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Abstract 

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cell membrane 

bound chloride ion channel regulated by cyclic AMP-dependent phosphorylation and 

levels of intracellular ATP. Mutations in this channel, such as the common deletion of 

phenylalanine at residue 508 (CFTRΔF508), leads to a decrease in chloride transport 

seen in the disease condition cystic fibrosis (CF). The mutant CFTR is not processed 

in the normal way and consequently not delivered to the cell membrane. Currently, 

the effect of growth factors such as epidermal growth factor (EGF) on ion transport in 

the airway has not been previously researched and is consequently unknown. 

Therefore the aim of this thesis is to determine (i) if EGF has an effect on ion 

transport in the submucosal cell line Calu-3, (ii) what the mechanisms are behind this, 

and (iii) if the effect of EGF was due to induction of gelatinase activity or a 

transactivation process. Functional investigations looking at ion transport were carried 

out by using short circuit current. This technique was complemented by traditional 

molecular biology techniques such as RT-PCR, Western blotting, flow cytometry and 

gelatin zymography. The level of EGF, a potent inducer of gelatinases, is known to be 

elevated in the lungs during tissue repair in CF. Calu-3 cells preincubated with EGF 

on the basolateral membrane increased initial current at one hour via a EGFR-PI3K-

PKC-δ-KCNN4/KCNQ1 signalling pathway. Similarly, preincubation with EGF also 

decreased forskolin induced short circuit current compared to untreated monolayers 

at 1 to 3 hours, with a recovery at 24 hours. The decreases were found to be 

dependent on the activation of KCNQ1 since chromanol 293B, a specific inhibitor for 

KCNQ1, restored the short circuit current back to untreated levels. Stimulation of the 

β2 adrenergic receptors with salbutamol were not reduced using metalloproteinase 

inhibitor, GM-6001 and EGFR inhibitor, AG1478. This suggested that stimulation of β2 

adrenergic receptors does not lead to transactivation of EGFR via activation of 

sheddases and the release of EGF ligand. β3 adrenergic receptors are present in 

Calu-3, but produce negligible currents when stimulated. It was concluded that EGF 

induced potassium channel activation led to a change in chloride driving force. This 

activation of potassium channels has previously been linked to wound repair in the 

airway during disease. The implications of this study suggest that manipulation of the 
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EGF signalling pathway and / or potassium channel activity in the lungs may be 

beneficial in disease conditions such as CF for increasing chloride transport. 
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Chapter 1 Literature Review 

1.1 Types of Chloride Channels 

1.1.1 Ligand-gated chloride channels 

Ligand-gated chloride channels are a type of ionotropic receptor (Hartmann et al., 

2004) that is transmembrane. They respond to the binding of a chemical messenger 

by opening and closing. There are several types of ligand-gated chloride channels, 

which include γ-Aminobutyric acid (GABA) gated chloride channels and the Glycine 

receptor (GlyR). These channels are members of the Cys-loop super-family of 

similarly structured ligand-gated ion channels (Jansen et al., 2008). 

1.1.1.1 GABAA receptor (GABAAR) 

The GABAA receptor ligand is γ-aminobutyric acid, also known as GABA. Once the 

receptor binds up to two GABA molecules, it can allow chloride ions through its pore, 

which typically has the function of hyperpolarising neurons (Herbison & Moenter, 

2011). This hyperpolarisation results in a reduction in the chance of an action 

potential occurring via an inhibition of neurotransmission. In humans, the GABAA 

receptor is multimeric, consisting of five protein subunits, which can comprise α, β, γ, 

δ, ε, π and θ; which in turn have various different isoforms. There are six types of α 

subunit isoforms (GABRA1, GABRA2, GABRA3, GABRA4, GABRA5 and GABRA6), 

three types of β subunits (GABRB1, GABRB2, GABRB3), three types of γ subunits 

(GABRG1, GABRG2, GABRG3) as well as a δ subunit (GABRD), an ε subunit 

(GABRE), a π subunit (GABRP), and finally a θ subunit (GABRQ). To result in a 

GABAA receptor, these subunits need to combine at least an α and a β subunit 

(Hevers & Luddens, 1998). 

1.1.1.2 GABAA-rho receptor (GABAA-ρ) 

The GABAA-rho receptor has a very similar structure to the GABAA receptor, except 

that it comprises a combination of ρ1 (GABRR1), ρ2 (GABRR2) and ρ3 (GABRR3) 

subunits. Functionality-wise, the GABAA-rho receptor induced chloride responses are 

more sustained, but slower to initiate than that of the response from GABAA receptor 

(Enz & Cutting, 1998). 
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1.1.1.3 Glycine receptor (GlyR) 

The Glycine receptor accepts the amino acid and neurotransmitter glycine in order to 

bring about chloride current. It is most prominent in the central nervous system. Like 

the GABA-gated chloride channels, the glycine receptor itself consists of five 

subunits, each containing α helical transmembrane segments around a central pore. 

There are four isoforms of the α-subunit (α1-4) of the receptor called GLRA1, GLRA2, 

GLRA3 and GLRA4, and one form of the β-subunit called GLRB. The mature 

heteromeric protein consists of either three α1 subunits and two β-subunits (Kuhse et 

al., 1993), or four α1 subunits and one β subunit (Kuhse et al., 1995). 

1.1.2 Voltage gated chloride channels (VGCLC) 

Voltage gated chloride channels consist of nine members in mammals (Jentsch et al., 

1995). They can function either as Cl− channels at the plasma membrane or as H+/Cl− 

exchangers in intracellular organelles (Dutzler, 2006). The nine homologues of the 

ClC family in humans are found at either the cell membrane or in the membranes of 

intracellular organelles. They are involved in processes such as electrical signalling in 

muscle, epithelial ion transport and the acidification of intracellular compartments 

(Jentsch et al., 2005). The ClC family have a diverse array of functions, yet all the 

family shares a conserved molecular structure. This structure consists of a 

transmembrane transport domain, followed by a cytoplasmic component that is 

thought to be a key regulator of channel gating (Jentsch et al., 2005). The first ClC 

channel, ClC-0, was discovered by expression cloning in Xenopus oocytes (Jentsch 

et al., 1990). The structure of ClC found in Escherichia coli, EcClC, is one of the most 

studied ClCs. Initially proposed based on electrophysiological experiments on ClC-0, 

the ‘double barrelled’ structure of the ClC channels is reflected in the dimeric structure 

of EcClC (Miller, 1982). The gating of ClC-1 and ClC-2, which are found in muscle, is 

influenced by voltage, extracellular chloride concentration and pH (Chen & Chen, 

2001). The voltage-gating of the transmembrane ClCs are thought to be conferred by 

the permeating chloride ion itself to act as the gating charge (Pusch et al., 1995). This 

differs from voltage dependent cation channels where voltage is generally sensed by 

the protein domain (Dutzler, 2007). The cytoplasmic domains of the ClC family share 

conserved molecular structures that contain a pair of cystathionine beta synthase 

(CBS) motifs. Enzymes, kinases and transmembrane transporters frequently contain 
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similar motifs that are found as building blocks for regulatory ligand binding domains 

(Ignoul & Eggermont, 2005). The amino acid length of the cytoplasmic domains of the 

ClC family varies from 150 residues in ClC-Ka found in the kidney, to 390 residues in 

ClC-1 found in muscle. This variation is largly due to the linker region that connects 

the two CBS motifs, and the C-peptide that consists of residues that follow the second 

CBS motif (CBS2) (Meyer & Dutzler, 2006). In some ClC family members, there are 

recognition sites for kinases in the linker region, and that channel function is altered 

by phosphorylation. Such examples include the phosphorylation of ClC-2 by PKA 

(Cuppoletti et al., 2004b) and the inactivation of ClCs by phosphorylation by germinal 

center kinase III (GCK-3) (Denton et al., 2005). The linker of the ClC-5 transporter 

contains a recognition site for ubiquitin ligase, which is important for correct targeting 

of the protein to intracellular compartments. The recognition site on ClC-5 resembles 

the PY motif, which is crucial for the endocytosis and degradation of epithelial sodium 

channels. (Schwake et al., 2001). 

1.1.3 Volume-sensitive chloride channels (VSCC) 

Volume-sensitive chloride channels (VSCC) are also known as volume-regulated 

chloride channels and volume-activated chloride channels. ClC-3 is thought to be a 

VSCC. When expressed in NIH/3T3 cells, ClC-3 produced a basally active chloride 

conductance that resembled that of native volume sensitive anion channels (Duan et 

al., 2001). Native volume sensitive anion secretion in bovine non-pigmented ciliary 

epithelial (NPCE) cells could be delayed by ClC-3 antisense treatment (Wang et al., 

2000). In human gastric epithelial cells, anti-ClC-3 antibodies eliminated ClC-3 

response suggesting that ClC-3 may be volume-sensitive chloride channels (Jin et al., 

2003). It has been suggested that ClC-3 may play a role in the cell proliferation of 

vascular smooth muscle cells, relating to its function as a cell volume regulator (Zhou 

et al., 2005). However, the hypothesis that ClC-3 is a volume sensitive chloride 

channel is controversial (Li et al., 2000; Shimada et al., 2000; Stobrawa et al., 2001; 

Weylandt et al., 2001). 
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1.1.4 Stretch-activated chloride channels 

Stretch-activated chloride channels are also known as swell-activated chloride 

channels, and have various functions in the cardiovascular system, including vascular 

wall distension (Remillard et al., 2000). Stretch-activated chloride channels can also 

be activated in disease conditions such as congestive heart failure (Clemo et al., 

1999). 

1.1.5 Calcium activated chloride channel (CaCC) candidates 

Calcium activated chloride channels (CaCCs) were first described in Xenopus 

oocytes where they have a role in the prevention of polyspermy (Miledi, 1982). More 

recently, CaCCs have been shown to be expressed in epithelial tissue (Kunzelmann 

et al., 2007). The molecular identification of CaCCs has been subject to 

developments occurring from 1995 to the present day. 

1.1.5.1 Chloride channel, Calcium-activated (CLCA) 

The chloride channel, calcium-activated (CLCA) family consists of 4 types in humans, 

numbered 1 to 4 (Loewen & Forsyth, 2005). Of significance, CLCA2 is expressed in 

the trachea and mammary gland (Agnel et al., 1999; Gruber et al., 1999), the testis, 

prostate and uterus (Agnel et al., 1999), and the nasal epithelium (Mall et al., 2003). 

Originally cloned from the spleen, CLCA3 has subsequently been found to be 

expressed in the lung, trachea, mammary gland, and thymus (Gruber & Pauli, 1999), 

as well as the nasal epithelium (Mall et al., 2003). By examining the amino acid 

sequence of CLCA channels, they are now known to be metal-dependent hydrolases. 

Hydrolases, which also bind a Zinc ion to facilitate their catalytic activity, have a 

similar activity to that of Matrix Metalloproteinases. In fact, CLCA shares some 

notable homologies to MMPs, such as the conserved HEXXH motif that is responsible 

for binding the zinc ion. Moreover, there was some dispute as to whether CLCA is 

either secreted or membrane-bound (Pawlowski et al., 2006). Early 

electrophysiological data using HEK 293 cells transfected with different CLCA 

homologues identified a transmembrane current that was activated by ionomycin, a 

calcium ionophore, and blocked with 4,4′-diisothiocyanatostilbene-2,2′-disulphonic 

acid (DIDS) (Gruber et al., 1998). Later work by Gibson et al., 2005 found no 

transmembrane domains within hCLCA or mCLCA3 when using a bioinformatics 
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based approach. It also appeared that CLCAs were globular proteins that could be 

involved in protein-protein interactions. When expressed in HEK293 cells, hCLCA1 

and mCLCA3 were detected in the extracellular medium, and that they were 

constitutively secreted. Cleavage products of hCLCA can be found in the 

bronchoalveolar lavage (BAL) fluid of asthmatic patients, further suggesting that 

CLCAs are in fact secreted proteins and not chloride ion channels (Gibson et al., 

2005). Later studies by Mundhenk et al., 2006 explored if CLCA proteins could form 

chloride channels, or had some other function. The 110 kDa translated product of 

mCLCA3 is processed in the endoplasmic reticulum into two peptides consisting of a 

75 kDa N terminal and a 35 kDa carboxyl terminal. These products are glycosylated 

and remain associated, and were found to be inside secretory vesicles and not 

associated with the cell membrane. The secreted products form a soluble complex of 

two glycoproteins, so it was suggested that the secreted CLCAs may act as 

mediators of chloride channels instead (Mundhenk et al., 2006). 

1.1.5.2 Bestrophins (BESTs) 

Bestrophins (BESTs) are candidates for calcium activated chloride channels. These 

channels were so-named after a disease called Best vitelliform macular dystrophy, 

which the gene for human BEST1 was found to be linked to, and that mutations in the 

gene consequently led to the development of this and similar diseases. Whether or 

not the bestrophins function as chloride channels is still disputed, although it is 

thought that the bestrophins, like CFTR, are able to regulate other ion channels. 

Table 1.1 – Alternative gene names for bestrophins. 

Gene name Alternate name Abbreviated Names 

Bestrophin 1 vitelliform macular dystrophy 2 BEST1 VMD2 

Bestrophin 2 vitelliform macular dystrophy 2-like 1 BEST2 VMD2L1 

Bestrophin 3 vitelliform macular dystrophy 2-like 3 BEST3 VMD2L3 

Bestrophin 4 vitelliform macular dystrophy 2-like 2 BEST4 VMD2L2 

Evidence that bestrophins were chloride channels came from a study by Sun et al., 

2002 where human BEST1 was overexpressed in HEK cells that showed an induction 

of chloride currents. The experiment conducted involved a comparison between 

untransfected and transfected HEK cells using the patch-clamp technique. With 
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untransfected cells in a micromolar-free calcium intracellular solution, it was seen that 

the chloride currents were comparatively small compared to the transfected cells, 

suggesting that the induced chloride current was calcium dependent. To further 

support the hypothesis that bestrophins are chloride channels, mutagenesis 

experiments have been carried out where mutations in residues such as W93H in 

human BEST2 were shown to significantly alter the gating of the channel (Sun et al., 

2002). In terms of the quaternary structure, there is a conflict in the literature in the 

number of subunits they contain. In one study conducted by Sun et al., 2002, it has 

been estimated to be either a tetramer or a pentamer by co-transfecting human 

BEST1 with Rim3F4 and myc epitopes, and then immunoprecipitating the result. In 

another by Stanton et al., 2006, hydrodynamic studies were used to determine that 

pBest1 was in fact a dimer. Both methods used have limitations, since the 

overexpression of human BEST1 in Sun’s study and the use of detergent in Stanton’s 

may over and under estimate the number of subunits respectively (Stanton et al., 

2006). Bestrophins are thought to act as chloride channels. Bestrophin 3 is known to 

be a calcium ion dependent chloride channel which is sensitive to the chloride 

inhibitor DIDS (Srivastava et al., 2008). It has been demonstrated that all 4 human 

bestrophins are able to conduct HCO3
- ions, and mutations in human BEST1 that are 

responsible for Best’s disease such as Y85H, R92C, and W93C abolish this ability, 

implying that HCO3
- conductance is altered in the disease state (Qu & Hartzell, 2008). 

The activation mechanism of bestrophin 3 is not fully understood, but PI3K inhibitors 

have been shown to activate the protein (Qu et al., 2010). Human bestrophin 4 has 

shown to be activated by free Ca2+ on the cytoplasmic side of excised patches, thus 

providing evidence that it is a calcium activated chloride channel (Tsunenari et al., 

2006). 
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1.1.5.3 Anoctamins (ANOs) 

In 2008 a step change in our understanding of the molecular candidates for CaCCs 

occurred (Caputo et al., 2008; Schroeder et al., 2008; Yang et al., 2008). The term 

‘Anoctamin’ derives from the fact that they are anion (AN) selective and have eight 

(OCT) transmembrane segments (Yang et al., 2008). Shown in Table 1.2, there are 

10 known anoctamins, and their expression profiles vary from tissue to tissue. 

However, it is not currently known which of these are CaCCs (Schreiber et al., 2010). 

Table 1.2 – Alternative gene names for anoctamins. 

Gene name Alternate name Abbreviated Names 

Anoctamin 1 transmembrane protein 16A ANO1 TMEM16A 

Anoctamin 2 transmembrane protein 16B ANO2 TMEM16B 

Anoctamin 3 transmembrane protein 16C ANO3 TMEM16C 

Anoctamin 4 transmembrane protein 16D ANO4 TMEM16D 

Anoctamin 5 transmembrane protein 16E ANO5 TMEM16E 

Anoctamin 6 transmembrane protein 16F ANO6 TMEM16F 

Anoctamin 7 transmembrane protein 16G ANO7 TMEM16G 

Anoctamin 8 transmembrane protein 16H ANO8 TMEM16H 

Anoctamin 9 transmembrane protein 16J ANO9 TMEM16J 

Anoctamin 10 transmembrane protein 16K ANO10 TMEM16K 

ANO1 has splice variants (Caputo et al., 2008; Ferrera et al., 2009; Davis et al., 2010; 

Manoury et al., 2010) and a closely related analogue, ANO2, which can produce 

similar calcium activated chloride currents (Schroeder et al., 2008; Pifferi et al., 2009; 

Stephan et al., 2009; Stohr et al., 2009). In particular, ANO1 has been shown to be 

important and widely expressed in epithelial tissues such as in the airways. Whole-

cell patch-clamp experiments carried out on CFPAC-1 cells stimulated with solution 

containing 600 nM free Ca2+ showed outwardly rectifying currents resembling typical 

CaCC currents. These currents could be inhibited by anti-ANO1 siRNA. This 

evidence strongly indicated that ANO1 encodes a Ca2+ activated Cl- channel (Caputo 

et al., 2008). In contrast, the biophysical properties of hBEST1 do not resemble those 

of Ca2+ activated Cl- current, suggesting that it is not the molecular identity of CaCCs 

(Sun et al., 2002; Barro Soria et al., 2009). In knockout mice studies with ANO1, it is 

seen that calcium dependent conductance is reduced in the airway epithelium, along 
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with a decrease in mucociliary clearance (Rock et al., 2009). ANO1 expression was 

first demonstrated in human bronchial epithelial cells (Caputo et al., 2008). The 

expression of ANO1 has also been found in the interstitial cells of Cajal in 

gastrointestinal muscles (Gomez-Pinilla et al., 2009; Huang et al., 2009; Hwang et al., 

2009; Zhu et al., 2009), airway epithelial cells (Ousingsawat et al., 2009; Rock et al., 

2009) and vascular smooth muscle cells (Davis et al., 2010). 

An investigation carried out by Duran et al., 2012 concerned itself with identifying 

which of the ANOs were present at the cell membrane. Expression of ANO3 – ANO7 

in HEK293 cells did not generate calcium activated chloride currents using whole cell 

patch clamping. Only ANO1 and ANO2 are trafficked to the cell membrane when 

using confocal microscopy. ANO7 in the human prostate is predominantly 

intracellular. Using chimeric approaches, it was determined that chimeras of ANO1 

and ANO5/7 were not trafficked to the cell membrane. These data suggested that 

these intracellular anoctamins could be endoplasmic reticulum proteins (Duran et al., 

2012). Besides ANO1 and ANO2, ANO6 was also found to produce a chloride 

conductance (Kunzelmann et al., 2012). Moreover, previous studies with human 

bronchial epithelial cells in vitro showed upregulation of UTP induced chloride 

secretion when preincubated with interleukin-4 (IL-4) for 24 hours. These data 

suggested that IL-4 increased ANO1 gene expression (Galietta et al., 2002). ANO1 

protein has been shown to be expressed at the apical membrane of airway epithelial 

membrane as with CFTR (Ousingsawat et al., 2009). High-throughput screening of 

chemical libraries has been conducted to find small-molecule activators of ANO1 that 

could be used as a corrector in alternative ion channel therapy for the treatment of 

cystic fibrosis (Namkung et al., 2011). ANO1 currents can be blocked by 4,4′-

diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS) and niflumic acid (Hartzell et al., 

2005). Aside from roles as an ion channel, ANO1 has been found to be a regulator of 

proliferation as studies by Stanich et al., 2011 showed. ANO1 is highly expressed in 

gastrointestinal stromal tumours. In knockout mice for ANO1, it was seen that there 

was decreased proliferation in primary cultures derived from the interstitial cells of 

Cajal. Chloride channel blockers also decreased cell proliferation in primary cultures 

of the interstitial cells of Cajal and the CFPAC-1 cell line. Mice lacking ANO1 had less 

phosphorylated retinoblastoma protein compared to controls. Taken together, it was 
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thought that ANO1 regulates proliferation at the G1/S phase transition of the cell cycle 

and may be involved in tumourigenesis (Stanich et al., 2011). 

1.1.6 Cystic fibrosis transmembrane conductance regulator (CFTR) 

Cystic fibrosis transmembrane conductance regulator (CFTR) is a phosphorylation 

dependent chloride ion channel, which is generally expressed on the apical surface of 

lung epithelia (Rosenfeld et al., 1992). CFTR can either act in an absorptive or 

secretory role, which is greatly dependent on the particular tissue (Kunzelmann, 

2001). In the lungs, CFTR is the main transporter of chloride ions. Other than in the 

lungs, CFTR also plays a major role in the regulation of fluid secretion and ion 

transport in the pancreas (Marino et al., 1991), gastrointestinal tract (Cuthbert et al., 

1994) and sweat glands (Cohn et al., 1991).  

1.1.6.1 Domain Structure of CFTR 

The gene length for CFTR is approximately 189 kb, is translated into a glycoprotein of 

1480 amino acids in length. CFTR is a member of the ATP-binding cassette (ABC) 

transporter superfamily, and the final folded protein consists of five domains. Figure 

1.1 shows the structure of the CFTR protein with two transmembrane domains 

(TMDs), two cytoplasmic nucleotide binding domains (NBDs) and a regulatory R 

domain. Each transmembrane domain consists of six alpha helices. TMD1 is located 

at the N terminal, and is connected to NBD1 at the last alpha helix. NBD1 is 

connected to the regulatory R domain, which is in turn connected to the first alpha 

helix of TMD2. NBD2 is located at the C-terminus, and is connected to the last alpha 

helix of TMD2. The regulatory R domain is unique among ABC transporters and 

contains many phosphorylation sites (Riordan et al., 1989) 
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.  

Figure 1.1 – CFTR open and closed states. 

Adapted from: (Hwang & Sheppard, 2009)  
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1.1.6.2 Gating of CFTR is controlled by phosphorylation by protein kinases 

In the open state of CFTR, ATP is bound to the NBDs, and the regulatory R domain is 

phosphorylated by protein kinase A (PKA) in response to elevations in the levels of 

cAMP (Figure 1.1) (Gadsby & Nairn, 1999; Sheppard & Welsh, 1999). 

Phosphorylation sites for protein kinase C (PKC) are also present on CFTR, where it 

is thought that PKC isotypes such as PKC-ε are able to prime CFTR to allow for PKA 

activation (Jia et al., 1997; Liedtke & Cole, 1998). The NBDs form a head-to-tail 

dimer, with two sites located at the dimer interface responsible for binding ATP (Lewis 

et al., 2004). One of these sites consists of two Walker motifs on NBD1 and a 

LSGGQ motif of NBD2 tightly binds ATP. The other site consists of two Walker motifs 

on NBD2 and a LSGGQ motif of NBD1, where ATP can be rapidly hydrolysed (Lewis 

et al., 2004; Vergani et al., 2005). The flow of anions through CFTR is thought to be 

gated by these interactions between ATP and sites 1 and 2, resulting in the 

dimerisation of NBDs and subsequent changes in TMD conformation (Vergani et al., 

2005). An investigation to demonstrate that the regulatory R domain of CFTR controls 

the gating of CFTR was carried out by Chappe et al., 2005. The nucleotides that 

encoded the R domain (residues 635 to 836) were replaced with an internal ribosome 

entry sequence so that the N terminal and C terminal transcripts would be translated 

on the same mRNA transcript. The resulting translated protein (which was referred to 

as DeltaR-Split CFTR in the study) was trafficked to the cell membrane and led to 

constitutively active chloride transport. When co-expressed with the missing R 

domain, the regulation via PKA is restored and binding of the R domain to other 

domains of the CFTR protein (Chappe et al., 2005). Further investigations using this 

system demonstrated that PKC alone enhanced the binding of the R domain with the 

DeltaR-Split CFTR, and that this was further enhanced by phosphorylation by both 

PKA and PKC. When all seven PKC consensus sequences that are located on the R 

domain are mutated, resting conditions are not affected, but binding of the R domain 

to the DeltaR-Split CFTR by PKA and PKC are both abolished. Resting activity of the 

DeltaR-Split CFTR with either wild type R domains or the mutated R domains was 

similar, but when stimulated with cAMP, the ion transport of channels with mutated R 

domains was greatly reduced. This suggested that the mutated R domains were 

unresponsive to PKA, and therefore that prior phosphorylation by PKC modulates the 

PKA-induced domain-domain interactions of CFTR (Seavilleklein et al., 2008). When 
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the serine and threonine residues at nine PKC consensus sequences on CFTR are 

replaced by alanines (T582A, T604A, S641A, T682A, S686A, S707A, S790A, T791A 

and S809A), the response to PKA in excised patches is greatly reduced to 5-10% of 

that of the wild type (Chappe et al., 2004). This response could not be enhanced by 

pretreatment by PKC. Stimulation of iodide efflux by chlorophenylthio-cAMP (cpt-

cAMP) was delayed in cells that expressed the mutated R domain in a similar fashion 

to cells expressing wild type CFTR that were treated with chelerythrine, a PKC 

inhibitor. This suggested that loss of PKC phosphorylation resulted in weak activation 

by PKA (Chappe et al., 2003). In order to determine which of these nine PKC 

consensus sequence(s) are necessary for normal regulation of the CFTR channel, 

further mutational studies were carried out by Chappe et al., 2004. A CFTR mutant 

that consisted of S707A, S790A, T791A and S809A exhibited similar activation by 

PKA to that of wild type CFTR. CFTR mutants that consisted of either a triple mutant 

of T582A, T604A and S641A or a double mutant of T682A and S686A led to a 

drastically reduced response to PKA. It was determined that the T582, T604, and 

S686 consensus PKC sequences were essential for responses to PKA (Chappe et 

al., 2004). 

1.1.6.3 Regulation via β2 adrenergic receptor 

β2 adrenergic receptors are the predominant isotype in the lungs (Carstairs et al., 

1985). It has been demonstrated that non-specific beta adrenergic receptor agonists 

such as isoproterenol activates CFTR mediated chloride transport in vivo (Walker et 

al., 1997). Both CFTR and β2 adrenergic receptors have PDZ binding motifs located 

at their C-termini. PDZ binding motifs are able to interact with other proteins, such as 

cytoskeletal proteins (Brdickova et al., 2001). CFTR is known to co-localise with β2 

adrenergic receptors at the apical membrane. The two interact with one another 

through a complex of proteins that include ezrin / radixin / moesin-binding 

phosphoprotein 50 (EBP50). EBP50 is also known as NHERF (Na+/H+ exchanger 

regulatory factor). It is thought that through these interactions, β2 adrenergic receptors 

are able to regulate CFTR (Naren et al., 2003). A mutation in the gene for the β2 

receptor such as the Arg16Gly polymorphism is detrimental in cystic fibrosis (Buscher 

et al., 2002). Specific β2 adrenergic receptor agonists such as salbutamol and 

isoproprenaline can activate CFTR (Shamsuddin et al., 2008). There is a 
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downregulation of β2 receptors in CF patients (Mak et al., 2002), and this may explain 

the inefficacy of using beta 2 agonists as a treatment for CF (Mortensen et al., 1993). 

1.1.6.4 Regulation via β1 and β3 adrenergic receptors 

While β2 adrenergic receptors have been studied quite extensively in airways, less is 

known about the other adrenergic receptors in the airway – beta 1 and beta 3. Beta 1 

receptor protein is seen in CF bronchi, but not in non-CF bronchi (Bossard et al., 

2011). Stimulation of the β3 receptor increases the beat frequency of cilia in both 

canine and rabbit bronchial epithelial cells (Takeyama et al., 1993; Tamaoki et al., 

1993) and mucociliary clearance in rabbit nasal epithelia (Danner et al., 2001). 

Expression of β3 receptor protein is higher in CF bronchi compared to non-CF bronchi 

(Bossard et al., 2011). In a recombinant system where both CFTR and β3 adrenergic 

receptors were transfected into A549 cells, it was seen that CFTR was regulated by 

stimulation of β3 adrenergic receptors by either non-selective beta agonist 

isoproterenol in the presence of nadolol (a β1 and β2 antagonist), and SR-58611A (a 

β3 agonist) or CGP-12177 (partial β3 agonist) (Leblais et al., 1999). Subsequent 

investigations with this system found that β3 adrenergic receptor regulates CFTR via 

inhibitory G protein subunit Gi/o, and the PI3K / MAPK pathway (Robay et al., 2005). 

1.1.6.5 Regulation via G Protein Coupled Receptors (GPCRs) 

G Protein Coupled Receptors (GPCRs) such as purinergic receptors, which include 

several different types such as P1 receptors (also known as adenosine receptors), 

and P2Y receptors are thought to be important in the regulation of chloride transport 

in the airways. CFTR can also be activated via the stimulation of P2Y2 receptors via 

Gq/11, PLC and an unknown kinase. This unknown kinase is inhibited by 

staurosporine, and the activation of CFTR via P2Y2 stimulation was independent of 

the following signalling messengers: PKA, PKC, CAMK, P38 MAPK, MEK1/2, tyrosine 

kinases and c-src (Faria et al., 2009). As shown in Figure 1.2, CFTR activity in normal 

airways is controlled by the A2B receptor, a subtype of P1 receptor, and that P1 

receptor antagonists such as the 5’ nucleotidase inhibitor AMPCP abolish chloride ion 

transport through CFTR. This suggests that adenosine was generated through the 

hydrolysis of AMP (Huang et al., 2001). Similarly, adenosine deaminase (ADA), which 

is able to metabolise adenosine, decreases cAMP in resting cells (Lazarowski et al., 
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2004). This suggests that adenosine is metabolised from ATP in the pericilliary liquid 

layer of the airways, and is then able to activate A2B receptors on the apical surface of 

resting epithelial cells (Lazarowski & Boucher, 2009). 

 

Figure 1.2 – Regulation of CFTR via G Protein Coupled Receptors.  

Adapted from: (Lazarowski & Boucher, 2009). 

Adenosine, which accumulates in the pericilliary liquid layer, can activate A2B 

receptors that can subsequently lead to elevations in of intracellular cAMP and 

activation of PKA and CFTR. P2Y2 receptors are capable of mobilising calcium and 

activating PKC. PKC is able to enhance PKA mediated phosphorylation and 

activation of CFTR. The mobilisation of calcium through P2Y2 receptor activation by 

ATP is able to activate calcium activated chloride channels on the apical surface of 

the airways. Under resting conditions, the response from CaCC to stimulation of the 

P2Y2 receptor by ATP or UTP is small, but can be increased if there are conditions 

that include influxes of excellular calcium or releases of calcium from intracellular 

stores. P2Y6 receptors can also activate CaCCs (Morse et al., 2001). While acute 

stimulation of GPCRs by carbachol increased chloride secretion across T84 

monolayers, chronic stimulation produced anti-secretory effects (Toumi et al., 2011). 
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1.2 Physiology of the Lung 

1.2.1 Lung structure 

As shown in Figure 1.3, the trachea divides into two bronchi (singular bronchus) as 

they enter the lungs (Dixon, 1903). Within the lungs themselves, these bronchi 

become further subdivided to give rise to the bronchioles (Tod, 1917). These 

branches continue to subdivide, giving rise to the terminal bronchioles that lead to the 

alveolar sacs. These alveolar sacs are comprised of clusters of alveoli, which are 

wrapped tightly with blood vessels (Auer & Meltzer, 1911). These alveoli are the 

centres of gaseous exchange in the lungs. Deoxygenated blood arrives from the heart 

through the pulmonary artery to the lungs, where oxygen from the inhaled air diffuses 

in and is exchanged for carbon dioxide in the haemoglobin of red blood cells (West, 

1995). The freshly oxygenated blood returns to the heart through the pulmonary veins 

where it is re-pumped around the body. The two lungs are located in two cavities on 

either side of the heart, and they are of a similar appearance to one another, but are 

not identical. Lungs are separated into several lobes. The right lung has three lobes 

(superior, middle and inferior), whereas the left lung has two (superior and inferior). 

The lobes themselves are further divided up into firstly segments and then into 

hexagonal divisions called lobules. The medial right lung border is almost vertical, but 

the left lung has an indentation known as the cardiac notch, which is where the heart 

sits. Surrounding each lobe is the pleural cavity, which itself has two pleurae; on the 

rib cage lies the parietal pleura, and on the surface of the lungs lies the visceral 

pleura. Between these two pleura is the pleural fluid, which helps lubricate the lungs 

and keeps the lungs in contact with the rib case by providing surface tension (West, 

1995). 
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Figure 1.3 – The physiology of the human lungs.  

(Wikimedia Commons, Public Domain Image). 
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1.2.2 Lung function 

The function of breathing is predominantly controlled by the diaphragm, a sheet of 

internal skeletal muscle, situated at the base of the thorax. When the diaphragm 

contracts, the bottom of the thoracic cavity of the lung is pulled downward, which 

results in an increase in volume of the cavity and as a result, a decrease in pressure. 

This decrease in pressure results in air from outside the lungs at a higher pressure to 

flow in. The air first enters the body through the oral and nasal cavities, and then 

passes through the pharynx, larynx and then into the trachea of the lungs, before 

branching into the bronchi, bronchioles and alveoli. Expiration of air from the body is a 

passive process which occurs when the diaphragm relaxes. The rib cage is also able 

to expand and contract to some extent as well, aiding the process (West, 1995). 

1.2.3 Underlying tissue of the lung 

Mammalian lungs have a soft spongy texture that is honeycombed with epithelium. 

This structure allows the lungs to have a very high surface area to volume ratio. As 

shown in Figure 1.4, airway submucosal glands lie beneath the ciliated epithelial cells 

on the surface, but are connected to that surface via ducts. They are able to secrete 

mucus when stimulated by acetylcholine or vasoactive intestinal peptide (Ianowski et 

al., 2007). Each individual airway gland consists of a primary gland duct, lateral ducts 

and many secretory tubules (Tos, 1966). The primary gland duct starts from the 

surface epithelium through the underlying lamina propria and smooth muscle layers 

into the submucosal space within the submucosal gland. The portion of the primary 

duct that is closer to the duct opening is lined by columnar ciliated cells that resemble 

a surface epithelium (Meyrick et al., 1969). Distended duct regions whose diameters 

are 3 – 4 fold greater than primary ducts can be formed from the submucosal portions 

of the primary duct (Meyrick et al., 1969; Inglis et al., 1997) 
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Figure 1.4 – A general overview of the physiology of the tissues on and near the surface of the lung. 

The morphology of the distended duct regions has a high degree of variation ranging 

from straight to convoluted structures (Tos, 1966; Inglis et al., 1997). The primary 

ducts act as collectors for lateral ducts that divide into many secretary tubules, which 

are classified serous or mucous according to which cell type they are mostly made up 

from (Tos, 1966; Meyrick et al., 1969). The mucous tubules may divide several more 

times into other mucous tubules, but they always end in serous tubules. Neuronal 

control of mucus secretion is facilitated by electrical stimulation of the superior 

laryngeal nerves (Johnson, 1935). Secretion of the submucosal glands is in fact 

predominantly controlled by the parasympathetic nervous system, but also by the 

local release of stimulatory signals from nociceptive sensory nerves. These 

nociceptive sensory nerves consist of C- and Aδ-fibre axons. The Aδ-fibre axons are 

myelinated and so the action potential is fast-moving, while C- axons are 

unmyelinated so the action potential is transmitted much more slowly (Barnes, 2001; 

Tai & Baraniuk, 2002; Widdicombe, 2003; Ballard & Inglis, 2004; Tavee & Zhou, 

2009). 
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1.2.4 Calu-3 cells as a model for lung ion transport 

Calu-3 cells are used as a model for serous cells in the respiratory airways of 

humans, express high levels of CFTR, and respond well to agonists of cAMP and 

Ca2+ (Finkbeiner et al., 1993; Shen et al., 1994).  

1.2.4.1 Channels present in Calu-3 

The major ion channels and transporters found in Calu-3 cells are shown in Figure 

1.5. When Calu-3 cells are stimulated by a cAMP agonist such as forskolin, it has 

been demonstrated that predominantly HCO3
- ions are secreted rather than purely 

chloride ions, and this mechanism has been shown to be Na+ dependent and Cl- 

independent (Devor et al., 1999). This secretion of HCO3
- ions can be reduced by 

stimulating calcium activated potassium channels with an agonist such as 1-ethyl-2 

benzimidazolinone (1-EBIO). On the other hand, it is seen that if Calu-3 cells 

experience elevations in Ca2+, or are stimulated with 1-EBIO, only chloride secretion 

occurs (Devor et al., 1999). The model of Calu-3 secretion is complex. A Na+-HCO3
- 

(NBC) cotransporter on the basolateral membrane mediates the entry of HCO3
- ions 

into the cell (Devor et al., 1999) HCO3
- ions are secreted by Calu-3 cells when there is 

an elevation of [Ca2+]i or if they have been stimulated by 1-EBIO (a K+ channel 

activator). This is despite the fact that this causes a decrease in driving force on the 

Na+-HCO3
- (NBC) cotransporter on the basolateral membrane. The enzyme carbonic 

anhydrase can interconvert CO2 and H2O to HCO3
- and H+, or vice versa. The 

secretion of HCO3
- ions by 1-EBIO can be accumulated above their electrochemical 

equilibrium, which is normally maintained by their catalytic breakdown into CO2 and 

H2O by carbonic anhydrase. The potential alkalinisation of this effect is partially 

masked by a similar increase in the secretion of H+, which is likely due to H+-K+-

ATPase on the apical membrane since this process is sensitive to apical treatments 

of ouabain (Krouse et al., 2004). 
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Figure 1.5 – Overview of Ion transport in Calu-3 cells.  

Compiled and adapted from (Devor et al., 1999; Krouse et al., 2004; Huang et al., 2012; Shan et al., 2012) 
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There is growing evidence that these HCO3
- and Cl- secretions are in fact conducted 

through the same channel, which is CFTR (Poulsen et al., 1994; Devor et al., 1999; 

Choi et al., 2001; Krouse et al., 2004). Since forskolin treatment results in HCO3
- 

rather than Cl- secretion, it means that the increase in the secretion of HCO3
- by 

forskolin is likely due to activation by cAMP and PKA, which are also activators of 

CFTR (Devor et al., 1999). Using patch clamp methods, CFTR has been shown to be 

activated by forskolin, and that HCO3
- ions can be conducted but at a lower 

conductance compared to Cl- ions (Gray et al., 1990; Haws et al., 1994; Poulsen et 

al., 1994; Linsdell et al., 1997). Since it was found that CF airway epithelia do not 

exhibit cAMP induced HCO3
- secretion, this demonstrates that CFTR is responsible 

for this conductance (Smith & Welsh, 1992) 

More recently it has been demonstrated that fluid secretion in Calu-3 cells is mostly 

driven by Cl- secretion (Shan et al., 2012). Anion exchange via anion exchanger type 

2 (AE2) results in 50-70% of the basolateral Cl- loading, which is increased upon 

forskolin stimulation (Figure 1.5) (Huang et al., 2012). This contrasts with earlier work 

by Devor et al. (1999) where the Na-K-2Cl cotransporter was thought to be the 

mediator of Cl- entry (Shan et al., 2012). However, studies carried out by Garnett et 

al. 2011 proposed that forskolin stimulation leads to inhibition of basolateral ion 

exchange (Garnett et al., 2011). Further studies by Garnett et al. (2012) 

demonstrated that the anion exchanger in Calu-3 cells can be regulated by protein 

phosphatase 1 (PP1) and CFTR (Garnett et al., 2012). In addition, adenylate cyclase 

can be constitutively activated by Ca2+ entry through Orai1, a store-operated Ca2+ 

entry channel (Shan et al., 2012).  
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1.3 Cystic Fibrosis (CF) 

Cystic fibrosis (CF), which is also less commonly known as mucoviscidosis, is an 

autosomal genetic disease that is characterised by abnormal sodium and chloride 

transport across epithelia, causing thickened secretions. The name cystic fibrosis is 

derived from characteristics of the disease, which are scarring (fibrosis) and cyst 

formation in the pancreas. The disease affects a variety of epithelial tissues, but 

patients frequently suffer from respiratory failure due to airway inflammation and 

subsequent chronic bacterial infection (Pilewski & Frizzell, 1999; Sheppard & Welsh, 

1999). Cystic fibrosis is also known to affect the function of the pancreas (Naruse et 

al., 2002) and reproductive system (Chillon et al., 1995). Symptoms of the disease 

include difficulty breathing that is the result of repeated infections, chronic 

rhinosinusitis (Davidson et al., 1995), poor growth (Corey et al., 1988), diarrhoea 

(Hochman et al., 1976), and infertility (Kaplan et al., 1968). 

Cystic fibrosis has autosomal recessive inheritance, requiring that both parents have 

a faulty gene for CFTR. Inheriting one working copy of the CFTR gene prevents the 

disease. Among Caucasians, 1 in 25 people carry one allele for CF and the disease 

affects 1 in 2500 live births (Ratjen & Doring, 2003). Mutations in the CFTR channel 

are known to be responsible for cystic fibrosis (CF) (The Cystic Fibrosis Genetic 

Analysis Consortium, 1994). The more common cause of CF in patients is the 

inheritance of two copies of the mutation ΔF508 in the CFTR channel, which accounts 

for approximately 70% of cases in Western Europe (Puechal et al., 1999). While the 

channel can still function, a significantly lower proportion of the mutated CFTR is 

transported to the surface of the cell since they are marked for destruction at the 

proteasome, resulting in less CFTR at the cell surface (Cheng et al., 1990; Ward et 

al., 1995). Other less common CF causing mutations include G542X, G551D, 

N1303K and W1282X (Araujo et al., 2005). The CFTR mutation G551D does not 

have an effect on protein processing, but severely reduces the open probability of the 

CFTR channel (Li et al., 1996; Bompadre et al., 2007).  

1.3.1 Cystic Fibrosis in the lung 

Airway mucus is composed of water, salts, mucins, anti-microbials, anti-proteases 

and anti-oxidants (Krouse et al., 2004). The lack of functional CFTR at the cell 
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surface of serous cells results in mucus that is abnormally thick and viscous, plugging 

up the submucosal glands and the small airways of the lung. In human respiratory 

airways, CFTR is predominantly expressed in serous cells of submucosal glands and 

ciliated cells of the surface epithelium and gland ducts (Engelhardt et al., 1992; Kreda 

et al., 2005). It is thought that the secretion of Cl- and HCO3
- drives water movement 

across the serous cells (Krouse et al., 2004), eventually giving rise to the pericilliary 

liquid layer; a film of fluid that enables the mucus secreted by goblet cells to be 

cleared away by ciliated lung epithelial cells. Serous cells are also a source of 

antimicrobial enzymes which contribute to the maintenance of the aseptic 

environment of the lungs.  

1.3.1.1 High-salt hypothesis 

Since many of these enzymes rely on a particular pH in order to function optimally, it 

has previously been suggested that the altered salt concentration that is commonly 

seen in the lungs of patients with cystic fibrosis may exacerbate the risk of infection of 

the airways. It has also been suggested that the pH of the periciliary layer is 

abnormally low in cystic fibrosis compared to normal airways, which could also inhibit 

bacterial clearance and natural antimicrobial defences in the lungs (Verkman, 2001). 

In simple terms, the high-salt hypothesis postulates that cystic fibrosis results in 

having an abnormally high salt concentration, which in turn inhibits the actions of 

endogenous antimicrobials that include defensins (Smith et al., 1996). However, more 

recent reports show that the low salt concentration that is found in normal airways 

would require either a water-impermeable airway epithelium, which was found not to 

be the case (Farinas et al., 1997; Matsui et al., 2000), or the presence of non-salt 

osmolytes, or maintenance of osmotic imbalance through the action of a surface 

phenomenon of some kind (Verkman, 2001). 

1.3.1.2 Low-volume hypothesis 

In simple terms, the low-volume hypothesis as depicted in Figure 1.6 postulates that 

hyperactive epithelial sodium channels (ENaC) that is seen in cystic fibrosis results in 

increased salt absorption and a decrease in the volume of the periciliary liquid layer. 

This hyperactivity of ENaC is due to a lack of CFTR inhibition. Water flows 

transcellularly, which decreases the volume of the pericilliary liquid (Wine, 1999). This 
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dehydrated periciliary liquid layer becomes viscous, which is infection prone (Matsui 

et al., 1998). 

 

Figure 1.6 – Schematic depicting the low volume hypothesis of cystic fibrosis. 

The effect of the lack of necessary CFTR on the apical epithelial surface leads to sodium 

hyperabsorption, dehydration of the airways and impaired mucus clearance. 

In order to test this low volume hypothesis, initial experiments carried out by Matsui et 

al., 1998 involved setting up airway cultures with PBS on the apical surface and then 

monitoring the osmolarity and airway surface liquid (ASL) depth. It was seen that the 

depth of the ASL decreased from an initial 30 µm depth to 10 µm depth after 24 

hours, and that there was no increase in chloride concentration as a result. A 

comparison of normal and CF cultures under confocal and electron microscopy 

showed that in CF cultures the mucus layer had collapsed the cilia, which prevented 

transport (Matsui et al., 1998). 

1.3.2 Cystic fibrosis in the pancreas 

The pancreas is a gland organ that is part of the vertebrate digestive system. It has 

an exocrine role of secreting enzymes that aid the digestion of food, and an endocrine 

role of secretion of the hormone insulin that regulates the levels of glucose in the 

blood. The CFTR mutation that leads to Cystic fibrosis affects these activities by 

making these secretions thick by reducing bicarbonate and fluid secretion. This leads 

to blockages in pancreatic ducts caused by the precipitation of proteins in the duct 
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lumen, and subsequently prevents pancreatic enzymes from being secreted from the 

pancreatic acini region of the pancreas (Marsey & Winpenny, 2009). This ultimately 

results in poor digestion of food and reduced nutrient uptake. Obstruction by 

thickened secretions can result in inflammation, scarring of the pancreas, cyst 

formation and the destruction of the Islets of Langerhans responsible for insulin 

secretion, which can lead to high blood sugar and insulin-dependent diabetes. 

1.3.3 Cystic fibrosis and the reproductive system 

1.3.3.1 Congenital absence of the vas deferens (CAVD) 

There are two conditions relating to CAVD, which include congenital unilateral 

absence of the vas deferens (CUAVD) and the more severe congenital bilateral 

absence of the vas deferens (CBAVD). CBAVD can result from CF and results in 

infertility in 2-6% of men. It has been suggested that there was a required amount of 

functional CFTR protein for the normal embryonic development of the vas deferens 

(Radpour et al., 2008). Low level expression of CFTR is detected in the epithelium of 

the human epididymis through 10 to 33 weeks gestation. This suggests that CFTR is 

required for the correct development of reproductive tissues (Tizzano et al., 1993). 

However, the current consensus viewpoint is that CBAVD in CF males is that the 

failure of CFTR to drive salt and water secretion to lubricate ducts leads to the stasis 

of protein rich cargoes, which results in duct obstruction and subsequent duct 

destruction (Forstner et al., 1987). 

1.3.3.2 Congenital absence of the uterus and vagina (CAUV) 

Women with CF are less fertile than healthy women, believed to be caused by 

thickened cervical mucus (Oppenheimer et al., 1970). The defective CFTR protein 

expressed in the cervix in CF women does not produce the typical changes in mucus 

during the menstrual cycle (Johannesson et al., 1998). It has been suggested that 

CFTR may play a role in the acidification of synaptic vesicles, and thus regulate 

sexual maturation and fertility (Johannesson et al., 1997). Mutations in CFTR have 

been associated with CAUV (Timmreck et al., 2003). It is thought that since the 

development of the müllerian ducts depends on and follows the development of the 

wolffian ducts, that CFTR may be important for the normal development of both duct 
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systems (Radpour et al., 2008). However, CF women have been known to become 

pregnant (Davis, 2006). 

1.3.4 Current treatments available for cystic fibrosis 

Currently, there are no cures for cystic fibrosis, but there are several treatments 

available to manage the disease symptoms and to prolong life expectancy and quality 

of life. These treatments target the primary organs that are affected, which include the 

lungs, gastrointestinal tract and the reproductive organs. Antibiotics are administered 

for months at a time to prevent the colonisation of the lungs by harmful bacteria such 

as Pseudomonas aeruginosa. Depending on the treatment, this would require 

hospitalisation with the antibiotics administered intravenously if pneumonia is 

suspected. Antibiotics such as aztreonam, colistin and tobramycin can be inhaled to 

ward off infection (Pai & Nahata, 2001; Westerman et al., 2004; McCoy et al., 2008). 

Oral antibiotics such as ciprofloxacin or azithromycin are also given (Hansen et al., 

2005). Chest physiotherapy (CPT) that involves the percussion of a patient’s chest to 

dislodge mucus can be conducted several times a day. Several devices, which 

include the ThAIRapy Vest and intrapulmonary percussive ventilator (IPV), can 

recreate this treatment. More sophisticated devices include Biphasic Cuirass 

Ventilation, which is portable and designed for home use (van der Schans et al., 

2000). DNAse enzyme therapy, which uses recombinant human deoxyribonuclease 

such as Dornase in an aerosol, can break down DNA in the sputum, and thus 

decrease the viscosity of the mucus (Lieberman, 1968). Hypertonic saline is another 

aerosol that can increase mucociliary clearance (Elkins et al., 2006). 

1.3.5 Treatments currently in development for cystic fibrosis  

1.3.5.1 Gene therapy 

Gene therapy through the use of vectors such as the viral vectors adenovirus, adeno-

associated virus or retro virus, or non-viral such as liposomes, aims to introduce wild-

type CFTR into the airway. Both viral and non-viral methods have limitations; viral 

vectors can produce an immune response, whereas the message delivered by 

liposomes does not integrate into the genome very well, resulting in little protein being 

expressed. 
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1.3.5.2 CFTR correctors and potentiators 

Different approaches to increasing CFTR function are currently being researched, 

which include CFTR correctors and CFTR potentiators. CFTR correctors are 

compounds that attempt to restore the expression of the ΔF508 CFTR to the apical 

membrane surface, while CFTR potentiators are compounds that attempt to rescue 

the gating defect. Some examples of CFTR correctors currently identified and 

undergoing research include RDR1, which is a pharmacological chaperone that binds 

to NBD1 of the ΔF508 CFTR that can partially rescue its function in cell lines and 

mouse models (Sampson et al., 2011).  

VX-809, is a CFTR corrector, functions by improving the processing of ΔF508 CFTR 

in the endoplasmic reticulum, preventing the usual ubiquitination and destruction of 

CFTR. In cultured HBE from patients with ΔF508 CFTR mutations, chloride secretion 

was improved to 14% of HBE derived from normal HBEs. It was concluded that VX-

809 was more effective than previously identified correctors (Van Goor et al., 2011). 

Clinical trials of VX-809 have been performed to determine its safety and its efficacy 

as a treatment. It was seen that VX-809 did significantly reduce elevated sweat 

chloride values in a dose-dependent manner in the 100 and 200 mg dosage groups, 

but no significant effect was seen in nasal or lung function (Clancy et al., 2012). 

Combination treatment of VX-809 and CFTR potentiator VX-770 (also known as 

Kalydeco, or Ivacaftor) is currently in stage 2 of clinical trials, with initial results 

showing an 8.5% improvement in lung function in patients with two copies of the 

ΔF508 CFTR mutation 

(http://investors.vrtx.com/releasedetail.cfm?ReleaseID=677520). 

VX-770 has been approved for treatment for children aged 6 and under with the 

G551D mutation (http://investors.vrtx.com/releasedetail.cfm?ReleaseID=644257). 

The drug was discovered using high throughput techniques of 228,000 compounds 

using cell-based fluorescence membrane potential assays to determine their effect on 

CFTR (Van Goor et al., 2009). The compound has been demonstrated to increase 

chloride secretion in cultured human bronchial epithelial cells (HBE) from patients 

with the ΔF508 and G551D mutations by 10 fold, to approximately half the normal 

level of secretion shown in HBE isolated from healthy controls. VX-770 also reduced 
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sodium absorption, reduced airway dehydration and increased cilia beat frequency. It 

was seen that the efficacy of VX-770 depended on existing cAMP/PKA signalling 

(Van Goor et al., 2009). Clinical trials with this compound with patients with at least 

one G551D mutation to evaluate its safety for use as a treatment for CF showed that 

there were improvements in lung function and promising results for future trials of the 

drug (Accurso et al., 2010).  

10% of CF causing mutations are the result of premature stop codons. Oral drug 

ataluren (PTC124) allows ribosomes to read through premature stop codons in order 

to produce functional protein (Hamed, 2006). In clinical trials, it was seen that 

ataluren increased nasal chloride transport response and increased full length CFTR 

production in nasal epithelial cells. 7 of the 9 patient groups of nonsense mutations 

exhibited improvements with few adverse events (Sermet-Gaudelus et al., 2010). In 

another trial conduced over a period of weeks with low dose and high dose groups, it 

was seen that ataluren improved total chloride transport and pulmonary function with 

few adverse effects (Wilschanski et al., 2011). 

1.3.5.3 Alternative ion channel therapy 

Other approaches to treating cystic fibrosis include various ways of stimulating other 

ion channels instead of focusing on CFTR. Such therapies include using activators of 

calcium activated chloride channels including ANO1 to increase chloride transport, 

and inhibitors of epithelial sodium channels (ENaC) to reduce sodium absorption 

(Becq et al., 2011). The ENaC blocker amiloride has long been known to increase the 

periciliary volume and improve mucociliary clearance in the lung of CF patients 

(Knowles et al., 1990), however, the drug lacks potency and is rapidly absorbed by 

the lung. A modification of the drug such as benzamil increase the potency, but also 

increases resorption of the drug by the lung further (Rodgers & Knox, 1999). Not yet 

entering clinical trials, the lead compound 552-02 is an ENaC blocker that is two 

orders of magnitude more potent than amiloride and lasts much longer. Work carried 

out using sheep found that the compound increased mucociliary clearance 

persistently (Hirsh et al., 2008). GS 9411 is another antagonist of sodium channels 

(Jones & Helm, 2009).  
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Drugs such as Lancovutide (also known as Moli1901 or Duramycin) and denufosol 

(also known as INS37217) modulate the alternative chloride channels known as 

CaCCs are at the stage of clinical trials and are potential treatments for cystic fibrosis 

(Jones & Helm, 2009). UTP or ATP nucleotides can also activate P2Y2 receptors and 

lead to an activation of CaCCs, but are not suitable for therapeutic use for CF as they 

are also bronchoconstrictors in some instances. However, analogues can be used for 

a similar effect without the risk of bronchoconstriction (Cuthbert, 2011b). One such 

analogue is denufosol, which can activate P2Y2 receptors without being broken down 

by ectonucleotidases due to alterations of its molecular structure (Yerxa et al., 2002). 

P2Y2 receptor activation and the activation of CaCCs bypass the defect in CFTR. In 

recent clinical trials, denufosol improves lung function in cystic fibrosis patients with 

normal to mildly impaired lung function compared to placebo controls (Accurso et al., 

2011). Lancovutide is in early phase trials that also activates CaCCs (Pettit & 

Johnson, 2011). Lancovutide stimulates Cl⁻ efflux from CF bronchial epithelial cells 

(CFBE) at 1 µM, but inhibits Cl- efflux at high concentrations (100 - 250 µM) (Oliynyk 

et al., 2010). Another potential target for alterative chloride channel therapy is chloride 

channel type 2 (ClC-2) (Thiemann et al., 1992). The drug lubiprostone has been 

suggested to be a ClC-2 opener and can cause chloride transport in a non-PKA 

dependent manner in T84 monolayers (Cuppoletti et al., 2004a). However, later 

studies showed that lubiprostone targets the prostanoid EP4 receptor, which is 

coupled to Gs, which leads to generation of cAMP and activation of CFTR rather than 

ClC-2 (Bijvelds et al., 2009; Ao et al., 2011; Cuthbert, 2011a).  

Activation of potassium channels has been associated with increasing chloride driving 

force in the airway (Bernard et al., 2003; Szkotak et al., 2004) and the gut (Devor et 

al., 1996; Greger, 2000; Matos et al., 2007; Roth et al., 2011) and as such could be 

candidates for alternative ion channel therapy. The human bronchial cell line 

16HBE14o- was used to investigate the effect of calcium activated potassium 

channels on driving force for Ca2+ dependent chloride secretion. Ionomycin treatment 

led to a transient peak followed by a plateau phase, both of which could be eliminated 

by either niflumic acid, glibenclamide or 5-nitro-2-(3-phenylpropylamino)benzoic acid 

(NPPB), while DIDS blocked the peak phase alone. 86Rb effluxes through both apical 

and basolateral membranes were stimulated calcium, and could be blocked by 
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calcium activated potassium channel blockers charybdotoxin, clotrimazole and 

tetrapentylammonium (TPA). Stimulation with 1-EBIO increased 86Rb effluxes that 

could be reduced with calcium activated potassium channel blockers. RT-PCR 

identified the expression of KCa2.1 (also known as SK1, with the gene name KCNN1) 

and KCNN4 (also known as SK4, IK1 or KCa3.1). Expression of KCNQ1 was also 

found but treatment with chromanol 293B and clofilium did not have an effect on 

cAMP-dependent ISC. It was therefore suggested that there are two separate 

components of calcium dependent chloride response, and that basolateral KCNN4 

plays a major role in calcium dependent chloride secretion in 16HBE14o- cells 

(Bernard et al., 2003).  

Studies carried out by Matos et al., 2007 using colonic crypts have shown that 

basolateral potassium channels have an important role in providing the driving force 

for luminal exit of chloride (Matos et al., 2007). To investigate the role of potassium 

channels in apical chloride secretion in the distal colon, KCNMA1 and KCNN4 

knockout mice and the KCNQ1 inhibitor chromanol 293B were used in an Ussing 

chamber set up. Responses to basolateral forskolin and carbachol were measured, 

and it was found that knockout mice for KCa1.1 had identical responses to wild-type 

mice, indicating that KCa1.1 was not important in governing apical chloride secretion. 

However, carbachol induced ΔISC was significantly reduced in KCNN4 knockout mice, 

although not completely eliminated. This indicated that KCNN4 plays a role in 

governing apical chloride exit, but not completely. Additional treatment with 

chromanol 293B eliminated the remaining carbachol response, indicating that a 

combination of KCNN4 and KCNQ1 are important for governing apical chloride exit in 

the distal colon (Matos et al., 2007). Moreover, in previous studies in the mouse colon 

and T84 cells, 1-EBIO potentiates Cl- secretion by activation of basolateral Ca2+ 

activated potassium channel KCNN4 and apical CFTR (Devor et al., 1996). Recent 

studies using rectal biopsies from CF patients showed that 1-EBIO similarly 

potentiates Cl- secretion in CF tissues by activation of basolateral KCNN4 channels 

resulting in increased electrical driving force for luminal chloride exit (Roth et al., 

2011). The study suggested that activators of KCNN4 could be used in conjunction 

with CFTR correctors and potentiators to maximise their effectiveness (Roth et al., 

2011). 4-chloro-benzo[F]isoquinoline (CBIQ) is able to activate KCNN4 and CFTR in 
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the Calu-3 cell line (Szkotak et al., 2004). When CFTR is stimulated in the colon by 

either an increase in cAMP or cGMP-dependent phosphorylation, it also leads to 

coactivation of basolateral KCNQ1 channels and inhibition of ENaC on the apical 

membrane. In intact enterocytes, Ca2+ activates basolateral KCNN4 channels and 

apical potassium channels, but not apical chloride channels. The activation of these 

potassium channels nonetheless increase driving force for apical chloride exit 

(Greger, 2000). 
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1.4 Matrix Metalloproteinases: A potential pharmacological target for 

treating Cystic Fibrosis? 

1.4.1 What are matrix metalloproteinases (MMPs)? 

Matrix metalloproteinases (MMPs) are zinc endopeptidases that are involved in the 

remodeling and degradation of the extracellular matrix (ECM). Listed in Table 1.3, 

there are in total 23 different Matrix Metalloproteinases found in humans (Imai & 

Okada, 2008).  Secreted MMPs usually consist of three major domains, which include 

the propeptide, catalytic and hemopexin-like domains. Membrane-type Matrix 

Metalloproteinases (MT-MMPs) have a transmembrane C-terminal and cyctoplasmic 

domains (Massova et al., 1998). The hemopexin-like domain is weakly homologous to 

the heme-binding serum protein hemopexin (Springman et al., 1990). Between the 

catalytic domain and the hemopexin-like domain is a hinge region of about 16 amino 

acids (Chung et al., 2000). MMPs are typically secreted from cells as proenzymes 

with a molecular weight of approximately 55-60 kDa. The proenzyme has a signal 

peptide on the N-terminal that enables it to translocate to the endoplasmic reticulum, 

which is subsequently cleaved off. The proenzymes are then packaged into vesicles 

for transport to the extracellular space (Dzwonek et al., 2004). A cysteine residue in 

the propeptide domain of the proenzyme (specifically, Cys73) is ligated to the Zn2+ ion 

within the active site, which is referred to as a ‘cysteine switch’. The collagenase can 

become active when the bond between the cysteine residue and the Zn2+ ion is 

disrupted by the propeptide domain being cleaved off (Springman et al., 1990). The 

important HEXXH motif found within the MMP catalytic domain binds the Zn2+ ion 

required for collagenase activity. When the initial cleavage occurs in the collagen 

triple helix, the structure then unwinds and becomes susceptible to degradation by 

gelatinases MMP-2 and MMP-9. The C-terminal hemopexin-like domain is 

responsible for binding substrates (Xu et al., 2007). 
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Table 1.3 – Matrix metalloproteinases, their known substrates and tissue expression in humans. 
Compiled from: (Nakahara et al., 1997; Murphy et al., 2002; Xu et al., 2002; Palosaari et al., 2003; Kassim et al., 

2007; Pirila et al., 2007; Illman et al., 2008; Miller et al., 2008) 

Enzyme Known substrates Expression 

Collagenases 

MMP-1 
(collagenase-1) 

Collagens I, II, III, VII, VIII and X, gelatin, 
aggrecan, versican, proteoglycan link protein, 
casein, α1-proteinase inhibitor, α2-M, pregnancy 
zone protein, ovostatin, nidogen, MBP, proTNF, 
L-selectin, proMMP-2, proMMP-9 

Gingival fibroblasts 

MMP-8 
(collagenase-2) 

Collagens I, II, III, V, VII, VIII and X, gelatin, 
aggrecan, α1-proteinase (collagenase-2) 
inhibitor, α2-antiplasmin, fibronectin 

Neutrophils 

MMP-13 
(collagenase-3) 

Collagens I, II, III and IV, gelatin, plasminogen 
activator inhibitor 2, aggrecan, perlecan, tenascin 

Chondrocytes, 
synovial membrane, 
synovial stroma, 
synovial fibroblasts, 
gingival fibroblasts, 
plasma cells 

Gelatinases 

MMP-2 
(Gelatinase A) 

Collagens I, IV, V, VII, X, XI and XIV, gelatin, 
elastin, fibronectin, aggrecan, versican, 
proteoglycan link protein, MBP, proTNF, α1-
proteinase inhibitor, proMMP-9, proMMP-13 

Gingival fibroblasts, 
osteoblasts, 
odontoblasts, human 
airway epithelial cells 

MMP-9 
(Gelatinase B) 

Collagens IV, V, VII, X and XIV, gelatin, elastin, 
aggrecan, versican, proteoglycan link protein, 
fibronectin, nidogen, α1-proteinase inhibitor, 
MBP, proTNF 

Macrophages, 
polymorphonuclear 
leukocytes, 
rheumatoid arthritis 
synovium, 
osteoclasts, 
odontoblasts, human 
airway epithelial cells 

Stromelysins 

MMP-3 
(Stromelysin-1) 

Collagens III, IV, IX and X, gelatin, aggrecan, 
versican, perlecan, nidogen, proteoglycan link 
protein, fibronectin, laminin, elastin, casein, 
fibrinogen, antithrombin-III, α2M, ovostatin, α1-
proteinase inhibitor, MBP, proTNF, proMMP-1, 
proMMP-7, proMMP-8, proMMP-9, proMMP-13 

Rheumatoid synovial 
fibroblasts, skin 
fibroblasts 

MMP-10 
(Stromelysin-2) 

Collagens III, IV and V, gelatin, casein, 
aggrecan, elastin, proteoglycan link protein, 
fibronectin, proMMP-1, proMMP-8 

Rheumatoid synovial 
fibroblasts, 
keratinocytes, T-
lymphocytes, 
chondrocytes, 
osteoblasts, 
osteoclasts, human 
airway epithelial cells 

MMP-11 
(Stromelysin-3) 

α1-proteinase inhibitor Breast carcinoma 
cells 
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Enzyme Known substrates Expression 

Matrilysins 

MMP-7  
(Matrilysin-1) 
 

Collagens IV and X, gelatin, aggrecan, 
proteoglycan link protein, fibronectin, laminin, 
entactin, elastin, casein, transferrin, MBP, α1-
proteinase inhibitor, proTNF, proMMP-1, 
proMMP-2, proMMP-9 

Osteoarthritic 
cartilage, human 
airway epithelial 
cells 

MMP-26 
(Matrilysin-2) 
 

Collagen IV, fibronectin, fibrinogen, gelatin, α1-
proteinase inhibitor, proMMP-9 

Mucosal 
keratinocytes 

MT-MMPs 

MMP-14  
(MT1-MMP) 

Collagens I, II and III, gelatin, casein, elastin, 
fibronectin, laminin B chain, vitronectin, aggrecan, 
dermatan sulfate proteoglycan, MMP-2, MMP-13, 
proTNF 

Osteoblasts, 
osteoclasts, 
odontoblasts, 
ameloblasts, human 
airway epithelial 
cells 

MMP-15  
(MT2-MMP) 

proMMP-2, gelatin, fibronectin, tenascin, nidogen, 
laminin 

 

MMP-16 
(MT3-MMP) 

proMMP-2  

MMP-17 
(MT4-MMP) 

 Leukocytes 

MMP-24 
(MT5-MMP) 

proMMP-2, proMMP-9, gelatin  

MMP-25 
(MT6-MMP) 

Collagen IV, gelatin, fibronectin, fibrin Leukocytes, 
neutrophils 

Others 

MMP-12 
(metalloelastase) 

Collagen IV, gelatin, elastin, α1-proteinase 
inhibitor, fibronectin, vitronectin, laminin, proTNF, 
MBP 

Alveolar 
macrophages 

MMP-19 Collagen IV, gelatin, laminin, nidogen, tenascin, 
fibronectin, aggrecan, COMP 

Blood mononuclear 
cells, lymphocytes, 
blood vessels, 
breast tissue, lung 
fibroblasts, myeloid 
cell surface 

MMP-20 
(enamelysin) 

Amelogenin Odontoblasts 

MMP-23 
(CA-MMP) 

  

MMP-28 
(epilysin) 

Casein Keratinocytes 
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1.4.2 Subfamilies of matrix metalloproteinases 

Matrix metalloproteinases have been grouped into several subfamilies based on their 

proteolytic activities and structure (Figure 1.7). These subfamilies include matrilysins 

(Murphy et al., 2002), collagenases (Mort & Billington, 2001), stromelysins (Visse & 

Nagase, 2003), gelatinases (Murphy et al., 2002; Dufour et al., 2008) and membrane-

type MMPs (MT-MMPs) (Nakahara et al., 1997; Hotary et al., 2000; Sugrue et al., 

2001) 

 

Figure 1.7 – The domain structure of the matrix metalloproteinases.  

The propeptide domain contains a Cys
73

 residue often referred to as a ‘cysteine switch’. The 

catalytic domain contains a HEXXH motif that binds to the Zn
2+

 ion. Matrilysins, such as MMP-

7 and MMP-26, are relatively simple MMPs, comprising only the propeptide and catalytic 

domains. Collagenases and stromelysins are more complex and consist of proptide, catalytic 

and hemopexin-like domains, and a hinge region. Only the gelatinases, MMP-2 and MMP-9, 

have a Collagen Binding Domain (CBD) that contains three fibronectin type II molecules. 

Membrane-type MMPs (MMP-14, -15, -16, -17, -24, and -25) all have a C-terminal cytoplasmic 

tail, with the exception of MMP-17 and MMP-25. Based on schematics by: (Mort & Billington, 

2001; Noel et al., 2012) 
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1.4.2.1 Matrilysins 

Matrilysins, such as MMP-7 and MMP-26, are relatively simple MMPs, comprising 

only the propeptide and catalytic domains. Despite the fact that matrilysins lack the 

hemopexin-like domain and a transmembrane region (Figure 1.7), they are able to 

degrade a range of substrates, including aggrecan, casein, collagen IV, elastin, 

entactin, fibronectin, gelatin and laminin (Murphy et al., 2002). 

1.4.2.2 Collagenases and Stromelysins 

Collagenases and stromelysins are more complex and consist of propeptide, catalytic 

and hemopexin-like domains, and a hinge region (Figure 1.7). The MMPs that can 

break down triple-helical fibrillar collagen are MMP-1, MMP-8 and MMP-13. These 

MMPs are able to cleave collagen at a single locus, producing two fragments 75% 

and 25% of the size of the original molecule (Mort & Billington, 2001). Stromelysins 

(MMP-3, MMP-10 and MMP-11), unlike collagenases, cannot degrade fabillar 

collagen. However, stromelysins can degrade a wide variety of other ECM 

components, such as fibronectin, gelatin and laminin (Murphy et al., 2002). MMP-3 is 

also responsible for activating other MMPs, such as MMP-1 (Visse & Nagase, 2003). 

1.4.2.3 Gelatinases 

The gelatinases, consisting of MMP-2 and MMP-9, are responsible for the 

degradation of ECM components such as fabrillar collagen (alongside the 

collagenases), basement membrane components and fibronectin (Murphy et al., 

2002). Only the gelatinases, MMP-2 and MMP-9, have a Collagen Binding Domain 

(CBD) that contains three fibronectin type II molecules (Figure 1.7). These domains 

are specifically required for the cleavage of collagen and elastin, with a deletion of the 

CDB resulting in a ~90% reduction in the degradation of gelatin (Xu et al., 2007). 

MMP-9 is also thought to be responsible for increased cell migration, possibly through 

the formation of a homodimer between hemopexin domains (Dufour et al., 2008). 

1.4.2.4 Membrane-type Matrix Metalloproteinases (MT-MMPs) 

Membrane-type MMPs (MMP-14, -15, -16, -17, -24, and -25) all have a C-terminal 

cytoplasmic tail, with the exception of MMP-17 and MMP-25 (Figure 1.7). MT-MMPs 

are also able to break down collagen – particularly collagen I, aiding cell invasion and 
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morphogenesis (Hotary et al., 2000). Other extracellular components such as 

fibronectin, gelatin, laminin, and proteoglycan can also be broken down by MT-MMPs 

(Nakahara et al., 1997). MT-MMPs can also trigger signal transduction cascades (Li 

et al., 2008). A furin-type proprotein convertase aids in the activation of the MT-

MMPs. The furin recognition site consists of the consensus sequence of amino acids 

Arg-Arg-Lys-Arg (RRKR) (Sugrue et al., 2001). 

1.4.3 General regulation of matrix metalloproteinases 

1.4.3.1 Tissue Inhibitors of Metalloproteinases (TIMPs) 

MMPs can be regulated either by natural inhibitors (such as TIMPs) or through the 

use of synthetic inhibitors. The activity of MMPs is regulated in the tissue naturally by 

Tissue Inhibitors of Metalloproteinases (TIMPs). There are 4 classes of TIMPs that 

have been studied so far, which include TIMP-1, TIMP-2, TIMP-3 and TIMP-4. These 

classes of TIMPs have differing binding affinities to MMPs, and can inhibit the activity 

of MMPs (Fielitz et al., 2004). TIMPs themselves also have to be regulated so that 

MMPs can still perform their normal ECM remodelling, so a balance between the two 

is necessary (Brew et al., 2000). Table 1.4 is a summary table showing specific data 

regarding TIMPs. 

Table 1.4 – TIMP summary table.  
Based on information gathered by: (Palosaari et al., 2003) 

TIMP Amino Acid 

Length 

Mass (kDa) Examples of where they are 

expressed 

TIMP-1 184 28.5 Osteoblasts 

TIMP-2 194 21.0 Osteoblasts, Chondrocytes 

TIMP-3 188 24.0  Chondrocytes 

TIMP-4 195 22.0 Chondrocytes 

TIMPs consist of two domains; an N-terminal domain consisting of 125 amino acids, 

and a C-terminal domain consisting of 65 amino acids. Additionally, the two domains 

are each stabilized by three disulphide bonds formed between cysteine residues 

(Brew et al., 2000). TIMPs can regulate MMP activity by binding directly to the 

catalytic site to form a TIMP/MMP complex (Iyer et al., 2007). 
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1.4.3.2 Subfamilies of TIMPs 

There are various differences between the TIMPs with regards to which type of MMPs 

and other proteins they regulate. TIMP-1, which interacts with the hemopexin domain, 

was found to inhibit MMP-9’s cell migratory function (Dufour et al., 2008). A complex 

is formed with TIMP-2 and a homodimer of MT1-MMP. This complex can then 

activate MMP-2 (Ingvarsen et al., 2008). TIMP-2 and TIMP-3 have been found to be 

more effective inhibitors of MT-MMPs compared with TIMP-1 (Brew et al., 2000). 

TIMP-3 is also able to inhibit members of the A disintegrin and metalloproteinase 

(ADAM) and A disintegrin and metalloproteinase with  with Thrombospondin Motifs 

(ADAMTS) families, such as ADAM-10, ADAM-12, ADAMTS-4 and ADAMTS-5 (Visse 

& Nagase, 2003). TIMP-3 has been found to be an effective inhibitor of TNF-α 

converting enzyme (known as TACE or ADAM-17) (Amour et al., 1998). In response 

to vascular injury, the levels of TIMP-4 mRNA increases. This suggests that TIMP-4 

has a protective role against cardiomyopathy and tumour progression. Active TIMP-4 

is able to strongly inhibit MMP-2, MMP-9 and MT1-MMP (Donnini et al., 2008). 

1.4.3.3 Synthetic inhibitors 

Various chemical inhibitors of matrix metalloproteinases exist that are commonly 

used, including 1,10-phenanthroline, ilomastat (GM-6001), batimastat (BB-94) and 

marimastat (BB-2516). Ilomastat, a broad spectrum inhibitor of metalloproteinases, 

works by binding directly to the Zn2+ ion of the catalytic site of the MMP in a bidentate 

fashion, thus impeding its catalytic activity (Galardy et al., 1994). Batimastat has a 

hydroxamic acid group and a peptide backbone that can bind to MMPs. The 

hydroxamic acid group binds to the zinc atom of the catalytic domain, and thus 

inactivates the enzyme (Davies et al., 1993). 1,10-Phenanthroline inhibits MMPs by 

acting as a divalent zinc chelator (Santos et al., 2004). However, N-heterocyclic 

polyaromatic hydrocarbons such as 1,10-Phenanthroline are known to be toxic to 

organisms (Kobeticova et al., 2008). Marimastat is a synthetic inhibitor modified from 

Batimastat by British Biotech, and like batimastat, is of the hydroxamate class of 

MMP inhibitors and works by the same method (Failes & Hambley, 2007). 
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1.4.4 MMP Regulation in Airway Epithelial cells 

Of particular interest are the signalling pathways that lead to MMP expression and 

how the signalling events are regulated in airway epithelial cells. The major sources 

of MMPs in the airways are neutrophils, epithelial cells and macrophages (Sagel et 

al., 2005). Nitric oxide (NO) is produced by airway epithelial cells through the 

expression of inducible nitric oxide synthase (NOS2). Nitric oxide is responsible for 

epithelial repair and host defence. At low concentrations, NO induces the activation of 

MMP-9. MMP-9 has a role in epithelial repair, so the mediation of repair by NO is 

through the induction of MMP-9. NO is thought to increase the expression of MMP-9 

at the gene transcription level through the cGMP-dependent signalling cascade. NO 

can inhibit MMP-9 at higher concentrations (Bove et al., 2007). In a study by Jurasz et 

al., 2001, nitric oxide has been linked with MMP-2 and tumor cell-induced platelet 

aggregation (TCIPA). Two cell lines, A549 (adenocarcinomic human alveolar basal 

epithelial cells) and Human HT-1080 (human sarcoma cell line) were shown to induce 

TCIPA. This in turn led to the platelets releasing MMP-2. Inhibitors of MMPs, 

including phenanthroline and anti-MMP-2 antibodies led to a decrease in platelet 

aggregation, while NO donors (such as S-nitroso-n-acetylpenicillamine and S-

nitrosoglutathione) were able to inhibit TCIPA and MMP-2 release. It was suggested 

that NO inhibits TCIPA partly due to its inhibition of MMP-2 (Jurasz et al., 2001). A 

further study by Lechapt-Zalcman et al., 2006 demonstrated that TGF-β1 significantly 

upregulated MMP-2 in an in vitro model using human nasal epithelial cells (HNEC) to 

represent airway epithelial cells. MMP-2 RNA expression levels increased with HNEC 

cells treated with TGF-β1 compared to controls. TGF-β1 treatment significantly 

increased the rate that wounds closed compared to controls, therefore TGF-β1 

upregulated MMP-2, which in turn facilitated the wound repair (Lechapt-Zalcman et 

al., 2006). As depicted in Figure 1.8, collagen I and thrombin have been shown to 

increase MMP-2 activity in airway smooth muscle cells, despite actually decreasing 

the levels of MMP-2 mRNA. However, collagen I and thrombin together increased 

MMP-14 expression, which then activated MMP-2. Collagen I decreased TIMP-2 

activity, which reduced MMP-2 inhibition (Henderson et al., 2007). Moreover, in a 

study by Lin et al., 2008, the p42/p44 MAPK pathway was implicated using MEK 1/2 

inhibitor, which was found to reduce MMP-9 expression. Cells transfected with siRNA 

for MEK1 and double negative mutants for ERK2 reduced TNF-α induced MMP-9 
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expression. JNK and NF-κB inhibitors SP600125 and, helenalin, respectively reduced 

TNF-α induced MMP-9 expression (Lin et al., 2008). 

 

 

Figure 1.8 – The interactions leading to the expression of MMP-2 as a result of Collagen I and Thrombin.  
Based on an illustration by: (Henderson et al., 2007). 

PPARγ, a nuclear receptor, inhibits MMP-9 at the transcriptional level in two different 

bronchial epithelial cell lines. PPARγ is expressed in the normal human bronchial 

epithelial cell lines NL20 and BEAS. PPARγ can be activated naturally with 

prostaglandin D2, or with synthetic compounds including thiazolidinediones (TZDs), 

pioglitazone or rosiglitazone (Hetzel et al., 2003). PPARγ upregulates Glut4 and 

lipoprotein lipase, which limits the expression of proinflammatory cytokines. PPARγ 

regulates DNA expression by binding to PPAR response elements (PPREs) on the 

promoter region of a particular gene. NF-κB, known to regulate TNF-α induced MMP-

9 expression, is inhibited by TZD treatment. Therefore, an upregulation of PPARγ is 

causing the reduction in MMP-9 expression through the NF-κB pathway. There may 
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be an interaction between PPARγ and NF-κB. Treatment with TZDs had no effect on 

TIMP-1 or MMP-2 production (Hetzel et al., 2003). 

1.4.5 Role of MMPs under specific disease conditions 

1.4.5.1 Cystic Fibrosis 

It has been found that the levels of MMP-8 and MMP-9 are significantly elevated in 

the bronchoalveolar lavage (BAL) fluid of individuals afflicted with cystic fibrosis 

(Ratjen et al., 2002; Manoury et al., 2007; Gaggar et al., 2011). Overexpression of 

MMPs can lead to excessive degradation of surrounding tissues. In a study by Ratjen 

et al., 2002, it was seen that there was a greater than 300-fold increase in the level of 

MMP-8 and a 116-fold increase in the level of MMP-9 in the BAL fluid of CF children 

compared to healthy controls. However, the levels of TIMP-1, which normally inhibit 

MMPs by binding with a 1:1 molar ratio, were only elevated by 6-fold, resulting in very 

high MMP/TIMP ratios. The overexpression of MMP-8 and MMP-9 was attributed 

mostly to neutrophils (Ratjen et al., 2002). In a further study by Sagel et al., 2005, it 

was seen that the levels of MMP-9 found in the BAL fluid were inversely proportional 

to the forced expiration volume in one second (FEV1) of CF children, and that CF 

children had a significantly higher neutrophil count in the BAL fluid, as well as 

increased IL-8 (a neutrophil attractant) and neutrophil elastase. MMP-9 is capable of 

inactivating alpha1-proteinase inhibitor, which is responsible for inhibiting neutrophil 

elastase. Neutrophil elastase can also inhibit TIMPs. Therefore, in CF children, there 

was an elevated neutrophil count and increased levels of IL-8 and neutrophil 

elastase, which in turn increased MMP-9 expression and increased MMP-9/TIMP-1 

ratio. Therefore, there was a decrease in alpha1-proteinase inhibitor, resulting in 

further increases in neutrophil elastase activity, leading to decreased TIMP activity 

and increased proteolytic activity (via MMP-9 and neutrophil elastase) resulting in 

decreased FEV1 and therefore decreased lung function (Sagel et al., 2005). 

Moreover, NO is decreased in the upper airway of CF patients compared to controls 

and either no different or decreased in the lower airway. There is a decreased 

expression of iNOS in the airway epithelial cells of CF patients compared with 

controls. A result of decreased level of iNOS expression is less protection against 

bacterial, fungal and viral infections. A decreased level of iNOS in CF patients is the 
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cause of the decreased levels of NO in the airway epithelium (Grasemann & Ratjen, 

1999). 

1.4.5.2 Asthma 

Asthma is a condition that involves lung inflammation and shortness of breath due to 

constriction of the airways. It is seen that the levels of MMP-1, -2, -3, -8 and -9 are 

elated in the BAL fluid of individuals with asthma, with the expression of MMP-9 being 

particularly high in cases of severe asthma (Greenlee et al., 2007). The ratio of MMP-

9/TIMP-1 has been found to be elevated in the sputa of individuals afflicted with 

asthma. In a study carried out by Tanaka et al., 2000 the levels of MMP-9 and TIMP-1 

were measured using ELISA and zymography. The bands found during the 

zymographic analysis and anti-MMP-9 included a band representing the MMP-

9/TIMP-1 complex as well as MMP-9. From the zymographic analysis, it showed that 

the initial high levels of MMP on day one were reduced following methylprednisolone 

infusion therapy, along with an increase in TIMP-1. This resulted in a much lower 

MMP-9/TIMP-1 ratio. The peak expiratory flow (PEF) following the therapy of 

individuals with asthma was also measured, showing an increase over the course of a 

week (Tanaka et al., 2000). MMP-9 can be produced in a variety of cells within the 

airway, including macrophages, eosinophils and neutrophils. A high level of MMP-9 is 

also correlated with eosinophil and neutrophil counts. MMP-9 is partly responsible for 

the clearing of eosinophils from the airway. High MMP-9 expression in the airway is 

associated with a high neutrophil count, and is inversely correlated with FEV1. This 

suggests that MMP-9 is linked with neutrophil influx and interference with gas 

exchange with the lung (Greenlee et al., 2007). 

1.4.5.3 Chronic Obstructive Pulmonary Disease 

Chronic obstructive pulmonary disease (COPD), which involves the destruction of 

alveoli and capillaries of the lung, is characterized by the elevation in levels of various 

cytokines, such as IL-6, IL-8, IL-1β, and TNF-α. IL-1β and TNF-α induce the release 

of MMP-9 from macrophages. TNF-α also activates NF-κB, a transcription factor that 

activates the IL-8 gene, which is a neutrophil attractant. IL-1β induces the release of 

neutrophils from the bone marrow. The cytokine expression profile is different in 

COPD than that of asthma, despite having some overlap between the two. The 
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cytokines expressed in asthma tend to be from CD4+ T-cells and eosinophils such as 

IL-4, IL-5 and IL-13, rather than CD8+ T-cells, which produce IL-1 and TNF-α (Chung, 

2001). Along with MMP-9, other proteases are also found to be elevated in COPD, 

including neutrophil elastase, MMP-2, MMP-8, MMP-9 and MMP-12. These various 

proteases are predominantly secreted from neutrophils and alveolar macrophages. 

Moreover, some of the fragments that are generated by proteases have chemotactic 

properties. For instance, within elastin (a component of the ECM), there is a repeating 

hexamer sequence Val-Gly-Val-Ala-Pro-Gly that is thought to be a chemoattractant 

for monocytes. In addition, fragments of collagen, such as N-Acetyl-Pro-Gly-Pro, have 

been found to be a chemoattractant for neutrophils. These fragments are produced 

during lung inflammation as seen in COPD (O'Reilly et al., 2008). 

1.4.5.4 Pancreatitis 

Levels of MMP-9 are elevated in individuals with pancreatitis. The levels of the 

cytokines such as IL-1 and TNF-α may be biological indicators of the severity of 

pancreatitis. The levels of IL-1, TNF-α and MMP-9 are higher with individuals with 

severe acute pancreatitis (SAP) than those with mild acute pancreatitis, with healthy 

controls having the lowest levels. Both known to induce the expression of MMP-9, IL-

1 and TNF-α, may be responsible for the pathology of the disease through excessive 

degradation of the ECM (Chen et al., 2006). In another study, the effect of pancreatic 

trypsin on the activation of proMMP-2 was investigated. It was found that the 

activation of proMMP-2 via trypsin was highly dependent on a number of different 

external factors. Through the use of fluorometric assays and zymography, it was seen 

that the activation of proMMP-2 in the presence of bovine pancreatic trypsin was 

highly dependent on temperature. It was seen that at 21°C that the activation time 

was significantly reduced, although there was also a large increase in the degradation 

of proMMP-2. Without the addition of Ca2+ and Brij-35, no activation of proMMP-2 

took place. The activation of MMP-2 is also implicated in pancreatitis, and the fact 

that pancreatic trypsin can activate MMP-2 shows that there is a link between 

pancreatitis and MMP activation (Lindstad et al., 2005).  
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1.4.6 Known interactions of MMPs with ion channels 

MMPs have been linked to several different types of ion channels. 

1.4.6.1 Cystic fibrosis transmembrane conductance regulator (CFTR) 

Cystic fibrosis transmembrane conductance regulator (CFTR) chloride ion channels 

are expressed in submucosal gland cells and are thought to be involved in mucus 

secretion.  Studies into the role of MMPs on CFTR were conducted by Duszyk et al., 

1999. Two cell lines were used, Calu-3 and A549. The A549 cell line is a useful 

comparison since it does not express CFTR unlike Calu-3 cells (Duszyk et al., 1999). 

Western blots and zymographic studies showed that the levels of MMP-2 were 

knocked down when 1,10-phenanthroline or anti-MMP-2 polyclonal antibodies were 

used (Duszyk et al., 1999). 1,10-phenanthroline had no significant effect on the short 

circuit current (ISC) with the A549 cell line, while the ISC in Calu-3 cells was shown to 

be increased in a concentration dependent manner. Anti-MMP-2 had the same effect 

of increasing ISC. Recombinant MMP-2 reduced ISC. Since the whole cell current in 

A549 cells (which do not express CFTR) was not similarly affected, MMP-2 somehow 

specifically affects CFTR chloride channels and reduces whole cell current by an 

unknown mechanism (Duszyk et al., 1999). A further study was conducted using the 

colonic epithelial cells from mouse models, including the CF mice CF null (Cftrtm1Cam) 

and CF ΔF508 (Cftrtm2Cam), and various isoforms of phenanthroline were used to 

study their effectiveness at increasing ISC. It was found that 1,10-phenanthroline was 

unable to increase the ISC in the null and ΔF508 CF mice, due to the lack of CFTR at 

the surface (Duszyk et al., 2001). 

1.4.6.2 Chloride channel, Calcium activated (CLCA) 

Chloride channel, Calcium activated (CLCA) is a gene family that translates to 

secreted proteins thought to be mediators of chloride conductance (Gibson et al., 

2005; Mundhenk et al., 2006), by lowering the energy barriers for ion translocation 

through the pore of endogenous CaCCs (Hamann et al., 2009). CLCA are known to 

be metal-dependent hydrolases. Hydrolases, which also bind a Zinc ion to facilitate 

their catalytic activity, have a similar activity to that of Matrix Metalloproteinases. 

CLCA shares notable homologies to MMPs, including the conserved HEXXH motif 

that is responsible for binding the zinc ion (Pawlowski et al., 2006). 
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1.4.6.3 Calcium activated chloride channels (CaCC) 

Studies by Jeulin et al., 2008 have shown that EGF can activate CaCCs, which can 

by inhibited by tyrphostin (AG1478), an EGFR inhibitor. Further shown was that the 

activation of CaCC via EGF signalling was mediated through src kinase (p60c-src), and 

exposure to pollutants elicited the activation of CaCC via activation of EGFR through 

proinflammatory cytokines (Jeulin et al., 2008). 

1.4.6.4 ClC Proteins 

Chloride channels, including ClC-7, interplay with Cathepsin K and MMPs during the 

degradation of bone.  Cathepsin K is a protease involved in bone resorption. 

Osteoclasts that are deficient in ClC-7 through a knockout were found to have a 

reduced ability to degrade bone. An inhibitor of ClC-7 called NS5818 also reduced the 

ability of osteoclasts to degrade bone.  

 

Resorption of calcified bone Degradation of decalcified bone 

 

 
   

ClC-7 Cathepsin K MMP Slightly Active Highly Active 

Figure 1.9 – The interplay between ClC-7, Cathepsin K and MMPs during the resorption of calcified bone 
and degradation of decalcified bone.  
Blue represents slightly active, while yellow represents highly active. Image adapted from: (Henriksen et 

al., 2006) 

As depicted in Figure 1.9 above, ClC-7 is highly active during the resorption of 

calcified bone, along with cathepsin K, with MMPs largely inactive. However, during 
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the degradation of decalcified bone, the ClC-7 and cathepsin K are mainly packed 

into vesicles and remain mostly inactive. MMPs are then highly active in the 

degradation of decalcified bone (Henriksen et al., 2006). 

1.4.6.5 Potassium ion channels 

In spontaneously hypertensive rat (SHR) models, it was found that MMP-9 mRNA 

expression in the kidney was reduced compared to control rats, whereas the mRNA 

expression of TIMP-1, collagen IV and TGF-β1 was much higher. Long-term 

treatment with ATP-sensitive potassium channel opener iptakalim increased the 

mRNA expression of MMP-9 and decreased the mRNA expression of TIMP-1, 

collagen IV and TGF-β1. In arteries, iptakalim reduces fibronectin and collagen IV 

overexpression in the SHR model (Xue et al., 2005). It is thought that iptakalim 

regulates the activity of MMP-9 through its down regulation of TGF- β1. It is possible 

that there is in fact a link between potassium channels, TGF- β1 and MMP-9 (Xue et 

al., 2005). By using CF and non-CF bronchial monolayers, it has been seen that 

EGF/EGFR signalling is reduced in CF. As EGF signalling is coupled to potassium 

channels, it is also seen that there is a 40 - 70% reduction in potassium currents and 

a reduced expression of KvLQT1, ATP-sensitive potassium and calcium activated 

potassium channels. The reduction in potassium current and EGF signalling is a likely 

contributor to slowing down bronchial repair in CF (Trinh et al., 2008). Another ligand 

of EGFR, heparin-binding EGF-like growth factor, has been shown to mediate 

oxyhaemoglobin-induced expression of voltage-dependent potassium channels in 

rabbit cerebral artery myocytes. Oxyhaemoglobin can induce the activation of MMPs, 

which is able to cleave a heparin-binding EGF-like growth factor (HB-EGF) precursor 

protein from the cell surface leading to the activation of the EGFR receptor. The 

activation of the EGFR receptor leads to the endocytosis of the voltage-dependent 

potassium channels (Koide et al., 2007). 
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1.5 Epidermal Growth Factor: Inducer of Matrix Metalloproteinases 

Epidermal growth factor (EGF) is a growth factor that plays an important role in the 

regulation of cell growth, proliferation, and differentiation by binding EGFR, a receptor 

tyrosine kinase of the ErbB family, on the cell surface (Iamaroon et al., 1996). This 

leads to the initiation of several signalling pathways such as MAPK, Akt and JNK 

(Oda et al., 2005). TGF-α, another possible ligand of EGFR, has been shown to 

induce a motile fibroblast-like phenotype in the rat Nara Bladder Tumour II (NBTII) 

carcinoma cell line through the expression of a 95 kDa gelatinase with extracellular 

matrix-degrading potential (Gavrilovic et al., 1990). 

 

Figure 1.10 – Schematic depicting MMP-9 induction via EGF, HB-EGF and TGF-α.  

MMP-9 can also be induced by a number of proinflammatory cytokines, including TNF-α and IL-1β.  

TNF-α also induces the expression of MMP-9 in A549 cells, a carcinomic human alveolar basal epithelial 

cell line, through several signalling cascades including the p42/p44 MAPK and JNK pathways. Brown 

lines represent an downstream activation, while red lines represent inhibition. Based on information from: 

(Atkinson & Senior, 2003; Poitras et al., 2003; Lin et al., 2008). 

Later work implicated the signalling pathway shown in Figure 1.10 showing how TGF-

α may induce metalloproteinases. The induced expression of MMP-9 with TNF-α has 

been shown to be statistically significant in a time and concentration dependent 
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manner using zymography in A549 cells cultured in serum-free media at 37 °C. The 

p42/p44 MAPK pathway was found to be involved through the use of an inhibitor of 

MEK 1/2 (an upstream component of the pathway) called U0126. The inhibitor was 

found to reduce the expression of MMP-9 in a concentration-dependent manner. This 

result was confirmed using cells transfected with siRNA for MEK1 and double 

negative mutants for ERK2, showing a reduction in TNF-α induced MMP-9 

expression. To investigate if JNK regulated MMP-9 expression in A549 cells, an 

inhibitor for JNK (SP600125) has been used, causing a reduction in TNF-α induced 

MMP-9 expression. To show that NF-κB was involved in the TNF-α induced 

expression of MMP-9, an inhibitor of NF-κB (helenalin) has been used, resulting in a 

decrease in expression in a concentration-dependent manner (Lin et al., 2008). 

Phosphatidylinositol 3-Kinase (PI3K) as shown in the signalling pathway above 

(Figure 1.10) is also known to be involved in the biosynthesis and activity of CFTR, 

which links EGF, EGFR and gelatinase expression to CFTR regulation. The 

mechanism with which PI3K regulates CFTR is through heterologous desensitisation 

and regulation of the β2-adrenergic receptors (Roux et al., 2010). Transforming 

growth factor β1 inhibits the β2-adrenergic receptor agonist-stimulated alveolar 

epithelial transport though PI3K, so PI3K inhibition can aid alveolar fluid clearance 

(Roux et al., 2010). In a study by Uribe et al., 2002, interferon-γ has been shown to 

increase tyrosine kinase phosphorylation via the release of TGF-α, which inhibits 

calcium-activated chloride secretion. It was also demonstrated that another ligand of 

EGFR – EGF, is able to inhibit calcium activated chloride secretion (Uribe et al., 

2002). The regulation of other metalloproteinases and lung inflammation induced by 

IL-8 has been shown to be partly mediated through EGFR. Neutrophil elastase was 

found to induce the metalloproteinase meprin alpha, which in turn is able to release 

soluble TGF-α. TGF-α activates EGFR resulting in the production of the 

proinflammatory cytokine IL-8, leading to lung inflammation. Neutrophil elastase can 

also bring about IL-8 induction through the TLR4-MAL/MyD88-IRAK-NFκB pathway 

(Figure 1.11) (Bergin et al., 2008) 
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Figure 1.11 – The effect of neutrophil elastase on lung imflammation.  

Schematic showing the effect of neutrophil elastase on IL-8 induced lung inflammation, which is mediated 

through metalloproteinase meprin alpha, and EGFR and its ligand TGF-α. Based on information from: 

(Bergin et al., 2008) 

1.5.1 EGF and EGFR in lung disease 

EGF, as well as other growth factors such as PDGF, endothelin, basic fibroblast 

growth factor (FGF2), Transforming growth factor beta (TGF-β), and cytokines such 

as TGF-α are secreted by damaged lung epithelial tissues indicating that EGF is 

present in the lung and involved in the repair of lung tissue (Mercer et al., 2006). The 

EGF receptor is expressed by bronchial epithelial cells, and regulates not only tissue 

repair, but also mucin production (Shute et al., 2003). EGFR dependent mucin 

production is facilitated by fibrinogen binding to Intercellular Adhesion Molecule 1 

(ICAM-1) (Kim & Nadel, 2009). Tissue damage occurring in CF can be worsened by 

poor EGF signalling. In the lung, EGFR signalling and potassium channel activity 

facilitate cell proliferation and migration. The inhibition of potassium channels by 

clofilium and glibenclamide reduced wound repair in NuLi (normal lung) and CuFi 

(cystic fibrosis) cells (Trinh et al., 2008). The presence of EGF in the sputum of CF 

patients increases during therapy (Colombo et al., 2011) and EGFR is upregulated in 

the airways of asthma and COPD patients (Lai & Rogers, 2010). Levels of EGF are 
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also elevated in patients that have suffered from an acute asthma attack (Enomoto et 

al., 2009). TNF-α also facilitates wound repair in NuLi and CuFi cells, which can be 

prevented by matrix metalloproteinase inhibitor GM6001 and EGFR inhibitor AG1478, 

suggesting that the wound healing process is mediated through transactivation of the 

EGF receptor and stimulation of the KVLQT1 and KATP potassium channels (Maille et 

al., 2011b). Similarly, EGF is also important in modulating KVLQT1 and KATP 

potassium channels in the lung in alveolar epithelial cells to promote repair, which can 

be inhibited by tyrosine kinase and potassium channel inhibitors  (Trinh et al., 2007). 

1.5.2 EGF and potassium ion transport in other tissues 

As described in Figure 1.12, EGF plays an important role in intestinal chloride ion 

transport (McCole & Barrett, 2009) and that there is a link between MMP activity and 

potassium ion channel regulation that involves Heparin binding EGF (HB-EGF) 

shedding by MMP cleavage in rabbit cerebral artery myocytes (Koide et al., 2007). 

Activation of EGFR in the gut leads to an inhibition of basolateral potassium channels 

via a signalling mechanism consisting of phosphatidylinositol 3-kinase (PI3K) and 

protein kinase C-ε (PKC-ε). This signalling mechanism is favoured over an EGFR – 

ERK signaling pathway also present, which has an inhibitory effect on apical chloride 

secretion (Chow et al., 2000).  
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Figure 1.12 – The role of EGF on chloride secretion in the gut.  

Dashed lines represent direct effects of EGFR signalling, whereas the solid lines represent 

transactivation processes. Based on a schematic by: (McCole & Barrett, 2009). 

Moreover, the voltage-gated potassium channel KCNA2 is regulated by tyrosine 

kinases such as EGFR. The channel undergoes endocytosis when tyrosine kinases 

are active (Nesti et al., 2004). Activation of EGFR leads to a sustained increase in 

KCNN4 conductance in vascular smooth muscle cells extracted from rat basilar 

arteries. This effect was seen using several different ligands of EGFR such as EGF, 

TGF-α and HB-EGF, which could be blocked by tyrosine kinase inhibitor, AG1478, or 

iberiotoxin, a KCNN4 specific inhibitor (Ivanov et al., 2006). In the skin, wound healing 

is promoted by EGF by activating protein kinase C, protein tyrosine kinase and ERK 

MAPK, and as a result regulates potassium channels. Potassium channel activity has 

been associated with wound healing (Kang et al., 2008). In bladder urothelial cells 

cultured from patients with interstitial cystitis, EGF and HB-EGF modulates inward 

potassium currents through regulation of Kir2.1 (Sun et al., 2007). The activation of 
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EGFR by EGF is known to modulate the KCNA3 channel in HEK293 cells (Bowlby et 

al., 1997). 

1.5.3 Potassium channels in the lung 

Early work carried out using the Calu-3 cell line identified the expression of KCNN4 

and KCNQ1 which could be characterized by using potassium channel inhibitors 

clofilium and clotrimazole (Cowley & Linsdell, 2002). Blockers for potassium channels 

such as KCNN4 and KCNA3 are potential treatments for conditions such as asthma 

and that they are important in regulating levels of intracellular calcium and regulate 

chloride secretion (Bradding & Wulff, 2009). The submuscosal gland cell line Calu-3 

are known to regulate their volume in response to changes in osmolarity. Voltage 

gated potassium channels including KV4.1 and / or KV4.3 allow the cell to decrease 

cell volume following an initial cell swelling, and that calcium activated potassium 

channels KCa1.1 and KCNN4 are also involved in cell volume recovery (Harron et al., 

2009). Calu-3 cells are also known to express mRNA and protein for KCNQ1, 

KCNQ3, KCNQ4 and KCNQ5. These channels are responsible for chromanol 293B 

and XE991 sensitive basal anion currents (Moser et al., 2008). Apically localized two 

pore domain potassium channels are also thought to play an important role in 

transepithelial anion secretion in Calu-3 cells (Davis & Cowley, 2006). Blockers of two 

pore domain potassium channels inhibit both sodium absorption and anion secretion 

in polarized, normal human bronchial epithelial cells at lower concentrations when 

applied to the basolateral membrane compared to the apical membrane (Zhao et al., 

2011). Since EGF has previously been linked to regulating potassium channels in 

epithelial tissues, it is clear that a detailed look at the effects of EGF on ion transport 

in the lung could be a beneficial avenue for alternative ion channel therapy in cystic 

fibrosis. 

  



70 
 

1.6 Purpose of Study, Hypothesis and Aims 

While the role of EGF in the gut has been investigated in some depth, very little is 

currently known about the role of EGF in the lung with regards to ion transport. In 

particular, the role of EGF in regulating ion transport in Calu-3 cells has not been 

previously investigated. Although some work with Calu-3 cells has been conducted on 

potassium channels with regards to KCNN4 (Devor et al., 1999; Palmer et al., 2006) 

and KCNQ1 (Palmer et al., 2006), the expression of some potassium channels such 

as KCNA2 and KCNA3 in Calu-3 cells is still currently not known.  

 

Thus in order to address these gaps in the current knowledge, the purpose of this 

work was to discover the mechanism with which epidermal growth factor (EGF) can 

regulate ion transport in the airways. The experimental methodology in this study 

principally employed the use of the submucosal Calu-3 cell line as a model of chloride 

transport in the human lung. This new knowledge would allow for the discovery of 

potential therapeutic targets for which drugs could be developed in order to improve 

the lives of those living with diseases such as CF.  

 

We initially hypothesised that MMPs directly or indirectly interact with CFTR leading 

to decreased Cl- channel function observed in the literature (Duszyk et al., 1999). 

From studies previously carried out in the gut (McCole & Barrett, 2009), we further 

hypothesised that EGF had an effect on chloride transport in the airways. The effect 

was either facilitated via a direct signalling pathway or through a transactivation 

process involving sheddases as described previously (Liebmann, 2011).  
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Therefore to test these hypothesises, the principle aims of this study included: 

 Characterising the functional response of Calu-3 monolayers to forskolin and 

UTP stimulation and demonstrating the gene and protein expression of 

chloride channels and candidates; 

 Investigating gelatinase activity in the Calu-3 cell line in response to the 

stimulants phorbol-12-myristate-13-acetate (PMA) and EGF using gelatin 

zymography and investigating the link between MMPs and CFTR in the 

airways using short circuit current;  

 Investigating the link between the EGF signalling pathway and the regulation 

of potassium channels in the airway, with possible implications for chloride 

transport; 

 Investigating the link between the EGF signalling pathway on stimulated 

chloride transport; 

 Examining the gene expression of potential regulators of chloride transport 

including beta receptors and potassium channels in airway epithelial cell lines, 

particularly Calu-3. Subsequently, investigating if EGFR transactivaton occurs 

upon stimulating the β2 adrenergic receptor. 
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Chapter 2 Materials and Methods 

2.1 Cell culture 

The Calu-3 cell line was obtained from the American Type Culture Collection (ATCC, 

Rockville, MD). The A549 cell line was kindly donated by Darren Sexton (University of 

East Anglia), and the CFPAC cell line was kindly provided by John Winpenny 

(University of East Anglia). The initial vials of Calu-3 (ATCC, HTB-55, passage 19), 

A549 (ATCC, CCL-185) and CFPAC cells (ATCC, CRL-1918) were frozen in a dewar 

of liquid nitrogen until required. Calu-3 cells were used between passage 19 and 60 

for all investigations. 

2.1.1 Preparation of culture media 

The culture media for Calu-3 cells was based on previous studies (Winton et al., 

1998a; Liang et al., 2009). This media was Minimum Essential Medium (41090, 

Invitrogen), which contained Earle’s Salts, non essential amino acids, GlutaMAX™ 

and low glucose (1.0 g/L), supplemented with 10% fetal calf serum (Invitrogen) and 

1% penicillin/streptomycin (Invitrogen). For A549 cells, the culture media, based on 

previous studies (Pelletier et al., 2002), was RPMI 1640 (21875, Invitrogen), which 

contained L-glutamine, supplemented with 10% fetal calf serum (Invitrogen) and 1% 

penicillin/streptomycin (Invitrogen). For CFPAC cells, the culture media was Iscove’s 

Modified Dulbecco’s Medium (Sigma), supplemented with 20 mM L-glutamine 

(Invitrogen), 10% fetal calf serum (Invitrogen) and 1% penicillin/streptomycin 

(Invitrogen). The fetal calf serum and penicillin/streptomycin was aliquoted and then 

frozen until required. The complete culture media was aliquoted into 50 ml tubes and 

refrigerated until required. 

2.1.2 Initial seeding and maintenance 

The Calu-3 cells were thawed quickly in a 37 °C water bath until completely 

defrosted. An aliquot from the prepared culture media was placed in a water bath at 

37 °C for 30 minutes. Inside a sterile class II airflow hood, the Calu-3 cells were 

pipetted into a T25 tissue culture flask (NUNC) initially along with 4 ml of the warmed 

prepared culture media to give 5 ml in total. The culture flask was then transferred 

into a humidified incubator that was maintained at 37 °C and with 95% O2 and 5% 
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CO2. For cell viability and growth assays, cells were grown on 12 or 24 well plates 

(NUNC) as appropriate and the cell suspension obtained through incubation with 

0.25% trypsin/EDTA (Invitrogen). For Western blotting and gelatin zymography 

studies, cells were also grown on 24 well plates until confluent, washed with PBS and 

fed with serum free media. The conditioned media was collected over a period of 

days. The tissue culture media is replaced in a sterile airflow hood every two days. 

2.1.3 Trypsinization and splitting procedure 

After the Calu-3 cells became 80% confluent within the culture flask, the trypsinisation 

and splitting procedure was necessary. Firstly, Trypsin/EDTA (Invitrogen) was 

pipetted out into 5 and 10 ml aliquots and then frozen until required. An aliquot of 

culture media, PBS and an aliquot of trypsin/EDTA was put into a water bath at 37 °C 

for 30 minutes. A hood was prepared with a rack for the warmed media and 0.25% 

trypsin/EDTA, the warmed PBS, the tissue culture flask(s) of cells, additional flasks, a 

container of 1:10 trigene, 5 ml and 10 ml pipettes and a pipetting gun. The tissue 

culturing flask containing the cells was washed with 5 ml (T25) or 10 ml (T75) of PBS 

three times and the liquid was poured off into the container of 1:10 trigene. Then, 

2.5 ml (T25) or 5 ml (T75) of 0.25% trypsin/EDTA was added to the tissue culturing 

flask of Calu-3 cells, and the flask was then placed inside an incubator at 37 °C for 

approximately 10 minutes. The cells were gently agitated during this time to free them 

from the plastic. Then, the cell suspension was pipetted into a 15 ml centrifuge tube, 

spun at 800 rpm for two minutes, and was resuspended into 10 ml of culture media, 

before being pipetted into a fresh flask. The new flask was then placed into the 

incubator at 37 °C and at 95% O2 and 5% CO2. The split ratio commonly used for this 

process was 1:3. 

2.1.4  Freezing down procedure 

Following a splitting procedure, the remaining cells not allocated to reseeding a new 

culture flask following the split were centrifuged at 1000 rpm for 4 minutes. The 

supernatant that is formed was removed, leaving behind a pellet of cells. The cells 

were then resuspended by pipetting up and down about 20 times in freezing media, 

consisting of 95% culture media with 5% DMSO added to prevent crystal formation. 

The cell suspension was then pipetted into 5 cryovials with 1 ml in each, and then 
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stored into a container of 250 ml isopropanol at -80 °C to slowly freeze them. The 

cryovials were then frozen within a dewar of liquid nitrogen until required. 

2.2 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 

2.2.1 RNA extraction 

Cells were grown to confluence in a T25 flask (NUNC). A cell scraper was used to 

harvest cells and the resulting suspension was spun in a 15ml conical tube at 

800 rpm for 5 minutes. The supernatant was removed and the cells were 

resuspended in 1% PBS and were transferred into 1.5 ml Eppendorf tubes. The tubes 

were pulsed at 13,000 rpm and the supernatant was removed. 800 µl of Trizol 

reagent and 200 µl of chloroform was added to each tube in a fume hood. The tubes 

were briefly vortexed and spun at 4 °C at 13,000 rpm for 15 minutes. The supernatant 

was removed and pipetted into a fresh 1.5 ml Eppendorf with an equivalent volume of 

100% isopropanol. The tubes were incubated at room temperature for 10 minutes. 

The RNA was pelletted by centrifuging at 4 °C at 13,000 rpm for 15 minutes. The 

supernatant was removed and 1 ml of 70% ethanol made with nuclease free water 

was added, and then the tube is gently mixed. The tubes were centrifuged at 4 °C at 

13,000 rpm for 15 minutes and the supernatant was removed and discarded. The 

RNA pellet was air dried for approximately 10 minutes, and then was resuspended in 

approximately 20 µl of nuclease free water. The resulting RNA samples were then 

tested for purity and concentration by using a nanodrop spectrophotometer (Thermo 

Scientific). 1 µl of RNA was analysed to give the RNA purity, and the concentration in 

ng/µl. A260/280 values refer to contamination by proteins. Ideal values for this measure 

are around 2.0. A260/230 values indicate the degree of contamination by phenolate 

ions, thiocyanates, and other organic compounds, with around 2.0 being a pure RNA 

sample.  

Each RT-PCR figure shows gene expression from one RNA sample and from one 

passage of cells. Replicates used RNA samples harvested from cells at a different 

passage number. The RNA samples used for RT-PCR in Figure 3.7, Figure 3.8 and 

their replicates had A260/280 values of between 1.17 to 2.07, A260/230 values of between 

1.08 to 2.19 and concentrations between 502.3 and 5016.0 ng/µl. The RNA samples 

used in Figure 6.3, Figure 6.4 and their replicates had A260/280 values of between 1.67 
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to 1.90, A260/230 values of between 0.29 to 1.05 and concentrations between 112.0 

and 479.0 ng/µl. RNA samples used in Figure 5.5, Figure 7.10 and their replicates 

had A260/280 values of between 1.87 to 2.02, A260/230 values of between 1.03 to 1.89 

and concentrations between 416.2 and 3066.2 ng/µl. 

2.2.2 Preparation of samples for reverse transcription 

The samples were diluted 1:10. 0.5 ml Eppendorf tubes were labelled, and two 1.5 ml 

Eppendorfs were used to create a mastermix – one contained the RNA of interest, 

and the other without (for use as a negative control). The mastermix was created 

using a QIAGEN One Step PCR kit, which contained 5 x Buffer, deoxynucleotide 

triphosphates (dNTPs), Enzyme Mix and nuclease free water. 1.5µl of each primer 

(sense and anti-sense) was added to each tube accordingly. 

Table 2.1 – Concentration of PCR reaction mix components 

Component Volume (µl) Final Concentration 

RNAse-free water Variable - 

5x RT-PCR buffer 5 1X 

dNTP mix 1 400 µM per dNTP 

Primer A 1.5 0.6 µM 

Primer B 1.5 0.6 µM 

RT-PCR Enzyme mix 1 - 

Template RNA Variable 2 µg per reaction 

A summary of how the samples were prepared is described in Table 2.1. An Applied 

Biosystems 96-well thermal cycler was used to carry out the RT-PCR reactions. RT 

was performed at 50 °C for 30 mins and Taq polymerase activated 95 °C for 15 mins. 

The product was subject to 40 rounds of three step cycling, consisting of denaturation 

(94 °C for 1 min), annealing (52 °C for 1 min) and extension (72 °C for 1 min 30 s). 

The final elongation step was performed at 72 °C for 10 mins. The products were 

stored at 4 °C, until required. β-actin was used as a positive control and each sample 

had a corresponding negative control consisting of the PCR reaction without the 

addition of the template RNA, indicated as (-).  

This primer sequences used are listed in Table 2.2 and Table 2.3. The β-actin, 

bestrophin and anoctamin primers were a kind gift from Laura Marsey (University of 
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East Anglia). The primer sequences for the beta adrenergic receptors were taken 

from Bossard et al. (2011); KCNA2 and KCNA3 were taken from Mackenzie et al. 

(2003); CFTR and KCNN4 were taken from Cowley & Linsdell (2002) and KCNQ1 

was taken from Currid et al. (2004) 

 

(Currid et al., 2004) 

- 

(Mackenzie et al., 2003)  
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Table 2.2 – Chloride channel primer information and sequences. 
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Table 2.3 – Primer information – beta adrenergic receptors and potassium channels 
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2.2.3 Preparing the ethidium bromide gel 

The gel equipment was assembled and the electrophoresis chamber filled with 1 X 

Tris-Borate-EDTA (TBE), made with 17.02 g of TBE buffer (Sigma) in 1 l of distilled 

water. 40 g of agarose (Sigma) was added to 400 ml of TBE to produce a 1% gel 

solution, and was heated in a microwave for 3.5 minutes until boiling, with gentle 

mixing mid way through. The gel mix was cooled and 8 µl of ethidium bromide 

solution was then added. The solution was poured slowly into an enclosed frame, and 

the combs were inserted into the frame. The gel was left to set for approximately 15 

minutes. The samples were retrieved from the PCR machine and 5 µl of loading 

buffer was added to each. The samples were loaded with Hyperladder I (BIO-RAD) at 

each end with a space of one gap. The gel was then run at 150 V for 1 hour. 

2.2.4 Imaging the gels and densitometry 

After the gel had run, they were removed from the apparatus and the products 

visualized digitally using a Bio-Doc-It System (UVP). A digital image was saved onto 

floppy disk and transferred to a PC. The digital image was converted to bitmap and 

opened using ImageJ software. The bands were selected and the area, mean grey 

value and optical density values were recorded. The values for the tester samples 

were normalised to the β-actin control, and then the mean fold change in RNA 

expression was calculated using a spreadsheet in Microsoft Excel. The full process is 

described below: 

Mean Stimulated Sample Optical Density / β-actin optical density 

Mean Unstimulated Sample Optical Density / β-actin optical density 

The data were then graphed using Graphpad Prism 5.0 software. 

2.2.5 Band extraction and sequencing 

QIAquick Gel Extraction Kits were used to extract and purify DNA of 70 bp to 10 kb 

from standard or low-melt agarose gels in Tris-acetate-EDTA (TAE) or TBE buffer. 

2.2.6 Obtaining and solubilising the gel slice 

The DNA fragment was excised from the agarose gel with a clean, sharp razor blade, 

ensuring that the size of the gel slice was minimised by removing excess agarose. 

The gel slice was weighed in a 1.5 ml microcentrifuge tube. 3 volumes of Buffer QG 
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were added to 1 volume of gel (100 mg approximates to 100 μl). The maximum 

amount of gel slice per QIAquick column is 400 mg, so for gel slices greater than 

400 mg, more than one QIAquick column was used. The tubes containing the gel 

slides and buffer QG were incubated on a heat block at 50 °C for 10 minutes (or until 

the gel slice had completely dissolved). To help dissolve gel, the tube was mixed by 

vortexing every 2–3 minutes during the incubation, making sure that the agarose had 

solubilised completely. After the gel slice had dissolved completely, the colour of the 

mixture was checked to determine that it was yellow. If the colour of the mixture was 

orange or violet, 10 μl of 3 M sodium acetate, pH 5.0 was added, and mixed. The 

colour of the mixture should turn to yellow. The adsorption of DNA to the QIAquick 

membrane is efficient only at pH ≤7.5. The Buffer QG contains a pH indicator which is 

yellow at pH ≤7.5 and orange or violet at higher pH, indicating the optimal pH for DNA 

binding. 1 gel volume of isopropanol was added to the sample and mixed. For 

example, if the agarose gel slice was 10 mg, 100 μl isopropanol was added. This step 

increases the yield of DNA fragments less than 500 bp and greater than 4kb. For 

DNA fragments between 500 bp and 4 kb, addition of isopropanol has no effect on 

yield. 

2.2.7 Loading sample into spin columns 

Ethanol (96–100%) was added to the stock Buffer PE as directed. QIAquick spin 

columns (one for each slice) were placed in the 2 ml collection tubes. The samples 

were applied to the QIAquick column to bind DNA, and were centrifuged for 1 minute. 

The maximum volume of the column reservoir was 800 μl. For sample volumes of 

more than 800 μl, the remaining sample was loaded and spun again. The flow-

through was discarded, and the QIAquick column was placed back in the same 

collection tube.  0.5 ml of Buffer QG was added to each QIAquick column and 

centrifuged for 1 minute to remove all traces of agarose. To wash, 0.75 ml of Buffer 

PE was added to each QIAquick column before they were centrifuged for 1 minute. 

The flow-through was discarded and the QIAquick columns were centrifuged for an 

additional 1 minute at 17,900 x g (13,000 rpm). Finally, the QIAquick columns were 

placed into a clean 1.5 ml microcentrifuge tube. 
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2.2.8 Elution of DNA 

To elute DNA, 50 μl of Buffer EB (10 mM Tris-HCl, pH 8.5) or water (pH 7.0–8.5) was 

added to the centre of the QIAquick membranes and the columns were centrifuged 

for 1 minute. Alternatively, for increased DNA concentration, 30 μl elution buffer was 

added to the centre of the QIAquick membrane, the column left stand for 1 min, and 

then was centrifuged for 1 minute. Elution efficiency is dependent on pH. The 

maximum elution efficiency is achieved between pH 7.0 and 8.5, so the pH value was 

checked to be within this range, and the DNA stored at –20 °C as DNA may degrade 

in the absence of a buffering agent. The resulting extracted DNA was sequenced by 

the John Innes Genome Laboratory (Norwich Research Park, Norwich, UK). 
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2.3 Western Blotting 

2.3.1 Preparation of solutions 

The following solutions were prepared in order to carry out the Western blotting 

experiments: 

Table 2.4 – Solutions required for Western blotting. 

Solution Constituent Concentration 

10x SDS Running Buffer (1 litre) Tris 0.25 M 

Glycine 0.5 M 

SDS 3% 

10x Transfer Buffer (1 litre) Tris 480 mM 

Glycine 390 mM 

SDS 3% 

6x Protein loading dye (10 ml) Tris 6 mM 

Glycerol 20% 

Bromophenol blue 0.005% 

β-mercaptoethanol 5% 

10x Tris-buffered saline with Tween 

(TBST) (1 litre) 

Tris 0.25 M 

NaCl 1.5 M 

Tween 0.5% 

Coomassie Blue  

membrane stain (1 litre) 

Coomassie brilliant blue 0.25% 

MeOH 45% 

Acetic acid 10% 

H2O 45% 

2.3.2 Protein extraction and quantification 

2.3.2.1 RIPA buffer extraction 

The cells were grown until confluent in T75 tissue culturing flasks and then were 

trypsinised to obtain the cell suspension, which was then pelleted by centrifuge at 

1,000 rpm for 5 minutes. The supernatant was removed and PBS was added. The 

cells were resuspended, transferred into an Eppendorf tube and pelleted by 

centrifuge at 1,000 rpm for 5 minutes. 1 ml of cold RIPA buffer was added and the 

pellet was agitated on ice for 15 minutes. The cells were then centrifuged at the 

maximum speed at 4 °C for 15 minutes. The supernatant was removed and 
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transferred to a fresh Eppendorf tube, then labelled and frozen, and the pellet was 

discarded. The protein was quantified using a BCA Protein Assay Kit (Pierce). 

2.3.2.2 Hot SDS buffer extraction 

Cells were grown to 100% confluence in tissue culture flasks and then trypsinised to 

obtain the cell suspension, which was then pelleted by centrifuge at 1,000 rpm for 5 

minutes. The supernatant was removed and 150 µl of lysis buffer (1% SDS, 10 mM 

Tris-HCl pH 6.8, double-distilled water (ddH2O)) was added. Each sample was then 

boiled at 100 °C for 5 minutes and then sonicated for one minute in short 10 second 

bursts, whilst being kept on ice between bursts. Protein was quantified as before. 

2.3.2.3 NP-40 buffer extraction 

Cells were grown to 100% confluence in tissue culture flasks. Typically two T75 flasks 

were used per extraction. The flasks were rinsed with ice cold PBS two to three times. 

The cells were scraped to one edge of the T75 flask, and 1ml of NP-40 buffer was 

added. The cell suspension was transferred to 1.5 ml Eppendorf tubes and then spun 

for 5 minutes at 13,000 rpm. The supernatant was removed and discarded, leaving 

behind a pellet. The pellet was then frozen with liquid nitrogen and ground up using a 

mortar and pestle, and 80 µl of NP-40 was added. The resulting powder was 

transferred to a 0.5 ml Eppendorf tube and was kept on ice for five minutes. The 

tubes were spun for 10 minutes at 13,000 rpm at 4 °C. The supernatant was removed 

and retained for cytosolic proteins, and the pellet was processed further. The pellet 

was rinsed in ice cold 1% PBS. 20 µl of NP-40 was added to the pellet. The cells 

were homogenised, and then left on ice for 5 minutes, and then spun for 10 minutes 

at 13,000 rpm at 4 °C. The supernatant was removed and retained for membrane 

proteins while the pellet was discarded. Protein was quantified as before. 

2.3.3 Protein separation 

The samples were prepared one ice so that 30 μg of protein was allocated to each 

lane on the gel. An additional sample was prepared to compensate for any sample 

lost during boiling. The BIO-RAD assay spreadsheet provided a volume for each 

10 μg of sample, so this was multiplied by three to give a value for 30 μg. For protein 

samples loaded into more than one well, the value was multiplied by the amount of 

wells used. For every 30 μg of sample, 5 μl of protein loading dye was used. Before 
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the samples were loaded, they were boiled for three minutes and then allowed to 

cool. Then the samples were lightly spun to allow the protein to settle on the bottom 

of the tube. The gel apparatus was then set up as for gelatin zymography (see 

Section 2.5), and the samples were loaded along with a marker, making sure to label 

the gel so that the orientation could easily be determined. The gels were then run at 

80 mV until the samples have passed through the stacking (upper) gel and had 

entered the separation (lower) gel. The voltage was then increased to 100 mV, and 

was left for approximately 2.5 hours to run. After the samples had run, the running 

buffer was poured out and the gel apparatus was dismantled. 

2.3.4 Protein Transfer 

The PVDF membrane was soaked in methanol before use. From the 10x transfer 

buffer stock solution, the transfer buffer was made up with 100ml of buffer, 200ml 

methanol and 700ml distilled H2O. The papers, sponge and membrane were then 

soaked in the transfer buffer.  

2.3.4.1 Wet transfer technique 

For determining the expression of MMP-2 in Calu-3 cells, the gel cassette was set up 

in the following order: Black side of the cassette, sponge, paper, gel, membrane, 

paper, sponge. The gel was removed gently with a spatula. The cassette was then 

placed into the tank, with the black side of the cassette facing the black side of the 

holder, along with an ice pack and approximately 750 ml of transfer buffer. The blot 

was then run at 200 mA for 1 hour in a cold room. 

2.3.4.2 Semi-dry technique 

For subsequent investigations, the semi-dry technique was used in place of wet 

transfer. The PVDF membrane was cut to a size slightly larger than the gel and was 

then soaked in 100% methanol, then washed in TBST. Two sheets of filter paper 

(Whatman) were cut to a size slightly larger than the membrane and soaked in 

transfer buffer. One of the soaked sheets of filter paper was placed into a trans-blot 

SD assembly (BIO-RAD), which consisted of a flat anode bed with integrated 

electrode assembly. The membrane was then carefully placed on top of the filter 

paper, ensuring all the time that it was kept wet with transfer buffer. The gel was 

removed from the gel apparatus and placed on top of the membrane. The other sheet 
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of filter paper was placed on top of the gel to form a sandwich, with any potential air 

bubbles removed by using a roller. The cathode was placed onto the apparatus and a 

constant current of 200 mA applied for 45 minutes at room temperature. 

2.3.5 Antibody treatment 

The cassette was disassembled and the membrane was then blocked in a square 

dish protein side up in 5% Milk/TBST for 1 hour. The primary antibody was prepared 

in a square dish in 10 ml of 5% Milk/TBST with the membrane, which was incubated 

on a shaker in a cold room overnight. The antibody can be reused if frozen. Listed 

below in Table 2.5 are the antibodies used for Western blotting.  

Table 2.5 – Antibodies used for Western blotting. 

Antibody type Raised in Reactivity Concentrations used Company 

MMP rabbit anti-human 1:1000 Millipore 

CFTR mouse anti-human 1:500 R & D Systems 

β-actin rabbit anti-human 1:1000 Invitrogen 

BEST1 mouse anti-human 1:500 Novus Biologicals 

Specific target sequences for the antibodies are unknown, although the R & D 

Systems CFTR antibody targets the R domain. Secondary antibodies used included 

horse radish peroxidise (HRP) labelled goat anti-human from Millipore, and green 

(480 nm) and red (600 nm) fluorescently labelled goat Alexa Fluor with reactivities of 

anti-mouse and anti-rabbit, respectively, from Invitrogen. HRP antibodies were used 

at 1:1000 dilutions, and Alexa Fluors at 1:2000 dilution. The membrane was then 

washed in TBST and 1% PBS. The secondary antibody was prepared in a square 

dish in 10 ml of 5% Milk/TBST with the membrane, which was incubated at room 

temperature for 2 hours. The membrane was then washed 5 times for 10 minutes in 

TBST and once in 1% PBS. 

2.3.6 Signal detection 

If HRP conjugated secondary antibodies were used, an equal part of the developing 

solution (SuperSignal West Pico Kit, 5 ml total per membrane) was added and the 

membrane was left for 5 minutes. The membrane was slightly dried and then loaded 

into an X-ray cassette inside a plastic bag or document wallet protein side up, 

avoiding air bubbles. The membrane was secured using tape. The film was opened in 
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a dark room, and one corner of the film was cut off. The membrane was then placed 

in the cassette, which was then closed and then left to expose for approximately 1 

minute. The membrane was removed from the cassette making sure not to smear the 

membrane, and placed into the xograph. The membrane was not removed until it was 

lined up with the film and the marker had been added with permanent marker pen. In 

the case of use of Alexa Fluor secondary antibodies, membranes were  imaged using 

an Odyssey infrared imager, and the band densities were determined using the 

ImageJ software. 

2.4 Flow Cytometry 

2.4.1 Cell counting 

The hemacytometer and coverslip were first cleaned thoroughly with 70% ethanol, so 

that they were sterile and ready for use. Any excess ethanol was wiped off with blue 

roll. The coverslip was then placed in the centre of the haemacytometer. The cell 

suspension may be diluted several times (1:2, 1:10 and 1:100 dilutions) so that the 

concentration of cells was low enough to be suitable for counting. Of this cell 

suspension, approximately 9 µl was pipetted onto one of the two available counting 

chambers of the haemacytometer, ensuring that no bubbles were introduced and that 

the chamber was not overfilled. The cell suspension was left to settle for 10 seconds. 

The cells were counted in each of the labelled areas (A, B, C and D). Cells touching 

the top and left borders were counted, but cells touching the bottom and right borders 

were not counted. The total cell count in areas A, B, C and D was calculated. The 

total cell count needs to be between 100 and 400, otherwise a different dilution factor 

must be used to ensure accuracy of counting. To calculate the concentration of cells 

per ml, the following equation was used:  

Cells/ml = n x 10
4
 x d 

Where: n is the average number of cells in the squares of the hemacytometer. 

  d is the dilution factor used. 

Once the concentration of cells was known, the total amount of cells in a given 

volume of cell suspension can then be determined by multiplying the concentration by 

the volume of cell suspension. 
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2.4.2 Cell viability with propidium iodide 

To assess cell viability, a flow cytometry based approach using propidium iodide dye 

was used. 5 μl of propidium iodide was added to 195 μl of cell suspension. The 

sample was then run through a flow cytometer where the percentage of viable cells 

could be determined. Two controls were set up using initial cell suspension samples 

(as positive controls) and cell suspensions treated with Triton X-100 (negative 

controls). The resulting cell suspensions were run under the flow cytometer for 

analysis. 

2.4.3 Cell growth and serum starvation 

After the Calu-3 cells were trypsinised at approximately 60-80% confluence, within an 

airflow hood, culture media was added to make the volume up to 10 ml to inactivate 

the trypsin. The amount of cells per ml was known from counting the cells with the 

haemacytometer. The concentration of cells was used in order to determine the 

volume of cell suspension required to obtain a set number of cells. 5 mM of 

carboxyfluorescein diacetate succinimidyl ester (CFSE) stock solution was prepared 

by adding 18µl of DMSO to the 50 µg of lyophilized CFSE powder. The volume of cell 

suspension required to obtain 1 million cells per ml was determined by cell counting. 

The cell suspension was centrifuged at 800 rpm for 2 minutes, pelleted, and was then 

resuspended in the appropriate amount of 1% PBS to achieve a final concentration of 

1 million cells per ml. 2 µl of 5mM CFSE stock solution was required for every ml of 

cell suspension, giving a 10 mM final solution. After the dye was added, the cell 

suspension was incubated at 37 °C for 10 minutes. 5 volumes of ice-cold media were 

added to quench the staining, and the solution was further incubated for 5 minutes on 

ice. The cells were then centrifuged at 800 rpm for 2 minutes, and then pelleted, and 

resuspended in fresh media twice. In one of the 12-well plates, the volume required 

for the specific cell counts (10,000, 20,000, 30,000 and 50,000) were pipetted using 

P200/P1000 pipettes into a 12-well plate, along with 500 µl of media with 10% fetal 

calf serum. In the other 12-well plate, the volume required for 20,000 cells was added 

to media made up with specific amounts of fetal calf serum (0%, 1%, 2% and 10%) 

were pipetted using P200/P1000 pipettes into a 12-well plate. Each time, the cells 

were pipetted up and down to maintain a single cell suspension. The seeded 12-well 

plates were then labelled, covered and placed into an incubator at 37 °C with 5% 
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CO2. Once the cells on the 12-well plates were confluent, each well was trysinated, 

and propidium iodide was added (to determine cell viability). The cells are then 

analysed by a Flow Cytometer and the readings were recorded. 

2.5 Gelatin Zymography 

Conditioned media samples from A549 or Calu-3 cells were loaded into 7% 

polyacrylamide gels containing 2 mg/ml gelatin were subjected to electrophoresis 

under non-reducing conditions. Firstly, the gel apparatus was cleaned thoroughly with 

70% ethanol, particularly the glass plates. The gel apparatus was then set up, making 

sure to check for leaks using distilled water. Ammonium persulfate (APS) (Sigma) 

was dissolved in PBS, while the gelatin (Sigma) was warmed up and dissolved in 

distilled water. The APS and TEMED (BIO-RAD) were added last as these cause the 

gel to set. The running gel mixture was mixed well and then pipetted between glass 

plates to within 2 cm of the top. The mixture was levelled off with isopropanol and left 

to set for approximately 20 minutes. When the gel was set, the water was poured off 

and the gel dried as much as possible. The comb was placed between the plates and 

pushed down about half way. Again, the APS and TEMED was added last as these 

cause the gel to set. The mixture was immediately used to fill between the glass 

plates, and then the comb was gently pushed down, making sure to avoid the 

formation of bubbles. The gel was then left to set for approximately 5 minutes.  
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2.5.1 Preparation of solutions 

The following solutions must be prepared in order to carry out the gelatin zymography 

experiments and are shown in Table 2.6. 

Table 2.6 – Table of solutions required for gelatin zymography. 

Solution Constituent Final Concentration 

Lower gel buffer Tris (pH 6.8) 0.5 M 

SDS 0.4% 

Distilled water (dH2O) - 

Upper gel buffer Tris (pH 6.8) 0.5 M 

SDS 0.4% 

dH2O - 

7% lower/running gel mixture Acrylamide 40% 

dH2O - 

Gelatin 2 mg/ml 

Lower Gel Buffer - 

APS 10% 

TEMED 2% 

5% upper/stacking gel mixture Acrylamide 40% 

dH2O - 

Upper Gel Buffer 4x 

APS 10% 

TEMED 2% 

Tris Assay Buffer Tris 50 mM 

CaCl2 5 mM 

dH2O - 

Coomassie blue solution Coomassie Blue 0.2% 

Acetic Acid 7.5% 

Ethanol 50% 

dH2O 42.3% 

Non-reducing buffer Tris (pH 6.8) 1 M 

SDS 10% 

Bromophenol Blue 3% 

Glycerol 40% 
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2.5.2 Preparing samples 

20 µl of the sample was added to 5 µl 5x non-reducing buffer and kept on ice. The 

standard molecular weight marker used was Precision Plus Protein Standards All 

Blue (BIO-RAD). The gel was checked to make sure it had set and the comb was 

removed carefully to avoid the formation of bubbles. The gel was unclipped from 

apparatus and moved to the tank. The 10x Running Buffer was diluted to 1x with 

distilled water. 750 ml of this 1x running buffer was poured into the tank, in between 

and around the gel(s). The tank was not filled to the top until it had been moved to the 

power pack in order to prevent spillages.12 µl of samples and marker were loaded 

into each well using a syringe or microtips, making note if any wells were loaded with 

more or less sample. Two lane gaps were left between the marker and samples as 

the β-mercaptoethanol (Sigma) can leak across into other lanes, which might affect 

the stability of the protein in the samples. 

2.5.3 Running the samples 

The tank was connected to the power pack in a cold-room and was run for 

approximately 15 minutes at 30 mA for the two gels to stack and then a further hour 

at 40 mA for the two gels to run. The tank was checked for leaks and then the power 

pack was turned off when the coloured bands of the marker reach the bottom of the 

gel. The running buffer was poured off and the apparatus was taken apart. The gel 

was removed carefully and placed into 2.5% Triton (Sigma), where it was left to wash 

for 15 minutes. The 2.5% Triton was poured off and fresh 2.5% Triton was poured on 

to wash the gel again for 15 minutes. The 2.5% Triton was poured off and Tris Assay 

Buffer (TAB) was poured on and the gel was incubated overnight in a dry 37°C 

incubator, on a rocking table if possible. 

2.5.4 Staining the gel 

The following day, the TAB was poured off, and Coomassie Blue (Sigma) poured on, 

and the gel rocked for 15-20 minutes. The Coomassie Blue was poured off and then 

de-stain (30% MeOH, 1% acetic acid, Sigma) was poured on. The gels were then 

rocked until the upper gel was clear (which served as a good indication of how clear 

the gel get when there is no gelatin in the gel). The gel can be stored for weeks 

before imaging and analysing using an Odyssey Scanner in a Glycerol/Methanol mix. 
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Inhibition studies were conducted by adding 1 µM GM-6001 to the Triton-X100 and 

TAB buffer. 

2.6 Short Circuit Current 

2.6.1 Tissue culturing 

Cells were seeded at approximately 50,000 cells onto Costar® Transwell™ 

Permeable Supports of pore size 0.4 µm and 1.12 cm2 area (Fisher UK). 1ml of 

media was added to the basolateral side of the well, with 500 µl added to the apical 

side. Transepithelial resistance was measured using an epithelial voltohmmeter 

(EVOM) (World Precision Instruments) until a confluent monolayer was formed, with 

an approximate resistance of 800 Ωcm2 for Calu-3, and 200 Ωcm2 for A549 cells. The 

apical fluid was then removed forming an air-liquid interface, and the cells allowed to 

further differentiate for typically seven days before use.  

2.6.2 Preparation of Ussing chamber 

Shown in Figure 2.1 is a schematic of the Ussing chamber used. Both sides of the 

epithelium were bathed in 5ml of Krebs-Henseleit solution that was continuously 

circulated through the half chambers, maintained at 37oC and continuously bubbled 

with 95% O2 / 5% CO2. The composition of the Krebs-Henseleit bath solution used 

was similar to that used by Cuthbert (Cuthbert, 2001) and had the following 

composition (in mM): NaCl 118, KCl 4.7, CaCl2 2.5, MgCl2 1.2, NaHCO3 25, KH2PO4 

1.2 and glucose 11.1 (pH 7.4). The permeable supports were left for 30 mins to 

equilibrate before experiments were started. In some experiments that investigated 

the apical membrane in isolation, the basolateral side of the monolayer was 

permeabilised by the addition of nystatin (0.36 mg ml-1) for 15 minutes to the 

basolateral chamber (Anderson & Welsh, 1991). A chloride gradient from basal to 

apical was set up by replacing the Krebs-Henseleit solution in the apical chamber with 

Krebs-Gluconate of the following composition (in mM): NaCl 38, Na Gluconate 80.0, 

KCl 4.7, CaCl2 4.0, MgCl2 1.2, NaHCO3 25, KH2PO4 1.2 and glucose 11.1 (pH 7.4). 

The CaCl2 concentration was increased to allow for the chelating effect of the 

gluconate. 

 



92 
 

Table 2.7 – Summary of compounds used and their appropriate chambers. 

Compound Vehicle Stock 
Concentration 

(mM) 

Final 
Concentration 

(μM) 

Action Appropriate 
Chamber 

AG1478 DMSO 5 5 EGFR inhibitor Basolateral 
Amiloride DMSO 10 10 ENaC inhibitor Apical 

Barium Chloride ddH2O 5000 5000 General K+ channel inhibitor Basolateral 
Bumetanide Ethanol 100 100 Na-K-Cl cotransporter inhibitor Basolateral 
CFTRinh172 DMSO 10 10 CFTR inhibitor (intracellular) Basolateral 
CGP-12177 DMSO 1 0.1 – 10 Specific β3 adrenergic receptor agonist Basolateral, apical 

Charybotoxin ddH2O 0.1 0.1 Ca2+ activated K+ channel inhibitor Basolateral 
Chelerythrine chloride DMSO 10 10 General PKC inhibitor Basolateral 

Chromanol 293B DMSO 10 10 Specific KCNQ1 inhibitor Basolateral 
DIDS DMSO 200 200 General Cl- channel inhibitor Apical 

Forskolin Ethanol 10 10 Adenylate cyclase agonist Basolateral, apical 
GlyH-101 DMSO 50 50 CFTR inhibitor (extracellular) Apical 
GM-6001 DMSO 1 1 General MMP inhibitor Apical 

GM-6001 control DMSO 1 1 Control for GM-6001 Apical 
Iberiotoxin ddH2O 0.01 0.01 Specific KCNN4 inhibitor Basolateral 

ICI-118551 DMSO 10 10 β2 adrenergic receptor antagonist Basolateral 
L-748,377 DMSO 10 10 β3 adrenergic receptor antagonist Basolateral 

MDL-12330A DMSO 20 20 Adenylate cyclase inhibitor Basolateral 
Niflumic acid Ethanol 200 200 CaCC inhibitor Apical 

Rottlerin DMSO 5 5 Selective PKC inhibitor Basolateral 
Salbutamol DMSO 1 1 β2 adrenergic receptor agonist Basolateral, apical 

Staurosporine DMSO 0.1 0.1 PKC and PKA inhibitor Basolateral 
U0126 DMSO 25 10 ERK inhibitor Basolateral 

UTP ddH2O 100 100 CaCC agonist Apical 
Wortmannin DMSO 50 50 PI3K inhibitor Basolateral 
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Figure 2.1 – Ussing chamber schematic.  

Cells are grown on permeable supports. The Ussing chamber consists of two separate halves containing 

Krebs solution, with the support placed on an insert between the two. An oxygen/carbon dioxide mix is 

bubbled through in order to mix and aerate the Krebs solution. The potential measuring electrode 

measures the membrane potential and the current passing electrode pumps in current in order to reset 

this residual potential to zero. This current is referred to as the short circuit current (ISC).  

The inhibitors listed in Table 2.7 were left on side to thaw and are then centrifuged at 

13,000 rpm. The dummy sample was loaded into an Ussing chamber (Physiological 

Instruments, Figure 2.1) and the 3 M KCl/agar, Ag/AgCl2 cartridge electrodes 

(Physiologic Instruments) were inserted, with the potential measuring electrodes in 

the holes closest to the sample, and the current passing electrodes away from the 

sample. Each chamber was filled with 5 ml Krebs-Henseleit solution and the level was 

marked with pen.  

  



94 
 

2.6.3 Compensating for voltage and fluid resistance 

As shown in Figure 2.2, compensation for voltage and fluid resistance was required 

before using the Ussing chamber. The Ussing chamber apparatus was set up as 

described with an empty chamber slider. The dials were reset to the zero position. 

Then, the voltage offset is used to compensate for voltage differences between the 

measuring electrodes. This is performed by selecting voltage in both the meter and 

mode settings. If the voltage was negative, a positive offset was required and if 

positive, a negative offset was required. This was selected using the offset button. 

The dial was then turned until the reading read zero volts. 

Step 1 Step 2 Step 3 

   

Figure 2.2 – Schematic of how to set the voltage clamp. 

Next, the fluid resistance needed to be compensated for. This was performed by 

switching the meter to read current, and then the “push to adj” was pushed and held. 

The fluidic resistance compensation dial was then adjusted until the current read 

zero. Figure 2.3 depicts the Ussing chamber setup used. The permeable support was 

then loaded into a chamber slider and the Ussing chamber was re set up with the 

tissue loaded into a chamber slider. A VCC MC6-2 clamp (Physiological Instruments) 

is enabled when the REM button under mode is depressed, allowing the clamp to be 

controlled remotely by a computer. When enabled, the VCC MC6-4 clamps the 

resting transepithelial potential difference to zero. 
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Figure 2.3 – Block diagram of the apparatus used during an Ussing chamber investigation. 

As depicted in Figure 2.3, the VCC MC6-2 is the voltage clamp amplifier that has a 

pulse generator and can interface with a computer via an interface cable and the 25-

pin D-sub connector on rear panel of the amplifier. The VCC MC6-2 was directly 

controlled by a computer using the Acquire and Analyze 2.3 software once the REM 

button on the amplifier controls was depressed. The DM-MC6 single channel input 

module was connected to the back of the VCC MC6-4 via modular plugs. The DM-

MC6 was connected to the current passing and potential measuring electrodes that 

were mounted in the EM-CSYS-2 Ussing Chamber System. The voltage clamp 

amplifier then measured the potential difference across the epithelium generated by 

ion transport and injected current into the Ussing chamber through the current 

passing electrodes. This injected current was equal and opposite to the ionic current 

across the epithelium. Through the Acquire and Analyze 2.3 software user interface, 

the reference value was taken at the start of each experiment with a blank insert 

mounted in the Ussing chamber to calibrate the system. The short circuit current was 

then measured by the voltage clamp amplifier at a period of once per 10 seconds 

(0.1Hz), converted to digital using a DI-720 analog to digital converter (DataQ 

Instruments) with a sampling rate of 200kHz. This high sampling prevented aliasing 
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by exceeding the Nyquist rate. The resulting digital measurements were output to the 

computer via the Acquire and Analyze 2.3 software with no additional filtering. 

2.7 How the data were analysed 

A reading for the ISC (short circuit current), RTE (transepithelial resistance) and VTE 

(transepithelial voltage) was measured over a period of 60 seconds by calculating a 

mean value from 6 data points. Before each addition of a compound, a reading was 

taken. These data were exported directly to Microsoft Excel, where calculations to 

determine the effect of a compound could be carried out as follows. The data to follow 

have been represented using two different methods. Firstly, they are represented as 

bar graphs showing the delta change in ISC from the previous compound. For 

example, if amiloride was placed into the apical chamber first followed by another 

compound over a range of concentrations, then the first delta short circuit current 

change value (ΔISC) would be the ISC of amiloride minus the ISC of the baseline 

current, and the second set of values would be each ISC value of the compound at 

various concentrations minus the value for amiloride. If a new compound was 

introduced later, the delta ISC value would have the previous compound subtracted 

from it. The second set of graphs show a representative raw trace output that 

corresponds to the bar graph to the left. ISC is measured at fixed time intervals and 

plotted on a graph. The time at which a compound is introduced is indicated on the 

graph. Data, including those looking at the magnitude of responses to compounds 

and representative raw traces, are transferred from Excel to GraphPad Prism version 

5.0 for Windows package for data representation and statistical analysis. 

2.8 Experimental Design 

When conducting Ussing chamber studies, firstly, it was important to let the tissue 

equilibrate in the new Ussing chamber environment for at least 30 minutes, allowing 

the ion transport to stabilise. It was also necessary to block the epithelial sodium 

channels on the apical membrane with amiloride at the start of each experiment. This 

was to remove sodium ion transport, so only chloride ion transport was measured. 

Subsequently, the test compounds were added and their effects on chloride ion 

transport were measured. Then GlyH-101, a CFTR inhibitor, was typically used to see 

whether or not the short circuit current (ISC) increase was due to chloride transport 
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through CFTR. Finally, bumetanide was used at the end of each experiment to block 

the Na-K-2Cl cotransporter on the basolateral membrane to remove all ion transport 

across the membrane. Calu-3 cells were selected as they express CFTR highly, and 

A549 cells were selected as a control as they do not express CFTR (Bossard et al., 

2007). When conducting experiments where cells are preincubated with an inhibitor, it 

was in the bath solution for the complete duration of the experiment. 

2.9 Statistical Analysis 

Values and error bars were expressed as means ± standard error of the mean 

(S.E.M.) and n represented the number of experiments. Individual treatments were 

compared using a one-way ANOVA with Tukey’s post hoc test and significance was 

taken as P ≤ 0.05. The level of significance is indicated as: * P ≤ 0.05, ** P ≤ 0.01 and 

*** P ≤ 0.001. Analysis was performed using GraphPad Prism version 5.00 for 

Windows package. The one-way ANOVA with Tukey’s post hoc test has been 

successfully used previously in similar investigations (Ducroc et al., 2005; Savitski et 

al., 2009). 

The one-way ANOVA is a common method to compare multiple groups and is 

favoured over multiple individual t-tests. The test makes several assumptions such 

as: the samples being independent, variances of populations being equal and that the 

response viable must be approximately a normal distribution. As long as these 

assumptions are met, the test is reliable. Due to the nature of our data, these 

assumptions can be met. 

The Tukey’s post hoc test was used over potential alternatives such as Bonferroni’s 

and Newman-Keuls due to limitations in number of groups compared and lack of 

confidence intervals respectively. Tukey’s post-hoc test makes two assumptions 

about the data being analysed, which are that each data set is independent, and that 

there is equal variation across the observed observations. These assumptions held 

true with the data sets used in the multiple comparison tests. The formula for the 

Tukey test is as follows: 
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To determine statistical significance, the qs value is calculated by subtracting the 

larger of the two means (YA) from the smaller of two means (YB) and divided by the 

standard error of this dataset found during the ANOVA. The calculated qs values are 

compared to qcritical, which is obtained from a table of critical values, and is dependent 

of the total number of means in the test. If the qs value is larger than the value, the 

two means are said to have a statistically significant difference between them.  
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Chapter 3 Functional 

Characterisation and Gene 

Expression of Cl
-
 Channels in the 

Calu-3 cell line 

3.1 Introduction 

CFTR is a phosphorylation dependent chloride ion channel that is generally 

expressed on the apical surface of lung epithelia (Rosenfeld et al., 1992). While 

CFTR can either act in an absorptive or secretory role, this is greatly dependent on 

the particular tissue (Kunzelmann, 2001). In the lungs, CFTR is the main transporter 

of chloride ions and is generally secretory (Merigo et al., 2007). In the disease 

condition cystic fibrosis, mutations in this channel lead to less functional CFTR at the 

cell surface ultimately leading to a dehydration of the lungs and thickened mucus 

(Matsui et al., 1998). Since Calu-3 cells express high levels of CFTR, and respond 

well to agonists of cAMP and Ca2+ (Finkbeiner et al., 1993; Shen et al., 1994), they 

were selected for this study. It has been demonstrated that predominantly HCO3
- ions 

are secreted rather than purely chloride ions when Calu-3 cells are stimulated by a 

cAMP agonist such as forskolin, and this mechanism has been shown to be Na+ 

dependent and Cl- independent (Devor et al., 1999). More recently, it has been 

demonstrated that HCO3
- ions are recycled at the basolateral membrane during fluid 

secretion by Calu-3 cells (Shan et al., 2012). 

In order to validate that our Calu-3 model and experimental set up works, the Calu-3 

cells needed to be characterised first. The first principle aim was to determine what 

the transepithelial resistance was for the Calu-3 cells used in this project, in order to 

determine if the Calu-3 cells are growing and forming monolayers. This is important 

since only intact monolayers can produce meaningful results in our short circuit 

current experiments. The transepithelial resistance was also measured after the air-

liquid stage. Secondly, in order to confirm the expression of CFTR and calcium 

activated chloride channel candidates in the Calu-3 cell line, RT-PCR was employed. 

Of the calcium activated chloride channel candidates, the expression of BEST1-4 and 
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anoctamins 1-10 were investigated. In addition to gene expression, of interest is to 

determine whether BEST1 and CFTR proteins are expressed in the Calu-3 cell line. 

This was important since it would confirm gene expression of chloride channels and 

candidates to further provide evidence for the presence of these channels in our 

model cell line alongside the short circuit current investigations. 

3.2 Results 

3.2.1 Determining transepithelial resistance 

First, it was necessary to know when the cells were forming a confluent monolayer on 

the supports before removing the apical fluid to put them at an air-liquid interface. 

This was to simulate in vivo conditions of the lung epithelium as much as possible. 

The resistance over a period of days for the Calu-3 cell line was measured by an 

EVOM epithelial voltohmmeter and recorded. 5 of the 6 wells are seeded from each 

snapwell plate, with the last well designated a blank. The transepithelial resistance for 

a seeded well is calculated by subtracting the value for the blank well from the value 

of each seeded well, and then multiplying the value by the area of the well (in this 

case, 1.12 cm2). Figure 3.1 shows the data obtained for the measured transepithelial 

resistance across Calu-3 monolayers over a period of days. 
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Figure 3.1 – Calu-3 transepithelial resistance readings. 

These transepithelial readings were recorded over a period of days as determined using an EVOM - 

Epithelial Voltohmmeter for the Calu-3 cell line. Air liquid interface (ALI) was established once the RTE 

had become stabilised. This was generally at day 12 from seeding. 

The mean transepithelial resistance as measured from the permeable support plate 

before their use in the Ussing chamber was 983 ± 32 Ωcm2 (n=135). After 

approximately 7 days at air liquid interface, the recorded transepithelial resistance as 

measured in the Ussing chamber after 30 minutes of equilibration time was 

411 ± 18 Ωcm2 (n=98). The calculated VT averaged 4.6 ± 0.3 mV (n= 98). 

3.2.2 Calu-3 Vehicle Controls 

To test that the vehicles that the compounds are dissolved in are not affecting the 

short circuit current, equivalent volumes of three different vehicles were added to the 

appropriate chambers onto Calu-3 monolayers. 0.0001% BSA and 0.1% ethanol are 

added to the basolateral side to represent epidermal growth factor (EGF), forskolin 

and bumetanide additions. 0.1% DMSO represents amiloride and GlyH-101 additions. 

It was seen that vehicle controls produce negligible currents, with the most current 
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generated by 0.2% DMSO, which was 0.5 ± 0.4 µA cm-2 (n=4). Taken together, this 

suggests that the majority of the currents generated are due to the effect of the 

compound and not the vehicle. 
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Figure 3.2 – Vehicle control data for Calu-3 monolayers.  

Trace (A) and Bar graph (B) to show acute additions of vehicle controls for 0.0001% BSA, 0.1-0.2% 

DMSO and 0.1-0.2% Ethanol. Statistical analysis was performed using a one way ANOVA with Tukey's 

Multiple Comparison test, where P<0.05 was deemed statistically significant. 
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3.2.3 Forskolin characterisation in Calu-3 

It has been previously demonstrated that Calu-3 cells express CFTR (Haws et al., 

1994). The adenylate cyclase agonist, forskolin, was used to demonstrate that the 

Calu-3 cells were functioning normally. Figure 3.3 (A and B) shows an addition of 

10 μM amiloride is applied to the apical side to inhibit epithelial sodium channels 

(ENaC) that could affect chloride ion transport. Addition of 10 µM forskolin to the 

basolateral side increased the short circuit current to a peak value (ΔISC) of 

15.5 ± 2.1 µA cm-2 (n=5, p<0.001), which subsequently reduced to a plateau (ΔISC) of 

7.1 ± 0.4 µA cm-2 (n=5). In order to determine if the increase in ISC after forskolin 

addition was due to an increase in chloride transport through CFTR, the CFTR 

inhibitor GlyH-101 was employed. Total inhibition of the resting forskolin response is 

achieved on addition of 50 µM GlyH-101 to the apical side of Calu-3 cells causing a 

decrease in current (ΔISC) of 8.2 ± 1.5 µA cm-2 (n=5, p<0.01). 100µM bumetanide was 

added to the basolateral side, causing an additional decrease (ΔISC) of 7.3 ± 1.6 µA 

cm-2 (n=5) from the GlyH-101 inhibition. Bumetanide is a Na-K-2Cl cotransporter 

inhibitor that prevents chloride secretion by blocking the movement of Cl- into the cell 

across the basolateral membrane (Amsler & Kinne, 1986). 

In order to determine if the response to forskolin was either mostly due to chloride 

secretion, or whether there was an activation of basolateral potassium channels that 

could contribute increase driving force for chloride exit from the apical membrane, a 

subsequent experiment using calcium chelator, 1,2-bis(2-aminophenoxy)ethane-

N,N,N',N'-tetraacetic acid (BAPTA-AM), prior to forskolin stimulation was conducted. 

In Figure 3.3 (C and D), Calu-3 monolayers were preincubated with 10 µM BAPTA-

AM on the basolateral side for 30 minutes and then stimulated with 10 µM forskolin, 

also to the basolateral side. Addition of forskolin generated a peak value (ΔISC) of 

7.9 ± 1.5 µA cm-2 (n=5, p<0.05), which subsequently reduced to a plateau (ΔISC) of 

5.3 ± 0.7 µA cm-2 (n=5, p<0.05). In order to determine if the increase in ISC from 

forskolin was due to an increase in chloride transport through CFTR, complete 

inhibition of this response is again achieved on addition of 50 µM GlyH-101 on the 

apical side, leading to a decrease (ΔISC) of 6.0 ± 1.3 µA cm-2 (n=5, p<0.05). The 

remaining short circuit current was removed using 100 µM bumetanide to the 

basolateral side, causing a decrease of 11.8 ± 1.6 µA cm-2 (n=5). 
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Taken together, these results suggest that forskolin stimulation working through 

CFTR since total inhibition was achieved with GlyH-101. Forskolin stimulation also 

has a potassium channel dependent component that can be eliminated with 

preincubation with BAPTA-AM, as well as a chloride component that is similarly not 

eliminated. 
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Figure 3.3 – Characterisation of forskolin response across Calu-3 monolayers.  

Trace (A) and Bar graph (B) show the change in short circuit current across a Calu-3 epithelium in 

response to 10 µM forskolin. With Calu-3 epithelia, 10 µM forskolin increases ISC when added acutely to 

the basolateral side. The increase is inhibited by 50 µM GlyH-101, a CFTR inhibitor. Trace (C) and Bar 

graph (D) show characterisation of CFTR response with 10 µM BAPTA-AM and 10 µM forskolin for the 

Calu-3 cell line. Statistical analysis was performed using a one way ANOVA with Tukey's Multiple 

Comparison test, where P<0.05 was deemed statistically significant. 
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3.2.4 UTP Characterisation in Calu-3 

The P2Y agonist, uridine-5'-triphosphate (UTP), was used to characterise calcium 

activated chloride channels in the Calu-3 cell line as shown in Figure 3.4 (A and B). 

When stimulated with 100 µM UTP on the apical side, a sharp, transient peak 

occurred of 1.0 ± 0.4 µA cm-2 (n=6). Immediately after the transient peak, there was a 

very small, but measurable higher baseline of 0.5 ± 0.4 µA cm-2 (n=6). In order to 

provide additional evidence that the response to UTP was due to stimulation of 

calcium activated chloride channels, 200 µM niflumic acid was applied to the apical 

side to block CaCCs and restimulation with 100 µM UTP was attempted. The addition 

of niflumic acid decreased short circuit current sharply by 3.0 ± 1.5 µA cm-2 (n=6, 

p<0.05). No additional increases occurred after restimulation by 100 µM UTP after the 

addition of niflumic acid (0.1 ± 0.3 µA cm-2 (n=6)). A subsequent combination of 

50 µM GlyH-101 on the apical side and 100 µM bumetanide on the basolateral side 

brought about further decreases of 2.6 ± 0.9 µA cm-2 (n=6) and 0.5 ± 0.3 µA cm-2 

(n=6), respectively. 

Similarly, an experiment was conducted looking at UTP response in response to 

preincubation with calcium chelator BAPTA-AM shown in Figure 3.4 (C and D). Calu-

3 monolayers were treated with 10 µM BAPTA-AM on the apical side for 30 minutes 

and were then treated with 100 µM UTP on the apical side. It was seen that there was 

still a response to UTP in the form of a sharp peak in current at 1.1 ± 0.1 µA cm-2 

(n=6) with no measurable increase in the subsequent baseline current. The short 

circuit current was decreased by 7.8 ± 1.1 µA cm-2 (n=6) with treatment of 200 µM 

niflumic acid on the basolateral side. Attempts to stimulate CFTR with 10 µM forskolin 

on the basolateral side resulted in a relatively small peak of 4.7 ± 0.9 µA cm-2 (n=6). 

50 µM GlyH-101 was applied to the apical side to eliminate the induced CFTR current 

by forskolin, causing a decrease of 7.1 ± 1.0 µA cm-2 (n=6). The remaining short 

circuit current was effectively eliminated by addition of 100µM bumetanide on the 

basolateral side, further decreasing the ISC by 3.4 ± 0.5 µA cm-2 (n=6). 

Taken together, the standard response to UTP is small across Calu-3 monolayers, 

and is not eliminated by BAPTA-AM, suggesting that the UTP response is not 

activating calcium activated chloride channels, but more likely, either CFTR itself or 

basolateral calcium activated potassium channels (subsequently increasing chloride 
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driving force). Niflumic acid inhibits ISC below baseline levels and thus is blocking 

more than just CaCC response. 
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Figure 3.4 – Characterisation of UTP response across Calu-3 monolayers.  

Trace and Bar graph to show Calu-3 characterisation in response to 100 µM UTP (A and B) and 10 µM 

BAPTA-AM pretreatment with subsequent stimulation with 100 µM UTP (C and D). Statistical analysis 

was performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was 

deemed statistically significant. 
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To determine if the response to UTP was due to a conductance on the basolateral 

membrane, the basolateral membrane was permeabilised with 0.36 mg/ml nystatin 

and a basal to apical chloride current applied (Figure 3.5 A and B).  

If the basolateral membrane is permeabilised, the response to UTP is effectively 

eliminated, with the response to UTP with basolateral membrane permeabilisation is 

0.6 ± 0.3 µA cm-2 (n=3). Subsequent stimulation with forskolin is not effected in this 

way and continues to produce a large increase to 83.2 ± 13.1 µA cm-2 (n=3) which is 

completely inhibited by 50 µM GlyH-101. This result shows that the UTP response is 

likely to be linked to calcium activated potassium channels on the basolateral 

membrane. 
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Figure 3.5 – Characterisation of UTP response across permeabilised Calu-3 monolayers.  

Trace (A) and Bar graph (B) to show the characterisation of calcium activated chloride channels with 

100 µM UTP and basolateral membrane permeabilisation. Statistical analysis was performed using a one 

way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed statistically significant. 
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3.2.5 Endogenous levels of chloride channel gene and protein expression in 
three cell lines 

In order to determine which chloride channels (CFTR, BESTs, ANOs) were 

expressed in epithelial cell lines, RT-PCR was carried out on three cell lines – Calu-3, 

CFPAC and A549 for a minimum of three repeats, with positive bands cut out, 

extracted and sent for sequencing. The Calu-3 cell line was used since this is our 

chosen model for submucosal gland cells. A549 cells were selected for comparison 

since they are a widely used model of type II alveolar epithelial cells. CFPAC was 

used as a control comparison for the airway cell lines and known to express CaCCs 

(Marsey & Winpenny, 2009). 

3.2.5.1 CFTR is expressed in Calu-3 cells 

Calu-3 has been demonstrated to express CFTR in numerous studies (Brouillard et 

al., 2001; Baudouin-Legros et al., 2003) and our data are in agreement as shown in 

Figure 3.6. 

 

Figure 3.6 – Endogenous levels of CFTR message in the Calu-3 cell line.  

A positive band for CFTR was seen at the correct band size of 326 bp, and a further positive band was 

seen for β-actin at 456 bp. This result was repeated 5 times giving the same outcome. Number of repeats 

indicated in brackets. 

3.2.5.2 BEST genes are expressed in the Calu-3 cell line 

The results in Figure 3.7 show that gene expression of BEST1 and BEST3 was 

detected in all cell lines. BEST2 was detected only in A549 cells, while BEST4 was 

expressed only in CFPAC cells.  
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Figure 3.7 – Endogenous levels of bestrophin message in the Calu-3, CFPAC and A549 cell lines.  

CFPAC is used as a control comparison. RT-PCR consisted of 3 repeats. Ticks represent bands that 

have been confirmed by sequencing. Instances where bands appeared in the negative controls were not 

seen in repeats for that particular gene. Number of repeats indicated in brackets. 
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3.2.5.3 Anoctamin genes are expressed in epithelial cell lines 

As shown in Figure 3.8, ANO1 was expressed in Calu-3 and CFPAC cells, but not 

A549 cells. ANO2 and ANO3 were expressed solely in CFPAC cells. ANO4 and 

ANO5 were expressed in all three cell lines, while ANO6 was expressed in Calu-3 

and CFPAC cell lines only. ANO8 was expressed in all three cell lines, while ANO10 

was expressed only in Calu-3 and CFPAC cells. ANO7 and ANO9 were not 

expressed in any of the tested cell lines. Taken together, these results demonstrate 

that Calu-3 and CFPAC cell lines express a wide array of calcium activated chloride 

channel candidates, while A549 cells express a relatively limited range of anoctamin 

genes. 
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Figure 3.8 – Endogenous levels of expression of anoctamin message in Calu-3, CFPAC and A549 cells.  

CFPAC is used as a control comparison. Ticks represent bands that have been confirmed by sequencing. 

Crosses represent bands that are not the correct gene tested. Number of repeats indicated in brackets. 
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3.2.6 CFTR fragments detected in Calu-3 cells 

In order to detect the presence of CFTR protein in the Calu-3 cell line, different 

extraction methods were used in an attempt to increase the yield of CFTR protein as 

much as possible, which included using RIPA and Hot-SDS techniques. Fluorescent 

antibodies were used to differentiate between protein of interest and loading control 

β-actin. Calu-3 cells were grown to confluence in tissue culture flasks before 

extraction using the Hot-SDS extraction technique as described previously in the 

Materials and Methods. Gels were loaded with varying amounts of protein to 

determine the optimal amount required for antibody detection.  

 

Figure 3.9 – Characterisation of CFTR protein expression in the Calu-3 cell line. 

Total protein was extracted using the hot SDS method and 20 – 50µg loaded. Western blot shows bands 

at approximately 45 kDa that correspond to the CFTR R+NBD1 domains. Loading controls are for human 

β-actin. Representative of two blots. 

It is seen that strong bands were detected for CFTR at a molecular weight of 

approximately 40 kDa. There are also additional bands detected at a higher molecular 

weight at approximately 55 and 60 kDa when 40 µg and 50 µg of protein is loaded. 

Taken together, this suggests that this particular extraction technique may have led to 

the breakup of the CFTR protein creating smaller, detectable fragments. The large 

dark band corresponds to the size of the R domain plus NBD1 domain of CFTR at 
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~45 kDa (Chang et al., 2009), the R domain of which the primary antibody was raised 

against. 

3.2.6.1 BEST1 protein is expressed in the Calu-3 cell line 

In order to determine if bestrophin 1 (BEST1) protein was expressed in the Calu-3 cell 

line, tissue culture flasks were grown to confluence and extracted using the NP-40 

technique as described in the Materials and Methods. Each lane was loaded with 

20 µg of protein. The first lane was loaded with protein obtained from a lysate of CHO 

cells transfected with BEST1 as a positive control kindly provided by Kirsty Kirk 

(Winpenny Lab, University of East Anglia). A subsequent lane was loaded with a 

protein lysate of unstimulated Calu-3 cells. All the lanes were duplicated as an 

internal replicate, and the experiment was repeated successfully three times.  

 

Figure 3.10 – Characterisation of BEST1 protein expression in the Calu-3 cell line.  

Total protein was extracted using the NP-40 method. (A) Shows bands at approximately 68 kDa that 

positively correspond to BEST1 protein. (B) Shows loading controls for human β-actin. CHO cells are 

derived from Chinese hamster ovary, and thus show no reactively using antibodies raised against human 

β-actin. Representative of three blots. 

As shown in Figure 3.10, it was seen that BEST1 was well expressed in all samples 

corresponding to a dark band at 68 kDa (Milenkovic et al., 2009). Taken together, it 

shows that BEST1 is expressed in Calu-3 cells. 
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3.3 Discussion 

3.3.1 Forskolin responses are biphasic and sustained 

Resistance measurements for Calu-3 cells were broadly in line with values found in 

previous studies that include approximately 100 Ωcm2 (Shen et al., 1994), 

474 ± 44 Ωcm2 (Haghi et al., 2010). Stimulators of cyclic adenosine monophosphate 

(cAMP), which include forskolin, are known to activate the CFTR channel in Calu-3 

cells. The CFTR channel is the predominant cAMP-stimulated chloride conductance 

in Calu-3 cells (Haws et al., 1994). The increase in current due to the basolateral 

addition of forskolin on Calu-3 monolayers is known to be due to the activation of 

adenylate cyclase that increases intracellular cAMP, of which CFTR is dependent for 

activation (Shen et al., 1994; Kelley et al., 1997; Devor et al., 1999). By measuring 

isotopic fluxes of 36Cl−and 22Na+ across short-circuited Calu-3 cells, it has been shown 

that almost none of the basal ISC is Cl− secretion or Na+ absorption. In actuality, the 

major component of basal ISC in Calu-3 cells is HCO3
- secretion (Liedtke & Cole, 

1998). Forskolin has been previously shown to produce small currents in Calu-3 cells, 

which could be inhibited by addition of basolateral bumetanide, quinidine, barium, or 

diphenylamine-2-carboxylate (DPC). The forskolin induced currents are unaffected by 

high apical concentrations of 4,4′-diisothiocyanostilbene-2,2′-disulphonic acid (DIDS) 

(Moon et al., 1997). Application of GlyH-101 to the apical surface of the Calu-3 

membranes abolished increases due to forskolin. GlyH-101 is an inhibitor of CFTR 

and has been used previously to inhibit forskolin induced hyperpolarisation in mouse 

nasal epithelia (Muanprasat et al., 2004). Forskolin has also been reported to activate 

other ion channels besides CFTR in other cell types (such as pulmonary arterial 

smooth muscle) that include basolateral Ca2+ activated potassium channels (Barman 

et al., 2003). Since the activation of Ca2+ activated potassium channels can be 

induced by elevations in intracellular calcium in the Calu-3 cell line (Cowley & 

Linsdell, 2002), chelators of calcium would decrease their activity. Our results show 

that BAPTA-AM preincubation reduced the forskolin response, but does not eliminate 

it, suggesting that reduced activity of basolateral Ca2+ activated potassium channels 

would decrease driving force for chloride exit. 
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3.3.2 CFTR regulatory domain fragments detected in Calu-3 cells 

Three extraction methods were used on Calu-3 cells in order to try to obtain a full 

length CFTR protein of 170 kDa with varying degrees of success. The RIPA method 

and NP-40 extraction techniques were not very successful at providing enough 

protein to enable detection with the antibody used. The antibody used was Human 

CFTR R Domain MAb (Clone 13-1), Mouse IgG1 (R & D Systems). The most 

successful method employed for extraction of CFTR was using the Hot-SDS method, 

with CFTR fragments being detected. The large dark band corresponded to the size 

of the R domain plus NBD1 domain of CFTR at ~45 kDa (Chang et al., 2009), the R 

domain of which the primary antibody was raised against. While this technique 

yielded by far the most protein, it is likely that the technique was too harsh and split 

several R domain fragments from CFTR molecules rather than preserving the full 

length protein including transmembrane domains. Milder NP-40 extraction methods 

were employed, but were unsuccessful. The CFTR antibody used in this study has 

been previously used successfully with Calu-3 cells, although the Calu-3 specific data 

were not shown (Vastiau et al., 2005). CFTR protein has previously been 

demonstrated to be present in the Calu-3 cell line when it was initially characterised, 

and this is in agreement with the data in my study (Shen et al., 1994) 

3.3.3 UTP responses were transient and dependent on basolateral potassium 
channels 

The data obtained in this study shows that UTP can cause a small transient increase 

in current that is not statistically significantly higher than the baseline readings. The 

data obtained in this study strongly suggests that CFTR is the predominant chloride 

channel in Calu-3, and not CaCCs, which has been shown previously to be the case 

with existing studies in the airway (Shen et al., 1995; Fischer et al., 2010). CFTR is 

thought to be the principal chloride secretory pathway in non-CF airways for both 

cAMP and Ca2+ agonists (Namkung et al., 2010).  

Moreover, the series of experiments in this investigation sets itself apart from similar 

work carried out previously (Wang et al., 2008). The authors found that treatment on 

the apical side of Calu-3 cells with adenosine (10 μM) led to an increase in short 

circuit current of 21 μA cm-2. This was concluded to be as a result of activation of 

cAMP signalling, that activates CFTR on the apical membrane and Ca2+ signalling 
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that activates Ca2+ activated potassium channels on the basolateral membrane. They 

used inhibitors of Ca2+ (BAPTA-AM) and PLC (aminoethoxydiphenyl borate) to show 

statistically significant decreases in the adenosine induced increases in ΔISC 

compared to adenosine treatment alone. Clotrimazole was used to inhibit Ca2+ 

activated potassium channels to demonstrate their involvement in the process (Wang 

et al., 2008). 

The opening of Ca2+ activated potassium channels hyperpolarises the membrane 

potential which results in an increase in the electrochemical driving force for anion 

exit across the apical membrane (Devor et al., 1999). The reduction of ISC below 

baseline caused by niflumic acid is due to inhibition of CFTR, which is in line with 

previous studies. The chemical structure of niflumic acid resembles that of 

diphenylamine-2-carboxylate, which is known to block CFTR. In excised inside out 

patches of wild type human CFTR, niflumic acid led to a decrease in CFTR current 

(Scott-Ward et al., 2004). Permeabilisation in this study removes the influence of Ca2+ 

activated potassium channels, and thus an increase in driving force for apical chloride 

exit due to apical UTP cannot occur.  

3.3.4 Bestrophins are expressed in Calu-3, CFPAC and A549 

In overexpression studies, bestrophin 1 (BEST1) was found to function as a calcium 

activated chloride channel (Barro Soria et al., 2009). BEST1 is primarily located in the 

endoplasmic reticulum, and influences the uptake of calcium ions into calcium stores. 

It is thought that BEST1 conducts chloride ions as a counter ion to facilitate uptake of 

calcium ions into calcium stores in the cytosol (Neussert et al., 2010). From the short 

circuit current data in Calu-3 cells gathered and presented in this chapter, the 

responses from UTP were very small and not statistically significant (Figure 3.4). It 

may be the case that CaCCs are either not expressed or have very low levels of 

expression. So, to address this, our investigation demonstrates bestrophin expression 

in Calu-3 cells and others (Figure 3.7), which is important since these chloride 

channel candidates could potentially affect ion transport. Specifically, while my study 

demonstrates that BEST1 and BEST3 were expressed in Calu-3, it was previously 

found by Kunzelmann’s group that BEST4 is expressed rather than BEST3 (Barro 

Soria et al., 2009). These differences could be accounted for by different 

experimental protocols used for extraction and amplification, as well as differences in 
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the sequence of primers used. Total RNA isolation used by Kunzelmann’s group 

compared to Trizol® extraction method used in this investigation. Kunzelmann’s RT-

PCR protocol had fewer and shorter cycles; a higher annealing temperature is used 

(60°C compared to 52°C) and uses a shorter final elongation step (1 minute 

compared to 10 minutes). Prior work carried out by Marsey & Winpenny that looked at 

bestrophin expression in CFPAC cells found expression of all four bestrophins 

(Marsey & Winpenny, 2009), whereas my study confirmed that BEST1, BEST3 and 

BEST4 were expressed and BEST2 was also expressed in some repeats. The data 

regarding bestrophin expression in the A549 cell line is currently novel in the field at 

this time. Bestrophins have been demonstrated to be localised on the endoplasmic 

reticulum and control intracellular Ca2+ signalling rather than being a transmembrane 

ion channel like CFTR (Barro-Soria et al., 2010). This might explain why expression 

of bestrophins appeared strong yet the response to UTP was very small. 

3.3.5 Anoctamins are expressed in Calu-3, CFPAC and A549 

The transmembrane family of anoctamins are found in all eukaryotes, and there are 

10 members of the family in total (ANO1 – 10) in vertebrates (Schroeder et al., 2008; 

Pifferi et al., 2009; Stohr et al., 2009). The anoctamin family appears to have evolved 

from a series of gene duplication events (Milenkovic et al., 2010). Of these members, 

ANO1 and ANO2 can produce similar calcium activated chloride currents and so are 

thought to be a calcium activated chloride channels (Schroeder et al., 2008; Almaca 

et al., 2009; Pifferi et al., 2009; Stephan et al., 2009; Stohr et al., 2009). Furthermore, 

it has been shown that ANO6 and ANO7 are also able to produce a calcium activated 

chloride conductance (Schreiber et al., 2010). When co-expressed with ANO1, both 

ANO9 and ANO10 were found to suppress the baseline chloride conductance, which 

suggests that the proteins are able to inhibit the activity of other anoctamin family 

members (Schreiber et al., 2010). From the short circuit current data in Calu-3 cells 

gathered and presented in this chapter, the responses from UTP were very small and 

not statistically significant (Figure 3.4). It may be the case that CaCCs are either not 

expressed or have very low levels of expression. These responses may not 

necessarily be due to bestrophins, but rather anoctamins. To address this, our 

investigation demonstrates expression of an array of genes from the anoctamin family 

of calcium activated chloride channel candidates in Calu-3 cells and others (Figure 
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3.8), which is important since these chloride channel candidates could potentially 

affect ion transport. Epithelial anoctamin expression data compiled by Kunzelmann et 

al., 2009 is currently the most complete. Kunzelmann’s group detected the expression 

of ANO1 in CFPAC and A549, whereas our study showed expression of ANO1 in 

Calu-3 and CFPAC but not A549 cells. Kunzelmann’s group did not detect ANO2, 

ANO3 and ANO4 in any of our tested cell lines, whereas our study found expression 

of ANO2 and ANO3 in CFPAC cells, and ANO4 in all three cell lines. Kunzelmann’s 

group found ANO5 expression in Calu-3 and A549 cell lines and not in CFPAC cells, 

whereas our study found expression of ANO5 in all three cell lines. Kunzelmann’s 

group found strong expression of ANO6 in all three cell lines, whereas our group 

found strong expression of ANO6 in Calu-3 and CFPAC cells but not A549. ANO7 

expression was not found in any of the cell lines by either Kunzelmann’s group or our 

data. Kunzelmann’s ANO8 expression was found to be strong in A549 and Calu-3, 

and weaker in CFPAC, whereas our data found that expression of ANO8 was strong 

in all three cell lines. Kunzelmann’s group detected some ANO9 expression in all 

three cell lines, whereas our data showed expression in CFPAC only. Kunzelmann’s 

group did not find ANO10 expression in any of the cell lines, whereas our data found 

ANO10 expression in CFPAC and Calu-3. In general, there is agreement between our 

data and Kunzelmann’s group, but there are differences, particularly with the CFPAC 

line. These differences could potentially be accounted for by different experimental 

protocols used for extraction and amplification (not indicated by the paper), as well as 

potentially some differences in the sequence of primers used (although the primer 

sequences for all genes investigated are not indicated in the paper). Despite the fact 

that many anoctamins are expressed in Calu-3 cells, the response to UTP from 

functional data from this investigation was not statistically significant, which suggests 

that these channels are likely to not be expressed as a functional protein. Further 

work could look into testing whether anoctamin proteins are expressed in the Calu-3 

cell line (see Future Work, section 8.4). 
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Chapter 4 Induction of 

Metalloproteinases and their Effect 

on Short Circuit Current 

4.1 Introduction 

It has been demonstrated previously that broad spectrum MMP inhibitor 1,10-

phenanthroline had no significant effect on the short circuit current (ISC) with the A549 

cell line, while the ISC in Calu-3 cells was shown to be increased in a concentration 

dependent manner (Duszyk et al., 1999). Anti-MMP-2 had the same effect of 

increasing ISC. Recombinant MMP-2 reduced ISC. Since the whole cell current in A549 

cells (which do not express CFTR) was not similarly affected, MMP-2 somehow 

specifically affects CFTR chloride channels and reduces whole cell current by an 

unknown mechanism (Duszyk et al., 1999). This study remains the only study looking 

at the relationship between MMPs and the CFTR channel. If MMP-2 can negatively 

regulate the CFTR channel, use of MMP-2 inhibitors could be used to remove the 

negative regulation of MMP-2 on CFTR, and thus increase chloride transport. To 

explore the link between MMP-2 and CFTR could potentially lead to new therapeutic 

targets to treat cystic fibrosis. 

Since MMP-2 was thought to regulate the CFTR channel, it was necessary to first 

determine the presence of MMP-2 protein in Calu-3 cells and whether the protein is 

secreted or retained inside the cell. This would be important to demonstrate since if 

MMP-2 has a negative effect on CFTR activity, we need to demonstrate that the 

enzyme is in fact present and expressed. The A549 cell line was selected as a control 

since it does not express CFTR (Mohammad-Panah et al., 1998; Carreiras et al., 

1999; Bossard et al., 2007; Xu et al., 2010). Gelatin zymography was used to 

determine the presence of gelatinases in the conditioned media of unstimulated and 

stimulated cell samples through their catalytic breakdown of gelatin substrate within a 

protein gel. When stained with coomassie brilliant blue, the undegraded gelatin in the 

background will be stained blue, while areas of where gelatin has been degraded by 

gelatinases will remain clear and unstained. The molecular weight of the gelatinase 
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can be estimated with a molecular weight marker ran at the same time of the gel. Of 

particular interest are the MMP-2 and MMP-9 gelatinases, which have molecular 

weights of 66 and 93 kDa, respectively. A549 cells were used as a comparison since 

they can be induced to secrete both gelatinases (Lin et al., 2008). 

In order to find the optimal seeding density required to achieve confluence in a 12-

well plate within a reasonable timeframe for 12-well plates for A549 and Calu-3 cells, 

cell growth assays using the cell division tracking dye carboxyfluorescein diacetate 

succinimidyl ester (CFSE) (Hawkins et al., 2007) were performed first to provide a 

quantitative measure of cell growth. The conditioned media from these cells would 

later be used for the zymography. In order to perform gelatin zymography 

successfully, it requires the use of no foetal calf serum. This is because foetal calf 

serum can mask the digested bands in the resulting gel and produce unreliable 

results (Jung, 2008). Therefore it was necessary to determine if A549 and Calu-3 

cells were able to grow in no serum. Thus, in order to assess the growth rate of A549 

and Calu-3 cells under different concentrations of foetal calf serum, serum starvation 

assays were also performed.  

In order to stimulate gelatinase production in the cells, phorbol 12-myristate 13-

acetate (PMA), a gelatinase stimulator (Fini et al., 1995) that is known to be toxic to 

cells in high concentrations (Kuroda et al., 1987), was used. Therefore, to assess the 

viability of cells in no serum and PMA, a cell viability assay was performed. This was 

important since the cells producing gelatinases for use with zymography needed to be 

known to be healthy. The cell viability assay used the propidium iodide dye, which is a 

vital dye with the ability to intercalate DNA (Restrepo-Hartwig & Ahlquist, 1996) and 

fluoresce at the 562-588 nm wavelength (red) when excited by 488 nm laser light via 

flow cytometry (Schneider et al., 2001). Propidium iodide is membrane impermeant, 

so cannot traverse the cell membranes of healthy viable cells (Ha & Snyder, 1999).  

In order to determine if MMPs can affect chloride transport, recombinant MMP-2 was 

used since it was seen previously by Duszyk et al. (1999) that it could reduce the 

short circuit current. The non-selective MMP inhibitor, GM-6001, was used to see if 

blocking MMP-2 activity could increase ISC like another MMP inhibitor, 1,10-

phenanphroline, as used by Duszyk et al. (1999). The GM-6001 control compound, 
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which is an inactive form of GM-6001 (Ha & Snyder, 1999), was used as the control. 

This experiment was to clarify if the increases in current from 1,10-phenanphroline 

were due to the fact it was an MMP inhibitor, or rather an effect of the compound itself 

on another ion channel or signalling messenger. To complement the result of GM-

6001, Anti-MMP-2 antibodies were used to see if blocking MMP-2 increased the ISC, 

and mixed IgG antibodies were used as the control. EGF was used since it was 

known that EGF had an effect on potassium channel endocytosis, and that may affect 

the driving force for chloride ion transport (Koide et al., 2007). EGF is also a potent 

inducer of gelatinases (Lin et al., 2008). Any effects of EGF will be further tested 

experimentally using AG1478, barium chloride and basolateral membrane 

permeabilisation to determine how the response is regulated in terms of EGFR 

signalling and influence of potassium channels. As before, the A549 cell line was 

used as a comparison since it does not express CFTR. 

4.2 Results 

4.2.1 Determining Optimal Cell Growth using Carboxyfluorescein succinimidyl 
ester (CFSE) 

The cell growth assay was performed as described in the protocol with both Calu-3 

and A549 cells. The results obtained during the assay follow. The CFSE analysis 

works as a cell division tracker since the CFSE probe enters the cells and is 

distributed evenly between the two daughter cells as shown in Figure 4.1 (Gett & 

Hodgkin, 1998). You would therefore expect that the initial fluorescence to be high. If 

the cells are viable and are dividing, the fluorescence intensity should decrease and 

the peak fluorescence should shift. The CFSE probe can be detected by flow 

cytometry (Weston & Parish, 1990).  

 

Figure 4.1 – How the CFSE fluorescence intensity decreases with cell growth. 
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To obtain a quantitative result, the X-Mean values (mean fluorescence intensity), 

were recorded for each sample (which were performed in triplicate), and then 

averaged to give a final value. This value was compared to the other data sets using 

firstly a one-way ANOVA with a Tukey's Multiple Comparison Test to compare each 

sample to determine any significant difference. X-mean values differ across results 

due to non-uniform pulsing of the CFSE probe, but within the dataset, it is internally 

consistent so is analysed accordingly. 

A549 cells showed significant decreases in cell growth using high seeding densities 

compared to low ones (Figure 4.2, A and C). Without serum, A549 cells grew poorly 

compared to other samples at higher serum concentrations (Figure 4.3, A and C). 

Calu-3 cells showed decreases in cell growth, but often not significantly (Figure 4.2, B 

and D) and no significant difference in growth between different serum concentrations 

(Figure 4.3, B and D). Taken together, these results suggest that the Calu-3 cell line 

is best seeded at higher densities (50,000 cells in a 12 well plate) to hasten growth 

and that they have a high tolerance for growing in serum free media required for 

gelatin zymography. The A549 cell line however is best seeded at a lower density 

(20,000 cells in a 12 well plate). A549 cell growth rates are more affected by serum 

free media. However, from an experimental standpoint, the growth rate was still 

adequate for use with gelatin zymography.  
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Figure 4.2 – Calu-3 growth is unaffected by seeding density.  

Raw histogram output of flow cytometer for the A549 (A) and Calu-3 (B) cell line showing number of 

events against intensity for discrete seeding densities (10K, 20K, 30K and 50K). Assessment of cell 

growth by measuring CFSE fluorescence intensity using the A549 cell line (C) and the Calu-3 cell line 

(D). Greater fluorescent intensities indicate less growth, while smaller fluorescent intensities indicate 

stronger growth. Statistical analysis was performed using a one way ANOVA with Tukey's Multiple 

Comparison test, where P<0.05 was deemed statistically significant. 
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Figure 4.3 – Calu-3 cell growth is largely unaffected by low / no serum media.  

Raw histogram output of flow cytometer for the A549 (A) and Calu-3 (B) cell line showing number of 

events against intensity for discrete serum concentrations (0, 1, 2 and 10%). Assessment of cell growth 

under serum starvation by measuring CFSE fluorescence intensity using the A549 cell line (C) and the 

Calu-3 cell line (D). Greater fluorescent intensities indicate less growth, while smaller fluorescent 

intensities indicate stronger growth. Statistical analysis was performed using a one way ANOVA with 

Tukey's Multiple Comparison test, where P<0.05 was deemed statistically significant. 

  

Fluorescence Intensity

N
u

m
b

e
r o

f E
ve

n
ts

10%

2%

1%

0%

Day 0
Fluorescence Intensity

N
u

m
b

e
r o

f E
ve

n
ts

10%

2%

1%

0%

Day 0



126 
 

4.2.2 Calu-3 cells are viable with PMA incubation 

Propidium iodide (PI) is a DNA intercalating agent that can be used to access cell 

viability. PI cannot traverse the cell and nuclear membranes of viable cells, but can 

access the DNA of damaged cells. When PI is bound to nucleic acids, the 

fluorescence excitation maximum is 535 nm and the emission maximum is 617 nm 

(Figure 4.4). The region where the majority of the cell population lies is gated to 

discount debris, marked R1. The gates used are shown in Figure 4.5 and Figure 4.6 

(B, C and D). The percentage of PI positive cells that occupy this gate of the total 

population of cells within the gate indicates the level of cell viability in the cell 

suspension. The PI positive cells are identified using the M1 gate, giving the 

percentage of dead cells within R1. The percentage values are analysed statistically 

using firstly a one-way ANOVA with a Tukey's Multiple Comparison Test to compare 

each sample to determine any significant difference. The variables tested in these 

comparisons are viability in response to PMA, a stimulator of MMPs, and viability over 

a period of 72 hours without stimulation. 

 

Figure 4.4 – Representation of propidium iodide spectra. 

Figure 4.5 shows that varying concentrations of PMA does not significantly change 

the cell viability of A549 cells, nor does the viability of cells decrease after 24, 48 and 

72 hours. Figure 4.6 shows that varying concentrations of PMA does not significantly 

change the cell viability of Calu-3 cells, nor does the viability of cells decrease after 

24 and 72 hours.   
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Figure 4.5 – A549 cells are viable in the presence of PMA over a period of time.  

A) Percentage cell viability of A549 cells stimulated with PMA after 24, 48 and 72 hours. B) 

Representative flow cytometer output of Day 0 control. C) Representative flow cytometer output of triton 

treated negative control. D) Representative flow cytometer output of a tested sample. Statistical analysis 

was performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was 

deemed statistically significant. 
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Figure 4.6 – Calu-3 cells are viable in the presence of PMA over a period of time.  

A) Percentage cell viability of Calu-3 cells stimulated with PMA after 24 and 72 hours. B) Representative 

flow cytometer output of Day 0 control. C) Representative flow cytometer output of triton treated negative 

control. D) Representative flow cytometer output of a tested sample. Statistical analysis was performed 

using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed statistically 

significant. 
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4.2.3 Detecting gelatinase function with gelatin zymography 

The gelatinase activity of unstimulated Calu-3 and A549 cells was evaluated. Then, 

cells were treated with PMA or EGF, two known stimulators of gelatinases (Fini et al., 

1995; Tian et al., 2007). EGF has previously been shown to be involved in the 

regulation of ion channels (Koide et al., 2007), so its effect on MMP expression with 

Calu-3 and A549 cell lines was also investigated. 

4.2.3.1 PMA incubation for 24 and 48 hours induces gelatinase function 

Unstimulated, both the Calu-3 and A549 cell line produce barely detectable levels of 

gelatinases (Figure 4.7, A and B). PMA is confirmed to produce 66 kDa and 93 kDa 

gelatinases that correspond to MMP-2 and MMP-9 in A549 and Calu-3 cells (Figure 

4.7, A and B). For A549 samples, the ~93 kDa band is produced more than the 

~66 kDa band. There is also a stronger band at ~70 kDa. The strongest bands tend to 

occur at higher concentrations of PMA such as between 10-20 ng/ml (Figure 4.7, A).  

Calu-3 cells have a tendency to produce more of the ~66 kDa band, which are 

strongest at 48 hours with 5 ng/ml PMA the majority of the time (Figure 4.7, B). Taken 

together, this set of data demonstrates that gelatinases can be effectively upregulated 

by PMA in both the A549 and Calu-3 cell lines. The molecular weights of these 

gelatinases correspond to MMP-2 (66 kDa), proMMP-2 (72 kDa) and MMP-9 

(93 kDa).  
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Figure 4.7 – Gelatinase activity is induced by PMA in A549 and Calu-3 cells.  

Zymogram showing gelatinase activity in stimulated A549 (A) and Calu-3 (B) cell samples. The 

concentration of the PMA compound used is indicated in ng/ml. The cells were left in conditioned media 

for either 24 or 48 hours as indicated. This is a positive (raw) image of the zymography gel. 
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4.2.3.2 PMA and EGF incubation for 24 and 48 hours induces gelatinase function 

A549 cells stimulated with both PMA and EGF show at least three strong bands at 

~90 kDa and two at ~66 kDa with all tested compounds and concentrations at 24 

hours. After 48 hours, the activity of gelatinases stimulated with EGF appears to 

decrease slightly, whereas the cells that were stimulated with PMA showed stronger 

activity after 48 hours than at 24 hours (Figure 4.8, A and B).  

 

 

Figure 4.8 – Gelatinase activity is induced by PMA and EGF in A549 cells.  

Zymogram showing gelatinase activity in stimulated A549 cell samples after 24 (A) and 48 (B) hours. The 

concentration of compound (PMA or EGF) used is indicated in ng/ml. The cells were left in conditioned 

media for either 24 or 48 hours as indicated.  This is a negative image of the zymography gel using an 

Odyssey scanner. 
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Calu-3 cells stimulated with both PMA and EGF exhibit a very similar response to 

A549 cells. The zymogram shows at least two strong bands at ~90 kDa and one at 

~66 kDa with all tested compounds and concentrations at 24 hours. After 48 hours, 

the activity of gelatinases stimulated with EGF appears to decrease, whereas with 

PMA stimulation, the activity of the gelatinases at 24 and 48 hours appears to be the 

same or a slight decrease (Figure 4.9, A and B). 

 

 

Figure 4.9 – Gelatinase activity is induced by PMA and EGF in Calu-3 cells.  

Zymogram showing gelatinase activity in stimulated Calu-3 cell samples after 24 (A) and 48 (B) hours. 

The concentration of compound (PMA or EGF) used as indicated in ng/ml. The cells were left in 

conditioned media for either 24 or 48 hours as indicated. This is a negative image of the zymography gel 

using an Odyssey scanner. 
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4.2.3.3 PMA and EGF incubation with GM-6001 for 24 and 48 hours reduces 

gelatinase function 

An experiment was performed where conditioned media from A549 cells was 

collected at both 24 and 48 hours with one set of samples stimulated with varying 

concentrations of PMA and EGF (0 ng/ml – 20 ng/ml), while the other was incubated 

with 10 μM GM-6001 as well as stimulated with PMA / EGF. The A549 cell line was 

chosen for this experiment since this cell line produced higher gelatinase activity over 

the series of experiments. These samples were then subjected to gelatin 

zymography. The zymogram gel with 10 μM GM-6001 treated samples was treated 

with 10 μM GM-6001 in the overnight tris assay buffer (TAB) while the zymogram gel 

with the untreated set of samples were left untreated. The resulting zymogram gels 

were imaged as before and subjected to densitometry analysis to determine if 

gelatinase activity could be effectively knocked down by GM-6001. 

When treated with GM-6001 and then subsequently stimulating with PMA / EGF, it is 

seen that the activity of the gelatinases in A549 cells is reduced somewhat; 

particularly bands 1 and 2. When subjected to densitometry analysis, it was seen that 

when 5 ng/ml EGF was used, 10 μM GM-6001 knocked down the activity of bands 1 

and 2 by 50% and 45% respectively. Band 3 was only knocked down by 9% (Figure 

4.10 and graphically represented by Figure 4.11). Taken together, this result shows 

that 10 μM GM-6001 can effectively inhibit MMP-2, and can inhibit smaller molecular 

weight variants of MMP-9. Larger molecular weight variants of MMP-9 are less 

effectively inhibited. 
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Figure 4.10 – PMA and EGF induced increases in gelatinase activity are inhibited by GM-6001 in A549 
cells.  

Parallel zymograms showing (A) gelatinase activity in PMA/EGF stimulated A549 cell samples after 24 

and 48 hours. (B) gelatinase activity in the presence of GM-6001 in PMA/EGF stimulated A549 cell 

samples after 24 and 48 hours. The concentration of compound used (PMA or EGF) is indicated in ng/ml. 

The cells were left in conditioned media for either 24 or 48 hours as indicated. This is a negative image of 

the zymography gel using the Odyssey scanner.  
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Figure 4.11 – Gelatin Zymography of EGF-treated A549 cells inhibited by GM-6001 after 48 hours.  

EGF induced increases in gelatinase activity are inhibited by GM-6001 in A549 cells. A graph to show the 

knockdown in integrated intensity by GM-6001 during stimulation of A549 cells by 5 ng/ml EGF. 

4.2.4 MMP-2 is detected in Calu-3 conditioned media 

It is seen from a Western blot (Figure 4.12) that MMP-2 is mainly localised in the 

conditioned media rather than within the cell. It was also seen that Calu-3 cells 

produced far more MMP-2 than A549 cells. This result was not unexpected since 

MMP-2 is known to be a secreted metalloproteinase. 

 

Figure 4.12 – Western Blot depicting the presence of MMP-2 within two cell lines using the RIPA extraction 
method and conditioned media. 
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4.2.5 Acute addition of GM-6001 does not affect ISC across Calu-3 monolayers 

MMP-2 inhibitor GM6001 was applied apically to intact Calu-3 monolayers to assess 

if residual MMP activity is affecting ion transport (Figure 4.13, A and B). 1 µM GM-

6001 to the apical side resulted in a negligible increase of 0.5 ± 0.5 µA cm-2 (n=3) in 

short circuit current. Successive additions of GM-6001 that included 2 µM, 4 µM and 

8 µM resulted in increases of 1.3 ± 0.7 µA cm-2 (n=3), 2.1 ± 1.0 µA cm-2 (n=3) and 

2.8 ± 1.0 µA cm-2 (n=3), respectively, compared to pre-GM-6001 treatment values. 

Complete inhibition of the response was achieved by applying CFTR blocker 50 µM 

GlyH-101 to the apical side, resulting in a decrease of 10.7 ± 0.6 µA cm-2 

(n=3, p<0.001). Further inhibition of short circuit current was a result of basolateral 

treatment of 100µM bumetanide, resulting in a decrease of 2.1 ± 0.4 µA cm-2 

(n=3, p<0.001). 

A similar experiment with intact Calu-3 monolayers was conducted by substituting 

GM-6001 with the modified GM-6001 control compound, which is designed not to 

have an effect on MMP activity (Figure 4.13, C and D). Apical addition of 1 µM GM-

6001 control resulted in a decrease in ISC of 0.1 µA cm-2 (n=1). Successive additions 

of GM-6001 control to the apical side that included 2 µM, 4 µM and 8 µM resulted in 

increases of 0.2 µA cm-2 (n=1), 0.9 µA cm-2 (n=1) and 2.2 µA cm-2 (n=1) respectively 

compared to pre-GM-6001 treatment values. Complete inhibition of the response was 

achieved using 50 µM GlyH-101 to the apical side, resulting in a decrease of 11.5 µA 

cm-2 (n=1). Further inhibition of short circuit current was a result of basolateral 

treatment of 100 µM bumetanide, resulting in a decrease of 3.6 µA cm-2 (n=1).  

Taken together, the results suggest that GM-6001 appears to increase short circuit 

current in Calu-3 monolayers. The GM-6001 control compound result appears to 

exhibit noise. Since the GM-6001 control experimental result is based upon a single 

replicate, firm conclusions about the effect of GM-6001 on Calu-3 monolayers may 

not be drawn. 
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Figure 4.13 – GM-6001 acute response does not affect ISC across Calu-3 monolayers.  

Trace (A) and bar graph (B) to show the change in short circuit current across a Calu-3 epithelium in 

response to GM-6001 and compounds and their representative raw traces. There is a trend that GM-

6001 increases the ISC across the epithelium in a concentration dependent manner, and the increase is 

inhibited by 50 µM GlyH-101. Trace (C) and Bar graph (D) to show the change in short circuit current 

across a Calu-3 epithelium in response to GM-6001 Control. GM-6001 control does not increase the ISC 

as much, and is also highly oscillated and exhibiting noise. Statistical analysis was performed using a 

one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed statistically 

significant. 
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4.2.6 Negligible GM-6001 acute response in A549 monolayers 

Similarly, a dose response experiment with apical application of GM-6001 was 

conducted using the A549 cell line (Figure 4.14, A and B). Unlike the previous 

experiment using Calu-3 monolayers shown in Figure 4.13, the results that were 

obtained were much more variable as shown in the size of the error bars. Some 

repeats generated a negative ΔISC after the addition of GM-6001, indicating an 

increasingly absorptive monolayer rather than a secretory one as exhibited by Calu-3 

monolayers. Taken together, the result demonstrates that there was no evidence that 

the compound had a significant effect on ion transport in the A549 cell line. 
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Figure 4.14 – Negligible GM-6001 acute response in A549 monolayers.  

Trace (left) and bar graph (right) to show the change in short circuit current across an A549 epithelium in 

response to 1 – 8 µM GM-6001. It is also seen that GM-6001 has little effect on ISC. Statistical analysis 

was performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was 

deemed statistically significant. 
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4.2.7 Acute addition of recombinant MMP-2 does not decrease ISC across Calu-
3 monolayers 

To assess the effects of MMPs on short circuit current across intact Calu-3 

monolayers (Figure 4.15, A and B), 10 ng/ml recombinant MMP-2 was added to the 

apical side, leading to no significant change in short circuit current (0.5 ± 0.1 µA cm-2 

(n=3)). Further additions of recombinant MMP-2 to the apical side did not significantly 

change the current. The Calu-3 monolayer was then treated with 10 µM forskolin on 

the basolateral side, leading to a large increase in ISC to a peak of 33.4 ± 1.5 µA cm-2 

(n=3, p<0.001), followed by a baseline of 22.3 ± 3.6 µA cm-2 (n=3). Apical application 

of 50 µM GlyH-101 led to a reduction in current of 12.5 ± 1.4 µA cm-2 (n=3, p<0.001), 

which was not able to inhibit the response back to baseline, although it was 

statistically significant. Basolateral application of 100 µM bumetanide resulted in a 

further decrease of 11.2 ± 2.9 µA cm-2 (n=3), which did fully inhibit the remaining 

increase due to forskolin. Taken together, it suggests that recombinant MMP-2 does 

not decrease ion transport across Calu-3 monolayers, but enhances either stimulated 

CFTR response, or increases current via basolateral potassium channels. 
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Figure 4.15 – Recombinant MMP-2 acute response does not affect ISC across Calu-3 monolayers.  

Trace (A) and bar graph (B) to show the change in short circuit current across a Calu-3 epithelium in 

response to 10 – 30 ng/ml recombinant MMP-2. Addition of recombinant MMP-2 itself causes little 

activation of current, however, it is seen that inhibition of CFTR by 50 µM GlyH-101 is reduced since the 

current fails to return to or below the baseline current. Statistical analysis was performed using a one way 

ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed statistically significant. 
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4.2.8 Negligible recombinant MMP-2 response in A549 monolayers 

Similarly, a dose response experiment with recombinant MMP-2 was conducted using 

the A549 cell line (Figure 4.16, A and B). The addition of recombinant MMP-2 to the 

apical surface of A549 monolayers led to increases in ISC that were generally less 

than 1 µA cm-2. Subsequent stimulation with forskolin did not result in a large increase 

in ISC that was seen in the Calu-3 cell line, but generally a small decrease was seen. 

Taken together, the results demonstrated that there was no evidence that the 

recombinant enzyme had a significant effect on ion transport in the A549 cell line. 

Subsequent attempts to stimulate the A549 monolayer with forskolin resulted in no 

increase in ISC due to a lack of expression of CFTR. 
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Figure 4.16 – Negligible recombinant MMP-2 response in A549 monolayers.  

Trace (A) and bar graph (B) to show the change in short circuit current across an A549 epithelium in 

response to 10 – 30 ng/ml recombinant MMP-2. Recombinant MMP-2 has little effect on ISC. Statistical 

analysis was performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 

was deemed statistically significant. 
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4.2.9 Acute addition of anti-MMP-2 does not affect ISC across Calu-3 
monolayers 

To test whether antibodies raised against MMP-2 could inhibit MMP-2 activity and 

thus be able to affect short circuit current across intact Calu-3 monolayers, anti-MMP-

2 was applied apically at 1:1000 dilution (Figure 4.17, A and B). This resulted in an 

increase in ISC of 6.6 ± 0.9 µA cm-2 (n=3). This increase was completely inhibited by 

apical application of 50 µM GlyH-101, leading to a decrease in ISC of 11.0 ± 1.8 µA 

cm-2 (n=3, p<0.001). Further inhibition of the remaining ISC was achieved using 

100µM bumetanide on the basolateral side, leading to a decrease of 10.7 ± 1.4 µA 

cm-2 (n=3). 

In a similar experiment, mixed anti-IgG antibodies kindly provided by Dr Darren 

Sexton, University of East Anglia, were used as a control to test if antibodies in 

general can raise short circuit current (Figure 4.17, C and D). Apical application of 

IgG control antibodies were added apically at 1:1000 dilution. This resulted in an 

increase in ISC of 7.4 ± 0.6 µA cm-2 (n=3, p<0.05). This increase was completely 

inhibited by apical application of 50 µM GlyH-101, leading to a decrease in ISC of 14.1 

± 2.1 µA cm-2 (n=3, p<0.001). Further inhibition of the remaining ISC was achieved 

using 100 µM bumetanide on the basolateral side, leading to a decrease of 5.6 ± 

0.5 µA cm-2 (n=3, p<0.01). Taken together, these data suggest that both anti-MMP-2 

and anti-IgG antibodies raise ISC, likely due to an effect of the antibodies themselves 

rather than effect of blocking MMPs. 
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Figure 4.17 – Anti-MMP-2 acute response does not affect ISC across Calu-3 monolayers.  

Trace (A) and bar graph (B) to show the change in short circuit current across a Calu-3 epithelium in response to 

Anti-MMP-2 at 1:1000 dilution. Acute addition of Anti-MMP-2 leads to an increase in ISC, which can be inhibited by 

GlyH-101. Trace (C) and bar graph (D) to show the change in short circuit current across a Calu-3 epithelium in 

response to IgG control at 1:1000 dilution. Mixed IgG antibodies exhibited a nearly identical result as with anti-

MMP-2. Statistical analysis was performed using a one way ANOVA with Tukey's Multiple Comparison test, where 

P<0.05 was deemed statistically significant. 
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4.2.10 Negligible anti-MMP-2 and anti-IgG response in A549 

Similarly, an experiment with apical application of anti-MMP-2 at a 1:1000 dilution 

was conducted using the A549 cell line (Figure 4.18, A and B). Unlike the 

experiments shown in Figure 4.17, A549 monolayers did not exhibit any significant 

increases in ISC (less than 1 µA cm-2) when anti-MMP-2 antibodies were applied to the 

apical surface. 

Furthermore, when anti-IgG control antibodies were applied to the apical surface of 

A549 monolayers at a 1:1000 dilution (Figure 4.18, C and D), it was seen that there 

were no significant increases in ISC. Taken together, these results demonstrated that 

there was no evidence that the antibodies had a significant effect on ion transport in 

the A549 cell line. It may be possible that application of antibodies to Calu-3 

monolayers leads to an activation of CFTR, and that due to the lack of expression of 

CFTR in A549 monolayers, a similar effect is not seen. 
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Figure 4.18 – Negligible anti-MMP-2 response in A549.  

Trace (A) and bar graph (B) to show the change in short circuit current across an A549 epithelium in 

response to anti-MMP-2 at 1:1000 dilution. Anti-MMP-2 did not increase ISC significantly, compared to the 

Calu-3 cell line. Trace (C) and bar graph (D) to show the change in short circuit current across an A549 

epithelium in response to IgG control at 1:1000 dilution. Mixed IgG antibodies did not increase ISC 

significantly, compared to the Calu-3 cell line. Statistical analysis was performed using a one way 

ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed statistically significant. 
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4.2.11 Acute addition EGF increases ISC across Calu-3 monolayers 

Acute addition of 5 ng/ml EGF to the apical side of the monolayer resulted in a 

biphasic response (Figure 4.19, A and B). There was an initial transient increase 

(peak) in ISC of 2.7 ± 1.8 µA cm-2 (n=2), followed by a reduced but greater than 

baseline plateau phase (increase in ISC of 1.5 ± 0.8 µA cm-2, n=2). Increasing the EGF 

concentration to 50 ng/ml resulted in no further significant increase in ISC. Apically 

applied 50 µM GlyH-101 inhibited by 257% (n=2) the increase in ISC due to 5 ng/ml 

EGF.  

In a similar experiment, pre-incubation of Calu-3 cells with the EGF receptor inhibitor, 

AG1478, followed by stimulation with 5ng/ml EGF on the apical side (Figure 4.19, C 

and D) resulted in complete inhibition of the EGF stimulated ISC. Taken together, 

these data suggests that EGF may increase ISC via EGFR when added acutely. This 

observation led to more experimentation with longer term preincubations detailed in 

later chapters. 
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Figure 4.19 – EGF acute response increases ISC across Calu-3 monolayers.  

Trace (A) and bar graph (B) to show the change in short circuit current across a Calu-3 epithelium in 

response to 5 – 50 ng/ml EGF. EGF increases ISC at concentrations of 5 ng/ml, and further additions 

produce no additional peaks. Trace (C) and Bar graph (D) to show the change in short circuit current 

across a Calu-3 epithelium in response to 5 µM AG1478 (before EGF). With the addition of EGFR 

inhibitor before EGF, it is seen that the EGF peak is reduced. Statistical analysis was performed using a 

one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed statistically 

significant. 
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4.2.12 Negligible EGF response in A549 monolayers 

Similarly, an experiment with EGF was conducted using the A549 cell line (Figure 

4.20, A and B). Unlike what was seen with the Calu-3 cell line (shown in Figure 4.19), 

apical application of 5ng/ml EGF did not result in a significant change in ISC. 

Subsequent application of tyrosine kinase inhibitor, AG1478, also did not result in any 

change in ISC. Taken together, these results demonstrate that there was no evidence 

that the EGFR signalling pathway has a significant effect on ion transport in the A549 

cell line. 
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Figure 4.20 – Negligible EGF response in A549 monolayers.  

Trace (left) and bar graph (right) to show the change in short circuit current across an A549 epithelium in 

response to 5 ng/ml EGF. It is also seen that EGF has little effect on ISC. Statistical analysis was 

performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed 

statistically significant. 
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4.2.13 Blocking Potassium Channels and EGF acute addition in Calu-3 
monolayers 

General potassium channel blocker barium chloride is applied on the basolateral side 

of intact Calu-3 monolayers to test the effects on acute EGF induced stimulation of ISC 

(Figure 4.21, A and B). After addition of 5mM barium chloride, 5 ng/ml EGF is added 

to the apical side, resulting in an increase in ISC of 13.3 ± 2.1 µA cm-2, n=3, p<0.001). 

Sequential additions of EGF to the apical side did not provide further increases in ISC. 

When the basolateral membrane was permeablised using 0.36 mg/ml nystatin and a 

basolateral to apical chloride gradient applied (Figure 4.21, C and D), 5 ng/ml EGF 

added to the apical side increased the ISC by 11.0 ± 0.3 µA cm-2 (n=3, p<0.001). 

Sequential additions of EGF do not provide further increases in ISC as before. Taken 

together, this suggests that blocking potassium channels increases acute EGF 

response across Calu-3 monolayers, and that stimulation of CFTR by forskolin 

produced an additive effect that suggests that EGF may be activating a response 

independent of CFTR. This initial data was followed up by looking at long term EGF 

preincubation and the effect on ISC in relation to potassium channels in later chapters. 
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Figure 4.21 – Blocking potassium channels and EGF acute response in Calu-3 monolayers.  

Trace (A) and bar graph (B) to show the change in short circuit current across a Calu-3 epithelium in 

response to 5 mM barium chloride. The addition of barium chloride, a basolateral potassium channel 

blocker, does not affect the increase in ISC due to 5 ng/ml EGF. Trace (C) and bar graph (D) to show the 

change in short circuit current across a Calu-3 epithelium in response to basolateral membrane 

permeablisation then 5 ng/ml EGF. By permeablising the basolateral membrane with nystatin in order to 

eliminate all the basolateral channels from the equation, it is seen that despite this, EGF still increases 

ISC. Statistical analysis was performed using a one way ANOVA with Tukey's Multiple Comparison test, 

where P<0.05 was deemed statistically significant. 
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4.2.14 Blocking Potassium Channels and EGF acute addition in A549 
monolayers 

Similarly, experiments with EGF and barium chloride (Figure 4.22, A and B) and 

basolateral membrane permeabilisation with a chloride gradient applied (Figure 4.22, 

C and D) was conducted using the A549 cell line. In contrast to the enhanced effect 

of barium chloride on apical EGF treatment seen in intact Calu-3 monolayers (Figure 

4.21, A and B), it was seen that with barium chloride pretreatment that the effect of 

5 ng/ml EGF was still not significant. 

Furthermore, it was also seen that after basolateral membrane permeabilisation and 

application of a basolateral to apical chloride gradient applied, the effect of 5 ng/ml 

EGF was generally negligible at approximately 1 µA cm-2. This was in contrast to the 

effect of acute addition of 5 ng/ml EGF seen in Calu-3 monolayers (Figure 4.21, C 

and D) where a significant increase was seen. Taken together, the results 

demonstrate that there was no evidence that blocking potassium channels and 

stimulating with EGF had a significant effect on ion transport in the A549 cell line. 
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Figure 4.22 – Negligible EGF response in barium chloride treated A549 monolayers and permeabilised 
A549 monolayers.  

Trace (A) and bar graph (B) to show the change in short circuit current across an A549 epithelium in 

response to 5 mM barium chloride. 5 ng/ml EGF also has no significant effect on ISC after the addition of 

5 mM barium chloride. Trace (C) and Bar graph (D) to show the change in short circuit current across an 

A549 epithelium in response to basolateral membrane permeablisation then 5 ng/ml EGF. Basolateral 

membrane permeabilisation did not significantly affect the EGF response. Statistical analysis was 

performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed 

statistically significant. 
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4.2.15 A549 Vehicle Controls 

In order to determine that the vehicles used in the A549 experiments were not 

causing large changes in ISC (Figure 4.23), vehicles were added to their 

corresponding chambers where they were generally applied (apical for DMSO, 

basolateral for ethanol). It was seen that each vehicle led to a change in ISC that was 

less than 1 µA cm-2. Taken together, this result suggests that the vehicles used for 

A549 based experiments did not change the ISC significantly. 
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Figure 4.23 – Vehicle control data for A549 monolayers.  

Bar graph showing the change in short circuit current across an A549 epithelium in response to 0.1% 

DMSO and 0.1% ethanol. The concentrations of vehicles used during the experiments do not affect ISC. 
Statistical analysis was performed using a one way ANOVA with Tukey's Multiple Comparison test, where 

P<0.05 was deemed statistically significant. 
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4.2.16 Negligible Forskolin response in A549 monolayers 

As a comparison to the Calu-3 data shown earlier in Chapter 3 (Figure 3.3), 

experiments with forskolin were conducted using the A549 cell line (Figure 4.24, A 

and B). The results demonstrate that there was no evidence that basolateral 

application of 10 μM forskolin had a statistically significant effect on ion transport in 

the A549 cell line. This was in marked contrast to the effects of forskolin seen in the 

Calu-3 cell line, where an increase of 15.5 ± 2.1 µA cm-2 was seen (Figure 3.3). 

Taken together, this result indicates that negligible functional CFTR is expressed in 

the A549 cell line. 
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Figure 4.24 – Negligible forskolin response in A549 monolayers.  

Trace (A) and bar graph (B) and to show the change in short circuit current across an A549 epithelium in 

response to 10 µM forskolin. With A549 epithelia, it is seen that forskolin has little effect on ISC. Statistical 

analysis was performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 

was deemed statistically significant. 
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4.3 Discussion 

4.3.1 Calu-3 cells can grow at high seeding densities 

The use of CFSE based probes to study cell proliferation is widely and successfully 

used in immunological studies in the airway. Specifically, CFSE probe based 

methodologies have been previously used to track cell proliferation of airway smooth 

muscle cells (Sukkar et al., 2004), DO11.10 T cells (Stock et al., 2005; Wang et al., 

2006) and human lung mast cells (HLMC) (Hollins et al., 2008). In this study, it has 

been shown that there were greater shifts in mean fluorescence of the CFSE growth 

assays for the A549 cells than the Calu-3 cells is due to A549 cells growing at a much 

faster rate than Calu-3 cells. This finding is in agreement with a previous study that 

used both A549 and Calu-3 cell lines where split ratios of 1:5 to 1:3 were used 

respectively (Baba et al., 1987). From the growth assays, of interest is the statistically 

significant decrease in growth within A549 cells at a seeding density of 50,000, shown 

during both experiments, most likely due to the rapid growth and subsequent 

quiescence of the A549 cells due to contact inhibition before the end of the incubation 

period. This is likely to be the case since in a previous study, A549 cells have been 

grown to confluence purposefully to cause contact inhibition to better investigate 

events in the cell cycle (Ray et al., 1999). Calu-3 cells do not have the same issue; 

higher seeding densities do not inhibit normal growth and that a high seeding density 

has a similar growth rate as lower ones. It was also seen that the growth rate of the 

Calu-3 cell line was not affected by low serum conditions. In a previous study, Calu-3 

cells have been grown in serum free media to investigate their metabolic capacity 

(Foster et al., 2000). Calu-3s are best seeded at higher densities and can tolerate low 

or no serum well. The slow growth rate of Calu-3 cells can be compensated with 

higher seeding densities. In contrast, a 20,000 cell seeding density is the most 

optimal for growth for A549s within the 12-well plate format, as it provided the best 

growth rate in both experiments. Since A549s are a relatively fast growing cell line 

(Baba et al., 1987), the decrease in cell growth in low or no serum is not crucial, as 

plenty of growth is observed compared to the initial sample as seen in the 

representative histograms. 
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4.3.2 Calu-3 cells are viable in low serum 

Figure 4.5 shows that 72 hours in serum-free media has no statistically significant 

detrimental effect on A549 cell viability compared with the earlier time points, and that 

PMA does not have a detrimental effect on cell viability at the concentrations used. 

Figure 4.6 showing Calu-3 cell viability over 24 and 72 hours also shows no 

detrimental effect with either PMA or leaving in serum-free media. As a result, this 

validates the protocol for the gelatin zymography showing that the cells do survive in 

significant number. Propidium iodide has previously been used to access Calu-3 

viability upon challenge with Pseudomonas aeruginosa (Lee et al., 1999) and with 

house dust mite proteinases (Winton et al., 1998b) 

4.3.3 MMP-2 and 9 are functional in the conditioned media of Calu-3 

Gelatin zymography has previously been used to demonstrate the function of MMP-2 

and MMP-9 in melb-a cells, which is an immortal line of melanoblasts isolated from 

neonatal mouse epidermis (Lei et al., 2002). The gelatinases present putatively 

correspond to active MMP-2 (66 kDa), proMMP-2 (72 kDa) and MMP-9 (93 kDa). 

Calu-3 cells produce the maximal amount of MMPs at 48 hours with 5 ng/ml PMA and 

A549 cells produce the maximal amount of MMPs at 48 hours with 10-20 ng/ml PMA. 

The results obtained in this chapter are in agreement with earlier studies where 

gelatinase function have previously been demonstrated in the Calu-3 cell line with the 

zymography technique (Duszyk et al., 1999). It was seen in this study that Calu-3 

cells generally secrete more MMP-2, while A549 cells secrete more MMP-9 (Figure 

4.7). This is in agreement with a previous study using both cell lines and others where 

it was seen that high levels of MMP-2 function inversely correlated with MMP-9 

function (Roomi et al., 2009). 

Epidermal growth factor (EGF) as well as another EGFR substrate, TGF-α, has 

previously been used in zymographic analysis to stimulate the expression of MMPs in 

normal human bronchial epithelial cells (NHBEC) in order to see its effect on the 

activity of collagenases in breaking down casein (Lavigne et al., 2004). With our 

studies, EGF increases production of MMPs more strongly at 24 hours in both cell 

lines, and is seen to be a more potent stimulator than the synthetic stimulator PMA at 

the concentrations used in this study. 1,10-phenanthroline was used previously as an 
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MMP inhibitor by Duszyk et al., 1999 to study the effect of MMP inhibitors on the 

gating of the CFTR channel. In this study, GM-6001, a potent (Galardy et al., 1994), 

non-specific MMP inhibitor (Bendeck et al., 1996; Santiskulvong & Rozengurt, 2003; 

Mirastschijski et al., 2004) was used to further investigate this link. GM-6001 was 

chosen in this study over the previously used 1,10-phenanthroline since the former is 

more specific for MMPs, while the latter is a non-specific divalent metal ion chelating 

agent that can inhibit MMPs (Wallace et al., 1996). It was seen in this study that GM-

6001 is able to knockdown the expression of the gelatinases in Figure 4.10, which 

validates the use of the compound as an MMP inhibitor for use in the Ussing 

chamber. 

4.3.4 MMP-2 protein is present in Calu-3 and A549 cells 

The fact that MMP-2 was present in the conditioned media (as shown in Figure 4.12) 

would be expected as MMP-2 is a secreted enzyme (Lei et al., 2002). The presence 

of MMP-2 only in Calu-3 cells correlates with the zymography data which show that 

A549 cells produce much more MMP-9 rather than MMP-2 (Figure 4.7). The results 

from this chapter are in agreement with previous studies where MMP-2 had been 

identified from cell homogenates obtained from both the Calu-3 and A549 cell lines 

(Duszyk et al., 1999). 

4.3.5 Effect of MMP-2 and EGF on ISC 

The data obtained in this study regarding the effect of GM-6001 on Calu-3 

monolayers (Figure 4.13, A and B) suggests that GM-6001 is not having a significant 

effect on short circuit current. Similarly, the inactive GM-6001 control compound 

exhibited very similar results to the active inhibitor (Figure 4.13, C and D); further 

suggesting that GM-6001 was not affecting CFTR gating. The result suggests that the 

increase in short circuit current with 1,10-phenanthroline seen in Duszyk et al., 1999 

was more likely to be due to compound itself having a direct effect on the CFTR 

channel rather than due to it being an MMP inhibitor. 

Addition of recombinant MMP-2 to Calu-3 monolayers may have some effect on the 

apical surface of the epithelium (Figure 4.15). MMP-2 is widely known to be involved 

in the remodelling of the extracellular matrix (ECM) (Stamenkovic, 2003). This 

clearing of ECM deposition on the surface of the monolayer may be responsible for 
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causing forskolin to have an apparent enhanced effect and for GlyH-101 to have a 

consistently reduced effect. This explanation is however highly speculative without 

further investigation. Further, previous reports of increased forskolin responses 

following recombinant MMP-2 addition has not been previously demonstrated in the 

literature in any cell line. Since anti-IgG control antibodies produce a very similar 

effect on ISC as the anti-MMP-2 antibodies in the Calu-3 cell line (Figure 4.17), it 

suggests that the increase in ISC is not specific to anti-MMP-2. It is likely an effect of 

applying antibodies to the apical membrane in general. 

The fact that further acute stimulation with EGF on Calu-3 monolayers did not lead to 

a dose dependent response (Figure 4.19, A and B) may be due to oversaturation of 

the EGFR receptor at higher concentrations. The EGF response is likely working 

through EGFR as AG1478 inhibits the EGF peak (Figure 4.19, C and D). The results 

for acute addition of EGF to the apical membrane following barium chloride treatment 

and basolateral membrane permeabilisation (Figure 4.21) suggest that these 

increases in ISC are due to EGF working independently of potassium channels. It is 

known that EGF can lead to an increase in the expression of MMPs as seen in this 

chapter and in previous studies (Atkinson & Senior, 2003; Poitras et al., 2003; Lin et 

al., 2008). If the addition of EGF led to induction of MMP activity, which then in turn 

had an effect on CFTR, one would expect the effect to take a longer period of time 

since a transcription event would be necessary for this to occur. However, the 

responses seen in this investigation suggest that the effect occurs within seconds. 

HB-EGF involvement also seemed unlikely, as the elimination of basolateral 

potassium channels by barium chloride and basolateral membrane permeablisation 

did not remove the peak seen from acute EGF addition. In intestinal epithelia, it has 

been shown that transactivation of EGFR by Src can likely induce basolateral 

potassium and/or apical chloride secretion via protease activated receptor 2 (PAR-2) 

via both cAMP and calcium ion dependent mechanisms, so it may be possible that a 

similar mechanism is happening in the Calu-3 cell line (van der Merwe et al., 2008). 

It is possible that the anti-MMP-2, anti-IgG, and EGF bring about changes in short 

circuit current through CFTR. A549 cells are widely known not to express CFTR 

(Mohammad-Panah et al., 1998; Carreiras et al., 1999; Bossard et al., 2007; Xu et al., 

2010), so you would expect that the addition of these compounds to A549 
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monolayers used in this study would not increase the short circuit current if the 

compounds work via CFTR. This was shown consistently to be the case in our 

results. In general, Calu-3 epithelia produced more stable ISC recordings than A549 

epithelia.  With A549 epithelia, it is clear that the baseline current is highly variable, so 

that it is either a positive or negative current – indicating absorptive and secretive 

characteristics. This is supported by studies that have used the A549 cell line to 

model pulmonary absorption (Kobayashi et al., 1995). The transepithelial resistance 

is also low in A549 cells (data not shown), which has been shown to be the case in 

previous studies (Blank et al., 2007). 

In summary, the data obtained in this study did not agree with previous literature by 

Duszyk et al., 1999 that there was a link between MMPs and CFTR. However, it was 

seen in this part of the study that EGF on the other hand did exhibit properties of 

regulating secretion in the Calu-3 cell line that had not been previously investigated. 

Therefore the focus of the study shifted from looking at MMPs to looking at EGF in 

more detail, leading onto further investigations that explored the effects of EGF and 

the mechanisms behind these effects. 
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Chapter 5 Effects of EGF Treatment 

on Initial Short Circuit Current 

5.1 Introduction 

Previous data in this investigation suggested that EGF may increase ion transport 

independent of CFTR. The effect of EGF on ion transport has been previously studied 

in some depth using intestinal epithelial cells. Treatment of T84 cells with EGF led to 

activation of EGFR and hence, an inhibition of basolateral potassium channels via a 

signalling mechanism consisting of phosphatidylinositol 3-kinase (PI3K) and protein 

kinase C-ε (PKC-ε) (McCole & Barrett, 2009). Lower EGF/EGFR signalling led to a 

40–70% reduction in K+ currents and KvLQT1, ATP-sensitive potassium (KATP), and 

Ca2+-activated K+ (KCNN4) channel expression in CuFi cells (Trinh et al., 2008) and 

that coupling between EGFR signalling and potassium channels is important for 

alveolar repair (Trinh et al., 2007). While the effects of EGF on ion transport in cells 

within the gut has been previously demonstrated (McCole & Barrett, 2009), no similar 

study to date has been performed using Calu-3 cells. If EGF treatment can be 

demonstrated to cause an increase in ion transport within lung tissue, then this could 

allow for potential therapeutics for cystic fibrosis.  

In order to address this current gap in knowledge, the aim of this investigation was to 

see how EGF affects the initial current as measured by the Ussing chamber at the 

start of the experiment. Untreated cells were compared to cells that were treated with 

10 ng/ml EGF on the basolateral side over a time scale of 1, 2, 3 and 24 hours. These 

time points were selected since they were manageable in our experimental setup and 

gave an indication of both short term and longer term changes. The maximal value for 

initial starting current seen in this investigation is used in experiments utilising further 

manipulations later on. 

Once an effect of EGF on ion transport has been demonstrated, discovering the 

downstream mechanisms of this effect would increase current understanding of the 

underlying biology of the process. This could in turn lead to the development of new 

avenues to augment the treatment of cystic fibrosis still further. Thus, in order to 

determine the mechanism behind the increases in initial starting current, experiments 
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were designed so that the Calu-3 monolayers were treated with inhibitors of a number 

of pathways before an hour of EGF treatment (previously determined to be the 

maximal response). The pathways of interest initially were PI3K, PKC and potassium 

channels, based on work with EGF conducted previously with gut cells (McCole & 

Barrett, 2009). With this investigation, we intended to also identify which type of 

potassium channel was involved. The expression of selected potassium channels in 

the Calu-3 cell line were also of interest due to their potential to influence chloride 

transport via increases in chloride driving force. The KCNN4, KCNA2, KCNA3 and 

KCNQ1 channels were selected since they are inhibited using charybdotoxin, 

iberiotoxin and chromanol 293B, which are later used in the functional analysis. 

5.2 Results 

5.2.1 Addition of Epidermal Growth Factor (EGF) to the Calu-3 monolayers 
leads to an increase in initial ISC 

Initially, a time course experiment was performed. Interestingly, as shown in Figure 

5.1 (A), a 1 hour pretreatment of the Calu-3 monolayers with 10 ng/ml EGF added to 

the basolateral side of intact monolayers resulted in a starting ISC of 24.8 ± 3.0 µA cm-

2 (n=10) compared to 12.1 ± 0.7 µA cm-2 (n=98) observed in untreated controls. After 

a 24 hour pretreatment of the Calu-3 cells with 10 ng/ml EGF on the basolateral side 

of intact monolayers, the initial starting current had reduced back down to 

approximately pretreatment levels (12.6 ± 1.2 µA cm-2 (n=8)).  

The increase in ISC on EGF treatment could be due to an effect on the basolateral 

membrane or the apical membrane. In order to try to identify which membrane was 

responsible for this increase in ISC, a series of experiments were carried out that 

treated the basolateral side of Calu-3 monolayers with 10 ng/ml EGF for one hour, 

followed by basolateral membrane permeabilisation, using 0.36 mg/ml nystatin, in the 

Ussing chamber. A chloride gradient was applied across the membrane from basal to 

apical. As shown in Figure 5.1 (B), following this treatment the initial ISC of Calu-3 

cells did not significantly change after EGF preincubation for one hour (n=3), 

suggesting that EGF was acting predominantly on ion channels or ion transporters on 

the basolateral membrane. 
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Figure 5.1 – EGF preincubation for 1 hour significantly increases initial ISC in intact, but not permeabilised, 
Calu-3 monolayers.  

Summary bar graphs showing (A) the initial ISC across an intact Calu-3 epithelium in response to 10ng/ml 

EGF pretreatment over time, and (B) showing the initial ISC across a Calu-3 epithelium in response to 

basolateral membrane permeablisation upon 10ng/ml EGF preincubation. Statistical analysis was 

performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed 

statistically significant. 
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5.2.2 The EGF stimulated increase in initial ISC is prevented by inhibition of the 
EGF receptor (EGFR) 

EGF brings about its physiological actions through its receptor the EGF receptor 

(EGFR). In order to determine whether the EGF-stimulated increase in the initial ISC 

that occurred after 1 hour preincubation in Calu-3 monolayers was due to EGF 

working through the EGFR, the inhibitor AG1478 was used (Levitzki & Gazit, 1995). 

The intact Calu-3 monolayers were pretreated with the 5 µM AG1478 on the 

basolateral side for 10 minutes, followed by addition of 10 ng/ml EGF to the 

basolateral side of the monolayers for 1 hour. The AG1478 inhibitor was present in 

the solution throughout the duration of the experiment. As shown in Figure 5.2, the 

initial ISC was reduced to 5.2 ± 1.3 µA cm-2 (n=5, P<0.001), significantly lower than the 

intact monolayers treated with 10ng/ml EGF on the basolateral side alone (24.8 ± 

3.0 µA cm-2, n=10). Thus EGF would seem to be working through the EGFR to 

increase ion transport across intact Calu-3 monolayers. 

0 20 40 60 80 100
0

10

20

30

40

EGF Only AG1478

Time (seconds)

I S
C
 (


A
/c

m
2
)

0

10

20

30
***

***

 

EGF - + + 

AG1478  - - + 

n 98 10 5 

I S
C
 (


A
/c

m
2
)

A B

 

Figure 5.2 – EGFR inhibitor AG1478 reduces EGF induced increases in starting current.  

Combined traces for the first 100 seconds (A) and a bar graph (B) showing the starting ISC across a Calu-

3 epithelium following basolateral treatment with 5µM AG1478 the EGFR inhibitor, followed subsequently 

by 10ng/ml EGF stimulation for 1 hour. Statistical analysis was performed using a one way ANOVA with 

Tukey's Multiple Comparison test, where P<0.05 was deemed statistically significant. 
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5.2.3 Protein kinase inhibitors prevent EGF-stimulated increases in initial ISC 

EGFR activation can result in the activation of a number of signalling pathways (Oda 

et al., 2005), including phosphoinositol-3-kinase (PI3K) and mitogen-activated protein 

kinase (MAPK) related pathways. In order to determine if protein kinases were 

involved in the EGF induced increases in ion transport, intact Calu-3 monolayers 

were pretreated on the basolateral membrane as shown in Figure 5.3. Pretreatment 

with the PI3K inhibitor, wortmannin (50 µM) for 10 minutes followed by 10 ng/ml EGF 

on the basolateral side for 1 hour, resulted in an initial starting ISC of 5.7 ± 1.5 µA cm-2 

(n=4) which was significantly lower than the EGF-stimulated initial ISC (24.8 ± 3.0 µA 

cm-2, n=8, P<0.001). To further investigate the signalling pathways involved in this 

EGF-stimulated increase in the initial ISC, other protein kinase inhibitors were used 

that targeted kinases known to be downstream to PI3K. Staurosporine is a non-

specific protein kinase inhibitor that can inhibit both PKC and PKA. Pretreatment with 

staurosporine (0.1 µM) for 10 minutes on the basolateral side of intact Calu-3 

monolayers followed by 10 ng/ml EGF on the basolateral side for 1 hour reduced the 

EGF-stimulated initial ISC to 5.3 ± 0.8 µA cm-2 (n=4) significantly lower than the EGF-

stimulated initial ISC (24.8 ± 3.0 µA cm-2, n=8, P<0.001). These data suggest that PKC 

and / or PKA were involved in EGF induced increases in ion transport. To further 

investigate the effect of inhibiting protein kinases, the PKC specific inhibitor 

chelerythrine chloride was used. Pretreatment with 10 µM chelerythrine chloride for 

10 minutes on the basolateral side of intact Calu-3 monolayers followed by 10 ng/ml 

EGF treatment for 1 hour reduced the EGF-stimulated initial ISC to 4.3 ± 0.9 µA cm-2 

(n=4) significantly lower than the EGF-stimulated initial ISC (24.8 ± 3.0 µA cm-2, n=8, 

P<0.001). These data suggest that PKC was involved in the pathway. In order to try 

to identify the specific isoform of PKC that was involved in the signalling pathway, 

rottlerin was used. Pretreatment of intact Calu-3 monolayers with rottlerin (5 µM), a 

PKC isoform specific inhibitor, on the basolateral side for 10 minutes followed by 

10 ng/ml EGF on the basolateral side for 1 hour reduced the EGF-stimulated initial ISC 

to 7.8 ± 0.8 µA cm-2 (n=5) significantly lower than the EGF-stimulated initial ISC (24.8 

± 3.0 µA cm-2, n=8, P<0.001). Taken together these data suggest that the EGF-

stimulated increase in initial ISC is mediated through a PI3K and protein kinase C 

(PKC-) intracellular signalling pathway. 
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Figure 5.3 – Kinase inhibitors reduce EGF induced increases in starting current.  

Combined traces for the first 100 seconds (A) and a bar graph (B) showing the initial ISC across Calu-3 

epithelia following basolateral treatment with inhibitors including 50 µM wortmannin, 0.1 µM 

staurosporine, 10 µM chelerythrine chloride and 5µM rottlerin, followed subsequently by 10 ng/ml EGF 

stimulation for 1 hour. Statistical analysis was performed using a one way ANOVA with Tukey's Multiple 

Comparison test, where P<0.05 was deemed statistically significant. 



165 
 

5.2.4 Potassium channel blockers reduce EGF-stimulated increases in initial 
ISC 

In order to determine if basolateral potassium channels, which are known to be 

expressed in Calu-3 cells, are activated downstream of protein kinases, intact Calu-3 

monolayers were pretreated on the basolateral membrane with potassium channel 

inhibitors as shown in Figure 5.4. Non-specific calcium activated potassium channel 

inhibitor charybdotoxin (1 µM) for 10 minutes followed by 10 ng/ml EGF on the 

basolateral side for 1 hour reduced the EGF-stimulated initial ISC to 11.3 ± 1.2 µA cm-2 

(n=5), significantly lower than the EGF-stimulated initial ISC (24.8 ± 3.0 µA cm-2, n=8, 

P<0.01). These data suggest that basolateral potassium channels were downstream 

of protein kinases. To further determine if the potassium channel KCNN4 was 

responsible for the EGF-induced increases in ion transport, intact Calu-3 monolayers 

were pretreated with KCNN4 specific inhibitor iberiotoxin (10 nM) on the basolateral 

side for 10 minutes followed by 10ng/ml EGF on the basolateral side for 1 hour. This 

reduced the EGF-stimulated initial ISC to 4.3 ± 0.6 µA cm-2 (n=4), significantly lower 

than the EGF-stimulated initial ISC (24.8 ± 3.0 µA cm-2, n=8, P<0.001). These data 

suggest that KCNN4 channels were activated by EGF and the subsequent PI3K / 

PKC-δ pathway. To further determine if the potassium channel KCNQ1 was also 

responsible for the EGF-induced increases in ion transport, intact Calu-3 monolayers 

were pretreated with KCNQ1 specific inhibitor chromanol 293B (10 µM) on the 

basolateral side for 10 minutes followed by 10 ng/ml EGF on the basolateral side for 1 

hour. This reduced the EGF-stimulated initial ISC to 10.1 ± 3.2 µA cm-2 (n=5), 

significantly lower than the EGF-stimulated initial ISC (24.8 ± 3.0 µA cm-2, n=8, 

P<0.01). Since these results were all significantly lower than the control (24.8 ± 

3.0 µA cm-2, n=8), it suggests that the EGF-stimulated increase in initial ISC results 

from an increased ion transport via both KCNN4 and KCNQ1 channels. 
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Figure 5.4 – Potassium channel inhibitors reduce EGF induced starting current.  

Combined traces for the first 100 seconds (A) and a bar graph (B) showing the starting ISC across Calu-3 

epithelia following basolateral treatment with inhibitors including 1 µM charybdotoxin, 10 nM Iberiotoxin 

and 10 µM chromanol 293B, followed subsequently by 10 ng/ml EGF stimulation for 1 hour. Statistical 

analysis was performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 

was deemed statistically significant. 
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5.2.5 The potassium channels KCNQ1, KCNA2, KCNA3 and KCNN4 are 
expressed in the Calu-3 cell line 

The potassium channel inhibitors used in this investigation together block a number of 

different potassium channels. Chromanol 293B blocks KCNQ1 only (Bett et al., 2006), 

iberiotoxin blocks KCNN4 only (Candia et al., 1992), and charybdotoxin blocks 

KCNA2, KCNA3 and KCNN4 (Rauer et al., 2000). The expression of these channels 

in the Calu-3 cell line was therefore of interest to determine which channels are likely 

to be involved in increasing EGF stimulated initial short circuit current. The expression 

of the potassium channels genes KCNQ1, KCNA2, KCNA3 and KCNN4 was tested in 

the untreated Calu-3 cell line with three repeats using a different RNA sample each 

time (Figure 5.5). Each time, there was a strong signal for KCNA2, KCNA3 and 

KCNN4 channels, and with one of the repeats, there was also expression of KCNQ1. 

 

Figure 5.5 – KCNQ1, KCNA2, KCNA3 and KCNN4 channel expression in Calu-3 cells  

Another repeat with a different RNA sample showed KCNQ1 expression. RT-PCR consisted of 3 repeats 

using different RNA samples. 
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5.2.6 U0126 pretreatment reduces initial EGF stimulated ISC in EGF 
preincubated Calu-3 monolayers 

The EGF signalling pathway is complex and can activate multiple downstream 

signalling pathways. Other than the PI3K pathway, the EGFR signalling pathway can 

also activate MAPK. To determine if MAPK signalling has an effect on chloride 

secretion, a time course experiment was conducted in both intact and permeabilised 

Calu-3 monolayers pretreated with 25 µM U0126 (inhibitor of the ERK signalling 

messenger of the MAPK pathway) and 10ng/ml EGF on the basolateral side. These 

data are shown in Figure 5.6. As shown in Figure 5.6 (A), cells were pretreated with 

25 µM U0126 on the basolateral side alone for an hour, resulting in an initial current 

of 11.0 ± 2.1 µA cm-2 (n=3). Treatment with U0126 on the basolateral side for 10 

minutes followed by 10 ng/ml EGF on the basolateral side for 1 hour, 2 hours, 3 hours 

and 24 hours resulted in short circuit currents of 10.3 ± 1.4 µA cm-2 (n=3), 17.6 ± 

3.3 µA cm-2 (n=3), 11.0 ± 3.5 µA cm-2 (n=3) and 11.7 ± 2.5 µA cm-2 (n=3) respectively. 

These results suggest that the ERK inhibitor U0126 causes an overall inhibition of 

EGF induced increases in short circuit current. To isolate chloride secretion in Calu-3 

monolayers, the basolateral membrane was permeabilised with nystatin and a 

chloride gradient applied from basal to apical. As shown in Figure 5.6 (B), treatment 

with 25 µM U0126 on the basolateral side for 10 minutes alone resulted in an initial 

current of 53.3 ± 16.1 µA cm-2 (n=3). Treatment with 25 µM U0126 on the basolateral 

side for 10 minutes followed by 10 ng/ml EGF on the basolateral side for 1 hour 

resulted in an initial current of 36.5 ± 11.5 µA cm-2 (n=3). Treatment with 25 µM 

U0126 on the basolateral side for 10 minutes followed by 10 ng/ml EGF on the 

basolateral side for 2 hours resulted in an initial current of 67.6 ± 5.3 µA cm-2 (n=3). 

Treatment with 25 µM U0126 on basolateral side for 10 minutes followed by 10 ng/ml 

EGF on the basolateral side for 3 hours resulted in an initial current of 28.7 ± 9.3 µA 

cm-2 (n=3). Treatment with 25 µM U0126 on the basolateral side for 10 minutes 

followed by 10 ng/ml EGF on the basolateral side for 24 hours resulted in an initial 

current of 48.2 ± 9.4 µA cm-2 (n=3). None of these results were statistically significant 

from one another and very similar to the results of EGF alone. 
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Figure 5.6 – ERK inhibitor U0126 reduces EGF induced starting current. 

Summary bar graphs showing (A) the initial ISC across an intact Calu-3 epithelium in response to 10 ng/ml 

EGF pretreatment over time, (B) the initial ISC across an intact Calu-3 epithelium in response to 25 µM 

U0126 and 10 ng/ml EGF pretreatment over time, (C) showing the initial ISC across a Calu-3 epithelium in 

response to basolateral membrane permeablisation upon EGF preincubation and (D) showing the initial 

ISC across a Calu-3 epithelium in response to basolateral membrane permeablisation upon 25 µM U0126 

and 10 ng/ml EGF preincubation. Statistical analysis was performed using a one way ANOVA with 

Tukey's Multiple Comparison test, where P<0.05 was deemed statistically significant. 

 

 

 

 

 

 

 

  



170 
 

5.3 Discussion 

5.3.1 EGF increases initial ISC in intact Calu-3 monolayers 

It was initially determined that 1 hour incubation of 10 ng/ml EGF produced a maximal 

response, and was thus chosen for comparison in all subsequent experiments.  While 

to date no data looking at EGF treatment and the Calu-3 cell line has been acquired, 

our data are in agreement with investigations using the T84 colonic epithelial cell line 

that showed increases in ISC when chronically treated with EGF (O'Mahony et al., 

2008). The increase due to EGF at 1 hour ties in with data showing that changes in 

intracellular calcium can affect the resting membrane potential in human astrocytoma 

cells (Bordey et al., 2000). Further support in the literature for this finding includes a 

study by Borok et al. (1996) where it was shown in rat type II alveolar epithelial cells 

that treatment with EGF on the basolateral side results in increases in short circuit 

current at subacute (less than one day) time periods, which could be blocked using 

reversible tyrosine kinase inhibitor, tyrphostin RG-50864 (Borok et al., 1996). In terms 

of possible delivery systems for introducing EGF into the lungs, aerosols generated 

from 20 μg EGF in saline have been previously shown to increase lung liquid 

clearance and increase active sodium transport and Na+-K+-ATPase activity in adult 

Sprague-Dawley male rats (Sznajder et al., 1998). 

5.3.2 EGF increases initial ISC in Calu-3 via PI3K-PKC-δ-KCNN4/KCNQ1 
dependent pathway 

Activation of EGFR can trigger at least three different intracellular signalling 

pathways, which include mitogen-activated protein kinases ERK-1/2 (MAPK-ERK), 

phospholipase Cγ1 (PLCγ1) and phosphatidylinositol-3-kinase (PI3K), and the JNK 

pathway. Other than EGF, five other EGFR ligands have been identified, which 

includes amphiregulin, TGF-alpha, betacellulin, HB-EGF (heparin binding EGF-like 

growth factor), and epiregulin (Sweeney & Carraway, 2000). The EGF pathway seen 

in the results of this chapter is likely to be one of these three signalling pathways. 

Once stimulated, EGFR can recruit PI3K via an adapter protein such as c-Cbl, GAB1, 

IRS-1 and IRS-2 (Fujioka et al., 2001; Onishi-Haraikawa et al., 2001). Downstream of 

EGFR is the enzyme PLC-γ1 (Yarden & Sliwkowski, 2001). Once phosphorylated, 

PLC-γ1 converts PtdIns(4,5)P2 into diacylglycerol (DAG) and inositol-1,4,5-
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trisphosphate (IP3) (Tkaczyk et al., 2003). DAG is then able to activate PKCα, PKCβ, 

PKCγ, PKCθ and PKCε. PLCγ1 can activate protein kinase C (PKC) and PI3K 

activates protein kinase B (PKB, or Akt) that in turn can activate PKCs (Koyama et al., 

2003). There is some crosstalk with the MAPK signalling pathway as PKCα, PKCβ, 

PKCγ and PKCε can activate Raf-1, which is a MAPK signalling messenger (Sozeri et 

al., 1992; Hamilton et al., 2001). PKCθ actives inhibitor of nuclear factor kappa-B 

kinase subunit beta (IKK-β), which in turn activates Nuclear factor NF-kappa-B (NF-

κB) (Altman & Villalba, 2003). 

Upon dimerisation of EGFR, autophosphorylation of the tyrosine residues on the C-

terminal domain leads to the creation of docking sites for various signalling 

messengers. These include the adaptor proteins SHC transforming protein 1 (Shc), 

Growth factor receptor-bound protein 2 (GRB2), Cas-Br-M ecotropic retroviral 

transforming sequence (c-Cbl), Docking protein 2 (DOK2) and NCK adaptor protein 1 

(NCK1) (Jones & Dumont, 1999). These sites can also interact with enzymes, 

including Phospholipase C gamma 1 (PLC-γ1), v-Src sarcoma viral oncogene 

homolog (c-Src) and PTK2 protein tyrosine kinase 2 (FAK1). Of the adaptor proteins, 

Shc and GRB2 recruit Son of sevenless homolog 1 (SOS), forming a protein complex. 

Once activated, SOS activates v-Ha-ras Harvey rat sarcoma viral oncogene homolog 

(H-Ras) by converting the inactive GDP-bound state to an active GTP-bound state. 

Activated H-Ras then activates the v-Raf-1 murine leukemia viral oncogene homolog 

1 / Mitogen-activated protein kinase kinase 1 and 2 / Mitogen-activated protein kinase 

1 and 3 kinase cascade (c-Raf-1 / MEK1 and MEK2 / ERK1/2 signalling pathway). 

This pathway leads to the activation of the transcription factors ELK1 member of ETS 

oncogene family (Elk-1), v-Myc myelocytomatosis viral oncogene homolog (c-Myc), 

and v-Fos FBJ murine osteosarcoma viral oncogene homolog (c-Fos) (Prenzel et al., 

2001). 

The NCK1 adaptor of EGFR leads to the activation of the JNK signalling cascade. 

NCK1 can recruit p21-Activated kinase 1 (PAK1), forming a protein complex that 

binds Mitogen-activated protein kinase kinase kinase 10 (MLK2). This complex 

triggers a signalling cascade of proteins that include Mitogen-activated protein kinase 

kinase 4 and 7 (MEK4 and MKK7) / Mitogen-activated protein kinase 8 and 9 (JNK1 
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and JNK2). These activated JNKs translocate to the nucleus, activating transcription 

factors such as Elk-1 and Jun oncogene (c-Jun) (Poitras et al., 2003). 

Our results suggest that EGF signals through EGFR to increase initial short circuit 

current in Calu-3 cells and that PI3K is signalled downstream of EGFR (Figure 5.3). 

EGF is known to cause tyrosine phosphorylation of p85 of PI3K in T84 cells, leading 

to its activation (Uribe et al., 1996; Chow & Barrett, 2007). Our results also suggest 

that PKC-δ is likely to be signalled downstream of PI3K (Figure 5.3), whereas 

previously, it was suggested that the PKC-ε isoform was involved in EGF signalling in 

the gut (McCole & Barrett, 2009). However, it was demonstrated in more recent 

studies carried out Mroz & Keely (2012) that EGF signals through a very similar 

mechanism involving both PI3K and PKC-δ In T84 cells in a similar way as described 

in this chapter for Calu-3 cells. Their study demonstrated that EGF signals through 

PI3K and PKC-δ to lead to an increase in activation of the calcium activated chloride 

channel ANO1 after 24 hours rather than potassium channels (Mroz & Keely, 2012). 

The result from this chapter shares some similarities with work previously carried out 

on skin, where potassium channel activation by EGF through PKC aids wound repair 

(Kang et al., 2008). Furthermore, in the A431 human epithelial carcinoma cell line, it 

was found that activation of the EGF receptor resulted in an activation of voltage-

independent calcium channels, which then leads to an activation of calcium activated 

potassium channels (Macara, 1986; Moolenaar et al., 1986). The data in this chapter 

suggests that PKC is a positive regulator of calcium activated potassium channels in 

the Calu-3 cell line, whereas previous data from Peppelenbosch et al. (1991) show 

that PKC activation negatively regulated these channels (Peppelenbosch et al., 

1991).  

The experiments shown in Figure 5.4 using potassium channel inhibitors suggest that 

this EGF signalling pathway results in a stimulation of basolateral potassium channels 

in a similar way as reported in rat basilar arteries (Ivanov et al., 2006) and contrary to 

the mechanisms proposed in the gut (McCole & Barrett, 2009). Activation of EGFR 

leading to activation of basolateral potassium channels (primarily KCNN4) would 

increase chloride driving force for exit as described previously (Wang et al., 2008). 

This increase in potassium ion transport would increase chloride driving force and 

thus the starting current.  
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Permeabilisation of the basolateral membrane bypasses the basolateral 

charybdotoxin / iberiotoxin -sensitive potassium channels and thus removes the EGF 

stimulated increases in starting current seen in intact membranes with EGF 

preincubation. These findings are in line with data which suggest that activation of 

tyrosine kinases can increase intracellular calcium (Munaron, 2002), and thus may 

play a role in the modulation of calcium activated potassium channels (Weaver et al., 

2004). The KCNN4 channel has also been previously identified as a potential target 

for inhibition to ameliorate the symptoms of asthma (Bradding & Wulff, 2009). Our 

data also allows for the possibility that the activation of PKC-δ may lead to an 

activation of the basolateral Na-K-2Cl cotransporter, which could allow more chloride 

into the cell, further increasing chloride transport as reported previously (Liedtke et 

al., 2003). In intestinal epithelia, it was found that EGF upregulated the basolateral 

Na-K-2Cl cotransporter leading to chronic potentiation of chloride secretion 

(O'Mahony et al., 2008). Inhibitors of the KATP and KVLQT1 channels, glibenclamide 

and clofilium, have been shown to reduce basal transepithelial current, amiloride-

sensitive sodium current, and forskolin-activated chloride currents while the KATP 

activator, pinacidil, had the reverse effect in rat type II alveolar epithelial cells. The 

potassium channel inhibitors were also found to decrease ENaC and CFTR mRNA 

and proteins (Leroy et al., 2006). It has been demonstrated that stimulation of KCNQ1 

and KATP currents by EGF promoted cell repair in rat type II alveolar epithelia (Trinh et 

al., 2007). Similarly, it has been shown previously that TNF-α enhances KCNQ1 and 

KATP currents, promoting wound repair in primary cultures of airway epithelial cells 

from non-CF and CF patients. The effect of TNF-α is thought to be mediated through 

EGFR transactivation and subsequent K+ channel stimulation (Maille et al., 2011a). 

The study by Maille et al. (2011a) suggests that EGF treatment could have other 

beneficial effects in CF patients in airway repair in addition to the potential benefits in 

increased airway secretion highlighted by the data presented in this chapter. The data 

presented in this chapter allows us to construct a model for EGF signalling in the 

Calu-3 cell line shown in Figure 5.7. 
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Figure 5.7 – Proposed signalling pathways involved in the regulation of chloride transport via EGF. 

Activation of EGFR leads to an activation of phosphatidylinositol 3-kinase (PI3K) and protein kinase Cδ 

that can be blocked by wortmannin and rottlerin, respectively. This in turn leads to an activation of 

potassium channels that include KCNN4 and KCNQ1, which can be blocked by iberiotoxin and 

chromanol 293B, respectively. Activation of this pathway ultimately leads to an increase in driving force 

for apical chloride exit and increased initial short circuit current. Based on information presented in this 

study. Statistical analysis was performed using a one way ANOVA with Tukey's Multiple Comparison 

test, where P<0.05 was deemed statistically significant. 
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5.3.3 EGF increases in initial ISC in intact Calu-3 monolayers are abolished by 
U0126 pretreatment 

Our data suggests that there is possible involvement of the MAPK pathway in 

regulating ion transport across Calu-3 monolayers that potentially also involves 

basolateral potassium channels. While to date no similar study has been conducted in 

the Calu-3 cell line, our data are in agreement with previous studies in other cell lines 

such as the T84 colonic epithelial cell line which show that a MAPK pathway is 

involved in the regulation of chloride secretion. Specifically, it was shown that the JNK 

MAPK pathway in T84 cells regulates calcium dependent chloride secretion rather 

than cAMP dependent chloride secretion (Keely et al., 1998). This effect is mediated 

through an inhibition of basolateral potassium channels and as a result, a decrease in 

driving force for apical chloride exit (Donnellan et al., 2010). Another example of 

MAPK regulation of potassium channels that shares similarities with the data 

presented in this chapter can be found in the cortical collecting duct of the kidney. It 

has been shown that inhibition of the MAPK pathway can bring about stimulation of 

Ca2+-dependent large-conductance K+ channels (Li et al., 2006). 

5.3.4 Potassium channels are expressed in Calu-3 

The fact that the KCNQ1 and KCNN4 genes were expressed in our study is in 

agreement with earlier work carried out using the Calu-3 cell line which identified the 

expression of KCNN4 and KCNQ1 (Cowley & Linsdell, 2002; Moser et al., 2008). 

KCNA2 and KCNA3 expression has not been previously demonstrated in the Calu-3 

cell line, but both have been found to be expressed in the smooth muscle in the 

human airways (Adda et al., 1996). While it is possible that KCNA2 and KCNA3 are 

stimulated by EGF and cause increases in initial starting current, there is no evidence 

in the literature that this might be the case. Additionally, iberiotoxin, the KCNN4 

blocker, reduced the short circuit current more than charybdotoxin, which can block 

KCNA2 and KCNA3 as well as KCNN4.  
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Chapter 6 Effects of EGF Treatment 

on UTP Response 

6.1 Introduction 

It has been demonstrated using intestinal epithelial cells that activation of Gq, which 

includes the m3 muscarinic receptor, by agonists such as carbachol (CCh), initially 

causes calcium mobilisation that can in turn lead to an activation of calcium activated 

chloride channels that leads to an increase in chloride secretion. However, this is 

subsequently followed by a reduction in secretion since calcium mobilisation also 

ultimately leads to activation of EGFR by ligands such as EGF and TGF-α. This in 

turn can lead to an activation of ERK, which negatively regulates chloride secretion in 

the gut (McCole & Barrett, 2009). In contrast to what occurs in gut epithelia, EGF 

activates calcium activated chloride channels via p60c-src in human bronchial 

epithelial cell line 16HBE14o-, which could by blocked by tyrosine kinase inhibitor 

AG1478 (Jeulin et al., 2008). Furthermore, EGF upregulated ANO1 expression and 

Ca2+ currents in T84 intestinal epithelia by a mechanism involving sequential 

activation of PI3K and PKCδ (Mroz & Keely, 2012). 

While the relationship between calcium activated chloride channels and EGFR 

signalling has been previously studied in other tissues such as the gut (McCole & 

Barrett, 2009) and using 16HBE14o- cells (Jeulin et al., 2008), no similar studies have 

been conducted in the Calu-3 cell line. Studies of the link between EGF and calcium 

activated chloride channels in Calu-3 cells could lead to new avenues for potential 

therapeutics for CF since EGF could theoretically augment the response to P2Y 

agonists and increase ion transport. Thus, in order to address this gap in knowledge, 

the aim of this investigation was to determine the effect of 10 ng/ml treatment of EGF 

on acute stimulation with 100 µM UTP. This was to determine if EGF was able to 

upregulate calcium activated chloride channels over a period of time. The impact of 

basolateral permeabilisation will also determine which conductance is likely to be 

causing effects on ion transport (if any).  

The effect of EGF on message and/or protein levels of chloride channels has to date 

not been previously investigated in Calu-3 cells. EGF could also potentially increase 
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message and/or protein levels for chloride channels and thus boost ion transport 

through an increase in the amount of channels at the cell membrane. Therefore to 

address this current gap in knowledge, the change in expression of BEST1-4, 

Anoctamins 1-10 and CFTR when preincubated with 10 ng/ml EGF was investigated 

to see if EGF acts at the message level. Also of interest is whether 1 hour of 

preincubation of 10 ng/ml of EGF affects BEST1 protein expression. 

6.2 Results 

6.2.1 Addition of Epidermal Growth Factor (EGF) to the Calu-3 monolayers 
leads to an increase in UTP-stimulated ISC 

To investigate the effect of EGF preincubation on UTP response, Calu-3 monolayers 

were preincubated with EGF for 1, 2, 3 and 24 hours and compared to UTP 

stimulation without EGF treatment shown in Figure 6.1. With untreated monolayers, 

the response to UTP is small at 1.0 ± 0.1 µA cm-2 (n=5). The response with EGF at 1 

hour did not increase substantially at 1.6 ± 0.7 µA cm-2 (n=5), and 2 hours at 0.5 ± 

0.5 µA cm-2 (n=5). With 3 hours of EGF treatment, the response to UTP was still low 

at 0.3 ± 0.1 µA cm-2 (n=5). However, at 24 hour EGF treatment, the situation was 

different, with the UTP response increasing to 3.2 ± 0.6 µA cm-2 (n=6), which is 

greater than the untreated monolayers by a statistically significant amount (p<0.5). 

These results suggest that EGF is able to regulate ion channels over a 24 period, and 

as such increases the response to UTP. These data suggest that CFTR, CaCCs or 

basolateral potassium channels may be involved in this process. Moreover, as a 

result of these data, stimulation of Calu-3 monolayers for 24 hours with EGF was 

treated as maximal and used for subsequent experiments. 
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Figure 6.1 – Addition of EGF to the Calu-3 monolayers leads to an increase in UTP-stimulated ISC.  

Summary bar graph to show 100 µM UTP response following 10 ng/ml EGF preincubation over a 24 hour 

time period. Statistical analysis was performed using a one way ANOVA with Tukey's Multiple 

Comparison test, where P<0.05 was deemed statistically significant. 

6.2.2 Permeabilisation removes EGF-induced UTP stimulated ISC in Calu-3 

In order to determine if the EGF-induced UTP spike in ISC at 24 hours was due to 

CFTR, CaCCs or basolateral potassium channels, the basolateral membrane was 

permeabilised and a basolateral to apical chloride gradient applied. This method was 

used to eliminate the influence of basolateral potassium channels on ion transport so 

that only CFTR and CaCC responses were investigated. As seen in Figure 6.2 (A and 

B), if the monolayers are preincubated with 10 ng/ml EGF for 24 hours (seen to give a 

maximal response previously), it is seen that the response to UTP is effectively 

eliminated 0.5 ± 0.4 µA cm-2 (n=3). Taken together, it is likely that basolateral calcium 

activated potassium channels are responsible for the UTP response seen across 

Calu-3 monolayers. This work is in line with similar work carried out previously 

investigating the response to adenosine in Calu-3 cells (Wang et al., 2008). 
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Figure 6.2 – Permeabilisation removes UTP induced ISC in Calu-3.  

Trace (A) and bar graph (B) to show permeabilised 100 µM UTP response following 10 ng/ml EGF 

preincubation for 24 hours, and summary bar graph (C) showing control 100 µM UTP response shown 

previously in Calu-3 monolayers compared to 10 ng/ml EGF treatment for 24 hours and permeabilised 

monolayers with and without 10 ng/ml EGF treatments 24 hour. Statistical analysis was performed using 

a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed statistically 

significant. 
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In summary, if the basolateral membrane is permeabilised, the response to UTP is 

effectively eliminated with or without 10 ng/ml EGF stimulation for 24 hours as shown 

in Figure 6.2 (C). The response to UTP with basolateral membrane permeabilisation 

without EGF pretreatment is 0.6 ± 0.3 µA cm-2 (n=3), while the response with 

monolayers pretreated with EGF was 0.5 ± 0.4 µA cm-2 (n=3). Taken together, this 

result shows that the increase in UTP response, albeit small, is likely to be highly tied 

to calcium activated potassium channels on the basolateral membrane. 

6.2.3 EGF treatment and chloride channel gene expression in Calu-3 cells 

Calu-3 cells were preincubated with 10 ng/ml EGF for set periods of time and RNA 

was extracted for RT-PCR analysis. The gene expression of bestrophins 1 – 4 and 

CFTR in response to EGF treatment is shown in Figure 6.3, and the gene expression 

of anoctamins 1 – 10 in response to EGF treatment is shown in Figure 6.4. In Figure 

6.5 and Figure 6.6, the effect of EGF treatment on the expression of chloride 

channels and candidates was estimated with semi-quantitative densitometry. It was 

seen that the expression of bestrophin, CFTR, ANO1 and ANO4 genes appeared 

down regulated with EGF treatment, while ANO6, ANO8 and ANO10 were up 

regulated at three hours. ANO5 appeared equal regardless of treatment. 
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Figure 6.3 – Bestrophin and CFTR channel expression in response to EGF treatment in Calu-3 cells.  

Number of repeats indicated with each using unique RNA sample. Ladder is the same for each 

experiment. Instances were bands appeared in the negative controls were not seen in repeats for that 

particular gene. Number of repeats indicated in brackets. 
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Figure 6.4 – Anoctamin expression in response to EGF treatment in Calu-3 cells.  

Number of repeats indicated with each using unique RNA sample. Ladder is the same for each 

experiment. Instances were bands appeared in the negative controls were not seen in repeats for that 

particular gene. Number of repeats indicated in brackets. 
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Figure 6.5 – Densitometry of chloride channel mRNA in response to EGF preincubation normalised to β-
actin. 

Calu-3 cells were preincubated with 10 ng/ml EGF for 1, 2, 3 and 24 hour time periods, the RNA 

extracted, and RT-PCR performed. The mRNA expression of bestrophins and anoctamins was analysed 

using densitometry of the band intensity and then normalised to β-actin. Numbers of repeats are 

indicated in brackets. 
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Figure 6.6 – Mean fold change in mRNA expression of chloride channels compared to the unstimulated 
mRNA baseline. 

The data in Figure 6.5 is further normalised to the unstimulated control sample, giving a value for the 

mean fold change in mRNA expression due to 10 ng/ml EGF pretreatment for 1, 2, 3 and 24 hour time 

periods. Numbers of repeats are indicated in brackets.  
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6.2.4 EGF treatment and chloride channel gene expression in Calu-3 cells 

To study the effects of EGF on CFTR expression on the protein level, a time course 

Western blot was performed (Figure 6.7). Cells were grown to confluence and 

preincubated with 10 ng/ml EGF where appropriate.10 µg of protein was loaded into 

each well that was extracted the RIPA extraction technique described in the Materials 

and Methods. Despite a good β-actin signal, the bands for CFTR protein were either 

faint or not present. Taken together, these results show that our implementation of the 

RIPA method was not extracting CFTR protein effectively from the cell membrane, 

leading to poor detection. As a result, other extraction techniques were generally 

used. 

 

Figure 6.7 – Characterisation of CFTR protein expression in the Calu-3 cell line. 

The Calu-3 cell line was treated with 10 ng/ml EGF over a period of 24 hours. The total protein content 

acquired using the RIPA extraction method. Representative of a single successful Western blot. 

It was then of interest to see if EGF could affect BEST1 expression. Tissue culture 

flasks were grown to confluence and extracted using the NP-40 technique as 

described in the Materials and Methods. Each lane was loaded with 20 µg of protein. 

The first lane was loaded with protein obtained from a lysate of CHO cells transfected 

with BEST1 as a positive control kindly provided by Kirsty Kirk (Winpenny Lab, 

University of East Anglia). Subsequent lanes are loaded with protein lysates of 

unstimulated and 1 hour 10 ng/ml EGF stimulated Calu-3 cells. All the lanes were 

duplicated as an internal replicate, and the experiment was repeated successfully 

three times. As shown in Figure 6.8, it was seen that BEST1 was well expressed in all 

samples corresponding to a dark band at 68 kDa (Milenkovic et al., 2009), and that 
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densitometry performed on the unstimulated and EGF stimulated bands showed no 

significant difference in protein expression. Taken together, it shows that BEST1 is 

expressed in Calu-3 cells, and that treatment with 10 ng/ml EGF for one hour does 

not have an affect the protein expression. 

 

Figure 6.8 – BEST1 protein expression is not affected by EGF treatment.  

Western blot showing the effect of 10 ng/ml EGF treatment for 1 hour on BEST1 protein expression (A) and 

bar graph to show the effect of 10 ng/ml EGF treatment for 1 hour on BEST1 protein expression using 

densitometry (B). Statistical analysis was performed using a one way ANOVA with Tukey's Multiple 

Comparison test, where P<0.05 was deemed statistically significant. 
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6.3 Discussion 

6.3.1 EGF increases intracellular Ca2+ over 24 hours and UTP induced CaCC 
activation 

EGF is known to raise levels of intracellular Ca2+ in tumour cells (Dittmar et al., 2002). 

High levels of intracellular Ca2+ may not necessarily keep calcium activated chloride 

channels open, as they can become inactivated by calmodulin-dependent kinase II 

(CaMKII) (Wang & Kotlikoff, 1997). From this experimental set alone, it is hard to say 

which ion channel(s) is responsible for the statistically significant higher spike when 

treated with EGF for 24 hours. However, there are several possible candidates, which 

include CaCCs, CFTR or potassium channels such as KCNN4, which the subsequent 

experiment attempted to answer. CaCCs are activated via P2Y receptors triggering 

calcium mobilisation. Our data potentially corresponds to data that has been 

previously published by Jeulin et al, (2008), where EGF was shown to activate 

calcium activated chloride channels in another lung derived cell line, 16HBE14o- 

(Jeulin et al., 2008). CaCCs have also been previously demonstrated to be 

upregulated by chronic EGF treatment in the gut. Recent studies using T84 

monolayers found that when chronically stimulated with EGF, the response to 

carbachol was increased compared to control cells. This increase in carbachol 

response could be abolished using the ANO1 inhibitor, T16inh-A01 (Mroz & Keely, 

2012). This increase could similarly be inhibited by rottlerin (PKC-δ inhibitor) and 

LY290042 (PI3K inhibitor). LY290042 also inhibited EGF-induced phosphorylation of 

PKC-δ. Taken together, this suggested that EGF led to an upregulation of ANO1 

response through sequential activation of PI3K and PKC-δ (Mroz & Keely, 2012). 

Moreover, CFTR can be activated indirectly via ATP being converted to ADO in the 

cytosol activating G protein coupled receptor A2B that would increase levels of cAMP 

(Lazarowski & Boucher, 2009), making CFTR another potential candidate for the 

spike seen in our data. Calcium activated potassium channels on the basolateral 

membrane can be activated by both apical adenosine and calcium (Wang et al., 

2008), suggesting that EGF could be activating basolateral potassium channels and 

thus increasing the chloride driving force. 
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6.3.2 EGF elevates UTP induced CaCC responses via Ca2+ activated potassium 
channels 

As a result of basolateral membrane permeabilisation, pretreatment with EGF for 24 

hours and subsequent UTP stimulation, the current spike was greatly reduced. This 

suggests that a basolateral conductance is responsible for the increased spike seen 

previously. Apical adenosine is already known to activate calcium activated 

potassium channels through PLC/Ca2+ via A2B adenosine receptors on the apical 

membrane (Wang et al., 2008). Similarly, in human macrophages, application of 

10 μM UTP or 10 μM ATP induces cytosolic calcium oscillations and changes in 

membrane potential. These calcium oscillations are caused by the activation of P2Y2 

receptors that are coupled to PLC, while the membrane potential oscillations are due 

to the opening of calcium activated potassium channels (Hanley et al., 2004). As 

shown in this study and previous studies, KCNN4 is a dominant calcium activated 

potassium channel in Calu-3 cells (Cowley & Linsdell, 2002), so is a likely candidate. 

A proposed model is shown in Figure 6.9 based on data generated from this study in 

combination with previously known information (Lazarowski & Boucher, 2009). Our 

proposed model suggests that stimulation of EGFR leads to an increase in calcium 

mobilisation over a period of 24 hours that enhances the response by calcium 

dependent ion channels such as CaCCs and calcium activated potassium channels. 

EGF has been previously shown to enhance calcium mobilisation in mouse mammary 

epithelial cells (Ichikawa & Kiyohara, 2001) and rabbit corneal epithelial cells (Yang et 

al., 2003). Addition of UTP leads to an activation of P2Y receptors, leading to a surge 

of intracellular calcium that is greatly enhanced by the EGF treatment. 

Permeabilisation of the basolateral membrane removes the effect of basolateral 

calcium activated potassium channels, and therefore removes a significant 

component of the response. This model is in agreement with our data and prior work 

looking at the relationship between EGF and GPCRs in the regulation of CaCCs 

(Liebmann, 2011). 
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Figure 6.9 – Proposed model of EGF regulation of UTP response in Calu-3 cells. 

Activation of EGFR with EGF over a 24 hour period leads to an increase in calcium mobilisation in the 

cytosol. Subsequent activation of P2Y receptors on the apical surface with UTP or ATP leads to a sharp 

increase in calcium mobilisation. ATP is broken down in the extracellular environment to ADO, which 

activates a G protein coupled receptor (GPCR) such as the adenosine A2B receptor. The GPCR can then 

activate calcium activated potassium channels via phopholipase C (PLC). Based on information from 

data presented in this chapter and material from: (Hanley et al., 2004; Lazarowski & Boucher, 2009) 
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6.3.3 Effect of EGF on chloride channel transcription 

The EGF signalling pathway can eventually lead to the activation of a number of 

transcription factors, which include c-myc, c-jun, c-fos, STAT1, STAT3, Elk-1 and NF-

κB (Prenzel et al., 2001; Altman & Villalba, 2003; Poitras et al., 2003; Andl et al., 

2004). This creates a wide variety of candidates that could be responsible for 

affecting transcription of chloride channels. The fact that CFTR message decreases 

from EGF preincubation has been found previously in the gills of the striped bass 

Morone saxatilis (Madsen et al., 2007), but no current literature addresses the effect 

of EGF on CFTR transcription in the mammalian airway. Recent studies in T84 cells 

demonstrated increased ANO1 and unchanged CFTR mRNA expression by 24 hour 

EGF preincubation (Mroz & Keely, 2012), which was in contrast to our studies in the 

Calu-3 cell line where EGF appeared to decrease both ANO1 and CFTR expression. 

6.3.4 BEST1 protein is present in Calu-3 cells 

BEST1 protein has previously been found in 16HBE cells (Barro Soria et al., 2009) 

and in the nasal epithelial cells of ΔF508 homozygous CF patients (Martins et al., 

2011) as well as Calu-3 cells (Milenkovic et al., 2009). The data obtained in this study 

concerning endogenous expression of BEST1 are in agreement with the studies of 

Milenkovic et al. (2009). The effect of EGF preincubation on BEST1 protein 

translation has not been previously studied. It was found that EGF does not appear to 

affect BEST1 protein translation. This suggests that the spike seen in the short circuit 

current data at 24 hours treatment with EGF (Figure 6.1) was not due to an 

upregulation of BEST1 protein. It is possible that EGF may be upregulating protein 

expression of other calcium activated chloride channel candidates, however at the 

time of writing effective antibodies for these proteins were not available for testing 

(see Further work, Section 8.4). 
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Chapter 7 Effects of EGF on 

Forskolin Stimulation 

7.1 Introduction 

The effect of forskolin on ion transport in Calu-3 cells has been widely reported (Shen 

et al., 1994). However, the effect of preincubating EGF on the magnitude of the 

forskolin response has not been previously studied. In other cell types, such as rat 

cardiac myocytes, EGFR is coupled to adenylate cyclase, and EGFR signalling 

causes an accumulation of cAMP (Yu et al., 1992). However, the interplay between 

EGF and forskolin in the Calu-3 cell line has not been previously studied. 

To understand this effect could lead to a higher understanding of the underlying 

processes involved and help develop new avenues of research to aid the treatment of 

CF. Therefore, the effect of EGF treatment on the forskolin response was investigated 

to see how EGF influences chloride transport. This was accomplished by 

preincubating Calu-3 monolayers with 10 ng/ml EGF over a time scale of 1, 2, 3 and 

24 hours, and then treating them firstly with 10 µM amiloride (to remove the influence 

of ENaC on the results), and then stimulating with 10 µM forskolin. Of interest was the 

initial peak size shortly following forskolin stimulation. 

Further, the mechanism that links EGF and forskolin response is of importance since 

it could reveal new targets with which to develop new therapeutics. In order to 

determine the mechanism behind the EGF induced decreases in forskolin stimulated 

short circuit current, experiments were designed so that the Calu-3 monolayers were 

treated with inhibitors of a number of pathways before an hour of EGF treatment 

(previously determined to be statistically significant). As before, the pathways of 

interest initially were PI3K, PKC and potassium channels, based on work with EGF 

conducted previously with gut cells (McCole & Barrett, 2009). 

From the literature, stimulation of β2 adrenergic receptors, which are abundant in 

Calu-3 cells, can potentially induce EGF ligand shedding via the activation of 

sheddases and activate EGFR as a result (Liebmann, 2011). It has also been 

demonstrated in the T84 colonic epithelial cell line that agonists of GPCRs can rapidly 
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transactivate EGFR by a signalling pathway involving cAMP and PKA, and likely 

involves PI3K (Bertelsen et al., 2004). It has also been demonstrated that carbachol 

activates ERK via EGFR transactivation, leading to inhibitory signalling of chloride 

secretion (Keely et al., 1998). This transactivation process is thought to be mediated 

by a pathway that involves elevations in intracellular calcium, calmodulin, protein 

tyrosine kinase 2 (PYK-2) and p60src (Keely et al., 2000). It was also demonstrated 

that the transactivation of EGFR is mediated through a metalloproteinase-dependent 

extracellular release of TGF-alpha and intracellular activation of Src (McCole et al., 

2002). However, it has not been previously demonstrated if a similar transactivation 

event upon stimulation of the β2 receptor occurs in Calu-3 cells, and what the impact 

of such a process would be on ion transport. The release of EGF through a 

transactivation event could potentially lead to increased ion transport through the 

PI3K-PKC-δ-KCNN4/KCNQ1 pathway that I have previously demonstrated. This 

would be beneficial for treating CF if this is in fact the case. So, to address this 

current gap in knowledge, we hypothesised that a similar process could occur in our 

system. To test this, Calu-3 monolayers were preincubated with either GM-6001 or 

AG1478 and then stimulated with the β2 agonist, salbutamol, with the results 

compared to that of salbutamol stimulation alone (Figure 7.1).  

If EGF shedding does occur upon stimulation of the β2 receptor with salbutamol, 

pretreatment with GM-6001 would inhibit the sheddases activity, and thus prevent the 

release of EGF ligand. No additional EGF release would lead to decreased ion 

transport compared to salbutamol alone since the PI3K-PKC-δ-KCNN4/KCNQ1 

pathway previously described would not be activated. If shedding does not occur, 

there would be no difference in short circuit current between untreated and GM-6001 

pretreated monolayers. Similarly, Calu-3 monolayers were also preincubated with 

AG1478 in the place of GM-6001 and similarly stimulated with salbutamol. If EGF 

ligand is released following stimulation of salbutamol, then AG1478 would prevent 

EGF signalling through EGFR and activating subsequent signalling pathways, so a 

reduced stimulated short circuit current from salbutamol would be expected. If no 

shedding of EGF ligand occurs, we would expect no difference from the control 

salbutamol response. 
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Figure 7.1 – Hypothesis of β2 adrenergic receptor stimulation leading to transactivation of the EGF 
receptor by sheddases.  

Adapted from (Liebmann, 2011) 

Following on from work on β2 receptors, work on β3 receptors in the airways is 

currently in its infancy. The effect of β3 agonists on ion transport in wild-type lung 

tissue has not been previously demonstrated. Thus, to address this gap in 

knowledge, our focus was to characterise the functional response in Calu-3 cells 

using short circuit current since it was confirmed in this investigation that that the 

gene for β3 receptor was expressed in Calu-3 cells (Figure 7.10). To do this we used 

the specific β3 agonist, CGP-12177, which has been used in previous studies (Robay 

et al., 2005). Once the optimal concentration and side of the membrane is 

determined, preincubations with inhibitors on the basolateral side including MDL-

12330A, wortmannin, U0126 and L-748,337 were used to block adenylate cyclase, 

PI3K, ERK1/2 and the β3 receptor itself, respectively. This was conducted in both 

intact and permeabilised monolayers. 
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7.2 Results 

7.2.1 EGF preincubation decreases forskolin response in intact Calu-3 
monolayers 

As shown in Figure 7.2 (A and B), the standard response to 10 µM forskolin on the 

basolateral side in intact Calu-3 monolayers produced an increase in short circuit 

current of 15.5 ± 2.1 µA cm-2, n=5). When preincubated with 10 ng/ml EGF on the 

basolateral side for 1 hour, this increase in short circuit current was reduced to 6.9 ± 

1.5 µA cm-2 (n=5), which was statistically significant compared to the untreated result 

(p<0.01). After preincubation with 10 ng/ml EGF on the basolateral side of intact Calu-

3 monolayers for two hours, the acute forskolin stimulated short circuit current is 

further reduced to 5.2 ± 0.6 µA cm-2 (n=5), which was statistically significant 

compared to the untreated result (p<0.001). After 10 ng/ml EGF treatment on the 

basolateral side of intact Calu-3 monolayers for 3 hours, it is again further reduced to 

4.3 ± 0.7 µA cm-2 (n=4). However, after 10 ng/ml EGF treatment on the basolateral 

side of intact Calu-3 monolayers 24 hours, the forskolin stimulated short circuit result 

was restored to 12.5 ± 1.9 µA cm-2 (n=5). 

In permeabilised monolayers, the situation changes slightly (Figure 7.2, C and D). In 

permeabilised Calu-3 monolayers with a basal to apical chloride gradient, the acute 

response to 10 μM forskolin with no pretreatments was 39.4 ± 7.1 µA cm-2 (n=3). 1 

hour pretreatment with 10 ng/ml EGF resulted in a somewhat reduced increase in 

current in response to basolateral acute 10µM forskolin treatment at 21.8 ± 14.8 µA 

cm-2 (n=3). This was not statistically significant due to wider variation within the 

results. At 2 hours of 10 ng/ml EGF treatment on the basolateral side, the increase 

from 10 µM forskolin on the basolateral side was 29.1 ± 6.3 µA cm-2 (n=3), and 

similarly at 3 hours, the increase from 10µM forskolin was 29.4 ± 20.8 µA cm-2 (n=3). 

By 24 hours of 10 ng/ml EGF treatment, the response is closer to untreated 

monolayers at 45.5 ± 5.5 µA cm-2 (n=3). The result shares a similar pattern as before, 

but much less pronounced and with more variation within the results. This would 

indicate that there may be some potassium channel influence in the results, but not 

as strong as it is with initial starting current. 
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Figure 7.2 – Short term EGF preincubation decreases forskolin response in intact Calu-3 monolayers.  

Combined trace (A) and bar graph (B) showing the effect of 10 ng/ml EGF on forskolin peak current, and 

a combined trace (C) and bar graph (D) showing the effect of 10 ng/ml EGF on permeabilised 

monolayers. Statistical analysis was performed using a one way ANOVA with Tukey's Multiple 

Comparison test, where P<0.05 was deemed statistically significant. 
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7.2.2 EGFR inhibition does not prevent EGF-induced decreases in forskolin 
stimulated ISC 

In order to determine whether the EGF-induced decrease in the forskolin stimulated 

ISC in Calu-3 monolayers was due to EGF working through the EGFR, the intact Calu-

3 monolayers were pretreated with the EGFR inhibitor, AG1478 (Levitzki & Gazit, 

1995) for 10 minutes followed by addition of 10 ng/ml EGF to the basolateral side of 

the monolayers for 1 hour. As shown in Figure 7.3, the forskolin stimulated ISC was 

reduced to 7.2 ± 1.7 µA cm-2 (n=5, P<0.05), significantly less than monolayers treated 

with forskolin alone (15.5 ± 2.1 µA cm-2, n=5), but not significantly different from 

monolayers preincubated with 10 ng/ml EGF for 1 hour alone (6.9 ± 1.5 µA cm-2, 

n=5). Thus EGF would seem to not be working through the EGFR to decrease 

forskolin stimulated current. 
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Figure 7.3 – EGFR inhibitor AG1478 does not significantly change EGF induced decreases in forskolin 
stimulated ISC across Calu-3 monolayers. 

Combined traces for the first 4 minutes after forskolin application (A) and a summary bar graph (B) 

showing the change in ISC across Calu-3 epithelia following 10 µM forskolin treatment in response to 

basolateral treatment with 5 µM AG1478, a EGFR inhibitor, followed subsequently by 10 ng/ml EGF 

stimulation for 1 hour. Statistical analysis was performed using a one way ANOVA with Tukey's Multiple 

Comparison test, where P<0.05 was deemed statistically significant. 
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7.2.3 Protein kinase inhibitors do not prevent EGF-induced decreases in 
forskolin stimulated ISC 

As shown in Figure 7.4 (A and B), pretreatment of Calu-3 monolayers with the PI3K 

inhibitor, wortmannin (50 µM), resulted in a forskolin stimulated ISC of 1.4 ± 0.5 µA cm-

2 (n=4) which was significantly less than monolayers treated with forskolin alone (15.5 

± 2.1 µA cm-2, n=5), but not significantly lower than monolayers preincubated with 

EGF for one hour alone (6.9 ± 1.5 µA cm-2, n=5). To further investigate the signalling 

pathways involved in this EGF-induced decrease in forskolin stimulated ISC, 

staurosporine a non-specific protein kinase inhibitor was used. Staurosporine 

(0.1 µM) reduced the forskolin stimulated ISC to 4.1 ± 0.9 µA cm-2 (n=4, P<0.001) 

which was significantly less than monolayers treated with forskolin alone (15.5 ± 

2.1 µA cm-2, n=5), but not significantly different from monolayers preincubated with 

EGF for 1 hour alone (6.9 ± 1.5 µA cm-2, n=5). The PKC specific inhibitor 

chelerythrine chloride (10 µM), reduced the forskolin stimulated ISC to 4.1 ± 0.2 µA 

cm-2 (n=4, P<0.001) which was significantly less than monolayers treated with 

forskolin alone (15.5 ± 2.1 µA cm-2, n=5), but not significantly different from 

monolayers preincubated with EGF for one hour alone (6.9 ± 1.5 µA cm-2, n=5). 

Rottlerin (5 µM), a PKC isoform specific inhibitor reduced the forskolin stimulated ISC 

to 4.3 ± 0.9 µA cm-2 (n=5, P<0.001) which was significantly less than monolayers 

treated with forskolin alone (15.5 ± 2.1 µA cm-2, n=5), but not significantly different 

from monolayers preincubated with EGF for one hour alone (6.9 ± 1.5 µA cm-2, n=5). 

Taken together these data suggest that the EGF-induced decrease in forskolin 

stimulated ISC is not mediated through either PI3K or protein kinase C intracellular 

signalling pathways. 
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Figure 7.4 – Kinase inhibitors do not significantly change EGF induced decreases in forskolin stimulated 
ISC across Calu-3 monolayers. 

Combined traces for the first 4 minutes after 10 µM forskolin application (A) and a summary bar graph (B) 

showing the change in ISC across Calu-3 epithelia following 10 µM forskolin treatment in response to 

basolateral treatment with inhibitors including 50 µM wortmannin, 0.1 µM staurosporine, 10 µM 

chelerythrine chloride and 5µM rottlerin, followed subsequently by 10 ng/ml EGF stimulation for 1 hour. 

Statistical analysis was performed using a one way ANOVA with Tukey's Multiple Comparison test, where 

P<0.05 was deemed statistically significant. 



198 
 

7.2.4 Chromanol 293B rescues EGF-induced decreases in forskolin stimulated 
ISC 

As shown in Figure 7.5 (A and B), basolateral pretreatment of intact Calu-3 

monolayers with non-specific calcium activated potassium channel inhibitor 

charybdotoxin (1 µM) for 10 minutes followed by 10 ng/ml EGF treatment for 1 hour 

reduced the forskolin stimulated ISC to 3.9 ± 0.7 µA cm-2 (n=5), which was significantly 

less than monolayers treated with forskolin alone (15.5 ± 2.1 µA cm-2, n=5, P<0.05), 

but not significantly different from monolayers preincubated with EGF for one hour 

alone (6.9 ± 1.5 µA cm-2, n=5). Basolateral pretreatment of intact Calu-3 monolayers 

with KCNN4 specific inhibitor iberiotoxin (10 nM) for 10 minutes followed by 10 ng/ml 

EGF treatment for 1 hour reduced the forskolin stimulated ISC to 7.4 ± 1.8 µA cm-2 

(n=4), which was not significantly less than monolayers treated with forskolin alone 

(15.5 ± 2.1 µA cm-2, n=5), but not significantly different from monolayers preincubated 

with EGF for one hour alone (6.9 ± 1.5 µA cm-2, n=5). Basolateral pretreatment of 

intact Calu-3 monolayers with KCNQ1 specific inhibitor chromanol 293B (10 µM) for 

10 minutes followed by 10 ng/ml EGF treatment for 1 hour reduced the forskolin 

stimulated ISC to 13.5 ± 4.9 µA cm-2 (n=5), which was not significantly different from 

monolayers treated with forskolin alone (15.5 ± 2.1 µA cm-2, n=5), but not significantly 

different from monolayers preincubated with EGF for one hour alone (6.9 ± 1.5 µA 

cm-2, n=5). Taken together these data suggest that the EGF-induced decrease in 

forskolin stimulated ISC is most likely mediated through KCNQ1 channels. The effects 

of charybdotoxin excludes KCNN4, KCNA2 and KCNA3, contradicting the iberiotoxin 

result, thus casting doubt over KCNN4’s involvement in the process. 
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Figure 7.5 – Potassium channel inhibitor chromanol 293B rescues EGF induced decreases in forskolin 
stimulated ISC across Calu-3 monolayers back to control levels. 

Combined Combined traces for the first 4 minutes after 10 µM forskolin application (A) and a bar graph 

(B) showing the change in ISC across Calu-3 epithelia following forskolin treatment in response to 

basolateral treatment with inhibitors including 1 µM charybdotoxin, 10 nM Iberiotoxin and 10 µM 

chromanol 293B, followed subsequently by 10 ng/ml EGF stimulation for 1 hour. Statistical analysis was 

performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed 

statistically significant. 



200 
 

7.2.5 U0126 prevents recovery of EGF induced decreases in forskolin 
stimulated ISC at 24 hours 

To find out if ERK signalling is involved in the EGF induced decreases in forskolin 

stimulated ISC in Calu-3 cells, the monolayers were treated with U0126 over a period 

of 24 hours (Figure 7.6, A and B). With 25 µM U0126 treatment alone on the 

basolateral side of intact Calu-3 monolayers for 10 minutes, the 10 µM forskolin 

response was just 5.9 ± 0.6 µA cm-2 (n=3) which is significantly different from 

untreated cells (15.5 ± 2.1 µA cm-2, n=5, p<0.05). Pretreatment with 25 µM U0126 for 

10 minutes and then 10 ng/ml EGF treatment for 1 hour, 2 hours and 3 hours led to 

responses of 6.8 ± 1.0 µA cm-2 (n=3), 14.3 ± 1.6 µA cm-2 (n=3) and 6.5 ± 2.0 µA cm-2 

(n=3) respectively. With 25 µM U0126 pretreatment for 10 minutes and then 10 ng/ml 

EGF treatment for 24 hours, the current increase had not recovered, and remained at 

4.0 ± 1.4 µA cm-2 (n=3). This suggests that in intact membranes, blocking ERK 

signalling reduces forskolin response and prevents recovery at 24 hours as seen with 

EGF treatment alone. 

In permeabilised membranes with a basal to apical chloride gradient applied, the 

situation changes (Figure 7.6, C and D). With 25 µM U0126 treatment on the 

basolateral side of permeabilised Calu-3 monolayers, the increase in short circuit 

current due to 10 µM forskolin on the basolateral side was 106.2 ± 26.7 µA cm-2 

(n=3). With a 10 minute pretreatment of 25 µM U0126 followed by a 1 hour 

pretreatment with 10 ng/ml EGF on the basolateral side, the current increase due to 

10µM forskolin treatment is less at 55.8 ± 12.9 µA cm-2 (n=3). Similarly after 2 hours, 

the increase from 10 µM forskolin treatment was 72.1 ± 8.3 µA cm-2 (n=3), and at 3 

hours, the increase is 47.6 ± 23.0 µA cm-2 (n=3). By 24 hours, the increase in current 

from 10 µM forskolin has somewhat recovered to 89.2 ± 11.5 µA cm-2 (n=3). These 

results are not statistically significant however due to large variation in the results. 

Taken together, these permeabilised results suggest that inhibiting ERK with U0126 

appears to overall increase short circuit current in EGF treated Calu-3 monolayers 

compared to without U0126 treatment (seen previously in Figure 7.2), suggesting that 

the ERK signalling which subsequently occurs after EGF signalling negatively 

regulates ion transport in permeabilised Calu-3 monolayers. 
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Figure 7.6 – U0126 further decreases EGF induced decreases in forskolin stimulated ISC.  

Combined trace (A) and summary bar graph (B) showing the effects of 25 µM U0126 and 10 ng/ml EGF 

on 10 µM forskolin peak current, and a combined trace (C) and bar graph (D) showing the effect of 

U0126 and EGF on permeabilised monolayers. Statistical analysis was performed using a one way 

ANOVA with Tukey's Multiple Comparison test, where P<0.05 was deemed statistically significant. 
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7.2.6 Does EGF work via transactivation of the β2 adrenergic receptor? 

Firstly, to determine whether the apical or basolateral side of the Calu-3 monolayer 

had the greatest amount of β2 adrenergic receptors, the monolayers were treated with 

β2 agonist salbutamol on each side (Figure 7.7, A and B). Basolateral treatments of 

1 µM salbutamol resulted in an increase of 6.3 ± 1.2 µA cm-2 (n=5), whereas apical 

treatment only resulted in an increase of 2.7 ± 0.7 µA cm-2 (n=5). Since treating the 

basolateral membrane consistently gave the biggest response, further experiments 

conducted involved only the treatment of the basolateral side. To determine if 

salbutamol was working through the β2 adrenergic receptor as expected, β2 

antagonist ICI-118551 (10 µM) was preincubated on the basolateral side for 10 

minutes prior to experiment. The salbutamol response was reduced to 1.0 ± 0.3 µA 

cm-2 (n=5), which was statistically different from basolateral treatment with salbutamol 

alone (p<0.01). Taken together, this result shows that salbutamol stimulation in Calu-

3 cells leads to an activation of the β2 adrenergic receptor. 

To determine whether the effect of EGF is a direct effect or whether it involves 

transactivation of EGFR via metalloproteinase induced HB-EGF shedding (Figure 7.7, 

A and B), cells were pretreated on the basolateral side with metalloproteinase 

inhibitor GM6001 (1 µM). Subsequent treatment with salbutamol resulted in a current 

of 7.7 ± 1.4 µA cm-2 (n=3), a similar magnitude to salbutamol alone and not 

statistically significant. To further clarify if EGFR was involved in β2 induced CFTR 

signalling, EGFR inhibitor AG1478 (5 µM) was preincubated on the basolateral side of 

intact Calu-3 monolayers for 10 minutes, followed by 1 µM salbutamol. This resulted 

in a short circuit current of 8.3 ± 0.8 µA cm-2 (n=3), a similar magnitude to salbutamol 

alone and not statistically significant. From these findings, transactivation of the 

EGFR was ruled out as a possibility for the regulation of CFTR via EGF. 

To further investigate the effect of forskolin treatment, Calu-3 monolayers were 

stimulated with 10 µM forskolin on the basolateral and apical sides alone, to see 

which side produced the biggest response (Figure 7.7, C and D). Basolateral 

treatment alone resulted in an increase in short circuit current of 15.5 ± 2.1 µA cm-2 

(n=5), whereas treatment on the apical side alone resulted in a response of just 8.1 ± 

1.3 µA cm-2 (n=3), the difference between the two being statistically significant 

(p<0.01). 10 ng/ml EGF pretreatment for one hour on the basolateral side reduces the 
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basolateral forskolin response to 6.9 ± 1.5 µA cm-2 (n=5, p<0.01). Pretreatment with 

both 10 ng/ml EGF and 10 µM ICI-118551 resulted in a response of 4.7 ± 0.3 µA cm-2 

(n=5) that was again smaller than the basolateral 10 µM forskolin response by a 

statistically significant amount (p<0.01). It was also smaller than the response of 

10 ng/ml EGF treatment alone, but was not statistically significant. This was expected 

since forskolin does not act via the β2 receptor, but via activation of adenylate cyclase 

directly. Basolateral pretreatment with adenylate cyclase inhibitor MDL-12330A 

(20 µM) resulted in a forskolin response of just 2.7 ± 0.5 µA cm-2 (n=3), which was a 

reduction from the basolateral response to forskolin alone by a statistically significant 

amount (p<0.001). Taken together, this result demonstrates that forskolin is working 

through adenylate cyclase to increase ISC in Calu-3 cells, and that basolateral 

forskolin stimulation leads to a bigger increase in ISC compared to apical stimulation. 
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Figure 7.7 – Transactivation by the β2 adrenergic receptor does not occur in Calu-3 monolayers.  

Combined traces (A) and summary bar graph (B) depicting β2 adrenergic receptor mechanisms, and 

combined traces (C) and summary bar graph (D) of forskolin related mechanisms. Statistical analysis 

was performed using a one way ANOVA with Tukey's Multiple Comparison test, where P<0.05 was 

deemed statistically significant. 
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7.2.7 β3 adrenergic receptor - a minor regulator of ion transport in Calu-3? 

The characterisation of the β3 adrenergic receptor has not been previously 

demonstrated in the Calu-3 cell line. In order to go about this, specific β3 agonist 

CGP-12177 was used to treat Calu-3 monolayers on the basolateral side in the 

Ussing chamber set up as described previously. CGP-12177 had not previously been 

used to stimulate Calu-3 cells; so firstly, a dose response experiment was conducted 

using different concentrations of the compound (Figure 7.8, A and B). A concentration 

of 0.1 µM resulted in a response of 0.8 ± 0.3 µA cm-2 (n=3), 1 µM CGP-12177 

resulted in a response of 1.1 ± 0.6 µA cm-2 (n=3), and 10 µM CGP-12177 resulted in 

a response of 0.6 ± 0.2 µA cm-2 (n=3). To determine which side of the membrane 

gave the biggest response, 1 µM CGP-12177 was applied to the apical side only, 

resulting in a negligible response of 0.2 ± 0.2 µA cm-2 (n=3). Taken together, these 

results suggest that 1 µM CGP-12177 on the basolateral side gave a maximal 

response and was used for all subsequent experiments. 
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Figure 7.8 – Dose response to determine of the maximal response to CGP-12177.  

Combined traces (A) and summary bar graph (B) showing a dose response curve of β3 adrenergic 

receptor agonist CGP-12177. Statistical analysis was performed using a one way ANOVA with Tukey's 

Multiple Comparison test, where P<0.05 was deemed statistically significant. 
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7.2.8 How is the β3 adrenergic receptor regulated in Calu-3? 

To determine how the β3 adrenergic receptor regulates ion transport, inhibitors were 

used of several common pathways, including wortmannin, MDL-12330A and U0126, 

as well as using β3 receptor antagonist L-748,337 (Figure 7.9, A and B). Pretreatment 

with 50 µM wortmannin on the basolateral side resulted in a CGP-12177 response of 

just 0.1 ± 0.0 µA cm-2 (n=3), effectively eliminating the response, although not 

statistically different (likely due to the small currents involved). It is very likely that 

PI3K is involved in the pathway. Pretreatment with 25 µM U0126 on the basolateral 

side resulted in a CGP-12177 response of 1.0 ± 0.3 µA cm-2 (n=3), which was very 

similar to the control response, so it is likely that the response from stimulating the β3 

receptor is MAPK independent. Pretreatment with 20 µM MDL-12330A resulted in a 

CGP-12177 response of just 0.1 ± 0.0 µA cm-2 (n=3), also eliminating the response, 

indicating that adenylate cyclase is likely activated in the response. Pretreatment with 

10 µM L-748,337 on the basolateral side resulted in a CGP-12177 response of 0.5 ± 

0.2 µA cm-2 (n=3), reducing the response by approximately half. 

To further explore the mechanisms behind β3 receptor signalling, the basolateral 

membrane of the Calu-3 monolayers were permeabilised, and the same 

pretreatments of wortmannin, MDL-12330A, U0126 and L-748,337 were applied as 

before (Figure 7.9, C and D). Firstly, an initial experiment was performed by simply 

stimulating untreated permeabilised Calu-3 monolayers with 1 µM CGP-12177, 

resulting in a short circuit current of 9.4 ± 5.0 µA cm-2 (n=3). Pretreatment with 50 µM 

wortmannin on the basolateral side followed by stimulation with 1 µM CGP-12177 

resulted in a response of 21.9 ± 7.6 µA cm-2 (n=3), greater than treatment with CGP-

12177 alone, but not statistically significant. Pretreatment with 25 µM U0126 on the 

basolateral side followed by stimulation with 1 µM CGP-12177 resulted in a response 

of 5.2 ± 2.3 µA cm-2 (n=3), less than treatment with CGP-12177 alone but not 

statistically significant. Pretreatment with 20 µM MDL-12330A on the basolateral side 

followed by stimulation with 1 µM CGP-12177 resulted in a response of 9.8 ± 2.1 µA 

cm-2 (n=3), very similar to treatment with CGP-12177 alone. Pretreatment of 

permeabilised monolayers with 10 µM L-748,337 on the basolateral side and 

subsequent stimulation with 1 µM CGP-12177 resulted in a response of 9.3 ± 3.2 µA 

cm-2 (n=3), again, very similar to that of CGP-12177 treatment alone. 
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Figure 7.9 – β3 adrenergic receptor is potentially regulated by adenylate cyclase and PI3K in Calu-3 cells.  

Combined traces and bar graphs to show β3 adrenergic receptor mechanisms in intact (A, B) and 

permeabilised membranes (C, D). Statistical analysis was performed using a one way ANOVA with 

Tukey's Multiple Comparison test, where P<0.05 was deemed statistically significant. 
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7.2.9 Beta Receptors 1, 2 and 3 are expressed in the Calu-3 cell line 

The expression of Beta 1, 2 and 3 receptors was tested in the Calu-3 cell line with 

three repeats using a different RNA sample each time (Figure 7.10). It was seen that 

all three receptors were present, with the strongest signal being that of the β2 

receptor, and the weakest being the β3 receptor. 

 

Figure 7.10 – Beta receptor expression in Calu-3 cells, showing expression of all three receptors.  

Bands correspond to the correct band size for each gene (212bp for β1, 287bp for β2 and 122 bp for β3). 

RT-PCR consisted of 3 repeats using different RNA samples. 
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7.3 Discussion 

7.3.1 EGF pretreatment suppresses forskolin stimulation in Calu-3 monolayers 

It was noted that forskolin stimulation upon preincubation of EGF was reduced as the 

initial currents increased, before returning to normal at 24 hours. From the traces 

shown in Figure 7.2, it can be seen that the relationship between forskolin stimulation 

and EGF treatment is complex, with the data showing at least two processes involved 

at the same time. The first process that occurs is the increase in initial current from 

EGF treatment, as described in detail in Chapter 5. The second process is the 

suppression of forskolin stimulation by EGF. In isolated pancreatic acinar 

membranes, it was seen that forskolin, vasoactive intestinal peptide (VIP) and EGF 

were able to increase cAMP production. Treatment with anti-Gsα antibodies abolished 

both the EGF and VIP induced cAMP production but not forskolin-induced cAMP 

production. Importantly, when either VIP or forskolin is present, EGF inhibits both VIP 

and forskolin-induced cAMP production with an IC50 of 5 nM. These data suggested 

that in pancreatic acinar membranes, EGF regulates adenylate cyclase via the 

activation of Gs and Gi proteins and tyrosine phosphorylation (Stryjek-Kaminska et al., 

1996). In the heart, EGF stimulates adenylate cyclase via the activation of the G 

protein subunit Gs (Sun et al., 1995). A region resembling the peptide sequence in the 

β2-adrenergic receptor that activates Gs has been found in rat EGFR. This 13-aa 

region spans Arg646-Arg658 with the sequence RRREIVRKRTLRR and immediately 

follows the transmembrane region that spans Ile623-Met645 (Okamoto et al., 1991). 

Activated EGFR initially leads to stimulated GTP binding and GTPase activity of Gs 

and not the inhibitory G protein, Gi. At the same time, EGFR activation leads to 

phosphorylation of PKC, which in turn decreases the ability of EGFR to stimulate Gs. 

PKC also leads to an increase in the GTPase activity of the inhibitory G protein 

subunit, Gi. The Gi protein can then inhibit the activities of adenylate cyclase (Sun et 

al., 1995). The data obtained in this chapter represented by Figure 7.2, this time in 

Calu-3 cells, agrees with this finding. 
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Figure 7.11 – Proposed model of the effect of EGF treatment on adenylate cyclase in Calu-3 cells. 

Activation of EGFR leads to activation of Gs and protein kinase C (PKC). PKC activation leads to a 

decreased ability of EGFR to activate Gs and an increase in GTPase activity of Gi. Gi then inhibits 

adenylate cyclase, preventing chloride secretion through CFTR. Based on data from this investigation 

and data from: (Sun et al., 1995; Stryjek-Kaminska et al., 1996) 
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In our Calu-3 based system (Figure 7.11), activation of EGFR by EGF activates PKC 

(evidenced by data shown in Chapter 5). This in turn would lead to attenuation of Gs 

activity over the period of 1-3 hours EGF incubation and increase in Gi activation and 

adenylate cyclase inhibition. This ultimately leads to the decrease in stimulated 

forskolin response seen in the data of this chapter. Further work could use the Gi 

inhibitor, pertussis toxin (PTX), to investigate the effects of the Gi subunit in more 

detail (See Further work, Section 8.4). 

7.3.2 Chromanol 293B pretreatment restores forskolin response in EGF treated 
Calu-3 monolayers 

It was seen that EGFR inhibitors did not restore the control forskolin response, 

suggesting that the effect of EGF was independent of EGFR. Protein kinase inhibitors 

such as wortmannin and various PKC inhibitors appeared to further decrease the 

short circuit current rather than restore the current back to the control level of 

stimulation seen. This suggests that PI3K and PKC are important regulators of ion 

transport, likely via multiple processes. Inhibition of these proteins leads to a large 

reduction in both initial current and forskolin stimulated short circuit current, so may or 

may not conflict with work carried out previously in the heart (Sun et al., 1995). The 

data in this study concerning forskolin and PKC inhibitors are in agreement with a 

previous study where responses to forskolin plus CPT-cAMP in Calu-3 cells were also 

found to be markedly sensitive to preincubation with the PKC inhibitor, chelerythrine 

(Liedtke & Cole, 1998). In their study, chelerythrine reduced peak Cl- efflux to rates 

observed in cells treated only with the vehicle. Inhibition by chelerythrine was found to 

remove 69.4% of the peak Cl- efflux in CHO-wtCFTR cells and 79.2% of peak Cl- 

efflux in Calu-3 cells (Liedtke & Cole, 1998). Our novel data differs from this study in 

that EGF was preincubated with the inhibitor as well. In terms of potassium channels, 

it was clear that inhibiting KCNQ1 in the presence of EGF restored forskolin response 

to near control levels, indicating that the channel is affected by EGF and decreases 

forskolin response by an as yet unknown mechanism. In a normal situation with no 

other treatments, forskolin is known to raise intracellular cAMP by adenylate cyclase 

and thus can activate KCNQ1, increasing ion transport (Boucherot et al., 2001). 

Blocking KCNQ1 could only decrease ion transport after activation of forskolin in this 

situation due to decreased driving force for anion exit in this simplified situation. Our 

system however has EGF present on the basolateral membrane for 1 hour in addition 
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to the above. With our results, we do not see a decrease, but an increase in forskolin 

response. Perhaps since EGF can activate both KCNN4 channels as well as KCNQ1 

channels, raising the initial current, inhibiting KCNQ1 could prevent a raise in initial 

current allowing forskolin to have a larger effect by activating CFTR. Iberiotoxin and 

charybdotoxin treatment may eliminate more channels overall as KCNN4 is highly 

expressed in Calu-3, thus decreasing chloride channel driving force rather than 

increasing it like chromanol 293B. It is very likely that additional processes or 

signalling pathways are involved in the process that are not investigated here. 

7.3.3 The EGF induced decrease in forskolin stimulated ISC at 24 hours is 
blocked by U0126  

Moreover, pretreatment with U0126 prevents the recovery following treatment of 

Calu-3 monolayers with EGF for 24 hours. This suggests that ERK signalling after 

pretreatment with EGF may be responsible for the recovery of forskolin stimulation 

over 24 hours. In a study that bears similarities to data presented in this chapter, it 

has been demonstrated previously in rabbit colonocytes that EGF acts via EGFR and 

the MAPK signalling pathway to increase chloride transport. Inhibitors of this pathway 

(genistein, AG1478, and PD98059) prevented chloride stimulation (Carlos et al., 

2007). 

7.3.4 EGFR transactivation via stimulation of β2 adrenergic receptor does not 
occur in Calu-3 monolayers 

It has been previously demonstrated that TNF-α induces MMP-9 release, EGF ligand 

shedding and EGFR transactivation in airway epithelial cells. TNF-α treatment 

increases wound closure rates in NuLi and CuFi cells, which can be prevented by 

GM-6001, anti-EGF antibodies and tyrosine kinase inhibitors (Maille et al., 2011a). 

However, our data does not follow these results. Given that the magnitude of the 

salbutamol response is virtually identical for AG1478, GM-6001 and the control 

response, transactivation likely does not occur. The trace for AG1478 pretreatment 

does show some delay in reaching the same ΔISC after treatment with salbutamol, 

which may suggest that some endogenous EGFR activity may possibly be present, 

which would require further testing to explore in more detail. The transactivation 

process described in detail in the literature appears not to occur in Calu-3 (Liebmann, 

2011). 



214 
 

7.3.5 Adenylate cyclase and PI3K blockers prevent β3 adrenergic receptor 
induced ion transport in Calu-3 monolayers 

A previous study utilised A549 cells that had been simultaneously transfected with β3 

adrenergic receptor and CFTR (Robay et al., 2005). In this artificial system, of interest 

was to investigate the effect of β3 adrenergic receptor on CFTR response using 

microcytofluorimetry. It was discovered that CGP-12177 response could be inhibited 

in this system by the Gi/o inhibitor pertussis toxin (PTX), PI3K inhibitors wortmannin 

and LY-294002 and ERK1/2 inhibitors including PD-98059 and U0126. It was not 

seen that PKA was involved in the process. From this, the authors concluded that 

transfected β3 adrenergic receptors could activate CFTR response through Gi/o-PI3K-

ERK-MAPK pathway (Robay et al., 2005). Our system does not involve transfection 

and is only looking at endogenous levels of β3 receptors and CFTR in Calu-3 cells in 

a short circuit current set up. Our results suggested that PI3K was also involved, 

however, we determined that there was also likelihood of involvement of adenylate 

cyclase, but probably not ERK1/2 as found previously.  

7.3.6 Beta adrenergic receptors are expressed in Calu-3 

Beta 2 adrenergic receptors are shown to be expressed in our data and have been 

known to be expressed in Calu-3 cells from previous studies (Abraham et al., 2004). 

Beta 1 and 3 adrenergic receptors have not been previously been shown to be 

expressed in Calu-3 cells, but have previously been shown to be expressed in other 

airway epithelial cell lines such as 16HBE14o- as well as from explanted samples of 

CF and non-CF bronchi from patients (Bossard et al., 2011). 
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Chapter 8 Final Discussion 

8.1 Overview 

Mutations in the CFTR channel can lead to decreased chloride ion transport in 

epithelial tissues resulting in disease conditions such as CF (The Cystic Fibrosis 

Genetic Analysis Consortium, 1994). As a result, novel pharmacological strategies 

have been proposed to increase chloride secretion to treat the disease.  

Recent strategies involve high-throughput screening of compounds to find correctors 

and potentiators of the CFTR channel (Van Goor et al., 2009; Van Goor et al., 2011). 

This strategy has already proved to be successful in clinical trials with the approval of 

VX-770 to treat CF children 6 years or younger with the G551D mutation, and with 

combination treatments of VX-770 and VX-809 currently in phase 2 for ΔF508 

mutations (See section 1.3.5.2 for further details). Other strategies employed involve 

increasing the transport of other channels such as calcium activated chloride 

channels to increase chloride ion transport. Moreover, it was seen that EGF was 

present and elevated during lung disease conditions (Mercer et al., 2006), and that it 

may affect ion transport in the lung. EGF has been shown to induce the gelatinase, 

MMP-9, via the JNK signalling pathway (Poitras et al., 2003). MMP-9 is involved in 

tissue remodelling and repair in the airway (Bove et al., 2007). While the effect of 

EGF and its related signalling pathways on chloride secretion in the gut have been 

widely studied (McCole et al., 2002; McCole & Barrett, 2009), the effect of EGF on ion 

transport in the airway has yet to be investigated. Currently, there are no studies that 

have used the Calu-3 cell line to study EGF and its effects on chloride transport. In 

order to address this gap in knowledge, this study looked principally into the effects of 

EGF on chloride transport using Ussing chamber studies. Experiments involved the 

preincubation of Calu-3 monolayers with EGF over a period of hours to 1 day and the 

short circuit currents measured. Areas of study included: 

(i) Characterisation of the effects of stimulants and determining the expression 

of chloride channels and candidates in the Calu-3 cell line (Chapter 3) 

(ii) The effect of MMPs on ion transport (Chapter 4) 

(iii) The effect of EGF on initial short circuit current (Chapter 5) 



216 
 

(iv) The effect of EGF on UTP stimulated ion transport (Chapter 6) 

(v) The effect of EGF on forskolin and beta receptor stimulated short circuit 

current and possible transactivation of EGFR (Chapter 7). 

8.2 Summary of Findings 

8.2.1 Characterisation of chloride channels in the Calu-3 cell line 

In order to understand the processes which can regulate ion transport in the Calu-3 

cell line, it was necessary to determine baseline levels upon stimulation with forskolin 

and UTP with and without basolateral membrane permeabilisation and application of 

a chloride gradient. The important outcomes generated from this data set include the 

fact that forskolin generated a short circuit current in Calu-3 cells, which is increased 

further when the basolateral membrane is permeabilised. This is strong evidence that 

the Calu-3 cells used in our experiments were responding normally to the adenylate 

cyclase activator. Calcium chelator BAPTA-AM appeared to remove the peak phase 

of the standard response curve from forskolin, indicating that the peak phase may be 

calcium-dependent. In contrast, UTP responses were so small that they were not 

considered to be statistically significant from baseline readings, and basolateral 

membrane permeabilisation did not change this. This is important since it shows that 

receptors that respond to UTP (such as P2Y) are not major transporters in Calu-3 

cells under unstimulated conditions. 

Since the results from short circuit current indicated that channels such as CaCCs 

may not be major transporters in Calu-3 cells, this may have been due to little to no 

expression of CaCC candidates at the message and protein levels. Therefore the 

question was to determine which CaCC candidate genes were expressed in Calu-3 

cells, with A549 and CFPAC cell lines used as a comparison. Despite the fact that 

expression of CaCCs in the cell lines Calu-3, A549 and CFPAC have been studied in 

some depth previously (Kunzelmann et al., 2009), there were some gaps in 

knowledge, such as the expression of bestrophins 1 – 4 in the A549 cell line has not 

been shown. To address these gaps in current knowledge, the expression of all 

bestrophins and anoctamins was carried out in all three cell lines. It has been 

demonstrated in this study that there is expression of a wide array of chloride 
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channels and candidates in Calu-3 cells, suggesting that the CaCC candidates could 

potentially remain inside the cell and not expressed on the cell membrane. 

8.2.2 Effect of MMPs on ion transport in the Calu-3 cell line 

It has been previously been demonstrated that MMP inhibitors such as 1,10-

phenanthroline could act as CFTR openers in the Calu-3 cell line (Duszyk et al., 

1999; Duszyk et al., 2001), but the mechanism involved in this process was unknown. 

To address this gap in knowledge, experiments were designed with the intention of 

verifying results using other inhibitors such as GM-6001 and then extend the 

investigation to influences of EGF and basolateral potassium channels for potential 

signalling pathways potentially involved in the process. 

It was discovered that metalloproteinases were unlikely to be involved in modulating 

chloride currents such as those transmissible through CFTR. Broad spectrum MMP 

inhibitor GM-6001 did not activate chloride currents in the Calu-3 cell line, and 

addition of recombinant MMP-2 did not inhibit chloride currents. These data appeared 

to directly contradict prior work by Duszyk et al., 1999, suggesting that the inhibitor 

used previously (1,10-phenanthroline) may have had a direct effect on the CFTR 

channel rather than inhibiting MMPs that were in turn inhibiting the channel. This 

information is significant in that it shows that MMP inhibitors in general may in fact not 

be CFTR openers and thus be a means for treating cystic fibrosis. 

8.2.3 EGF signalling increases chloride driving force in the Calu-3 cell line 

The effect of EGF on ion transport in the gut has been widely reported and the 

mechanisms involved are comparatively well understood (McCole & Barrett, 2009). 

However in the airway, the effect of EGF treatment on ion transport is largely 

unknown, especially in the submucosal cell line Calu-3 where no studies have been 

previously conducted. We hypothesised that EGF would have a similar effect on ion 

transport as seen in the gut, so in order to address this gap in knowledge, 

experiments were designed so that Calu-3 monolayers were preincubated with EGF 

over a period of time up to 24 hours and the initial currents measured. 

It was seen that EGF raised initial current at 1 hour compared to controls, suggesting 

that EGF was activating a signalling pathway or activating channels directly. This was 
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a very important discovery since this was a completely novel means of increasing ion 

transport across the Calu-3 monolayers and so warranted further investigation. The 

important question then became that of how EGF was bringing about these effects, 

as at this early point, there were many potential candidates. By performing 

experiments with Calu-3 monolayers and basolateral membrane permeabilisation 

combined with EGF treatment, it suggested that this increase was likely due to 

activation of basolateral potassium channels since the pattern of stimulation seen in 

intact monolayers was abolished. With potassium channels implicated, the next 

question was to determine the signalling pathway that linked EGF to potassium 

channel activation, and which potassium channels were actually affected. Further 

investigation using inhibitors of EGF signalling pathways known to be involved in 

other tissues showed that EGF was working through the EGFR receptor and that the 

PI3K – PKC-δ signalling messengers were involved. Inhibition of potassium channels 

showed that KCNN4 played a major role in generating the current, and that KCNQ1 

also contributed. This result is very significant since it provides many potential targets 

for which to treat CF that have not been previously considered, as well as shedding 

new insight on how the EGF signalling pathway affects ion transport in the Calu-3 cell 

line. Aerosols have been previously made using 20 μg EGF in saline and 

administered to rat models, where improvements in lung liquid clearance was seen 

(Sznajder et al., 1998). It may be possible to similarly administer aerosolised EGF to 

human patients to aid mucus clearance in cystic fibrosis sufferers. 

8.2.4 EGF signalling increases UTP response in the Calu-3 cell line 

While the effects of UTP on Calu-3 cells produced no significant effect, it was 

possible that this could change under the treatment of EGF. The effect of EGF on 

calcium activated chloride channels (CaCCs) in the gut has been widely reported and 

the mechanisms involved are comparatively well understood (McCole & Barrett, 

2009). However in the airway, the effect of EGF treatment on CaCCs has yet to be 

investigated. We hypothesised that EGF would have a similar effect on stimulated 

CaCC transport, so in order to address this gap in knowledge, experiments were 

designed so that Calu-3 monolayers were preincubated with EGF over a period of 

time up to 24 hours and the response to UTP measured. 
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While shorter time points indicated that UTP was not having a different effect when 

combined with EGF treatment, stimulating with UTP resulted in a statistically 

significant spike where intact Calu-3 monolayers were treated with EGF for the longer 

period of 24 hours, which did not occur when the basolateral membrane was 

permeabilised. These data suggested that potassium channels on the basolateral 

membrane were involved, and we suggest that these are likely to be calcium 

activated potassium channels since UTP stimulation is known to lead to elevated 

levels of intracellular calcium. This finding was considered significant since EGF 

treatment not only increases ion transport by itself, but also enhances the effects of at 

least one stimulator of ion transport as well. This could prove to be a useful avenue 

for combination treatments to tackle CF. 

8.2.5 Reduction in stimulated ISC after EGF treatment in the Calu-3 cell line 

While it was demonstrated that EGF could enhance UTP stimulation over a period of 

24 hours, the effect of EGF treatment on forskolin stimulation was also of interest. 

The link between EGF related mechanisms and stimulated ion transport in the gut 

has been widely reported and the mechanisms involved are comparatively well 

understood (Keely et al., 1998; Keely et al., 2000). However in the airway, the effect 

of EGF treatment on stimulated ion transport is largely unknown, especially in the 

submucosal cell line Calu-3 where no studies have been previously conducted. In 

order to address this gap in knowledge, experiments were designed so that Calu-3 

monolayers were preincubated with EGF over a period of time up to 24 hours and the 

response to adenylate cyclase agonist measured. 

It was seen that responses to forskolin were almost reciprocal to elevations caused 

by EGF treatment over the 24 hour time period used. Based on information from 

previous studies (Sun et al., 1995; Stryjek-Kaminska et al., 1996) and the data 

collected in this study, it was proposed that activation of EGFR led to an activation of 

PKC (as similarly reported in Chapter 5). Activation of PKC subsequently leads to an 

activation of Gi and an attenuation of EGFR’s ability to activate Gs. This in turn leads 

to an inhibition of adenylate cyclase and reduced forskolin response. Once the effect 

of EGF dissipates at 24 hours, forskolin regains its ability to increase the current. 
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Following on from this result, we were interested in investigating if it was possible to 

restore the reduced effect of forskolin with EGF back to control levels. Through the 

use of inhibitors, it was seen that inhibitors of PI3K and PKC were not able to do so, 

suggesting that these signalling molecules were not suppressing the forskolin 

response. Upon inhibiting KCNN4, again, this was not able to rescue the reduced 

effect of forskolin by EGF. However, inhibition of KCNQ1 by chromanol 293B did 

rescue the response so that it was no longer statistically significant from the response 

to forskolin alone. This result was seen as significant since it ties in with the 

knowledge that KCNQ1 is potentially involved in raising the initial short circuit current 

and that inhibition of the channel allows forskolin to produce a larger effect. Inhibition 

of PI3K and PKC likely inhibited other ion channels, leading to a greatly decreased 

chloride driving force and therefore a greatly reduced short circuit current. 

When intact Calu-3 monolayers were preincubated first with U0126 and then EGF, it 

prevented the recovery of the forskolin stimulated short circuit current at 24 hours as 

seen with EGF treated monolayers without U0126 treatment. This suggested that the 

recovery process through which responses from EGF return to the resting state are 

mediated through an ERK signalling pathway. This finding provides additional in 

depth understanding of the underlying signalling pathways that regulate secretion in 

Calu-3 cells. 

8.2.6 Effect of EGF in the Calu-3 cell line is independent of a transactivation 
process 

From the literature, it is clear that activation of the β2 adrenergic receptor is able to 

induce shedding of EGF ligands and transactivate the EGF receptor (Liebmann, 

2011). The effect of β2 agonists on chloride transport in the Calu-3 cell line is widely 

understood (Cobb et al., 2002). However, it is not understood if the β2 adrenergic 

receptor is able to transactivate EGFR when it is stimulated in the Calu-3 cell line. In 

order to address this gap in knowledge, experiments were designed experiments 

were designed to initially characterise the response to β2 agonist salbutamol, and 

then to see how response could be altered using inhibitors of both metalloproteinases 

(to prevent shedding) and EGFR (to prevent EGF ligand activating EGFR).  
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It was found that basolateral pretreatment with neither AG1478 nor GM-6001 could 

significantly reduce the size of the standard response to acute basolateral treatment 

with salbutamol, suggesting that a transactivation was not involved. This is significant 

since it shows that drugs such as salbutamol do not act via metalloproteinases to 

release EGF ligand and increase short circuit current. 

8.2.7 β3 agonists have negligible effects on Calu-3 monolayers 

Very few studies looking at the β3 adrenergic receptor in the airway have been 

conducted and as such, the effects (if any) of the receptor is poorly understood, 

especially in non-transfected cell lines. Studies in the Calu-3 cell line have yet to be 

published. In order to address this gap in knowledge, experiments were designed to 

characterise the response of β3 agonist CGP-12177 on the β3 adrenergic receptor, 

with the intention of discovering another possible regulator of ion transport in the 

Calu-3 cell line. 

RT-PCR results suggested that the β3 adrenergic receptor was weakly expressed in 

the Calu-3 cell line. The resulting currents generated by stimulation with CGP-12177 

were very small but measurable. It was not expected for these currents to be large 

since it was previously seen that β3 adrenergic receptors were not greatly expressed 

in Calu-3 cells, which was also in agreement with data gathered during this 

investigation. It was possible to completely inhibit the response using wortmannin and 

adenylate cyclase inhibitor MDL-12330A, and reduce the response using selective β3 

blocker L,-748,337. When repeated with basolateral membrane permeabilisation, the 

responses to CGP-12177 were greater, but the inhibitors used bar ERK inhibitor 

U0126 did not decrease the current, suggesting that there may be an effect of 

basolateral potassium channels, which once removed, invalidates the actions of 

inhibitors such as wortmannin. It is however more difficult to make firm conclusions 

when the increases are slight and the number of repeats low, which would explain 

why other groups have transfected excess β3 receptors in cell lines to examine the 

responses rather than our approach that only looked at endogenous levels of β3. 

While our investigation may have failed to demonstrate a statistically significant 

increase from the β3 agonist used, it nevertheless demonstrated the presence of the 

β3 adrenergic receptor, which is a novel finding. 
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8.3 Concluding Remarks 

In conclusion, the data obtained during this investigation suggest that activation of 

basolateral potassium channels via the EGFR receptor and subsequent signalling 

pathway implicated in this study would be a desirable outcome for ion transport in the 

lung in disease conditions such as CF. It has been previously shown in rat lungs that 

EGF increases lung liquid clearance when administered as an aerosol (Sznajder et 

al., 1998). In this study, the activation of basolateral potassium channels was 

accomplished by preincubating Calu-3 monolayers with EGF for a period of 1 hour, 

and in other studies such as those carried out by Roth et al., 2011 and Devor et al., 

1996, it has been accomplished by treatment with 1-EBIO in rectal biopsies (Roth et 

al., 2011) and Calu-3 cells (Devor et al., 1996). There is good potential for effective 

treatments for CF through combination therapy of basolateral potassium activation 

and CFTR activation and potentiation with drugs such as VX-770 (Van Goor et al., 

2009; Accurso et al., 2010) and VX-809 (Clancy et al., 2012), of which VX-770 has 

been approved (G551D mutation in children) and combination therapy of the two are 

already in phase 2 clinical trials. While these drugs have been shown to be effective 

in improving lung function in CF patients, there is still scope for restoring CFTR 

currents in patients with CF. 

8.4 Future Work 

During this investigation, there have been various findings which have yet to be 

studied to determine further mechanisms. One such finding is the return of initial 

currents, and forskolin stimulated responses to normal after being stimulated by EGF 

for 24 hours. While we speculate that at 24 hours the EGF receptor may be 

internalised by the cell and thus return the cell ion transport status to normal, we did 

not demonstrate this experimentally. It should be possible to use inhibitors of 

internalisation such as bafilomycin A1 or chloroquine to simultaneously preincubate 

with EGF for 24 hours and compare the results to the control (Storey et al., 2002). It 

would be expected for the initial current not to return to baseline levels with these 

inhibitors if internalisation of the EGFR is in fact the case.  

Another possible explanation is that there is in fact a transmodulation of the EGF 

receptor, leading to an eventual decrease in ion transport (Figure 8.1). The model for 
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transmodulation of the EGF receptor would involve stimulation of the β2 adrenergic 

receptor leading to the activation of PKA. PKA is able to negatively regulate EGFR 

signalling (Liebmann, 2011). If the initial current and forskolin stimulated current 

recovers at 24 hours, then if cells were preincubated with EGF and a PKA inhibitor 

such as 14-22 amide simultaneously for 24 hours, our hypothesis would suggest that 

PKA being present would prevent the return of current back to the resting state if 

transmodulation is occurring. 

 

Figure 8.1 – Model for the transmodulation of the EGFR receptor.  

Simultaneous treatment of intact Calu-3 monolayers with EGF and specific protein kinase A (PKA) 

inhibitor, 14-22 amide, would prevent the return in short circuit current to unstimulated levels if 

transmodulation of EGFR occurs in this manner. Based on a schematic by (Liebmann, 2011) 

Activation of the EGFR receptor led to an inhibition of forskolin stimulated short circuit 

current, which was suggested to be due to an inhibition of adenylate cyclase via G i 

proteins. However, this explanation is untested; therefore an investigation could be 

carried out using Calu-3 monolayers treated with EGF as detailed before, with the 

addition of pertussis toxin to inhibit Gi activity. For our proposed model to be true, it 

would be expected that activation of CFTR via forskolin treatment would be rescued. 

Moreover, there is some evidence in the literature that activation of tyrosine kinases 

such as EGFR can lead to activation of Na+/K+-ATPase activity in the rat proximal 
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convoluted tubule (Feraille et al., 1997). It may be the case that there is an increase 

in Na+/K+-ATPase activity in Calu-3 cells when they are treated with EGF. Na+/K+-

ATPase are known to be present in Calu-3 cells (Devor et al., 1999). Future studies 

could look at the effect of EGF on the Na+/K+-ATPase. This could be better studied by 

permeabilising the apical membrane and using a potassium gradient. The default 

response to EGF treatment could be compared to a combined treatment of EGF and 

ouabain (a Na+/K+-ATPase inhibitor) to see if the increase in short circuit current was 

reduced in the latter, which would suggest Na+/K+-ATPase involvement. 

This investigation looked at the gene expression of bestrophins and anoctamins in 

three epithelial cell lines. Protein expression of BEST1 was investigated in the Calu-3 

cell line, but not other bestrophins and anoctamins. This was due to a lack of 

availability of reliable antibodies to detect these proteins. Future work could entail 

using new antibodies that are currently being developed in an attempt to determine 

their expression in the Calu-3 cell line. Subsequently, it may be possible to see if their 

expression is upregulated by EGF to see if there is a link between EGFR signalling 

and expression of calcium activated chloride channel proteins. Such a link has yet to 

be described.  
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