arabia and deposit representative material
for preservation in national and international germplasm banks. For practical reasons,
work has focused on seed storage, germination and the early stages of growth, because
success at these stages is a prerequisite for any potential crop value, although of course
success at later stages of the life cycle would also be necessary for overall crop
potential.

The viability of seed collections from the arid Al-Qassim area, as judged from
tetrazolium testing, proved to be very high, indicating that it was suitable for germplasm
banking and therefore potential use in future plant breeding (Munns et al. 2006). The
work in Chapter 2 demonstrated remarkable overall tolerance of germination to high
salinity in a broad range of cereal species (Poaceae), Triticum aestivum (Arabic local
name, meyeh), Triticum durum (Arabic local name, logemei), Hordeum vulgare (Arabic
local name, saear arubi), Panicum miliaceum (Arabic local name, mlessa) and

Pennisetum glaucum (Arabic local name, sudany). Such genetically based variation for
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salinity tolerance in plants has been reported in many previous studies. Salt tolerance of
crops may also vary with their growth stage (Igbal and Ashraf, 2013) and difference
among genotypes for salt tolerance may occur at different growth stages (Shabala et al.,
2013). Germination in Triticum aestivum and Hordeum vulgare proved to be extremely
tolerant to salinity, whereas Pennisetum glaucum in particular was found to be relatively
salt sensitive. Remarkably, seeds of 7. aestivum and Hordeum vulgare showed some
germination up a sodium chloride concentration of 600 mM, a salinity significantly
greater than oceanic seawater; even Pennisetum glaucum showed germination at 300
mM NaCl, a response more typical of a coastal halophyte (Woodell, 1985; Ungar, 1987)
than a crop plant. In fact halophytes themselves normally germinate best in fresh water,
with increased dormancy and mortality as salinity increases (Ungar, 1987; Redondo-
Gomez et al., 2008). All of the species collected germinated as well in 100 mM NacCl as
in distilled water; more remarkably, all of them achieved some germination at 500 mM
NaCl, a salinity similar to that of sea water. This substantial tolerance notwithstanding,
these experiments were carried out at a typical average ambient temperature and did not
consider the effects of the extremes of temperature that would be expected on the
Arabian Peninsula.

The more detailed work described in Chapter 3 employed the thermogradient
and incubator technology of the Kew Millennium Seed Bank at Wakehurst Place to
examine not only the effects of temperature, but also the interactions of salinity with
temperature, on germination in the same land races of these five species. Furthermore, it
allowed the development and evaluation of seed-testing protocols appropriate for this
material that were applied to work described in later chapters. The same land races of
the same five species were examined but, for comparison, a commercial variety of
winter wheat (Triticum aestivum Istabraq) was also introduced. The fine resolution of
temperature provided by the thermogradient plate (necessarily limited to a subset of the
land races) was complemented by incubator experiments, providing fewer temperature
treatments but embracing the full range of species. As before (see Chapter 2) and as
expected, germination declined with increasing salinity. Furthermore in general it was
apparent the temperature had relatively little effect on final germination percentage in
the absence of salinity. However, increasing salinity disproportionately reduced
germination towards both extremes of temperature, creating sharper temperature
optima. Nevertheless, all the land races showed considerable salt tolerance and the

germination of Triticum aestivum from Qassim was less severely affected by salinity
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and temperature than the commercial variety Istbraq. The use of the thermogradient
plate allowed exploration of the methodology for examining basal, optimal and ceiling
temperatures - from the relationships between the reciprocal of time to 50% germination
and temperature. Where these cardinal temperatures could be determined they were
generally consistent with the extremes of average temperature seen in Qassim (see
Chapter 4). Non-dormant seeds respond to continually varying temperature conditions
in the field but their temperature responses can be characterized from these constant
temperature germination experiments if the concept of thermal time is employed.
Germination below the optimal temperature is generally modelled as a linear response
to accumulated day-degrees above the basal or threshold temperature (e.g. Garcia-
Huidoboro et al., 1982a,b) to allow extrapolation to (and from) field conditions. The
current investigation validated the use of a basal, optimal and ceiling temperature model
derived from constant-temperature investigations (Hardegree et al., 1999) for use with
the Saudi Arabian wheat land races. Taking seedling mass 3 days after germination on
the thermogradient plate as an indicator of vigour (Butterfield et al., 2013) confirmed
that, despite salinity tolerance, the greatest seedling vigour was in the non-saline
treatments around the central temperature of the range (19-20 °C).

The experiments in Chapter 4 sought to extend the work by examining the
germination responses of land races of Triticum aestivum from different environments
in Saudi Arabia: the continental, arid climate of Qassim and the less extreme climate of
Al-Baha, also taking into account possible differences in the chemical and physical
composition of their soils. The most distinctive property of land races from the
Kingdom of Saudi Arabia is their perceived ability to grow and crop in environments
that would often be regarded as too arid and saline for cereal crop productivity.
Chemical and physical analyses of soils samples collected with the plant samples
confirmed this general tolerance (Quaye et al., 2013). All of the soils were essentially
sandy, with inevitably poor water-retention. All had a high pH and electrical
conductivity, indicating a high ionic status that could be explained by the particularly
high concentrations of extractable calcium, sodium and chloride ions (Raz and Fluhr
1992). Salinization is the inevitable consequence of evapotranspiration exceeding
precipitation in the long term. By agricultural standards, all of the soils were extremely
deficient in phosphorus and very poorly supplied with nitrogen. These crops are
therefore possibly amongst the most stress-tolerant cereals growing anywhere in the

world, a fact that underlines their potential value as sources of genetic variation for the
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development of new varieties that might be appropriate for large areas increasingly
aridity as a result of predicted global climate change (Rosenzweig and Hillel 1995).
Meteorolgical data from the two sites confirmed that the two land races experience
distinctly contrasting climates. Although both sites have similarly hot summers, there is
virtually no rainfall at Al-Qassim from May to October (and little in October itself),
whereas low to moderate rainfall is maintained throughout the summer at Al-Baha. The
winters, when most growth occurs, have similar rainfall and mostly mild temperatures.
This has implications for the timing of germination and harvest. Sowing of these land-
races in Saudi Arabia can be from mid-September to early January (see Chapter 6).
Clearly, irrigation would be needed if sowing was before November at Al-Qsaim and by
then temperature would be lower than at Al-Baha; however, as irrigation can be used,
selection may not necessarily be expected to have favoured germination at the lower
temperatures. Given the constraints of drought at the end of the growing season, early
establishment at Al-Qassim might be advantageous.

The overall germination responses of these two land races of Triticum
aestivum on the thermogradient plate confirmed the findings of Chapter 3, as final
germination percentage was nearly insensitive to temperature in the absence of salinity
but increasing the salinity to 500 mM NaCl (similar to that of sea water) sharply
narrowed the response curve to give an optimum of c¢. 19 °C. Thus the results of this
experiment also support an important finding also seen in the work described in both
chapters 3 and 5: a progressive narrowing of the range of temperature at which
germination can occur as salinity was increased; as elsewhere this narrowing was
evident at the higher extreme temperatures at moderate salinity and also at the lower
extreme temperatures at higher salinity. However, these overall responses masked
subtle differences between land races from the two sites. Land-races collected from two
different locations certainly reacted differently to salinity stress, with a highly
significant interaction between land-race and salinity; most extraordinarily, Al-Baha
seeds did not germinate at all at 500 mM NaCl. Whereas those from Al-Qassim, which
had much higher salinities in their soil of origin (cf. Chapter 4) showed up to 70%
germination at optimal temperatures (c. 23 °C). Even at 250 mM NaCl, Al-Qassim
seeds consistently germinated faster (lower values of tsp) and had a broader range of
temperature tolerance than those from Al-Baha. Nevertheless, once again seedling
masses 3 days after germination indicated greatest seedling vigour in the absence of

salinity and after germination at 18-23 °C. Other studies have also found that different
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wheat cultivars have different responses to salinity stress, resulting in differing grain
yields (Richards et al., 1987; Slavich et al., 1990; Albarih 2010). In a large-scale study
of 103 wheat genotypes from across Europe, Asia and the Middle East, genotypes from
locations in Pakistan were among the most and least salt tolerant (El-Hendawy et al.,
2005).

Having established and quantified the salt tolerance of germination, the aims of
next part of the study were related to seed germination in the context of the agronomic
practice of the artisanal farmers in the field. The progression of seed ageing during
storage becomes progressively more rapid with unavoidable trends in viability (Thomas
2013). Seeds stored at low moisture content and temperatures can resist ageing and
maintain viability for long periods (e.g. Suma et al., 2013). A seed moisture content of
lower than 10% is generally regarded as necessary for secure storage of seeds, even for
a short period (Banks et al., 1998). On the other hand, land races only persist because
farmers have stored their own seed collections, individual batches often for several
years, in conditions that are far from optimal for the maintenance of seed viability. Thus
a deterioration in seed quality with storage is to be expected and it is important to know
what its effects might be. This was the aspect addressed in chapter 5. The approach was
to subject seeds from the two land races of Triticum aestivum from contrasting climatic
zones represented by the Al-Qassim and the Al-Bahah regions, to accelerated ageing
and investigate their subsequent ability to germinate under saline conditions. The
assumption was that aged seeds of poorer quality would be less salt tolerant. A
supplementary objective was to investigate the practical value of electrical conductivity
(EC) measurements of electrolyte leakage in predicting relative seedling emergence for
these land-races of Triticum aestivum under different salinity conditions, where average
germination lay in the commercially conventional range. As shown in previous
chapters, germination of both races showed substantial salt tolerance by the standards of
wheat varieties and even in comparison with halophytes. The accelerated ageing
treatment (60% Relative Humidity at 45 °C) was extremely effective, as has been
shown previously, with declining viability at both salinities during the 30 days of
ageing. Interestingly, the Al-Bahah land race was less severely affected by the ageing
treatment than the Al-Qassim one, possibly suggesting that it was better adapted for
storage in the more humid summers there. However the Al-Qassim race maintained its
tolerance of salinity better after aging, reflecting the higher salinities in its soils of

origin (cf. Chapter 4). The electrolyte leakage tests for seed vigour, carried out in a few
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hours, proved to be good indicators for the germination response to salinity in the full-
scale experiment. In particular, the greater electrolyte leakage from seeds experiencing
500 or 1000 mM NacCl during imbibition was in agreement with the failure of all seeds
to germinate at these salinities.

Following the detailed studies of seed viability and germination
tolerances, a preliminary attempt was made to extend our understanding of the land
races into the vegetative stage of growth in the context of the local agronomic practices
of the Al-Quassim region (Chapter 6). The focus again was on a local winter wheat
land race (meyeh) but for comparative purpose, three other varieties were introduced
into the study: a known salt-tolerant variety (Karachi 65) and two relatively salt-
sensitive varieties (W9940 and TW161) supplied by the John Innes Centre, Norwich.
The approach taken was a glasshouse experiment using soil-free cultivation and the
well-established methods of growth analysis with frequent sampling and stepwise log-
polynomial regressions of plant mass and leaf area on time. Overall the growth rates
recorded were low, probably because of insufficient supplementary lighting at a time of
the year when natural light levels were very low, combined with relatively high
temperatures. Consequently, when extrapolating to the field situation, the results should
be interpreted with caution, but some useful insights were obtained nevertheless. As
expected, NaCl salinity had clear inhibitory effects on number of plant growth
parameters (cf. Singh et al., 2014). Reduction in dry biomass would be expected
because of energy consumption for osmotic adjustment (Hood et al., 2013) and loss of
photosynthetic production associated with water stress (Redondo-Gomez et al., 2007).
Wheat is a moderately salt tolerant crop (Ahmad et al., 2013) but there were differences
between varieties in response to salt; salt-sensitive genotypes showed more decline in
dry biomass production in comparison with salt-tolerant genotypes. Similar differences
between genotypes of wheat in response to salinity and also hypoxia have been recorded
previously (Saqib et al., 2013). Meyeh from Al-Qasssim generally grew similarly to
Karachi 65, the variety with established salt tolerance, although it showed substantially
less tolerance than Karachi as salinity was increased; Karachi actually increased its
RGR up to 200 mM NaCl and at 300 mM its RGR was not much lower than the control,
whereas the RGR of meyeh declined progressively with increasing salinity. Although it
is not possible to ascribe particular salt tolerance to meyeh in the vegetative growth
phase of its life history, it did show features consistent with selection for its native

habitat in the semi-arid regions of Saudi Arabia (see Chapter 4), particularly that overall

149



growth was not seriously impaired up to a salinity of 200 mM NaCl, a feature more
characteristic of a halophyte. In addition, it was able to maintain its LAR, even at the
highest salinity. This is consistent with its relative salt tolerance at the seed germination
stage (discussed previously). It is generally considered that plants with better
germination and seedling growth under salt stress will also be more stress-tolerant at
maturity and give greater production yields (Ahmadi and Arkedani, 2006). RGR
appears to have the potential to provide valuable information needed for comparing
parallel morphological and physiological variation among genotypes of wheat landraces
of differing salt tolerance. There is great need to generate new breeding material for
developing salt tolerant wheat cultivars. Wheat land-races are a main source of genetic
diversity in wheat (Asif et al., 2014). However, a range of potential criteria for
screening of genotypes for salt tolerance are needed. Salt tolerance plant is not
equivalent at all growth stages as it differs relatively over the life cycle. Furthermore
single criteria may not be good predictors of plant performance in field conditions. The
present study has revealed sufficient genetic variation for salt tolerance at two stages of
the life cycle to be of interest for breeding. The salt tolerant Saudi-Arabian land races of
T. aestivum had different characteristics from other cultivars studied and may offer

novel value to breeders.

The aim of this research was to investigate the germination and growth
characteristics of endemic land-races of cereal species collected from Saudi Arabia and
also to identify material suitable for preserving in the germplasm collection of the
Kingdom’s rare and indigenous crops for future generations, thus providing plant
breeders with the genetic resources necessary for developing stress-resistant cultivars in
the future. This work has successfully identified appropriate local populations of five
cereal species in rural farms of the Al-Qassim and Al-Baha regions. Bulk collections of
seed have been made in a fashion that would be expected to represent the genetic
diversity within these land races of cereal species. This will need to be confirmed,
preferably by molecular genetic analyses, in the future development and use of the
germplasm bank (Van et al., 2002). Thus an important outcome of this work is that fully
documented seed collections have been made, dried-down to less than 8% moisture
content and placed in long-term storage at -20 °C, with the objective of securing them
for the benefit of future research and exploitation. The validity of the methodology and

the utility of the germplasm-banking resources established in the Kingdom of Saudi
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Arabia have therefore been established. However bulk duplicate samples of seeds also
have been stored at Millennium Seedbank, Wakehurst Place (Royal Botanic Gardens,
Kew).

The utility of screening seed germination for tolerance to extreme environments,
particularly salinity and temperature, has been established as an efficient, rapid
precursor to more time-consuming studies of the relevant tolerances for growth and
agricultural productivity. Enhanced wunderstanding of physiological processes
underpinning salt tolerance would be of advantage in breeding programs, since multiple
characters could be combined in the screening for salt tolerance (Munns et al., 2006).
Selection will be improved only when there are more detailed descriptors for salt
tolerance, and plant physiologists will be able to improve the salt tolerance of crops by
specifying precise genes or characteristics for breeders to exploit (Faghani et al., 2014).

There are many ways in which a broad study such as this could be developed
and extended. First and foremost, we need to corroborate the outcomes in field
environments. There are number of research recommendations that could be followed to
assist similar work in the future; these involve modifying the sampling techniques to
assess environmental factors and plant performance over longer periods that cover all
the life-history stages of populations of these species: survival, growth, and
productivity. In addition the current study should encourage molecular assessment
approaches using sophisticated techniques in order to reveal the genetic factors
underlying the variations among those populations. More broadly, it will also be
necessary to give higher priority to the conservation of land races of crop species from
arid and semi-arid lands, particularly of the Arabian Peninsula. Global climatic change
and food security for a rapidly growing world population suggest that this will become

an urgent issue. Specific recommendations include:

1. Expand facilities for long-term storage of germplasm at low temperatures in
Saudi Arabia to facilitate increased representation of domesticated species as
well as wild ones; collaborate with The Royal Botanic Gardens, Kew, a world
famous scientific organisation that is internationally respected for its outstanding
living collections of plants and world-class Herbarium, as well as its scientific
expertise in plant diversity, conservation and sustainable development in the UK

and around the world.
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Increase the scale of collections, along the lines established by this scoping
study; this should include more geographically extensive and larger collections
of the cereal species investigated and a wider range of indigenous, locally

adapted crops such as sorghum and rice (Gepts, 2006).

Carry out molecular genetic analysis of the variation captured by such seed
collections for each species as well as detailed eco-physiological work to
establish a more comprehensive picture of their environmental tolerances; these
should be integrated with the range of approaches tested in this work, with the
collection of detailed environmental data, voucher specimens, and an
experimental analysis of germination biology as an aspect of standard

germplasm-banking methodology (Fourcaud, 2008).

Establish botanic gardens, herbaria and nurseries for the cultivation of rare land
races and to preserve them from extinction. It is believed that the draft World
Bank Protectorate (MAB), pilot project will help to protect the plants, since it
includes research on natural methods of breeding threatened species and the

establishment of nurseries for plant reproduction (Maloupa et al., 2003).

Prepare Red Lists of indigenous cropland races of species whose populations are

threatened or endangered, providing legal protection for them in Saudi Arabia.

Engage the attention of all parties interested in conservation in Saudi Arabia,
such as the Environmental Protection Council, research centres and universities;
accelerate the establishment of nature reserves, as recommended by many
international and Arab organizations and local communities, especially the study
by the General Authority for the Protection of the Environment and Protected
Areas proposed for protection of threatened plant species (Rodrigues et al.,

2004).
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